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I. INTRODUCTION
Building on our recent formal security analysis [24, 25] of the FAPI 2.0 Security Profile [14], we here extend the analysis

effort to FAPI 2.0 Message Signing [22],1 combined with Dynamic Client Registration (DCR, defined in RFC 7591 [42]),
Dynamic Client Management (DCM, defined in RFC 7592 [43]), as well as FAPI-CIBA [49].2 Overall, we model an ecosystem
which uses all these profiles and extensions in parallel.

This report covers both phases of the aforementioned extension, which includes modeling FAPI 2.0 Message Signing, DCR,
DCM, and FAPI-CIBA within the Web Infrastructure Model (WIM, see [31]), defining precise security properties based on
that formal model, as well as proving the formalized properties.

In what follows, we first give a brief overview of the protocols and extensions contained in the model, as well as the attacker
assumptions. This is followed by an overview of the security properties that we analyze. We continue with a brief introduction
to the WIM, some remarks on the involved specifications, explanations and discussions of certain modeling decisions and
assumptions. In the appendices, we give the full formal model and formalized security properties, and the full formal proof.

II. FAPI 2.0 PROTOCOL AND SECURITY GOALS
Here, we first describe the FAPI 2.0 Security Profile (Second Implementer’s Draft) [14] protocol and the accompanying

FAPI 2.0 Attacker Model (Second Implementer’s Draft) [13]. Following this, we introduce DCR, DCM, FAPI 2.0 Message
Signing, and FAPI-CIBA. For each of these extensions, we briefly mention the corresponding security goals and refer to
Section III for a full overview of the security properties that we analyze.

A. Overview of FAPI 2.0 Security Profile
In a nutshell, FAPI 2.0 allows a user (also called resource owner) to grant a client application access to their data stored at

a resource server (RS), by means of an authorization server (AS) which is responsible to manage access to the user’s data. In
addition, the AS may provide the client with information on the user’s identity at the AS. For example, FAPI 2.0 may be used
to grant an account aggregation service (client) read access to a user’s account balance at various banks (RSs), with services
of these banks (ASs) managing such access (such services are in use today, e.g., [3, 6, 9, 37]).

On a high level, a FAPI 2.0 protocol run, also called flow or grant, advances as follows: A user visits a website or uses an
application of the client c, which wants to access data of the user stored at the RS. Since the user’s data at the RS is managed
by an AS as, c contacts as with some initial information, e.g., what kind of data the client requests access to. as replies
with an internal reference to the current flow, which c then forwards to the user’s browser while also instructing the browser
to visit a website of as to proceed. Once the user, or more precisely, their browser, visits that as website, the user is asked
to authenticate, e.g., with username and password, and to authorize the client’s request. If the user consents, as instructs the
user’s browser to return to the client website or application, passing on a value called the authorization code. Once the client

1Our analysis of FAPI 2.0 Message Signing is based on commit 67246ac to the OIDF’s FAPI WG repository, and when we mention section numbers, we
refer to that commit. However, we have of course incorporated the changes made to that document since then, up to commit 96c2fec (from August 13, 2023).

2Our analysis of FAPI-CIBA, when used with FAPI 2.0, is based on commit ac96a05 to the OIDF’s FAPI WG repository. At the time of this writing, that
commit is not yet merged into the master branch. We use ac96a05 after consultation with the FAPI WG chairs. See https://bitbucket.org/openid/fapi/pull-
requests/417 for tracking of the corresponding pull request.

https://bitbucket.org/openid/fapi/pull-requests/417
https://bitbucket.org/openid/fapi/pull-requests/417


1 Initiate flow (out of scope)Initiate flow (out of scope)
client-init-flow

2 GET /standardized-path (Metadata Request)GET /standardized-path (Metadata Request)
metadata-request

3 AS Metadata Document (Metadata Response)AS Metadata Document (Metadata Response)
metadata-response

issuer: issas, authz_endpoint: https://as.com/authz,issuer: issas, authz_endpoint: https://as.com/authz,
token_endpoint: https://as.com/token, ...token_endpoint: https://as.com/token, ...

POST /par (PAR Request)POST /par (PAR Request)
client id cid , redirect uri rediruri ,client id cid , redirect uri rediruri ,

code challenge cc := h(cv), scope, ...code challenge cc := h(cv), scope, ...
+ client authentication (mTLS or pkjwt)+ client authentication (mTLS or pkjwt)

7 requri (PAR Response)requri (PAR Response)
par-response

8 Redirect to https://as.com/authz?request_uri=Redirect to https://as.com/authz?request_uri=
requri&client_id=cidrequri&client_id=cid

par-authz-redirect

9 GET https://as.com/authz?request_uri=requri&client_id=cid (Authorization Request)GET https://as.com/authz?request_uri=requri&client_id=cid (Authorization Request)
par-authz-request

10 User authentication and consent (out of scope)User authentication and consent (out of scope)
authz-authn+consent

11 Redirect to rediruri?code=ac&iss=issas (Authorization Response)Redirect to rediruri?code=ac&iss=issas (Authorization Response)
authz-response-redirect

12 GET rediruri?code=ac&iss=issasGET rediruri?code=ac&iss=issas
authz-response

14 POST /token (Token Request)POST /token (Token Request)
token-request

DPoP proof, ac, cid , code verifier cv (cf. Step 5)DPoP proof, ac, cid , code verifier cv (cf. Step 5)
+ client authentication (mTLS or pkjwt)+ client authentication (mTLS or pkjwt)

16 Token ResponseToken Response
token-response

access token at , [id token], ...access token at , [id token], ...

18 GET /protected-resource (Resource Request)GET /protected-resource (Resource Request)
resource-request

DPoP proof (incl. hash of at), atDPoP proof (incl. hash of at), at

[Token Introspection][Token Introspection]
rs-checks-request

20 Resource ResponseResource Response
resource-response

User’s Browser
º, ¹, Î, ...

Client c
FinTech, insurance, ...

AS as
Bank, government, ...

4 Verify issuerVerify issuer
client-verifies-metadata

5 Generate
nonce cv
Generate
nonce cv

par-request

6
Check client authentication and request
parameters, store request, and generate
request uri requri

Check client authentication and request
parameters, store request, and generate
request uri requri

as-checks-par-request

13 Validate issValidate iss
client-check-authz-response

15 Check client authentication, ac, cv , and generate token(s)Check client authentication, ac, cv , and generate token(s)
as-check-token-request

RS
Bank, credit scorer, ...

RS
Bank, credit scorer, ...

RS
Bank, credit scorer, ...

17 Optional: Log in user with information from id tokenOptional: Log in user with information from id tokenuse-id-token

19
Verify validity, integrity, expiration and
revocation status of at , and DPoP
token binding

Verify validity, integrity, expiration and
revocation status of at , and DPoP
token binding

rs-checks-request

User’s Browserº, ¹, Î, ...

Clientc
FinTech, insurance, ...

ASasBank, government, ...

RS
Bank, credit scorer, ...

RS
Bank, credit scorer, ...

RSBank, credit scorer, ...

metadata endpointmetadata endpoint

PAR endpointPAR endpoint

authorization endpointauthorization endpoint

redirection endpointredirection endpoint

token endpointtoken endpoint

introspection endpointintrospection endpoint

Figure 1. FAPI 2.0 Security Profile protocol flow (with DPoP sender constraining)

receives that authorization code, it can contact as and exchange the authorization code for so-called tokens. There are two
types of tokens in FAPI 2.0: ID Tokens and Access Tokens. An id token contains information to identify the user, e.g., an email
address or username with which the user is registered at the AS. This id data can be used by the client to authenticate users in
the context of the client application. An access token, on the other hand, can be used by the client to request users’ resources
from an RS, e.g., account balances. Upon receiving such a request, an RS verifies the access token’s validity. Depending on the
access token format, this may include checking a signature on the access token or using so-called token introspection, which
means that the RS queries the AS for validity information on a given access token.

B. The FAPI 2.0 Security Profile in Detail
In the following, we describe a FAPI 2.0 protocol flow in detail (depicted in Figure 1). The flow is initiated by a user visiting

the website or using an application of a client c, typically expressing the wish to authorize the client using a certain AS as,
e.g., by clicking a “Login with as” button (Step 1 ).

FAPI 2.0 assumes that the client received the so-called issuer identifier issas of as (e.g., via configuration). That issuer
identifier is used in FAPI 2.0 and other protocols to uniquely identify as [48]. However, to complete a FAPI 2.0 flow, the
client needs additional knowledge on as, e.g., endpoint URLs. Therefore, it proceeds by fetching so-called Authorization Server
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Metadata [29, 45] from as (Step 2 ). Like all other communication in FAPI 2.0, this exchange is done via HTTPS, i.e., is
protected by TLS. The metadata returned by as includes URIs of the relevant endpoints, supported cryptographic algorithms,
and similar information, along with the issuer identifier of as (Step 3 ). Once the client acquired the metadata, it verifies the
aforementioned issuer identifier to prevent mix-ups, e.g., due to injection attacks.

Once the required values are available, c assembles a Pushed Authorization Request (PAR) [34] and sends it to as (Step 5 ).
This PAR request contains everything needed by as to provide the user with sufficient information in Step 10 such that the
user can make an informed decision on whether to grant c access to their data. This information includes: 1) a client id cid ,
uniquely identifying c at as. 2) A scope value, describing what data c wants to access, e.g., “read transactions”, and whether
c requests an id token to be issued. 3) A redirect uri rediruri , which is used by as in Step 11 to redirect the user’s browser
back to c. 4) A code challenge, i.e., a hash h(cv) of a client chosen nonce cv , which is used in Step 14 to verify that the
client requesting a token is the same client that sent the PAR request (even if the PAR request leaks). This mechanism is called
Proof Key for Code Exchange (PKCE) [44]. 5) Client authentication information (see below for a description).

Upon receiving the PAR request, as verifies the client authentication, the presence of the parameters explained above, and
checks whether the requested scope can be granted to the client (under the policies of as). If all these checks pass, as creates
a random request uri requri and stores the requested scope, cid , cc := h(cv), rediruri , and requri (Step 6 ); requri will be
used as a reference to the PAR data in Step 9 and is therefore sent to c in the PAR response (Step 7 ). Client c then redirects
the user’s browser to as, adding requri and cid as request parameters (Step 8 ). Following that redirect, the user’s browser
visits as and in doing so, forwards requri and cid , hence providing information on the user’s context (i.e., the current flow)
to as (Step 9 ). The user now authenticates at as and reviews the access requested by c (Step 10 ), the exact details of this
step are up to the AS and out of scope of FAPI 2.0. If the user consents, as generates a random authorization code ac and
stores it with the PAR data from Step 5 . as then redirects the user’s browser back to the rediruri of c (stored in Step 6 ),
and includes ac as well as an iss value [48] (i.e., the issuer identifier issas) as parameters (Steps 11 and 12 ).

Once c has received the browser’s (redirected) request, it validates the iss value by comparing it to the issuer identifier of
the AS to which the client sent the PAR request in Step 5 to prevent mix-up attacks [20, 33, 36, 48]. If this check passes,
c sends a token request to as (Step 14 ). This token request contains the authorization code ac from Step 12 , client id cid ,
a code verifier cv , i.e. the nonce from Step 5 , and client authentication similar to Step 5 . Furthermore, c must also include
information for access token sender constraining, which we describe below.

When as receives that token request, it verifies the client authentication, presence of a sender constraining method, and
validity of the authorization code and code verifier (Step 15 ). The latter is verified by checking whether h(cv) = cc, with
cc being the code challenge stored in Step 6 and cv being the code verifier from the token request. The code ac is then
invalidated and as generates an access token at (and id token if requested) and sends them back to c in Step 16 .

Given an id token, c may now log in the user with whatever identity the user has at as, e.g., a user name (Step 17 ). This
allows clients to offer SSO to their users.

Using the access token at , c can request user’s resources at an RS as follows: in the resource request (Step 18 ), c must
include at as well as corresponding information for access token sender constraining (see below). The RS then has to verify
at’s validity, integrity, expiration, and revocation status, as well as the sender constraining information (Step 19 ). Except for
the sender constraining, FAPI 2.0 does not specify how RSs should perform those (nonetheless mandatory) checks. Currently,
there are two widely-adopted methods to do so [38]: token introspection [41], and structured access tokens, which contain the
necessary information and are typically signed by the AS [5, 26]. With token introspection, the RS sends the access token to
the introspection endpoint of the AS which issued the token, to which the AS answers with information on the validity of the
token and on the public key to which the access token is bound.

Client Authentication. FAPI 2.0 mandates ASs to authenticate their clients at the PAR and token endpoints (Steps 5 and
14 ) using Mutual-TLS (mTLS) or private_key_jwt. In both cases, clients need to be registered with the AS beforehand. With
mTLS [7] authentication, the client presents a TLS certificate containing the client’s identity, e.g., one of its domains, during
TLS connection establishment. With private_key_jwt [46], the client adds a signed JSON Web Token (JWT) [26–28] to its
messages. This JWT contains, among other things, the client’s id at the AS, the issuer identifier of the AS, and a nonce, and
is signed with a private key of the client.

Access Token Sender Constraining. When issuing an access token (Steps 14 – 16 ), a FAPI 2.0 AS is required to bind the
token to a key of the client who requested it. Likewise, the RS must verify this binding when it receives a resource request
(Step 19 ). FAPI 2.0 defines two methods to establish and verify such a binding: OAuth 2.0 Demonstrating Proof-of-Possession
at the Application Layer (DPoP) [15], which is shown in Figure 1, and mTLS [7]. In both cases, the access token is bound to
a client key pair, e.g., by including a hash of the public key in the token, and the client has to include a proof of possession
of the private key when using the access token.

With DPoP, the token request (Step 14 ) must include a DPoP proof, consisting of a signed JWT dpopJWT , containing the
URL to which it is sent, a nonce, and a public verification key pub(k) (of the client’s choice). dpopJWT is signed using
the corresponding private key k. The AS then binds the access token to pub(k). When requesting resources (Step 18 ), the
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client has to include another DPoP proof—signed with k—which must contain a hash of the access token in addition to the
aforementioned items.

With mTLS, the AS binds the access token to the public key included in the client’s TLS certificate, which the client presents
during connection establishment in Step 14 . When using the access token (Step 18 ), the client presents the same certificate
during the TLS connection establishment (which includes a proof of possession of the corresponding private key).

We emphasize that client authentication and access token sender constraining are independent of each other, including the key
material. E.g., a client which uses mTLS to authenticate may use DPoP for sender constraining, and a client can authenticate
with private_key_jwt and at the same time use mTLS for sender constraining. I.e., there are four possible combinations.

C. FAPI 2.0 Attacker Model
Along with the actual protocol specification, the FAPI Working Group (FAPI WG) developed the FAPI 2.0 Attacker Model [13]

which outlines security goals and assumptions on attackers under which these goals are expected to hold for FAPI 2.0 Security
Profile. We only briefly recall these goals and assumptions here, and refer to our reports on the analysis of FAPI 2.0 Security
Profile [24, 25] for a more extensive discussion. Furthermore, there are additional security goals for FAPI 2.0 Message Signing,
see Section II-E.

Authorization Goal. The authorization goal states that no attacker should be able to access resources belonging to an honest
user. In addition, the FAPI 2.0 Attacker Model states that this goal is “fulfilled if no attacker can successfully obtain and use
an access token” issued for an honest user.

Authentication Goal. The authentication goal is fulfilled when no attacker is able to log in at a client under the identity of
an honest user.

Session Integrity for Authorization Goal. Session integrity goals aim to prevent attackers from tricking users into using
attacker’s resources or identities. Hence, the session integrity for authorization goal ensures users cannot be forced to use
resources of the attacker.

Session Integrity for Authentication Goal. Similar to the session integrity for authorization goal, the session integrity for
authentication goal is fulfilled if no attacker can force an honest user to be logged in under an identity of the attacker.

Attacker Assumptions. In the following, we summarize the aforementioned attacker assumptions laid out in the FAPI 2.0
Attacker Model. We note that these assumptions are considered not only for FAPI 2.0 Security Profile but also in the analysis
of the extensions presented below.
A1. The attacker controls the network, i.e., can intercept, block, and tamper with all messages sent over the network. In
particular, the attacker can also reroute, reorder, and create (from its knowledge) new messages. However, the attacker cannot
break cryptography unless it learned the respective keys. Nevertheless, the attacker can pose as any party (and any network
participant) in the protocol. In addition, the attacker can also send links to (honest) users which are then visited by these users.
A2. The attacker can read authorization requests in plain (cf. Step 9 in Figure 1).
A3. The attacker can trick the client into using an attacker-controlled token endpoint URL, i.e., one for which the attacker
can obtain a valid TLS certificate (other endpoints, e.g., PAR, are not affected). Hence, the attacker can read token requests
(Step 14 ) in plain and construct arbitrary token responses from its knowledge (Step 16 ). However, this assumption only applies
to clients which do not use the AS metadata mechanism.
A4. Resource requests (Step 18 ) leak to the attacker in plain.

D. Dynamic Client Registration and Management
The aforementioned relationship between FAPI 2.0 clients and ASs can be established in various ways: in our initial work

on the FAPI 2.0 Security Profile [24, 25], we assumed a pre-configured relationship which includes key material, client id, and
the client type (i.e., which authentication and token binding mechanisms are used). However, for many real ecosystems, such
manual configuration is not feasible (e.g., Single Page Applications) or simply too tedious. Hence, the OAuth 2.0 Dynamic
Client Registration Protocol [42] has been developed which allows clients to register themselves with an AS in a defined way.
To further accommodate for changes to the client’s configuration (e.g., key rollover), the OAuth 2.0 Dynamic Client Registration
Management Protocol allows clients to change their configuration at an AS.

On a high level, an AS supporting dynamic client registration offers an additional endpoint to which clients send JWTs
with their desired configuration, to which the AS replies with a similar JWT, containing the actually registered values (which
may differ from the ones the client wished to register). The DCR specification also defines two optional security measures:
1) With initial access tokens, clients wanting to register themselves with an AS must present such an initial access token at
the registration endpoint. The means by which a client obtains such an initial access token are, however, out of scope. And
2) client assertions are JWTs with claims about a client, signed by a third party which is trusted by the AS to have verified
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these claims before signing the JWT. As mentioned, both mechanisms are optional, and none of the FAPI 2.0 specifications
provide further guidance regarding DCR. We therefore modeled DCR without initial access tokens and without client assertions,
effectively modeling a completely open ecosystem where everyone can register clients. Note that our security properties are
formulated such that they only apply to protocol executions involving honest participants.

Similar to DCR, dynamic client management is realized by an AS endpoint which is very similar to the one for dynamic
client registration. However, to ensure clients can only modify their own configuration, this endpoint requires a so-called
registration access token, which is issued to the client upon registration (and may be updated during subsequent interactions
with the dynamic client management endpoint).

Regarding security, there are no explicit security goals in either specification, so we expect dynamic client registration and
management to not introduce additional attacks, i.e., we expect an ecosystem using FAPI 2.0 with dynamic client registration
and management to achieve the same level of security as such an ecosystem without dynamic client registration and management
(see Section III).

E. FAPI 2.0 Message Signing
While FAPI 2.0 Security Profile offers a secure profile regarding authorization, authentication, and session integrity, it does

not – and does not aim to – offer any accountability properties. Depending on the use case, there may be legal requirements
for certain protocol participants to be able to prove that another party sent a certain message. To accommodate such use
cases, the FAPI 2.0 family of specifications features a standard called FAPI 2.0 Message Signing [22], which aims to add such
accountability/non-repudiation guarantees to FAPI 2.0 ecosystems.

Similar to the FAPI 2.0 Security Profile, FAPI 2.0 Message Signing makes use of existing standards, adds some requirements
to enhance security and interoperability, but does not introduce new grants, etc., and is somewhat modular to account for
different ecosystems’ needs with regard to which messages need to be non-reputable (see [22, Sec. 5.1]). However, all of the
defined profiles have in common that they add sender signatures to one or more of the messages sent in a flow of the FAPI 2.0
Security Profile.

The available profiles are:
Signed Authorization Requests For signed authorization requests, the OAuth 2.0 JWT Secured Authorization Request

(JAR) [47] is employed. In the context of FAPI 2.0 Security Profile, the relevant message to be signed is the pushed
authorization request (Step 5 in Figure 1).

Signed Authorization Responses Signed authorization responses are implemented using the JWT Secured Authorization
Response Mode for OAuth 2.0 (JARM) [32] (applied to Step 11 in Figure 1).

Signed Introspection Responses To sign the introspection response (Step 19 in Figure 1), the JWT Response for OAuth Token
Introspection [35] specification is applied.

Signed HTTP Messages To sign resource requests and responses (Steps 18 and 20 in Figure 1), HTTP Message Signatures [2]
are used. Note that this profile allows signing only one of resource request and resource response, or both.

All available profiles can be deployed alone or in any combination with the others. Hence, our model covers all possible
combinations of said profiles. Regarding security, the message signing profiles should of course not weaken any of the security
guarantees provided by the FAPI 2.0 Security Profile. In addition, each profile is expected to provide non-repudiation for the
covered message(s), i.e., if a message is signed with some private key, the owner of that key cannot convincingly deny having
signed the message. Note that any interpretation as to what “having signed a message” (or “owning a key”, for that matter)
means in legal terms is outside the scope of FAPI 2.0 Message Signing and is up to each ecosystem to define, FAPI 2.0
Message Signing just aims to provide the aforementioned non-repudiation on a technical level.

We give a high-level description of the non-repudiation properties that we analyze in Section III.

F. FAPI-CIBA
FAPI 2.0 provides a profile of the OpenID Connect Client-Initiated Backchannel Authentication Flow (CIBA) [11]. CIBA is

designed for use cases in which the end user aims to authenticate and authorize a so-called Consumption Device, but uses a
different device for providing consent. The user interacts with the OpenID Relying Party, i.e., the client in FAPI terms, through
the Consumption Device.

On a high level, the Consumption Device starts the flow by sending the authentication request via the backchannel, i.e., directly
instead of through a redirect, to the AS. This request contains information about the end user who is using the Consumption
Device. The AS then contacts the end user and obtains authorization. After obtaining authorization, the Consumption Device
can get access, id, and refresh tokens from the AS.

The Consumption Device has three options to get the tokens, called delivery modes: by polling the token endpoint after sending
the authentication request (poll), by waiting for a message from the AS indicating that the user finished the authorization
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process and then sending a token request (ping), or by relying on the AS to directly send the tokens (push). For the ping
and push modes, the client needs to register an endpoint at the AS.

We now give some more detail, focussing on the FAPI-CIBA profile [49] in the context of FAPI 2.0:
FAPI-CIBA mandates that the AS only supports confidential clients, and prohibits the use of the push mode.
The authentication request sent by the Consumption Device to the AS can provide information about the end-user using

one of three methods: By using a token that contains information about the end-user (login_hint_token), by using a
previously issued ID token (id_token_hint), or some other value that can be used for identifying the end user, e.g., an
email address (login_hint). This request needs to be authenticated as mandated by the FAPI 2.0 Security Profile (see
Section II-B).

Upon receiving and validating this request, the AS responds with a unique identifier for the request (auth_req_id).
If the Consumption Device uses the poll mode, it obtains the tokens after the end user granted their authorization to the

AS.
When using the ping mode, the AS sends a request to the previously mentioned endpoint at the Consumption Device. This

request contains the request identifier auth_req_id and a token that the Consumption Device provides in the authentication
request. After receiving this request, the Consumption Device obtains the tokens by sending a token request to the token
endpoint of the AS.

Note that the token request needs to be authenticated and the access token needs to be sender-constrained as mandated by
the FAPI 2.0 Security Profile (see Section II-B).

W.r.t. security, we expect FAPI-CIBA in the context of FAPI 2.0 to provide the same security as the FAPI 2.0 Security
Profile with the authorization code flow.

III. SECURITY PROPERTIES
We analyze the protocols and extensions described in the previous section w.r.t. the security goals of the FAPI 2.0 Attacker

Model (see Section II-C) as well as non-repudiation properties for signed messages (see Section II-E). In the following, we
give an informal overview of the properties that we analyze and refer to Appendix C for the full formalized version.
Authorization An attacker should never be able to access resources of honest users (unless the user authorized such access),

as long as the involved AS, RS, and client are honest.
Authentication An attacker should not be able to log in at an honest client under the identity of an honest user as long as the

AS governing the identity is honest.
Session Integrity for Authorization An honest user is accessing their own resources and not the resources of the attacker,

given that the AS, client, and RS are honest.
Session Integrity for Authentication An honest user, after logging in, is indeed logged in under their own account and not

under the account of an attacker, given that the AS and client are honest.
Non-Repudiation for Signed Authorization Requests If an honest AS receives a signed PAR, and if the signature is valid

for a key which an honest client registered at the AS, then this client indeed signed the PAR.
Non-Repudiation for Signed Authorization Responses If an honest client accepts a signed authorization response and if the

authorization response is signed with the key of an honest AS, then this AS indeed signed the response.
Non-Repudiation for Signed Introspection Responses If an honest RS requests a signed introspection response and accepts

a corresponding introspection response, then that response was signed, and if the signing key belongs to an honest AS,
than this AS indeed signed the introspection response before.

Non-Repudiation for Signed Resource Requests/Responses If an honest RS processes a signed resource request and
responds by providing access to some resource, and if the corresponding signing key belongs to an honest client, than
this client indeed signed the resource request. Similarly, if the client accepts a signed resource response, and if the
correpsonding signing key belongs to the RS, then the RS signed the resource response.

IV. THE WEB INFRASTRUCTURE MODEL
FAPI 2.0 is a Web-based protocol, and the interaction between browsers and Web servers introduces potential attack surfaces,

e.g., by cross-site requests, in-browser communication, malicious scripts, insecure headers, or redirections. To account for
attacks originating from the browser and complex interactions inside browsers, as well as between parties, we analyze FAPI 2.0
based on the Web Infrastructure Model (WIM) [17], which is the most detailed formal model of the Web infrastructure to date.
The WIM is a Dolev-Yao (DY) style pen-and-paper web model and requires manual analysis. It has successfully been applied
to several web standards, to uncover previously unknown attacks and to prove security properties [10, 16–18, 20, 21].So far no
mechanized analysis framework has such a comprehensive model of the Web. Mechanizing such a very detailed model, from
scratch or on top of existing tools, is a big challenge by itself and out of the scope of this work.
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In the following, we give a high-level overview of the WIM closely following the summary in [20], with the full model
given in Appendix E: the WIM is designed independently of a specific Web application and closely mimics published (de-facto)
standards and specifications for the Web, for example, the HTTP/1.1 and HTML5 standards and associated (proposed) standards.
The WIM defines a general communication model, and, based on it, Web systems consisting of Web browsers, DNS servers,
and Web servers as well as Web and network attackers.

Communication Model. The main entities in the model are (atomic) processes, which are used to model browsers, servers,
and attackers. Each process listens to one or more (IP) addresses. Processes communicate via events, which consist of a message
as well as a receiver and a sender address. In every step of a run, one event is chosen non-deterministically from a “pool” of
waiting events and is delivered to one of the processes that listens to the event’s receiver address. The process can then handle
the event and output new events, which are added to the pool of events, and so on.

As usual in DY models (see, e.g., [1]), messages are expressed as formal terms over a signature Σ. The signature
contains constants (for (IP) addresses, strings, nonces) as well as sequence, projection, and function symbols (e.g., for
encryption/decryption and signatures). For example, in the Web model, an HTTP request is represented as a term r containing
a nonce, an HTTP method, a domain name, a path, URI parameters, headers, and a message body. For example, a request for
the URI http://example.com/s?p=1 is represented as

r :=〈HTTPReq, n1, GET, example.com, /s, 〈〈p, 1〉〉, 〈〉, 〈〉〉

where the body and the headers are empty. An HTTPS request for r is of the form enca(〈r, k′〉, pub(kexample.com)) where k′ is
a fresh symmetric key (a nonce) generated by the sender of the request (typically a browser); the responder is supposed to use
this key to encrypt the response.

The equational theory associated with Σ is defined as usual in DY models. The theory induces a congruence relation ≡ on
terms, capturing the meaning of the function symbols in Σ. For instance, the equation in the equational theory which captures
asymmetric decryption is deca(enca(x, pub(y)), y) = x. With this, we have that, for example,

deca(enca(〈r, k′〉, pub(kexample.com)), kexample.com) ≡ 〈r, k′〉

i.e., these two terms are equivalent w.r.t. the equational theory.
A (DY) process consists of a set of addresses the process listens to, a set of states (terms), an initial state, and a relation

that takes an event and a state as input and (non-deterministically) returns a new state and a sequence of events. The relation
models a computation step of the process. It is required that the output can be computed (more formally, derived in the usual
DY style) from the input event and the state.

The so-called attacker process is a DY process which records all messages it receives and outputs all events it can possibly
derive from its recorded messages. Hence, an attacker process carries out all attacks any DY process could possibly perform.
Attackers can corrupt other parties at any time; corrupted parties behave like the attacker process.

A script models JavaScript running in a browser. Scripts are defined similarly to DY processes. When triggered by a browser,
a script is provided with state information, corresponding to the (browser) data available to JavaScript in real browsers. The
script then outputs a term representing a new internal state and a command to be interpreted by the browser (see also the
specification of browsers below). Similarly to an attacker process, the so-called attacker script may output everything that is
derivable from its input.

A system is a set of processes. A configuration (S,E,N) of this system consists of the states S of all processes in the
system, the pool of waiting events E, and an infinite sequence of unused nonces N . Systems induce runs, i.e., sequences of
configurations, where each configuration is obtained by delivering one of the waiting events of the preceding configuration to
a process, which then performs a computation step. Such a transition is called processing step and denoted by

(S,E,N)
ein→p−−−−→
p→Eout

(S′, E′, N ′).

Here, the process p processes the event ein and creates the output events Eout which are added to the pool of waiting events of
the next configuration.

A Web system formalizes the Web infrastructure and Web applications. It contains a system consisting of honest and attacker
processes. Honest processes can be Web browsers, Web servers, or DNS servers. Attackers can be either Web attackers (who
can listen to and send messages from their own addresses only) or network attackers (who may listen to and spoof all addresses
and therefore are the most powerful attackers). A Web system further contains a set of scripts (comprising honest scripts and
the attacker script) and a mapping of these scripts to strings. A Web system also defines the pool of initial events, which
typically only contains so-called trigger events, which trigger pre-defined actions (see below for an example for pre-defined
browsers actions).

Web Browsers. An honest browser is thought to be used by one honest user, who is modeled as part of the browser. User
actions, such as following a link, are modeled as non-deterministic actions of the Web browser. User credentials are stored in
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the initial state of the browser and are given to the respective Web pages, i.e., scripts. Besides user credentials, the state of
a Web browser contains (among others) a tree of windows and documents, cookies, and Web storage data (localStorage and
sessionStorage).

A window inside a browser contains a set of documents (one being active at any time), modeling the history of documents
presented in this window. Each represents one loaded Web page and contains (among others) a script and a list of subwindows
(modeling iframes). The script, when triggered by the browser, is provided with all data it has access to, such as a (limited)
view on other documents and windows, certain cookies, and Web storage data. Scripts then output a command and a new state.
This way, scripts can navigate or create windows, send XHRs and postMessages, submit forms, set/change cookies and Web
storage data, and create iframes. Navigation and security rules ensure that scripts can manipulate only specific aspects of the
browser’s state, according to the Web standards.

A browser will typically send DNS and HTTP(S) requests as well as XHRs, and it processes the responses. Several HTTP(S)
headers are modeled, including, for example, cookie, location, strict transport security (STS), and origin headers. A browser,
at any time, can also receive a trigger message upon which the browser non-deterministically chooses an action, for instance,
to trigger a script in some document.

Generic HTTPS Server. The WIM defines a generic HTTPS server model which can be instantiated by application models.
The generic server provides some generic functionality, e.g., a function for sending HTTPS requests, which internally handles
DNS resolution and key management for symmetric transportation keys. The generic server also provides placeholder functions,
e.g., for processing HTTPS requests and responses, which need to be instantiated by the application model.

V. MODELING DECISIONS AND ASSUMPTIONS
In the following, we describe and explain some of our modeling decisions, in particular those which pose what we call

over-approximations, i.e., where our model is – if anything – less secure than a real implementation. Such over-approximations
usually allow for a simpler model without jeopardizing expressiveness of security proofs. However, they need to be chosen
carefully, as to not lead to false-positives, i.e., attacks on the model which would not work in a real implementation. In
explaining these, we also give a few deeper insights into the WIM methodology.

Furthermore, some assumptions about certain details or optional features in the relevant specifications turned out to be
necessary in order to prove our security properties. In this section, we also lay out these assumptions, explain why they are
needed, and what possible alternative assumptions there are. Note however that strictly speaking, our security results only hold
with our exact assumptions, we did not formally prove the listed alternatives to be equally secure. We note that the assumptions
and modeling decisions laid out in [24] are also part of this model, unless stated otherwise.

We begin with some basic assumptions of the WIM methodology.
Cryptography. The WIM is a symbolic, Dolev-Yao-style model, i.e., bytestrings of any kind are represented as formal terms

over a set of function symbols (e.g., sig(·, ·), encs(·, ·)), nonces, and constants. The nonces are considered to be infinite-entropy
random values, which means they can never be guessed, and must instead be learned, e.g., from received messages. Constants,
on the other hand, are considered to be publicly known. Additionally, the semantics of cryptographic primitives are defined by
an equational theory (see Figure 5 in the appendix).

The latter implies that cryptography is considered to be perfect: the attacker cannot break any cryptographic primitive, unless
it learns the necessary keys (which are usually nonces).

Time. The WIM, and hence our model does not include any notion of time. Consequently, all time-based claims, values,
and checks are omitted. Examples are not-before and expiration times of JWTs and tokens. Instead, we model all these values
as being valid forever.

Note that strictly speaking, this is not an over-approximation: the WIM is a possibilistic model, i.e., anything that can happen
– no matter how improbable – is considered to happen. Hence, even if we had a notion of time, the possibilistic nature of the
model would still allow for arbitrarily complex attacks to happen in any non-zero time frame.

Canonicalization for HTTP Message Signatures. As mentioned before, the WIM is a symbolic model and bytestrings
are represented as formal terms. Hence, there is no need for (and no point in) modeling encodings or canonicalization in the
context of HTTP message signatures.

A. Dynamic Client Registration
Attacker-Chosen Client Ids. In our model, we let the attacker choose the client ids issued by (honest) ASs. This is modeled

as follows: The attacker can – at any point – send a message containing any term t to an AS which does not “fit” any of the
usual AS endpoints. Upon receiving such a message, the AS ensures that it has not yet registered a client under client id t,
and adds t to its list of pending client ids (see Algorithm 14).
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When the AS later processes a client’s registration request, it selects one of these pending client ids and issues it to the
client (see Algorithm 13). Note that the possibilistic nature of the WIM implies that we capture all possible assignments of
pending client ids at once, i.e., including the worst case (if there is any worst case – actually, the value of the client id does
not matter at all for our security properties, as long as there are no two clients with the same client id at the same AS).

Initial Access Token. We model an open system without the use of initial access tokens for client registration (as defined
by RFC 7591 [42]). As the provisioning of initial access tokens is out of scope, we would need to make additional assumptions
and hence limit the applicability of our results to ecosystems which meet these assumptions.

Software Statements. On a similar note, our client model does not use software statements (see Sec. 3.1.1 of RFC 7591 [42]).
Once again, we would need additional assumptions on how client statements are issued and provisioned, hence limiting the
applicability of our results. Note, however, that the end user in our model does not “decide” which clients to authorize, they
instead always choose to grant authorization, even to malicious clients; our security properties are formulated such that they
only consider resources and identities involved in flows with honest clients. This allows us to consider all possible combinations
of honest and malicious clients, interacting with the same end users and ASs at the same time, and proving that the flows
involving honest parties are secure. Additionally, the information presented by the AS for the end user to identify a client is
out of scope of all relevant specifications, hence modeling that decision process would require additional assumptions.

In other words: in a real-world ecosystem, the end user of course needs a way to verify which client they are authorizing.
Software statements and/or initial access tokens (depending on how they are issued) can provide the AS with reliable information
about a client which the AS can then show to the end user.

Processing of Client Information Response. Our client model verifies that the AS registered the client with the exact key
material (for client authentication and access token sender constraining) provided by the client in its client registration request.
We mention this seemingly obvious behavior as an assumption because RFC 7591 [42] technically allows for the AS to change
any value, including keys, from the client’s registration request.

B. Dynamic Client Management
Triggering Client Configuration Changes. In our model of DCM, we make use of the WIM’s TRIGGER messages: these

can be sent by the attacker to any party at any time. Upon receiving such a message, our client model non-deterministically
chooses one of several actions (see Algorithm 9). One of these actions is CHANGE_CLIENT_CONFIG and if this option is selected,
the client does the following: 1) it randomly chooses an AS it has an account at. 2) it randomly selects whether to update or
to delete its configuration at that AS. In the latter case, the client sends an appropriate DELETE request to the AS. In the
former case, the client continues: 3) the client generates fresh key pairs for mTLS and signing, and 4) sends an appropriate
PUT request to update its configuration at the AS.

Note that due to the possibilistic nature of the WIM, this subsumes all possible interleavings of ongoing grants and client
configuration changes.

Client Key Turnover. If a client updates its keys, we model the AS to immediately invalidate the client’s former keys (as
we do not have a notion of time, the choice is to invalidate immediately or keep them valid forever, see above). While this
will prevent the client from using access tokens for which the RS uses token introspection, it does not prevent the client from
continuing to use structured, self-contained access tokens.

Note however that the attacker – being the scheduler for all network messages – can delay or even drop any message,
including a client’s update request.

For a real ecosystem, one might want to consider two different types of client key turnover: one for regular, scheduled key
rotation with some kind of grace period during which AS and RS accept the old, as well as the new keys; and another one for
immediate revocation, e.g., after private key leaks.

Registration Access Tokens. In line with RFC 7592 [43], our AS model issues a registration access token to a client during
client registration. Additionally, these registration access tokens are never rotated in our model, i.e., they are valid forever
(unless the client deletes itself from the AS by means of dynamic client management).

C. FAPI 2.0 Message Signing
Configuration of Clients, ASs, and RSs. To keep the necessary configuration small, we use non-deterministic choices in

many places in our model of FAPI 2.0 Message Signing. For example, for each grant, the client decides non-deterministically
whether to sign the authorization request – similarly, the AS decides non-deterministically whether to require a signed
authorization request for each grant. This works because we can then formulate our security property such that non-repudiation
is only considered for grants in which both the client and the AS agree on signing the authorization request/requiring a signed
authorization request.
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I.e., our model allows for many flows which are not necessarily possible in a real implementation, but due to the way our
security properties are formulated, we can still prove useful properties for the “interesting” flows, e.g., ones in which client
and AS agree on whether an authorization request should be signed or not.

A similar approach is taken for all other parts of FAPI 2.0 Message Signing as well.
Provisioning of Verification Keys. Neither FAPI 2.0 Message Signing, nor the HTTP Message Signing specification [2],

define the means by which the receiver of a signed message obtains the corresponding verification key. Hence, for our model,
we have to make assumptions on how clients and resource servers obtain those keys.

As for clients, we assume that a client is configured with the public verification keys for each resource server it uses (in
the model, we initialize clients with the public keys for all resource servers, identified by their domains – note that this is a
consequence of allowing all clients to interact with all resource servers). Since a client knows which resource server it sent a
resource request to, it can select the correct verification key for that resource server.

For resource servers, we assume that the public key to verify a client’s HTTP Message Signature is provided by the AS,
either as part of a structured access token or in the AS’ introspection response. While we did not formally verify this, using
AS-supplied public keys at the RS implicitly introduces another layer of access token sender constraining – however, since
Work Package 1 (b) [24] already proves that access token sender constraining works as intended without HTTP Message
Signatures, we do not miss any attacks by adding this second layer of sender constraining in our model.

Linking of Resource Request and Resource Response. At the time of this writing, the FAPI 2.0 Message Signing
specification does not give definitive guidance on when to link a resource request to a resource response when signing the latter.
Since the non-repudiation goals laid out in the FAPI 2.0 Message Signing specification do not require this linking, our model
once again tries to be as insecure as possible (while still following the specifications). Hence, our RS model never includes
parts of the resource request in its resource response signature.

D. FAPI-CIBA
1) General Notes

In the model, the consumption device is subsumed by the client and the authentication device is modeled as a modified
browser, which can receive requests from an AS. Furthermore, we allow anyone to start a flow at a client by sending a request
to the client containing user information.

We only model support for unsigned authentication requests (FAPI-CIBA does not require either
party to support signed authentication requests in the context of FAPI 2.0). Thus, we omit the
backchannel_authentication_request_signing_als_values_supported metadata information.

We note that within the model, an AS asks the end user for consent by sending a request to the end user’s browser. To make
this possible, we assume that browsers have their own domains.

2) Assumption: User starts CIBA flow with their own identity
The session integrity properties do not hold if the user starts a CIBA flow with an attacker-controlled identity: In this case,

the AS would contact the attacker and obtain authorization, and the AS would provide an access token for attacker resources
or an id token containing information about the attacker. Thus, the consumption device that the user is using would provide
access to attacker resources or consider the attacker identity to be logged in, breaking the session integrity properties.

In practice, the user might select an attacker-controlled identity by mistake, e.g., by a typing error, or in the case of publicly
available consumption devices, the attacker could initiate the flow with an attacker-controlled identity and then leave the device
ready for another user.

For the analysis, we assume that an honest user always starts a fresh flow at a client and only uses identities under their
control.

Note that on a protocol level, neither the AS, nor the client can detect this scenario.

3) FAPI 2.0 CIBA Cross-Device Consent Phishing Attack
CIBA is susceptible to Cross-Device Consent Phishing Attacks (see also [30]). In its most basic form, the attacker starts a

flow at a Consumption Device (CD), but selects the identity of an honest user. The authorization server asks the user whether
they give their consent. An inattentive user might give their consent, providing the attacker access to their resources and logging
in the attacker at the CD as themself.

To mitigate this risk, CIBA specifies an optional binding message that is created by the client, displayed on the consumption
device, and sent to the AS which displays the message to the end-user.3 Section 7.1 of the CIBA specification [11] states the
following on the binding message:

3FAPI-CIBA [49] mandates ASs to require a binding message in the authentication request, unless the authorization request uniquely identifies the
authorization context.
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1 Start with honestAS , identity honestIdStart with honestAS , identity honestId
ciba-attack-start-ciba-request

2 Start with honestAS , identity honestIdStart with honestAS , identity honestId
start-ciba-request2

3 Binding MessageBinding Message
start-ciba-response2

4 Binding MessageBinding Message
ciba-attack-start-ciba-response

5 Backchannel AuthN RequestBackchannel AuthN Request

6 Backchannel AuthN ResponseBackchannel AuthN Response
ciba-attack-ciba-authn-response

7 User authentication and consent; User successfully checks binding messageUser authentication and consent; User successfully checks binding message
ciba-attack-authz-authn+consent

8 Access Token at , [id token]Access Token at , [id token]
ciba-attack-token-request

10 Resource Request/Response (with at)Resource Request/Response (with at)
ciba-attack-resource-request

11 Provide access to honest user’s resourcesProvide access to honest user’s resources
browser-resource-request
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Optional: Log in attacker with information from id
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Optional: Log in attacker with information from id
token (i.e., as the honest user)

ciba-attack-use-id-token
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Clientc
AShonestAS

RS

RS

RS

Figure 2. FAPI 2.0 CIBA Cross-Device Consent Phishing Attack (Simplified)

A human-readable identifier or message intended to be displayed on both the consumption device and the
authentication device to interlock them together for the transaction by way of a visual cue for the end-user. This
interlocking message enables the end-user to ensure that the action taken on the authentication device is related to
the request initiated by the consumption device. The value SHOULD contain something that enables the end-user to
reliably discern that the transaction is related across the consumption device and the authentication device, such as a
random value of reasonable entropy [...]

This seems to suggest that if the end-user is paying attention to the binding message, they cannot accidentally provide the
attacker access to their resources or log in the attacker under their own identity. However, if an end-user uses a malicious client
(or consumption device), the client can display a binding message from a different flow, as shown in Figure 2.

Possible Real-World Fix. As suggested by [30], ensuring proximity between the client/CD that is being authorized and
the end-user might prevent this class of attacks in most practical settings (we note that we do not analyze this fix, thus, we
cannot assess its effectiveness).

Fix within the Model. Within the model, we assume that the end-user can identify the client that they are using unambiguously.
For this, we assume that each client has a domain that the end-user can identify when starting a flow. At the consent step, our
AS model provides the domain of the redirect endpoint of the client to the end-user, and the end-user checks whether they
have received the binding message from this client.

In other words, we assume an authenticated channel between the end-user and the client, which is what the mitigations in [30]
aim to achieve as well (or, to be precise: the mitigations aim to make it harder for an attacker to exploit the unauthenticated-ness
of said channel). The WIM is a possibilistic model, so we have to assume an authenticated channel (instead of a “very hard to
exploit unauthenticated channel”).
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APPENDIX A
FAPI 2.0 MODEL

In this section, we provide the full formal model of the FAPI 2.0 participants. We start with the definition of keys and
secrets, as well as protocol participants and identities within the model, followed by how we initialize AS-client relationships
and details on how OAuth 2.0 Mutual TLS for Client Authentication and Certificate Bound Access Tokens [7] is modeled. We
continue with the formal models of the FAPI 2.0 clients (Appendix A-J), the FAPI 2.0 ASs (Appendix A-K), and the FAPI
2.0 RSs (Appendix A-L).

A. Protocol Participants
We define the following sets of atomic Dolev-Yao processes: AS is the set of processes representing authorization servers.

Their relation is described in Appendix A-K. RS is the set of processes representing resource servers, described in Appendix A-L.
C is the set of processes representing clients, described in Appendix A-J. Finally, B is the set of processes representing browsers,
including their users. They are described in Appendix E-G.

B. Identities
Identities consist, similar to email addresses, of a user name and a domain part. For our model, this is defined as follows:

Definition 1. An identity i is a term of the form 〈name, domain〉 with name ∈ S and domain ∈ Doms. Let ID be the finite
set of identities. We say that an id is governed by the DY process to which the domain of the id belongs. This is formally
captured by the mappings governor : ID→W , 〈name, domain〉 7→ dom−1(domain) and IDy := governor−1(y).

C. Keys and Secrets
The set N of nonces is partitioned into disjoint sets, an infinite set N , and finite sets KTLS, Ksign, Passwords, and

RScredentials:

N = N ]KTLS ]Ksign ] Passwords ] RScredentials

These sets are used as follows:

• The set N contains the nonces that are available for the DY processes
• The set KTLS contains the keys that will be used for TLS encryption. Let tlskey : Doms → KTLS be an injective

mapping that assigns a (different) private key to every domain. For an atomic DY process p we define tlskeysp =
〈{〈d, tlskey(d)〉 | d ∈ dom(p)}〉 (i.e., a sequence of pairs).

• The set Ksign contains the keys that will be used by ASs for signing id and access tokens, and by clients and RSs to sign
HTTP messages. Let signkey : AS × C × RS → Ksign be an injective mapping that assigns a (different) signing key to
every AS, client, and RS. Note that clients also sign other things, e.g., DPoP proofs, but the keys used there are not part
of Ksign, but are taken from N (those keys are freshly chosen by a client when it registers with an AS).

• The set Passwords is the set of passwords (secrets) the browsers share with servers. These are the passwords the users
use to log in. Let secretOfID : ID→ Passwords be a bijective mapping that assigns a password to each identity.

• The set RScredentials is a set of secrets shared between authorization and resource servers. RSs use these to authenticate
at ASs’ token introspection endpoints. Let secretOfRS : Doms× Doms⇀ RScredentials be a partial mapping, assigning
a secret to some of the RS–AS pairs (with the function arguments in that order).

D. Passwords
Definition 2. Let ownerOfSecret : Passwords → B be a mapping that assigns to each password a browser which owns this
password. Similarly, we define ownerOfID : ID→ B as i 7→ ownerOfSecret(secretOfID(i)), which assigns to each identity the
browser that owns this identity (i.e., this identity belongs to the browser).
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E. Web Browsers
Web browser processes (i.e., processes b ∈ B) are modeled as described in Appendix E. Before defining the initial states of
Web browsers, we introduce the following set (for some process p):

Secretsb,p = {s | b = ownerOfSecret(s) ∧ (∃i : s = secretOfID(i) ∧ i ∈ IDp)}

Definition 3 (Initial Web Browser State for FAPI). The initial state of a Web browser process b ∈ B follows the description
in Definition 74, with the following additional constraints:

• sb0.ids ≡ 〈{i | b = ownerOfID(i)}〉
• sb0.secrets contains an entry 〈〈d, S〉, 〈Secretsb,p〉〉 for each p ∈ AS∪C∪RS and every domain d ∈ dom(p) (and nothing

else), i.e.,
sb0.secrets ≡

〈{
〈〈d, S〉, 〈Secretsb,p〉〉

∣∣∣ ∃p, d : p ∈ AS ∪ C ∪ RS ∧ d ∈ dom(p)
}〉

• sb0.keyMapping ≡ 〈{〈d, pub(tlskey(d))〉 | d ∈ Doms}〉

F. Resources
We model the management of resources as follows: We assume that each resource is managed by at most one AS. We also

assume that resources are identified by URLs at the RS. Thus, when getting a request to such a resource URL, the RS has to
1) identify the AS that is managing the resource, and
2) identify the identity for which the access token was issued.
If the access token is a structured JWT, the RS retrieves the identity from the subject field. Otherwise, the identity is retrieved

from the introspection response.
For identifying the AS, we first define the URL paths of resources managed by a RS, and then define a mapping from these

paths to AS.

Definition 4. For each rs ∈ RS, let resourceURLPathrs ⊆ S be a finite set of strings. These are the URL paths identifying
the resources managed by the RS.4

Definition 5. For each rs ∈ RS, let supportedAuthorizationServerrs ⊆ AS be a finite set of ASs. These are the ASs supported
by the RS.

Definition 6. For each rs ∈ RS, let authorizationServerOfResourcers : resourceURLPathrs → supportedAuthorizationServerrs

be a mapping that assigns an AS to each resource URL path suffix of resources managed by the RS.

If the access token is valid and the resource is managed by an AS supported by the RS, the RS model responds with a fresh
nonce that it stores under the identity of the resource owner and the path under which it returns the resource. By using fresh
nonces, the RS does not return a nonce twice – even for requests for the same path and the same resource owner (identified
via token introspection or the sub claim in the access token). Without this, the authorization property would need to exclude
the case that the resource owner granted some malicious client access to a resource at some point.

G. Modeling mTLS
OAuth 2.0 Mutual TLS for Client Authentication and Certificate Bound Access Tokens (mTLS) [7] provides a method for

both client authentication and token binding. Note that both mechanisms may be used independently of each other.
OAuth 2.0 Mutual TLS Client Authentication makes use of TLS client authentication5, which the client can use for client

authentication at the pushed authorization request and token endpoints (in Step 5 and Step 14 of Figure 1). In TLS client
authentication, not only the server authenticates to the client (as is common for TLS), but the client also authenticates to the
server. To this end, the client proves that it knows the private key belonging to a certificate that is either (a) self-signed and
pre-configured at the respective AS or that is (b) issued for the respective client id by a predefined certificate authority within
a public key infrastructure (PKI).

Token binding means binding an access token to a client such that only this client is able to use the access token at the RS.
To achieve this, the AS associates the access token with the certificate used by the client for the TLS connection to the token

4A resource is managed by the RS if and only if resourceID ∈ resourceURLPathrs .
5As noted in Section 7.2 of [7], this extension supports all TLS versions with certificate-based client authentication.
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endpoint. In the TLS connection to the RS (in Step 18 of Figure 1), the client then authenticates using the same certificate.
The RS accepts the access token only if the client certificate is the one associated with the access token.6

The WIM models TLS at a high level of abstraction. An HTTP request is encrypted with the public key of the recipient and
contains a symmetric key, which is used for encrypting the HTTP response. Furthermore, the model contains no certificates or
public key infrastructures but uses a function that maps domains to their public key.

We model mTLS similarly to [16]. An overview of the mTLS model is shown in Figure 3. The basic idea is that the server
sends a nonce encrypted with the public key of the client. The client proves possession of the private key by decrypting this
message. In Step 1 , the client sends its client identifier to the AS. The AS then looks up the public key associated with the
client identifier, chooses a nonce, and encrypts it with the public key. As depicted in Step 2 , the server additionally includes
its public key. When the client decrypts the message, it checks if the public key belongs to the server it wants to send the
original message to. This prevents man-in-the-middle attacks, as only the honest client can decrypt the response and as the
public key of the server cannot be changed by an attacker. In Step 3 , the client sends the original request with the decrypted
nonce. When the server receives this message, it knows that the nonce was decrypted by the honest client (as only the client
knows the corresponding private key) and that the client had chosen to send the nonce to the server (due to the public key
included in the response). Therefore, the server can conclude that the message was sent by the honest client.

In effect, this resembles the behavior of the TLS handshake, as the verification of the client certificate in TLS is done by
signing all handshake messages [40, Section 7.4.8], which also includes information about the server certificate, which means
that the signature cannot be reused for another server. Instead of signing a sequence that contains information about the receiver,
in our model, the client checks the sender of the nonce, and only sends the decrypted nonce to the creator of the nonce. In
other words, a nonce decrypted by an honest server that gets decrypted by the honest client is never sent to the attacker.

As explained above, the client uses the same certificate it used for the token request when sending the access token to the
RS. While the RS has to check the possession of corresponding private keys, the validity of the certificate was already checked
at the AS and can be ignored by the RS. Therefore, in our model of FAPI 2.0, the client does not send its client id to the RS,
but its public key, and the RS encrypts the message with this public key.

1 client idclient id
mtls-init-req

2 enca(〈nonce, kAS 〉, kclient_id )enca(〈nonce, kAS 〉, kclient_id )
mtls-init-resp

3 request, noncerequest, nonce
mtls-second-req

4 responseresponse
mtls-second-resp

Client Authorization Server

Client Authorization Server

Figure 3. Overview of mTLS model

All messages are sent by the generic HTTPS server model (Appendix E-L), which means that each request is encrypted
asymmetrically, and the responses are encrypted symmetrically with a key that was included in the request. For completeness,
Figure 4 shows the complete messages, i.e., with the encryption used for transmitting the messages.

1 enca(〈client id, ks〉, kAS )enca(〈client id, ks〉, kAS )
mtls-init-req

2 encs(enca(〈nonce, kAS 〉, kclient_id ), ks)encs(enca(〈nonce, kAS 〉, kclient_id ), ks)
mtls-init-resp

3 enca(〈〈request,nonce〉, k′s〉, kAS )enca(〈〈request,nonce〉, k′s〉, kAS )
mtls-second-req

4 encs(response, k′s)encs(response, k′s)
mtls-second-resp

Client Authorization Server

Client Authorization Server

Figure 4. Detailed view on mTLS model

6The RS can read this information either directly from the access token if the access token is a signed document, or uses token introspection to retrieve the
data from the AS.
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H. Additional HTTP Headers
In order to model FAPI 2.0, we extend the list of headers of Definition 48 with the following headers:
• For DPoP, we add the header 〈DPoP, p〉 where p ∈ TN is (for honest senders) a DPoP proof (i.e., a signed JWT).
• The Authorization header can also take on values 〈Bearer, t〉 where t ∈ TN is usually a bearer token.
• We add the header 〈Accept, s〉 with s ∈ S.
• For HTTP Message Signatures, we add the following headers

– 〈Signature-Input, inputs〉 where inputs is a dictionary of elements label : t with t ∈ TN , label ∈ S. For honest
senders, t is of the form 〈s, p〉 where s is a sequence of pairs, each containing a HTTP message component identifier
and a possibly empty sequence of parameters; whereas p is a dictionary of signature parameters with their values. E.g.,[

label1 :
〈〈
〈@status, 〈〉〉, 〈content-digest, 〈req〉〉

〉
, [keyid : some_id]

〉]
– 〈Signature, sigs〉 where sigs is a dictionary of elements label : t with t ∈ TN , label ∈ S. For honest senders, t is a

signature.
– 〈Content-Digest, digest〉 where digest ∈ TN is – for honest senders – a hash of the message body.

I. Helper Functions
The following helper function is used by processes when verifying HTTP message signatures.

Algorithm 1 Compare component values for HTTP message signatures.
1: function IS_COMPONENT_EQUAL(m, request , signerSignatureBase , component) → request may be empty (3)
2: let componentName := component .1
3: let componentParam := component .2
4: let knownComponents := {@method,@target-uri,@status, authorization, content-digest, dpop}
5: if componentName 6∈ knownComponents then
6: return ⊥
7: let componentValue := 3

8: if componentParam ≡ 〈〉 then → Compare against component value from m
9: if componentName ≡ @method then

10: let componentValue := m.method

11: if componentName ≡ @target-uri then
12: let componentValue := 〈URL,m.protocol,m.host,m.path,m.parameters,⊥〉
13: if componentName ≡ @status then
14: let componentValue := m.status

15: if componentName ≡ authorization then
16: let componentValue := m.headers[Authorization]

17: if componentName ≡ content-digest then
18: let componentValue := m.headers[Content-Digest]

19: if componentName ≡ dpop then
20: let componentValue := m.headers[DPoP]

21: else if componentParam ≡ 〈req〉 then → Compare against component value from request
22: if componentName ≡ @method then
23: let componentValue := request .method

24: if componentName ≡ @target-uri then
25: let componentValue := 〈URL, request .protocol, request .host, request .path, request .parameters,⊥〉
26: if componentName ≡ content-digest then
27: let componentValue := request .headers[Content-Digest]

28: if componentName ≡ dpop then
29: let componentValue := request .headers[DPoP]

30: else
31: return ⊥ → Unsupported component parameter
32: if componentValue ≡ signerSignatureBase[component ] then
33: return >
34: else
35: return ⊥
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J. Clients
A client c ∈ C is a Web server modeled as an atomic DY process (Ic, Zc, Rc, sc0) with the addresses Ic := addr(c). Next,

we define the set Zc of states of c and the initial state sc0 of c.

Definition 7. A state s ∈ Zc of a client c is a term of the form 〈DNSaddress , pendingDNS , pendingRequests ,
corrupt , keyMapping , tlskeys , sessions , oauthConfigCache, jwksCache, asAccounts , mtlsCache, pendingCIBARequests ,
resourceASMapping , dpopNonces , jwk , rsSigKeys〉 with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
,

pendingRequests ∈ TN , corrupt ∈ TN , keyMapping ∈
[
Doms× TN

]
, tlskeys ∈ [Doms×KTLS] (all former components

as in Definition 77), sessions ∈
[
N × TN

]
, oauthConfigCache ∈

[
Doms× TN

]
, jwksCache ∈

[
Doms× TN

]
, asAccounts ∈[

Doms×
[
S× TN

]]
, mtlsCache ∈ TN , pendingCIBARequests ∈ TN , resourceASMapping ∈ [Doms× [S× Doms]],

dpopNonces ∈
[
Doms× TN

]
, jwk ∈ Ksign, and rsSigKeys ∈

[
Doms× TN

]
.

An initial state sc0 of c is a state of c with
• sc0.DNSaddress ∈ IPs,
• sc0.pendingDNS ≡ 〈〉,
• sc0.pendingRequests ≡ 〈〉,
• sc0.corrupt ≡ ⊥,
• sc0.keyMapping being the same as the keymapping for browsers,
• sc0.tlskeys ≡ tlskeysc (see Appendix A-C),
• sc0.sessions ≡ 〈〉,
• sc0.oauthConfigCache ≡ 〈〉,
• sc0.jwksCache ≡ 〈〉,
• sc0.asAccounts ≡ 〈〉,
• sc0.mtlsCache ≡ 〈〉,
• sc0.pendingCIBARequests ≡ 〈〉 (Upon receiving a CIBA start request, the client responds with a binding message and by

setting a cookie. The client stores the necessary information in this field and continues the flow upon receiving a trigger
message),

• sc0.resourceASMapping[domRS ][resourceID ] ∈ dom(authorizationServerOfResourcers(resourceID)), ∀ rs ∈ RS and
∀ domRS ∈ dom(rs) and ∀ resourceID ∈ resourceURLPathrs (a domain of the AS managing the resource stored at rs
identified by resourceID),

• sc0.dpopNonces ≡ 〈〉,
• sc0.jwk ≡ signkey(c) (used for HTTP message signing, see Appendix A-C), and
• sc0.rsSigKeys ≡ rsk such that rsk [domRS ] = pub(signkey(rs)) for all domRS ∈ dom(rs) for all rs ∈ RS (see [22, Sec.

5.6.2.2]).

We now specify the relation Rc: This relation is based on the model of generic HTTPS servers (see Appendix E-L). Hence
we only need to specify algorithms that differ from or do not exist in the generic server model. These algorithms are defined
in Algorithms 3–9. Note that in several places throughout these algorithms, we use placeholders of the form νx to generate
“fresh” nonces as described in the communication model (see Definition 33).

The script that is used by the client on its index page is specified in Algorithm 10. This script uses the
GETURL(tree, docnonce) function to to extract the current URL of a document. We define this function as follows: It
searches for the document with the identifier docnonce in the (cleaned) tree tree of the browser’s windows and documents. It
then returns the URL u of that document. If no document with nonce docnonce is found in the tree tree, 3 is returned.
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Algorithm 2 Relation of a Client Rc – Processing HTTPS Requests
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′) → Process an incoming HTTPS request. Other message types are handled

in separate functions. m is the incoming message, k is the encryption key for the response, a is the receiver, f the sender of the message.
s′ is the current state of the atomic DY process c.

2: if m.path ≡ / then → Serve index page (start flow).
3: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, 〈script_client_index, 〈〉〉〉, k) → Reply with script_client_index .
4: stop 〈〈f, a,m′〉〉, s′
5: else if m.path ≡ /startLogin ∧m.method ≡ POST then → Start a new FAPI 2.0 flow (see script_client_index)
6: if m.headers[Origin] 6≡ 〈m.host, S〉 then
7: stop → Check the Origin header for CSRF protection to prevent attacker from starting a flow in the background (as this

would trivially violate the session integrity property).
8: let selectedAS := m.body
9: let sessionId := ν1 → Session id is a freshly chosen nonce.

10: let s′.sessions[sessionId ] := [startRequest : [message : m, key : k, receiver : a, sender : f ],
↪→ selected_AS : selectedAS , cibaFlow : ⊥]

11: call PREPARE_AND_SEND_INITIAL_REQUEST(sessionId , a, s′) → Start authorization flow with the AS (Algorithm 8)
12: else if m.path ≡ /redirect_ep then → User is being redirected after authentication to the AS.
13: let sessionId := m.headers[Cookie][〈__Host, sessionId〉]
14: if sessionId 6∈ s′.sessions then
15: stop
16: let session := s′.sessions[sessionId ] → Retrieve session data.
17: let selectedAS := session[selected_AS]
18: if session[requested_signed_authz_response] ≡ > then
19: if checksig(m.parameters[response], s′.jwksCache[selectedAS ]) 6≡ > then
20: stop → Invalid or missing signature on authorization response, see JARM [32, Sec. 2.4]
21: let authzResponse := extractmsg(m.parameters[response])
22: if authzResponse[aud] 6≡ session[client_id] then
23: stop → Wrong/missing audience value, see JARM [32, Sec. 2.4]
24: let m.parameters := authzResponse → Remove signature (so we always store a “plain” message below)
25: else
26: let authzResponse := m.parameters

27: if code 6∈ authzResponse ∨ iss 6∈ authzResponse then
28: stop
29: let code := authzResponse[code]
30: let issuer := authzResponse[iss]
31: if issuer 6≡ selectedAS then → Check issuer parameter (RFC 9207 [48]).
32: stop

→ Store browser’s request for use in CHECK_ID_TOKEN (Algorithm 7) and PROCESS_HTTPS_RESPONSE (Algorithm 3)
33: let s′.sessions[sessionId ][redirectEpRequest] := [message : m, key : k, receiver : a, sender : f ]
34: call SEND_TOKEN_REQUEST(sessionId , code , a, s′) → Retrieve a token from AS’s token endpoint.
35: else ifm.path ≡ /start_ciba then → Start a CIBA flow. We assume that anyone can start the flow at a client by providing the

identity of an end-user (which the client uses as a login_hint)
36: let selectedAS := m.body[authServ]
37: let identity := m.body[identity]
38: let sessionId := ν6 → Session id is a freshly chosen nonce.
39: let bindingMessage := νbindingMsg
40: let s′.sessions[sessionId ] := [selected_AS : selectedAS , selected_identity : identity ,

↪→ binding_message : bindingMessage, start_polling : ⊥, cibaFlow : >]
→ Store record for continuing the flow later upon receiving a trigger message

41: let s′.pendingCIBARequests := s′.pendingCIBARequests +〈〉 〈sessionId , a〉
42: let headers := [Set-Cookie : [〈__Host, sessionId〉 : 〈sessionId ,>,>,>〉]]
43: let body := [binding_message : bindingMessage]
44: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, body〉, k)
45: stop 〈〈f, a,m′〉〉, s′
46: else if m.path ≡ /ciba_notif_ep then → CIBA notification endpoint
47: let receivedNotificationToken := m.headers[Authorization].2
48: let receivedAuthReqId := m.body[auth_req_id]
49: let sessionId such that sessionId ∈ s′.sessions

↪→ ∧s′.sessions[sessionId ][client_notification_token] ≡ receivedNotificationToken
↪→ ∧s′.sessions[sessionId ][client_notification_token] 6≡ 〈〉
↪→ ∧s′.sessions[sessionId ][auth_req_id] ≡ receivedAuthReqId if possible; otherwise stop

50: call SEND_CIBA_TOKEN_REQUEST(sessionId , a, s′) → Send a token request
→Algorithm continues on next page.
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51: else if m.path ≡ /ciba_get_ssid_or_resource then
→When starting a CIBA flow, the client responds with a Set-Cookie header with a login session id. Once the user login at the

client is finished (i.e., after the client checks the ID token) or once the client gets access to some resource, the initiator can send
a request to this endpoint (with the login session id cookie) and get logged in at the client or get access to resources that an RS
provided to the client.

52: let sessionId := m.headers[Cookie][〈__Host, sessionId〉]
53: if sessionId 6∈ s′.sessions then
54: stop
55: let session := s′.sessions[sessionId ] → Retrieve session data.
56: if session[cibaFlow] ≡ ⊥ then

→ This endpoint can only be used for CIBA flows. The authorization code flow model provides this functionality when
receiving the responses by the AS or RS.

57: stop
58: if serviceSessionId 6∈ session ∧ resource 6∈ session then → User authentication/authorization not finished yet
59: stop
60: let headers := []
61: let body := []
62: if serviceSessionId ∈ session then
63: let serviceSessionId := session[serviceSessionId]
64: let headers[Set-Cookie] := [serviceSessionId : 〈serviceSessionId ,>,>,>〉]
65: if resource ∈ session then
66: let body := session[resource]

67: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, body〉, k)
68: stop 〈〈f, a,m′〉〉, s′

69: stop → Unknown endpoint or malformed request.
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Algorithm 3 Relation of a Client Rc – Processing HTTPS Responses
1: function PROCESS_HTTPS_RESPONSE(m, reference , request , a, f , s′)
2: if reference[responseTo] ≡ MTLS then → Client received an mTLS nonce (see Appendix A-G)
3: let mdec, k

′ such that mdec ≡ deca(m.body, k
′) ∧ selectedAS ∈ s′.asAccounts ∧ s′.asAccounts[selectedAS ][tls_key] ≡ k′

↪→ if possible; otherwise stop
4: let mtlsNonce, serverPubKey such that mdec ≡ 〈mtlsNonce, serverPubKey〉 if possible; otherwise stop
5: if serverPubKey ≡ s′.keyMapping[request .host] then → Verify sender of mTLS nonce
6: let clientId := reference[client_id] → Note: If client_id 6∈ reference , then reference[client_id] ≡ 〈〉
7: let pubKey := reference[pub_key] → See note for client ID above
8: let s′.mtlsCache := s′.mtlsCache +〈〉 〈request .host, clientId , pubKey ,mtlsNonce〉
9: stop 〈〉, s′

10: if reference[responseTo] ≡ CLIENT_MANAGEMENT then
→ Process a client information response [42, 43]. According requests are initiated by trigger messages, see Algorithm 9 and

Section V-B.
11: let selectedAS := reference[selected_AS]
12: let clientId := s′.asAccounts[selectedAS ][client_id] → client_id cannot be changed (see Sec. 2.2 of RFC 7592 [43])
13: if m.status ≡ 204 ∧ request .method ≡ DELETE then → Client was deleted at AS (see Sec. 2.3 of RFC 7592 [43])
14: let s′.asAccounts := s′.asAccounts − selectedAS
15: stop 〈〉, s′

16: if m.body[client_type] 6∈ {mTLS_mTLS, pkjwt_mTLS, mTLS_DPoP, pkjwt_DPoP} then
17: stop → Invalid client type
18: let clientType := m.body[client_type]
19: if m.body[jwks] 6≡ reference[request][jwks] then
20: stop → AS changed client’s jwks value: abort client metadata update
21: let regClientUri := m.body[reg_client_uri]
22: let regAt := m.body[reg_at]
23: let s′.asAccounts[selectedAS ] := [client_id : clientId , client_type : clientType, reg_at : regAt ,

↪→ reg_client_uri : regClientUri , sign_key : reference[sigKey],
↪→ tls_key : reference[tlsKey], grant_types : m.body[grant_types]]

24: if backchannel_token_delivery_mode ∈ m.body then
25: let s′.asAccounts[selectedAS ][backchannel_token_delivery_mode] :=m.body[backchannel_token_delivery_mode]
26: if m.body[backchannel_token_delivery_mode] ∈ {ping, push} then
27: if backchannel_client_notification_endpoint 6∈ m.body then
28: stop
29: let clientNotificationEP := m.body[backchannel_client_notification_endpoint]
30: let s′.asAccounts[selectedAS ][backchannel_client_notification_endpoint] := clientNotificationEP

31: stop 〈〉, s′

32: let sessionId := reference[session]
33: let session := s′.sessions[sessionId ]
34: let selectedAS := session[selected_AS]

→ Note: PREPARE_AND_SEND_INITIAL_REQUEST issues CONFIG, and REGISTRATION requests as required – once these get
a response, we continue the PAR preparation by calling PREPARE_AND_SEND_INITIAL_REQUEST again.

35: if reference[responseTo] ≡ CONFIG then
36: if m.body[issuer] 6≡ selectedAS then → Verify issuer identifier according to Sec. 3.3 of RFC 8414 [29]
37: stop
38: let s′.oauthConfigCache[selectedAS ] := m.body
39: call PREPARE_AND_SEND_INITIAL_REQUEST(sessionId , a, s′)
40: else if reference[responseTo] ≡ REGISTRATION then
41: if m.body[client_type] 6∈ {mTLS_mTLS, pkjwt_mTLS, mTLS_DPoP, pkjwt_DPoP} then
42: stop → Invalid client type
43: let clientType := m.body[client_type]
44: let clientId := m.body[client_id]
45: let regClientUri := m.body[reg_client_uri] → DCM endpoint of AS Sec. 3 of RFC 7592 [43]
46: let regAt := m.body[reg_at] → DCM bearer token Sec. 3 of RFC 7592 [43]
47: if m.body[jwks] 6≡ reference[request][jwks] then
48: stop → AS changed client’s jwks value: abort registration

→ Note: The jwks value contains the client’s keys for client authentication as well as token sender constraining. Since the client
might use different keys for different ASs (and change the keys used with a given AS), it needs to keep track of which keys
to use with each AS.

49: let s′.asAccounts[selectedAS ] := [client_id : clientId , client_type : clientType, reg_at : regAt ,
↪→ reg_client_uri : regClientUri , sign_key : reference[sigKey],
↪→ tls_key : reference[tlsKey], grant_types : m.body[grant_types]]

→Algorithm continues on next page.
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50: if backchannel_token_delivery_mode ∈ m.body then
51: let s′.asAccounts[selectedAS ][backchannel_token_delivery_mode] :=m.body[backchannel_token_delivery_mode]
52: if m.body[backchannel_token_delivery_mode] ∈ {ping, push} then
53: if backchannel_client_notification_endpoint 6∈ m.body then
54: stop
55: let clientNotificationEP := m.body[backchannel_client_notification_endpoint]
56: let s′.asAccounts[selectedAS ][backchannel_client_notification_endpoint] := clientNotificationEP

57: call PREPARE_AND_SEND_INITIAL_REQUEST(reference[session], a, s′)
58: else if reference[responseTo] ≡ PAR then
59: if reference[response_mode] ≡ jwt then

→ Client requested a signed authorization response
60: let s′.sessions[sessionId ][requested_signed_authz_response] := >
61: let requestUri := m.body[request_uri]
62: let s′.sessions[sessionId ][request_uri] := requestUri
63: let clientId := session[client_id]
64: let request := session[startRequest]

→ In the following, we construct the response to the initial request by some browser
65: let authEndpoint := s′.oauthConfigCache[selectedAS ][auth_ep]

→ The authorization endpoint URL may include query components, which must be retained while also ensuring that no parameter
appears more than once (Sec. 3.1 of RFC 6749 [23]). However, following Sec. 4 of RFC 9126 [34] and Sec. 5 of RFC 9101 [47]
closely could introduce duplicates. We opted to overwrite client_id and request_uri parameters if present.

66: let authEndpoint .parameters[client_id] := clientId
67: let authEndpoint .parameters[request_uri] := requestUri
68: let headers := [Location : authEndpoint ]
69: let headers[Set-Cookie] := [〈__Host, sessionId〉 : 〈sessionId ,>,>,>〉]
70: let response := encs(〈HTTPResp, request [message].nonce, 303, headers, 〈〉〉, request [key])
71: let leakAuthZReq ←{>,⊥} →We assume that the authorization request, in particular request_uri and client_id, may

leak to the attacker, see [13].
72: if leakAuthZReq ≡ > then
73: let leak := 〈LEAK, authEndpoint〉
74: let leakAddress ← IPs
75: stop 〈〈request [sender], request [receiver], response〉, 〈leakAddress, request [receiver], leak〉〉, s′
76: else
77: stop 〈〈request [sender], request [receiver], response〉〉, s′

78: else if reference[responseTo] ≡ TOKEN then
79: let useAccessTokenNow := >
80: if session[scope] ≡ openid then → Non-deterministically decide whether to use the AT or check the ID token (if requested)
81: let useAccessTokenNow ← {>,⊥}
82: if useAccessTokenNow ≡ > then
83: call USE_ACCESS_TOKEN(reference[session], m.body[access_token], request .host, a, s′)
84: let selectedAsTokenEp := s′.oauthConfigCache[selectedAS ][token_ep]
85: if request .host 6≡ selectedAsTokenEp.host then
86: stop → Verify sender of HTTPS response is the expected AS (see [46, Sec. 3.1.3.7])
87: call CHECK_ID_TOKEN(reference[session], m.body[id_token], s′)
88: else if reference[responseTo] ≡ RESOURCE_USAGE then

→ Construct response to browser’s request to the client’s redirect endpoint (with the retrieved resource as payload)
89: let expectSignedResponse ← {>,⊥} → Choose whether to expect a signed resource response
90: let s′.sessions[sessionId ][expect_signed_resource_res] := expectSignedResponse
91: if expectSignedResponse ≡ > then → Check whether client expects a signed response
92: if hash(m.body) 6≡ m.headers[Content-Digest] then
93: stop → Content-digest is required by FAPI 2.0 Message Signing [22, Sec. 5.6.2.2]
94: let coveredComponents := m.headers[Signature-Input][res]
95: let rsDom := request .host → RS to which the resource request was sent
96: let pubKey := s′.rsSigKeys[rsDom]
97: let signerSignatureBase := extractmsg(m.headers[Signature][res])
98: if @status 6∈ coveredComponents.1 ∨ content-digest 6∈ coveredComponents.1 ∨

↪→ coveredComponents.2[tag] 6≡ fapi-2-response then
99: stop → See [22, Sec. 5.6.2.2], these components must be present
100: if signerSignatureBase.2[tag] 6≡ fapi-2-request ∨ keyid 6∈ signerSignatureBase.2 then
101: stop
102: for component ∈ coveredComponents.1 do
103: let isComponentEqual := IS_COMPONENT_EQUAL(m, request , signerSignatureBase, component)
104: if isComponentEqual 6≡ > then
105: stop
→Algorithm continues on next page.
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→ If we make it here, the response signature base matches the actual response data.
106: if pubKey ≡ 〈〉 ∨ checksig(m.headers[Signature][res], pubKey) 6≡ > then
107: stop → Invalid public key/message or signature does not verify
108: let resource := m.body[resource]
109: let s′.sessions[sessionId ][resource] := resource → Store received resource
110: let s′.sessions[sessionId ][resourceServer] := request .host → Store the domain of the RS
111: if session[cibaFlow] ≡ ⊥ then → Send the resource as a response to the redirection endpoint request.
112: let request := session[redirectEpRequest] → Data on browser’s request to client’s redirect endpoint
113: let m′ := encs(〈HTTPResp, request [message].nonce, 200, 〈〉, resource〉, request [key])
114: stop 〈〈request [sender], request [receiver],m′〉〉, s′
115: else → Wait for the browser to send a request with the login session id, see Line 51 of Algorithm 2
116: stop 〈〉, s′

117: else if reference[responseTo] ≡ DPOP_NONCE then
118: let dpopNonce := m.body[nonce]
119: let rsDomain := request .host
120: let s′.dpopNonces[rsDomain] := s′.dpopNonces[rsDomain] +〈〉 dpopNonce
121: stop 〈〉, s′
122: else if reference[responseTo] ≡ CIBA_AUTH_REQ then
123: let authnReqId := m.body[auth_req_id]
124: let s′.sessions[sessionId ][auth_req_id] := authnReqId → Store received request identifier

→ If the client has registered the poll delivery mode, it can start polling at the token endpoint
125: if s′.asAccounts[selectedAS ][backchannel_token_delivery_mode] ≡ poll then
126: let s′.sessions[sessionId ][start_polling] := > → Client can start polling
127: stop 〈〉, s′

128: stop
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Algorithm 4 Relation of a Client Rc – Request to token endpoint.
1: function SEND_TOKEN_REQUEST(sessionId , code , a, s′)
2: let session := s′.sessions[sessionId ]
3: if code_verifier 6∈ session then
4: stop
5: let pkceVerifier := session[code_verifier]
6: let selectedAS := session[selected_AS]
7: let headers := []
8: let body := [grant_type : authorization_code, code : code, redirect_uri : session[redirect_uri]]
9: let body [code_verifier] := pkceVerifier → add PKCE Code Verifier (RFC 7636 [44], Section 4.5)

10: let clientId := s′.asAccounts[selectedAS ][client_id]
11: let clientType := s′.asAccounts[selectedAS ][client_type]
12: let clientSignKey := s′.asAccounts[selectedAS ][sign_key] → Used in private_key_jwt authentication and DPoP
13: let oauthConfig := s′.oauthConfigCache[selectedAS ]
14: let tokenEndpoint := oauthConfig [token_ep]

→ Client Authentication:
15: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication
16: let body [client_id] := clientId → RFC 8705 [7] mandates client_id when using mTLS authentication
17: let mtlsNonce such that 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉 ∈ s′.mtlsCache if possible; otherwise stop
18: let authData := [TLS_AuthN : mtlsNonce]
19: let s′.mtlsCache := s′.mtlsCache −〈〉 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉
20: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
21: let jwt := [iss : clientId , sub : clientId , aud : selectedAS ]
22: let jws := sig(jwt , clientSignKey)
23: let authData := [client_assertion : jws]
24: else
25: stop → Invalid client type

→ Sender Constraining:
26: if clientType ≡ mTLS_mTLS then → mTLS sender constraining (same nonce as for mTLS authN)
27: let mtlsNonce := authData[TLS_AuthN]
28: let body [TLS_binding] := mtlsNonce
29: else if clientType ≡ pkjwt_mTLS then → mTLS sender constraining (fresh mTLS nonce)
30: let mtlsNonce such that 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉 ∈ s′.mtlsCache if possible; otherwise stop
31: let s′.mtlsCache := s′.mtlsCache −〈〉 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉
32: let body [TLS_binding] := mtlsNonce
33: else → Sender constraning using DPoP
34: let htu := tokenEndpoint
35: let htu.parameters := 〈〉 → [15, Sec. 4.2]: without query
36: let htu.fragment := ⊥ → [15, Sec. 4.2]: without fragment
37: let dpopJwt := [headers : [jwk : pub(clientSignKey)]]
38: let dpopJwt [payload] := [htm : POST, htu : htu]
39: let dpopProof := sig(dpopJwt , clientSignKey)
40: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg() function
41: let body := body +〈〉 authData
42: let message := 〈HTTPReq, ν2, POST, tokenEndpoint .host, tokenEndpoint .path, tokenEndpoint .parameters, headers, body〉
43: call HTTPS_SIMPLE_SEND([responseTo : TOKEN, session : sessionId ], message , a, s′)
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Algorithm 5 Relation of a Client Rc – Request to token endpoint for CIBA flows.
1: function SEND_CIBA_TOKEN_REQUEST(sessionId , a, s′)
2: let session := s′.sessions[sessionId ]
3: let selectedAS := session[selected_AS]
4: let authnReqId := session[auth_req_id]
5: let headers := []
6: let body := [grant_type : urn:openid:params:grant-type:ciba, auth_req_id : authnReqId ]
7: let clientId := s′.asAccounts[selectedAS ][client_id]
8: let clientType := s′.asAccounts[selectedAS ][client_type]
9: let clientSignKey := s′.asAccounts[selectedAS ][sign_key] → Used in private_key_jwt authentication and DPoP

10: let oauthConfig := s′.oauthConfigCache[selectedAS ]
11: let tokenEndpoint := oauthConfig [token_ep]

→ Client Authentication:
12: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication
13: let body [client_id] := clientId → RFC 8705 [7] mandates client_id when using mTLS authentication
14: let mtlsNonce such that 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉 ∈ s′.mtlsCache if possible; otherwise stop
15: let authData := [TLS_AuthN : mtlsNonce]
16: let s′.mtlsCache := s′.mtlsCache −〈〉 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉
17: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
18: let jwt := [iss : clientId , sub : clientId , aud : selectedAS ]
19: let jws := sig(jwt , clientSignKey)
20: let authData := [client_assertion : jws]
21: else
22: stop → Invalid client type

→ Sender Constraining:
23: if clientType ≡ mTLS_mTLS then → mTLS sender constraining (same nonce as for mTLS authN)
24: let mtlsNonce := authData[TLS_AuthN]
25: let body [TLS_binding] := mtlsNonce
26: else if clientType ≡ pkjwt_mTLS then → mTLS sender constraining (fresh mTLS nonce)
27: let mtlsNonce such that 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉 ∈ s′.mtlsCache if possible; otherwise stop
28: let s′.mtlsCache := s′.mtlsCache −〈〉 〈tokenEndpoint .host, clientId , 〈〉,mtlsNonce〉
29: let body [TLS_binding] := mtlsNonce
30: else → Sender constraning using DPoP
31: let htu := tokenEndpoint
32: let htu.parameters := 〈〉 → [15, Sec. 4.2]: without query
33: let htu.fragment := ⊥ → [15, Sec. 4.2]: without fragment
34: let dpopJwt := [headers : [jwk : pub(clientSignKey)]]
35: let dpopJwt [payload] := [htm : POST, htu : htu]
36: let dpopProof := sig(dpopJwt , clientSignKey)
37: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg() function
38: let body := body +〈〉 authData
39: let message := 〈HTTPReq, ν2, POST, tokenEndpoint .host, tokenEndpoint .path, tokenEndpoint .parameters, headers, body〉
40: call HTTPS_SIMPLE_SEND([responseTo : TOKEN, session : sessionId ], message , a, s′)
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Algorithm 6 Relation of a Client Rc – Using the access token.
1: function USE_ACCESS_TOKEN(sessionId , token , tokenEPDomain , a, s′)
2: let session := s′.sessions[sessionId ]
3: let selectedAS := session[selected_AS]
4: let rsDomain ← Doms → This domain may or may not belong to a “real” RS. If it belongs to the attacker, this request leaks the

access token (but no mTLS nonce, nor a DPoP proof for an honest server).
→ Note: All paths except the mTLS and DPoP preparation endpoints are resource paths at the RS.

5: let resourceID ← S such that resourceID 6∈ {/MTLS-prepare, /DPoP-nonce}
6: let url := 〈URL, S, rsDomain, resourceID , 〈〉,⊥〉
7: if s′.resourceASMapping[rsDomain][resourceID ] 6≡ tokenEPDomain then
8: stop → The AS from which the client received the AT is not managing the resource

→ The access token is sender-constrained, so the client must add a corresponding key proof.
9: let clientType := s′.asAccounts[selectedAS ][client_type]

10: let clientId := s′.asAccounts[selectedAS ][client_id]
11: let body := []
12: if clientType ∈ {mTLS_mTLS, pkjwt_mTLS} then → mTLS sender constraining
13: let mtlsNonce such that 〈rsDomain, 〈〉, pubKey ,mtlsNonce〉 ∈ s′.mtlsCache if possible; otherwise stop
14: let body [TLS_binding] := mtlsNonce → This nonce is not necessarily associated with the same of the client’s keys as the

access token. In such a case, the RS will reject this request and the client has to try
again.

15: let headers := [Authorization : [Bearer : token]] → FAPI 2.0 mandates to send access token in header
16: let s′.mtlsCache := s′.mtlsCache −〈〉 〈rsDomain, 〈〉, pubKey ,mtlsNonce〉
17: else if clientType ∈ {mTLS_DPoP, pkjwt_DPoP} then → DPoP sender constraining
18: let privKey := s′.asAccounts[selectedAS ][sign_key] → get private signing key registered with selectedAS
19: let dpopNonce such that dpopNonce ∈ s′.dpopNonces[rsDomain] if possible; otherwise stop
20: let s′.dpopNonces[rsDomain] := s′.dpopNonces[rsDomain] −〈〉 dpopNonce
21: let htu := url
22: let htu.parameters := 〈〉 → [15, Sec. 4.2]: without query
23: let htu.fragment := ⊥ → [15, Sec. 4.2]: without fragment
24: let dpopJwt := [headers : [jwk : pub(privKey)]]
25: let dpopJwt [payload] := [htm : POST, htu : htu, ath : hash(token), nonce : dpopNonce]
26: let dpopProof := sig(dpopJwt , privKey)
27: let headers := [Authorization : [DPoP : token]] → See [15, Sec. 7.1]
28: let headers[DPoP] := dpopProof → add DPoP header; the dpopJwt can be extracted with the extractmsg() function
29: let signRequest ← {>,⊥} → Choose whether to sent a signed resource request
30: if signRequest ≡ > then
31: let clientSignKey := s′.asAccounts[selectedAS ][sign_key]
32: let headers[Content-Digest] := hash(body) → See [22, Sec. 5.6.1.1 No. 8]
33: let coveredComponents := 〈〈〈@method, 〈〉〉, 〈@target-uri, 〈〉〉, 〈authorization, 〈〉〉, 〈content-digest, 〈〉〉〉,

↪→ [tag : fapi-2-request, keyid : pub(clientSignKey)]〉 → See [22, Sec. 5.6.1.1]
34: let signatureBase := [〈@method, 〈〉〉 : POST, 〈@target-uri, 〈〉〉 : url , 〈authorization, 〈〉〉 : headers[Authorization],

↪→ 〈content-digest, 〈〉〉 : headers[Content-Digest]]
35: if DPoP ∈ headers then
36: let coveredComponents.1 := coveredComponents.1 +〈〉 〈dpop, 〈〉〉 → See [22, Sec. 5.6.1.1 No. 7]
37: let signatureBase[〈dpop, 〈〉〉] := headers[DPoP]

38: let signatureBase := signatureBase +〈〉 coveredComponents.2 → Signature parameters, cf. [2, Sec. 2.5]
39: let headers[Signature] := [req : sig(signatureBase, clientSignKey)]
40: let headers[Signature-Input] := [req : coveredComponents]

41: let s′.sessions[sessionId ][signed_resource_req] := signRequest
42: let message := 〈HTTPReq, ν3, POST, url .domain, url .path, 〈〉, headers, body〉
43: call HTTPS_SIMPLE_SEND([responseTo : RESOURCE_USAGE, session : sessionId ], message , a, s′)
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Algorithm 7 Relation of a Client Rc – Check ID Token and log user in at c.
1: function CHECK_ID_TOKEN(sessionId , idToken , s′) → Check ID Token validity and create service session.
2: let session := s′.sessions[sessionId ] → Retrieve session data.
3: let selectedAS := session[selected_AS]
4: let oauthConfig := s′.oauthConfigCache[selectedAS ] → Retrieve configuration for user-selected AS.
5: let clientInfo := s′.asAccounts[selectedAS ] → Retrieve client info used at that AS.
6: let data := extractmsg(idToken) → Extract contents of signed ID Token.

→ The following ID token checks are mandated by [46, Sec. 3.1.3.7]. Note that OIDC allows clients to skip ID token signature
verification if the ID token is received directly from the AS (which it is here). Hence, we do not check the token’s signature (see
also Line 85 of Algorithm 3).

7: if data[iss] 6≡ selectedAS then
8: stop → Check the issuer; note that previous checks ensure oauthConfig [issuer] ≡ selectedAS

9: if data[aud] 6≡ clientInfo[client_id] then
10: stop → Check the audience against own client id.
11: if nonce ∈ session ∧ data[nonce] 6≡ session[nonce] then
12: stop → If a nonce was used, check its value.
13: let s′.sessions[sessionId ][loggedInAs] := 〈selectedAS , data[sub]〉 → User is now logged in. Store user identity and issuer of

ID token.
14: let s′.sessions[sessionId ][serviceSessionId] := ν4 → Choose a new service session id.
15: if session[cibaFlow] ≡ ⊥ then → Send a response to the request to the redirection endpoint with the service session id.
16: let request := session[redirectEpRequest] → Retrieve stored meta data of the request from the browser to the redir.

endpoint in order to respond to it now. The request’s meta data was stored in
PROCESS_HTTPS_REQUEST (Algorithm 2).

17: let headers[Set-Cookie] := [serviceSessionId : 〈ν4,>,>,>〉] → Create a cookie containing the service session id, effec-
tively logging the user identified by data[sub] in at this
client.

18: let m′ := encs(〈HTTPResp, request [message].nonce, 200, headers, ok〉, request [key])
19: stop 〈〈request [sender], request [receiver],m′〉〉, s′
20: else → Wait for the browser to send a request with the login session id, see Line 51 of Algorithm 2
21: stop 〈〉, s′

27



Algorithm 8 Relation of a Client Rc – Prepare and send pushed authorization request or CIBA authentication request.
1: function PREPARE_AND_SEND_INITIAL_REQUEST(sessionId , a, s′)
2: let redirectUris := {〈URL, S, d, /redirect_ep, 〈〉,⊥〉 | d ∈ dom(c)} → Set of redirect URIs for all domains of c.
3: let redirectUri ← redirectUris → Select a (potentially) different redirect URI for each authorization request
4: let session := s′.sessions[sessionId ]
5: let selectedAS := session[selected_AS] → AS selected by the user at the beginning of the flow.

→ Check whether the client needs to fetch AS metadata first and do so if required.
6: if selectedAS 6∈ s′.oauthConfigCache then
7: let path ← {/.well_known/openid-configuration, /.well_known/oauth-authorization-server}
8: let message := 〈HTTPReq, ν5, GET, selectedAS , path, 〈〉, 〈〉, 〈〉〉
9: call HTTPS_SIMPLE_SEND([responseTo : CONFIG, session : sessionId ], message , a, s′)

10: let oauthConfig := s′.oauthConfigCache[selectedAS ]
11: if selectedAS 6∈ s′.asAccounts then → c not yet registered with selectedAS – Dynamic Client Registration (see RFC 7591 [42])
12: let url := oauthConfig [reg_ep]
13: let signingKey := νcliSignK → Generate signing key (pair) to use with selectedAS
14: let tlsKey := νcliTlsK → Generate mTLS key (pair) to use with selectedAS (see also Appendix A-G)
15: let jwks := 〈[use : sig, val : pub(signingKey)], [use : TLS, val : pub(tlsKey)]〉
16: let regData := [redirect_uris : 〈redirectUris〉, jwks : jwks]
17: let cibaDeliveryMode ← {poll, ping, push}
18: let regData[backchannel_token_delivery_mode] := cibaDeliveryMode
19: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ push then
20: let regData[backchannel_client_notification_endpoint] ← {〈URL, S, d, /ciba_notif_ep, 〈〉,⊥〉 | d ∈ dom(c)}
21: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ poll then
22: let regData[grant_types] := 〈authorization_code, urn:openid:params:grant-type:ciba〉
23: else
24: let regData[grant_types] := 〈authorization_code〉
25: let message := 〈HTTPReq, ν5, POST, url .host, url .path, url .parameters, 〈〉, regData〉
26: call HTTPS_SIMPLE_SEND([responseTo : REGISTRATION, session : sessionId , sigKey : signingKey , tlsKey : tlsKey ],

↪→ message , a, s′)
→ Construct pushed authorization request or CIBA authentication request

27: if session[cibaFlow] ≡ > then
28: let requestEndpoint := oauthConfig [backchannel_authentication_endpoint]
29: else
30: let requestEndpoint := oauthConfig [par_ep]

31: let clientId := s′.asAccounts[selectedAS ][client_id]
32: let clientType := s′.asAccounts[selectedAS ][client_type]
33: let clientSignKey := s′.asAccounts[selectedAS ][sign_key]
34: if clientType ∈ {mTLS_mTLS, mTLS_DPoP} then → mTLS client authentication
35: let mtlsNonce such that 〈requestEndpoint .host, clientId , 〈〉,mtlsNonce〉 ∈ s′.mtlsCache if possible; otherwise stop
36: let authData := [TLS_AuthN : mtlsNonce]
37: let s′.mtlsCache := s′.mtlsCache −〈〉 〈requestEndpoint .host, clientId , 〈〉,mtlsNonce〉
38: else if clientType ∈ {pkjwt_mTLS, pkjwt_DPoP} then → private_key_jwt client authentication
39: let jwt := [iss : clientId , sub : clientId , aud : selectedAS ]
40: let jws := sig(jwt , clientSignKey)
41: let authData := [client_assertion : jws]

42: if session[cibaFlow] ≡ > then
43: let requestData := [client_id : clientId , scope : openid, login_hint : session[selected_identity],

↪→ binding_message : session[binding_message]]
44: if cibaDeliveryMode ≡ ping then
45: let requestData[client_notification_token] := νcibaNotifToken

46: else
47: let pkceVerifier := νpkce → Fresh random value
48: let pkceChallenge := hash(pkceVerifier)
49: let requestData := [response_type : code, code_challenge_method : S256, client_id : clientId ,

↪→ redirect_uri : redirectUri , code_challenge : pkceChallenge]
50: let useOidc ← {>,⊥} → Use of OIDC is optional
51: if useOidc ≡ > then
52: let requestData[scope] := openid

53: let s′.sessions[sessionId ][code_verifier] := pkceVerifier → Store PKCE randomness in state
→Algorithm continues on next page.

28

https://datatracker.ietf.org/doc/html/rfc7591


54: let s′.sessions[sessionId ] := s′.sessions[sessionId ] +〈〉 requestData
55: let requestData := requestData +〈〉 authData
56: if session[cibaFlow] ≡ ⊥ then
57: let requestSignedResponse ← {>,⊥} → Choose whether to request a signed authorization response (see also Section V-C)
58: if requestSignedResponse ≡ > then
59: let requestData[response_mode] := jwt → Request signed authorization response (cf. JARM [32, Sec. 2.3] and [22, Sec.

5.4.2 No. 1])
→ Note: Following the recommendation in [46, Sec. 3.1.2.1], we do not set a response_mode for “regular” requests.

60: let signPAR ← {>,⊥} → Choose whether to use a signed authorization request (see also Section V-C)
61: if signPAR ≡ > then
62: let requestData[aud] := selectedAS → See [22, Sec. 5.3.2 No. 2]
63: let body := sig(requestData, clientSignKey) → Sign authorization request (FAPI 2.0 Message Signing)
64: else
65: let body := requestData

66: else
67: let body := requestData

68: let authReq := 〈HTTPReq, νauthReqNonce, POST, requestEndpoint .host, requestEndpoint .path, requestEndpoint .parameters, 〈〉, body〉
69: if session[cibaFlow] ≡ > then
70: call HTTPS_SIMPLE_SEND([responseTo : CIBA_AUTH_REQ, session : sessionId ], authReq , a, s′)
71: else
72: call HTTPS_SIMPLE_SEND([responseTo : PAR, session : sessionId , response_mode : requestData[response_mode]]

↪→ , authReq , a, s′)
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Algorithm 9 Relation of a Client Rc – Handle trigger events.
1: function PROCESS_TRIGGER(a, s′)
2: let action ← {MTLS_PREPARE_AS, MTLS_PREPARE_RS, MTLS_PREPARE_MISCONFIGURED_TOKEN_EP,

↪→ GET_DPOP_NONCE, CHANGE_CLIENT_CONFIG, CIBA_POLL_TOKEN_EP, CIBA_START_FLOW}
3: switch action do
4: case MTLS_PREPARE_AS
5: let server ← Doms such that server ∈ s′.asAccounts if possible; otherwise stop
6: let asAcc := s′.asAccounts[server ]
7: let clientId := asAcc[client_id]
8: let body := [client_id : clientId ]
9: let message := 〈HTTPReq, νmtls, GET, server , /MTLS-prepare, 〈〉, 〈〉, body〉

10: call HTTPS_SIMPLE_SEND([responseTo : MTLS, client_id : clientId ],message, a, s′)

11: case MTLS_PREPARE_RS
→ Non-deterministically contact some RS to get an mTLS nonce for mTLS access token sender constraining (for an access

token issued by selectedAS , i.e., that token is bound to the mTLS key registered with selectedAS ).
12: let resourceServer ← Doms → Note: This may or may not be a “real” RS.
13: let selectedAS ← Doms such that selectedAS ∈ s′.asAccounts if possible; otherwise stop
14: let mTlsPrivKey := s′.asAccounts[selectedAS ][tls_key]
15: let pubKey := pub(mTlsPrivKey)
16: let body := [pub_key : pubKey ]
17: let message := 〈HTTPReq, νmtls, GET, resourceServer , /MTLS-prepare, 〈〉, 〈〉, body〉
18: call HTTPS_SIMPLE_SEND([responseTo : MTLS, pub_key : pubKey ],message, a, s′)

19: case MTLS_PREPARE_MISCONFIGURED_TOKEN_EP
→ This case allows the client to retrieve mTLS nonces from attacker-controlled servers and subsequently make requests

to such servers. Without this case, the model would not capture attacks in which the client talks to attacker-controlled
endpoints protected by mTLS.

20: let server ← Doms such that server ∈ s′.asAccounts if possible; otherwise stop
21: let asAcc := s′.asAccounts[server ]
22: let clientId := asAcc[client_id]
23: let host ← Doms → Non-deterministically choose the domain instead of sending to the correct AS
24: let body := [client_id : clientId ]
25: let message := 〈HTTPReq, νmtls, GET, host , /MTLS-prepare, 〈〉, 〈〉, body〉
26: call HTTPS_SIMPLE_SEND([responseTo : MTLS, client_id : clientId ],message, a, s′)

27: case GET_DPOP_NONCE
→ Our client uses DPoP server-provided nonces at the RS. The RS model offers a special endpoint to retrieve nonces.

28: let resourceServer ← Doms → Note: This may or may not be a “real” RS.
29: let message := 〈HTTPReq, νDPoPreq, GET, resourceServer , /DPoP-nonce, 〈〉, 〈〉, 〈〉〉
30: call HTTPS_SIMPLE_SEND([responseTo : DPOP_NONCE],message, a, s′)

31: case CHANGE_CLIENT_CONFIG → Use dynamic client management at AS (see RFC 7592 [43])
→ Randomly select one of the ASs this client is registered with.

32: let selectedAS ← Doms such that selectedAS ∈ s′.asAccounts if possible; otherwise stop
33: let regClientUri := s′.asAccounts[selectedAS ][reg_client_uri] → Client management URI
34: let regAt := s′.asAccounts[selectedAS ][reg_at] → Client management access token
35: let authHeader := [Authorization : 〈Bearer, regAt〉]
36: let DCMaction ← {UPDATE, DELETE} → Randomly select a client management action
37: switch DCMaction do
38: case DELETE → Delete client at AS, see Sec. 2.3 of RFC 7592 [43]
39: let message := 〈HTTPReq, νDELreq, DELETE, regClientUri .host, regClientUri .path, 〈〉, authHeader , 〈〉〉
40: call HTTPS_SIMPLE_SEND([responseTo : CLIENT_MANAGEMENT],message, a, s′)

41: case UPDATE → Update client configuration at AT, see Sec. 2.2 of RFC 7592 [43]
→ Generate fresh key pairs and update client keys at AS (see also Section V-B). Note that following our simplified

model of mTLS, the client metadata includes a public key instead of a distinguished name for mTLS (or similar,
see Sec. 2.1.2 of RFC 8705 [7]).

42: let redirectUris := {〈URL, S, d, /redirect_ep, 〈〉,⊥〉 | d ∈ dom(c)} → Set of redirect URIs for all domains of c
43: let newSigningKey := νcliSignK
44: let newTLSKey := νcliTlsK
45: let newJwks := 〈[use : sig, val : pub(newSigningKey)], [use : TLS, val : pub(newTLSKey)]〉
46: let body := [client_id : clientId , jwks : newJwks, redirect_uris : 〈redirectUris〉]
→Algorithm continues on next page.
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→ Continuing the UPDATE case:
47: let cibaDeliveryMode ← {poll, ping, push}
48: let body[backchannel_token_delivery_mode] := cibaDeliveryMode
49: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ push then
50: let body[backchannel_client_notification_endpoint] ←

↪→ {〈URL, S, d, /ciba_notif_ep, 〈〉,⊥〉 | d ∈ dom(c)}
51: if cibaDeliveryMode ≡ ping ∨ cibaDeliveryMode ≡ poll then
52: let body[grant_types] := 〈authorization_code, urn:openid:params:grant-type:ciba〉
53: else
54: let body[grant_types] := 〈authorization_code〉
55: let message := 〈HTTPReq, νPUTreq, PUT, regClientUri .host, regClientUri .path, 〈〉, authHeader , body〉
56: call HTTPS_SIMPLE_SEND([responseTo : CLIENT_MANAGEMENT, selected_AS : selectedAS ,

↪→ sigKey : newSigningKey , tlsKey : newTLSKey ],message, a, s′)

57: case CIBA_POLL_TOKEN_EP → Poll Token Endpoint
58: let sessionId such that sessionId ∈ s′.sessions

↪→ ∧s′.asAccounts[s′.sessions[sessionId ][selected_AS]][backchannel_token_delivery_mode] ≡ poll
↪→ ∧s′.sessions[sessionId ][start_polling] ≡ > if possible; otherwise stop

59: call SEND_CIBA_TOKEN_REQUEST(sessionId , a, s′) → Send a token request
60: case CIBA_START_FLOW → Start the flow by sending the CIBA authentication request
61: let sessionId , a such that 〈sessionId , a〉 ∈〈〉 s′.pendingCIBARequests if possible; otherwise stop
62: let s′.pendingCIBARequests := s′.pendingCIBARequests −〈〉 〈sessionId , a〉
63: call PREPARE_AND_SEND_INITIAL_REQUEST(sessionId , a, s′) → Start a CIBA flow (see Algorithm 8)
64: stop

Algorithm 10 Relation of script_client_index

Input: 〈tree, docnonce, scriptstate, scriptinputs , cookies , localStorage, sessionStorage , ids , secrets〉 → Script that models the
index page of a client. Users can initiate the login flow or follow arbitrary links. The script receives various information about the
current browser state, filtered according to the access rules (same origin policy and others) in the browser.

1: let switch ← {auth, link} → Non-deterministically decide whether to start a login flow or to follow some link.
2: if switch ≡ auth then → Start login flow.
3: let url := GETURL(tree, docnonce) → Retrieve URL of current document.
4: let id ← ids → Retrieve one of user’s identities.
5: let as := id .domain → Extract domain of AS from chosen id .
6: let url ′ := 〈URL, S, url .host, /startLogin, 〈〉,⊥〉 → Assemble request URL.
7: let command := 〈FORM, url ′, POST, as,⊥〉 → Post a form including the selected AS to the client.
8: stop 〈s, cookies, localStorage, sessionStorage, command〉 → Finish script’s run and instruct the browser to execute the command

(i.e., to POST the form).
9: else → Follow (random) link to facilitate referrer-based attacks.

10: let protocol ← {P, S} → Non-deterministically select protocol (HTTP or HTTPS).
11: let host ← Doms → Non-det. select host.
12: let path ← S → Non-det. select path.
13: let fragment ← S → Non-det. select fragment part.
14: let parameters ← [S× S] → Non-det. select parameters.
15: let url := 〈URL, protocol , host , path, parameters, fragment〉 → Assemble request URL.
16: let command := 〈HREF, url ,⊥,⊥〉 → Follow link to the selected URL.
17: stop 〈s, cookies, localStorage, sessionStorage, command〉 → Finish script’s run and instruct the browser to execute the command

(follow link).
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K. Authorization Servers
An authorization server as ∈ AS is a Web server modeled as an atomic process (Ias, Zas, Ras, sas0 ) with the addresses

Ias := addr(as). Next, we define the set Zas of states of as and the initial state sas0 of as.

Definition 8. A state s ∈ Zas of an authorization server as is a term of the form 〈DNSaddress , pendingDNS ,
pendingRequests , corrupt , keyMapping , tlskeys , jwk , pendingClientIds , clients , records , authorizationRequests ,
cibaAuthnRequests , mtlsRequests , cibaEndUserEndpoints , rsCredentials〉 with DNSaddress ∈ IPs, pendingDNS ∈[

N × TN
]
, pendingRequests ∈ TN , corrupt ∈ TN , keyMapping ∈

[
Doms× TN

]
, tlskeys ∈ [Doms×KTLS]

(all former components as in Definition 77), jwk ∈ Ksign, pendingClientIds ∈ TN , clients ∈
[
TN ×

[
S× TN

]]
,

records ∈ TN , authorizationRequests ∈
[
TN × TN

]
, cibaAuthnRequests ∈

[
TN × TN

]
, mtlsRequests ∈

[
TN × TN

]
,

cibaEndUserEndpoints ∈ TN , and rsCredentials ∈ TN .
An initial state sas0 of as is a state of as with
• sas0 .DNSaddress ∈ IPs,
• sas0 .pendingDNS ≡ 〈〉,
• sas0 .pendingRequests ≡ 〈〉,
• sas0 .corrupt ≡ ⊥,
• sas0 .keyMapping being the same as the keymapping for browsers,
• sas0 .tlskeys ≡ tlskeysas (see Appendix A-C),
• sas0 .jwk ≡ signkey(as) (see Appendix A-C),
• sas0 .pendingClientIds ≡ 〈〉,
• sas0 .clients ≡ 〈〉,
• sas0 .records ≡ 〈〉,
• sas0 .authorizationRequests ≡ 〈〉,
• sas0 .cibaAuthnRequests ≡ 〈〉,
• sas0 .mtlsRequests ≡ 〈〉,
• sas0 .cibaEndUserEndpoints ≡ userEp where userEp is a dictionary and
〈identity , ep〉 ∈〈〉 userEp ⇔ (identity .domain ∈ dom(as) ∧ dom−1(ep.host) = ownerOfID(identity)), i.e., userEp
maps identities to a domain of the browser of the identity (note that the browser model can receive requests as a modeling
artefact)., and

• sas0 .rsCredentials ≡ rsCreds where rsCreds is a dictionary and
〈rsDom, c〉 ∈〈〉 rsCreds ⇔ (∃d ∈ dom(as), rsDom ∈ Doms : c ≡ secretOfRS(d, rsDom)), i.e., rsCreds maps RS
domains to the corresponding RS credentials..

We now specify the relation Ras: This relation is based on the model of generic HTTPS servers (see Appendix E-L). We
specify algorithms that differ from or do not exist in the generic server model in Algorithms 11 to 12. Algorithm 16 shows
the script script_as_form that is used by ASs.
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Algorithm 11 Relation of AS Ras – Processing HTTPS Requests
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: if m.path ≡ /.well-known/openid-configuration ∨

↪→ m.path ≡ /.well-known/oauth-authorization-server then → We model both OIDD, RFC 8414, and FAPI CIBA.
3: let metaData := [issuer : m.host]
4: let metaData[auth_ep] := 〈URL, S,m.host, /auth, 〈〉,⊥〉
5: let metaData[token_ep] := 〈URL, S,m.host, /token, 〈〉,⊥〉
6: let metaData[par_ep] := 〈URL, S,m.host, /par, 〈〉,⊥〉
7: let metaData[introspec_ep] := 〈URL, S,m.host, /introspect, 〈〉,⊥〉
8: let metaData[jwks_uri] := 〈URL, S,m.host, /jwks, 〈〉,⊥〉
9: let metaData[reg_ep] := 〈URL, S,m.host, /reg, 〈〉,⊥〉

→ No support for push mode, see Section 5.2.2 of FAPI-CIBA [49]
10: let metaData[backchannel_token_delivery_modes_supported] := 〈poll, ping〉
11: let metaData[backchannel_authentication_endpoint] := 〈URL, S,m.host, /backchannel-authn, 〈〉,⊥〉
12: let metaData[grant_types_supported] := 〈authorization_code, urn:openid:params:grant-type:ciba〉
13: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉,metaData〉, k)
14: stop 〈〈f, a,m′〉〉, s′
15: else if m.path ≡ /jwks then
16: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, pub(s′.jwk)〉, k)
17: stop 〈〈f, a,m′〉〉, s′
18: else if m.path ≡ /reg ∧m.method ≡ POST then
19: call REGISTER_CLIENT(m, k, a, f , s′) → See Algorithm 13
20: else if m.path ≡ /manage ∧m.method ≡ PUT then → DCM: update client metadata (see Sec. 2.2 of RFC 7592 [43])
21: let clientId := m.body[clientId]
22: if clientId /∈ s′.clients then
23: stop → Unknown client
24: let clientInfo := s′.clients[clientId ]
25: let regAT := m.headers[Authorization][Bearer]
26: if regAT 6≡ clientInfo[reg_at] then
27: stop → Wrong registration access token
28: let redirectUris := m.body[redirect_uris]
29: let jwks := m.body[jwks] → Contains public keys of client
30: let pubSigKey such that [use : sig, val : pubSigKey ] ∈〈〉 jwks if possible; otherwise stop
31: let mtlsPubKey such that [use : TLS, val : mtlsPubKey ] ∈〈〉 jwks if possible; otherwise stop
32: let regUri := 〈URL, S,m.host, /manage, 〈〉,⊥〉
33: let clientType ← {mTLS_mTLS, mTLS_DPoP, pkjwt_mTLS, pkjwt_DPoP} → Non-deterministic choice of client type
34: let clientInfo[client_type] := clientType
35: let clientInfo[jwt_key] := pubSigKey
36: let clientInfo[mtls_key] := mtlsPubKey
37: let clientInfo[redirect_uris] := redirectUris
38: let regResponse := [client_id : clientId , jwks : jwks, client_type : clientType, reg_at : regAT , reg_client_uri : regUri ]
39: let tokenDeliveryMode ← {poll, ping} → Non-deterministic choice of CIBA token delivery mode
40: let grantTypes := 〈authorization_code, urn:openid:params:grant-type:ciba〉 → AS registers both types (in our model)
41: let clientInfo[grant_types] := grantTypes
42: let regResponse[grant_types] := grantTypes
43: let clientInfo[backchannel_token_delivery_mode] := tokenDeliveryMode
44: let regResponse[backchannel_token_delivery_mode] := tokenDeliveryMode
45: if tokenDeliveryMode ≡ ping then
46: if backchannel_client_notification_endpoint 6∈ m.body then
47: stop
48: let clientNotificationEP := m.body[backchannel_client_notification_endpoint]
49: let regResponse[backchannel_client_notification_endpoint] := clientNotificationEP
50: let clientInfo[backchannel_client_notification_endpoint] := clientNotificationEP

51: let s′.clients[clientId ] := clientInfo
52: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, regResponse〉, k)
53: stop 〈〈f, a,m′〉〉, s′
54: else if m.path ≡ /manage ∧m.method ≡ DELETE then → DCM: delete client (see Sec. 2.3 of RFC 7592 [43])
55: let regAT := m.headers[Authorization][Bearer]
56: let clientId such that s′.clients[clientId ][reg_at] ≡ regAT if possible; otherwise stop
57: let s′.clients[clientId ][active] := ⊥ → Deactivate client account
58: stop 〈〉, s′
→Algorithm continues on next page.
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59: else if m.path ≡ /auth then → Authorization endpoint: Reply with login page.
60: if m.method ≡ GET then
61: let data := m.parameters
62: else if m.method ≡ POST then
63: let data := m.body

64: let requestUri := data[request_uri]
65: if requestUri ≡ 〈〉 then
66: stop → FAPI 2.0 mandates PAR, therefore a request URI is required
67: let authzRecord := s′.authorizationRequests[requestUri ]
68: let clientId := data[client_id]
69: if authzRecord [client_id] 6≡ clientId then → Check binding of request URI to client
70: stop
71: if clientId 6∈ s′.clients ∨ s′.clients[clientId ][active] 6≡ > then
72: stop → Unknown client
73: let s′.authorizationRequests[requestUri ][auth2_reference] := ν5
74: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〈ReferrerPolicy, origin〉〉, 〈script_as_form, [auth2_reference : ν5]〉〉, k)
75: stop 〈〈f, a,m′〉〉, s′
76: else if m.path ≡ /auth2 ∧m.method ≡ POST ∧m.headers[Origin] ≡ 〈m.host, S〉 then → Second step of authorization
77: let identity := m.body[identity]
78: let password := m.body[password]
79: if identity .domain 6∈ dom(as) then
80: stop → This AS does not manage identity

81: if password 6≡ secretOfID(identity) then
82: stop → Invalid user credentials
83: let auth2Reference := m.body[auth2_reference]
84: let requestUri such that s′.authorizationRequests[requestUri ][auth2_reference] ≡ auth2Reference

↪→ if possible; otherwise stop
85: let authzRecord := s′.authorizationRequests[requestUri ]
86: let authzRecord [subject] := identity
87: let authzRecord [issuer] := m.host
88: let authzRecord [code] := ν1 → Generate a fresh, random authorization code
89: let s′.records := s′.records +〈〉 authzRecord
90: let redirectUri := authzRecord [redirect_uri]
91: let responseData := [code : authzRecord [code]]
92: if authzRecord [state] 6≡ 〈〉 then
93: let responseData[state] := authzRecord [state]

94: if authzRecord [sign_authz_response] ≡ > then
95: let responseData[iss] := authzRecord [issuer] → iss claim is part of JWT instead of a parameter, see [22, Sec. 5.4.1]
96: let responseData[aud] := clientId → See JARM [32, Sec. 2.1]
97: let responseData := [response : sig(responseData, s′.jwk)] → Sign authorization response using JARM [32, Sec. 2.3.1]
98: else
99: let redirectUri .parameters[iss] := authzRecord [issuer] → Overwrite iss parameter if present in redirectUri

100: let redirectUri .parameters := redirectUri .parameters ∪ responseData
101: let m′ := encs(〈HTTPResp,m.nonce, 303, 〈〈Location, redirectUri〉〉, 〈〉〉, k)
102: stop 〈〈f, a,m′〉〉, s′
103: else if m.path ≡ /par ∧m.method ≡ POST then → Pushed Authorization Request
104: let requireSignedPAR ← {>,⊥} → Choose whether to require a signed PAR (see also Section V-C)

→ Note: If the client signed the PAR, but the AS chooses not to require a signature, client authentication below will fail.
105: if requireSignedPAR ≡ > then
106: let mBody := extractmsg(m.body) → Note: If m.body 6∼ sig(∗, ∗) (or mac(∗, ∗)), then there is no processing step
107: if checksig(m.body, s′.clients[mBody [client_id]][jwt_key]) 6≡ > then
108: stop → Invalid signature
109: if mBody [aud] 6≡ m.host then
110: stop → Wrong audience value in JWS, see [22, Sec. 5.3.1 No. 2]
111: else
112: let mBody := m.body

113: let m.body := mBody → In case of a signed PAR: Strip off the signature after verifying it
114: if m.body[response_type] 6≡ code ∨m.body[code_challenge_method] 6≡ S256 then
115: stop
116: let authnResult := AUTHENTICATE_CLIENT(m, s′) → Stops in case of errors/failed authentication
117: let clientId := authnResult .1
118: let s ′ := authnResult .2
119: let mtlsInfo := authnResult .3
120: if clientId 6≡ mBody [client_id] then
121: stop → Key used in client authentication is not registered for m.body[client_id]

→Algorithm continues on next page.
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122: let redirectUri := mBody [redirect_uri] → Clients are required to send redirect_uri with each request
123: if redirectUri ≡ 〈〉 then
124: stop
125: if redirectUri .protocol 6≡ S then
126: stop
127: let codeChallenge := mBody [code_challenge] → PKCE challenge
128: if codeChallenge ≡ 〈〉 then
129: stop → Missing PKCE challenge
130: let requestUri := ν4 → Choose random URI
131: let authzRecord := [client_id : clientId ]
132: let authzRecord [state] := mBody [state]
133: let authzRecord [scope] := mBody [scope]
134: if nonce ∈ mBody then
135: let authzRecord [nonce] := mBody [nonce]

136: let authzRecord [redirect_uri] := redirectUri
137: let authzRecord [code_challenge] := codeChallenge
138: let authzRecord [signed_par] := requireSignedPAR
139: if response_mode ∈ mBody ∧mBody [response_mode] ≡ jwt then → Check whether client requested a signed response
140: let authzRecord [sign_authz_response] := >
141: let body := [request_uri : requestUri ]
142: let s′.authorizationRequests[requestUri ] := authzRecord → Store data linked to requestUri
143: let m′ := encs(〈HTTPResp,m.nonce, 201, 〈〉, body〉, k)
144: stop 〈〈f, a,m′〉〉, s′
145: else if m.path ≡ /token ∧m.method ≡ POST then
146: if m.body[grant_type] 6≡ authorization_code ∧m.body[grant_type] 6≡ urn:openid:params:grant-type:ciba then
147: stop
148: let authnResult := AUTHENTICATE_CLIENT(m, s′) → Stops in case of errors/failed authentication
149: let clientId := authnResult .1
150: let s ′ := authnResult .2
151: let mtlsInfo := authnResult .3
152: if m.body[grant_type] ≡ authorization_code then
153: let code := m.body[code]
154: let codeVerifier := m.body[code_verifier]
155: if code ≡ 〈〉 ∨ codeVerifier ≡ 〈〉 then
156: stop → Missing code or code_verifier
157: let record , ptr such that record ≡ s′.records.ptr ∧ record [code] ≡ code

↪→ ∧code 6≡ ⊥ ∧ ptr ∈ N if possible; otherwise stop
158: if record [code_challenge] 6≡ hash(codeVerifier) ∨ record [redirect_uri] 6≡ m.body[redirect_uri] then
159: stop → PKCE verification failed or URI mismatch
160: else if m.body[grant_type] ≡ urn:openid:params:grant-type:ciba then
161: let authReqId := m.body[auth_req_id]
162: if authReqId ≡ 〈〉 then
163: stop → Missing auth_req_id
164: let record , ptr such that record ≡ s′.records.ptr ∧ record [auth_req_id] ≡ auth_req_id

↪→ ∧auth_req_id 6≡ ⊥ ∧ ptr ∈ N if possible; otherwise stop
165: if record [client_id] 6≡ clientId then
166: stop
167: let clientType := s′.clients[clientId ][client_type]
168: if clientType ≡ pkjwt_DPoP ∨ clientType ≡ mTLS_DPoP then → DPoP token binding
169: let tokenType := DPoP
170: let dpopProof := m.headers[DPoP]
171: let dpopJwt := extractmsg(dpopProof )
172: let verificationKey := dpopJwt [headers][jwk]
173: if checksig(dpopProof , verificationKey) 6≡ > ∨ verificationKey ≡ 〈〉 then
174: stop → Invalid DPoP signature (or empty jwk header)
175: let dpopClaims := dpopJwt [payload]
176: let reqUri := 〈URL, S,m.host,m.path, 〈〉,⊥〉
177: if dpopClaims[htm] 6≡ m.method ∨ dpopClaims[htu] 6≡ reqUri then
178: stop → DPoP claims do not match corresponding message
179: let cnfContent := [jkt : hash(verificationKey)]
180: else if clientType ≡ pkjwt_mTLS ∨ clientType ≡ mTLS_mTLS then → mTLS token binding
181: let tokenType := Bearer
182: let mtlsNonce := m.body[TLS_binding]
→Algorithm continues on next page.
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183: if clientType ≡ mTLS_mTLS then → Client used mTLS authentication, reuse data from authentication
184: if mtlsNonce 6≡ mtlsInfo.1 then
185: stop → Client tried to use different mTLS nonce for authentication and token binding
186: else → Client did not use mTLS authentication
187: let mtlsInfo such that mtlsInfo ∈ s′.mtlsRequests[clientId ]∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop

188: let s′.mtlsRequests[clientId ] := s′.mtlsRequests[clientId ] −〈〉 mtlsInfo

189: let mTlsKey := mtlsInfo.2 → mTLS public key of client
190: let cnfContent := [x5t#S256 : hash(mTlsKey)]
191: else
192: stop → Client used neither DPoP nor mTLS
193: if m.body[grant_type] ≡ authorization_code then
194: let s′.records.ptr [code] := ⊥ → Invalidate code
195: else
196: let s′.records.ptr [auth_req_id] := ⊥ → Invalidate request id
197: let atType ← {JWT, opaque} → The AS chooses randomly whether it issues a structured or an opaque access token
198: if atType ≡ JWT then → Structured access token
199: let accessTokenContent := [cnf : cnfContent , sub : record [subject], client_sig_key : s′.clients[clientId ][jwt_key]]
200: let accessToken := sig(accessTokenContent , s′.jwk)
201: else → Opaque access token
202: let accessToken := ν2 → Fresh random value
203: let s′.records.ptr [access_token] := accessToken → Store for token introspection
204: let s′.records.ptr [cnf] := cnfContent → Store for token introspection
205: let body := [access_token : accessToken, token_type : tokenType]
206: if record [scope] ≡ openid then → Client requested ID token
207: let idTokenBody := [iss : record [issuer]]
208: let idTokenBody [sub] := record [subject]
209: let idTokenBody [aud] := record [client_id]
210: if nonce ∈ record then
211: let idTokenBody [nonce] := record [nonce]

212: let idToken := sig(idTokenBody , s′.jwk)
213: let body [id_token] := idToken

214: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, body〉, k)
215: stop 〈〈f, a,m′〉〉, s′
216: else if m.path ≡ /introspect ∧m.method ≡ POST ∧ token ∈ m.body then
217: let rsSecret such that 〈Basic, rsSecret〉 ≡ m.headers[Authorization] if possible; otherwise stop
218: let rsDom such that s′.rsCredentials[rsDom] ≡ rsSecret if possible; otherwise stop → RS authentication at AS
219: let token := m.body[token]
220: let record such that record ∈ s′.records ∧ record [access_token] ≡ token if possible; otherwise let record := 3

221: if record ≡ 3 ∨ s′.clients[record [client_id]][active] 6≡ > then → Unknown token or deactivated client
222: let body := [active : ⊥]
223: else → token was issued by this AS & client is active
224: let clientId := record [client_id]

→ cnf claim contains hash of token binding key, the signing key is the key used by the client to sign HTTP messages
225: let body := [active : >, cnf : record [cnf], sub : record [subject], client_sig_key : s′.clients[clientId ][jwt_key]]

226: if m.headers[Accept] ≡ app/token-introspection+jwt then → Check whether RS requested a signed response
227: let body := sig([token_introspection : body , iss : m.host, aud : rsDom], s′.jwk)

228: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, body〉, k)
229: stop 〈〈f, a,m′〉〉, s′
230: else if m.path ≡ /MTLS-prepare then → See Appendix A-G
231: let clientId := m.body[client_id]
232: if s′.clients[clientId ][active] 6≡ > then
233: stop
234: let mtlsNonce := ν3
235: let clientKey := s′.clients[clientId ][mtls_key]
236: if clientKey ≡ 〈〉 ∨ clientKey ≡ pub(�) then
237: stop → Client has no mTLS key
238: let s′.mtlsRequests[clientId ] := s′.mtlsRequests[clientId ] +〈〉 〈mtlsNonce, clientKey〉
239: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, enca(〈mtlsNonce, s′.keyMapping[m.host]〉, clientKey)〉, k)
240: stop 〈〈f, a,m′〉〉, s′
241: else if m.path ≡ /backchannel-authn ∧m.method ≡ POST then → CIBA Authentication Request
242: let authnResult := AUTHENTICATE_CLIENT(m, s′) → Stops in case of errors/failed authentication
243: let clientId := authnResult .1
244: let s ′ := authnResult .2
245: let mtlsInfo := authnResult .3
→Algorithm continues on next page.
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246: if clientId 6≡ m.body[client_id] then
247: stop → Key used in client authentication is not registered for m.body[client_id]

248: if openid 6∈〈〉 m.body[scope] then
249: stop
250: if urn:openid:params:grant-type:ciba 6∈〈〉 s′.clients[clientId ][grant_types] then
251: stop → Client not registered as a CIBA client
252: let authzRecord := [client_id : clientId ]
253: let authzRecord [scope] := m.body[scope]
254: let authzRecord [binding_message] := m.body[binding_message]
255: let authzRecord [selected_identity] := m.body[login_hint]
256: let deliveryMode := s′.clients[clientId ][backchannel_token_delivery_mode]
257: if deliveryMode ≡ ping then
258: let authzRecord [client_notification_token] := m.body[client_notification_token]

259: if m.body[selected_identity].domain 6∈ dom(as) then
260: stop → This AS does not manage the requested identity
261: let authzRecord [authenticateUser] := > → Flag indicating whether the AS needs to obtain end-user consent/authorization
262: let authnReqId := νauthn_req_id
263: let s′.cibaAuthnRequests[authnReqId ] := authzRecord → Store data linked to authnReqId
264: let body := [auth_req_id : authnReqId ]
265: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, body〉, k)
266: stop 〈〈f, a,m′〉〉, s′
267: else if m.path ≡ /ciba-auth then → Authorization endpoint for CIBA Flows: Reply with login page, include binding message.
268: if m.method 6≡ POST then
269: stop
270: if ciba_user_nonce 6∈ m.body then
271: stop
272: let cibaUserNonce := m.body[ciba_user_nonce]
273: let authnReqId such that authnReqId ∈ s′.cibaAuthnRequests

↪→ ∧ s′.cibaAuthnRequests[authnReqId ][cibaUserAuthNNonce] ≡ cibaUserNonce if possible; otherwise stop
274: let bindingMessage := s′.cibaAuthnRequests[authnReqId ][binding_message]
275: let clientId := s′.cibaAuthnRequests[authnReqId ][client_id]
276: let clientDom ← s′.clients[clientId ][redirect_uris]
277: let s′.cibaAuthnRequests[authnReqId ][ciba_auth2_reference] := νciba_auth2_ref
278: let body := 〈script_as_ciba_form, [ciba_auth2_reference : νciba_auth2_ref, binding_message : bindingMessage

↪→ client_domain : clientDom.host]〉
279: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〈ReferrerPolicy, origin〉〉, body〉, k)
280: stop 〈〈f, a,m′〉〉, s′
281: else if m.path ≡ /ciba-auth2∧m.method ≡ POST∧m.headers[Origin] ≡ 〈m.host, S〉 then → Finish authorization (CIBA)
282: let identity := m.body[identity]
283: let password := m.body[password]
284: if identity .domain 6∈ dom(as) then
285: stop → This AS does not manage identity

286: if password 6≡ secretOfID(identity) then
287: stop → Invalid user credentials
288: let auth2Reference := m.body[ciba_auth2_reference]
289: let authnReqId such that s′.cibaAuthnRequests[authnReqId ][ciba_auth2_reference] ≡ auth2Reference

↪→ if possible; otherwise stop
290: if identity 6≡ s′.cibaAuthnRequests[authnReqId ][selected_identity] then
291: stop → Identity does not match the identity initially chosen for this flow
292: let s′.cibaAuthnRequests[authnReqId ][authenticateUser] := ⊥ → The user is now authenticated.
293: let authzRecord := s′.cibaAuthnRequests[authnReqId ]
294: let authzRecord [subject] := identity
295: let authzRecord [issuer] := m.host
296: let authzRecord [auth_req_id] := authnReqId
297: let s′.records := s′.records +〈〉 authzRecord →Add the whole record to the records entry (the AS will issue an AT when

receiving a token request with the corresponding auth_req_id value)
298: let clientId := authzRecord [client_id]
299: if s′.clients[clientId ][backchannel_token_delivery_mode] ≡ ping then
300: let clientURL := s′.clients[clientId ][backchannel_client_notification_endpoint]
301: let body := [auth_req_id : authnReqId ]
302: let headers := [Authorization : 〈Bearer, authzRecord [client_notification_token]〉]
303: let message := 〈HTTPReq, νciba_ping, POST, clientURL.host, clientURL.path, 〈〉, headers, body〉
304: call HTTPS_SIMPLE_SEND([responseTo : CIBAPingCallback],message, a, s′)
305: else
306: stop 〈〉, s′

307: stop → Request was malformed or sent to non-existing endpoint.
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Algorithm 12 Relation of AS Ras – Client Authentication
1: function AUTHENTICATE_CLIENT(m, s′) → Check client authentication in message m. Stops the current processing step in case

of errors or failed authentication.
2: if client_assertion ∈ m.body then → private_key_jwt client authentication
3: let jwts := m.body[client_assertion]
4: let clientId , verificationKey such that verificationKey ≡ s′.clients[clientId ][jwt_key] ∧

↪→ checksig(jwts, verificationKey) ≡ > if possible; otherwise stop
5: if verificationKey ≡ 〈〉 ∨ verificationKey ≡ pub(�) then
6: stop → Client has no jwt key
7: let clientInfo := s′.clients[clientId ]
8: let clientType := clientInfo[client_type]
9: if clientType 6≡ pkjwt_mTLS ∧ clientType 6≡ pkjwt_DPoP then

10: stop → Client authentication type mismatch
11: let jwt := extractmsg(jwts)
12: if jwt [iss] 6≡ clientId ∨ jwt [sub] 6≡ clientId then
13: stop
14: if jwt [aud] 6≡ 〈URL, S,m.host, /token, 〈〉,⊥〉 ∧ jwt [aud] 6≡ m.host → issuer in AS metadata is just the host part

↪→ ∧ jwt [aud] 6≡ 〈URL, S,m.host, /par, 〈〉,⊥〉 then
15: stop → aud claim value is neither token, nor PAR endpoint nor AS issuer identifier
16: else if TLS_AuthN ∈ m.body then → mTLS client authentication
17: let clientId := m.body[client_id] → RFC 8705 [7] mandates client_id when using mTLS authentication
18: let mtlsNonce := m.body[TLS_AuthN]
19: let mtlsInfo such that mtlsInfo ∈ s′.mtlsRequests[clientId ] ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
20: let clientInfo := s′.clients[clientId ]
21: let clientType := clientInfo[client_type]
22: if clientType 6≡ mTLS_mTLS ∧ clientType 6≡ mTLS_DPoP then
23: stop → Client authentication type mismatch
24: let s′.mtlsRequests[clientId ] := s′.mtlsRequests[clientId ] −〈〉 mtlsInfo
25: else
26: stop → Unsupported client (authentication) type
27: if s′.clients[clientId ][active] 6≡ > then
28: stop
29: if clientType ≡ mTLS_mTLS ∨ clientType ≡ mTLS_DPoP then
30: return 〈clientId , s′,mtlsInfo〉
31: else
32: return 〈clientId , s′,⊥〉 → private_key_jwt client authentication, i.e., no mTLS info
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Algorithm 13 Relation of AS Ras – Process a DCR request.
1: function REGISTER_CLIENT(m, k, a, f , s′) → m is the decrypted HTTP request containing a client registration request
2: let clientId ← s′.pendingClientIds → Client ids are provided by the attacker (see also Algorithm 14).
3: let s′.pendingClientIds := s′.pendingClientIds −〈〉 clientId

→ Construct client information response (see Sec. 2 of RFC 7592 [43] and Sec. 3.2.1 of RFC 7591 [42])
4: let redirectUris := m.body[redirect_uris]
5: let jwks := m.body[jwks] → Contains public keys of client
6: let pubSigKey such that [use : sig, val : pubSigKey ] ∈〈〉 jwks if possible; otherwise stop
7: let mtlsPubKey such that [use : TLS, val : mtlsPubKey ] ∈〈〉 jwks if possible; otherwise stop
8: let clientType ← {mTLS_mTLS, mTLS_DPoP, pkjwt_mTLS, pkjwt_DPoP} → Non-deterministic choice of client type
9: let regAT := νregAT → Registration access token (cf. Sec. 3 of RFC 7592 [43])

10: let regUri := 〈URL, S,m.host, /manage, 〈〉,⊥〉 → Registration client uri (cf. Sec. 3 of RFC 7592 [43])
11: let tokenDeliveryMode ← {poll, ping} → Non-deterministic choice of CIBA token delivery mode
12: let grantTypes := 〈authorization_code, urn:openid:params:grant-type:ciba〉 → In the model, the AS always registers

both types
13: let regResponse := [client_id : clientId , jwks : jwks, client_type : clientType, reg_at : regAT , reg_client_uri : regUri ,

↪→ grant_types : grantTypes]
14: let clientInfo := [client_type : clientType, redirect_uris : redirectUris, jwt_key : pubSigKey ,

↪→ mtls_key : mtlsPubKey , reg_at : regAT , grant_types : grantTypes]
15: let clientInfo[active] := > → This flag indicates whether a client account is active
16: let regResponse[backchannel_token_delivery_mode] := tokenDeliveryMode
17: let clientInfo[backchannel_token_delivery_mode] := tokenDeliveryMode
18: if tokenDeliveryMode ≡ ping then
19: if backchannel_client_notification_endpoint 6∈ m.body then
20: stop
21: let clientNotificationEP := m.body[backchannel_client_notification_endpoint]
22: let regResponse[backchannel_client_notification_endpoint] := clientNotificationEP
23: let clientInfo[backchannel_client_notification_endpoint] := clientNotificationEP

24: let s′.clients[clientId ] := clientInfo
25: let m′ := encs(〈HTTPResp,m.nonce, 201, 〈〉, regResponse〉, k)
26: stop 〈〈f, a,m′〉〉, s′

Algorithm 14 Relation of AS Ras – Processing other messages.
1: function PROCESS_OTHER(m, a, f , s′)
2: let clientId := m → m is a client id chosen by and sent by an attacker process (see also Line 2 of Algorithm 13)
3: if clientId ∈ s′.clients ∨ clientId ∈ s′.pendingClientIds then
4: stop
5: let s′.pendingClientIds := s′.pendingClientIds +〈〉 clientId
6: stop 〈〉, s′

Algorithm 15 Relation of a AS Ras – Handle trigger events.
1: function PROCESS_TRIGGER(a, s′)
2: let action ← {CIBA_OBTAIN_CONSENT}
3: switch action do
4: case CIBA_OBTAIN_CONSENT

→ Choose one of the CIBA authentication requests for which the AS did not ask the end-user yet
5: let authnReqId such that authnReqId ∈ s′.cibaAuthnRequests

↪→ ∧s′.cibaAuthnRequests[authnReqId ][authenticateUser] ≡ > if possible; otherwise stop
6: let selectedUser := s′.cibaAuthnRequests[authnReqId ][selected_identity]

→ Get the endpoint of the end-user
7: let userEp := s′.cibaEndUserEndpoints[selectedUser ]
8: let cibaUserAuthNNonce := νcibaUserNonce → In the model, we let the AS chose a nonce that it sends to the user’s browser.

The browser sends this nonce to an endpoint of the AS, which the AS uses to identify the authentication request.
9: let s′.cibaAuthnRequests[authnReqId ][cibaUserAuthNNonce] := cibaUserAuthNNonce

10: let cibaURL := {〈URL, S, d, /ciba_auth, 〈〉,⊥〉 | d ∈ dom(as)} → A URI of the AS at which the end-user can authenticate
for CIBA flows.

11: let body := [ciba_user_nonce : cibaUserAuthNNonce, ciba_url : cibaURL]
12: let message := 〈HTTPReq, νciba, GET, userEp.host, /start-ciba-authentication, 〈〉, 〈〉, body〉
13: call HTTPS_SIMPLE_SEND([responseTo : CIBAUserAuthNReq],message, a, s′)

14: stop
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Algorithm 16 Relation of script_as_form: A login page for the user.
Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage , ids , secrets〉
1: let url := GETURL(tree, docnonce)
2: let url ′ := 〈URL, S, url .host, /auth2, 〈〉,⊥〉
3: let formData := scriptstate
4: let identity ← ids
5: let secret ← secrets
6: let formData[identity] := identity
7: let formData[password] := secret
8: let command := 〈FORM, url ′, POST, formData,⊥〉
9: stop 〈s, cookies, localStorage, sessionStorage, command〉

Algorithm 17 Relation of script_as_ciba_form: A login page for the user for CIBA flows.
Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage , ids , secrets〉
1: let url := GETURL(tree, docnonce)
2: let url ′ := 〈URL, S, url .host, /ciba-auth2, 〈〉,⊥〉
3: let formData := [ciba_auth2_reference : scriptstate[ciba_auth2_reference]]
4: let bindingMessage := scriptstate[binding_message]
5: let clientDomain := scriptstate[client_domain]
6: let identity ← ids
7: let secret ← secrets
8: let formData[identity] := identity
9: let formData[password] := secret

10: let command := 〈CIBAFORM, url ′, POST, formData,⊥, clientDomain, bindingMessage〉
11: stop 〈s, cookies, localStorage, sessionStorage, command〉
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L. Resource Servers
A resource server rs ∈ RS is a Web server modeled as an atomic process (Irs , Zrs , Rrs , srs0 ) with the addresses Irs :=

addr(rs). The set of states Zrs and the initial state srs0 of rs are defined in the following.

Definition 9. A state s ∈ Zrs of a resource server rs is a term of the form 〈DNSaddress , pendingDNS , pendingRequests ,
corrupt , keyMapping , tlskeys , mtlsRequests , pendingResponses , resourceNonces , ids , asInfo, resourceASMapping ,
dpopNonces , jwk〉 with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN , corrupt ∈ TN ,

keyMapping ∈
[
Doms× TN

]
, tlskeys ∈ [Doms×KTLS] (all former components as in Definition 77), mtlsRequests ∈ TN ,

pendingResponses ∈ TN , resourceNonces ∈
[
ID× TN

]
, ids ⊂〈〉 ID, asInfo ∈

[
Doms× TN

]
, resourceASMapping ∈[

resourceURLPathrs × TN
]
, dpopNonces ∈ TN , and jwk ∈ Ksign.

An initial state srs0 of rs is a state of rs with
• srs0 .DNSaddress ∈ IPs,
• srs0 .pendingDNS ≡ 〈〉,
• srs0 .pendingRequests ≡ 〈〉,
• srs0 .corrupt ≡ ⊥,
• srs0 .keyMapping being the same as the keymapping for browsers,
• srs0 .tlskeys ≡ tlskeysrs (see Appendix A-C),
• srs0 .mtlsRequests ≡ 〈〉,
• srs0 .pendingResponses ≡ 〈〉,
• srs0 .resourceNonces being a dictionary where the RS stores the resource nonces for each identity and resource id pair,

initialized as srs0 .resourceNonces[id ][resourceID ] := 〈〉, ∀id ∈〈〉 srs0 .ids,∀resourceID ∈ S ,
• srs0 .ids ⊂〈〉 ID such that ∀id ∈ srs0 .ids : governor(id) ∈ supportedAuthorizationServerrs , i.e., the RS manages only

resources of identities that are governed by one of the AS supported by the RS,
• srs0 .asInfo: for each domain of a supported AS domas ∈ supportedAuthorizationSeverDomsrs , let srs0 .asInfo contain

a dictionary entry with the following values:
– srs0 .asInfo[domas ][as_introspect_ep] ≡ 〈URL, S, domas , /introspect, 〈〉,⊥〉 (the URL of the introspection

endpoint of the AS)
– srs0 .asInfo[domas ][as_key] ≡ pub(signkey(dom−1(domas))) being the verification key for the AS
– srs0 .asInfo[domas ][rs_credentials] being a sequence s.t. ∀c : c ∈〈〉 srs0 .asInfo[domas ][rs_credentials] ⇔

(∃rsDom ∈ dom(rs) : c ≡ secretOfRS(domas , rsDom)), i.e., the secrets used by the RS for authenticating at the
AS

Hence, setting up the ASs supported by this RS,
• srs0 .resourceASMapping ∈ dom(authorizationServerOfResourcers(resourceID)) ∀resourceID ∈ resourceURLPathrs (a

domain of the AS managing the resource identified by resourceID),
• srs0 .dpopNonces ≡ 〈〉, and
• srs0 .jwk ≡ signkey(rs) (used for HTTP message signing, see Appendix A-C).

The relation Rrs is again based on the generic HTTPS server model (see Appendix E-L), for which the algorithms used for
processing HTTP requests and responses are defined in Algorithm 18 and Algorithm 19.
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Algorithm 18 Relation of RS Rrs – Processing HTTPS Requests
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: if m.path ≡ /MTLS-prepare then
3: let mtlsNonce := ν1
4: let clientKey :=m.body[pub_key] → Certificate is not required to be checked [7, Section 4.2]
5: let s′.mtlsRequests := s′.mtlsRequests +〈〉 〈mtlsNonce, clientKey〉
6: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, enca(〈mtlsNonce, s′.keyMapping[m.host]〉, clientKey)〉, k)
7: stop 〈〈f, a,m′〉〉, s′
8: else if m.path ≡ /DPoP-nonce then
9: let freshDpopNonce := νdpop

10: let s′.dpopNonces := s′.dpopNonces +〈〉 freshDpopNonce
11: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, [nonce : freshDpopNonce]〉, k)
12: stop 〈〈f, a,m′〉〉, s′
13: else
14: let expectSignedRequest ← {>,⊥} → Decide whether to expect a signed resource request (see also Section V-C).
15: let resourceID := m.path
16: let responsibleAS := s′.resourceASMapping[resourceID ]
17: if responsibleAS ≡ 〈〉 then
18: stop → Resource is not managed by any of the supported ASs
19: let asInfo := s′.asInfo[responsibleAS ]
20: if Authorization 6∈ m.headers then
21: stop → Expected AT in Authorization header as mandated by FAPI 2.0
22: let authnScheme := m.headers[Authorization].1
23: let accessToken := m.headers[Authorization].2
24: if authnScheme ≡ Bearer then → mTLS sender constraining
25: let mtlsNonce := m.body[TLS_binding]
26: let mtlsInfo such that mtlsInfo ∈〈〉 s′.mtlsRequests ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
27: let s′.mtlsRequests := s′.mtlsRequests −〈〉 mtlsInfo
28: let mtlsKey := mtlsInfo.2
29: let cnfValue := [x5t#S256 : hash(mTlsKey)]
30: else if authnScheme ≡ DPoP then → DPoP sender constraining
31: let dpopProof := m.headers[DPoP]
32: let dpopJwt := extractmsg(dpopProof )
33: let verificationKey := dpopJwt [headers][jwk]
34: if checksig(dpopProof , verificationKey) 6≡ > ∨ verificationKey ≡ 〈〉 then
35: stop → Invalid DPoP signature (or empty jwk header)
36: let dpopClaims := dpopJwt [payload]
37: let reqUri := 〈URL, S,m.host,m.path, 〈〉,⊥〉
38: if dpopClaims[htm] 6≡ m.method ∨ dpopClaims[htu] 6≡ reqUri then
39: stop → DPoP claims do not match corresponding message
40: if dpopClaims[nonce] 6∈ s′.dpopNonces then
41: stop → Invalid DPoP nonce
42: if dpopClaims[ath] 6≡ hash(accessToken) then
43: stop → Invalid access token hash
44: let s′.dpopNonces := s′.dpopNonces −〈〉 dpopClaims[nonce]
45: let cnfValue := [jkt : hash(verificationKey)]
46: else
47: stop → Wrong Authorization header value
→Algorithm continues on next page.
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48: let resource := ν4 → Generate a fresh resource nonce
49: let accessTokenContent such that accessTokenContent ≡ extractmsg(accessToken)

↪→ if possible; otherwise let accessTokenContent := �
50: if accessTokenContent ≡ � then → Not a structured AT, do Token Introspection
51: let requestSignedIntrospecResponse ← {>,⊥} → Whether to request a signed introspection response (cf. Section V-C)

→ Store values for the pending request (needed when the RS gets the introspection response)
52: let requestId := ν2
53: let s′.pendingResponses[requestId ] := [expectedCNF : cnfValue, requestingClient : f ,

↪→ resourceID : resourceID , originalRequest : m, originalRequestKey : k, resource : resource,
↪→ requestSignedIntrospecResponse : requestSignedIntrospecResponse]

54: let url := asInfo[as_introspect_ep]
55: let rsCred ← asInfo[rs_credentials] → Secret for authenticating at the AS (see also Sec. 2.1 of RFC 7662 [41])
56: let headers := [Authorization : 〈Basic, rsCred〉]
57: if requestSignedIntrospecResponse ≡ > then
58: let headers[Accept] := app/token-introspection+jwt → Request signed introspection response [35, Sec. 4]
59: let body := [token : accessToken]
60: let message := 〈HTTPReq, ν3, POST, url .domain, url .path, url .parameters, headers, body〉
61: call HTTPS_SIMPLE_SEND([responseTo : TOKENINTROSPECTION, requestId : requestId ,

↪→ expectSignedRequest : expectSignedRequest ], message , a, s′)
→ If we make it here, the access token is a structured token

62: if cnfValue.1 6≡ accessTokenContent [cnf].1 ∨ cnfValue.2 6≡ accessTokenContent [cnf].2 then
63: stop → AT is bound to a different key
64: if checksig(accessToken, asInfo[as_key]) 6≡ > then
65: stop → Verification of AT signature failed
66: if expectSignedRequest ≡ > then
67: let verificationKey := accessTokenContent [client_sig_key] →AS includes the client’s HTTP Message Signing key

in structured AT, see also Section V-C.
68: let hasValidSignature := VERIFY_REQUEST_SIGNATURE(m, verificationKey)
69: if hasValidSignature 6≡ > then
70: stop
71: let id := accessTokenContent[sub]
72: if id 6∈〈〉 s′.ids then
73: stop → RS does not manage resources of this RO

→ Token binding successfully checked, the RS gives access to a resource of the identity
74: let s′.resourceNonces[id ][resourceID ] := s′.resourceNonces[id ][resourceID ] +〈〉 resource
75: let body := [resource : resource] → This will be the resource response message body
76: let signResResponse ← {>,⊥} → Whether to sign the resource response (cf. Section V-C)
77: if signResResponse ≡ > then
78: let headers := SIGN_RESOURCE_RESPONSE(body , s′)
79: else
80: let headers := 〈〉
81: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, body〉, k)

→ Leak resource request. Note that we only leak the application-layer message, and in particular, not the mTLS nonce.
82: let leakingMessage := 〈HTTPReq, νRRleak, POST,m.domain,m.path,m.parameters,m.headers, []〉
83: let leakAddress ← IPs
84: stop 〈〈f , a,m′〉, 〈leakAddress, a, 〈LEAK, leakingMessage〉〉〉, s′
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Algorithm 19 Relation of a Resource Server Rrs – Processing HTTPS Responses
1: function PROCESS_HTTPS_RESPONSE(m, reference , request , key , a, f , s′)
2: if reference[responseTo] ≡ TOKENINTROSPECTION then
3: let pendingRequestInfo := s′.pendingResponses[reference[requestId]]
4: let s′.pendingResponses := s′.pendingResponses − reference[requestId]
5: let clientAddress := pendingRequestInfo[requestingClient]
6: let expectedCNF := pendingRequestInfo[expectedCNF]
7: let origReq := pendingRequestInfo[originalRequest]
8: let originalRequestKey := pendingRequestInfo[originalRequestKey]
9: let resourceID := pendingRequestInfo[resourceID]

10: let resource := pendingRequestInfo[resource]
11: let responsibleAS := s′.resourceASMapping[resourceID ]
12: if responsibleAS ≡ 〈〉 then
13: stop → Resource is not managed by any of the supported ASs
14: let asInfo := s′.asInfo[responsibleAS ]
15: if pendingRequestInfo[requestSignedIntrospecResponse] ≡ > then
16: if checksig(m.body, asInfo[as_key]) 6≡ > then
17: stop
18: let response := extractmsg(m.body)
19: if response[iss] 6≡ responsibleAS ∨ response[aud] 6≡ m.host ∨ token_introspection 6∈ response then
20: stop
21: let m.body := response[token_introspection] → Remove signature for uniform handling of m below
22: if m.body[active] 6≡ > then
23: stop → Access token was invalid
24: let responseCNF := m.body[cnf]
25: if responseCNF .1 6≡ expectedCNF .1 ∨ responseCNF .2 6≡ expectedCNF .2 then
26: stop → Access token was bound to a different key
27: let id := m.body[sub]
28: if id 6∈〈〉 s′.ids then
29: stop → RS does not manage resources of this RO

→ Handle signed resource requests (i.e., HTTP Message Signatures)
30: let expectSignedRequest := reference[expectSignedRequest]
31: if expectSignedRequest ≡ > then
32: let verificationKey :=m.body[client_sig_key] →AS includes the client’s HTTP Message Signing key in introspection

response, see also Section V-C.
→ Now that rs knows the client’s HTTP Message Signing key, it can verify the signature on the resource request.

33: let hasValidSignature := VERIFY_REQUEST_SIGNATURE(origReq , verificationKey)
34: if hasValidSignature 6≡ > then
35: stop

→ Token binding etc. successfully checked, the RS now gives access to a resource of the identity
36: let s′.resourceNonces[id ][resourceID ] := s′.resourceNonces[id ][resourceID ] +〈〉 resource
37: let body := [resource : resource] → This will be the resource response message body
38: if reference[signResResponse] ≡ > then
39: let headers := SIGN_RESOURCE_RESPONSE(body , s′)
40: else
41: let headers := 〈〉
42: let m′ := encs(〈HTTPResp, origReq .nonce, 200, headers, body〉, originalRequestKey)

→ Leak resource request. Note that we only leak the application-layer message, and in particular, not the mTLS nonce.
43: let leakingMessage := 〈HTTPReq, νRRleak, POST, origReq .domain, origReq .path, origReq .parameters, origReq .headers, []〉
44: let leakAddress ← IPs
45: stop 〈〈f , a,m′〉, 〈leakAddress, a, 〈LEAK, leakingMessage〉〉〉, s′

46: stop → Unknown response type
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Algorithm 20 Relation of a Resource Server Rrs – Create the headers to sign a resource response
1: function SIGN_RESOURCE_RESPONSE(body , s′)
2: let headers := [Content-Digest : hash(body)] → See [22, Sec. 5.6.2.1 No. 6]

→ See [22, Sec. 5.6.2.1]. In our model, the RS never includes the request signature in a response signature (this would only add
components to the signature, hence if anything, making the response “more secure” w.r.t. non-repudiation – however, we are able
to prove non-repudiation even without this).

3: let coveredComponents := 〈〈〈@status, 〈〉〉, 〈content-digest, 〈〉〉〉, [tag : fapi-2-response, keyid : pub(s′.jwk)]〉
4: let signatureBase := [〈@status, 〈〉〉 : 200, 〈content-digest, 〈〉〉 : headers[Content-Digest]]
5: let signatureBase := signatureBase +〈〉 coveredComponents.2 → Add signature parameters [2, Sec. 2.5]
6: let headers[Signature] := [res : sig(signatureBase, s′.jwk)]
7: let headers[Signature-Input] := [res : coveredComponents]
8: return headers

Algorithm 21 Relation of a Resource Server Rrs – Verify the signature on a resource request
1: function VERIFY_REQUEST_SIGNATURE(m, verificationKey) → m is the resource request
2: if Signature ∈ m.headers then
3: if hash(m.body) 6≡ m.headers[Content-Digest] then
4: return ⊥ → Content-digest is required by FAPI 2.0 Message Signing [22, Sec. 5.6.1.2]
5: let coveredComponents := m.headers[Signature-Input][req]
6: let signerSignatureBase := extractmsg(m.headers[Signature][req])
7: if @method 6∈ coveredComponents.1 ∨ content-digest 6∈ coveredComponents.1 ∨

↪→ @target-uri 6∈ coveredComponents.1 ∨ authorization 6∈ coveredComponents.1 ∨
↪→ coveredComponents.2[tag] 6≡ fapi-2-request then

8: return ⊥ → See [22, Sec. 5.6.1.2], these components must be present
9: if signerSignatureBase.2[tag] 6≡ fapi-2-request ∨ keyid 6∈ signerSignatureBase.2 then

10: stop
11: for component ∈ coveredComponents.1 do
12: let isComponentEqual := IS_COMPONENT_EQUAL(m,3, signerSignatureBase, component)
13: if isComponentEqual 6≡ > then
14: return ⊥

→ If we make it here, the request signature base matches the actual request data.
15: if verificationKey ≡ 〈〉 ∨ checksig(m.headers[Signature][req], verificationKey) 6≡ > then
16: return ⊥ → Invalid public key/message or signature does not verify
17: return > → If we make it here, the request signature is fully verified.
18: else
19: return ⊥ → Missing signature header
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APPENDIX B
FAPI 2.0 WEB SYSTEM

A web system FAPI = (W , S , script, E0) is called a FAPI web system with a network attacker. The components of the web
system are defined in the following.
• W = Hon ∪ Net consists of a network attacker process (in Net), a finite set B of web browsers, a finite set C of web

servers for the clients, a finite set AS of web servers for the authorization servers and a finite set RS of web servers for
the resource servers, with Hon := B∪ C∪AS∪ RS. DNS servers are subsumed by the network attacker and are therefore
not modeled explicitly.

• S contains the scripts shown in Table I, with string representations defined by the mapping script.
• E0 contains only the trigger events.

s ∈ S script(s)

Ratt att_script
script_client_index script_client_index
script_as_form script_as_form

Table I: List of scripts in S and their respective string representations.

For representing access to resources within the formal model, we specify an infinite sequence of nonces Nresource. We call
these nonces resource access nonces.

APPENDIX C
FORMAL SECURITY PROPERTIES

In this section, we present our formal security properties for FAPI 2.0 ecosystems (within our model, i.e., FAPI 2.0
Websystems). However, in order to do so, we first need some definitions.

Notion of an AT being bound to key, AS, Client Id, and identity. The following definition captures that an access token
was issued by an authorization server as , bound to a key k, and a client id clientId , and is associated with an identity id .
This definition is needed in the subsequent definitions.

Definition 10 (Access Token bound to Key, Authorization Server, Client Id, and Identity). Let k ∈ TN be a term, as ∈
AS an authorization server, clientId a client identifier, and id ∈ ID an identity. We say that a term t is an access token bound
to k, as , clientId , and id in state S of the configuration (S,E,N) of a run ρ of a FAPI web system FAPI , if there exists an
entry rec ∈〈〉 S(as).records such that

rec[access_token] ≡ t ∧ (1)
rec[subject] ≡ id ∧ (2)
rec[client_id] ≡ clientId ∧ (3)(
(rec[cnf] ≡ [jkt : hash(k)]) ∨ (4)

(rec[cnf] ≡ [x5t#S256 : hash(k)])
)

(5)

In a bit more detail:
(1) captures that the AS as created the access token.
(2) captures that the access token is associated with identity id (i.e., this identity authenticated previously at the authorization

endpoint of the AS, and when the AT is redeemed at a RS, the RS will provide access to resources of this identity).
(3) captures that t was created for a client with client identifier clientId at as .
(4) and (5) capture that the access token is bound to a key. If (4) holds, then we say that the access token is bound via

DPoP, otherwise, the token is bound via mTLS.
Notion of a client id being issued to a client by an authorization server. With this definition, we capture that an

authorization server as issued a client identifier clientId to a client c (as part of Dynamic Client Registration) in a processing
step.

Definition 11 (Client Identifier Issued to Client by AS). We say that a client identifier clientId has been issued to c by as

in processing step P in a run ρ (of a FAPI websystem FAPI ), if all of the following hold true:

(i) P = (Sp, Ep, Np)
ePin→as−−−−−→
as→EPout

(Sp+1, Ep+1, Np+1)

(ii) ePin = 〈xP , yP ,mP 〉, with mP = enca(〈regReq , k〉, pkas), where regReq matches 〈HTTPReq, n, POST, das, ∗, ∗, ∗, regData〉
(Definition 37).
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(iii) There is a processing step Q = (Sq, Eq, Nq)
eQin→c
−−−−→
c→EQout

(Sq+1, Eq+1, Nq+1) prior to P in ρ such that there is an event

〈x, y,mP 〉 ∈ EQout, i.e., c emits mP in Q (Definition 78).
(iv) EPout = 〈〈yP , xP , resp〉〉, with resp = encs(〈HTTPResp, n, 201, 〈〉, regResp〉, k) (i.e., a response to the request in mP ),

where regResp[client_id] = clientId .

Lemma 1. If a client identifier clientId has been issued to c by an honest as ∈ AS in processing step P = (S,E,N) −→
(S′, E′, N ′) in a run ρ, then all of the following hold true:

(I) Process as finished P by executing Line 26 of Algorithm 13.
(II) We have clientId ∈ S′(as).clients.

(III) Condition (ii) in Definition 11 is implied by condition (iv).

PROOF. (I). An honest AS only outputs an HTTPS response with code 201 (as it does in P by Definition 11) in two places:
In Line 144 of Algorithm 11, the response body is a dictionary with only one key, namely request_uri, i.e., does not contain
a key client_id (see (iv) in Definition 11). The second place is Line 26 of Algorithm 13, where the response body is a
dictionary which indeed contains a key client_id (Line 13 of Algorithm 13). Hence, we have that as must have finished P
by executing Line 26 of Algorithm 13.

(II). To reach Line 26 of Algorithm 13, as must have executed Line 24 of Algorithm 13, which immediately gives us
(together with Line 26) clientId ∈ S′(as).clients.

(III). An honest AS only outputs an event as described in condition (iv) of Definition 11 in Line 26 of Algorithm 13
(cf. (I) above). Hence, as must have executed Algorithm 13 in P . Algorithm 13, in turn, is only called in Lines 18f. of
Algorithm 11, and only if the method field of the first argument to Algorithm 11 is POST. Furthermore, Algorithm 11 is only
ever called in Line 9 of Algorithm 39, where the input event must match enca(〈〈HTTPReq, ∗, ∗, ∗, ∗, ∗, ∗, ∗〉, ∗〉, ∗) (see Line 8
of Algorithm 39). Therefore, the format of the input event ePin must be as described in condition (ii).

However, we still have to prove that the nonce n from condition (ii) is indeed the same as in condition (iv), and the same
for the addresses yP and xP .

As for the nonce n in condition (iv), it is set by the AS in Line 25 of Algorithm 13 to the nonce of the input message,
which in turn is the first argument to Algorithm 13, which originates from Lines 18f. of Algorithm 11, i.e., with Line 9 of
Algorithm 39, this is the nonce of the input event (and hence, the same n as in condition (ii)).

For xP and yP , the same argumentation as for n applies (except that the values are the third, resp. fourth argument to
Algorithm 13). �

Notion of an HTTPS response to an HTTPS request. With this definition, we capture that some process p sent an HTTPS
request to some process p′ in processing step R, and p′ responds to this request with an HTTPS response in processing step Q.

Definition 12 (HTTPS Response to HTTPS Request Sent by p to p′). Let p, p′ ∈ C ∪ AS ∪ B ∪ RS, and ρ some run of a
FAPI websystem FAPI with network attacker. We say that resp is an HTTPS response to an HTTPS Request req sent by p to
p′, if all of the following are true:

(i) resp ∈ HTTPSResponses, i.e., resp ∼ encs(〈HTTPResp, n, ∗, ∗, ∗〉, k)

(ii) req ∈ HTTPSRequests, i.e., req ∼ enca(〈〈HTTPReq, n′, ∗, ∗, ∗, ∗, ∗, ∗〉, k′〉, pubKey)

(iii) ∃dp′ ∈ dom(p′) such that tlskey(dp′) ≡ pubKey

(iv) k ≡ k′
(v) n ≡ n′

(vi) There is a processing step Q = (Sq, Eq, Nq) −−−−−→
p′→EQout

(Sq
′
, Eq

′
, Nq′) in ρ, such that there is an event 〈x, y, resp〉 ∈ EQout.

(vii) Prior to Q, there is a processing step R = (Sr, Er, Nr) −−−−→
p→ERout

(Sr
′
, Er

′
, Nr′) in ρ, such that there is an event

〈x′, y′, req〉 ∈ ERout.

A. Authorization, Authentication and Session Integrity Properties
In the following, we describe and define our formal security properties for authorization, authentication, and session integrity

for both authentication and authorization. We expect these properties to hold for all possible configurations of a FAPI 2.0
ecosystem, including dynamic client registration, dynamic client management, the FAPI 2.0 Message Signing profiles in any
combination (including not using FAPI 2.0 Message Signing at all), and parallel FAPI-CIBA flows.
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1) Authorization

Recall that informally, authorization means that an attacker should never be able to access resources of honest users (unless
the user authorized such access). In a bit more detail, our authorization property captures the following: if an honest RS rs
provides access to a resource r of an honest resource owner with user identity id managed by an honest AS as, then the
following holds true: (i) rs has received a request for accessing the resource r with an access token at in the same (which is
possible if the token at is structured and can be verified by the RS immediately) or in a previous processing step (if the token
at is opaque to the RS and it thus performed token introspection), and rs created the resource when receiving the resource
request (see [24] on how our model manages resources). (ii) The token at is bound to some key k, as, and the user identity
id (see Definition 10). (iii) If k is the key of an honest client, then the attacker cannot derive the resource.

We highlight that this statement covers many different scenarios, for example, that the attacker cannot use leaked access
tokens at the RS and cannot, by some mix-up, force an honest client to use an access token associated with an honest user in
a session with the attacker.

Definition 13 (Authorization Property). We say that a FAPI web system FAPI is secure w.r.t. authorization iff for every run
ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI , every RS rs ∈ RS that is honest in Sn, every identity id ∈〈〉 srs0 .ids with

b = ownerOfID(id) being an honest browser in Sn, every processing step Q = (SQ, EQ, NQ)
eQin→rs
−−−−−→
rs→EQout

(SQ
′
, EQ

′
, NQ′) in ρ,

every resourceID ∈ S with as = authorizationServerOfResourcers(resourceID) being honest in SQ, it holds true that:7

If ∃r, x, y, k,mresp.〈x, y, encs(mresp, k)〉 ∈〈〉 EQout such that mresp is an HTTP response, r := mresp.body[resource], and
r ∈〈〉 SQ′(rs).resourceNonce[id ][resourceID ], then

(i) ∃ a processing step P = si
ePin→rs−−−−−→
rs→EPout

si+1 such that

(i.a) either P = Q, or P is prior to Q in ρ, and
(i.b) ePin is an event 〈x, y, enca(〈mreq, k1〉, k2)〉 for some x, y, k1, and k2 where mreq is an HTTP request which contains a

term (access token) t in its Authorization header, i.e., t ≡ mreq.headers[Authorization].2, and
(i.c) r is a fresh nonce generated in P at the resource endpoint of rs in Line 48 of Algorithm 18

(ii) t is bound to a key k ∈ TN , as , a client identifier clientId , and id in SQ (see Definition 10).
(iii) If there exists a client c ∈ C such that clientId has been issued to c by as in a processing step R prior to P in ρ, and if

c is honest in Sn, then r is not derivable from the attackers knowledge in Sn, i.e., r 6∈ d∅(Sn(attacker)).

2) Authentication

Recall that the authentication goal states that an attacker should not be able to log in at an honest client under the identity
of an honest user. In our model, the client sets a cookie that we call service session id at the browser after a successful login.
The client model stores the service session id in its sessions state subterm, and associates with it the identity that is logged
in to the session (the identity is taken from an id token). On a high level, our formalized property states that an attacker should
not be able to derive the service session id for a session at an honest client where an honest identity is logged in, as long as
the identity is managed by an honest AS. We stress that this not only covers that a cookie set at the browser of the honest
user does not leak, but that there is no way in which the attacker can log in at an honest client as an honest user.

We start with an auxiliary definition, capturing that the client logged in a user with a service session id, before presenting
the authentication property itself.

Definition 14 (Service Sessions). We say that there is a service session identified by a nonce n for a user identity id at
some client c in a configuration (S,E,N) of a run ρ of a FAPI 2.0 web system with network attacker FAPI iff there
exists some session id x and a domain d ∈ dom(governor(id)) such that S(c).sessions[x][loggedInAs] ≡ 〈d, id〉 and
S(c).sessions[x][serviceSessionId] ≡ n.

Definition 15 (Authentication Property). We say that a FAPI 2.0 web system with network attacker FAPI is secure
w.r.t. authentication iff for every run ρ of FAPI , every configuration (S,E,N) in ρ, every c ∈ C that is honest in S,
every identity id ∈ ID with as = governor(id) being an honest AS (in S) and with b = ownerOfID(id) being an honest
browser in S, every service session identified by some nonce n for id at c, n is not derivable from the attackers knowledge in
S (i.e., n 6∈ d∅(S(attacker))).

7authorizationServerOfResourcers is a mapping from resource ids to the authorization server that manages the respective resource, see Definition 6.
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3) Session Integrity
On a high-level view, the two session integrity properties state that (1) an honest user, after logging in, is indeed logged in

under their own account and not under the account of an attacker, and (2) similarly, that an honest user is accessing their own
resources and not the resources of the attacker.

We first define notations for the processing steps that represent important events during a flow of a FAPI web system.

Definition 16 (User is logged in). For a run ρ of a FAPI web system with a network attacker FAPI we say that a browser b
was authenticated to a client c using an authorization server as and an identity id in a login session identified by a nonce lsid
in processing step Q in ρ with

Q = (S,E,N) −−−−→
c→Eout

(S′, E′, N ′)

and some event 〈y, y′,m〉 ∈ Eout such that m is an HTTPS response to an HTTPS request sent by b to c and we have that in
the headers of m there is a header of the form 〈Set-Cookie, [serviceSessionId : 〈ssid ,>,>,>〉]〉 for some nonce ssid such
that S(c).sessions[lsid ][serviceSessionId] ≡ ssid and S(c).sessions[lsid ][loggedInAs] ≡ 〈d, id〉 with d ∈ dom(as).
We then write loggedInQρ (b, c, id , as, lsid).

Definition 17 (User started authorization code login flow). For a run ρ of a FAPI web system with a network attacker FAPI
we say that the user of the browser b started a login session identified by a nonce lsid at the client c in a processing step
Q in ρ if (1) in that processing step, the browser b was triggered, selected a document loaded from an origin of c, executed
the script script_client_index in that document, and in that script, executed Line 8 of Algorithm 10, and (2) c sends an
HTTPS response corresponding to the HTTPS request sent by b in Q and in that response, there is a header of the form
〈Set-Cookie, [〈__Host, sessionId〉 : 〈lsid ,>,>,>〉]〉. We then write startedQρ (b, c, lsid).

Definition 18 (User started CIBA login flow). For a run ρ of a FAPI web system with a network attacker FAPI we
say that the user of the browser b started a CIBA login session identified by a nonce lsid at the client c in a
processing step Q in ρ if in that processing step, (1) the browser b emits an HTTPS request with a payload matching
〈HTTPReq, ∗, ∗, clientDom, /start_ciba, ∗, 〈〉, body〉, with clientDom ∈ dom(c), and (2) c (in some later processing step)
sends an HTTPS response corresponding to the HTTPS request sent by b in Q and in that response, there is a header of the
form 〈Set-Cookie, [〈__Host, sessionId〉 : 〈lsid ,>,>,>〉]〉. We then write startedCIBAQρ (b, c, lsid).

Definition 19 (User authenticated at an AS for authorization code flow). For a run ρ of a FAPI web system with a network
attacker FAPI we say that the user of the browser b authenticated to an authorization server as using an identity id for a login
session identified by a nonce lsid at the client c if there is a processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ in which
the browser b was triggered, selected a document loaded from an origin of as , executed the script script_as_form in that
document, and in that script, (1) in Line 4 of Algorithm 16, selected the identity id , and (2) we have that
• the scriptstate of that document, when triggered in Q, contains a nonce auth2Reference such that

scriptstate[auth2_reference] ≡ auth2Reference, and
• there is a nonce requestUri such that S(as).authorizationRequests[requestUri ][auth2_reference] ≡

auth2Reference, and
• S(c).sessions[lsid ][request_uri] ≡ requestUri .

We then write authenticatedQρ (b, c, id , as, lsid).

Definition 20 (User authenticated at an AS for CIBA flow). For a run ρ of a FAPI web system with a network attacker
FAPI we say that the user of the browser b authenticated to an authorization server as using an identity id for a login session
identified by a nonce lsid at the client c if there is a processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ in which the browser
b was triggered, selected a document loaded from an origin of as , executed the script script_as_ciba_form in that document,
and in that script, (1) in Line 6 of Algorithm 17, selected the identity id , and (2) we have that
• the scriptstate of that document, when triggered in Q, contains a nonce auth2Reference such that

scriptstate[ciba_auth2_reference] ≡ auth2Reference, and
• there is a nonce authnReqId such that S(as).cibaAuthnRequests[authnReqId ][ciba_auth2_reference] ≡

auth2Reference, and
• S(c).sessions[lsid ][auth_req_id] ≡ authnReqId .

We then write authenticatedCIBAQρ (b, c, id , as, lsid).

Definition 21 (Resource Access). For a run ρ of a FAPI web system with a network attacker FAPI we say that a browser
b ∈ B gets access to a resource r of identity u stored at resource server rs managed by authorization server as through the
session of client c identified by the nonce lsid in a processing step Q = (S,E,N) −−−−→

c→Eout
(S′, E′, N ′) in ρ if

• S(c).sessions[lsid ][cibaFlow] ≡ ⊥ and c executes Line 114 of Algorithm 3 in Q, or
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• resource ∈ S(c).sessions[lsid ] and c executes Line 68 of Algorithm 2 in Q,
includes the resource r in the body of the HTTPS response that is sent out there (i.e., ∃〈x′, y′,m〉 ∈〈〉 Eout such that
m ∼ encs(〈HTTPResp, ∗, ∗, ∗, r〉, ∗)), and it holds true that

(i) r ∈〈〉 S′(rs).resourceNonces[u][resourceId ] and as = authorizationServerOfResourcers(resourceID) (for some value
resourceId ∈ TN ), and

(ii) 〈〈__Host, sessionid〉, 〈lsid , y, z, z′〉〉 ∈〈〉 S′(b).cookies[d] for d ∈ dom(c), y, z, z′ ∈ TN , and
(iii) S′(c).sessions[lsid ][resourceServer] ∈ dom(rs), and
(iv) the request to which the client is responding in Q contains a Cookie header with the cookie 〈__Host, sessionId〉 with

the value lsid .
We then write accessesResourceQρ (b, r, u, c, rs, as, lsid).

Definition 22 (Client Leaked Authorization Request). Let FAPI be an FAPI web system with a network attacker. For a run
ρ of FAPI with a processing step Q, a client c ∈ C, a browser b, an authorization server as ∈ AS, an identity id , a login
session id lsid , and loggedInQρ (b, c, id , as, lsid), we say that c leaked the authorization request for lsid , if there is a processing
step Q′ = (S,E,N) −−−−→

c→Eout
(S′, E′, N ′) in ρ prior to Q such that in Q′, c executes Line 75 of Algorithm 3 and there is a

nonce requestUri and an event 〈x, y,m〉 ∈ Eout with m.1 ≡ LEAK and m.2.parameters[request_uri] ≡ requestUri such
that S′(c).sessions[lsid ][request_uri] ≡ requestUri .

4) Session Integrity Property for Authentication
This security property captures that (a) a user should only be logged in when the user actually expressed the wish to start

a FAPI flow before, and (b) if a user expressed the wish to start a FAPI flow using some honest authorization server and a
specific identity, then user is not logged in under a different identity.

Definition 23 (Session Integrity for Authentication for Authorization Code Flows). Let FAPI be an FAPI web system
with a network attacker. We say that FAPI is secure w.r.t. session integrity for authentication for authorization code flows iff
for every run ρ of FAPI , every processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, every browser b that is honest in S, every
as ∈ AS, every identity id , every client c ∈ C that is honest in S, every nonce lsid with S(c).sessions[lsid ][cibaFlow] ≡ ⊥,
and loggedInQρ (b, c, id , as, lsid) and c did not leak the authorization request for lsid (see Definition 22), we have that (1) there
exists a processing step Q′ in ρ (before Q) such that startedQ

′

ρ (b, c, lsid), and (2) if as is honest in S, then there exists a
processing step Q′′ in ρ (before Q) such that authenticatedQ

′′

ρ (b, c, id , as, lsid).

For the session integrity properties of CIBA flows, we need the following assumption on how browsers (and hence, the
users modeled as part of the browsers) select an identity owned by them (i.e., owned by the browser) when initiating CIBA
flows (note that in our model, from the point of view of a client, a CIBA flow is started by an HTTPS request to the client’s
/start-ciba endpoint with an identity and an AS identifier, i.e., domain – the identity is then used as a login hint to initiate
a CIBA flow at the selected AS).

Note that if the initiating client in a real-world protocol flow with CIBA – for whatever reason – sends the “wrong” login
hint, then the AS will ask the “wrong” user to authenticate and authorize the request. While an honest user might decline such
a request, an attacker (aiming to break session integrity) would happily authorize such a request. As the client has no way of
knowing who really authenticated at the AS, it cannot distinguish this case from an honest flow. I.e., the assumption that the
client selects the “correct” login hint is necessary – otherwise, session integrity is easily broken, and there is no evidence that
FAPI-CIBA aims to protect in these cases on a protocol level.

Assumption 1 (Honest Browsers Always Select Owned Identity for CIBA). Let FAPI be an FAPI web system with a
network attacker. In every run ρ of FAPI , every processing step Q = (S,E,N) −−−−→

b→Eout
(S′, E′, N ′) in ρ, every browser b

that is honest in S, every event 〈x, y,m〉 ∈ Eout, we have that if m ∼ enca(〈〈HTTPReq, ∗, ∗, ∗, /start-ciba, ∗, ∗, body〉, ∗〉, ∗),
then body ∈

[
TN × TN

]
, identity ∈ body , and ownerOfID(body [identity]) ≡ b.

Definition 24 (Session Integrity for Authentication for FAPI-CIBA). Let FAPI be an FAPI web system with a network
attacker. We say that FAPI is secure w.r.t. session integrity for authentication for CIBA flows iff for every run ρ of FAPI ,
every processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, every browser b that is honest in S and behaves according
to Assumption 1, every as ∈ AS, every identity id , every client c ∈ C that is honest in S, every nonce lsid with
S(c).sessions[lsid ][cibaFlow] ≡ >, and loggedInQρ (b, c, id , as, lsid) we have that (1) there exists a processing step Q′

in ρ (before Q) such that startedCIBAQ
′

ρ (b, c, lsid), and (2) if as is honest in S, then there exists a processing step Q′′ in ρ
(before Q) such that authenticatedCIBAQ

′′

ρ (b, c, id , as, lsid).

By session integrity for authentication we denote the conjunction of both session integrity for authentication for authorization
code flows and FAPI-CIBA (Definition 23 and Definition 24).
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5) Session Integrity Property for Authorization
This security property captures that (a) a user should only access resources when the user actually expressed the wish to

start a FAPI flow before, and (b) if a user expressed the wish to start a FAPI flow using some honest authorization server and
a specific identity, then the user is not using resources of a different identity. We note that for this, we require that the resource
server which the client uses is honest, as otherwise, the attacker can trivially return any resource.

Definition 25 (Session Integrity for Authorization for Authorization Code Flows). Let FAPI be a FAPI web system with
a network attacker. We say that FAPI is secure w.r.t. session integrity for authorization for authorization code flows iff for
every run ρ of FAPI , every processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, every browser b that is honest in S, every
as ∈ AS, every identity u, every client c ∈ C that is honest in S, every rs ∈ RS that is honest in S, every nonce r, every
nonce lsid with S(c).sessions[lsid ][cibaFlow] ≡ ⊥ , we have that if accessesResourceQρ (b, r , u, c, rs, as, lsid) and c did
not leak the authorization request for lsid (see Definition 22), , then (1) there exists a processing step Q′ in ρ (before Q)
such that startedQ

′

ρ (b, c, lsid), and (2) if as is honest in S, then there exists a processing step Q′′ in ρ (before Q) such that
authenticatedQ

′′

ρ (b, c, u, as, lsid).

Definition 26 (Session Integrity for Authorization for FAPI-CIBA). Let FAPI be a FAPI web system with a network
attacker. We say that FAPI is secure w.r.t. session integrity for FAPI-CIBA iff for every run ρ of FAPI , every processing
step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, every browser b that is honest in S and behaves according to Assumption 1, every
as ∈ AS, every identity u, every client c ∈ C that is honest in S, every rs ∈ RS that is honest in S, every nonce r, every
nonce lsid with S(c).sessions[lsid ][cibaFlow] ≡ >, we have that if accessesResourceQρ (b, r , u, c, rs, as, lsid), , then (1)
there exists a processing step Q′ in ρ (before Q) such that startedCIBAQ

′

ρ (b, c, lsid), and (2) if as is honest in S, then there
exists a processing step Q′′ in ρ (before Q) such that authenticatedCIBAQ

′′

ρ (b, c, u, as, lsid).

By session integrity for authorization we denote the conjunction of both session integrity for authorization for authorization
code flows and FAPI-CIBA (Definition 25 and Definition 26).

By session integrity we denote the conjunction of both session integrity for authorization and authentication.

B. Non-Repudiation Properties
Our non-repudiation properties capture that if some honest party accepts a message it expected to be signed, then – if the

used signing key belongs to an honest party – that honest party actually signed the message in question.

1) Signed Authorization Requests
Definition 27 (Non-Repudiation for Signed Authorization Requests). Let FAPI be a FAPI web system with a network
attacker. We say that FAPI is secure w.r.t. non-repudiation for signed authorization requests iff for every run ρ of FAPI , every
configuration (Sn, En, Nn) in ρ, every process as ∈ AS that is honest in Sn, every request uri requestUri , we have that if
Sn(as).authorizationRequests[requestUri ][signed_par] ≡ >, then all of the following hold true:

(I) There exists a processing step Q = (S,E,N)
ein→as−−−−→ (S′, E′, N ′) with (S,E,N) prior to (Sn, En, Nn) in ρ, such that

requestUri 6∈ S(as).authorizationRequests and requestUri ∈ S′(as).authorizationRequests.
(II) ein = 〈x, y,m〉 contains a message m of the form enca(〈〈HTTPReq, ·, POST, selectedAS , /par, ·, 〈〉, body〉, ·〉, ·), where

body is of the form sig(par , signKey) and selectedAS ∈ dom(as).
(III) If there is a process c ∈ C which is honest in Sn, and a configuration (Si, Ei, N i) in ρ with

Si(c).asAccounts[selectedAS ][sign_key] ≡ signKey , then there is a processing step P = (Sj , Ej , N j) −−−−→
c→Eout

(Sj+1, Ej+1, N j+1) in ρ prior to Q during which c signed par (as contained in ein) in Line 63 of Algorithm 8.

Informally, (I) captures that as accepted a PAR in processing step Q and issued requestUri to identify that PAR. With (II),
we require such a PAR to have a valid signature for some key signKey on it. Finally, (III) captures that if the signature is
valid for a key which an honest client registered with as , then it was indeed that exact client which signed the PAR.

2) Signed Authorization Responses
Definition 28 (Non-Repudiation for Signed Authorization Responses). Let FAPI be a FAPI web system with a network
attacker. We say that FAPI is secure w.r.t. non-repudiation for signed authorization responses iff for every run ρ of FAPI ,
every configuration (Sn, En, Nn) in ρ, every session id sessionId , every process c ∈ C that is honest in Sn, we have that if
(1) there exists a processing step Q = (S,E,N)

ein→c−−−→ (S′, E′, N ′) with (S,E,N) prior to (Sn, En, Nn) in ρ such that
redirectEpRequest 6∈ S(c).sessions[sessionId ] and redirectEpRequest ∈ S′(c).sessions[sessionId ], and
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(2) ein = 〈x, y,m〉 contains a message m of the form enca(〈〈HTTPReq, ·, ·, ·, /redirect_ep, parameters, headers, ·〉, ·〉, ·),
and

(3) Sn(c).sessions[sessionId ][requested_signed_authz_response] ≡ >,
then all of the following hold true:

(I) The term parameters from (2) above is a dictionary with at least a key response with value sig(authzResponse, signKey),
with authzResponse being a dictionary with at least the keys iss and code.

(II) If there is an as ∈ AS with Sn(as).jwk ≡ signKey , and as honest in Sn, then there is a processing step P =
(Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) prior to Q in ρ, and as signed authzResponse (as contained in ein) during P in
Line 97 of Algorithm 11.

Informally, (1) captures that c accepted an authorization response in some processing step Q, (2) and (3) capture that c
expected this response to be signed. Given these conditions, (I) captures that the response was indeed signed, and (II) ensures
that if the key used to signed the response belongs to an honest AS, then this AS indeed signed the authorization response.

3) Signed Introspection Responses
Definition 29 (Non-Repudiation for Signed Introspection Responses). Let FAPI be a FAPI web system with a net-
work attacker. We say that FAPI is secure w.r.t. non-repudiation for signed introspection responses iff for ev-
ery run ρ of FAPI , every configuration (Sn, En, Nn) in ρ, every process rs ∈ RS that is honest in Sn, ev-
ery request id requestId , we have that if there exists a processing step Q = (S,E,N)

ein→rs−−−−→ (S′, E′, N ′)

in ρ such that S(rs).pendingResponses[requestId ][requestSignedIntrospecResponse] ≡ >, and requestId 6∈
S′(rs).pendingResponses, and (S,E,N) prior to (Sn, En, Nn) in ρ, then all of the following hold true:

(I) ein = 〈x, y,m〉 contains a message m of the form encs(〈HTTPResp, ·, ·, ·, body〉, ·), where body is of the form
sig(introspecResponse, signKey).

(II) If there is an as ∈ AS with Sn(as).jwk ≡ signKey , and as honest in Sn, then there is a processing step P =
(Si, Ei, N i) −−−−−→

as→Eout
(Si+1, Ei+1, N i+1) prior to Q in ρ, and as signed introspecResponse (as contained in ein above)

during P in Line 227 of Algorithm 11.

Informally, the precondition about Q captures that rs accepted an introspection response during Q, and expected that
response to be signed (which rs would have indicated the corresponding introspection request by setting the Accept header to
an appropriate value). The postconditions then capture that the introspection response was indeed signed and that – if the used
signing key belongs to an honest AS – that honest AS indeed signed the introspection response.

4) Signed Resource Requests
Definition 30 (Non-Repudiation for Signed Resource Requests). Let FAPI be a FAPI web system with a network attacker.
We say that FAPI is secure w.r.t. non-repudiation for signed resource requests iff for every run ρ of FAPI , every configuration
(Sn, En, Nn) in ρ, every process rs ∈ RS that is honest in Sn, we have that if
(1) there exists a processing step Q = (S,E,N) −−−−−→

rs→Eout
(S′, E′, N ′) in ρ such that Eout = 〈〈x, y, resRes〉, leakedRequest〉,

with (S,E,N) prior to (Sn, En, Nn), and
(2) during Q, either Line 69 of Algorithm 18 or Line 33 of Algorithm 19 was executed,

then all of the following hold true:
(I) resRes is of the form encs(〈HTTPResp, ·, ·, ·, body〉, ·) with body ≡ [resource : resource].

(II) There exists a processing step R = sr
ein→rs−−−−→ sr

′
prior or equal to Q in ρ such that ein = 〈y, x, resReq〉, and rs generated

resource during R in Line 48 of Algorithm 18.
(III) resReq is of the form enca(〈〈HTTPReq, ·,method , host , path, parameters, headers, body〉, ·〉, ·) with Signature ∈

headers , Signature-Input ∈ headers , and headers[Signature] being a dictionary with at least a key req with value
sig(signatureBase, clientSignKey).

(IV) headers[Signature-Input][req] is a sequence 〈coveredComponents,metadata〉 (there may be additional
sequence elements after those two), where metadata is a dictionary with at least a key tag with
value fapi-2-request, and coveredComponents is a sequence with at least the following elements:
〈@method, 〈〉〉, 〈@target-uri, 〈〉〉, 〈authorization, 〈〉〉, and 〈content-digest, 〈〉〉.

(V) signatureBase is of the form [〈@method, 〈〉〉 : method , 〈@target-uri, 〈〉〉 : 〈URL, S, host , path, parameters,⊥〉,
〈authorization, 〈〉〉 : headers[Authorization], 〈content-digest, 〈〉〉 : hash(body)] +〈〉 [tag : fapi-2-request,
keyid : keyId ] for some keyId ; however, the dictionaries may contain additional elements.

52



(VI) If there is a client c ∈ C which is honest in Sn, a domain selectedAS , and an index j ≤ n such that
Sj(c).asAccounts[selectedAS ][sign_key] ≡ clientSignKey , then there is a processing step P = (Si, Ei, N i) −−−−→

c→E′out

(Si+1, Ei+1, N i+1) prior to R in ρ, and c signed signatureBase (as contained in ein above) during P in Line 39 of
Algorithm 6.

This property considers three processing steps. During P , the client c emits a signed resource request. During R, rs receives
that signed resource request (and expected a signed resource request), and generates resource . Then, during Q (which is equal
to R for structured ATs), rs sends out the resource response containing resource.

In a bit more detail, (1) captures that rs outputs two events during Q, which together with (2) implies that the first of these
events is a resource response. In addition, (2) also captures that rs expected the resource request which lead to the response
sent in Q to be signed. As for the postconditions, the first few capture the message structures of resource request and response,
whereas (VI) says that if there is an honest client c, and a key clientSignKey such that at some point, clientSignKey belonged
to c, then – if the resource request was signed with clientSignKey – c must have signed the resource request.

5) Signed Resource Responses
Definition 31 (Non-Repudiation for Signed Resource Responses). Let FAPI be a FAPI web system with a network attacker.
We say that FAPI is secure w.r.t. non-repudiation for signed resource responses iff for every run ρ = ((S0, E0, N0), ...) of
FAPI , every configuration (Sn, En, Nn) in ρ, every client c ∈ C which is honest in Sn, every nonce resource, and every
session id sessionId ∈ Sn(c).sessions such that
(1) Sn(c).sessions[sessionId ][expect_signed_resource_res] ≡ >, and
(2) Sn(c).sessions[sessionId ][resource] ≡ resource,

all of the following hold true:
(I) There exists a processing step P = (S,E,N)

ein→c−−−→ (S′, E′, N ′) in ρ with (S,E,N) prior to (Sn, En, Nn) where ein =

〈x, y,m〉, with m having the form encs(〈HTTPResp, ·, status, headers, body〉, ·), where body ≡ [resource : resource],
and S(c) 6= S′(c).

(II) headers[Signature-Input] is a dictionary with at least a key res such that headers[Signature-Input][res] is a
sequence with at least two elements. For those first two elements, components , and metadata , we have 〈@status, 〈〉〉,
〈content-digest, 〈〉〉 ∈〈〉 components , and metadata is a dictionary with at least the key tag such that metadata[tag] ≡
fapi-2-response.

(III) headers[Signature] is a dictionary with at least a key res such that headers[Signature][res] ≡
sig(signatureBase, rsSigKey).
In addition, signatureBase is of the form [〈@status, 〈〉〉 : status, 〈content-digest, 〈〉〉 : hash(body)] +〈〉

[tag : fapi-2-response, keyid : keyId ′] for some keyId ′; however, the dictionaries may contain additional elements.
(IV) There exists a domain rsDom ∈ Sn(c).rsSigKeys such that Sn(c).rsSigKeys[rsDom] ≡ pub(rsSigKey).
(V) If process rs := dom−1(rsDom) is honest in Sn, then there is a processing step Q = s −−−−−→

rs→Eout
s′, and rs signed the

resource response contained in m during Q in Line 6 of Algorithm 20.

C. Security Properties for CIBA
We expect FAPI-CIBA to meet the same security properties as the FAPI 2.0 Security Profile with authorization code flow

(i.e., authorization, authentication, and the two session integrity variants).

D. Main Security Theorem
As described in Section II-C, the protocol aims to fulfill authorization, authentication, session integrity for authentication

& authorization (for authorization code, and CIBA flows), as well as the five session integrity properties. Thus, our overall
security theorem is the conjunction of all those properties as defined above.

Theorem 1. Every FAPI 2.0 web system with network attacker FAPI fulfills all of the following properties:
• Authorization (Definition 13),
• Authentication (Definition 15),
• Session integrity for authentication in authorization code flows (Definition 15),
• Session integrity for authentication in CIBA flows (Definition 24),
• Session integrity for authorization in authorization code flows (Definition 25),
• Session integrity for authorization in CIBA flows (Definition 26),
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• Non-repudiation for signed authorization requests (Definition 27),
• Non-repudiation for signed authorization responses (Definition 28),
• Non-repudiation for signed introspection responses (Definition 29),
• Non-repudiation for signed resource requests (Definition 30), and
• Non-repudiation for signed resource responses (Definition 31).

We highlight that we prove this theorem for the powerful attacker laid out in the FAPI 2.0 Attacker Model within a faithful
formal model of FAPI 2.0 with Dynamic Client Registration, Dynamic Client Management, FAPI-CIBA, and FAPI 2.0 Message
Signing. We also emphasize that our analysis takes into account many Web features that can be the root of attacks: e.g.,
the browser model allows for the execution of scripts loaded from different websites/origins at the same time, possibly with
malicious scripts. The model also considers fine-grained behavior of HTTP redirects,8 several security-critical headers, as well
as subtleties of various cookie attributes, which, for example, could result in vulnerable session management, and in-browser
communication using postMessages, just to name a few of the Web features considered in our analysis – note that even though
FAPI 2.0 and the other modeled extensions may not use all of these Web features, they might still be (ab)used by an attacker.
Thus, our analysis excludes attacks that arise from these features of the Web infrastructure. We prove Theorem 1 in Appendix D.

APPENDIX D
PROOFS

A. Helper Lemmas
Lemma 2 (Host of HTTP Request). For any run ρ of a FAPI web system FAPI with a network attacker, every configuration
(S,E,N) in ρ and every process p ∈ C ∪ AS ∪ RS that is honest in S it holds true that if the generic HTTPS server calls
PROCESS_HTTPS_REQUEST(mdec, k, a, f, s) in Algorithm 39, then mdec.host ∈ dom(p), for all values of k, a, f and s.

PROOF. PROCESS_HTTPS_REQUEST is called only in Line 9 of Algorithm 39. The input message m is an asymetrically
encrypted ciphertext. Intuitively, such a message is only decrypted if the process knows the private TLS key, where the private
key used to decrypt is chosen (non-deterministically) according to the host of the decrypted message.

More formally, when PROCESS_HTTPS_REQUEST is called, the stop in Line 8 is not called. Therefore, it holds true that

∃ inDomain, k′ : 〈inDomain, k′〉 ∈ S(p).tlskeys ∧mdec.host ≡ inDomain

⇒ ∃ inDomain, k′ : 〈inDomain, k′〉 ∈ tlskeysp ∧mdec.host ≡ inDomain
Def. (Appendix A-C)⇒ ∃ inDomain, k′ : 〈inDomain, k′〉 ∈ {〈d, tlskey(d)〉|d ∈ dom(p)} ∧mdec.host ≡ inDomain

From this, it follows directly that mdec.host ∈ dom(p).
The first implication holds true due to S(p).tlskeys ≡ sp0.tlskeys ≡ tlskeysp, as this sequence is never changed by any

honest process p ∈ C ∪ AS ∪ RS and due to the definitions of the initial states of clients, authorization servers, and resource
servers (Definition 7, Definition 8, Definition 9). �

Lemma 3 (Generic Server – Correctness of Reference and Request). For any run ρ of a FAPI web system FAPI with a
network attacker, every processing step P = (SP , EP , NP ) −→ (SP

′
, EP

′
, NP ′) in ρ, every p ∈ C ∪ AS ∪ RS being honest in

SP , it holds true that if p calls PROCESS_HTTPS_RESPONSE in P with reference being the second and request being the
third input argument, then there exists a previous processing step in which p calls HTTPS_SIMPLE_SEND with reference
being the first and request being the second input argument.

PROOF. Let p ∈ C∪AS∪RS be honest in SP . p calls the PROCESS_HTTPS_RESPONSE function only in the generic HTTPS
server algorithm in Line 26 of Algorithm 39. The values reference and request are taken from SP (p).pendingRequests in
Line 19 of Algorithm 39. Thus, p added these values to pendingRequests in a previous processing step O = (SO, EO, NO) −→
(SO

′
, EO

′
, NO ′) by executing Line 15 of Algorithm 39, as this is the only location where a client, authorization server, or

resource server adds entries to pendingRequests and as pendingRequests is initially empty (see Definitions 7, 8, and 9).
In O, the process p takes both values from SO(p).pendingDNS in Line 13 and Line 14 of Algorithm 39. Initially pendingDNS

is empty (as p is a client, an authorization server, or a resource server), and p adds values to pendingDNS only in Line 2
of Algorithm 34, where the reference and request values are the input arguments of HTTPS_SIMPLE_SEND. Thus, in some
processing step prior to O, p called HTTPS_SIMPLE_SEND with reference being the first and request being the second input
argument.

�

8For example, FAPI 2.0 excludes code 307 redirects, as they would cause attacks similar to [20].
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Lemma 4 (Client’s Signing Keys Do Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system
FAPI with a network attacker, every configuration (Si, Ei, N i) in ρ, every client c ∈ C that is honest in Si, every issuer identifier
issuer , and every process p 6= c, we have ∀j ≤ i. issuer ∈ Sj(c).asAccounts ⇒ Sj(c).asAccounts[issuer ][sign_key] 6∈
d∅(S

i(p)).

PROOF. We start by proving that an honest client will only store nonces freshly chosen by that client in
asAccounts[issuer ][sign_key], and that whenever a client updates this value, it completely “forgets” about the “old” value:

There are only two places in which a client stores a value in asAccounts[issuer ][sign_key] (during some processing step P ):
In Line 49 of Algorithm 3, when processing a DCR response, and in Line 23 of Algorithm 3, when processing a DCM response.
In both cases, this value is taken from the reference parameter as given to PROCESS_HTTPS_RESPONSE (Algorithm 3).
Hence, by Lemma 3, there must be a processing step Q prior to P , in which c called HTTPS_SIMPLE_SEND with a
corresponding reference value. During P , the value of reference[sigKey] is then used to set asAccounts[issuer ][sign_key].
Hence, we need to track where that value comes from.

In the case of Line 49 of Algorithm 3, the reference value passed to HTTPS_SIMPLE_SEND during Q must contain a
key responseTo with value REGISTRATION (see Line 40 of Algorithm 3). Such a reference value is only used in a call of
HTTPS_SIMPLE_SEND in Line 26 of Algorithm 8. There, the value of reference[sigKey] is a fresh nonce νcliSignK (see
Line 13 of Algorithm 8), which is not stored anywhere else and is only sent out as pub(νcliSignK) during Q. In addition, the
reference with νcliSignK in it is not used anywhere until P : A client only accesses its pendingRequests state subterm in Line 39
of Algorithm 39, and if an entry of pendingRequests is used at all, it is immediately removed from the pendingRequests

subterm (see Line 25 of Algorithm 39), i.e., cannot be read or used again in a later processing step.
In a very similar way, in case of Line 23 of Algorithm 3, the reference must contain a key responseTo with value

CLIENT_MANAGEMENT (see Line 40 of Algorithm 3), which can only happen in Line 56 of Algorithm 9. There, the value for
reference[sigKey] is once again a fresh nonce (see Line 43 of Algorithm 9), which is also only stored in the aforementioned
reference and only sent out after applying pub(·). With the same argumentation as above, we conclude that this nonce is not
used anywhere until P .

In both cases, the client does not store the “old” value of asAccounts[issuer ][sign_key] anywhere before setting/overwriting
it (in processing step P ).

As we will now show, a client only ever sends out the current value of asAccounts[issuer ][sign_key] in one of two ways:
1) wrapped in a pub(·), i.e., as a public key, from which the original value cannot be recovered (see the equational theory in
Figure 5), or 2) as a signing key in a signature, where once again, the equational theory does not allow an extraction of the
original value.

Specifically, a client c only uses the (current) value of asAccounts[issuer ][sign_key] in the following places:
Line 12 of Algorithm 4 The value clientSignKey is only used in Lines 22 and 39 of Algorithm 4 to create a term

sig(·, clientSignKey), and in Line 37 of Algorithm 4 to create a term pub(clientSignKey).
Line 9 of Algorithm 5 The value clientSignKey is only used in Lines 19 and 36 of Algorithm 5 as a signing key, and in

Line 34 of Algorithm 5 to create a public key.
Line 18 of Algorithm 6 The value privKey is used only in Line 24 of Algorithm 6 to create a public key, and in Line 26 of

Algorithm 6 as a signing key.
Line 33 of Algorithm 8 The value clientSignKey is used only in Lines 40 and 63 of Algorithm 8 as a signing key.
Note that in all of these places, the value of asAccounts[issuer ][sign_key] is only used as signature key or to create a public
key, and both constructors do not allow an extraction of the contained key (see the equational theory in Figure 5).

Hence, we conclude that since a client only ever sends out the current value of asAccounts[issuer ][sign_key] in a term
from which that value cannot be derived, and since the values in asAccounts[issuer ][sign_key] are nonces chosen by the
client and not used for anything but creating signatures and public keys, i.e., these nonces are not stored or sent out in any
other way, no other process can derive a value stored in asAccounts[issuer ][sign_key] currently (i.e., in (Si, Ei, N i)), or in
the past. �

Lemma 5 (Client’s TLS Key Does Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system
FAPI with a network attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, every domain
dc ∈ dom(c), and every process p with p 6= c, all of the following hold true:

1) tlskey(dc) 6∈ d∅(S(p))
2) 〈dc, tlskey(dc)〉 ∈〈〉 S0(c).tlskeys
3) 〈dc, tlskey(dc)〉 ∈〈〉 S(c).tlskeys

PROOF. With Definition 7, 〈dc, tlskey(c)〉 ∈〈〉 S0(c).tlskeys is equivalent to 〈dc, tlskey(dc)〉 ∈〈〉 tlskeysc. This, in turn,
follows immediately from the definition of tlskeysc in Appendix A-C. Building on this, it is easy to check that the client never
changes the contents of its tlskeys state subterm, i.e., we have 〈dc, tlskey(dc)〉 ∈〈〉 S(c).tlskeys.
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The only place in which an honest client accesses any value in its tlskeys state subterm is Line 7 of Algorithm 39, where
the value is only used to decrypt a message. Hence, the value read from the tlskeys state subterm cannot leak.

By definition of tlskey, tlskeysp in Appendix A-C and the initial states of authorization servers (Definition 8), clients
(Definition 7), browsers (Definition 3), and resource servers (Definition 9), we have that no other process initially knows
tlskey(dc).

We conclude that tlskey(dc) 6∈ d∅(S(p)). �

Lemma 6 (Client’s mTLS Keys Do Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web
system FAPI with a network attacker, every configuration (Si, Ei, N i) in ρ, every client c ∈ C that is honest in S,
every issuer identifier issuer , and every process p with p 6= c, we have ∀j ≤ i. issuer ∈ Sj(c).asAccounts ⇒
Sj(c).asAccounts[issuer ][tls_key] 6∈ d∅(Si(p))

PROOF. The only places in which an honest client accesses values stored in its state under asAccounts[issuer ][tls_key] are:
Line 3 of Algorithm 3 Here, the value is only used to decrypt a message (i.e., cannot leak).
Line 14 of Algorithm 9 Here, the client only uses the value to create a public key. As the equational theory does not allow

extraction of private keys from public keys, it does not matter where that public key is stored or sent to.
Hence, an honest client does not leak any value stored in its state under asAccounts[issuer ][tls_key]. Note that the above
also implies that values, once they are stored under asAccounts[issuer ][tls_key], are never “copied” to anywhere else in an
honest client’s state.

The only places in which an honest client stores any value in its state under asAccounts[issuer ][tls_key] during some
processing step P are Line 49 of Algorithm 3 and Line 23 of Algorithm 3. In both cases, the value is taken from the reference
parameter as given to PROCESS_HTTPS_RESPONSE (Algorithm 3). Hence, by Lemma 3, there must be a processing step
Q prior to P , in which the client called HTTPS_SIMPLE_SEND with a corresponding reference. We will now show that
in both cases, 1) the value is a nonce freshly generated in Q, and 2) not stored anywhere in the client’s state except in the
pendingRequests state subterm between Q and P , and asAccounts[issuer ][tls_key] after P . In addition, we will show
that the value is not sent out in a derivable way during, and between Q and P .
Line 49 of Algorithm 3 Here, the value of reference[responseTo] must be REGISTRATION (see Line 40 of Algorithm 3).

Hence, such a reference must have been used in a call to HTTPS_SIMPLE_SEND during Q (see again Lemma 3). The
only place in which such a reference is used, is Line 26 of Algorithm 8. There, the value of reference[tlsKey], which
is stored to asAccounts[issuer ][tls_key] during P , is a fresh nonce νcliTlsK (see Line 14 of Algorithm 8). I.e., νcliTlsK
is not derivable by any process prior to Q. Furthermore, νcliTlsK is only used in two places (during processing step Q):
Line 15 of Algorithm 8 Here, νcliTlsK is only used to create a public key, from which the original value cannot be derived

(see above).
Line 26 of Algorithm 8 Here, νcliTlsK is passed to HTTPS_SIMPLE_SEND as part of the first argument, i.e., the

aforementioned reference (see Algorithm 34). This reference is stored in the client’s pendingDNS state subterm
(Line 2 of Algorithm 34) and not used anywhere else. Values stored in the client’s pendingDNS state subterm are
only accessed in Lines 10ff. of Algorithm 39, where they are removed from pendingDNS and stored in another
state subterm pendingRequests. This subterm, in turn, is only accessed in Lines 19ff. of Algorithm 39, where the
value is removed from pendingRequests and passed to PROCESS_HTTPS_RESPONSE. I.e., any value passed to
HTTPS_SIMPLE_SEND as part of the first argument, reference, including νcliTlsK, is no longer in the client’s state
once reference is passed to PROCESS_HTTPS_RESPONSE. Hence, we established that the use of νcliTlsK in Line 26
of Algorithm 8 (during Q) did not lead to this value being sent out until P , and it is also not being stored in the client’s
state outside of asAccounts[issuer ][tls_key] after P . Note that the values we tracked through the client’s state are
also not used in any message sent by the client between Q and up to and including P .

Line 23 of Algorithm 3 This case is very similar to the previous one, except that the value of reference[responseTo] must
be CLIENT_MANAGEMENT (see Line 10 of Algorithm 3), and the relevant nonce is generated in Line 44 of Algorithm 9
(instead of Line 14 of Algorithm 8).

So we conclude that ∀j ≤ i. issuer ∈ Sj(c).asAccounts⇒ Sj(c).asAccounts[issuer ][tls_key] 6∈ d∅(Si(p)). �

Lemma 7 (Code used in Token Request was received at Redirection Endpoint). For any run ρ of a FAPI web system
FAPI with a network attacker, every processing step

P = (S,E,N)
ePin→c−−−−→
c→EPout

(S′, E′, N ′)

in ρ with c ∈ C being honest in S, it holds true that if Algorithm 3 (PROCESS_HTTPS_RESPONSE) is called in P
with reference being the second and request being the third input argument, and if reference[responseTo] ≡ TOKEN
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and code ∈〈〉 request .body, then there is a previous configuration (SL
′
, EL

′
, NL′) such that request .body[code] ≡

SL
′
(c).sessions[reference[session]][redirectEpRequest][message].parameters[code].

PROOF. As shown in Lemma 3, there exists a processing step L = (SL, EL, NL) −→ (SL
′
, EL

′
, NL′) prior to P in

which c called HTTPS_SIMPLE_SEND with the same reference and request values. The only lines in which a client calls
HTTPS_SIMPLE_SEND with reference[responseTo] ≡ TOKEN are Line 43 of Algorithm 4 (SEND_TOKEN_REQUEST)
and Line 40 of Algorithm 5 (SEND_CIBA_TOKEN_REQUEST).

The requests send in Line 40 of Algorithm 5 do not contain a code value in their body, see Lines 6, 13, 25, 29, 15, 20 and
Line 38 of Algorithm 5, i.e., request was sent in Line 43 of Algorithm 4.

The code included in the request is the input parameter of SEND_TOKEN_REQUEST (see Lines 8, 41, and 42 of
Algorithm 4). SEND_TOKEN_REQUEST is called only in Line 34 of Algorithm 2, i.e., at the redirection endpoint
(/redirect_ep) of the client, and the code is contained in the parameters of the redirection request that the client
stores into SL

′
(c).sessions[sessionId ][redirectionEpRequest][message] in Line 33 of Algorithm 2, with sessionId ≡

reference[session] (see also Lines 24, 26, and Line 29 of Algorithm 2).
�

Lemma 8 (Authorization Server’s Signing Key Does Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a
FAPI web system FAPI with a network attacker, every configuration Q = (S,E,N) in ρ, every authorization server as ∈ AS
that is honest in S, every term t with checksig(t, pub(signkey(as))) ≡ >, and every process p with p 6= as , all of the following
hold true:
• signkey(as) 6∈ d∅(S(p))
• signkey(as) ≡ sas0 .jwk
• signkey(as) ≡ S(as).jwk
• if t is known (Definition 83) to p in Q, then t was created (Definition 81) by as in a processing step se prior to Q in ρ

PROOF. signkey(as) ≡ sas0 .jwk immediately follows from Definition 8. signkey(as) ≡ S(as).jwk follows from Definition 8
and by induction over the processing steps: state subterm jwk of an honest authorization server is never changed.

By Definitions 7, 8, 9, 66, and Appendix A-C, we have that no process (except as) initially knows signkey(as), i.e.,
signkey(as) 6∈ d∅(S0(p)).

The only places in which an honest authorization server accesses the jwk state subterm are:
Lines 15f. of Algorithm 11 Here, the value of the jwk state subterm is only used in a pub(·) term constructor as private key

from which a public key is derived, i.e., cannot be extracted from the resulting public key (see Figure 5). Thus, it does
not matter where that term are stored or sent to.

Lines 97, 200, 212, and 227 of Algorithm 11 Here, the value of the jwk state subterm is only used in a sig(·, ·) term
constructor as signature key, i.e., cannot be extracted from the resulting term (see Figure 5). Thus, it does not matter
where that term are stored or sent to.

We conclude that these usages of the jwk state subterm do not leak signkey(as) to any other process, in particular p, and
hence, signkey(as) 6∈ d∅(S(p)).

To complete the proof, we now have to show that any term t with checksig(t, pub(signkey(as))) ≡ > known to p in Q was
created by as in a processing step se prior to Q in ρ:

By Definitions 7, 8, 9, 3, and Appendix A-C, we have that no process (including as) initially knows such a term t, i.e.,
t 6∈ d∅(S0(p)). Together with Definition 57 and Definition 81, this implies that t can only be known to p in some configuration
Q′ if t was contained in some event e “received” by p at an earlier point in ρ (i.e., e was the input event in a processing step
in ρ with p). Since such an e is not part of E0 (Definition 76), e must have been emitted by some process in a processing
step se prior to Q′ in ρ. Definition 57 and Definition 78 imply that p (or any other process 6= as) cannot have emitted e in se
(i.e., cannot have created t in se).

Therefore, as must have emitted e and hence created t in se, i.e., prior to Q in ρ. �

Lemma 9 (mTLS Nonce Created by AS does not Leak). For every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI
web system FAPI with a network attacker, every configuration s = (S,E,N) in ρ, every authorization server as ∈ AS that
is honest in Sn, every client c ∈ C that is honest in Sn and has been issued client id clientId by as in some processing
step R = sr −→ sr+1 with sr prior to s in ρ, every i ∈ N with 0 < i ≤ |S(as).mtlsRequests[clientId ]|, and every
process p with as 6= p 6= c it holds true that mtlsNonce := S(as).mtlsRequests[clientId ].i.1 is not derivable by p, i.e.,
mtlsNonce 6∈ d∅(Sn(p)).

PROOF.
(A) Initial state. Initially, the mtlsRequests subterm of the authorization server’s state is empty: S0(as).mtlsRequests ≡ 〈〉

(Definition 8).
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(B) c’s mTLS key at as is a public key & only c knows the private key. An authorization server only adds values to
the mtlsRequests subterm in Line 238 of Algorithm 11, where the mTLS nonce is chosen as a fresh nonce (Line 234
of Algorithm 11). Let P = (Sj , Ej , N j) −→ (Sj+1, Ej+1, N j+1) be the processing step in which the nonce is chosen

(note that (Sj , Ej , N j) is prior to (S,E,N) in ρ). Note that for an AS to even reach Line 234 of Algorithm 11 during
P , we need clientId ∈ Sj(as).clients (otherwise, the check in Line 232 of Algorithm 11 would fail). Since an
honest authorization server never removes entries from its clients state subterm, clientId ∈ Sj(as).clients implies
clientId ∈ Sl(as).clients for all j ≤ l ≤ n. Hence, we can apply Lemma 17, i.e., we have ∃kmtls ∈ N such that
Sl(as).clients[clientId ][mtls_key] ≡ pub(kmtls), and for all processes p 6= c, we have kmtls 6∈ d∅(Sn(p)).

(C) Only c can decrypt mTLS nonce. During P , the authorization server sends out the fresh mTLS nonce in Line 240 of
Algorithm 11, asymmetrically encrypted with the public key clientKey ≡ Sj(as).clients[clientId ][mtls_key] (Line 235
of Algorithm 11). We will refer to this ciphertext enca(〈mtlsNonce, x〉, clientKey) as mtlsResp.
From (B), we have ∃kmtls ∈ N . clientKey ≡ pub(kmtls), and for all processes p 6= c, we have kmtls 6∈ d∅(Sn(p)).
Therefore, only c can decrypt mtlsResp, or, put more formally, only c can derive mtlsNonce from mtlsResp (see Figure 5).

(D) as does not leak mTLS nonce stored in its state. An authorization server only accesses any values stored in its
mtlsRequests state subterm in the following places. For each of them, we will prove that no contents of mtlsRequests
are included in an output event, or stored elsewhere in the authorization server’s state. Hence, the authorization server
does not leak mtlsNonce from its state (an authorization server might also receive mtlsNonce as part of an input event –
this case is covered later).
Line 187 of Algorithm 11 The value taken from the mtlsRequests state subterm is only used in the subsequent line

to remove a record from the authorization server’s mtlsRequests state subterm.
Line 19 of Algorithm 12 Here, a single record mtlsInfo is taken from the mtlsRequests state subterm, which is used

in Line 24 of Algorithm 12 to delete a record from the mtlsRequests state subterm, and (possibly) returned as the
third element of the return value of Algorithm 12 in Line 30 of Algorithm 12.

Hence, we now have to look at the places where Algorithm 12 is called, and how the third element of its return value is
used (which is always stored in a variable mtlsInfo right after Algorithm 12 returns):
Line 116 of Algorithm 11 Here, mtlsInfo is not used at all.
Line 148 of Algorithm 11 Here, mtlsInfo is used only in Line 184 of Algorithm 11, to compare against another value,

i.e., mtlsInfo (nor its contents) are not included in any event or stored in the authorization server’s state.
Line 242 of Algorithm 11 Here, mtlsInfo is not used at all.

(E) c does not leak mtlsNonce upon receiving it. Recall (C): The encrypted nonce sent out during P can only be decrypted
by c. Furthermore, c decrypts such messages only in Line 3 of Algorithm 3 – the only other place where a message is
decrypted asymmetrically by c is in the generic HTTPS server (Line 7 of Algorithm 39), where the process would stop
due to the requirement that the decrypted message must begin with HTTPReq.
We also note that the ciphertext mtlsResp created by the authorization server containing the nonce also contains a public
TLS key of as (Lemma 2 and Line 239 of Algorithm 11).
After decrypting the mTLS nonce and public TLS key of as in Line 3 of Algorithm 3, the client stores the sequence
〈request .host, clientId , pubKey ,mtlsNonce〉 into the mtlsCache subterm of its state in Line 8 of Algorithm 3, where
clientId , pubKey ∈ TN and, in particular,
• request .host is a domain of as (see Line 5 of Algorithm 3).
• mtlsNonce is the mTLS nonce chosen by as .
Thus, the nonce is stored at the client together with a domain of the authorization server. After storing the values, the
client stops in Line 9 of Algorithm 3 without creating an event and without storing mtlsNonce in any other place.

(F) c sends mTLS nonces only to domains of as . The client accesses values stored in the mtlsCache subterm of its state
only in the following places:
Case 1: Algorithm 4 In this algorithm, the client accesses the mtlsCache subterm only in Line 17 and Line 30.

In both cases, the sequence containing the nonce is removed from the mtlsCache subterm (Lines 19 and 31),
and the mTLS nonce is sent by calling the HTTPS_SIMPLE_SEND function. The HTTP request that is passed
to HTTPS_SIMPLE_SEND in Line 43 contains the retrieved mTLS nonces only in the body, under the dictionary key
TLS_AuthN (Line 18, Line 41) or TLS_binding (Line 28, Line 32, Line 41).
In all cases, the domain stored in the sequence that is retrieved from the mtlsCache subterm of the client state (i.e.,
the first entry of the sequence) is the host of the HTTPS request that the client constructs (see Lines 17, 30).

Case 2: Algorithm 6 Here, the client accesses the mtlsCache state subterm only in Line 13. As in the first case, the
sequence from which the mTLS nonce is chosen is removed from the mtlsCache subterm (Line 16 of Algorithm 6).
The nonce is sent in the body of an HTTP request, using the dictionary key TLS_binding (see Line 14) by calling
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HTTPS_SIMPLE_SEND in Line 43. The request is sent to the same domain that is stored in the sequence containing
the mTLS nonce.

Case 3: Algorithm 8 Here, Line 35 is the last line in which the client accesses the mtlsCache state subterm. As in
the previous cases, the client removes the corresponding sequence from the mtlsCache subterm (Line 37). The client
creates an HTTPS request which contains the mTLS nonce in the body under the key TLS_AuthN (Lines 36, 55, and
68). Again, the request is sent to the same domain that is stored in the sequence containing the mTLS nonce (see
Line 68).

In all cases, the HTTPS request is sent to the domain stored in the first entry of the sequence containing the
mTLS nonce (stored in the mtlsCache subterm). Let reqc→as be the HTTP request that the client sends by calling
HTTPS_SIMPLE_SEND.
HTTPS_SIMPLE_SEND stores the request reqc→as (which contains the mTLS nonce) in the pendingDNS state subterm
of c, see Line 2 of Algorithm 34 and then stops with the DNS request (which does not contain the nonce) in Line 3 of
Algorithm 34. Thus, after finishing this processing step, the client stores the mTLS nonce only in its pendingDNS state
subterm.
The client accesses the pendingDNS state subterm only within the else case in Line 10 of Algorithm 39, i.e., when
it receives the DNS response. There, it either stops without a new event and without changing its state in Line 12
of Algorithm 39, or creates a new pendingRequests entry containing the request reqc→as (and thus, also the mTLS
nonce) in Line 15 of Algorithm 39. In this case, the client removes the request from the pendingDNS state subterm in
Line 17 of Algorithm 39, i.e., regarding the client state, the mTLS nonce is now only contained in the newly created
pendingRequests entry. The client finishes the processing step by encrypting reqc→as with the key of the domain that
was stored along with the mTLS nonce, i.e., a key of as , see Lines 16 and 18 of Algorithm 39, and (E).

(G) as does not leak mTLS nonce contained in request.
As the client encrypts reqc→as asymetrically with a key of as , it follows that only as can decrypt the HTTPS request
(Lemma 46).
The authorization server only decrypts terms in the generic HTTPS server algorithms. More specifically, this request is
decrypted (only) in Line 7 of Algorithm 39, as this is the only place where an authorization server decrypts a message
asymetrically, and then used as a function argument for PROCESS_HTTPS_REQUEST which is modeled in Algorithm 11.
In Algorithm 11, none of the endpoints except for the PAR (Line 103) and token endpoints (Line 145) reads, stores, or
sends out a value stored in the body of the request under the TLS_AuthN or TLS_binding key.
The PAR and token endpoints pass the HTTP request to the AUTHENTICATE_CLIENT helper function (Algorithm 12),
which removes an entry from the mtlsRequests state subterm and returns this entry; the /par endpoint code does not
use this value. The token endpoint uses this value for token binding (Lines 180–190), but the nonce is not added to any
state subterm and not sent out in a network message. Thus, the endpoints of the authorization server do not store the
mTLS nonces contained in requests in any state subterm and do not send them out in any network message.

(H) c does not leak mTLS nonce in request after getting the response. When the client receives the HTTPS response
to reqc→as, the generic HTTPS server removes the message from the pendingRequests state subterm and calls
PROCESS_HTTPS_RESPONSE with the request as the third function argument (see Lines 19ff. of Algorithm 39).
Algorithm 3 (PROCESS_HTTPS_RESPONSE) does not store a nonce contained in the body of the request, i.e., the third
argument, and does not create new network messages containing such a nonce.

Summing up, the client sends the mTLS nonce created by the authorization server only back to that same authorization server
(i.e., only that authorization server can decrypt the client’s message). As an honest authorization server never sends out such
a nonce received in a request, and neither the client or authorization server leak the mTLS nonce as stored in their states in
between, we conclude that the nonce never leaks to any other process, in particular not to p. �

Lemma 10 (Resource Server’s Signing Key Does Not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a
FAPI web system FAPI with a network attacker, every configuration Q = (S,E,N) in ρ, every resource server rs ∈ RS that
is honest in S, every term t with checksig(t, pub(signkey(rs))) ≡ >, and every process p with p 6= rs , all of the following
hold true:
• signkey(rs) 6∈ d∅(S(p))
• signkey(rs) ≡ srs0 .jwk
• signkey(rs) ≡ S(rs).jwk
• if t is known (Definition 83) to p in Q, then t was created (Definition 81) by rs in a processing step se prior to Q in ρ

PROOF. signkey(rs) ≡ srs0 .jwk immediately follows from Definition 9. signkey(rs) ≡ S(rs).jwk follows from Definition 9
and by induction over the processing steps: state subterm jwk of an honest resource server is never changed.

By Definitions 7, 8, 9, 66, and Appendix A-C, we have that no process (except rs) initially knows signkey(rs), i.e.,
signkey(rs) 6∈ d∅(S0(p)).
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The only place in which an honest resource server accesses the jwk state subterm is Line 6 of Algorithm 20. There, the
value of the jwk state subterm is only used in a sig(·, ·) term constructor as signature key, i.e., cannot be extracted from the
resulting term (see Figure 5). Thus, it does not matter where that term are stored or sent to. We conclude that this usage of
the jwk state subterm does not leak signkey(rs) to any other process, in particular p, and hence, signkey(rs) 6∈ d∅(S(p)).

To complete the proof, we now have to show that any term t with checksig(t, pub(signkey(rs))) ≡ > known to p in Q was
created by rs in a processing step se prior to Q in ρ:

By Definitions 7, 8, 9, 3, and Appendix A-C, we have that no process (including rs) initially knows such a term t, i.e.,
t 6∈ d∅(S0(p)). Together with Definition 57 and Definition 81, this implies that t can only be known to p in some configuration
Q′ if t was contained in some event e “received” by p at an earlier point in ρ (i.e., e was the input event in a processing step
in ρ with p). Since such an e is not part of E0 (Definition 76), e must have been emitted by some process in a processing
step se prior to Q′ in ρ. Definition 57 and Definition 78 imply that p (or any other process 6= rs) cannot have emitted e in se
(i.e., cannot have created t in se).

Therefore, rs must have emitted e and hence created t in se, i.e., prior to Q in ρ. �

Lemma 11 (mTLS Nonce created by RS does not Leak). For every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI
web system FAPI with a network attacker, every configuration (S,E,N) in ρ, every resource server rs ∈ RS that is honest in
Sn, every client c ∈ C that is honest in Sn, every nonce kmtls ∈ N , every i ∈ N with 0 ≤ i ≤ |S(rs).mtlsRequests| and with
S(rs).mtlsRequests.i.2 ≡ pub(kmtls), every process p1 with p1 6= c, and every process p2 with rs 6= p2 6= c it holds true that
if kmtls 6∈ d∅(Sn(p1 )), then mtlsNonce := S(rs).mtlsRequests.i.1 does not leak to p2, i.e., mtlsNonce 6∈ d∅(Sn(p2 )).

PROOF. This proof is similar to the proof of Lemma 9:
Initially, the mtlsRequests subterm of the resource server’s state is empty, i.e., S0(rs).mtlsRequests ≡ 〈〉 (Definition 9).

A resource server only adds values to the mtlsRequests subterm in Line 5 of Algorithm 18, where the mTLS nonce (the first
value of the sequence that is added to mtlsRequests) is a fresh nonce (Line 3 of Algorithm 18).

Let (Si, Ei, N i)→ (Si
′
, Ei
′
, N i′) be the processing step in which the nonce is chosen (note that (Si, Ei, N i) is prior to

(S,E,N) in ρ). In the same processing step, the resource server sends out the nonce in Line 7 of Algorithm 18, asymmetrically
encrypted with the public key pub(kmtls) (precondition of the lemma, see also Line 5 and Line 6 of Algorithm 18; note that the
RS never modifies the values stored in mtlsRequests, it only deletes entries in Line 27 of Algorithm 18). The mtlsNonce
saved in mtlsRequests is not sent in any other place.

The encrypted nonce can only be decrypted by c, as only c can derive the private key kmtls (precondition of the lemma). c
decrypts messages only in Line 3 of Algorithm 3. (The only other place where a message is decrypted asymmetrically by c is
in the generic HTTPS server (Line 7 of Algorithm 39), where the process would stop due to the requirement that the decrypted
message must begin with HTTPReq).

We also note that the encrypted message created by the resource server containing the nonce also contains a public TLS
key of rs . (This holds true due to Lemma 2).

After decrypting the mTLS nonce and public TLS key of rs in Line 3 of Algorithm 3, the client stores the sequence
〈request .host, clientId , pubKey ,mtlsNonce〉 into the mtlsCache subterm of its state (Line 8 of Algorithm 3), where
clientId , pubKey ∈ TN and, in particular,
• request .host is a domain of rs (see Line 5, Algorithm 3)
• mtlsNonce is the mTLS nonce chosen by rs .
Thus, the nonce is stored at the client together with a domain of the resource server. After storing the values, the client stops

in Line 9 of Algorithm 3 without creating an event and without storing the nonce in any other place.
c sends mTLS nonces only to domains of rs . The client accesses values stored in the mtlsCache subterm of its state

only in the following places:
Case 1: Algorithm 4

In this algorithm, the client accesses the mtlsCache subterm only in Line 17 and Line 30.
In both cases, the sequence containing the nonce is removed from the mtlsCache subterm (Lines 19 and 31),
and the mTLS nonce is sent by calling the HTTPS_SIMPLE_SEND function. The HTTP request that is passed to
HTTPS_SIMPLE_SEND in Line 43 contains the retrieved mTLS nonces only in the body, under the dictionary key
TLS_AuthN (Line 18, Line 41) or TLS_binding (Line 28, Line 32, Line 41).
In all cases, the domain stored in the sequence that is retrieved from the mtlsCache subterm of the client state (i.e., the
first entry of the sequence) is the host of the HTTPS request that the client constructs (see Lines 17, 30).
Note that messages created by Algorithm 4 do not contain an Authorization header.

Case 2: Algorithm 5 This case is similar to the previous case.
The client accesses the mtlsCache subterm only in Line 14 and Line 27. In both cases, the sequence containing
the nonce is removed from the mtlsCache subterm (Lines 16 and 28), and the mTLS nonce is sent by calling the
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HTTPS_SIMPLE_SEND function. The HTTP request that is passed to HTTPS_SIMPLE_SEND in Line 40 contains
the retrieved mTLS nonces only in the body, under the dictionary key TLS_AuthN (Line 15, Line 38) or TLS_binding
(Line 25, Line 29, Line 38).
The domain stored in the sequence that is retrieved from the mtlsCache subterm of the client state (i.e., the first entry of
the sequence) is the host of the HTTPS request that the client constructs (see Lines 14, 27).
Note that messages created by Algorithm 5 do not contain an Authorization header.

Case 3: Algorithm 6
Here, the client accesses the mtlsCache state subterm only in Line 13, and removes the sequence with the mTLS nonce
from the mtlsCache subterm (Line 16 of Algorithm 6). The nonce is sent in the body of an HTTP request, using the
dictionary key TLS_binding (see Line 14) by calling HTTPS_SIMPLE_SEND in Line 43. The request is sent to the
same domain that is stored in the sequence containing the mTLS nonce.
The client might sign this request (Lines 30-40 of Algorithm 6). Regarding the mTLS nonce, the client stores the hash of
the body in the Content-Digest header (Line 32 of Algorithm 6). The signature stored in the Signature header covers
the Content-Digest header, see Lines 32, 34, and 39 of Algorithm 6.

Case 4: Algorithm 8
Here, Line 35 is the last line in which the client accesses the mtlsCache state subterm. As in the previous cases, the
client removes the corresponding sequence from the mtlsCache subterm (Line 37).
The client creates the term requestData , which contains the mTLS nonce in the body under the key TLS_AuthN (Lines 36,
55), and creates an HTTP request in Line 68 of Algorithm 8, with the body set to requestData (Line 65 and Line 67 of
Algorithm 8), or set to the signed requestData value (the client might add more values to requestData in Line 59 and
Line 62 of Algorithm 8).
Again, the request is sent to the same domain that is stored in the sequence containing the mTLS nonce (see Line 68).
Note that messages created by Algorithm 8 do not contain an Authorization header.

In all cases, the HTTP request is sent to the domain stored in the first entry of the sequence containing the mTLS nonce
(stored in the mtlsCache subterm). Let reqc→rs be the request that the client sends by calling HTTPS_SIMPLE_SEND.

HTTPS_SIMPLE_SEND stores the request reqc→rs (which contains the mTLS nonce) in the pendingDNS state subterm
of c, see Line 2 of Algorithm 34, and then stops with the DNS request (which does not contain the nonce) in Line 3 of
Algorithm 34. Thus, after finishing this processing step, the client stores the mTLS nonce only in its pendingDNS state subterm.

The client accesses the pendingDNS state subterm only within the else case in Line 10 of Algorithm 39, i.e., when it receives
the DNS response. There, it either stops without a new event and without changing its state in Line 12 of Algorithm 39,
or creates a new pendingRequests entry containing the request reqc→rs (and thus, also the mTLS nonce) in Line 15 of
Algorithm 39. In this case, the client removes the request from the pendingDNS state subterm in Line 17 of Algorithm 39,
i.e., regarding the client state, the mTLS nonce is only contained in the newly created pendingRequests entry. The client
finishes the processing step by encrypting reqc→rs with the key of the domain that was stored along with the mTLS nonce,
i.e., a key of rs , see Lines 16 and 18 of Algorithm 39.

rs does not leak mTLS nonce contained in request. As the HTTP request reqc→rs is is encrypted asymetrically with
a key of rs , it follows that only the resource server can decrypt the request. The resource server only decrypts terms in
the generic HTTPS server algorithms. More specifically, this request is decrypted (only) in Line 7 of Algorithm 39, as this
is the only place where an resource server decrypts a message asymetrically, and then used as a function argument for
PROCESS_HTTPS_REQUEST which is modeled in Algorithm 18.

In Algorithm 18, the /MTLS-prepare and /DPoP-nonce endpoints (Line 2 and Line 8 of Algorithm 18) do not read, store,
or send out a value stored in the body of the request under the TLS_AuthN or TLS_binding key or within a signature (these
endpoints do not call the extractmsg() function).

For the last endpoint starting at Line 13 of Algorithm 18, we now consider all possible mTLS nonces in reqc→rs:
• reqc→rs.body[TLS_AuthN] (created in Algorithm 4, 5, or 8): Requests created by these algorithms do not contain an
Authorization header (see above), thus, the RS would stop in Line 20 of Algorithm 18 without changing its state and
without emitting messages.

• reqc→rs.body[TLS_binding] (created in Algorithm 4, 5, or 6): The RS accesses values stored in the body of the request
under the TLS_binding key only in Line 25 of Algorithm 18. We distinguish the following cases:
– Opaque access token: If Line 50 of Algorithm 18 is true, then the whole request (including the TLS_binding value

in the request body) is stored in the pendingResponses subterm of the resource server’s state. However, the resource
server never stores the body of requests stored in pendingResponses into any other subterm of its state and does not
send out any value contained in the body.

– Structured access token: If Lines 62ff. of Algorithm 18 are executed, then the RS responds in the same processing step.
The RS does not use the TLS_binding value, and uses the request reqc→rs (containing the nonce) only in Line 68 of
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Algorithm 18, where it calls the VERIFY_REQUEST_SIGNATURE function (Algorithm 21), which returns a boolean
value (without modifying the state of the RS or emitting messages).

• reqc→rs.headers (created in Algorithm 6): The Content-Digest and Signature headers might contain the mTLS nonce.
However, the Content-Digest header contains only the hashed request body, and the signature in the Signature headers
covers the Content-Digest header. The RS leaks the headers (Line 82 of Algorithm 18 and Line 43 of Algorithm 19),
but the original mTLS nonce value cannot be derived from the hash values.

• reqc→rs.body (if the body is the signature created in Algorithm 8): As in the first case, the request does not contain
an Authorization header, thus, the RS would stop in Line 20 of Algorithm 18 without changing its state and without
emitting messages.

c does not leak mTLS nonce in request after getting the response. When receiving the HTTPS response to reqc→rs, the
generic HTTPS server removes the message from the pendingRequests state subterm and calls PROCESS_HTTPS_RESPONSE
with the request as the third function argument. Algorithm 3 does not store a nonce contained in the body of the request and
does not create new network messages containing such a nonce.

Summing up, the client sends the mTLS nonce created by the resource server only back to that resource server. As an honest
resource server never sends out such a nonce received in a request, we conclude that the nonce never leaks to any other process,
in particular not to p. �

Lemma 12 (JWS client assertion created by client does not leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of
a FAPI web system FAPI with a network attacker, every configuration (Si, Ei, N i) in ρ, every authorization server as ∈ AS
that is honest in Si, every client c ∈ C that is honest in Si and has been issued client identifier clientId by as (in some
processing step s −→ s′ with s prior to (Si, Ei, N i) in ρ), every domain issuer ∈ dom(as), every index j ≤ i, every term

clientSignKey := Sj(c).asAccounts[issuer ][sign_key], every term t with
• checksig(t, pub(clientSignKey)) ≡ >,
• extractmsg(t)[iss] ≡ clientId ,
• extractmsg(t)[sub] ≡ clientId , and
• extractmsg(t)[aud].host ∈ dom(as) or extractmsg(t)[aud] ∈ dom(as)

and every process p with as 6= p 6= c, it holds true that t 6∈ d∅(Si(p)).

PROOF. We can immediately apply Lemma 4, which gives us clientSignKey 6∈ d∅(Si(p)) for all processes p 6= c.
Thus, only c can derive a term t such that checksig(t, pub(clientSignKey)) ≡ > (see Figure 5). In other words, for t to be

known to any process (including c and as), c must have signed a dictionary with the corresponding iss, sub, and aud values.
An honest client signs dictionaries with both an aud, and an iss dictionary key only in the following locations:

Line 22 of Algorithm 4 The signature created in Line 22 of Algorithm 4 is added to the body of an HTTP request (Lines 23,
41, and 42 of Algorithm 4). The client sends that HTTP request (the token request) to the token endpoint it has cached
for the AS identified by the issuer identifier in extractmsg(t)[aud] (i.e., selectedAS in the context of Algorithm 4).
From Lemma 21, we know that this token endpoint is a URL of the selected AS, i.e., the token request is sent to and
encrypted for the party to which the domain selectedAS belongs (see the call of HTTPS_SIMPLE_SEND in Line 43,
using responseTo : TOKEN in the first function argument). This party is as by the preconditions of this lemma, i.e., only
as can decrypt the corresponding ciphertext and extract t.

Line 19 of Algorithm 5 This case is very similar to the first one, except for differing line numbers; the signature is added to
an HTTP request (Lines 20, 38, and 39 of Algorithm 5), which is then passed to HTTPS_SIMPLE_SEND, and hence
encrypted for as .

Line 40 of Algorithm 8 As in the first case, the signature created in Line 40 of Algorithm 8 is added to the body of an
HTTP request (Lines 41, 55, and 68 of Algorithm 8). Similar to the first case, this request (the PAR request) is encrypted
for and sent to the PAR endpoint c has cached for the party to which extractmsg(t)[aud] belongs. Analogous to the first
case, we can apply Lemma 21 to conclude that this party must be an honest AS (and the request is stored by c with
responseTo : PAR by HTTPS_SIMPLE_SEND).

On the client side, this leaves t being stored in the pendingRequests state subterm, which is only accessed when processing
HTTPS responses. When the client receives such an HTTPS response, the generic HTTPS server decrypts the message and
calls PROCESS_HTTPS_RESPONSE (Lines 19ff. of Algorithm 39). The original request (containing t) is used as the third
function argument in that call. However, the instantiation of PROCESS_HTTPS_RESPONSE for clients (Algorithm 3) does
not access the body of the original request when processing TOKEN or PAR responses and hence cannot leak t in any way.

This leaves us with as , which can decrypt the aforementioned requests containing t: when processing an HTTPS request in
Algorithm 11, the authorization server does not store the client assertion and does not create a network message containing
the client assertion: the signatures created in Line 22 of Algorithm 4, Line 19 of Algorithm 5, and Line 40 of Algorithm 8 are
contained in the request under a key client_assertion, which an AS only accesses in Line 3 of Algorithm 12, where the
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value is only used to verify the signature (Line 4 of Algorithm 12), and to extract the signed term (Line 11 of Algorithm 12).
Note that in all three cases from above, the path element of the generated HTTP request is either /par or /token and during
processing of requests to those endpoints, an AS also does not store the whole request or request body (see Algorithm 11). In
other words, when as processes a request containing t, it does neither leak t, nor does it store t in its state (and hence, also
cannot leak t at a later time).

Overall, we conclude that no other process can derive a client assertion t created by an honest client c for an honest
authorization server as . �

Lemma 13 (Client Authentication). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI with a
network attacker, every authorization server as ∈ AS, every client c ∈ C, every processing step Q in ρ

Q = (S,E,N)
ein→as−−−−−→
as→Eout

(S′, E′, N ′)

with c and as being honest in S′ and every client identifier clientId issued to c by as (during some processing step scid −→ scid
′
),

if ein ≡ 〈x, y, enca(〈m, k〉, k′)〉 (for some x, y, k, k′) such that
• m ∈ HTTPRequests and
• client_id ∈ m.body⇒ m.body[client_id] ≡ clientId and
• client_id ∈ extractmsg(m.body)⇒ extractmsg(m.body)[client_id] ≡ clientId and
• client_assertion ∈ m.body⇒ extractmsg(m.body[client_assertion])[iss] ≡ clientId and
• client_assertion ∈ extractmsg(m.body)⇒ extractmsg(extractmsg(m.body)[client_assertion])[iss] ≡ clientId

and
• m.path ≡ /par ∨m.path ≡ /token ∨m.path ≡ /backchannel-authn and
• Eout is not empty,

then c created m (Definition 81).

PROOF. Since m may nor may not contain a signed body, and we sometimes need to refer to the body without a possible
signature, we define

m′ :=

〈HTTPReq,m.nonce,m.method,m.host,m.path,m.parameters,m.headers, extractmsg(m.body)〉 if m.body
∼ sig(∗, ∗)

m otherwise

(A) as does not create m. An authorization server only emits HTTP(S) requests in two places:
Line 304 of Algorithm 11 The request body in this case is a dictionary with only one key, auth_req_id; i.e., it contains

neither a key TLS_AuthN, nor a key client_assertion. We will come back to this later.
Line 13 of Algorithm 15 In this case, the path component of the emitted request is /start-ciba-authentication,

i.e., neither /par, nor /token, nor /backchannel-authn.
(B) as executes PROCESS_HTTPS_REQUEST during Q. Processing of ein during Q begins with Algorithm 39. Since we

have Eout not empty, Q cannot finish at one of the parameterless stops in Algorithm 39. We also have m 6≡ CORRUPT and
as is honest, i.e., S(as).corrupt ≡ ⊥, and therefore, Q does not stop in Line 6 of Algorithm 39.
The stop in Line 18 of Algorithm 39 cannot be reached, since m 6∈ DNSResponses (see Appendix E-B5).
All other stops within Algorithm 39 are parameterless, hence, execution during Q must reach one of the function calls in
Algorithm 39:
Line 9 of Algorithm 39 (PROCESS_HTTPS_REQUEST) As the third element within ein has the correct structure, this

function call can be reached.
Line 24 of Algorithm 39 (PROCESS_OTHER) The instantiation of PROCESS_OTHER for authorization servers (Al-

gorithm 14) does not output any events, which contradicts precondition Eout not empty.
Line 26 of Algorithm 39 (PROCESS_HTTPS_RESPONSE) Since m 6∈ HTTPResponses (Definition 48), this function

call cannot be reached (due to the check in Line 23 of Algorithm 39).
Line 28 of Algorithm 39 (PROCESS_TRIGGER) Since m 6≡ TRIGGER, this function call cannot be reached.
Line 30 of Algorithm 39 (PROCESS_OTHER) The instantiation of PROCESS_OTHER for authorization servers (Al-

gorithm 14) does not output any events, which contradicts precondition Eout not empty.
We conclude that as must execute PROCESS_HTTPS_REQUEST during Q.

(C) as executes Line 144 or Line 215 or Line 266 of Algorithm 11 during Q. When processing ein during Q, the generic
HTTPS server calls PROCESS_HTTPS_REQUEST, i.e., Algorithm 11, in Line 9 of Algorithm 39 (see (B)).
If m.path ≡ /par (with m from this lemma’s preconditions), then the PAR endpoint starting in Line 103 of Algorithm 11
is executed. No stop within that endpoint except for the last (unconditional) stop in Line 144 of Algorithm 11 emits an
event.
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Analogously, if m.path ≡ /token, then the token endpoint starting in Line 145 of Algorithm 11 is executed and the
(unconditional) stop in Line 215 of Algorithm 11 was reached, as no other stop within the token endpoint emits events.
If m.path ≡ /backchannel-authn, then the backchannel authentication endpoint starting in Line 241 of Algorithm 11
is executed and the (unconditional) stop in Line 266 of Algorithm 11 was reached, as no other stop within this endpoint
emits events.

(D) HTTP request contains values that only c and as know. The precondition Eout not empty implies that the checks
done in the AUTHENTICATE_CLIENT function (Algorithm 12), called in Line 116 of Algorithm 11 (PAR endpoint), or
Line 148 of Algorithm 11 (token endpoint), or Line 242 of Algorithm 11 (backchannel authentication endpoint) did not
lead to a stop.
In the case of the PAR endpoint, if as expects a signed PAR (Line 105 of Algorithm 11), the PAR signature is removed
from m.body (Line 106 of Algorithm 11), resulting in m′. Note that if Algorithm 12 is called with a signed PAR where
the signature has not been removed, that algorithm stops without emitting any events in Line 26 of Algorithm 12 – hence,
this cannot be the case in Q.
So in all three endpoints, Algorithm 12 is called with the HTTP request m′ and S(as) as input arguments. As Line 26 of
Algorithm 12 is not executed (because Eout is not empty), it follows that client_assertion ∈ m′.body or TLS_AuthN ∈
m′.body.
Case 1: client_assertion ∈ m′.body. As extractmsg(m′.body[client_assertion])[iss] ≡ clientId (lemma pre-

condition), and the check in Line 12 of Algorithm 12 succeeds (otherwise, Eout would be empty), the verification key
used in Line 4 of Algorithm 12 during Q must have been S(as).clients[clientId ][jwt_key].
By applying Lemma 17, we get ∃kjwt ∈ N such that S(as).clients[clientId ][jwt_key] ≡ pub(kjwt), and kjwt 6∈
d∅(S

n(p)) for any process p 6= c. Hence, we have m.body[client_assertion] ∼ sig(∗, pub(kjwt)).
A term t ∼ sig(∗, pub(kjwt)) is not part of any processes’ initial state (Definition 8, Definition 7, Definition 3, Definition 9).
This, together with Figure 5, gives us that if any process can derive t in S – which is true for as – then t must originate
from c (see also proof of Lemma 12). As shown in the proof of Lemma 12, a client only creates signed terms with
aud and iss keys in the signed value in a few locations; and in each of those, the key used to sign such a term is
taken from the client’s asAccounts state subterm, under some issuer, under key sign_key.
Now, let cli_assertion := extractmsg(m′.body[client_assertion]). Since the check in Line 12 of Algorithm 12
did not result in a parameterless stop, we have cli_assertion[iss] ≡ clientId , and cli_assertion[sub] ≡ clientId .
Furthermore, cli_assertion[aud].host ∈ dom(as) or cli_assertion[aud] ∈ dom(as) (Line 14 of Algorithm 12 and the
host of the request is a domain of the authorization server as shown in Lemma 2).
With this, we can apply Lemma 12.
Thus, for all processes p such that as 6= p 6= c, it holds true that m′.body[client_assertion] 6∈ d∅(S′(p)), i.e., only
c and as can derive m′.body[client_assertion]. As authorization servers do not create HTTP(S) requests with a
key client_assertion (see (A)), it follows that m′ – and hence m – was created by c.

Case 2: TLS_AuthN ∈ m.body. From Lines 17–19 of Algorithm 12 it follows that

∃i ∈ N. S(as).mtlsRequests[m.body[client_id]].i.1 ≡ m.body[TLS_AuthN]

Note that client_id ∈ m.body as otherwise, the stop in Line 23 of Algorithm 12 will be executed.
Now, we can apply Lemma 9 with ρ′ (ρ′ being the trace prefix of ρ up to and including (S′, E′, N ′)).
Thus, for all processes p such that as 6= p 6= c, it holds true that m′.body[TLS_AuthN] 6∈ d∅(S′(p)), i.e., only c and as
can derive m′.body[TLS_AuthN]. As authorization servers do not create HTTP(S) requests with a key TLS_AuthN in
the request body (see (A)), we conclude that m′ – and thus m – was created by c. �

Lemma 14 (DPoP proof secrecy (RS)). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in ρ, every resource server rs ∈ RS that is honest in S, every client
c ∈ C that is honest in S, every nonce signKey ∈ N , every process p1 6= c, every process p2 with rs 6= p2 6= c, and every
term t with
• checksig(t, pub(signKey)) ≡ >
• extractmsg(t)[payload][htu].host ∈ dom(rs),
• ath ∈〈〉 extractmsg(t)[payload],
• extractmsg(t)[payload][nonce] ∈ S(rs).dpopNonces

it holds true that if signKey 6∈ d∅(Sn(p1 )), then t 6∈ d∅(S(p2 )).

PROOF. As only c can derive the key signKey , it follows that only c can create such a term t, i.e., the attacker cannot create
t itself by signing a dictionary with the corresponding payload value. In the following, we show that such a term created by
c does not leak to the attacker.

64



The client signs dictionaries with a payload dictionary key only in three locations:
• In Line 39 of Algorithm 4, where the payload dictionary does not contain an ath value (see Line 38 of Algorithm 4)
• In Line 36 of Algorithm 5, where the payload dictionary does not contain an ath value (see Line 35 of Algorithm 5)
• In Line 26 of Algorithm 6.
The client sends the term t created in Line 26 of Algorithm 6 to extractmsg(t)[payload][htu].host via

HTTPS_SIMPLE_SEND (using responseTo : RESOURCE_USAGE in the first function argument), see Lines 21, 25, 42, and 43 of
Algorithm 6. The client does not store t in any other subterm except for those needed by HTTPS_SIMPLE_SEND. The term t
is added (only) to the headers of the HTTP request using the DPoP dictionary key, see Line 28 of Algorithm 6, and potentially
as part of the Signature header, see Line 37 and Line 39 of Algorithm 6. The client also adds an Authorization header
containing a dictionary with a DPoP dictionary key, see Lines 27 and 42 of Algorithm 6.

We note that the generic part of the client model (which takes care of DNS resolution and sending the actual HTTPS
request after the HTTPS_SIMPLE_SEND call) does not send out or use t in any way – except for the sending of the actual
request, which is encrypted for the domain extractmsg(t)[payload][htu].host, i.e., for rs , which can only be decrypted by
rs (Lemma 46).

When the client receives the HTTPS response to this request, the generic HTTPS server decrypts the message and calls
PROCESS_HTTPS_RESPONSE. The original request (containing the signed term) is used as the third function argument. The
instantiation of PROCESS_HTTPS_RESPONSE (Algorithm 3) does not access the headers of the request when processing
RESOURCE_USAGE responses.

When processing the HTTPS request created by the client in Algorithm 18, the resource server does not access the request
headers (in particular, it does not add the term to its state and does not create a network message containing the value)
in the /MTLS-prepare and /DPoP-nonce endpoints (Lines 2 and 8 of Algorithm 18). For all other path values (Line 13
of Algorithm 18), the resource server first checks whether the resource identified by the path is managed by a supported
authorization server. If this is not the case, then the resource server stops without changing the state and without emitting
events (Line 18 of Algorithm 18). Otherwise, the resource server will eventually invalidate the nonce value stored in the DPoP
proof in Line 44 of Algorithm 18 (by removing it from the dpopNonces subterm of the resource server’s state), as the request
contains an Authorization header containing a dictionary with the DPoP keyword (see Lines 20 and 30 of Algorithm 18).
The stops before the removal of the nonce from the state of the resource server do not modify the state of the resource server
and do not lead to new events.

We note that the dpopNonces state subterm of the resource server does not contain any value twice, as the resource server
only adds fresh nonces to the state subterm, see the endpoint in Line 8 of Algorithm 18. Thus, the nonce is not contained in
dpopNonces after Line 44 of Algorithm 18 is executed, and the resource server it does not add it back to the dpopNonces

state subterm afterwards.
Thus, if the resource server does not finish with a stop without any arguments, it holds true that

extractmsg(t)[payload][nonce] is not contained in the dpopNonces subterm of the new resource server’s state, as it always
stops with the updated state. (If it finishes with a stop without any arguments, then t will not leak, as there is no change in
any state and no new event).

Overall, we conclude that no other process can derive a signed term t (as in the statement of the lemma) created by an
honest client for an honest resource server. �

Lemma 15 (Registration Access Tokens Stored at AS Never Change). For
• every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI with a network attacker,
• every authorization server as ∈ AS that is honest in Sn,
• every client c ∈ C that is honest in Sn,
• every client identifier clientId ∈ TN that has been issued to c by as in some processing step R = (Sr, Er, Nr) →

(Sr ′, Er ′, Nr ′) in ρ (according to Definition 11),
it holds true that Sn(as).clients[clientId ][reg_at] ≡ Sr ′(as).clients[clientId ][reg_at].

PROOF. An honest AS modifies its clients state subterm only in Line 51 and Line 57 of Algorithm 11 (i.e., the /manage
endpoint) and Line 24 of Algorithm 13 (the /reg endpoint). Let P = (S,E,N)→ (S,E′, N ′) be a processing step after R in
which the AS modifies its clients state subterm. We show that the AS never modifies the reg_at value of the corresponding
clientId dictionary, i.e., S(as).clients[clientId ][reg_at] ≡ S′(as).clients[clientId ][reg_at].
Case 1: Line 51 of Algorithm 11. In this case, the AS stores the value clientInfo, which is equal to S(as).clients[clientId ]

(see Line 24 of Algorithm 11) with some modified values (Lines 34-37, Line 41, Line 43, and Line 50 of Algorithm 11),
however, without changing the reg_at value.

Case 2: Line 57 of Algorithm 11. Here, the AS only modifies the active entry of the dictionary (Line 57 of Algorithm 11).
All other values, in particular, the reg_at value, stay the same.
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Case 3: Line 24 of Algorithm 13. In this case, the AS does not change an existing client entry: Let clientId ′ be the key of
the entry modified by the AS in Line 24 of Algorithm 13. clientId ′ is taken from S(as).pendingClientIds in Line 2
of Algorithm 13. However, as clientId ∈〈〉 S(as).clients, it follows that clientId 6∈〈〉 S(as).pendingClientIds.

�

Lemma 16 (Secrecy of Registration Access Tokens Stored at AS). For
• every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI with a network attacker,
• every authorization server as ∈ AS that is honest in Sn,
• every client c ∈ C that is honest in Sn,
• every client identifier clientId ∈ TN that has been issued to c by as in some processing step R = (Sr, Er, Nr) →

(Sr ′, Er ′, Nr ′) in ρ (according to Definition 11),
it holds true that Sr ′(as).clients[clientId ][reg_at] 6∈ d∅(Sn(attacker)).

PROOF. Note that an honest AS modifies its clients state subterm only in Line 51 and Line 57 of Algorithm 11 (i.e., the
/manage endpoint), and Line 24 of Algorithm 13 (the /reg endpoint).
Creating the Registration Access Token: Initially, the clients state subterm of as is empty (Definition 8). As the AS issues

clientId in R, it follows that for all configurations (S′, E′, N ′) prior to (Sr ′, Er ′, Nr ′), clientId 6∈〈〉 S′(as).clients,
as the AS takes clientId from Sr(as).pendingClientIds (Line 2 of Algorithm 13). Initially, pendingClientIds is
empty (Definition 8), and the AS adds values to this state subterm only in Line 5 of Algorithm 14, after ensuring that the
value that is being stored is not part of the clients and pendingClientIds state subterms (Line 3 of Algorithm 14).
In R, the AS executes Line 26 of Algorithm 13 (Lemma 1), thus, it must have executed Line 24 of Algorithm 13 (i.e.,
the /reg endpoint, as Algorithm 13 is only called in Line 19 of Algorithm 11).
Let 〈x, y, enca(〈regReq , k〉, pkas)〉 be the input event that as processes in R. The request enca(〈regReq , k〉, pkas) was
created by c (see Definition 11).
In Line 24 of Algorithm 13, the AS creates the entry for clientId . This dictionary entry contains the key reg_at (see
Line 14 of Algorithm 13) with the value being a fresh nonce (see Line 9 of Algorithm 13). In addition to storing
the registration access token into its state, the AS includes the value into the response (see Line 13 and Line 25 of
Algorithm 13). Note that this response also contains a URL reg_client_uri with the domain being the host of the
registration request and the path /manage (Lines 10 and 13 of Algorithm 13).
Thus, in the configuration (Sr ′, Er ′, Nr ′), the registration access token is only stored in Sr ′(as).clients[clientId ] and
only contained in the response to c.

Processing the Registration Response: The registration response is an HTTPS response encrypted with k, and only c can
decrypt it. The client created the registration request in Line 26 of Algorithm 8, as this is the only place where a client
creates POST requests containing jwks in the body. Let T = (St, Et, N t) → (St

′
, Et
′
, N t′) be the processing step in

which the client processes the response. When calling the HTTPS_SIMPLE_SEND function, the client uses a reference
value reference with reference[responseTo ≡ REGISTRATION], i.e., the client will process the registration response in
Line 40 of Algorithm 3. Let selectedAS ≡ St.sessions[reference[session]][selected_AS]. This is the same value
as the client selects in Line 5 of Algorithm 8 when sending the registration request (Lemma 20). The client sends
the registration request to the domain s.oauthConfigCache[selectedAS ][reg_ep].host, with s being the state of the
corresponding configuration (see Lines 4, 5, 10, 12, and Line 25 of Algorithm 8). As shown in Lemma 21, this is equal
to selectedAS . As the AS processes this request, it follows that selectedAS ∈ dom(as) (Lemma 2). The client stores the
registration access token in St′.asAccounts[selectedAS ][reg_at] (see Line 46 and Line 49 of Algorithm 3), and then
continues with PREPARE_AND_SEND_INITIAL_REQUEST (Algorithm 8, called in Line 57 of Algorithm 3). There,
the client does not access this registration access token, i.e., in T , the client just stores the registration access token in
St
′
.asAccounts[selectedAS ][reg_at] without emitting an event containing it.

In addition to storing the registration access token, the client stores the reg_client_uri value
contained in the response, i.e., St

′
.asAccounts[selectedAS ][reg_client_uri].host ≡ selectedAS and

St
′
.asAccounts[selectedAS ][reg_client_uri].path ≡ /manage (see Lines 45 and 49 of Algorithm 3).

Registration Access Token Stored at AS: The AS accesses the reg_at entry of a client dictionary only in three locations:
• At the /manage endpoint in Line 20 of Algorithm 11, where the AS expects an HTTP request containing the registration

access token in its Authorization header. However, up to (St
′
, Et
′
, N t′), the client did not send a request containing

this value, and the authorization server does not send PUT requests.
• At the /manage endpoint in Line 54 of Algorithm 11, where the AS expects an HTTP request containing the registration

access token in its Authorization header. As in the previous case, such a request cannot exist up to (St
′
, Et
′
, N t′).

• In REGISTER_CLIENT (Algorithm 13), where the client sets this value to a fresh nonce (see Line 9, Line 14 and
Line 24 of Algorithm 13). However, this cannot be for the same client identifier clientId that has been issued previously,
as otherwise, the registration access token would change, contradicting Lemma 15.
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Thus, the AS will not access the registration access token unless it receives a request containing this token.
Registration Access Token Stored at Client: Let U = (Su, Eu, Nu)→ (Su′, Eu′, Nu′) be the processing step in which the

client accesses the token stored in asAccounts[selectedAS ][reg_at] (with selectedAS ∈ dom(as), as shown before).
The client accesses the token only in Line 34 of Algorithm 9, where it prepares sending a client management request.
For this, it first creates the Authorization header of the request containing the registration access token (Line 35). The
client sends either a DELETE request (Line 40 of Algorithm 9) or a PUT request (Line 56 of Algorithm 9) to the domain
Su(as).asAccounts[selectedAS ][reg_client_uri] ≡ selectedAS (see Line 33 of Algorithm 9). Note that when sending
the management request, the client calls the HTTPS_SIMPLE_SEND function with the CLIENT_MANAGEMENT reference.
In U , the client does not store the registration access token into a different location of its state and does not send any
other requests.

Processing the Management Request: Let P = (Sp, Ep, Np) → (Sp′, Ep′, Np′) be the processing step in which the AS
processes the request at the /management path, i.e., in one of the following two places:
• Line 20 of Algorithm 11 (if the request is a PUT request): Only the client c can be the creator of the request, as up to

this processing step, only c and as can derive the token and as as does not send PUT requests. The AS retrieves the
registration access token in Line 25 of Algorithm 11, compares it to access token that it stores for the client identifier
in the request in Line 26 of Algorithm 11, but does not change the registration access token stored for this client
identifier. The AS responds with an HTTPS response containing the same reg_at and reg_uri values (see Line 38 of
Algorithm 11).

• Line 54 of Algorithm 11 (if the request is a DELETE request): In this case, the AS compares the registration access
token from the request to the token stored in its state; the AS only modifies Sp(as).clients[clientId ′][active], for
some clientId ′, and does not send any messages.

Processing the Management Response: Let Q = (Sq, Eq, Nq) → (Sq ′, Eq ′, Nq ′) be the processing step in which the
client processes the response. The client processes responses with the CLIENT_MANAGEMENT reference value only
in Line 10 of Algorithm 3. It retrieves the access token in Line 22 of Algorithm 3 and stores this value into
Sq ′.asAccounts[selectedAS ][reg_at] (Line 23 of Algorithm 3). This is the same value as stored previously, as the
AS does not change the token. Note that the client does not store the token in any other place and does not emit a message
containing the token.
At this point, the client could repeat sending management requests. The AS would response as before and would respond
with the same token. Overall, we conclude that the registration access token is a fresh nonce chosen by as and sent to c
when registering the client, and then sent only to the AS, which will respond with the same value.

�

Lemma 17 (Secrecy of Client Keys Registered at AS). For
• every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI with a network attacker,
• every authorization server as ∈ AS that is honest in Sn,
• every client c ∈ C that is honest in Sn,
• every client identifier clientId ∈ TN that has been issued to c by as in some processing step R = (Sr, Er, Nr) →

(Sr ′, Er ′, Nr ′) in ρ (according to Definition 11),
• every configuration (Si, Ei, N i) (at position i in ρ),

it holds true that if clientId ∈〈〉 Si(as).clients, then:
∃kmtls, kjwt ∈ N such that

1) Si(as).clients[clientId ][mtls_key] ≡ pub(kmtls), and
2) Si(as).clients[clientId ][jwt_key] ≡ pub(kjwt), and
3) every process p 6= c, we have kmtls, kjwt 6∈ d∅(Sn(p)).

PROOF. Note that an honest AS modifies its clients state subterm only in Line 51 and Line 57 of Algorithm 11 (i.e., the
/manage endpoint) and Line 24 of Algorithm 13 (the /reg endpoint).

We do a proof by induction over i.
Base Case: i ≤ r′: Initially, the clients state subterm of as is empty (Definition 8). As the AS issues clientId in R, it

follows that for all configurations (S′, E′, N ′) prior to (Sr ′, Er ′, Nr ′), clientId 6∈〈〉 S′(as).clients, as the AS takes
clientId from Sr(as).pendingClientIds (Line 2 of Algorithm 13). Initially, pendingClientIds is empty (Definition 8),
and the AS adds values to this state subterm only in Line 5 of Algorithm 14, after ensuring that the value that is being
stored is not part of the clients and pendingClientIds state subterms (Line 3 of Algorithm 14).
In R, the AS executes Line 24 of Algorithm 13, as both Line 51 and Line 57 of Algorithm 11 would require that
clientId ∈〈〉 Sr(as).clients (see Line 22 and Line 56 of Algorithm 11).
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Let 〈x, y, enca(〈regReq , k〉, pkas)〉 be the input event that as processes in R. The request enca(〈regReq , k〉, pkas) was
created by c (see Definition 11). The AS takes the key values from regReq , i.e., ∃i, j ∈ N s.t.
• Sr ′(as).clients[clientId ][mtls_key] ≡ regReq .body[jwks].i.[val], and
• Sr ′(as).clients[clientId ][jwt_key] ≡ regReq .body[jwks].j.[val], and
• regReq .body[jwks].i.[use] ≡ TLS, and
• regReq .body[jwks].j.[use] ≡ sig

(see Lines 5-7, Line 14, and Line 24 of Algorithm 13).
A client creates POST requests containing jwks in the body only in Line 26 of Algorithm 8.
The client chooses the values regReq .body[jwks].i.[val] ≡ pub(t1 ), and regReq .body[jwks].j.[val] ≡ pub(t2 ), with t1
and t2 being fresh nonces (Lines 13-15 of Algorithm 8). The client calls the HTTPS_SIMPLE_SEND function with t1 and
t2 in the first function argument reference , which stores the values (only) in the pendingDNS state subterm of the client
(Line 2 of Algorithm 34). As the client sent the request to the AS, we conclude that the client processed the corresponding
DNS response and stores reference into pendingRequests in Line 15 of Algorithm 39 (and removes the value from
pendingDNS in Line 17 of Algorithm 39).
Thus, the values t1 and t2 are stored only at the client, and only in the pendingRequests state subterm in a reference
value with reference[responseTo ≡ REGISTRATION].
If the client never processes the registration response, then it will not retrieve this pendingRequests entry, and as the
client is honest in Sn, we conclude that the attacker cannot derive t1 and t2.
If the client receives the response, it will process it in Line 40 of Algorithm 3 (as this is the only place where a client
processes a response with reference[responseTo] ≡ REGISTRATION). The client retrieves both values from reference
and stores them in its asAccounts state subterm in Line 49 of Algorithm 3. Now, we can apply Lemma 4 and Lemma 6
and conclude that t1 and t2 will never leak, and in particular, will not be derivable by the attacker in Sn.

Induction Step: We assume that the statement is true for position i and will prove it for i′ := i+ 1. For this, we consider the
processing step I = (Si, Ei, N i)→ (Si

′
, Ei

′
, N i′).

If the AS does not change Si(as).clients[clientId ], then Si
′
(as).clients[clientId ][mtls_key] ≡

Si(as).clients[clientId ][mtls_key] and Si
′
(as).clients[clientId ][jwt_key] ≡ Si(as).clients[clientId ][jwt_key],

and and the property still holds true. Thus, we consider all cases in which the AS changes Si(as).clients[clientId ]. An
honest AS modifies its clients state subterm only in Line 51 of Algorithm 11 and Line 57 of Algorithm 11 (i.e., the
/manage endpoint) and in Line 24 of Algorithm 13 (the /reg endpoint).
Case 1: Line 51 of Algorithm 11 Here, the AS is processing a DCM update request. Let
〈x, y, enca(〈updateReq , k〉, pkas)〉 be the input event of the processing step (the message has this structure as
the AS is executing the PROCESS_HTTPS_REQUEST function (Algorithm 11), which is only called by the generic
HTTPS server in Line 9 of Algorithm 39, i.e., the message is an encrypted HTTP request, see Line 8 of Algorithm 39).
The AS updates Si(as).clients[clientId ] with clientId ≡ updateReq .body[clientId] (Line 21 of Algorithm 11). The
AS also checks that updateReq .headers[Authorization][Bearer] ≡ Si(as).clients[clientId ][reg_at] (Line 25 and
Line 26 of Algorithm 11).
As shown in Lemma 15, the registration access token never changes, i.e., Si(as).clients[clientId ][reg_at] ≡
Sr ′(as).clients[clientId ][reg_at]. As shown in Lemma 16, only c and as can derive this access token. As an
honest AS never sends HTTPS requests with an Authorization header and clientId in the request body (the only
request that an AS sends with an Authorization header is in Line 304 of Algorithm 11), it follows that c created the
request.
The remaining proof is similar to the previous case (DCR): The AS takes the key values from the request, i.e., ∃i, j ∈ N
s.t.
• Si

′
(as).clients[clientId ][mtls_key] ≡ updateReq .body[jwks].i.[val], and

• Si
′
(as).clients[clientId ][jwt_key] ≡ updateReq .body[jwks].j.[val], and

• updateReq .body[jwks].i.[use] ≡ TLS, and
• updateReq .body[jwks].j.[use] ≡ sig

(see Lines 29-31, Lines 35-36, and Line 51 of Algorithm 11).
An honest client creates PUT requests only in Line 56 of Algorithm 9 (i.e., when sending a DCM update request), and
sets updateReq .body[jwks].i.[val] := pub(t3) and updateReq .body[jwks].j.[val] := pub(t4), with t3, t4 being fresh
nonces (see Lines 43-46 and Line 55 of Algorithm 9).
In Line 56 of Algorithm 9, the client calls the HTTPS_SIMPLE_SEND function with t3 and t4 in the first function argument
reference ′, which stores the values (only) in the pendingDNS state subterm of the client (Line 2 of Algorithm 34).
When processing the corresponding DNS response, the client stores reference ′ into pendingRequests in Line 15 of
Algorithm 39 (and removes the value from pendingDNS in Line 17 of Algorithm 39).
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Thus, the values t3 and t4 are stored only at the client, and only in the pendingRequests state subterm in a reference
value with reference ′[responseTo ≡ CLIENT_MANAGEMENT].
Once the client receives the response, it will process it in Line 10 of Algorithm 3 (as this is the only place where
a client processes a response with the CLIENT_MANAGEMENT reference value). There, the client retrieves both values
from reference ′ and stores them in its asAccounts state subterm in Line 23. Now, we can again apply Lemma 4 and
Lemma 6 and conclude that t3 and t4 will never leak, and in particular, will not be derivable by the attacker in Sn.

Case 2: Line 57 of Algorithm 11 In this case, the AS changes only Si(as).clients[clientId ][active], i.e., the keys
are the same as in Si and the property still holds true.

Case 3: Line 24 of Algorithm 13 In this case, the AS does not change Si(as).clients[clientId ]: The AS
chooses a client identifier clientId ′ from Si(as).pendingClientIds (Line 2 of Algorithm 13) and stores
Si(as).clients[clientId ′]. However, clientId 6= clientId ′, as pendingClientIds cannot contain a term used as
a key for the clients state subterm.

�

Lemma 18 (Access Token can only be used by Honest Client). For
• every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI with a network attacker,
• every resource server rs ∈ RS that is honest in Sn,
• every identity id ∈〈〉 srs0 .ids,
• every processing step in ρ

Q = (SQ, EQ, NQ)
eQin→rs
−−−−−→
rs→EQout

(SQ
′
, EQ

′
, NQ′)

• every resourceID ∈ S with as = authorizationServerOfResourcers(resourceID) being honest in SQ,
it holds true that:

If ∃r, x, y, k,mresp. 〈x, y, encs(mresp, k)〉 ∈〈〉 EQout such that mresp is an HTTP response, r := mresp.body[resource], and
r ∈〈〉 SQ′(rs).resourceNonce[id ][resourceID ], then

(I) There exists a processing step

P = (SP , EP , NP )
ePin→rs−−−−−→
rs→EPout

(SP
′
, EP

′
, NP ′)

such that
1) either P = Q or P prior to Q in ρ, and
2) ePin is an event 〈x, y, enca(〈mreq, k1〉, k2)〉 for some x, y, k1, and k2 where mreq ∈ TN is an HTTP request which

contains a term (access token) t in its Authorization header, i.e., t ≡ mreq.headers[Authorization].2, and
3) r is a fresh nonce generated in P at the resource endpoint of rs in Line 48 of Algorithm 18.

(II) t is bound to a key k ∈ TN , as , a client identifier clientId ∈ TN and id in SQ (see Definition 10 ).
(III) If there exists a client c ∈ C such that clientId has been issued to c by as in a previous processing step (see Definition 11),

and if c is honest in Sn, then the message in ePin was created by c.

PROOF. An honest resource server sends HTTPS responses with a resource dictionary key only in Line 84 of Algorithm 18
and Line 45 of Algorithm 19.
Case 1: Line 84 of Algorithm 18

First Postcondition In the same processing step, i.e., P = Q, the resource server received an HTTPS request with an
access token and generated the resource:
eQin is an event containing an HTTPS request, as Algorithm 18 is only called by the generic HTTPS server in Line 9
of Algorithm 39. As the check done in Line 7 of Algorithm 39 was true and the stop in Line 8 was not executed, it
follows that the input event of Algorithm 39 was an event containing an HTTPS request mreq (as in the first statement
of the post-condition of the lemma).
mreq contains an Authorization header (Line 20 of Algorithm 18).
The resource that is sent out in Line 84 of Algorithm 18 is a freshly chosen nonce generated in the same processing
step in Line 48 of Algorithm 18 (see also Line 75 and Line 81 of Algorithm 18). This concludes the proof of the first
post-condition.

Second Postcondition As Line 84 of Algorithm 18 is executed, it follows that the condition in Line 50 of Algorithm 18
is false, i.e., extractmsg(mreq.headers[Authorization].2) is a structured access token (see Lines 23 and 49).
The access token is signed by authorizationServerOfResourcers(resourceID): The value of responsibleAS (in Line 16)
is equal to
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SQ(rs).resourceASMapping[resourceID ] (Line 16 of Algorithm 18)
≡ srs0 .resourceASMapping[resourceID ] (value is never changed)
∈ dom(authorizationServerOfResourcers(resourceID)) (Definition 9)

As required by the precondition of the lemma, as = authorizationServerOfResourcers(resourceID) is honest in SQ.
The signature of the access token is checked in Line 64 of Algorithm 18 using the verification key

asInfo[as_key]

≡SQ(rs).asInfo[responsibleAS ][as_key] (responsibleAS ∈ dom(as), Line 19)
≡ srs0 .asInfo[responsibleAS ][as_key] (value is never changed)

≡ signkey(dom−1(responsibleAS )) (Definition 9)
≡ signkey(as)

The authorization server as only uses this key in the following locations:
• Line 17 of Algorithm 11: Endpoint returning public key
• Line 97 of Algorithm 11: Signing authorization response
• Line 200 of Algorithm 11: Signing access token
• Line 212 of Algorithm 11: Signing ID token
• Line 227 of Algorithm 11: Signing introspection response

Authorization responses, ID tokens, and introspection responses signed by an authorization server do not con-
tain a cnf claim (see Lines 91-97 of Algorithm 11 for authorization responses, Lines 207-212 of Algo-
rithm 11 for ID tokens, and Line 227 of Algorithm 11 for introspection responses). Thus, it follows that
extractmsg(mreq.headers[Authorization].2) is an access token created by as in Line 200 of Algorithm 11 (note
that the access token checked by the RS contains a non-empty cnf value, see Line 29, Line 45, and Line 62 of
Algorithm 18).

Let O = (SO, EO, NO)
eOin→as−−−−−→
as→EOout

(SO
′
, EO

′
, NO ′) be the processing step in which the authorization server

created and signed the access token. After finishing the processing step, as stores the access token in
SO
′
(as).records.i[access_token], for some natural number i (as Line 203 of Algorithm 11 was executed by the

authorization server). Note: we know that i is a natural number and not a “longer” pointer due to the last condition in
Line 157 and Line 164 of Algorithm 11.
The structured access token contains a value extractmsg(mreq.headers[Authorization].2)[sub] ∈〈〉 SQ(rs).ids
(Line 49, 71, and 72 of Algorithm 18). This identity is used as a dictionary key for storing the resource (see Line 74 of
Algorithm 18). The ids stored at the resource server are never changed, i.e., SQ(rs).ids ≡ srs0 .ids. When creating the
access token, the authorization server takes this value from SO(as).records.i[sub] with the same i as above (Line 157
or Line 164 of Algorithm 11, see also 199 of Algorithm 11). As the remaining lines of the token endpoint do not
change this value, it follows that SO(as).records.i[sub] ≡ SO ′(as).records.i[sub].
From the successful check of Line 62 of Algorithm 18 (as we assume that the resource server returns a resource in
Line 84), it follows that either
• accessTokenContent [cnf].1 ≡ x5t#S256 or
• accessTokenContent [cnf].1 ≡ jkt,

as cnfValue is set in Line 29 or Line 45 of Algorithm 18.
The authorization server sets the cnf value of access tokens only in Line 199 of Algorithm 11. The value is determined
either in Line 179 or Line 190 of Algorithm 11, and the authorization server stores the cnf value into the same
record as the access_token and sub values, see Line 204 of Algorithm 11, i.e., SO ′(as).records.i[cnf] is either
[jkt : hash(k)] or [x5t#S256 : hash(k)], for some value k.
The record entry also contains the client id value clientId that was authenticated at the endpoint, see Line 148 and
Line 165 of Algorithm 11. The AS does not change this value at the token endpoint, i.e., SO ′(as).records.i[client_id]
contains this client id.
As authorization servers do not remove sequences from their records state subterm, it follows that the access token is
bound do some term k ∈ TN , the authorization server as , a clientId , and id in SQ, by which we conclude the proof
of the second postcondition for this case.

Third Postcondition
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Let c ∈ C be honest in Sn.

Case 1.3.1: AS created the cnf value in Line 179 of Algorithm 11:
Client authenticated at AS. Let req token be the token request that the AS processes in O, i.e., eOin =
〈x′, y′, req token〉, for some values x′,y′. In Line 179 of Algorithm 11, the AS sets the cnf value to
hash(extractmsg(req token.headers[DPoP])[headers][jwk]) (see Lines 170, 171, 172, and Line 179 of Algo-
rithm 11).
As the identifier clientId was authenticated at the token endpoint, and as this identifier has been issued to c, it
follows that c created the request req token in a previous processing step L = (Sl, El, N l)→ (Sl

′
, El
′
, N l′).

Key to which AT is bound to is only known to client. The token request contains either an authorization code
or an authentication request identifier, i.e., code ∈ req token.body or auth_req_id ∈ req token.body (see Line 156
and Line 163 of Algorithm 11). An honest client creates requests containing an authorization code or an
authorization request identifier only in Line 43 of Algorithm 4 and Line 40 of Algorithm 5. In both cases, it holds
true that extractmsg(req token.headers[DPoP])[headers][jwk] ≡ pub(clientSignKey), with clientSignKey ≡
Sl(c).asAccounts[selectedAS ][sign_key] and some value selectedAS (see Lines 12, 37-40 of Algorithm 4 and
Lines 9, 34-37 of Algorithm 5). As shown in Lemma 4, only c can derive clientSignKey , i.e., clientSignKey 6∈
d∅(S

n(p))for all processes p 6= c.
Request was created by client. As the structured access token contains the value accessTokenContent [cnf].1 ≡

jkt, and accessTokenContent [cnf].2 is set to hash(pub(clientSignKey)), and as the RS checks these values
against the resource request mreq (Line 62 of Algorithm 18), it follows that the RS executed Line 45 of
Algorithm 18 (as this is the only place where the RS creates a value cnfValue with cnfValue.1 ≡ jkt). The corre-
sponding key is taken from the resource request, i.e., the key is extractmsg(mreq.headers[DPoP])[headers][jwk]
(see Lines 31-33 of Algorithm 18)
All preconditions of Lemma 14 are true, with dpopProof ≡ mreq.headers[DPoP]:

• checksig(dpopProof , pub(clientSignKey)) ≡ > (see Line 34 of Algorithm 18)
• extractmsg(dpopProof )[payload][htu].host ∈ dom(rs) (see Line 38 of Algorithm 18 and Lemma 2)
• ath ∈〈〉 extractmsg(dpopProof )[payload], (see Line 42 of Algorithm 18)
• extractmsg(dpopProof )[payload][nonce] ∈ SQ(rs).dpopNonces (see Line 40 of Algorithm 18)
As clientSignKey 6∈ d∅(Sn(p))for all processes p 6= c (see above), we can apply Lemma 14 and conclude that
in SQ, dpopProof can only be known by c and rs . The only places where a resource server sends a request
are Lines 60 and 82 of Algorithm 18. In the first case, the request in question is a token introspection request
whose Authorization header uses the Basic scheme. Processing of such a request by the resource server would
lead to an empty EQout in Line 47 of Algorithm 18. In the latter case, the resource server leaks the resource
request – but only after invalidating the mTLS nonce (Lines 26f. of Algorithm 18) or DPoP nonce (Line 44 of
Algorithm 18), i.e., processing this request again would lead to an empty EQout in Line 26 of Algorithm 18, or
Line 40 of Algorithm 18. Hence, resource servers do not send requests with valid DPoP or mTLS nonces to
themselves and it follows that only c could have created the request ePin .

Case 1.3.2: AS created the cnf value in Line 190 of Algorithm 11:
Note that in this case, SO(as).clients[clientId ][client_type] is equal to pkjwt_mTLS or mTLS_mTLS
(see Line 167 and Line 180 of Algorithm 11). The structured access token contains the value
accessTokenContent [cnf].1 ≡ x5t#S256, and accessTokenContent [cnf].2 is set to hash(mTlsKey). The value
mTlsKey is set to mtlsInfo.2 in Line 189 of Algorithm 11. The sequence mtlsInfo is chosen in Line 148 or Line 187
of Algorithm 11. In both cases, mTlsKey is set to Sm.(as).clients[clientId ][mtls_key], with (Sm, Em, Nm)
being some configuration prior to (SO, EO, NO):

• Line 148 of Algorithm 11: mtlsInfo is the third entry of the return value of AUTHENTICATE_CLIENT
(Algorithm 12). AUTHENTICATE_CLIENT determines the client identifier clientId from the HTTP request and
also determines the type of the client (see Lines 7, 8, 20, 21). As the type of the client is either pkjwt_mTLS
or mTLS_mTLS, the body of the request does not contain a value client_assertion, as otherwise, the stop in
Line 10 of Algorithm 12 would have prevented the authorization server to issue the access token. In particular,
the return in Line 30 was executed and the third return value was taken from SO(as).mtlsRequests[clientId ]
(Line 19 of Algorithm 12; Note that this is the same client identifier to which the token is bound). Initially,
the mtlsRequests subterm of the authorization server’s state is empty (see Definition 8), i.e., the AS added
mtlsInfo in some processing step M = (Sm, Em, Nm)→ (Sm′, Em′, Nm′).
The authorization server adds values to mtlsRequests only in Line 238 of Algorithm 11. The second sequence
entry is Sm(as).clients[clientId ][mtls_key] (see Line 235 of Algorithm 11).
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• Line 187 of Algorithm 11: mtlsInfo is taken from SO(as).mtlsRequests[clientId ]. As shown in the previous
case, the second sequence entry of mtlsInfo is equal to Sm(as).clients[clientId ][mtls_key], for some
configuration previous (Sm, Em, Nm).

When adding values to mtlsRequests in Line 238 of Algorithm 11, the authorization server ensures that the value
of the key is not 〈〉 (Line 236 of Algorithm 11), i.e., clientId ∈〈〉 Sm(as).clients. Thus, we can apply Lemma 17
an conclude that there exists a nonce kmtls such that Sm(as).clients[clientId ][mtls_key] ≡ pub(kmtls) and for
every process p 6= c it holds true that kmtls 6∈ d∅(Sn(p)).
The structured access token contains the values accessTokenContent [cnf].1 ≡ x5t#S256 and
accessTokenContent [cnf].2 ≡ hash(pub(kmtls)). Thus, the resource server executes Line 29 of Algorithm 18 (in
the processing step P ). This means that ePin contains a value mtlsNonce in the body of the request such that
〈mtlsNonce, pub(kmtls)〉 ∈〈〉 SP (rs).mtlsRequests (see Lines 25, 26, 62).
If the client c is honest in Sn, then it is also honest in SP , and we can apply Lemma 11 and conclude that only c
and rs can derive mreq.body[TLS_binding]. As resource servers do not send requests containing TLS_binding in
the request body, it follows that the HTTP request mreq was created by c.

Case 2: Line 45 of Algorithm 19
First Postcondition In Line 45 of Algorithm 19, the resource server is processing an HTTP response resp introsp (with

the reference TOKENINTROSPECTION, see Line 2 of Algorithm 19). An honest resource server sends HTTP requests
with this reference value only by calling HTTPS_SIMPLE_SEND in Line 61 of Algorithm 18. Let req introsp be
the corresponding request to resp introsp. The processing step in which the resource server emitted req introsp is P (as
in the postcondition of the lemma): The input event of P contains an HTTP request mreq (again as in the first
postcondition) with an access token t ≡ mreq.headers[Authorization].2 (Line 20 of Algorithm 18). The resource
r that the resource server sends out in Line 45 of Algorithm 19 (in the processing step Q) was stored by the
resource server in SP ′pendingResponses in Line 53 of Algorithm 18, and the resource was generated in Line 48
of Algorithm 18 (in the processing step P ).

Second Postcondition The request req introsp was sent by rs to a domain of as: responsibleAS in Line 16
of Algorithm 18 is a domain of as , as shown in the proof of the first case. Thus, it follows that
SP (rs).asInfo[responsibleAS ][as_introspect_ep] is 〈URL, S, domas , /introspect, 〈〉,⊥〉, with domas ∈
dom(as) (see Definition 9).
Furthermore, req introsp contains the value mreq.headers[Authorization].2, see Line 23 and Line 59 of Algorithm 18.
The authorization server as processes this request in the introspection endpoint in Line 216 of Algorithm 11. As
the resource server did not stop in Line 23 of Algorithm 19, we conclude that the access token sent by the resource
server in P is active, i.e., the authorization server executed Line 225 of Algorithm 11. Thus, there is a value record
in the records state subterm of the authorization server’s state with the access token (Line 220 of Algorithm 11),
and in this record, there is a cnf and a subject entry (Line 225 of Algorithm 11) The cnf and subject values are
added to the body of the introspection response, and the resource server checks that the subject value is contained
in the list of ids that the resource server stores in SQ(rs).ids (Line 28 of Algorithm 19).
An honest authorization server adds cnf values to an entry of its records state entry only in the token endpoint
in Line 204 of Algorithm 11. Thus, this value is either [jkt : hash(k)] (see Line 179 of Algorithm 11), or
[x5t#S256 : hash(k)] (see Line 190 of Algorithm 11), for some value k.
In addition, the record entry also contains the client id value clientId that was authenticated at the endpoint, see
Line 148 and Line 165 of Algorithm 11.

Third Postcondition The resource server checks in Line 25 of Algorithm 19 that the cnf value that the authorization
server put into the response resp introsp is equal to the cnfValue that the resource server stored in Line 53 of
Algorithm 18 in the processing step P . The resource server does the same checks in P as in the first case (i.e.,
when sending out the response in Line 84 of Algorithm 18). Thus, it holds true that the request processed in P
either contains a DPoP proof that only c and rs can derive, or an mTLS nonce that only c and rs can derive. The
proof is analogous to the proof of the first case, i.e., only c could have created the request ePin .

�

Lemma 19 (Redirect URI Properties). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in S, every
client c ∈ C that is honest in S, every client identifier clientId that has been issued to c by as in a previous processing
step (see Definition 11), and every requestUri , all redirect URIs for c stored at as are HTTPS URIs and belong to c.
Or, more formally: Let rec = S(as).authorizationRequests[requestUri ], then rec[client_id] ≡ cliendId implies both
rec[redirect_uri].protocol ≡ S, and rec[redirect_uri].host ∈ dom(c)
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PROOF. Initially, the authorizationRequests state subterm of as is empty (see Definition 8). The only places in which an
honest authorization server writes to its authorizationRequests state subterm are:
• Line 73 of Algorithm 11: Here, the authorization server does not change or create values under the client_id or
redirect_uri keys.

• Line 142 of Algorithm 11: See below.
In the latter case, the authorization server is processing a pushed authorization request, i.e., an HTTPS request req to the /par
endpoint. Let reqBody := req .body if the request is not signed, and otherwise, let reqBody := extractmsg(req .body). In order
to get to Line 142 of Algorithm 11, req must contain valid client authentication data (see Lines 116 and 120), in particular,
reqBody must contain a client id (under key client_id) and either a value under key TLS_AuthN or client_assertion.
In the latter case, Line 4 of Algorithm 12 together with Line 12 of Algorithm 12 and Line 120 of Algorithm 11 ensure that
extractmsg(reqBody [client_assertion])[iss] ≡ reqBody [client_id]. We note that reaching Line 142 of Algorithm 11
implies that the current processing step will output an event (there are no stops between Line 142 and Line 144 of Algorithm 11).
Hence, we can apply Lemma 13.

When reaching Line 142 of Algorithm 11, req also must contain a redirectUri value in reqBody [redirect_uri] (see also
Line 123 of Algorithm 11). Furthermore, this redirectUri must be an HTTPS URI (Line 125 of Algorithm 11) and this is the
value stored in the authorization server’s authorizationRequests state subterm (in a record under the key redirect_uri),
together with reqBody [client_id] (under key client_id).

Line 114 of Algorithm 11 ensures that reqBody contains a field code_challenge_method with value S256.
From Lemma 13, we know that c must have created req . Since c is honest and the only place in which an honest client

produces an HTTPS request with a code_challenge_method with value S256 is in Line 68 of Algorithm 8 (with the
corresponding part of the body containing the code_challenge_method value being chosen in Line 49 of Algorithm 8),
we can conclude that the value of reqBody [redirect_uri] is the one selected in Lines 2f. of Algorithm 8. This implies
req .body[redirect_uri].host ∈ dom(c) (or extractmsg(req .body)[redirect_uri].host ∈ dom(c) in the case of a signed
request) and hence rec[redirect_uri].host ∈ dom(c). �

Lemma 20 (Integrity of Client’s Session Storage). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web
system FAPI with a network attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, and
every login session id lsid , we have that if lsid ∈ S(c).sessions, then all of the following hold true:

1) selected_AS ∈ S(c).sessions[lsid ]
2) cibaFlow ∈ S(c).sessions[lsid ]
3) for all configurations (S′, E′, N ′) after (S,E,N) in ρ we have S′(c).sessions[lsid ][selected_AS] ≡

S(c).sessions[lsid ][selected_AS]
4) for all configurations (S′, E′, N ′) after (S,E,N) in ρ we have S′(c).sessions[lsid ][cibaFlow] ≡

S(c).sessions[lsid ][cibaFlow]

PROOF. Since we have S0(c).sessions ≡ 〈〉 (Definition 7), we know that if lsid ∈ S(c).sessions, such an entry must have
been stored there by c. Clients only ever store/add such an entry in Line 10 of Algorithm 2 and Line 40 of Algorithm 2. In
both cases, the keys selected_AS and cibaFlow are part of the stored entry, and the key used to refer to the entry inside
sessions is a fresh nonce (i.e., lsid is a fresh nonce there). Hence, whenever a client first stores an entry in sessions under
key lsid , this entry contains the keys selected_AS and cibaFlow.

It is easy to see that Line 10 and Line 40 of Algorithm 2 are indeed the only places in which a client stores any value under
the selected_AS and cibaFlow keys in the sessions state subterm. Similarly, it is easy to check that these lines are also
the only places in which a client (over)writes a whole entry in the sessions state subterm. Hence, we can conclude: The
selected_AS and cibaFlow keys are present whenever a client adds an entry to the sessions state subterm and neither the
value stored under these keys, nor the sessions entry itself are overwritten or removed anywhere, implying 1) and 2). In
addition, if the client ever executes Line 10 or Line 40 of Algorithm 2 again, it will never overwrite an existing entry, because
it will use a fresh login session id, thus we have 3) and 4). �

Lemma 21 (Integrity of Client’s oauthConfigCache). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web
system FAPI with a network attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in
S, every client c ∈ C that is honest in S, and every domain d ∈ dom(as), it holds true that if d ∈ S(c).oauthConfigCache,
we have all of the following:

1) S(c).oauthConfigCache[d][issuer] ≡ d
2) S(c).oauthConfigCache[d][auth_ep] ≡ 〈URL, S, d, /auth, 〈〉,⊥〉
3) S(c).oauthConfigCache[d][token_ep] ≡ 〈URL, S, d, /token, 〈〉,⊥〉
4) S(c).oauthConfigCache[d][par_ep] ≡ 〈URL, S, d, /par, 〈〉,⊥〉
5) S(c).oauthConfigCache[d][introspec_ep] ≡ 〈URL, S, d, /introspect, 〈〉,⊥〉
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6) S(c).oauthConfigCache[d][jwks_uri] ≡ 〈URL, S, d, /jwks, 〈〉,⊥〉
7) S(c).oauthConfigCache[d][reg_ep] ≡ 〈URL, S, d, /reg, 〈〉,⊥〉
8) S(c).oauthConfigCache[d][backchannel_authentication_endpoint] ≡ 〈URL, S, d, /backchannel-authn, 〈〉,⊥〉

We note that this implies that all these entries in S(c).oauthConfigCache[d] are never changed once they have been stored
and that all entries are created in the same processing step.

PROOF. We start by noting that S0(c).oauthConfigCache ≡ 〈〉 (Definition 7), i.e., the oauthConfigCache state
subterm is initially empty. An honest client only ever writes to its oauthConfigCache state subterm in Line 38 of
Algorithm 3 when processing an HTTPS response. Hence, d ∈ S(c).oauthConfigCache implies that there must have
been a processing step Q = (SQ, EQ, NQ) → (SQ

′
, EQ

′
, NQ′) in ρ such that d 6∈ SQ(c).oauthConfigCache and

d ∈ SQ′(c).oauthConfigCache. In Q, PROCESS_HTTPS_RESPONSE must have been called with a reference as second
argument, such that reference[responseTo] ≡ CONFIG. In addition, reference[session] must contain a value sessionId
such that SQ(c).sessions[sessionId ][selected_AS] ≡ m.body[issuer] (Line 36 of Algorithm 3). From Line 38 of
Algorithm 3, we also know that SQ(c).sessions[sessionId ][selected_AS] ≡ d (cf. Lemma 20). Hence, we already have that
d ∈ S(c).oauthConfigCache implies 1).

With Lemma 3, we have that there must be a processing step P = (SP , EP , NP ) → (SP
′
, EP

′
, NP ′) prior

to Q in ρ in which c called HTTPS_SIMPLE_SEND with reference as first argument. Such a reference (one with
responseTo set to CONFIG) is only created in Line 9 of Algorithm 8. The accompanying message’s host value
there is SP (c).sessions[sessionId ][selected_AS], i.e., by Lemma 20, d. That same message’s path value is either
/.well_known/openid-configuration or /.well_known/oauth-authorization-server. From Lemma 46, Algorithm 34,
and Lines 10ff. of Algorithm 39 (and because as does not leak tlskey(d)), we know that the request given to
HTTPS_SIMPLE_SEND in P can only be answered by as (and c, but clients do not reply to requests with the aforementioned
path values).

Such a request, i.e., one with the path values mentioned above, is processed by as in Lines 2ff. of Algorithm 11. From
looking at those Lines, it is obvious that the response sent in Line 14 of Algorithm 11 contains a body with a dictionary
fulfilling 2)–8). Using Lemma 46 once more, we can conclude that c processes such a response in Q and thus we have 2)–8).
�

Lemma 22 (Authorization code secrecy). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in S, every
client c ∈ C that is honest in S, every client identifier clientId that has been issued to c by as in a previous processing step
(see Definition 11), every identity id ∈ IDas with b = ownerOfID(id) being an honest browser in S, every authorization
code code 6≡ ⊥ for which there is a record rec ∈〈〉 S(as).records with rec[code] ≡ code, rec[client_id] ≡ clientId , and
rec[subject] ≡ id and every process p 6∈ {as, c, b}, it holds true that code 6∈ d∅(S(p)).

PROOF.
1) For code to end up in

(
S(as).records.x

)
[code] (with x ∈ N), the as has to execute Line 89 of Algorithm 11, since the

only other places where an honest authorization server writes to the – initially empty, see Definition 8 – records state
subterm are:

• Line 194 of Algorithm 11: This line overwrites the stored authorization code with ⊥, i.e., codes written by this line
are not relevant to this lemma.

• Line 196 of Algorithm 11: This line overwrites a stored authorization request identifier with ⊥.
• Line 203 of Algorithm 11 and Line 204 of Algorithm 11: In these two places, the authorization server does not modify

the code entry. Note that ptr in these places cannot point “into” one of the records (see condition in Line 157 of
Algorithm 11).

• Line 297 of Algorithm 11: Here, the client adds a new entry to records. The client takes a value from
cibaAuthnRequests in Line 293 of Algorithm 11 and adds subject, issuer, and auth_req_id values in
Lines 294f. of Algorithm 11. cibaAuthnRequests is initially empty (see Definition 8). The entries that the client
adds to cibaAuthnRequests in Line 263 of Algorithm 11 do not contain a code value (see Lines 252ff. of
Algorithm 11). The client modifies existing cibaAuthnRequests entries in Line 277 of Algorithm 11 (modifying the
ciba_auth2_reference value), in Line 292 of Algorithm 11 (modifying the authenticateUser value), and in Line 9
of Algorithm 15 (modifying the cibaUserAuthNNonce value). Thus, we conclude that records in cibaAuthnRequests

do not contain a code value, and therefore, records added in Line 297 of Algorithm 11 do not contain a code value.
2) A code stored in Line 89 of Algorithm 11 is a fresh nonce (Line 88 of Algorithm 11). Hence, a code generated by as

in that line in some processing step si → si+1 is not known to any process up to and including si. Let ein be the event
processed by as in si → si+1. In order to reach Line 89 of Algorithm 11, ein must contain an HTTPS request req to the
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/auth2 endpoint. The only place in which an honest as sends out the code value is the HTTPS response to req – i.e., if
the sender of req is honest, this response is only readable by the sender of req .

3) In addition, req must contain a valid identity–password combination – because as stores code along with identity and
clientId only if password ≡ secretOfID(identity). Since as does not send requests to itself and secretOfID(identity) is
only known to as and ownerOfID(identity), req must have been created by ownerOfID(identity) if the sender of req is
honest. W.l.o.g., let identity ≡ id , i.e., req was created by b.

4) Since the origin header of req must be a domain of as and req must use the POST method, we know that req was
initiated by a script of as . In particular, req must have been initiated by script_as_form (as this is the only script
ever sent by as that triggers requests to the /auth2 path; the only other script provided by as is script_as_ciba_form
(Algorithm 17), which triggers messages to the /ciba-auth2 endpoint). This script does not leak code after it is returned
from as , since it uses a form post to transmit the credentials to as , and the window is subsequently navigated away.
Instead, as provides an empty script in its response to req (Line 102 of Algorithm 11). This response contains a
location redirect header. It is now crucial to check that this redirect does not leak code to any process except for
c. The value of the location header is taken from S(as).authorizationRequests[requestUri ][redirect_uri] where
S(as).authorizationRequests[requestUri ][client_id] ≡ clientId . With Lemma 19, we have that this URI is an
HTTPS URI and belongs to c. We therefore know that b will send an HTTPS request containing code to c. We now have
to check whether c or a script delivered by c to b will leak code . Algorithm 2 processes all HTTPS requests delivered to
c. As as redirected b using the 303 status code, the request must be a GET request. Hence, c does not process this request
in Lines 5ff. of Algorithm 2. If the request is processed in Lines 2ff. of Algorithm 2, c only responds with a script and
does not use code at all. Similarly, if the request is processed in Lines 35ff. of Algorithm 2, Lines 46ff. of Algorithm 2,
or Lines 51ff. of Algorithm 2, the client would not use the code value (and also not store the complete message in its
state). This leaves us with Lines 12ff. of Algorithm 2; here, the code value is (a) stored in the sessions state subterm
and (b) given the SEND_TOKEN_REQUEST function. The value from (a) is not accessed anywhere, hence, it cannot
leak. As for (b), we have to look at Algorithm 4. There, the code is included in the body of an HTTPS request under the
key code (Line 8 of Algorithm 4).

5) The HTTPS request (“token request”) prepared in Lines 8ff. of Algorithm 4 is sent to the token endpoint of as (which
was selected in b’s initial request and is bound to the authorization response via the 〈__Host, sessionId〉 cookie – see
Line 13 of Algorithm 2 and Line 69 of Algorithm 3). Since an honest client does not change the contents of an element
of oauthConfigCache once it is initialized with the selected authorization server’s metadata (see Line 9 of Algorithm 8,
Line 38 of Algorithm 3, and Lemma 21), the token endpoint to which the code is sent is the one provided by as at its
metadata endpoint. As as is honest, the token endpoint returned by its metadata endpoint uses a domain which belongs
to as and protocol S. With Lemma 46 we can conclude that the token request as such does not leak code.

6) As the token request is a HTTPS request sent to a domain of as and as is honest, only as can decrypt the request and
extract code . Requests to the token endpoint are processed in Lines 145ff. of Algorithm 11, It is easy to see that the code
is not stored or send out there, hence, it cannot leak. �

Lemma 23 (Unique Code Verifier for Each Login Session ID at Client). For any run ρ = ((S0, E0, N0), . . . ,
(Sn, En, Nn)) of a FAPI web system FAPI with a network attacker, every configuration (Si, Ei, N i) in ρ, every
client c ∈ C that is honest in Si with client identifier clientId issued to c by as (in some processing step scid −→ scid

′
),

every login session id lsid , and every term codeVerifier , we have that Si(c).sessions[lsid ][code_verifier] ≡ codeVerifier
implies:

(I) Sj(c).sessions[lsid ][code_verifier] ≡ codeVerifier for all j ≥ i, and
(II) Si(c).sessions[lsid ′][code_verifier] 6≡ codeVerifier for all lsid ′ 6≡ lsid .

PROOF. We start by noting that an honest client only ever stores something in an entry in sessions under key code_verifier
in Line 53 of Algorithm 8. The value stored there is always a fresh nonce (see Line 47 of Algorithm 8). Hence, we can
conclude (II).

To get (I), we need to prove that a stored code verifier is never overwritten. For this, we show that a client executes Line 53
of Algorithm 8 at most once with the same login session id (i.e., sessionId in the context of said line). For this, we look
at the places where Algorithm 8 (PREPARE_AND_SEND_INITIAL_REQUEST) is called. Note that the first argument to
Algorithm 8 is the aforementioned sessionId :
Line 11 of Algorithm 2 Here, the first argument is a fresh nonce (see Line 9 of Algorithm 2), i.e., this line will never lead

to Algorithm 8 being called a second time with a given sessionId .
Line 39 of Algorithm 3 This line is only executed when the client processes an HTTPS response such that Algorithm 3

(PROCESS_HTTPS_RESPONSE) was called with a reference containing a key responseTo with value CONFIG. The
sessionId value used when calling Algorithm 8 is also taken from the reference (see Line 32 of Algorithm 3). I.e., we
have to check where this reference came from.
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reference is one of the arguments to PROCESS_HTTPS_RESPONSE, which is only called in Line 26 of Algorithm 39,
where the value for reference is taken from the client’s pendingRequests state subterm. The pendingRequests state
subterm is initially empty (Definition 7) and the only place where elements are added to this state subterm is Line 15
of Algorithm 39. There, in turn, the value for reference is taken (unchanged) from an entry in the pendingDNS state
subterm. Once again, this state subterm is initially empty and there is only one place in which entries are added to it: In
Line 2 of Algorithm 34, i.e., in HTTPS_SIMPLE_SEND, where reference is one of the arguments. Hence, we have to
look at places where HTTPS_SIMPLE_SEND is called with a reference such that reference[responseTo] ≡ CONFIG.
The only place where such a reference is passed to HTTPS_SIMPLE_SEND is Line 9 of Algorithm 8. However, this
call always ends in a stop and the call happens before the client executes Line 53 of Algorithm 8 – hence, if an execution
of Algorithm 8 leads to execution of Line 11 of Algorithm 2 and thus a subsequent call of Algorithm 8 (when processing
the response), both calls use the same sessionId , but Line 53 of Algorithm 8 (i.e., storing a code verifier) is executed at
most once.

Line 57 of Algorithm 3 This case is very similar to the previous one, except for the following changes: The responseTo

value in question is REGISTRATION instead of CONFIG, and the (only) place in which HTTPS_SIMPLE_SEND is called
with a suitable reference is Line 26 of Algorithm 8.

Line 63 of Algorithm 9 Here, the value for the first argument to Algorithm 8 is taken from a record in the client’s
pendingCIBARequests state subterm (Line 61 of Algorithm 9). Since that record is immediately removed from said state
subterm in Line 62 of Algorithm 9, before even calling Algorithm 8, this call cannot happen twice for a given record.
Hence, we have to examine where these records come from. Initially, the pendingCIBARequests state subterm is empty
(Definition 7) and the only place where elements are added to this state subterm is Line 41 of Algorithm 2. There, the
value in question is a fresh nonce (Line 38 of Algorithm 2). Hence, the call to Algorithm 8 in Line 63 of Algorithm 9
always uses a fresh value for the first argument. �

Lemma 24 (Request URIs do not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in ρ, every client identifier clientId , every authorization server as ∈ AS
that is honest in S, every client c ∈ C that is honest in S and that has been issued client identifier clientId by as (in some
processing step scid −→ scid

′
), every browser b ∈ B that is honest in S, every domain dc ∈ dom(c), every login session id lsid ,

every nonce codeVerifier with
(1) 〈〈__Host, sessionId〉, 〈lsid ,>,>,>〉〉 ∈ S(b).cookies[dc], and
(2) S(c).sessions[lsid ][code_verifier] ≡ codeVerifier , and
(3) S(c).sessions[lsid ][selected_AS] ∈ dom(as), and
(4) c does not leak the authorization request for lsid (see Definition 22),

then all of the following hold true:
(I) There is exactly one nonce requestUri , such that S(as).authorizationRequests[requestUri ][code_challenge] ≡

hash(codeVerifier), and
(II) only b, c, and as know requestUri , i.e., for all processes p /∈ {b, c, as}, we have requestUri /∈ d∅(S(p)).

PROOF.
(A) PAR endpoint uses TLS. All requests (and responses) at an authorization server’s pushed authorization request (PAR)

endpoint must be HTTPS requests (see Lines 2ff. of Algorithm 11), i.e., as long as the sender of the request and the
authorization server in question are honest, the contents of request and response are not leaked by these messages as such
(they may still leak by other means).

(B) hash(codeVerifier) does not leak. We start off by showing that hash(codeVerifier) does not leak to any pro-
cess other than c and as . For this, we look at how codeVerifier (from (2)) is generated and stored by c. The
only place in which an honest client – such as c – stores a value under key code_verifier in its session
storage is in PREPARE_AND_SEND_INITIAL_REQUEST in Line 53 of Algorithm 8. That value is generated
in the same function in Line 47 as a fresh nonce. Hence, at this point, hash(codeVerifier) is only derivable
by c. PREPARE_AND_SEND_INITIAL_REQUEST ends with the client sending a PAR request which contains
hash(codeVerifier) under the key code_challenge. So we have to check who receives/can decrypt that request. The PAR
request is sent to the pushed authorization request endpoint of the authorization server stored under key selected_AS
under lsid in the client’s session storage. As an honest client never changes this value once it is set (Lemma 21), we know
from (3) that the PAR request is sent to, i.e., encrypted for, as . An honest authorization server – such as as – only reads
a value stored under the key code_challenge in an incoming message when processing a request to its /par endpoint
(Lines 103ff. of Algorithm 11). There, the value stored under code_challenge – i.e., hash(codeVerifier) – is stored in
an authorization request record in the authorization server’s authorization requests storage (see Lines 127, 137, and 142 of
Algorithm 11). Since as is honest, it never sends out the code_challenge value (neither from the authorization requests
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storage, nor from the records storage to which the code_challenge is copied in Line 89 of Algorithm 11). Hence, the
value hash(codeVerifier) sent in the PAR request is not leaked “directly”.
However, this value would be derivable if codeVerifier leaks, i.e., we also have to prove that codeVerifier does not leak.
As noted above, this value is a fresh nonce stored in c’s session storage under the key code_verifier. The only place in
which a client accesses such a value is in function SEND_TOKEN_REQUEST, where the value is included in the body
of an HTTPS request under the key code_verifier (Lines 8f. of Algorithm 4) which is sent to the token endpoint of
the authorization server stored under key selected_AS under lsid in the client’s session storage – i.e., as by (3) and
Lemma 21. Hence, this request in itself does not leak codeVerifier .
The only place in which an honest authorization server reads a value stored under the key code_verifier from an
incoming message is when processing a token request in Line 154 of Algorithm 11. This value is not stored by the
authorization server, neither is it sent anywhere. Hence, codeVerifier does not leak.

(C) as stores hash(codeVerifier). Because the cookie from (1) includes the __Host prefix and b is honest, that cookie
must have been set by c: the cookies state subterm is initially empty (Definition 74), cookies with the __Host prefix
are only added in Line 4 of Algorithm 29, where the browser ensures the cookie was received via a secure connection
(Definition 70). Note that Line 11 of Algorithm 28 cannot add cookies with httpsOnly set to > (such as the one in (1))
to the browser’s state, because they get filtered out (see Definition 69).
Clients only ever set cookies with sessionId in the cookie name in two places: when processing a request to the
/start_ciba endpoint in Lines 35ff. of Algorithm 2 – however, in that case, the corresponding record S(c).sessions[lsid ]
in the client’s session storage has the value > stored under the cibaFlow key. This value never changes (Lemma 20),
and Lemma 26 gives us code_verifier 6∈ S(c).sessions[lsid ], i.e., a contradiction to (2).
Hence, the only place left where a client sets cookie with sessionId in the cookie name is when processing PAR responses
in Lines 58ff. of Algorithm 3. With (2) (note that a client will never change the value stored under code_verifier, see
Lemma 23), this implies that c sent a PAR request containing hash(codeVerifier) to as (see (B)) and got a response (because
the reference[responseTo] value to reach Lines 58ff. of Algorithm 3 must be PAR, see also Lemma 3). Hence, as must
have processed that PAR request as described in (B). Part of that processing is to store the value of code_challenge from
the request – i.e., hash(codeVerifier) here – in the authorization request storage. Thus, we can conclude that there must
be some requestUri ′ such that S(as).authorizationRequests[requestUri ′][code_challenge] ≡ hash(codeVerifier).

(D) Proof for (I). From (B), we have that only c and as know the value hash(codeVerifier) and do not use it in any
request except for a single PAR request from c to as . From (C), we have that as stores hash(codeVerifier) as part of
processing that PAR request. As as will use a fresh nonce as request URI for every processed PAR request (see Line 130
of Algorithm 11), and never changes the stored values (except for code), we can conclude that there is exactly one
requestUri such that S(as).authorizationRequests[requestUri ][code_challenge] ≡ hash(codeVerifier).

(E) Proof for (II). As shown above, requestUri is a fresh nonce chosen and stored by as when processing a PAR request
send by c. requestUri is not sent out by authorization servers anywhere, except in the response to the PAR request (under
the key request_uri) that lead to the “creation” of requestUri .
Since we already established that the receiver of, or more precisely, the only one who can decrypt, that PAR response
is c in (A), we now have to check how c uses requestUri . c only reads a value stored under the key request_uri
from an incoming message when processing the response to a PAR request in Lines 58ff. of Algorithm 3. While c does
store that value in its session storage, it never accesses that stored value. However, after processing the PAR response,
c constructs an authorization request containing requestUri as part of the query parameters (under key request_uri).
That authorization request is a redirect which “points” to the authorization endpoint of the authorization server stored
under key selected_AS under lsid in c’s session storage (i.e., as by (3)). By (4), we also know that c does not execute
Line 75 of Algorithm 3, i.e., does not leak the authorization request for lsid .
Before looking at the receiver of the aforementioned redirect, we note that as only ever reads the value of a request
parameter request_uri in Line 64 of Algorithm 11 – that value is neither stored, nor sent out by as .
The redirect sent out by c when processing the PAR response is an HTTPS response which – among other things – contains
a Set-Cookie header with a cookie of the form 〈〈__Host, sessionId〉, 〈lsid ,>,>,>〉〉. Note that this is the only place
where c sets such a cookie (see (C) for why this cookie cannot originate from Line 42 of Algorithm 2).
Since we know from (1) that b knows such a cookie, and (C) implies that c must have set this cookie, we know that the
HTTPS response containing the redirect with requestUri , sent by c, was processed (and in particular: decrypted) by b,
i.e., was sent to/encrypted for b.
We now only have to show that b does not leak requestUri . The aforementioned redirect contains a location header
(Line 68 of Algorithm 3) and status code 303, hence b will enter the location header handling in Line 11 of Algorithm 29
when processing that redirect (note that the redirect is sent by c with an empty script, i.e., no leakage through a script is
possible). This handling will either end in a stop without any changes to b’s state and no output event – which means
that b does neither store, nor send out requestUri – or with a call of HTTP_SEND in Line 27 of Algorithm 29. While
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HTTP_SEND does store the message to be send (containing requestUri ), that stored value is only ever accessed when
processing a DNS response and is then encrypted and sent out. We already established above that the redirection target is
one of as’s authorization endpoints and that as does not leak any requestUri values received there. Hence, we have that
only b, c, and as know requestUri , i.e., for all processes p /∈ {b, c, as}, we have requestUri /∈ d∅(S(p)). �

Lemma 25 (CIBA Login Session IDs do not Leak). For any run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of a FAPI web
system FAPI with a network attacker, every configuration (S,E,N) in ρ, every browser b ∈ B that is honest in Sn, every
client c ∈ C that is honest in Sn, every domain dc ∈ dom(c), every term bindingMsg ∈ TN , every term lsid ∈ TN , with
(a) 〈dc, bindingMsg〉 ∈〈〉 S(b).cibaBindingMessages, and
(b) S(c).sessions[lsid ][binding_message] ≡ bindingMsg

it hold true that only b and c know lsid , i.e., for all processes p /∈ {b, c}, we have lsid /∈ d∅(Sn(p)).

PROOF. Let 〈dc, bindingMsg〉 ∈〈〉 S(b).cibaBindingMessages. Initially, the cibaBindingMessages state subterm of the
browser is empty, i.e., sb0.cibaBindingMessages ≡ 〈〉 (Definition 74).

Thus, there exists a processing step

Q = (SQ, EQ, NQ)
eQin→b
−−−−→
b→EQout

(SQ
′
, EQ

′
, NQ′)

with (SQ
′
, EQ

′
, NQ′) prior to (S,E,N) in which the browser adds this pairing to cibaBindingMessages. An honest browser

adds entries to cibaBindingMessages only in Line 66 of Algorithm 30.
Here, the browser is processing an HTTPS response, i.e., there exists a term m s.t. eQin = 〈_, _,m〉 and there exists a key

k ∈ TN and a term plaintext ∈ TN such that plaintext ≡ decs(m, key), π1(plaintext) ≡ HTTPResp (Line 60 of Algorithm 30)
and binding_message ∈〈〉 plaintext .body (Line 65 of Algorithm 30).

The browser stores the values 〈request .host, plaintext .body[binding_message]〉 into SQ
′
(b).cibaBindingMessages,

where request is a term stored along with the key in pendingRequests, i.e., 〈_, request , _, key , _〉 ∈〈〉
SQ(b).pendingRequests (see Line 60 of Algorithm 30).

Initially, pendingRequests is empty (Definition 74). An honest browser adds values to pendingRequests with a key
only when sending out HTTPS requests in Line 81 of Algorithm 30 and previously storing the request in pendingRequests

(Line 76 of Algorithm 30), i.e., in a previous processing step, the browser emitted an HTTPS request with request being the
HTTP message. This HTTPS request is encrypted asymetrically with the key sb0.keyMapping[dc] (note that the browser never
changes its keyMapping state subterm).

I.e., only c can decrypt the message
Thus, the response was created by c in a previous processing step

P = (SP , EP , NP )
ePin→c−−−−→
c→EPout

(SP
′
, EP

′
, NP ′)

with (SP
′
, EP

′
, NP ′) prior to (SQ

′
, EQ

′
, NQ′). An honest client creates messages with the key binding_message used in

the body only in Line 43 of Algorithm 2 and Line 43 of Algorithm 8. In the second case, the client creates an HTTP request
(see Line 68 of Algorithm 8), i.e., the client created the response m (from eQin ) in Line 43 of Algorithm 2.

Before emitting the response, the client stores the binding message into SP ′(c).sessions[lsid ][binding_message] (Line 40
of Algorithm 2). Note that both the binding message and lsid are chosen as fresh nonces (Line 38 and Line 39 of Algorithm 2).

Besides of using the session id as a dictionary key, the client creates a Set-Cookie header with the value lsid (Line 42 of
Algorithm 2) and adds this header to the response (Line 44 of Algorithm 2). Only b can decrypt the response . When processing
the response, the browser adds lsid to its cookies.

The browser will only send lsid as cookies in requests to c, and only when sending HTTPS requests. When processing
requests, the client does not store or send out cookie values received in requests. Also, the client never sends out a sessions

dictionary key (i.e., session ids), and for a given record, never modifies the session id or binding message (i.e., a session id
known by a different process never replaces lsid ).

Lemma 26 (Client CIBA Session has no PKCE Verifier). For any run ρ of a FAPI web system FAPI with a network
attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, every term lsid ∈ TN , it holds true that if
S(c).sessions[lsid ][cibaFlow] = >, then code_verifier 6∈ S(c).sessions[lsid ].

PROOF. We assume that S(c).sessions[lsid ][cibaFlow] = > and code_verifier ∈ S(c).sessions[lsid ].
Initially, the sessions state subterm of c is empty (Definition 7). New sessions are added to sessions only in Line 10

of Algorithm 2 and Line 40 of Algorithm 2, and do not contain a code_verifier value. Let Q = (SQ, EQ, NQ) →
(SQ

′
, EQ

′
, NQ′) be the processing step in which the client updates the lsid session by adding the code_verifier value.
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This happens only in Line 53 of Algorithm 8. From the check done by the client in Line 42 of Algorithm 8, it follows that
SQ(c).sessions[lsid ][cibaFlow] is not >. However, the client never changes the cibaFlow value of an existing session
(Lemma 20), i.e., S(c).sessions[lsid ][cibaFlow] is not >, contradicting the assumption.

Lemma 27 (Client Session Containing CIBA Data Implies CIBA Session). For any run ρ of a FAPI web system FAPI
with a network attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, every term lsid ∈ TN , it
holds true that if for any cibaKey ∈ {start_polling, auth_req_id, client_notification_token, binding_message,
selected_identity}, we have cibaKey ∈ S(c).sessions[lsid ], then S(c).sessions[lsid ][cibaFlow] = >.

PROOF. Initially, the sessions state subterm of c is empty (Definition 7). New sessions are added to a client’s sessions

state subterm only in Line 10 of Algorithm 2 and Line 40 of Algorithm 2.
In the latter case, we have the value of key cibaFlow being >, which the client never changes once set (Lemma 20), i.e.,

nothing further to prove.
In the former case, we have to look at all places where one of the dictionary keys start_polling, auth_req_id,

client_notification_token, binding_message, or selected_identity may be added to a session record and prove
that such a session record must have a key cibaFlow with value >.
Line 40 of Algorithm 2 Here, key cibaFlow is assigned the value >.
Lines 124 and 126 of Algorithm 3 These lines can only be reached when the client is processing an HTTPS response as

part of Algorithm 3 (Line 122 of Algorithm 3), where the responseTo key of the reference parameter of Algorithm 3
has the value CIBA_AUTH_REQ. By applying Lemma 3, we get that the client must have sent a corresponding request by
calling HTTPS_SIMPLE_SEND with a matching reference value. This only happens in Line 70 of Algorithm 8, where
the value of reference[session] is set to a session where key cibaFlow has been assigned the value > (see the check
in Line 69 of Algorithm 8). Since the same reference[session] is used when processing the response, i.e., in Lines 124
and 126 of Algorithm 3 (see Lines 32f. of Algorithm 3), and a client never changes this value (Lemma 20), we conclude
that the value of key cibaFlow of the session in Lines 124 and 126 of Algorithm 3 must be >.

Line 43 of Algorithm 8 (stored to a session in Line 54 of Algorithm 8) See Line 42 of Algorithm 8 – this line is only
reachable if key cibaFlow has been assigned the value >.

Line 45 of Algorithm 8 (stored to a session in Line 54 of Algorithm 8) See Line 42 of Algorithm 8 – this line is only
reachable if key cibaFlow has been assigned the value >. �

Lemma 28 (AS Record Subject Uniquenuess for Access Token). For any run ρ of a FAPI web system FAPI with a network
attacker, every configuration (S,E,N) in ρ, every authorization server as ∈ AS that is honest in S, every values i, j ∈ N, it holds
true that if S(as).records.i.2[access_token] ≡ S(as).records.j.2[access_token], then S(as).records.i.2[subject] ≡
S(as).records.j.2[subject].

PROOF. Initially, the records state subterm of as is empty (Definition 8). The AS adds new records to records only in
Line 89 of Algorithm 11 and Line 297 of Algorithm 11, and in both cases, the entry contains no access_token entry:

Values stored in Line 89 of Algorithm 11 are set to a record from authorizationRequests in Line 85 of Algorithm 11,
and extended by subject, issuer, and code values. authorizationRequests is initially empty, and new values are only
added at the PAR endpoint in Line 142 of Algorithm 11, where the newly created entry has no access_token value.

Similarly, values stored in Line 297 of Algorithm 11 are set to a record from cibaAuthnRequests in Line 293 of
Algorithm 11, and extended by subject, issuer, and auth_req_id values. cibaAuthnRequests is initially empty, and new
values are only added at the backchannel authentication endpoint in Line 263 of Algorithm 11, where the newly created entry
has no access_token value.

The AS adds access_token entries to existing records only at the token endpoint in Line 203 of Algorithm 11. There, the
access token is either created as a structured token in Line 200 of Algorithm 11, or chosen as a fresh nonce in Line 202 of
Algorithm 11.

In the case of a structured token (Line 203 of Algorithm 11), if S(as).records.i.2[access_token] ≡
S(as).records.j.2[access_token] , it follows that both tokens contain the same sub value (see Line 199 of Algorithm 11),
which is taken from the record entry that will be updated in Line 203 of Algorithm 11.

If the token is a fresh nonce (Line 202 of Algorithm 11), then both records are the same, i.e., i = j.
Note that after storing the access token, the values of the token and the subject information stored in the record are not

changed by the AS.

Lemma 29 (CIBA Authentication Request Id links Binding Message and Login Session Id). For any run ρ of a FAPI
web system FAPI with a network attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, every
authorization server as ∈ AS that is honest in S, every term authnReqId ∈ TN , every term lsid ∈ TN , and every term
bindingMsg ∈ TN , if
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(a) S(c).sessions[lsid ][selected_AS] ∈ dom(as), and
(b) S(c).sessions[lsid ][auth_req_id] ≡ authnReqId , and
(c) S(as).records[authnReqId ][binding_message] ≡ bindingMsg

then it holds true that S(c).sessions[lsid ][binding_message] ≡ bindingMsg .

PROOF. An honest client adds auth_req_id values to its sessions only in Line 124 of Algorithm 3, i.e., when processing
HTTPS responses with the CIBA_AUTH_REQ reference value (Line 122 of Algorithm 3). In this case, the client is processing
CIBA authentication responses. Let R be the processing step in which this happens. The client sent the corresponding
authentication request in Line 70 of Algorithm 8 (as this is the only location where it uses the CIBA_AUTH_REQ reference
value). Let P = (SP , EP , NP ) −→ (SP

′
, EP

′
, NP ′) be the processing step in which the client sends the authentication

request. As the client sends a CIBA authentication request, it follows that lsid is a session identifier for a CIBA session, i.e.,
SP (c).sessions[lsid ][cibaFlow] ≡ > (Line 69 of Algorithm 8).

Let selectedAS := SP (c).sessions[lsid ][selected_AS]. The client sends the authentica-
tion request to SP (c).oauthConfigCache[selectedAS ][backchannel_authentication_endpoint] ≡
〈URL, S, selectedAS , /backchannel-authn, 〈〉,⊥〉 (see Lines 4, 5, 10, 28 and Line 68 of Algorithm 8 and Lemma 21). As
the client never changes the selected_AS entry of its sessions, it follows that selectedAS ∈ dom(as) (Precondition (a)), i.e.,
the only as can decrypt the HTTPS request.

Let Q = (SQ, EQ, NQ) −→ (SQ
′
, EQ

′
, NQ′) be the processing step in which the AS processes the request. The AS processes

the request at the /backchannel-authn endpoint, i.e., in Line 241 of Algorithm 11. Here, the AS chooses authnReqId as a
fresh nonce (Line 262 of Algorithm 11) and creates the entry SQ′(as).cibaAuthnRequests[authnReqId ]. This entry is later
moved into the records state subterm. The binding message is taken from the backchannel authentication request in Line 254
of Algorithm 11, where it is also added to the newly created authorization record entry.

The HTTPS response created by the AS contains authnReqId (Line 264 of Algorithm 11). The client processes the response
in R and stores the request identifier in the session identified by lsid in Line 124 of Algorithm 3.

Lemma 30 (Client Identifier in asAccounts Implies Issuance). For any run ρ of a FAPI web system FAPI with a network
attacker, every configuration (S,E,N) in ρ, every client c ∈ C that is honest in S, every AS as ∈ AS that is honest in S,
every domain d ∈ dom(as), if S(c).asAccounts[d][client_id] 6≡ 〈〉, then there exists a processing step prior to (S,E,N)
in which S(c).asAccounts[d][client_id] has been issued to c by as (according to Definition 11).

PROOF. Initially, asAccounts is empty (see Definition 7), and the client adds entries to it with a client_id dictionary key
only in Line 23 of Algorithm 3 and Line 49 of Algorithm 3. In the first case, the client already stores an entry for the AS domain
d and reuses the same client_id value (see Line 12 of Algorithm 3). Thus, there exists a processing step R = (Sr, Er, Nr) −→
(Sr ′, Er ′, Nr ′) in which the client executes Line 49 of Algorithm 3 and sets Sr ′(c).asAccounts[d][client_id] to the value
stored in S. The client takes this value from the body of an HTTPS response (Line 44 of Algorithm 3). The client sent the
corresponding HTTPS POST request in Line 26 of Algorithm 8 of a processing step P = (Sp, Ep, Np) −→ (Sp′, Ep′, Np′), as
this is the only place where the client calls HTTPS_SIMPLE_SEND with the REGISTRATION reference value (see also Line 40
of Algorithm 3).

The client sent the request to the domain d: As the client stores the client identifier into Sr ′(c).asAccounts[d], it follows that
Sr(c).sessions[sessionId ][selected_AS] ≡ d, with sessionId being the session identifier from the reference value retrieved
in Line 32 of Algorithm 3 (see also Lines 33, 34, and 49). The session identifier is the same value that the client used when
sending the request (as it is part of the reference value that is used as an input to the HTTPS_SIMPLE_SEND function). By
applying Lemma 20, it follows that Sp(c).sessions[sessionId ][selected_AS] ≡ d (as the selected_AS value of a session
never changes). The client sends the request to Sp(c).oauthConfigCache[d][reg_ep].host (see Lines 4, 5, 10, 12, and 25 of
Algorithm 8), which is equal to d (see Lemma 21).

This request is sent to the /reg endpoint (see Lemma 21). Let Q be the processing step in which the AS processes this
request in Line 18 of Algorithm 11, where it calls Algorithm 13 (REGISTER_CLIENT). There, the AS responds with an
HTTPS response with the 201 status code containing a client_id value (i.e., the client identifier that the client stores in R).
Thus, all conditions of Definition 11 are fulfilled, and in particular, Q is the processing step in which the AS issued the client
identifier.

�

B. Authorization Property
In this section, we show that the authorization property from Definition 13 holds.

Lemma 31 (Authorization). For
• every run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) of FAPI with a network attacker,
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• every resource server rs ∈ RS that is honest in Sn,
• every identity id ∈〈〉 srs0 .ids with b = ownerOfID(id) being an honest browser in Sn,
• every processing step in ρ

Q = (SQ, EQ, NQ)
eQin→rs
−−−−−→
rs→EQout

(SQ
′
, EQ

′
, NQ′)

• every resourceID ∈ S with as = authorizationServerOfResourcers(resourceID) being honest in SQ,
it holds true that:

If ∃r, x, y, k,mresp.〈x, y, encs(mresp, k)〉 ∈〈〉 EQout such that mresp is an HTTP response, r := mresp.body[resource], and
r ∈〈〉 SQ′(rs).resourceNonce[id ][resourceID ], then

(I) There exists a processing step

P = (SP , EP , NP )
ePin→rs−−−−−→
rs→EPout

(SP
′
, EP

′
, NP ′)

such that
1) either P = Q or P prior to Q in ρ, and
2) ePin is an event 〈x, y, enca(〈mreq, k1〉, k2)〉 for some x, y, k1, and k2 where mreq ∈ TN is an HTTP request which

contains a term (access token) t in its Authorization header, i.e., t ≡ mreq.headers[Authorization].2, and
3) r is a fresh nonce generated in P at the resource endpoint of rs in Line 48 of Algorithm 18.

(II) t is bound to a key k ∈ TN , as , a client identifier clientId ∈ TN and id in SQ (see Definition 10).
(III) If there exists a client c ∈ C such that clientId has been issued to c by as in a previous processing step (see Definition 11),

and if c is honest in Sn, then r is not derivable from the attackers knowledge in Sn (i.e., r 6∈ d∅(Sn(attacker))).

PROOF. Resource server sends resource to correct client. The first and the second postcondition are shown in Lemma 18,
where we also showed that the message contained in the event ePin was created by c (as intuitively, the access token is
bound to c via mTLS or DPoP, and no other process can prove possession of the secret key to which the token is bound).
The resource r is sent back as a response to ePin : If the resource server sends out the resource in Line 84 of Algorithm 18,
then it encrypts the HTTPS response (symmetrically) with the key contained in ePin . Otherwise, the resource server sends
out the response in Line 45 of Algorithm 19, encrypted (symmetrically) with the key contained in ePin (the resource server
stored the key in its state).
Thus, the resource server sends out the resource r back to c, encrypted with a symmetric key that only c and rs can derive.
This response can only be decrypted by c: A resource server can decrypt symmetrically only in Line 19 of Algorithm 39
(i.e., in the generic server model), where the decryption key is taken from the pendingRequests state subterm. The
application-layer model of a resource server does not access this state subterm, and the generic HTTPS server model
stores only fresh nonces as keys (see Line 15 of Algorithm 39).

Client never sends resource r to attacker. In the following, we show that c does not send the resource nonce r to the attacker
by contradiction, i.e., we assume that the client does send r to the attacker.
The client processes the response of the resource server (containing the resource r) in Line 88 of Algorithm 3 (as a client
sends out requests that have an Authorization header and a DPoP header or TLS_binding value in the body only by
calling HTTPS_SIMPLE_SEND in Line 43 of Algorithm 6 with the reference RESOURCE_USAGE) in some processing

step R = (SR, ER, NR)
eRin→c−−−−→
c→ERout

(SR
′
, ER

′
, NR′) (R happens after Q).

Let sessionId be the session identifier for the session at the client, i.e., the value retrieved in Line 32 of Algorithm 3
when processing the resource response. This is either a session using the authorization code flow, or the CIBA flow, i.e.,
SR(c).sessions[sessionId ][cibaFlow] is either > or ⊥. As shown in Lemma 20, this value is not changed by the client
after initially choosing it.
Case 1: Authorization Code Flow Let SR(c).sessions[sessionId ][cibaFlow] ≡ ⊥.

Redirection request was created by attacker. The client stores the resource into its sessions in Line 109 of Algo-
rithm 3, but never access it again in any other location. (Note that for CIBA flows, the client would access resources
stored into its session in Lines 51ff. of Algorithm 2, however, as for this session, cibaFlow is ⊥ and as the client
never changes cibaFlow as shown in Lemma 20, it follows that the client would stop in Line 57 of Algorithm 2.) The
client sends the resource as a response to a request req redir stored in SR.sessions[sessionId ][redirectEpRequest],
for some value sessionId (and in particular, encrypts the response with the key contained in req redir), see Line 33,
Line 112, and Line 113 of Algorithm 3.
An honest client sets redirectEpRequest values only in the redirection endpoint in Line 12 of Algorithm 2, i.e.,
req redir is a request that was previously received by the client. This request contains a value (an authorization code)
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in req redir.parameters[code] (or extractmsg(req redir.parameters[response])[code] if the authorization response
is signed), which the client puts into the token request in Algorithm 4 (SEND_TOKEN_REQUEST).
As we assume that the client sends r to the attacker, it follows that req redir was created by the attacker, in particular,
the attacker can derive the symmetric key and all other values in the request.

Access token was sent by correct authorization server. Before sending the resource request, the client ensures that
it sent the token request to the correct authorization server, i.e., the authorization server managing the resource:
The client sends resource requests only in Algorithm 6. In Line 7 of Algorithm 6, the client checks whether
the input argument tokenEPDomain is a domain of the authorization server managing the resource that the
client wants to request at the resource server. Algorithm 6 is called only in Line 83 of Algorithm 3, and
the value tokenEPDomain is the domain of the token request, i.e., the client received the access token from
authorizationServerOfResourcers(resourceID) (see Definition 7). This authorization server is honest, as required
by the precondition of the lemma.

Attacker can derive authorization code issued for honest client and id. As shown for the second postcondition, the
access token that the client received in the token response is bound to some key, the authorization server as , the
client id clientId , and the identity id .
The authorization server created the access token in the token endpoint in Line 145 of Algorithm 11 in some

processing step T = (ST , ET , NT )
eTin→as−−−−−→
as→ETout

(ST
′
, ET

′
, NT ′). As noted above, the token request contains an

authorization code, and also the grant type authorization_code (as the request was sent in Algorithm 4), i.e.,
the AS executes Lines 153ff. of Algorithm 11. The token request contains a code code such that there is a record
rec ∈〈〉 ST (as).records with rec[code] ≡ code and code 6≡ ⊥ (Line 157 of Algorithm 11). Furthermore, the
record has the following values:
• rec[clientId] ≡ clientId (as the access token is bound to this client id),
• rec[subject] ≡ id (as the access token is bound to this identity)

As shown in Lemma 7, the code that the client uses is the same code that it received in the request to the redirection
endpoint, i.e., req redir.
However, this is a contradiction to Lemma 22, i.e., such an authorization code cannot leak to the attacker.

Case 2: CIBA Flow Let SR(c).sessions[sessionId ][cibaFlow] ≡ >.
Attacker requested resource at client endpoint Contrary to the previous case, the client model does not send

the resource nonce immediately after receiving it. Instead, it also stores the resource nonce into its state in
SR
′
(c).sessions[sessionId ][resource] (Line 109 of Algorithm 3), but waits for the browser to send a request

to the /ciba_get_ssid_or_resource endpoint. More precisely, for a session with cibaFlow being >, the client
model sends values stored under the resource key of the session only in Line 68 of Algorithm 2. Here, the client
responds to an HTTPS request which includes the session id sessionId in the Cookie header of the request (Line 52
of Algorithm 2). As we assume that c sends r to the attacker, it follows that this request was created by the attacker,
i.e., the attacker can derive sessionId in SR′.

Resource Request sent for sessionId. For storing the resource nonce, the client retrieves the session identifier from a
reference dictionary (Line 32 of Algorithm 3), which is an input argument to the PROCESS_HTTPS_RESPONSE
function (Algorithm 3). In addition, this dictionary contains the value reference[responseTo] ≡ RESOURCE_USAGE
(Line 88 of Algorithm 3). The client sends resource requests only in Algorithm 6 (Line 43 of Algorithm 6 is the
only place where the client uses the RESOURCE_USAGE reference value). The value sessionId stored in reference
is an input argument of Algorithm 6, i.e., USE_ACCESS_TOKEN was called with sessionId .

Access token was sent by correct authorization server. Before sending the resource request, the client ensures that
it previously sent the token request to the correct authorization server, i.e., the authorization server managing the
resource: In Line 7 of Algorithm 6, the client checks whether the input argument tokenEPDomain is a domain of
the authorization server managing the resource that the client wants to request at the resource server. Algorithm 6
is called only in Line 83 of Algorithm 3, and the value tokenEPDomain is the domain of the token request, i.e.,
the client received the access token from authorizationServerOfResourcers(resourceID) (see Definition 7). This
authorization server is honest, as required by the precondition of the lemma.

Processing of Token Response. The client calls USE_ACCESS_TOKEN in Line 83 of Algorithm 3 when pro-
cessing the token response. The session identifier (i.e., the input argument of USE_ACCESS_TOKEN) is
taken from another dictionary, which we call reference ′. reference ′ is an input argument of Algorithm 3
(PROCESS_HTTPS_RESPONSE).
As the client calls Line 83 of Algorithm 3, it follows that reference ′[responseTo] ≡ TOKEN (Line 78 of Algorithm 3),
i.e., the client is processing the token response and uses the same session id when sending the token request.
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Token Request. Let T = (ST , ET , NT )
eTin→c−−−−→
c→ETout

(ST
′
, ET

′
, NT ′) be the processing step in which the client creates

and emits the token request. An honest client sends token requests only in Line 43 of Algorithm 4 and Line 40 of
Algorithm 5 (these are the only places where the client sends requests using the TOKEN reference value). We first
show that the token request was not created in Algorithm 4. The body of token requests created in Algorithm 4
contains the value grant_type set to authorization_code, and a code_verifier. As shown in Lemma 26,
ST (c).sessions[sessionId ][code_verifier] is empty, as a client never changes the cibaFlow value of a session
and as SR(c).sessions[sessionId ][cibaFlow] ≡ >.
Thus, when processing the request at the token endpoint, the authorization server would stop at Line 156 of
Algorithm 11 and not issue an access token.
Token requests created in Algorithm 5 contain the grant_type urn:openid:params:grant-type:ciba and
an authentication request identifier authnReqId value in the body of the request (Line 6 and Line 39 of
Algorithm 5). Note that the client retrieves the request id from the session identified by sessionId , i.e., from
ST (c).sessions[sessionId ][auth_req_id] (Line 4 of Algorithm 5).
Let dt be the domain to which the token request is sent. As noted above, dt is a domain of of as . It holds true that
dc ≡ ST (c).session[lsid ][selected_AS], and therefore,

ST (c).session[lsid ][selected_AS] ∈ dom(as) (6)

as the client takes the domain of the request from ST (c).oauthConfigCache[selectedAS ][token_ep], with
selectedAS ≡ ST (c).sessions[lsid ][selected_AS] (see Lines 2, 3, 10, and Line 11 of Algorithm 5).

Record Entry in AS State. When processing the token request, the AS retrieves a record entry rec from its records

state subterm such that rec[auth_req_id] ≡ authnReqId (Line 161 and Line 164 of Algorithm 11).
An AS adds entries to its records state subterm only in Line 89 of Algorithm 11 and Line 297 of Algorithm 11.
However, only the record added in Line 297 of Algorithm 11 contains an auth_req_id entry.
The client uses the access token contained in the token response; when processing the token request, the AS adds the
access token that it creates and puts in the token response to the record entry (Line 203 of Algorithm 11), i.e., to rec.
As shown for the second postcondition, there is a record rec′ ∈〈〉 SQ(as).records such that rec′[access_token] ≡
t and rec′[subject] ≡ id . From Lemma 28, it follows that rec and rec′ have the same subject entry, i.e.,
rec[subject] ≡ id .
An honest AS adds subject values to record entries only in Line 89 of Algorithm 11 (which we ruled
out above) and Line 297 of Algorithm 11. Thus, it follows that the AS received an HTTPS request
ciba-auth2 -req at its /ciba-auth2 endpoint (Line 281 of Algorithm 11) with ciba-auth2 -req .body[identity] ≡
id (see Line 282 and Line 294 of Algorithm 11). This request also contains the password of id , i.e.,
ciba-auth2 -req .body[password] ≡ secretOfID(identity) (Line 286 of Algorithm 11). Thus, the request must
have been created by ownerOfID(id) In addition, this request contains a reference auth2Reference to the record
entry, i.e., auth2Reference ≡ ciba-auth2 -req .body[ciba_auth2_reference] (Line 288 of Algorithm 11) such that
rec[ciba_auth2_reference] ≡ auth2Reference (Line 289 of Algorithm 11; note that this entry is taken from the
cibaAuthnRequests state subterm and added to the records, see Line 297 of Algorithm 11).
The AS model adds ciba_auth2_reference values to cibaAuthnRequests only in Line 277 of Algorithm 11,
where it is chosen as a fresh nonce. In this endpoint, the AS creates an HTTPS response referencing the
script_as_ciba_form script, including the auth2Reference value Line 278 of Algorithm 11. In addition, it includes
a binding message bindingMsg retrieved from the same cibaAuthnRequests entry (Line 274 of Algorithm 11),
and a domain dc of a client. Both the binding message, and the client id of the client used for determining the domain
are taken from the entry stored in cibaAuthnRequests. The AS adds such entries only at the backchannel-authn
endpoint, and the values are taken from the request (Line 254 of Algorithm 11). This endpoint requires client
authentication (Line 242 of Algorithm 11), i.e., the client with the client id rec[client_id] created the request.
Note that the binding message bindingMsg is stored rec, i.e., in the record entry at the AS identified by authnReqId .
. From Equation 6 and Lemma 20, it follows that S(c).sessions[sessionId ][selected_AS] ∈ dom(as). From
Lemma 29, it follow that S(c).sessions[sessionId ][binding_message] ≡ bindingMsg .

Browser stores client domain and binding message in state The browser accesses user credentials for a domain of
the AS only when processing a script loaded from the AS. As the response contains the ciba_auth2_reference
dictionary string, it follows that the browser processed the script_as_ciba_form script (Algorithm 17). As the
browser sends the Post request, we conclude that it processes the CIBAFORM command successfully with the binding
message bindingMsg and the client domain dc. The browser processes this command in Line 52 of Algorithm 28
and checks whether the cibaBindingMessages contains a domain and a binding message. These values are taken
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from the HTTPS response that includes the script and was sent by the AS, i.e., the domain is dc and the binding
message is bindingMsg .
Thus, we conclude that 〈dc, bindingMsg〉 ∈〈〉 S(b).cibaBindingMessages. As noted previously, it holds true
that S(c).sessions[sessionId ][binding_message] ≡ bindingMsg . However, this contradicts Lemma 25, i.e., the
attacker cannot derive sessionId .

�

C. Authentication Property
In this section, we show that the authentication property from Definition 15 holds. This will be a proof by contradiction, i.e.,

we assume that there is a FAPI web system FAPI in which the authentication property is violated and deduce a contradiction.

Assumption 2. There exists a FAPI web system with a network attacker FAPI such that there exists a run ρ of FAPI with a
configuration (S,E,N) in ρ, some c ∈ C that is honest in S, some identity id ∈ ID with as = governor(id) being an honest
AS and b = secretOfID(id) being browser honest in S, some service session identified by some nonce n for id at c, and n is
derivable from the attacker’s knowledge in S (i.e., n ∈ d∅(S(attacker))).

Lemma 32 (Authentication Property Holds). Assumption 2 is a contradiction.

PROOF. By Assumption 2, there is a service session identified by n for id at c, and hence, by Definition 14, we have that
there is a session id x and a domain d ∈ dom(governor(id)) = dom(as) with S(c).sessions[x][loggedInAs] ≡ 〈d, id〉 and
S(c).sessions[x][serviceSessionId] ≡ n. Assumption 2 says that n is derivable from the attacker’s knowledge. Since we
have S(c).sessions[x][serviceSessionId] ≡ n, we can check where such an entry in c’s state can be created.

The only place in which an honest client stores a service session id is in the function CHECK_ID_TOKEN, specifically in
Line 14 of Algorithm 7. There, the client chooses a fresh nonce as the value for the service session id, in this case n. In the
line before, it sets the value for S(c).sessions[x][loggedInAs], in this case 〈d, id〉 (this is the only place where the client
sets the loggedInAs value).

CHECK_ID_TOKEN, in turn, is only called in a single place: When processing an HTTPS response to a token request,
in Line 87 of Algorithm 3. From the check in Line 85 of Algorithm 3, we know that this response came from (one
of) as’s token endpoints: From Lines 2, 3, and 13 of Algorithm 7, it follows that S(c).sessions[x][selected_AS] ≡
d. In Line 85 of Algorithm 3, the client checks whether the host of the corresponding token request is equal to
S(c).oauthConfigCache[selectedAS ][token_ep].host, with selectedAS ≡ S(c).sessions[x][selected_AS] (see Lines 32-
34 and Line 84 of Algorithm 3). As shown in Lemma 21, S(c).oauthConfigCache[selectedAS ][token_ep].host ≡
selectedAS , i.e., the client sent the token request to as . Let req token be the token request, and R = (Sr, Er, Nr) →
(Sr ′, Er ′, Nr ′) the processing step in which the client emits the token request.

In the following, we show that the client identifier in the token request has been issued by as to c in a previous processing
step (according to Definition 11): The client sends token requests only in Algorithm 4 and Algorithm 5. In both cases, it
sets the client identifier value in the request, i.e., req token.body[client_id] (if the client uses mTLS client authentication) or
extractmsg(req token.body[client_assertion])[iss] (if the client uses private_key_jw client authentication) to the value
Sr(c).asAccounts[selectedAS ][client_id] with the same value selectedAS as before, i.e., the domain of the AS to which
the client sends the token request (see Line 10 of Algorithm 4 and Line 7 of Algorithm 5). Let clientId be this client identifier.
From Lemma 30, it follows that this client identifier value was issued by as to c in a previous processing step (note that
clientId 6≡ 〈〉, as otherwise, the AS would not send a response).

Since as is an honest authorization server, it will only reply to a token request if that request contains a valid authorization
code or a valid authentication request identifier (see the two cases in Lines 152ff. of Algorithm 11). We distinguish these cases
now.

Case 1: Token Request contains Authorization Code: If req token.body[grant_type] ≡ authorization_code, then the
token request contains a code such that there is a record rec ∈〈〉 S(as).records with rec[code] ≡ code , rec[client_id] ≡
clientId , and rec[subject] ≡ id .
The client sends token requests with the authorization_code grant type with an authorization code only in Algorithm 4
(SEND_TOKEN_REQUEST). The corresponding session at the client contains a value code_verifier (note that the
AS checks this value in Line 156 of Algorithm 11). By applying Lemma 26, we conclude that the session at the client
does not contain a cibaFlow value being >. As shown in Lemma 20, each client session always contains a cibaFlow

value, and this value is never changed by the client. The cibaFlow value is either > or ⊥, see Line 10 of Algorithm 2
and Line 40 of Algorithm 2. Thus, we conclude that for the session for which the client creates req token, the value of
cibaFlow is ⊥.
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As the cibaFlow value of this session is ⊥, it follows that the client sends the service session id n only in the response
in Line 19 of Algorithm 7. (The only other place where the client accesses and sends out this value is in Lines 51ff. of
Algorithm 2, however, this happens only if cibaFlow 6≡ ⊥, see Line 57 of Algorithm 2).
By tracking backwards from Line 14 of Algorithm 7, it is easy to see that the same party that finally receives the service
session id n in an HTTPS response sent in Line 19 of Algorithm 7 must have sent an HTTPS request req to c containing
the aforementioned code (see also Lemma 7).
We now have to differentiate between two cases: Either (a) the sender of req is one of b, c, as; or (b) the sender of req
is any other process (except for b, c, and as).
In case (a), we know that the only party sending an HTTPS request with an authorization code (i.e., with a body dictionary
containing a key code) is b (the client does not send messages to itself, and messages with an authorization code sent by
the AS are sent as HTTPS responses). If b sent req , b receives the service session id n in a set-cookie header with the
httpOnly and secure flags set (see Line 17 of Algorithm 7). Hence, b will only ever send n to c in a cookie header as
part of HTTPS requests, which does not leak n. Neither does c leak received service session id cookie values – in fact,
c never even accesses a cookie named serviceSessionId. Furthermore, neither b, nor c leak n in any other way (the
value is not even accessed), resulting in a contradiction to Assumption 2.
In case (b), that other process which sent req would need to know code in order to be able to include it in req . This
contradicts Lemma 22.

Case 2: Token Request contains Authentication Request Identifier: In this case, req token.body[grant_type] ≡
urn:openid:params:grant-type:ciba and auth_req_id ∈ req token.body (see Line 160 and Line 163 of
Algorithm 11). The client creates requests with these values in the body only in Line 40 of Algorithm 5
(SEND_CIBA_TOKEN_REQUEST). The client calls this function only in the following places:
• Line 50 of Algorithm 2: In this case, the corresponding session contains a value client_notification_token (see

Line 49 of Algorithm 2). The client sets this notification token value only in Line 45 of Algorithm 8, i.e., only if the
cibaFlow value of the corresponding session has the value > (Line 42 of Algorithm 8).

• Line 59 of Algorithm 9: In this case, the corresponding session has the value start_polling (Line 58 of Algorithm 9).
As shown in Lemma 27, the cibaFlow value of the session is >.

As shown in Lemma 20, the client never changes the cibaFlow value of a session.
Record Entry in AS State. When processing the token request, the AS retrieves a record entry rec from its records

state subterm such that rec[auth_req_id] ≡ authnReqId (Line 161 and Line 164 of Algorithm 11).
An AS adds entries to its records state subterm only in Line 89 of Algorithm 11 and Line 297 of Algorithm 11.
However, only the record added in Line 297 of Algorithm 11 contains an auth_req_id entry.
For the login, the client uses the ID token contained in the token response. The AS creates the ID token in Lines 206ff.
of Algorithm 11. It sets the sub value of the ID token to id (Line 208 of Algorithm 11), i.e., rec[subject] ≡ id (as
this identity is logged in at the client when processing the token response.)
An honest AS adds subject values to record entries only in Line 89 of Algorithm 11 and Line 297 of Algorithm 11.
However, as this particular record contains an auth_req_id value, it must have been created in Line 297 of Algorithm 11.
Thus, it follows that the AS received an HTTPS request reqciba-auth2 at its /ciba-auth2 endpoint (Line 281 of
Algorithm 11) with reqciba-auth2.body[identity] ≡ id (see Line 282 and Line 294 of Algorithm 11). This request
also contains the password of id , i.e., reqciba-auth2.body[password] ≡ secretOfID(id) (Line 286 of Algorithm 11). Thus,
the request must have been created by ownerOfID(id). In addition, this request contains a reference auth2Reference to
the record entry, i.e., auth2Reference ≡ reqciba-auth2.body[ciba_auth2_reference] (Line 288 of Algorithm 11) such
that rec[ciba_auth2_reference] ≡ auth2Reference (Line 289 of Algorithm 11; note that this entry is taken from
the cibaAuthnRequests state subterm and added to the records, see Line 297 of Algorithm 11).
The AS model adds ciba_auth2_reference values to cibaAuthnRequests only in Line 277 of Algorithm 11, where
it is chosen as a fresh nonce. In this endpoint, the AS creates an HTTPS response referencing the script_as_ciba_form
script, including the auth2Reference value in Line 278 of Algorithm 11. In addition, it includes a binding message
bindingMsg and a domain dc of a client. Both the binding message, and the client id of the client used for determining
the domain are taken from the entry stored in cibaAuthnRequests (see Lines 274f. of Algorithm 11). The AS adds
such binding message and client identifier values to entries of the cibaAuthnRequests state subterm only at the
backchannel-authn endpoint, and the values are taken from the corresponding request (see Lines 246, 252, and
Line 254 of Algorithm 11). This endpoint requires client authentication (Line 242 of Algorithm 11), i.e., the client with
the client id rec[client_id] created the request, see Lemma 13. (Note that an honest AS never changes the client_id
value of an existing cibaAuthnRequests or records entry).
Note that the binding message bindingMsg is taken from the request to backchannel-authn and then stored into the
cibaAuthnRequests entry (Line 254 of Algorithm 11). This is the same value stored in rec[binding_message], i.e.,
the record entry at the AS identified by authnReqId .
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Binding Message Stored at Client As shown previously, it holds true that S(c).sessions[x][selected_AS] ∈ dom(as).
It also holds true that S(c).sessions[x][auth_req_id] ≡ authnReqId (as this is the authentication request identifier
that the client used for the token request). Furthermore, when responding to the request to the /ciba-auth endpoint,
the AS includes the binding message stored in the record identified by authnReqId. For a given record entry, the
AS does not change the binding message value, i.e., S(as).records[authnReqId ][binding_message] ≡ bindingMsg .
From Lemma 29, it follow that S(c).sessions[x][binding_message] ≡ bindingMsg .

Browser stores client domain and binding message in state The browser accesses user credentials for a domain of the
AS only when processing a script loaded from the AS. As the response contains the ciba_auth2_reference dictionary
string, it follows that the browser processed the script_as_ciba_form script (Algorithm 17). As the browser sends the
POST request, we conclude that it processes the CIBAFORM command successfully with the binding message bindingMsg
and the client domain dc. The browser processes this command in Line 52 of Algorithm 28 and checks whether the
cibaBindingMessages contains a domain and a binding message. These values are taken from the HTTPS response
that includes the script and was sent by the AS, i.e., the domain is dc and the binding message is bindingMsg .
Thus, we conclude that 〈dc, bindingMsg〉 ∈〈〉 S(b).cibaBindingMessages (note that the browser does
not remove or modify existing cibaBindingMessages values). As noted previously, it holds true that
S(c).sessions[x ][binding_message] ≡ bindingMsg . From Lemma 25, it follows that the attacker cannot derive
the session identifier x.

Process Requesting Service Session ID can derive x: The client sends the service session id stored in Line 14 of
Algorithm 7 only in Line 68 of Algorithm 2 (the only other place is Line 19 of Algorithm 7, which we can rule out
as the cibaFlow value of the session is >). For responding in Line 68 of Algorithm 2, the client expects a request
reqget-ssid with a session id cookie, and responds with the corresponding service session id. Thus, it follows that reqget-ssid
contains x as the session id cookie. As shown for the first case, the sender of this request cannot be b, c, or as (as
neither of those processes would leak the service session id). Thus, the request must have been created by the attacker.
However, this contradicts the fact that the attacker cannot derive x, as shown above.

�

D. Session Integrity for Authentication Property
In this section, we show that the session integrity for authentication properties from Definition 23 and Definition 24 hold.
We start by proving that the property for authorization code flows (Definition 23) holds. This will be a proof by contradiction,

hence we begin by assuming the opposite:

Assumption 3. There exists a FAPI web system with a network attacker FAPI such that there exists a run ρ of FAPI with a
processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, a browser b honest in S, an authorization server as ∈ AS, an identity id ,
a client c ∈ C honest in S, and a nonce lsid s.t. S(c).sessions[lsid ][cibaFlow] ≡ ⊥, with loggedInQρ (b, c, id , as, lsid) and c
did not leak the authorization request for lsid , such that

(I) there is no processing step Q′ prior to Q in ρ such that startedQ
′

ρ (b, c, lsid), or
(II) as is honest in S, and there is no processing step Q′′ prior to Q in ρ such that authenticatedQ

′′

ρ (b, c, id , as, lsid).

Lemma 33 (Session Integrity for Authentication for Authorization Code Flows Property Holds). Assumption 3 is a con-
tradiction.

PROOF.
(I) We have that loggedInQρ (b, c, id , as, lsid). With Definition 16, we know that c sent out a service session id associated with

lsid to b (i.e., set a cookie 〈serviceSessionId, 〈ssid ,>,>,>〉〉, and stored ssid in its sessions storage). For a session
with S(c).sessions[lsid ][cibaFlow] ≡ ⊥, such a cookie is only set by a client if its CHECK_ID_TOKEN function was
called with lsid as the first argument – which, in turn, can only happen in Line 87 of Algorithm 3 when c processes a
response to a token request. Such a response is only accepted by c if c sent a corresponding token request before (i.e., with
a matching nonce and symmetric key, and with reference[responseTo] ≡ TOKEN). Clients only send such token requests
in Line 43 of Algorithm 4, i.e., after calling SEND_TOKEN_REQUEST in Line 34 of Algorithm 2, when processing an
HTTPS request req redir.
Note: Clients also send token requests in Line 40 of Algorithm 5; however, Algorithm 5 is only called in Line 50 of
Algorithm 2 and Line 59 of Algorithm 9, and in both cases, the corresponding session in the client’s state must contain
CIBA-specific values – client_notification_token, and start_polling, respectively – and thus, by Lemma 27,
S(c).sessions[lsid ][cibaFlow] ≡ >, which contradicts this lemma’s preconditions.
Hence, we look at how a client can reach Line 34 of Algorithm 2. req redir must contain a cookie
[〈__Host, sessionId〉 : lsid ] (Line 13 of Algorithm 2), and lsid is used as session id to store req redir in the client’s
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session storage in Line 33 of Algorithm 2 under the key redirectEpRequest (this is also the only place where a client
stores something under this key).
When executing CHECK_ID_TOKEN (during the Q from Definition 16), the message (HTTP response) with the
aforementioned service session id cookie is sent to and encrypted for the sender of req redir, because c looks these
values up in the login session record stored in S(c).sessions[lsid ] under the key redirectEpRequest. Hence, the
sender of req redir, i.e., b by Definition 16, must have included the aforementioned cookie with lsid in its request.
We can now track how that cookie was stored in b: Since the cookie is stored under a domain of c (otherwise, b would
not include it in requests to c) and the cookie is set with the __Host prefix, the cookie must have been set by c (see (C)
in the proof of Lemma 24). A cookie with the properties shown above is only set in Line 69 of Algorithm 3. Similar to
the redirectEpRequest session entry above, c sends this cookie as a response to a stored request, in this case, using
the key startRequest to determine receiver and encryption key (see Line 64 of Algorithm 3). A session entry with key
startRequest is only ever created in Line 10 of Algorithm 2. Hence, for b to receive the cookie, there must have been
a request from b to c to the /startLogin endpoint, using the POST method, and with an origin header for an origin of
c (see Line 6 of Algorithm 2).
Due to the origin check and the POST method, this request must have been sent by a script (POST) under one of c’s
origins (origin check). There is only one script which could potentially send such a request: script_client_index . Hence,
there must be a processing step Q′ (prior to Q) in ρ in which b executed script_client_index and in that script, executed
Line 8 of Algorithm 10 (because that is the only place in which that script issues a POST request).
In addition, we already established above that c replied to this request (stored under the key startRequest) with a
response containing a header of the form 〈Set-Cookie, [〈__Host, sessionId〉 : 〈lsid ,>,>,>〉]〉.
Hence, we have that startedQ

′

ρ (b, c, lsid).
(II) Again, we have loggedInQρ (b, c, id , as, lsid) and we know that c sent out a service session id associated with lsid to b.

This can only happen in the client’s function CHECK_ID_TOKEN, which only produces an output if c received an id
token t (via a token response). From S(c).sessions[lsid ][loggedInAs] ≡ 〈d, id〉, we know – since CHECK_ID_TOKEN
produced an output – that for tc := extractmsg(t), we have tc[iss] ≡ d, tc[sub] ≡ id , and tc[aud] ≡ clientId (for some
clientId ). Due to the check in Line 85 of Algorithm 3, this id token must have been sent by as (because d ∈ dom(as)).
as will only output such a term t if there is a record rec in as’s records state subterm with rec[subject] ≡ id ,
rec[client_id] ≡ clientId , and rec[code_challenge] ≡ codeChallenge (for some value of codeChallenge).
Note that an AS only creates such id tokens in Lines 207ff. of Algorithm 11, and only after clientId has been issued to
c by as (Definition 11).
By construction of c and tracking of sessions[lsid ] in c’s state, it is easy to see that once c reaches CHECK_ID_TOKEN,
the session storage S(c).sessions[lsid ] must contain a key code_verifier under which a nonce codeVerifier is stored.
We note that S(b).cookies[dc] must contain a cookie 〈〈__Host, sessionId〉, 〈lsid ,>,>,>〉〉 for dc ∈ dom(c), because
b sends a cookie [〈__Host, sessionId〉 : lsid ] as explained above, b is honest (and will thus not accept __Host headers
for dc from parties other than c), and if c sets a cookie 〈__Host, sessionId〉, it will do so with the attributes set as
shown here.
Hence, we can apply Lemma 24 (note that S(c).sessions[lsid ][loggedInAs] ≡ 〈d, id〉 with d ∈ dom(as) implies
S(c).sessions[lsid ][selected_AS] ≡ d ∈ dom(as)). I.e., we now have that there is exactly one nonce requestUri such
that S(as).authorizationRequests[requestUri ][code_challenge] ≡ hash(codeVerifier), and only b, c, and as know
requestUri .
We know from Line 158 of Algorithm 11 that the token request which leads to as issuing t must contain a code verifier
such that hash(codeVerifier) ≡ rec[code_challenge] (with rec from above). Since we know that c must have sent the
token request (otherwise, c would not have received t), we can track where and how c creates such a request. This is
only the case in function SEND_TOKEN_REQUEST (see proof for (I)). There, c selects the value for the code verifier
based on the session id which c received from b via the sessionId cookie. At the same time, c includes the code from
b’s request’s parameters (the request of b that triggered the token request).
Going back to as , we can track where a rec as described above can be stored into as’s state: This is only the case at
as’s /auth2 endpoint (Lines 76ff. of Algorithm 11). There, as will only store a record rec, if there is an authZrec,
stored under the key reqUri in the authorizationRequests state subterm such that there is an auth2Reference with
authZrec[auth2_reference] ≡ auth2Reference and that auth2Reference is contained in the request to as’s /auth2
endpoint. Such an auth2Reference , in turn, is only created at as’s /auth endpoint. For a request to this endpoint to lead
to storing auth2Reference, the request must contain reqUri under the key request_uri.
Note that by Lemma 24, we established that there is exactly one requestUri in as’s state such that
S(as).authorizationRequests[requestUri ][code_challenge] ≡ hash(codeVerifier). Therefore, reqUri ≡
requestUri . In addition, it is easy to see that c and as do not send any requests to as’s /auth endpoint. Hence, b
must have sent a request with reqUri to /auth.
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Since auth2Reference from above is only sent to whoever sent the first request to /auth (and – if b receives it – b
does not leak that value) we know that b must have sent the POST request to /auth2 as well. As b is honest, this can
only happen trough a script – together with the origin header check in Line 76 of Algorithm 11, and script_as_form
(Algorithm 16) being the only script ever sent by as which can send requests to the /auth2 endpoint, we can conclude
that there must have been a processing step Q′′ prior to Q′ in ρ in which b was triggered, selected a document under one
of as’s origins with script script_as_form , executed that script, selected id from its identities (because we know from
above that rec[subject] ≡ id and such a rec is only stored at /auth2 endpoint if the identity in the request is equivalent
to id ) and sent a request to as’s /auth2 endpoint containing auth2Reference – hence, the scriptstate contained a key
auth2_reference with value auth2Reference.
Therefore, we have authenticatedQ

′′

ρ (b, c, id , as, lsid) which – together with (I) from above – contradicts Assumption 3,
therefore proving the lemma. �

This leaves us with the property for FAPI-CIBA flows (Definition 24). This will be a proof by contradiction, hence we begin
by assuming the opposite:

Assumption 4. There exists a FAPI web system with a network attacker FAPI such that there exists a run ρ of FAPI with
a processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, a browser b honest in S and behaves according to Assumption 1, an
authorization server as ∈ AS, an identity id , a client c ∈ C honest in S, and a nonce lsid s.t. S(c).sessions[lsid ][cibaFlow] ≡
>, and loggedInQρ (b, c, id , as, lsid) such that

(I) there is no processing step Q′ prior to Q in ρ such that startedCIBAQ
′

ρ (b, c, lsid), or
(II) as is honest in S, and there is no processing step Q′′ prior to Q in ρ such that authenticatedCIBAQ

′′

ρ (b, c, id , as, lsid).

Lemma 34 (Session Integrity for Authentication for FAPI-CIBA Flows Property Holds). Assumption 4 is a contradic-
tion.

PROOF. We start with some helpful intermediate results:
(A) From loggedInQρ (b, c, id , as, lsid), we know that during Q, c emits an event which contains an HTTPS response

with a header 〈Set-Cookie, [serviceSessionId : 〈ssid ,>,>,>〉]〉 (for some nonce ssid ). Such a cookie (with name
serviceSessionId) is only included in a client’s output in Line 17 of Algorithm 7, and in Lines 51ff. of Algorithm 2. In
the former case, this only happens if S(c).sessions[lsid ][cibaFlow] ≡ ⊥ (Line 15 of Algorithm 7) – which contradicts
this lemma’s preconditions. I.e., the event emitted by c during Q must originate from Lines 51ff. of Algorithm 2.
This in turn implies:

(A.i) During Q, c processed an HTTPS request sent by b which contained a cookie with name 〈__Host, sessionId〉
and value lsid : with a different value, the response which c emits during Q would not contain
S(c).sessions[lsid ][serviceSessionId] – note that due to Line 14 of Algorithm 7 being the only place where
c writes a serviceSessionId into one of its sessions, and the value is a fresh nonce, there is no lsid ′ 6= lsid such
that S(c).sessions[lsid ][serviceSessionId] ≡ S(c).sessions[lsid ′][serviceSessionId].

(A.ii) serviceSessionId ∈ S(c).sessions[lsid ]: otherwise, c would not set a serviceSessionId header.
(B)
(B.i) From (A), we know that b must have sent an HTTPS request to c with a cookie with name 〈__Host, sessionId〉 and

value lsid . Since S0(b).cookies ≡ 〈〉 (Definition 3), that cookie must have been stored in b’s state in some processing
step. However, since said cookie has the __Host prefix, it must have been set by c (see (C) in the proof of Lemma 24).
Hence, there must have been an HTTPS response sent from c to b (i.e., encrypted for b, i.e., with a key used by b in a
previous HTTPS request to c) which contained a corresponding Set-Cookie header.

(B.ii) Clients only include a Set-Cookie header with a cookie named 〈__Host, sessionId〉 in two places: when handling
requests to the /start_ciba endpoint (Lines 35ff. of Algorithm 2), and when processing a PAR response (Lines 58ff.
of Algorithm 3).
With Lemma 3, we know that Lines 58ff. of Algorithm 3 can only be executed if the client previously called
HTTPS_SIMPLE_SEND with a reference value such that reference[responseTo] ≡ PAR. This, in turn, only happens
in Line 72 of Algorithm 8 – however, due to the check in Line 69 of Algorithm 8, this can only happen if
S(c).sessions[lsid ][cibaFlow] ≡ ⊥, which contradicts this lemma’s preconditions (note that the value for cibaFlow
never changes, see Lemma 20).
Therefore, the 〈__Host, sessionId〉 cookie must originate from the client’s /start_ciba endpoint in Lines 35ff. of
Algorithm 2 (in some processing step R prior to Q).

(C) Since the request to c’s /start-ciba endpoint (see (B)), in response to which c set the sessionId cookie,
was sent by b (otherwise, b would not have used that cookie in Q), we can use Assumption 1 to conclude
b = ownerOfID(S(c).sessions[lsid ][selected_identity]) (see Lines 37 and 40 of Algorithm 2).
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(D) Given the above, we can now prove that our assumption is a contradiction, starting with (I): Recall (B) and the processing
step R, in which c emits an HTTPS response to a request from b, and in that response, sets the sessionId cookie. There,
the value for said cookie is a fresh nonce (Line 38 of Algorithm 2), and in order to even reach that line, c must be
processing an HTTPS request for a domain of c (Lines 7f. of Algorithm 39, Definition 7, and Appendix A-C: if the request
were not for a domain of c, c would not be able to decrypt it or would stop in Line 8 of Algorithm 39). Furthermore, that
request must be for path /start_ciba, and since b was able to decrypt the response (and thus learn lsid ), the request
must have been created by b in some processing step Q′ prior to R.
In summary, during Q′, browser b emits an HTTPS request to a domain of c, with path /start_ciba, and – during some
later processing step R, client c processes this request and emits an event with an HTTPS response to b’s request with a
Set-Cookie header with a cookie named 〈__Host, sessionId〉 with value lsid .
Hence, we conclude startedCIBAQ

′

ρ (b, c, lsid).
(E) We can now focus on (II):

(E.i) From (A.ii) we have serviceSessionId ∈ S(c).sessions[lsid ]. Values under serviceSessionId are only added to a
session in the client’s state in Line 14 of Algorithm 7, where a fresh nonce is stored there. Let P be the processing step in
which S(c).sessions[lsid ][serviceSessionId] was set to the value ssid used in Q (i.e., in loggedIn, see Definition 16).
I.e., c must have reached Line 14 of Algorithm 7 during P , and – since we have S(c).sessions[lsid ][cibaFlow] ≡ >
and Lemma 20 – P must have reached the stop in Line 21 of Algorithm 7.

(E.ii) Due to Line 13 of Algorithm 7 and loggedInQρ (b, c, id , as, lsid) (see Definition 16), the id token processed during P
must be a (signed, see Line 6 of Algorithm 7, we’re looking at the extracted value here) dictionary idToken with
idToken[sub] ≡ id .

(E.iii) Line 14 of Algorithm 7 from (E.i) can only be reached if the client calls CHECK_ID_TOKEN (Algorithm 7) during
P . Since CHECK_ID_TOKEN is only called in Line 87 of Algorithm 3, c must have processed an HTTPS response
to a token request (i.e., reference[responseTo] ≡ TOKEN) during P . Due to the check in Line 85 of Algorithm 3,
Lemma 21, the origin of selectedAS from the client’s session storage used in Line 13 of Algorithm 7, and precondition
loggedInQρ (b, c, id , as, lsid) (see Definition 16), we conclude that the token request to which c processes a response in
P , was sent to and encrypted for as . Lemma 46 thus gives us that the token response processed by c during P must
have been created by as .

(E.iv) With Lemma 3, we know that for c to process an HTTPS response with reference[responseTo] ≡ TOKEN during P ,
there must have been some previous processing step P tokReq

c = (StokReq, EtokReq, N tokReq) −→ (StokReq′ , EtokReq′ , N tokReq′)

during which c called HTTPS_SIMPLE_SEND with such a reference value. This only happens in two places: Line 43
of Algorithm 4, and Line 40 of Algorithm 5.

(E.v) P tokReq
c must have ended in Line 40 of Algorithm 5. Proof by contradiction, assume P tokReq

c ended in
Line 43 of Algorithm 4: the check in Line 3 of Algorithm 4 must have succeeded, i.e., code_verifier ∈
StokReq(c).sessions[lsid ]. However, we have S(c).sessions[lsid ][cibaFlow] ≡ >, which together with Lemma 20
gives us StokReq(c).sessions[lsid ][cibaFlow] ≡ > – which is a contradiction to Lemma 26.

(E.vi) The body of the token request produced by c in P tokReq
c contains a key grant_type with

value urn:openid:params:grant-type:ciba, and a key auth_req_id with value authnReqId :=
StokReq(c).sessions[lsid ][auth_req_id]. Note: The session id used in P tokReq

c , i.e., lsid , is the same as in
loggedInQρ (b, c, id , as, lsid): it is passed from P tokReq

c to P as part of the reference, see Lemma 3; during P , that
session id is the key under which the (fresh) service session id (which is then used in Q) is stored, see (E.i).

(E.vii) From (E.iii), we know that as must have created the HTTPS (token) response processed by c in P in some prior
processing step P tokRes

as = (StokRes, EtokRes, N tokRes) −→ (StokRes′ , EtokRes′ , N tokRes′). Furthermore, the id token in that
response must contain id , stored under key sub (see (E.ii)). An AS only produces id tokens (more formally: emits
events with an HTTPS response, whose body contains a key id_token) in Line 215 of Algorithm 11, i.e., the token
endpoint. Hence, there must be a record rec in StokRes(as).records such that rec[subject] ≡ id (see Lines 164
and 208 of Algorithm 11).

(E.viii) Such records are only added to as’ state in two places: at the /auth2 endpoint in Lines 86 and 89 of Algorithm 11,
and at the /ciba-auth2 endpoint in Lines 294 and 297 of Algorithm 11.
From (E.vi), we know that the token request produced by c in P tokReq

c contains a key grant_type with value
urn:openid:params:grant-type:ciba, and an auth_req_id in its body. Hence, as must have executed Lines 160ff.
of Algorithm 11 during P tokRes

as , and the execution must have reached Line 215 of Algorithm 11 (otherwise, there
would be no token response for c to process, which contradicts (E.iii)). This implies that the record rec contains a key
auth_req_id, and rec[auth_req_id] 6∈ {〈〉,⊥} (Lines 163 and 164 of Algorithm 11. Furthermore, rec[auth_req_id]
must be equivalent to the authnReqId in the token request from (E.vi).
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An AS only adds a value 6= ⊥ to a record in its records state subterm in Line 297 of Algorithm 11, i.e., the
/ciba-auth2 endpoint. Hence, rec must have been created by as while processing a request to its /ciba-auth2
endpoint in a processing step P auth2

as = (Sauth2, Eauth2, N auth2) −→ (Sauth2′ , Eauth2′ , N auth2′) prior to P tokRes
as .

(E.ix) We now look at P auth2
as in detail:

(E.ix.1) The request processed by as during P auth2
as contains (in its body) the identity id ′ (under key identity) and password

password (under key password), such that password ≡ secretOfID(id ′) (Line 286 of Algorithm 11).
(E.ix.2) The identity id ′ must be equivalent to the identity stored in as’ CIBA AuthN Requests storage, i.e.,

Sauth2(as).cibaAuthnRequests[authnReqId ′][selected_identity] ≡ id ′ (Line 290 of Algorithm 11).
(E.ix.3) The contents of Sauth2(as).cibaAuthnRequests[authnReqId ′], after adding a few key-value pairs in Lines 294ff.

of Algorithm 11, are stored in as’ records state subterm (Line 297 of Algorithm 11). Said additional key-value
pairs are: 〈subject, id ′〉, and 〈issuer, das〉 (for a das ∈ dom(as)), and 〈auth_req_id, authnReqId ′〉. Since we
are looking at the record rec from (E.vii) and (E.viii), we must have authnReqId ′ ≡ authnReqId and id ≡ id ′.

(E.ix.4) An AS only adds records to its cibaAuthnRequests state subterm when processing an HTTPS request to its
/backchannel-authn endpoint in Line 263 of Algorithm 11. There, the key under which a new record is stored
(i.e., authnReqId ) is a fresh nonce. Furthermore, the value for the selected_identity key of the record is
taken from the processed request’s body (under key login_hint, see Line 255 of Algorithm 11). Let P bcAuthN

as =
(SbcAuthN, EbcAuthN, N bcAuthN) −→ (SbcAuthN′ , EbcAuthN′ , N bcAuthN′) be the processing step in which as creates the
record stored under authnReqId in its cibaAuthnRequests state subterm.

(E.ix.5) The request to the /backchannel-authn endpoint processed in P bcAuthN
as must have been created by c: the token

request processed by as in P tokRes
as must contain client authentication for the same client (Line 165 of Algorithm 11)

as the /backchannel-authn request (rec from above is a copy of the record created in Line 252 of Algorithm 11
and the client_id value is never changed), c created the token request (see (E.iii)), and because c and as are
honest, we can apply Lemma 30 and Lemma 13 (the preconditions to the latter lemma follow from the processing
of a request to the /backchannel-authn endpoint).

(E.ix.6) Since c used authnReqId in its token request, and by (E.vi), we have authnReqId =
StokReq(c).sessions[lsid ][auth_req_id], the login_hint in c’s request to the /backchannel-authn
endpoint (which as processes in P bcAuthN

as ) must be from the same session, i.e.,
StokReq(c).sessions[lsid ][selected_identity] (note that the client never overwrites this value after initially
setting it).
Overall, this gives us

S(c).sessions[lsid ][selected_identity] ≡ (E.ix)

Sauth2(as).cibaAuthnRequests[authnReqId ][selected_identity] ≡ Line 290 of Algorithm 11
id ′ ≡ (E.ix.3)

rec[subject] ≡ (E.vii)
id

However, from (C), we have that b is the owner of identity S(c).sessions[lsid ][selected_identity], and hence,
b is the owner of id .

(E.ix.7) Since b is honest and ownerOfID(id) = b, secretOfID(id) is only known to b and as . Since as does not send
HTTPS requests with key identity in the request body to a path /ciba-auth2, the request processed by as during
P auth2
as must have been created by b (see also (E.ix.1)).

(E.x) The request to as’ /ciba-auth2 endpoint must be a POST request with the origin header set to the request’s host
value, which must be a domain of as (Line 281 of Algorithm 11). As b is honest, it will only set the origin header
for a request sent by some script accordingly if it is triggered, selects a document loaded from an origin of as , and
executes said script.

(E.xi) The request body processed by as in P auth2
as must contain a key ciba_auth2_reference with a value auth2Reference ,

such that there is a value authnReqId ′ with Sauth2(as).cibaAuthnRequests[authnReqId ′][ciba_auth2_reference] ≡
auth2Reference (Line 289 of Algorithm 11). Such a value is only stored to the AS state at the /ciba-auth endpoint,
where a fresh nonce is generated and stored under key ciba_auth2_reference (Line 277 of Algorithm 11). This, in
turn, only happens when processing an HTTPS request to the as’ /ciba-auth endpoint; and the sender of said request
receives auth2Reference in the response, together with scriptascibaf orm .
Since the sender of the request processed by as in P auth2

as is b (E.ix.7), and b is an honest browser, b will only use
auth2Reference when executing the script scriptascibaf orm . I.e., there must have been some processing step Q′′ prior
to P tokRes

as and hence prior to Q, in which b was triggered, selected a document loaded from an origin of as (E.x), and
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executed scriptascibaf orm in that document (this is the only script sent by as which sends requests to /ciba-auth2).
Furthermore, in Line 6 of Algorithm 17, b must have selected id .
By inspection of Line 17 of Algorithm 17, it is obvious that the scriptstate in
use during Q′′ must contain a key ciba_auth2_reference; and the value must be
auth2Reference with Sauth2(as).cibaAuthnRequests[authnReqId ′][ciba_auth2_reference] ≡
auth2Reference (see above). Since as never changes that value, and with (E.ix.3) we get
S(as).cibaAuthnRequests[authnReqId ][ciba_auth2_reference] ≡ auth2Reference.
(E.ix.6) additionally gives us authnReqId = StokReq(c).sessions[lsid ][auth_req_id], and since c never changes this
value, we get authnReqId = S(c).sessions[lsid ][auth_req_id].
Overall, this gives us authenticatedCIBAQ

′′

ρ (b, c, id , as, lsid).

(F) Hence, we have loggedInQρ (b, c, id , as, lsid) (D) and authenticatedCIBAQ
′′

ρ (b, c, id , as, lsid), which gives us a contradiction
to Assumption 4. �

E. Session Integrity for Authorization Property
In this section, we show that the session integrity properties for authorization from Definition 25 and Definition 26 hold.
We start by proving that the property for authorization code flows (Definition 25) holds.

Lemma 35 (Session Integrity for Authorization Property Holds). For every run ρ of FAPI , every processing step Q =
(S,E,N) −→ (S′, E′, N ′) in ρ, every browser b that is honest in S, every as ∈ AS, every identity u, every client c ∈ C that is
honest in S, every rs ∈ RS that is honest in S, every nonce r, every nonce lsid such that S(c).sessions[lsid ][cibaFlow] ≡ ⊥,
we have that if accessesResourceQρ (b, r , u, c, rs, as, lsid) and c did not leak the authorization request for lsid (see Definition 22),
then (1) there exists a processing step Q′ in ρ (before Q) such that startedQ

′

ρ (b, c, lsid), and (2) if as is honest in S, then there
exists a processing step Q′′ in ρ (before Q) such that authenticatedQ

′′

ρ (b, c, u, as, lsid).

PROOF. (1). Due to accessesResourceQρ (b, r , u, c, rs, as, lsid) (Definition 21), it holds true that the browser b has a sessionId

cookie with the session identifier lsid for the domain of the client c. This cookie is set with the __Host prefix, i.e., it
follows that the cookie was set by c, which responds with a Set-Cookie header (with a sessionId cookie) only in
Line 69 of Algorithm 3 and Line 42 of Algorithm 2 – however, we can immediately exclude the latter due to precondition
S(c).sessions[lsid ][cibaFlow] ≡ ⊥. Hence, c must have set this cookie by executing Line 69 of Algorithm 3.

The remaining proof is analogous to the proof of the first postcondition of Lemma 33.
(2). accessesResourceQρ (b, r , u, c, rs, as, lsid) implies that during Q, c executed Line 114 of Algorithm 3 or Line 68
of Algorithm 2. However, we can immediately exclude the latter due to Line 57 of Algorithm 2 and precondition
S(c).sessions[lsid ][cibaFlow] ≡ ⊥.
Client received resource from rs . As the client executes Line 114 of Algorithm 3 during Q, and as

S′(c).sessions[lsid ][resourceServer] ∈ dom(rs) (see accessesResource) is only set in Line 110 of Algorithm 3, it
follows that c received the resource r in a response respresource from rs .
I.e., c must have sent a corresponding resource request to rs , and the resource response’s body processed by c during Q
contained r under key resource.

Resource request contains access token associated with u at as . An honest resource server sends out an HTTP response
respresource with resource ∈ respresource.body either in Line 84 of Algorithm 18 or Line 45 of Algorithm 19. Let
P resResp
rs = (SresResp, EresResp, N resResp) −→ (SresResp′ , EresResp′ , N resResp′) be the processing step in which rs sends respresource.

As shown in the proof of Lemma 31, for this to happen, the resource server must have received a resource request
req resource containing an access token t (either in P resResp

rs or in another processing step prior to P resResp
rs – let P resReq

rs =
(SresReq, EresReq, N resReq) −→ (SresReq′ , EresReq′ , N resReq′) be the processing step in which rs receives req resource).
Furthermore, as the resource server stored the resource in S(rs).resourceNonces[u][resourceId ] (see accessesResource,
for some resourceId ∈ TN ), it follows that req resource.path ≡ resourceId (see Line 74 of Algorithm 18 for the structured
access token case, and Line 53 of Algorithm 18, as well as Lines 9 and 36 of Algorithm 19 for the introspection case).
Thus, we have that the value responsibleAS chosen by the resource server in Line 16 of Algorithm 18 during P resReq

rs is a
domain of as (the resource server never changes the resourceASMapping subterm of its state, see also Definition 9, and
from accessesResource, we have as = authorizationServerOfResourcers(resourceID)).
We now look at the two places in which rs could have produced respresource during P resResp

rs : If rs returns the resource r in
Line 84 of Algorithm 18, then the access token is a structured JWT signed by as (Line 64 of Algorithm 18) and containing
the sub value u (Line 71 of Algorithm 18, and Line 74 of Algorithm 18: r was stored under u, see accessesResource).
Otherwise, if r is returned in Line 45 of Algorithm 19, then the resource server received an introspection response from
as containing the sub value u and asserting that the access token contained in req resource is valid. In both cases (structured
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access token or opaque token with introspection), it follows that the authorization server as has a record rec in the
records subterm of its state with rec[access_token] ≡ t and rec[subject] ≡ u.

Token request was sent to as . An honest client sends resource requests only in Algorithm 6, which is called only in Line 83
of Algorithm 3, i.e., after receiving the token response. The check in Line 7 of Algorithm 6 ensures that the token request
req token was sent to as (as the client calls Algorithm 6 with the domain of the token request, see Line 83 of Algorithm 3).
From this, it follows that S(c).sessions[lsid ][selected_AS] is a domain of as , as the client sends the token request to
this domain, see Lines 6, 13, and 14 of Algorithm 4. Note that the token request in question must have been sent from
Line 43 of Algorithm 4: the only other place in which c sends token requests is Line 40 of Algorithm 5. However, in the
latter case, Line 50 of Algorithm 2 must have been executed, which in turn implies auth_req_id ∈ S(c).sessions[lsid ]
– with Lemma 27, this gives us S(c).sessions[lsid ][cibaFlow] ≡ >, which contradicts this lemma’s preconditions.

PAR request was sent to as . The token request req token sent from c to as contains an authorization code code and a PKCE
code verifier pkce_cv (see Line 8 of Algorithm 4 and recall that req token must have been sent in Line 43 of Algorithm 4).
As the authorization server responds to that request with an access token t, it follows that the checks at the token endpoint
in Line 145 of Algorithm 11 passed successfully. In particular, this implies that the token request contains the correct
PKCE verifier for the code, i.e., the authorization code and the PKCE challenge corresponding to the PKCE verifier were
stored in the same record entry in the records state subterm (see Lines 154 and 158 of Algorithm 11).
An authorization server adds records with a key code to its records state subterm only in Line 89 of Algorithm 11, and
the sequence that is added is taken from the authorizationRequests state subterm, see Line 85 of Algorithm 11. In
this processing step, the authorization server also creates the authorization code (Line 88 of Algorithm 11) and associates
the identity with the code (Line 86 of Algorithm 11).
Thus, as the authorization server as exchanged the authorization code code at the token endpoint and the issued access token
is associated with the identity u, it follows that identity u logged in at the /auth2 endpoint of as , and the request to /auth2
contained a value auth2reference in its body equal to S′′(as).authorizationRequests[requestUri ][auth2_reference]
(with S′′ being the state of a configuration prior to Q; see also Line 84 of Algorithm 11). The authorization server received
the requestUri value at the auth endpoint, i.e., each process that can derive the request URI value, can potentially have
sent the /auth request, and received auth2reference in the response.
As S(c).sessions[lsid ][selected_AS] is a domain of as , it follows that the client sent a pushed authorization request
to as in Line 72 of Algorithm 8 in a previous processing step. In this processing step, the client chose the PKCE verifier
pkce_cv in Line 47 of Algorithm 8 and stored this value into the lsid session in Line 53 of Algorithm 8.
Now, we can apply Lemma 24 and conclude that the request URI can only be derived by b, c, and as . As as does not
send requests to itself and c does not send any request to an /auth endpoint, it follows that the request to the /auth
endpoint of as was sent by b. The remaining argumentation is the same as for the proof of Lemma 33. �

This leaves us with the property for FAPI-CIBA flows (Definition 26). This will be a proof by contradiction, hence we begin
by assuming the opposite:

Assumption 5. There exists a FAPI web system with a network attacker FAPI such that there exists a run ρ of FAPI with a
processing step Q = (S,E,N) −→ (S′, E′, N ′) in ρ, a browser b that is honest in S and behaves according to Assumption 1,
an authorization server as ∈ AS, an identity id , a client c ∈ C honest in S, a resource server rs ∈ RS that is honest in S, a
nonce r, and a nonce lsid s.t. S(c).sessions[lsid ][cibaFlow] ≡ >, and accessesResourceQρ (b, r, id , c, rs, as, lsid) such that

(I) there is no processing step Q′ prior to Q in ρ such that startedCIBAQ
′

ρ (b, c, lsid), or
(II) as is honest in S, and there is no processing step Q′′ prior to Q in ρ such that authenticatedCIBAQ

′′

ρ (b, c, id , as, lsid).

Lemma 36 (Session Integrity for Authorization for FAPI-CIBA Flows Property Holds). Assumption 5 is a contradiction.

PROOF. We start with some helpful intermediate results:
(A) From accessesResourceQρ (b, r, id , c, rs, as, lsid), we know that during Q, c emits an event which contains an HTTPS

response whose body is r. Furthermore, due to precondition S(c).sessions[lsid ][cibaFlow] ≡ >, c must have executed
Line 68 of Algorithm 2 during Q, which implies S(c).sessions[lsid ][resource] ≡ r (Line 66 of Algorithm 2). I.e., the
event emitted by c during Q must originate from Lines 51ff. of Algorithm 2.

(B) For c to emit any event during Q (recall (A): c executes Lines 51ff. of Algorithm 2, i.e., must have reached Line 68
of Algorithm 2 in Q), the request processed in Q must have contained a Cookie header with a cookie named
〈__Host, sessionid〉 with value lsid (Line 52 of Algorithm 2).

(C) From accessesResourceQρ (b, r, id , c, rs, as, lsid), we know 〈〈__Host, sessionId〉, 〈lsid , y, z, z′〉〉 ∈〈〉 S′(b).cookies[d]
for some d ∈ dom(c). Since that cookie has the __Host prefix and is stored under a domain of c, it must have been set
by c (see (C) in the proof of Lemma 24). Hence, there must have been an HTTPS response res start-ciba sent from c to
b (i.e., encrypted for b, i.e., with a key used by b in a previous HTTPS request to c) which contained a corresponding
Set-Cookie header.
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From here, we can apply the exact same argumentation as in (B.ii) in the proof of Lemma 34, and get: the
〈__Host, sessionId〉 cookie must originate from the client’s /start_ciba endpoint in Lines 35ff. of Algorithm 2
(in some processing step R prior to Q).

(D) The request to c’s /start-ciba endpoint (in R, i.e., to which c responded with res start-ciba) must have been sent by b:
from (C), we have that in R, c executed Lines 35ff. of Algorithm 2, i.e., the cookie set by c is a fresh nonce (Line 38
of Algorithm 2). If the request came from some process p 6= b, then b would not have processed the response (due to a
missing entry in b’s pendingRequests state subterm), and therefore S′(b).cookies[d] would not contain a sessionId

cookie with value lsid .
Let Q′ be the processing step in which b emits the corresponding HTTPS request.
With the exact same argumentation as in (C) in the proof of Lemma 34, we can now conclude b =
ownerOfID(S(c).sessions[lsid ][selected_identity]).

(E) With (C) and (D), we can apply the same argumentation as in (D) in the proof of Lemma 34, and conclude
startedCIBAQ

′

ρ (b, c, lsid).
(F) From (A), we have S(c).sessions[lsid ][resource] ≡ r. A client only stores something under key resource in one of

its sessions in Line 109 of Algorithm 3 when processing an HTTP (resource) response res resource during some processing
step P storeR

c = (SstoreR, EstoreR, N storeR) −→ (SstoreR′ , EstoreR′ , N storeR′), hence res resource.body[resource] ≡ r. However, c
will only process such a response if it also sent a corresponding request req resource (otherwise, there is no matching entry
in c’s pendingRequests, see Lines 7ff. of Algorithm 39).
In that same processing step P storeR

c , c also executes Line 110 of Algorithm 3, i.e., sets a value for
S(c).sessions[lsid ][resourceServer]. That value is the host to which c sent req resource. Since c does not change
that value anywhere else, we can use accessesResource to conclude that the host of req resource must be a domain of rs .
Since rs and c are honest, we can apply Lemma 46 and get that rs must have created res resource.

(G) From accessesResourceQρ (b, r, id , c, rs, as, lsid), we have r ∈〈〉 S′(rs).resourceNonces[id ][resourceId ] and as =
authorizationServerOfResourcers(resourceID) (for some value resourceId ∈ TN ).

(H) For r ∈〈〉 S′(rs).resourceNonces[id ][resourceId ] from (G), we note that there are only two places in which an RS
stores something in its resourceNonces state subterm: Line 74 of Algorithm 18 and Line 36 of Algorithm 19 (and that
term is initially “empty”, see Definition 9). Let P = (Sip , Eip , N ip) −→ (Si

′
p , Ei

′
p , N i′p) be the processing step during

which rs stores r in its resourceNonces state subterm.
(I) P from (H) is unique, i.e., there are no values id ′, resourceId ′ with id 6≡ id ′ ∨ resourceId 6≡ resourceId ′ such that

r ∈〈〉 S′(rs).resourceNonces[id ′][resourceId ′], which we prove by looking at the two places in which an RS adds
anything to the resourceNonces state subterm:
Line 74 of Algorithm 18 The value stored in resourceNonces is a fresh nonce (Line 48 of Algorithm 18).
Line 36 of Algorithm 19 The value stored in resourceNonces is taken from a record retrieved from the
pendingResponses state subterm (Lines 3 and 10 of Algorithm 19). Line 3 of Algorithm 19 is the only place
where an RS reads something from its pendingResponses state subterm, and the record read there is immediately
deleted (Line 4 of Algorithm 19). Hence, a value stored in pendingResponses is used at most once. Furthermore,
the only place where entries are added to this state subterm is Line 53 of Algorithm 18 – where the value for key
resource is a fresh nonce (which is not stored or sent anywhere else).

Hence, the path of req resource must have been the resourceId from (G) (obvious for case Line 74 of Algorithm 18, in
the case of Line 36 of Algorithm 19, the resource id is taken from the same record as the resource itself in Line 8 of
Algorithm 19).

(J) We can now look at the two cases for P from (H) and (I) separately:
(J.i) rs executed Line 74 of Algorithm 18 during P .

(J.i.1) The id under which P stores r during P is taken from a term t under key sub (Line 71 of Algorithm 18). That
same term t must also contain a key cnf (Line 62 of Algorithm 18).

(J.i.2) t must have been created by as: the signature verification in Line 64 of Algorithm 18 uses
verification key verifKey := Sip(rs).asInfo[das ][as_key] (see Line 19 of Algorithm 18), where
das = Sip(rs).resourceASMapping[resourceId ]. Since resourceASMapping is never changed,
initialized using authorizationServerOfResource (see Definition 9), and from (G) we have as =
authorizationServerOfResourcers(resourceID), this implies das ∈ dom(as). Hence, by Definition 9, we
have verifKey ≡ pub(signkey(as)).
Therefore, we can apply Lemma 8 for the signed t (note that the signed t is known to rs in P ) and get that as
must have created the signed t.

(J.i.3) Authorization servers only create signed dictionaries with keys sub and cnf in Line 200 of Algorithm 11.
Recall (J.i.1): the value of the sub key in t must be id . Hence, by Line 199 of Algorithm 11, there must
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be a record rec in as’ records state subterm with rec[subject] ≡ id . From there, we can apply the same
argumentation as in the proof of Lemma 34, and hence get that is a processing step Q′′ prior to Q in ρ such that
authenticatedCIBAQ

′′

ρ (b, c, id , as, lsid).
(J.ii) rs executed Line 36 of Algorithm 19 during P .

(J.ii.1) Recall (I): There must have been some processing step P ′ prior to P during which rs executed Line 53 of Algo-
rithm 18. P ′ must have ended in Line 60 of Algorithm 18, i.e., with rs sending an introspection request. That introspec-
tion request is sent to a domain of as (see above, and recall as = authorizationServerOfResourcers(resourceID)),
i.e., encrypted for as . Since rs and as are honest, we can apply Lemma 46 and get that the HTTP response
res introspect processed by rs during P must have been created by as .

(J.ii.2) The body of res introspect must be a dictionary such that res introspect.body[sub] ≡ id (see (I) and Line 27 of
Algorithm 19), and active ∈ res introspect.body. Such an HTTP response is only created by an authorization server in
Line 225 of Algorithm 11. This, in turn, requires a record rec in as’ records state subterm with rec[subject] ≡ id
(Line 225 of Algorithm 11). Furthermore, we must have access_token ∈ rec. Such records are only stored by an
AS in Line 203 of Algorithm 11, hence allowing us to apply the same argumentation as above, and hence get that
is a processing step Q′′ prior to Q in ρ such that authenticatedCIBAQ

′′

ρ (b, c, id , as, lsid).

(K) Hence, we have loggedInQρ (b, c, id , as, lsid) (E) and authenticatedCIBAQ
′′

ρ (b, c, id , as, lsid), which gives us a contradiction
to Assumption 5. �

F. Non-Repudiation Properties
In this section, we show that the non-repudiation properties hold.

Lemma 37 (Non-repudiation for Signed Authorization Requests (Definition 27) Holds). For every run ρ =
((S0, E0, N0), ...) of FAPI , every configuration (Sn, En, Nn) in ρ, every process as ∈ AS that is honest in Sn,
every request uri requestUri , we have that if Sn(as).authorizationRequests[requestUri ][signed_par] ≡ >, then all of
the following hold true:

(I) There exists a processing step Q = (S,E,N)
ein→as−−−−→ (S′, E′, N ′) with (S,E,N) prior to (Sn, En, Nn) in ρ, such that

requestUri 6∈ S(as).authorizationRequests and requestUri ∈ S′(as).authorizationRequests.
(II) ein = 〈x, y,m〉 contains a message m of the form enca(〈〈HTTPReq, ·, POST, selectedAS , /par, ·, 〈〉, body〉, ·〉, ·), where

body is of the form sig(par , signKey) and selectedAS ∈ dom(as).
(III) If there is a process c ∈ C which is honest in Sn, and a configuration (Si, Ei, N i) in ρ with

Si(c).asAccounts[selectedAS ][sign_key] ≡ signKey , then there is a processing step P = (Sj , Ej , N j) −→
(Sj+1, Ej+1, N j+1) in ρ prior to Q during which c signs par (as contained in ein) in Line 63 of Algorithm 8.

PROOF. (I) Initially, an authorization server’s authorizationRequests state subterm is empty (Definition 8). Hence, we
have requestUri 6∈ S0(as).authorizationRequests. By induction, we get that there must be some processing step Q
in ρ, during which requestUri is added to the authorizationRequests state subterm.

(II) The only place in which an honest AS adds a new record to its authorizationRequests state subterm is Line 142
of Algorithm 11.9 This line is only executed when processing an HTTPS request, i.e., a message of the form
enca(〈HTTPReq, ·,method , host , path, ·, 〈〉, body〉, ·) (see Lines 7ff. of Algorithm 39). Due to Line 103 of Algorithm 11, we
know path ≡ /par and method ≡ POST. Furthermore, Lemma 2 gives us host ∈ dom(as). We can also infer that body must
have the form sig(par , signKey) from Lines 106 and 107 of Algorithm 11, since we know that requireSignedPAR ≡ >
from this lemma’s precondition, together with Lines 138 and 142 of Algorithm 11.

(III) In the following, we assume that there is a process c ∈ C, honest in Sn, and a configuration (Si, Ei, N i) such
that Si(c).asAccounts[host ][sign_key] ≡ signKey . Since signKey belongs to an honest client, Lemma 4 gives us
signKey 6∈ d∅(Sn(p)) for all processes p 6= c, i.e., only c can derive signKey . Therefore, only c can have created a term
sig(par , signKey) (see the equational theory in Figure 5).
From Lines 107 and 109 of Algorithm 11, we know that par must be a dictionary with at least the keys aud with value
host , and client_id with a client id registered with as . An honest client – like c – creates signatures only in a few
places:
Line 22 of Algorithm 4 The signed value is a dictionary, but does not contain a key client_id.
Line 39 of Algorithm 4 The signed value is a dictionary, but does not contain a key client_id.
Line 19 of Algorithm 5 The signed value is a dictionary, but does not contain a key client_id.
Line 36 of Algorithm 5 The signed value is a dictionary, but does not contain a key client_id.

9Note that Line 73 of Algorithm 11 does not add a new record, but extends an existing one, see Line 67 of Algorithm 11.
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Line 26 of Algorithm 6 The signed value is a dictionary, but does not contain a key client_id.
Line 39 of Algorithm 6 The signed value is a dictionary, but does not contain a key client_id.
Line 40 of Algorithm 8 The signed value is a dictionary, but does not contain a key client_id.
Line 63 of Algorithm 8 The signed value meets the aforementioned conditions.
Note that since only c can create such a signature, and par contains a fresh nonce (Line 47 of Algorithm 8), the term
sig(par , signKey) cannot be derivable by any process prior to P createPAR.
Hence, we conclude that c must have signed par during some processing step P createPAR in Line 63 of Algorithm 8. �

Lemma 38 (Non-repudiation for Signed Authorization Responses (Definition 28) Holds). For every run ρ =
((S0, E0, N0), ...) of FAPI , every configuration (Sn, En, Nn) in ρ, every process c ∈ C that is honest in Sn, every
session id sessionId , we have that if
(1) there exists a processing step Q = (S,E,N)

ein→c−−−→ (S′, E′, N ′) with (S,E,N) prior to (Sn, En, Nn) in ρ such that
redirectEpRequest 6∈ S(c).sessions[sessionId ] and redirectEpRequest ∈ S′(c).sessions[sessionId ], and

(2) ein = 〈x, y,m〉 contains a message m of the form enca(〈〈HTTPReq, ·, ·, ·, /redirect_ep, parameters, headers, ·〉, ·〉, ·),
and

(3) Sn(c).sessions[sessionId ][requested_signed_authz_response] ≡ >,
then all of the following hold true:

(I) The term parameters from (2) above is a dictionary with at least a key response with value sig(authzResponse, signKey),
with authzResponse being a dictionary with at least the keys iss and code.

(II) If there is an as ∈ AS with Sn(as).jwk ≡ signKey , and as honest in Sn, then there is a processing step P =
(Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) prior to Q in ρ, and as signed authzResponse (as contained in ein) during P in
Line 97 of Algorithm 11.

PROOF. We start by noting that (2) is actually implied by (1): an honest client – such as c – only adds a value with key
redirectEpRequest to a value of its sessions state subterm in Line 33 of Algorithm 2. This line, in turn, is only executed
when processing an HTTPS request, i.e., a message of the form enca(〈〈HTTPReq, ·, ·, ·, path, parameters, headers, ·〉, ·〉, ·), see
Lines 7ff. of Algorithm 39, where path ≡ /redirect_ep (see Line 12 of Algorithm 2).

(I) Since (3) implies that during Q, c must execute Lines 18ff. of Algorithm 2, and not stop due to the checks in Lines 19,
22, and 27 of Algorithm 2, we know:
• response ∈ parameters: otherwise parameters[response] ≡ 〈〉 (Definition 41), and by Figure 5, checksig(〈〉, k) 6≡ >

for any k, and
• parameters[response] must be of the form sig(authzResponse, signKey) (see equational theory in Figure 5), and
• Lines 21, 24, and 27 of Algorithm 2 imply that authzResponse must be a dictionary with at least the keys code and
iss.

(II) For the following, we assume that there is an as ∈ AS with Sn(as).jwk ≡ signKey , and as honest in Sn. By applying
Lemma 8, we get signKey 6∈ d∅(Sn(p)) for all processes p 6= as , i.e., only as can derive signKey . Therefore, only as can
have created a term sig(authzResponse, signKey) (see Figure 5). From the same lemma – in conjunction with Figure 5,
and the fact that c knows sig(authzResponse, signKey) in Q – we also get that as must have created that term in some
processing step P prior to Q in ρ.
An honest AS only signs terms in a few places (recall: the signed term authzResponse is a dictionary with at least the
keys iss and code):
Line 200 of Algorithm 11 The signed value is a dictionary, but it does not contain a key iss, nor a key code.
Line 212 of Algorithm 11 The signed value is a dictionary with a key iss, but it does not contain a key code.
Line 227 of Algorithm 11 The signed value is a dictionary with a key iss, but it does not contain a key code.
Line 97 of Algorithm 11 The signed value is a dictionary with keys iss and code.
Since Line 97 of Algorithm 11 is the only place in which an honest AS signs a term meeting the above conditions, we
conclude that as must have signed authzResponse in a processing step P prior to Q in ρ. �

Lemma 39 (Non-repudiation for Signed Introspection Responses (Definition 29) Holds). For every run ρ =
((S0, E0, N0), ...) of FAPI , every configuration (Sn, En, Nn) in ρ, every process rs ∈ RS that is honest in Sn,
every request id requestId , we have that if there exists a processing step Q = (S,E,N)

ein→rs−−−−→ (S′, E′, N ′)

in ρ such that S(rs).pendingResponses[requestId ][requestSignedIntrospecResponse] ≡ >, and requestId 6∈
S′(rs).pendingResponses, and (S,E,N) prior to (Sn, En, Nn) in ρ, then all of the following hold true:

(I) ein = 〈x, y,m〉 contains a message m of the form encs(〈HTTPResp, ·, ·, ·, body〉, ·), where body is of the form
sig(introspecResponse, signKey).
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(II) If there is an as ∈ AS with Sn(as).jwk ≡ signKey , and as honest in Sn, then there is a processing step P =
(Si, Ei, N i) −−−−−→

as→Eout
(Si+1, Ei+1, N i+1) prior to Q in ρ, and as signed introspecResponse (as contained in ein above)

during P in Line 227 of Algorithm 11.

PROOF. (I) The preconditions imply that requestId ∈ S(rs).pendingResponses (otherwise,
S(rs).pendingResponses[requestId ] would have the value 〈〉 6≡ >). Hence, rs must have removed the entry
with key requestId from its pendingResponses state subterm during Q. An honest RS only removes dictionary keys
(i.e., entries) from this state subterm in Line 4 of Algorithm 19. This, in turn, implies that during Q, rs processes an
HTTPS response – that is, a message of the form encs(resp, ·), where resp ∈ HTTPResponses, and hence resp is of the
form 〈HTTPResp, ·, ·, ·, body〉 (see Lines 19ff. of Algorithm 39).
Since S(rs).pendingResponses[requestId ][requestSignedIntrospecResponse] ≡ >, we know that rs executed
Lines 16ff. of Algorithm 19 without stopping due to the checks in Lines 16 and 19 of Algorithm 19. We can therefore
conclude that resp.body must be of the form sig(introspecResponse, signKey) (see Line 16 of Algorithm 19).
Furthermore, in order for Q to actually finish with a changed state (i.e., to reach Line 45 of Algorithm 19 and
store the changes to pendingResponses), we need extractmsg(resp.body) to be a dictionary with at least the key
token_introspection (otherwise, execution would stop in Line 23 of Algorithm 19, see also Line 21 of Algorithm 19).

(II) For the following, we assume that there is an as ∈ AS with Sn(as).jwk ≡ signKey , and as honest in Sn. By applying
Lemma 8, we get signKey 6∈ d∅(Sn(p)) for all processes p 6= as , i.e., only as can derive signKey . Therefore, only as
can have created a term sig(introspecResponse, signKey) (see Figure 5). From the same lemma – in conjunction with
Figure 5, and the fact that rs knows sig(introspecResponse, signKey) in Q – we also get that as must have created that
term in some processing step P prior to Q in ρ.
An honest AS only signs terms in a few places (recall: the signed term introspecResponse is a dictionary with at least
the key token_introspection):
Line 200 of Algorithm 11 The signed value is a dictionary, but it does not contain a key token_introspection.
Line 212 of Algorithm 11 The signed value is a dictionary, but it does not contain a key token_introspection.
Line 227 of Algorithm 11 The signed value is a dictionary with a key token_introspection.
Line 97 of Algorithm 11 The signed value is a dictionary, but it does not contain a key token_introspection.
Since Line 227 of Algorithm 11 is the only place in which an honest AS signs a term meeting the above conditions, we
conclude that as must have signed introspecResponse in a processing step P prior to Q in ρ. �

Lemma 40 (Properties of VERIFY_REQUEST_SIGNATURE (Algorithm 21)). For any function call
VERIFY_REQUEST_SIGNATURE(m, verificationKey) to return >, the arguments must meet all of the following
conditions:

(I) m.headers must exist, be a dictionary, and Signature ∈ m.headers
(II) req ∈ m.headers[Signature]

(III) Signature-Input ∈ m.headers and req ∈ m.headers[Signature-Input]
(IV) m.headers[Signature][req] ≡ sig(sigBase, sigKey) for some sigBase , sigKey
(V) m.headers[Signature-Input][req] is a sequence 〈coveredComponents,metadata〉 (there may be additional

sequence elements after those two), where metadata is a dictionary with at least a key tag with
value fapi-2-request, and coveredComponents is a sequence with at least the following elements:
〈@method, 〈〉〉, 〈@target-uri, 〈〉〉, 〈authorization, 〈〉〉, and 〈content-digest, 〈〉〉.

(VI) The value of sigBase from (IV) is a dictionary with the following properties:
(VI.a) sigBase[〈@method, 〈〉〉] ≡ m.method
(VI.b) sigBase[〈@target-uri, 〈〉〉] ≡ 〈URL, S,m.host,m.path,m.parameters,⊥〉
(VI.c) sigBase[〈authorization, 〈〉〉] ≡ m.headers[Authorization]
(VI.d) sigBase[〈content-digest, 〈〉〉] ≡ hash(m.body)
(VI.e) sigBase.2[tag] ≡ fapi-2-request and keyid ∈ sigBase.2

PROOF. We start by noting that there is only one place in which Algorithm 21 returns >, namely Line 17 of Algorithm 21.
Hence, all execution paths not leading to this line do not return >.
(I) Obvious from Line 2 of Algorithm 21.
(II) Proof by contradiction: if req 6∈ m.headers[Signature], then m.headers[Signature][req] = 〈〉 (Definition 41).

extractmsg(〈〉) in Line 6 of Algorithm 21 is undefined (Figure 5), and therefore VERIFY_REQUEST_SIGNATURE does
not return anything. This is a contradiction to VERIFY_REQUEST_SIGNATURE(m, verificationKey) returning >.

(III) Proof by contradiction: if req 6∈ m.headers[Signature-Input] or Signature-Input 6∈ m.headers, then
m.headers[Signature-Input][req] = 〈〉 (Definition 41). Hence, coveredComponents = 〈〉 in Line 5 of Al-
gorithm 21. Recall Definition 42 and Figure 5: 〈〉.1 := π1(〈〉) := 3. Therefore the first check in Line 8
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of Algorithm 21 boils down to @method 6∈ 3 which is undefined (3 is not a dictionary, see Defini-
tion 41), and consequently, VERIFY_REQUEST_SIGNATURE does not return anything. This is a contradiction to
VERIFY_REQUEST_SIGNATURE(m, verificationKey) returning >.

(IV) The signature verification in Line 15 of Algorithm 21 must return > for VERIFY_REQUEST_SIGNATURE to return >,
which requires the first argument given to checksig(·, ·) to match sig(∗, ∗) (see Figure 5).

(V) The value of m.headers[Signature-Input][req] is stored in a variable coveredComponents in Line 5 of Algorithm 21,
which is used in several checks in Line 8 of Algorithm 21, verifying the presence of the elements required in (V).

(VI) From (V), we have 〈@method, 〈〉〉, 〈@target-uri, 〈〉〉, 〈authorization, 〈〉〉, and 〈content-digest, 〈〉〉 ∈〈〉
coveredComponents.1 (from Line 5 of Algorithm 21). Hence, these are covered by the loop in Lines 11ff. of Algorithm 21,
and thus passed to IS_COMPONENT_EQUAL (Algorithm 1) in Line 12 of Algorithm 21 with m as the first, the sigBase
as the second to last, and the respective component identifier as the last argument.
It is easy to see that the results of IS_COMPONENT_EQUAL are only > (and hence, the checks in Algo-
rithm 21 on these results succeed) if conditions (VI.a), (VI.b), and (VI.c) are fulfilled. Furthermore, this gives us
m.headers[Content-Digest] ≡ sigBase[〈content-digest, 〈〉〉] – which, together with Line 3 of Algorithm 21, gives
us (VI.d).
This leaves us with (VI.e) to prove, which is ensured by the check in Line 9 of Algorithm 21.

Lemma 41 (Non-repudiation for Signed Resource Requests (Definition 30) Holds). For every run ρ = ((S0, E0, N0), ...)
of FAPI , every configuration (Sn, En, Nn) in ρ, every process rs ∈ RS that is honest in Sn, we have that if
(1) there exists a processing step Q = (S,E,N) −−−−−→

rs→Eout
(S′, E′, N ′) in ρ such that Eout = 〈〈x, y, resRes〉, leakedRequest〉,

with (S,E,N) prior to (Sn, En, Nn), and
(2) during Q, either Line 69 of Algorithm 18 or Line 33 of Algorithm 19 was executed,

then all of the following hold true:
(I) resRes is of the form encs(〈HTTPResp, ·, ·, ·, body〉, ·) with body ≡ [resource : resource].

(II) There exists a processing step R = sr
ein→rs−−−−→ sr

′
prior or equal to Q in ρ such that ein = 〈y, x, resReq〉, and rs generated

resource during R in Line 48 of Algorithm 18.
(III) resReq is of the form enca(〈〈HTTPReq, ·,method , host , path, parameters, headers, body〉, ·〉, ·) with Signature ∈

headers , Signature-Input ∈ headers , and headers[Signature] being a dictionary with at least a key req with value
sig(signatureBase, clientSignKey).

(IV) headers[Signature-Input][req] is a sequence 〈coveredComponents,metadata〉 (there may be additional
sequence elements after those two), where metadata is a dictionary with at least a key tag with
value fapi-2-request, and coveredComponents is a sequence with at least the following elements:
〈@method, 〈〉〉, 〈@target-uri, 〈〉〉, 〈authorization, 〈〉〉, and 〈content-digest, 〈〉〉.

(V) signatureBase is of the form [〈@method, 〈〉〉 : method , 〈@target-uri, 〈〉〉 : 〈URL, S, host , path, parameters,⊥〉,
〈authorization, 〈〉〉 : headers[Authorization], 〈content-digest, 〈〉〉 : hash(body)] +〈〉 [tag : fapi-2-request,
keyid : keyId ] for some keyId ; however, the dictionaries may contain additional elements.

(VI) If there is a client c ∈ C which is honest in Sn, a domain selectedAS , and an index j ≤ n such that
Sj(c).asAccounts[selectedAS ][sign_key] ≡ clientSignKey , then there is a processing step P = (Si, Ei, N i) −−−−→

c→E′out

(Si+1, Ei+1, N i+1) prior to R in ρ, and c signed signatureBase (as contained in ein above) during P in Line 39 of
Algorithm 6.

PROOF. (I) From (1), we have that during Q, rs outputs two events. With that in mind, we look at the two cases of (2):
Line 69 of Algorithm 18 After making it to this line, the only possibility to output two events is the stop in Line 84 of

Algorithm 18. There, the first event contains a message m′, created in Line 81 of Algorithm 18 as a message of the form
encs(〈HTTPResp, ·, 200, ·, body〉, ·). The value for body is created in Line 75 of Algorithm 18 as [resource : resource].

Line 33 of Algorithm 19 After making it to this line, the only possibility to output two events is the stop in Line 45 of
Algorithm 19. There, the first event contains a message m′, created in Line 42 of Algorithm 19 as a message of the form
encs(〈HTTPResp, ·, 200, ·, body〉, ·). The value for body is created in Line 37 of Algorithm 19 as [resource : resource].

(II) From (I), we know that rs created a resource response body in one of the following places during Q, for which we will
determine where the resource value originates from:
Line 75 of Algorithm 18 The value for resource was generated in Line 48 of Algorithm 18 of the same processing

step, i.e., R = Q. We note that some input event is always required for a processing step (see Definition 54), hence
concluding this sub-proof.

Line 37 of Algorithm 19 In this case, the value for resource is taken from rs’ pendingResponses state subterm
(Lines 3 and 10 of Algorithm 19). Corresponding entries in rs’ pendingResponses state subterm are only created
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in Line 53 of Algorithm 18, where the value for the dictionary key resource is a fresh nonce generated in Line 48
of Algorithm 18. I.e., there must have been some processing step R during which rs generated a value in Line 48
of Algorithm 18, and stored that value into its state in Line 53 of Algorithm 18. After storing that value to its state,
rs calls HTTPS_SIMPLE_SEND in Line 61 of Algorithm 18, which ends the processing step (in particular, without
executing Algorithm 19), therefore R 6= Q, and R prior to Q. We again note that some input event is always required
for a processing step (see Definition 54), hence concluding this sub-proof.

(III) From (II), we know that during R, rs processed an input event 〈y, x, resReq〉, and executed Line 48 of Algorithm 18.
Hence, rs must have executed Algorithm 18, which is only called in Line 9 of Algorithm 39. This in turn only happens
if the input message, i.e., resReq , is of the form enca(〈〈HTTPReq, ·,method , host , path, parameters, headers, body〉, ·〉, ·)
(see Lines 7ff. of Algorithm 39).
For the remaining conditions, we distinguish between the two possible cases R = Q and R 6= Q established in the proof
of (II) above.
Case R = Q. In the proofs of (I) and (II), we established that execution during R must reach the stop in Line 84 of

Algorithm 18. Therefore, the check in Line 50 of Algorithm 18 must have come up negative, i.e., execution continued in
Line 62 of Algorithm 18 (otherwise, R would have stopped inside HTTPS_SIMPLE_SEND). Furthermore, (2) gives us
that Line 69 of Algorithm 18 was executed during R, i.e., expectSignedRequest had value > in Line 66 of Algorithm 18.
Hence, none of the checks in Lines 62, 64, and 69 of Algorithm 18 failed (i.e., lead to a parameterless stop). For the
check in Line 69 of Algorithm 18 to succeed, the call to VERIFY_REQUEST_SIGNATURE (Algorithm 21) in Line 68
of Algorithm 18 must return >. This allows us to apply Lemma 40, concluding this sub-proof.

Case R 6= Q.
Storing resReq during R. In the proofs of (I) and (II), we established that execution during R must reach the call to

HTTPS_SIMPLE_SEND in Line 61 of Algorithm 18, and hence, the stop in Line 3 of Algorithm 34 – in other words,
all changes to rs’ state made in Algorithm 18 are indeed stored (i.e., execution did not finish at a parameterless stop).
This includes the record stored to the pendingResponses state subterm in Line 53 of Algorithm 18. Note that the
key requestId under which the whole record gets stored is a fresh nonce (i.e., there are no key “collisions”, since
Line 53 of Algorithm 18 is the only place in which an honest RS adds elements to its pendingResponses state
subterm). Said record includes, among other dictionary elements, a key originalRequest with value m, where m
is the first argument given to Algorithm 18 – which is only called in Line 9 of Algorithm 39 with the decrypted
first sequence element of the input event as the first element, i.e., m ≡ deca(resReq , k).1 with the “correct” k, and
hence m ≡ 〈HTTPReq, ·,method , host , path, parameters, headers, body〉. In addition to m, the record also includes
a key resource with value resource , i.e., the value created in Line 48 of Algorithm 18 (see (I) and (II)). So, at the
end of processing step R, m is stored under key originalRequest, together with resource under key resource,
as part of a record stored under some (unique) requestId in the pendingResponses state subterm.

Linking R and Q, Accessing resReq During Q. Records stored in the pendingResponses state subterm are only
accessed in Line 3 of Algorithm 19, and deleted from the state immediately after accessing them. Hence, each of
those records – which each contain a fresh resource, see proof of (II) – is accessed at most once, including the
one accessed during Q, i.e., R and Q can be uniquely “linked” via the resource stored during R and output during
Q. Hence, the record r in pendingResponses “used” during Q, and in particular m and resource within r, are
indeed the values stored during R.

Signature Check During Q. From (2) (and R 6= Q), we know that during Q, rs must have executed Line 33 of
Algorithm 19 and (see proof for (I)) Q finished at the stop in Line 45 of Algorithm 19. This implies that –
among others – the check in Line 34 of Algorithm 19 succeeded, i.e., did not lead to a parameterless stop.
I.e., the call to VERIFY_REQUEST_SIGNATURE in Line 33 of Algorithm 19 must have returned >. The first
argument in that call is origReq , which is taken from the aforementioned record r in Line 7 of Algorithm 19, i.e.,
origReq ≡ r[originalRequest], which is the value stored as m during R (note: in the context of Q, m refers to
the introspection response, and no longer to the resource request, hence the new variable name origReq).
Since origReq ≡ deca(resReq , k).1 (see above), we can apply Lemma 40 to conclude this sub-proof.

(IV) With the same argumentation as in the proof of (III), we can apply Lemma 40 and immediately get (IV).
(V) With the same argumentation as in the proof of (III), we can apply Lemma 40 and immediately get (V).
(VI) For the following, we assume that there is a client c ∈ C, honest in Sn, an issuer identifier selectedAS , and an index

j ≤ n such that Sj(c).asAccounts[selectedAS ][sign_key] ≡ clientSignKey (i.e., the key used for the signature from
(III)).
Since c is honest, and we have selectedAS ∈ Sj(c).asAccounts, Lemma 4 gives us clientSignKey 6∈ d∅(Sn(p)) for all
p 6= c, i.e., only c can derive clientSignKey . Therefore, only c can have created a term sig(signatureBase, clientSignKey)
(see Figure 5).
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From (V), we have some conditions on the structure of signatureBase . With those in mind, we can look at all places in
which an honest client creates signatures:
Line 22 of Algorithm 4 The signed value does not meet the conditions from (V).
Line 39 of Algorithm 4 The signed value does not meet the conditions from (V).
Line 19 of Algorithm 5 The signed value does not meet the conditions from (V).
Line 36 of Algorithm 5 The signed value does not meet the conditions from (V).
Line 26 of Algorithm 6 The signed value does not meet the conditions from (V).
Line 39 of Algorithm 6 The signed value meets the conditions from (V).
Line 40 of Algorithm 8 The signed value does not meet the conditions from (V).
Line 63 of Algorithm 8 The signed value does not meet the conditions from (V).
Since only c can have created a term sig(signatureBase, clientSignKey), honest clients only create such a term in Line 39
of Algorithm 6, and this term is part of the input event in processing step R, we conclude that there must be a processing
step P prior to R in ρ during which c signed signatureBase in Line 39 of Algorithm 6. �

Lemma 42 (Non-repudiation for Signed Resource Responses (Definition 31) Holds). For every run ρ =
((S0, E0, N0), ...) of FAPI , every configuration (Sn, En, Nn) in ρ, every client c ∈ C which is honest in Sn, every
session id sessionId ∈ Sn(c).sessions such that
(1) Sn(c).sessions[sessionId ][expect_signed_resource_res] ≡ >, and
(2) Sn(c).sessions[sessionId ][resource] ≡ resource,

then all of the following hold true:
(I) There exists a processing step P = (S,E,N)

ein→c−−−→ (S′, E′, N ′) in ρ with (S,E,N) prior to (Sn, En, Nn) where ein =

〈x, y,m〉, with m having the form encs(〈HTTPResp, ·, status, headers, body〉, ·), where body ≡ [resource : resource],
and S(c) 6= S′(c).

(II) headers[Signature-Input] is a dictionary with at least a key res such that headers[Signature-Input][res] is a
sequence with at least two elements. For those first two elements, components , and metadata , we have 〈@status, 〈〉〉,
〈content-digest, 〈〉〉 ∈〈〉 components , and metadata is a dictionary with at least the key tag such that metadata[tag] ≡
fapi-2-response.

(III) headers[Signature] is a dictionary with at least a key res such that headers[Signature][res] ≡
sig(signatureBase, rsSigKey).
In addition, signatureBase is of the form [〈@status, 〈〉〉 : status, 〈content-digest, 〈〉〉 : hash(body)] +〈〉

[tag : fapi-2-response, keyid : keyId ′] for some keyId ′; however, the dictionaries may contain additional elements.

(IV) There exists a domain rsDom ∈ Sn(c).rsSigKeys such that Sn(c).rsSigKeys[rsDom] ≡ pub(rsSigKey).
(V) If process rs := dom−1(rsDom) is honest in Sn, then there is a processing step Q = s −−−−−→

rs→Eout
s′, and rs signed the

resource response contained in m during Q in Line 6 of Algorithm 20.

PROOF. (I) Precondition (2) implies that c must have stored some value under key resource in a record within its sessions
state subterm prior to (Sn, En, Nn) (and the sessions state subterm is initially empty, see Definition 7). An honest client
only stores values under that key in Line 109 of Algorithm 3. Algorithm 3 is only called in Line 26 of Algorithm 39,
which only happens if the input event to the current processing step is an encrypted HTTP response (see Lines 19ff. of
Algorithm 39), i.e., matches 〈∗, ∗, encs(〈HTTPResp, ∗, ∗, ∗, ∗〉, ∗)〉.
Furthermore, execution during such a processing step must of course reach Line 109 of Algorithm 3 (and end in a
stop with a state parameter, otherwise, nothing gets stored under key resource, contradicting (2)). The value stored to
c’s sessions state subterm in that line is taken from the decrypted (Line 20 of Algorithm 39) input message’s body

component under the key resource (Line 108 of Algorithm 3). Hence, decs(m, k).body[resource] (for the “correct” k)
is equivalent to resource as stored in the sessions state subterm.

Signature Check During P . From (1) we have Sn(c).sessions[sessionId ][expect_signed_resource_res] ≡ >.
Since execution during P must reach Line 109 of Algorithm 3 (otherwise S(c) = S′(c)), we know
that Line 89 of Algorithm 3 must have been executed as well. Because resource can only be stored
in Line 109 of Algorithm 3 after expect_signed_resource_res was stored in Line 90 of Algorithm 3,
Sn(c).sessions[sessionId ][expect_signed_resource_res] ≡ > implies that expectSignedResponse is chosen as >
in Line 89 of Algorithm 3 during P . Hence, during P , Lines 91ff. of Algorithm 3 are executed.

(II) As shown in “Signature Check During P ” above, Lines 91ff. of Algorithm 3 are executed during P .
headers[Signature-Input][res] must be a sequence with at least two elements, as otherwise, accessing the sequence
elements in Line 98 of Algorithm 3 would be undefined, and hence, P would not exist in ρ.
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Furthermore, the same check ensures 〈@status, 〈〉〉, 〈content-digest, 〈〉〉 ∈〈〉 headers[Signature-Input][res].1, and
headers[Signature-Input][res].2[tag] ≡ fapi-2-response – if this check fails, P stops without parameters in Line 99
of Algorithm 3, which is a contradiction to (I).

(III) As shown in “Signature Check During P ” above, Lines 91ff. of Algorithm 3 are executed during P , and from (I), we
have that P does not end in a parameterless stop. This implies that the checks in Lines 100, 104, and 106 of Algorithm 3
succeed (i.e., the if-conditions are false).
res ∈ headers[Signature] Proof by contradiction: if res 6∈ headers[Signature], then headers[Signature][res] ≡ 〈〉

(Definition 41). extractmsg(〈〉) in Line 97 of Algorithm 3 is undefined (Figure 5), and therefore P is not in ρ. This is
a contradiction to (I).

headers[Signature][res] ∼ sig(∗, ∗) Proof by contradiction: assume headers[Signature][res] 6∼ sig(∗, ∗). Therefore
∀k. checksig(headers[Signature][res], k) 6≡ > in Line 106 of Algorithm 3, hence P stops without parameters, which
is a contradiction to (I).

signatureBase[〈@status, 〈〉〉] ≡ status We have 〈@status, 〈〉〉 ∈〈〉 headers[Signature-Input][res].1 from (II). There-
fore, IS_COMPONENT_EQUAL (Algorithm 1) in Line 103 of Algorithm 3 gets called with 〈@status, 〈〉〉 as last
argument, signatureBase as second-to-last argument, and the decrypted m as first argument. It is easy to see that
Algorithm 1 only returns > (which is needed, as otherwise P would stop without parameters due to Line 104 of
Algorithm 3), if signatureBase[〈@status, 〈〉〉] ≡ status .

signatureBase[〈content-digest, 〈〉〉] ≡ hash(body) From Line 92 of Algorithm 3 and (I) (P does not stop with-
out parameters), we get headers[Content-Digest] ≡ hash(body). With the same argumentation as above for
@status, we get signatureBase[〈content-digest, 〈〉〉] ≡ headers[Content-Digest]. Combining these, we get
signatureBase[〈content-digest, 〈〉〉] ≡ hash(body).

Value of tag and existence of keyid in signatureBase Obvious from Line 100 of Algorithm 3 and (I).
(IV) From (I), we know that the signature check in Line 106 of Algorithm 3 must succeed. Hence, the value for pubKey used

there must be pub(rsSigKey) (see Figure 5). Furthermore, this value is taken from c’s rsSigKeys state subterm in Line 96
of Algorithm 3 with a key rsDom . Note: if rsDom 6∈ S(c).rsSigKeys, the value of pubKey would be 〈〉 6∼ pub(∗).

(V) From Definition 7, we have dom−1(rsDom) ∈ RS for all rsDom ∈ S0(c).rsSigKeys. However, since an honest
client never changes the contents of its rsSigKeys state subterm, we also get dom−1(rsDom) ∈ RS for all rsDom ∈
S(c).rsSigKeys, and hence, we can assume that rs := dom−1(rsDom) ∈ RS is an honest resource server (in Sn).
Furthermore, Definition 7 gives us S(c).rsSigKeys[rsDom] ≡ pub(signkey(rs)). This allows us to apply Lemma 10:
only rs can derive rsSigKey , and hence, only rs can have created a term sig(signatureBase, rsSigKey) (see
Figure 5). An honest resource server only creates signatures in Line 6 of Algorithm 20, and since c processes
sig(signatureBase, rsSigKey), i.e., a signature created by rs , in P , there must have been a processing step Q during
which rs created sig(signatureBase, rsSigKey), i.e., signed signatureBase. �

G. Proof of Theorem
Theorem 1 follows from Lemmas 31-39, Lemma 41, and Lemma 42.
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deca(enca(x, pub(y)), y) = x (7)
decs(encs(x, y), y) = x (8)

checksig(sig(x, y), pub(y)) = > (9)
extractmsg(sig(x, y)) = x (10)

checkmac(mac(x, y), y) = > (11)
extractmsg(mac(x, y)) = x (12)

πi(〈x1, . . . , xn〉) = xi if 1 ≤ i ≤ n (13)
πj(〈x1, . . . , xn〉) = 3 if j 6∈ {1, . . . , n} (14)

πj(t) = 3 if t is not a sequence (15)

Figure 5. Equational theory for Σ.

APPENDIX E
TECHNICAL DEFINITIONS

Here, we provide technical definitions of the WIM. These follow the descriptions in [12, 16–21].

A. Terms and Notations
Definition 32 (Signature Σ). We define the signature Σ, over which we will define formal terms, as the union of the following
pairwise disjoint sets:
Constants C = S ∪ IPs ∪ {⊥,>,3} with the three sets pairwise disjoint. S is the set of all (ASCII) strings, including the

empty string ε. IPs is the set of IP addresses.
Function Symbols to represent public keys, asymmetric encryption and decryption, symmetric encryption and decryption,

signatures, signature verification, MACs, MAC verification, message extraction from signatures and MACs, and
hashing, respectively: pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), mac(·, ·), checkmac(·, ·),
extractmsg(·), hash(·).

Sequences of any length 〈〉, 〈·〉, 〈·, ·〉, 〈·, ·, ·〉, etc. Note that formally, these sequence “constructors” are also function symbols.
Projection Symbols to access sequence elements: πi(·) for all i ∈ N∅. Note that formally, projection symbols are also function

symbols.

Definition 33 (Nonces and Terms). By X = {x0, x1, . . . } we denote a set of variables and by N we denote an infinite set
of constants (nonces) such that Σ, X , and N are pairwise disjoint. For N ⊆ N , we define the set TN (X) of terms over
Σ ∪N ∪X inductively as usual: (1) If t ∈ N ∪X ∪ C, then t is a term. (2) If f ∈ Σ is an n-ary function symbol for some
n ≥ 0 and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

By ≡ we denote the congruence relation on TN (X) induced by the theory associated with Σ (see Figure 5). For example,
we have that π1(deca(enca(〈a, b〉, pub(k)), k)) ≡ a.

Definition 34 (Ground Terms, Messages, Placeholders, Protomessages). By TN = TN (∅), we denote the set of all terms
over Σ ∪N without variables, called ground terms. The set M of messages (over N ) is defined to be the set of ground terms
TN .

We define the set Vprocess = {ν1, ν2, . . . } of variables (called placeholders). The set M ν := TN (Vprocess) is called the set of
protomessages, i.e., messages that can contain placeholders.

Example 1. For example, k ∈ N and pub(k) are messages, where k typically models a private key and pub(k) the corresponding
public key. For constants a, b, c and the nonce k ∈ N , the message enca(〈a, b, c〉, pub(k)) is interpreted to be the message
〈a, b, c〉 (the sequence of constants a, b, c) encrypted by the public key pub(k).

Definition 35 (Events and Protoevents). An event (over IPs and M ) is a term of the form 〈a, f,m〉, for a, f ∈ IPs and
m ∈ M , where a is interpreted to be the receiver address and f is the sender address. We denote by E the set of all events.
Events over IPs and M ν are called protoevents and are denoted Eν . By 2E〈〉 (or 2Eν〈〉, respectively) we denote the set of all
sequences of (proto)events, including the empty sequence (e.g., 〈〉, 〈〈a, f,m〉, 〈a′, f ′,m′〉, . . . 〉, etc.).

Definition 36 (Normal Form). Let t be a term. The normal form of t is acquired by reducing the function symbols from left
to right as far as possible using the equational theory shown in Figure 5. For a term t, we denote its normal form as t↓.
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Definition 37 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard (variable ∗). We say that a term
t matches pattern iff t can be acquired from pattern by replacing each occurrence of the wildcard with an arbitrary term
(which may be different for each instance of the wildcard). We write t ∼ pattern . For a sequence of patterns patterns we
write t ∼̇ patterns to denote that t matches at least one pattern in patterns .

For a term t′ we write t′| pattern to denote the term that is acquired from t′ by removing all immediate subterms of t′ that
do not match pattern .

Example 2. For example, for a pattern p = 〈>, ∗〉 we have that 〈>, 42〉 ∼ p, 〈⊥, 42〉 6∼ p, and

〈〈⊥,>〉, 〈>, 23〉, 〈a, b〉, 〈>,⊥〉〉| p = 〈〈>, 23〉, 〈>,⊥〉〉 .

Definition 38 (Variable Replacement). Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈ TN .
By τ [t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by replacing all occurrences of xi in τ by ti, for all

i ∈ {1, . . . , n}.

Definition 39 (Sequence Notations). Let t = 〈t1, . . . , tn〉 and r = 〈r1, . . . , rm〉 be sequences, s a set, and x, y terms. We
define the following operations:

• t ⊂〈〉 s ⇐⇒ t1, . . . , tn ∈ s
• x ∈〈〉 t ⇐⇒ ∃i : ti = x
• t+〈〉 y := 〈t1, . . . , tn, y〉
• t ∪ r := 〈t1, . . . , tn, r1, . . . , rm〉

• t−〈〉 y :=

{
〈t1, . . . , ti−1, ti+1, . . . , tn〉 if ∃i : ti = x (i.e., y ∈〈〉 t)
t otherwise (i.e., y 6∈〈〉 t)

If y occurs more than once in t, t−〈〉 y non-deterministically removes one of the occurrences.
• t−〈〉∗ y is t with all occurrences of y removed.
• |t| := n. If t′ is not a sequence, we set |t′| := 3.
• For a finite set M with M = {m1, . . . ,mn} we use 〈M〉 to denote the term of the form 〈m1, . . . ,mn〉. The order of the

elements does not matter; one is chosen arbitrarily.

Definition 40 (Dictionaries). A dictionary over X and Y is a term of the form

〈〈k1, v1〉, . . . , 〈kn, vn〉〉

where k1, . . . , kn ∈ X , v1, . . . , vn ∈ Y . We call every term 〈ki, vi〉, i ∈ {1, . . . , n}, an element of the dictionary with key ki
and value vi. We often write [k1 : v1, . . . , kn : vn] instead of 〈〈k1, v1〉, . . . , 〈kn, vn〉〉. We denote the set of all dictionaries over
X and Y by [X × Y ]. Note that the empty dictionary is equivalent to the empty sequence, i.e., [] = 〈〉; and dictionaries as
such may contain duplicate keys (however, all dictionary operations are only defined on dictionaries with unique keys).

Definition 41 (Operations on Dictionaries). Let z = [k1 : v1, k2 : v2, . . . , kn : vn] be a dictionary with unique keys, i.e.,
∀i, j : ki 6= kj . In addition, let t and v be terms. We define the following operations:

• t ∈ z ⇐⇒ ∃i ∈ {1, . . . , n} : ki = t

• z[t] :=

{
vi if ∃ki ∈ z : t = ki

〈〉 otherwise (i.e., if t 6∈ z)

• z − t :=

{
[k1 : v1, . . . , ki−1 : vi−1, ki+1 : vi+1, . . . , kn : vn] if ∃ki ∈ z : t = ki

z otherwise (i.e., if t 6∈ z)
• In our algorithm descriptions, we often write let z[t] := v. If t 6∈ z prior to this operation, an element 〈t, v〉 is appended

to z. Otherwise, i.e., if there already is an element 〈t, x〉 ∈〈〉 z, this element is updated to 〈t, v〉.
We emphasize that these operations are only defined on dictionaries with unique keys.

Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence of integers. The subterm is determined by
repeated application of the projection πi for the integers i in the sequence. We call such a sequence a pointer:

Definition 42 (Pointers). A pointer is a sequence of non-negative integers. We write τ.p for the application of the pointer p
to the term τ . This operator is applied from left to right. For pointers consisting of a single integer, we may omit the sequence
braces for brevity.

Example 3. For the term τ = 〈a, b, 〈c, d, 〈e, f〉〉〉 and the pointer p = 〈3, 1〉, the subterm of τ at the position p is c = π1(π3(τ)).
Also, τ.3.〈3, 1〉 = τ.3.p = τ.3.3.1 = e.
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To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead, we will use the names of the
components of a sequence that is of a defined form as pointers that point to the corresponding subterms. E.g., if an Origin
term is defined as 〈host , protocol〉 and o is an Origin term, then we can write o.protocol instead of π2(o) or o.2. See also
Example 4.

Definition 43 (Concatenation of Sequences). For a sequence a = 〈a1, . . . , ai〉 and a sequence b = 〈b1, b2, . . . 〉, we define
the concatenation as a · b := 〈a1, . . . , ai, b1, b2, . . . 〉.

Definition 44 (Subtracting from Sequences). For a sequence X and a set or sequence Y we define X \Y to be the sequence
X where for each element in Y , a non-deterministically chosen occurence of that element in X is removed.

B. Message and Data Formats
We now provide some more details about data and message formats that are needed for the formal treatment of the web

model presented in the following.

1) URLs
Definition 45. A URL is a term of the form

〈URL, protocol , host , path, parameters, fragment〉

with protocol ∈ {P, S} (for plain (HTTP) and secure (HTTPS)), a domain host ∈ Doms, path ∈ S, parameters ∈
[
S× TN

]
,

and fragment ∈ TN . The set of all valid URLs is URLs.

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to be ⊥. We sometimes also
write URLhost

path to denote the URL 〈URL, S, host , path, 〈〉,⊥〉.
As mentioned above, for specific terms, such as URLs, we typically use the names of its components as pointers (see

Definition 42):

Example 4. For the URL u = 〈URL, a, b, c, d〉, u.protocol = a. If, in the algorithms described later, we say u.path := e
then u = 〈URL, a, b, c, e〉 afterwards.

2) Origins
Definition 46. An origin is a term of the form 〈host , protocol〉 with host ∈ Doms and protocol ∈ {P, S}. We write Origins
for the set of all origins.

Example 5. For example, 〈FOO, S〉 is the HTTPS origin for the domain FOO, while 〈BAR, P〉 is the HTTP origin for the domain
BAR.

3) Cookies
Definition 47. A cookie is a term of the form 〈name, content〉 where name ∈ TN , and content is a term of the form
〈value, secure, session, httpOnly〉 where value ∈ TN , secure, session , httpOnly ∈ {>,⊥}. As name is a term, it may also
be a sequence consisting of two parts. If the name consists of two parts, we call the first part of the sequence (i.e., name.1)
the prefix of the name. We write Cookies for the set of all cookies and Cookiesν for the set of all cookies where names and
values are defined over TN (V ).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted HTTP connections.10 If
the session flag is set, this cookie will be deleted as soon as the browser is closed. The httpOnly attribute controls whether
scripts have access to this cookie.

When the __Host prefix (see [8]) of a cookie is set (i.e., name consists of two parts and name.1 ≡ __Host), the browser
accepts the cookie only if the secure attribute is set. As such cookies are only transferred over secure channels (i.e., with TLS),
the cookie cannot be set by a network attacker. Note that the WIM does not model the domain attribute of the Set-Cookie
header, so cookies in the WIM are always sent to the originating domain and not some subdomain. Therefore, the WIM models
only the __Host prefix, but not the __Secure prefix.

Also note that cookies of the form described here are only contained in HTTP(S) responses. In HTTP(S) requests, only the
components name and value are transferred as a pairing of the form 〈name, value〉.

10Note that secure cookies can be set over unencrypted connections (c.f. RFC 6265).
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4) HTTP Messages
Definition 48. An HTTP request is a term of the form shown in (16). An HTTP response is a term of the form shown in (17).

〈HTTPReq,nonce,method , host , path, parameters, headers, body〉 (16)
〈HTTPResp,nonce, status, headers, body〉 (17)

The components are defined as follows:

• nonce ∈ N serves to map each response to the corresponding request.
• method ∈ Methods is one of the HTTP methods.
• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S indicates the resource path at the server side.
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the HTTP standard).
• parameters ∈

[
S× TN

]
contains URL parameters.

• headers ∈
[
S× TN

]
contains request/response headers. The dictionary elements are terms of one of the following forms:

– 〈Origin, o〉 where o is an origin,
– 〈Set-Cookie, c〉 where c is a sequence of cookies,
– 〈Cookie, c〉 where c ∈

[
S× TN

]
(note that in this header, only names and values of cookies are transferred),

– 〈Location, l〉 where l ∈ URLs,
– 〈Referer, r〉 where r ∈ URLs,
– 〈Strict-Transport-Security,>〉,
– 〈Authorization, 〈username, password〉〉 where username, password ∈ S (this header models the ‘Basic’ HTTP

Authentication Scheme, see [39]),
– 〈ReferrerPolicy, p〉 where p ∈ {noreferrer, origin}.

• body ∈ TN in requests and responses.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respectively.

Example 6 (HTTP Request and Response).

r :=〈HTTPReq, n1, POST, example.com, /show, 〈〈index, 1〉〉,
[Origin : 〈example.com, S〉], 〈foo, bar〉〉 (18)

s :=〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈〈SID, 〈n2,⊥,⊥,>〉〉〉〉〉, 〈somescript, x〉〉 (19)

An HTTP POST request for the URL http://example.com/show?index=1 is shown in (18), with an Origin header and a body
that contains 〈foo, bar〉. A possible response is shown in (19), which contains an httpOnly cookie with name SID and value
n2 as well as a string somescript representing a script that can later be executed in the browser (see Section E-K) and the
scripts initial state x.

a) Encrypted HTTP Messages: For HTTPS, requests are encrypted using the public key of the server. Such a request
contains an (ephemeral) symmetric key chosen by the client that issued the request. The server is supposed to encrypt the
response using the symmetric key.

Definition 49. An encrypted HTTP request is of the form enca(〈m, k′〉, k), where k ∈ terms, k′ ∈ N , and m ∈ HTTPRequests.
The corresponding encrypted HTTP response would be of the form encs(m

′, k′), where m′ ∈ HTTPResponses. We call the
sets of all encrypted HTTP requests and responses HTTPSRequests or HTTPSResponses, respectively.

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms contain the same nonce.

Example 7.

enca(〈r, k′〉, pub(kexample.com)) (20)
encs(s, k

′) (21)

The term (20) shows an encrypted request (with r as in (18)). It is encrypted using the public key pub(kexample.com). The term
(21) is a response (with s as in (19)). It is encrypted symmetrically using the (symmetric) key k′ that was sent in the request
(20).
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5) DNS Messages
Definition 50. A DNS request is a term of the form 〈DNSResolve, domain,nonce〉 where domain ∈ Doms, nonce ∈ N . We
call the set of all DNS requests DNSRequests.

Definition 51. A DNS response is a term of the form 〈DNSResolved, domain, result ,nonce〉 with domain ∈ Doms, result ∈
IPs, nonce ∈ N . We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request in the DNS response that they send back so
that the party which issued the request can match it with the request.

C. Atomic Processes, Systems and Runs
Entities that take part in a network are modeled as atomic processes. An atomic process takes a term that describes its

current state and an event as input, and then (non-deterministically) outputs a new state and a sequence of events.

Definition 52 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple

p = (Ip, Zp, Rp, sp0)

where Ip ⊆ IPs, Zp ⊆ TN is a set of states, Rp ⊆ (E × Zp) × (2Eν〈〉 × TN (Vprocess)) (input event and old state map to
sequence of output events and new state), and sp0 ∈ Zp is the initial state of p. For any new state s and any sequence of nonces
(η1, η2, . . . ) we demand that s[η1/ν1, η2/ν2, . . . ] ∈ Zp. A system P is a (possibly infinite) set of atomic processes.

Definition 53 (Configurations). A configuration of a system P is a tuple (S,E,N) where the state of the system S maps every
atomic process p ∈ P to its current state S(p) ∈ Zp, the sequence of waiting events E is an infinite sequence11 (e1, e2, . . . )
of events waiting to be delivered, and N is an infinite sequence of nonces (n1, n2, . . . ).

Definition 54 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−→
p→Eout

(S′, E′, N ′)

where
1) (S,E,N) and (S′, E′, N ′) are configurations of P ,
2) ein = 〈a, f,m〉 ∈ E is an event,
3) p ∈ P is a process,
4) Eout is a sequence (term) of events

such that there exists
1) a sequence (term) Eνout ⊆ 2Eν〈〉 of protoevents,
2) a term sν ∈ TN (Vprocess),
3) a sequence (v1, v2, . . . , vi) of all placeholders appearing in Eνout (ordered lexicographically),
4) a sequence Nν = (η1, η2, . . . , ηi) of the first i elements in N

with
1) ((ein, S(p)), (Eνout, s

ν)) ∈ Rp and a ∈ Ip,
2) Eout = Eνout[η1/v1, . . . , ηi/vi],
3) S′(p) = sν [η1/v1, . . . , ηi/vi] and S′(p′) = S(p′) for all p′ 6= p,
4) E′ = Eout · (E \ {ein}),
5) N ′ = N \Nν .

We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the processes in P , and call it with one of the events in the list of waiting
events E. In its output (new state and output events), we replace any occurences of placeholders νx by “fresh” nonces from
N (which we then remove from N ). The output events are then prepended to the list of waiting events, and the state of the
process is reflected in the new configuration.

Definition 55 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of nonces. A run ρ of a system
P initiated by E0 with nonces N0 is a finite sequence of configurations ((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite
sequence of configurations ((S0, E0, N0), . . . ) such that S0(p) = sp0 for all p ∈ P and (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1)
for all 0 ≤ i < n (finite run) or for all i ≥ 0 (infinite run).

11Here: Not in the sense of terms as defined earlier.
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We denote the state Sn(p) of a process p at the end of a finite run ρ by ρ(p).

Usually, we will initiate runs with a set E0 containing infinite trigger events of the form 〈a, a, TRIGGER〉 for each a ∈ IPs,
interleaved by address.

D. Atomic Dolev-Yao Processes
We next define atomic Dolev-Yao processes, for which we require that the messages and states that they output can be

computed (more formally, derived) from the current input event and state. For this purpose, we first define what it means to
derive a message from given messages.

Definition 56 (Deriving Terms). Let M be a set of ground terms. We say that a term m can be derived from M with
placeholders V if there exist n ≥ 0, m1, . . . ,mn ∈M , and τ ∈ T∅({x1, . . . , xn} ∪ V ) such that m ≡ τ [m1/x1, . . . ,mn/xn].
We denote by dV (M) the set of all messages that can be derived from M with variables V .

For example, the term a can be derived from the set of terms {enca(〈a, b, c〉, pub(k)), k}, i.e., a ∈
d∅({enca(〈a, b, c〉, pub(k)), k}).

A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms), an initial state, and a
relation that takes an event and a state as input and (non-deterministically) returns a new state and a sequence of events. The
relation models a computation step of the process. It is required that the output can be derived from the input event and the
state.

Definition 57 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY process) is a tuple p = (Ip, Zp,
Rp, sp0) such that p is an atomic process and for all events e ∈ E , sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with
((e, s), (E, s′)) ∈ Rp it holds true that E, s′ ∈ dVprocess({e, s}).

E. Attackers
The so-called attacker process is a Dolev-Yao process which records all messages it receives and outputs any finite sequence

of events it can possibly derive from its recorded messages. Hence, an attacker process carries out all attacks any Dolev-Yao
process could possibly perform. Attackers can corrupt other parties (using corrupt messages).

Definition 58 (Atomic Attacker Process). An (atomic) attacker process for a set of sender addresses A ⊆ IPs is an atomic
DY process p = (I, Z,R, s0) such that for all events e, and s ∈ TN we have that ((e, s), (E, s′)) ∈ R iff s′ = 〈e, E, s〉 and
E = 〈〈a1, f1,m1〉, . . . , 〈an, fn,mn〉〉 with n ∈ N, a1, . . . , an ∈ IPs, f1, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e, s}).

Note that in a web system, we distinguish between two kinds of attacker processes: web attackers and network attackers.
Both kinds match the definition above, but differ in the set of assigned addresses in the context of a web system. While for
web attackers, the set of addresses Ip is disjoint from other web attackers and honest processes, i.e., web attackers participate
in the network as any other party, the set of addresses Ip of a network attacker is not restricted. Hence, a network attacker can
intercept events addressed to any party as well as spoof all addresses. Note that one network attacker subsumes any number of
web attackers as well as any number of network attackers.

F. Notations for Functions and Algorithms
When describing algorithms, we use the following notations:

1) Non-deterministic choosing and iteration
The notation let n ← N is used to describe that n is chosen non-deterministically from the set N . If N is empty, the

corresponding processing step in which this selection happens does not finish. We write for s ∈ M do to denote that the
following commands are repeated for every element in M , where the variable s is the current element. The order in which the
elements are processed is chosen non-deterministically. We write, for example,

let x, y such that 〈Constant, x, y〉 ≡ t if possible; otherwise doSomethingElse

for some variables x, y, a string Constant, and some term t to express that x := π2(t), and y := π3(t) if Constant ≡ π1(t)
and if |〈Constant, x, y〉| = |t|, and that otherwise x and y are not set and doSomethingElse is executed.
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Placeholder Usage
ν1 Algorithm 30, new window nonces
ν2 Algorithm 30, new HTTP request nonce
ν3 Algorithm 30, lookup key for pending HTTP requests entry
ν4 Algorithm 28, new HTTP request nonce (multiple lines)
ν5 Algorithm 28, new subwindow nonce
ν6 Algorithm 29, new HTTP request nonce
ν7 Algorithm 29, new document nonce
ν8 Algorithm 25, lookup key for pending DNS entry
ν9 Algorithm 22, new window nonce
ν10, . . . Algorithm 28, replacement for placeholders in script output

Table II: List of placeholders used in browser algorithms.

2) Function calls
When calling functions that do not return anything, we write
call FUNCTION_NAME(x, y)

to describe that a function FUNCTION_NAME is called with two variables x and y as parameters. If that function executes
the command stop E, s′, the processing step terminates, where E is the sequence of events output by the associated process
and s′ is its new state. If that function does not terminate with a stop, the control flow returns to the calling function at the
next line after the call.

When calling a function that has a return value, we omit the call and directly write
let z := FUNCTION_NAME(x, y)

to assign the return value to a variable z after the function returns. Note that the semantics for execution of stop within such
functions is the same as for functions without a return value.

3) Stop without output
We write stop (without further parameters) to denote that there is no output and no change in the state.

4) Placeholders
In several places throughout the algorithms we use placeholders to generate “fresh” nonces as described in our communication

model (see Definition 33). Table II shows a list of some of the placeholders, generally denoted by ν with some subscript to
distinguish between multiple fresh values.

5) Abbreviations for URLs and Origins
We sometimes use an abbreviation for URLs. We write URLdpath to describe the following URL term: 〈URL, S, d, path, 〈〉〉.

If the domain d belongs to some distinguished process P and it is the only domain associated to this process, we may also
write URLPpath . For a (secure) origin 〈d, S〉 of some domain d, we also write origind. Again, if the domain d belongs to some
distinguished process P and d is the only domain associated to this process, we may write originP.

G. Browsers
Here, we present the formal model of browsers.

1) Scripts
Recall that a script models JavaScript running in a browser. Scripts are defined similarly to Dolev-Yao processes. When

triggered by a browser, a script is provided with state information. The script then outputs a term representing a new internal
state and a command to be interpreted by the browser (see also the specification of browsers below).

Definition 59 (Placeholders for Scripts). By Vscript = {λ1, . . . } we denote an infinite set of variables used in scripts.

Definition 60 (Scripts). A script is a relation R ⊆ TN × TN (Vscript) such that for all s ∈ TN , s′ ∈ TN (Vscript) with (s, s′) ∈ R
it follows that s′ ∈ dVscript(s).

A script is called by the browser which provides it with state information (such as the script’s last scriptstate and limited
information about the browser’s state) s. The script then outputs a term s′, which represents the new scriptstate and some
command which is interpreted by the browser. The term s′ may contain variables λ1, . . . which the browser will replace by
(otherwise unused) placeholders ν1, . . . which will be replaced by nonces once the browser DY process finishes (effectively
providing the script with a way to get “fresh” nonces).
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Similarly to an attacker process, the so-called attacker script outputs everything that is derivable from the input.

Definition 61 (Attacker Script). The attacker script Ratt outputs everything that is derivable from the input, i.e., Ratt =
{(s, s′) | s ∈ TN , s

′ ∈ dVscript(s)}.

2) Web Browser State
Before we can define the state of a web browser, we first have to define windows and documents.

Definition 62. A window is a term of the form w = 〈nonce, documents, opener〉 with nonce ∈ N , documents ⊂〈〉
Documents (defined below), opener ∈ N ∪ {⊥} where d.active = > for exactly one d ∈〈〉 documents if documents is not
empty (we then call d the active document of w). We write Windows for the set of all windows. We write w.activedocument
to denote the active document inside window w if it exists and 〈〉 else.

We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document are the previously viewed documents (available

to the user via the “back” button) and the documents in the window term to the right of the currently active document are
documents available via the “forward” button.

A window a may have opened a top-level window b (i.e., a window term which is not a subterm of a document term). In
this case, the opener part of the term b is the nonce of a, i.e., b.opener = a.nonce.

Definition 63. A document d is a term of the form

〈nonce, location, headers, referrer , script , scriptstate, scriptinputs, subwindows, active〉

where nonce ∈ N , location ∈ URLs, headers ∈
[
S× TN

]
, referrer ∈ URLs ∪ {⊥}, script ∈ TN , scriptstate ∈

TN , scriptinputs ∈ TN , subwindows ⊂〈〉 Windows, active ∈ {>,⊥}. A limited document is a term of the form
〈nonce, subwindows〉 with nonce, subwindows as above. A window w ∈〈〉 subwindows is called a subwindow (of d). We
write Documents for the set of all documents. For a document term d we write d.origin to denote the origin of the document,
i.e., the term 〈d.location.host, d.location.protocol〉 ∈ Origins.

We will refer to the document nonce as (document) reference.

Definition 64. For two window terms w and w′ we write

w
childof−−−→ w′

if w ∈〈〉 w′.activedocument.subwindows. We write childof+−−−−→ for the transitive closure and we write childof∗−−−−→ for the reflexive
transitive closure.

In the web browser state, HTTP(S) messages are tracked using references, where we distinguish between references for
XMLHttpRequests and references for normal HTTP(S) requests.

Definition 65. A reference for a normal HTTP(S) request is a sequence of the form 〈REQ,nonce〉, where nonce is a window
reference. A reference for a XMLHttpRequest is a sequence of the form 〈XHR,nonce, xhrreference〉, where nonce is a document
reference and xhrreference is some nonce that was chosen by the script that initiated the request.

We can now define the set of states of web browsers. Note that we use the dictionary notation that we introduced in
Definition 40.

Definition 66. The set of states Zwebbrowser of a web browser atomic Dolev-Yao process consists of the terms of the form

〈windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping ,

sts,DNSaddress, pendingDNS , pendingRequests, isCorrupted , cibaBindingMessages, tlskeys〉

with the subterms as follows:
• windows ⊂〈〉 Windows contains a list of window terms (modeling top-level windows, or browser tabs) which contain

documents, which in turn can contain further window terms (iframes).
• ids ⊂〈〉 TN is a list of identities that are owned by this browser (i.e., belong to the user of the browser).
• secrets ∈

[
Origins× TN

]
contains a list of secrets that are associated with certain origins (i.e., passwords of the user of

the browser at certain websites). Note that this structure allows to have a single secret under an origin or a list of secrets
under an origin.

• cookies is a dictionary over Doms and sequences of Cookies modeling cookies that are stored for specific domains.
• localStorage ∈

[
Origins× TN

]
stores the data saved by scripts using the localStorage API (separated by origins).
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• sessionStorage ∈
[
OR × TN

]
for OR := {〈o, r〉| o ∈ Origins, r ∈ N } similar to localStorage, but the data in

sessionStorage is additionally separated by top-level windows.
• keyMapping ∈

[
Doms× TN

]
maps domains to TLS encryption keys.

• sts ⊂〈〉 Doms stores the list of domains that the browser only accesses via TLS (strict transport security).
• DNSaddress ∈ IPs defines the IP address of the DNS server.
• pendingDNS ∈

[
N × TN

]
contains one pairing per unanswered DNS query of the form 〈reference, request , url〉. In

these pairings, reference is an HTTP(S) request reference (as above), request contains the HTTP(S) message that awaits
DNS resolution, and url contains the URL of said HTTP request. The pairings in pendingDNS are indexed by the DNS
request/response nonce.

• pendingRequests ∈ TN contains pairings of the form 〈reference, request , url , key , f〉 with reference, request , and url
as in pendingDNS , key is the symmetric encryption key if HTTPS is used or ⊥ otherwise, and f is the IP address of
the server to which the request was sent.

• isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT} specifies the corruption level of the browser.
• cibaBindingMessages ∈ TN contains pairings of the form 〈dom, bindingMsg〉, where bindingMsg is a CIBA binding

message received from the (client) domain dom . The browser compares this binding message to the value received from
an AS.

• tlskeys ∈ [Doms×N ] is a mapping from domains to private keys.
In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used to store all observed messages).

3) Web Browser Relation
We will now define the relation Rwebbrowser of a standard HTTP browser. We first introduce some notations and then describe

the functions that are used for defining the browser main algorithm. We then define the browser relation.
a) Helper Functions: In the following description of the web browser relation Rwebbrowser we use the helper functions

Subwindows, Docs, Clean, CookieMerge, AddCookie, and NavigableWindows.
Subwindows and Docs. Given a browser state s, Subwindows(s) denotes the set of all pointers12 to windows in the window

list s.windows and (recursively) the subwindows of their active documents. We exclude subwindows of inactive documents
and their subwindows. With Docs(s) we denote the set of pointers to all active documents in the set of windows referenced
by Subwindows(s).

Definition 67. For a browser state s we denote by Subwindows(s) the minimal set of pointers that satisfies the following
conditions: (1) For all windows w ∈〈〉 s.windows there is a p ∈ Subwindows(s) such that s.p = w. (2) For all p ∈
Subwindows(s), the active document d of the window s.p and every subwindow w of d there is a pointer p′ ∈ Subwindows(s)
such that s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set such that for every p ∈
Subwindows(s) with s.p.activedocument 6≡ 〈〉, there exists a pointer p′ ∈ Docs(s) with s.p′ = s.p.activedocument.

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive documents and their
subwindows.

Clean. The function Clean will be used to determine which information about windows and documents the script running
in the document d has access to.

Definition 68. Let s be a browser state and d a document. By Clean(s, d) we denote the term that equals s.windows but
with (1) all inactive documents removed (including their subwindows etc.), (2) all subterms that represent non-same-origin
documents w.r.t. d replaced by a limited document d′ with the same nonce and the same subwindow list, and (3) the values of
the subterms headers for all documents set to 〈〉. (Note that non-same-origin documents on all levels are replaced by their
corresponding limited document.)

CookieMerge. The function CookieMerge merges two sequences of cookies together: When used in the browser, oldcookies
is the sequence of existing cookies for some origin, newcookies is a sequence of new cookies that was output by some script.
The sequences are merged into a set of cookies using an algorithm that is based on the Storage Mechanism algorithm described
in RFC6265.

Definition 69. For a sequence of cookies (with pairwise different names) oldcookies , a sequence of cookies newcookies ,
and a string protocol ∈ {P, S}, the set CookieMerge(oldcookies,newcookies, protocol) is defined by the following
algorithm: From newcookies remove all cookies c that have c.content.httpOnly ≡ > or where (c.name.1 ≡ __Host) ∧
((protocol ≡ P) ∨ (c.secure ≡ ⊥)). For any c, c′ ∈〈〉 newcookies , c.name ≡ c′.name, remove the cookie that appears left of the

12Recall the definition of a pointer in Definition 42.
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Algorithm 22 Web Browser Model: Determine window for navigation.
1: function GETNAVIGABLEWINDOW(w , window , noreferrer , s′)
2: if window ≡ _BLANK then → Open a new window when _BLANK is used
3: if noreferrer ≡ > then
4: let w′ := 〈ν9, 〈〉,⊥〉
5: else
6: let w′ := 〈ν9, 〈〉, s′.w .nonce〉
7: let s′.windows := s′.windows +〈〉 w′

↪→ and let w ′ be a pointer to this new element in s′

8: return w ′

9: let w ′ ← NavigableWindows(w , s′) such that s′.w ′.nonce ≡ window
↪→ if possible; otherwise return w

10: return w ′

Algorithm 23 Web Browser Model: Determine same-origin window.
1: function GETWINDOW(w , window , s′)
2: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window

↪→ if possible; otherwise return w
3: if s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin then
4: return w ′

5: return w

other in newcookies . Let m be the set of cookies that have a name that either appears in oldcookies or in newcookies , but not
in both. For all pairs of cookies (cold, cnew) with cold ∈〈〉 oldcookies , cnew ∈〈〉 newcookies , cold.name ≡ cnew.name, add cnew to
m if cold.content.httpOnly ≡ ⊥ and add cold to m otherwise. The result of CookieMerge(oldcookies,newcookies, protocol)
is m.

AddCookie. The function AddCookie adds a cookie c received in an HTTP response to the sequence of cookies contained
in the sequence oldcookies . It is again based on the algorithm described in RFC6265 but simplified for the use in the browser
model.

Definition 70. For a sequence of cookies (with pairwise different names) oldcookies , a cookie c, and a string protocol ∈
{P, S} (denoting whether the HTTP response was received from an insecure or a secure origin), the sequence
AddCookie(oldcookies, c, protocol) is defined by the following algorithm: Let m := oldcookies . If (c.name.1 ≡ __Host) ∧
¬((protocol ≡ S)∧ (c.secure ≡ >)), then return m, else: Remove any c′ from m that has c.name ≡ c′.name. Append c to m
and return m.

NavigableWindows. The function NavigableWindows returns a set of windows that a document is allowed to navigate. We
closely follow [4], Section 5.1.4 for this definition.

Definition 71. The set NavigableWindows(w , s′) is the set W ⊆ Subwindows(s′) of pointers to windows that the active
document in w is allowed to navigate. The set W is defined to be the minimal set such that for every w ′ ∈ Subwindows(s′)
the following is true:

• If s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin (i.e., the active documents in w and w ′ are same-
origin), then w ′ ∈W , and

• If s′.w childof∗−−−−→ s′.w ′ ∧ @w ′′ ∈ Subwindows(s′) with s′.w ′ childof∗−−−−→ s′.w ′′ (w ′ is a top-level window and w is an ancestor
window of w ′), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′ childof+−−−−→ s′.p
∧ s′.p.activedocument.origin = s′.w .activedocument.origin (w ′ is not a top-level window but there is an ancestor
window p of w ′ with an active document that has the same origin as the active document in w ), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′.opener = s′.p.nonce ∧ p ∈W (w ′ is a top-level window—it has an opener—and
w is allowed to navigate the opener window of w ′, p), then w ′ ∈W .

b) Functions:

• The function GETNAVIGABLEWINDOW (Algorithm 22) is called by the browser to determine the window that is actually
navigated when a script in the window s′.w provides a window reference for navigation (e.g., for opening a link). When
it is given a window reference (nonce) window , this function returns a pointer to a selected window term in s′:
– If window is the string _BLANK, a new window is created and a pointer to that window is returned.
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Algorithm 24 Web Browser Model: Cancel pending requests for given window.
1: function CANCELNAV(reference , s′)
2: remove all 〈reference, req , url , key , f 〉 from s′.pendingRequests for any req , url , key , f
3: remove all 〈x, 〈reference,message, url〉〉 from s′.pendingDNS

↪→ for any x , message , url
4: return s′

Algorithm 25 Web Browser Model: Prepare headers, do DNS resolution, save message.
1: function HTTP_SEND(reference , message , url , origin , referrer , referrerPolicy , a, s′)
2: if message.host ∈〈〉 s′.sts then
3: let url .protocol := S

4: let cookies := 〈{〈c.name, c.content.value〉 | c ∈〈〉 s′.cookies [message.host]
↪→ ∧ (c.content.secure ≡ > =⇒ (url .protocol ≡ S))}〉

5: let message.headers[Cookie] := cookies
6: if origin 6≡ ⊥ then
7: let message.headers[Origin] := origin

8: if referrerPolicy ≡ no-referrer then
9: let referrer := ⊥

10: if referrer 6≡ ⊥ then
11: if referrerPolicy ≡ origin then
12: let referrer := 〈URL, referrer .protocol, referrer .host, /, 〈〉,⊥〉

→ Referrer stripped down to origin.
13: let referrer .fragment := ⊥

→ Browsers do not send fragment identifiers in the Referer header.
14: let message.headers[Referer] := referrer

15: let s′.pendingDNS[ν8] := 〈reference,message, url〉
16: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, ν8〉〉〉, s′

– If window is a nonce (reference) and there is a window term with a reference of that value in the windows in s′, a
pointer w ′ to that window term is returned, as long as the window is navigable by the current window’s document (as
defined by NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).
• The function GETWINDOW (Algorithm 23) takes a window reference as input and returns a pointer to a window as

above, but it checks only that the active documents in both windows are same-origin. It creates no new windows.
• The function CANCELNAV (Algorithm 24) is used to stop any pending requests for a specific window. From the pending

requests and pending DNS requests it removes any requests with the given window reference.
• The function HTTP_SEND (Algorithm 25) takes an HTTP request message as input, adds cookie and origin headers to

the message, creates a DNS request for the hostname given in the request and stores the request in s′.pendingDNS until
the DNS resolution finishes. reference is a reference as defined in Definition 65. url contains the full URL of the request
(this is mainly used to retrieve the protocol that should be used for this message, and to store the fragment identifier for

Algorithm 26 Web Browser Model: Navigate a window backward.
1: function NAVBACK(w ′, s′)
2: if ∃ j ∈ N, j > 1 such that s′.w ′.documents.j .active ≡ > then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j − 1).active := >
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop 〈〉, s′

Algorithm 27 Web Browser Model: Navigate a window forward.
1: function NAVFORWARD(w ′, s′)
2: if ∃ j ∈ N such that s′.w ′.documents.j .active ≡ >

↪→ ∧ s′.w ′.documents.(j + 1) ∈ Documents then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j + 1).active := >
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop 〈〉, s′
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Algorithm 28 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , a, s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies

[
s′.d .origin.host

]
↪→ ∧ c.content.httpOnly ≡ ⊥
↪→ ∧

(
c.content.secure ≡ > =⇒

(
s′.d .origin.protocol ≡ S

))
}〉

4: let tlw ← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
〈s′.d .origin, tlw .nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R := script−1(s′.d .script) if possible; otherwise stop
9: let in := 〈tree , s′.d .nonce, s′.d .scriptstate, s′.d .scriptinputs, cookies,

↪→ localStorage , sessionStorage , s′.ids, secrets〉
10: let state ′ ← TN (Vprocess), cookies ′ ← Cookiesν , localStorage ′ ← TN (Vprocess),

↪→ sessionStorage ′ ← TN (Vprocess), command ← TN (Vprocess),
↪→ out := 〈state ′, cookies ′, localStorage ′, sessionStorage ′, command〉
↪→ such that out := outλ[ν10/λ1, ν11/λ2, . . . ] with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
:=

↪→ 〈CookieMerge(s′.cookies
[
s′.d .origin.host

]
, cookies ′, s′.d .origin.protocol)〉

12: let s′.localStorage
[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
〈s′.d .origin, tlw .nonce〉

]
:= sessionStorage ′

14: let s′.d .scriptstate := state′

15: let referrer := s′.d .location
16: let referrerPolicy := s′.d .headers[ReferrerPolicy]
17: let docorigin := s′.d .origin
18: switch command do
19: case 〈HREF, url , hrefwindow ,noreferrer〉
20: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , noreferrer , s′)
21: let reference := 〈REQ, s′.w ′.nonce〉
22: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
23: if noreferrer ≡ > then
24: let referrerPolicy := noreferrer

25: let s′ := CANCELNAV(reference, s′)
26: call HTTP_SEND(reference , req , url , ⊥, referrer , referrerPolicy , a, s′)
27: case 〈IFRAME, url ,window〉
28: if window ≡ _SELF then
29: let w ′ := w
30: else
31: let w ′ := GETWINDOW(w ,window , s′)

32: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
33: let w′ := 〈ν5, 〈〉,⊥〉
34: let s′.w ′.activedocument.subwindows := s′.w ′.activedocument.subwindows +〈〉 w′

35: call HTTP_SEND(〈REQ, ν5〉, req , url , ⊥, referrer , referrerPolicy , a, s′)
→Algorithm continues on next page.

use after the document was loaded). origin is the origin header value that is to be added to the HTTP request.
• The functions NAVBACK (Algorithm 26) and NAVFORWARD (Algorithm 27), navigate a window backward or forward.

More precisely, they deactivate one document and activate that document’s preceding document or succeeding document,
respectively. If no such predecessor/successor exists, the functions do not change the state.

• The function RUNSCRIPT (Algorithm 28) performs a script execution step of the script in the document s′.d (which is
part of the window s′.w ). A new script and document state is chosen according to the relation defined by the script and
the new script and document state is saved. Afterwards, the command that the script issued is interpreted.

• The function PROCESSRESPONSE (Algorithm 29) is responsible for processing an HTTP response (response) that was
received as the response to a request (request) that was sent earlier. reference is a reference as defined in Definition 65.
requestUrl contains the URL used when retrieving the document.
The function first saves any cookies that were contained in the response to the browser state, then checks whether a
redirection is requested (Location header). If that is not the case, the function creates a new document (for normal requests)
or delivers the contents of the response to the respective receiver (for XHR responses).

c) Browser Relation: We can now define the relation Rwebbrowser of a web browser atomic process as follows:
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36: case 〈FORM, url ,method , data, hrefwindow〉
37: if method 6∈ {GET, POST} then
38: stop
39: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , ⊥, s′)
40: let reference := 〈REQ, s′.w ′.nonce〉
41: if method = GET then
42: let body := 〈〉
43: let parameters := data
44: let origin := ⊥
45: else
46: let body := data
47: let parameters := url .parameters
48: let origin := docorigin

49: let req := 〈HTTPReq, ν4,method , url .host, url .path, parameters, 〈〉, body〉
50: let s′ := CANCELNAV(reference, s′)
51: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
52: case 〈CIBAFORM, url ,method , data, hrefwindow , clientDomain, cibaBindingMessage〉

→ Custom CIBA FORM command: When starting a CIBA flow, the client returns a binding message. When authenticating at
the AS, the end-user has to make sure that they receive the same value. For modeling this behavior, we extend the browser
state by the cibaBindingMessages subterm and define this command which first checks if the cibaBindingMessage is
stored by the browser and then continues as the FORM command. Note that this command is a modeling artifact.

53: if 〈clientDomain, cibaBindingMessage〉 6∈〈〉 s′.cibaBindingMessages then
54: stop
55: if method 6∈ {GET, POST} then
56: stop
57: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , ⊥, s′)
58: let reference := 〈REQ, s′.w ′.nonce〉
59: if method = GET then
60: let body := 〈〉
61: let parameters := data
62: let origin := ⊥
63: else
64: let body := data
65: let parameters := url .parameters
66: let origin := docorigin

67: let req := 〈HTTPReq, ν4,method , url .host, url .path, parameters, 〈〉, body〉
68: let s′ := CANCELNAV(reference, s′)
69: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
70: case 〈SETSCRIPT,window , script〉
71: let w ′ := GETWINDOW(w ,window , s′)
72: let s′.w ′.activedocument.script := script
73: stop 〈〉, s′

74: case 〈SETSCRIPTSTATE,window , scriptstate〉
75: let w ′ := GETWINDOW(w ,window , s′)
76: let s′.w ′.activedocument.scriptstate := scriptstate
77: stop 〈〉, s′

78: case 〈XMLHTTPREQUEST, url ,method , data, xhrreference〉
79: if method ∈ {CONNECT, TRACE, TRACK} ∨ xhrreference 6∈ Vprocess ∪ {⊥} then
80: stop
81: if url .host 6≡ docorigin.host ∨ url .protocol 6≡ docorigin.protocol then
82: stop
83: if method ∈ {GET, HEAD} then
84: let data := 〈〉
85: let origin := ⊥
86: else
87: let origin := docorigin

88: let req := 〈HTTPReq, ν4,method , url .host, url .path, url .parameters, 〈〉, data〉
89: let reference := 〈XHR, s′.d .nonce, xhrreference〉
90: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
91: case 〈BACK,window〉
92: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
93: call NAVBACK(w ′, s′)
→Algorithm continues on next page.
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94: case 〈FORWARD,window〉
95: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
96: call NAVFORWARD(w ′, s′)
97: case 〈CLOSE,window〉
98: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
99: remove s′.w ′ from the sequence containing it
100: stop 〈〉, s′

101: case 〈POSTMESSAGE,window ,message, origin〉
102: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window
103: if ∃j ∈ N such that s′.w ′.documents.j .active ≡ >

↪→ ∧ (origin 6≡ ⊥ =⇒ s′.w ′.documents.j .origin ≡ origin) then
104: let s′.w ′.documents.j .scriptinputs := s′.w ′.documents.j .scriptinputs

↪→ +〈〉 〈POSTMESSAGE, s′.w .nonce, docorigin,message〉
105: stop 〈〉, s′

106: case else
107: stop

Definition 72. The pair ((〈a, f,m〉, s) , (M, s′)) belongs to Rwebbrowser iff the non-deterministic Algorithm 30 (or any of the
functions called therein), when given (〈a, f,m〉, s) as input, terminates with stop M , s′, i.e., with output M and s′.

Recall that 〈a, f,m〉 is an (input) event and s is a (browser) state, M is a sequence of (output) protoevents, and s′ is a new
(browser) state (potentially with placeholders for nonces).

H. Definition of Web Browsers
Finally, we define web browser atomic Dolev-Yao processes as follows:

Definition 73 (Web Browser atomic Dolev-Yao Process). A web browser atomic Dolev-Yao process is an atomic Dolev-Yao
process of the form p = (Ip, Zwebbrowser, Rwebbrowser, s

p
0) for a set Ip of addresses, Zwebbrowser and Rwebbrowser as defined above,

and an initial state sp0 ∈ Zwebbrowser.

Definition 74 (Web Browser Initial State). An initial state sp0 ∈ Zwebbrowser for a browser process p is a web browser state
(Definition 66) with the following properties:
• sp0.windows ≡ 〈〉
• sp0.ids ⊂〈〉 TN (intended to be constrained by instantiations of the Web Infrastructure Model)
• sp0.secrets ∈

[
Origins× TN

]
(intended to be constrained by instantiations of the Web Infrastructure Model)

• sp0.cookies ≡ 〈〉
• sp0.localStorage ≡ 〈〉
• sp0.sessionStorage ≡ 〈〉
• sp0.keyMapping ∈

[
Doms× TN

]
(intended to be constrained by instantiations of the Web Infrastructure Model)

• sp0.sts ≡ 〈〉
• sp0.DNSaddress ∈ IPs (note that this includes the possibility of using an attacker-controlled address)
• sp0.pendingDNS ≡ 〈〉
• sp0.pendingRequests ≡ 〈〉
• sp0.isCorrupted ≡ ⊥
• sp0.cibaBindingMessages ≡ 〈〉
• sp0.tlskeys ≡ tlskeysp (see Appendix A-C)

Note that instantiations of the Web Infrastructure Model may define different conditions for a web browser’s initial state.

I. Helper Functions
In order to simplify the description of scripts, we use several helper functions.

a) CHOOSEINPUT (Algorithm 31): The state of a document contains a term, say scriptinputs , which records the input
this document has obtained so far (via XHRs and postMessages). If the script of the document is activated, it will typically need
to pick one input message from scriptinputs and record which input it has already processed. For this purpose, the function
CHOOSEINPUT(s′, scriptinputs) is used, where s′ denotes the scripts current state. It saves the indexes of already handled
messages in the scriptstate s′ and chooses a yet unhandled input message from scriptinputs . The index of this message is
then saved in the scriptstate (which is returned to the script).
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Algorithm 29 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response , reference , request , requestUrl , a, f , s′)
2: if Set-Cookie ∈ response.headers then
3: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request .host]

↪→ := AddCookie(s′.cookies [request .host] , c, requestUrl .protocol)

5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl .protocol ≡ S then
6: let s′.sts := s′.sts +〈〉 request .host

7: if Referer ∈ request .headers then
8: let referrer := request .headers[Referer]
9: else

10: let referrer := ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url .fragment ≡ ⊥ then
14: let url .fragment := requestUrl .fragment

15: let method ′ := request .method
16: let body ′ := request .body
17: if Origin ∈ request .headers

↪→ ∧ request .headers[Origin] 6= 3

↪→ ∧ (〈url .host, url .protocol〉 ≡ 〈request .host, requestUrl .protocol〉
↪→ ∨ 〈request .host, requestUrl .protocol〉 ≡ request .headers[Origin]) then

18: let origin := request .headers[Origin]
19: else
20: let origin := 3

21: if response.status ≡ 303 ∧ request .method 6∈ {GET, HEAD} then
22: let method ′ := GET
23: let body ′ := 〈〉
24: if ∃w ∈ Subwindows(s′) such that s′.w .nonce ≡ π2(reference) then → Do not redirect XHRs.
25: let req := 〈HTTPReq, ν6,method ′, url .host, url .path, url .parameters, 〈〉, body ′〉
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , a, s′)
28: else
29: stop 〈〉, s′

30: switch π1(reference) do
31: case REQ
32: let w ← Subwindows(s′) such that s′.w .nonce ≡ π2(reference) if possible;

↪→ otherwise stop → normal response
33: if response.body 6∼ 〈∗, ∗〉 then
34: stop 〈〉, s′

35: let script := π1(response.body)
36: let scriptstate := π2(response.body)
37: let d := 〈ν7, requestUrl , response.headers, referrer , script , scriptstate, 〈〉, 〈〉,>〉
38: if s′.w .documents ≡ 〈〉 then
39: let s′.w .documents := 〈d〉
40: else
41: let i ← N such that s′.w .documents.i .active ≡ >
42: let s′.w .documents.i .active := ⊥
43: remove s′.w .documents.(i + 1) and all following documents

↪→ from s′.w .documents
44: let s′.w .documents := s′.w .documents +〈〉 d
45: stop 〈〉, s′

46: case XHR
47: let w ← Subwindows(s′), d such that s′.d .nonce ≡ π2(reference)

↪→ ∧ s′.d = s′.w .activedocument if possible; otherwise stop
→ process XHR response

48: let headers := response.headers− Set-Cookie
49: let s′.d .scriptinputs := s′.d .scriptinputs +〈〉

〈XMLHTTPREQUEST, headers, response.body, π3(reference)〉
50: stop 〈〉, s′
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Algorithm 30 Web Browser Model: Main Algorithm.
Input: 〈a, f,m〉, s
1: let s′ := s
2: if s.isCorrupted 6≡ ⊥ then
3: let s′.pendingRequests := 〈m, s.pendingRequests〉 → Collect incoming messages
4: let m′ ← dV (s′)
5: let a′ ← IPs
6: stop 〈〈a′, a,m′〉〉, s′

7: if m ≡ TRIGGER then → A special trigger message.
8: let switch ← {script, urlbar, reload, forward, back}
9: if switch ≡ script then → Run some script.

10: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉
↪→ if possible; otherwise stop → Pointer to some window.

11: let d := w +〈〉 activedocument
12: call RUNSCRIPT(w , d , a, s′)
13: else if switch ≡ urlbar then → Create some new request.
14: let newwindow ← {>,⊥}
15: if newwindow ≡ > then → Create a new window.
16: let windownonce := ν1
17: let w′ := 〈windownonce, 〈〉,⊥〉
18: let s′.windows := s′.windows +〈〉 w′

19: else → Use existing top-level window.
20: let tlw ← N such that s′.tlw .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some top-level window.
21: let windownonce := s′.tlw .nonce
22: let protocol ← {P, S}
23: let host ← Doms
24: let path ← S
25: let fragment ← S
26: let parameters ← [S× S]
27: let body := 〈〉
28: let startciba ← {>,⊥}
29: if startciba ≡ > then
30: let body [authServ] ← Doms
31: let body [identity] ← s′.ids

32: let url := 〈URL, protocol , host , path, parameters, fragment〉
33: let req := 〈HTTPReq, ν2, GET, host , path, parameters, 〈〉, body〉
34: call HTTP_SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, a, s′)
35: else if switch ≡ reload then → Reload some document.
36: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some window.
37: let url := s′.w .activedocument.location
38: let req := 〈HTTPReq, ν2, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
39: let referrer := s′.w .activedocument.referrer
40: let s′ := CANCELNAV(s′.w .nonce, s′)
41: call HTTP_SEND(〈REQ, s′.w .nonce〉, req , url , ⊥, referrer , ⊥, a, s′)
42: else if switch ≡ forward then
43: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some window.
44: call NAVFORWARD(w , s′)
45: else if switch ≡ back then
46: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some window.
47: call NAVBACK(w , s′)
48: else if m ≡ FULLCORRUPT then → Request to corrupt browser
49: let s′.isCorrupted := FULLCORRUPT
50: stop 〈〉, s′
51: else if m ≡ CLOSECORRUPT then → Close the browser
52: let s′.secrets := 〈〉
53: let s′.windows := 〈〉
54: let s′.pendingDNS := 〈〉
55: let s′.pendingRequests := 〈〉
56: let s′.sessionStorage := 〈〉
57: let s′.cookies ⊂〈〉 Cookies such that

↪→ (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies ∧ c.content.session ≡ ⊥)
58: let s′.isCorrupted := CLOSECORRUPT
59: stop 〈〉, s′
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60: else if ∃ 〈reference, request , url , key , f〉 ∈〈〉 s′.pendingRequests such that
↪→ π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response

61: let m′ := decs(m, key)
62: if m′.nonce 6≡ request .nonce then
63: stop
64: remove 〈reference, request , url , key , f〉 from s′.pendingRequests
65: if binding_message ∈〈〉 m′.body then
66: let s′.cibaBindingMessages := s′.cibaBindingMessages +〈〉 〈request .host,m′.body[binding_message]〉
67: call PROCESSRESPONSE(m′, reference , request , url , a, f , s′)
68: else if π1(m) ≡ HTTPResp ∧ ∃ 〈reference, request , url ,⊥, f〉 ∈〈〉 s′.pendingRequests such that

↪→ m.nonce ≡ request .nonce then → Plain HTTP Response
69: remove 〈reference, request , url ,⊥, f〉 from s′.pendingRequests
70: call PROCESSRESPONSE(m, reference , request , url , a, f , s′)
71: else if m ∈ DNSResponses then → Successful DNS response
72: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ s.pendingDNS[m.nonce].request.host then
73: stop
74: let 〈reference,message, url〉 := s.pendingDNS[m.nonce]
75: if url .protocol ≡ S then
76: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference , message , url , ν3, m.result〉
77: let message := enca(〈message, ν3〉, s′.keyMapping [message.host])
78: else
79: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference , message , url , ⊥, m.result〉
80: let s′.pendingDNS := s′.pendingDNS − m.nonce
81: stop 〈〈m.result, a,message〉〉, s′
82: else if ∃mdec, k, k′, inDomain such that 〈mdec, k〉 ≡ deca(m, k

′) ∧ 〈inDomain, k′〉 ∈ s.tlskeys then
→ For modelling CIBA, we allow the browser to receive requests. By this, the AS can contact its users and ask to give their

consent for a given CIBA flow
83: let n, method , path , parameters , headers , body such that

↪→ 〈HTTPReq, n,method , inDomain, path, parameters, headers, body〉 ≡ mdec
↪→ if possible; otherwise stop

84: if path 6≡ /start-ciba-authentication then stop
85: let newwindow ← {>,⊥}
86: if newwindow ≡ > then → Create a new window.
87: let windownonce := ν1
88: let w′ := 〈windownonce, 〈〉,⊥〉
89: let s′.windows := s′.windows +〈〉 w′

90: else → Use existing top-level window.
91: let tlw ← N such that s′.tlw .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some top-level window.
92: let windownonce := s′.tlw .nonce
93: let url := body [ciba_url]
94: let req := 〈HTTPReq, νciba_req, POST, url .host, ε, 〈〉, 〈〉, body〉
95: call HTTP_SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, a, s′)
96: stop

Algorithm 31 Function to retrieve an unhandled input message for a script.
1: function CHOOSEINPUT(s′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs|} ∧ iid 6∈〈〉 s′.handledInputs if possible;

↪→ otherwise return (⊥, s′)
3: let input := πiid(scriptinputs)
4: let s′.handledInputs := s′.handledInputs +〈〉 iid
5: return (input , s′)
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Algorithm 32 Function to extract the first script input message matching a specific pattern.
1: function CHOOSEFIRSTINPUTPAT(scriptinputs, pattern)
2: let i such that i = min{j : πj(scriptinputs) ∼ pattern} if possible; otherwise return ⊥
3: return πi(scriptinputs)

b) CHOOSEFIRSTINPUTPAT (Algorithm 32): Similar to the function CHOOSEINPUT above, we define the function
CHOOSEFIRSTINPUTPAT. This function takes the term scriptinputs , which as above records the input this document has
obtained so far (via XHRs and postMessages, append-only), and a pattern. If called, this function chooses the first message in
scriptinputs that matches pattern and returns it. This function is typically used in places, where a script only processes the
first message that matches the pattern. Hence, we omit recording the usage of an input.

c) PARENTWINDOW: To determine the nonce referencing the parent window in the browser, the function
PARENTWINDOW(tree, docnonce) is used. It takes the term tree , which is the (partly cleaned) tree of browser windows the
script is able to see and the document nonce docnonce, which is the nonce referencing the current document the script is
running in, as input. It outputs the nonce referencing the window which directly contains in its subwindows the window of
the document referenced by docnonce. If there is no such window (which is the case if the script runs in a document of a
top-level window), PARENTWINDOW returns ⊥.

d) PARENTDOCNONCE: The function PARENTDOCNONCE(tree, docnonce) determines (similar to
PARENTWINDOW above) the nonce referencing the active document in the parent window in the browser . It takes
the term tree , which is the (partly cleaned) tree of browser windows the script is able to see and the document nonce docnonce ,
which is the nonce referencing the current document the script is running in, as input. It outputs the nonce referencing
the active document in the window which directly contains in its subwindows the window of the document referenced by
docnonce . If there is no such window (which is the case if the script runs in a document of a top-level window) or no active
document, PARENTDOCNONCE returns docnonce.

e) SUBWINDOWS: This function takes a term tree and a document nonce docnonce as input just as the function above.
If docnonce is not a reference to a document contained in tree, then SUBWINDOWS(tree, docnonce) returns 〈〉. Otherwise,
let 〈docnonce, location , 〈〉, referrer , script , scriptstate, scriptinputs , subwindows , active〉 denote the subterm of tree
corresponding to the document referred to by docnonce. Then, SUBWINDOWS(tree, docnonce) returns subwindows .

f) AUXWINDOW: This function takes a term tree and a document nonce docnonce as input as above. From all window
terms in tree that have the window containing the document identified by docnonce as their opener, it selects one non-
deterministically and returns its nonce. If there is no such window, it returns the nonce of the window containing docnonce .

g) AUXDOCNONCE: Similar to AUXWINDOW above, the function AUXDOCNONCE takes a term tree and a document
nonce docnonce as input. From all window terms in tree that have the window containing the document identified by docnonce
as their opener, it selects one non-deterministically and returns its active document’s nonce. If there is no such window or no
active document, it returns docnonce.

h) OPENERWINDOW: This function takes a term tree and a document nonce docnonce as input as above. It returns the
window nonce of the opener window of the window that contains the document identified by docnonce . Recall that the nonce
identifying the opener of each window is stored inside the window term. If no document with nonce docnonce is found in the
tree tree or the document with nonce docnonce is not directly contained in a top-level window, 3 is returned.

i) GETWINDOW: This function takes a term tree and a document nonce docnonce as input as above. It returns the nonce
of the window containing docnonce.

j) GETORIGIN: To extract the origin of a document, the function GETORIGIN(tree, docnonce) is used. This function
searches for the document with the identifier docnonce in the (cleaned) tree tree of the browser’s windows and documents. It
returns the origin o of the document. If no document with nonce docnonce is found in the tree tree, 3 is returned.

k) GETPARAMETERS: Works exactly as GETORIGIN, but returns the document’s parameters instead.

J. DNS Servers
Definition 75. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an atomic DY process
(Id, {sd0}, Rd, sd0). It has a finite set of addresses Id and its initial (and only) state sd0 encodes a mapping from domain
names to addresses of the form

sd0 = 〈〈domain1, a1〉, 〈domain2, a2〉, . . .〉 .

DNS queries are answered according to this table (if the requested DNS name cannot be found in the table, the request is
ignored).

The relation Rd ⊆ (E × {sd0})× (2E × {sd0}) of d above is defined by Algorithm 33.
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Algorithm 33 Relation of a DNS server Rd.
Input: 〈a, f,m〉, s
1: let domain, n such that 〈DNSResolve, domain, n〉 ≡ m if possible; otherwise stop 〈〉, s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := 〈DNSResolved, domain, addr , n〉
5: stop 〈〈f, a,m′〉〉, s
6: stop 〈〉, s

K. Web Systems
The web infrastructure and web applications are formalized by what is called a web system. A web system contains, among

others, a (possibly infinite) set of DY processes, modeling web browsers, web servers, DNS servers, and attackers (which may
corrupt other entities, such as browsers).

Definition 76. A web system WS = (W , S , script, E0) is a tuple with its components defined as follows:
The first component, W , denotes a system (a set of DY processes) and is partitioned into the sets Hon, Web, and Net of

honest, web attacker, and network attacker processes, respectively.
Every p ∈ Web ∪ Net is an attacker process for some set of sender addresses A ⊆ IPs. For a web attacker p ∈ Web, we

require its set of addresses Ip to be disjoint from the set of addresses of all other web attackers and honest processes, i.e.,
Ip ∩ Ip′ = ∅ for all p′ 6= p, p′ ∈ Hon ∪Web. Hence, a web attacker cannot listen to traffic intended for other processes. Also,
we require that A = Ip, i.e., a web attacker can only use sender addresses it owns. Conversely, a network attacker may listen
to all addresses (i.e., no restrictions on Ip) and may spoof all addresses (i.e., the set A may be IPs).

Every p ∈ Hon is a DY process which models either a web server, a web browser, or a DNS server. Just as for web
attackers, we require that p does not spoof sender addresses and that its set of addresses Ip is disjoint from those of other
honest processes and the web attackers.

The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component, script, is an injective mapping
from S to S, i.e., by script every s ∈ S is assigned its string representation script(s).

Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of the form 〈a, a, TRIGGER〉 for every
a ∈

⋃
p∈W Ip.

A run of WS is a run of W initiated by E0.

L. Generic HTTPS Server Model
This base model can be used to ease modeling of HTTPS server atomic processes. It defines placeholder algorithms that

can be superseded by more detailed algorithms to describe a concrete relation for an HTTPS server.

Definition 77 (Base state for an HTTPS server). The state of each HTTPS server that is an instantiation of this relation
must contain at least the following subterms: pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN (both containing arbitrary

terms), DNSaddress ∈ IPs (containing the IP address of a DNS server), keyMapping ∈
[
Doms× TN

]
(containing a mapping

from domains to public keys), tlskeys ∈ [Doms×N ] (containing a mapping from domains to private keys), and corrupt ∈ TN
(either ⊥ if the server is not corrupted, or an arbitrary term otherwise).

We note that in concrete instantiations of the generic HTTPS server model, there is no need to extract information from these
subterms or alter these subterms.

Let νn0 and νn1 denote placeholders for nonces that are not used in the concrete instantiation of the server. We now define
the default functions of the generic web server in Algorithms 34–38, and the main relation in Algorithm 39.

Algorithm 34 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending an HTTPS message).
1: function HTTPS_SIMPLE_SEND(reference , message , a, s′)
2: let s′.pendingDNS[νn0] := 〈reference,message〉
3: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, νn0〉〉〉, s′

Algorithm 35 Generic HTTPS Server Model: Default HTTPS response handler.
1: function PROCESS_HTTPS_RESPONSE(m, reference , request , a, f , s′)
2: stop
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Algorithm 36 Generic HTTPS Server Model: Default trigger event handler.
1: function PROCESS_TRIGGER(a, s′)
2: stop

Algorithm 37 Generic HTTPS Server Model: Default HTTPS request handler.
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: stop

Algorithm 38 Generic HTTPS Server Model: Default handler for other messages.
1: function PROCESS_OTHER(m, a, f , s′)
2: stop

Algorithm 39 Generic HTTPS Server Model: Main relation of a generic HTTPS server
Input: 〈a, f,m〉, s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
4: let m′ ← dV (s′)
5: let a′ ← IPs
6: stop 〈〈a′, a,m′〉〉, s′

7: if ∃mdec, k, k′, inDomain such that 〈mdec, k〉 ≡ deca(m, k
′) ∧ 〈inDomain, k′〉 ∈ s.tlskeys then

8: let n, method , path , parameters , headers , body such that
↪→ 〈HTTPReq, n,method , inDomain, path, parameters, headers, body〉 ≡ mdec
↪→ if possible; otherwise stop

9: call PROCESS_HTTPS_REQUEST(mdec, k, a, f , s′)
10: else if m ∈ DNSResponses then → Successful DNS response
11: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ s.pendingDNS[m.nonce].2.host then
12: stop
13: let reference := s.pendingDNS[m.nonce].1
14: let request := s.pendingDNS[m.nonce].2
15: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference , request , νn1, m.result〉
16: let message := enca(〈request , νn1〉, s′.keyMapping [request .host])
17: let s′.pendingDNS := s′.pendingDNS − m.nonce
18: stop 〈〈m.result, a,message〉〉, s′
19: else if ∃ 〈reference, request , key , f〉 ∈〈〉 s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
20: let m′ := decs(m, key)
21: if m′.nonce 6≡ request .nonce then
22: stop
23: if m′ 6∈ HTTPResponses then
24: call PROCESS_OTHER(m, a, f , s′)
25: remove 〈reference, request , key , f〉 from s′.pendingRequests
26: call PROCESS_HTTPS_RESPONSE(m′, reference , request , a, f , s′)
27: else if m ≡ TRIGGER then → Process was triggered
28: call PROCESS_TRIGGER(a, s′)
29: else
30: call PROCESS_OTHER(m, a, f , s′)
31: stop

M. General Security Properties of the WIM
We now repeat general application independent security properties of the WIM [18].
Let WS = (W , S , script, E0) be a web system. In the following, we write sx = (Sx, Ex) for the states of a web system.

Definition 78 (Emitting Events). Given an atomic process p, an event e, and a finite run ρ = ((S0, E0, N0), . . . ,
(Sn, En, Nn)) or an infinite run ρ = ((S0, E0, N0), . . . ) we say that p emits e iff there is a processing step in ρ of the
form

(Si, Ei, N i) −−−→
p→E

(Si+1, Ei+1, N i+1)
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for some i ≥ 0 and a sequence of events E with e ∈〈〉 E. We also say that p emits m iff e = 〈x, y,m〉 for some addresses x,
y.

Definition 79. We say that a term t is derivably contained in (a term) t′ for (a set of DY processes) P (in a processing step
si → si+1 of a run ρ = (s0, s1, . . .)) if t is derivable from t′ with the knowledge available to P , i.e.,

t ∈ d∅({t′} ∪
⋃
p∈P

Si+1(p))

Definition 80. We say that a set of processes P leaks a term t (in a processing step si → si+1) to a set of processes P ′

if there exists a message m that is emitted (in si → si+1) by some p ∈ P and t is derivably contained in m for P ′ in the
processing step si → si+1. If we omit P ′, we define P ′ := W \P . If P is a set with a single element, we omit the set notation.

Definition 81. We say that a DY process p created a message m in a processing step

(Si, Ei, N i)
ein→p−−−−→
p→Eout

(Si+1, Ei+1, N i+1)

of a run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) if all of the following hold true
• m is a subterm of one of the events in Eout
• m is and was not derivable by any other set of processes

m 6∈ d∅
( ⋃
p′∈W \{p}
0≤j≤i+1

Sj(p′)
)

We note a process p creating a message does not imply that p can derive that message.

Definition 82. We say that a browser b accepted a message (as a response to some request) if the browser decrypted the
message (if it was an HTTPS message) and called the function PROCESSRESPONSE, passing the message and the request
(see Algorithm 29).

Definition 83. We say that an atomic DY process p knows a term t in some state s = (S,E,N) of a run if it can derive the
term from its knowledge, i.e., t ∈ d∅(S(p)).

Definition 84. Let N ⊆ N , t ∈ TN (X), and k ∈ TN (X). We say that k appears only as a public key in t, if
1) If t ∈ N ∪X , then t 6= k
2) If t = f(t1, . . . , tn), for f ∈ Σ and ti ∈ TN (X) (i ∈ {1, . . . , n}), then f = pub or for all ti, k appears only as a public

key in ti.

Definition 85. We say that a script initiated a request r if a browser triggered the script (in Line 10 of Algorithm 28) and the
first component of the command output of the script relation is either HREF, IFRAME, FORM, or XMLHTTPREQUEST such that
the browser issues the request r in the same step as a result.

Definition 86. We say that an instance of the generic HTTPS server s accepted a message (as a response to some request)
if the server decrypted the message (if it was an HTTPS message) and called the function PROCESS_HTTPS_RESPONSE,
passing the message and the request (see Algorithm 39).

For a run ρ = s0, s1, . . . of any WS , we state the following lemmas:

Lemma 43. If in the processing step si → si+1 of a run ρ of WS an honest browser b
(I) emits an HTTPS request of the form

m = enca(〈req , k〉, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some other DY process u), and
(II) in the initial state s0, for all processes p ∈W \ {u}, the private key k′ appears only as a public key in S0(p), and

(III) u never leaks k′,
then all of the following statements are true:

(1) There is no state of WS where any party except for u knows k′, thus no one except for u can decrypt m to obtain req .
(2) If there is a processing step sj → sj+1 where the browser b leaks k to W \ {u, b} there is a processing step sh → sh+1

with h < j where u leaks the symmetric key k to W \ {u, b} or the browser is fully corrupted in sj .
(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in the browsers’ keymapping

s0.keyMapping (in its initial state).
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(4) If b accepts a response (say, m′) to m in a processing step sj → sj+1 and b is honest in sj and u did not leak the
symmetric key k to W \ {u, b} prior to sj , then u created the HTTPS response m′ to the HTTPS request m, i.e., the
nonce of the HTTP request req is not known to any atomic process p, except for the atomic processes b and u.

PROOF. (1) follows immediately from the preconditions.
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all other process states. As the

equational theory does not allow the extraction of a private key x from a public key pub(x), the other processes can never
derive k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived from any network output of u,
and k′ cannot be known to any other party. Thus, nobody except for u can derive req from m.

(2) We assume that b leaks k to W \ {u, b} in the processing step sj → sj+1 without u prior leaking the key k to anyone
except for u and b and that the browser is not fully corrupted in sj , and lead this to a contradiction.

The browser is honest in si. From the definition of the browser b, we see that the key k is always chosen as a fresh nonce
(placeholder ν3 in Lines 71ff. of Algorithm 30) that is not used anywhere else. Further, the key is stored in the browser’s
state in pendingRequests . The information from pendingRequests is not extracted or used anywhere else (in particular it is
not accessible by scripts). If the browser becomes closecorrupted prior to sj (and after si), the key cannot be used anymore
(compare Lines 51ff. of Algorithm 30). Hence, b does not leak k to any other party in sj (except for u and b). This proves (2).

(3) Per the definition of browsers (Algorithm 30), a host header is always contained in HTTP requests by browsers. From
Line 77 of Algorithm 30 we can see that the encryption key for the request req was chosen using the host header of the
message. It is chosen from the keyMapping in the browser’s state, which is never changed during ρ. This proves (3).

(4) An HTTPS response m′ that is accepted by b as a response to m has to be encrypted with k. The nonce k is stored by
the browser in the pendingRequests state information. The browser only stores freshly chosen nonces there (i.e., the nonces
are not used twice, or for other purposes than sending one specific request). The information cannot be altered afterwards (only
deleted) and cannot be read except when the browser checks incoming messages. The nonce k is only known to u (which did
not leak it to any other party prior to sj) and b (which did not leak it either, as u did not leak it and b is honest, see (2)). The
browser b cannot send responses. This proves (4).

Corollary 1. In the situation of Lemma 43, as long as u does not leak the symmetric key k to W \ {u, b} and the browser
does not become fully corrupted, k is not known to any DY process p 6∈ {u, b} (i.e., @ s′ = (S′, E′) ∈ ρ: k ∈ dNp(S′(p))).

Lemma 44. If for some si ∈ ρ an honest browser b has a document d in its state Si(b).windows with the origin 〈dom, S〉
where dom ∈ Domain, and Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being a private key, and there is only one DY
process p that knows the private key k in all sj , j ≤ i, then b extracted (in Line 37 in Algorithm 29) the script in that document
from an HTTPS response that was created by p.

PROOF. The origin of the document d is set only once: In Line 37 of Algorithm 29. The values (domain and protocol) used
there stem from the information about the request (say, req) that led to the loading of d. These values have been stored in
pendingRequests between the request and the response actions. The contents of pendingRequests are indexed by freshly chosen
nonces and can never be altered or overwritten (only deleted when the response to a request arrives). The information about the
request req was added to pendingRequests in Line 76 (or Line 79 which we can exclude as we will see later) of Algorithm 30.
In particular, the request was an HTTPS request iff a (symmetric) key was added to the information in pendingRequests . When
receiving the response to req , it is checked against that information and accepted only if it is encrypted with the proper key
and contains the same nonce as the request (say, n). Only then the protocol part of the origin of the newly created document
becomes S. The domain part of the origin (in our case dom) is taken directly from the pendingRequests and is thus guaranteed
to be unaltered.

From Line 77 of Algorithm 30 we can see that the encryption key for the request req was actually chosen using the host
header of the message which will finally be the value of the origin of the document d. Since b therefore selects the public
key Si(b).keyMapping[dom] = S0(b).keyMapping[dom] ≡ pub(k) for p (the key mapping cannot be altered during a run),
we can see that req was encrypted using a public key that matches a private key which is only (if at all) known to p. With
Lemma 43 we see that the symmetric encryption key for the response, k, is only known to b and the respective web server.
The same holds for the nonce n that was chosen by the browser and included in the request. Thus, no other party than p can
encrypt a response that is accepted by the browser b and which finally defines the script of the newly created document.

Lemma 45. If in a processing step si → si+1 of a run ρ of WS an honest browser b issues an HTTP(S) request with the
Origin header value 〈dom, S〉 where Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being a private key, and there is only
one DY process p that knows the private key k in all sj , j ≤ i, then
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• that request was initiated by a script that b extracted (in Line 37 in Algorithm 29) from an HTTPS response that was
created by p, or

• that request is a redirect to a response of a request that was initiated by such a script.

PROOF. The browser algorithms create HTTP requests with an origin header by calling the HTTP_SEND function
(Algorithm 25), with the origin being the fourth input parameter. This function adds the origin header only if this input
parameter is not ⊥.

The browser calls the HTTP_SEND function with an origin that is not ⊥ only in the following places:
• Line 51 of Algorithm 28
• Line 90 of Algorithm 28
• Line 27 of Algorithm 29 �

In the first two cases, the request was initiated by a script. The Origin header of the request is defined by the origin of the
script’s document. With Lemma 44 we see that the content of the document, in particular the script, was indeed provided by p.

In the last case (Location header redirect), as the origin is not 3 , the condition of Line 17 of Algorithm 29 must have been
true and the origin value is set to the value of the origin header of the request. In particular, this implies that an origin header
does not change during redirects (unless set to 3; in this case, the value stays the same in the subsequent redirects). Thus, the
original request must have been created by the first two cases shown above.

The following lemma is similar to Lemma 43, but is applied to the generic HTTPS server (instead of the web browser).

Lemma 46. If in the processing step si → si+1 of a run ρ of WS an honest instance s of the generic HTTPS server model
(I) emits an HTTPS request of the form

m = enca(〈req , k〉, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some other DY process u), and
(II) in the initial state s0, for all processes p ∈W \ {u}, the private key k′ appears only as a public key in S0(p),

(III) u never leaks k′,
(IV) the instance model defined on top of the HTTPS server does not read or write the pendingRequests subterm of its state,
(V) the instance model defined on top of the HTTPS server does not emit messages in HTTPSRequests,

(VI) the instance model defined on top of the HTTPS server does not change the values of the keyMapping subterm of its
state, and

(VII) when receiving HTTPS requests of the form enca(〈req ′, k2〉, pub(k′)), u uses the nonce of the HTTP request req ′ only
as nonce values of HTTPS responses encrypted with the symmetric key k2,

(VIII) when receiving HTTPS requests of the form enca(〈req ′, k2〉, pub(k′)), u uses the symmetric key k2 only for symmetrically
encrypting HTTP responses (and in particular, k2 is not part of a payload of any messages sent out by u),

then all of the following statements are true:
(1) There is no state of WS where any party except for u knows k′, thus no one except for u can decrypt m to obtain req .
(2) If there is a processing step sj → sj+1 where some process leaks k to W \ {u, s}, there is a processing step sh → sh+1

with h < j where u leaks the symmetric key k to W \ {u, s} or the process s is corrupted in sj .
(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in S0(s).keyMapping (i.e., in

the initial state of s).
(4) If s accepts a response (say, m′) to m in a processing step sj → sj+1 and s is honest in sj and u did not leak the

symmetric key k to W \ {u, s} prior to sj , then u created the HTTPS response m′ to the HTTPS request m, i.e., the
nonce of the HTTP request req is not known to any atomic process p, except for the atomic processes s and u.

PROOF. (1) follows immediately from the preconditions. The proof is the same as for Lemma 43:
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all other process states. As the

equational theory does not allow the extraction of a private key x from a public key pub(x), the other processes can never
derive k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived from any network output of u,
and k′ cannot be known to any other party. Thus, nobody except for u can derive req from m.

(2) We assume that some process leaks k to W \ {u, s} in the processing step sj → sj+1 without u prior leaking the key k
to anyone except for u and s and that the process s is not corrupted in sj , and lead this to a contradiction.

The process s is honest in si. s emits HTTPS requests like m only in Line 18 of Algorithm 39:
• The message emitted in Line 3 of Algorithm 34 has a different message structure
• As s is honest, it does not send the message of Line 6 of Algorithm 39
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• There is no other place in the generic HTTPS server model where messages are emitted and due to precondition (V), the
application-specific model does not emit HTTPS requests. �

The value k, which is the placeholder νn1 in Algorithm 39, is only stored in the pendingRequests subterm of the state of s,
i.e., in Si+1(s).pendingRequests. Other than that, s only accesses this value in Line 19 of Algorithm 39, where it is only
used to decrypt the response in Line 20 (in particular, the key is not propagated to the application-specific model, and the key
cannot be contained within the payload of an response due to (VIII)). We note that there is no other line in the model of the
generic HTTPS server where this subterm is accessed and the application-specific model does not access this subterm due to
precondition (IV). Hence, s does not leak k to any other party in sj (except for u and s). This proves (2).

(3) From Line 16 of Algorithm 39 we can see that the encryption key for the message m was chosen using the host header
of the request. It is chosen from the keyMapping subterm of the state of s, which is never changed during ρ by the HTTPS
server and never changed by the application-specific model due to precondition (VI). This proves (3).

(4)
Response was encrypted with k. An HTTPS response m′ that is accepted by s as a response to m has to be encrypted

with k:
The decryption key is taken from the pendingRequests subterm of its state in Line 19 of Algorithm 39, where s only stores

fresh nonces as keys that are added to requests as symmetric keys (see also Lines 15 and 16). The nonces (symmetric keys)
are not used twice, or for other purposes than sending one specific request.

Only s and u can create the response. As shown previously, only s and u can derive the symmetric key (as s is honest
in sj). Thus, m′ must have been created by either s or u.
s cannot have created the response. We assume that s emitted the message m′ and lead this to a contradiction.
The generic server algorithms of s (when being honest) emit messages only in two places: In Line 3 of Algorithm 34, where

a DNS request is sent, and in Line 18 of Algorithm 39, where a message with a different structure than m′ is created (as m′

is accepted by the server, m′ must be a symmetrically encrypted ciphertext).
Thus, the instance model of s must have created the response m′.
Due to Precondition (IV), the instance model of s cannot read the pendingRequests subterm of its state. The symmetric key

is generated freshly by the generic server algorithm in Lines 15 and 16 of Algorithm 39 and stored only in pendingRequests.
As the generic algorithms do not call any of the handlers with a symmetric key stored in pendingRequests., it follows

that the instance model derived the key from a message payload in the instantiation of one of the handlers. Let m̃ denote this
message payload.

As the server instance model cannot derive the symmetric key without processing a message from which it can derive the
symmetric key, and as the server algorithm only create the original request m as the only message with the symmetric key as
a payload, it follows that u must have created m̃, as no other process can derive the symmetric key from m.

However, when receiving m, u will use the symmetric key only as an encryption key, and in particular, will not create a
message where the symmetric key is a payload (Precondition (VIII)).

Thus, the symmetric key cannot be derived by the instance of the server model, which is a contradiction to the statement
that the instance model of s must have created the response m′.
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