
1. Introduction
Environmental modeling allows researchers to reproduce physical systems under different conditions, be they 
current or future, for design, management or decision making purposes. Due to the high complexity involved in 
environmental modeling, simplifications and assumptions are necessary to consider the different processes that 
interact with each other (Wainwright & Mulligan, 2013). Consequently, different sources of uncertainty arise in 
environmental modeling, including parameter, model input, measurement uncertainty and conceptual uncertainty 
(Gong et al., 2013; Refsgaard et al., 2007). The latter, also referred to as structural uncertainty, pertains to the 
choice of model itself, and has gained renewed interest in the past decades as an important source of predictive 
uncertainty (Bredehoeft, 2005; Gong et al., 2013; Gupta et al., 2012; Höge et al., 2019; Neuman, 2003; Rojas 
et al., 2008).

Due to incomplete knowledge on the real system, there is not only a single way of representing a given phys-
ical phenomenon. Therefore, multiple models can be used to reproduce it, with different levels of detail and 
complexity (J. Smith & Smith, 2007). Consequently, subjectively limiting the number of possible models to only 
one can result in an underestimation of the chosen model's uncertainty or in an overconfidence in its predictive 
capabilities. This, in turn, can lead to biased results, especially with regards to parameter calibration, which could 
be compensating for errors regarding the model selection (Neuman, 2003; Rojas et al., 2008; Ye et al., 2004).

Therefore, the problem becomes centered around the question of which model to use to represent the true, unknown 
system, given the current, limited knowledge on it. A widely accepted method to tackle conceptual uncertainty 
is through multi-model approaches (Bredehoeft,  2005; Neuman & Wierenga,  2003; Refsgaard et  al.,  2006). 
Here, a group of competing conceptual models are either generated or selected, and then tested against some 
acceptance criteria regarding, for example, model fit, model complexity, consistency or multi-objective criteria 
(Neuman, 2003). Enemark et al. (2019) present a list of publications where conceptual uncertainty in groundwater 
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systems was considered through multi-model approaches, showing the importance this topic has been given 
in previous years. Deterministic approaches to multi-model selection use model performance criteria, such as 
mean square error, Nash-Sutcliffe efficiency (Nash & Sutcliffe, 1970) and cross validation methods (Jung, 2018; 
Stone, 1974) as model comparison criteria (Gupta et al., 2009). Nevertheless, these do not allow to account for 
parameter uncertainty. Criteria that do allow to account for parameter uncertainty are stochastic approaches, for 
example, based on Bayesian theory (Hoeting et al., 1999) or information theory (Gong et al., 2013). These two 
are the focus of the current paper.

Bayesian multi-model approaches, such as Bayesian model selection (BMS; Raftery,  1995) are based off of 
Bayes' theorem (Kolmogorov & Bharucha-Reid, 2018). They provide a rigorous stochastic framework to rank 
and select among competing models, while also considering parameter, input and measurement uncertainty 
(Draper, 1995). In BMS, a prior belief with regard to model adequacy is updated to posterior model weights, 
based on observed data. Traditionally, model ranking in the BMS framework is based on the values of Bayes-
ian model evidence (BME), which are defined as the probability of a model of reproducing the available data 
(Draper, 1995; Raftery, 1995). Such BME-based model selection approaches have been used in many fields for 
model ranking, and/or selection purposes, for example,: Schöniger, Illman, et al. (2015) and Elshall and Ye (2019) 
for groundwater modeling, Wöhling et  al.  (2015) for crop modeling, Marshall et  al.  (2005) for hydrological 
models, Brunetti et al. (2017) in hydrogeophysical modeling and Schäfer Rodrigues Silva et al. (2020) in reactive 
groundwater transport models, to name a few. Additionally, Mohammadi et al. (2018) and Scheurer et al. (2021) 
apply BMS using surrogate models for sediment transport in rivers and for biochemical processes in the subsur-
face, respectively. Other Bayesian approaches focus on model averaging, instead of model selection. One case 
would be Bayesian model averaging (Hoeting et al., 1999), in which the posterior distributions of several models 
are mixed via a weighted average, with the model weights derived from BME (Höge et al., 2019). However, the 
current paper focuses on model selection and will therefore not discuss model-averaging approaches.

BME is also referred to as the marginal likelihood, since it is computed by estimating the average of the model 
likelihood over the entire prior parameter space (Kass & Raftery, 1995). Thus, it often requires multidimensional 
integration, which can come at high computational costs. Consequently, several approximations for the calcula-
tion of BME exist to avoid the previously mentioned integration, including the harmonic mean estimate (Newton 
& Raftery, 1994), marginal likelihood calculations by Gelfand and Dey (1994) and Chib and Jeliazkov (2001) 
(see Liu and Liu (2012) for an overview), the Bayesian information criterion (Schwarz, 1978) and the Kayshap 
information criterion (Kashyap, 1982), to name a few. These, however, require assumptions regarding the poste-
rior distribution, and/or consider point-wise calculations, which can lead to biased results (Schöniger et al., 2014). 
The Monte Carlo (MC) sampling technique (Hammersley, 1960) provides a bias-free framework to approximate 
BME, given that it allows to sample from the entire prior parameter space, without additional assumptions about 
the posterior. In spite of presenting high computational costs, it has shown to provide the best results based on a 
benchmark test by Schöniger et al. (2014).

In addition to BMS, Schöniger, Illman, et al. (2015) apply a model comparison methodology based not on the 
true observation data but on an inter-model comparison, and called it Bayesian justifiability analysis (BMJ). In 
BMJ, each competing model takes turns being the true data generator and is compared against all other models, 
including itself, in a Bayesian setup. The results, composed of BME-weights, are then summarized in a model 
confusion matrix (MCM). The term confusion matrix is borrowed from machine learning, where it is used for 
classification-type problems (see Tharwat, 2020). Similar as with the machine learning application, the MCM 
allows to visualize similarities between the considered models and to justify model complexity, given the avail-
able data. It can therefore complement the model selection analysis. Recently, the BMJ framework has been 
extended to computationally demanding models applying surrogates (Schäfer Rodrigues Silva et  al.,  2020; 
Scheurer et al., 2021) and for model uncertainty quantification (Reuschen et al., 2021).

Even though traditional BME-based BMS analyses do provide a statistically rigorous methodology for consider-
ing uncertainties, it does present some limitations, which also extend to the BMJ methodology. A first limitation 
is that BME does not allow to judge the performance of a model based on its posterior predictive capabilities. 
Basically, in Bayesia theory (see Gelman et al., 1995; Kolmogorov & Bharucha-Reid, 2018), BME is considered 
as a normalization factor that can be obtained via the integration of the likelihood over the prior parameter space. 
It is the average likelihood of a model before performing Bayesian update. Therefore, BME values contain only 
partial information required for the Bayesian updating of a model via the observation data. Additionally, BME 
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values are highly sensitive to prior selection (Raftery, 1995). In other words, BME-based approaches fail to give 
an idea of the posterior predictive capabilities or how much the model was able to learn from the data, which are 
integral steps within the Bayesian framework.

From a model comparison perspective, it is not possible with BME to directly compare models that use differ-
ent data sets for calibration. This limitation applies when comparing models with different configurations, 
such as different time/space discretizations, different state spaces, model dimensions (1D, 2D), or models that 
consider  different processes (e.g., flow-only vs. flow-and-transport). For brevity, we will call this multi-fidelity 
model comparisons. In said cases, simplifications could require averaging available observations or ignoring 
subsets and/or types of data (e.g., see Mouris et al., 2023). Multi-fidelity comparisons can be useful, not only to 
select the best model, but also to quantify the change in model performance under different model configurations. 
Therefore, using BME on these different data sets to compare the models' performance would induce bias. The 
bias results from the dependence of likelihood functions on data set properties, such as data set size and measure-
ment error. Several studies have addressed the impact of measurement error, data type and data set size on model 
selection rankings (see Rojas et al., 2010; Schöniger, Wöhling, & Nowak, 2015; Wöhling et al., 2015). They show 
how one can obtain significantly different BMS weights depending on the data set chosen for the comparison. 
Thus, a solely BME-based approach is limited to comparing models with the exact same calibration/testing data 
set to avoid bias in the comparison.

One way to deal with the problems posed by BME is through the use of information theory, which has close ties 
to Bayesian inference, given that Bayesian inference is linked to maximum entropy quantification and is efficient 
in terms of information content (Zellner, 1988). Information theory scores include the expected-log posterior 
density (ELPD), relative entropy (RE), also known as Kullback-Leibler divergence (Kullback & Leibler, 1951), 
and information entropy (IE), which stem from Shannon's definition of entropy (Shannon, 1948). They have 
been widely used in probability theory applications to quantify the uncertainty and amount of information 
(Murari et al., 2019), for model selection purposes (Cliff et al., 2018; Gelman et al., 2014; Murari et al., 2019; 
Vecer, 2019) and optimal experimental design (Lindley, 1956; Nowak & Guthke, 2016).

Many applications use approximations of entropy, such as the Akaike information criteria (AIC) (Akaike, 1974), 
Watanabe-Akaike information criterion (WAIC) (Watanabe, 2010), AICc and the multivariate Gaussian posterior 
estimate (Oladyshkin & Nowak, 2019), due to the difficulty to calculate entropy values for high-dimensional prob-
lems. These, as previously mentioned, make use of, assumptions with regards to the posterior distribution, which 
can cause bias in the results (Oladyshkin & Nowak, 2019). To overcome this, Oladyshkin and Nowak (2019) elab-
orate on the connection between Bayesian inference and information theory and present prior-based techniques 
to compute BME in combination with cross entropy (CE), RE and IE. The authors expose the potential benefits 
of using the additional information criteria to measure information content in Bayesian updating, optimal exper-
imental design and model selection purposes. The paper, however, does not present a specific application. The 
approach proposed in Oladyshkin and Nowak (2019) has been applied in active learning techniques for surrogate 
model generation, which closely resembles optimal experimental design setups (Mouris et al., 2023; Oladyshkin 
et al., 2020), but not, to the authors' knowledge, for model selection or similarity analysis.

The prior-based techniques for estimating RE, CE, and IE proposed in Oladyshkin and Nowak (2019) present some 
advantages, which can be exploited for model selection and comparison purposes. First, they avoid any additional 
assumptions and skip any multidimensional integration or density estimation. Second, the information-theoretic 
scores provide information on the updating process within the Bayesian inference framework, which is ignored 
in traditional BME-based BMS and BMJ analysis. Furthermore, some of the information-theoretic scores exhibit 
a reduced dependence on data set properties and remain meaningful for comparing models that use different 
calibration data sets. Thus, in a Bayesian context, they can be utilized to compare models with different configu-
rations and/or process that use different calibration data sets.

The current paper proposes to complement the traditional BME-based methodology with information-theoretic 
scores to overcome the two aforementioned limitations surrounding BME. We focus on ELPD as a measure of 
information between the likelihood and the posterior (posterior model fit), RE between the prior and the posterior 
(updatability of model parameters through the data) and IE of the posterior for model selection and compar-
ison purposes. To avoid additional assumptions we will use prior-based MC sampling (Gelman et  al.,  1995; 
Hammersley, 1960) alongside the formulations presented in Oladyshkin and Nowak (2019). Additionally, and 
building on the work by Schöniger, Illman, et al. (2015), we implement a model similarity analysis using model 
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confusion matrices (MCM) based on BME and the different information-theoretic scores, to determine differ-
ences and similarities between the models in different steps of the Bayesian updating process.

We apply and test the methodology on a synthetic groundwater model setup, made up of four competing models 
and based on the setup in Schöniger, Illman, et al. (2015). Here, four flow-transport models with different spatial 
hydraulic conductivity distributions are compared against a set of synthetically generated data (BMS) and against 
each other (model similarity analysis). This setup will allow to test our proposed methodology on environmen-
tal models with different complexity, represented by their spatial distribution of hydraulic conductivity. Taking 
advantage of the current setup, we include a fifth model, which will represent a lower-fidelity version of one of 
the previously mentioned models: a flow-only model, which considers fewer processes. Consequently, it can 
be calibrated on a smaller data set only. This second case will allow us to test the methodology on models with 
different calibration data sets.

The setup resembles potential real-world scenarios, where a modeler might be faced with the decision of deter-
mining a model's (prior) complexity, which processes to consider or whether to gather additional information. 
Considering multiple models, as in the proposed setup, can reduce the conceptual uncertainty, allowing to reach 
a more informed decision. We chose a synthetic, computationally cheap model to exemplify the methodology. 
Therefore, with this study and its application case, we seek to (a) present the behavior of the information-theoretic 
scores within the BMS and model similarity frameworks, and how they can be interpreted to complement BME; 
(b) determine which scores can be used to compare models that use different data sets for calibration, and the 
limitations associated to them.

The remainder of the paper is organized as follows: in Section 2 we present an overview of traditional BMS and 
BMJ frameworks. We then introduce the synthetic setup in Section 3. We briefly present the different information 
scores, as well as a computationally simple way to calculate them in Section 4. Here, we also show how these 
scores overcome the current limitations of BME-based BMS and BMJ approaches and we guide the reader in how 
to interpret them within both frameworks. Lastly, the results and discussion are presented in Section 5.

2. Bayesian Model Assessment Framework
2.1. Bayes' Theorem

In Bayes' theorem (see Kolmogorov & Bharucha-Reid,  2018), current knowledge associated with the set of 
uncertain parameters, for a given model Mk, is encoded in a so-called prior distribution. The current beliefs 
are then updated based on how well the model can reproduce observed data to obtain a posterior distribution 
(Raftery, 1995). Bayes' theorem can be summarized by the following equation:

𝑝𝑝(𝝎𝝎𝑘𝑘|𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜) =
𝑝𝑝(𝐲𝐲𝑜𝑜|𝝎𝝎𝑘𝑘,𝑀𝑀𝑘𝑘) 𝑝𝑝(𝝎𝝎𝑘𝑘|𝑀𝑀𝑘𝑘)

𝑝𝑝(𝐲𝐲𝑜𝑜|𝑀𝑀𝑘𝑘)
, (1)

where p(ωk|Mk) is the prior distribution of modeling parameters ωk from the parameter space Ωk, p(yo|ωk, Mk) 
is the likelihood function, p(ωk|Mk, yo) is the updated posterior distribution and the denominator p(yo|Mk) is the 
probability of data given Mk. The latter could be seen as a normalizing factor to obtain the posterior distribution 
and is referred to as BME.

The likelihood function (see Aldrich, 1997) incorporates the available observation and quantifies model Mk's fit 
to the available observation data yo (Press, 2009). If one assumes Gaussian-distributed independent errors, as we 
do for the purpose of this paper, a multivariate Gaussian distribution can be used as a likelihood function:

𝑝𝑝(𝑦𝑦𝑜𝑜|𝝎𝝎,𝑀𝑀𝑘𝑘) = (2𝜋𝜋)
−𝑁𝑁𝑜𝑜

2 |𝐑𝐑|−1∕2exp
[

−
1

2
(𝐲𝐲𝑘𝑘 − 𝐲𝐲𝑜𝑜)

𝑇𝑇
𝐑𝐑

−1(𝐲𝐲𝑘𝑘 − 𝐲𝐲𝑜𝑜)
]

, (2)

where R is the (here diagonal) covariance matrix of measurement errors of size No × No, with No being the 
number of observations in the calibration data set, yo is the vector of calibration data (observations) and yk is 
the vector of corresponding model results from model Mk. The term to the left of the exponent is a normalizing 
factor, such that the area under the likelihood function integrates to one over the distribution of measurement 
error. The goodness of fit to the data is encoded in the exponential term on the right. Extended approaches exists 
that account for auto-correlated and/or non-Gaussian errors, or that include statistical representations of model 
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inaccuracies. As we will not exploit specific properties of Equation 2, our assumption does not induce any loss 
of generality.

The equation for BME can be rewritten as follows:

𝑝𝑝(𝐲𝐲𝑜𝑜|𝑀𝑀𝑘𝑘) = 𝐵𝐵𝑀𝑀𝐵𝐵𝑘𝑘 = ∫
Ω𝑘𝑘

𝑝𝑝(𝐲𝐲𝑜𝑜|𝝎𝝎𝑘𝑘,𝑀𝑀𝑘𝑘) 𝑝𝑝(𝝎𝝎𝑘𝑘|𝑀𝑀𝑘𝑘) 𝑑𝑑𝝎𝝎𝑘𝑘, (3)

or, shortly, using the prior-based expectation 𝐴𝐴 𝔼𝔼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[⋅] :

𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘 = 𝔼𝔼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

[
𝑝𝑝(𝐲𝐲𝑝𝑝|𝝎𝝎𝑘𝑘,𝐵𝐵𝑘𝑘)

]
, (4)

where the BME value is expressed as an integral over the total parameter space Ωk and, for that reason, also 
known as the marginal likelihood (Kass & Raftery, 1995). Based on this formulation, BME values are sensitive 
to prior selection (Kass & Raftery, 1995) and, therefore, tend to favor models with the best compromise between 
model flexibility and model fit (Schöniger, Illman, et  al.,  2015). There are several alternative approaches to 
estimate BME using posterior marginalization or additional approximations (see Oladyshkin & Nowak, 2019; 
Schöniger et  al.,  2014). However, Equation  3 is often employed using the prior-based brute MC sampling 
(Hammersley, 1960), where BME is estimated as an average of the prior-based likelihoods.

It is well-known that MC sampling to estimate BME requires a large number of model realizations (NMC) and 
can therefore become computationally prohibitive. Nevertheless, this sampling technique, compared to others, 
avoids additional assumptions with regards to posterior distributions and point-wise estimations (see details in 
Schöniger, Illman, et al. (2015) and Oladyshkin and Nowak (2019)). Therefore, in the current paper, we follow 
the MC sampling strategy to avoid additional assumptions and biased results.

2.2. Bayesian Model Selection

In a similar manner as with parameter uncertainty, Bayes' theorem can be used to quantify conceptual uncertainty 
associated to model choice through BMS. Here, both the prior parameter and model adequacy beliefs of model Mk 
are updated based on the observed data to obtain posterior parameter distributions and posterior model weights 
(Chipman et al., 2001). Considering a finite number of competing models NM, the BMS formulation for a given 
model Mk can be summarized by the following equation (Hoeting et al., 1999):

𝑊𝑊 (𝑀𝑀𝑘𝑘|𝐲𝐲𝑜𝑜) =
𝑝𝑝(𝐲𝐲𝑜𝑜|𝑀𝑀𝑘𝑘)𝑊𝑊 (𝑀𝑀𝑘𝑘)

∑𝑁𝑁𝑀𝑀

𝑖𝑖=1
𝑝𝑝(𝐲𝐲𝑜𝑜|𝑀𝑀𝑖𝑖)𝑊𝑊 (𝑀𝑀𝑖𝑖)

, (5)

where W(Mk) and W(Mk|yo) are the model prior and posterior weights associated to a given competing model 
Mk, respectively. The use of a uniform distribution of 1/NM is often used as a prior model assumption, since 
it allows for the updated model weight to depend solely on the model's fit to the data, and not on subjective 
prior distributions (Chipman et al., 2001; Press, 2009). The denominator in Equation 5 is a normalizing factor 
and is the same across all models. Therefore, the only term that has an effect on the posterior model weight is 
p(yo|Mk), which is the BME for model Mk and quantifies the goodness of fit of model Mk against the available 
data.

As BME is a relative measure of model fit associated to a model, a strategy for model selection is to choose the 
model with the highest posterior model weight (Chipman et al., 2001; Oladyshkin & Nowak, 2019), given that a 
higher BME indicates the best compromise between the model fit and the model's flexibility. Model flexibility 
can be described in terms of variance in the output values due to the parameter distributions. Usually, wide, 
uninformative distributions associated to sensitive parameters result in a wide range of output values. BME 
values are valid only for the current state of knowledge, and are dependent on the data. Additionally, the resulting 
model weights depend on the set of models being analyzed. This implies that, if more knowledge is gained on the 
real values (additional measurements) or additional models are considered, the BMS weights (W) will generally 
change.
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2.3. Bayesian Justifiability Analysis

In a BMJ setup, as applied by Schöniger, Illman, et  al.  (2015), the goal 
is to test whether the complexity (e.g., parameter number and spread of 
their prior) of models would be justifiable when facing a limited data set, 
under the assumption that the models could actually be true. To this end, 
the models are not compared against observed data (as in BMS) but against 
each other, in a synthetic setup. Here, each competing model takes turns in 
being the data-generating model and is then compared against all compet-
ing models, including itself, within the Bayesian modeling framework. As a 
result, BME weights are obtained for each data-generating/competing model 
combination.

In BMJ, Nd realizations from the parameter prior of each data-generating 
model Mj are sampled and evaluated in the model. Noise is then added to each 
data set to account for the measurement error associated to real observations 
(Reuschen et al., 2021). Each model data set y*l,j, with l = 1…Nd, then takes 
turns being the “true” data for model Mj, and the Bayesian framework is 
applied for each competing model Mk. The BME weights 𝐴𝐴

(
𝐵𝐵𝐵𝐵𝐵𝐵

(𝑗𝑗)

𝑘𝑘

)
 are then 

averaged over all Nd realizations, to obtain an averaged 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴
(𝑗𝑗)

𝑘𝑘
 value, as 

summarized by the following equation:

𝐵𝐵𝐵𝐵𝐵𝐵
(𝑗𝑗)

𝑘𝑘 =
1

𝑁𝑁𝑑𝑑

𝑁𝑁𝑑𝑑∑

𝑙𝑙=1

𝐵𝐵𝐵𝐵𝐵𝐵
(𝑗𝑗)

𝑘𝑘𝑘𝑙𝑙
𝑘 (6)

where 𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵
(𝑗𝑗)

𝑘𝑘  is the averaged BME of model Mk given Nd realizations of 
model Mj. The results for all 𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵

(𝑗𝑗)

𝑘𝑘  are then summarized in a so-called 
MCM (Schöniger, Illman, et  al., 2015). The MCM has the size NM × NM, 
where the columns represent the data-generating models, Mj, and the rows 
represent the competing models Mk. Confusion matrices, also referred to as 

contingency or error matrices, are often used in machine learning applications, for example, classification prob-
lems (see Lindholm et al., 2022).

Figure 1 shows a schematic illustration of generating the MCM. Following the order set by Equation 6, each 
y*l,j (each column in Figure 1) takes turns in being the true data and the Bayesian framework is applied for 
each competing model Mk. The red-highlighted box in Figure 1 represents the likelihood value obtained when 
comparing each individual realization Mk,i of model Mk for i = 1…NMC, against a single synthetic data set 
Mj,l generated by model Mj. Expectation over NMC realizations of the competing model Mk is schematically 
displayed by each row in Figure 1 (blue highlighted boxes), which results in 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

(𝑗𝑗)

𝑘𝑘𝑘𝑘𝑘
 . The averaged weights 

for each realization of model Mk given Mj,l are represented by the entries along the green cells in Figure 1. 
Lastly, these 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

(𝑗𝑗)

𝑘𝑘𝑘𝑘𝑘
 values are averaged to obtain the MCM entries, represented by the yellow area in 

Figure 1.

Similar to the confusion matrices in classification problems, the diagonal values in the resulting MCM corre-
spond to how much a model measures up against itself as the data generator, while the off-diagonal values 
correspond to how the models measure up against each other. Therefore, diagonal weights close to 1 indicate 
that the model can identify itself as the true data generator, and does not confuse its results (Schöniger, Illman, 
et al., 2015). On the other hand, diagonal values close to 1/NM indicate that a model confuses its predictions 
with those of other models. This can be caused by either models being very similar in their predictions, or 
the available data set size not being big enough for a model to identify itself (Schöniger, Illman, et al., 2015). 
Therefore, “the [MCM] reveals whether two models are actually very similar in their predictions, while the 
conventional BMS analysis cannot distinguish this case from the case of two models that by chance achieve a 
similar overall goodness of fit” (Schöniger, Illman, et al., 2015). A similar type of analysis, but with the main 
focus on off-diagonal values was used by Schäfer Rodrigues Silva et al. (2020) to reveal and discuss similarities 
within a set of models.

Figure 1. Schematic illustration how to construct a model confusion matrix. 
Red box: likelihood of a single realization drawn from model Mk = 1, given a 
single realization drawn from model Mj = 2. Blue boxes: average likelihood 
(Bayesian model evidence (BME)) of model Mk = 1 given a single realization 
of model Mj = 1. Green boxes: Average BME values for model Mk = 2 given all 
realization of model Mj = 2. The diagonal boxes (e.g., yellow box) correspond 
to the average 𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵

(𝑗𝑗)

𝑘𝑘  for a model Mk given data-generating model Mj.
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2.4. Effect of Different Calibration Data Sets

BME's dependence on properties of calibration data sets, such as data set size, informativeness and measure-
ment error, comes from the likelihood function in Equation 2. When the same data set is used for all competing 

models, the normalization factor 𝐴𝐴 (2𝜋𝜋)
−𝑁𝑁𝑜𝑜

2 |𝐑𝐑|−1∕2 in Equation 2 is the same for all models and therefore cancels 
out when estimating Bayesian model weights. In this case, the effect of data set properties is concentrated inside 
the exponential term, in the values and size of R, where it divides the difference between modeled and observed 
data, or model fit.

Canceling the normalization factor is not possible if models with different data sets (including different data set 
sizes and/or measurement errors) are considered, for example, in a multi-fidelity model comparison, as discussed 
in Section 1. Thus, the effect of data set properties on the normalization factor must be taken into account and 
will directly affect the BME value, independent on how well the model reproduces the observations. Indeed, 

from Equation 2, one can see that the first term, 𝐴𝐴 (2𝜋𝜋)
−𝑁𝑁𝑜𝑜

2  , decreases with increasing data set size, decreasing 
likelihood and BME values. In the second term, |R| −1/2, the value of the determinant of R depends on both data 
set size and on the magnitude of the measurement error. Consequently, BME becomes biased when comparing 
models that make use of different subsets of the available data set for calibration/testing, since the models would 
not be tested under equal conditions. We will further explore this scenario using a groundwater case study, in 
which we compare models that use different subsets of a calibration data set. We will use this example to expose 
the problems with BME in these cases, and how we can use information-theoretic scores to overcome them. We 
describe the groundwater case study in Section 3, followed by a description of the information-theoretic scores 
in Section 4.

3. Description of Groundwater Case Study
There is a high uncertainty associated to subsurface modeling, especially with regard to spatially variable mate-
rial parameters and the different processes involved (James & Oldenburg, 1997). Therefore, there is not a unique 
conceptual/mathematical representation of such systems that satisfies all applications. This topic has been tack-
led in many studies, including in Schöniger, Illman, et al. (2015) and Rojas et al. (2008), to name a few. As in 
Schöniger, Illman, et al. (2015), we focus on the conceptual uncertainty associated to the spatial characterization 
of hydraulic conductivity. Different parametrizations, with different complexities, represent different models, 
which can be compared in a BMS setup to select the best one, given a set of available data. Loosely based on the 
work by Schöniger, Illman, et al. (2015), we build a synthetic groundwater model setup, where the challenge of 
modeling subsurface heterogeneity is examined by comparing four models with different spatial distributions of 
hydraulic conductivity in a Bayesian context. The four competing models are flow-and-transport models, and are 
compared against the same calibration data set.

As previously mentioned, modelers can be interested in a multi-fidelity comparison of models, not only with the 
goal of selecting the best one, but also to characterize their behavior under different configurations, at different 
scales or dimensions or when considering different processes. This can provide insight into the influence and 
utility of additional observations, processes and/or complexities on a model's output. Therefore, taking advantage 
of the available setup, we build an additional model that only considers flow processes, using one of the spatial 
hydraulic conductivity parametrization. Said model can only work with the flow-related subset of the calibration 
data set, and therefore cannot be compared under traditional BMS setups to its flow-and-transport counterpart. 
To overcome this challenge, we propose to test this additional scenario under different calibration data sets using 
the combined Bayesian and information-theoretic methodology.

Consequently, the following five models are considered in our setup:

1.  Transport homogeneous model (hm)
2.  Transport zoned model with five zones (zm5)
3.  Flow zoned model with five zones (zm5_f)
4.  Transport zoned model with nine zones (zm9)
5.  Transport geostatistically distributed model (gm),
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Where first the four transport models are compared against the same data 
set in a BMS setup. Second, the two 5-zoned models with different calibra-
tion data sets are compared using additional Bayesian information-theoretic 
scores.

We generate the observation data sets using a synthetic run of one of the 
competing models, as opposed to an experimental laboratory setting, as was 
the case in Schöniger, Illman, et al. (2015). This provides a controlled setup, 
where we know beforehand both the synthetically true observations and the 
synthetic, true hydraulic conductivity distribution.

Through this application, we seek to demonstrate the behavior of the addi-
tional Bayesian information-theoretic scores for (a) models with different 
conceptual representations (prior flexibility) and the same calibration data set 
and (b) multi-fidelity representations of models, using different calibration 
data sets. We also plan to address how the Bayesian information-theoretic 
scores can be used to assess similarities between models through MCMs. To 
do so, we will first summarize the simulation setup as well as the competing 
models in the current section, followed by the results obtained for both the 
model selection and model similarity analysis in Section 5.

3.1. Synthetic Groundwater Model Setup

For generating the groundwater models, we use a MATLAB-based finite element method code, based on the 
program used in Schöniger (2010). The program solves the steady state, 2D groundwater transport equations for 
a 50 m × 50 m confined aquifer, discretized every 1 m. A Dirichlet boundary condition of 1 and 0 m were set on 
the west and east boundaries, respectively, and impermeable Neumann boundary conditions were assigned to the 
north and south boundaries. Additionally, a tracer plume was located in the middle of the west boundary, with a 
fixed boundary concentration of cin = 1 over a length of 10 m. For all competing models, the boundary conditions 
and the different transport parameters were kept constant. The model constants are summarized in Table 1. More 
information on the model setup can be found in Schöniger (2010) and Nowak and Cirpka (2006).

We consider four different hydraulic conductivity (K) models to generate five groundwater models, following 
the logic presented in Schöniger, Illman, et  al.  (2015). We consider the parameters in the log scale, to avoid 
negative conductivity values. Therefore, we will refer to the hydraulic conductivity as ln(K). The homogeneous 
model represents the simplest model, since it consists of a single ln(K) value assigned to all cells in the grid. We 
consider two zoned models, one divided into five homogeneous ln(K) zones, and one divided into nine, with 
the latter therefore being more flexible. For these three models, we assume that the independent ln(K) per zone 
values follow a normal distribution with a mean of ln(1·10 −5) and a variance of 1. Lastly, the most flexible model 
is represented by an isotropic geostatistical model, in which ln(K) follows a multivariate Gaussian distribution 
with an exponential covariance function, with a mean of ln(1·10 −5), a variance of 1 and correlation length of 
[10, 10 m]. This results in 2,500 uncertain parameters, which are all dependent on each other. A summary of the 
different ln(K) parametrization models can be seen in Table 2.

For this test case, the synthetically true ln(K) distribution was generated from 
a realization of the geostatistical model, shown in Figure 2. The synthetic 
setup and the synthetic observation data generated from it will be discussed 
further in Section  3.2. To define the extent and location of each discrete, 
homogeneous zone, we did an informed zonification based on the true 
ln(K) distribution to simulate a prior knowledge of the real ln(K) field. We 
then sampled independent ln(K) values for each one, and therefore did not 
consider a spatial correlation between zones. Both zone classifications can 
be seen in Figure 3.

We evaluate the model outputs in five, arbitrarily located observation wells 
within the study area, which are shown in Figure 2. We take the four previ-
ously mentioned ln(K) models as flow-and-transport models, with hydraulic 

Parameter Value

Domain size [50, 50 m]

Grid size [1, 1 m]

West BC a 1 m

East BC a 0 m

North BC a 0 m/s

South BC a 0 m/s

Porosity 0.35

Longitudinal dispersivity 2.5 m

Transverse dispersivity 0.5 m

Diffusion coefficient 1·10 −9 m/s

 aBC, Boundary condition.

Table 1 
Boundary Conditions and Constant Aquifer and Transport Parameters

Model Number of parameters Parameters' distribution

Homogeneous (hm) 1 𝐴𝐴  [
ln
(
1 ⋅ 10−5

)
, 1

]
 

5-zoned (zm5) 5 𝐴𝐴  [
ln
(
1 ⋅ 10−5

)
, 1

]
 

9-zoned (zm9) 9 𝐴𝐴  [
ln
(
1 ⋅ 10−5

)
, 1

]
 

Geostatistical (gm) 2,500 𝐴𝐴  [
ln
(
1 ⋅ 10−5

)
, 𝚺𝚺

]
 a

 aΣ = Exponential covariance function, with correlation length (x, y) = [10, 
10 m].

Table 2 
Summary of Hydraulic Conductivity Parametrization Models
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head (h) and concentration (co) measurements. Thus, they count with a cali-
bration data set size of 10. To include a model with a different data set size, 
we additionally consider the 5-zoned model as a flow-only model, which 
only considers hydraulic head observations and thus has a calibration data 
set size of five.

It is worth noting that the homogeneous model represents a unique test case. 
Despite variations in hydraulic conductivity values, the model generates 
deterministic hydraulic head values under the given pressure boundary condi-
tions. Furthermore, the model's transport behavior exhibits minimal change, 
leading to low variability in concentration values across the domain. Conse-
quently, parameter input has little impact on the output values, rendering the 
homogeneous model insensitive to updates based on the data analyzed in this 
paper. Nonetheless, the model provides valuable insights into the behavior 
of the Bayesian and information-theoretic scores, which will be discussed in 
future sections.

3.2. Synthetic Setup

For the controlled setup, we use a random realization of the geostatistical 
model as the synthetic, true observed data, since it represents the most flex-

ible model, from both a number of parameters and an output space perspective. The true spatial h and co distri-
bution can be seen in Figures 4a and 4b. These represent the data that the competing models will be compared 
against in a BMS setup.

If one had an infinite number of model realizations, the geostatistical model would be able to reproduce data 
generated from itself perfectly. To properly account for measurement noise in this synthetic setup for BMS and 
BMJ analysis, noise was added to the synthetic data set, to account for measurement error (Reuschen et al., 2021). 
For the noise, we consider a standard deviation of herror = 0.06 m and cerror = 0.06 + 20% of the measured concen-
tration (co), assuming a relative error for co dependent on the measured value.

4. Bayesian Information-Theoretic Model Assessment Framework
The topic of information theory, in the context of communication theory, was addressed by Shannon (1948), 
and has paved the way to information theory in the context of probability and statistics. More information on the 
development of information theory can be seen in the works by Kullback (1997) and Commenges (2015), to name 
a few. This field focuses on quantifying of the amount of information needed to account for uncertainty, referred 
to as IE. Originally, information theory was introduced for discrete-valued random variables (Shannon, 1948) and 
then expanded to continuous distributions. Differences with regards to discrete and continuous entropy are further 

Figure 2. True ln(K) spatial distribution, synthetically generated through 
the geostatistical model. The black dots correspond to the location of the 
measurement points.

Figure 3. Zone classification for (a) 5-zoned model and (b) 9-zoned model, based on synthetically true ln(K) distribution.
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detailed in Marsh (2013) and Santamaría-Bonfil et al. (2016). In the current work, we will explore the connection 
between information theory for continuous distributions and Bayesian inference as presented in Oladyshkin and 
Nowak (2019) to enhance the BMS and BMJ concepts presented in Section 2.

We begin with a brief overview of information-theoretic scores, including IE, CE, and RE within the Bayesian 
framework. This is followed by a computationally simple way to calculate and interpret them within both BMS 
and BMJ frameworks.

4.1. Definitions of Information-Theoretic Scores

Information entropy describes the quantification of the expected uncertainty, or the missing information required 
to remove uncertainty from a random variable (Shannon, 1948). In the context of Bayesian theory, the IE of 
a parameter set ωk can be calculated for its prior or posterior probability distribution. In this work, we limit 
ourselves to quantifying the IE for the posterior to determine the remaining uncertainty after updating the prior 
based on the observed data. IE of the posterior is formulated as follows:

𝐼𝐼𝐼𝐼 ≡ 𝐻𝐻
[
𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜)

]
= −∫

Ω

𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘𝐲𝐲𝑜𝑜) ln
[
𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜)

]
𝑑𝑑𝝎𝝎𝑘𝑘, (7)

where H[·] is the entropy according to

𝐻𝐻[𝑝𝑝(𝑥𝑥)] = −∫ 𝑝𝑝(𝑥𝑥) ln[ 𝑝𝑝(𝑥𝑥)] 𝑑𝑑𝑥𝑥𝑑 (8)

CE (Shannon & Weaver, 1949) quantifies the expected missing information to get one distribution from another 
(Good, 1956; Shore & Johnson, 1980). For the Bayesian framework, one can calculate the information needed to 
get the posterior p(ωk, Mk|yo) from the prior p(ωk, Mk) as follows:

𝐶𝐶𝐶𝐶 ≡ 𝐻𝐻
[
𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜), 𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘)

]
= −∫

Ω

𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜) ln[ 𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘)] 𝑑𝑑𝝎𝝎𝑘𝑘, (9)

where H[·, ·] is the general CE according to

𝐻𝐻[𝑝𝑝(𝑥𝑥), 𝑞𝑞(𝑥𝑥)] = −∫ 𝑝𝑝(𝑥𝑥) ln[𝑞𝑞(𝑥𝑥)]𝑑𝑑𝑥𝑥𝑑 (10)

Similar to CE in Equation 9, the expected missing information to get the posterior from the likelihood could also 
be assessed using a non-normalized cross entropy (NNCE) (Oladyshkin & Nowak, 2019):

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ≡ �̂�𝐻
[
𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜), 𝑝𝑝(𝐲𝐲𝑜𝑜 |𝝎𝝎𝑘𝑘,𝑀𝑀𝑘𝑘)

]
= −∫

Ω

𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜), ln
[
𝑝𝑝(𝐲𝐲𝑜𝑜|𝝎𝝎𝑘𝑘,𝑀𝑀𝑘𝑘)

]
𝑑𝑑𝝎𝝎𝑘𝑘. (11)

Figure 4. Spatial distribution of hydraulic head (left) and concentration (right) for the true synthetic run, generated with the 
geostatistical model.
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The NNCE is non-normalized since the likelihood is considered a proper probability distribution with respect 
to the measurement errors for which the likelihood is determined, and not with respect to the model parameters 
(Oladyshkin & Nowak, 2019). If one eliminates the negative sign in Equation 11, the formulation can be reinter-
preted as the expected log-predictive density (ELPD) (see Gelman et al., 2014; Vehtari & Ojanen, 2012), given 
that the integral in Equation 11 represents a posterior-based expectation of the log-likelihood:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑁 (12)

ELPD, in its different approximations, has been used to compare and quantify model fit based on posterior predic-
tive capacities within the Bayesian framework (Gelman et al., 2014; Höge et al., 2019; Schöniger et al., 2014). It 
can be used to describe the accuracy with which a model can predict not only the data used for calibration, but 
also all potential other data, including those used for testing or those not even available yet (Gelman et al., 2014; 
Nicenboim et al., 2021).

Another score used to compare two probability distributions in terms of uncertainty is RE, also known as the 
Kullback-Leibler divergence (DKL). Kullback and Leibler (1951) mention that this term can be used as a measure 
of how different two distributions are, or the amount of information needed to discriminate between them. Various 
authors remark that RE may seem like a measure of distance between two distributions, since RE ≥ 0 and RE = 0 
only if both distributions are the same. Nevertheless, it is not a proper measure of distance (Commenges, 2015) 
since it is not symmetric and thus RE[A, B] ≠ RE[B, A]. In the Bayesian context, we will use RE to assess the 
expected gain, or reduction in uncertainty, in going from the prior to the posterior as follows:

𝑅𝑅𝑅𝑅 ≡ 𝐷𝐷𝐾𝐾𝐾𝐾

[
𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜), 𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘)

]
= ∫

Ω

ln

[
𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜)

𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘)

]

𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘, 𝐲𝐲𝑜𝑜) 𝑑𝑑𝝎𝝎𝑘𝑘. (13)

Using Equations 7 and 9, Equation 13 can be also rewritten as the difference between the CE and the IE for the 
posterior (IE). In other words, it can be calculated by removing the uncertainty of the posterior from the amount 
of information needed to get the posterior from the prior:

𝑅𝑅𝑅𝑅 = 𝐶𝐶𝑅𝑅 − 𝐼𝐼𝑅𝑅𝐼 (14)

4.2. Computation of Information-Theoretic Scores

Various problems arise when solving Equations  7, 11, and  13. This includes the estimation of the multidi-
mensional integral through additional assumptions, that become necessary in high dimensions (Oladyshkin & 
Nowak, 2019). In the current paper, we use the following approaches, in order to avoid any assumptions and still 
excluding multidimensional integration.

4.2.1. ELPD

To compute ELPD (and therefore NNCE), we use a brute-force MC methodology. Given that the posterior param-
eter and output distributions are usually not known in analytical form, Equation 11 can be rewritten as a sample-
wise expectation of the posterior (giving equal weights to each posterior sample):

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝔼𝔼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

[
ln
[
𝑝𝑝(𝐲𝐲𝑝𝑝|𝝎𝝎𝑘𝑘,𝑀𝑀𝑘𝑘)

] ]
, (15)

where 𝐴𝐴 𝔼𝔼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[⋅] is the posterior-based expectation. Additionally, posterior samples are a by-product of Bayesian 
updating. Therefore, one can approximate Equation 15 by:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ≈
1

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∑

𝑖𝑖=1

ln[ 𝑝𝑝(𝑦𝑦𝑝𝑝|𝝎𝝎𝑖𝑖,𝑀𝑀𝑘𝑘) ], (16)

where Npost is the total number of posterior parameter sets. Posterior samples can be obtained, for example, 
through Markov Chain Monte Carlo (MCMC) techniques or via a rejection sampling technique (A. Smith & 
Gelfand, 1992).

One can observe a similarity between Equation 15 for ELPD and Equation 4 for BME: they are both measure-
ments of model fit, with the former being marginalized on the posterior and the latter on the prior parameter 
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distribution. Therefore, as with BME, the best model from this perspective is the one with the largest ELPD. 
In contrast to BME, ELPD has a smaller influence from the prior, given that it does not play a significant role 
in posterior predictions when having informative data (Gelman et al., 2014). Thus, models with different prior 
flexibility, which received different BME scores, can receive a similar ELPD value if their posteriors present a 
similar model fit.

4.2.2. Relative Entropy

In order to compute RE, Oladyshkin and Nowak (2019) reformulate Bayes' theorem from Equation 1 and obtain 
the following formulation (see Oladyshkin & Nowak, 2019):

𝑅𝑅𝑅𝑅 = −ln[𝐵𝐵𝐵𝐵𝑅𝑅] + 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (17)

Equation 17 indicates that RE can be calculated based on BME and ELPD (−NNCE), using simple MC for the 
former and either MCMC or rejection sampling techniques for the latter, as mentioned in the previous sections. 
Moreover, one can clearly see that the information gained through the data, in the form of RE, is the difference 
between the prior model fit (through −ln(BME)), and the posterior model fit (through ELPD). From a Bayesian 
perspective, the model with the largest RE is the one that reduces predictive uncertainty the most when moving 
from the prior to the posterior parameter distributions, or to which the available data was the most useful. Another 
way of interpreting RE, as mentioned by Oladyshkin and Nowak (2019), is that a maximum RE is assigned to 
the model whose overall normalized likelihood function is most similar to the true unknown posterior distribu-
tion. This makes RE different yet still suitable as a model selection criterion. The difference is that RE is often 
inversely related to BME and so can lead to different model selection outcomes. The inverse relation arises as data 
can be easily informative for a-prior-uninformed models.

4.2.3. Cross Entropy

The CE between the prior and posterior distributions in Equation 9 can be obtained from its definition using the 
posterior-based expectations (similar to ELPD):

𝐶𝐶𝐶𝐶 = −𝔼𝔼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [ ln 𝑝𝑝(𝝎𝝎𝑘𝑘 |𝑀𝑀𝑘𝑘) ] (18)

or, numerically, using posterior-based sampling:

𝐶𝐶𝐶𝐶 ≈ −
1

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∑

𝑖𝑖=1

ln
[
𝑝𝑝(𝝎𝝎𝑘𝑘𝑘𝑖𝑖 |𝑀𝑀𝑘𝑘)

]
. (19)

4.2.4. Information Entropy

With knowledge on ELPD, CE, and RE, one can calculate IE in the Bayesian context directly from Equation 14:

𝐼𝐼𝐼𝐼 = 𝐶𝐶𝐼𝐼 − 𝑅𝑅𝐼𝐼𝑅 (20)

employing Equations 19 and 17.

As previously mentioned, IE is the uncertainty associated to the posterior distribution. Consequently, from a 
model selection perspective, one would be inclined to select the model with the smallest IE (smallest uncer-
tainty). A small IE can be due to (a) a large gain in information by moving from the prior to the posterior and/or 
(b) a small uncertainty associated to the prior parameter distribution (simple or very informative prior). Another 
way to interpret IE is through the two components in Equation 20. From the equation we see that IE depends on 
the difference between CE and RE. Both terms represent different aspects of the relationship between the prior 
and posterior distributions: RE represents the gain in information when moving from a prior to a posterior distri-
bution and CE represents the uncertainty carried from the prior to the posterior (CE). Therefore, it is important 
to consider how much of the posterior uncertainty is due solely to the prior (CE), and how much is due to the 
informativeness of the data (RE) to make an informed decision based on IE. We will further expand on this in 
Section 5.2.



Water Resources Research

MORALES OREAMUNO ET AL.

10.1029/2022WR033711

13 of 25

4.3. Effect of Different Calibration Data Sets

Recall from Equation 16 that ELPD is a likelihood-based score and as such can also lead to biased results when 
comparing models that use different subsets of available data for calibration, including (a) subsets with different 
number of observations and/or (b) same subset size but different data types, with different measurement errors. 
As with BME, the normalizing factor in the likelihood function from Equation 2 cannot be canceled out in said 
cases. This can be seen in more detail in Equation A4, where the equation for ELPD is decomposed to mathemat-
ically see the effect of the normalizing factor from the likelihood function. Therefore, in spite ELPD providing 
useful information in traditional BMS setups, it should not be used when comparing models that use different 
calibration data sets.

In contrast to BME and ELPD, RE, and IE scores compare models based on the prior and/or posterior parameter 
distributions and not directly on model fit: RE quantifies the gain in information from prior to posterior and IE 
the uncertainty associated to the posterior parameter distribution. Therefore, RE and IE do not depend directly 
on the likelihood function, and thus are not affected by models with different data set size. This can be seen in 
Equation 21:

�� = −ln(��) − ln
(

������
[

exp
(

−0.5 ⋅
[

�� ⋅ �−1�
])])

+

ln(��) + �����
[(

−0.5 ⋅
[

�� ⋅ �−1�
])]

 (21)

where NF stands for the normalizing constant. Here we show how, when estimating RE, the normalizing factor 
NF from the likelihood function, present in both ln(BME) and ELPD, is canceled out. Consequently RE, and by 
definition IE, depend solely on the exponential term of the likelihood function in the prior and posterior parame-
ter spaces, which is a direct measure of model predictive quality. Through this equation, we show that we do not 
use a different equation for models with different calibration data sets, but take advantage of the existing benefits 
of a Bayesian approach to estimating RE. We show a more detailed derivation in Equation A5. Due to this, RE 
and IE are more suitable scores to compare models with different data sets, compared to BME or ELPD.

4.4. Extension of Bayesian Model Selection and Model Similarity Analysis

Based on the additional Bayesian information-theoretic scores presented above, we now update the BMS and 
BMJ analysis to include said scores. This allows to compare and rank models not only from a prior BME perspec-
tive, but also from the perspectives of posterior and information gain. In the case of BMS, calculating ELPD, RE 
and IE does not require additional computationally expensive calculations, given that they are a direct result of 
calculating BME (using a MC approach, which is the most computationally demanding step) and the rejection 
sampling process, intrinsic to the Bayesian framework.

In the case of BMJ analysis, the goal of this paper is not necessarily to justify a model's flexibility (as in the 
original paper by Schöniger, Illman, et al. (2015)), but to simply compare the models from different perspec-
tives. Therefore, we will refer to it as a model similarity analysis once the information scores are included in 
the analysis. We propose to construct the MCM for each score in a similar way as for the BME-weights in BMJ 
(Section 2.3). Hence, additional to BME, we evaluate all information-theoretic scores for each model Mk, given 
each realization Ml from the data-generating model Mj. To estimate the entries in the MCM, we average each 
score for all realizations Mk|Mj,l (entries along the green cells in Figure 1) as detailed by the following equations:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
(𝑗𝑗)

𝑘𝑘 =
1

𝑁𝑁𝑑𝑑

𝑁𝑁𝑑𝑑∑

𝑙𝑙=1

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
(𝑗𝑗)

𝑘𝑘𝑘𝑙𝑙
𝑘 (22)

𝑅𝑅𝑅𝑅
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𝑁𝑁𝑑𝑑∑
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(

−ln
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𝐵𝐵𝐵𝐵𝑅𝑅
(𝑗𝑗)

𝑘𝑘𝑘𝑙𝑙

]

+ 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸
(𝑗𝑗)

𝑘𝑘𝑘𝑙𝑙

)

𝑘 (23)
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𝑁𝑁𝑑𝑑

𝑁𝑁𝑑𝑑∑
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(𝑗𝑗)

𝑘𝑘

)

. (24)

Four MCMs, one for each BMS score, will be generated from the results. We additionally propose to represent 
BME in the natural logarithmic scale (ln(BME)), so the results are also in terms of entropy and comparable to all 
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other scores. Nevertheless, its interpretation is the same with or without the log-scale. Therefore, the ln(BME) 
confusion matrix entries are calculated as follows:

ln[𝐵𝐵𝐵𝐵𝐵𝐵]
(𝑗𝑗)

𝑘𝑘 =
1

𝑁𝑁𝑑𝑑

𝑁𝑁𝑑𝑑∑

𝑙𝑙=1

ln

[

𝐵𝐵𝐵𝐵𝐵𝐵
(𝑗𝑗)

𝑘𝑘𝑘𝑙𝑙

]

𝑘 (25)

In contrast to Schöniger, Illman, et al. (2015), we do not calculate Bayesian model weights, since these can 
only be obtained from BME. In contrast, we propose to generate a normalized MCM, where each score for Mk 
given Mj,l is divided, or normalized, by the diagonal value (k = j for each realization l). The goal is to make 
the results easier to interpret, as opposed to building the MCMs with the direct results from Equations 22–25. 
The diagonals in the final, normalized MCM will always be equal to 1 and the off-diagonals will indicate how 
much model Mk diverges, on average, from the diagonals. The closer the normalized value is to 1, the more 
similar the model Mk is to the data-generating model Mj, given the current state of knowledge. The normali-
zation must be done for each realization Mj,l individually and then averaged over all values for Mj (green row 
in Figure 1).

It is important to highlight that the limitations associated to BME and ELPD extend to the model similarity anal-
ysis. Therefore, we should not build BME and ELPD confusion matrices to compare models that use different 
subsets of available data for calibration. In our current case, the exclusion is due to the flow model being able to 
manage a smaller subset of the data. However, as previously mentioned, this is not exclusive to models that use 
calibration sets of different size, but extends to data sets with different data types, that have different associated 
errors, and thus influence the scores differently. This would be the case if, for example, we sought to compare a 
flow-only model with a concentration-only model, with the goal of quantifying the effect of each data set individ-
ually on a higher-fidelity flow-and-transport model.

4.5. Interpretation of MCMs

Based on the explanation of the different scores, the MCMs for ln(BME) and ELPD can be considered as 
likelihood-based comparisons. As in traditional BMJ, the off-diagonal entries can be interpreted as how well 
model Mk can reproduce the results from Mj, or how much Mj confuses its results in the prior (ln(BME)) and 
posterior states (ELPD). We compare the models on a column-wise basis, where the closer the off-diagonal 
values are to the diagonal, the more similar they are according to the corresponding criterion.

The MCM for RE represents how much each model Mk can learn from observations generated by model Mj. 
Given that the MCM is built by first evaluating the scores for one realization of Mj,l at a time and then averaged, 
we do not expect the RE values in the diagonal to tend to zero (when the data-generating model is compared 
against itself). Therefore, two models can be considered similar from a RE perspective if they undergo similar 
information gains (similar updatability), which would result in off-diagonal normalized values close to 1.

IE confusion matrices represent a posterior-based comparison, quantifying the remaining uncertainty in the 
posterior of Mk after updating prior beliefs with data from Mj. As per the definition of IE in Equation 20, model 
similarity based on this perspective depends on a balance between similarities in the prior distribution and upda-
tability based on the data generated by model Mj. Therefore, its interpretation is directly linked to both terms.

5. Illustrative Application to Groundwater Flow and Transport Models
5.1. Numerical Implementation

In this section, we apply the extended BMS and model similarity analysis to the groundwater problem presented 
in Section 3. We calculate the BME, ELPD, RE, and IE scores using Equations 4, 16, 17, and 20. For this, we 
sample 1·10 6 MC realizations from each of the five models. For BMS (Section 5.2) we use a single synthetic 
data set from the geostatistical model to generate the synthetic observations, as described in Section 3.2. For 
implementing the model similarity analysis (Section 5.3) Equations 22–25 are used to populate the MCMs for 
ln(BME), ELPD, RE and IE. Here, Nd = 1,000 MC realizations of each possible data-generating model Mj are 
sampled and then compared to the NMC = 1·10 6 MC realizations from each competing model Mk. The noise added 
to the data-generating models is based on the measurement error variances presented in Section 3.
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We will show, through this application, how to interpret the information-theoretic scores alongside BME. Addi-
tionally, recall that we use one model with a different calibration data set (5-zoned flow model) for a multi-fidelity 
comparison with its flow-and-transport counterpart, which uses a different calibration data set. Here, we show 
how the likelihood-based scores (BME and ELPD) can no longer be applied and one must switch to a solely RE 
and IE-based Bayesian comparison.

5.2. Bayesian Model Selection

The Bayesian and information-theoretic scores for BMS analysis can be seen in Figure 5, comparing all models to 
a random realization of the geostatistical model. We use the results for (a) a comparison between the four transport 
models from different perspectives, using all four scores and (b) a multi-fidelity comparison between  the flow-
only and flow-and-transport models, using only RE and IE. Since BME and ELPD cannot be used to compare 
models that use different subsets of the data for calibration, the scores for the flow model are shown in a lighter 
hue in Figures 5a and 5b.

5.2.1. BME-Based Selection: Maximization of Data Probability

According to BME, the model with the highest value presents the best compromise between model fit and model 
flexibility, and would therefore be selected. The results in Figure 5a show that the 5-zoned model obtains a signif-
icantly higher value among the four transport models. The homogeneous model, although it has the lowest prior 
flexibility, receives the overall smallest BME value, indicating an overall bad model fit. Therefore, it would be 
discarded in a BME-based analysis. The geostatistical model is punished due to a more flexible prior, and thus 
receives a smaller BME than the 5-zoned model. These results are in line with traditional BME analysis, where 
the less flexible models are rewarded with a higher score, if they present a good overall model fit. However, as 
has been pointed out in Section 2, BME does not use the posterior. Consequently, the analysis in Figure 5a can 
be considered incomplete from a fully Bayesian standpoint, as it considers only fractional information from the 
entire Bayesian inference.

Figure 5. Bayesian and information-theoretic scores for each competing groundwater model in the Bayesian model selection 
setup. (a) ln(BME), (b) expected log-predictive density, (c) relative entropy, (d) information entropy. The bars with the 
lighter hues in (a) and (b) indicate that the corresponding flow model cannot be compared to all other models in the set using 
ln(BME) and ELPD, respectively, given that the model uses a subset of the data for calibration.
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5.2.2. ELPD-Based Selection: Maximization of Posterior Likelihood

In contrast to BME, the model with the highest ELPD is considered as having the best posterior fit and would 
therefore win against models with a lower score. From Figure  5b, one would favor any among the 5-zoned, 
9-zoned and geostatistical model over the homogeneous model given the latter's substantially smaller ELPD 
(worst overall posterior model fit). The three favored models present similar ELPD scores of 11.46, 11.09, and 
10.65, respectively. This means that all three models have posterior parameter distributions that can similarly 
predict the observed values. This illustrates how ELPD is less dependent on prior choice when compared to BME. 
The 5-zoned model, however, still presents a slightly higher ELPD score among all four competing models, and 
would therefore be selected from a posterior perspective.

In this case, the ELPD score serves to support the BME-based decision in favor of the 5-zoned transport model, 
given that it received the highest BME and the slightly higher ELPD. If, on the other hand, the more flex-
ible geostatistical model had received a significantly higher ELPD, one might want to weigh the additional 
computational cost associated to Bayesian updating for a more high-dimensional parameter space against a better 
posterior fit, especially when acknowledging that one will as of now work with posterior models anyways. This 
proves how ELPD can be used to complement BME by considering a posterior model fit in the decision process, 
reducing the influence of a potentially uninformative prior choice. However, similar to BME values, the ELPD 
considers only partial information from a Bayesian inference perspective. Namely, ELPD omits the information 
gain from prior to posterior (the change in model fit) and, hence, the analysis in Figure 5b can still be considered 
as incomplete.

Although it is not recommended to compare models that can handle different subsets of the available data for cali-
bration using BME and ELPD, it is possible to observe the direct effect of data set properties on these scores. If 
we compare the BME and ELPD values for the two 5-zoned models (with and without transport), we can observe 
that the transport model, which uses all available data for calibration, has higher scores than the flow model. This 
can be explained by the relatively small measurement error associated to the additional concentration data and 
the ability of the model to reproduce the true co values in both the prior and posterior. However, since the trans-
port model needs to reproduce a larger data set, it is more difficult to achieve high scores. Nevertheless, in this 
case, the likelihood function rewards the (few) realizations that are able to reproduce all 10 observations within 
the error threshold with a significantly higher likelihood, increasing the expected BME and ELPD values. This 
indicates how the measurement error and the size of data set can play an important role when calculating BME 
and ELPD, which can result in bias when comparing models with different calibration data sets.

5.2.3. RE-Based Selection: Maximization of Relative Information Gain

As previously mentioned, RE presents two main advantages as a model comparison criterion: (a) it allows a 
combined prior-posterior analysis, considering how useful the data was to the model and (b) it allows to compare 
models in a multi-fidelity scenario, where the models use different subsets of the data due to different configura-
tions and/or processes being considered. Larger RE values are associated to a high gain in information from the 
available data. This suggests a greater reduction in a model's predictive uncertainty when moving from a prior to 
a posterior state.

Focusing first on the results for the multi-fidelity comparison between the two 5-zoned models shown in 
Figure 5c, we can observe that the transport model obtained a higher RE than the flow-only model. This means 
that the transport model, by adding an additional process and therefore additional data types, was able to learn 
more than the flow model from only 5 hydraulic head observations. Therefore, adding the process proved useful 
to the model's learning process. However, we can observe that the additional gain in information is small, in 
relation to the flow model's RE. This suggests that most of the gain in the flow-and-transport model is due to 
the hydraulic head data. From a decision-maker's perspective, these results can give an idea of what kind of data 
would be most useful to a model, or which processes are better reproduced by the high-fidelity model, from an 
information gain perspective.

Although it might seem obvious and intuitive, that more data means a better fit, that might not necessarily be the 
case. A decrease in RE when adding additional processes/observations can indicate a problem with the concep-
tual model, and therefore one might want to reconsider the approach used for the additional processes. Changes in 
RE values when adding/removing certain processes can also indicate which models are better suited to reproduce 
different types of data.
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Analyzing the BMS results for the transport models, we observe that the 
geostatistical model obtained the highest RE value. This indicates that it was 
able to learn the most from the measurement data when updating from the 
prior to the posterior. This suggests an inverse relationship between RE and 
BME, given that the geostatistical model also obtained the smallest BME 
when compared against the zoned models. We found that RE values are not 
strongly related to model complexity, but rather reflect how well the models 
are able to learn from the data. In some situations, the ability of a model to 
learn from the measurement data could coincide with a greater model flexi-
bility, but the latter should not be seen as a necessary or sufficient condition.

Moreover, a small RE does not necessarily indicate a bad fit to the measure-
ment data, but may also be the result from an initially good prior fit. This 
seems to be the case for the 5-zoned transport model. The smaller RE associ-
ated to it can be explained due to an overall good prior fit to the data (small 
difference between ln(BME) and ELPD). In other words, it had little to learn 
from the data given that the prior parameter distribution encompassed the 
true posterior quite well. This can be seen as a limitation when comparing 
models solely based on RE, given that it tends to punish models with a good 

prior fit with a smaller score. On the other hand, Figure 5c shows that the homogeneous model obtains a RE value 
close to 0, which can also be attributed to BME and ELPD presenting similar values. In this case, however, the 
BME and ELPD scores do present the smallest values and thus the RE score can be interpreted as the homoge-
neous model not being able to learn from the data due to an overall bad model fit. This can be attributed to the 
small sensitivity of the homogeneous model's outputs to different parameter values, as mentioned in Section 3.1. 
Consequently, the model was not able to learn from the available observations. Therefore, we would like to 
emphasize to the reader that BME, ELPD, and RE can complement each other (when possible) and allow to rank 
and select among models based on different perspectives or goals of the analysis.

5.2.4. IE-Based Selection: Minimization of Posterior Uncertainty

Recalling from Section 4.2, IE is the uncertainty associated to the posterior state. Consequently, one would be 
inclined to select a model with a smaller posterior uncertainty. However, IE depends on the interaction between 
RE and CE. Thus, it is important to consider both the effect of the informativeness of the data through RE and the 
effect of the prior distribution through CE.

When analyzing the IE results in Figure 5d, we can observe how the geostatistical model presents a significantly 
smaller IE score than the other four competing models. This would incline us to choose the geostatistical model, 
given that it would provide the most certain posterior distribution. Nevertheless, if we analyze IE together with 
RE, we can see that the difference between the RE values (Figure 5c) is not as substantial as that between IE 
values. We can therefore conclude from Equation 20 that the large difference in IE is due to the prior uncertainty 
through the CE, and not necessarily due to a greater gain in information from the data. This suggests a substantial 
influence of the prior distribution on the posterior uncertainty of a model, and how it can overshadow the effect 
of the data and the overall model fit represented by RE.

Additionally, the smaller IE value associated to the geostatistical model can be attributed to a very informative 
prior, given the 2,500 uncertain parameters associated to this model and the high correlation between them. Due 
to these factors, the space where all parameters are within the allowed prior variance is very small. This causes 
each parameter set to have a high probability density associated to it, which translates to a small entropy (small 
uncertainty). It is worth mentioning that, if the correlation between the parameters were to substantially decrease, 
the entropy would increase, given that entropy is maximized for increasingly independent parameters. The oppo-
site happens when the parameters are independent, as in the case of the homogeneous and the zoned models: the 
probability density associated to each realization decreases with a higher parameter dimension (given parameter 
independence), and thus the entropy increases.

If we omit the geostatistical model for visualization purposes, as displayed in Figure 6, the homogeneous model 
presents the smallest IE within the remaining subset. Here, IE indicates that the homogeneous model has a lower 
posterior parameter uncertainty than the 5 and 9-zoned models. This, however, can be attributed to the prior 

Figure 6. Information entropy scores for a subset of the competing models, 
excluding the geostatistical model.
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distribution (more specifically to the number of uncertain parameters) and not to the overall Bayesian updating 
process. This is supported by the small BME, ELPD, and RE scores associated with the homogeneous model. 
Additionally, the 9-zoned model received the highest IE score within this subset of models, in spite of having the 
largest RE among them. It is clear, then, that the IE depends on both the prior parameter uncertainty and how 
useful the data is in eliminating the uncertainty specified by this prior. However, the dependence of CE on the 
number of parameters generates biased results when comparing models with different parameter dimensions and 
should therefore be avoided in such cases.

Similar to RE, IE can also be used to compare the two 5-zoned models, which have the same prior assumptions 
but use different subsets of the data for calibration. Here, the IE results highlight the effect of additional data on 
the posterior uncertainty, decreasing the influence of the prior (CE). Figure 6 shows how the flow-and-transport 
model has the smaller IE among them, suggesting it learned slightly more from the additional processes and 
managed to reduce the overall posterior uncertainty. This coincides with the results obtained through RE, given 
that it is the main contributor to the IE score.

5.3. Bayesian Model Similarity Analysis

5.3.1. BME and ELPD: Likelihood-Based Comparison

To analyze the similarities, or differences, between the transport models in their prior states, one could limit 
oneself to the original BMJ analysis based on BME-weights, which is presented in Figure 7. Here, the rows and 
columns related to the lower-fidelity flow model are left blank, given that BME cannot be used to compare among 
models that use different calibration data sets.

From the results in Figure 7, we can observe that both the homogeneous and the geostatistical model receive high 
diagonal values, indicating their ability to identify their own results. They also have the smallest off-diagonal 
values, meaning they do not tend to confuse their results. From this, one can conclude that these two models are 
the most different from each other and from the zoned models. On the other hand, the 5-zoned and the 9-zoned 
models obtain model weights smaller than 50% on the diagonal, as well as similar off-diagonal values when 
the respective other is the data generating model. This suggests that these models have the highest likelihood of 
confusing their results, and thus are the most similar from a prior perspective.

Results from the extended model similarity analysis, as detailed in Section 4.4, are shown in Figure 8. We focus 
on the off-diagonal values, namely how much they deviate from the behavior of the data-generating model (diag-
onals). The results are presented as normalized MCMs based on all four scores, including the ln(BME) values. 
Similar to the BME weights, the ln(BME) Figure 8a and ELPD Figure 8b MCMs show empty rows and columns 
where the 5-zoned flow model is involved. The non-normalized version of the MCMs can be seen in Figure B1.

Figure 7. Model confusion matrix based on Bayesian model evidence weights. Columns correspond to data-generating 
models Mj and rows to competing models Mk.
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As with the BME-weight-based MCM, the ln(BME)-based MCM in Figure 8a compares model outputs from 
a prior predictive perspective. Therefore, one can see similar trends in both results: the homogeneous and the 
geostatistical model receive the smallest off-diagonal entries when they generate the data, confirming them as 
the two most different ones. Additionally, the 5 and 9-zoned models obtain the most similar off-diagonal values 
(closer to 1) when the respective other generates the data, meaning they present similar prior predictive capabil-
ities. One must keep in mind, though, that rescaling values to a log-scale compresses the differences given in a 
linear scale at large values, and thus the level of similarity based on BME appears different compared to ln(BME). 
Nevertheless, the trend is maintained and one can reach similar conclusions in terms of model selection and 
similarity.

In contrast to ln(BME), the ELPD-based MCM in Figure  8b compares models from a posterior predictive 
perspective. This means, how likely model Mk's posterior predictions are to coincide with those of Mj. The results 
in Figure 8b show that for all models, except the homogeneous model, the off-diagonal values are closer to 1 than 
for the prior-based ln(BME) results. This indicates that the models appear more similar in the posterior predictive 
state than they do in the prior. For example, the differences between the 5 and 9-zoned models seem to have been 
reduced, given that the off-diagonal values are closer to 1 when the respective other is generating the data. For 
the geostatistical model, the normalized values along row 5 in Figure 8b are close to one. This, however, does not 
indicate a larger similarity between the models, given that the same cannot be observed along the last column, 
when the geostatistical model generates the data. Therefore, it is important to consider both sides of the diagonal 
to be able to determine similarities between models based on these scores.

Figure 8. Normalized model confusion matrices for (a) ln(BME), (b) ELPD, (c) relative entropy and (d) information entropy 
for the Bayesian model similarity analysis. The off-diagonal values are normalized based on the diagonal values and therefore 
an off-diagonal value equal or close to 1 indicates a large similarity. The more a value diverges from 1, either larger or 
smaller, the greater the difference between the models, based on the corresponding criteria. The empty cells in (a) and (b) 
correspond to the cases where the flow model, which uses a smaller calibration data set, is involved.
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5.3.2. RE: Combined Prior and Posterior Comparison

In the case of the RE-based MCM, the rows and columns associated to the lower-fidelity flow model are not 
blank, given that RE allows for a comparison between models, regardless of the subset of the data being used. 
However, we focus our comparison, first, between the flow-and-transport models (which use all available meas-
urements for calibration) and second, in a separate analysis, between the two 5-zoned models.

The RE results in Figure 8c allow to compare the models based on a combined prior and posterior perspective, 
given that it evaluates the updatability of the prior based on the data generated by Mj. Apparently, the homo-
geneous model is the most different in terms of updatability. The off-diagonal entries along column 1 (when 
the homogeneous model is Mj) show averaged RE values that are orders of magnitude larger than 1, which 
suggests that all other models are capable of learning more from data generated by the homogeneous model, 
than the homogeneous model from itself. This is due to the low sensitivity of the homogeneous model's output to 
different ln(K) values. When the homogeneous model acts as Mj, the random noise added to the data-generating 
model's outputs injects the previously lacking variability to the model, which still cannot be reproduced by the 
almost deterministic homogeneous model (Mk). Therefore, the diagonal value is close to zero, which leads to 
the substantially larger values associated to the off-diagonal values along column 1. Additionally, we see how 
the value associated to the homogeneous model along all other columns is significantly smaller than for the 
other competing models. This indicates its inability of learning from data generated from other models, and 
therefore receives an RE value close to 0. Consequently, if one only had the RE confusion matrix to compare 
with, one would reach the same conclusion as before: that the homogeneous model is most different from the 
other models.

On the other hand, the geostatistical model presents the normalized, off-diagonal RE scores farthest from 1 
(after the homogeneous model), when compared to all other models. This, again, alludes to its differences in 
flexibility and ability to learn from data (which is greater than that of the other, simpler models). Out of all the 
models, the 9-zoned model can be deemed the most similar to the geostatistical, given that the former obtains 
the normalized value closest to 1 when the latter generates the data and vice-versa. This explains why it also 
obtains the second largest RE in the BMS analysis, given that it learns from the data in a similar way as the 
geostatistical model.

When comparing the two 5-zoned models to each other, we can observe that they do not receive the same 
score when the flow-and-transport model generates the data. This shows how adding the transport processes and 
concentration data allows for a larger gain in information. This also explains why the 9-zoned model presents a 
normalized value closer to 1 when compared to the 5-zoned transport model, than does the 5-zoned flow model. 
Both the 5 and 9-zoned transport models consider the same processes, and thus allow for a similar, larger gain 
in information.

5.3.3. IE: Posterior-Based Comparison

The IE-based MCM is shown in Figure 8d. Recall that the results represent the remaining uncertainty in the 
posterior parameter distribution. Figure B1d, with the non-normalized values, shows that there is little to no 
variability in the score for each model, independent of which model is generating the data in spite of different RE 
values, as shown in Figure B1c. This suggests that the IE values can be highly influenced by the prior parameter 
distribution, represented by CE, which can prevail over the influence of the data, through RE. Therefore, one must 
pay close attention when comparing models with different prior flexibility, given the strong influence from the 
prior distribution in the result.

The two 5-zoned models in Figure 8d present little differences between their IE scores. Both models have a simi-
lar prior uncertainty (CE), given that they have the same number of uncertain parameters, with the same distri-
butions. Therefore, the results provide information on the direct effect of RE. The slightly greater off-diagonal 
value (1.1) when the transport model generates the data is, in this case, due to the greater RE value assigned to the 
transport model. This means that there are small differences between the models' posterior parameter uncertainty. 
The results support the previous statement that IE should be compared alongside the other scores, especially RE, 
to determine how much of the IE value is due to the available data and how much is due to the model's prior 
flexibility.
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6. Summary and Conclusions
In this study, we propose to use information-theoretic scores, namely ELPD, RE and IE, to complement BME 
for model selection and model justifiably analysis. Employing the connection between Bayesian inference and 
information theory presented in Oladyshkin and Nowak (2019), we illustrate how ELPD, RE, and IE allow to 
gain additional insight with regards to (a) posterior model fit (ELPD), (b) information gain in Bayesian updating 
(RE), and (c) remaining posterior parameter uncertainty (IE). We show how these scores can be interpreted in 
addition to BME and how they come at little to no additional computing cost, given that the most computationally 
demanding step involves the multiple (NMC) model evaluations.

We test the proposed methodology on a controlled setup made up of four flow-and-transport 2D-groundwater 
models, where we compare the models using all four Bayesian and information theoretic scores. Each model 
considers a different spatial hydraulic conductivity distribution, which results in different model flexibility. The 
results show how one can reach different conclusions based on the criteria being used and the overall goal of the 
analysis.

We show how RE can provide a comparison criterion in traditional BMS setups, where all models are cali-
brated against the same data set as well as models when they use different subsets of the observations. 
However, its use comes at the cost of solely ranking and/or comparing among models based on how useful 
the data was to them, that is, how much the parameter uncertainty was reduced through Bayesian updating. 
As the results show, this can sometimes lead to different decisions than with BME-based model selection. For 
example, RE can also punish models with an already good prior fit, and therefore don't benefit from Bayesian 
updating.

IE quantifies the posterior parameter uncertainty after applying Bayesian updating. The results show, however, 
that IE is strongly influenced by the models' prior distribution, to the extent where priors can have a much larger 
impact than the model fit to the data. Therefore, IE is useful to complement RE scores, but not as a measure on 
its own.

We highlight how both BME and ELPD are not appropriate for comparing models that use different subsets of 
the available calibration data, whether those subsets differ in size or consider different types of data with differ-
ent measurement errors. This limitation arises from the inherent bias introduced by the normalization factor in 
the (Gaussian) likelihood function, which strongly depends on data set properties. However, information-based 
scores such as RE and IE are not subject to this bias as they are considered as information scores for parameter 
(not data) distributions. This proves useful for multi-fidelity comparisons, where we want to quantify, from 
a Bayesian perspective, how different model configurations respond to different subsets of the available data 
or given types of data. We showcase this by including a multi-fidelity comparison between two models with 
the same ln(K) distribution but considering different processes: a flow-only versus a flow-and-transport model. 
Consequently, the models can only be calibrated with different subsets of the data. We compare the models using 
RE and IE, which provided information regarding how useful the additional transport-related observations where 
to the model.

In future applications, the benefits or RE and IE for multi-fidelity comparisons can be further explored by 
comparing models under different configurations, for example, different spatial and/or temporal resolutions or 
different model dimension. This can force the modeler to average observations (e.g., to meet a given mesh's 
cover), or exclude points (e.g., due to not calculating directly for a given time step). Additionally, if processes are 
added gradually to a given model, as in multi-fidelity/multi-scales schemes, the methodology could be used to 
quantify how information is distributed among models of different fidelities. RE and IE can provide useful Bayes-
ian metrics to quantify the usefulness of the data in each step, or help decide if additional complexity/processes 
and/or more observation data is needed.

Based on the results, we recommend to complement the traditional BME-based analysis with information-theoretic 
scores for model selection and comparison purposes. The results show how ELPD, RE, and IE provide additional 
information regarding the complete updating process involved in the Bayesian framework, and come at no signif-
icant additional computational cost. We do not wish to influence our reader's decision as to which criteria is 
best nor which one should be used, but advocate that considering all four criteria can lead to a better-informed 
decision.
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Appendix A: Analysis of the Effect of Data Sets Properties
To mathematically show the effect that the calibration data set properties, namely data set size and measurement 
error distribution, have on the different scores, we expand the different terms in Equation 17 for RE. Here, we use 
NF to group the normalization factor in the likelihood function (Equation 2), such that:

𝑁𝑁𝑁𝑁 = (2𝜋𝜋)
−𝑁𝑁𝑜𝑜

2 |𝐑𝐑|−1∕2. (A1)

Additionally, the difference between the observed and modeled data is shown in its vectorial form:

(𝐲𝐲𝑘𝑘 − 𝐲𝐲𝑜𝑜) = 𝜹𝜹. (A2)

Equation A3 shows the simplification of the ln(BME) term based on Equation 4:
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and Equation A4 shows the simplification of ELPD from Equation 15 into its basic components:
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As can be seen in Equations A3 and A4, both scores depend on the natural logarithm of the normalization factor 
(cannot be disregarded), which has a high dependence on the number of data points and measurement error 
variance.

By combining the final simplified formulations in Equations A3 and A4, one can rewrite the equation for RE, 
based on Equation 17, as follows:
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 (A5)

In Equation A5, the dependence on the normalization factor NF from both BME and ELPD is canceled out, since 
it is a constant for each model MK. Consequently, RE depends solely on the exponential term of the likelihood 
function.

Appendix B: Bayesian Model Similarity Analysis Results
Figure B1 shows the resulting model confusion matrices for the averaged ln(BME) (a), ELPD (b), RE (c), and 
IE (d) within the Bayesian model similarity analysis. We can observe the same tendencies in Figure B1 as with 
the normalized MCM in Figure 8. The latter, however, allows for a more clear interpretation, and focuses on the 
off-diagonal values, which is why we prefer it to represent model similarities.
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Data Availability Statement
The Python implementation of the Bayesian and information-theoretic model selection and similarity analysis 
can be accessed from the GitHub repository https://github.com/MariaFMoralesOreamuno/Bayesian_Informa-
tion_theoretic_model_selection.git (Morales Oreamuno, 2021). The files that serve as input for the aforemen-
tioned software can be found in https://doi.org/10.5281/zenodo.7086127 (Morales Oreamuno, 2022).
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