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Abstract
The theory of cooling is an important corner of thermodynamics, under-
lying many modern technological applications. As the field of quantum
thermodynamics advances, refrigeration techniques must keep pace to fuel
the innovations of quantum technologies. We study quantum cooling from
its foundations to laboratory implementations within the specific paradigm
of heat bath algorithmic cooling. Our study includes a detail modeling of
experimental imperfections and establishes the fundamental cooling limits
of the model, consolidating the algorithm as a viable quantum refrigeration
method. Next, by developing the notion of virtual qubits, we demonstrate
a cooling-boost protocol fueled by quantum coherences which is robust
to experimental implementations. Aiming at aiding in the progress of
refrigeration technologies, we conclude by studying the zero temperature
equilibrium properties of a many-body system that can accommodate an
autonomous quantum absorption refrigerator, and calculate its entanglement
and critical properties, two features that, like quantum coherences, promise
to improve the performance of quantum coolers.

Keywords: Heat-bath Algorithmic Cooling; Quantum coherences; Virtual
qubits; Dicke model; Entanglement.
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Resumo
A teoria do refrigeração é um importante pilar da termodinâmica, subja-
cente a muitas aplicações tecnológicas modernas. Conforme o campo da
termodinâmica quântica avança, as técnicas de refrigeração devem acom-
panhar o ritmo para impulsionar as inovações das tecnologias quânticas.
Estudamos o resfriamento quântico desde suas bases até as implementações
em laboratório, começando pela técnica de heat-bath algorithmic cooling.
Esse estudo inclui modelagem de imperfeições experimentais, estabele-
cendo os limites de resfriamento conhecidos que se aplicam a esse regime
e consolidando o algoritmo como um método de refrigeração eficiente.
Em seguida, ao desenvolver a noção de qubits virtuais, demonstramos
um protocolo, robusto contra implementações experimentais, que melhora
técnicas usuais de arrefecimento e é provido por coerências quânticas. Com
o objetivo de contribuir para o avanço das tecnologias de refrigeração,
concluímos estudando as propriedades de equilíbrio a temperatura zero
de um sistema de muitos corpos que pode acomodar um refrigerador de
absorção quântica autônomo, e calculamos suas propriedades críticas e de
emaranhamento, dois traços que, assim como coerência quântica, podem
ser usados no aprimoramento da performance de refrigeradores quânticos.

Palavras-chave: Arrefecimento algorítmico; Coerências quânticas; Qubits
virtuais; Emaranhamento.
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Deustche Zusammenfassung
Die Theorie des Kühlens ist eine wichtige Säule der Thermodynamik
und bildet die Grundlage für viele moderne technologische Anwendun-
gen. Mit dem Fortschreiten der Quantenthermodynamik müssen Kälte-
und Kühlungstechniken Schritt halten, um Innovationen in den Quanten-
technologien voranzutreiben. Wir untersuchen die Quantenkühlung von
ihren Grundlagen bis hin zu Implementierungen im Labor, innerhalb des
Paradigmas des Wärmebadkühlens. Unsere Arbeit beinhaltet ein detailierte
Modellierung experimenteller Unvollkommenheiten und etabliert dabei
bereits bekannte Schranken des Kühlens womit wir den Algorithmus als
eine praktikable Quantenkühlmethode etablieren. Indem wir dann das
Konzept von virtuellen Qubits entwickeln, demonstrieren wir anschließend
ein Kühl-Boost-Protokoll, das durch Quantenkoherenzen getrieben wird
und zudem robust gegenüber experimentellen Unvollkommenheiten ist. Mit
dem Ziel, den Fortschritt der Kältetechnologien zu unterstützen, schließen
wir dann mit der Untersuchung der Gleichgewichtseigenschaften eines
Vielteilchensystems am Temperaturnullpunkt, das über eine autonome
quantenmechanische Absorptionskühlmaschine verfügt. Wir berechnen die
Verschränkungs- und kritischen Eigenschaften, zwei Merkmale, die wie
Quantenkoherenzen Aussichten haben, die Leistung von quantenmechanis-
chen Kühlsystemen zu verbessern.
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Chapter 0

Introduction

Background and motivation
The preparation of pure states is paramount to make quantum technologies
functional, and in particular for quantum computers [1–3]. Achieving
high fidelity initialization of a multiqubit register to the computational
state |00 . . . 0⟩ is the first step towards computation, and is important
to the extent of being classified as one of the main drives towards the
construction of large-scale quantum computers, e.g. summarized in the
second of DiVincenzo’s criteria [1]. These efforts happen concurrently to the
engineering of computation taking place away from error-inducing dynamics
in decoherence-free subspaces [4–7], or inside noiseless subsystems [8–10],
and in addition to the active implementation of quantum error-correction
[11, 12].

In DiVincenzo’s criteria [1] and subsequent characterizations [3], cool-
ing in various forms is explicitly mentioned as principal approaches on the

1



Chapter 0. Introduction

way to the goal of producing low entropy fiducial states. Refrigeration is
thus the backdrop for the realization of experiments at large, as we now
recognize its necessity in modern cutting-edge applications, and notice
its presence in the drive for more precise clocks [13], preparation of cold
and ultracold many-body states for simulations or otherwise general use in
precision control and measurement of quantum states [14–19].

A quantum refrigerator that is in special connection to the development
of quantum computers is algorithmic cooling, first introduced in [20, 21]. At
the same time it can be framed as a quantum thermal machine, it is inherently
an algorithmic procedure and thus, in a sense, a computational task itself.
Furthermore, it is an experimentally realizable procedure [22, 23].

Originally proposed in the advent of NMR ensemble quantum computing
proposal [20–22], algorithmic cooling aimed at preparing an effective lower
dimensional quantum subsystem, from the large thermal bath state, that
would be closer to the ground state and amenable to be used in quantum
computing tasks. It was later realized that for this approach to work, it
would necessitate a large supply of these effective qubits in low enough
temperatures, and for them to be stored away from decoherence effects.

Fault-tolerance estimates placed heavy constrains and were an imped-
iment to this approach. The ability to refrigerate multiqubit registers
on-the-fly seemed more promising, as was later demonstrated [24, 25]. In
this installment, termed heat-bath algorithmic cooling (HBAC), the cooling
takes place over a cycle of operations involving an environment that is
separately arranged. The computational qubits are the target of a unitary
gate that has heat-bath qubits also as inputs, but that are then discarded in
preparation for the next cycle; in this sense, the cooling of the target happens
in an open-systems setting. This stands in contrast to the original proposal,
where bulk refrigeration of the ensemble of qubits (e.g. the liquid-state

2



Chapter 0. Introduction

NMR ensemble) was followed by a unitary that initialized the target qubits.
Experimental realizations of HBAC [26, 27] face naturally occurring diffi-
culties matching with the idealized model. Motivated by these efforts, we
enrich these studies by modelling the algorithm with realistic imperfections
taken into account, and we use this opportunity to find ways to enhance its
performance as a refrigerator.

Moving on from the focus on controlling quantum systems, we will
consider an autonomous quantum refrigerator [28–31]. In contrast to the
design of controlled systems such as HBAC, an absorption refrigerator,
working autonomously, evolves and performs cooling on a cold heat bath
free of external interactions besides the ones required to set up the platform
in the first place. The first designs of an absorption refrigerator dates back
two centuries, and a notable following improvement is due to Einstein and
Szilárd, for an absorption refrigerator with no moving parts [32], and later
in refs. [33–35], which are early contributions to quantum thermodynamics.
The working principle behind such as system is the exchange of a work
source (the external control device, such as a knob at the hand of the
experimentalist that tunes a laser), for a third heat bath to be placed in
addition to the cold bath, from where the heat is extracted, and the hot
both, to where that heat is being transferred. This extra heat bath, termed
the work reservoir that typically seats at a temperature even higher than
the hot bath, is used as the system induces the cold-to-hot heat transport
by coupling this process to concomitant transport of heat from the work
reservoir to the hot bath. The motivation behind working with autonomous
systems, particularly coolers, is both to provide better accounting of the
thermodynamic costs of these devices, and to discard “moving parts” in
the engineering of these devices, which are precisely the sources of noise
and error as they are made smaller and thus more subject to fluctuations.

3
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Experimental implementations of a quantum absorption refrigerator have
only now started to appear [28, 29], and are constrained to few-body physics.
To advance the field further, particularly in the direction of large scale
devices, and the search and exploit of quantum advantage, we will study a
many-body model displaying interesting quantum matter features in this
thesis.

Outline of the thesis. We start with chapter 1, based on [36], describing
fairly general cooling limits, focusing on a particular implementation of
algorithmic cooling, known as Heat-Bath Algorithmic Cooling (HBAC). Al-
gorithmic cooling is a particularly minimal implementation of a refrigerator
that allows one to keep track of many controllable parameters as it acts on
qubits. By being initially defined in terms of two-level systems, it is suited
for studies of quantum state preparation, highlighting its usefulness for
quantum computing devices and related technologies. In this first chapter
we do a thermodynamic analysis of HBAC, more comprehensive than
what has been done in the past [37], and on top of an actual experimental
implementation of its minimal version in an NV center setup.

In chapter 2, following [38], we extend this description uncovering the
virtual qubit nature of the resources used for cooling the target qubit in
algorithmic cooling. With this understanding, we propose how to include
genuinely quantum resources, and we suggest a conservative procedure to
use up these resources with the goal of taking the target system even closer
to the ground state, thus showing how to circumvent the original idea of
previously proposed universal cooling limits.

Next, in chapter 3, from [39], we end the thesis by moving our focus to the
more intricate platform of interacting spin-boson systems, where collective
behavior, phases of matter and many-body physics are key underlying
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concepts. The well-established Dicke model, often useful in quantum optics
and atomic physics [40–42], will serve us in a study of equilibrium properties
of a system amenable to the autonomous absorption refrigerator design.
The Dicke model originally consists of a large number of d-level systems
collectively coupled to a single bosonic mode. We will analyze an extension
of it that includes a new bosonic mode coupled to a new degree-of-freedom
of the already existing d-level systems. At the thermodynamic limit we
show that the collective coupling can be simplified in a mean-field approach
to a system of three interacting harmonic oscillators. This extended model
enjoys the same properties at equilibrium as the original model, now with
two independent normal-to-superradiant phase transitions. In addition,
we show that the region separating the two superradiant phases breaks a
continuous symmetry and thus gives rise to a gapless, Goldstone mode.
We end devise a correlation profile of the system at equilibrium, where
multipartite entanglement is present.
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Chapter 1

Quantum cooling,
algorithmically

1.1 Introduction to heat-bath algorithmic cool-
ing

One of the main tasks for which algorithmic cooling was designed is
to prepare the states in a multiqubit register as close as possible to the
computational state |00 . . . 0⟩, where |0⟩ is the ground state of each qubit.
The algorithm receives as input a string of mixed two-level states ρs, and
outputs a second string of mixed states ρ′

s in higher fidelity to |00 . . . 0⟩.
This procedure entails in purification of the states of the composite register
towards the ground state, or in other words, cooling.

We distinguish in this process the target system ρs, to be cooled, and
the resources that will be used to that end. One of the main resources in the

6
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algorithm is an ensemble of qubits drawn from a heat bath, ρa , which will be
termed reset or ancilla qubits. The scaling of both resource and performance
with the number of qubits (heat bath or target) is of great importance, but
we focus on the minimal working example in this introduction, and leave
the discussion of these resources to the end of this section. Our main result
in this chapter also concerns the three-qubit minimal model, which is the
building block for the larger models. We thus restrict ourselves for the
moment to heat-bath algorithmic cooling with one target qubit and two
ancilla qubits.

In the minimal HBAC, the input is the single-qubit state ρs = ρ1, for the
target qubit, and the algorithm uses as resource the state ρ2 and ρ3 for the
ancillas. Jointly they form a global uncorrelated state ρ123 = ρ1⊗(ρ2⊗ρ3).a

A unitary channel U that compresses entropy and energy from the target
qubit to the ancilla qubits determines one cycle of refrigeration that ends
with a reset of the ancilla states. The joint entropy of these three states is
maintained in this process but the target qubit is cooled, at the same time
the ancillas are heated.

For the purpose of explaining the algorithm, it is sufficient to consider
the effects of the algorithm on the population of each of the qubit’s state,
namely the diagonal components of their density matrices in a certain basis.
Looking forward to actual physical implementations where these states are
thermal, we assume the density matrices to be diagonal and written in the
energy eigenbasis:

ρb =
(
pb(0) 0

0 pb(1)

)
, (1.1)

where 0 indicates the ground state and 1 the excited state of each of the
aWe will sometimes omit partition subscripts such as 123 when referring to global states.
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b = 1, 2, 3 qubits.
The goal with heat-bath algorithmic cooling is to dynamically take the

population of the target qubit, pb(0), as close as possible to its ground-state
value of 1 (as pb(1) goes to 0). As we could expect from the third law of
thermodynamics, we will see that this approach is limited; we will quantify
this limitation and analyze the resources that need to be taken into account
for better performance.

The choice of compression unitary channel U enjoys some freedom.
The algorithmic nature of this protocol can be made explicit by treating the
finite-dimensional three-qubit state as an array of numbers. Let us for now
assume that the ancilla qubits share the same population, indicated by q0

and q1, and take the target population to be given by p0 and p1. A standard
choice of constructing the global state gives, for the diagonal elements of
ρ123,

ρ123 = diag(piqjqk), (1.2)

where the matrix is arranged in lexicographic order.b

The thermodynamic assumption that the target system, to be cooled, is
initially in a temperature at least equal to that of the ancilla qubits, and that
every temperature is positive, applies here. In terms of the populations, this
means that we have the following order at step n = 0:

0 < q1(0) ≤ p1(0) < p0(0) ≤ q0(0), (1.3)

meaning that the reset qubits start in a state comparatively chiller than the
target. From this, the question that algorithmic cooling addresses is: what
sorting of the numbers piqjqk can be made such that, upon updating the

bLexicographic order: 000, 001, 010, 011, 100, 101, 110, 111.
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p value, we get p0(n) ≲ p0(n + 1)? The answer to this question is then
encoded in the compression unitary channel U , that takes the shape of a
permutation matrix.

We remark here that it is not necessary to restrict the unitary channel to
be equal for every sorting step, but for our purposes of studying the minimal
HBAC implementation, this simplifying assumption can be made and is
desirable from an implementation perspective.

The purpose of this step, that we identify as a thermodynamic cycle of
a refrigerator, is to draw resources from the heat bath to cool the target, as
we increase its ground state population. In terms of the array of numbers
piqjqk, we want to increase the array entries for which i = 0, that defines
the new target ground state:

pi′(n+ 1) =
∑

j′,k′∈{0,1}

pi′j′k′(n+ 1), (1.4)

where pi′j′k′(n + 1) = pi′(n)qj′qj′ and i′j′k′ = u(ijk) is given by the
permutation u implemented through the action of U on ρ123. This statement
has then the clear interpretation in quantum mechanics as

ρ1(n+ 1) = tr23{Uρ123(n)U†}, (1.5)

where U are the unitary operators defining the channel as U(ρ) = UρU†.
The reset qubits are similarly affected in this process, with their state
evolving as ρ̃23 = tr1{Uρ123(n)U†}, with updated populations q̃0 and q̃1.

The simplest unitary that achieves the goal of cooling the target qubit
implements the transition |011⟩⟨100| + h.c. The implemented permutation
exchanges the smaller value p0(n)q2

1 for the larger p1(n)q2
0 , given the

hierarchy eq. (1.3). In updating the state of the target qubit for the next
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ρ1

ρ2 ρ2

ρ3 ρ3

Refresh

U

Compression
n

Figure 1.1: Circuit diagram for the minimal HBAC.

cycle, ρ1(n) 7→ ρ1(n + 1), the new ground state population is given by
eq. (1.4) and thereby increased.

In fig. 1.1 we show a circuit diagram of the minimal heat bath algorithmic
cooling. The input mixed states and their evolution are represented in full
lines, and unitary gates (for us, the compression unitary), are shown in
blocks. What was described above determines what happens within a single
cycle of refrigeration. The conditions, however, can be applied repeatedly,
as the updated state can still satisfy them. To finalize the description of
the algorithm we introduce the refresh operation, shown in fig. 1.1 inside a
dashed block, which is what distinguishes it. This channel is non-unitary,
and responsible for the possibility of concatenating the cycles.

After updating the target qubit populations, the reset step exchanges the
now heated ancilla qubits for a fresh new set of qubits prepared identically
to the previous ones, now discarded. The resulting map is q̃j 7→ qj . This
reset then creates a new array of numbers that defines the global updated
state at the nth cycle ρ123(n+ 1).

The repeated application of compression and refresh over the three-qubit
state finally defines all steps of HBAC. At each iteration, the target is cooled
if the conditions (1.3) apply. This dynamical evolution reaches a steady
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state, where the target qubit is no longer cooled, with its population reaching
a fixed point, meaning that the update that follows the permutation keeps pi

unaffected. At this point the cooling limit of HBAC has been reached.

Cooling limits. The lowest temperatures achieved depend on defining
parameters of instances of the algorithm, even though the algorithm can in
principle be implemented in various physical platforms. In our example,
these parameters appear in the number of reset qubits and in their initial
populations, but not the choice of compression unitary. For instance,
another unitary that could be applied in the explained setting would be one
where other permutations take place among the numbers 0jk. Although
this changes the dynamics, the steady state is maintained.

The cooling limit has been determined and refined in many instances
[25, 43–46], and are believed to be general in the regime of classical thermal
states (i.e. in the absence of quantum coherences) [47, 48]. In addition
to what has been studied here, these results also include memory qubitsc

[46, 49], which are also cooled but stand in contrast to the target in that they
are cooled to a lesser extent in a cascading decreasing order.

These limits can be measured in terms of the polarization of the qubits,
namely the quantity

ε = tr(Zρ), −1 ≤ ε ≤ 1, (1.6)

where Z = ( 1 0
0 −1 ) is the diagonal Pauli matrix, which relates to the ground

state population through the equality ε = 2p0 −1. In terms of polarizations,
the cooling limit for a target qubit refrigerated by the application of heat-bath
algorithmic cooling with m memory qubits and r reset qubits with reset

cAlso known as scratch qubits.
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polarization εa is [45]

εs(∞) = (1 + εa)2mr − (1 − εa)2mr

(1 + εa)2mr + (1 − εa)2mr
, (1.7)

in particular, for the minimal HBAC, the cooling limit is

ε1(∞) = 2εa

1 + ε2
a
, (1.8)

where m = 0 and r = 2. Also recall that ρs = ρ1.
In this few qubit setting, temperature can be mapped to the polarization

measure. Assuming a Hamiltonian H = −ωZ/2, a thermal state has a
diagonal form in the energy eigenbasis, and can be written in terms of ε:

ρ = e−βH

tr e−βH
= 1

2

(
1 + ε 0

0 1 − ε

)
, (1.9)

for the inverse temperature β = 1/T . In this parametrization, infinite
temperature is the limit ε → 0, and the ground state indicates zero temper-
ature at ε = 1. The domain of negative temperatures [50–52], such as in
population inversion phenomena, is tied to negative polarization, ε < 0; we
will not deal with this regime in this thesis. The functional relation between
polarization and temperature is given by

ε(β) = tanh
(
βω

2

)
, or β(ε) = ω−1 ln

(
1 + ε

1 − ε

)
. (1.10)

The corresponding temperature limits are then [45]

T1(∞) = 1
2mr

ω1

ωa
Ta, (1.11)
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where ω1 is the gap of the target qubit and ωa and Ta are the gap of the
reset qubits, and respectively the temperature of the heat bath from which
they are drawn.

To conclude this introduction we draw out a comparison of algorithmic
cooling with what is known in the literature as the swap engine [53–56].
The swap engine is based on the swap unitary gate S, common in quantum
computing applications. The gate acts on two qubits by simple exchange of
states: S(ρ(Th)⊗ρ(Tc))S† = ρ(Tc)⊗ρ(Th). The principle of refrigeration,
in this case, is that the first system, starting at temperature Th > Tc , is
exchanged by the second system at a lower temperature. Refrigeration
here is limited to temperatures of the available cold bath Tc . Heat-bath
algorithmic cooling works very similarly to this engine, but then a question
arises: why are the temperatures reached by HBAC lower than the provided
fresh temperatures of the ancillas? The answer, as we will show in the
next chapter, lies in the presence of the availability of two ancilla qubits,
instead of the single cold qubit of the swap engine. This can be seen
as a justification to why, for HBAC, the “minimal model” starts at three
qubits. Before we elaborate on this further, we now describe our results
concerning an experimental implementation of this minimal model, and its
thermodynamic analysis.

Outline of the chapter. Heat-bath algorithmic cooling will be our focus
on this chapter. Since it has been first proposed, it has been the subject of
an extensive body of research considering its operational and fundamental
limits in a variety of settings [20–26, 37, 43–49, 57–65]. We start with the
next section by elaborating on the principles behind algorithmic cooling on
a technical level, the observable quantities and parameters which have been
studied previously in the literature and the type of system on which it is
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applied. We end that section with a discussion of one of its most important
measures of performance, the cooling limit, which answers the question:
what are the lowest temperatures achieved by the ensuing dynamics?

We add our contribution to the literature and recent progress of algorith-
mic cooling starting in section 1.2 [36]. In this study, we analyze a recent
experimental implementation of HBAC in a nitrogen-vacancy center that
achieves and demonstrates the cooling limit for a minimal model [27] for
many iterations. The dynamics of HBAC is solved analytically, with the
physical sources of dissipation from an experiment taken into account; we
thus generalize the cooling limit results to new parameter regimes.

Moreover, we analyze the algorithm as a refrigerator and compute
thermodynamic figures of merit, namely the coefficient of performance and
power, therefore going beyond what can be concluded from the cooling
limit alone. We show that, as a refrigerator, the algorithm converges to the
Carnot bound in the steady state, which is achieved after a few cycles. By
uncovering the experimental sources of dissipation, we determine that the
experimental implementation achieves the expected fundamental cooling
limits despite being away from the idealized unitary regime in which the
limits were determined. We thus establish that heat-bath algorithmic cooling
is an efficient thermal machine that operates with high performance with
currently available technology.
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1.2 Algorithmic cooling and its thermodynam-
ics

Towards a realistic model in a nitrogen-vacancy center. Cooling has
been an important application of thermodynamics since its foundation.
Refrigeration generically occurs when heat is extracted from a system,
leading to a decrease of its entropy and a reduction of its temperature below
that of the environment [66]. Efficient cooling methods are essential for
the study of low-temperature quantum phenomena, from the physics of
atoms and molecules [67, 68] to novel states of matter [69, 70] and the
development of quantum technologies [71, 72].

As elaborated in the introduction, heat-bath algorithmic cooling is a
method that allows to cool target qubits with the help of standard logic
gates and reset qubits that pump entropy out of the target into a bath, which
acts as an entropy sink [24, 25, 37, 43, 45, 60, 61, 73–77]. An algorithmic
cooling cycle consists of a succession of (i) compression steps that cool the
(slow-relaxing) target system and heat up the (fast-relaxing) reset ancillas,
and of (ii) refresh steps during which the reset system quickly relax back to
the bath temperature (fig. 1.2).

Algorithmic cooling refrigerators share similarities with conventional
quantum refrigerators: they cyclically transfer heat from the cold spins to
the hot bath by consuming work done by the quantum gates. Such analogy
makes a comparison between the two refrigerators possible. However, their
underlying cooling mechanisms are intrinsically different and the finite size
of the target qubit results in a cycle that is not closed in the thermodynamic
sense, since its state is not the same at the beginning and at the end of one
cycle. Cyclic algorithmic cooling operation has recently been demonstrated
experimentally for a minimal system of three qubits, using nuclear magnetic
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Figure 1.2: Schematic illustration of the minimal three-qubit algorithmic cooling
cycle: in a first (compression) step, heat is extracted from the target qubit (t), cooling
it down while heating up the two reset qubits (r). In a second (refresh) step, the reset
qubits are rethermalized to the bath temperature Th. Contrast this with the circuit
diagram fig. 1.1. Here, we make explicit the coupling management of the physical
bodies that house the qubits, and represent in color the temperature changes of each
step, with the exception that the refresh simply redefines the output target state to be
the new input state, with no further change of temperature.

resonance [26, 57, 78, 79] and nitrogen-vacancy centers in diamond [27].
Motivated by these experiments, we here make heat-bath algorithmic

cooling composed of one target spin and of two reset spins [26, 27, 57, 78, 79]
into a more realistic model and investigate its thermodynamic performance.
We determine its fundamental limits in parallel to those of standard quantum
refrigerators [31, 55, 80, 81].d

Conventional refrigerators cyclically pump heat from a cold to a hot
macroscopic system (both considered as heat baths) by consuming work
[66]. Two central figures of merit of such refrigerators are the cooling
power that characterizes the rate of heat removal, ∆Q, and the coefficient
of performance ζ, or COP, defined as the ratio of heat extracted from the
target and work supplied, ζ = |Q|/W .

The COP captures the energetic efficiency by measuring the amount of
dAn information-theoretic analysis of the performance of heat-bath algorithmic cooling,

viewed from the perspective of feedback cooling, has been presented in ref. [82].
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heat extracted against the energy expenditure of work done on the system.
In contrast to the efficiency (and its ultimate Carnot bound), the COP can
attain values which are larger than 1. It is still however bounded from above:
the maximum value of the COP is given, in the reversible limit, by the ideal
Carnot expression, ζC = Tc/(Th − Tc), where Tc and Th are the respective
temperatures of the cold and hot baths [66].

The Carnot bound can be derived for the present model starting from
the definition of the coefficient of performance, ζ = |Q|/W , and taking
the heat to be the (quantum) average energy extracted from the target qubit,
whereas the work is the total energy change of the target and ancilla systems
over the controlled interaction. That is,

ζ(n) = −∆⟨H1⟩
∆⟨H1⟩ + ∆⟨Ha⟩

, (1.12)

where H1 and Ha are the target and ancilla Hamiltonians and ∆ is the
forward difference of the averages over states ρ(n + 1) and ρ(n) during
the evolution. Here, we have defined heat and work as Q(n) = ∆⟨H1⟩(n)
(with the target average energy extracted being negative) and W (n) =
∆⟨H1⟩(n) + ∆⟨Ha⟩(n), respectively. We also assume that both systems
are at thermal equilibrium, i.e. are at a Gibbs states at temperature β1 and
βa.

The fundamental assumption of the Carnot limit is that the process is
reversible. This can be stated in terms of entropy production, defined by

Σ = ∆S(ρ1) + βaQa, (1.13)

where S(ρ) = − tr{ρ ln ρ} is the von Neumann entropy and Qa = ∆⟨Ha⟩
is the heat flowing into the bath from which the ancillas are extracted. The
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process is then reversible when entropy production vanishes, which implies
that

∆S(ρ1) = −βaQa. (1.14)

In addition to the assumption of reversibility, we can then use the following
identitye to rewrite the coefficient of performance:

∆⟨H⟩1 = T1(n)[∆S(ρ1) + S(ρ1(n+ 1)||ρ1(n))], (1.15)

where and S(ρ||ρ′) = tr{ρ(ln ρ− ln ρ′)} is the relative entropy between
the two given states. Plugging this identity and then applying (1.14) we get
for the COP

ζ(n) = −T1(n)[−βaQa + S(ρ1(n+ 1)||ρ1(n))]
T1(n)[−βaQa + S(ρ1(n+ 1)||ρ1(n))] +Qa

, (1.16)

which can finally be rewritten as

ζ(n) = T1(n) + T1(n)Ta S(ρ1(n+ 1)||ρ1(n))/Qa

Ta − T1(n) + T1(n)Ta S(ρ1(n+ 1)||ρ1(n))/Qa
. (1.17)

This is the Carnot bound, given that Tc = T1(n → ∞) and Th = Ta,
and provided that S(ρ1(n + 1)||ρ1(n))/Qa

n→∞−−−−→ 0. In practice, both
S(ρ1(n+ 1)||ρ1(n)) and Qa vanish at the steady state, but we can expect
that the ratio will indeed converge to zero, since larger systems typically
converge to the steady state at a slower rate than smaller ones, and by
design the ancilla system in heat-bath algorithmic cooling is larger than the
target. This is also what we will verify later in this chapter through explicit

eThis identity can be verified by writing the entropy definitions explicitly for a thermal
state.
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calculations. We concluded that

ζC = ζ(∞) = T1(∞)
Ta − T1(∞) . (1.18)

The performance of thermal machines coupled to finite baths with
finite heat capacities may be conveniently analyzed with cycle-dependent
quantities [83–88]. In the following, we compute COP, cooling power and
polarization of the target qubit per cycle for an arbitrary number of cycle
iterations. We employ Liouville space techniques [89] to exactly solve the
full nonstationary dynamics of the system. While heat-bath algorithmic
cooling has been mostly studied in the unitary limit and under steady-state
conditions [37, 43, 45, 73, 74, 76], we explicitly account for experimentally
relevant external damping of the target qubit and for nonideal activation
of logic gates [26, 27, 57, 78, 79], for arbitrary cycles numbers including
the transient regime. We obtain explicit expressions for the fundamental
upper bounds for COP and cooling power in the ideal reversible limit and
compare the former to the ideal Carnot COP of a quantum refrigerator
[31, 55, 80, 81]. We finally experimentally determine the performance
of the minimal algorithmic cooling refrigerator using three qubits in a
nitrogen-vacancy (NV) center in diamond [27] and obtain values of COP
and cooling power that are close to their fundamental bounds.

1.2.1 Quantum algorithmic cooling refrigerator: model-
ing gate errors

We consider the minimal three-qubit heat-bath algorithmic cooling refriger-
ator. We take each qubit’s Hamiltonian to be Hi = −ωiZ

i/2, i = 1, 2, 3,
where ωi is the energy gap between the energy eigenstates of the diagonal
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Pauli operator Zi = ( 1 0
0 −1 ) of the ith qubit, leading to the full Hamiltonian,

which is the sum of the individual ones, H =
∑

i Hi. Qubit 1 is the
target spin while qubits 2 and 3 are the two reset spins. Motivated by the
experiments, we restrict to all energy gaps being equal and equal to unit,
ωi = 1. Finally, the machine starts in a separable state of the three qubits,

ρ(0) = ρ1(0) ⊗ ρ2(0) ⊗ ρ3(0), (1.19)

with respective density matrices

ρi(0) = I

2 + εi(0)
2 Zi = 1

2

(
1 + εi(0) 0

0 1 − εi(0)

)
, (1.20)

and polarizations εi(0) = trZiρi(0).
The algorithm consists of two stages for each cycle, which is the typical

engineering of the heat bath version [24, 37, 43, 45, 60, 61, 73–76]. The
first is the compression unitaryf

U =


I3

0 −i
−i 0

I3


= − i(|011⟩⟨100| + h.c.) +

∑
ijk ̸=011,100

|ijk⟩⟨ijk| ,

(1.21)

after which we denote the qubit states by ρ̃i(n) at the nth iteration. For
instance, ρ̃2(0) = tr13{Uρ(0)U†}. The compression is then followed by

fThat can also be written as I3 ⊕ (−iX011
100

) ⊕ I3, where X011
100

is the X Pauli matrix in
that three-qubit subspace.
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the refresh step of qubits 2 and 3, at which point we define the next cycle,
with updated state

ρ(n+ 1) = R[ρ̃(n)]

= tr23{ρ̃(n)} ⊗ ρ2(0) ⊗ ρ3(0)

= ρ̃1(n) ⊗ ρ2(0) ⊗ ρ3(0).

(1.22)

Notice that from this follows that ρ1(n+ 1) = ρ̃1(n), since the refresh step
does not affect the target. Using similar notation for the polarizations, we
get that ε1(n+ 1) = ε̃1(n), but most importantly that ε2(n) = ε2(0), by
the definition of the refresh, even though ε̃2(n+ 1) ̸= ε̃2(n) (and similarly
for qubit 3). To simplify notation, we set ε2(0) = ε2 and ε3(0) = ε3.

We next identify the heatQ(n) extracted during roundnwith the average
energy change of the target qubit, Q(n) = tr{ω1Z

1[ρ1(n+ 1) − ρ1(n)]}.
We further associate the work performed by the logic gates on the system
with the corresponding mean energy variation before the refresh, W (n) =∑

i=2,3 tr{ωiZ
i[ρ̃i(n) − ρi(n)]} [37]. The COP per cycle, ζ(n), is then

defined as the ratio of pumped heat and applied work, while the cooling
power per cycle, J(n), is given (in units of the cycle time) as the discrete
derivative (or forward difference) of the heat:

ζ(n) = −Q(n)
W (n) and J(n) = Q(n+ 1) −Q(n). (1.23)

These are the principal quantities of our investigation.
We shall examine the thermodynamic properties of heat-bath algo-

rithmic cooling in the general case where compression is implemented
with imperfect gates and the (slow-relaxing) target spin is subjected to
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irreversible energy dissipation.g We will discard irreversible losses of the
reset spins because of their much faster relaxation. For each round n of
the cooling protocol, we accordingly describe the evolution of the system
with the help of three quantum channels [71]. We first account for energy
dissipation of the target qubit via an amplitude damping channel D with
decay rate γ [71],

D[ρ] =
∑

j=1,2
ΓjρΓ

†
j , (1.24)

with the two Kraus damping operators,

Γ1 =
(

1 0
0

√
1 − γ

)
and Γ2 =

(
0 √

γ

0 0

)
. (1.25)

We further characterize the imperfect compression stage with the channel
ρ̃(n) = K[ρ(n− 1)], such that,

K[ρ] =
∑

µ=1,2
KµρK

†
µ, (1.26)

where we have introduced the two quantum operators,

K1 = I√
2

− 1√
2

(|011⟩⟨011| + |100⟩⟨100|) − i sin(θ)(|011⟩⟨100| + h.c.),

(1.27a)

K2 = I√
2

+
(

cos θ − 1√
2

)
|011⟩⟨011| +

(
cos θ − 1√

2

)
|100⟩⟨100| .

(1.27b)

gAn abstract error analysis of heat-bath algorithmic cooling has been performed in ref. [75].
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Here |0⟩ and |1⟩ are the eigenstates of the spin operators Zi (the ground
and excited states of the Hamiltonian) and I denotes the identity operator
in non-exchange subspace. The angle θ quantifies the failure probability of
the compression step to take place. When θ = π/2, we recover the ideal
compression which swaps the desired diagonal elements of the density
matrix, and where we take to stem from a generating interaction Hamiltonian,
U = exp(−iπH123/2) with H123 = |100⟩⟨011| + |011⟩⟨100| [45], that is
turned on and off at the appropriate times. The compression operation
is commonly implemented experimentally with Toffoli or CNOT gates
with imperfect fidelity, which leads θ to deviate from the ideal value π/2
[26, 27, 57, 78, 79]. The composition of the above two channels, plus the
refresh R, yields the combined quantum operation C which corresponds to
one round of the refrigeration algorithm.

In the definition of the probabilistically activated compression, given
by channel K, one further assumption is made. Acting on energy-diagonal
states, K can also take the operator-sum form with Kraus operators K̃1 =
cos(θ)I and K̃2 = sin(θ)U , which is an unital channel formed by the
convex combination of unitaries I and U with probability distribution
(cos2 θ, sin2 θ). However, the form given above ignores initial coherences
in the qubit states. That our results match the experimental numbers can then
be seen as a further indication that the imperfect channel implementation
also depletes initially present coherences in the setup (see section 1.3.3 for
more details).
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1.2.2 Main analytical results: dynamics, cooling power
and coefficient of performance

We analytically solve the dynamics generated by the quantum channel C for
an arbitrary number n of algorithmic cooling cycles, using vectorization
techniques in Liouville space [89], also known as natural representation
[90]. In this approach, a density matrix ρ is mapped one-to-one to the vector
vec ρ (often called supervector). In terms of bras and kets, vectorization is
defined as the following map:

ρ =
∑
i,j

ρij |i⟩⟨j| 7→ vec(ρ) =
∑
i,j

ρij |i⟩|j⟩, (1.28)

where the index i is varied first, and vec ρ now has the shape of a column
matrix. As a shorthand, we also introduce the notation ρ⃗ = vec ρ. A generic
quantum channel, with operator-sum representation E [ρ] =

∑
µ EµρE

†
µ,

will then act on the state through left matrix multiplication, being represented
byh

ΦE =
∑

µ

Eµ ⊗ (E†
µ)⊺. (1.29)

To recover the original representation, the compatibility correspondence is
used: E [ρ] = unvec(ΦE vec(ρ)).

The advantage of the Liouville space representation is that n iterations
of the cooling cycle may be simply evaluated by computing Φn

E ; in contrast,
in the bras and kets representation, the repeated evolution involves following
all n-fold permutations of repeated applications of the Kraus operators,
EαEβ . . . Eδ , acting on both sides of the density matrix, and generating the

hThe tensor product symbol and the transposition (|i⟩⟨j|)⊺ = |j⟩⟨i| are the same ones
used in the usual algebra of bras and kets.
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stochastic trajectories (see appendix A). Using this formalism, we obtain
explicit expressions for the polarization of the target qubit, as well as for
heat and work, from which we deduce COP and cooling power (1.23)
for each cycle, for arbitrary initial polarizations of the three qubits (see
section 1.3.2).

The two figures of merit, COP and cooling power, have closed analyt-
ical expression for any set of parameters γ and θ, and initial conditions
(ε1(0), ε2(0) = ε3(0) = ε). We show below these expressions for the ex-
perimentally relevant case of ε1(0) = 0 [26, 27, 57, 78, 79], corresponding
to a state at large temperatures. The COP is given by

ζ(n) = A(ε, γ, θ)e−ng(θ,γ)

B(ε, γ, θ)e−ng(θ,γ) + 16(1 + ε)2γ sin2 θ
(1.30)

where

A(ε, γ, θ) = [2γ(1 + cos2 θ) − 2ε(2 + γε) sin2 θ][(1 − γ)f(θ) − 4]

B(ε, γ, θ) = [(γ − 1)(f(θ) + 4(ε2 + 1) sin2 θ) + 4]

× [γf(θ) + 2ε(cos(2θ) − 1)]
(1.31)

given

f(θ) = 3 + (1 + ε2) cos(2θ) − ε2. (1.32)

The cooling power is given by

J(n) = 1
16 [(γ − 1)f(θ) + 4][4ε sin2 θ − γf(θ)]e−ng(θ,γ), (1.33)

where we have defined the decay factor g(θ, γ) = ln[4/((1 − γ)f(θ))].
The maximal value for these figures of merit are reached for zero
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damping, γ = 0. The COP is unaffected by the mixing angle θ, with

ζ(n) γ=0−−−→ ζmax(n) = 1. (1.34)

The cooling power, on the other hand, changes, and we introduce a protocol
θn aiming at maximizing the heat extracted at each step, with θn = π/2 for
n < 2, ε < 1/

√
3 and

θn = 1
2 arccos

[
2ε2 + nε2 + n− 6

(2 + n)(1 + ε2)

]
(1.35)

otherwise. i With this, the reversible limit for the cooling power is

J(n) γ=0−−−→
θ=θn

Jmax(n) = ε

2(1 + ε2)e−ng(θn,0). (1.36)

Results for general polarizations are given in the next sections.
Figure 1.3(ab) represent ζ(n) and J(n) as a function of the cycle number

n for various values of the decay rate γ and of the mixing angle θ. We first
note that both quantities reach their fundamental maximum values in the
undamped limit γ = 0. In this unitary, reversible regime, the COP ζ(n)
is equal to one, implying that the extracted heat is precisely given by the
work supplied by the gate operations, −Q(n) = W (n) (when γ = 0). The
value of ζmax(n) is moreover independent of the cycle number n and of
the angle θ. This interesting point reveals that the probabilistic activation
of the unitary compression does not affect the maximum efficiency of the
algorithmic cooling refrigerator, only reducing the power Jmax(n). We
further observe that the cooling power generically decays exponentially
to zero with increasing cycle iterations, as the asymptotic temperature is

iSee section 1.3.2 for a full characterization.
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reached and no more heat can be extracted from the target qubit—a behavior
also exhibited by ζ(n) in the presence of irreversible losses. Figure 2b
additionally shows that J(n) is mostly affected by the angle θ and not so
much by the decay rate γ in the experimentally relevant range γ < 0.01. In
particular, the optimal angle θn in Jmax(n) depends on n for n ≥ 2. j

The dynamics of HBAC, as demonstrated in fig. 1.3, is of unique fixed
point for any target qubit initial state. In the thermal regime, where the
target is kept in a state diagonal in the energy basis at all times, the evolution
from the infinite temperature state displays a transient regime at the first
few cycles, n = o(1), where the algorithm deviates from the classical
thermodynamic interpretation of a refrigerator. Still at small n, the target
qubit thermalizes to the heat bath of reset qubits, from which point onwards
HBAC functions as a regular refrigerator.

Two important features of the algorithmic cooling protocol are the
asymptotic polarization of the target qubit and the number of iterations
needed to reach it [25, 60, 74]. Using the Liouville space solution, we find
the exact expression (again for ε1(0) = 0, ε2(0) = ε3(0) = ε),

ε1(n) = γf(θ) + 2ε[cos(2θ) − 1]
(γ − 1)f(θ) + 4 [e−ng(θ,γ) − 1]

γ=0−−−−→
θ=π/2

ε1max(n) = 2ε
1 + ε2 [1 − e−ng(π/2,0)]. (1.37)

The stationary value ε1(∞) is thus approached exponentially with a rate
constant given by 1/g(θ, γ). Figure 1.3(c) displays a radically different
effect of energy dissipation and of gate imperfection on the nonideal
polarization of the target qubit. While the decay constant γ affects the

jThe decreasing values of θn with the cycle number n reduce the rate of exponential decay
g(γ, θ) of the power J(n) at each step towards the steady state.
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Figure 1.3: Thermodynamic performance of the algorithmic cooling refrigerator
per cycle. (a) Coefficient of performance ζ(n), eq. (1.30), (b) Cooling power J(n),
eq. (1.33), and (c) Polarization of the target qubit ε1(n), eq. (1.37), for various
values of the damping rate γ and of the mixing angle θ. These two parameters have
radically different effects: whereas the decay constant affects the asymptotic value
of the polarization, the mixing angle changes the convergence rate to that value. In
addition, the behavior of the cooling power mostly depends on the mixing angle,
while the COP depends on both variables. The fundamental upper bounds in the
reversible limit (γ = 0) are shown by the blue squares. Parameters are ε1(0) = 0,
ε2(0) = ε3(0) = ε = 0.6.
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asymptotic value of the polarization ε1(∞), the mixing angle θ modifies
the convergence rate to that value for γ = 0. As a consequence, imperfect
gate operation does not prevent achieving maximum polarization in the
reversible limit, it only increases the number of required iterations. This
property holds for all convex combinations of the ideal compression and
the identity (cf. section 1.3.3).

Let us next compare the thermodynamic performance of the algorithmic
cooling refrigerator to that of a conventional quantum refrigerator [31,
55, 80, 81], whose COP is upper bounded by the Carnot formula, ζC =
Tc/(Th − Tc). We accordingly evaluate, for each cycle n, the temperature
of the target qubit via Tc = T1(n) = 1/ ln[(1 + ε1(n))/(1 − ε1(n))]
and Th = T2(0) = T3(0), determined via the ratio of the (Boltzmann
distributed) populations of excited and ground states. The corresponding
Carnot COP per cycle, ζC(n) = T1(n)/[Th − T1(n)] for the algorithmic
cooling refrigerator is shown, together with the COP ζ(n), eq. (1.30),
in fig. 1.4. While ζ(n) is smaller than ζC(n) at the beginning of the
refrigeration cycle, the Carnot bound is quickly approached after only a
few iterations in the ideal limit (γ = 0, θ = π/2). The Carnot limit is in
general not attained in the presence of damping (γ ̸= 0).

1.2.3 Fitting the experimental data
We finally put our theoretical framework and predictions to the test by
analyzing the performance of an algorithmic cooling refrigerator made of
three nuclear spins that are hyperfine coupled to the central electron spin of
a NV center in diamond [27]. NV center systems offer excellent control of
their states and exhibit very long spin coherence times [91]. The target spin
and the two reset spins are respectively chosen to be the nitrogen 14N and
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Figure 1.4: Comparison with the Carnot coefficient of performance. In the reversible
regime (γ = 0), the coefficient of performance ζ(n) (full symbols) gets close to the
corresponding Carnot limit ζC(n) (empty symbols) after a few cycles. The Carnot
bound is generally not reached in the presence of losses (γ ̸= 0). Same parameters
as in fig. 1.3.

two carbon 13C nuclear spins that are coupled to the central electron spin
of the NV center with respective strengths 2.16MHz, 90kHz, and 414kHz
(fig. 1.5). The central electron spin has a twofold role: it acts as (i) the heat
bath and also as (ii) an ancillary spin that drives the interaction among the
spins required to achieve the entropy compression on the target qubit [27].
The optical spin polarization of the central NV-spin is transferred to the
two 13C spins via a SWAP gate during the refresh steps (cf. appendix B).
Compression is implemented by performing a non-local gate among the
three nuclear spins that allow for a unitary mixing of populations in the
subspace of |011⟩ and |100⟩ (see section 1.3.3). As the nuclear spins do
not interact with each other, this three qubit Toffoli gate is mediated by the
electron spin.

Typical times of each step are ∼285µs for the compression step and
∼285ms for the refresh step. The life-time of the nuclear spin, T1, is of
the order of seconds (corresponding to a decay rate γ ≈ 10−4), allowing
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Figure 1.5: Experimental performance of the three-qubit algorithmic cooling
refrigerator. (a) Experimental data for heat Q(n) (green triangles) show excellent
agreement with theory (orange diamond) with γ = 10−4 and θ = π/3.4. (b)
Cooling power J(n) and COP ζ(n) also agree very well with theory (ζ(n) becomes
sensitive to measurement errors for larger n). Error bars correspond to the standard
deviation.

us to perform multiple rounds of the cooling cycle. Since the refresh step
periodically resets the two 13C spins, their damping is not relevant over
the duration of the experiment. Another source of noise, not considered in
previous experiments [26, 57, 78, 79], is due to imperfect compression: the
compression algorithm indeed utilizes three-qubit Toffoli gates [27], which
when transpiled into the electron-nuclear spin gates, involve 5 CNOT gates
and 14 single-qubit rotations. Gate imperfections, together with imperfect
charge state initialization, lead to uncertain transitions between the states
|011⟩ and |100⟩, which can be quantified by an effective mixing angle θ.
The best fit in our experiment is θ ≈ π/3.4, which corresponds to an overall
error of ∼20% in the compression step. Reset is additionally implemented
via an iterative SWAP gate that allows for a ∼99% fidelity on the achievable
hot spin polarization.
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The initial polarizations of the two reset spins are ε2(0) ∼ 0.58 and
ε3(0) ∼ 0.41. The imbalance between the polarizations comes from the
different coupling strengths of the two spins to the electron spin. We
measure the target spin polarization via single-shot readout with a fidelity
of ∼97%, from which the heat Q(n) and the cooling power J(n) are
evaluated, as well as work W (n) and COP ζ(n) for each cycle.k We obtain
excellent agreement between theory (with γ = 10−4 and θ = π/3.4) and
data (fig. 1.5). We observe especially that the upper bounds Jmax(n) and
ζmax(n), given by eq. (1.30), are reached in the experiment. For n ≥ 5,
heat and work are very small. As a result, the COP becomes highly sensitive
to measurement errors: it can get negative for −Q(n) below zero (as for
n = 6) or be larger than one if W (n) is too close to zero (as for n = 7).

1.3 Methods
In this section we elaborate on the analytical solution of the dynamics of
the three-qubit heat-bath algorithmic cooling refrigerator for arbitrary cycle
number, mainly the target and reset qubit polarizations. We follow with
the evaluation of heat, work, as well as cooling power and coefficient of
performance for arbitrary initial conditions based on the exact dynamics. We
then move on to discuss the general properties of the imperfect compression
map, and we finalize with details on the data analysis of the thermodynamic
performance of the refrigerator, and the experimental implementation of
the cooling algorithm.

kWith the Larmor frequency of the target spin (14N) being ∼1.66MHz and a cycle time
including compression and reset steps of about ∼5ms, the heat Q(n) extracted per cycle is on
the order of a few neV, and the power J(n) is on the order of a few µeV s−1 or 1 × 10−26W.
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1.3.1 Full analytical solution of the dynamical model in
Liouville space

This section presents the exact solution of the dynamics of the three-qubit
system in Liouville space [89]. We refer to appendix C and refs. [89, 90, 92]
for more details.

In order to evaluate the states of the target qubit and of the two reset
qubits after an arbitrary number of refrigeration cycles n, we need to
compute the matrix in Liouville space of the combined quantum channel
consisting of damping D, compression K and refresh R maps. Starting from
the damping channel D[ρ] =

∑
j ΓjρΓ

†
j , we can use its definition (1.25),

and formula (1.29) to build the corresponding superoperator representation
ΦD =

∑
j Γµ ⊗ (Γ †

µ)⊺, a 4-by-4 matrix acting on the target qubit subspace.
As a second step, we consider the compression channel, given by

eq. (1.26). Since we are mainly interested in the evolution of the target
qubit in this work, it suffices to consider the reduced compression channel

Kred[ρ1] = tr23

{ ∑
k=1,2

Kk

(
ρ1 ⊗ ρ2(0) ⊗ ρ3(0)

)
K†

k

}
, (1.38)

that acts on the target qubit space alone. In this procedure, the refresh
channel acting on the ancillas is already taken into account when we take
the tensor product with the reset qubit states, and then at the end trace them
out. In fact, this reduced compression is the main body of our full cooling
channel of interest as it acts on the target qubit; the only remaining part
being composition with the amplitude-damping operation.

We determine the Kraus operatorsCl of the operator-sum representation
Kred[ρ] =

∑
l ClρC

†
l by extending the treatment that can be found in

ref. [71], Section 8.2.3, to nonunitary operations. It involves introducing a
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purification of the mixed state of reset qubits, that is, the map

ρ2(0) ⊗ ρ3(0) 7→ |ρ2, ρ3⟩ ∈ (H2 ⊗ H3)⊗2, (1.39)

where
|ρ2, ρ3⟩ =

∑
ij

|ij⟩23|ij⟩23
√

⟨i|ρ2|i⟩⟨j|ρ3|j⟩, (1.40)

such that tr23 |ρ2, ρ3⟩⟨ρ2, ρ3| = ρ2(0) ⊗ ρ3(0), where the Hilbert space is
doubled as part of the purification. By explicitly evaluating the trace and
the purification, we find

Ci′j′

(k),ij = ⟨i′j′|23⟨ij|23
(
Kk ⊗ I

)∑
rs

√
pr

2p
s
3 |rs⟩23|rs⟩23, (1.41)

where
pr

2 = ⟨r|ρ2|r⟩, ps
3 = ⟨s|ρ3|s⟩. (1.42)

The bras here stem from the trace while the sum over double-primed indices
and their kets stem from the purified state. This leads to the operators

Ci′j′

(k),ij = ⟨i′j′|Kk|ij⟩
√
p2ip3j . (1.43)

To simplify the notation, we group the indices i, j, i′, j′ and k, each binary,
into the new index l ranging over 32 values, and thus yielding 32 operators
Cl. Most of them are identically 0 through this procedure, however, with
six others remaining for k = 1 and other four for k = 2. The corresponding
superoperator ΦKred is again given by eq. (1.29).

The state of the target qubit, which is needed to determine every
thermodynamic measure, such as heat and cooling power, of the heat-bath
algorithmic cooling refrigerator, is obtained after concatenation of the two
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maps D and Kred, which in vectorized form reads ΦKredΦD. The target
qubit states after a number n of cycles are then obtained by calculating
(ΦKredΦD)n. We find for arbitrary initial polarizations ε1(0), ε2 and ε3 that

ρ̃1(n) = unvec
{(

ΦKredΦD
)n
ρ⃗1(0)

}
= 1

2

(
1 − ε1(n) 0

0 1 + ε1(n)

)
,

(1.44)
with the polarization ε1(n) is here explicitly given by

ε1(n) = 1
(γ − 1)F (θ) + 4

[
2(ε2 + ε3) sin2 θ − γF (θ)

+
[
2 sin2 θ

(
(1 + ε2ε3)ε1(0) − ε2 − ε3

)
+γ(1 + ε1(0))F (θ)

]
e−nG(θ,γ)

] (1.45)

where

F (θ) = 3 + (1 + ε2ε3) cos(2θ) − ε2ε3
ε2=ε3−−−−→ f(θ), (1.46a)

and

G(θ, γ) = ln
(

4
(1 − γ)F (θ)

)
ε2=ε3−−−−→ g(θ, γ). (1.46b)

These expressions are symmetric under exchange of the initial polarizations
of the two reset qubits (ε2 ↔ ε3). The ideal asymptotic polarization
2ε/(1+ ε2), obtained for γ = 0, θ = π/2 and ε1(0) = 0, ε2(0) = ε3(0) =
ε, agrees with the one derived in Refs. [27, 45]. For different reset spin
polarizations, this ideal limit gets modified to [ε2 + ε3]/[1 + ε2ε3].

The quantum map ΦKredΦD is greatly simplified, both because the
compression step can be reduced to act on the target qubit alone, with
the help of the refresh, generating a Markovian process, and because it is
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evaluated with respect to a tensor product with fixed reset states, allowing
for the method of Ref. [71] to be applied and hence defining a single reduced
compression map for every cycle. In summary, the superoperator is a matrix
of small dimension (4-by-4), and unique over every cycle. In contrast, these
simplifications do not occur when changing reset qubits are involved in the
refresh operation, and when the evolution is non-Markovian.

To complete the thermodynamic analysis with the calculation of the
work and the coefficient of performance, we need to deal with the extended
quantum channel that acts on the three-qubit state space before refresh
happens. To that end, we consider an extension Dext of the damping channel
that acts trivially (through the identity) on the reset qubits ρ2 and ρ3. We
accordingly consider the channel K ◦ Dext for the ensemble of three qubits,
as

ρ̃(n) =
∑

k

Kk

(
Dext[ρ(n)]

)
K†

k, (1.47)

recalling that ρ(n) = ρ1(n) ⊗ ρ2(0) ⊗ ρ3(0). The role of the refresh
operation is to keep the reset states equal to ρ2(0) ⊗ ρ3(0) for the start
of each cooling cycle. The calculation of the coefficient of performance
and, in turn, of the work applied during the compression stage requires the
knowledge of the reset qubit states before the refresh stage. These states are
given by

ρ̃a(n) = tr1,b ̸=a

{∑
k

Kk

(
Dext[ρ(n)]

)
K†

k

}
= 1

2

(
1 − ε̃a(n) 0

0 1 + ε̃a(n)

)
,

(1.48)
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where a and b are either 2 or 3. The polarizations ε̃i(n) explicitly read

ε̃a(n) = 1
(γ − 1)F (θ) + 4

[
2Υa(γ) sin2 θ + 4γ(1 − εa(0) cos2 θ)

2

+ e−nG(θ,γ) sin2 θ(1 + ε2ε3)
F (θ)

×
(
2 sin2 θ((1 + ε2(0)ε3(0))ε1(0) − ε2(0) − ε3(0))

+ γ(1 + ε1(0))F (θ)
)]
, (1.49)

with

Υi(γ) = ((γ − 1)εa(0)2 + εi(0) + γ)εb ̸=a(0) − εa(0) + 1, (1.50)

where we make explicit again the cycle dependence of qubits 2 and 3.
The reset qubit states only change within a single stroke (before they
are refreshed). Their dependence upon the n − 1 previous applications
of the cooling cycle is implicit in the target qubit input state ρ1(n − 1).
This is schematically represented as ε1(n) → ε1(n+ 1) while ε2,3(0) →
ε̃2,3(n+ 1) during the dynamical evolution.

1.3.2 Theoretical evaluation of the thermodynamic quan-
tities

We now turn to the evaluation of the thermodynamic quantities of the heat
bath algorithmic cooling refrigerator and, in particular, of their fundamental
upper bounds in the reversible limit (γ = 0, θ = π/2), for arbitrary initial
polarizations. The heat per cycle follows directly from the definition and
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eq. (1.44), and reads

Q(n) =
[
2((1 + ε2ε3)ε1(0) − ε2 − ε3) sin2 θ

+ γ(1 + ε1(0))F (θ)
]e−nG(θ,γ)

4 . (1.51)

The corresponding cooling power is found to be

J(n) = Q(n+ 1) −Q(n) =
[

(1 − γ)F (θ)
4 − 1

]
Q(n), (1.52)

where the reversible (γ → 0, θ = θn) limit is

Jmax(n) =
[
(1 + ε2ε3)[ε2 + ε3 − ε1(0)(1 + ε2ε3)]

+ γ
[
2ε2 + 2ε3 + ε2

2ε
2
3 − 1

− (1 + ε2ε3)

×
(
ε1(0)(n− 3 + (1 + n)ε2ε3) − n(ε2 + ε3)

)]]
× e−nG(θn,0)

2(1 − ε2ε3) .

(1.53)

The cooling power J(n) is proportional to the heat Q(n) since the finite
difference of an exponential is again an exponential. The fundamental
upper bound Jmax(n), eq. (1.52), generalizes eq. (1.33) to arbitrary initial
polarizations εi(0) of the three qubits. Contrary to polarization, maximum
power is not achieved for θ → π/2. This happens because the steady
state value J(∞) is reached faster in this limit due to large values of
the power in the first two rounds. This then leads to a suppressed heat
removal from the target qubit and a reduced power output. To maximize the
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refrigeration power J(n), a solution is to suppress the exponential decay in
n by decreasing the angle θ (and therefore the decay coefficient G(θ, γ))
with the number of strokes n. The optimal value of θ is

θn =



π/2, n = 0π/2, (ε1(0), ε2, ε3) ∈ J

ϑn, otherwise
, n = 1

ϑn, n ≥ 2,

(1.54)

where the angle ϑn reads

ϑn = 1
2 arccos

(
2ε2ε3 + nε2ε3 + n− 6

(2 + n)(1 + ε2ε3)

)
, (1.55)

And the region J is defined by

J =
{

(ε1(0), ε2, ε3)
∣∣∣ 0 ≤ ε1(0) < 1√

3

∩
(

0 ≤ ε2 <
1

3ε1(0) ∩ 0 ≤ ε3 <
1

3ε2

)}
,

(1.56)

where we always assumed that (ε2, ε3) ≥ ε1(0) ≥ 0.
On the other hand, using eq. (1.48) and the definition of the work done
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Figure 1.6: Heat Q(n), eq. (1.51), and work W (n), eq. (1.57), as a function of the
number n of cycles, for various values of damping coefficient γ and of the mixing
angle θ. Parameters are ε1(0) = 0, ε2(0) = ε3(0) = 0.6.

on the qubit system, we obtain

W (n) = 4 sin2 θ
(1 + ε2)(1 + ε3)
(γ − 1)F (θ) + 4

+
(

1 + 4γ sin2 θ
(1 + ε2ε3)(γ − 1)
(γ − 1)F (θ) + 4

)
×
[
2 sin2 θ((1 + ε2ε3)ε1(0) − ε2 − ε3)

+ γ(1 + ε1(0))F (θ)
]e−nG(θ,γ)

4 .

(1.57)

With the heat and work, the coefficient of performance eventually
follows as

ζ(n) = −[(γ − 1)F (θ) + 4]R(θ, γ)e−nG(θ,γ)

C(θ, γ)R(θ, γ)e−nG(θ,γ) + 16 sin2(θ)(1 + ε2)(1 + ε3)

(1.58)
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where

C(θ, γ) = (γ − 1)F (θ) + 4 − 4(1 + ε2ε3)(1 − γ) sin2(θ) (1.59)

and

R(θ, γ) = 2 sin2(θ)[(1 + ε2ε3)ε1(0) − ε2 − ε3] + γ(1 + ε1(0))F (θ).
(1.60)

The fundamental upper bound ζmax(n), eq. (1.58), generalizes eq. (1.30)
to arbitrary initial polarizations εi(0) of the three qubits. As previously
discussed, at exactly γ = 0 it is identically 1. So we indicate the formula to
first order in a γ expansion, which reads

ζmax(n) = 1 + 4γ
1 + ε2ε3

×
(

1 + (1 + ε2)(1 + ε3)
ε1(0) − ε2 − ε3 + ε1(0)ε2ε3

enG(π/2,0)
)

+O(γ2).
(1.61)

Clearly a trade-off exists between the damping parameter γ and the number
of cycles that can be taken into consideration before the exponential factor
dominates, at which point the expression no longer makes physical sense.

Heat Q(n), eq. (1.51), and work W (n), eq. (1.57) are shown in fig. 1.6
as a function of the number n of cycles, for various values of decay rate γ
and of the mixing angle θ. The influence of unequal initial polarizations
of the reset qubits is illustrated in figs. 1.7 and 1.8 for fixed values of the
damping rate γ = 0.1 and of the mixing angle θ = π/3. Work W (n)
and polarization ε1(n) of the target qubit, eq. (1.45), are increased when
ε3 > ε2, whereas heat Q(n) is decreased. At the same time, cooling power
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Figure 1.7: Heat Q(n), eq. (1.51), work W (n), eq. (1.57), and polarization of the
target qubit ε1(n), eq. (1.44), as well as the corresponding temperature Tc(n), as
a function of the number n of cycles, for fixed values of the damping coefficient
γ = 0.1 and of the mixing angle θ = π/3, for different initial polarizations of
the reset qubit 3. Parameters are ε1(0) = 0, ε2(0) = 0.3. Changing the initial
polarization of the reset qubit may either increase or decrease the values of these
thermodynamic quantities. Dashed lines in the lower right plot correspond to the
respective temperatures of the reset qubits with matching colors (the red line also
corresponds to the polarization ε2(0)).
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Figure 1.8: Cooling power J(n), eq. (1.52), and coefficient of performance (COP)
ζ(n), eq. (1.58), as a function of the number n of cycles, for fixed values of the
damping coefficient γ = 0.1 and of the mixing angle θ = π/3, for different initial
polarizations of the reset qubit 3. Parameters are ε1(0) = 0, ε2(0) = 0.3.

J(n), eq. (1.52), and COP ζ(n), eq. (1.58), are also both increased when
ε3 > ε2.

1.3.3 Generality of the properties of the imperfect com-
pression gate

The imperfect compression map K parametrized by the mixing angle θ
slows down the convergence to the target steady state and, at the same time,
preserves that steady state of perfect compression Kθ=π/2 for vanishing
dissipation γ = 0. We show in this Section that these features generically
hold for a family of imperfect compression maps given by a convex
combination of two unitaries, namely the ideal compression and the identity.
The structure of these generalized nonideal compression maps will provide
additional physical insight into their remarkable properties.

Let us consider the trace preserving completely positive map that
chooses with a probability distribution (p1 = sin2 θ, p2 = cos2 θ) between
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Figure 1.9: Graph representing the causal tree of possible evolution paths of fine-
grained realizations of the generalized nonideal compression map (1.62) given as a
convex combination of the ideal compression (with probability p1 = sin2 θ) and
the identity map (with probability p2 = cos2 θ). Nonzero dissipation γ ̸= 0 leads
to different states of the target qubit that depend on the angle θ.

the application of the perfect compression gate and the identity (in which
case nothing happens):

Kgen[ρ] = sin2(θ)UρU† + cos2(θ)ρ, (1.62)

where U = exp(−iπH123/2) with H123 = |100⟩⟨011| + |011⟩⟨100| is the
unitary describing ideal compression swap. Such a convex combination of
unitary operations (sometimes called random external fields map [93]) is
unital by construction and thus leaves the maximally mixed state invariant
[93]. The operator-sum representation of the map Kgen, which is the K̃ form
of the Kraus operators briefly encountered before, acts identically on states
diagonal in the energy eigenbasis (and only on those) as the compression
map K with Kraus operators (1.26). The random map Kgen may thus be
regarded as a generalization of the compression map K.

Let us next show that the map (1.62) preserve the steady state of the

44



Chapter 1. Quantum cooling, algorithmically

target quit. In analogy to eq. (1.47), we introduce the concatenated three-
qubit map Cθ = R ◦ Kgen that combines compression and refresh maps (in
the absence of dissipation). We denote by ρss = C∞

π/2(ρ1(0)) the steady
state of Cπ/2. We then have

lim
n→∞

Cn
π/2(ρ1(0)) = lim

n→∞
Cπ/2(ρ1(n− 1))

= lim
n→∞

tra{U(ρ1(n− 1) ⊗ ρa)U†}

= tra{U(ρss ⊗ ρa)U†}

≡ ρss.

(1.63)

Thus, in this limit, the concatenation of dilation, unitary, and trace, acts as
an identity operation on ρss. With this property, we can prove that Cθ has a
steady state which in fact does not depend on θ:

lim
n→∞

Cθ(ρ1(n− 1)) = lim
n→∞

sin2(θ) tra{U(ρ1(n− 1) ⊗ ρa)U†}

+ lim
n→∞

cos2(θ)ρ1(n− 1)

= sin2(θ) tra{U(ρss ⊗ ρa)U†} + cos2(θ)ρss

= ρss.

(1.64)

In summary, at each step the map combines two states sharing the same
asymptotic value. As a result, the steady state ρss is preserved.

Physically, the angle θ interpolates between a map which implements
the one-shot ideal compression at every single step (θ = π/2), and an
identity map that does nothing (θ = 0). In this one-shot regime, the features
of the nonideal compression may be intuitively understood: at every cycle
the compression brings the state closer to its stationary value, but in some
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cycles nothing happens. As a consequence, the steady state is unchanged
and the convergence time increases. This property holds approximately
when γ is non-zero, but very small. We also emphasize that this behavior
does not depend on the number of reset qubits.

We further note that in combination with dissipation, the second line in
eq. (1.64) is no longer valid. The dissipation map D not only modifies the
overall quantum operation, it also introduces an asymmetry between each
realization of the imperfect compression. Consider the graph in fig. 1.9:
In contrast to the undamped case, each branch in this tree, representing
the possible fine-grained paths the system can take, leads to its own steady
state. The average will constitute of a typical evolution in this branch, and
will thus depend on θ to the extent that this typical path depends on the
weight of the probability distribution p. For γ = 0, the majority of branches
will asymptotically consist of compressions and only a single branch, the
uppermost one, consists of only identity operations.

1.3.4 Data analysis of the experimental thermodynamic
performance

We evaluate the heat from the set of qubit polarizations ε1(n) measured
using single-shot readout [27]. Recalling the definition of the heat Q(n) =
tr{ω1Z

1[ρ1(n+ 1) − ρ1(n)]}, we concretely have

Qexp(n) = −[ε1(n+ 1) − ε1(n)]. (1.65)

The cooling power Jexp(n) follows from the finite differenceQexp(n+ 1) −
Qexp(n).

Since the states ρ̃i(n) of the reset qubits after the compression stage are
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Figure 1.10: Carnot coefficient of performance (COP) ζC(n) as a function of the
number n of cycles, for experimentally observed target qubit polarizations, and reset
qubit polarization ε2 ∼ 0.58.

entirely determined by the target qubit polarization ε1(n− 1) via eq. (1.48),
the work W (n) may be directly evaluated from the target polarization
data (without having to measure the polarizations of the target qubits) and
a non-cumulative version of eq. (1.57), where the dependence on n is
implicit in using ε1(n) instead of ε1(0). That is, recalling again the original
definition, W (n) =

∑
i=2,3 tr{ωiZ

i[ρ̃i(n) − ρi(n)]}, we have

Wexp(n) = sin2(θ)(γ(ε2ε3 + 1) + (γ − 1)(ε2ε3 + 1)ε1(n) + ε2 + ε3)

+ ε1(n) − ε1(n+ 1). (1.66)

We use the experimentally obtained values of ε1(n) to determine the work
using the above relation.

Using the single-shot readout errors of the three qubits polarizations, of
∼3% for ε1(n) and ε2, and ∼1% for ε3, we estimate the relative error of
Wexp(n) as the standard deviation calculated through conventional linear
propagation methods. Likewise, we estimate the relative error of Qexp(n)
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to be bounded by ∼3% [27, 94]. The errors bars for ζexp(n) and Jexp(n)
follow from the definition of these quantities.

Figure 1.10 additionally shows the experimental Carnot COP ζC exp(n)
and the corresponding theoretical expectation ζC(n) for γ = 10−4 and
θ = π/3.4. The latter are determined uniquely through the temperatures
associated to the two polarizations ε1(n) and ε2.

1.4 Summary of the chapter
We have analyzed in this chapter heat-bath algorithmic cooling, which is a
simple and tractable refrigerator with promising applications in quantum
technologies. The algorithm provides a clear working definition of what it
means to refrigerate a quantum system, and being subject to extensive study,
thereby provides a fundamental grasp on the cooling limits achievable by
refrigerators.

Our contribution to this discussion is in the important front of de-
termining heat-bath algorithmic cooling as a de facto thermal machine
[36].

1. We provide novel characterization of the algorithm by studying its
coefficient of performance and power: two figures of merit essential
in the understanding of refrigerators.

2. We analyze a recent implementation of the minimal HBAC in a
nitrogen-vacancy center [27] by solving the full model analytically.
In this study we

(a) include the experimental sources of dissipation, that could put
into question whether expected limits of HBAC are realized in
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practice;

(b) show that HBAC achieves the theoretically predicted cool-
ing limits despite the experimental deviations from the ideal
theoretical models;

(c) show that HBAC is a refrigerator whose performance converge
to the Carnot bound in the steady state with the thermodynamic
figures of merit now analytically available.

3. In the analytical solution, we include polarization damping dynam-
ics, that by fitting to the experimental data is shown to be largely
insignificant.

4. We also include the effect of “stochastic activation” of the unitary
gate, that takes the shape of probabilistic success rate of the system
to be affected by the gate. By fitting to the data we show how this
accounts for most of the deviation of the experimental data from
the ideal dynamics, and at the same with the analytical solution we
demonstrate how this does not affect the cooling limits and thereby
the Carnot bounds. Furthermore, the coefficient of performance is
also unaffected.
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Chapter 2

Virtual qubits and their
coherences

2.1 Introduction to virtual qubits in cooling
Identifying virtual quantum subsystems is an important task in the engineer-
ing and control of quantum systems. These subsystems consist of subspaces
and tensor-product structures defining what operators are assigned the role
of local observable in respect to the operator algebra of the full system, and
are not necessarily linked to physical constituents at hand in a laboratory,
hence their name “virtual.”

The access to these non-trivial parts of physical systems is widely used
in quantum computing and, for instance, provides means to protect quantum
information from detrimental influence of the surrounding environment
during an information processing task. The general notion of virtual sub-
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systems has found widespread use in quantum error correction [11, 95, 96],
the theory of decoherence-free subspaces [6, 7, 97–99] and noiseless sys-
tems [6, 8, 10, 100], as well as in quantum computing [11, 12, 101–105].
Beyond these applications, the tensor-product structure and subspaces of a
given system relate to the very definition of entanglement, our understand-
ing of measurement through the availability of specific observables, and
foundational questions [101, 106–110].

Moreover, the concept of virtual qubits [50] has also been employed in
quantum thermodynamics on a foundational level to investigate the extent to
which these subsystems can be leveraged in the design and optimization of
small quantum thermal machines. More generally, virtual subsystems were
connected to the fundamental laws and bounds of thermodynamics [111–
113], where the particular case of cooling finds applications in quantum
computing when preparing the relevant qubits in low-temperature states to
avoid error-inducing thermal fluctuations. Virtual subspaces have provided
a unifying paradigm in the context of refrigeration limits, revealing that any
refrigeration process may be understood as a generalized swap operation
between the state of the system to be cooled and that of a sufficiently pure
virtual subsystem of the environment [112]. In applying these principles to
implementations of qubit refrigeration, the cooling limits discussed in the
previous chapter were shown to be related to the presence and utilization
of certain virtual qubits [46–48, 114]. Heat-bath algorithmic cooling is
therefore another successful story of the use of virtual subsystems to enhance
a certain task.

On a technical level, a virtual subsystem consists of a decomposition of
a full Hilbert space H into tensor factors:

H = (Hv ⊗ Hw) ⊕ Hrem, (2.1)
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where we consider an additional remainder Hilbert space combines to the
tensor factors; this might be needed if the H has dimension d, with d a prime
number, in which case the remainder is a trivial subspace of dimension 1, but
it can be more generally desirable depending on operational requirements
for this decomposition. This factorization is particularly justified in light
of a possibly more evident physical factorization of H, such as in last
chapter’s where the full space factorizes into three, one for each nuclear
spin, H = H14N ⊗ H13C1 ⊗ H13C2 .

Heat-bath algorithmic cooling can be put in terms of these virtual
subsystems, which sheds more light into its functionality and is the basis
of what we will study in this chapter. We start by considering the main
component of HBAC: the compression unitary that implements the state
transitions |011⟩ to |100⟩, and vice-versa. Motivated by this, we may
recognize a SWAP-like channel by rewriting the last two-qubit states (from
the reset qubits) as the two states of one, virtual, qubit with its own Hilbert
space:

|0203⟩ = |0v⟩

|1213⟩ = |1v⟩

=⇒ Hv = |0v⟩ ⊕ |1v⟩ .

(2.2)

At each compression cycle, the two remaining reset states |0213⟩ and |1203⟩
are not subject to control. Motivated by this, we consider the factorization

H23 = (Hv ⊗ C) ⊕ Hrem, (2.3)

where the span of the states that are not controlled forms the remainder
subspace, and instead the second tensor factor is a trivial component.
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The advantage of framing heat-bath algorithmic cooling with virtual
systems is recognizing that the cooling limit reached after the repeated
refrigeration cycles by the compression unitary is essentially the virtual
temperature. In this case, the virtual qubit state is defined as

ρv ⊕ 0rem = Pvρ23P
†
v

trPvρ23P
†
v

= 1
2

(
1 + εv 0

0 1 − εv

)
⊕

(
0 0
0 0

)
rem

,

(2.4)

where Pv = |00⟩⟨00| + |11⟩⟨11| is a projector onto the virtual subspace
(now without the reset qubit indices for simplicity). With the virtual qubit
polarization εv , we can find the virtual temperature, and the cooling limit
doing the operation above is

εv = ε2 + ε3

1 + ε2ε3
, (2.5)

which is the same that we found in eq. (1.37) of the previous chapter,
ε1(∞) = εv , for the reversible limit of no dissipation (γ = 0).

Furthermore, this procedure can be understood in terms of a partial
swap operation that exchanges the state of the target qubit with that of a
virtual qubit. The steady-state limit of refrigeration is therefore a full swap
between these states. More explicitly, recall that each cycle of algorithmic
cooling starts with an input state ρ = ρ1(n) ⊗ ρ2 ⊗ ρ3. The final state of
the cycle, before reset, is

ρ̃(n) = U(ρ1 ⊗ ρ2 ⊗ ρ3)U†. (2.6)

From regular algorithmic cooling we can compute ρ̃1(n) = tr23 ρ̃(n). On
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the other hand, we can also interpret it, in the incoherent case where ρv is a
diagonal matrix, as a partial swap:

ρ′
1(n) = trv{Sϕ(ρ1 ⊗ ρv)S†

ϕ}

where Sϕ = ie−iϕSπ/2 = i cos(ϕ)I + sin(ϕ)Sπ/2,
(2.7)

for a partialness parameter ϕ. In essence, that HBAC can be put in swap
terms with a virtual qubit, from the perspective of the target qubit, is a
statement equivalent to saying that ρ̃1(n) = ρ′

1(n) has a solution for each
n.

We can also have a new look at the speed at which the target qubit is
taken to its steady state in the case of last chapter. Namely, by matching the
two ρ′

1 matrices at each iteration n we can solve for the HBAC partial swap
angle:

ϕv = 1
2 arccos(−ε2ε3), (2.8)

We can conclude from this, for instance, that the swap speed is lower bounded
by ϕv = π/4, meaning that in the limit where the reset polarizations
approach 0 (while still ε2, ε3 ≥ ε1(0)), each iteration of HBAC acts as√
S, taking the target polarization halfway through the cooling limit at each

step.a In contrast, in the limit where the virtual qubit is pure, ε2 = ε3 → 1,
HBAC is a full swap S, and the ground state is reached after a single
cycle. This complements the understanding that the steady state is reached
exponentially in the number of cycles [36, 45].

We see that in general the reset qubit parameters, or equivalently the bath
parameters, determine both the virtual qubit and therefore the asymptotic
state with its cooling limit, but also the rate at which it is reached, through

aAlthough this is not a limit of practical interest since it does not cool the target qubit.
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the partialness measure ϕv . Any realistic implementation of the algorithm
can only yield partial swaps of measure ϕ < ϕv due to imperfections in its
application [36]. Nevertheless, in this chapter, we will build on this concept
to improve HBAC to the scenario where the virtual qubit has off-diagonal
elements.

Outline of the chapter. So far, the consideration of virtual qubits coher-
ences and their use has been sparse [115–117]. In this chapter, we show
an explicit and clear example of how a coherence-endowed virtual qubit
can enhance an experimentally realizable system [36] beyond the universal
cooling bounds [47, 48] by starting from the general refrigeration view-
point of ref. [112] where an initial qubit is fully swapped to the coherence
endowed virtual qubit at the steady state.

We start on the next section by doing a large study of how an extra
unitary step can use coherence as a resource to go beyond the previous limits.
A geometrical approach on the Bloch sphere [71, 93, 118] of the target
qubit is used to show how this process can be made robust against imprecise
knowledge of the coherences and how an average unitary that is largely
independent of these coherences can be applied and still yield cooling
enhancement. We study limiting cases, particularly that of ground-state
cooling, and address scenarios where different experimentally motivated
advantages can be sought-after.

We end the discussion by showing how a robust experimental imple-
mentation of a minimal HBAC [36] fits into this description and give a
simple recipe to achieve the desired improvement. Finally, we conclude by
commenting on how this can be generalized to non-minimal HBACs.
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2.2 Virtual qubits and cooling using quantum
coherences

Boosting polarization with coherences. We now study the use of quan-
tum coherences, in the form of linearly superposed energy eigenstates,
to achieve a boost in cooling a target system. With the example goal of
preparing a multiqubit register for computation, we assume as a baseline the
incoherent cooling limits well-known in the literature [45, 47, 48] applied
to a qubit target system.

With the intent of studying coherences, we briefly introduce the Bloch
sphere representation for the qubit state space. We define this representation
for an arbitrary qubit state ρb as three real-valued coordinates (x, y, z),
where

ρ = I

2 + x
X

2 + y
Y

2 + z
Z

2 , 0 ≤ x2 + y2 + z2 ≤ 1. (2.9)

Recall from the last chapter that we defined the qubit Hamiltonians to be
H = −ωZ/2, this configures the z-axis as the energy axis, connecting the
two energy eigenstates Z|0⟩ = − |0⟩ and Z|1⟩ = |1⟩ at the north and south
pole of the Bloch sphere, respectively. We assume the target qubit to start
in a thermal state, with temperature parametrized by the qubit polarization
ε = trZρ. In the Bloch coordinates, the definition of polarization means
that it equals the z coordinate, z = ε; we refrain from using z henceforth,
and instead stick to ε. Moreover, states on the energy axis have x = y = 0.
We use the variables x and y to further introduce polar coordinates (γ, α)

bTo be used particularly in the case of the target qubit ρs
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for coherences, which read:

x+ iy = γeiα
√

1 − ε2, (2.10)

where 0 ≤ γ ≤ 1 and 0 ≤ α ≤ 2π defines an operator A = cos(α)X +
sin(α)Y . The plane Z × A is then perpendicular to the X × Y plane.
These polar coordinates will simplify our treatment of the coherences in
what follows. In these coordinates the virtual qubit state is

ρv = 1
2

(
1 + εv γe−iα

√
1 − ε2

v

γeiα
√

1 − ε2
v 1 − εv

)
. (2.11)

This state, in contrast to eq. (2.4), has coherences. It will be the base of our
studies in this chapter.

To set up for the following section of results, we describe geometrically
the ensuing incoherent dynamics. The process starts with the thermal
state at coordinates (0, 0, εs(0)) (full dot above maximally mixed state in
fig. 2.1). Standard cooling protocols proceed along the energy axis [31]
until it reaches the incoherent virtual qubit state, ρv = (I + εvZ)/2, with
polarization εv > εs(0). After (infinitely) many cooling cycles, the system
ends in the refrigerated state (0, 0, εs(∞) = εv) (lower-height star at energy
axis in fig. 2.1). The lowest possible temperature in this framework is given
by our baseline cooling limits [47, 48, 115, 116].

2.2.1 Sharp polarization boosting
Improving the cooling limits so far described in the literature means
accessing higher-polarized virtual qubits. We now describe another way
of achieving an improvement by utilizing coherences present in the virtual
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√
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v/2, α) of the target
state.

qubit after they have been transported to the cooled target qubit. The
baseline of comparison when utilizing coherences for cooling is described
in fig. 2.1, where we fix the virtual qubit polarization εv , i.e. the latitude, in
the Bloch sphere, which the first refrigeration dynamics reaches, and where
the polarization boost through coherences starts.

Endowing the virtual qubit with coherence γ (with fixed polarization
εv ) increases its purity, moving the state away from the energy axis and
closer to the surface of the sphere (off-axis stars in fig. 2.1). This state may
be ultimately turned into better cooling by mapping it back to the energy
basis (middle-height star in fig. 2.1). For this step, we only consider unitary
operations that at most rotate the virtual state back to the energy axis, and
thus do not change its purity. This is justified because any other resource
that may further increase purity could have been used to achieve a higher
virtual polarization εv in the first place.
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In essence, we are here tasked with exactly diagonalizing the virtual
qubit state. Thus, the maximal resulting polarization achievable for this
operation is

ε⋆ =
√
ε2

v + (1 − ε2
v)γ2, (2.12)

given by the eigenvalues of the coherent virtual qubit. Finding the right
diagonalizing unitary demands a knowledge of the two parameters: γ, the
coherence amplitude, and α, the coherence phase. At fixed γ the only
remaining variable to determine is α. The unitary realizing the appropriate
rotation should have a rotation axis given by an operator orthogonal to A,
and the angle of rotation is a function of γ in general. The axis of rotation
and angle are then

A⊥(α) = −sin(α)X + cos(α)Y (2.13a)

χ(γ) = arccos
(

εv

ε⋆(γ)

)
, (2.13b)

which combine in the unitary BA⊥(χ) = exp(iχA⊥/2). This equation
should be interpreted as defining ε⋆ implicitly from γ after we do the
appropriate χ(γ) rotation. Evidently, in the ground-state cooling scenario
we have that ε⋆(γ = 1) = 1.

2.2.2 Robust cooling with confidence intervals
We now consider an ensemble of virtual states for which γ and α lie,
uniformly distributed, within a confidence interval of size δγ and bounds
γmin and γmax, and δα with bounds αmin and αmax. Logical bounds exist
where the density matrix is still positive semidefinite, and are 0 ≤ γ ≤ 1, and
0 ≤ α ≤ 2π. Otherwise, we may have tighter bounds given experimentally
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motivated considerations, in the attempt to build an exact state. This
ensemble can be written in these terms as

ρ̄v =
∫

dαv γvdγv p(γv , αv) ρv(γv , αv), (2.14)

where p(γ, α) = 2/((γ2
max − γ2

min)δα) is the uniform distribution over the
disk sector. The corresponding rotated state is then

ρ̄′(αB , γB) = Bρ̄vB
†

=
∫

dαv γvdγv p(γv , αv)B(αB ,γB)ρv(γv , αv)B†
(αB ,γB)

=
∫

dαv γvdγv p(γv , αv) ρ′(γv , αv ; γB , αB),

(2.15)

where individual stochastic realizations of the process (starting from one
sampled initial state ρv ) result in polarization values which are functions of
the initial random variables εv , γv and αv , but the parameters of the average
final state are a function of only rotation variables, such as ε̄′(αB , γB).

Faced with these confidence intervals, we now approach the task of
inexact diagonalization, where we optimize the rotation of an ensemble of
states. How can we cool the target qubit on average, boosting its polarization,
given we do not know how coherent it is? To tackle this problem, we
distinguish the coordinates (γv , αv), that define a virtual state we wish to
rotate, from the reference coordinates (γB , αB) that define the variables
A⊥(αB) and χ(γB) of the unitary B; from this point onwards we will
leave A and χ implicit and only work with αB and γB to simplify notation.
In the exact diagonalization scenario of last section, this implied that
(γB , αB) = (γv , αv). As we will soon see, a distinction arises, ultimately
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implying that knowing α is in general more profitable than knowing γ from
the perspective of achieving lower temperatures. We start with the case
where α is sharply determined but γ is lies in a bounded interval. Thus, for
this process, we fix αB = αv and consider the pair of coordinates (γv , γB).

There are three possible cases to consider: (i) when γB also lies within
the bounded interval, (ii) when γB < γmin, and (iii) when γB > γmax. In
any case, the resulting state will have a polarization that reads

ε′(εv , γv ; γB) = tr{B(αv ,γB)ρv(γv , αv)B†
(αv ,γB)Z}

= ε2
v + γvγB(1 − ε2

v)√
ε2

v + γ2
B(1 − ε2

v)
,

(2.16)

which is one resulting stochastic realization contributing to the integral
in eq. (2.15). The first case is the only one for which rotations exist
that will take one possible state in the ensemble to its highest possible
polarization at the same time coherences are completely consumed. We
leave the notation ε⋆ for these exactly diagonalized states, which might not
be the state with higher polarization, but is always the one with vanishing
coherences. Now contrast this with the second case, γB < γmin. Every
physically realized virtual state γv > γmin will have achieved an improved
cooling limit ε′ > εv , with polarization monotonically increasing with how
large the rotation is. In this regime, the highest polarization achievable is
for γv = γmax, where a maximal amount of coherence will remain. No
state diagonal state achieved in this arrangement.

Finally, consider the third scenario, where γB > γmax. In this regime,
the larger rotations may not imply enhanced cooling. This regime demands
a second lower bound based on what states can still be cooled: a large
enough rotation of a state with small enough γv may result in heating
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Figure 2.2: Cooling boost with maximal coherence amplitude uncertainty, showing
every possible resulting state of our boosting protocol. Enhanced cooling, ε′ > εv ,
can be achieved even if the amount of coherence γv is only known to be in any
confidence interval, of bounding values γmin and γmax. Moreover, improved cooling
is always reached on average because, for every interval, the average coherence
amplitude, γavg, lies above the γinf lower bound.

instead. Equating ε′ to εv and solving for γv yields this second, a posteriori
lower bound we denote by γinf , marking the boundary between heating and
cooling after rotation:

γinf(γB) = εv

√
ε2

v + γ2
B(1 − ε2

v)
γB(1 − ε2

v) − ε2
v

γB(1 − ε2
v) . (2.17)

Thus, every state starting from γv is still cooled as long as γv > γinf when
a rotation by γB > γmax is implemented. This means that, in the interplay
with the a priori lower bound γmin, there are two possible outcomes: if
γinf < γmin, then every possible state on the original interval is guaranteed
to be cooled. Otherwise, in doing a rotation by γB , we may risk heating
the target qubit. The most polarized state is again for γ = γmax. The worst
case overall is for the pair (γv = 0, γB = 1), where the state is heated to
εγB=1 = ε2

v < εv .
To conclude, we also tackle the converse problem of finding the lowest
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coherent state at the boundary between heating and cooling. The solution to
this problem answers the question: what is the maximal γB that is guaranteed
to yield cooling given a lower bound γmin? This solution also branches
into three cases, that translate to three regions for which this is possible.
For 1/2 ≤ γmin < γmax, every γB cools every realization of the ensemble
of states. On the lower half of the line, γmin ≤ 1/2, this is true as long as
the state polarization also obeys a constraint: εv ≤ γmin/(1 − γmin).c For
polarizations εv > γmin/(1 − γmin), the allowed reference coherences are
upper bounded by

γB+ = 2ε2
vγmin

ε2
v − γ2

min(1 − ε2
v) . (2.18)

With this information, the region of heating is entirely determined for any
bounds γmin and γmax and choice of γB . In fig. 2.2 we display these interval
considerations for a hypothetical experiment that creates an ensemble of
maximal uncertainty in the knowledge of the coherence amplitude.

2.2.3 Coherence phase confidence interval
Now we set a sharp value for γv , letting the angle be bounded by αmin ≤
αv ≤ αmax, and consider the associated cooling domains. In fig. 2.3 we
display the surface of states achievable by all possible rotations by angles
about A⊥ (in orange and green, background), where the initial state has
known and fixed γv but random αv , uniformly distributed on the circle.
In this case, although there are instances of cooling (near the top of the
surface), the average outcome is heating, even for very small γB . This

cIt may be unexpected that polarization is bounded by a coherence parameter, but this can
be straightforwardly understood by realizing that, upon rotation, these quantities get mixed up.
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Figure 2.3: Geometric representation (full green line) of ensemble of states at
γv = 0.5 with a confidence interval between αmin = −π/4 and αmax = π/4. The
shaded region of achievable cooling (blue) and heating (red) is found by applying
the unitary rotation with γB = γv and αB = αv − π/2 for every point in the
confidence interval (see corresponding average in fig. 2.4). The thicker black line
represents the achievable polarization region for fixed αB = (αmax − αmin)/2.

average corresponds to the geometric centroid of that surface, that lies below
the plane at height εv . We also display an example scenario of average
cooling in fig. 2.3 where a geometric representation of the initial and final
ensemble of states is shown, with δα = π/2 and γB = γv = 0.5. The
regions of rotated states are now more complicated and there is no simple
recipe, such as in the sharp αB case, to be identified for average cooling, as
a result we choose to also sample the axes of rotation from an “orthogonal
interval” defined by setting αB = αv − π/2 for every possible αv in the
confidence interval. The rotated ensemble of states (in blue and red), with
an average polarization above the initial value of εv = 0.8, is hashed with
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curves (in black) where αB is fixed.
The regions of average cooling are found by integrating the polarization

value of the rotated ensemble of states,

ε′(γB , αB) = γv
√

1 − ε2
v sin(αv − αB) sin(χ(γB)) + εv cos(χ(γB)),

(2.19)
over the surface defined by αv (which yields ε̄′) and then αB :

ε̃(γB) =
∫ αmax−π/2

αmin−π/2

dαB

δα

[ ∫ αmax

αmin

dαv

δα
ε′
]

= 2γvγB(1 − ε2
v)(1 − cos(δα)) + δα2ε2

v
ε2

v + γ2
B(1 − ε2

v) ,

(2.20)

where ε̃(γB) differs from ε̄′(γB) as we consider both the average of the
random of initial states, as defined in the ensemble (2.15), and an average
over correspondingly chosen axes of rotation.

We use eq. (2.20) to plot fig. 2.4, where we show the parameter space
for average achievable polarization, ε′, with corresponding average cooling
(blue) and average heating (red) regions. We again fix the initial polarization
at εv = 0.8. We observe a large cooling region (bottom part of the figure)
for various values of δα and of γB/γv . Maximal uncertainty of the
coherence phase (δα = 2π) does not lead to average cooling, in contrast
to what happens for incomplete knowledge of the coherence parameter γv

discussed in the preceding section. However, enhanced average cooling is
still achieved for all γB/γv when δα < 0.9π. We also note that choosing
γB to be smaller than its actual realizable values γv (that is, taking smaller
ratio γB/γv ) is beneficial for achieving improved average cooling with large
confidence interval δα, although typically one would cool less by doing so,
as could also be expected from the discussion in the last section.
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Figure 2.4: Average achievable polarizations for unknown coherence phase ε̄ over
ensemble of states, eq. (2.20), for γB/γv < 1 and various confidence intervals
δα = αmax − αmin, with αB = α − π/2 and εv = 0.8. Average cooling is found
for all γB/γv < 1 when δα < 0.9π.

2.3 Application to heat-bath algorithmic cooling
The reversible heat-bath algorithmic cooling of last chapter is an experi-
mentally available implementation of a refrigeration channel that is capable
of accessing virtual qubit coherences as described in the last section, and is
thus subject to the robust cooling boost we just devised. Despite this, the
HBAC dynamics enjoys some special properties, of being ergodic (meaning
it has a unique steady state), or more particularly, it is mixing: it has a
unique steady state for any initial state. Furthermore, the channel is also
homogenizing [119, 120], meaning that the steady state is defined by the
ancilla with which the target interacts (in the particular case of HBAC, this
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“ancilla” is, in fact, the virtual qubit of what we have previously called the
ancillas, which are the reset qubits).

Tρ23
Tρ23

ρ2

ρ3

ρ1

Boost

B
ρ2

ρ3

Compression

U

n

Incoherent (coherent) reset

Figure 2.5: Heat-bath algorithmic cooling circuit diagram with coherent reset qubits
and including the final boost rotation B.

We use here the vectorized form of the dynamics to display the encoding
of the virtual qubit into the refrigeration channel realized by algorithmic
cooling. The vectorized HBAC dynamics is given by

ρ⃗1(n) = (ΦtrΦU ΦT )︸ ︷︷ ︸
ΦC

nρ⃗1(0), (2.21)

where the compression unitary is denoted by U [ρ] = UρU†, and we
choose to split the refresh operator R into two parts: the partial trace
quantum map, tr23 ρ123 = ρ1, over the reset qubits, and the tensor product
Tρ23 [ρ] = ρ⊗ ρ23, where now ρ23 is now a nonseparable state due to the
presence of coherences in the virtual qubit, in contrast to the incoherent
virtual qubit usually studied in the literature and that was elaborated in the
previous chapter. In fig. 2.5 we display the modified version of fig. 1.1.

At the steady state, n → ∞, the cooling superoperator in the vectorized
form is then C∞ 7→ Φ∞

C = (ρ⃗v 0 0 ρ⃗v), written as column matrices.
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Figure 2.6: Achievable polarization ε′, eq. (2.16), (green) after a unitary rotation
parametrized by the coherence parameter γB for a realistic heat-bath algorithmic
cooling protocol using nitrogen-vacancy (NV) centers in diamond. The coherent
virtual qubit, with polarization εv = 0.8, is engineered by maximally entangling
the two reset qubits with 97.6% fidelity. Maximum polarization ε⋆, eq. (2.26), is
reached for γB ∼ 0.79, a value for which the remaining coherence of the virtual
qubit, γB , (pink) vanishes; the blue and red shaded areas represent the respective
confidence intervals of ε′ and γB .

Its action on the initial target qubit state is then

Φ∞
C ρ⃗1(0) = (ρ⃗v 0 0 ρ⃗v) · ρ⃗1(0)

= ρ⃗v(⟨0|ρ1(0)|0⟩ + ⟨1|ρ1(0)|1⟩)

= ρ⃗v ,

(2.22)

taking the form of a full SWAP unitary gate between target and virtual qubit.
Finally, by direct computation of Φ∞

C we arrive at a coherent virtual qubit
at the steady state, whose polarization is the same as in the incoherent case,
eq. (2.4).
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The virtual coherences may be engineered by entangling the reset qubits
through the off-diagonal elements

⟨00|ρ23|11⟩ = ξ

4e
−iη
√

(1 − ε2
2)(1 − ε2

3), (2.23)

where 0 ≤ ξ ≤ 1. The resulting virtual coherence is

⟨0|ρv |1⟩ = γv

2 e
−iαv

√
1 − ε2

v , (2.24)

as desired. As a result, the steady state coherences, as a function of the
engineered coherences, are

γv = εvξ

αv = η + π

2 .
(2.25)

We immediately see that the rescaling present in eq. (2.25) limits the highest
possible virtual qubit coherence. When ξ = 1, where the reset qubits
are maximally coherent while still being a positive semidefinite matrix,
the corresponding virtual qubit coherence is exactly γ = εv . This means
that the maximally coherent virtual qubit at polarization εv can be further
cooled, in the treatment of the previous section, to a maximum of

ε⋆ = εv
√

2 − ε2
v , (2.26)

as shown in fig. 2.6.
In this study we used the unitary gate U from chapter 1, expression

(1.21):
U = I3 ⊕ (−iXvir) ⊕ I3. (2.27)
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Figure 2.7: Dynamical evolution represented geometrically in the Bloch sphere
for multiple values of the engineered virtual qubit phase η, and matching unitary
gate phase U ′

η according to eq. (2.28). (a) Target qubit dynamics projected on the
X × Y plane at ε = εv . The dashed circle indicates the radius of the Bloch sphere
at that height, displaying the difference in the reach of coherence amplitude of the
target qubit for different phase values. (b) dynamics projected on the X × Z plane,
displaying the cooling process before the final boost. The best value of coherence
amplitude, and therefore the best case scenario for the final boost unitary, happens
for parameter values η = 0, where γv = ξ.

The use of coherences can be improved by considering other gates, however.
In fact, the origin of relations (2.25) is a mismatch between the exact details
of the unitary gate chosen and the coherence phase of the virtual qubit.
In eq. (1.21), the virtual qubit subspace includes a relative phase equal to
e−iπ/2 with respect to the other states. If this phase is taken to be more
general and to match the coherence phase of the engineered virtual qubit,
e−iη , we arrive at a modified unitary compression gate

U ′
η = I3 ⊕ e−iηXv ⊕ I3. (2.28)
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This unitary has the potential to utilize the virtual qubit coherence fully: by
setting η = 0, the resulting evolution is again a partial swap at every step,
such as described for the incoherent case in eq. (2.7), culminating to a full
swap asymptotically. We show the dependence of the full evolution in the
Bloch sphere in fig. 2.7.

Resource comparison: coherences vs number of qubits. Known cooling
limits of HBAC are available for configurations with more than two reset
qubits [45], and have correspondence in the general limits [47]. These
limits require a compression unitary directly extended from the one studied
here, and are known to grow exponentially with the number of reset qubits
as

ε∞(r, εa) = εv = (1 + εa)r − (1 − εa)r

(1 + εa)r + (1 − εa)r
, (2.29)

for a number r of reset qubits all at polarization εa. It can be shown that
the γ relation in eq. (2.25) is independent of the number of reset qubits,
and thus the proposed coherence-sourced cooling step is still applicable,
with the difficulty lying in engineering a comparable amount of coherence
ξ as the number of ancillas grow. In fig. 2.8 we compare the ratio ε⋆/εv

of the coherence-boosted cooling in the presence of r reset qubits, by
the cooling in the presence of r + 1 reset qubits. We see that in the
minimal case (r = 2) adding a new reset qubit is usually better for
small polarizations, although being ∼1% worse at intermediate values
and comparable otherwise. However, already for r = 3 and above, the
coherence boost is always advantageous for small polarizations, with a
robust region of advantage, with an edge of more than 10% at r > 3.
Furthermore, a trade-off occurs where this region gets smaller at the price
of increasing advantage.
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Figure 2.8: Quantum coherence versus one additional reset qubit. Ratio ε⋆(r, γ =
εv)/εv(r + 1, γ = 0) of the maximum polarization attainable with r reset qubits by
adding coherence, γ = εv , and the maximum polarization obtainable by adding one
more reset qubit without coherence (γ = 0), as a function of the reset polarization
εa , for various values of r. The coherent cooling scheme is better for moderate
polarizations εa for r = 2 and for small polarizations εa for r ≥ 3. For small reset
polarizations, the ratio depends quadratically on εa (inset).

2.3.1 Full analytical solution in Liouville space
We end the technical part of this chapter providing details of the full
analytical solution of the coherent virtual qubit dynamics of HBAC. The
dynamical map C(n) for HBAC is Markovian, and thus at arbitrary cycle
number it contains every necessary information of the qubit evolution. Its

72



Chapter 2. Virtual qubits and their coherences

nonzero elements are

(Φn
C)11 = (1 − ε2)(1 − ε3)

2(1 + ε2ε3)
(1 − ε2ε3)n

2n
+ (1 + ε2)(1 + ε3)

2(1 + ε2ε3) (2.30)

(Φn
C)21 =

[
(ε2 + ε3)(ε2ε3 − 1)

−
[
(ε2 + ε3)(1 − ε2ε3) − n(1 − ε2)(1 − ε3)(1 + ε2ε3)

]
× (1 − ε2ε3)n

2n

]
eiηξ

√
1 − ε2

2
√

1 − ε2
3

2(ε2ε3 − 1)(1 + ε2ε3)2 .

(2.31)

These are two elements that will help define ρv asymptotically as n → ∞.
As such, the rest of the matrix is

Φn
C =


(Φn

C)11 0 0 (Φn
C)11

(Φn
C)21 (Φn

C)22 0 (Φn
C)21

(Φn
C)∗

21 0 (Φn
C)33 (Φn

C)∗
21

1 − (Φn
C)11 0 0 1 − (Φn

C)11

 . (2.32)

The remaining elements (Φn
C)22 and (Φn

C)33 are

(Φn
C)22 = (Φn

C)33 = (1 − ε2ε3)n

2n
. (2.33)

These elements carry information of initial coherences but vanish asymp-
totically. However, in the transient dynamics, there are cross contributions
from the coherence that was input into the target and the coherence that is
yet to come. The full evolution of the target qubit is summarized in the
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following two matrix elements:

⟨0|ρ1(n)|0⟩ = (ε1(0)ε2ε3 + ε1(0) − ε2 − ε3)
2(1 + ε2ε3)

(1 − ε2ε3)n

2n

+ (1 + ε2)(1 + ε3)
2(1 + ε2ε3)

(2.34a)

⟨1|ρ1(n)|0⟩ =
[

(ε2 + ε3)
(1 + ε2ε3)

−
(

(ε2 + ε3)
(1 + ε2ε3) + n(ε1(0)ε2ε3 + ε1(0) − ε2 − ε3)

)
× (1 − ε2ε3)n

2n

]
eiηξ

√
1 − ε2

2
√

1 − ε2
3

2(1 + ε2ε3)

+
c
√

1 − ε1(0)2

2
(1 − ε2ε3)n

2n
,

(2.34b)

where we here consider the presence of an initially coherent target qubit
with coherence c = |c|e−i arg(c) parametrized as usual in the rest of the
paper. This initial target coherence contribution comes from (Φn

C)22, and
vanishes asymptotically as it is replaced by the virtual qubit coherence.

2.4 Summary of the chapter
In this chapter we have analyzed the notion of a virtual qubit that underpins
a powerful way to understand the thermodynamics of quantum systems.
With this notion we were able to find that the general cooling limits expected
in heat-bath algorithmic cooling are defined from the outset by the state of
the reset qubits.

We advance this discussion by reframing the notion of a virtual qubit
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in an operational way. We do this by recognizing it as the subsystem
in the environment, at a lower temperature state, that is accessed by the
refrigeration channel C, and whose state provides the steady state of the
target system through a swap [38].

1. With the virtual qubit recognize, we consider adding coherences to it
with the goal of exploiting them as resource for enhanced cooling.

2. Relying on virtual qubit coherence, we are able to propose a unitary
gate to be applied at the steady state that augments the polarization
of the target system, cooling it further. Using this protocol, we find
improved cooling bounds that are independent of the platform in
which the refrigeration channel is implemented.

3. We study regimes where coherence is not sharply known, instead
lying in a confidence interval. We find

(a) that extra cooling is achievable on average even in the high-
uncertainty case of coherence magnitudeγ uniformly distributed
over the full logical interval, γmin = 0 and γmax = 1, when the
coherence phase α is sharply known,

(b) and that extra cooling is achievable in a large set of parameter
values for the phase lying in a confidence interval when γ is
sharply determined.

With this, we conclude that the protocol is remarkably robust for
experimental implementation.

4. To make the proposals concrete, we apply them to heat-bath algo-
rithmic cooling of chapter 1 with one target qubit and two reset
qubits.
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(a) We find that to achieve a coherent virtual qubit one has to
engineer reset qubits with coherence ξ in the subspaces |00⟩
and |11⟩. The engineered coherence is then swapped to the
target qubit at the steady state reweighted by the virtual qubit
polarization, γ = εvξ.

(b) We compare different resources, answering in the affirmative
the question: can the addition of coherences in the reset qubits
be better than the addition of one more incoherent reset qubit?
In the answer, we find that for smaller reset qubit polarizations,
adding coherences are generally better, when the number of
reset qubits is r ≥ 3.
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Chapter 3

Equilibrium properties of a
two-mode Dicke model

3.1 Introduction
Recent developments in fine experimental control of quantum systems
allowed for the probing of their characteristic features, such as entanglement
or other multipartite correlations and zero-temperature phase transitions,
paving the way for enhancing their usage in quantum technologies, from
communication to quantum simulations. Stemming from this emerged
the interest in studying applications of information-theoretic and open-
systems techniques to many-body models of these experimental realizations.
This theoretical understanding also contributes towards the possibility of
discovering novel quantum phenomena in matter.
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The encompassing topic of this thesis is the betterment of cooling de-
signs functioning particularly in the quantum regime, using phenomena that
push the boundaries of stochastic thermodynamics, in particular quantum
coherences and correlations in general. The previous chapters aimed at
controlled quantum systems, but with motivation of simplifying implemen-
tation [30], we shift focus to a system that could house autonomous thermal
machines, in particular the autonomous quantum absorption refrigerator
[28, 35, 121, 122]. Such a refrigerator blueprint requires a three-body
Hamiltonian of the type

H = ωhL
†
hLh + ωcL

†
cLc + ωwL

†
wLw + λ(LcL

†
hLw + L†

cLhL
†
w ), (3.1)

where L are ladder operators (such as σ± = X ± iY ), that are each
connected to its own heat bath, indicated by c (cold), h (hot), and w
(work). The working principle behind this system, that distinguishes it
from controlled ones, is the replacement of an external work source for the
work reservoir w , rendering the operation autonomous once the following
temperature and gap parameters are met:

βc > βh > βw ,

ωh = ωc + ωw .
(3.2)

With the desired three-body interaction, the quantum absorption refrigerator
similarly accesses virtual qubits of the environment, now comprised of
levels |nh(nw + 1)⟩ and |(nh + 1)nw ⟩, in contrast to the homogeneous
levels 00 and 11 of algorithmic cooling, and where we wrote n levels to
accommodate for bosonic modes, which will actually be the case of interest
to us in this chapter. See fig. 3.1 for an illustration of the setup.
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Figure 3.1: Schematic illustration of a quantum absorption refrigerator setup, with
the working medium comprised of three harmonic oscillators (in green), each
connected to its own heat bath: in blue, the cold bath; in red, the hot reservoir; and
in yellow the work reservoir.

Desirable from the standpoint of simplified resource management and
avoidance of sources of noise, the quantum absorption refrigerator is
nonetheless difficult to engineer, having been realized experimentally only
very recently [28, 29], despite its long history [33, 34]. As the structure of
quantum coherences and correlations, such as entanglement, becomes richer,
and with general interest in applying the new quantum thermodynamic
developments to many-body systems, we sought for a system that could
house the absorption refrigerator, at the same time it provided interesting
quantum phenomena. As we will elaborate in this chapter, a two-mode
extension of the commonly known Dicke model is a promising candidate.
To pave the way towards realizing the quantum absorption refrigerator
blueprint in that system, we study the equilibrium properties in this model,
starting from the zero temperature ones, where quantum phase transitions
emerge with an interesting profile of quantum correlations. We will study
the robustness of these properties as we aim to extend the analysis in future
work to a driven-dissipative setup for experimental implementation.

The Dicke model [123–125] often appears in these developments as a
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well-established theoretical setup in quantum optics, describing long-range
interactions between a bosonic mode and an ensemble of two-level systems.
It also displays a quantum phase transition from a normal phase (NP) to
a superradiant phase (SP). Albeit known for almost seven decades, the
necessity for large spin-boson coupling made the normal-to-superradiant
transition difficult to experimentally verify, which was only done so in
the early millennium; see review [126] and references therein. Later on,
experiments based on a gas of thermal atoms, further refined to a Bose–
Einstein condensate, were made [127, 128]; developments starting from
this line of approach motivates this thesis.

Recent constructions demonstrating the transition rely on the ability
to tune the spin-boson interaction to the deep strong coupling regime
[129, 130], which is the region of parameters where the interaction energy is
comparable with the cavity mode frequency. Among the many experimental
platforms involved in the aforementioned developments, cavity quantum
electrodynamics is an example in which the Dicke model appears as an
effective description, and where the difficulties with matching energy scales
are surmounted.

Based on aforementioned experiments, ultracold atoms in optical lattices
are one of the platforms realizing the Dicke model; this is done effectively in
systems displaying other phenomena, such as self-organization, supersolid
phases, Goldstone modes, and that work under dissipative conditions [131–
133]. These references work as inspiration for the results being presented
here. The way the difficulties of large coupling are overcome in these
experiments is argued through the concept of analogue simulations. The
setups implement an open-systems version of the model, but, as shown [134–
136], they are in the same universality class albeit being in non-equilibrium,
rendering them appropriate; the driven-dissipative dynamics is engineered
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to serve as control for the parameters of the system.

Outline of the chapter. In chapter 3 we will elaborate on the Dicke model,
an extension of it including an extra bosonic mode, and associated properties
which are shared by the original and the extension, while also making evident
the interesting aspects that appear after inclusion of the extra degree of
freedom. We will also elaborate and use information-theoretic tools to
study the models and see what it can tell us about them. In section 3.2, we
introduce the original model, discuss its phases and symmetries. We will
showcase our approach at this level, which includes novel contributions,
because the model is simpler. In section 3.3 we introduce a two-mode
Dicke model, extending what was done in the preceding section; this is
the main part of this work. The extended model displays new phenomena,
which will be highlighted in contrast to what is shown in the first section.
The third section involves a discussion of the structure of correlations in
the phase diagram of the model. To this end we will take advantage of the
fact that the states of interest are Gaussian, and thus we review phase space
techniques to treat them and relate them to information-theoretic methods
of quantum mechanics.
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3.2 The one-mode Dicke model
The original model was introduced in refs. [123–125]. It presumes a range
of validity, where a countable set of bosonic modes interact resonantly
with two levels of a second composite system through a single coupling
parameter, collectively. With these conditions determined, parameters
in the Dicke model can be further specified, thus reducing it to simpler
models, such as the Rabi model [137, 138]; this includes the rotating-wave
approximation and a choice of number of degrees of freedom, cf. table 3.1.

The Dicke Hamiltonian is

H = ωa†a+ ω0Jz + 2λ√
2j

(a† + a)Jx. (3.3)

Where the spin operators J = (Jx, Jy, Jz) are a sum of operators for each
individual spin-half system indexed by ℓ:

J =
∑

ℓ

σℓ, (3.4)

where 2σ are the Pauli matrices obeying [σi, σj ] = iεijkσk at each site.
The Hilbert space of the system is the tensor product of a harmonic

oscillator Hilbert space Hω , where ω labels the mode, and the Hilbert space
of an ensemble of N qubits, HN , which is itself built from the Hilbert
space of each qubit, Hℓ = C2; in summary,

H = Hω ⊗ HN , HN =
N⊗

ℓ=1
Hℓ (3.5)

This models, for example, a lattice of atoms with two energy levels interact-
ing in resonance with a cavity electromagnetic field.
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Number of two-level systems
is larger than 1 is equal to 1

No rotating-wave approx. Dicke Rabi
W/ rotating-wave approx. Tavis–Cummings Jaynes–Cummings

Table 3.1: Table outline of relations between common interacting spin-boson
models, starting from the Dicke model. Firstly, by restricting the number of
two-level systems to one, one arrives at the Rabi model. Secondly, when the
sum of the energy gaps of the two-level systems and mode is comparatively
much higher than their difference, specific channels of the spin-boson
interaction average to zero over time and can therefore be neglected in
particular time scales; this is the regime of the Tavis–Cummings model, and
the simplification is termed rotating-wave approximation. Moreover, the two
cases just described can be mixed: when the rotating-wave approximation
is valid and there is only one two-level system, one arrives at the Jaynes–
Cummings model.

The dimension the Dicke model Hilbert space grows exponentially with
lattice size, 2N . A considerable simplification happens, however, since
the Hamiltonian H commutes with the total spin operator J2 = J · J ,[
H,J2] = 0. This means that we can characterize the system by the 2j + 1

states of fixed total quantum number j, in this case known as cooperation
number [139].

The subspace with the highest degree of degeneracy is that for which
j reaches its maximum at

∑
ℓ sℓ, where σ2

ℓ |sℓ,mℓ⟩ = sℓ(sℓ + 1) |sℓ,mℓ⟩,
in units ℏ = 1. In our case of interest we have sℓ = 1/2, which by
addition of angular momentum leads to j = N/2, with magnetic quantum
number taking integer steps in the interval −N/2 ≤ m ≤ N/2, totaling
2(N/2) + 1 = N + 1 states. We will focus on the problem whose
Hilbert space is (N + 1)-dimensional and spanned by the Dicke states
|j = N/2,m⟩. This means we are dealing with the first component in a
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direct sum decomposition of the lattice Hilbert space,

HN = Hjmax ⊕ Hjmax−1 ⊕ · · · ⊕ Hjmin , (3.6)

where jmax = N/2, and jmin = |
∑

ℓ(−1)ℓsℓ|, which is ultimately either
0 if N is even or 1/2 if N is odd.

3.2.1 Quantum phases
To understand the phases of the Dicke model we first perform a few
operations on it. First we rotate about the y-axis by θ and then displace the
bosonic subspace by α:

H̃ = eN (α∗a−αa†)eiθJyHe−iθJyeN (αa†−α∗a), (3.7)

where the normalization factor N =
√

2jω0/ω is introduced to make
following expressions tidier.

The rotation will affect the spin operators as

Jx 7→ J̃x = Jx cos θ − Jz sin θ (3.8)

Jz 7→ J̃z = Jx sin θ + Jz cos θ, (3.9)

and we choose the displacement of the ladder operator to be

a 7→ ã = a+
√

2αN , (3.10)

where αN = Nα and α ∈ R. Notice that αN is then proportional to j.
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The resulting Hamiltonian is

H̃ = ω
[
a†a+

√
2αN

(
a† + a

)
+ 2α2

N

]
+ ω0(Jx sin θ + Jz cos θ)

+ 2λ√
2j

(
a† + a+ 2

√
2αN

)
(Jx cos θ − Jz sin θ). (3.11)

Relying on the thermodynamic limit N → ∞, we will apply the
Holstein–Primakoff representation (see review [140] and references therein),
transforming the spin operator algebra into a bosonic algebra through

Jz 7→ j − b†b (3.12a)

J+ 7→
√

2j b†
(

1 − b†b

2j

)1/2

(3.12b)

J− 7→
√

2j
(

1 − b†b

2j

)1/2

b. (3.12c)

This representation utilizes the ladder operators J±, such that

Jx = J+ + J−

2 . (3.13)

By expanding the square roots in the definition of J±, we can simplify
the problem at the thermodynamic limit by ignoring contributions with
overall j in the denominator, reducing the Holstein–Primakoff representation
effectively to

J+ ≈
√

2j b†, (3.14a)

J− ≈
√

2j b. (3.14b)
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The Hamiltonian becomes

H̃ ≈ ω
[
a†a+

√
2αN

(
a† + a

)
+ 2α2

N

]
+ ω0

(√
2j (b† + b)

2 sin θ − (b†b− j) cos θ
)

+ λ(a† + a+ 2
√

2αN )
(

(b† + b)√
2

cos θ − 1√
j

(b†b− j) sin θ
)
.

(3.15)

For the next step we will also ignore the cubic term in quadratures,

H̃(3) = 2λ(a+ a†)bb† sin θ√
2j

, (3.16)

which carries an overall power of the spin quantum number in the de-
nominator; in comparison with the other contributions, this is the most
feeble at large j and for consistency with the thermodynamic limit taken
in eq. (3.14a). In addition to this, we regroup to better identify the linear
contributions in the bosonic algebra,

H̃ ≈ ωa†a+
(

4λ√
2j
αN sin θ − ω0 cos θ

)
b†b

+ λ cos(θ)(a† + a)(b† + b)

+
(
ωαN − λ sin(θ)

√
2j
)

(a† + a)

+
(
ω0 sin(θ)

2
√

2j + 2λαN cos θ
)

(b† + b)

+ ωα2
N + ω0j cos θ − 2

√
2jλαN sin θ.

(3.17)

By demanding that the coefficients of linear terms vanish, we find equations
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that will determine α = αN /N and θ. We thus have,

α
√
ωω0 − λ sin θ = 0 (3.18a)

4αλ cos θ +
√
ωω0 sin θ = 0, (3.18b)

whose solutions for α and θ lead to different phases of the system. By
isolating α in the first equation, the second one can be rewritten as

ωω0 sin θ + 4λ2 sin θ cos θ = 0, (3.19)

and then solved for θ. A trivial solution is found for θ = π, further implying
that α = 0: a solution that simply returns the original Dicke Hamiltonian;
a non-trivial solution for θ is

cos θ = − ωω0

4
1
λ2

= − λ2
c

λ2 ,

(3.20)

where we defined λc = √
ωω0/2. Only for λ > λc this solution is defined.

In order to find α we plug this back into eq. (3.18a), yielding

α =
√
λ4 − λ4

c

2λλc
. (3.21)

Notice that for α to take on real values, the coupling parameter also must
obey λ > λc.

What are these manipulations giving us? By defining H̃ with respect to
the unitaries representing displacement in the bosonic algebra and rotation
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in the spin algebra, we equivalently introduce the variational family of states

|α, θ⟩ = e−iθJyeN (αa†−α∗a) |0, ↑⟩ , (3.22)

where the fiducial state is |0, ↑⟩ = |0⟩ ⊗ |↑⟩: the tensor product of the
ground state of the free Hamiltonian ωa†a and the eigenstate of ω0Jz with
the largest eigenvalue |↑⟩ = |j,m = j⟩.a

The term proportional to the identity in H̃ , call it V(α, θ), turns out
to be ⟨α, θ|H|α, θ⟩: the expectation value of energy on bosonic and spin
coherent states.b In a variational approach the ground state energyE0 works
as a lower bound to V(α, θ) ≥ E0. Therefore, by minimizing V we can find
the ground state energy, and for as long as the manifold of ground states is
a submanifold of the coherent states, we can find the coordinates (α, θ) for
the ground state itself [141].

How was this done? We have minimized the term V by finding the zeros
of the coefficients of the linear terms #(a+a†) and #(b+b†). The fact that
higher-order polynomial terms in the algebra of operators come accompanied
by gradients of the corresponding group variables is made evident by
using the Baker–Campbell–Hausdorff (BCH) formula, exXY e−xX = Y +
x[X,Y ]+(x2/2!)[X, [X,Y ]]+ . . . ; from this, we can see that higher-order
commutators come alongside cumulative integrations of the coefficients
over the variable x. Commutators, on the other hand, are derivations in the
algebra of operators, so the effect of higher-order commutators in X is to

aThis family are the group-theoretic coherent states of the Heisenberg algebra h and the
spin su(2) algebra. See [141] for a treatment of variational methods that introduces these
states.

bIn fact, it already involves a particular choice of parameters. The spin coherent states are
parametrized by two variables, θ and ϕ, but the second ends up not playing a role because of
the breaking of a symmetry, and so we set it ϕ = 0, which hides a factor cos ϕ = 1 from the
sin θ term; more on this later.
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decrease the monomial order of Y inX , e.g.
[
an, a†] = ∂an/∂a = nan−1.

In our case, the BCH formula soon truncates in the bosonic algebra, whilst
culminating in a rotation in the spin algebra. Although not as clear in terms
of J , the Holstein–Primakoff representation and the thermodynamic limit
make this effect evident.

To conclude, define H̃ (in the thermodynamic limit) as

H̃ = H̃(0) + H̃(1) + H̃(2), (3.23)

where k in H̃(k) is the monomial order in the variables (a, a†, b, b†), with
coefficients K̃ i1,...,in,...ik . From this definition we see that H̃(2) is the
original Dicke Hamiltonian, with K̃ ij its coefficients. If we now make the
following identification:

K̃ ij = ∂2V
∂zi∂zj

, (3.24)

where z = (α, α∗, θ, ϕ), then the other terms are K̃ i = ∂V/∂zi and,
ultimately, K̃ = V . In summary, because the Hamiltonian is quadratic, we
have the whole set of derivatives of V to solve a minimization problem over
it.

Why is this minimization important? Phase transitions are then iden-
tified by non-analytic behavior of the free energy F = −β−1 lnZ, for
partition function Z = tr e−βH , in the thermodynamic limit. In the low
temperature limit, β → ∞, the ground state energy equals the free energy,
e−βF = e−βE0 + e−βE1 . . . , because larger spectral values are exponen-
tially suppressed. Thus, by finding non-analytic behavior ofE0, we interpret
it as a region of quantum phase transition.

We have just shown two things: first, the minimization over ψ =
(α, θ) implies that the ground state energy depends on this coherent state
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parameter; secondly, the solution of the minimization problem shows
that ψ = ψ(λ). But more importantly, the ground state energy may
change with the parameters in the Hamiltonian; in particular E0 = E0(λ).
Therefore, we find E0(λ) by finding E0(ψ) and knowing ψ(λ), that is:
E0(λ) = E0(ψ(λ)). This minimum of the energy functional is found to be

(2j)−1 min
(α,θ)

V = (2j)−1E0(λ) =


−2λ2

c

ω
, if λ < λc,

− (λ4 + λ4
c)

λ2ω
, if λ ≥ λc.

(3.25)

WhilstE0 is continuous at the point of transition, λ = λc, its first derivative
with respect to λ is discontinuous: this is a first-order quantum phase
transition.

Crucially, the solution ψ = (0, π) is valid for every parameter λ, not
only for those greater than the critical value, but it can be shown to be
a local maximum instead of a minimum in that region (a full treatment
of the minimization problem, resolving this issue, would also involve an
analysis of the second derivatives, determining which values correspond
to saddle points, maxima, etc.). See section 3.2.2, fig. 3.2, for a graphical
visualization of this.

Diagonalizing the Hamiltonian. Instead of going straight for the full
solutions ψi = (αi, θi), where i = NP, SP, we aim at a partial solution in
α by writing θ = θ(α), such that θ(αi) = θi. This leads to

H̃ = V(α) + ωa†a+Ω(α)b†b+ Λ(α)(a† + a)(b† + b), (3.26)
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where

Ω(α) = 4λ2
c

ω

(
4α2 −

√
1 + α2λ2

c

λ2

)
(3.27a)

Λ(α) = λ

√
1 + α2λ2

c

λ2 , (3.27b)

and not forgetting that α = α(λ). By diagonalizing this Hamiltonian, we
will have the diagonalized form in both phases, provided that we plug the
appropriate solution form of α in each case.

This may be identified with a general two-mode squeezed Hamiltonian.
The diagonalization of this operator is achieved after introducing the
quadratures

qa = a† + a√
2ω

, pa = i
√
ω

2
(
a† − a

)
(3.28)

qb = b† + b√
2Ω

, pb = i
√
Ω

2
(
b† − b

)
. (3.29)

In these coordinates, the Hamiltonian is

H̃ = V(α) + p⊺p

2 + 1
2q

⊺V q, q =
(
qa

qb

)
and p =

(
pa

pb

)
, (3.30)

where

V =
(

ω2 −2Λ
√
ωΩ

−2Λ
√
ωΩ Ω2

)
(3.31)
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By rotating the canonical coordinates with the matrix

S =
(

cosχ − sinχ
sinχ cosχ

)
, (3.32)

by the angle χ such that

tanχ = 4Λ
√
ωΩ

Ω2 − ω2 +
√

16Λ2ωΩ + ω4 − 2ω2Ω2 +Ω4
, (3.33)

thus definingQ = Sq and P = Sp. This leads to the diagonal Hamiltonian

H̃ = 1
2

∑
k∈{+,−}

P 2
k + ν2

kQ
2
k, (3.34)

with

ν2
± = ω2 +Ω2

2 ± 1
2
√

16Λ2ωΩ + ω4 − 2ω2Ω2 +Ω4. (3.35)

The values corresponding to each phase is found by plugging inΩ(αNP,SP)
and Λ(αNP,SP).

3.2.2 Symmetries of the model
The original Dicke Hamiltonian,

H = ωa†a+ ω0Jz + 2λ√
2j
(
a† + a

)
Jx,
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is invariant under the transformations

a 7→ − a (3.36)

Jx 7→ − Jx, (3.37)

thus constituting the Z2 parity symmetry of the system. The generator of
this symmetry is

N = a†a+ Jz + j, (3.38)

which exponentiates to the unitary transformation

Π = e−iπN . (3.39)

Because this is a symmetry, [H,Π] = 0.
Recall now that the following form of the Hamiltonian,

H̃ = V(α, θ) + ωa†a+Ω(α)b†b+ Λ(α)(a† + a)(b† + b) (3.40)

is not invariant under the same symmetry. To better compare the symme-
tries and phases, the parity symmetry operator in the Holstein–Primakoff
representation is

Π = exp
[
−iπ(a†a+ b†b)

]
. (3.41)

This breaking of symmetry follows because Π must also be rotated and
displaced. In the Holstein–Primakoff representation, the rotation about the
y axis corresponds to a displacement of the b ladder operators, i.e.

Π̃ = eα∗a−αa†
eβ∗b−βb†

Πeβb†−β∗beαa†−α∗a

= exp
(
−iπ[a†a+ α(a† + a) + 2α+ b†b+ β(b† + b) + 2β]

)
.

(3.42)
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The transformed parity Π̃ involves linear terms in a and b, hence it
affects H̃ in non-trivial ways. In the new variables ã and b̃, this is just
Π̃ = exp[−iπ(ã†ã+ b̃†b̃)].

We could however write a new unitary transformation in the a and b
algebras,

Π ′ = exp
[
−iπ(a†a+ b†b)

]
, (3.43)

that transforms by conjugation H̃ exactly as Π previously transformed H .
In summary, [H,Π] = 0 leads to [H̃, Π̃] ̸= 0, whilst [H̃,Π ′] = 0.

Let us look now at the constant term in the Hamiltonian, this is the
energy in absence of fluctuations:

V(α, θ)
2j = 4λ2

c

ω
α2 − 4λλc

ω
α sin θ + 2λ2

c

ω
cos θ. (3.44)

Rewriting θ in terms of α,

sin θ = sin(π − arcsin(2αλc/λ))

= 2αλc

λ
,

(3.45)

leads to

V(α, θ(α))
2j = V(α)

2j = −2λ2
c

ω

(
2α2 +

√
1 − 4α2λ2

c

λ2

)
, (3.46)

ultimately reducing to the minimum of energy we had in eq. (3.25).
For α ≪ 1, and neglecting the constant term, we can approximate V(α)

as

V(α) = −2λ2
c

ω

[
1 +

(
2 − 2λ2

c

λ2

)
α2 − 2λ4

c

λ4 α
4 +O(α6)

]
, (3.47)
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and recognize a quartic potential paradigmatic of spontaneous symmetry
breaking and the theory of phase transitions of Landau. It is important to
notice that α ≪ 1 means different things in each phase, i.e. whether λ > λc

or λ < λc. In the normal phase α is identically zero, so the expression
above is exact there. In the superradiant phase, however, α depends on
λ: being small translates to small λ−1

√
λ4 − λ4

c ≪ 2λc; the expression
will give decent approximations in this regime. Nonetheless, we plot the
full potential as function of α in fig. 3.2 and show the appearance of two
minima when λ is varied and reaches the superradiant phase.

Although not visible from the plot, by varying λ a second-order phase
transition is displayed, meaning that the second derivative of E0 with
respect to the coupling parameter is discontinuous at the point of transition.

3.3 A two-mode Dicke model
We can consider a modified version of the Dicke Hamiltonian (3.3), whose
symmetry group is larger, namely the continuous group U(1). It is usual
to discuss this group in the context of the Dicke model under the rotating
wave approximation, for which the counter-rotating terms a†b† and ab are
neglected; we consider instead a model with more degrees of freedom:

H = ωa†
xax + ωa†

yay + ω0Jz + λx√
2j

(a†
x + ax)Jx + λy√

2j
(a†

y + ay)Jy,

(3.48)
representing a sum of Dicke models, one for each component of the
collective spin. That is,H = Hx +Hy where eachHi is similar to eq. (3.3),
but with each mode coupling to different sectors of the spin degrees of
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Figure 3.2: Plot of the energy functional V(α) = V(α, θ(α)). The minima occur
at different α (and θ) for different λ. Below the critical point there is a unique
minimum, indicated by a triangle, whilst above that point there are two (with star
labels), thus breaking the parity symmetry of the Hamiltonian. The plot is shifted
with respect to the normal phase ground state, meaning the minimum happens at
zero in this phase. But the shift taking E0 to zero cannot be done simultaneously for
every α, and thus E0 is non-zero in the superradiant phase. Plot made for λc = 1
and ω = 1.
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freedom.
We can treat this Hamiltonian by considering quadratures associated to

the field ladder operators,

qi = ai + a†
i√

2
, pi = ai − a†

i

i
√

2
, (3.49)

as well as for the spin operators,

Jx = Q
√
j, Jy = P

√
j, Jz = j − (Q2 + P 2)

2 , (3.50)

reproducing the ladder-to-quadrature relations for the Holstein–Primakoff
representation at large j: J+ ≈

√
2j b†, J− = J†

+ and Jz = j − b†b.

3.3.1 Quantum phases on two coupling parameters
The same steps we had for the Z2-invariant Dicke model apply here, with
slight modifications. First, since we have more degrees of freedom, we
need more variables in order to identify the phase transitions. Define a new
family of Hamiltonians as

H̃ = D†(αy)D†(αx)eiϕJzeiθJyHe−iθJye−iϕJzD(αx)D(αy), (3.51)

for

D(αi) = exp
(

N (α∗
i ai − αia

†
i )
)
, for i = x, y, (3.52)

and where N = 2
√
jω0/ω. As in section 3.2.1, one arrives at H̃ whose

cubic term in the ladder operators (and quadrature) has an overall suppression
of j in the numerator, and at equations determined by vanishing linear
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terms.
We are interested in the different solutions available for different values

of ϕ. These possibilities are linked to the parameters λx and λy , as we show
in the sections below. On top of this, when working with the quadratures
defined above, we perform the rotations

qx 7→ cos(ν)qx − sin(ν)qy, qy 7→ sin(ν)qx + cos(ν)qy. (3.53)

This will help us simplify the transformed Hamiltonian at a later stage.

Different coupling across modes. Let us start again from the transformed
Hamiltonian

H̃ = D†(αy)D†(αx)eiθJyHe−iθJyD(αx)D(αy), (3.54)

which is the same as in eq. (3.51) but with ϕ = 0 from the outset. We have
seen in earlier sections that the value of ϕ is a phase on the (αx, αy) plane.
We associate this choice of ϕ with the condition λx > λy, without loss of
generality. A second option would be given by ϕ = π/2, for which the
condition λy > λx would yield equivalent results but for a second phase
and phase transition.

We repeat the process of section 3.2.1, finding the conditions under
which the linear part H̃(1) vanishes, corresponding to a minimization
of V = H̃(0) over the family of coherent states (αx, αy, θ). With the
chosen set of parameters, there are two possible sets of solutions for these
parameters as functions of (λx, λy). The normal phase solution is given
by (αx, αy, θ) = (0, 0, π). There are two other solutions, but both for
the superradiant phase. They are equivalent; given the arbitrary choice of
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positive θ solutions, they are

αx = α+
x =

√
λ4

x − λ4
c

2λxλc
(3.55a)

αy = 0 (3.55b)

θ = θx = arccos
(

−λ2
c

λ2
x

)
. (3.55c)

The other solution exchanges the sign of αx and θ. We notice that
this solution only yields a value for 0 ≤ θ ≤ π when √

ωω0 ≤ λx,
which is an indicator of the phase transition. We thus define the critical
value λc = √

ωω0, which is twice that for the one-mode Dicke model in
section 3.2.

In this case, the ground state energy is

(2j)−1E0(λx) =


− λ2

c

2ω , if λx < λc,

− (λ4
x + λ4

c)
4λ2

xω
, if λx ≥ λc,

(3.56)

which is independent of λy .
These steps are completely analogous for ϕ = π/2 by exchanging x for

y, with slight changes in the values of minimizing variables:

αx = 0 (3.57a)

αy = α−
y = −

√
λ4

y − λ4
c

2λyλc
(3.57b)

θ = θy = arccos
(
λ2

c

λ2
y

)
, (3.57c)
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where we have chosen the solution with positive θ.

Normal modes. By choosing the set of values corresponding to the
λx > λy superradiant phase, αx (= α+

x ) and its accompanying θ, the
quadratic Hamiltonian is

H̃(α+
x , 0, θx) = HSPx

= V + ω

2
(
p2

x + p2
y + q2

x + q2
y

)
+ λ2

x

2ω (P 2 +Q2)

+ λyPqy − λ2
c

λx
Qqx,

(3.58)

Our goal is to find the variables under which the Hamiltonian is expressed
as a set of harmonic oscillators, i.e. its normal modes. Let us write HSPx

in concise form using matrices

HSPx(R) = 1
2R

⊺K̃R. (3.59)

More explicitly, we have

K̃ =



ω 0 0 0 − 2λ2
c

λx
0

0 ω 0 0 0 0
0 0 ω 0 0 2λy

0 0 0 ω 0 0
0 0 0 0 λ2

x

ω 0
0 0 0 0 0 λ2

x

ω


, R =



qx

px

qy

py

Q

P


. (3.60)

It can be checked that K̃ is a positive-definite matrix. By Williamson’s
theorem it is therefore possible to find degrees of freedom through which
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K̃ has a diagonal form. The theorem states that, given a symmetric
positive-definite matrix, there exists a symplectic transformation S such
that

K = SK̃S⊺ (3.61)

is diagonal [142]. The diagonal elements are known as symplectic eigen-
values, and we will denote them by ν. See appendix C for an algorithm to
find the symplectic eigenvalues and S , and which serves as background for
the following discussion.

Before studying S itself, which will ultimately lead us to the eigenstates
of H̃ , we can already see the frequencies of oscillations of the normal
modes associated to H̃; they are √

ri/λxω, where ri are the three roots of
the following polynomial:c

r3 − r2 (2ω4λ2
x + λ6

x

)
+ r

(
ω4 + 2λ4

x − λ4
c − λ2

xλ
2
y

)
λ4

xω
4

− ω8λ4
x(λ4

x − λ4
c)(λ2

x − λ2
y) = 0. (3.62)

In the transformed representation, for which the Hamiltonian is

H̃(R = S⊺
R̃) = 1

2R̃
⊺K̃R̃, (3.63)

these symplectic eigenvalues of K̃ come in multiplicity two; in fact, they
are

νi =
∣∣∣∣± √

ri

λxω

∣∣∣∣ =
√
ri

λxω
, i = 1, 2, 3, (3.64)

cThe explicit values of these roots are not very enlightening, however, and it is sufficient to
approach the problem numerically, more on this later.
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such that, in block form,

K =

k1

k2

k3

 , ki =
(
νi 0
0 νi

)
. (3.65)

The doubling of these eigenvalues is justified in the algorithm in appendix C.
Explicitly in these variables, the Hamiltonian is

H̃(R = S
⊺
R̃) = V + ν1

2 (p̃x
2 + q̃x

2) + ν2

2 (p̃y
2 + q̃y

2) + ν3

2 (P̃ 2 + Q̃2),
(3.66)

This transformation can be equivalently described in terms of unitaries im-
plementing an active transformation, thereby using the original variables R.
The unitary action implementing this procedure define a third Hamiltonian
Ĥ as follows:

Ĥ(R) = U†H̃(R)U = H̃(U†RU), (3.67)

where U†RU = S⊺
R, and we then absorb S into K̃ , finally getting

Ĥ = R
⊺KR/2. The Hamiltonian Ĥ is a set of three mutually commuting

harmonic oscillators, thus having known spectrum:

E(nx, ny, nj) = ν1

(
nx + 1

2

)
+ ν2

(
ny + 1

2

)
+ ν3

(
nj + 1

2

)
+ V.

(3.68)
This procedure is general and does not depend on parameters in the
Hamiltonian. It is thus applicable to the case where λy > λx, and also in
both normal and superradiant phases. It will only fail at the Goldstone line,
λx = λy > λc because there the coupling matrix is not positive-definite,
and therefore Williamson’s theorem does not apply. We will deal with
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this case in the next section. For now, I close this part with the coupling
matrices in the remaining regions of the phase diagram: the normal phase
and the superradiant phase at λy > λx.

K̃NP =



ω 0 0 0 λx 0
0 ω 0 0 0 0
0 0 ω 0 0 λy

0 0 0 ω 0 0
λx 0 0 0 λ2

c

ω 0
0 0 λy 0 0 λ2

c

ω


,

K̃SPy =



ω 0 0 0 0 λx

0 ω 0 0 0 0
0 0 ω 0 λ2

c

λy
0

0 0 0 ω 0 0
0 0 λ2

c

λy
0 λ2

y

ω 0

λx 0 0 0 0 λ2
y

ω


.

(3.69)

Equal coupling across modes. Let us take a step back to eq. (3.51). We
can keep the ϕ rotation arbitrary, and ask for what values of the remaining
parameters (αx, αy, θ) the linear part of the Hamiltonian vanishes. A new
set of solutions exists in this case, when λx = λy = λ.

The solutions come with redundancy, and by choosing the set with
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(a) (b)

(c) (d)

Figure 3.3: Plot of order parameters for the Dicke model displaying the normal,
the two superradiant phases and their split at the diagonal line, region of broken
continuous symmetry.
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positive θ, for convention, we have

αx = cosϕ
2λλc

√
λ4 − λ4

c (3.70a)

αy = − sinϕ
2λλc

√
λ4 − λ4

c (3.70b)

θ = arccos
(

−λ2
c

λ2

)
, (3.70c)

for 0 ≤ ϕ < 2π.
We can repeat the analysis of the constant term in H̃ , V . By eliminating

θ and ϕ in favor of α. The ϕ dependence on α will depend on which
quadrant it lies. Without loss of generality, by choosing 0 ≤ ϕ < π/2, we
have

θ = − arctan

2λc

√
α2

x + α2
y

λ

 (3.71)

ϕ = − arctan
(
αy

αx

)
, (3.72)

one finds

V
2j = − λ2

c

2ω

(√
1 −

4λ2
c(α2

x + α2
y)

λ2 + 2(α2
x + α2

y)
)
, (3.73)

which turns out to be rotationally invariant in the (αx, αy) plane. Let us
complexify this plane by working with the new coordinate Φ = αx + iαy.
In these terms, the potential is just a function of |Φ|2, being once again
a potential with symmetry-breaking, non-trivial minima at |Φ| ≠ 0 for
λ > λc. See fig. 3.4 for a plot of this function over the complex (αx, αy)
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Figure 3.4: Plot of V(α)/2j potential with parameters λc = 1, λ = 1.1, and ω = 1.
The minimum occurs at a circle in the dark shaded region. Provided α2

x + α2
y is

small, meaning λ ≈ λc, this potential can be approximated by the paradigmatic
Mexican hat potential.

plane.
But that is not all. Differently from the one-mode Dicke model,

the degenerate ground states at the superradiant phase form a smooth
manifold, a consequence of breaking the continuous U(1) symmetry of
the Hamiltonian. We thus see, in accordance with Goldstone’s theorem,
that the system becomes gapless in this λx = λy = λ ≥ λc regime. The
different ϕ values label each point in the ground state manifold, and we
can then write Φ =

∣∣α2
x + α2

y

∣∣e−iϕ. At any of these points the potential is
minimized and equals the value in eq. (3.56) for the λx = λy limit, being

(2j)−1E0(λ) = − (λ4 + λ4
c)

4λ2ω
, (3.74)

where λx = λy = λ ≥ λc.
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Phase diagram. In any region in the parameter manifold the Hamiltonian
can be defined through the following quadratic form in the quadrature basis:

K̃ =



ω
2 0 0 0 Λ1 Λ2

0 ω
2 0 0 0 0

0 0 ω
2 0 Λ3 Λ4

0 0 0 ω
2 0 0

Λ1 0 Λ3 0 Ω
2 0

Λ2 0 Λ4 0 0 Ω
2


, (3.75)

with some coefficients vanishing at specific parts of the phase diagram. It
is particularly important to point out that Ω → 0 in the limit λx = λy ≥ λc

(the Goldstone line).
This quadratic form can generally be diagonalized by symplectic matri-

ces. These values represent the energy of collective spin-boson excitations.
The lowest eigenvalue in each phase, which we will take to be ν3,d gives
the excitations which least departs from the ground state, yielding the first
gap in the energy spectrum. The ground state energies, eq. (3.56) and its y
variant, are of the order of O(j1) whilst the rest of the Hamiltonian used to
numerically obtain ν3 is of order O(j0), implying that at j → ∞ they are
quasi-continuous compared to V , cf. [139]. In this sense we are modelling
small quantum excitations over the classical ground state of each phase.

Figure 3.5 shows the low-lying excitation energy ν3 as a function of
the coupling parameters. The lines separating the phases form a square at
λx,y = λc for λy,x < 1. The region adjacent to the origin is the normal
phase, and for the complement of this region the system is in the superradiant
phase. At the critical lines ν3 vanishes as a sign of the phase transition.

dThe index represents the relative position in the ordered phase space basis. Since it is the
smallest value, it is placed last.
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Figure 3.5: Phase diagram for the smallest symplectic eigenvalue ν3. The region
(λx < λc, λy < λc) shows this excitation energy at the normal phase, whilst for
any one of the couplings that cross the value of λc, the diagram represents the
superradiant phase. ω = 1.
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Figure 3.6: Modes along the diagonal, for ω = 1 and in both phases.

At the superradiant regime, the diagram is split at λx = λy by a line
where the U(1) symmetry is spontaneously broken. The vanishing of
ν3 on this line of the parameter manifold stem from the breaking of the
continuous symmetry as dictated by Goldstone’s theorem. On this region
the ν3 excitations are massless Goldstone modes. By slicing the plots of νi

along the diagonal, we can also see the gap behavior at a transition from
the normal phase to the Goldstone line, see fig. 3.6.

3.4 Correlation profile of the two-mode model
Since the Hamiltonians are unitarily equivalent, they share the same
eigenvalues, and the eigenkets of H are

|0⟩ = U†
1U

†
2
∣∣0̂〉 , (3.76)
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where
U†

1 = e−iθJyD(αx)D(αy), (3.77)

and U2 can be determined by finding the symmetric matrix M such that

S = eΩM (3.78)

and writing

U2 = exp
(

i
2R

⊺MR

)
. (3.79)

We are interested in the properties of a ground state

ϱ = |0⟩⟨0| , (3.80)

but with the form H takes through the unitaries indicated above, we can
write a second state

ϱ̂ = U2U1 |0⟩⟨0|U†
1U

†
2 . (3.81)

Since they are connected through unitaries, we can relate expectation values
simply. Let ⟨O⟩ = tr(Oϱ) and ⟨O⟩ϱ̂ = tr(Oϱ̂), we have for instance,

⟨f(Ri)⟩ = ⟨U†
2U

†
1f(Ri)U1U2⟩ϱ̂

= ⟨f(U†
2U

†
1RiU1U2)⟩ϱ̂

= ⟨f(R̂i)⟩ϱ̂ .

(3.82)

By knowing the action of the unitaries on the quadratures, R̂i = Sij(Rj +
Aj), where Aj is the column matrix that translates R according to U1, we
can express ⟨f(Ri)⟩ with the help of S and A, and with the knowledge of
relevant expectation values of observables in the thermal state of a harmonic
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oscillator (as this is the form ϱ̂ takes). The simplest example is

⟨Ri⟩ = ⟨[U†
2 (R +A)U2]i⟩ϱ̂ (3.83)

= ⟨(U†
2RU2)i +Ai⟩ϱ̂ (3.84)

= ⟨SijRj +Ai⟩ϱ̂ (3.85)

= Sij ⟨Rj⟩ϱ̂ +Ai. (3.86)

We can simplify this by expressing R as creation and annihilation operators,
from what follows that ⟨Rj⟩ϱ̂ = tr(Rj ϱ̂) = 0, evident when the trace is
computed in terms of eigenvalues of the number operator. Therefore,

⟨Ri⟩ = Ai. (3.87)

A more interesting computation is

⟨RiRj⟩ = ⟨(SikRk +Ai)(SjlRl +Aj)⟩ϱ̂

= SikSjl ⟨RkRl⟩ϱ̂ + Sik ⟨Rk⟩ϱ̂ Aj + SjlAi ⟨Rl⟩ϱ̂ +AiAj

= SikSjl ⟨RkRl⟩ϱ̂ +AiAj .

(3.88)

We can express these quantities more concisely in terms of the covariance
matrix cov(Ri,Rj) = ⟨{Ri − ⟨Ri⟩ ,Rj − ⟨Rj⟩}⟩. In the ϱ̂ state it is

covϱ̂(Ri,Rj) = ⟨{Ri,Rj}⟩ϱ̂ , (3.89)

since ⟨Rj⟩ϱ̂ = 0. The first moments in the state ϱ do not vanish however,
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and hence the associated covariance is more complicated:

cov(Ri,Rj) = ⟨RiRj + RjRi − 2 ⟨Ri⟩Rj

− 2 ⟨Rj⟩Ri − 2 ⟨Ri⟩ ⟨Rj⟩⟩

= ⟨{Ri,Rj}⟩ − 2 ⟨Ri⟩ ⟨Rj⟩ ,

(3.90a)

which can be expressed in terms of A as

= ⟨{Ri,Rj}⟩ − 2AiAj . (3.90b)

From eq. (3.88) we can infer that

⟨{Ri,Rj}⟩ = SikSjl ⟨{Rk,Rl}⟩ϱ̂ + 2AiAj . (3.91)

Inserting this in the expression for cov(Ri,Rj) yields, in terms of
covϱ̂(Ri,Rj),

cov(Ri,Rj) = SikSjl covϱ̂(Rk,Rl). (3.92)

The covariance of quadratures in the ground state of three harmonic
oscillators is simple, being just an identity matrix, covϱ̂(Rk,Rl) = δkl/2.
With this given the quadratures have, in ground state of H , the following
covariance matrix:

cov(Ri,Rj) = SikSjk/2. (3.93)

Notice that here we are taking a different path from the transformations
introduced when doing the symplectic diagonalization. There, the symplec-
tic S transforms a non-diagonal quadratic form to its diagonal counterpart.
Here we are writing the non-diagonal covariance matrix, starting from its
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(a) (b)

Figure 3.7: Variances for each configuration and momentum, corresponding to the
diagonal elements in cov(Ri,Rj), at λy = 0.9λc and ω = 1.

diagonal counterpart: the ground state covariance matrix of a harmonic
oscillator. This means that the equivalent treatment in this section, when
starting from the input given by introducing the normal modes, leads to the
relevant covariance matrix written as

C = (SS⊺)−1

2 , (3.94)

where S now is the matrix built from considerations of Williamson’s
theorem.

The diagonal elements of the covariance matrix are plotted in fig. 3.7 for
each canonical coordinate. As the λx coupling vanishes the X degrees of
freedom form a harmonic oscillator, whose ground state variance saturates
the uncertainty principle as expected. After the critical point, in the deep-
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strong coupling regime where λx ≫ ω, ω0 this saturation is again achieved;
in fact, this strong coupling drives every degree of freedom to small
uncertainty values as all variances approach 1/2. The critical point occurs
in the ultrastrong coupling regime, where λx ≈ ω, ω0. In this transition,
the Y sector remains at finite uncertainty as the other bosonic mode and
the collective lattice spins have their momentum variance divergent.

Subsystem parametrization. Given the covariance matrix of a state, the
task of finding the corresponding covariance of subsystems is achieved by
extracting the appropriate submatrix. We introduce the notation of partition
subsets in typewriter font to refer to the three subsystems of interest: X for
structures related to the algebra qx, px; Y for the algebra qy, py; and J for
Q,P ; in the matrix R notation, these symbols correspond to the indices
X = {1, 2}, Y = {3, 4} and J = {5, 6}. Phase space matrices indexed by
these subsets, such as CXY or CX = CXX , are meant to be corresponding
block submatrices, whilst density operators refer to reduced states with the
complementing subsystems traced out, for instance, ϱX = trYJ ϱ.

The pure ground state ϱ, as well as its subsystems restricted to single
degrees of freedom, are Gaussian state. The full system, being in an entan-
gled state, yields mixed subsystems. A single-mode Gaussian covariance
matrix has been fully parametrized in terms of the squeezing parameter and
a mean quanta number, ñ, reflecting temperature or mixedness of the state;
with ñ = 0 we are in the pure vacuum state, with no excitations, whilst
ñ → ∞ is a state of infinite temperature or maximum mixedness [143]. Let
Cs

ij = cov(Ri,Rj), where s determines the range of indices (and hence
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(a) (b)

Figure 3.8: Squeezing parameter and purity of the respective one-mode reduced
state at λy = 0.9λc and ω = 1. Positive r indicates squeezing in the configurations.
With the relation (3.97) we see that the purity is a compactification (by inversion)
to the unit interval of product of momentum and configuration variances in each
subsystem, given that the covariance matrix is diagonal.

the subsystem), then

Cs =
(
ñs + 1

2

)(
e2rs 0

0 e−2rs

)
, (3.95)

with r being a squeezing parameter. Equating this to each 2 × 2 block
diagonals of the covariance matrix determines these variables as functions
of λx and λy .

The squeezing parameter plotted in fig. 3.8a complements fig. 3.7 with
information about the combined behavior of variances. Without the λx

coupling the X system is a simple harmonic oscillator in its ground state,
whilst the remaining non-zero coupling between Y and J indicates non-zero
squeezing, defined as

rs = 1
4 ln C

s
11

Cs
22
. (3.96)
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At the critical point λx → λc the X squeezing dips to arbitrary negative
values, showing that momentum variance in that degree of freedom diverges
and the configuration variance reaches a minimum. The other subsystems
have somewhat opposing behavior near λx = 0, with Y reaching a local
maximum at a cusp as ∞ > ∆py > ∆qy, and with J changing between
net momentum to net configuration squeezing near λc. The crossing point
is at λx = λy (= 0.9 in this case).

The ε parameter introduced in eq. (3.95) encodes mixedness in the
subsystems. A better way to visualize its behavior, however, is to study the
associated purity, defined as

υs = tr ϱ2
s = (det 2Cs)−1/2. (3.97)

With the covariance matrix having the form eq. (3.95), we can make explicit
υs as a monotonically increasing function of εs :

υs = 1
2ñ+ 1 . (3.98)

In fig. 3.8b we see that for λx → 0 the purity υx reaches its maximum.
Since the X sector couples to the rest of the system through λx, in this
limit the correlations between the parts vanish and the reduced state ϱX is
pure, and hence uncorrelated to the other subsystems (as the full state is
separable: ϱ = ϱX ⊗ ϱYJ ). This is suggested by the fact that ñx → ∞ for
vanishing λx, as it is monotonic with the inverse of temperature.

As λx approaches 0 for fixed λy these two subsystems remain coupled,
leading to υy = υj as the limit is reached. At this point, the X sector is
independent, and the state is again separable. Since the bipartite state ϱYJ is
pure and uncorrelated to ϱX , the entanglement entropy of its parts are equal
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and therefore also the corresponding υ as both quantities depend solely
on the symplectic eigenvalues of their corresponding reduced covariance
matrix.

At λc all three subsystems reach a cusp, with both X and J at a minimum,
and Y at a local maximum. In the superradiant regime all systems approach
υ = 1, with X and J doing so monotonically whilst Y first passes through
a point of local minimum near λc.

Mutual information and entanglement. Aiming at ultimately computing
tripartite entanglement measures, we introduce here the family of Rényi
entropies. First, the general Rényi-α entropy is defined ase

Sα(ρ) = 1
1 − α

ln(tr ρα). (3.99)

Similarly to how bipartite mutual information for the von Neumann entropy
constructed, we can introduce the Rényi-α mutual information, that is,
Iα(Ai:Aj) = Sα(Ai) + Sα(b) − Sα(AiAj).f Notice that in the case for
the Rényi-2 entropy, this measure can be put in terms of purity υ:

S2(ρ) = −1
2 ln[υ(ρ)]. (3.100)

The corresponding mutual information of a bipartition AiAj is, therefore,

I2(Ai:Aj) = − ln
(
υAi

υAj

υAiAj

)
. (3.101)

For Gaussian states these measures have an expression in terms of the
eThe von Neumann entropy is the limit Rényi-(α → 1).
fWe use partitions as argument for information-theoretic measures interchangeably with

states as argument, when the latter is implied by context.
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covariance matrix, stemming from the corresponding expression for purity,
eq. (3.97). With S2(ρ) 7→ S2(Cρ) = ln(detCρ)/2, the mutual information
is

I2(Ai:Aj) = 1
2 ln

(detCAi
detCAj

detCAiAj

)
. (3.102)

Using the formulae we plot in fig. 3.9 the mutual information for two
bipartitions, grouping the both field modes in subfigure (a), and one field
mode plus the Holstein–Primakoff boson in subfigure (b). These figures
and other conclusions in this section are reproduced from ref. [39].

For the first bipartition the density plot is symmetric by reflections
through the diagonal, indicating the symmetric coupling of the field modes
with the spin system. The diverging values across both phase transitions
are similar in this case. In the second case, the singular behavior is
distinguishable, being continuous at a cusp in the normal-to-superradiant
transition, and only being divergent at decreasing λx across the Goldstone
line.

To achieve a more thorough understanding on the correlation structure
of the model, and to compare with the mutual information just computed,
we also study entanglement. For pure states, particularly Gaussian ones, en-
tanglement of two parties can be taken to mean the entropy of entanglement,
which in terms of the Rényi-α entropy is Eα(Ai:Aj) = Sα(trAj

ρ).
For mixed states, which possibly also display other kinds of correlations,

distinguishing entanglement from them is more difficult, and other measures
exist to solve this task; they are, however, generally difficult to compute
[143, 144]. We choose to work with the entanglement of formation, which
for Gaussian states have an explicit analytical formula. Based on Rényi-2
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Figure 3.9: Phase diagram for Rényi-2 mutual information of bipartitions (a) (XY :J)
and (b) (JX :Y ), and accompanying slices at λy = 0.5λc (left) and λy = 1.5λc

(right) below each density plot. Energy of field modes set at ω = 1.
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entropy, this measure is

E2(Ai:Aj) = inf
{

ln(det 2ΣA)
2 | 0 < ΣAiAj

≤ CAiAj
, det ΣAiAj

= 1
}
.

(3.103)
This is known as a convex roof construction, under which the pure state
entanglement monotone S2(Cρ) is extended to mixed states by minimizing
over their decomposition into convex combination of pure states, Gaussian
in the present case. From the construction above it is also evident that
entanglement of formation is an upper bound to the entanglement of the
system.

If CAiAj is itself a pure state, the entanglement measure E2 coincides,
as expected, with entropy of entanglement:

E2(Ai:Aj) = S2(CAi) = 1
2 ln(det 2CAi). (3.104)

Since for a pure state detCAB = 1, implying that the Rényi-2 entropy
vanishes and thereby that the entropy of the two subsystems are equal
(from a singular value decomposition), there is no ambiguity in choosing
with which party to compute E2. In this pure state case we also have that
I2(Ai:Aj) = 2S2(CA) = 2E2(Ai:Aj).

The measure eq. (3.103) is valid for any Gaussian state, including mixed
ones. It simplifies for pure Gaussian states as described above, and the
minimization can also be put in closed form for general two-mode Gaussian
states, where the subsystems A and B each consist of a single mode. To
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this end we must put the covariance matrix in its standard form:

C =



a1 0
0 a1

c+
3 0
0 c−

3

c+
2 0
0 c−

2

c+
3 0
0 c−

3

a2 0
0 a2

c+
1 0
0 c−

1

c+
2 0
0 c−

2

c+
1 0
0 c−

1

a3 0
0 a3


. (3.105)

In terms of C in the introduced standard form, the minimization in
eq. (3.103) can be brought to the form

E2(Ai:Aj) = 1
2 ln gk, (3.106)

where

gk =



1, if ak ≥
√
a2

i + a2
j − 1;

β

8a2
k

, if αij < ak <
√
a2

i + a2
j − 1;(

a2
i − a2

j

a2
k − 1

)2

, if ak ≤ αij

, (3.107)
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and

αij = 1√
2(a2

i + a2
j )

(
2(a2

i + a2
j ) + (a2

i − a2
j )2

+
∣∣a2

i − a2
j

∣∣√(a2
i − a2

j )2 + 8(a2
i + a2

j )
) 1

2

(3.108a)

β = 2a2
1 + 2a2

2 + 2a2
3 + 2a2

1a
2
2 + 2a2

1a
2
3 + 2a2

2a
2
3

− a4
1 − a4

2 − a4
3 −

√
δ − 1

(3.108b)

δ =
1∏

µ,ν=0

[
(a1 + (−1)µa2 + (−1)νa3)2 − 1

]
. (3.108c)

With this general formula for bipartite entanglement, we can compare
the generation of correlations in reduced parts of the system. With the
symmetric coupling between the bosonic modes and the collective spin
excitations with respect to parameters λx and λy, it suffices to check the
partitions (X :J) and (X :Y ). In fig. 3.10 we compare the measures of
mutual information and entanglement with λy fixed, as a function of λy in
both superradiant phases.

In fig. 3.10 we compare mutual information and bipartite entanglement
in four instances. The left panes display these measures for the partition
(J :X ). Notice how, for I2, this plot is similar to fig. 3.9(a), implying that
the correlations of X and Y are small. Furthermore, the complete picture
of bipartition (XY :J) can be obtained by superposing the correlations of
reduced systems; this is a consequence of the fact that, since the global
state is pure, many of the measures simplify. For example, we have
I2(XY :J) = I2(Y :J) + I2(J :X ).

For this choice still the entanglement measure in subfigure (c) is a
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Figure 3.10: Density plots for (a) I2(J :X) (b) I2(X :Y ) (c) E2(J :X) (d) E2(X :Y ),
at ω = 1. Below each diagram there are slices at λy = 0.5 (left) and at λy = 1.5
(right).

suppressed version of the mutual information, which encompasses both
quantum and classical correlations; entanglement, on the other hand, is a
particular, although paradigmatic, example of quantum correlations.

In fig. 3.10(b) and fig. 3.10(d) the comparison is between measures with
the choice of split (Y :X ). The mutual information in (a) is significantly
weaker in comparison with its full system counterpart, confirming the
expectations just mentioned above. Moreover, the corresponding bipartite
entanglement of formation identically vanishes at all couplings, implying
that the indirect interaction between field modes through their coupling
with the collective spin excitations is insufficient to entangle them.
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Among the commented results this is the strongest one. Entanglement
measures are defined to be non-negative, so we have E2 ≥ 0, but since
entanglement of formation is an upper bound on entanglement, more
definitive statements are limited. What we have shown, however, is that
E2 = 0 for bipartition (Y :X ), thus saturating both constraints. We then
conclude that in this partition, which refers to a mixed state (resulting from
tracing out one of the subsystems), entanglement (not only entanglement of
formation) is zero for all coupling values.

Tripartite entanglement. Beyond the difficulties present in distinguishing
entanglement from other correlations for bipartitions in mixed states, the
very network of entanglement of a multipartite system is in general difficult
to resolve (see [145, §6.5]), even if the partition refers to a global pure
state. For tripartite Gaussian systems this problem was reduced with the
computation of analytical expressions also in terms of the entanglement
of formation and Rényi-2 entropy; ref. [144] defines the residual tripartite
entanglement as

E2(Ai;Aj :Ak) = E2(Ai:BC) − E2(Ai:Aj) − E2(Ai:Ak). (3.109)

The choice of subsystem is now unique, but the nature of eq. (3.109)
introduces the freedom of what we call a focus mode: the single subsystem
that appears in each of the entanglement arguments on the right-hand-side.
This is a genuine measure of tripartite entanglement for Gaussian states,
based on the property of monogamy of entanglement which, in terms of
this quantity, is

E2(Ai;Aj :Ak) ≥ 0. (3.110)

In terms of the standard form for the covariance matrix introduced
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Figure 3.11: Tripartite entanglement.

above, the residual tripartite entanglement takes the form

E2(Ai;Aj :Ak) = 1
2 ln

(
a2

i

gjgk

)
. (3.111)

We can compute numerically E2(Ai;Aj :Ak) with two choices of focus mode,
X and J (the measure is symmetric in the other arguments) [39]. We can
point out that this quantity becomes permutation invariant in all arguments
for fully inseparable states, which is never our case, since E2(X :Y ) = 0 in
all parameter regions.

The choices made are shown in fig. 3.11. We show in these figures
that, regardless of the choice of focus mode, tripartite entanglement is in
general created, although it is significantly weaker when further away from
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the critical lines, where the correlation lengths, on the other hand, becomes
effectively infinite, hence consistently implying divergent entanglement. It
is noticeable, too, that, contrary to bipartite entanglement, the three-party
version seems to be insensitive to the order of the phase transition.

3.5 Summary of chapter
We have shown in this work that relevant and non-trivial properties of
classical and quantum correlations present themselves in the equilibrium
quantum phases of a Dicke model, extended to have two modes coupling
with their own strengths to different components of the collective spin
degrees of freedom [39].

As expected from critical phenomena in many-body systems, where
diverging correlation lengths emerge, we find that large classical and quan-
tum correlations permeate the system near the regions of phase transition.
One of these regions is where the coupling parameters are both equal and
above their critical value, where we have shown that a broken continuous
symmetry gives rise to a Goldstone bosonic mode.

We verify that the systems exhibits tripartite entanglement, although
it is significantly weak far from the critical points. Similar behavior is
found for entanglement in the two collective spin-bosonic mode bipartitions.
In contrast to this, bipartite entanglement among the two bosonic modes
vanishes identically in every point of the phase diagram, rendering the states
of the system separable in this partition.

We approach the problem from a theoretical standpoint, inspired by
the effective models introduced in refs. [131, 132] and others (see [126]).
In this way, we hope to foment further studies of information-theoretic
aspects of the model in an implementation-independent manner, applicable
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to different platforms where the Dicke model interactions may be effectively
simulated.

This work sets the stage for further research into developing a design for
an autonomous absorption refrigerator. Typically, such a refrigerator uses
a three-body interaction, in the shape of aca

†
haw + a†

caha
†
w , for bosonic

modes c , h and w , standing for cold, hot and work baths respectively. The
work bath is the highest temperature bath of the three (βc > βh > βw ),
and the interaction is engineered with resonant gaps ωc + ωw = ωh in such
a way that heat can only flow from the work bath to the hot bath by also
taking quanta from the cold bath alongside it. This construction replaces
the necessity of external control, thereby making it autonomous.

The three-body interaction is a necessary condition for the operation
of the refrigerator, and the two-mode Dicke model has enough degrees of
freedom to allow for that. This three-body interaction, however, marks a
departure from our Gaussian treatment of the two-mode Dicke model, and
would thus require further techniques. An additional point to note is that
the critical point where the Goldstone mode appears is not robust and has
been shown to vanish in a driven-dissipative model, which is avoided in
the autonomous setting. The absorption refrigerator is thus an interesting
setting within which we may study the interplay between thermodynamic
protocols and novel phenomena taking place in quantum phases of matter.
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Conclusion

We investigated a diverse set of features of cooling in the heat-bath algorith-
mic cooling paradigm, ranging from its mechanisms based on computational
aspects of the underlying microscopic quantum theory, to promising new
phenomena that can fuel further research. With this we indent to help in
making quantum refrigeration applicable in practice, and to help bridge the
foundations of thermodynamics and its interplay with other theories.

In studying the particular implementation known as heat-bath algorith-
mic cooling, the task of refrigerating a quantum system was put to test
in an experimental setting, where known cooling limits were shown by
us to hold even in the presence of error models informed by laboratory
settings [27, 36, 45]. We connected these studies to thermodynamic figures
of merit, thus measuring algorithmic cooling up against typical thermal
machines, establishing this design as a proper and efficient refrigerator with
the capacity of achieving the fundamental Carnot bound of thermodynamics
in the expected reversible regime.
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By analyzing the experimental implementation in an NV center, we have
identified two main effects in its performance: the presence of a stochastic
activation, which slows down the rate at which the machine reaches a steady
state and thus links to the cooling power measure for refrigerator, and
amplitude losses, which lowers the cooling limit and thereby decreases the
coefficient of performance of the machine. Full analytical solutions of the
dynamical evolution were computed and are available in this thesis.

The problem of cooling a physical system can be put in very simple
computational terms, which are an effective practical tool for small or sim-
ple system, being on of the principles underpinning heat-bath algorithmic
cooling and making this thermodynamic task amenable and particularly
inviting for quantum computing research. A second principle, that of virtual
subsystems, then emerged during these studies and showed potential in ap-
plications. Known to be of more general value in quantum thermodynamics
[50], and even quantum theory as a whole [101, 107], we sought to bring
use of virtual qubits in improving cooling.

Virtual subsystems provide a powerful framework for cooling quantum
systems [112], reducing it to a generalized swap operation between the
target of refrigeration, and an environment virtual subsystem with the
same dimension. Based on this idea we devised a method for boosting a
qubit-cooling procedure by enabling the virtual subsystem to have quantum
coherences that are transported to the target during the generalized swap of
cooling, and which are ultimately used as resource to further polarize the
system in the energy basis, driving it closer to the ground state as the purity
of the state is maintained [38].

We then moved on to consider our protocol in a more realistic setting,
testing its robustness against an experimental implementation. The central
object was then not a target state whose coherence (of virtual qubit origin)
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was exactly determined, but an ensemble of cooled qubits resulting from that
first refrigeration step. Interestingly, we found that the boosting rotation was
incredibly robust against uncertainties generated in the coherence values.
By sharply identifying the coherence phase, the coherence amplitude could
be as uncertain as logically possible, and yet the ensemble of target qubits
would, on average, become colder. With improvements of up to 10% for
smaller polarization values, we determined that this final coherence boost
could be more advantageous than adding a larger number of reset qubits
(thus accessing a cooler virtual qubit). This boost can be seen as a means to
circumvent previously determined and fairly general cooling limits [47, 48].

A persisting goal of quantum thermodynamics is to test the limits of
what thermal machines can do, and exploiting the use of genuine quantum
features in their operation, not unlike the algorithmic advantages that have
been found for quantum computers. We hope our protocol for use of
quantum coherences that boost cooling beyond known limits adds in this
endeavor. These efforts are not over, however, and aiming at finding novel
quantum phenomena, and at the same time we extend our methods to
the many-body regime, we investigated the equilibrium properties at zero
temperature of a two-mode Dicke model.

The two-mode Dicke model has the proper degrees of freedom to
accommodate a quantum absorption refrigerator. This cooler design works
under the assumption of a three-body interaction, and accesses a particular
set of virtual qubits of two heat baths, similarly to heat-bath algorithmic
cooling [30]. We analyzed the system’s parameter space of coupling
constants at zero temperature, finding a duplicated region of quantum
phase transition, from normal to superradiant phases in each bosonic mode,
coupled to their respective collective spin degree-of-freedom [39].

In the thermodynamic limit of many qubits, the Dicke model behaves as
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a mean-field theory, and the spin degrees-of-freedom mix with the bosonic
modes into three new bosonic ones. We found the Gaussian bosonic
ground state and used this to evaluate and build a correlation profile of
that state. We find robust regions of bipartite entanglement between all
bipartition combinations (spin and bosonic mode, as well as boson-boson).
Moreover, we find that near the critical lines of phase transition, genuine
tripartite entanglement grow, in accordance with general expectations of
phase transitions where the correlation length diverges and the system
achieves a highly-correlated state.

These efforts rely on a driven-dissipative version of the model, where
the system is left open and thus stays in a non-equilibrium state, to tune
and monitor parameters relevant to establish the results here discussed. A
natural but important next step of the present investigation is therefore to
consider the inclusion of these open-systems aspects and the refrigeration
dynamical protocol, and how the phase diagram reacts to that. Recent
research has been carried out in this direction for distinct extensions of the
Dicke model, such as in refs. [133, 146–149].

This work comes in a wave of recent theoretical and experimental
achievements in recent years that push towards finer control of quantum
systems, with varying goals, ranging from technological interests in in-
formation processing and quantum-thermodynamic engineering, to setups
aiming at testing fundamental physics. By advancing our understanding
of the non-equilibrium aspects of the two-mode Dicke model as laid out
above, we are able to aid directly these novel achievements. In this setup,
thermodynamic features of the model are made front and centre, and can
be exploited to study foundations of thermodynamics of quantum systems
and to build thermal machines operating non-classicaly.
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Vectorization

The natural representation of quantum maps. We introduce the vec-
torization transformations that map density matrices into column matri-
ces and quantum channels into matrix operators, acting on the columns
[89, 90, 92, 150, 151]. To set the notation, we define vectorization on states
as

vec: ρ 7→ ρ⃗ = vec(ρ). (A.1)

In the qubit case, the central Hilbert space from which the quantum dynamics
are constructed is H = C2. Thus, the density matrix of a state is represented
an element of M2×2

C : 2-by-2 matrices with complex entries; in particular,
they are Hermitian and positive semidefinite. In terms of its elements, a
density matrix is mapped by vec by stacking its columns into a single one,
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such as in

1
2

(
1 + z x+ iy
x− iy 1 − z

)
vec7−−→ 1

2


1 + z

x− iy
x+ iy
1 − z

 , (A.2)

where M2×2
C

vec∼= M1×4
C = C4. We call the resulting column matrix space

Liouville space. For a vector in this space to represent a state, it must obey
certain conditions. These conditions, however, are more naturally stated
in the unvectorized form, as we have listed above. More generally, for a
d-dimensional system, vectorization reads

ρ =
d−1∑
i=0

d−1∑
j=0

ρij |i⟩⟨j| vec7−−→ ρ⃗ =
∑
i,j

ρij |i⟩|j⟩

=
d2−1∑
k=0

ρk |k⟩ ,

(A.3)

where in the bottom line of the right-hand side, k goes over the d2 joint
indices ij in anti-lexicographic order, corresponding to the choice of
stacking columns. For instance, for d = 2,

ij : 00 → 01 → 10 → 11

k : 0 → 1 → 2 → 3 ,
(A.4)

such as the case of a one-qubit density matrix. Note that each index here
refers to rows and columns, not to two qubits.

The vectorization of states induces a second mapping, also known as
the natural representation of quantum maps Φ [90]. Quantum maps defined
on a state by its operator-sum representation, E [ρ] =

∑
µ EµρE

†
µ, will obey
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the compatibility condition:

ΦE ρ⃗ = vec[E(ρ)]. (A.5)

In words, the compatibility condition is the statement that there exists
ΦK such that it maps the vectorized input state to the vectorization of the
output of K. With the quantum map E being the action of a semigroup,
the vectorization map is known as an intertwiner. The solution to the
compatibility condition in these variables is

ΦE =
∑

µ

Eµ ⊗ (E†
µ)⊺, (A.6)

where the combined adjoints (E†
µ)⊺ culminate in simple complex conju-

gation, E∗
µ in finite dimensions. As such, a map ΦE on a qubit is a matrix

element of M4×4
C that allows rewriting the operator sum representation of K

as simple matrix multiplication. For this reason the natural representation
is chosen for most of the practical calculations in this thesis. In forgoing
the usual conjugation action of unitaries or the operator-sum representation
in favor of regular matrix multiplication, the computations more simply
implemented in computer algebra systems, such as Mathematica.

Another advantage of this representation is that quantum channels are
unique, which is not true in the operator-sum representation: there are
possibly more than one set of Kraus operators Eµ that implement the same
channel. In contrast, the vectorized representation is not ideal to infer
quantum properties of the channel of interest [90]. A third representation
that is more suited for this is the Choi representation, where the map is
also unique and where the property of being completely positive translates
to its Choi representation being positive semidefininte. In fact, the non-

134



Appendix A. Vectorization

uniqueness of Kraus operators in turn translates to the non-uniqueness in
writing the Choi representation as a sum of dyadics. The Kraus operators
are the unvectorization of the vectors defining these dyadics.
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NV center experimental
details

This section provides additional details about the experimental implementa-
tion of the three-qubit heat-bath algorithmic cooling refrigerator using a
system of a NV center in diamond [27] in direct correspondence to ref. [36],
on which chapter 1 is based.

The experimental setup consists of a confocal microscope, a permanent
magnet for the creation of the external magnetic field and equipment
for electron and nuclear spin manipulation as shown in fig. B.1. The
setup operates at room temperature and atmospheric pressure and is used
exclusively to work with single NV centers. The diamond sample is
embedded into a sapphire waver of 2mm thickness and a diameter of 50mm.
The sapphire waver is mounted on a 3-axis piezoelectric scanner with a
travel range of 100µm × 100µm × 25µm and subnanometer resolution.
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Figure B.1: Sketch of the experimental setup. The setup consists of a homebuilt
confocal microscope, a permanent magnet and microwave (MW) and radio frequency
(RF) sources. The 520nm laser is operated at a power close to NV center saturation
(0.1mW to 0.5mW before the objective). An additional 637nm laser is used for
electron spin repolarization (charge state control) and thus has a power of less
than 10µW. O.D. is the standard optical detection setup where the fluorescence is
filtered by a 650nm long-pass filter and a 50µm pinhole, and then detected by a
single-photon-counting avalanche photodiode. At the bottom are shown the sample,
substrate and the confocal image displaying the location of the NV center.

Reset polarization. The SWAP gate used for the reset steps is adapted for
the efficient generation of a variable degree of nuclear spin polarization. As
compared to the implementation of the traditional SWAP gate using three
CNOT gates, here only two CNOT gates are enough. The final electron
spin state after application of the SWAP gate is indeed irrelevant, as it only
acts as source of polarization and can be easily repolarized with a green
or red laser pulse into |ms = 0⟩. Therefore, the third controlled rotation is
not required, and the SWAP gate simplifies to two controlled spin rotations.
Furthermore, to achieve variable polarization transfer to the nuclear spins,
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13C

e |0⟩
̂ρm

0 πy

+ Ry,θ

|0⟩ 0
( )π/2y

n

Figure B.2: Pulse sequence for variable degree polarization transfer from electron
spin to the two nuclear spins used in the experiment. The electron initially is in state
|ms = 0⟩, while the target 13C nuclear spin is in a fully mixed state. To remove
any remaining polarization, before the polarization step, a 50µs long π/2-pulse is
performed on the nuclear spin. The actual polarization transfer part of the sequence
consists of a 80µs red laser pulse for electron reset, a nuclear spin controlled
electron π-pulse (6µs/20µs for 13C1/13C2) and an electron spin controlled nuclear
spin rotation of variable duration (0µs to 100µs). To increase the nuclear spin
polarization, the polarization transfer part can be repeated n-times. Finally, the spin
state is read out with single-shot readout (SSR). The experiment was performed for
angles θ between 0 and 2π.

the second electron controlled nuclear rotation does not necessarily need
to cover the full angle θ = π but can be replaced by a rotation of variable
angle, Ry,θ as shown in fig. B.1.

For the choice of the magnetic field (540mT) used in the experiment,
direct optical nuclear spin polarization due to GSLAC and ESLAC is not
possible as it requires much lower fields (∼50 to 100mT). The choice for
such large fields is to achieve high fidelity single shot readout of the nuclear
spins, by improving the nuclear spin life-time that scales quadratically with
the field strength [152]. The 14N nuclear spin lifetime reaches close to a
millisecond at such field strengths.

Gate implementation. The total gate duration of cooling operation U is
∼284µs. An optimal pulse-duration for the nuclear spin gates was chosen
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Appendix B. NV center experimental details

to be around 50µs to omit heating of the sample due to the large RF power
and to omit crosstalk to other nuclear spin transitions. The electron spin
controlled nuclear spin phase gates do not change the state of the electron
spin, thereby avoiding any decoupling errors during the gate operation.
Furthermore, the electron spin state remaining in state |ms = 0⟩ during the
long nuclear spin operations will preserve its coherence over the electron
spin relaxation timescales of T1,e ∼ 5.7ms. The electron spin 2π-pulses
take at total duration of 84µs [27]. While the coherences decay on a
timescale of THahn

2,e ∼ 395µs. The electron spin gates were optimized with
help of the optimal control platform DYNAMO [153] to realize fast and
robust Hahn gates despite electron decoherence on timescales of THahn

2,e and
a dense electron spin spectrum [154].
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Appendix C

Williamson’s theorem

We develop here an adapted version of the arguments leading to the
expression of S in section 3.3.1 as shown in [142, §3.2.3].

Williamson’s theorem. Let K be a symmetric positive-definite matrix.
There exists a real symplectic matrix S such that

SKS⊺ = V , (C.1)

where V is a diagonal matrix with positive components.

An algorithm for symplectic diagonalization. Williamson’s theorem
provides an algorithm to construct the linear symplectic transformation
that puts these operators in their normal mode form. Their ground state
is thereby found to be the tensor product of vacuum states of each of the
normal modes under the inverse transformation.
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Appendix C. Williamson’s theorem

The theorem states that a positive-definite symmetric 2N × 2N matrix
K can be put in diagonal form V = diag(ν1, ν1, . . . , νN , νN ), where
νi ⩾ 0 are the symplectic eigenvalues, through a symplectic matrix M:

K = MVM⊺
. (C.2)

A proof of this theorem yields the algorithm to construct M; we follow
Appendix A of [155] to show this below.

We first note that the symplectic eigenvalues defining V can be computed
through regular diagonalization with unitary matrices. Consider the matrix
K̃ = iK1/2ΩK1/2, where Ω is the symplectic form. K̃ is a Hermitian
matrix, thus having real eigenvalues.a It remains to show how the spectrum
and eigenvectors of K̃ is related to relation (C.2), and this is done by
constructing M .

The eigenvalues of K̃ are split into pairs, K̃ui = νiui and K̃ui
∗ =

−νiui
∗. Let U be the unitary matrix diagonalizing K̃ :

K̃ = U



ν1

−ν1
. . .

νN

−νN


U†. (C.3)

aAn alternative is to find the spectrum of iΩK , which through a similarity transformation
is shown to share the same eigenvalues as K̃ : K−1/2K̃K1/2 = iΩK .
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Appendix C. Williamson’s theorem

Composing U with

W =


w 0 0

0 . . . 0

0 0 w

 , where w = 1√
2

(
1 i
1 −i

)
, (C.4)

allows us to find

M = K1/2UW
(

N⊕
i=1

(
ν

−1/2
i 0
0 ν

−1/2
i

))
, (C.5)

which can be shown to be symplectic.
Finally, by inverting the relation (C.2) as M−1K (M−1)⊺, we arrive at

V =



ν1

ν1
. . .

νN

νN


. (C.6)

In steps, an algorithm to find the symplectic spectrum of K , namely find V
and M, is: 1) Diagonalize K̃ , i.e. find its eigenvalues (seen in (C.3)) and
eigenvectors U . 2) Write down M as in (C.5), with W also given above. 3)
Write down V as in eq. (C.6), where the diagonal values are pairwise the
absolute values of the spectrum of K̃ .
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Ausführliche deutsche
Zusammenfassung

Hintergrund und Motivation
Die Vorbereitung reiner Zustände ist von entscheidender Bedeutung, um
Quantentechnologien funktionsfähig zu machen, insbesondere für Quanten-
computer [1–3]. Eine hochgenaue Initialisierung eines Mehrqubit-Registers
auf den Rechenzustand |00 . . . 0⟩ ist der erste Schritt zur Berechnung und
wichtig genug, um als einer der Hauptantriebe für den Bau von Quanten-
computern in großem Maßstab eingestuft zu werden, wie beispielsweise
im zweiten Kriterium von DiVincenzo zusammengefasst [1]. Diese Be-
mühungen gehen einher mit der Entwicklung von Berechnungen, die fern
von fehlerinduzierenden Dynamiken in decoherence-free subspace [4–7]
oder innerhalb von noiseless subsystem [8–10] stattfinden, und zusätzlich
zur aktiven Implementierung von quantenfehlerkorrigierenden Maßnahmen
[11, 12].

In DiVincenzos Kriterien [1] und den anschließenden Charakterisierun-
gen [3] wird die Kühlung in verschiedenen Formen explizit als haupt-
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sächlicher Ansatz für das Target der Erzeugung von niederentropischen
Referenzzuständen erwähnt. Die Kälteerzeugung bildet somit die Basis für
die Durchführung von Experimenten im Allgemeinen. Wir erkennen nun
ihre Notwendigkeit in modernen Spitzentechnologien und bemerken ihre
Präsenz im Streben nach präziseren Uhren [13], der Vorbereitung kalter
und ultrakalter Vielteilchenzustände für Simulationen oder andere Anwen-
dungen in der präzisen Steuerung und Messung von Quantenzuständen
[14–19].

Eine Quantenkühlmaschine, die in besonderem Zusammenhang zur
Entwicklung von Quantencomputern steht, ist der algorithmische Kühler.
Gleichzeitig kann er als eine Art von quantenmechanischer Wärmemaschine
betrachtet werden, die jedoch intrinsisch ein algorithmisches Verfahren
ist und somit in gewisser Weise eine eigene Berechnungsaufgabe darstellt.
Darüber hinaus ist er experimentell realisierbar [22, 23].

Ursprünglich im Zusammenhang mit dem Vorschlag zur Ensemble-
Quantenberechnung mittels Kernmagnetischer Resonanz (NMR) vorgeschla-
gen [20–22], zielte der algorithmische Kühlmaschine darauf ab, ein ef-
fektives niedrigdimensionales quantenmechanisches Teilsystem aus dem
großen thermischen Zustand zu erzeugen. Dieses sollte dem Grundzustand
näher kommen und für Quantenberechnungsaufgaben geeignet sein. Später
wurde erkannt, dass für diesen Ansatz eine ausreichend große Menge dieser
effektiven Qubits bei niedrigen Temperaturen erforderlich wäre und diese
von Dekohärenzeffekten ferngehalten werden müssten.

Fehlertoleranzschätzungen setzten dieser Methode erhebliche Grenzen
und waren ein Hindernis. Die Fähigkeit, Mehrqubit-Register laufend
zu kühlen, schien vielversprechender zu sein, wie später gezeigt wurde
[24, 25]. In dieser Methode, genannt Heat-Bath Algorithmic Cooling
(HBAC), erfolgt die Kühlung über einen Zyklus von Operationen unter
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Einbeziehung einer separaten Umgebung. Die berechneten Qubits sind das
Target eines unitären Gatters, bei dem ebenfalls Qubits aus dem Wärmebad
als Eingabe verwendet werden, die jedoch für den nächsten Zyklus verworfen
werden. In diesem Sinne findet die Kühlung des Ziels im Kontext eines
offenen Quantensystems statt. Dies steht im Gegensatz zum ursprünglichen
Vorschlag, bei dem auf die Kühlung des Großteils des Ensembles von
Qubits (z.B. das flüssige NMR-Ensemble) eine unitäre Operation folgt, die
das Target Qubit initialisiert.

In den folgenden Abschnitten werden wir uns von der Fokussierung auf
die Steuerung von Quantensystemen abwenden und einen autonomen Quan-
tenkühler in Betracht ziehen [28–31]. Im Gegensatz zur Gestaltung von
kontrollierten Systemen wie HBAC entwickelt und führt ein Absorptionsküh-
ler autonom Kühlung auf einem kalten Wärmebad durch, frei von externen
Interaktionen abgesehen von denen, die für die Einrichtung der Plattform
erforderlich sind. Die ersten Entwürfe einer Absorptionskühlmaschines
stammen aus dem 19. Jahrhundert, und eine bemerkenswerte Verbesserung
geht auf Einstein und Szilárd zurück, für eine Absorptionskühlmaschine
ohne bewegliche Teile [32], sowie später in den Referenzen [33–35], die
frühe Beiträge zur Quantenthermodynamik darstellen. Das Arbeitsprinzip
eines solchen Systems beruht auf dem Austausch einer Arbeitsquelle (der
externen Steuervorrichtung, wie beispielsweise einem Regler in der Hand
des Experimentators, der einen Laser abstimmt) gegen ein drittes Wärme-
bad, das zusätzlich zum kalten Bad platziert wird und von dem die Wärme
extrahiert wird, sowie dem heißen Bad, wohin diese Wärme übertragen
wird. Dieses zusätzliche Wärmebad, genannt der Arbeitsreservoir, das in
der Regel bei einer noch höheren Temperatur als das heiße Bad sitzt, wird
verwendet, da das System den kalten-zu-heißen Wärmetransport induziert,
indem dieser Prozess mit einem gleichzeitigen Transport von Wärme vom
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Arbeitsreservoir zum heißen Bad gekoppelt wird. Die Motivation, mit
autonomen Systemen zu arbeiten, insbesondere Kühlern, besteht darin,
eine bessere Berechnung der thermodynamischen Kosten dieser Geräte zu
liefern und bewegliche Teile in der Konstruktion dieser Geräte zu verwerfen,
die genau die Quellen für Rauschen und Fehler darstellen, da sie je kleiner
sie gemacht werden, Fluktuationen immer stärker ausgesetzt sind.

Gliederung der Dissertation. Wir beginnen mit Kapitel 1, in der wir
recht allgemeine Kühlungsgrenzen beschreiben und uns auf eine spezielle
Implementierung des algorithmischen Kühlers konzentrieren, bekannt als
Heat-Bath Algorithmic Cooling (HBAC). Algorithmisches Kühlen ist eine
besonders minimale Implementierung eines Kühlers, die es ermöglicht,
viele steuerbare Parameter zu verfolgen, während sie auf Qubits wirkt.
Da es ursprünglich in Bezug auf Zwei-Niveau-Systeme definiert wurde,
eignet es sich für Studien zur Quantenzustandsvorbereitung und betont seine
Nützlichkeit für Quantencomputer und verwandte Technologien. In diesem
ersten Kapitel führen wir eine thermodynamische Analyse von HBAC durch,
die umfassender ist als das, was in der Vergangenheit getan wurde [37], und
zusätzlich zu einer tatsächlichen experimentellen Implementierung seiner
minimalen Version in einer NV-Zentren.

In Kapitel 2 erweitern wir diese Beschreibung und enthüllen die virtuelle
Qubit-Natur der Ressourcen, die zur Kühlung des Target-Qubits im algorith-
mischen Kühlen verwendet werden. Mit diesem Verständnis schlagen wir
vor, wie echte quantenmechanische Ressourcen einzubeziehen sind, und wir
schlagen ein konservatives Verfahren vor, um diese Ressourcen zu nutzen,
um das Zielsystem noch näher an den Grundzustand zu bringen. Dadurch
zeigen wir auf, wie die ursprüngliche Idee der zuvor vorgeschlagenen
universellen Kühlungsgrenzen umgangen werden kann.
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Abschließend richten wir in Kapitel 3 unseren Fokus auf die komplexere
Plattform der wechselwirkenden Spin-Boson-Systeme, in denen kollek-
tives Verhalten, Phasen von Materie und Vielteilchenphysik wesentliche
Konzepte sind. Das etablierte Dicke-Modell, das oft in der Quantenoptik
und Atomphysik nützlich ist [40–42], dient uns zur Untersuchung der
Gleichgewichtseigenschaften eines Systems, das für das Design des Absorp-
tionskühlers geeignet ist. Das Dicke-Modell besteht ursprünglich aus einer
großen Anzahl von d-Niveau-Systemen, die kollektiv mit einem einzel-
nen bosonischen Mode gekoppelt sind. Wir analysieren eine Erweiterung
davon, die einen neuen bosonischen Mode einschließt, der mit einem neuen
Freiheitsgrad der bereits vorhandenen d-Niveau-Systeme gekoppelt ist. Im
thermodynamischen Grenzfall zeigen wir, dass die kollektive Kopplung in
einem Mittelwert-Feld-Ansatz zu einem System von drei wechselwirkenden
harmonischen Oszillatoren vereinfacht werden kann. Dieses erweiterte
Modell weist dieselben Eigenschaften im Gleichgewicht auf wie das ur-
sprüngliche Modell, nun mit zwei unabhängigen normal-zu-superradianten
Phasenübergängen. Darüber hinaus zeigen wir, dass die Region, die die
beiden superradiant Phasen trennt, eine kontinuierliche Symmetrie bricht
und somit einen lückenlos Goldstone-Mode hervorruft. Wir schließen mit
der Entwicklung eines Korrelationsprofils des Systems im Gleichgewicht,
in dem multipartite Verschränkung vorhanden ist.
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