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1 Introduction

In open quantum systems, resonances can occur. These are quasi-bound states which can
decay. By introducing a complex scaling, e.g. according to Reinhardt [1], and thus non-
Hermitian operators, the complex energy eigenvalues of the resonances can be calculated.
Here, the real part represents their energy, while the imaginary part unveils their lifetime.

Resonances can degenerate, where a special case is the so-called exceptional point
(EP) at which not only the eigenvalues but also the eigenvectors degenerate. Thus,
the two resonances coalesce at the EP. An isolated EP can be described by a two-
dimensional matrix model [2]. A property of such an EP is that the two associated
eigenvalues exchange their positions after one adiabatic orbit in parameter space around
the EP. In 2007 the existence of these EPs was proven for the hydrogen atom in electric
and magnetic fields by Cartarius [3]. Due to limitations especially in magnetic field
strengths, EPs in the hydrogen atom are not experimentally accessible.

In 2014, a remarkable discovery by Kazimierczuk et al. [4] revealed a mesmerizing
hydrogen-like spectrum within cuprous oxide (Cu2O). This revelation stemmed from
the resemblance between an exciton, a quasi-particle in a semiconductor consisting of
electron and hole, and their atomic counterpart, the hydrogen atom. However, the
fact that the excitons are environed by Cu2O necessitated consideration of the band
structure to precisely describe the observed spectrum. This discovery kindled excitement
as it provided a rare opportunity to bridge the realms of experimental and theoretical
physics, inviting an enthralling dialogue between theory and experiment. For Cu2O
the field strengths to observe EPs of resonances with small quantum numbers are much
lower compared to the field strengths for the hydrogen atom, which is why it is favorable
to find EPs in this system. This was already done for a hydrogen-like model, but to
obtain experimentally comparable results the above mentioned band structure terms
need to be considered. However, this increases the computational cost drastically for
each diagonalization of the Hamiltonian due to its complexity. The existing methods to
find EPs are based on a Taylor expansion around the EP [5, 6]. Due to the computational
expensive diagonalizations of the Hamiltonian, these methods are inefficient or even not
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applicable. Hence, a new method is required to accurately and efficiently identify EPs
in Cu2O.

Inspired by the remarkable advances in machine learning, especially within the realm
of physics, a novel method on the foundation of Gaussian process regression (GPR) [7]
is developed. As a prominent member of the supervised machine learning family, GPR
serves as a powerful and innovative approach to predict the positions of EPs in Cu2O.
The used data to train a GPR model is obtained by simulations. Hence, the error is only
due to numerical inaccuracies, which can be neglected. Unlike neural networks, GPR
offers the advantage of precisely passing through the provided training points, which is
a key motivation for its utilization. Yet, the optimization of the searching process goes
beyond the new method. An efficient algorithm is devised to enhance the search for
EPs in Cu2O, which contributes to the discovery of promising EPs and thus enables a
possible experimental verification of these data.

1.1 Structure of this thesis
The present thesis is organized into four primary parts. In Chapter 2, the theoretical
basics necessary to understand this thesis are presented. First, excitons and the semi-
conductor cuprous oxide are introduced in Section 2.1. To account for all effects on the
system, the Hamiltonian of excitons in Cu2O is described in Section 2.2. Section 2.3 is
about resonances, which occur, when applying external electric and magnetic fields to
the system. The numerical method to diagonalize the exciton Hamiltonian of Cu2O is
explained in Section 2.4. EPs are presented in Section 2.5 by means of a simple example,
and the existing methods to find them are briefly summarized.

To develop the new method, basic knowledge of GPR is required. This is provided
in Chapter 3.

The GPR method is developed gradually by means of low-dimensional matrix models
in Chapter 4. In Section 4.1, the stepwise grouping algorithm is developed to acquire
the initial training set. A two-dimensional simple example as well as a five-dimensional
matrix model serves to demonstrate the GPR model training in Section 4.2. In higher-
dimensional systems, it is not straightforward to select the eigenvalues belonging to the
EP in each iteration step, so a similarity measure is introduced in Section 4.3 to solve
this problem. The iterative process is constructed and the new GPR method is applied
to the matrix models. To terminate the procedure, possible convergence criteria are
discussed in Section 4.4 and convergence tests are performed to determine the accuracy
of the predictions.
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The results are presented in Chapter 5. First, the differences to the matrix models
accompanied by the consideration of the external electric and magnetic fields are intro-
duced. In Section 5.1, the GPR method is applied to Cu2O and the results are shown.
To minimize the number of diagonalizations, in Section 5.2, the convergence radius of
the method is investigated. All results, including the identified EPs using the GPR
method as well as additional insights associated with the stepwise grouping algorithm
are presented.

All major points of the previous Chapters are summarized in Chapter 6 and a short
outlook for possible further studies is given.

Appendix A contains an implementation of the stepwise grouping algorithm in Python.
Further details on the optimization of the training process required to apply the GPR
method to Cu2O are provided in Appendix B. A separate conclusion in German is also
included.





2 Theoretical Basics

In this chapter the theoretical basics to understand this thesis are introduced in separate
sections. For the sake of clarity, the different topics are not or only weakly connected
with each other. First, the physical system, i.e. excitons in cuprous oxide, is introduced
in Section 2.1. To get an accurate description of the system, the band structure of Cu2O
needs to be considered, which is explained in Section 2.2. Section 2.3 is about resonances.
After introducing all relevant parameters, the method to obtain the eigenvalues of the
exciton Hamiltonian is explained in Section 2.4. Then, exceptional points (EPs) are
discussed in Section 2.5 by means of an example and the methods to find them are
shown.

2.1 Excitons in cuprous oxide
Cuprous oxide Cu2O is a red-colored crystal in which copper and oxygen ions are ar-
ranged in a cubic lattice, as depicted in Figure 2.1a [8]. The copper ions have a face-
centered cubic structure, whereas the oxygen ions have a body-centered cubic structure.
The unit cell is highlighted in green and consists of four copper ions and one oxygen ion.
Figure 2.1b shows a part of the band structure of Cu2O. The transitions of the yellow
and green excitons, relevant for this thesis, are plotted with the respective color.

The band structure consists of valence bands (VBs) and conduction bands (CBs). In
the ground state all electrons are in the VBs and none of them in the CBs, making it non-
conducting [9]. Electrons can be excited from the VB into the CB by supplying energy,
e.g. light. A positive charged hole remains in the VB which interacts with the excited
electron via the Coulomb interaction. This hydrogen-like quasi-particle consisting of
electron and hole is called exciton and can be described in a simple hydrogen-like model
by the Hamiltonian

ℋ = 𝐸g + 𝒑2
e

2𝑚e
+ 𝒑2

h
2𝑚h

− 𝑒2

4𝜋𝜀0𝜀|𝒓e − 𝒓h|
, (2.1)
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1Figure 2.1: (a) The crystal structure of Cu2O consists of two shifted lattices of
copper (brown) and oxygen ions (blue), the former having a face-centered cubic
structure and the latter a body-centered cubic structure. Four copper ions and
one oxygen ion form the unit cell, which is highlighted in green. Taken from
[10]. (b) The band structure of Cu2O is made up of several valence bands (VBs)
and conduction bands (CBs). These are separated by the band gap energy 𝐸g.
The relevant transitions are from the two highest VBs to the lowest CB, which
form the yellow and green excitons.

where 𝐸g is the band gap between VB and CB, 𝒑e/h are the momenta of the electron
(e) and the hole (h) and 𝑚e/h the corresponding masses [10]. Thus, the second and
third terms define the kinetic energy of the respective particle. The last term represents
the Coulomb interaction, in which 𝜀 is the dielectric constant that takes into account
the screening of the crystal. The similarity to the Hamiltonian of hydrogen can be
visualized by introducing the total mass 𝑀 = 𝑚e + 𝑚h, the reduced mass 𝜇 = 𝑚e𝑚h

𝑀 , as
well as relative and center-of-mass coordinates [9]. To further illustrate the analogy to
the hydrogen atom, the Bohr radius 𝑎exc and the Rydberg energy 𝐸R,exc of the exciton
are given by

𝑎exc = 𝑎0
𝑚0𝜀

𝜇
and 𝐸R,exc = 𝐸R,H

𝜇
𝑚0𝜀

, (2.2)

where 𝑎0 and 𝐸R,H are the corresponding quantities of hydrogen [10]. Due to the similar
mass of electron and hole, the reduced mass cannot be simplified to 𝜇H ≈ 𝑚e as in
the hydrogen model. Both quantities in Equation (2.2) can be calculated by inserting
material parameters of Cu2O which results in [4, 11]

𝑎exc = 1.11 nm , (2.3a)
𝐸R,exc = 92 meV ≪ 𝐸g . (2.3b)
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To accurately describe excitons in Cu2O, the hydrogen-like model is not sufficient
because the band structure has to be taken into account. Applying external magnetic
and electric fields also affects the system. Thus, the corrections which are necessary for
an accurate description are explained in the next section.

2.2 Hamiltonian of Cu2O
The yellow and the green excitons as depicted in Figure 2.1b can be described by the
Hamiltonian [12]

ℋ = 𝐸g + ℋe(𝒑e) + ℋh(𝒑h) + 𝑉 (𝒓e − 𝒓h) + 𝑉CCC(𝒓) . (2.4)

Here, 𝐸g is the band gap energy also shown in Figure 2.1b and ℋe/h is the kinetic
energy term for the electron and hole, respectively. The interaction between electron
and hole is considered by 𝑉 (𝒓e − 𝒓h) and for excitons with small spatial extensions the
central-cell corrections 𝑉CCC(𝒓) are included as well [8, 10].

2.2.1 Band structure terms

The point group of Cu2O is the octahedral group 𝑂h. Expressed by the symbol Γ±
𝑖 , the

irreducible representations utilized in hereafter are further elucidated in reference [13].
The Γ+

6 CB in Cu2O, i.e. the lowest CB, is approximately parabolic, which is why only
the electron mass is modified compared to the one in vacuum 𝑚0, leading to the kinetic
energy term of the electron [8]

ℋe = 𝒑2
e

2𝑚e
. (2.5)

Due to non-parabolic VBs the kinetic term of the hole looks much more complicated.
The Γ+

5 VB is split into the highest Γ+
7 VB and the Γ+

8 one underneath due to the spin-
orbit coupling [8]. At the Γ-point, which is the maximum of the VB in Figure 2.1b,
the VB is threefold degenerate which can be described by a quasi-spin 𝑰 in the three-
dimensional Hilbert space. The three orbital Bloch functions 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥, which
transform in accordance with the Γ+

5 symmetry group, are conveniently denoted by such
a quasi-spin [10]. Considering also the hole spin 𝑺h results in a sixfold degeneracy. As
already mentioned the spin-orbit coupling divides the band leading to the Γ+

7 band with
a twofold degeneracy and the lower Γ+

8 band, which is fourfold degenerate.
Luttinger and Kohn [14] developed a suitable framework for treating degenerate va-

lence bands, as discussed in this context. They employed a perturbation-based approach
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to eliminate interband coupling terms from the kinetic energy description, resulting in
an effective Hamiltonian confined to the relevant bands of interest [8]. The interaction
with other bands is accounted for by adjusting the coupling terms between the studied
bands through a process known as renormalization. By considering the crystal’s sym-
metry, the relatively straightforward Suzuki-Hensel Hamilton operator [15], with only a
few free parameters, remains. These parameters, referred to as Luttinger parameters,
can be determined by fitting the Suzuki-Hensel Hamiltonian to spin-DFT calculations,
specifically for Cu2O [16, 17].

The kinetic energy model for the hole is based on the Suzuki-Hensel Hamiltonian,
which incorporates the fitted parameters. This leads to

ℋh (𝒑h) = ℋso + 1
2ℏ2𝑚0

{ℏ2 (𝛾1 + 4𝛾2) 𝒑2
h

+ 2 (𝑝1 + 2𝑝2) 𝒑2
h (𝑰 ⋅ 𝑺h)

− 6𝛾2 (𝑝2
h1𝑰2

1 + c.p.) − 12𝑝2 (𝑝2
h1𝑰1𝑺h1 + c.p.)

− 12𝛾3 ({𝑝h1, 𝑝h2} {𝑰1, 𝑰2} + c.p.)

− 12𝑝3 ({𝑝h1, 𝑝h2} (𝑰1𝑺h2 + 𝑰2𝑺h1) + c.p.)} , (2.6)

with the anti-commutator {𝑎, 𝑏} = 1
2 (𝑎𝑏 + 𝑏𝑎), the momenta 𝒑e/h of electron and hole,

the Luttinger parameters 𝛾𝑖 and 𝑝𝑖, cyclic permutation (c.p.) and the spin-orbit coupling
term

ℋso = 2
3

𝛥 (1 + 1
ℏ2 𝑰 ⋅ 𝑺h) . (2.7)

The Cartesian coordinates 𝑥, 𝑦, and 𝑧 are represented by the indices 𝑖 = 1, 2, 3 pertaining
to the Luttinger parameters, momenta as well as quasi- and hole spin. By introducing
the effective hole spin 𝑱 = 𝑰 + 𝑺h, the spin-orbit coupling Hamiltonian is diagonal. The
yellow and green series illustrated in Figure 2.1b are thus defined by 𝐽 = 1

2 and 𝐽 = 3
2 ,

respectively.
Interaction between electron and hole is described by the screened Coulomb potential

𝑉 (𝒓e − 𝒓h) = − 𝑒2

4𝜋𝜀0𝜀|𝒓e − 𝒓h|
, (2.8)

with the dielectric constant 𝜀 = 𝜀s1 in the low-frequency regime and the positions 𝒓e/h

of electron and hole, respectively.
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2.2.2 Center-of-mass transformation

There is a translational symmetry in the system, since the Hamiltonian (2.4) depends
only on the difference 𝒓e − 𝒓h between the two coordinates, making the center-of-mass
momentum a good quantum number [8]. To take advantage of this, the relative and
center-of-mass coordinates [10, 18–20]

𝒓 = 𝒓e − 𝒓h , 𝑹 = 𝑚e
𝑚e + 𝑚h

𝒓e + 𝑚h
𝑚e + 𝑚h

𝒓h , (2.9a)

𝒑 = 𝑚h
𝑚e + 𝑚h

𝒑e − 𝑚e
𝑚e + 𝑚h

𝒑h , 𝑷 = 𝒑e + 𝒑h (2.9b)

are incorporated to streamline the description. Here, 𝒓 is the relative coordinate and 𝑹
the center-of-mass coordinate with their respective momenta 𝒑 and 𝑷.

2.2.3 Central-cell corrections

For the accurate modeling of excitons with small spatial extension, such as states with
a principal quantum number of 𝑛 ≤ 2, the central-cell corrections (CCC) 𝑉CCC(𝒓) need
to be considered as additional terms in the Hamiltonian (2.4) [8].

Due to their opposing charges, the electron and hole that make up an exciton interact
via the Coulomb potential. When the relative motion of the electron and hole is slow in
comparison to the motion of the ionic cores of the crystal, the crystal environment mod-
ifies this interaction, resulting in the screened dielectric constant 𝜀s. This requirement
is not met for small principal quantum numbers, necessitating further modifications to
the dielectric constant. The electronic dielectric constant 𝜀b must be used in its place
if the motion of the electron and hole is significantly faster than that of the ionic cores.
At the frequency associated with a specific optical phonon branch, which governs the
relevant motion of the crystal’s cores, the transition between both regimes occurs. The
excitons of the yellow and green series in cuprous oxide are influenced by two relevant
longitudinal optical (LO) branches. Modeling the behavior of the dielectric constant in
the transition areas is necessary for an accurate description.

Haken derived and discussed the fundamental potential arising from the Fröhlich
interaction involving a single phonon branch [21–23]. Generalizing this potential to
account for two phonon branches yields [24]

𝑉 H(𝑟) = − 𝑒2

4𝜋𝜀0𝑟
[ 1

𝜀s1
+ 1

2𝜀∗
1

(e− 𝑟
𝜌h1 + e− 𝑟

𝜌e1 ) + 1
2𝜀∗

2
(e− 𝑟

𝜌h2 + e− 𝑟
𝜌e2 )] , (2.10)
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where 𝜀∗
𝑖 is given by

1
𝜀∗

𝑖
= 1

𝜀b𝑖
− 1

𝜀s𝑖
(2.11)

and the polaron radii are defined via

𝜌e𝑖 = √ ℏ
2𝑚e𝜔LO𝑖

, 𝜌h𝑖 = √ ℏ𝛾1
2𝑚0𝜔LO𝑖

. (2.12)

The two pertinent LO phonon branches and their corresponding energies ℏ𝜔LO𝑖 are
indicated by the indices 𝑖 = 1, 2.

In order to consider the momentum dependence of the dielectric constant for small
exciton extensions, a contact potential [8, 24, 25]

𝑉𝑑 = −𝑉0𝑉uc𝛿(𝒓) (2.13)

is used. To address minor deviations between theoretical predictions and experimental
observations, the value of 𝑉0 is introduced as a fitting parameter. The volume of the
unit cell is described by 𝑉uc = 𝑎3

g .
The electron and hole spin interact via [24]

ℋexch = 𝐽0 (1
4

− 1
ℏ2 𝑺e ⋅ 𝑺h) 𝑉uc𝛿(𝒓) = 𝐽0 (1 − 1

2ℏ2 𝑺2) 𝑉uc𝛿(𝒓) , (2.14)

where 𝑺 = 𝑺e + 𝑺h is the total spin. Depending on how closely the spins are aligned, it
causes a splitting of states with S admixture [8].

Regarding all above mentioned corrections, the CCC are given by

𝑉CCC = 𝑉 H + 𝑉𝑑 + ℋexch . (2.15)

2.2.4 Considering external electric and magnetic fields

External fields need to be applied to observe exceptional points, which will be explained
in Section 2.5. Additionally, these fields reduce the symmetry of the system [8]. When
an external magnetic field 𝑩 is applied, the minimum coupling 𝒑e → 𝒑e + 𝑒𝑨(𝒓e) and
𝒑h → 𝒑h − 𝑒𝑨(𝒓h) has to be introduced. Here,

𝑨 (𝒓e/h) = 1
2

(𝑩 × 𝒓e/h) (2.16)

is a vector potential for a homogeneous magnetic field. The Hamiltonian can be rewritten
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Table 2.1: Material parameters of Cu2O used in this thesis.

Gap energy 𝐸g = 2.172 08 eV [4]
Electron mass 𝑚e = 0.99 𝑚0 [26]
Hole mass 𝑚h = 0.58 𝑚0 [26]
Spin-orbit coupling 𝛥 = 0.131 eV [16]
Valence band parameters 𝛾1 = 1.76 [16]

𝛾2 = 0.7532 [16]
𝛾3 = −0.3668 [16]
𝑝1 = −0.020 [16]
𝑝2 = −0.0037 [16]
𝑝3 = −0.0337 [16]

Fourth Luttinger parameter 𝜅 = −0.5 [11]
Dielectric constants 𝜀s1 = 7.5 [27]

𝜀b1 = 𝜀s2 = 7.11 [27]
𝜀b2 = 6.46 [27]

Exchange interaction 𝐽0 = 0.792 eV [24]
Short distance correction 𝑉0 = 0.539 eV [24]
Lattice constant 𝑎g = 0.426 96 nm [28]
Energy of Γ−

4 -LO phonons ℏ𝜔LO1 = 18.7 meV [25]
ℏ𝜔LO2 = 87 meV [25]

Landé factor of the electron 𝑔c = 2.1 [29]

in the form
ℋ𝐵 = ℋ(𝐵 = 0) + 𝑒𝐵ℋ1 + (𝑒𝐵)2 ℋ2 (2.17)

for a field with magnitude 𝐵. In [11] the terms for ℋ1 and ℋ2 can be found for three
different configurations of the magnetic field along the axes [001], [110] and [111].

Not only the minimal coupling but also the interaction between the magnetic field
and the spins needs to be considered via the Hamiltonian [11]

ℋ𝐵 = 𝜇B [𝑔c𝑺e + (3𝜅 + 𝑔𝑠
2

) 𝑰 − 𝑔s𝑺h] ⋅ 𝑩
ℏ

, (2.18)

where 𝜇B is the Bohr magneton, 𝜅 the fourth Luttinger parameter and 𝑔c and 𝑔s ≈ 2
the Landé factors of electron and hole, respectively.

Applying an external electric field 𝒇 leads to the Hamiltonian

ℋ𝑓 (𝒓e − 𝒓h) = −𝑒 (𝒓e − 𝒓h) ⋅ 𝒇 , (2.19)
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Figure 2.2: (a) A Coulomb potential can have bound states with infinite
lifetime. (b) Applying an external electric field 𝑓 results in a Coulomb-Stark
potential. The previously bound state can now tunnel through the potential
barrier and thus has a finite lifetime. This is called resonance or quasi-bound
state.

which is just added to Equation (2.4) to describe the system. This results in the Hamil-
tonian

ℋ = 𝐸g + ℋe(𝒑e) + ℋh(𝒑h) + 𝑉 (𝒓e − 𝒓h) + 𝑉CCC(𝒓) + ℋ𝐵 + ℋ𝑓 . (2.20)

All material parameters of Cu2O introduced in this section are listed in Table 2.1.

2.3 Resonances
Both bound and quasi-bound states can occur in quantum systems. The latter are also
called resonances, which have a certain lifetime and enough energy to decay into two or
more subsystems [9, 30, 31]. An example of such a quasi-bound state is a radioactive
atomic nucleus, which decays into a new atomic nucleus by emitting a radiation particle.
Figure 2.2 shows how resonances can arise in the case of excitons. The bound state in
the Coulomb potential (cf. Figure 2.2a) becomes a resonance when an external electric
field is applied (cf. Figure 2.2b). The Coulomb-Stark potential

𝑉CS (𝒓) = − 𝑒2

4𝜋𝜀0𝜀 |𝒓|
+ 𝒇 ⋅ 𝒓 (2.21)

describes the entire interaction. Here 𝒇 is the electric field. The field lowers the potential
barrier, allowing the previously bound state with infinite lifetime to tunnel through this
barrier, leading to a finite lifetime [9].
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2.3.1 Complex eigenvalues

The time evolution of resonances can be expressed by the wave function [1, 32]

𝜓 (𝑡) = e−i �̃�𝑡
ℏ 𝜓 (0) (2.22)

with the complex energy eigenvalue

̃𝐸 = 𝐸 − i𝛤
2

, (2.23)

which represents its finite lifetime. The real part Re ( ̃𝐸) = 𝐸 describes the energy,
whereas the imaginary part Im ( ̃𝐸) = −𝛤

2 leads to an exponential decay and hence
defines the width. Due to the fact that the eigenvalues of a Hermitian Hamiltonian are
always real, the Hamiltonian has to be non-Hermitian [9]. To uncover complex energies,
the complex-coordinate-rotation method described below can be utilized as one possible
technique.

2.3.2 Complex-coordinate-rotation

The introduction of complex scaling can be achieved through the application of a unitary
operator 𝑈(𝜃) on both the wave functions and Hamiltonian of the considered system [32],

(𝑈(𝜃)ℋ𝑈−1(𝜃)) (𝑈(𝜃)𝜓𝑛) = 𝐸𝑛 (𝑈(𝜃)𝜓𝑛) . (2.24)

Various forms of similarity transformations have been employed to derive the Schrödinger
equations with complex rotation (cf. [31]). The fundamental idea is to apply complex
rotation or scaling

𝒓 → ei𝜃𝒓 (2.25)

to every instance of the relative coordinate 𝒓 in both the wave function and the Hamilto-
nian. For the purpose of the current discussion, attention can be centered on an operator
that acts on both the wave function

𝑈(𝜃)𝜓(𝒓) = ei 3𝜃
2 𝜓(𝒓ei𝜃) (2.26)

and the Hamilton operator

ℋ̄(𝜃) = (𝑈(𝜃)ℋ𝑈−1(𝜃)) = −1
2

e−2i𝜃Δ + 𝑉 (𝒓ei𝜃) (2.27)
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as depicted. When discussing expectation values, it is convenient to define the action
of the operator on the wave function with a phase to account for the transformation
of the integration measure. For simplicity, Equations (2.26) and (2.27) are given for a
Hamiltonian that considers two bodies. To extend this approach to an 𝑁-body system,
the complex-coordinate-rotation method is applied to all independent center-of-mass
coordinates 𝒓𝑖 [32].

The representation of complex rotation in Equations (2.26) and (2.27) offers a sig-
nificant advantage due to its close association with the integration variable during the
calculation of energy expectation values. This advantage becomes particularly relevant
when considering a normalized wave function that is both radially symmetric and the
solution to the Hamilton operator

ℋ (𝑟) = −1
2

1
𝑟2

d
d𝑟

𝑟2 d
d𝑟

+ 𝑉 (𝑟) (2.28)

featuring a radially symmetric potential 𝑉 (𝑟). In this case, the energy expectation value
adopts the form

⟨𝐸⟩ =
∞

∫
0

𝑅(𝑟)(−1
2

1
𝑟2

d
d𝑟

𝑟2 d
d𝑟

+ 𝑉 (𝑟))𝑅(𝑟)𝑟2 d𝑟 . (2.29)

Inserting the Equations (2.26) and (2.27) results in

⟨𝐸⟩ =
∞

∫
0

ei 3𝜃
2 𝑅(ei𝜃𝑟)(−e−i2𝜃

2
1
𝑟

d
d𝑟

𝑟2 d
d𝑟

+ 𝑉 (ei𝜃𝑟))ei 3𝜃
2 𝑅(ei𝜃𝑟)𝑟2 d𝑟

=
∞

∫
0

𝑅(ei𝜃𝑟)(−1
2

1
(ei𝜃𝑟)2

d
d(ei𝜃𝑟)

(ei𝜃𝑟)2 d
d(ei𝜃𝑟)

+ 𝑉 (ei𝜃𝑟))𝑅(ei𝜃𝑟)(ei𝜃𝑟)2 d(ei𝜃𝑟) , (2.30)

which is equivalent to integrating the variable 𝜌 = ei𝜃𝑟 along the complex contour
𝐶 = {𝜌 = ei𝜃𝑟 | 0 ≤ 𝑟 < ∞}

⟨𝐸⟩ = ∫
𝐶

𝑅(𝜌)(−1
2

1
𝜌

d
d𝜌

𝜌2 d
d𝜌

+ 𝑉 (𝜌))𝑅(𝜌)𝜌2 d𝜌 . (2.31)

Therefore, calculating the integral along a different contour in complex coordinate space
has the same impact on the energy expectation value as using the method described
in Equations (2.26) and (2.27). Two possible contours are shown in Figure 2.3. If
a function is holomorphic between two contours that connect the same points in the
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Figure 2.3: Two possible contours to evaluate the integral in Equation (2.31).
The calculation of the energy expectation value for a bound state according to
Equation (2.29) is equivalent to the path along the real axis 𝐶r. For scaled
wave functions and a complex rotated Hamiltonian as in Equation (2.30), the
evaluation of the expectation value corresponds to the contour 𝐶. Adapted
from [32].

complex plane, Cauchy’s theorem states that the line integral will yield the same values
for both contours. For 𝑟 → ∞ the bound state wave functions vanish, which is why
the two contours 𝐶 and 𝐶r can be connected at infinite distance from the origin. This
connection does not contribute to the line integral and thus has no effect on the result.

Based on the formulation of the contour integral (2.31), it is obvious that the complex
rotation does not influence the energies of the bound states [1]. However, it does affect
the energy spectrum of the quasi-bound states. The complex-coordinate-rotation causes
the rotation of the continuum into the bottom half of the complex plane by an angle
of 2𝜃, which can be very easily exemplified by short-range interaction potentials [1, 31].
The solution of a radial scattering problem is given by

𝜓scatt = 𝐴(𝑘)ei𝑘𝑟

𝑟
+ 𝐵(𝑘)e−i𝑘𝑟

𝑟
. (2.32)

The energy (𝑚 = ℏ = 1) is

𝐸 = 𝑘2

2
(2.33)

for 𝑟 → ∞. Applying the complex rotation on the wave function (2.32) leads to non-
physical behavior due to the divergence of one of the exponential functions. This can
be avoided by introducing 𝑘 → 𝑘e−i𝜃 [9, 31], which changes the energy to

̄𝐸 = 𝑘2e−2i𝜃

2
. (2.34)

This is the rotation of the continuum above mentioned by the angle 2𝜃 into the bottom
half of the complex plane [32]. Due to this rotation, resonances are exposed as illustrated
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bound states
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(a) Non-rotated Hamiltonian
Im(E)

Re(E)

bound states 2θ

exposed resonances

(b) Rotated Hamiltonian

1
Figure 2.4: The effect of the complex-coordinate-rotation is depicted here.
(a) For the non-rotated Hamiltonian no resonances are visible. All solutions
lie on the real axis. (b) After the rotation the bound states are still located on
the real axis but the continuum is rotated into the bottom half of the complex
plane by the angle 2𝜃. Resonances with discrete complex energy eigenvalues
which do not depend on the angle 𝜃 are exposed. Adapted from [32].

in Figure 2.4 which do not depend on the angle 𝜃. The inverted harmonic oscillator,
which can be represented as

ℋ = −1
2

d2

d𝑥2 − 1
2

𝑥2 , (2.35)

visualizes this effect [31]. The solutions of the Schrödinger equation are exclusively
unbound states [9]. Applying the complex rotation yields the Hamiltonian

ℋ̄ = −1
2

e−2i𝜃 d2

d𝑥2 − e2i𝜃 1
2

𝑥2 . (2.36)

The complex rotated and, for an appropriate chosen angle 𝜃, square integrable wave
functions

𝜓𝑛 (ei𝜃𝑥) = 𝑐𝐻𝑛 (ei𝜃𝑥√
i

) exp (ie
i2𝜃𝑥2

2
) (2.37)

solve Equation (2.36). Here, 𝑐 is a normalization constant and 𝐻𝑛(𝑥) are the Hermite
polynomials. The corresponding energy eigenvalues

̄𝐸𝑛 = −i (𝑛 + 1
2

) , 𝑛 = 0, 1, 2, … (2.38)

are purely imaginary. By comparing Equations (2.23) and (2.38) it is evident that
the inverted harmonic oscillator has an infinite number of resonances with the width
𝛤 = 2𝑛 + 1 at the position 𝐸 = 0.
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The results of the complex-coordinate-rotation can be summarized as follows:

• The complex rotation has no effect on the bound states (cf. Figure 2.4).

• The continuum is rotated by the angle 2𝜃 into the bottom half of the complex
plane (cf. Figure 2.4b).

• Previously hidden resonances (cf. Figure 2.4a) are exposed (cf. Figure 2.4b). Their
discrete energy eigenvalues are independent of the angle 𝜃 and have the form

̃𝐸 = 𝐸 − i𝛤
2 with position 𝐸 and width 𝛤.

2.4 Numerical method to diagonalize the exciton
Hamiltonian of Cu2O

After introducing all relevant parameters, an explanation is provided on the method em-
ployed to acquire the eigenvalues of the exciton Hamiltonian. The stationary Schrödinger
equation is expressed in terms of a complete basis in order to numerically determine the
eigenvalues and eigenstates [8, 9]. The orbital angular part is described using the spher-
ical harmonics with the quantum numbers 𝐿 and 𝑀. To handle the electron and hole
spins 𝑺e and 𝑺h as well as the quasi-spin 𝑰, additional quantum numbers are required.
From the already introduced effective hole spin 𝑱 = 𝑰 + 𝑺h, which is the coupling
of quasi- spin and hole spin, the angular momentum 𝑭 = 𝑱 + 𝑳 can be obtained by
adding the orbital angular momentum 𝑳. Additionally, regarding the electron spin 𝑺e

yields the total angular momentum 𝑭t = 𝑭 + 𝑺e as well as its 𝑧-component 𝑀𝐹𝑡
. The

Coulomb-Sturmian functions [12, 33, 34]

𝑈𝑁,𝐿 = 𝑁𝑁,𝐿,𝛼 (2𝑟
𝛼

)
𝐿

e− 𝑟
𝛼 𝐿2𝐿+1

𝑁 (2𝑟
𝛼

) , (2.39)

with a normalization factor 𝑁𝑁,𝐿,𝛼 and the Laguerre polynomials 𝐿𝑚
𝑛 (𝑥), are used to

calculate the radial part. Instead of the principal quantum number (𝑛), the index
𝑁 = 𝑛 − 𝐿 − 1 denotes the radial quantum number. The parameter 𝛼 is a convergence
parameter and can in principle be chosen arbitrarily. By setting it to

𝛼 = |𝛼|ei𝜃 (2.40)

and thus considering the complex rotation angle 𝜃 from Equation (2.25) as well as |𝛼|, the
latter only affecting the convergence, it is possible to implement the complex-coordinate-
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rotation. Hence, resonances can be calculated. The set of used quantum numbers are
abbreviated by 𝛱 = {𝑁, 𝐿; (𝐼, 𝑆h) , 𝐽; 𝐹 , 𝑆e; 𝐹𝑡, 𝑀𝐹𝑡

}, which is why the basis states
can be expressed via

|𝛱⟩ = ∣𝑁, 𝐿; (𝐼, 𝑆h) , 𝐽; 𝐹 , 𝑆e; 𝐹𝑡, 𝑀𝐹𝑡
⟩ . (2.41)

Although not being orthogonal regarding the standard scalar product, this basis has the
benefit of being complete despite the absence of the hydrogen continuum.

Spherical tensor notation is used to represent the Hamiltonian [11, 12]. The [001]
direction serves as the symmetry axis for aligning the magnetic and electric fields. To
ensure consistency between the orientation of the fields and the quantization axis, the
coordinates of the Hamiltonian are rotated accordingly. To calculate the exciton wave
function |𝛹⟩, the ansatz

|𝛹⟩ = ∑
𝛱

𝑐𝛱 |𝛱⟩ (2.42)

is used. This leads to a generalized eigenvalue problem for the Schrödinger equation

𝑯𝒄 = 𝐸𝑴𝒄 , (2.43)

where 𝑯 is the Hamiltonian matrix and 𝑴 the overlap matrix. Cut-offs to the quantum
numbers 𝑁 + 𝐿 + 1 ≤ 𝑛max and 𝐹 ≤ 𝐹max are incorporated in order to obtain finite
matrices and vectors. It is crucial for achieving accurate and well-converged results to
select these parameters, along with |𝛼| and rotation angle 𝜃, properly. If variations in
these parameters do not cause significant alterations in the calculated spectra, conver-
gence is considered satisfactory. The eigenvalues 𝐸 and the eigenvectors 𝒄 containing the
coefficients of Equation (2.42) are obtained by using a suitable ARPACK routine [35].
When incorporating the two delta terms of the CCC into the Hamiltonian, a two-step
approach is followed. Firstly, the Hamiltonian is diagonalized without considering the
delta terms. In this step, the eigenstates and eigenvalues are obtained. Subsequently,
a second eigenvalue problem is established, incorporating the delta terms, but utiliz-
ing only the converged eigenstates obtained from the initial diagonalization step. This
approach allows for an effective treatment of the delta terms while building upon the
accurate solutions obtained in the first diagonalization.
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2.5 Exceptional points
In eigenvalue problems which depend on a parameter, EPs can occur [9, 32, 36–38].
Varying this usually complex parameter can lead to branch points where the eigenvalues
as well as the eigenvectors coalesce. As an illustration, consider the case where the linear
map

𝒚 = 𝑻 (𝜅)𝒙 , (2.44)

which is represented by the matrix 𝑇 (𝜅), depends holomorphically on the scalar complex
parameter 𝜅 in the domain 𝐷0 of the complex plane, where 𝒙, 𝒚 ∈ R𝑛. The eigenvalues
can be calculated by

det(𝑻 (𝜅) − 𝜆1) = 0 . (2.45)

This algebraic equation is of degree 𝑛. The eigenvalues 𝜆 in the domain 𝐷0 are them-
selves branches of analytic functions or analytic functions of 𝜅, which only have algebraic
singularities [39].

When an analytic function has at least two eigenvalues that are shared by at least
two of the function’s branches, i.e. which are on two different Riemann sheets [2], EPs
can be found. They are branch point singularities of the analytic function and occur
at isolated points in the two-dimensional parameter space of 𝜅. At these points, the
eigenvalues and the eigenvectors coincide, i.e. degenerate, which results in less distinct
eigenvalues and eigenvectors. The amount of eigenvalues does not depend on 𝜅 at any
other locations in the domain 𝐷0 [36].

The presence of branch point singularities within the structure of EPs carries signif-
icant implications for the corresponding eigenvectors and eigenvalues.

• By traversing a closed curve in the parameter space surrounding the EP (excluding
the branch point 𝜅 = 𝜅EP), a permutation of the eigenvalues can be detected [36].
Discretizing the closed curve by 𝑘 points and solving Equation (2.45) for each point
on this curve results in groups of eigenvalues [32]

{𝜆1,1(𝜅), … , 𝜆1,𝑘(𝜅)} , {𝜆2,1(𝜅), … , 𝜆2,𝑘(𝜅)} . (2.46)

The most common scenario observed in physical systems involves a square root
branch point singularity, also known as EP2, in which two eigenvalues exhibit
permutation while any further eigenvalues of the system do not. Thus, each group
of eigenvalues belonging to the EP does not form a closed loop. Upon encircling
the EP, where 𝜅 = 𝜅EP, the two eigenvalues representing the two branches of an
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analytic function are exchanged. Starting at an arbitrary value of 𝜅0, crossing the
border between both Riemann sheets occurs precisely once during a single turn
around 𝜅EP, and the continuation of 𝜆1(𝜅0) ends at the starting point of 𝜆2(𝜅0).

• With the exception of the EPs 𝜅 ≠ 𝜅EP, the eigenvalues corresponding to these
points are distinct, and each of them is associated with a unique eigenvector.
Analogous to the eigenvalues, they also pass through a branch point singularity at
the EP and thus degenerate [36]. In contrast to the “normal” degeneracy not only
the eigenvalues but also the eigenvectors degenerate and there is only one linearly
independent eigenvector at the EP. So it is rather a coalescence than a degeneracy
[40]. The dimension of the eigenvector space is reduced at the EP compared to the
rest of the parameter space [32], which is why the matrix can not be diagonalized
[38].

• In the most common physical systems an EP2 occurs, which has to be encircled
four times to obtain the initial state due to Berry’s phase. After two circulations
the eigenvalues return to their original position but the eigenvectors pick up a
phase of the form [40]

𝒗1
2 circles

→ −𝒗1 and 𝒗2
2 circles

→ −𝒗2 . (2.47)

This indicates the presence of an algebraic singularity which exhibits the behavior
of a fourth root at the EP.

EPs can appear in classical and quantum mechanical problems as well as in optics
and other fields [38]. For a Poiseuille flow the instabilities and particular behavior of the
Reynolds number is related to EPs. In Bose-Einstein condensates, an EP denotes the
transition point at which individual atoms begin to form clusters or molecules.

2.5.1 Simple example

In order to visualize an EP and its behavior, a linear non-Hermitian map represented
by the two-dimensional matrix [32, 36]

𝑴(𝜅) = (
1 𝜅
𝜅 −1

) (2.48)

can be used as a simple example with 𝜅 ∈ C. Despite being a straightforward illustration,
all significant aspects of EPs can be demonstrated since the close vicinity of an EP in an



2.5 Exceptional points 27

−0.1 0.0 0.1
Re(κ)

0.90

0.95

1.00

1.05

1.10

Im
(κ

)

(a)
EP

−0.4 −0.2 0.0 0.2 0.4
Re(λ)

−0.4

−0.2

0.0

0.2

0.4

Im
(λ

)

(b)

0

π
2

π

3π
2

φ

1
Figure 2.5: (a) The exceptional point (EP) 𝜅+ = i of the simple example
(2.48) is encircled in the parameter space 𝜅. Each point in the complex plane
is described by the angle 𝜙 in Euler form as depicted in Equation (2.52). (b)
This leads to an exchange of the positions of the two eigenvalues in the complex
energy plane. The eigenvalues calculated for each point on the circle are marked
by the respective color of the color bar indicating the angle 𝜙, in order to
illustrate the path of each eigenvalue and the associated permutation.

𝑛-dimensional system can be expressed by a two-dimensional problem [2]. Calculating
the eigenvalues of Equation (2.48) results in

𝜆1 = √1 + 𝜅2 and 𝜆2 = −√1 + 𝜅2 . (2.49)

It is evident that the eigenvalues are two branches of the same analytic function in 𝜅.
They coalesce at 𝜅± = ±i, which means that there exist two EPs in this system. The
corresponding eigenvectors are

𝒗1(𝜅) = (
−𝜅

1 −
√

1 + 𝜅2) and 𝒗2(𝜅) = (
−𝜅

1 +
√

1 + 𝜅2) (2.50)

from which it is obvious that these also coalesce at 𝜅± = ±i and that there is therefore
only one linearly independent eigenvector

𝒗(±i) = (
∓i
1

) . (2.51)
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The exchange behavior of the two eigenvalues when encircling the EP can be visualized
by

𝜅(𝜙) = i + 𝜚ei𝜙 , (2.52)

which describes a circle with radius 𝜚 around the EP 𝜅+ = i. This orbit is shown in
Figure 2.5a, where the color bar denotes the angle 𝜙. The permutation of the eigenvalues
in the complex energy plane can be seen in Figure 2.5b. After one closed loop in the
parameter space the eigenvalues exchange their positions. The path of each eigenvalue
is depicted by the colors of the color bar. Due to the simplicity of this example, this
permutation can also be shown analytically by substituting the circular parametrization
(2.52) into the eigenvalues from Equation (2.49)

𝜆1,2 = ±√1 + (i + 𝜚ei𝜙)2 = ±√𝜚ei 𝜙
2 √2i + 𝜚ei𝜙

𝜚≪2
≈ ±√2𝜚ei 𝜋

4 ei 𝜙
2 , (2.53)

which leads to
𝜆1 = √2𝜚ei( 𝜋

4 + 𝜙
2 ) and 𝜆2 = √2𝜚ei( 5𝜋

4 + 𝜙
2 ) . (2.54)

After one closed loop in the parameter plane, i.e. 𝜙 = 2𝜋, 𝜆1 changes to 𝜆2 and vice
versa, which is exactly the behavior shown in Figure 2.5.

Due to the small radius both paths of the eigenvalues in the complex energy plane
build a half circle. For larger radii or elliptical orbits this shape can be much more
complex.

2.5.2 Methods to find EPs

Methods for the localization of EPs include the three-point method and the octagon
method. These are briefly explained hereafter. Only the eigenvalues associated with the
EP are considered and the analytical functions

𝑝 ≡ (𝜆1 − 𝜆2)2 , (2.55)

𝑠 ≡ 1
2

(𝜆1 + 𝜆2) , (2.56)

are introduced. To ensure analyticity, the eigenvalue difference of the two-dimensional
matrix is squared in the variable 𝑝, owing to its square root behavior. Due to the
degeneracy of the eigenvalues, 𝑝 is zero at the EP, so a root search is performed on 𝑝.
Both methods mentioned above use a Taylor expansion to approximate 𝑝.
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Three-point method

The three-point method was invented by Uzdin and Lefebvre [5]. It is an iterative
algorithm to locate the EP in the parameter space, which is based on an arbitrarily
chosen evolution point (𝛾0, 𝑓0) [9]. Here, the complex parameter 𝜅 is divided into two
real valued parameters Re(𝜅) = 𝛾 and Im(𝜅) = 𝑓. As already mentioned, the EP can
be described by a two-dimensional matrix model [2]

𝑴 = (
𝑎0 + 𝑎𝛾 (𝛾 − 𝛾0) + 𝑎𝑓 (𝑓 − 𝑓0) 𝑏0 + 𝑏𝛾 (𝛾 − 𝛾0) + 𝑏𝑓 (𝑓 − 𝑓0)
𝑏0 + 𝑏𝛾 (𝛾 − 𝛾0) + 𝑏𝑓 (𝑓 − 𝑓0) 𝑐0 + 𝑐𝛾 (𝛾 − 𝛾0) + 𝑐𝑓 (𝑓 − 𝑓0)

) , (2.57)

which is non-Hermitian and complex symmetric, similar to the example in Section 2.5.1.
The linear evolutions in the two real parameters 𝛾 and 𝑓 around the evolution point
(𝛾0, 𝑓0) with complex coefficients are depicted by the entries of this matrix [37]. Cou-
pling to other states is neglected because of this two dimensional approach, which only
considers the two states belonging to the EP. The eigenvalues of the matrix 𝜆𝑖 can be
expressed by

𝑠 ≡ 1
2

(𝜆1 + 𝜆2) = tr(𝑴) = 𝐴 + 𝐵 (𝛾 − 𝛾0) + 𝐶 (𝑓 − 𝑓0) , (2.58a)

𝑝 ≡ (𝜆1 − 𝜆2)2 = tr2(𝑴) − 4 det(𝑴) = 𝐷 + 𝐸 (𝛾 − 𝛾0) + 𝐹 (𝑓 − 𝑓0)
+ 𝒪((𝛾 − 𝛾0)2 , (𝑓 − 𝑓0)2 , (𝛾 − 𝛾0) (𝑓 − 𝑓0)) ,

(2.58b)

where 𝑠 and 𝑝 are analytic functions depending on the parameters 𝛾 and 𝑓. For the new
coefficients holds 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ∈ C. The evolution point is now set to values at the
EP (𝛾0 = 𝛾EP, 𝑓0 = 𝑓EP), which are still unknown, to determine them. The three-point
method neglects all quadratic terms in Equation (2.58b). Due to the coalescence of the
eigenvalues at the EP and thus 𝑝 = 0, 𝐷 can be set to 𝐷 = 0, which results in

𝑝 = 𝐸 (𝛾 − 𝛾EP) + 𝐹 (𝑓 − 𝑓EP) . (2.59)

It is assumed that the close vicinity of the EP is sufficiently well described by the two
coefficients 𝐸 and 𝐹.

The eigenvalues 𝜆1,𝑖 and 𝜆2,𝑖 are calculated at three different points in the parameter
space (𝛾𝑖, 𝑓𝑖) and inserted in Equation (2.59). Subtracting them leads to the linear set



30 Theoretical Basics

of equations

𝑝2 − 𝑝1 = 𝐸 (𝛾2 − 𝛾1) + 𝐹 (𝑓2 − 𝑓1) , (2.60a)
𝑝3 − 𝑝1 = 𝐸 (𝛾3 − 𝛾1) + 𝐹 (𝑓3 − 𝑓1) , (2.60b)

which can be solved to obtain the complex coefficients 𝐸 and 𝐹. Substituting these
coefficients and one of the points (𝛾𝑖, 𝑓𝑖) in Equation (2.59) and dividing this equation
into real and imaginary part, yields another linear set of equations

(
Re(𝐸) Re(𝐹)
Im(𝐸) Im(𝐹)

)(
𝛾EP

𝑓EP
) = (

𝑑1

𝑑2
) , (2.61a)

𝑑1 = Re(𝐸)𝛾1 + Re(𝐹)𝑓1 − Re(𝑝1) , (2.61b)
𝑑2 = Im(𝐸)𝛾1 + Im(𝐹)𝑓1 − Im(𝑝1) . (2.61c)

Resolving Equation (2.61) results in an approximation for the EP in the parameter space
(𝛾EP, 𝑓EP), around which three new points can be computed with smaller distance than
the previous ones, thus creating an iterative process.

Since in higher-dimensional systems there are more than two eigenvalues, a complete
orbit around the EP must be calculated to uniquely identify the two eigenvalues belong-
ing to the EP, although only three of these calculated points are used for the method. In
addition, a sufficient number of points on the orbit need to be computed to unambigu-
ously verify the permutation of the eigenvalues. This means high computational cost,
with much of the calculated data being useless. Another problem is the convergence of
this method. Due to the linear approach of Equation (2.58b) the three-points already
have to be close to the actual position of the EP. The method shows convergence for a
relative radius of the parameters 𝛾 and 𝑓 of about 0.03 % [37] for excitons in cuprous
oxide in parallel magnetic (𝛾) and electric fields (𝑓). So if the points are too far away
the three-point method will not converge and other methods must be used to narrow
the search region (cf. [9, 37]). This is why the octagon method was developed.

Octagon method

Unlike the three-point method, Equation (2.58b) is not linearly approximated in the
octagon method [37], which leads to

𝑝 ≡ (𝜆1 − 𝜆2)2 = tr2(𝑴) − 4 det(𝑴) = 𝐷 + 𝐸 (𝛾 − 𝛾0) + 𝐹 (𝑓 − 𝑓0)
+ 𝐺 (𝛾 − 𝛾0)2 + 𝐻 (𝛾 − 𝛾0) (𝑓 − 𝑓0) + 𝐼 (𝑓 − 𝑓0)2 ,

(2.62)



2.5 Exceptional points 31

with the additional complex coefficients 𝐺, 𝐻, 𝐼 ∈ C. To determine all coefficients from
Equation (2.62), nine points are needed, eight of which lie on a regular octagon and the
ninth is its center (more details are given in [37]). Instead of orbiting the EP, small
octagons are calculated, preventing groups of eigenvalues belonging to different states
from overlapping. The two sets of eigenvalues belonging to the EP can be found by
comparing their energies to that of an avoided crossing of two states, which is also a
good starting point for the center of the first octagon. Each prediction for the EP
(𝛾EP, 𝑓EP) is used as the center for the next octagon. Because of the quadratic terms in
Equation (2.62) there is not only one solution. All other possibly complex solutions have
no physical meaning and only exist due to the mathematical structure of this method.
To get the one giving an approximation of the EP the so called 𝜀-method can be used
which is described in [37]. Nonetheless, this method could lead to an infinite loop of the
octagon method and hence no convergence.

As already mentioned above, one of the main disadvantages of the three-point method
is the very small convergence radius due to the linear Taylor expansion. The octagon
method has in fact a larger convergence radius than the three-point method, but is still
quite computationally expensive. For each iteration step, at least nine points need to
be calculated, but to ensure the convergence of the computed points, there are usually
significantly more. As already mentioned above, the 𝜀-method, needed to get the right
physical solution, can result in non convergence of the octagon method, which is another
problem of this method. For these reasons, a novel method will be developed in this
thesis using machine learning, namely Gaussian process regression. The used data to
train a GPR model is obtained by simulations. Hence, the error is only due to numerical
inaccuracies, which can be neglected. In contrast to neural networks, it is possible to
ensure that the trained GPR model passes exactly through the given training points,
which is one of the main reasons for using GPR.





3 Gaussian Processes Used in Ma-
chine Learning

Gaussian processes (GPs) are a widely accepted and sophisticated approach used for
performing Bayesian non-linear non-parametric regression and classification tasks [41].
They belong to the group of supervised machine learning algorithms [7, 42]. By incor-
porating prior knowledge of the function being searched using a kernel, it is possible not
only to make predictions, but also to provide model uncertainty for that prediction. In
physics, e.g., GPR can be used to fit a model to experimental or simulated data.

3.1 Mathematical basics
For a better understanding of GPR, first some mathematical basics are explained. In
doing so, a closer look is taken at what a GP is and how it can be described. Prior and
posterior distributions are introduced along with the concept of kernel functions and
covariance matrices.

3.1.1 Multivariate normal distribution

For simplicity, a two-dimensional space is assumed denoted by 𝑥 and 𝑦. Generating two
vectors 𝒚𝑖 with 𝑖 = 1, 2 which contain random values sampled from a normal distribution,
plotting them at 𝑥1 and 𝑥2 respectively and connecting each value in 𝒚1 with one in
𝒚2 yields a set of linear functions which in general can be used for regression tasks [43].
The bi-variate normal distribution is given by

[
𝒚1

𝒚2
] ∼ 𝒩 (𝝁, 𝜮) = 𝒩 ([

𝜇1

𝜇2
], [

𝜎11 𝜎12

𝜎21 𝜎22
]) , (3.1)
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with the mean vector 𝝁 and the covariance matrix 𝜮. This distribution characterizes
the joint probability distribution 𝑃(𝒚1, 𝒚2). The covariance matrix 𝜮 captures the
correlations between 𝒚1 and 𝒚2 through its off-diagonal elements, 𝜎12 and 𝜎21. By
extending this concept to an infinite number of vectors 𝒚 at different positions 𝑥 and
connecting values from adjacent vectors, a set of functions can be obtained. To achieve
smoother functions, a suitable covariance function 𝑘(𝑥, 𝑥′) can be employed to account
for correlations among nearby values. This will be discussed in more detail below. Thus,
an infinite-dimensional Gaussian can be used to produce a continuous function space.

3.1.2 Gaussian processes

A GP is defined as a set of random variables where the joint distribution of any finite
subset follows a Gaussian distribution, therefore it describes a distribution over functions
[7]. For a given function, 𝑓(𝒙), the mean 𝑚(𝒙) and covariance function 𝑘(𝒙, 𝒙′) are
defined as

𝑚(𝒙) = E[𝑓(𝒙)] , (3.2)
𝑘(𝒙, 𝒙′) = E[(𝑓(𝒙) − 𝑚(𝒙))(𝑓(𝒙′) − 𝑚(𝒙′))] , (3.3)

which fully specify a GP via

𝑓(𝒙) ∼ 𝒢𝒫(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) . (3.4)

The vector 𝒙 ∈ 𝑋 ⊂ R𝐷 can be 𝐷-dimensional and belongs to the input set 𝑋 which
contains all possible inputs. At a particular position 𝒙 the function value 𝑓(𝒙) is ex-
pressed by the random variables.

3.1.3 Prior and posterior of a Gaussian process

A linear regression model
𝑓(𝒙) = 𝝓(𝒙)⊤𝒘 (3.5)

can provide a straightforward instance of a GP. Specifying a prior over the parameters
— usually a Gaussian 𝒘 ∼ 𝒢𝒫(0, 𝛴𝑝) with zero mean and covariance matrix 𝛴𝑝 — is
necessary to encapsulate assumptions regarding these parameters prior to inspecting the
observed data. A GP prior distribution and some sample functions randomly selected
from it are illustrated in Figure 3.1a. Inserting Equation (3.5) and the above assumption
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Figure 3.1: (a) A Gaussian process (GP) prior distribution is visualized, including four
sample functions which are randomly chosen from this prior. Due to a large number
of given input points, they are displayed as dashed lines rather than individual points,
which would be more accurate. (b) The posterior distribution obtained after fitting
the model to the observed, noise free, data points, marked as black crosses. Again, four
sample functions randomly selected from the posterior are shown as dashed lines. Taking
the mean of all possible functions that fit the given data points results in the solid blue
line, which is used to make predictions. The shaded region in both plots marks the 95 %
confidence interval calculated from the variance of the model. Adapted from [7].
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about the weights 𝒘 into Equations (3.2) and (3.3) results in

𝑚(𝒙) = 𝝓(𝒙)⊤E[𝒘] = 0 , (3.6)
𝑘(𝒙, 𝒙′) = 𝝓(𝒙)⊤E[𝒘𝒘⊤]𝝓(𝒙′) = 𝝓(𝒙)⊤𝛴𝑝𝝓(𝒙′) (3.7)

for the mean and covariance function, respectively.
It is essential to make a clear distinction between the prior and the posterior distri-

butions. The posterior distribution over the weights 𝒘 is used to make predictions as
depicted in Figure 3.1b. It contains all known information, i.e. it is obtained after fitting
the model to the observed data points.

3.1.4 Covariance and kernel function

The covariance function, also referred to as kernel function or simply kernel, determines
the level of correlation between two random variables [7]. A popular kernel is the radial
basis function (RBF) also known as squared exponential (SE), which is given by

cov (𝑓(𝒙𝑝), 𝑓(𝒙𝑞)) = 𝑘(𝒙𝑝, 𝒙𝑞) = e− 1
2 ∣𝒙𝑝−𝒙𝑞∣2 (3.8)

and thus only depends on the distance between the inputs 𝒙𝑝 and 𝒙𝑞.
Mercer’s theorem [7, 44, 45] states that any positive definite kernel function can be

represented using a possibly infinite number of basis functions, e.g. the linear combina-
tion of an infinite number of basis functions with Gaussian shapes results in the RBF
covariance function. Hence, defining the kernel function corresponds to a distribution
over possible functions. Some sample functions distributed around a zero mean are
shown in Figure 3.1a.

The kernel has to be selected according to the problem, since the smoothness of
the basis functions, and thus that of the model, depends on it. For instance the RBF is
infinitely mean-square differentiable and thus has smooth basis functions (cf. Figure 3.1).
To achieve better results, the kernel usually contains free positive parameters that can
be varied, so called hyperparameters 𝛩. These are the function variance 𝜎2

𝑓 and the
characteristic length-scale 𝑙. If, for example, experimental data with noise is used for
training, there is an additional hyperparameter, the noise variance 𝜎2

𝑛. An alternative
to the RBF kernel function is the Matérn class of kernels

𝑘Matérn(𝑟) = 𝜎2
𝑓

21−𝜈

𝛤(𝜈)
(
√

2𝜈𝑟)
𝜈

𝐾𝜈 (
√

2𝜈𝑟) with 𝑟 =
∣𝒙𝑝 − 𝒙𝑞∣

𝑙
, (3.9)
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Figure 3.2: (a) A Gaussian process regression (GPR) model is fitted to the ob-
served noise free data points (black crosses). The resulting hyperparameters are
(𝑙, 𝜎2

𝑓 , 𝜎2
𝑛) = (0.3, 0.54, 0). For all plots the mean is drawn as a solid blue line and the

blue shaded region depicts the 95 % confidence interval, i.e. the uncertainty. (b) The
hyperparameters, mainly the characteristic length-scale, are changed to (0.1, 0.62, 0).
This leads to a greater flexibility of the searched function 𝑓, i.e. the mean, and also to
a much larger uncertainty. (c) The values of the hyperparameters are (1, 0.69, 0.79),
which results in a slowly varying function 𝑓. Here, noise is assumed on the observed
data points. Adapted from [7].
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where 𝜈 is a positive parameter and 𝐾𝜈 a modified Bessel function [7]. The Euclidean
distance of 𝒙𝑝 and 𝒙𝑞 is scaled by the characteristic length-scale 𝑙. For 𝜈 → ∞ the RBF
kernel is obtained. Inserting half-integer values for 𝜈 in Equation (3.9) results in quite
simple equations. In particular, 𝜈 = 5

2 is widely used in machine learning. It is twice
mean-square differentiable and has the form

𝑘(𝒓) = 𝜎2
𝑓 (1 +

√
5𝑟 + 5

3
𝑟2) e−

√
5𝑟 + 𝜎2

𝑛𝛿𝑝𝑞 (3.10)

considering all hyperparameters, where 𝛿𝑝𝑞 is the Kronecker delta. If the inputs are
multivariate, usually a separate length-scale 𝑙 is introduced for each dimension.

To visualize the influence of these hyperparameters, the length-scale 𝑙 is varied in
Figure 3.2. Fitting the GPR model with the Matérn kernel from Equation (3.10) to the
data points marked as black crosses yields 𝑙 = 0.3, as shown in Figure 3.2a. Decreasing
the length-scale to 𝑙 = 0.1 results in a greater flexibility of the function 𝑓. Due to
assumed noise free data points there is no decrease in the noise variance 𝜎2

𝑛, but for a
noisy data set there is, because of the greater flexibility already mentioned. Furthermore,
it is noticeable that the confidence interval in Figure 3.2b and thus the uncertainty is
significantly larger than before and it increases sharply after each data point. For a
longer length-scale 𝑙 = 1, as in Figure 3.2c, the model assumes noisy data, which is why
it does not traverse the data points exactly. Instead, it is a slowly varying function.

It is crucial to highlight that the selection of the kernel not only influences the
accuracy of the predictions but also affects the quality of the model uncertainty.

3.2 Gaussian process regression
In order to make predictions, the posterior is needed, which contains the knowledge
about the observed data used for training. For the sake of generality, noisy data

𝑦 = 𝑓(𝒙) + 𝜖 (3.11)

is assumed with independent Gaussian noise 𝜖, which has the variance 𝜎2
𝑛. This changes

the prior from Equation (3.3) analogously to Equation (3.10), where the variance 𝜎2
𝑛 is

simply added to the kernel with a Kronecker delta. The points used for training are
{(𝒙𝑖, 𝑦𝑖)|𝑖 = 1, … , 𝑛}. According to the prior, the joint distribution of the training and
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the test outputs, 𝒚 and 𝒇∗, is [7]

[
𝒚
𝒇∗

] ∼ 𝒢𝒫 (0, [
𝑲(𝑋, 𝑋) + 𝜎2

𝑛1 𝑲(𝑋, 𝑋∗)
𝑲(𝑋∗, 𝑋) 𝑲(𝑋∗, 𝑋∗)

]) . (3.12)

Here, 𝑋∗ is the set of new input points at which the predictions 𝒇∗ of GP are sought.
Assuming there are 𝑛∗ number of test points, then 𝑲(𝑋, 𝑋∗) is an 𝑛 × 𝑛∗ matrix con-
taining all pairwise covariances between the training and test points. The same applies
for 𝑲(𝑋, 𝑋), 𝑲(𝑋∗, 𝑋∗) and 𝑲(𝑋∗, 𝑋). Considering only the functions which traverse
through the training points results in the posterior distribution. This is illustrated in
Figure 3.1. For this purpose, the joint Gaussian prior distribution is conditioned on the
training points, leading to

𝒇∗|𝑋, 𝒚, 𝑋∗ ∼ 𝒢𝒫 ( ̄𝒇∗, cov(𝒇∗)) , (3.13)

with

𝝁(𝑋∗|𝑋, 𝒚) = ̄𝒇∗ = E[𝒇∗|𝑋, 𝒚, 𝑋∗] = 𝑲(𝑋∗, 𝑋)[𝑲(𝑋, 𝑋) + 𝜎2
𝑛1]−1𝒚 , (3.14)

𝝈2(𝑋∗|𝑋) = cov(𝒇∗) = 𝑲(𝑋∗, 𝑋∗) − 𝑲(𝑋∗, 𝑋)[𝑲(𝑋, 𝑋) + 𝜎2
𝑛1]−1𝑲(𝑋, 𝑋∗) . (3.15)

These are the key predictive equations for GPR [7], resulting in the posterior distribution,
with the mean function 𝝁 (𝜇𝑖 = 𝑚(𝒙𝑖)) in Equation (3.14) and the covariance function
𝝈2 in Equation (3.15), that can be used to predict 𝒇∗ at the respective input points 𝑋∗,
as shown in Figure 3.1b.

To optimize the hyperparameters 𝛩, the log marginal likelihood (LML) is required,
which is defined as

log 𝑝(𝒚|𝑋) = −1
2

𝒚⊤(𝑲(𝑋, 𝑋) + 𝜎2
𝑛1)−1𝒚 − 1

2
log ∣𝑲(𝑋, 𝑋) + 𝜎2

𝑛1∣ − 𝑛
2

log 2𝜋 . (3.16)

A short characteristic length-scale that might improve the data fit is not preferred by
the LML. Rather, maximizing the LML (maximum likelihood estimation) leads to a
value which increases the likelihood that the training data would be generated by the
distribution over functions [46]. This technique is particularly powerful because the LML
is differentiable with respect to the hyperparameters 𝛩𝑖 and utilizes only the available
training data.

There are different Python packages to perform GPR. The one used in this work is
GPflow.

https://gpflow.github.io/GPflow/2.8.1/index.html




4 Low-Dimensional Matrix Mod-
els

The main goal of the new method for finding EPs using GPR is to reduce the number of
exact diagonalizations to calculate the eigenvalues, as this is the most time-consuming
and computationally expensive step. Similar to the three-point and octagon method
the new GPR method requires the two eigenvalues associated with the EP. An observed
permutation of these eigenvalues is used as initial training set, since it confirms the exis-
tence of an EP inside the orbit. In higher-dimensional systems, it is not straightforward
to select the eigenvalues that perform the permutation due to overlap with other reso-
nances. For this purpose, in Section 4.1, the stepwise grouping algorithm is developed
to filter the permutation and thus obtain the initial training set. In Section 4.2, a GPR
model is trained on the 𝜅 and their corresponding 𝑝 and 𝑠 values (cf. Equations (2.55)
and (2.56)). By performing a two-dimensional root search on the model prediction of 𝑝,
a prediction for the position of the EP in parameter space 𝜅 is obtained. The eigenvalues
of the 𝜅 dependent matrix can be calculated exactly for the predicted 𝜅 value. Again,
the eigenvalues belonging to the EP need to be selected from the computed eigenvalues.
Therefore, a similarity measure is introduced in Section 4.3 where the exact eigenvalues
are compared to the GPR model prediction. The selected exact eigenvalues and their
corresponding 𝜅 value is used as additional training point to improve the GPR model
and obtain a better prediction. Thus, an iterative process is constructed. To terminate
this procedure, a convergence criterion is required. Some possible criteria are discussed
in Section 4.4.

The new method for finding EPs using GPR is first presented using matrix models
to verify its functionality as well as its accuracy. The matrix in Equation (2.48) has
two EPs which can be calculated analytically (cf. Section 2.5.1). In the following, only
the one at 𝜅+ = i is considered, which is shown in Figure 2.5 with the corresponding
permutation behavior of the two eigenvalues.
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Figure 4.1: Both investigated five-dimensional matrix models are visualized with their
respective energy and parameter plane. The EP, found via a two-dimensional root
search on 𝑝 without a GPR model, is marked as a green cross for each system. Due
to their dimensionality, five eigenvalues are visible, and their course can be traced via
the color bar, which represents the angle 𝜙, when the EP is encircled. Both models
show one permutation each, which indicates the existence of an EP. The shape of these
permutations is complex because of the large radius and the fact that the EP is not
at the center of the orbit. (a) In the first model, one eigenvalue lies within the visible
exchange behavior. (b) For the second system, there are two eigenvalues therein.
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To address the complexity of more challenging systems, two five-dimensional matrix
models are introduced for which no analytic solution exists. Due to their complexity,
the method must account for difficulties that are not present in the two-dimensional
model due to its simplicity. By extending the analysis to higher-dimensional systems,
the properties and characteristics of EPs in the context of more realistic environments
will be examined.

Both five-dimensional matrix models are illustrated in Figure 4.1. The parameter
plane with the orbit around the EP, highlighted in green, as well as the energy plane are
presented. As already mentioned, both systems are not analytically solvable. However,
the computational effort to diagonalize the matrix and hence get the eigenvalues is low,
which is why the EP can be found by performing a two-dimensional root search on
𝑝 without the GPR model, where only the two eigenvalues belonging to the EP are
considered. The result is marked as a green cross in the parameter plane for both
models. Due to their dimensionality, each diagonalization yields five eigenvalues. In the
first model (cf. Figure 4.1a), one eigenvalue lies within the visible permutation of the two
eigenvalues of the EP, while in the second system (cf. Figure 4.1b) there are two. All
eigenvalues not belonging to an EP form a closed orbit similar to the one in parameter
space. Given that the EPs do not occupy the central position within the parameter
plane’s orbit, the shapes of the observed permutation paths exhibit significantly greater
complexity compared to the relatively straightforward two-dimensional example depicted
in Figure 2.5.

As the GPR model necessitates the incorporation of the two eigenvalues associated
with the EP, the observed permutation needs to be distinguished from the other eigen-
values. To address this challenge a stepwise grouping algorithm is developed in the
subsequent Section to acquire the initial training set.

4.1 Stepwise grouping algorithm
By confining the analysis solely to the start and end point of the orbit, it becomes com-
paratively straightforward to discern the permutation. Specifically, the distance between
the two eigenvalues associated with a given resonance should be zero throughout, except
for the two resonances affiliated with the EP. However, due to the sorting of eigenvalues
based on their real components, the arrangement of eigenvalues can vary across different
points in the parameter space. Consequently, group them based on the resonances to
which the eigenvalues correspond would yield a simple and effective approach to obtain
an initial dataset suitable for training the GPR model. This is why the stepwise group-
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Figure 4.2: The stepwise grouping algorithm is illustrated. Colors represent resonances,
while numbers indicate angles in the parameter space. Initially, eigenvalues are sorted
by their real part in the top-left array. Pairwise distances between the first two rows
are computed, resulting in the top-right matrix. Columns are then sorted by shortest
distance, resulting in the matrix below. To ensure unique selections, only the shortest
distance of multiple selections are kept and iterative rearrangements according to the
arrows are done until the first row becomes unique, as shown in the middle-left matrix.
The sorted row is inserted into the bottom-left array, and the process is repeated for
each angle, yielding a sorted array based on resonances (bottom-right).
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ing algorithm was developed. The fundamental concept behind it is that, for a given
resonance, the eigenvalue associated with the subsequent angle is determined as the one
with the closest proximity to the eigenvalue of the current angle, utilizing an appropriate
distance metric.

Its functionality is illustrated in Figure 4.2. The five distinct colors employed in
this figure correspond to five resonances, hence representing five eigenvalues for each
diagonalization. The numbers signify the specific angle on the orbit within the parameter
space, denoted as {𝜅𝑖 = 𝜅c + 𝜚ei𝜙𝑖 |𝑖 = 1, 2, … , 𝑛}, where 𝜅c denotes the orbit’s center.
The array located in the top-left exhibits all eigenvalues for each step 𝑖, sorted by
their real components and thus unsorted with respect to the resonances. To facilitate
grouping, the first two rows are extracted and the pairwise distances between them are
computed, yielding the resulting matrix in the top-right. Since each column represents
the distances from one resonance of the first step to all resonances of the second step,
the columns are sorted in ascending order based on the shortest distance, generating
the matrix below. The first row of this matrix, highlighted by a red frame, displays the
shortest distance for each eigenvalue in the first row to one of the eigenvalues in the
second row. To ensure the unique selection of each eigenvalue, this row must contain
distinct elements. However, in the present case, the orange resonance of the second
step appears three times. Consequently, a closer examination of these three distances
is conducted to identify the shortest among them, ideally corresponding to the distance
between the orange resonance of the first step and the orange resonance of the second
step. The remaining two columns are then rearranged according to the indicated arrows,
shifting the second shortest distance to the first row and moving the previous entry to
the bottom of the column. This process leads to the creation of the third matrix on the
right. The procedure is repeated iteratively until the first row of the resulting matrix
becomes unique, as illustrated on the left side. The sorted row is subsequently inserted
into the array displayed in the bottom-left, and the entire process is initiated again with
the subsequent two rows, namely the second and third rows. By repeating this process
for all angles, the final sorted array depicted in the bottom-right is obtained. A Python
implementation of this algorithm can be found in Appendix A.

In calculating pairwise distances, various metrics can be utilized depending on the
available data. For the matrix models, the real and imaginary parts of the eigenvalues
are computed and combined into a vector

𝝀 = (
Re(𝜆)
Im(𝜆)

) . (4.1)
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The Euclidean distance metric is employed, defined as

𝑑e = ‖𝝀1 − 𝝀2‖ = √(Re(𝜆1) − Re(𝜆2))2 + (Im(𝜆1) − Im(𝜆2))2 , (4.2)

which is suitable for the matrix models. However, for cuprous oxide, the complex-valued
eigenvalues and additional quantum numbers are computed, which can be combined into
an M-dimensional vector 𝜳. In this case, it is preferable to employ the cosine similarity

𝑑c = 1 − 𝜳1 ⋅ 𝜳2
‖𝜳1‖‖𝜳2‖

= 1 −

𝑀
∑
𝑙=1

𝛹1,𝑙𝛹2,𝑙

√
𝑀
∑
𝑙=1

𝛹2
1,𝑙√

𝑀
∑
𝑙=1

𝛹2
2,𝑙

, (4.3)

where the conventional definition of cosine similarity is subtracted from 1 to obtain small
values for similar vectors.

Despite the algorithm’s impressive performance, it is crucial to highlight an im-
portant consideration. In order to achieve accurate sorting of resonances, a sufficient
number of points must be computed along the orbit to avoid significant variations in the
eigenvalues between consecutive points. The exact number of points required depends
on the radius of the orbit.

4.2 Model training
Similar to the three-point and octagon method, the eigenvalues are used to train the
GPR. The permutation of the eigenvalues serves as a starting point because it indicates
the existence of an EP. The two functions 𝑝, 𝑠 ∈ C are defined in Equations (2.55)
and (2.56), which depend on the eigenvalues and hence on 𝜅. 𝑠 will be important later
on. Due to the coalescence of the eigenvalues, 𝑝 should be zero at the EP. To train the
GPR model,

𝒑 = (
Re(𝑝)
Im(𝑝)

) ∈ R2 (4.4)

is used as observed function values 𝒚 at specific points

𝜿 = (
Re(𝜅)
Im(𝜅)

) ∈ R2 (4.5)
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Figure 4.3: The GPR model prediction of 𝒑 for the two-dimensional model
system. The values of Re(𝑝) and Im(𝑝) are represented by the color bar and
the exact position of the EP is marked as a green cross. Performing a two-
dimensional root search on 𝒑, yields a prediction for the position of the EP. This
can be visualized by superimposing both plots and searching for the intersection
of the two white lines. (a) The prediction for the real part of 𝑝 has a curved
zero line just above the exact position. (b) The imaginary part on the other
hand already gives a good estimate because its zero line is almost exactly on
top of the exact position.

corresponding to the training points 𝑋 of Equation (3.13). Thus, it is possible to make
predictions for 𝒑 at new test points 𝜿. Performing a two-dimensional root search on
the model output 𝒑 yields a prediction of 𝜿EP for the EP. The model prediction for the
two-dimensional matrix model is shown in Figure 4.3, where the real and imaginary part
of 𝑝 are illustrated in Figures 4.3a and 4.3b, respectively. As visible, the two-dimensional
root is already quite close to the exact position of the EP in parameter space 𝜅, which
is marked as a green cross.

The model prediction of 𝒑 for both five-dimensional models is illustrated in Fig-
ure 4.4, where the numerical calculated EP is marked as a green cross. Compared to
the simple system in Figure 4.3, the plane shows a much more complex behavior for the
five-dimensional systems, which is expectable due to its dimension. Another reason is
the larger radius of the orbit around the EP. The two-dimensional root of model 1 (cf.
Figures 4.4a and 4.4b) as well as of model 2 (cf. Figures 4.4c and 4.4d) after the first
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Figure 4.4: GPR model prediction of 𝒑 for five-dimensional matrix model 1 ((a) and
(b)) and 2 ((c) and (d)). The values of Re(𝑝) and Im(𝑝) are represented by the color bar
and the exact position of the EP is marked as a green cross. The plots on the left show
the prediction for the real part of 𝑝, while the imaginary part is on the right. Compared
to the predicted 𝒑 plane in Figure 4.3 a much more complex behavior is visible. This
is due to the higher dimension of the systems, but is also related to the larger radius
of the orbit. Analogous to the simple system, a prediction for the position of the EP
is obtained by performing a two-dimensional root search which can be visualized by
superimposing both plots of the respective model and searching for the intersection of
the two white lines.
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training step is already quite close to the exact position of the EP. Due to the large scale
it is not possible to see any details in the close vicinity of the EP.

To construct an iterative process, an exact diagonalization is performed with the pre-
dicted parameter value. Then, the new pair of eigenvalues is used as additional training
point for the GPR model. Repetitive iterations of this procedure yield a highly precise
model, consequently enabling the determination of the precise location of the EP. How-
ever, the identification of the two eigenvalues associated with the EP in each iteration
is not a straightforward task for higher-dimensional systems. The diagonalization of a
five-dimensional matrix yields a total of five eigenvalues, but only the ones related to the
EP warrant selection. Complicating matters further, there is no discernible permutation
pattern that guides the selection process. In order to address this issue, a similar-
ity measure is employed in the following Section to accurately identify the appropriate
eigenvalues at each iteration.

4.3 New eigenvalue selection
To find the two eigenvalues associated with the EP in each iteration of the iterative
process a similarity measure is introduced based on a Gaussian distribution

𝒩(𝜇, 𝜎) = e− (𝑥−𝜇)2

2𝜎2 . (4.6)

Here, the value of 𝑠 in Equation (2.56) plays a significant role. The model predictions 𝒑
and 𝒔 at the predicted 𝜅 point are considered as 𝜇 and compared to the exact eigenvalues
of the matrix at this 𝜅 point. To perform this comparison, all possible pairs of eigenvalues
are formed, and their respective 𝑝 and 𝑠 values are calculated. Comparing them yields
a compatibility

𝑐 =(Re(𝑝) − Re(𝑝m))2

2𝜎2
p,Re

+ (Im(𝑝) − Im(𝑝m))2

2𝜎2
p,Im

+(Re(𝑠) − Re(𝑠m))2

2𝜎2
s,Re

+ (Im(𝑠) − Im(𝑠m))2

2𝜎2
s,Im

,
(4.7)

which is small when there is good agreement between model prediction and exact eigen-
value pair. The index m indicates a model-predicted value and 𝜎 is the variance obtained
from the GPR model for the respective prediction. For simplicity in calculation, only
the exponent of Equation (4.6) is considered in the compatibility measure.
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1
Figure 4.5: The figure presents the similarity measure employed for selecting
the new eigenvalues in each iteration. The logarithmic plot displays the com-
patibility values defined in Equation (4.7). The calculations are performed after
the first training step for (a) model 1 in Figure 4.1 and (b) model 2. In both
models, a noticeable gap is observed between the smallest and second smallest
compatibility values. This indicates that the eigenvalue pair with the lowest 𝑐
value in each model is highly likely to correspond to the respective EP.

Ideally, there should be a large gap between the smallest and second smallest 𝑐
value to make sure, that the correct eigenvalue pair is selected. Applying this similarity
measure to both models in Figure 4.1 after the first training step, leads to the 𝑐 values
shown in Figure 4.5. As visible, there is indeed a large gap between the smallest and
second smallest 𝑐 value in both models. This observation strongly suggests that the
eigenvalue pair that has the lowest 𝑐 value in each model is most likely associated with
the corresponding EP. Thus, this eigenvalue pair can be added to the training set to
continue the iterative process.

It is worth noting that there are situations where the aforementioned gap may not
be observed. This occurs when the variance of the model prediction is high, indicating a
significant uncertainty in the model’s prediction at that specific point. In such cases, the
lowest 𝑐 value does not necessarily correspond to the eigenvalue pair associated with the
EP. This scenario typically arises when the predicted 𝜅 point lies outside of the orbit,
indicating that the model’s prediction is less reliable in capturing the behavior of the
system in that region.
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Figure 4.6: Illustration of the iterative process by means of the two-
dimensional simple example. The EP at 𝜅EP = i is encircled. These points,
marked in blue, and their associated eigenvalues are used as initial training set.
The model prediction of the exact position of the EP after this first training
step is depicted in purple. For this 𝜅-value, the eigenvalues of the matrix are
calculated exactly and used together with the initial training set to optimize the
GPR model. After the third training step, highlighted in yellow, the Euclidean
distance between model prediction and exact position is 𝑑 = 1.62 × 10−10.

After solving the challenge to find the two eigenvalues associated with the EP in
each iteration, the iterative process can be applied to the matrix models. In Figure 4.6,
the iterative process is illustrated using the simple two-dimensional example. Due to its
simplicity, the prediction is already quite good after the first training step. However,
after the second iteration it is significantly better and even the third training step im-
proves the prediction slightly. The Euclidean distance between model prediction after
the third training step and exact position of the EP is 𝑑 = 1.62 × 10−10. In contrast to
the illustration presented in Figure 2.5, a significantly reduced number of orbit points is
employed during the model training process. This discrepancy arises due to the utiliza-
tion of a numerical technique for computing the inverse of the covariance matrix 𝑲−1,
a prerequisite for generating predictions, as described in Equations (3.14) and (3.15).
When an excessive number of closely situated points is provided, numerical inaccuracies
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Figure 4.7: Illustration of the iterative process by means of the five-dimensional matrix
model 1. (a) The points on the orbit around the EP, marked in blue, and their associated
eigenvalues are used as initial training set. (b) The model slowly approaches the EP,
marked as a green cross. After ten training steps the GPR model is converged and
the Euclidean distance between the last model prediction and the exact EP is 𝑑e =
4.303 × 10−6. Two different attempts are made to optimize convergence and reduce the
number of exact diagonalizations. (c) First, an additional training point is added after
the second iteration to explore the energy plane. For this purpose, the difference of
the last two predictions is calculated and added to the second prediction. This leads to
convergence after the third training step, i.e. after the fourth diagonalization (considering
the additional point). Not only the number of diagonalizations is significantly reduced,
but also the Euclidean distance to 𝑑e = 8.620 × 10−7. (d) Similarly to the previous
approach, an additional training point is added after the third iteration. This does not
reduce the number of diagonalizations (nine training steps, ten diagonalizations) nor
does it improve convergence (𝑑e = 4.294 × 10−6).
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Figure 4.8: Illustration of the iterative process by means of the five-dimensional matrix
model 2. For all four subfigures (a), (b), (c) and (d) holds the same as in Figure 4.7.
The Euclidean distance between the exact position of the EP and the last prediction
after the ninth training step in (b) is 𝑑e = 5.526 × 10−6. Again, in (c) the number
of diagonalizations is significantly reduced as well as the Euclidean distance to 𝑑e =
1.342 × 10−6. In (d), neither the number of diagonalizations is reduced (eight training
steps, nine diagonalizations) nor the convergence is improved (𝑑e = 5.537 × 10−6).
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can prevent the invertibility of the matrix 𝑲, leading to a failure of the method.
The whole iterative process performed on the five-dimensional matrix models is de-

picted in Figures 4.7a and 4.7b for model 1 and in Figures 4.8a and 4.8b for model 2. In
both cases the GPR model slowly approaches the EP until it converges after ten and nine
training steps, respectively. The respective Euclidean distance between the exact EP and
the last prediction is 𝑑e = 4.303 × 10−6 and 𝑑e = 5.526 × 10−6. In order to explore the
energy plane and thus give more information to the GPR model, two attempts are made
to both improve convergence and reduce the number of diagonalizations. An additional
training point is added to the training set by calculating the distance between the last
two predictions, adding it to the last prediction and computing the exact eigenvalues at
this new 𝜅 point. If this is executed after the second iteration, not only the convergence
improves significantly, but also the number of diagonalizations is reduced, both visible
in Figure 4.7c for model 1 and in Figure 4.8c for model 2. For either model the number
of training steps is decreased to three, i.e. four diagonalizations, and the respective Eu-
clidean distance to the exact EP is 𝑑e = 8.620 × 10−7 and 𝑑e = 1.342 × 10−6. Adding
the extra training point after the third iteration can be seen in Figure 4.7d for model 1
and in Figure 4.8d for model 2. Here, no improved convergence or reduced number of
diagonalizations is observable. Compared to the original training process, the Euclidean
distance is almost identical with 𝑑e = 4.294 × 10−6 and 𝑑e = 5.537 × 10−6 for model 1
and 2 respectively.

4.4 Convergence criteria
To terminate the iterative procedure, it is essential to establish a convergence criterion.
Several potential options will be presented and discussed below.

4.4.1 Variance given by the GPR model

Equation (3.15) provides a variance and thus an uncertainty about the model prediction.
As visible in Figure 3.1b, it is small in the vicinity of observed data points. If the variance
for the predicted EP is small the model should be converged and hence the prediction
quite good. However, determining an appropriate threshold value for this criterion can
be challenging, and it is possible for the aforementioned matrix inversion error to arise
prior to satisfying the convergence criterion. Furthermore, it is important to note that
the criterion primarily evaluates the convergence of the model itself and does not address
the convergence of the EP.
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4.4.2 Distance between the last two predictions

In relation to the variance, an alternative approach involves examining the Euclidean
distance between the last two predicted values. As previously mentioned, when these
values are in close proximity, the variance is small. Selecting a suitable threshold value
for this distance metric relies on the radius of the initial orbit around the EP, making it
a more straightforward task to establish. However, similar to the previous convergence
criterion, this method shares the same limitations in that it does not directly assess the
convergence of the EP itself, and there remains a possibility of encountering issues with
the invertibility of the matrix.

4.4.3 Eigenvalues of the covariance matrix

The eigenvalues 𝜆𝑲 of the covariance matrix 𝑲 can be calculated for each training
iteration. The parameter space (i.e. the 𝜅-space) is the input space of the kernel function
and thus the covariance matrix. As the number of 𝜅-values increases, the eigenvalues
decrease. If there are a lot of training points, especially if they are close together, a
drop in the eigenvalues is visible from order 𝒪(10−7) to 𝒪(10−17). An interpretation
for this drop is that the model has already seen this new training point, thus yielding
no significant additional knowledge. This can also be used as a convergence criterion.
As shown in Figure 4.9a for the two-dimensional matrix model, the drop occurs for the
third training step depicted in yellow, coinciding with the proximity of the last two
predictions (cf. Figure 4.6). Consequently, defining a threshold value for this criterion
becomes relatively straightforward due to the noticeable deviation from the preceding
training iterations.

The kernel eigenvalues of both models are plotted over the number of training points
in Figure 4.10. The utilized data originates from the training process, where an extra
training point is incorporated following the second iteration. Similar to the simple
example in Figure 4.9a a drop (𝒪(10−4) to 𝒪(10−10)) in the kernel eigenvalues appears
in the last training step in Figures 4.10a and 4.10c for model 1 and 2 respectively. This
deviation from the previous training step facilitates the establishment of a threshold.

It is important to note that while this criterion does not provide insights into the
convergence of the EP itself, its detection prompts the consideration of utilizing new
training points, such as computing a new orbit in parameter space centered around
the predicted EP with a smaller radius, to ensure the invertibility of the matrix. This
criterion can be combined with other convergence parameters.
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Figure 4.9: (a) The eigenvalues 𝜆𝑲 of the covariance matrix 𝑲 are illustrated
for each training step. A drop is visible in the third iteration from order 𝒪(10−7)
to 𝒪(10−17) compared to the previous step. This indicates an already seen
training point that does not provide any new information. Due to the clear
deviation from the previous iteration an appropriate threshold value can be
defined easily. (b) Another convergence criterion is the eigenvalue difference of
the two eigenvalues belonging to the EP. It takes advantage of a direct property
of the EP, namely the coalescence of the eigenvalues, and indeed decreases
strictly monotonically. Defining a threshold value is not as straightforward as
for the kernel eigenvalues, since no clear change is visible between the last two
iterations.

4.4.4 Eigenvalue difference

At the EP the difference of the two eigenvalues Δ𝜆 = |𝜆1 − 𝜆2| should be zero due
to their degeneracy. Because of the square root behavior mentioned in Section 2.5
the gradient is infinite at the EP. As a consequence, even slight changes in the 𝜅-
value can lead to significant variations in the difference between the eigenvalues. This
strong dependency poses a challenge in identifying an appropriate threshold value for
the eigenvalue difference as a convergence parameter. However, this is the only criterion
directly related to a property of an EP. In Figure 4.9b, the eigenvalue difference Δ𝜆 is
plotted as a function of the number of training steps. Here, the eigenvalue difference of
the zeroth training is calculated via

Δ𝜆0 = 1
𝑁

𝑁
∑
𝑖=1

∣𝜆1,𝑖 − 𝜆2,𝑖∣ , (4.8)

where 𝑖 denotes the index of the 𝑖-th training point 𝜅𝑖 on the orbit. As visible, the
eigenvalue difference decreases strictly monotonically.
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Figure 4.10: The two convergence criteria, namely the eigenvalues of the covariance
matrix (cf. Section 4.4.3) and the eigenvalue difference (cf. Section 4.4.4), are shown
for both model systems. For (a) model 1 and (c) model 2 the eigenvalues 𝜆𝑲 of the
covariance matrix 𝑲 are depicted for each training step. A drop is visible in the third
iteration from order 𝒪(10−4) to 𝒪(10−10) compared to the previous step. This indicates
an already seen training point that does not provide any new information. Similar
to the simple example in Figure 4.9a a clear deviation to the previous training step
is visible. Thus an appropriate threshold value can be defined easily to ensure the
invertibility of the matrix. The eigenvalue difference of the two eigenvalues belonging
to the EP for (b) model 1 and (d) model 2 is plotted over the number of training
steps. The eigenvalue difference of the zeroth training step is calculated according to
Equation (4.8), where 𝑁 is the number of points on the orbit. For both models it
decreases strictly monotonically, verifying convergence of the iterative process. Defining
a threshold value is not as straightforward as for the kernel eigenvalues, since no clear
change is visible between the last two iterations.
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The eigenvalue difference the for five-dimensional matrix models are visualized in
Figure 4.10. Again, the strictly monotonous decrease is observable which verifies the
model’s convergence towards the EP.

To terminate the iterative procedure, a combination of two convergence criteria is
used, namely the eigenvalues of the covariance matrix and the eigenvalue difference of
the two eigenvalues belonging to the EP.



5 Exceptional Points in Cuprous
Oxide

The existence of EPs is already proven for the hydrogen atom [32]. Due to limitations
especially in magnetic field strengths, only EPs of resonances with high quantum num-
bers are experimentally accessible in a hydrogen atom. The numerical calculations for
these high quantum numbers are very expensive. For Cu2O the field strengths to observe
EPs of resonances with small quantum numbers are much lower compared to the field
strengths for the hydrogen atom, which is why it is favorable to find EPs in this system.
This was already done for a hydrogen-like model, but to obtain experimentally compara-
ble results the band structure terms need to be considered. However, this increases the
computational cost drastically for each diagonalization of the Hamiltonian. To minimize
the number of diagonalizations and thus the computational cost, the new GPR method
is now applied to the Hamiltonian (2.20) of Cu2O. The Hamiltonian is dependent on the
magnetic and electric field strength, 𝛾 and 𝑓 respectively, which are expressed by

𝜅 = ei𝜙 , (5.1)

𝛾 = 𝛾c (1 + Δ𝛾
𝛾c

Re(𝜅)) , (5.2)

𝑓 = 𝑓c (1 + Δ𝑓
𝑓c

Im(𝜅)) , (5.3)

𝜚 = Δ𝛾
𝛾c

= Δ𝑓
𝑓c

. (5.4)

These fields are aligned parallel to the symmetry axis [001] of Cu2O. Here, 𝜅 is the unit
circle in the complex plane and 𝜚 the so-called relative radius, so the variation of the
field strengths, Δ𝛾 and Δ𝑓 respectively, depends on the center of the ellipse (𝛾c, 𝑓c).
Due to this representation, the field strengths on the ellipse can be converted to their
respective points on the unit circle in the complex plane 𝜅, which is used to train the
GPR model as explained in Section 4.2. For more details about the optimization of the
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Figure 5.1: Two orbits in the field plane of magnetic (𝛾) and electric (𝑓) field and
their respective two eigenvalues which belong to the EP. To illustrate the permutation
the color bar denotes the angle 𝜙 on the orbit. (a) Ellipse 1 and (b) 2 both show an
exchange behavior, indicating an EP inside the respective orbit.
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training process see Appendix B.
Ellipses in the field plane are computed to search for a permutation of two eigenvalues.

Two example orbits and for each the two eigenvalues associated with the EP are shown
in Figure 5.1. The different convergence parameters described in Section 2.4 are set to
𝑁 = 30, 𝐹max = 14, |𝛼| = 42 and 𝜃 = 0.14. In this case the radius is 𝜚 = 0.3 % for both
ellipses, corresponding to Δ𝛾 = 5.796 mT, Δ𝑓 = 0.351 V/cm and Δ𝛾 = 3.741 mT, Δ𝑓 =
0.266 V/cm for the respective ellipse, which is already quite small. Another crucial
observation to emphasize is that both the real as well as the imaginary part of the
energies are given in µeV, i.e. 𝒪(10−6). Due to these variations in the field strengths
and the small energies it is necessary to adjust and optimize the iterative process. More
details about this optimization can be found in Appendix B.

In Section 5.1, the application of the GPR method to Cu2O is discussed, and several
results are provided. Additionally, Section 5.2 explores the convergence radius in greater
detail and presents relevant outcomes of the stepwise grouping algorithm as well as
further results of the GPR method.

5.1 Applying the GPR method to Cu2O
Due to the above mentioned scaling it is possible to apply the iterative process on the two
orbits illustrated in Figure 5.1. After the first training step the prediction of 𝒑 for both
orbits is shown in Figure 5.2. Due to the small radius of 𝜚 = 0.3 %, which corresponds
to Δ𝛾 = 5.796 mT, Δ𝑓 = 0.351 V/cm and Δ𝛾 = 3.741 mT, Δ𝑓 = 0.266 V/cm for the
respective ellipse in Figure 5.1, their behavior looks quite simple. The two-dimensional
zero search is performed on these predictions which yields a first educated guess of the
position of the respective EP.

The eigenvalue selection described in Section 4.3 is applied on the resulting exact
eigenvalues at that prediction, obtained by a diagonalization of the Hamiltonian (2.20)
with the predicted field strengths. The gap in the compatibility 𝑐 (cf. Equation (4.7))
between the best and the second best matching pair is of order 𝒪(106), indicating that
the correct eigenvalues belonging to the EP are selected.

The iterative process converges after the fourth iteration for both ellipses as visible in
Figure 5.3. In both cases, the first prediction is a little off. For the ellipse in Figure 5.3b
the prediction of the third and fourth training step lie on top of each other. Regarding the
last training steps, all field strengths vary only in the sixth significant digit, suggesting
a decent result.
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Figure 5.2: Prediction of 𝒑 after the first training step. The subfigures (a) and (b)
show the prediction for the orbit in Figure 5.1a, (c) and (d) show the prediction of
the orbit in Figure 5.1b. Due to their small relative radius of 𝜚 = 0.3 %, corresponding
to Δ𝛾 = 5.796 mT, Δ𝑓 = 0.351 V/cm and Δ𝛾 = 3.741 mT, Δ𝑓 = 0.266 V/cm for the
respective ellipse, the observed behavior looks quite simple. Analogous to the model sys-
tems, a prediction for the position of the EP is obtained by performing a two-dimensional
root search which can be visualized by superimposing both plots of the respective orbit
and searching for the intersection of the two white lines.
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Figure 5.3: Applying the iterative process to the two orbits in Figure 5.1 yields the
illustrated predictions of the respective EP. The iterative process for (a) ellipse 1 as
well as (b) ellipse 2 converges already after the fourth training step. In (b) the last and
second to last prediction lie on top of each other.
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Figure 5.4: Convergence of the two EPs by means of the kernel eigenvalues 𝜆𝑲 de-
scribed in Section 4.4.3 and the eigenvalue difference Δ ̃𝐸 of the two eigenvalues belonging
to the respective EP for the training processes in Figure 5.3a ((a) and (b)) and in Fig-
ure 5.3b ((c) and (d)). In both cases the significant drop in the kernel eigenvalues from
order 𝒪(10−6) to 𝒪(10−9) and 𝒪(10−8) respectively is visible. This drop is accompanied
by a very small or no change in the eigenvalue difference, suggesting the convergence of
the method.
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Having a look at the two convergence criteria in Figure 5.4 supports the assumption of
a converged training process. Not only the drop in the kernel eigenvalues 𝜆𝑲 from order
𝒪(10−6) to 𝒪(10−9) and 𝒪(10−8) for the respective ellipse occurs, but also the eigenvalue
distance Δ ̃𝐸 of the two eigenvalues associated with the EP reduces significantly during
the iterative process. Furthermore, the drop is accompanied by minimal or negligible
alteration in the eigenvalue difference, indicating the convergence of the method.

Since the exact positions of the EPs are unknown, it is not possible to determine
the exactness of the last predictions. However, as mentioned before, the deviation only
in the sixth significant digit as well as the small eigenvalue difference indicates a very
accurate result. This accuracy is of course related to the small radius of 𝜚 = 0.3 %.
Due to the high computational effort required to reach such a small radius, the question
arises whether the method also converges for a larger radius and whether the result is
still as accurate in this case.

5.2 Results
To investigate the accuracy and the convergence radius, an ellipse with a radius of
𝜚 = 6 % is drawn in the field plane, which corresponds to Δ𝛾 = 77.733 mT and
Δ𝑓 = 5.1966 V/cm. This ellipse and the observed permutations in the energy plane
are depicted in Figure 5.5. As a result of the large radius, there is a substantial overlap
with other resonances. Consequently, when plotting all eigenvalues for each angle 𝜙 (cf.
Figure 5.5a), only the leftmost permutation, which corresponds to the EP in Figure 5.3a,
is visually distinguishable. Applying the stepwise grouping algorithm yields all permu-
tations shown in Figure 5.5b. Therefore, it functions as a powerful tool to efficiently
filter these permutations, facilitating the discovery of additional EPs. Thus, it generates
a greater amount of training data for a single ellipse. To avoid possible issues with the
stepwise grouping algorithm mentioned in Section 4.1, the orbit was discretized using
400 points to ensure that eigenvalues and their respective quantum numbers changed
minimally between steps. This is of course computationally expensive, but neverthe-
less the overall computational workload is reduced drastically due to the discovery of
additional EPs.

The leftmost permutation in Figure 5.5 is taken as initial training set to study the
convergence of the method. Figure 5.6 visualizes the result of the iterative process. It
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Figure 5.5: (a) Drawing an ellipse with a radius of 𝜚 = 6 %, corresponding to
Δ𝛾 = 77.733 mT and Δ𝑓 = 5.1966 V/cm, results in the visible resonances for
the given energy range. Here, the band gap energy 𝐸g is subtracted from the
real part of the energy. Due to the large radius, there exists a significant over-
lap with other resonances, resulting in only the leftmost permutation, which
belongs to the EP in Figure 5.3a, being visually discernible when plotting all
eigenvalues for each angle 𝜙. (b) Applying the stepwise grouping algorithm
yields five permutations. Consequently, this algorithm serves as a powerful tool
to effectively filter these permutations, enabling the identification of additional
EPs and, subsequently, generating more training data for a single ellipse. This
approach effectively reduces the overall computational workload while increas-
ing the number of EPs discovered.



5.2 Results 67

1.20 1.25 1.30 1.35
𝛾 / T

82

84

86

88

90

92

𝑓
/

V
cm

−
1

1.2466 1.2468 1.2470 1.2472

6

7

8

9
×10−3+8.872 × 101

0

2

4

6

8

10

#
of

tr
ai

ni
ng

st
ep

s

1
Figure 5.6: Applying the iterative process to the orbit in Figure 5.5 combined
with the leftmost permutation as initial training set yields the illustrated pre-
diction of the EP. It converges after ten training steps. The Euclidean distance
to the prediction of the EP in Figure 5.3a is 𝑑e = 2.140 × 10−4, thus the pre-
dicted field strengths are identical up to and including the fifth significant digit.

converges after ten training steps and leads to a similar position of the EP

𝛾EP,lr = 1.246 612 T , (5.5)

𝑓EP,lr = 88.728 936 V
cm

(5.6)

as the prediction of the small radius in Figure 5.3a

𝛾EP,sr = 1.246 554 T , (5.7)

𝑓EP,sr = 88.728 730 V
cm

. (5.8)

The indices lr and sr represent the large and small radius, respectively. Hence, the
predicted field strengths are identical at least up to and including the fifth significant
digit and the Euclidean distance is only 𝑑e = 2.140 × 10−4. Thus, the iterative process
converges and yields a fairly accurate prediction of the position of the EP even for such
a large radius. The calculated eigenvalues of the Hamiltonian for the predicted field
strengths (5.5) and (5.6) are illustrated in Figure 5.7. To distinguish the two eigenvalues
belonging to the EP, they are marked by an arrow. Since the eigenvalues are almost
degenerate, they are visually indistinguishable.
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Figure 5.7: All eigenvalues for the given energy range calculated by diago-
nalizing the Hamiltonian (2.20) with the predicted field strengths of the EP in
Equations (5.5) and (5.6). Here, the band gap energy 𝐸g is subtracted from the
real part of the energy. The two eigenvalues associated with the EP are marked
by an arrow, but since they are degenerate, it is impossible to distinguish them
visually.

By taking into account the efficiency of the stepwise grouping algorithm and the
extensive convergence radius of the iterative procedure, there is a substantial reduction
in computational costs. This is particularly evident when comparing it to the trial-and-
error approach that involves using smaller ellipses to cover the region spanned by the
larger ellipse, as discussed in references [9] and [37], but also compared to the existing
methods, namely the three-point and octagon method.

It is worth emphasizing that the chosen radius of 𝜚 = 6 % does not represent the
maximum convergence radius. The largest radius tested is 𝜚 = 15 %, which corresponds
to Δ𝛾 = 319.650 mT, Δ𝑓 = 20.558 V/cm. The excellent results achieved with a rela-
tively small number of training steps and the high accuracy suggest the potential for
an even larger convergence radius. However, further testing would be required to con-
firm this. As the radius increases, the overlap between different resonances becomes
even more significant, making it increasingly difficult to visually identify permutations.
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Table 5.1: EPs in Cu2O found using the new GPR method. For each EP,
the magnetic (𝛾) and electric (𝑓) field strengths as well as the complex energy

̃𝐸 are given. Here, the band gap energy 𝐸g is subtracted from the real part
of the energy. However, the convergence of the diagonalization of the Hamil-
tonian is questionable because some parameters could not be varied to ensure
convergence.

EP 𝛾 / T 𝑓 / V/cm Re ( ̃𝐸) − 𝐸g / meV Im ( ̃𝐸) / µeV

1 1.184 658 85.348 284 −1.999 440 −4.103
2 1.218 638 85.829 520 −1.761 387 −0.545
3 1.246 554 88.728 730 −2.355 771 −4.942
4 1.252 867 82.244 780 −1.675 592 −2.798
5 1.308 150 87.574 636 −2.219 199 −4.282
6 1.338 139 108.084 785 −2.331 259 −3.295
7 1.931 141 117.073 400 −2.465 701 −2.575
8 1.931 221 117.076 754 −2.465 689 −2.576
9 1.950 923 106.762 009 −2.087 715 −1.249

10 2.049 782 156.927 751 −2.363 292 −0.965
11 2.356 121 143.134 723 −1.902 537 −12.337
12 2.419 380 131.213 089 −1.654 835 −2.685

Consequently, in order to ensure the effectiveness of the stepwise grouping algorithm, a
greater number of points on the orbit would need to be computed for larger radii.

The first prediction in Figure 5.6 is located outside the orbit, which could cause
problems in selecting the new eigenvalues of this point. If the predicted position of
the EP is too far from the ellipse, the GPR model’s prediction at that point becomes
highly uncertain, resulting in a large variance 𝝈2. According to Equation (4.7), this high
variance leads to numerous eigenvalue pairs with extremely small values of 𝑐, increasing
the probability of selecting an eigenvalue pair that does not correspond to the EP. Failure
to select the correct pair can hinder the convergence of the GPR method. However, in the
given scenario, there is still a notable gap between the lowest and second lowest values
of 𝑐, on the order of 𝒪(102), suggesting that the correct eigenvalue pair is successfully
selected.

Another possible issue observed when training with different EPs was that if the EP
is in close proximity to the orbit, the matrix inversion error may occur before the GPR
method converges. This can be remedied by using fewer points on the orbit to train the
model, or by drawing a new ellipse with a slightly different center. In fact, this problem
occurred only once in several cases where the EP was close to the ellipse.



70 Exceptional Points in Cuprous Oxide

All EPs found with the new method are listed in Table 5.1. The convergence of the
diagonalization process for the Hamiltonian is hindered by certain challenges associated
with the delta terms and the limited ability to adjust the convergence parameters re-
lated to the complex rotation angle, |𝛼| and 𝜃. Nonetheless, it is possible to vary the
parameters 𝑁 and 𝐹max, which was done for one of the predicted EPs. Even with small
variations a shift in the eigenvalues is observable, contradicting the convergence of the
diagonalization. As a result, the reliability of the convergence of these EPs is question-
able and needs to be investigated further. However, it is important to note that this
issue does not impact the effectiveness and accuracy of the GPR method itself.



6 Conclusion and Outlook

Applying an external magnetic and electric field to excitons in cuprous oxide results
in resonances, i.e., quasi-bound states which can decay and possess a complex energy
eigenvalue, the imaginary part describing the inverse lifetime. At certain electric and
magnetic field strengths, exceptional points (EPs) can occur where the eigenvalues and
eigenvectors of two resonances coalesce. One property of these EPs is that for an orbit
around the EP in the field plane, the two eigenvalues belonging to this EP permute, i.e.
they exchange their positions. Determining EPs is not so straightforward, mainly due
to the computational cost of diagonalizing the exciton Hamiltonian of Cu2O. Thus, a
new method to find EPs is developed in this thesis.

In Chapter 3, the concept of Gaussian processes (GPs) was introduced within the
framework of machine learning. By specifying a distribution over functions and consid-
ering only those that fit the observed data points, predictions can be made for new data
points, given a model uncertainty for these predictions. This Gaussian process regression
(GPR) approach was employed in the new method.

The GPR method was developed gradually by means of matrix models in Chapter 4.
An observed permutation of the eigenvalues belonging to the EP was used as initial train-
ing set, since it confirms the existence of an EP inside the orbit. In higher-dimensional
systems, it is not straightforward to select the eigenvalues that perform the permutation
due to overlap with other resonances. The main challenge was to extract these eigen-
values, so the stepwise grouping algorithm was developed in Section 4.1 to solve the
initial training set problem. The underlying principle of this approach is to determine
the eigenvalue corresponding to the next angle on the orbit for a given resonance. This is
accomplished by selecting the eigenvalue that exhibits the closest proximity to the eigen-
value of the current angle, utilizing a suitable distance metric. The grouping algorithm
allows filtering the eigenvalues corresponding to the EP and hence simplifies obtaining
the initial training set. For all parameter values, e.g. field strengths, the centroid and
the difference of the eigenvalues can be calculated respectively. These are passed to the
GPR model together with the field strengths. Thus, the latter provides a prediction of
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these quantities as a function of the field strengths. Due to the degeneracy at the EP,
the eigenvalue difference has to be zero at this point, which is why a two-dimensional
root search applied to the model provides a prediction for the position of the EP in the
field plane. A diagonalization with the predicted field strengths was performed to obtain
the exact eigenvalues. These were added to the training set to improve the prediction of
the model. Hence, an iterative process was established. In higher-dimensional systems,
diagonalization involves computing more than just the two eigenvalues associated with
the EP. Selecting the correct eigenvalues in each iteration was achieved by introducing
a similarity measure in Section 4.3, which compares the model prediction with the exact
eigenvalues. This so-called compatibility 𝑐 is defined in Equation (4.7). The smallest 𝑐
value should correspond to the eigenvalue pair belonging to the EP. To ensure proper
selection, a large gap between the smallest and second smallest 𝑐 value is desirable,
which was indeed observed. To determine the convergence of this method, several con-
vergence criteria were discussed in Section 4.4. A combination of the drop in the kernel
eigenvalues and the difference of the eigenvalues associated with the EP appeared to be
a promising convergence criterion. Training the GPR model and applying the method
resulted in a relatively fast convergence to the EP with a high accuracy.

Prior to applying the GPR method for identifying EPs in Cu2O, it was necessary to
perform scaling and projection operations (cf. Appendix B) on the centroid and the dif-
ference of the eigenvalues, as well as the field strengths. This preprocessing step served
to standardize and enhance the training procedure of the GPR model, providing a more
generalized and optimized approach. For small relative radii (see Equation (5.4)) of the
orbit around the EP the method yielded promising results, but in order to minimize
the computational cost a large convergence radius would be favorable. Hence, in Sec-
tion 5.2, convergence was investigated for very large radii of 𝜚 = 6 %, which corresponds
to Δ𝛾 = 77.733 mT and Δ𝑓 = 5.1966 V/cm in the specified case. The method converged
to the prediction of the small radius after only ten diagonalizations with high accuracy.
This radius of 𝜚 = 6 % does not represent the largest convergence radius. The largest
one tested was 𝜚 = 15 %, which corresponds to Δ𝛾 = 319.650 mT, Δ𝑓 = 20.558 V/cm.
The remarkable results obtained with a relatively small number of training steps and the
notable precision achieved point to the possibility of an even larger convergence radius.
While filtering the permutation of the eigenvalues for the large ellipse, additional per-
mutations were obtained which could not be visibly distinguished due to a huge overlap
with other resonances. Thus, not only the computational cost is reduced drastically with
the new GPR method due to its large convergence radius, but also the stepwise grouping
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algorithm provides additional training sets for different EPs, reducing the computational
and time effort even further.

Within the scope of this research, a Python package called Search-for-EPs was de-
veloped and made publicly available. The package is primarily tailored to address the
specific challenges and requirements encountered in this study, as well as being com-
patible with other software utilized in this thesis. Nonetheless, certain functions within
the package can be applied to other problem domains as well, e.g. the stepwise group-
ing algorithm. Documentation for the package is also provided to facilitate its effective
usage.

Future theoretical work should focus on the search for experimental accessible EPs.
Oscillator strengths and other parameters need to be considered in the evaluation. Due
to the questionable convergence of the EPs in Table 5.1, related to the diagonalization
of the Hamiltonian, further tests are necessary to get accurate predictions. Of course
promising EPs should be investigated experimentally. This could be done at the TU
Dortmund using high-resolution spectroscopy [11, 47].

https://github.com/Search-for-EPs/Search-for-EPs
https://search-for-eps.github.io/Search-for-EPs/
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A Implementation of the Stepwise
Grouping Algorithm

Below, a Python implementation of the stepwise grouping algorithm, described in Sec-
tion 4.1, is shown. The unsorted vector, denoted as vec, has a shape of (𝑙, 𝑚, 𝑛), where
𝑙 represents the number of steps taken along the orbit, 𝑚 indicates the number of reso-
nances, and 𝑛 represents the dimension of the 𝑛-dimensional vector. This vector allows
the combination of various quantities, such as real and imaginary part of the eigenvalue
and quantum numbers. Due to the fact that in each iteration two angles are selected, the
for loop goes over all steps 𝑙 except the last one. After calculating the pairwise distance
by using a function from scikit-learn and sorting each column of the resulting matrix
by shortest distance, the condition in the while loop prevents multiple selection of the
same resonance. At the end of each iteration the sorted step is inserted into a new array,
which is returned in the end and is thus the sorted array.

This function can be found on the GitHub page of the package developed during
this thesis under searchep/data.py/stepwise_grouping. The documentation contains ad-
ditional information about the package and how to use it.

1 import numpy as np
2 from sklearn.metrics import pairwise_distances
3 from scipy.spatial.distance import cosine
4

5

6 def stepwise_grouping(vec: np.ndarray, vec_normalized: np.ndarray = None)
-> np.ndarray:↪

7

8 vec_normalized = vec_normalized if vec_normalized else vec
9 vec_sorted = [vec[0]]

10 vec_sorted_normalized = [vec_normalized[0]]
11 for angle in range(vec.shape[0]-1):

https://github.com/Search-for-EPs/Search-for-EPs
https://search-for-eps.github.io/Search-for-EPs/
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12 current_angle = vec_sorted_normalized[angle]
13 next_angle = vec_normalized[angle+1]
14 nn_distance = pairwise_distances(next_angle, current_angle,

metric='cosine')↪

15 nn_index = np.argsort(nn_distance, axis=0)
16 while len(nn_index[0]) > len(set(nn_index[0])):
17 u, inverse, counts = np.unique(nn_index[0],

return_inverse=True, return_counts=True)↪

18 index_multi_min = u[np.argmax(counts)]
19 unique_min = current_angle[np.where(inverse ==

np.argmax(counts))] - next_angle[index_multi_min]↪

20 index_current_angle = np.where(inverse ==
np.argmax(counts))[0][np.argmin(np.linalg.norm(unique_min,
axis=1))]

↪

↪

21 nn_index = np.column_stack([np.append(nn_index[:,
i][(nn_index[:, i] != index_multi_min)],
[index_multi_min])if i != index_current_angle else
nn_index[:, index_current_angle] for i in
range(nn_index.shape[1])])

↪

↪

↪

↪

22 vec_sorted.append(vec[angle+1][nn_index[0]])
23 vec_sorted_normalized.append(vec_normalized[angle+1][nn_index[0]])
24 vec_sorted = np.array(vec_sorted)
25 return vec_sorted



B Optimization of the Training
Process

In order to optimize the training process and thus obtain more accurate results, two
aspects need to be addressed, namely the varying radius of the orbits and the small
energy eigenvalues. Since two separate programs are used, one for the diagonalization
of the Hamiltonian and one for the GPR method, it is not as straightforward to project
the field strengths onto the unit circle as depicted in Equations (5.1) to (5.3). For the
following discussion 𝜅 is calculated via

𝜅 = 𝛾 + i𝑓 . (B.1)

The GPR method requires 𝜅 to train the GPR model, but the diagonalization only
provides 𝛾 and 𝑓. Thus, this is the simplest approach to implement in the GPR program.

B.1 Projection of the field strengths on the unit cir-
cle

To obtain a more generalized training set, the input, i.e. the 𝜅 points on the orbit, are
projected onto the unit circle. This can be accomplished via

𝜅c = (1
2

⋅ [max (Re(𝜅𝑖) ∶ 𝑖 = 1, … , 𝑛) + min (Re(𝜅𝑖) ∶ 𝑖 = 1, … , 𝑛)])

+ i (1
2

⋅ (max (Im(𝜅𝑖) ∶ 𝑖 = 1, … , 𝑛) + min (Im(𝜅𝑖) ∶ 𝑖 = 1, … , 𝑛))) ,
(B.2)

𝜅𝑖 → Re(𝜅𝑖 − 𝜅c)
max (Re(𝜅𝑖) − Re(𝜅c) ∶ 𝑖 = 1, … , 𝑛)

+ i Im(𝜅𝑖 − 𝜅c)
max (Im(𝜅𝑖) − Im(𝜅c) ∶ 𝑖 = 1, … , 𝑛)

.
(B.3)



82 Optimization of the Training Process

First the center of the orbit 𝜅c is calculated. Due to the discrete steps it is necessary to
work with the min and max functions. Then, all 𝜅𝑖 are projected to their corresponding
position on the unit circle. Hence, the input of the GPR model is independent of the
relative as well as the absolute radius of the ellipse in the field plane.

B.2 Rescaling of the function values 𝒑 and 𝒔

Because of the already quite small energy eigenvalues of order 𝒪(10−6) their respective
𝑝 values in Equation (2.55) are of order 𝒪(10−12). The GPR model does not yield
accurate predictions, due to the fact that it assumes the function values to be zero.
Thus, rescaling these function values is not only helpful to obtain a generalized training
set, but also necessary for the model to provide good predictions. This scaling is given
by

𝒑𝑖 → 𝒑𝑖
max((|Re(𝑝𝑖)| ∶ 𝑖 = 1, … , 𝑛), (|Im(𝑝𝑖)| ∶ 𝑖 = 1, … , 𝑛))

, (B.4)

̄𝑠Re = 1
𝑁

𝑁
∑
𝑖=1

Re(𝑠𝑖) (B.5)

̄𝑠Im = 1
𝑁

𝑁
∑
𝑖=1

Im(𝑠𝑖) (B.6)

𝒔𝑖 →
𝒔𝑖 − (

̄𝑠Re

̄𝑠Im
)

max ((|Re(𝑠𝑖) − ̄𝑠Re| ∶ 𝑖 = 1, … , 𝑛) , (|Im(𝑠𝑖) − ̄𝑠Im| ∶ 𝑖 = 1, … , 𝑛))
. (B.7)

Since a two-dimensional zero search is performed for 𝒑 to obtain a prediction of the
position of the EP, it is important to fix the zero values to their actual positions while
rescaling. The rescaled function values lie in the intervals [−1, 1] and [−i, i] for the
real and imaginary part respectively. For 𝒔, which is employed only to identify the two
eigenvalues after each training step that belong to the EP, a similar scaling operation is
used to project the function values onto the same intervals.



Zusammenfassung in Deutscher
Sprache

Das Anlegen von äußeren magnetischen und elektrischen Feldern an Exzitonen in Kupfer-
oxydul führt zu Resonanzen, also zu quasi-gebundenen Zuständen, welche zerfallen
können und einen komplexen Energieeigenwert besitzen. Der Imaginärteil beschreibt
dabei die Lebensdauer des Zustands. Bei bestimmten Feldstärken können exzeptionelle
Punkte (EPs) auftreten, bei denen sowohl die Eigenwerte als auch die Eigenvektoren
von zwei Resonanzen miteinander verschmelzen. Eine Eigenschaft dieser EPs ist, dass
bei einer Umlaufbahn um den EP in der Feldebene die beiden zu diesem EP gehören-
den Eigenwerte permutieren, d.h. sie tauschen ihre Positionen. Die Bestimmung von
EPs ist kompliziert, vor allem wegen der hohen Rechenkosten für die Diagonalisierung
des Exzitonen-Hamiltonians von Cu2O. Aufgrund dieser hohen Rechenkosten sind die
existierenden Methoden um EPs zu finden, welche auf einer mehrdimensionalen Taylor-
entwicklung um den EP basieren, ineffizient oder sogar nicht anwendbar. Daher wurde
in dieser Arbeit eine neue Methode zur Bestimmung von EPs entwickelt.

In Kapitel 3 wurde das Konzept von Gauß’schen Prozessen (GPs) im Rahmen des
maschinellen Lernens eingeführt. Indem man eine Verteilung über Funktionen festlegt
und nur diejenigen berücksichtigt, die auf die beobachteten Datenpunkte passen, können
Vorhersagen für neue Datenpunkte gemacht werden, wobei eine Modellunsicherheit für
diese Vorhersagen angegeben wird. Dieser Gaussian process regression (GPR) Ansatz
wurde in der neuen Methode verwendet.

Die GPR Methode wurde schrittweise mit Hilfe von Matrixmodellen in Kapitel 4
entwickelt. Ein Satz von Eigenwertpaaren bei verschiedenen Parameterwerten, z.B.
Feldstärken, wurde als anfänglicher Trainingssatz verwendet. In höherdimensionalen
Systemen ist es nicht trivial, die Eigenwerte auszuwählen, welche zum EP gehören, da
sie sich mit anderen Resonanzen überschneiden. Die größte Herausforderung bestand
darin, die beiden zum EP gehörenden Eigenwerte herauszufiltern. Deshalb wurde in
Abschnitt 4.1 der schrittweise Gruppieralgorithmus entwickelt, um die entsprechenden
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Eigenwerte zu identifizieren und somit den anfänglichen Trainingsdatensatz zu erhalten.
Das diesem Algorithmus zugrunde liegende Prinzip besteht darin, den Eigenwert zu bes-
timmen, der dem nächsten Winkel auf der Umlaufbahn für eine bestimmte Resonanz
entspricht. Dies geschieht durch die Auswahl des Eigenwerts, der dem Eigenwert des
aktuellen Winkels am nächsten liegt, wobei eine geeignete Abstandsmetrik verwendet
wird. Der Gruppieralgorithmus ermöglicht das Filtern der entsprechenden Eigenwerte
und macht es somit unkompliziert die anfängliche Trainingsmenge zu erhalten. Diese
besteht aus den errechneten Schwerpunkten und Differenzen der Eigenwerte für alle
Feldstärken. Durch das Trainieren des GPR Modells mit diesen Daten liefert dieses eine
Vorhersage dieser Größen in Abhängigkeit der Feldstärken. Aufgrund der Entartung
am EP muss die Eigenwertdifferenz dort Null ergeben, weshalb eine zweidimensionale
Nullstellensuche angewandt auf das Modell eine Vorhersage für die Position des EP in
der Feldebene liefert. Eine Diagonalisierung mit den vorhergesagten Feldstärken ergibt
die genauen Eigenwerte an diesem Punkt. Diese wurden dem Datensatz, welcher für das
Training verwendet wurde, hinzugefügt, um die Vorhersage des Modells zu verbessern.
Auf diese Weise wurde ein iterativer Prozess aufgebaut. In höherdimensionalen Systemen
werden bei der Diagonalisierung mehr als nur die Eigenwerte, welche zum EP gehören,
berechnet. Die Auswahl der richtigen Eigenwerte in jeder Iteration erfolgte durch die
Einführung eines Ähnlichkeitsmaßes in Abschnitt 4.3, welches die Modellvorhersage mit
den exakten Eigenwerten vergleicht. Diese sogenannte Kompatibilität 𝑐 ist in Gleichung
(4.7) definiert. Der kleinste Wert von 𝑐 sollte dem Eigenwertpaar entsprechen, das
zum EP gehört. Um eine korrekte Auswahl zu gewährleisten, ist ein großer Abstand
zwischen dem kleinsten und dem zweitkleinsten 𝑐 Wert wünschenswert, was auch tat-
sächlich beobachtet wurde. Um die Konvergenz dieser Methode zu bestimmen, wurden
in Abschnitt 4.4 mehrere Konvergenzkriterien diskutiert. Als vielversprechendes Konver-
genzkriterium erwies sich eine Kombination aus dem Abfall der Kernel-Eigenwerte und
der Differenz der zum EP gehörenden Eigenwerte. Das Training des GPR Modells und
die Anwendung der Methode führten mit hoher Genauigkeit zu einer relativ schnellen
Konvergenz zum EP.

Vor der Anwendung der GPR Methode zur Identifizierung von EPs in Cu2O war es
notwendig, Skalierungs- und Projektionsoperationen (vgl. Anhang B) am Schwerpunkt
der Eigenwerte und der Eigenwertdifferenz sowie an den Feldstärken durchzuführen.
Dieser Vorverarbeitungsschritt der Daten diente dazu, das Trainingsverfahren des GPR
Modells zu standardisieren und zu verbessern, um einen allgemeineren und optimierten
Ansatz zu erhalten. Für kleine Radien (siehe Gleichung (5.4)) der Umlaufbahn um den
EP lieferte die Methode vielversprechende Ergebnisse, aber um die Rechenkosten zu mi-
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nimieren, wäre ein großer Konvergenzradius vorteilhaft. Daher wurde in Abschnitt 5.2
die Konvergenz für sehr große Radien von 𝜚 = 6 % untersucht, was im angegebenen Fall
Δ𝛾 = 77,733 mT und Δ𝑓 = 5,1966 V/cm entspricht. Die Methode konvergierte nach
nur zehn Diagonalisierungen mit hoher Genauigkeit gegen die Vorhersage des kleinen
Radius. Dieser Radius von 𝜚 = 6 % entspricht nicht dem größten Konvergenzradius.
Der größte getestete Wert war 𝜚 = 15 %, was Δ𝛾 = 319,650 mT, Δ𝑓 = 20,558 V/cm
entspricht. Die hervorragenden Ergebnisse, die mit einer relativ geringen Anzahl an
Trainingsschritten erzielt wurden, und die hohe Genauigkeit lassen einen noch größeren
Konvergenzradius vermuten. Beim Filtern der Permutationen der Eigenwerte für die
große Ellipse ergaben sich zusätzliche Permutationen, die aufgrund einer großen Über-
lappung mit anderen Resonanzen nicht sichtbar unterschieden werden konnten. Mit der
neuen GPR-Methode wird also nicht nur der Rechenaufwand aufgrund ihres großen Kon-
vergenzradius drastisch reduziert, sondern der schrittweise Gruppieralgorithmus liefert
auch zusätzliche Trainingsdaten für verschiedene EPs, was den Rechen- und Zeitaufwand
noch weiter verringert. Aufgrund dieser Vorteile konnten zwölf EPs bei realisierbaren
Feldstärken ermittelt werden, welche an der TU Dortmund experimentell untersucht
werden können.

Im Rahmen dieser Forschung wurde ein Python-Paket namens Search-for-EPs ent-
wickelt und veröffentlicht. Das Paket wurde in erster Linie auf die spezifischen Her-
ausforderungen und Anforderungen dieser Forschungsarbeit zugeschnitten und ist mit
anderer in dieser Arbeit verwendeter Software kompatibel. Nichtsdestotrotz können be-
stimmte Funktionen innerhalb des Pakets auch auf andere Bereiche angewendet werden,
beispielsweise der schrittweise Gruppieralgorithmus. Eine Dokumentation für das Paket
wird ebenfalls zur Verfügung gestellt, um seine effektive Nutzung zu erleichtern.

https://github.com/Search-for-EPs/Search-for-EPs
https://search-for-eps.github.io/Search-for-EPs/
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