
Visualization Research Center (VISUS)

University of Stuttgart
Allmandring 19

D–70569 Stuttgart

Master Thesis

Point cloud and Particle data
compression techniques

Niranjan Ravi

Course of Study: Information Technology

Examiner: Prof. Dr. Thomas Ertl

Supervisors: Dr. Bernd Meese,
Dr. Guido Reina,
Patrick Gralka, M.Sc.

Commenced: November 10, 2022

Completed: May 10, 2023

Abstract

The contemporary need for heightened processing speed and storage capacity has necessitated the
implementation of data compression in various applications. This study encompasses a diverse
array of applications, varying in scale, that need the implementation of efficient compression
techniques. At present, there is no universally preferred compression technique that can outperform
others across all data types. This is due to the fact that certain compression methods are more
effective in compressing specific applications than others. Point cloud data finds widespread usage
in diverse domains such as computer vision, robotics, and virtual as well as augmented reality.
The dense nature of point cloud data presents difficulties with respect to storage, transmission,
and computation. In a similar way, particle data usually contains significant amounts of particles
that have been produced through simulations, experiments, or observations. The magnitude of
particle data and the computational resources necessary to handle and examine such datasets can
pose a formidable obstacle. To date, there has been no direct comparative analysis of compression
methodologies applied to particle data and point cloud data. This study represents the initial attempt
to compare these two distinct categories. The primary objective of this study is to test different
compression techniques belonging to the particle and point cloud worlds and establish a standardized
metric for evaluating the effectiveness of those compression methodologies. An integrated tool
has been developed in this work that incorporates various compression techniques to evaluate
the appropriateness of each technique for particle data and point cloud data. The assessment of
compression techniques involves the consideration of particle error metrics and point cloud error
metrics. Evidence from experiments in this work demonstrates that particle compressors exhibit
superior performance across both tested data categories, while point cloud compressors demonstrate
superior performance solely for point cloud data. Also, it reveals that the particle error metrics
exhibit stringent boundaries, which are deemed necessary for the type of data they are intended to
analyze. In contrast, the point cloud error metrics display more relaxed boundaries.

3

Achnowledgment

I would like to start by expressing my sincere gratitude to my thesis supervisors, Dr. Bernd Meese
from Fraunhofer IPA, Dr. Guido Reina, and Patrick Gralka from the Visualisierungsinstitut
der Universität Stuttgart (VISUS), for their continuous support and motivation. My thesis, which
explored the fascinating topics of point cloud compression and particle data compression, was
influenced by their knowledge of the subject. My report’s completion was facilitated by their
exceptional supervision. Working with them was a pleasure, and I will always be appreciative of all
of their wise advice throughout the writing of my thesis.

Second, I would like to thank Prof. Dr. Thomas Ertl from the bottom of my heart for allowing me
to complete my master’s thesis in the challenging and fascinating field in his elite group. I also
want to express my gratitude to the employees and other associates at the VISUS for their assistance
throughout my work.

Finally, I would like to thank my parents Ravi Natarajan and Saraswathi Aathinarayanan,
my sisters Divya Booppathy and Anitha Vigneswaran, my friends, and other people for their
unwavering support and encouragement during my years of study as well as throughout the research
and writing of my thesis. Without their help, this task could not have been completed.

Thank you.

5

Contents

1 Introduction 15
1.1 Point cloud data and Particle data . 16

1.1.1 Point cloud data . 16
1.1.2 Particle data . 16

1.2 Lossy compression and Lossless compression 17
1.3 Compression methods for particle data . 18

1.3.1 Frameworks . 18
1.4 Compression methods for point cloud data . 19

1.4.1 Voxels . 20
1.4.2 Octree coding . 21

2 Methods 23
2.1 Particle compressors . 23

2.1.1 SZ . 23
2.1.2 CuSZ . 24
2.1.3 ZFP . 25
2.1.4 CuZFP . 26
2.1.5 TTHRESH . 26

2.2 Point cloud compressors . 27
2.2.1 MPEG-PCC . 27
2.2.2 OctAttention . 27
2.2.3 Improved Deep Point Cloud Geometry Compression 29
2.2.4 Deep Compression for Dense Point Cloud Maps 29
2.2.5 Deep Autoencoder based Lossy geometric compression 30

2.3 Analysis overview . 31

3 Implementation 33
3.1 Tool Design . 33

3.1.1 Compression technique selection criteria 33
3.1.2 Setup . 33
3.1.3 Input types . 34
3.1.4 Compression and Decompression . 34
3.1.5 Generating Error metrics . 34
3.1.6 Advantages . 35

3.2 Sorting techniques . 37
3.2.1 Argsort using Pandas library . 37
3.2.2 KD-Search Tree . 38
3.2.3 Minimum difference calculation using MATLAB 39

3.3 Renderings . 39

7

3.4 Datasets . 39

4 Evaluation 41
4.1 Quality Metrics . 41

4.1.1 Particle data error metrics . 41
4.1.2 Point cloud data error metrics . 43
4.1.3 Compression/Decompression times . 44

4.2 Results . 45
4.2.1 Point Cloud data . 46
4.2.2 Particle data . 50
4.2.3 Similar range of Normalized Root Mean Square Error (NRMSE) 54
4.2.4 Renderings of decompressed files . 54
4.2.5 Sorting decompressed files . 55

4.3 Discussions . 60
4.3.1 Octattention . 61
4.3.2 PCC_GEO . 61
4.3.3 SZ . 62
4.3.4 ZFP . 63
4.3.5 Summary . 65

4.4 Future work . 66

5 Conclusion 67

Bibliography 69

A Appendix 75
A.1 Results of sorting techniques on different datasets 75
A.2 Pseudocode for Sorting Algorithm . 77

8

List of Figures

1.1 Learning-based Point Cloud Compression (PCC) classification[31] 20
1.2 Octree visualization [17] . 21

2.1 Illustration of Fitting Models used in SZ[7] . 23
2.2 Amount of parallelism applied in CuSZ’s compression and decompression at each

step[46] . 24
2.3 Renderings of data using TTHRESH compressor[2] 26
2.4 System overview of OctAttention [10] . 28
2.5 System overview of Deep Compression for Dense Point Cloud Maps [48] 30
2.6 System overview of Deep Autoencoder based lossy geometric compression [51] . 31

3.1 System overview of integrated compressor tool 36
3.2 Example of Argsort . 37
3.3 Example of 2D and 3D KD-Search Trees[26] 38

4.1 Point-to-point (D1) error metric [45] . 44
4.2 Compression and Decompression Times - Point cloud data 49
4.3 Compression and Decompression Times - Particle data 53
4.4 Renderings of Airplane data using different compressors 55
4.5 Renderings of Nozzle data using different compressors 56
4.6 Absolute error difference for Nozzle data: Octattention decompressed file 59
4.7 NRMSE and Average absolute error values of sorted results of Nozzle - Octattention

decompressed file . 60
4.8 Compression Ratio - Point cloud data . 62
4.9 Compression Ratio - Particle data . 62
4.10 NRMSE and Average Absolute error - Point cloud data 63
4.11 NRMSE and Average Absolute error - Particle data 64
4.12 PSNR and Pearson Correlation coefficient - Point cloud data 64
4.13 PSNR and Pearson Correlation coefficient - Particle data 65

A.1 Absolute error difference for Airplane data: Octattention decompressed file . . . 75
A.2 Absolute error difference for Car data: Octattention decompressed file 76
A.3 Absolute error difference for Fluid data: Octattention decompressed file 76

9

List of Tables

2.1 Overview of analysis of different compressors 32

3.1 Desciption of datasets used . 40

4.1 Point cloud error metrics - Airplane . 46
4.2 Particle error metrics - Airplane . 46
4.3 Point cloud error metrics - Car . 47
4.4 Particle error metrics - Car . 47
4.5 Point cloud error metrics - Chair . 47
4.6 Particle error metrics - Chair . 48
4.7 Point cloud error metrics - Stanford Bunny . 48
4.8 Particle error metrics - Stanford Bunny . 48
4.9 Compression and Decompression Times - Point cloud data 49
4.10 Point cloud error metrics - Fluid . 50
4.11 Particle error metrics - Fluid . 50
4.12 Point cloud error metrics - Nozzle . 51
4.13 Particle error metrics - Nozzle . 51
4.14 Point cloud error metrics - Laser . 52
4.15 Particle error metrics - Laser . 52
4.16 Point cloud error metrics - Riemann . 52
4.17 Particle error metrics - Riemann . 52
4.18 Overview of analysis of different compressor 53
4.19 Airplane dataset: Test for performance in similar NRMSE range 54
4.20 Nozzle dataset: Octattention output - sorted decompressed files 57
4.21 Time taken for sorting datasets . 57

11

Acronyms

API Application Programming Interface. 24

CPU Central Processing Unit. 15

CR Compression Ratio. 41

DCM Direct Coding Mode. 21

DCT Direct Cosine Transform. 17

DPCC Deep Point Cloud Compression. 29

GPCC Geometric Point Cloud Compression. 19

GPU Graphical Processing Unit. 15

HPC High Process Computing. 15

MPEG Moving Pictures Experts Group. 27

MSE Mean Square Error. 43

NRMSE Normalized Root Mean Square Error. 8

PCA Principal Component Analysis. 17

PCC Point Cloud Compression. 9

PSNR Peak Signal to Noise Ratio. 19

RD Rate Distortion. 29

RMSE Root Mean Square Error. 27

SZ Squeeze. 18

VPCC Video Point Cloud Compression. 19

13

1 Introduction

Current high-performance computing trends indicate an exponential growth in the number of cores
and a corresponding drop in memory bandwidth per core. Similar bandwidth constraints have
already been identified for Input/Output operations, inter-node communications, and communication
between Central Processing Unit (CPU) and Graphical Processing Unit (GPU) memory [24].
This pattern shows that the quantity of data transportation will influence the performance of
computing calculations. Moreover, because huge data sets are frequently created remotely, such
as on shared clusters or in the cloud, the expense of transporting the computing results for visual
interpretation, quantitative analysis, and historical storage can be significant[24]. With an increase
in computational power, a new problem in visualization is created. Here, the visualization and
simulation must contend for the same memory and bandwidth resources, further demanding the
hardware. Getting rid of redundant data, for example, by utilizing data compression, is one way to
ease this bottleneck in data transfer. If data compression can be completed rapidly enough to feed
the computation-starved cores, employing otherwise wasted compute cycles to compress the data
makes sense[24].

For High Process Computing (HPC) applications, it is essential to substantially reduce the data size
that must be dumped during the execution with relatively low computation cost and the necessary
compression error bounds to save disk space, improve throughput, and increase post-processing
performance. Lossless compression suffers from a poor compression ratio when dealing with
exceptionally large amounts of data. Current research based on production scientific simulations
demonstrates that error-bounded lossy compression algorithms are regarded as a suitable trade-off
solution [1, 40]. The uniqueness of a particular feature is deemed essential in achieving optimal
compression for a given application. These features may include fast support for random-access
decompression, precise compression rate granularity, asymmetry (more immediate decompression
than compression), limited error, support for arbitrary dimensionality, ease of parallelization,
topological robustness, and so on. These factors combine to make multidimensional compression
a vast and challenging problem for which no one-size-fits-all solution exists [2]. Hence in this
work, different lossy and lossless compressors are analyzed to compress particle datasets and
point-cloud datasets with the aim of finding a best-performing metric that can be used to measure
the performance of compressors of both categories.

The data that we focus on in this work are point cloud data and particle data. Point cloud data is
mostly used in different applications such as virtual reality, augmented reality, autonomous driving,
and so on. It is an efficient way of representing 3D geometry. It contains the representation of the
surface area of the object in 3D. In contrast, the particle data is mostly from HPC applications such
as Climate-simulation, Hydrodynamics, Particle simulations, and so on. It contains information
about the particles that are generated in any of these applications. The particles in the particle data
are a representation of volumes. They are very large in size compared to the point cloud data in most

15

1 Introduction

cases. The two types of applications differ widely in different aspects; hence, different compression
methods must be applied to achieve efficient compression. Various compression techniques have
been analyzed based on different metrics, and two compressors are shortlisted from each category
based on certain criteria. From the particle compressor category, SZ [7] and ZFP [24] are chosen,
and from the point cloud category, Octattention [10] and PCC_GEO_CNN_V2 [33] are chosen.

The primary objective of this study is to examine the efficacy of compression techniques for particle
data and point cloud data and assess their performance based on diverse quality metrics. This work
involves the development of a comprehensive tool that integrates various compressor techniques.
This tool facilitates the evaluation of these techniques on diverse datasets and enables the acquisition
of corresponding results. It is feasible to figure out the techniques that exhibit superior performance
in comparison to other methodologies, predicated on the outcomes derived from the conducted
experiments. The secondary objective of this study is to examine and identify a singular metric that
can serve as an indicator of the compressors’ efficiency for both data categories.

1.1 Point cloud data and Particle data

1.1.1 Point cloud data

A three-dimensional object or environment can be represented through a collection of points in space.
Every individual point is distinguished by its placement within the Cartesian coordinate system,
which is represented by the coordinates (x, y, z). This is called a point cloud. Additionally, the points
may possess supplementary attributes, such as color or hue. Point clouds are commonly obtained by
utilizing a range of sensors, such as LIDAR, PIN hole cameras, RGB-D cameras, or photogrammetry.
The interdependence among the positions of points in point clouds is noteworthy owing to their
direct acquisition from the object or environment, leading to a substantial correlation between
them. Point clouds are well-suited for various tasks, including object detection, segmentation,
and registration, which involve identifying and localizing objects or object parts within a given
scene. A prevalent technique employed in the processing of point cloud data involves the utilization
of voxelized or grid-based representations. This involves the process of dividing the space into
small cubes or cells and then assigning the points to the cell that is closest to them. It involves
transforming the point cloud data into a three-dimensional grid or an image-like format, which can
subsequently undergo analysis through traditional methods based on image processing o.

1.1.2 Particle data

In contrast, the representation of a fluid or gas system as a collection of particles is commonly
referred to as particle data. Each particle in this representation possesses distinct properties,
including position, velocity, and potential mass or charge. The utilization of particle data is prevalent
in the realm of fluid dynamics simulations, with the objective of representing the dynamics of a
fluid or gas throughout a given period. In the realm of particle data, the inter-particle relationship is
comparatively weaker than that of point clouds due to the dynamic nature of particles, which are not
stationary in space but rather exhibit movement and mutual interaction over time. The processing
of particle data is more intricate compared to point clouds due to the interdependence of particle

16

1.2 Lossy compression and Lossless compression

positions at a particular time step on their preceding positions and velocities, as well as the forces
and interactions among them.

Although point cloud data and particle data possess different structural and foundational characteris-
tics, they do exhibit certain similarities with respect to their processing and analysis. The techniques
employed for data processing and analysis depend upon the attributes of the data. As an illustration,
it is commonly observed that point clouds exhibit high density and stability, whereas particle data
displays low density and variability. The implication of this statement is that distinct techniques
may be necessary to analyze the two categories of data.

1.2 Lossy compression and Lossless compression

Lossy and lossless compression are two types of data compression techniques. Lossless compres-
sion refers to a compression technique that permits full restoration of the original data following
compression and decompression. This indicates that no data is lost during compression, and the
restored file is identical to the original. It works by removing redundant data and more efficient
encoding of the remaining data. In lossless compression, redundancies and patterns within the data
are identified and removed without losing any information. The compressed data is then stored or
transmitted using fewer bits than the original data. It is widely used in applications where data
accuracy is critical. The compression ratio achieved through lossless compression depends on the
nature of the data. The error bound value is minimum in the case of lossless compression. But
the compression ratio that can be achieved using this method is too low, especially for scientific
applications.

To achieve a better compression ratio, lossy compression is usually preferred over this. Scientific
data often consists of large volumes of data generated from simulations, experiments, or observations.
Lossy compression methods may be used to eliminate unnecessary and insignificant material from
the original stream. This is accomplished via the use of mathematical algorithms that examine data
and find places that may be compressed more aggressively. In the case of scientific data reflecting a
simulation, for example, the algorithm may discover intermediate stages or minor details that have a
reduced influence on the ultimate output. These sections may be compressed more aggressively to
get larger compression ratios without hurting the overall results much. Wavelet-based compression
[42, 44, 52], Direct Cosine Transform (DCT) [4, 29, 53], and Principal Component Analysis (PCA)
[8, 13] are some of the basic examples of lossy compression methods used in scientific data or HPC.
These strategies make use of the data’s mathematical structure to uncover duplicates and extraneous
material that may be deleted. To guarantee that the compressed data retains the precision necessary
for scientific analysis or simulation, the compression method and amount of compression must be
carefully chosen. In this work, the main focus is on different lossy compression techniques. Several
lossy compression algorithms have been proposed in recent times for particle data and point cloud
data.

17

1 Introduction

1.3 Compression methods for particle data

Various techniques for data compression have been effectively employed in the domain of image
and video processing applications. However, it should be noted that particle disciplines demand the
quantification of errors for variables of significance. Therefore, these methodologies cannot be
directly employed in such areas of research [3]. Developing a lossy compression algorithm that
exhibits a substantial compression ratio for particle data compression use cases while simultaneously
ensuring a constrained error rate can pose a challenge. For instance, ZFP is a lossy compression
method that is based on orthogonal block transform and embedded coding [24]. An orthogonal block
transform is a technique used to transform data into a set of frequency coefficients, which represent
the energy or power of the corresponding data at different frequency bands. Embedded coding
works by encoding the frequency coefficients in a hierarchical fashion, with the most important
coefficients encoded first. The ZFP compressors use these methodologies in order to achieve
high compression and decompression rates. However, it is incapable of generating a compression
ratio that is significantly high while sticking to a predetermined error threshold. The ISABELA
compressor converts multi-dimensional snapshot data of simulations into a sequence of sorted
data before compressing it using an interpolation technique called B-spline interpolation. [23].
It is a type of mathematical interpolation technique that is used to construct a smooth curve that
passes through a set of given data points. However, this process loses the location information
of the data points, and it has to use an additional index array to record the original position of
each point. As a result, ISABELA [23] suffers from low compression ratios, mainly when working
with a large number of data points. Another compression method for particle data, known as
Squeeze (SZ) [7], offers better results in terms of compression ratio than ZFP. It leverages multiple
curve-fitting models to encode the data stream. It supports both absolute error bound and relative
error bound. The essential concept of this method is to evaluate each data point to determine if it
can be approximated by a best-fit curve fitting model and replace it with a two-bit code representing
the model type if the approximation is within a user-specified error bound. Also, a GPU version of
this method exists, called CuSZ [46]. The main operations are parallelized, leveraging the GPUs
and achieving comparatively higher compression and decompression rates [46]. A unique tensor
decomposition-based compression technique, TTHRESH, is aimed at storage and visualization
applications, with the primary goal being data compression at high compression ratios [2]. It works
based on the Tucker decomposition model and higher-order singular value decomposition (HOSVD)
procedure to construct the orthogonal Tucker factors. Tucker decomposition is a technique used
to decompose a high-dimensional tensor into a smaller core tensor and a set of factor matrices.
TTHRESH is mainly focused on visualization applications. Hence it cannot be trusted for the
precision and accuracy of data. It is evident that each compression technique for the particle data is
constrained to a specific application or use case. Hence, in this work, since the main focus is on
accuracy and precision, the compressors that perform best in this category are chosen.

1.3.1 Frameworks

Apart from these methods, there exist several frameworks to test the quality of different compression
techniques. One such framework is called Z-checker [43], designed to assess the quality of lossy
compression techniques used in scientific research. Its goal is to evaluate the compressed data’s
viability for scientific analysis while also offering insight into the strengths and limitations of
various compression techniques. The Z-checker framework is made up of three parts: the Z-checker

18

1.4 Compression methods for point cloud data

program, the Z-compressor software, and the Z-checker database. The Z-checker program is used
to assess the quality of compressed data by examining parameters including compression ratio,
error rate, and compression speed. The Z-compressor program compresses scientific data using
several techniques. They have tested two compression techniques, SZ and ZFP, by integrating
them into their framework. The evaluation metrics provided by the Z-checker framework include
compression ratio, Peak Signal to Noise Ratio (PSNR), maximum error, mean error, and compression
time. These metrics help users to understand the trade-offs between compression quality and
computational efficiency of different compressors. By providing a standardized evaluation process
and a comprehensive database of compression results, the Z-checker framework enables users to
make informed decisions about which compression algorithm to use for their specific scientific
data. It is the first tool that is designed to assess the lossy compression for scientific data sets [43].
Another framework, called FRaZ [47], is a fixed-ratio lossy compression framework respecting the
user-specified error constraints. It is mainly designed to accurately determine the appropriate error
settings for different lossy compressors based on target compression ratios. It is tested for different
compressors like SZ and ZFP by integrating them into their framework. However, it should be
noted that, unlike these frameworks, this particular work facilitates the incorporation of point cloud
compressors also.

1.4 Compression methods for point cloud data

When it comes to point cloud data compression, there are primarily two categories to consider:
geometry compression and attribute compression. In this case, the main concern is with the
geometric compression of point cloud data. Research on PCC methods has established two
standards, namely Geometric Point Cloud Compression (GPCC) [16] and Video Point Cloud
Compression (VPCC) [20]. A recent survey by Cao et al. [5] presented an in-depth exploration of
the existing approaches in this field. An updated and comprehensive survey is now available [6],
providing a more current review of the topic. Furthermore, Quach et al.[30] gave a broad overview
of point cloud compression, focusing on learning techniques. As point cloud data has recently
dominated the digital landscape, developing and implementing efficient compression techniques is
crucial to handle the ever-increasing daily volume of data. The point cloud compression methods
are classified into traditional methods and learning-based methods. Figure 1.1 represents the
different categories or basis for classification of the learning-based point cloud compression methods.

A voxel is a fundamental unit of three-dimensional space that represents a small volume element,
often in the shape of a cube, within a larger three-dimensional space. There exist several point
cloud compression methods that are based on voxel data structures [10, 28, 35]. Geometric patterns
can be naturally preserved in the voxel form, as opposed to an octree. But the negative impact
of voxel-based networks is that it is susceptible to variations in density and may not work with
sparse point clouds. To find a solution to the density variation issue, the octree technique directly
processes the octree occupancy code. The octree format was proposed in the early 1980s as a
tool for the geometric modeling of arbitrary 3D objects [38]. Nevertheless, it was not applied in a
point cloud compression method until 2006 [21]. Since then, various techniques for point cloud
compression have used octree representation [11, 12, 18, 22, 36, 39]. An inter-frame octree-based
method, presented by De Queiroz et al. [34], constructs the context by calculating voxel distances to
occupied voxels in a reference frame. Learning-based compression often aims to capture common

19

1 Introduction

Figure 1.1: Learning-based PCC classification[31]

scene properties [39]. Recently, deep neural autoencoder networks such as those described in [19],
[18], and [33] have been developed and effectively applied to compress 3D point cloud data in
various domains. These autoencoder networks use unsupervised learning to automatically extract
and learn the most relevant features of the input data, resulting in a more efficient compression
of the 3D point cloud data. By leveraging the power of deep neural networks, these techniques
have successfully achieved high compression ratios while preserving the essential information in
the data. OctAttention generates and utilizes large-scale contexts that include information from
different parts of nodes of the tree structure, such as ancestral parts and sibling parts of the current
node [10]. This method employs parallelism while encoding multiple nodes. Deep compression for
dense point clouds [16] is a technique that learns common patterns that arise through local feature
descriptors and uses them to compress and reconstruct the point cloud data. Another method that
uses deep learning to adapt approximation models to alleviate the shortcomings of octree structure
is mentioned in [33]. It improved from using shallow networks to compress the point clouds to
deep networks to compress larger point clouds. A trade-off between memory usage and coding
performance is established [33]. Apart from compression algorithms that are tailored to specific
applications, there exist general-purpose compression algorithms for point clouds that are intended
to perform compression effectively across a broad spectrum of applications. In this work, two such
compressors that are presumed to work for comparatively larger datasets are chosen to be integrated
into the tool.

1.4.1 Voxels

A voxel is a three-dimensional element that is cube-shaped and represents a specific value or attribute
of a point in space. To clarify, a voxel can be defined as a three-dimensional pixel that possesses a
spatial position and encompasses data pertaining to the entities that exist at that particular location.
A voxel has the capacity to encapsulate various physical or virtual attributes, such as color, density,

20

1.4 Compression methods for point cloud data

or other properties. In order to represent a dataset that is voxel-based, it is possible to organize the
set of voxels into a three-dimensional grid, where each individual voxel is situated at a distinct x, y,
and z coordinate within the spatial domain. Subsequently, the arrangement of volumetric pixels can
be depicted as a three-dimensional visual representation or sequence of images for the purpose of
presenting the fundamental data. The act of transforming a 3D geometric model or point cloud into
a representation based on voxels is known as voxelization. To clarify, the process of voxelization
involves dividing the spatial area occupied by the three-dimensional model into a uniform grid
composed of tiny cubes, with each cube denoting a voxel [50]. The selection of algorithms for
performing the task is dependent upon the characteristics of the input data and the targeted output
resolution.

1.4.2 Octree coding

The voxelized point cloud is represented using an octree structure [27]. Consider the point
cloud to be contained in a quantized volume of (𝐷)𝑥(𝐷)𝑥(𝐷) voxels. As shown in Fig.1.2,
the volume is initially divided vertically and horizontally into eight sub-cubes with dimensions
(𝐷/2)𝑥(𝐷/2)𝑥(𝐷/2) voxels. This procedure is repeated recursively for each occupied subcube
until D equals 1. Notably, only 1 of voxel positions are occupied on average [37], which makes
octrees a very convenient way to depict the geometry of a point cloud [17]. During each phase of
decomposition, an assessment is made to identify the units that are currently occupied and those
that are unoccupied.

Figure 1.2: Octree visualization [17]

Occupied blocks are designated with a 1, while vacant blocks are marked with a 0. These octets
represent the occupancy state of an octree node in a single-byte word and are compressed by an
entropy coder that considers their correlation with adjacent octets [17]. For the coding of isolated
points, since there are no other points within the volume to correlate with, Direct Coding Mode
(DCM) is introduced [25] as an alternative to entropy coding the octets. In DCM, the coordinates
of the points are encoded explicitly without compression. DCM mode is inferred from neighboring
nodes to avoid signaling DCM mode for every node in the tree [17].

These are some of the general information regarding particle compression and point cloud
compression. From here on, this work is structured as follows:

Chapter 2 – Methods: presents the review of the literature and analysis related to different
compression techniques.

21

1 Introduction

Chapter 3 – Implementation describes the tool that is designed to test different compressors,
different sorting techniques, renderings, and datasets.

Chapter 4 – Evaluation summarizes the metrics that are used to evaluate different compressors,
results generated using different compression techniques, discussion, and future work.

Chapter 5 – Conclusion provides the conclusion for this work.

22

2 Methods

In this part, some of the fundamental data compression techniques are reviewed in detail. These
include compressors from both particle and point cloud categories. These principles are important
for comprehending the compressor methods used in the integrated tool.

2.1 Particle compressors

Particle data compressors operate by spotting patterns in the data that can be used to cut down on
the amount of information required to accurately represent the data. This is accomplished by more
effectively encoding the data to make use of its underlying structure and correlations. In this work,
two compressors from this category are shortlisted based on the below analysis to integrate into the
tool and test the performance of these compressors for the datasets used in this experiment.

2.1.1 SZ

One of the best-performing compressors, SZ, is designed to compress data that are generated by
high-performance computing (HPC) applications. Large particle datasets created by simulations or
experiments in HPC systems can be compressed using the lossy compression algorithm SZ. The
technique first linearizes the multi-dimensional snapshot data and then uses the prediction error to
further compress the data using a wavelet transform. The experiments specifically demonstrate
that even when employing the most straightforward Z-order scanning technique to linearize the
multi-dimensional data, the time cost is twice as lengthy as that of the compression without the
linearization step due to several expensive multiplication operations [7]. As a result, it is suggested
to build the 1-D data sequence for compression using the data array’s inherent memory sequence.

Figure 2.1: Illustration of Fitting Models used in SZ[7]

23

2 Methods

This technique involves the utilization of curve-fitting models, namely preceding neighbor fitting,
linear-curve fitting, and quadratic-curve fitting, as illustrated in Figure 2.1. The objective is to
select optimal curve-fitting models that can effectively accommodate or forecast the data points
with precision while also adhering to the user-defined error margins. Subsequently, the code
pertaining to the curve-fitting model is employed to substitute the data that can be anticipated with
a considerable degree of precision. Moreover, the utilization of binary representation analysis is
employed to effectively execute lossy compression on unforeseen data that cannot be approximated
by curve-fitting models [7]. The primary benefit of this conversion methodology is a noteworthy
decrease in conversion expenses and enhanced preservation of the locality. The findings indicate
that SZ exhibits potential as a data compression method for high-performance computing (HPC)
applications that necessitate precise data and high compression ratios. Based on its performance
and capability to compress different types of data, it has been shortlisted to integrate into the tool as
one of the particle compressors. It is implemented using the C programming language and also has
Application Programming Interface (API)s for other programming languages like C++, Python, and
so on. The integration of this compressor technique is fairly easier as the library is well-maintained,
and a proper manual with a set of instructions is provided.

2.1.2 CuSZ

The GPU version of SZ is called CuSZ [46], which uses GPU to perform compression and
decompression of data. The main reason to use GPU to compress data is to increase compression
and decompression throughput. This is the first ever error-bounded lossy compressor designed to
run on GPU to use the memory bandwidth and parallelism provided by the GPUs. The amount of
parallelism that has been applied in this compressor at each level of compression and decompression
is shown in Figure 2.2. Several customizations have been proposed in this method, like the
dual-quantization scheme and efficient Huffman coding, which are different from the original
method. These customization steps over the original method are shown in Figure 2.2.

Figure 2.2: Amount of parallelism applied in CuSZ’s compression and decompression at each
step[46]

All these improvements result in an enormous increase in compression throughputs compared
to when run in CPU while retaining the same quality in decompressed output and improving
compression ratio by around 3.5 times [46]. This method has been tested to integrate into the tool

24

2.1 Particle compressors

in this work. Unfortunately, there were memory issues and GPU architecture issues that were still
unaddressed at that point in time by the respective authors. It worked fine for the datasets that are
tested in their paper [46], but it did not work for the datasets used in this experiment.

2.1.3 ZFP

The ZFP method entails breaking the data into fixed-size blocks and using an iterative compression
methodology that uses quantization, encoding, and entropy coding techniques to reduce each block
to a defined number of bits. The resultant compressed data is saved in an array format that allows
for quick on-demand decompression as needed. It is a compression technique with a fixed rate that
allows for arbitrary reading and writing of d-dimensional floating-point arrays in small blocks of 4𝑑
values [24]. It is one of the methods where the user can mention the exact number of bits to allocate
for each array. It is more suitable for 2D and 3D data and does not support higher-dimensional data.

The main steps that this compression technique follows are that it first aligns the floating-point
values in a block to a typical exponent, followed by conversion to fixed-point representation and
application of orthogonal block transform, after which the system orders the transform coefficients
and encodes the bit planes individually [24]. The quantized data is encoded with a mix of delta
encoding and Huffman coding to take advantage of surrounding value correlation and eliminate
redundancy. Entropy coding with an arithmetic coding technique is used to further compress the
encoded data. To aid efficient decompression, the compressed data is stored in an array format
that includes information. It is swift as the operations involved primarily are integer addition and
shifting. The compressor yielded a high compression ratio of 16 times or more for visualization
and analysis applications, and they could often apply it without a significant loss of data quality.
Effectiveness is not compromised in these applications when using compressed data [24].

As a result, high compression ratios are achieved by leveraging the correlation between nearby
values in the input data and employing effective entropy coding algorithms. The method is also
intended to have minimal decompression overhead, which implies that the compressed data may be
effectively decompressed on the fly without needing unnecessary processing. Also, because of the
method’s ability to achieve constant-rate compression, the compressed data always contains a fixed
number of bits per value (even user-specific bits), regardless of the distribution of the original data.
This can be used in applications that need a certain amount of storage or a set pace of data transfer.
Since the method is lossless, the compressed data may be precisely restored to the original input
data [24] which makes it highly applicable for storing and retrieving large datasets.

The implementation of this compression technique is carried out using the C++ programming
language. The API is available in various programming languages, including C and Python. This
compressor exhibited encouraging performance for the particle data classification, representing one
of the earliest instances of such success. This method can be utilized to compress floating-point
arrays that possess less than three dimensions. This compressor is capable of supporting both
particle data and point cloud data, as they can both be represented in the form of floating-point arrays.
Presently, it is widely recognized for its rapid compression and decompression rates. Comparable
to SZ, ZFP also possesses a meticulously curated repository of resources, complete with precise

25

2 Methods

guidelines for its application in the specific use case required for this study. Therefore, it has
been incorporated into the tool developed in this study as the second approach within the particle
compressors category.

2.1.4 CuZFP

The CuZFP refers to a variant of the ZFP compressor [24] that is designed to operate on a GPU
architecture while relying exclusively on integer addition and shifting operations, much like its
CPU-based counterpart. The developers exercised their discretion to utilize the GPU for the purpose
of enhancing the execution speed, which led to a noteworthy escalation in the throughput of the
compression and decompression of floating-point arrays. However, the compression ratios attained
were comparable to those obtained when executed on CPUs, as no logical aspect of the execution
on GPUs was altered. This compression technique is added in the same ZFP library and requires
only minimal modifications to run it. It works for the datasets that are used in this experiment. The
option to execute CuZFP along with normal execution of ZFP is integrated into the tool in this
work. Still, it is not included in the test cases in this experiment as it would not be a fair comparison
between the other particle compressors.

2.1.5 TTHRESH

It is a method that prioritizes visualization and user exploration of the decompressed data. Hence
higher error rates are acceptable in this case. As a result, this compressor achieves high compression
ratios. This is designed for Cartesian grid data that consists of three or more dimensions. It
uses the tensor decomposition and Tucker model for higher-order compression and dimensionality
reduction in the field of graphics and visualization [2]. Despite the relatively slower compression
and decompression speeds of this method, it makes up for it by addressing the concerns related to
storage and visualization. Figure 2.3 shows the renderings of the original file and the decompressed
files that are obtained using this method. In these renderings, there are barely any differences
between the original file and the decompressed files that are visible to the naked eye.

(a) 300:1 compression (1.71MB) (b) 10:1 compression (51.2MB) (c) Original (512MB)

Figure 2.3: Renderings of data using TTHRESH compressor[2]

26

2.2 Point cloud compressors

This novel approach is not implemented as a library, but it is implemented as a standard executable
as an open-source C++ implementation. Similar to SZ and ZFP, even this method has options to
set the target Root Mean Square Error (RMSE) and PSNR values required in the compression.
When tested this method with the datasets used in this experiment, it gave segmentation errors when
performing the Tucker decomposition operation on the tensors. The input data was not acceptable
by this compressor as its distribution was sparse. It required more dense distributions of data
that are 3-dimensional or higher than that. Since the datasets in this experiment do not exhibit
these characteristics, this method looks less appealing to be integrated into the tool for further
explorations.

2.2 Point cloud compressors

The point cloud compressors are designed to reduce the size of a given set of points in three-
dimensional space while retaining the maximum possible level of accuracy in representing the
original points. It is aimed at the compression of geometry or attributes of the object point clouds.
In this work, two compressors from this category are shortlisted based on the below analysis to
integrate into the tool and test the performance of these compressors for the datasets that are used in
this experiment.

2.2.1 MPEG-PCC

The Moving Pictures Experts Group (MPEG) standards group developed a point cloud compression
technique based on geometry called Geometric Point Cloud Compression GPCC. It is a geometry-
based method that uses a pyramidal arrangement of cubes to encode points in three-dimensional
space. It is particularly effective for point sets that are uniformly distributed, outperforming other
state-of-the-art methods. However, there may be better choices for sparse distributions [41]. The
GPCC offers a native 3D representation and the potential for further improvements that have not
yet been fully explored. The G-PCC coding scheme employs three attribute coding techniques,
namely Region Adaptive Hierarchical Transform (RAHT) coding, interpolation-based hierarchical
nearest-neighbor prediction (Predicting Transform), and interpolation-based hierarchical nearest-
neighbor prediction with an update/lifting step (Lifting Transform) [17]. The MPEG-PCC group
has created standardized metrics that are used to assess the quality of the point cloud compressors.
It is used as a standard metric for evaluation in GPCC. This method is investigated with the
objective of determining the intended use of the standard point cloud error metrics in a point cloud
compression system. As a result of its standardization, numerous other point cloud compressors
have implemented it, leading to its incorporation as the point cloud error metric in this study. More
about these metrics are discussed in Chapter 4.

2.2.2 OctAttention

It is one of the learning-based methods that is used for compressing point cloud data. Since voxels
are often regarded as ineffective for representing sparse point clouds, this compression technique
uses octrees instead of voxels. This unique technique proposes a tree-structured attention mechanism
that efficiently eliminates geometric redundancy [10] to simulate the interdependency of nodes

27

2 Methods

within a large-scale context. Figure 2.4 shows the architecture of the Octattention compressor. The
numerical value present within the node in Figure 2.4 signifies the corresponding occupancy code in
the decimal system. The initial step involves the encoding of the point cloud into an octree structure,
wherein each node of the octree is distinguished by its level, octant, and occupancy code. These
three characteristics are integrated individually. An instance of constructing a context window (red)
with a length of N=8 is presented as an illustration in Figure 2.4. The utilization of three levels
of predecessors within the context window is denoted by the color green, where the height of the
context window is K=4. The context in the window is first used to encode a node (blue), and then it
is fed into a masked context attention module (right), which is then used to model the occupancy
code distribution by a multi-layer perceptron (MLP). The serialized occupancy code is then encoded
using the predicted distribution by the arithmetic encoder into the final compressed bit stream [10].
The sole stage that results in compression degradation is the one where the quantization error is
ascertained. However, it is imperative to increase the depth of the octree in order to achieve the
desired level of precision.

Figure 2.4: System overview of OctAttention [10]

The source code of this compression tool was made publicly available in the git repository as an open-
source library. In contrast to alternative point cloud compressors, the training and implementation
of the compression models utilized in this study were comparatively straightforward. The absence
of errors during the execution process may be regarded as a contributing factor to this result. It
is implemented using the Pytorch library in Python. The instruction manual provides a detailed
set of instructions for the operation of this compressor. The compressor was utilized to perform
compression and decompression procedures on a sample dataset from both point cloud and particle
data during the preliminary examination. The learning-based approach of this method presents a
potentially intriguing opportunity for further investigation and in-depth analysis, particularly when
compared to the fact that the particle compressors selected for integration into the tool are not
learning-based. Hence it is considered to be included as one of the point cloud compressors of the
tool developed in this experiment.

28

2.2 Point cloud compressors

2.2.3 Improved Deep Point Cloud Geometry Compression

It is an improved version of the model Deep Point Cloud Compression (DPCC) [32] as it has a
memory usage problem which is a limitation for compression and decompression of large point
clouds. The main focus of this compression technique was to compress the geometry of static point
clouds in a lossy manner. It is based on the auto-encoder architecture and octree structuring. By
encoding approximations over a coarse octree, it is possible to mitigate the drawbacks of the octree
structure for lossy compression [33]. Various factors such as entropy modeling, deeper transforms,
sequential training, optimal threshold, and changing balancing weight in focal loss are tweaked
to improve the performance of the DPCC model [33]. From the paper [33], the authors train the
compression models for each Rate Distortion (RD) trade-off with a corresponding value in their
study. This method enables the customization of transforms and entropy models, which improves
RD the performance. Unfortunately, training one model for each trade-off is time-consuming when
utilizing this independent-training approach. Therefore, a novel sequential training technique to
solve this problem is offered to accelerate training and improve RD performance. The basic idea is
to utilize previously learned neural network weights as the foundation for future neural networks.
Initially, a low-distortion, high-bitrate model is trained, and then it uses its learned weights for
each subsequent model. The different trade-offs are learned in decreasing order, with the bitrate
continuously dropping while the growth in distortion is minimized. This compressor is referred as
PCC_GEO_CNN_V2 or PCC_GEO in this work.

The compressor has been developed specifically to compress voxelized input data. Voxelization is the
technique of partitioning the spatial domain occupied by the 3D model into a regular grid consisting
of small cubes, where each cube represents a voxel. The process of voxelization involves the
creation of voxels in accordance with the required number of samples. In general, the voxelization
process has the potential to lead to data loss. However, even if it may not have the same degree
of detail, it is done so as to have the benefit of speed and efficiency while processing 3-D data.
In contrast to point cloud data, which captures the surface area of a scanned object, particle data
provides information on individual particles in three dimensions. The source code utilized in this
study is publicly accessible on the Git repository. The authors’ research has demonstrated this
approach’s capability to effectively compress large data sets. It is implemented in the recent version
of Python (3.6) using the TensorFlow library. The instructions for executing the code can be found
in the repository. No issues were encountered during the setup process. Therefore, this approach is
regarded as the secondary point cloud compression technique that can be incorporated into the tool
for more comprehensive examination.

2.2.4 Deep Compression for Dense Point Cloud Maps

This technique is based on the deep convolutional autoencoder architecture similar to the previous
method. The primary goal of this technique is to compress the data in a lossy way, which means
some information will be lost in the compression process. The process begins with the encoder
compressing the input data into a more generalized representation, called an embedding or code.
This compressed format is then used as the input for the decoder, which attempts to reconstruct
the original data. The network is trained using a technique called backpropagation, where the
reconstructed output is compared to the original point cloud data. The structure of the encoder,

29

2 Methods

decoder, and backpropagation of this compressor technique is shown in Figure 2.5. This type of
lossy compressor is usually preferred to integrate into the tool for further analysis and test it with
datasets from the point cloud and particle categories. But there is a file missing in the git repository,
which is mainly used by this technique. Despite the existence of a git repository containing the
code, the absence of a particular file hinders the ability to replicate the author’s work. Also, the git
repository has not been maintained for the past few years. Therefore, this cannot be considered to
integrate into the tool.

Figure 2.5: System overview of Deep Compression for Dense Point Cloud Maps [48]

2.2.5 Deep Autoencoder based Lossy geometric compression

This method is also based on autoencoder architecture for lossy point cloud compression. The
architecture of this method is provided in Figure 2.6. It differs from other point cloud compressors
because it takes the point cloud data directly as input rather than a voxel grid or collection of images.
The architecture comprises an encoder based on PointNet, a quantizer that is uniform, a block for
estimating entropy, and a module for nonlinear synthesis transformation [51].

Figure 2.6 shows the overall flow of this compression technique. The initial stage of this compression
methodology includes the utilization of sampling layers, which execute a downsampling procedure
on the input point clouds, resulting in a point cloud that exhibits a noticeable point density.
Subsequently, the reduced point set is fed into a codec based on an autoencoder architecture, which
consists of an encoder that produces a compressed representation from an unstructured point set
supplied as input to the quantizer. The reconstructed point cloud is generated by the decoder using
the quantized representation that is transmitted from the quantizer [51].

From an architectural standpoint, this compression technique appears to hold promise. However,
its implementation is solely intended to provide support for the ShapeNet point cloud dataset.
Therefore, this compression methodology is unsuitable for the use case in this study and cannot be
deemed as a viable option for further examination.

30

2.3 Analysis overview

Figure 2.6: System overview of Deep Autoencoder based lossy geometric compression [51]

2.3 Analysis overview

The above analysis reveals that individual compressors are tailored to compress data for distinct
purposes. A universal solution for all types of data does not exist. Consequently, there is a necessity
to create a tool that can incorporate these compressors and assess their efficacy on diverse datasets.
Table 2.1 provides an overview of compressors that have been analyzed in this work.

Compressor Dataset
Type

Dataset
size

tested
in their
work

Type of
CPU/GPU

Neural
networks

usage

Availability
of code

Programming
Language

SZ [7] Particle
data

1.5TB Argonne FU-
SION clus-
ter server -
16cores and
64GB mem-
ory

No Yes C

ZFP [24] Particle
data

3.6GB Single core
of an iMac
with 3.4 GHz
Intel Core i7
processors
and 32 GB of
1600 MHz
DDR3 RAM

No Yes C++

Continued on next page

31

2 Methods

Table 2.1 – Continued from previous page
Compressor Dataset

Type
Dataset
size
tested
in their
work

Type of
CPU/GPU

Neural
networks
usage

Availability
of code

Programming
Language

CuSZ [46] Particle
data

<6.3GB NVIDIA
V100 GPU

No Yes - with
GPU mem-
ory issues

C++, CUDA

TTHRESH
[2]

Particle
data

512MB 4-core Intel
i7-4810MQ
with 2.80
GHz and 4
GB RAM

No Yes - Not
able to
run for the
datasets
used in this
experiment

C++

OctAttention
[10]

Point
cloud
data

<300MB Xeon E5-
2637 CPU
NVIDIA
TITAN Xp
GPU (12GB
memory)

Yes Yes Python, py-
torch

Deep
Autoencoder-
based Lossy
Geometry
Compres-
sion [51]

Point
cloud
data

1-3MB i7-8700
CPU and a
GTX1070
GPU (with
8G memory)

Yes Yes - miss-
ing file,
hindering
the exe-
cution of
code

Python2.7

Deep
compression

for Dense
point clouds

[48]

Point
cloud
data

2-5MB GeForce
RTX 2080
SUPER
and with an
IntelCPU
with3.5 GHz

Yes Yes - with
several
external
dependen-
cies and
unmain-
tained git
repository

Python, Py-
torch, Open3d

Improved
Deep Point

Cloud
Geometry
Compres-
sion [33]

Point
cloud
data

15-
20MB

Nvidia
GeForce
GTX 1080Ti

Yes Yes Python3.6,
Tensorflow

Table 2.1: Overview of analysis of different compressors

32

3 Implementation

3.1 Tool Design

The overview of tool design is shown in Figure 3.1.

3.1.1 Compression technique selection criteria

The primary objective underlying the development of this tool is to conduct a comparative analysis
of the efficiency of various compressor variants across diverse datasets. To accomplish this
task, it is essential to design the tool in a flexible manner that can effectively manage diverse
compression methodologies for a wide range of datasets. The primary factor for evaluating the
suitability of incorporating the compressor technique into the tool is its operational simplicity.
In order to achieve this, it is crucial that the source code for the compressor is made readily
available for unrestricted use by the general public. Each of the techniques listed in the table
is accompanied by its corresponding source code, which can be found in the respective GitHub
repositories. Multiple challenges were encountered during the execution of the code aimed at
replicating the compressor techniques employed in the original work. Several factors can impede
the optimal functioning of a compressor, including hardware limitations, software restrictions,
coding errors, inadequate documentation, memory constraints, and other similar issues. Certain
compressors were specifically engineered to solely perform compression and decompression on
a predetermined group of datasets. It is evident that certain git repositories have not received
adequate maintenance in recent years, thereby indicating a lack of sufficient support for the
associated compressor in the event of inquiries or complications. Following an analysis of var-
ious compressors, as outlined in Table 2.1, four compressors have been selected for integration
into the tool. Two compressors designed for compressing particle data (SZ and ZFP) and two
compressors designed for compressing point cloud data (Octattention and PCC_GEO) were selected.

3.1.2 Setup

To achieve file compression and decompression, a distinct set of instructions must be supplied to
each compressor. Prior to executing the point cloud compressors Octattention and PCC_GEO, it
is necessary to activate the corresponding environments. It is essential that these environments
encompass all necessary libraries essential for their execution. The particle compressors SZ and
ZFP have minimal setup requirements due to their implementation in the C programming language.
Comprehensive instruction manuals on effectively performing the initial setup and executing this
work without encountering any difficulties are available in the GitHub repository.

33

3 Implementation

3.1.3 Input types

The data that is passed as input to the compressors are either particle or point cloud data. The most
common file formats that are passed as inputs in this work are the 𝑚𝑚𝑝𝑙𝑑 file format for particle
data and the 𝑝𝑙𝑦 file format for point cloud data. For particle data compressors like SZ [7] and
ZFP [24], the input data is converted into a 𝑏𝑖𝑛𝑎𝑟𝑦 format that contains floating point arrays in
single-precision without any header data. The tool must be adapted to accept double-precision
floating points and skip headers, if present, in future work. The data is first extracted from a mmpld
file, which is a form of representation of particle data developed to enable visualization in the
MegaMol tool [14]. Data is stored in little-endian 𝑏𝑖𝑛𝑎𝑟𝑦 format in the mmpld files. This extracted
data is then written into a 𝑏𝑖𝑛𝑎𝑟𝑦 file [14] and passed as input to the compressors. If the input is not
in 𝑏𝑖𝑛𝑎𝑟𝑦 format or not a mmpld file, then it is first converted into the 𝑏𝑖𝑛𝑎𝑟𝑦 file format and then
provided to the particle compressors. If the particle data has to be compressed using a point cloud
compressor, it is first converted into a 𝑝𝑙𝑦 file format containing floating-point arrays of x, y, and z
coordinates and then provided as input to the point cloud compressors. If the input is point cloud
data in 𝑝𝑙𝑦 file format, it is then directly fed to the point cloud compressors without any conversion.
For the PCC_GEO point cloud compressor, the input files that are passed should be voxelized.
Since this work is aimed at creating a tool to compress data using different compressor techniques,
the tool is designed in such a way as to adapt these file conversions and adaptations accordingly.
The tool handles the file conversions irrespective of the input file format with specific extensions
depending on the compressor type that is used. These formats include mmpld, bin, ply, pcd, stl,
xyz, obj, and off. So, irrespective of the file format that is provided as input, the tool generates the
necessary file format that is needed for the selected compressor. Also, the inputs can be provided
either as a directory or a specific input file.

3.1.4 Compression and Decompression

The tool is designed in a dynamic manner to execute different types of compression techniques.
Different compressors require different sets of instructions to execute them. Some values are set
before the execution of the commands, and some are provided during the execution. The desired
compressor that is needed for the current execution is provided as input to the tool, along with the
parameters that are needed for the compressor. Based on that, the tool executes the corresponding
compressor. It compresses and decompresses the files and saves them in the corresponding
destination folders.

3.1.5 Generating Error metrics

In order to evaluate the compression results, the files are fed to the program that calculates the error
metrics. The tool has integrated two different error metrics. One belongs to the particle data, and
the other one belongs to the point cloud data. If these metrics are needed, then the respective flag is
passed in the input command. These error metrics are generated, and the results are documented in
a 𝑐𝑠𝑣 file. The error metrics that are generated after compression and decompression are essential
factors in evaluating the performance of the compressors. The integrated tool generates several
error metrics, including the mean squared error, peak signal-to-noise ratio, normalized root mean

34

3.1 Tool Design

square error, and so on. These error metrics can be used to compare the performance of different
compressors on different types of data. By using these error metrics, the performance of the
compressors is evaluated from different perspectives, providing a comprehensive view of the quality
of the compression.

The order of points is an essential factor in the case of particle data. To establish the correspondence,
the decompressed data is sorted and arranged in a manner similar to the original dataset. Since
learning-based methods, such as Octattention and PCC_GEO_CNN_V2, are used in this compres-
sion tool, the decompressed data contain points that are generated in a random order irrespective of
the order of points in the original file. But the particle compressors, SZ and ZFP, that are used in
the tool maintain the order of particles in the decompressed file. Having a correspondence between
the original file and decompressed file is important for the particle error metrics, whereas it is not
important in the case of point cloud error metrics.

Given the diverse categories of compressors utilized for particle and point cloud data, it is essential
to establish a standardized basis for evaluating the efficiency of these compression methods. Three
distinct sorting techniques were evaluated based on comprehensive research on various sorting
methods. The application of these sorting methodologies results in the reorganization of the
sequence of points in the decompressed file in accordance with the sequence of points in the original
file. Various sorting techniques such as Argsort utilizing pandas, KD search tree, and minimum
difference computation via MATLAB were evaluated in this work.

3.1.6 Advantages

Some of the significant shortcomings in the compressors, when executed separately, are addressed
by this integrated tool. They are the command line inputs for the compressors. The inputs that are
provided to the compressors are lengthy and create confusion for the user while trying to run it.
However, this tool has integrated almost every detail that is needed as input to the compressor. For
example, to run the particle compressors, the dataset length and dimension have to be provided
as inputs. This is a problem every time as the length of the data provided should be known. But
this tool calculates the length of the data and provides it as an input to the compressor directly. So
this way, a large number of files can be passed to compress and decompress in a single execution.
Another advantage of this tool is that it accepts a wide variety of input data types. Most of the
file type conversions are in-built and taken care of by the tool. Even if there are any errors during
execution, the tool provides the native commands to run the program, which helps us to debug
the problem and find a solution for it. Furthermore, the tool is highly flexible and customizable,
enabling users to configure various parameters and settings according to their specific needs and
requirements. This allows users to fine-tune the compressor to achieve optimal results for their
particular use case.

35

3 Implementation

Figure 3.1: System overview of integrated compressor tool

Overall, the tool offers significant advantages over compressors executed individually, enabling
users to streamline their data compression and decompression workflows and achieve improved
efficiency and productivity. By simplifying the process and providing a user-friendly interface, the
tool makes it easier for users to leverage the benefits of data compression and manage their data
effectively.

36

3.2 Sorting techniques

3.2 Sorting techniques

There is a clear deviation in the order of points in the decompressed files of the point cloud
compressors. It will not create fair comparison metrics if the points are not ordered according to the
sequence of the points in the input file. To create this ordering, three different sorting techniques are
tested, and the best one is chosen to establish the correspondence. The three different techniques
that are chosen are Argsort using pandas, KD search tree, and Minimum difference calculation
using MATLAB. These techniques are used to rearrange the order of points in the decompressed
file to match the order of points in the original file. This is important in order to compare the
quality of compression among the different compressors. By rearranging the order of points in
the decompressed file, we can compare the decompressed file to the original file and determine
the level of accuracy and fidelity of each compressor. Overall, the sorting techniques used in this
study are useful for measuring the quality of compression among the different compressors on the
same ground. The time taken for the above-mentioned three sorting algorithms has been mentioned
in Table 4.21. Based on the results obtained in Figure 4.7, and Table 4.20, the Argsort technique
has out-performed the other methods in several parameters in the particle error metrics. Hence the
decompressed files obtained through Octattention and PCC_GEO compressors are sorted using this
method, and the corresponding metrics are used as a comparison for the compressors.

3.2.1 Argsort using Pandas library

In this study, we used the Argsort technique to sort the points in the decompressed file based
on their original order in the original file. An example of the argsort operation is shown in
Figure 3.2. This technique is implemented using the Pandas library in Python. The Argsort
technique using pandas is a data manipulation technique that sorts the data based on the values
in a specific column along with its current index position. As a first step, the array of points of
the original data is used to create a pandas dataframe. Then these values are sorted based on
ascending order along with their index positions. Then the decompressed points are sorted in
ascending order and added to the dataframe. The dataframe is then reordered once again based
on the original index positions of the original data. It is fast and efficient, and it works well even
for datasets with a large number of points. The pseudocode for this algorithm is provided in Chapter 5.

Figure 3.2: Example of Argsort

37

3 Implementation

3.2.2 KD-Search Tree

The KD search tree is a particular kind of binary search tree that is especially efficient for searching
high-dimensional data in spaces with many dimensions. A sequence of axis-aligned hyperplanes is
used to divide the data space in this modification of the conventional binary search tree. These trees
are efficiently built and searched using the KD-Search Tree algorithm. An example of a KD-Search
tree is given in Figure 3.3.

A KD-Search Tree is built by first dividing the data at a particular axis. Any dimension in the
data space may be used for this, although it is usually best to choose the one having the widest
range of values. The next step is to choose a pivot point on that axis that separates the data set
into two halves. The left subtree contains all data points with values less than or equal to the
pivot, whereas the right subtree contains all data points with values higher than the pivot. Then,
recursively go through this procedure for each of the two subtrees, switching the axis at each level.
The KD-Search Tree is searched for a query point by comparing it with the pivot point in the
current node starting at the tree’s root. We recursively search the left subtree if the query point is
less than or equal to the pivot along the current axis. If not, the appropriate subtree is searched.
This procedure is repeated until a leaf node is reached, which either has a data point that per-
fectly matches the query point or has a data point that is the data set’s closest match to the query point.

Figure 3.3: Example of 2D and 3D KD-Search Trees[26]

The KD search tree technique is used in this study to sort the points in the decompressed file based
on their closest proximity to the original points in the original file. This technique is useful for
datasets with a large number of points and works well for sorting points that are close to each other
in the original file.

38

3.3 Renderings

3.2.3 Minimum difference calculation using MATLAB

The minimum difference calculation technique using MATLAB is a mathematical technique used to
calculate the minimum difference between two sets of points. In this study, we used this technique
to calculate the minimum difference between the points in the original file and the points in the
decompressed file. The technique works by calculating the Euclidean distance between each point
in the original file and its nearest point in the decompressed file. This technique is useful for datasets
with a large number of points and works well for sorting points that are not close to each other in
the original file. The pseudocode for this algorithm is provided in Chapter 5.

3.3 Renderings

The rendered images shown in Figure 4.4 and Figure 4.5 provide an effective way to compare the
quality of compression among the different compressors. The renderings were created using the
Cloud Compare software. The Airplane data contains a large number of points, and it is impressive
to see how well the decompressed results match the original file. This indicates that the compression
algorithms used in this study are highly effective in maintaining the quality of the point cloud
data. However, the results for the particle data, Nozzle, are not as consistent. While the particle
compressors performed well in maintaining the quality of the data, the point cloud compressors
showed a significant loss of data in the decompressed results. This can be seen in the differences
between the original and decompressed images in Figure 4.5.

3.4 Datasets

The choice of datasets for the evaluation is crucial as it can significantly impact the performance and
effectiveness of the algorithms. It is important to select appropriate datasets that are representative
of real-world scenarios and can provide meaningful insights and results. Two different categories of
datasets are used in this work.

In our evaluation, the datasets mentioned in Table 3.1 are used for the experiments. The particle
datasets such as Fluid, Nozzle, Riemann [15] and Nozzle [9] are used. The point cloud datasets are
from ModelNet40 [49]. The choice of point cloud datasets from ModelNet40 is appropriate as it is
a widely used benchmark dataset for evaluating 3D object recognition and classification algorithms.
It contains models of objects of 40 different categories, and the models from Airplane, Car, and
Chair are chosen from that. By choosing models from three different categories, the evaluation can
be more comprehensive and diverse, enabling the analysis of the compressors in a wide manner.
Also, the Stanford Bunny dataset, from the Stanford 3D Scanning Repository, which is the most
commonly used point cloud data in any point cloud data analysis, is chosen in this experiment. One
of the point cloud compressors (PCC_GEO_CNN_V2) only accepts input data that are voxelized.
Hence, these datasets are voxelized in such a way that the total number of points in the raw dataset
is retained so that there is not much loss of information. The usage of a variety of dataset types in
the assessment aids in determining the robustness and generalizability of the compression methods.

39

3 Implementation

Because particle data and point cloud data are fundamentally different in nature, algorithms that
perform well on both types of datasets are more versatile and adaptable to different applications.

Type Dataset Shape Type Size (in MB)

Particle

Fluid 29999997x3 FP32 340
Nozzle 1550333x3 FP32 18.6
Laser 199885091x3 FP32 2400
Riemann 306112864x3 FP32 3700

Point
cloud

Airplane 93453x3 FP32 1.1
Stanford Bunny 185253x3 FP32 2.2
Car 265270x3 FP32 3.2
Chair 191163x3 FP32 2.3

Table 3.1: Desciption of datasets used

40

4 Evaluation

Several error metrics have been used to analyze the results of different compressors with the goal
of finding out the best error metric that can be used to evaluate both particle and point cloud data
compressors. In this section, the different quality metrics that are used to analyze the compressors
in the tool are explained. It is followed by briefings on results obtained for different experiments,
along with renderings and sorting techniques.

4.1 Quality Metrics

4.1.1 Particle data error metrics

In this category, the error was evaluated based on the results of six different metrics. They are:
(i).Maximum absolute error (ii).Maximum relative error (iii).Maximum point-wise relative error
(iv).PSNR (v).NRMSE (vi).Pearson correlation coefficient (vii).Compression Ratio (CR)

4.1.1.1 Maximum absolute error

It denotes the maximum difference value between the point in the decompressed file 𝑉𝑜 and the
corresponding point in the original file 𝑉𝑖. The maximum absolute error value is given by

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥(𝑉𝑜 −𝑉𝑖),∀𝑉𝑜 (4.1)

where 𝑜 = 0, 1, ...𝑛 and 𝑛 is the total number of points in the decompressed file.

4.1.1.2 Maximum relative error

It denotes the maximum difference value between the point in the decompressed file 𝑉𝑜 and the
corresponding point in the original file 𝑉𝑖, divided by the difference between the maximum and
minimum of all points in the original file. The maximum relative error value is given by

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥

(
𝑉𝑜 −𝑉𝑖

𝑚𝑎𝑥(𝑉𝑖) − 𝑚𝑖𝑛(𝑉𝑖)

)
,∀𝑉𝑜 (4.2)

where 𝑜 = 0, 1, ...𝑛 and 𝑛 is the total number of points in the decompressed file.

41

4 Evaluation

4.1.1.3 Maximum point-wise relative error

It denotes the maximum difference value between the point in the decompressed file 𝑉𝑜 and the
corresponding point in the original file 𝑉𝑖, divided by 𝑉𝑖. It is given by

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥

(
𝑉𝑜 −𝑉𝑖

𝑉𝑖

)
,∀𝑉𝑜 (4.3)

where 𝑜 = 0, 1, ...𝑛 and 𝑛 is the total number of points in the decompressed file.

4.1.1.4 PSNR

This metric compares the decompressed file and the original file based on the RMSE relative to the
peak size of the signal. It is given by

𝑃𝑒𝑎𝑘 𝑆𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜(𝑃𝑆𝑁𝑅) = 20 ∗ log10

(
𝑚𝑎𝑥(𝑉𝑖) − 𝑚𝑖𝑛(𝑉𝑖)

𝑅𝑀𝑆𝐸

)
(4.4)

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =

√√√
1
|𝑉 | ∗

|𝑉 |∑︁
𝑖=1
|𝑉𝑖 −𝑉𝑜 |2 (4.5)

where 𝑖 = 0, 1, ...𝑛 and 𝑛 is the total number of points in the original file.

4.1.1.5 NRMSE

Due to the diversity of variables, the root mean square error is normalized by dividing the difference
between the maximum and minimum values of the points of the original dataset. It is given by

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑁𝑅𝑀𝑆𝐸) = 𝑅𝑀𝑆𝐸

𝑚𝑎𝑥(𝑉𝑖) − 𝑚𝑖𝑛(𝑉𝑖) (4.6)

where 𝑖 = 0, 1, ...𝑛 and 𝑛 is the total number of points in the original file.

4.1.1.6 Pearson correlation coefficient

The Pearson correlation coefficient is a statistical measure employed to evaluate the intensity and
direction of a linear relationship between two variables. The variables in question could be the x
and y coordinates. The Pearson correlation coefficient, denoted by 𝜌, varies from -1 to 1, where
-1 represents a perfect negative correlation, 0 represents no correlation, and 1 represents a perfect
positive correlation. A positive correlation indicates that as one variable increases, the other also
tends to increase. In contrast, a negative correlation indicates that as one variable increases, the
other tends to decrease. The Pearson correlation coefficient is given by

42

4.1 Quality Metrics

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 (𝜌) = 𝐶𝑜𝑣(𝑉𝑖,𝑉𝑜)
𝜎𝑖 ∗ 𝜎𝑜

(4.7)

𝐶𝑜𝑣(𝑉𝑖,𝑉𝑜) =
∑(𝑉𝑖 −𝑉𝑖) (𝑉𝑜 −𝑉𝑜)

𝑛
(4.8)

where 𝑖 = 0, 1, ...𝑛 and 𝑛 is the total number of points in the original file, 𝜎𝑖 and 𝜎𝑜 are the standard
deviations of points of the original and decompressed files, 𝑉𝑖 and 𝑉𝑜 are the mean value of the
points of the original and decompressed files.

4.1.1.7 Compression Ratio

The compression ratio is a measurement of the quantity of compression applied to a data set. It is
typically expressed as a ratio of the original data size to the compressed data size. The compression
ratio quantifies the degree of compression obtained by a compression algorithm and can be used to
compare the efficacy of various compression techniques. It is given by

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑖𝑧𝑒 𝑜 𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓 𝑖𝑙𝑒

𝑆𝑖𝑧𝑒 𝑜 𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓 𝑖𝑙𝑒
(4.9)

It is essential to note that the compression ratio is only sometimes the most accurate indicator of an
algorithm’s efficiency. Sometimes, a compression algorithm may accomplish a high compression
ratio but at the expense of substantially more prolonged compression and decompression times or
degraded data quality. When evaluating the efficacy of a compression algorithm, the compression
ratio should be considered alongside other factors mentioned above.

4.1.2 Point cloud data error metrics

In this category, the error was evaluated based on the results of the D1 metric as per the MPEG
standards [16] for point cloud geometry compression. The D1 metric is a point-to-point distance
metric and is defined as the average squared distance between each point in the first point cloud,
say A, and its nearest neighbor in the second one, say B, as shown in Figure 4.1. It compares the
original data with the decoded data and provides a numerical value [45]. For each point 𝑉𝑖 in file A,
a corresponding point 𝑉𝑖 in file B is identified based on the nearest neighbor.

It is given by

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸), 𝑒𝐴,𝐵 =
1
|𝑉 |

|𝑉 |∑︁
𝑖=1
| |𝐸 (𝑉𝑖 , 𝑉𝑖) | |22 (4.10)

where E is the error vector between the points 𝑉𝑖 and 𝑉𝑖. Since it was difficult to interpret and
understand the values from Mean Square Error (MSE), it is converted to a PSNR value which would
normalize the metrics with respect to a peak value 𝑝. It is given by

43

4 Evaluation

Figure 4.1: Point-to-point (D1) error metric [45]

𝑃𝑆𝑁𝑅 (𝐴,𝐵) = 10 ∗ 𝑙𝑜𝑔10

(
𝑝2

𝑒𝐴,𝐵

)
(4.11)

It is obtained in three different variations: (I). MSE 1, PSNR 1 (ii). MSE 2, PSNR 2 (iii). MSE F ,
PSNR F

4.1.2.1 MSE 1, PSNR 1

This value is obtained by considering the original file as A and the decompressed file as B.

4.1.2.2 MSE 2, PSNR 2

This value is obtained by considering the original file as B and the decompressed file as A.

4.1.2.3 MSE F, PSNR F

This value is the maximum of MSE 1 and MSE 2 and the minimum of PSNR 1 and PSNR 2

4.1.3 Compression/Decompression times

The duration of compression and decompression operations performed by a specific compressor
is a significant factor in evaluating its efficacy. Each compression technique possesses a distinct
priority with regard to the acceleration of compression and decompression processes. The variance
is contingent upon the magnitude of the data that is utilized as input for the compression algorithms.
Typically, as evidenced by several studies [7, 10, 24, 33], a higher compression ratio achieved
by a compressor is associated with a proportional increase in the time required for compression
and decompression, resulting in a significant execution time. The optimal compressor in this
metric is characterized by a shorter compression and decompression duration, coupled with a high
compression ratio value and minimal data loss during the decompression process.

44

4.2 Results

4.2 Results

The experiments are performed in the CPU Intel Xeon Gold 5122 (x2) 8c/16t @ 3,6 GHz processor
with RAM 384GB and GPU NVIDIA Tesla V100-PCIE-32GB and also using NVIDIA GeForce
RTX 2060 6 GB. The compression and decompression results that are generated for the particle and
point cloud datasets using different compressors are provided in this section. It is essential for the
particle error metrics to have the same order of points in the decompressed file as that of the original
file. But the outputs of the point cloud compressors are reordered, as they are learning-based
models. Without reordering, there were huge margins of error between the particle compressors
and point cloud compressors in terms of particle error metrics. Since that would not make a fair
comparison, the decompressed files of the point cloud compressors are reordered accordingly using
the best-performing sorting algorithm. Based on the analysis in Table 4.20, the Argsort sorting
method using the Pandas library is chosen and applied to the decompressed output of the point
cloud compressors.

The particle compressors and point cloud compressors exhibit a significant variance in error
margin with respect to particle error metrics, even after applying the sorting algorithm. For
the sorting algorithm and particle error metrics calculation to be applied, as stated already, it
is necessary that the number of points in both the decompressed array and the original array is
identical. In the context of the Octattention compressor, it is observed that the decompressed
array possesses a smaller number of points compared to the original array. As a result, it is
necessary to slice the original array to match the length of the decompressed array. This partic-
ular step may have resulted in sporadic outliers within the particle error metrics pertaining to
the Octattention compressor. Conversely, it has been observed that the PCC_GEO compressor
generates a greater number of points in the array after decompression compared to the original
array. The present scenario involves slicing the decompressed array to match the length of the
original array, followed by the computation of particle error metrics. The impact of this step on
the point cloud data was negligible, as the particle error metrics for PCC_GEO exhibited slightly
superior performance compared to Octattention. But it had a significant influence on the par-
ticle data, as the PCC_GEO’s particle error metrics were much greater than those of the Octattention.

This clarifies certain anomalies observed in the particle error metrics pertaining to the point cloud
compressors. The particle error metrics are computed by evaluating individual points from the
decompressed file against their corresponding points in the original file based on their respective
index positions. The point cloud error metrics involve the simultaneous consideration of all the
points, which represent the (x,y,z) coordinates. In MSE1, the original file is kept as point cloud A,
and the decompressed file is kept as point cloud B and vice versa to calculate MSE2. The nearest
neighbors are calculated for these points before computing the MSE values. This results in shallow
MSE values and high PSNR values in the point cloud error metrics. The reason for this is that, with
respect to correlation, the association among points in the point cloud data is usually considerably
more robust than the association among particles in particle data. Hence, it is highly probable that
utilizing a single point for the purpose of computing errors may lead to increased deviations in
particle error metrics for the point cloud data.

45

4 Evaluation

4.2.1 Point Cloud data

The results indicate that particle compressors exhibit superior performance in terms of both point
cloud error metrics and particle error metrics when applied to point cloud data. This comes with
the downside of low compression ratios for the particle compressors SZ and ZFP, in comparison to
the high compression ratios of the point cloud compressors Octattention and PCC_GEO.

4.2.1.1 Airplane

In the context of the Airplane dataset, it was observed that the compression ratios achieved by
the particle compressors, namely SZ and ZFP, were relatively low, 2.57 and 2.01, respectively.
However, the point cloud compressors, Octattention and PCC_GEO, demonstrated significantly
higher compression ratios, 81.04 and 254.18, respectively. The SZ compressor produced a 0.5
increase in compression ratio compared to that of ZFP for nearly the exact value of NRMSE. The
metrics values are mostly dominated by the ZFP compressor for this dataset in Table 4.1 and
Table 4.2, with a compromise in the compression ratio. The Octattention compressor’s maximum
pointwise relative error is notably high, which may be associated with the requisite slicing procedure
utilized to sort the decompressed file and produce the particle error metrics.

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 0.02125 81.69514 0.02125 81.69514 0.02125 81.69514
ZFP 0.01735 82.57489 0.01735 82.57489 0.01735 82.57489
Octattention 0.25330 70.93242 0.19253 72.12365 0.25330 70.93242
PCC_GEO 0.23075 71.33736 0.26574 70.72409 0.26574 70.72409

Table 4.1: Point cloud error metrics - Airplane

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max
PW Rel-
ative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.06778 0.25378 0.00050 0.00050 75.66604 0.00016 1.00000 2.57
ZFP 0.05947 0.25000 0.00049 0.14844 76.54580 0.00015 1.00000 2.01
Octattention 10.20236 82.43484 0.25420 48.24E+4 26.23252 0.04879 0.97673 171.86
PCC_GEO 3.39695 33.0000 0.06458 1.0000 38.56017 0.01180 0.99914 254.18

Table 4.2: Particle error metrics - Airplane

4.2.1.2 Car

For the Car point cloud, the highest compression ratio was achieved using Octattention (457.14),
and the highest PSNR was achieved using SZ (84.80632 / 78.77723 in the point cloud and particle
error metrics, respectively) in Table 4.3 and Table 4.4. Both the particle compressors resulted in

46

4.2 Results

low average absolute errors (less than 0.06), and the point cloud compressors, Octattention and
PCC_GEO, resulted in high error values in Table 4.4 as stated already. The SZ compressor yielded
a significantly low NRMSE value of 0.00012 for this dataset, thereby leading to a notable increase
in PSNR and a 0.6 rise in compression ratio in comparison to ZFP.

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 0.01038 84.80632 0.01038 84.80632 0.01038 84.80632
ZFP 0.01746 82.54778 0.01746 82.54778 0.01746 82.54778
Octattention 0.26483 70.73908 0.12781 73.90300 0.26483 70.73908
PCC_GEO 0.38204 69.14758 0.43289 68.60494 0.43289 68.60494

Table 4.3: Point cloud error metrics - Car

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max
PW Rel-
ative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.04048 0.25314 0.00050 0.00050 78.7772 0.00012 1.00000 2.49
ZFP 0.05969 0.25000 0.00049 0.14844 76.5187 0.00015 1.00000 1.92
Octattention 0.70301 3.14572 0.40538 7.40577 17.65647 0.13097 0.87555 457.14
PCC_GEO 10.75119 45.00000 0.08806 2.00000 30.99174 0.02821 0.99797 262.30

Table 4.4: Particle error metrics - Car

4.2.1.3 Chair

For the Chair data, the highest compression ratio was achieved using Octattention (242.11). SZ
achieved the highest PSNR values once again in both metrics in Table 4.5 and Table 4.6. While
both the particle compressors result in a comparatively low average absolute error (less than
0.06), the point cloud compressors, Octattention and PCC_GEO, resulted in high error values in
Table 4.6 as expected. The observed high maximum pointwise relative error for the Octattention
compressor could be attributed to the necessary slicing procedure for sorting the decompressed file
and generating the particle error metrics.

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 0.01517 83.15882 0.01517 83.15882 0.01517 83.15882
ZFP 0.01748 82.54447 0.01748 82.54447 0.01748 82.54447
Octattention 0.25032 70.98381 0.24972 70.99411 0.25032 70.98381
PCC_GEO 0.19038 72.17247 0.20487 71.85393 0.20487 71.85393

Table 4.5: Point cloud error metrics - Chair

47

4 Evaluation

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max PW
Relative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.05235 0.25455 0.00050 0.00050 77.12973 0.00014 1.00000 2.30
ZFP 0.05973 0.25000 0.00049 0.25000 76.51538 0.00015 1.00000 1.92
Octattention 5.46234 18.12195 0.00449 19.91E+4 55.50159 0.00168 0.99999 242.11
PCC_GEO 3.84525 15.00000 0.02935 1.00000 39.50627 0.01058 0.99960 5.71

Table 4.6: Particle error metrics - Chair

4.2.1.4 Stanford Bunny

For the Stanford Bunny point cloud, the highest compression ratio was achieved using Octattention
(192.98). However, the highest PSNR was achieved using SZ (83.43148 / 77.40239 in the point
cloud and particle error metrics, respectively) in Table 4.7 and Table 4.8. While both particle
compressors result in a comparatively low average absolute error (less than 0.06), the point cloud
compressors Octattention and PCC_GEO once again yielded high errors in Table 4.8.

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 0.01425 83.43148 0.01425 83.43148 0.01425 83.43148
ZFP 0.01749 82.54087 0.01749 82.54087 0.01749 82.54087
Octattention 0.25211 70.95285 0.19112 72.15571 0.25211 70.95285
PCC_GEO 0.20321 71.88930 0.21601 71.62396 0.21601 71.62396

Table 4.7: Point cloud error metrics - Stanford Bunny

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max PW
Relative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.05174 0.25302 0.00050 0.00050 77.40239 0.00013 1.00000 2.46
ZFP 0.05977 0.25000 0.00049 0.16016 76.51178 0.00015 1.00000 1.93
Octattention 5.82912 12.33915 0.04380 19.46E+3 32.52498 0.02365 0.99569 192.98
PCC_GEO 1.25962 6.00000 0.01174 0.50000 49.25540 0.00345 0.99996 188.03

Table 4.8: Particle error metrics - Stanford Bunny

4.2.1.5 Compression and Decompression times for point cloud datasets

The compression and decompression times presented in Table 4.9 for point cloud data indicate that
the particle data compressors exhibit the most speedy performance. In terms of compression times,
the ZFP compressor exhibits a slight advantage over SZ. Octattention outperforms PCC_GEO in

48

4.2 Results

terms of compression times for most of the datasets, as shown in Figure 4.2. The decompression
time of PCC_GEO is comparatively superior to that of Octattention. Octattention exhibits better
performance than PCC_GEO when considering the total time period of both compression and
decompression processes, with the exception of the Chair dataset.

Dataset Compressor Compression Time
(in sec)

Decompression
Time (in sec)

Airplane

sz 0.06162 0.06250
zfp 0.04309 0.04655
octattention 12.51126 32.49205
pcc_geo 114.61089 22.32992

Car

sz 0.09168 0.11881
zfp 0.06261 0.07779
octattention 11.27894 10.75662
pcc_geo 228.36266 28.70321

Chair

sz 0.09092 0.11483
zfp 0.06788 0.06607
octattention 261.30471 1545.45663
pcc_geo 170.25710 28.15363

Stanford Bunny

sz 0.07737 0.08627
zfp 0.05287 0.06268
octattention 19.96328 65.93031
pcc_geo 202.14645 32.87222

Table 4.9: Compression and Decompression Times - Point cloud data

Figure 4.2: Compression and Decompression Times - Point cloud data

49

4 Evaluation

4.2.2 Particle data

For the particle data, the performances of the particle compressors are better in both point cloud
error metrics and particle error metrics. This comes with the drawback of low compression ratios
for them. The size of the input file for the Octattention compressor should be less than 300MB as
per its author [10]. When tested initially for the Fluid dataset (360MB), it was able to compress and
decompress but took exponentially high compression and decompression times. So in this work, it
was tested for the Fluid and Nozzle datasets. But not able to run it for larger datasets like Laser and
Riemann. Even though there is no explicit size limitation for the PCC_GEO compressor, when
tested for the particle datasets, Riemann and Laser, the compressor was running for a long time
without any improvements. For the other two particle datasets, Fluid and Nozzle, the performance
of the PCC_GEO compressor is not the best. As the PCC_GEO compressor produces more points
in the decompressed file than the original file, it cannot be directly used for calculating the particle
error metrics and applying the sorting algorithm, as the total number of points in both files must be
the same for these two steps. So, the decompressed file is sliced to the same number of points in the
original file, and then the sorting technique is applied before calculating the particle error metrics.

4.2.2.1 Fluid

For the Fluid data, the highest compression ratio was achieved using PCC_GEO (64.29). However,
the highest PSNR was achieved using SZ (74.52318) in Table 4.11 and using Octattention (70.98880)
in Table 4.10. This high value of PSNR for the particle compressors in particle error metrics is
a direct cause of very low values of NRMSE (1.9E-4 and 3.5E-4 for SZ and ZFP, respectively)
in Table 4.11. The error values for the Octattention and PCC_GEO are high in the particle error
metrics even after sorting the decompressed files.

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 0.34840 69.54798 0.17114 72.63516 0.34840 69.54798
ZFP 0.42772 68.65710 0.32618 69.83409 0.42772 68.65710
Octattention 0.25003 70.98880 0.23033 71.34527 0.25003 70.98880
PCC_GEO 2.89722 60.34891 5.48212 57.57924 5.48212 57.57924

Table 4.10: Point cloud error metrics - Fluid

Compressor Avg abs
error

Max abs
error

Max
Rel-
ative
Error

Max PW
Relative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.20718 1.81763 0.00100 0.00100 74.52318 0.00019 1.00000 6.02
ZFP 0.50598 3.53776 0.00194 5.522E+4 69.04273 0.00035 1.00000 3.14
Octattention 20.13453 241.1558 0.13207 1.00352 32.85151 0.02277 0.99702 51.43
PCC_GEO 528.4666 3072.000 3.00293 1.00000 0.45166 0.94932 0.78359 64.29

Table 4.11: Particle error metrics - Fluid

50

4.2 Results

4.2.2.2 Nozzle

For the Nozzle data, the highest compression ratio was achieved using Octattention (35.59).
The NRMSE values are almost the same for both particle compressors (1.1E-4 for SZ and ZFP,
respectively). There is little variation in the PSNR values (78.98459 / 79.02946 for SZ and ZFP,
respectively) in Table 4.13. The PSNR values of ZFP are slightly higher than SZ in both metrics
(87.29506 / 79.02946 for point cloud error metrics and particle error metrics, respectively) in
Table 4.12 and Table 4.13. While both particle compressors result in a comparatively low average
absolute error (less than 0.03), the point cloud compressor Octattention and PCC_GEO produce
higher error values in the particle error metrics even after applying the sorting algorithm.

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 0.00591 87.25018 0.00591 87.25018 0.00591 87.25018
ZFP 0.00585 87.29506 0.00585 87.29506 0.00585 87.29506
Octattention 0.25026 70.98480 0.23309 71.29350 0.25026 70.98480
PCC_GEO 6.54309 56.81089 17.30187 52.58780 17.30187 52.58780

Table 4.12: Point cloud error metrics - Nozzle

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max PW
Relative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.03467 0.19586 0.00050 0.00050 78.98459 0.00011 1.0000 4.66
ZFP 0.03477 0.21243 0.00054 35.93922 79.02946 0.00011 1.0000 2.29
Octattention 1.02552 4.99034 0.01263 0.99530 48.39891 0.00381 0.99982 35.59
PCC_GEO 213.2935 1024.000 1.000978 1.00000 11.07014 0.27957 0.91157 6.64

Table 4.13: Particle error metrics - Nozzle

4.2.2.3 Laser

The point cloud compressors were not able to compress this dataset since it was very large (around
2.4GB). The Octattention compressor cannot be run for this dataset because of memory limitations.
It occupied the entire RAM of 377GB while trying to compress this dataset and crashed eventually.
So, the metrics cannot be generated using both the point cloud compressors for this dataset. Hence,
for the Laser data, the highest compression ratio was achieved using SZ (5.75) in Table 4.15. The
NRMSE values were almost the same for both particle compressors (1.1E-4 for SZ and ZFP) in
the particle error metrics. However, the PSNR values of ZFP are slightly higher than SZ in both
metrics (63.94795 / 79.55520 for point cloud error metrics and particle error metrics, respectively).
Thus, it can be inferred from the data presented in Table 4.14 and Table 4.15 that there is no
significant difference in the precision of the two compressors. With regard to the compression ratio,
SZ demonstrates the highest level of performance as a compressor for this dataset.

51

4 Evaluation

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 1.54177 63.08853 1.18500 64.23154 1.54177 63.08853
ZFP 1.26496 63.94795 1.15366 64.34793 1.26496 63.94795

Table 4.14: Point cloud error metrics - Laser

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max
PW Rel-
ative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.41442 3.13086 0.00050 0.00050 78.88121 0.00011 1.00 5.75
ZFP 0.52274 3.75519 0.00060 5.313E+5 79.55520 0.00011 1.00 2.59

Table 4.15: Particle error metrics - Laser

4.2.2.4 Riemann

The Riemann dataset, which was approximately 3.7GB in size, proved to be too large for the point
cloud compressors to compress effectively. Consequently, the generation of error metrics for this
dataset using the point cloud compressors was not feasible. The utilization of SZ resulted in the
attainment of the maximum compression ratio (7.79). The normalized root mean square error
(NRMSE) values for the two particle compressors, SZ and ZFP, are 1.7E-4 and 1.9E-4, respectively.
Regarding the PSNR value, it can be observed that SZ (75.16564) exhibits a slightly higher value
than ZFP in Table 4.17, whereas ZFP (67.60569) presents a slightly higher PSNR value than SZ in
Table 4.16. Therefore, it is evident from Table 4.17 and Table 4.17 that the accuracy of the two
compressors is not significantly different. In relation to the compression ratio, SZ exhibits the most
superior performance as a compressor for this particular dataset.

Compressor MSE1 MSE1 PSNR MSE2 MSE2 PSNR MSEF MSEF PSNR
SZ 0.86238 65.61174 0.42651 68.66944 0.86238 65.61174
ZFP 0.54488 67.60569 0.45059 68.43089 0.54488 67.60569

Table 4.16: Point cloud error metrics - Riemann

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max
PW Rel-
ative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 0.41344 3.39014 0.00099 0.00099 75.16564 0.00017 1.00 7.79
ZFP 0.50239 3.64331 0.00107 1.798E+6 74.50244 0.00019 1.00 2.83

Table 4.17: Particle error metrics - Riemann

52

4.2 Results

4.2.2.5 Compression and Decompression times for particle datasets

Based on the compression and decompression times in Table 4.18, the particle data compressors
are clearly the fastest without any doubt, as shown in Figure 4.3. ZFP demonstrates superior
performance in terms of compression and decompression times, clearly outpacing other methods. In
contrast, PCC_GEO and Octattention’s compression and decompression times significantly surpass
the particle compressors by several orders of magnitude. Thus, it exhibits lower efficiency compared
to the particle compressors in this category.

Dataset Compressor Compression
Time (in sec)

Decompression
Time (in sec)

Fluid

sz 3.75466 5.40148
zfp 3.65877 5.31007
octattention 6.44228 27503.87835
pcc_geo 57820.46577 292.97576

Nozzle

sz 0.23120 0.30484
zfp 0.23961 0.32285
octattention 281.67406 1436.65434
pcc_geo 36096.49541 397.22808

Laser
sz 29.05339 38.37580
zfp 28.07034 41.26340

Riemann
sz 38.28582 57.23078
zfp 37.79854 56.95882

Table 4.18: Overview of analysis of different compressor

Figure 4.3: Compression and Decompression Times - Particle data

53

4 Evaluation

4.2.3 Similar range of NRMSE

The normalized root mean square error (NRMSE) can be regarded as a metric for evaluating the
precision of the compression method. The SZ and ZFP compressors offer options for compressing
the dataset in a manner that can achieve the desired level of NRMSE. A comparative analysis
could potentially yield valuable insights regarding the compressor’s efficacy with respect to particle
metrics and point cloud metrics. The PSNR values of the particle compressors SZ and ZFP for the
decompressed data in Table 4.19a are lower than those of the PCC_GEO compressor, despite having
a similar range of NRMSE values in Table 4.19b. The comparative evaluation of compressors
based on point cloud metrics reveals that PCC_GEO exhibits superior performance in comparison
to the other two compressors. The rendered decompressed files are shown in Figure 4.4b and
Figure 4.4d. This observation is attributed to the fact that the data being tested in Table 4.19b is a
point cloud. For the particle data used in this study, high precision is an important factor. So it does
not make sense to compress them with higher NRMSE values for this kind of comparison between
the compressors.

Compressor MSE1 MSE1
PSNR MSE2 MSE2

PSNR MSEF MSEF
PSNR

SZ 5.96954 57.20931 22.03440 51.53771 22.03440 51.53771
ZFP 1.31142 63.79132 15.79825 52.98263 15.79825 52.98263
PCC_GEO 0.23075 71.33736 0.26574 70.72409 0.26574 70.72409

(a) Point cloud error metrics

Compressor Avg abs
error

Max
abs
error

Max
Rel-
ative
Error

Max PW
Relative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

CR

SZ 5.17221 10.3438 0.01955 10.05084 38.94686 0.01129 0.99849 7.63
ZFP 4.39566 25.7500 0.04806 11.5000 39.64702 0.01041 0.99874 4.02
PCC_GEO 3.39695 33.000 0.06458 1.0000 38.56017 0.01180 0.99914 254.18

(b) Particle error metrics

Table 4.19: Airplane dataset: Test for performance in similar NRMSE range

4.2.4 Renderings of decompressed files

4.2.4.1 Airplane

Based on the renderings of the Airplane decompressed files of all four compressors in Figure 4.4, it
is evident that there is not much difference between the original (Figure 4.4a) and the decompressed
files (Figure 4.4b, Figure 4.4d, Figure 4.4f, Figure 4.4g). Hence, it can be inferred from these
renderings that all four compressors have performed well for the point cloud data in the case
of visualization. Figure 4.4c and Figure 4.4e represent the decompressed files of SZ and ZFP
compressor from Table 4.19.

54

4.2 Results

(a) Original

(b) SZ (c) SZ(from Table 4.19) (d) ZFP (e) ZFP(from Table 4.19)

(f) Octattention (g) PCC_GEO_CNN_V2

Figure 4.4: Renderings of Airplane data using different compressors

4.2.4.2 Nozzle

The analysis of the Nozzle decompressed files of all four compressors depicted in Figure 4.5 reveals
that there is a minimal disparity between the original data (Figure 4.5a) and the decompressed files
of SZ and ZFP compressors (Figure 4.5b and Figure 4.5c). However, a significant level of variance
is observed in the uncompressed files generated by the Octattention and PCC_GEO compression
algorithms (Figure 4.5d and Figure 4.5e). Consequently, it may be deduced from these depictions
that SZ and ZFP compressors exhibited satisfactory performance for the particle data. In contrast,
the point cloud compressors demonstrated less than optimal performance for the particle data in the
context of visualization.

4.2.5 Sorting decompressed files

For optimal values in the particle error metrics, it is important that the sequence of points in the
decompressed file is similar to that of the original file. The preservation of the point sequence in the
decompressed file is ensured by the particle compressors. Conversely, point cloud compressors do
not preserve the sequence of points in the resultant decompressed file. Various sorting techniques
are examined to determine the optimal one that aligns with the use case, as the current approach

55

4 Evaluation

(a) Original

(b) SZ (c) ZFP (d) Octattention (e) PCC_GEO_CNN_V2

Figure 4.5: Renderings of Nozzle data using different compressors

lacks fair comparison in particle error metrics. Figure 4.6 provides insights into the performance of
three different sorting techniques when applied to the Nozzle dataset. The results for other datasets
that are tested to find the best sorting algorithm are provided in Chapter 5. The graph has the
absolute error values on the x-axis and the number of occurrences on the y-axis. The red region
represents 90% of the cumulative sum of absolute error values, and the blue region represents
the remaining 10% of the values. These two regions are separated by the green dotted line. The
Octattention decompressed file of the Nozzle particle data is considered as a reference to analyze
the different sorting techniques. It is evident from Figure 4.6a that there exists no correspondence
between the original and the decompressed file before applying any sorting algorithm. After
applying the KD Search tree sorting method, the particle error metrics improved only to a minimum
extent. The method using MATLAB to find the iterative minimum difference between points of
original and decompressed files reduced the absolute error values enormously, with just one or
two peaks above 100, with the maximum absolute error difference being 192.99670 in Table 4.20.
The occurrence of such high values is rare enough that the red region is barely noticeable in
Figure 4.6c. This method yields an average absolute error of 1.76873. The primary limitation
of this approach is the duration required for sorting substantially large data sets. It increases
exponentially based on the file size. The implementation of the Argsort technique in Python involves
the utilization of the Pandas library. The reduction of the maximum absolute error value to below
5 in Table 4.20 is observed, with a higher frequency of instances in the blue region indicating

56

4.2 Results

minimal absolute error disparities between the original and the decompressed file. This method
exhibits a comparatively lower average absolute error value (1.02552) in relation to the other methods.

Sorting Method Avg abs
error

Max abs
error

Max
Rel-
ative
Error

Max
PW Rel-
ative
Error

PSNR NRMSE

Pearson
Corre-
lation
coeffi-
cient

Without any sorting 61.0997 379.479 0.96071 15.69E+4 11.9403 0.25292 0.03
KDSearch 40.0187 379.829 0.96281 12.38E+4 14.7720 0.18256 0.49
Element-wise mini-
mum difference cal-
culation using MAT-
LAB

1.76873 192.997 0.48860 1.11495 30.5855 0.02956 0.98

Argsort using Pan-
das 1.02552 4.99034 0.01263 0.99530 48.3989 0.00380 0.99

Table 4.20: Nozzle dataset: Octattention output - sorted decompressed files

Method Time taken (in sec)
Airplane Car Nozzle Fluid

KD Search tree 0.31021 1.33518 112.88663 22687.12458
Element-wise mini-
mum difference cal-
culation using MAT-
LAB

25.72142 216.55580 5362.72143 NA

Argsort using Pan-
das

0.35619 1.15498 7.23031 193.29431

Table 4.21: Time taken for sorting datasets

Table 4.21 contains the time taken for three different sorting techniques. It shows that the choice of
sorting method can have a significant impact on the time taken to solve the problem of establishing
correspondence between original and decompressed files. It has been executed across a spectrum
of file sizes, encompassing both small and large magnitudes. It includes the following datasets -
airplane, car, nozzle, and fluid. The KD Search tree sorting algorithm exhibited a significantly lower
computational time in comparison to the MATLAB-based approach. However, it remains elevated
in comparison to the Argsort technique. The element-wise minimum difference computation using
MATLAB took the longest time to sort for all datasets. It was not possible to find the time taken
for the fluid dataset in this approach, as it took longer than 5 days. Therefore, it is evident that
this methodology is solely applicable to datasets with shorter array lengths. According to the
data presented in Table 4.20, Table 4.20 and Figure 4.7, the Argsort sorting algorithm exhibits
superior performance compared to the other algorithms that were tested in this study. Therefore,

57

4 Evaluation

this method is adopted in the experiments for organizing the decompressed files generated by point
cloud compressors to ensure fair comparisons in the particle error metrics.

(a) Before applying sorting technique

(b) Using KD Search tree

58

4.2 Results

(c) Element-wise minimum difference using MATLAB

(d) Argsort using Pandas

Figure 4.6: Absolute error difference for Nozzle data: Octattention decompressed file

59

4 Evaluation

Figure 4.7: NRMSE and Average absolute error values of sorted results of Nozzle - Octattention
decompressed file

4.3 Discussions

The loss of data in the decompressed outputs of the point cloud compressors used in this experiment,
PCC_GEO, and Octattention, is because they are designed to work with regular grids and do not
handle irregularly distributed data well. Therefore, the decompressed output of these compressors
results in a loss of details and irregularities in the particle data. Overall, the rendered images provide
a useful visual representation of the quality of the compressed data produced by each of the four
compressors in Figure 4.4 and Figure 4.5. Based on the results obtained in the previous section, the
following points are inferred:

• Point cloud compressors:

– Results in better performance in terms of point cloud error metrics.

– Yields high errors in particle error metrics, compared to the particle compressors, even
after applying a sorting algorithm.

– It is slow compared to particle compressors but produces high compression ratios.

– Requires more memory while processing the compression of large data files.

– Both the point cloud compressors chosen do not have many options to tweak the
compression metrics.

– Designed specifically for compressing point cloud data.

• Particle compressors:

60

4.3 Discussions

– Results in better performance in terms of particle error metrics and also point cloud
error metrics.

– It is faster and compresses all types of data but produces low compression ratios for the
datasets tested.

– Requires fairly less memory compared to point cloud compressors for compressing
large data files.

– More configuration settings are present in both the particle compressors for tweaking
the compression metrics.

– Designed for compressing floating-point arrays. Mostly, any type of data that can be
represented in the form of floating-point arrays can be compressed using SZ and ZFP.

4.3.1 Octattention

The Octattention compressor has a limitation on the size of data that can be fed to it as input. For
point cloud datasets and particle datasets, the Octattention compressor produced better results
in terms of point cloud metrics. But the results of particle error metrics for this compression
technique are high compared to the particle compressors. This is because, in terms of correlation,
the relationship between points in point cloud data is typically much stronger than the relationship
between particles in particle data. The error metrics are devised accordingly to measure the
characteristics of such data in corresponding categories. As a result, high errors are produced in the
particle error metrics for the point cloud compressors. Hence regarding precision, the Octattention
compressor exhibited adequate outcomes for the point cloud data. However, its effectiveness was
suboptimal for the particle data. This is clearly observed in Figure 4.10, Figure 4.11, Figure 4.12,
and Figure 4.13. It produced the highest compression ratios for most of the datasets tested in this
experiment, as shown in Figure 4.9 and Figure 4.8.

4.3.2 PCC_GEO

The PCC_GEO compressor needs the input data to be voxelized. The compressor yielded a high com-
pression ratio value compared to other particle compressors that are tested in this work. The particle
error metrics for this compressor are also bad similar to the other point cloud compressor. Although
PCC_GEO does not have a specified size constraint, its performance was evaluated on particle
datasets, revealing that the compressor exhibited prolonged execution times without any observable
enhancements for particularly sizable datasets, such as Riemann and Laser. The performance of the
PCC_GEO compressor was suboptimal for the Fluid and Nozzle particle datasets. It can be clearly
observed in Figure 4.5. This can also be noticed from the results in Table 4.10 and Table 4.12.
For the point cloud data, the compression ratio of the PCC_GEO compressor was almost in the
same range as that of the Octattention compressor as shown in Figure 4.8, except for the Chair dataset.

61

4 Evaluation

Figure 4.8: Compression Ratio - Point cloud data

Figure 4.9: Compression Ratio - Particle data

4.3.3 SZ

The SZ compressor was able to perform compression and decompression for both particle and
point cloud datasets. It achieved very low NRMSE values in most cases compared to any other
compressor used in the tool, as shown in Figure 4.11 and Figure 4.10. But the drawback is the

62

4.3 Discussions

amount of compression ratio that can be achieved using this compressor for the datasets tested in
this experiment, without much loss of data, is very minimum, as shown in Figure 4.9 and Figure 4.8.
Still, the compression ratio produced by this compressor for the same range of NRMSE value
(around 1E-4) is more than double the compression ratio achieved by the ZFP compressor. It is far
less than the compression ratio of the point cloud compressors, Octattention and PCC_GEO. While
the SZ compressor may not achieve the highest compression ratios compared to other compressors,
as shown in Figure 4.9 and Figure 4.8, it is still a helpful compression technique for scenarios where
data fidelity is paramount, and compression ratios can be sacrificed to maintain high accuracy.

4.3.4 ZFP

The ZFP compressor was also able to compress and decompress both particle data and point cloud
data. It performs the best in terms of compression and decompression speeds as shown in Figure 4.3
and Figure 4.2. For most datasets, the amount of time taken for compression and decompression
is the least using this compressor, making it one of the best in this category. The NRMSE values
were comparatively in the same range as that of the SZ compressor and, in some cases, slightly
higher than that as shown in Figure 4.11 and Figure 4.10. However, the main drawback of the
ZFP compressor is the low compression ratio (Figure 4.9 and Figure 4.8), which is less than that
of SZ, Octattention, and PCC_GEO. This means that the compressed data takes up more storage
space compared to the other compressors, which can be a significant issue for very large datasets.
Nonetheless, the ZFP compressor remains a popular choice for applications that require fast data
access.

Figure 4.10: NRMSE and Average Absolute error - Point cloud data

63

4 Evaluation

Figure 4.11: NRMSE and Average Absolute error - Particle data

Figure 4.12: PSNR and Pearson Correlation coefficient - Point cloud data

64

4.3 Discussions

Figure 4.13: PSNR and Pearson Correlation coefficient - Particle data

4.3.5 Summary

Based on the outcomes, it is clear that the point cloud compressors Octattention and PCC_GEO
perform well for all datasets smaller than 500MB in the point cloud metrics category. However, they
struggle to compress and decompress larger particle datasets. The particle compressors (SZ and
ZFP) can compress both categories of data efficiently. It is evident from the results for all datasets in
terms of both particle error metrics and point cloud error metrics. However, the compression ratio
that can be achieved using these two particle compressors is limited. At the same time, the point
cloud compressors tested in the tool yielded very high compression ratios. In the realm of particle
compressors, ZFP exhibited superior performance compared to SZ with respect to compression
and decompression speeds across a majority of scenarios. In numerous cases, the SZ compressor
exhibited a compression ratio that was superior to that of ZFP while maintaining nearly identical
NRMSE values. So it is proved that ZFP can be used for applications requiring high compression
and decompression speeds, whereas SZ is used when high data accuracy is essential.

Even though producing comparatively good results in the point cloud error metrics, the point cloud
compressors failed to produce better results in the particle error metrics. This is because the particle
metrics take one point at a time in the given order. In contrast, the point cloud metrics calculation is
done by taking all the points at a time, and the nearest neighbors are found for those points, and
then the error values are computed between them. It is designed in such a way because of the strong
correlation of the position of points in the point cloud data. The correlation of the position of particles
in the particle data is not as important as the correlation of the position of points in the point cloud data.

65

4 Evaluation

It is understood that the point cloud compressors used in this work are designed only to compress
point cloud data, and the particle compressors used in this work are designed to compress data of
both categories. The particle error metrics work only for the particle data, and the point cloud error
metrics work for both categories of data. The compression of point clouds can be judged as good or
bad only using point cloud metrics. Since the particle datasets are much more complicated and
challenging than the point cloud datasets, the compression cannot be justified as good, only based
on the naive point cloud metrics. It needs the particle error metrics to assess its quality.

4.4 Future work

To the best of my understanding, there is currently no available direct comparison between
compression techniques utilized for particle datasets and those utilized for point cloud datasets. The
tool devised in this study represents the initial attempt to perform a direct comparison between
the two distinct compression categories. In addition, it is feasible to incorporate a graphical
user interface (GUI) into the integrated compressor tool, thereby facilitating the evaluation of the
compressor methodology tailored to the particular use case. The potential for further development
of the integrated compressor tool exists with the incorporation of additional compressor techniques.
Moreover, there is also potential for additional enhancements to the current system, such as offering
recommendations for the compression of particular applications based on the compression metrics
derived from prior files. This could involve presenting users with insights regarding the various
metrics. This facilitates the user’s decision-making process regarding the compression technique
that would produce the intended outcomes for their specific application.

66

5 Conclusion

The present study offers a comprehensive analytical framework for evaluating various compression
algorithms belonging to different categories and proposes potential avenues for enhancing their
performance. While it is widely acknowledged that there is no single compression technique that
can outperform all others across all types of data, the present study has undertaken research aimed
at investigating a potential universal metric that could be employed to assess the effectiveness of
different compression methods for varying categories of datasets. A novel tool has been developed
to examine and compare diverse compression methodologies and assess their effectiveness by
utilizing the particle error metrics and point cloud error metrics. The findings suggest that ZFP is
the optimal compressor among the tested compressors in the tool for all categories of input data if
the objective is to attain high compression and decompression speeds. Conversely, if the objective
is to attain a superior level of precision, then the recommended compressor of choice would be
SZ. The Octattention compressor is the preferred option when the objective is to attain a high
compression ratio. Nevertheless, it is more appropriate solely for the point cloud data. Based on the
results, no single metric can best prove the effectiveness of the particle and point cloud compression
techniques. It needs multiple metrics to assess the quality of the compression. The only metric that
is common in both worlds is the compression ratio. But a compression technique cannot be judged
solely based on the compression ratio alone.

67

Bibliography

[1] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mickelson, J. Edwards,
M. Vertenstein, A. Wegener. “A Methodology for Evaluating the Impact of Data Compression
on Climate Simulation Data”. In: HPDC ’14. Vancouver, BC, Canada: Association for
Computing Machinery, 2014, pp. 203–214. isbn: 9781450327497. doi: 10.1145/2600212.
2600217. url: https://doi.org/10.1145/2600212.2600217 (cit. on p. 15).

[2] R. Ballester-Ripoll, P. Lindstrom, R. Pajarola. “TTHRESH: Tensor Compression for Multi-
dimensional Visual Data”. In: IEEE Transactions on Visualization and Computer Graph-
ics 26.9 (Sept. 2020), pp. 2891–2903. doi: 10.1109/tvcg.2019.2904063. url: https:

//doi.org/10.1109%2Ftvcg.2019.2904063 (cit. on pp. 15, 18, 26, 32).

[3] T. Banerjee, J. Choi, J. Lee, Q. Gong, J. Chen, S. Klasky, A. Rangarajan, S. Ranka. Scalable
Hybrid Learning Techniques for Scientific Data Compression. 2022. arXiv: 2212.10733
[cs.LG] (cit. on p. 18).

[4] E. A. Baran, A. Kuzu, S. Bogosyan, M. Gokasan, A. Sabanovic. “Comparative Analysis
of a Selected DCT-Based Compression Scheme for Haptic Data Transmission”. In: IEEE
Transactions on Industrial Informatics 12.3 (2016), pp. 1146–1155. doi: 10.1109/TII.2016.
2555982 (cit. on p. 17).

[5] C. Cao, M. Preda, T. B. Zaharia. “3D Point Cloud Compression: A Survey”. In: The 24th
International Conference on 3D Web Technology (2019) (cit. on p. 19).

[6] C. Cao, M. Preda, V. Zakharchenko, E. S. Jang, T. Zaharia. “Compression of Sparse and
Dense Dynamic Point Clouds—Methods and Standards”. In: Proceedings of the IEEE 109.9
(2021), pp. 1537–1558. doi: 10.1109/JPROC.2021.3085957 (cit. on p. 19).

[7] S. Di, F. Cappello. “Fast Error-Bounded Lossy HPC Data Compression with SZ”. In: 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2016, pp. 730–
739. doi: 10.1109/IPDPS.2016.11 (cit. on pp. 16, 18, 23, 24, 31, 34, 44).

[8] Y. Ding, R. Xie, Y. Zou, J. Guo. “NMR Data Compression Method Based on Principal
Component Analysis”. In: Applied Magnetic Resonance 47 (Mar. 2016). doi: 10.1007/s00723-
015-0750-8 (cit. on p. 17).

[9] E. Eisfeld, H.-R. Trebin, J. Roth. “A wide-range modeling approach for the thermal con-
ductivity and dielectric function of solid and liquid aluminum”. In: The European Physical
Journal Special Topics 227 (2019), pp. 1575–1590 (cit. on p. 39).

[10] C. Fu, G. Li, R. Song, W. Gao, S. Liu. “OctAttention: Octree-Based Large-Scale Contexts
Model for Point Cloud Compression”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 36.1 (June 2022), pp. 625–633. doi: 10.1609/aaai.v36i1.19942. url: https:
//ojs.aaai.org/index.php/AAAI/article/view/19942 (cit. on pp. 16, 19, 20, 27, 28, 32, 44,
50).

69

https://doi.org/10.1145/2600212.2600217
https://doi.org/10.1145/2600212.2600217
https://doi.org/10.1145/2600212.2600217
https://doi.org/10.1109/tvcg.2019.2904063
https://doi.org/10.1109%2Ftvcg.2019.2904063
https://doi.org/10.1109%2Ftvcg.2019.2904063
https://arxiv.org/abs/2212.10733
https://arxiv.org/abs/2212.10733
https://doi.org/10.1109/TII.2016.2555982
https://doi.org/10.1109/TII.2016.2555982
https://doi.org/10.1109/JPROC.2021.3085957
https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1007/s00723-015-0750-8
https://doi.org/10.1007/s00723-015-0750-8
https://doi.org/10.1609/aaai.v36i1.19942
https://ojs.aaai.org/index.php/AAAI/article/view/19942
https://ojs.aaai.org/index.php/AAAI/article/view/19942

Bibliography

[11] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, R. L. de Queiroz. “Geometry Coding for Dynamic
Voxelized Point Clouds Using Octrees and Multiple Contexts”. In: IEEE Transactions on
Image Processing 29 (2020), pp. 313–322. doi: 10.1109/TIP.2019.2931466 (cit. on p. 19).

[12] D. C. Garcia, R. L. de Queiroz. “Context-based octree coding for point-cloud video”. In:
2017 IEEE International Conference on Image Processing (ICIP). 2017, pp. 1412–1416. doi:
10.1109/ICIP.2017.8296514 (cit. on p. 19).

[13] F. L. Gewers, G. R. Ferreira, H. F. D. Arruda, F. N. Silva, C. H. Comin, D. R. Amancio,
L. D. F. Costa. “Principal Component Analysis: A Natural Approach to Data Exploration”.
In: 54.4 (May 2021). issn: 0360-0300. doi: 10.1145/3447755. url: https://doi.org/10.
1145/3447755 (cit. on p. 17).

[14] P. Gralka, M. Becher, M. Braun, F. Frieß, C. Müller, T. Rau, K. Schatz, C. Schulz, M. Krone,
G. Reina, T. Ertl. “MegaMol – a comprehensive prototyping framework for visualizations”.
In: The European Physical Journal Special Topics 227.14 (Mar. 2019), pp. 1817–1829. issn:
1951-6401. doi: 10.1140/epjst/e2019-800167-5 (cit. on p. 34).

[15] P. Gralka, I. Wald, S. Geringer, G. Reina, T. Ertl. “Spatial Partitioning Strategies for Memory-
Efficient Ray Tracing of Particles”. In: 2020 IEEE 10th Symposium on Large Data Analysis
and Visualization (LDAV). 2020, pp. 42–52. doi: 10.1109/LDAV51489.2020.00012 (cit. on
p. 39).

[16] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, A. Tabatabai. “An overview
of ongoing point cloud compression standardization activities: video-based (V-PCC) and
geometry-based (G-PCC)”. In: APSIPA Transactions on Signal and Information Processing
9 (2020), e13. doi: 10.1017/ATSIP.2020.12 (cit. on pp. 19, 20, 43).

[17] D. B. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, A. J. Tabatabai. “An overview
of ongoing point cloud compression standardization activities: video-based (V-PCC) and
geometry-based (G-PCC)”. In: APSIPA Transactions on Signal and Information Processing
9 (2020) (cit. on pp. 21, 27).

[18] Y. Hu, W. Yang, Z. Ma, J. Liu. Learning End-to-End Lossy Image Compression: A Benchmark.
2021. arXiv: 2002.03711 [eess.IV] (cit. on pp. 19, 20).

[19] T. Huang, Y. Liu. “3D Point Cloud Geometry Compression on Deep Learning”. In: Pro-
ceedings of the 27th ACM International Conference on Multimedia. MM ’19. Nice, France:
Association for Computing Machinery, 2019, pp. 890–898. isbn: 9781450368896. doi:
10.1145/3343031.3351061. url: https://doi.org/10.1145/3343031.3351061 (cit. on p. 20).

[20] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi, S. Rhyu,
M. Budagavi. “Video-Based Point-Cloud-Compression Standard in MPEG: From Evidence
Collection to Committee Draft [Standards in a Nutshell]”. In: IEEE Signal Processing
Magazine 36.3 (2019), pp. 118–123. doi: 10.1109/MSP.2019.2900721 (cit. on p. 19).

[21] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, E. Steinbach. “Real-time
compression of point cloud streams”. In: 2012 IEEE International Conference on Robotics
and Automation. 2012, pp. 778–785. doi: 10.1109/ICRA.2012.6224647 (cit. on p. 19).

[22] M. Krivokuća, P. A. Chou, M. Koroteev. “A Volumetric Approach to Point Cloud Com-
pression–Part II: Geometry Compression”. In: IEEE Transactions on Image Processing 29
(2020), pp. 2217–2229. doi: 10.1109/TIP.2019.2957853 (cit. on p. 19).

70

https://doi.org/10.1109/TIP.2019.2931466
https://doi.org/10.1109/ICIP.2017.8296514
https://doi.org/10.1145/3447755
https://doi.org/10.1145/3447755
https://doi.org/10.1145/3447755
https://doi.org/10.1140/epjst/e2019-800167-5
https://doi.org/10.1109/LDAV51489.2020.00012
https://doi.org/10.1017/ATSIP.2020.12
https://arxiv.org/abs/2002.03711
https://doi.org/10.1145/3343031.3351061
https://doi.org/10.1145/3343031.3351061
https://doi.org/10.1109/MSP.2019.2900721
https://doi.org/10.1109/ICRA.2012.6224647
https://doi.org/10.1109/TIP.2019.2957853

Bibliography

[23] S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C. S. Chang, S. Klasky, R. Latham,
R. Ross, N. F. Samatova. “ISABELA for effective in situ compression of scientific data:
ISABELA FOR EFFECTIVE IN-SITU REDUCTION OF SPATIO-TEMPORAL DATA”. In:
Concurrency and Computation. Practice and Experience 25.4 (July 2012). issn: 1532-0626.
doi: 10.1002/cpe.2887. url: https://www.osti.gov/biblio/1564924 (cit. on p. 18).

[24] P. Lindstrom. “Fixed-Rate Compressed Floating-Point Arrays”. In: IEEE Transactions on
Visualization and Computer Graphics 20 (Aug. 2014). doi: 10.1109/TVCG.2014.2346458
(cit. on pp. 15, 16, 18, 25, 26, 31, 34, 44).

[25] H. Liu, H. Yuan, Q. Liu, J. Hou, J. Liu. A Comprehensive Study and Comparison of Core
Technologies for MPEG 3D Point Cloud Compression. Dec. 2019 (cit. on p. 21).

[26] S. Liu, M. Zhang, P. Kadam, C.-C. J. Kuo. “Traditional Point Cloud Analysis”. In: 3D Point
Cloud Analysis: Traditional, Deep Learning, and Explainable Machine Learning Methods.
Cham: Springer International Publishing, 2021, pp. 15–52. isbn: 978-3-030-89180-0. doi:
10.1007/978-3-030-89180-0_2. url: https://doi.org/10.1007/978-3-030-89180-0_2
(cit. on p. 38).

[27] D. Meagher. “Geometric Modeling Using Octree-Encoding”. In: Computer Graphics and
Image Processing 19 (June 1982), pp. 129–147. doi: 10.1016/0146-664X(82)90104-6 (cit. on
p. 21).

[28] D. T. Nguyen, M. Quach, G. Valenzise, P. Duhamel. “Multiscale deep context modeling for
lossless point cloud geometry compression”. In: 2021 IEEE International Conference on
Multimedia Expo Workshops (ICMEW). 2021, pp. 1–6. doi: 10.1109/ICMEW53276.2021.
9455990 (cit. on p. 19).

[29] A. Pandey, B. Singh Saini, B. Singh, N. Sood. “Quality controlled ECG data compression
based on 2D discrete cosine coefficient filtering and iterative JPEG2000 encoding”. In:
Measurement 152 (2020), p. 107252. issn: 0263-2241. doi: https://doi.org/10.1016/j.
measurement.2019.107252. url: https://www.sciencedirect.com/science/article/pii/
S0263224119311169 (cit. on p. 17).

[30] M. Quach, J. Pang, T. Dong, G. Valenzise, F. Dufaux. “Survey on Deep Learning-based Point
Cloud Compression”. In: Frontiers in Signal Processing 2 (2022). doi: 10.3389/frsip.2022.
846972. url: https://hal.science/hal-03579360 (cit. on p. 19).

[31] M. Quach, J. Pang, D. Tian, G. Valenzise, F. Dufaux. “Survey on Deep Learning-Based Point
Cloud Compression”. In: Frontiers in Signal Processing 2 (Feb. 2022). doi: 10.3389/frsip.
2022.846972 (cit. on p. 20).

[32] M. Quach, G. Valenzise, F. Dufaux. “Learning Convolutional Transforms for Lossy Point
Cloud Geometry Compression”. In: CoRR abs/1903.08548 (2019). arXiv: 1903.08548. url:
http://arxiv.org/abs/1903.08548 (cit. on p. 29).

[33] M. Quach, G. Valenzise, F. Dufaux. Improved Deep Point Cloud Geometry Compression.
2020. arXiv: 2006.09043 [cs.CV] (cit. on pp. 16, 20, 29, 32, 44).

[34] Z. Que, G. Lu, D. Xu. VoxelContext-Net: An Octree based Framework for Point Cloud
Compression. 2021. arXiv: 2105.02158 [cs.CV] (cit. on p. 19).

[35] Z. Que, G. Lu, D. Xu. “VoxelContext-Net: An Octree based Framework for Point Cloud
Compression”. In: CoRR abs/2105.02158 (2021). arXiv: 2105.02158. url: https://arxiv.
org/abs/2105.02158 (cit. on p. 19).

71

https://doi.org/10.1002/cpe.2887
https://www.osti.gov/biblio/1564924
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1007/978-3-030-89180-0_2
https://doi.org/10.1007/978-3-030-89180-0_2
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1109/ICMEW53276.2021.9455990
https://doi.org/10.1109/ICMEW53276.2021.9455990
https://doi.org/https://doi.org/10.1016/j.measurement.2019.107252
https://doi.org/https://doi.org/10.1016/j.measurement.2019.107252
https://www.sciencedirect.com/science/article/pii/S0263224119311169
https://www.sciencedirect.com/science/article/pii/S0263224119311169
https://doi.org/10.3389/frsip.2022.846972
https://doi.org/10.3389/frsip.2022.846972
https://hal.science/hal-03579360
https://doi.org/10.3389/frsip.2022.846972
https://doi.org/10.3389/frsip.2022.846972
https://arxiv.org/abs/1903.08548
http://arxiv.org/abs/1903.08548
https://arxiv.org/abs/2006.09043
https://arxiv.org/abs/2105.02158
https://arxiv.org/abs/2105.02158
https://arxiv.org/abs/2105.02158
https://arxiv.org/abs/2105.02158

Bibliography

[36] R. L. de Queiroz, P. A. Chou. “Compression of 3D Point Clouds Using a Region-Adaptive
Hierarchical Transform”. In: IEEE Transactions on Image Processing 25.8 (2016), pp. 3947–
3956. doi: 10.1109/TIP.2016.2575005 (cit. on p. 19).

[37] R. L. de Queiroz, P. A. Chou. “Compression of 3D Point Clouds Using a Region-Adaptive
Hierarchical Transform”. In: IEEE Transactions on Image Processing 25.8 (2016), pp. 3947–
3956. doi: 10.1109/TIP.2016.2575005 (cit. on p. 21).

[38] R. L. de Queiroz, D. C. Garcia, P. A. Chou, D. A. Florencio. “Distance-Based Probability
Model for Octree Coding”. In: IEEE Signal Processing Letters 25.6 (2018), pp. 739–742.
doi: 10.1109/LSP.2018.2823701 (cit. on p. 19).

[39] M. Ruhnke, B. Steder, G. Grisetti, W. Burgard. “Unsupervised learning of compact 3D models
based on the detection of recurrent structures”. In: 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2010, pp. 2137–2142. doi: 10.1109/IROS.2010.5649730
(cit. on pp. 19, 20).

[40] N. Sasaki, K. Sato, T. Endo, S. Matsuoka. “Exploration of Lossy Compression for Application-
Level Checkpoint/Restart”. In: Proceedings of the 2015 IEEE International Parallel and
Distributed Processing Symposium. IPDPS ’15. USA: IEEE Computer Society, 2015, pp. 914–
922. isbn: 9781479986491. doi: 10.1109/IPDPS.2015.67. url: https://doi.org/10.1109/
IPDPS.2015.67 (cit. on p. 15).

[41] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen,
M. Krivokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami,
E. Siahaan, A. Tabatabai, A. M. Tourapis, V. Zakharchenko. “Emerging MPEG Standards for
Point Cloud Compression”. In: IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 9.1 (2019), pp. 133–148. doi: 10.1109/JETCAS.2018.2885981 (cit. on p. 27).

[42] A. L. Souto, V. F. Figueiredo, P. A. Chou, R. L. de Queiroz. “Set Partitioning in Hierarchical
Trees for Point Cloud Attribute Compression”. In: IEEE Signal Processing Letters 28 (2021),
pp. 1903–1907. doi: 10.1109/LSP.2021.3112335 (cit. on p. 17).

[43] D. Tao, S. Di, H. Guo, Z. Chen, F. Cappello. “Z-checker: A Framework for Assessing Lossy
Compression of Scientific Data”. In: CoRR abs/1707.09320 (2017). arXiv: 1707.09320. url:
http://arxiv.org/abs/1707.09320 (cit. on pp. 18, 19).

[44] D. Thanou, P. A. Chou, P. Frossard. “Graph-Based Compression of Dynamic 3D Point Cloud
Sequences”. In: IEEE Transactions on Image Processing 25.4 (2016), pp. 1765–1778. doi:
10.1109/TIP.2016.2529506 (cit. on p. 17).

[45] D. Tian, H. Ochimizu, C. Feng, R. Cohen, A. Vetro. “Geometric distortion metrics for point
cloud compression”. In: 2017 IEEE International Conference on Image Processing (ICIP).
2017, pp. 3460–3464. doi: 10.1109/ICIP.2017.8296925 (cit. on pp. 43, 44).

[46] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin, X. Liang, J. Calhoun,
D. Tao, F. Cappello. “cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compression
Framework for Scientific Data”. In: Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques. PACT ’20. Virtual Event, GA,
USA: Association for Computing Machinery, 2020, pp. 3–15. isbn: 9781450380751. doi:
10.1145/3410463.3414624. url: https://doi.org/10.1145/3410463.3414624 (cit. on pp. 18,
24, 25, 32).

72

https://doi.org/10.1109/TIP.2016.2575005
https://doi.org/10.1109/TIP.2016.2575005
https://doi.org/10.1109/LSP.2018.2823701
https://doi.org/10.1109/IROS.2010.5649730
https://doi.org/10.1109/IPDPS.2015.67
https://doi.org/10.1109/IPDPS.2015.67
https://doi.org/10.1109/IPDPS.2015.67
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1109/LSP.2021.3112335
https://arxiv.org/abs/1707.09320
http://arxiv.org/abs/1707.09320
https://doi.org/10.1109/TIP.2016.2529506
https://doi.org/10.1109/ICIP.2017.8296925
https://doi.org/10.1145/3410463.3414624
https://doi.org/10.1145/3410463.3414624

Bibliography

[47] R. Underwood, S. Di, J. C. Calhoun, F. Cappello. “FRaZ: A Generic High-Fidelity Fixed-
Ratio Lossy Compression Framework for Scientific Floating-point Data”. In: 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 2020, pp. 567–577.
doi: 10.1109/IPDPS47924.2020.00065 (cit. on p. 19).

[48] L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, J. Behley. “Deep Compression for Dense
Point Cloud Maps”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 2060–2067.
doi: 10.1109/LRA.2021.3059633 (cit. on pp. 30, 32).

[49] Z. Wu, S. Song, A. Khosla, X. Tang, J. Xiao. “3D ShapeNets for 2.5D Object Recognition
and Next-Best-View Prediction”. In: CoRR abs/1406.5670 (2014). arXiv: 1406.5670. url:
http://arxiv.org/abs/1406.5670 (cit. on p. 39).

[50] Y. Xu, X. Tong, U. Stilla. “Voxel-based representation of 3D point clouds: Methods,
applications, and its potential use in the construction industry”. In: Automation in Construction
126 (2021), p. 103675. issn: 0926-5805. doi: https://doi.org/10.1016/j.autcon.2021.
103675. url: https://www.sciencedirect.com/science/article/pii/S0926580521001266
(cit. on p. 21).

[51] W. Yan, Y. shao, S. Liu, T. H. Li, Z. Li, G. Li. Deep AutoEncoder-based Lossy Geometry
Compression for Point Clouds. 2019. arXiv: 1905.03691 [cs.CV] (cit. on pp. 30–32).

[52] S. Zhang, W. Zhang, F. Yang, J. Huo. “A 3D Haar Wavelet Transform for Point Cloud Attribute
Compression Based on Local Surface Analysis”. In: 2019 Picture Coding Symposium (PCS).
2019, pp. 1–5. doi: 10.1109/PCS48520.2019.8954557 (cit. on p. 17).

[53] X. Zhang, W. Wan, X. An. “Clustering and DCT Based Color Point Cloud Compression”. In:
J. Signal Process. Syst. 86.1 (Jan. 2017), pp. 41–49. issn: 1939-8018. doi: 10.1007/s11265-
015-1095-0. url: https://doi.org/10.1007/s11265-015-1095-0 (cit. on p. 17).

73

https://doi.org/10.1109/IPDPS47924.2020.00065
https://doi.org/10.1109/LRA.2021.3059633
https://arxiv.org/abs/1406.5670
http://arxiv.org/abs/1406.5670
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103675
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103675
https://www.sciencedirect.com/science/article/pii/S0926580521001266
https://arxiv.org/abs/1905.03691
https://doi.org/10.1109/PCS48520.2019.8954557
https://doi.org/10.1007/s11265-015-1095-0
https://doi.org/10.1007/s11265-015-1095-0
https://doi.org/10.1007/s11265-015-1095-0

A Appendix

A.1 Results of sorting techniques on different datasets

(a) Before applying sorting technique (b) Using KD Search tree

(c) Element-wise minimum difference using MATLAB (d) Argsort using Pandas

Figure A.1: Absolute error difference for Airplane data: Octattention decompressed file

75

A Appendix

(a) Before applying sorting technique (b) Using KD Search tree

(c) Element-wise minimum difference using MATLAB (d) Argsort using Pandas

Figure A.2: Absolute error difference for Car data: Octattention decompressed file

(a) Before applying sorting technique (b) Argsort using Pandas

Figure A.3: Absolute error difference for Fluid data: Octattention decompressed file

76

A.2 Pseudocode for Sorting Algorithm

Algorithm A.1 Argsort using Pandas library in Python
Require: 𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦: Contains points of the original file
Require: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦: Contains points of the decompressed file

1: 𝑑𝑓 = 𝑝𝑑.𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒(𝑑𝑎𝑡𝑎 = ′𝑡𝑒𝑠𝑡′ : 𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦[: 𝑙𝑒𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦)]) ←
DataFrame with columns ’test’

2: 𝑑𝑓 .𝑠𝑜𝑟𝑡_𝑣𝑎𝑙𝑢𝑒𝑠(𝑏𝑦 =′ 𝑡𝑒𝑠𝑡′, 𝑖𝑛𝑝𝑙𝑎𝑐𝑒 = 𝑇𝑟𝑢𝑒) ← sort 𝑑𝑓 by ’test’ along with it’s index
positions

3: 𝑑𝑓 [′𝑑𝑎𝑡𝑎′] = 𝑠𝑜𝑟𝑡𝑒𝑑 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦) ← Contains sorted values from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦
4: 𝑑𝑓 .𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥(𝑖𝑛𝑝𝑙𝑎𝑐𝑒 = 𝑇𝑟𝑢𝑒) ← Sorts the 𝑑𝑎𝑡𝑎 𝑓 𝑟𝑎𝑚𝑒 based on original index positions

of the 𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦
5: 𝑑𝑓 [′𝑑𝑎𝑡𝑎′] ← Contains the sorted 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦

Algorithm A.2 Minimum difference calculation using MATLAB
′ 𝑓 𝑜𝑝𝑒𝑛()′ ← Original and decompressed binary files are opened
′ 𝑓 𝑟𝑒𝑎𝑑 ()′ ← Data in binary format is read and returned as a numeric arrays (𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦 and
𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦)
if 𝑙𝑒𝑛(𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦) ≥ 𝑙𝑒𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦) then

𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦 ← 𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦(1 : 𝑙𝑒𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦)) //Truncates testset_array to the
length of dataset_array
else

𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦(1 : 𝑙𝑒𝑛(𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦)) //Truncates dataset_array to
the length of testset_array
end if
𝑡𝑒𝑚𝑝 ← values from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦 are copied
𝑛← number of elements in 𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦
𝑡𝑖𝑐 ← Starts a timer
𝑦 ← row vector of 𝑛 zeros
for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2, . . . 𝑛 do

Find the index of the closest value in 𝑡𝑒𝑚𝑝 using 𝑚𝑖𝑛(𝑎𝑏𝑠(𝑡𝑒𝑚𝑝 − 𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦(𝑘)))
Store the index in the corresponding element of 𝑦

end for
𝑡𝑜𝑐 ← Stops the timer and display time
′ 𝑓 𝑤𝑟𝑖𝑡𝑒()′ ←Writes 𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦 to binary file

Declaration

I hereby declare that the work presented in this thesis is entirely my
own. I did not use any other sources and references than the listed
ones. I have marked all direct or indirect statements from other
sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before. The
electronic copy is consistent with all submitted hard copies.

place, date, signature

	1 Introduction
	1.1 Point cloud data and Particle data
	1.1.1 Point cloud data
	1.1.2 Particle data

	1.2 Lossy compression and Lossless compression
	1.3 Compression methods for particle data
	1.3.1 Frameworks

	1.4 Compression methods for point cloud data
	1.4.1 Voxels
	1.4.2 Octree coding

	2 Methods
	2.1 Particle compressors
	2.1.1 SZ
	2.1.2 CuSZ
	2.1.3 ZFP
	2.1.4 CuZFP
	2.1.5 TTHRESH

	2.2 Point cloud compressors
	2.2.1 MPEG-PCC
	2.2.2 OctAttention
	2.2.3 Improved Deep Point Cloud Geometry Compression
	2.2.4 Deep Compression for Dense Point Cloud Maps
	2.2.5 Deep Autoencoder based Lossy geometric compression

	2.3 Analysis overview

	3 Implementation
	3.1 Tool Design
	3.1.1 Compression technique selection criteria
	3.1.2 Setup
	3.1.3 Input types
	3.1.4 Compression and Decompression
	3.1.5 Generating Error metrics
	3.1.6 Advantages

	3.2 Sorting techniques
	3.2.1 Argsort using Pandas library
	3.2.2 KD-Search Tree
	3.2.3 Minimum difference calculation using MATLAB

	3.3 Renderings
	3.4 Datasets

	4 Evaluation
	4.1 Quality Metrics
	4.1.1 Particle data error metrics
	4.1.2 Point cloud data error metrics
	4.1.3 Compression/Decompression times

	4.2 Results
	4.2.1 Point Cloud data
	4.2.2 Particle data
	4.2.3 Similar range of nrmse
	4.2.4 Renderings of decompressed files
	4.2.5 Sorting decompressed files

	4.3 Discussions
	4.3.1 Octattention
	4.3.2 PCC_GEO
	4.3.3 SZ
	4.3.4 ZFP
	4.3.5 Summary

	4.4 Future work

	5 Conclusion
	Bibliography
	A Appendix
	A.1 Results of sorting techniques on different datasets
	A.2 Pseudocode for Sorting Algorithm

