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Abstract

With its transformative processing capabilities, Quantum computing has ushered in a new computa-
tional era, presenting unparalleled opportunities and intricate challenges. One potential beneficiary
of this quantum revolution is the Digital Humanities. With quantum computing, the field has
the potential to enhance its quantitative analysis dramatically. QHAna, the Quantum Humanities
Analysis tool explicitly designed for Quantum Digital Humanities, emerges as a pivotal system. This
thesis focuses on enhancing QHAna by integrating variational algorithms and paving the way for
Variational Quantum Algorithms in a modular manner. The objective is to encapsulate components
of variational algorithms as distinct, interchangeable plugins, ensuring adaptability and enabling
end users to adapt the algorithms. Addressing challenges like robust plugin communication and
intuitive user experience, the research delves into this modular framework’s design, implementation,
and evaluation. Beyond the immediate application to Variational Quantum Algorithms, the insights
and methodologies derived here lay the foundational groundwork for future modular system designs
in the quantum computing domain.
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1 Introduction

The dawn of quantum computing has revolutionized the landscape of computational research. With
its unparalleled processing capabilities and the potential to solve problems deemed impractical for
classical computers, quantum computing heralds a new era of possibilities [Sho]. However, with
these possibilities come challenges that demand innovative solutions, particularly in harnessing the
power of quantum algorithms for diverse applications.

One domain that stands to benefit immensely from quantum computing is the Digital Humanities
(DH). Traditionally, the humanities have been viewed through a lens of qualitative analysis. However,
with the advent of digital tools and methodologies, a quantitative dimension has emerged, enabling
researchers to analyze vast datasets, uncover patterns, and derive insights that were previously
unavailable [BL19]. With its inherent strengths, Quantum computing offers the potential to elevate
the DHs to new heights, enabling analyses of unprecedented complexity and depth [Bar22].

Enter QHana [BBH+22]. Initially conceived and meticulously crafted for Quantum Digital
Humanities (QDH), its applicability has evolved, proving valuable not just for DHs but for broader
quantum computing applications. The foundational architecture of the system is both robust and
adaptable. A logical extension of this framework is the integration of variational algorithms,
particularly Variational Quantum Algorithms (VQAs), in a modular fashion. The objective is to
encapsulate components of variational algorithms as modular and interchangeable plugins within
QHana. Such a modular approach promises enhanced adaptability towards a user-centric platform
where researchers can precisely tailor their quantum optimization strategies to their needs.

However, the path to realizing this vision is full of challenges. As plugins are essentially
microservices, QHana is a distributed system that brings its own challenges. Integrating optimization
as multiple plugins demands a robust communication mechanism, ensuring seamless interaction
and data sharing. Furthermore, the user experience must remain intuitive, allowing both quantum
novices and experts to harness the full potential of the modular quantum optimization framework.

This work embarks on a journey to navigate those challenges. It aims to design and implement
a modular framework within QHana, delving into the intricacies of the unique plugin-based
architecture of QHana, the nuances of quantum optimization algorithms, and the challenges of
ensuring seamless interaction between distinct components. Moreover, the implications of this
research extend beyond the limits of VQA in QHana. By pioneering a methodology for VQA plugin
interactions within QHana, this work lays the foundation for a broader paradigm of modular system
design in the QDH.

The thesis undertakes a comprehensive journey through modular VQAs within QHana. Chapter 2
lays the groundwork by delving into the foundational principles and concepts that underpin the entire
thesis. Chapter 3 sharpens the focus, presenting a clear and concise problem statement and outlining
the objectives aimed to be achieved. With a clear understanding of the problem at hand, Chapter 4
dives deep into the methodology. The chapter explores the strategies and approaches employed to
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1 Introduction

develop and evaluate the modular framework within QHana. Chapter 5 unveils the architectural
blueprint of the modular framework. Moving from design to implementation, Chapter 6 delves into
the details of the framework’s implementation. In Chapter 7, the design and implementation are put
to the test. The architectural design’s efficacy and real-world implementation are measured through
rigorous evaluations, drawing insights from the results. Chapter 8 delves into a thorough analysis
of the findings and checks if set problems are adequately solved. To place the work in a broader
context, Chapter 9 explores the landscape of related research. Finally, Chapter 10 brings the journey
to an end, summarizing the resulting framework and looking ahead to future possibilities and roads
for further extension.
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2 Background

The study of QHana and its advanced plugin interactions is rooted in foundational principles
underpinning its functionality. This chapter aims to offer a comprehensive introduction to these
principles, encompassing key areas such as optimization algorithms, quantum computing, VQAs,
Representational State Transfer (REST), and the core architecture of QHana. By delving into these
foundational topics, readers will gain the necessary context to understand the innovative approaches
adopted in this thesis.

2.1 QHana

QHana was conceived as a specialized application in the domain of DH and has since evolved into a
versatile platform for quantum computing applications. Its primary design allows users to explore
various machine-learning algorithms on designated datasets. While the primary vision of QHana is
to assess the potential advantages of quantum algorithms within the DH community, the rise and
cloud availability of quantum computers [Cas17] further underscore its relevance and timeliness.

QHana is designed to be extensible, allowing the integration of new data sources and quantum
algorithms as plugins. Usually, plugins are built for specific applications, limiting their reusability
in other contexts. Moreover, an application’s plugins must be developed in the same programming
phrasing as the application. Even if another application can reuse a plugin, a developer has to
adapt the plugin’s User Interface (UI) to the new application. Otherwise, users may need help
understanding the plugin’s functionality. To address this limitation, QHana is built on a novel concept
of Reusable Microservice-based Plugins (RAMPs) [BBH+22]. This concept allows microservices
with an integrated UI to be used as plugins by multiple applications, enhancing the reusability of
the plugins across different applications.

2.1.1 QHAna’s Architecture

QHAna’s architecture, as depicted in Figure 2.1, is primarily microservice-oriented, emphasizing
modularity and extensibility, which is evident from its use of RAMPs and the concept of microfron-
tends. Such an architectural choice is geared towards ensuring scalability and adaptability in the
rapidly evolving field of quantum computing. Key components of QHana’s architecture are:

QHAna UI Developed using Angular and TypeScript, the UI serves as the primary interface for
users, facilitating interaction with the system’s functionalities.

QHAna Backend The backend provides essential services, including a REST API for the UI, data
management, and functions as a RAMPs Registry to discover and load RAMPs.
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2 Background

Figure 2.1: QHana’s Architecture as depicted in [BBH+22]

RAMPs These plugins encapsulate specific classical and quantum algorithms. Their development
is streamlined by the Plugin Runner, a Python framework designed to handle generic RAMP
tasks.

Database This component is responsible for the persistent storage of data related to the experiments
conducted within QHana.

The QHana UI offers users a selection of RAMPs. When a RAMP is selected, its microfrontend is
embedded within the UI through an iframe. The QHana Backend, central to the system, manages
data storage, acts as a RAMP registry, and provides necessary services to the UI. RAMPs, designed
for modularity, can be developed independently and integrated into QHana. The Plugin Runner
demands the adherence of RAMPs to system standards. Data from external sources is processed by
RAMPs and stored in the database.

2.1.2 RAMPs: Bridging UI and Data Processing

RAMPs are designed to bridge the gap between traditional plugins and microservices. They
offer a comprehensive approach to user interaction and data processing, distinguishing themselves
from conventional plugins. One of the primary advantages of RAMPs is their ability to integrate
seamlessly with UIs. Unlike traditional plugins, which might require modifications to fit an
application’s UI, RAMPs come with context-sensitive microfrontends. This ensures that the
plugin’s UI aligns effortlessly with the primary application’s interface, enhancing user experience.

18
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Furthermore, RAMPs introduce the possibility of multi-step UI interactions, where users can be
presented with sequential interfaces based on prior inputs or processing results, enhancing the depth
and interactivity of the user experience.

In summary, RAMPs blend the best of microservices and plugins. They combine the reusability
and accessibility of microservices with the UI adaptability of plugins, making them a valuable asset
in diverse application settings.

2.2 Quantum Computing

Quantum computing is a cutting-edge field that exploits the principles of quantum mechanics to
process information. Unlike classical computers that use bits (0s and 1s) to store and process infor-
mation, quantum computers use quantum bits, or qubits. Through superposition and entanglement,
qubits can exist in multiple states simultaneously and correlate in ways that classical bits cannot
[NC12].

Superposition allows a qubit to be in a state of a combination of 0 and 1, with a certain probability
for each. This property enables quantum computers to perform many calculations simultaneously,
vastly increasing their potential computational power. Entanglement allows qubits to be intimately
linked regardless of the distance separating them. A change in the state of one will instantaneously
affect the state of the other, a phenomenon that Einstein famously called spooky action at a distance
[EPR35]. This property is essential for many quantum algorithms, quantum error correction, and
quantum teleportation, making it a fundamental resource in quantum information processing [NC12;
Pre98].

2.3 Variational Quantum Algorithms

VQAs combine the principles of quantum computing and optimization uniquely and powerfully.
They are a class of hybrid quantum-classical algorithms that leverage the strengths of both quantum
and classical computing to solve complex problems [MRBA16].

The central concept of VQAs is to use a sequence of quantum operations (a quantum circuit)
controlled by specific parameters. These parameters are adjusted using classical optimization
techniques to solve a specific problem. This problem, in many cases, involves finding the lowest
energy state, or ground state, of a quantum system. This problem maps to finding the minimum of a
particular function [PMS+13].

By leveraging classical optimization algorithms, VQAs become more resistant to quantum errors, as
classical computers perform most of the computation. This combination of quantum and classical
resources makes VQAs a promising algorithm for near-term quantum devices [MBB+17].
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2.4 Optimization Algorithms

Optimization is a powerful tool ubiquitous in various scientific and technological domains. At its
core, optimization is about finding the best solution from a set of possible choices. This section
provides a snapshot of optimization’s fundamental principles, paving the way for deeper exploration
in the context of VQAs and plugin-based VQAs.

2.4.1 Objective Functions

Objective Functions (OFs) are fundamental to optimization problems, underpinning many computa-
tional algorithms and models. Depending on specific requirements, the aim might be to minimize
or maximize these functions. Notably, within the realm of VQAs, the focus is primarily on function
minimization [E17].

The core inputs to a OF typically encompass data points (denoted as 𝑥), corresponding labels or
outcomes (represented by 𝑦), and a set of parameters or weights (often symbolized by 𝜃 or 𝑤). These
parameters dictate how the model responds to the input data and makes predictions. Additionally,
certain OFs may also include hyperparameters as input, which control the behavior and complexity
of the model. In the context of optimization problems, the role of an OF is to capture both the
problem we are attempting to solve and the strategy by which we are trying to solve it. It provides a
measure of the ’goodness’ or ’fitness’ of our current solution or parameters, and the aim is to adjust
these parameters to improve this measure.

One example of an OF is the Lasso (Least Absolute Shrinkage and Selection Operator) Loss
function. The Lasso loss function has the form:

𝐿 (𝑌, 𝑋,𝑊, 𝜆) = | |𝑌 − 𝑋𝑊 | |22 + 𝜆 | |𝑊 | |1
In this equation:

• 𝑌 is the vector of observed values.

• 𝑋 is the matrix of input data points.

• 𝑊 is the vector of weights, the model’s parameters.

• 𝜆 is the regularization parameter, a non-negative hyperparameter.

This function consists of two terms:

1. The first term | |𝑌 − 𝑋𝑊 | |22 is the mean squared error between the predicted and actual
outcomes. It measures the discrepancy between the model’s predictions and the true values.

2. The second term 𝜆 | |𝑊 | |1 is a regularization term, where | |𝑊 | |1 represents the L1 norm
(sum of absolute values) of the weight vector. This term penalizes the absolute size of the
coefficients, encouraging them to be small.

The hyperparameter 𝜆 governs the trade-off between these two terms. When 𝜆 = 0, the OF reduces
to ordinary least squares regression, and the weights are chosen to minimize the mean squared error
alone. As 𝜆 increases, more weight is given to the regularization term, and the solution becomes
more sparse (i.e., more weights are driven to zero). Increasing the regularization term can help to
prevent overfitting by effectively reducing the complexity of the model [SB14]
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2.4.2 Minimization Functions

Minimization functions, generally called optimization algorithms, are pivotal in many computational
models and algorithms. In essence, they serve to iteratively enhance the parameters of a model to
reduce the value of the OF. These minimization functions aim to find the optimal set of parameters
that yield the lowest possible value of the OF within the constraints of the problem [NW06].

The process of optimization involves a search through the parameter space. This search can
be visualized as navigating a landscape of hills and valleys, with each point in the landscape
corresponding to a different set of parameters and the height at each point representing the value
of the OF. The goal of the minimization function is to find the lowest point in this landscape,
corresponding to the minimum value of the OF [GBCB17].

The core inputs to a minimization function are the initial parameters of the model or weights
(denoted as 𝜃 or 𝑤), the OF that needs to be minimized, and optionally, the gradient of the OF.
Additionally, certain minimization functions may include hyperparameters as input, which control
the behavior and complexity of the optimization process [VGO+20]. For instance, the learning
rate is a typical hyperparameter that determines the step size in each iteration of the optimization
process.

One of the most fundamental and widely used minimization functions is the Gradient Descent.
To find a local minimum of a function using gradient descent, one takes steps proportional to the
negative of the function’s gradient (or approximate gradient) at the current point.

The update rule of gradient descent has the form:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝐹 (𝜃𝑡 )

In this formula:

• 𝜃𝑡+1 represents the parameters at the next time step.

• 𝜃𝑡 represents the current parameters.

• 𝛼 is the learning rate, a positive scalar determining the step size.

• ∇𝐹 (𝜃𝑡 ) is the gradient of the OF.

Here, the OF 𝐹 is assumed to be a differentiable function. The gradient ∇𝐹 (𝜃𝑡 ) provides the
direction of the steepest ascent at the point 𝜃𝑡 , and −∇𝐹 (𝜃𝑡 ) provides the direction of the steepest
descent. We move towards the minimum of the function by taking a step in this direction.

The choice of minimization function can significantly influence the efficiency and success of the
optimization process. While some minimization functions may perform well on certain problems,
they may yield different results on others. Therefore, it is crucial to understand the underlying
mechanisms of these functions and their suitability to the specific problem at hand.
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3 Problem Statement and Objectives

Optimization algorithms, with their ability to find the best possible solution from a set of feasible
solutions, play a pivotal role in numerous computational domains. VQAs are a subset of these
algorithms that leverage quantum computing principles, particularly in the realm of OFs and
minimization techniques. However, the true potential of optimization is often hindered by rigid
platforms where the components of these algorithms are tightly integrated, limiting adaptability and
innovation.

QHana, with its unique environment tailored for experimenting with plenty of machine learning
and quantum algorithms, presents an opportunity to redefine this paradigm. However, its current
architecture does not fully exploit the modular benefits that can be achieved by decoupling the
components of optimization algorithms. Furthermore, while developing this modular framework,
allowing plugins to interact with each other is essential. This interaction-centric concept, once
established, can be universally applied across QHana, not just for optimization but for any scenario
where plugin interaction is required.

Problem Statement: How can we design and implement a modular framework within QHana
that allows components of optimization algorithms, specifically OFs and minimization functions,
to be implemented as distinct, interchangeable plugins? Furthermore, how can these plugins be
structured to communicate and collaborate seamlessly, especially in the context of VQAs?

This problem encompasses several challenges:

• Communication: Establishing a robust communication mechanism that enables interaction,
data sharing, and collaboration among these plugins.

• Interchangeability: Designing a system where different OF and minimization plugins can
be effortlessly swapped, ensuring adaptability in optimization and VQAs. Implementing a
consistent interface for these plugins, ensuring uniformity and compatibility across various OF
and minimization plugins. The design should ensure that interchangeability accommodates
future use cases beyond the optimization context.

• User Experience: Providing an intuitive UI for users to easily choose and experiment with
different optimization components tailored to their needs.

• Developer Experience: Providing developers with an extensible framework to build new
minimization and OF plugins.

Addressing this problem is essential to enhance the capabilities of QHana, transforming it into
a dynamic, adaptable, and user-centric platform for experimenting with optimization and VQAs.
When solving this problem, technical requirements and constraints must be considered. QHana, with
its design centered on the Digital Humanities, provides an extensible platform for experimenting with
various algorithms. QHana’s architecture predominantly revolves around the concept of RAMPs
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[BBH+22]. The objective is to leverage QHana’s inherent modularity by enabling components of
optimization algorithms to function as distinct and interchangeable plugins. This brings us to the
significance of modularity in optimization. When VQAs are designed with modular components, it
allows for increased flexibility. Specifically, having distinct OFs and minimization functions means
parts of the algorithm can be adjusted or replaced seamlessly. This reflects the goals of modularity
and flexibility intrinsic to QHana’s design.

Interactivity in QHana should encompass various facets. No plugin should be aware of specific
user input requirements of another plugin to enable interchangeability and loose coupling between
plugins. This means that an invoking plugin should not have input fields that are specific to the
invoked plugin. Therefore, a plugin should be able to invoke the microfrontend of another plugin
where the user can provide the required input. Control should revert to the invoking plugin once
the invoked plugin completes its tasks. Interactions between plugins can have varying degrees
of complexity, so the interaction mechanism should be flexible enough to accommodate different
scenarios. Both short-running tasks and long-running tasks should be facilitated. For the latter,
a callback mechanism is proposed, wherein the invoking plugin is notified upon completion of a
long-running task by the invoked plugin.

The need for such interactivity stems from the inherent nature of optimization. The OFs and
minimization must closely interact to produce meaningful optimization results. Moreover, since
an invoking plugin is unaware of the parameters or requirements of the invoked plugin, direct
interaction becomes imperative for dynamic data exchange and collaborative processing.

Drawing inspiration from existing systems, the interaction between the minimization and OFs in
implementations like SciPy’s optimizer.minimize [VGO+20] function serves as a precedent.

This thesis introduces the concept of interaction endpoints to QHana to elevate the interactivity
between plugins. While QHana already employs a metadata field for plugins known as entry points
– endpoints invoked by the QHana UI to render the UI of a plugin – interaction endpoints extend this
paradigm by marking specific endpoints as callable by other plugins.

A defining characteristic of an interaction endpoint is its type. Interaction endpoints sharing the
same type uphold uniformity in their signature and return type. This typing ensures that they are
invoked consistently by other plugins, irrespective of their specific implementation. Inspiration
for this typing mechanism is drawn from the OpenAPI specification [MWG+21], which defines a
standard, language-agnostic interface for REST APIs.

The proposed approach complements QHana’s existing principles, resonating with its emphasis on
extensibility, adaptability, and user-centric design. By enhancing the interactivity and modularity of
plugins within QHana, we strive to elevate its capabilities, making it a more dynamic platform for
optimization and VQAs.

The subsequent sections of this thesis will delve into the methods, implementations, and evaluations
related to this problem.
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4 Methods

This section outlines the method developed in this work for enabling modular VQAs consisting of
multiple plugins. The chapter begins by defining the architectural design strategy and explaining
the process of decomposing the optimization process into distinct plugins that interact. Next,
the implementation strategy is defined, outlining the tools and technologies employed in the
implementation process. Finally, the evaluation strategy is delineated, explaining the approach to
evaluate the efficacy of the proposed design and implementation.

4.1 Architectural Design Strategy

The architectural design process is a critical phase that dictates how the solution’s components will
function and interact with each other. The final architectural design will be chosen by iteratively
refining the existing architecture over multiple steps, considering different aspects like clarity,
modularity, and extensibility. Before diving into the details of the design process, it was essential to
understand the existing architecture of QHana.

Decomposition into Plugins: The first step involves decomposing the optimization process into
distinct plugins. Decomposition is achieved by reviewing relevant literature to understand standard
practices and methods in optimization [E17; NW06; SB14; VGO+20]. The main challenge is to
find a decomposition so that, on the one hand, any functionality that should be interchangeable
is encapsulated in an extra plugin, on the other hand, splitting the process into too many plugins
would be inefficient due to the overhead of the required communication between plugins. The main
question is how to encapsulate the OF and the minimization function and their coordination. In
order to represent the decomposition, a UML component diagram is created.

Defining Plugin Responsibilities: Once the plugins are identified, the next step is to define the
responsibilities of each plugin precisely. This ensures that every plugin has a well-defined purpose,
preventing overlaps in functionality and ensuring clarity in their roles. Several crucial decisions
delineate these responsibilities:

• Which one prompts the user for the OF hyperparameters?

• Which one gathers the minimization function hyperparameters from the user?

• Which one inquires about the user’s preference for the OF and minimization algorithm?

• Which one solicits the input data from the user?

• Which one requests the target variable?
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Universal Plugin Interface Design: Recognizing the vast possibilities and variations that
interchangeable plugins might encompass, it is crucial to formulate a universally adhered-to
interface. This interface acts as a contract, ensuring that a consistent mode of interaction exists
irrespective of the specific implementation details of a plugin. The notion of interface contracts in
microservice architectures is not new and is inspired by the OpenAPI specification [MWG+21]. Core
attributes and functionalities, like querying the number of initial weights for the minimization process
required, are defined as part of this universal interface. This approach fosters interchangeability and
adaptability, as the defined interface could accommodate a multitude of interchangeable plugins,
each with its unique implementations. In terms of optimization, this could mean that in the case of
an OF plugin responsible for calculating the loss function, interfaces must be generalized to allow
for any thinkable type of loss function. A UML component diagram visualizes the interfaces of
each plugin and how they are connected.

Plugin Interaction Design: The next step is to design the interaction between plugins. This
design process involved defining the various ways in which plugins could interact with each other.
It is crucial to build a robust and flexible interaction design to accommodate many scenarios since
the interaction between plugins in QHana should apply not only to optimization. This interaction
design should lay the foundation for all future multi-plugin interactions within QHana.

Scenarios include, for instance, a plugin invoking the microfrontend of another plugin, or it could
call a specific endpoint of another plugin. Additionally, the interaction design also encompasses the
flow of control between plugins. A plugin should be able to invoke another plugin and then stop
execution for as long as the invoked plugin is running. Alternatively, a plugin should be able to
invoke another plugin and then continue with its tasks without waiting for the invoked plugin to
complete its tasks. Intrinsic to this step is the design of a coordination mechanism that facilitates the
interaction between plugins. A UML sequence diagram shows the complete process of a generalized
optimization run to represent the interactions between plugins.

Feedback and Refinement: Throughout the design process, continuous feedback loops are
integrated. This involves:

• Revisiting each stage, evaluating its alignment with overarching goals.

• Making necessary refinements to ensure the architecture is robust and flexible.

With the architectural design strategy in place, the next step is to define the implementation
strategy.

4.2 Implementation Strategy

Before diving into the implementation, an in-depth study of the QHana documentation [Fab]
and a related paper on QHana’s architecture [BBH+22] was undertaken to gain a comprehensive
understanding of the system. With component and sequence diagrams already in place, the next
step is to define the implementation strategy.
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4.2.1 Development Environment and Toolset

The choice of development tools and environment plays a pivotal role in the successful execution
and maintenance of a project. The right toolset facilitates smooth development and enhances
the system’s efficiency, productivity, and scalability. The following list delineates the tools and
technologies employed in the implementation process, each chosen for its specific capabilities
tailored to the requirements of the project:

• Visual Studio Code: A versatile integrated development environment employed for its
adaptability and support for Python development using extensions, facilitating comprehensive
tools for coding, debugging, and testing.

• Docker: Utilized to run all components of QHana, ensuring consistent behavior across
different computing environments and simplifying the deployment process.

• Postman: An API testing tool employed to validate and debug various endpoints, ensuring
consistent and expected behavior of the plugin interactions.

• Python: As QHana is implemented in Python, which offers versatility and a vast library
ecosystem.

• Flask: A lightweight Python web framework employed to develop the web services and
RESTful APIs for the plugins.

• Marshmallow: A Python library pivotal for object serialization/deserialization, ensuring
structured data transfer between the plugins.

• Flask-Smorest: An extension of Flask, offering tools for building RESTful APIs with Flask
and Marshmallow, ensuring structured and accurate data transfer between plugins.

• Celery: A task queue to manage long-running tasks, particularly for minimizer plugins,
allowing for asynchronous task execution.

• Requests: A Python library for interacting with HTTP endpoints. It invokes endpoints of
plugins.

4.2.2 Key Principles of QHana Plugins

In the QHana ecosystem, plugins play a pivotal role in extending functionality. A set of principles
governs the creation and integration of these plugins to ensure their seamless operation and interaction
[Fab]. All plugins must adhere to these principles to ensure compatibility and consistency across the
system. To understand the decisions made in this work, consider at least the following principles:

• Plugin Definition: A plugin is a Python module or package. Conventionally, it inherits
from the QHAnaPluginBase class and resides in a directory specified by the PLUGIN_FOLDERS

configuration variable. The plugin imports its implementation class and all associated Celery
tasks.

• Plugin Metadata and Endpoints: A plugin should contain metadata and links to all its
endpoints. It is reachable via the "./"path. The metadata includes crucial information like
entry points.
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• UI Interaction: Plugins define both href and hrefUi for each plugin with an UI. The
‘hrefUi‘ serves the microfrontend where users input data, and ‘href‘ is the underlying endpoint
providing the functionality.

• Data Handling in Multi-step Plugins: Data is stored in a key-value store for plugins
requiring multiple user input and processing steps. A plugin task is associated with a unique
database ID, and subsequent endpoint URLs of a plugin typically include the ID in the URL
path http(s)://.../<ID>/<endpointName>. That way, the plugin can retrieve the data from
the database using the ID.

• Handling Long Running Tasks: For a plugin to be able to handle long-running tasks,
QHana offers the Celery framework. Celery is a task queue that allows for asynchronous task
execution.

• File Loading from URLs: Plugins have to be able to load files from URLs.

• Data Format Specification: Data formats, especially those shared across plugins, should
be defined per the guidelines of QHana. For instance, for the text/csv format pertaining to
entities:

– The first column must be the ID column (named ID). Subsequent columns represent
entity attributes.

– The CSV file should contain a header row specifying all attribute names.

It is imperative to note that while the outlined principles are crucial to this thesis, QHana’s
overarching documentation provides a more exhaustive list of best practices and guidelines for
plugin creation [Fab].

4.2.3 Data Handling and Transfer

Flask-Smorest is instrumental in ensuring structured and accurate data transfer between plugins. It
provides functions for validating the correctness of passed data, returning appropriate error codes,
and managing errors efficiently based on schemas. This ensures that data exchanged between
plugins is smooth and error-free.

4.2.4 Testing and Debugging

A multifaceted testing strategy addresses the paramount importance of the quality and reliability of
plugins and their interactions:

1. Static Code Analysis:

• Purpose: To ensure code quality and maintainability and to identify potential vulnera-
bilities or deviations from coding standards.

• Tools & Implementation: The tool flake8, in combination with type hints, is utilized
to conduct static code analysis on the Python codebase. Flake8 generates a report
detailing any code inconsistencies, potential errors, or areas for improvement and
provides valuable feedback for refinement.
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2. Logging and Monitoring:

• Purpose: To capture, store, and analyze real-time information about the system’s
operations, aiding in troubleshooting and understanding system behavior.

• Tools & Implementation: Python’s in-built logging package is leveraged to track and
record various events during the execution of plugins. By strategically placing logging
statements within the code, it is possible to gain insights into the flow of operations,
detect anomalies, and pinpoint areas that might require attention.

3. Interactive Debugging:

• Purpose: To step through the code in real-time, inspect variables, and analyze the
program’s flow to identify and rectify issues.

• Tools & Implementation: The integrated Python debugger in Visual Studio Code
is employed. This debugger allowed for setting breakpoints, stepping through code,
inspecting variable states, and examining the call stack, providing a granular view of
the system’s operations and aiding in issue identification and resolution.

4. Manual Testing:

• Purpose: To capture nuances and potential issues that might be overlooked.

• Procedure: A hands-on approach is adopted where the plugins are interactively
used. This involved navigating through the UI, experimenting with different inputs,
and observing the system’s reactions to ensure it behaved as expected and met user
requirements.

Employing a combination of static code analysis, detailed logging, interactive debugging, and
manual testing ensures functional correctness and that plugins adhere to coding standards and best
practices.

4.2.5 Performance Optimization

The system employs several strategies to optimize performance in the microservice-based plugin
architecture:

1. Reducing the number of interactions between plugins.

2. For each interaction, the amount of data transmitted across the network should be kept to a
minimum to ensure efficient communication and faster response times.

3. For tasks that require extended processing, the Celery framework should be utilized, allowing
these tasks to operate asynchronously and optimizing resource usage.

These strategies are critical in ensuring swift and seamless interactions between plugins.
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4.2.6 Documentation and Extensibility

The code includes comprehensive documentation that details how to add new OF and minimization
plugins, facilitating the development of new plugins. This documentation serves as a guideline for
developers aiming to extend the capabilities of QHana with plugin interaction.

4.3 Evaluation Strategy

To validate the effectiveness of the proposed solutions and to assess whether the goals set out in the
problem statement have been achieved, the following evaluation methods are adopted:

Performance Benchmarking: Performance is paramount, especially in a plugin-based architec-
ture. A direct comparison shows the differences between the two plugin-based and non-service-based
approaches. Critical metrics for this comparison include:

• Objective Function Calculation Time: This measures the time to retrieve the loss, directly
impacting the overall optimization time. For the plugin-based approach, this is the time,
as observed by the client calling the calculation endpoint, meaning it includes the network
latency. As all system components run on the same machine, network, in this case, means the
localhost.

• Minimization Time: This refers to the time needed to minimize the OF. The service-based
approach includes the time taken for the minimization endpoint to return a result via the
network.

• Network Latency: This exclusively quantifies the time required for a request to reach the
server and for the corresponding response to be received. This metric does not include any
computation time that occurs on the server. This metric is exclusive to the service-based
approach.

• Database Access Times: It is essential to gauge the time required to retrieve data from the
database since endpoints access context data during each invocation.

This evaluation hinges on quantitative metrics, with results graphically depicted for enhanced
clarity. The time.perf_count function from Python measures the time taken for a function to execute,
providing a reliable and accurate measure of performance.

Interchangeability: The accurate measure of interchangeability is the ability to swap components
without causing disruptions. Accordingly, all allowed combinations of plugins were tested to
validate seamless interchangeability.

Standardization Adherence: Standardization is checked to ensure compatibility and uniformity
across diverse plugins. An evaluation determines whether all implemented plugins conform to the
prescribed standards. This guarantees that all possible optimization plugins can be implemented
uniformly, facilitating consistent and compatible integrations in the future.
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Developer Experience: The developer experience has to be maintained. To measure the
experience, the steps required to implement a new plugin are counted, and each step is evaluated for
its complexity. The evaluation acknowledges any documentation that guides developers through the
process. An assessment determines the ease and efficiency with which a developer can introduce a
new plugin in plugin-based optimization in QHana. The goal is to ensure that the plugin-based
approach is as easy to implement as the non-service-based approach.

This thesis thoroughly appraises the solutions concerning the challenges outlined in the problem
statement by meticulously evaluating these parameters.

4.4 Test Data Generation for Evaluation

To robustly evaluate the solutions proposed in this work, testing them on diverse datasets with
different sizes and complexity is essential. The objective is to mimic real-world scenarios where
optimization problems can range from simple tasks with a few data points to complex challenges
with many features and data points. The code used to generate the test data can be found in the
Appendix. The following criteria are employed to generate the test data:

Datasets of different sizes are generated, spanning from a modest 200 data points to a substantial
1400 data points. This variation ensures that the optimization performance is assessed across
different scales, from quick-to-process small datasets to computationally demanding large datasets.
The number of features in each dataset is dynamically determined based on the dataset’s size,
calculated explicitly as ⌊

√
size × 1.5⌋. This approach ensures that with the growth of the dataset, its

complexity also increases, mirroring real-world scenarios where larger datasets often present more
features or dimensions.

The make_regression function from the Scikit-learn library generates data. An added noise
parameter introduces an element of randomness, making the optimization task more intricate and
resembling real-world challenges.

To maintain the consistency and reliability of the generated datasets across multiple runs or
evaluations, a fixed random seed (numpy.random.seed(42)) has been set. This ensures that the data,
though synthetic and noisy, remains consistent across evaluations, enabling accurate comparisons,
assessments, and reproducibility.

Two criteria are employed to adhere to QHana’s data standards: Each data point in the dataset is
allocated a unique ID in the format entityX, where X represents the entity number. This aligns with
QHana’s data standard that mandates every data point to have an identifiable ID. All datasets are
stored in the CSV (Comma Separated Values) format, adhering to QHana’s accepted data formats.

By employing such datasets, the methodology objectively evaluates the optimization solutions,
assessing their performance, interchangeability, and user experience across various scenarios.
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5 Resulting System Architecture

This chapter delves into the intricate architectural blueprint of the proposed plugin-based optimization
framework. It explores the decomposition into distinct plugin types, each with clearly defined roles
and responsibilities. The chapter also elucidates the universal plugin interfaces designed to ensure
seamless interaction between different plugins, fostering modularity and extensibility. By the end
of this chapter, readers will gain a comprehensive understanding of the system’s interaction flow, its
various components, and their interdependencies, all illustrated through detailed component and
sequence diagrams.

5.1 Resulting Decomposition into Plugins and their
Responsibilities

Following the decomposition strategy, the plugin-based optimization framework is divided into
three primary plugin types: OF plugin, the minimizer plugin, and the coordinator plugin. These
plugins have specific roles and responsibilities, ensuring a modular and efficient optimization
process. This split is visualized in the component diagram in figure 5.1. It is important to note
that this decomposition and the associated responsibilities remain consistent for both proposed
plugin-based approaches.

Objective Function Plugin: The OF plugin is central to the optimization framework, encapsu-
lating the mathematical function that defines the problem at hand. Its primary roles include:

• Metadata Provision: The plugin offers metadata about itself.

• Hyperparameters Acquisition: It prompts the user to provide the hyperparameters necessary
for the loss function calculation.

• Loss Calculation: The plugin computes the loss based on the provided input data, representing
the discrepancy between predicted and target values.

• Gradient Calculation (Optional): For optimization algorithms that leverage gradient-based
methods, the plugin can optionally compute the gradient of the loss function. The gradient
aids in guiding the optimization process toward the desired minimum.
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Minimizer Plugin: The minimizer plugin is responsible for iteratively adjusting parameters to
minimize the loss provided by the OF plugin. Its functions include:

• Metadata Provision: Similar to the OF plugin, it provides essential metadata.

• Hyperparameters Acquisition: The plugin acquires the hyperparameters crucial for the
employed minimization algorithm from the user.

• Minimization Process: Using the loss (and optionally the gradient) from the OF plugin, the
minimizer plugin endeavors to find the parameter values that minimize this loss.

Coordinator Plugin: The Coordinator plugin acts as the orchestrator, ensuring seamless interac-
tion between the OF and minimizer plugins and the user. Its primary responsibilities are:

• Plugin Selection: It prompts the user to select the desired OF and minimizer plugins for
optimization.

• Data Acquisition: The plugin gathers the necessary input data and the target variable from
the user, which the optimization process will use.

• Endpoint Acquisition: It obtains the necessary endpoints from the selected plugins.

• Coordination Role: It manages the interaction between the OF and minimizer plugins,
ensuring that the loss (and optionally gradient) calculation function is provided to the
minimizer plugin for the optimization process. Additionally, it coordinates the interaction
between the user and the selected plugins, ensuring the user sees the necessary microfrontends.

• Results Presentation: Post-optimization, the coordinator plugin presents the optimization
results to the user.

5.2 Universal Plugin Interface Design

The process of optimization is inherently complex, with a multitude of variations and nuances. It is
imperative to establish universal plugin interfaces for each type of plugin to ensure a streamlined
interaction between different plugins. This interface acts as a standard that every plugin of a specific
type has to adhere to. The interfaces for each plugin are detailed below and are visualized in the
component diagram in figure 5.1.

Objective Function Plugin Interfaces: The OF plugin interface accommodates a wide range of
loss functions, including those that offer gradient computation. Its interfaces are:

• Metadata: The plugin provides metadata about itself as specified in the QHana documentation
[Fab].

• UIRef: This endpoint returns the microfrontend for the OF plugin, where the user inputs the
hyperparameters for the calculation. This interface also follows the QHana documentation
[Fab].
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<<component>>
Coordinator Plugin

<<component>>
Minimizer Plugin

<<component>>
Objective Function Plugin

Metadata

UIHref

HRef

PassData

Minimize

CalculateLoss

CalculateGradient

CalculateLossAndGradient

Figure 5.1: Component Diagram of decomposed optimization process

• HRef: This endpoint is used to process the input from the OF microfrontend and is therefore
usually called the processing endpoint. It is usually triggered by the user clicking the submit
button on the microfrontend. This interface also follows the QHana documentation [Fab].

• PassData: Via this endpoint, the coordinator passes the input and target data to the OF plugin.
It returns the number of weights required for the optimization process. It returns the number
of weights required by the objective function.

• CalculateLoss: This endpoint calculates the loss.

• CalculateGradient (Optional): This endpoint calculates the gradient of the loss. It is
optional since the gradient cannot be computed efficiently for all OFs.

• CalculateLossAndGradient (Optional): This endpoint calculates the loss and the gradient
of the loss function. Similar to the previous endpoint, it is optional.

Minimizer Plugin Interfaces: The minimizer plugin, responsible for optimizing the loss function
provided by the OF plugin, offers these interfaces:

• Metadata: same as for the OF plugin

• UIRef: same as for the OF plugin

• HRef: same as for the OF plugin

• Minimize: This endpoint minimizes the loss function.
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Coordinator Plugin Interfaces: The coordinator plugin, orchestrating the interaction between
the OF and minimizer plugins, is equipped with the standard QHana interfaces Metadata, UIRef,
and HRef.

A systematic, consistent, and efficient optimization process is ensured by establishing these interfaces
and ensuring that each plugin conforms to them. This structured approach facilitates seamless
interactions and fosters interchangeability, modularity, and extensibility, making it easy to add new
OF and minimizer plugins in the future.

5.3 Plugin Interaction Design

The design of plugin interactions is pivotal to ensuring efficient and seamless coordination between
different system components. Given the extensive possibilities of interactions within the QHana
environment, the design phase is meticulous, considering various scenarios and ensuring adaptability.
The two primary modes of interaction are short-running and long-running, each catering to specific
requirements.

Short-Running Interaction: In short-running interactions, a plugin invokes another plugin’s
endpoint, typically via a ‘GET‘ or a ‘POST‘ request, and immediately receives a response. This
mode of interaction is synchronous, wherein the invoking plugin waits for the response before
proceeding. Instances of such interactions in the optimization context are:

• The coordinator plugin retrieves metadata from the OF and minimizer plugins.

• The coordinator plugin passes data to the OF plugin.

• The minimizer plugin calls the CalculateLoss endpoint of the OF plugin.

Long-Running Interaction: Long-running interactions come into play for processes requiring
extensive computation time or involving multiple steps. In such a case, the calling plugin invokes
the endpoint of the invocable plugin. The invoked endpoint then schedules a long-running task
and returns immediately. The calling plugin can then continue with its execution asynchronously
without waiting for the long-running task to finish. The calling plugin gets an additional endpoint
that is called by the long-running task once it finishes. This endpoint is called a callback endpoint.
Instances of such interactions are:

• The coordinator schedules the microfrontend of the OF plugin. The coordinator plugin
provides a callback endpoint to the OF plugin that is called once the user enters the input and
the input is processed.

• The coordinator schedules the microfrontend of the minimizer plugin. This mechanism works
identically to the previous item.

• The coordinator plugin calls the minimization endpoint of the minimizer plugin. The
minimizer plugin schedules the minimization process and returns immediately. Once
the minimization process finishes, the minimizer plugin calls a callback endpoint of the
coordinator plugin.
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The design of these interactions ensures that plugins can interact seamlessly and efficiently regardless
of the complexity or duration of tasks.

5.4 Introduction of Interaction Endpoints

Building upon the idea of plugins interacting with each other, as detailed in the previous section, a
crucial question arises: How does one plugin discover the available endpoints of another? This thesis
introduces a novel concept called interaction endpoints to QHana to address this very challenge.

While QHana already has a metadata field named entry points, which are endpoints invoked by the
QHana UI to render a plugin’s UI, interaction endpoints extend this idea further. They specifically
define endpoints in the metadata that other plugins can invoke, facilitating seamless integration and
interaction.

The core of interaction endpoints is their type. All interaction endpoints with the same type must
adhere to the same signature and return type. This uniformity ensures that other plugins can invoke
them interchangeably. The OF plugin provides interaction endpoints of types calc_loss, calc_grad,
calc_loss_and_grad, and of_pass_data. The minimizer plugin offers the minimization type. These
interaction endpoints correspond to the endpoints defined in the previous section. The introduction
of interaction endpoints significantly enhances the modularity and interchangeability within QHana,
paving the way for a more dynamic and adaptable plugin ecosystem. More on how these interaction
endpoints are implemented can be found in the implementation chapter 6.

5.5 Final Interaction Flow

The architecture’s final interaction flow is split into three main parts, each ending in a new UI
displayed to the user. The sequence diagrams in figures 5.2, 5.3, and 5.4 visualize the interaction
flow.

The first part begins after selecting the optimization plugin and concludes when the OF plugin’s UI
is set as the next step. Here, the coordinator plugin retrieves the user-selected OF and minimization
plugin metadata, including their interaction endpoints. This flow is represented in Figure 5.2.

The second part starts with retrieving the OF plugin’s microfrontend and ends when the minimizer
plugin UI is set as the next step. After the user inputs hyperparameters and submits, the OF
processes the input and sends a callback to the coordinator plugin, The callback endpoint then
passes the input and target data to the PassData endpoint. This sequence is depicted in Figure 5.3.

The last segment starts with the minimizer plugin’s microfrontend retrieval and ends when the
optimization process concludes. After users input the minimization hyperparameters, the minimizer
processes the data and sends a callback to the coordinator. The coordinator then triggers the
minimization endpoint, initiating a long-running minimization task that continuously calls the
OF calculation endpoint. Once this task is completed, the minimizer makes a final call to the
coordinator with the minimization results. Figure 5.4 shows this flow.
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Figure 5.2: Final interaction flow of the optimization process (part 1/3).
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Figure 5.3: Final interaction flow of the optimization process (part 2/3).
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Figure 5.4: Final interaction flow of the optimization process (part 3/3).
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6 Implementation

The reader can find the resulting code that realized two different approaches to a plugin-based
optimization framework in QHana ’s GitHub repository1. As examples, the code implements two
types of minimizer plugins, the scipy-minimizer and scipy-minimizer-grad plugins, and three types
of OF plugins, the ridge-loss, hinge-loss, and neural-network plugins. More on their implementation
can be found in the following sections. This chapter does not aim to provide a comprehensive
overview of the code but to highlight the critical implementation details and differences between
the two approaches.

6.1 Directory Structure and Plugin Loading

QHana maintains two primary directories for plugin management: the plugins and the stable
plugins directories. The former contains plugins undergoing development, while the latter contains
deployment-ready plugins. Within these directories, individual plugins are neatly organized into
dedicated subfolders. Upon initiation, QHana scans and loads plugins from these designated
subfolders.

The focus of this thesis, the optimization plugin, resides in the plugins/optimization directory.
Further divisions are made to promote clarity and a structured layout.

• plugins/optimization/coordinator – For the coordinator plugin.

• plugins/optimization/objective_functions – Where each OF plugin occupies its respective
subfolder.

• plugins/optimization/minimizer – Where each minimizer plugin occupies its respective
subfolder.

Given that QHana’s native architecture does not support the direct loading of plugins from nested
subdirectories, a recursive plugin loader is developed for this purpose. This loader traverses through
the plugins directory and its subdirectories. The presence of an __init__.py file within a folder
confirms the plugin’s legitimacy. To exclude a plugin from the loading process, one places a .ignore
file in its respective folder. The maximum recursion depth is limited to four to maintain system
performance and a clear, structured layout. This threshold sufficiently accommodates the current
plugin structure but can be adjusted upwards if future needs arise.

1https://github.com/UST-QuAntiL/qhana-plugin-runner
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6 Implementation

The interaction_utils directory is dedicated to housing utility functions for generalized plugin
interactions. Additionally, there is a shared directory, which stores data structures and schemas
utilized across the plugins related to the optimization plugin. A visual representation of the final
folder structure, with all plugins implemented for this thesis, is shown in Figure 6.1.

plugins

optimizer

coordinator

interaction_utils

minimizer

scipy_minimizer

scipy_minimizer_grad

objective_functions

hinge_loss

neural_network

ridge_loss

shared

Figure 6.1: QHana Plugin Folder Structure.

6.2 Maintaining Context Across Plugin Endpoints

The implementation leverages the multi-step plugin concept inherent to QHana to preserve the
continuity of information across different plugin endpoints. In the processing endpoint of a plugin,
a database task is established, identifiable by a unique database ID. This task stores all relevant
context data, such as the hyperparameters designated for the minimization process. Subsequent
endpoints, like the minimization endpoint, can access this stored context data by referencing the
database task. Notably, the endpoints’ URL incorporates the database task’s ID.

6.3 UI Creation for Plugin Interaction

The QHAna platform provides a streamlined mechanism to craft simple UIs with input
fields generated from marshmallow schemas. The primary step is to inherit from QHAna’s
FrontendFormBaseSchema class. For the OF plugin, the input fields are the hyperparameters the loss
function needs. Listing 6.1 shows the ridgeloss plugin’s hyperparameter, which is the regularization
parameter alpha.
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class HyperparamterInputSchema(FrontendFormBaseSchema):

alpha = marshmallow.fields.Float(

required=True,

allow_none=False,

metadata={

"label": "Alpha",

"description": "Alpha variable for Ridge Loss function.",

"input_type": "textarea",

},

)

Listing 6.1: Ridge Loss Plugin Hyperparameter Schema.

The minimizer and OF plugin selection field is a critical input field for the coordinator plugin. The
PluginUrl class, a custom class that extends marshmallow’s fields.Url class generates that field. It
ensures that a user can only select plugins of the correct type by checking a plugin’s metadata for
the correct label. Imperative for this to work is that all minimizer plugins have the minimization and
all OF plugins have the objective-function label. Listing 6.2 shows the minimizer plugin selection
field in the coordinator plugin’s UI.

class OptimizerSetupTaskInputSchema(FrontendFormBaseSchema):

minimizer_plugin_selector = PluginUrl(

required=True,

allow_none=False,

plugin_tags=["minimization"],

metadata={

"label": "Minimizer Plugin Selector",

"description": "URL of minimizer-plugin.",

"input_type": "text",

},

)

# more fields...

Listing 6.2: Coordinator Plugin UI Schema.

As the UIs of the OF and minimizer plugins are designed to be invoked by the coordinator
plugin, the UIHref which serves the UI needs to accept a callback URL. Therefore, all UIHref
endpoints of invocable plugins must include the CallbackUrlSchema marshmallow schema as a
query parameter.

6.4 Invocation of Plugin Microfrontends by the Coordinator Plugin

As highlighted in the previous chapter, the coordinator plugin invokes the microfrontends of both
the OF and minimizer plugins. An adaptation of QHana’s add_step function allows the invocation
of a plugin’s microfrontend by another plugin. The add_step function’s original purpose is to allow
a multi-step plugin to show another of its microfrontends to the user. The function is enhanced and
renamed to invoke_task. With this modification, the coordinator plugin can invoke another plugin’s
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microfrontend by supplying the appropriate UIHref and Href. Furthermore, the coordinator plugin
can provide a callback URL to the invoked plugin. This callback URL is a query parameter within
the Href and UIHref URLs.

6.5 Callback to the Coordinator Plugin

The coordinator plugin requires callbacks from invocable plugins in two distinct scenarios:

1. After the user submits the microfrontend of either the minimization or the OF plugin.

2. Once the asynchronous minimization process concludes.

For the first scenario, the process unfolds as follows:

• The coordinator invokes the microfrontend of the invocable plugin using the invoke_task
function, as elaborated in Section 6.4.

• On user submission of the microfrontend, the callback URL is passed to the processing
endpoint of the invocable plugin via a query parameter.

• Subsequently, the invoked plugin makes a post request to the callback URL.

In contrast, the second scenario operates through the following mechanism:

• The coordinator plugin initiates a post request to the minimizer plugin’s minimization
endpoint, embedding a callback URL within the body.

• The minimizer plugin schedules an asynchronous celery task for loss function minimization. It
registers the callback URL in the database under the designation status_changed_callback_urls.
This label is pivotal for subsequent retrieval of the callback URL.

• The endpoint returns, and the celery task commences the minimization process.

• Following the task’s completion, its status updates through the already implemented
save_task_result function. This action now triggers a signal when it finishes or runs
into an error, courtesy of Python’s blinker library, indicating the status change and passing
the database ID of the task as an argument.

• A dedicated signal handler retrieves the callback and task view URL from the database. The
handler then orchestrates a post request to the callback URL, embedding the task view URL
within the body.

Listing 6.3 presents the implementation of the signal handler, while Listing 6.4 illustrates the
juncture where the signal is emitted.
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TASK_STATUS_CHANGED.connect(task_status_changed_handler)

def task_status_changed_handler(sender, db_id: int):

task_data: ProcessingTask = ProcessingTask.get_by_id(id_=db_id)

callback_urls = task_data.data.get("status_changed_callback_urls", [])

task_url = task_data.data.get("task_view", None)

for callback_url in callback_urls:

requests.post(callback_url, json={"url": task_url, "status": task_data.status})

Listing 6.3: Signal Handler for Callbacks.

TASK_SIGNALS = blinker.Namespace()

TASK_STATUS_CHANGED = TASK_SIGNALS.signal("task-status-changed")

@CELERY.task(name=f"{_name}.save-result", bind=True, ignore_result=True)

def save_task_result(self, task_log: str, db_id: int):

# ...

task_data: ProcessingTask = ProcessingTask.get_by_id(id_=db_id)

# ...

task_data.task_status = "SUCCESS"

# ...

TASK_STATUS_CHANGED.send(self, db_id=db_id)

@CELERY.task(name=f"{_name}.save-error", bind=True, ignore_result=True)

def save_task_error(self, failing_task_id: str, db_id: int):

# ...

task_data: ProcessingTask = ProcessingTask.get_by_id(id_=db_id)

# ...

task_data.task_status = "FAILURE"

# ...

TASK_STATUS_CHANGED.send(self, db_id=db_id)

# ...

Listing 6.4: Signal Emitter for Callbacks.

6.6 Implementation of Interaction Endpoints

The essence of the plugin-based optimization framework lies in its interaction endpoints. These
endpoints standardize the interchangeability of inputs and outputs. Marshmallow schemas are the
backbone of the implementation to manage this standardized data exchange.
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Interaction Endpoint Schemas: The repository’s shared folder contains the defined schemas.
Each interaction endpoint type has an associated input and output schema. If a plugin wishes to
invoke another plugin’s interaction endpoint, it can populate the input schema and parse the response
using the output schema. In the implementation, the OF plugin defines schemas for the following
interaction endpoints:

• pass_data: Uses ObjectiveFunctionPassDataSchema for input and ObjectiveFunctionPass-
DataResponseSchema for output.

• calc_loss: Uses CalcLossOrGradInputSchema for input and LossResponseSchema for output.

For the minimizers’ minimization endpoint, the input schema is MinimizerInputSchema. The output,
meanwhile, is a simple 200 status code, signaling the initiation of the minimization process. Another
implementation challenge revolves around ensuring that plugins can discover the endpoints of other
plugins, which is solved in section 6.6, but first section 6.6 introduces a custom marshmallow field
for input and target data.

Custom Marshmallow Field for Data: To streamline the input and target data exchange between
plugins, a custom marshmallow field, NumpyArray, is introduced (see 6.5). Specifically crafted
to handle NumPy arrays, this versatile field can accommodate arrays of any dimensionality with
JSON-serializable data types. It aids in data transfer between endpoints and ensures efficient data
storage in the database.

class NumpyArray(marshmallow.fields.Field):

def _serialize(self, value, attr, obj, **kwargs):

if value is None:

return None

return {"data": value.tolist(), "dtype": str(value.dtype), "shape": value.shape}

def _deserialize(self, value, attr, data, **kwargs):

return numpy.array(value["data"], dtype=value["dtype"]).reshape(value["shape"])

Listing 6.5: Custom Marshmallow Field for NumPy Arrays.

Metadata Endpoint and Interaction Endpoint Discovery: The metadata of plugins houses
the definitions for interaction endpoints. Traditionally, the EntryPoint field in the metadata guides
the QHana UI to a plugin’s microfrontend. However, this thesis expands the EntryPoint field to
encompass interaction endpoints. The interactionEndpoints field is essentially a list, potentially
containing multiple interaction endpoints. Each list entry is a dictionary containing a type and an
href field. The type field, a string, denotes the endpoint type. It is made user-friendly by providing
the InteractionEndpointType enum in the shared folder, which lists all possible endpoint types for
the optimization process. The href field houses the endpoint’s URL. Listing 6.6 illustrates this
using the ridge-loss plugin’s metadata.
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interaction_endpoints = (

[

InteractionEndpoint(

# define the type of interaction endpoint

type=InteractionEndpointType.of_pass_data.value,

href=url_for(

f"{RIDGELOSS_BLP.name}.{PassDataEndpoint.__name__}",

_external=True,

),

),

InteractionEndpoint(

type=InteractionEndpointType.calc_loss.value,

href=url_for(

f"{RIDGELOSS_BLP.name}.{CalcCallbackEndpoint.__name__}",

_external=True,

),

),

],

)

Listing 6.6: Metadata of the Ridge Loss Plugin.

For multi-step plugins, the interaction endpoint’s definition in metadata slightly deviates. As
discussed in 6.2, multi-step plugins incorporate a runtime-specific database ID into the URL. The
href field functions as a format string that allows the substitution of a placeholder with the actual
database ID. Listing 6.7 offers a glimpse into this, showcasing the ridge-loss plugin implemented as
a multi-step entity. The invoking plugin replaces the placeholder with the actual database ID when
known. This distinction is foundational to the differences between the two approaches, explored
further in the subsequent section.

interaction_endpoints = (

[

InteractionEndpoint(

# define the type of interaction endpoint

type=InteractionEndpointType.of_pass_data.value,

# define the endpoint URL

# use the url_for_ie function to generate the URL with a task_id placeholder

href=url_for_ie(f"{RIDGELOSS_BLP.name}.{PassDataEndpoint.__name__}"),

),

InteractionEndpoint(

type=InteractionEndpointType.calc_loss.value,

href=url_for_ie(f"{RIDGELOSS_BLP.name}.{CalcLossEndpoint.__name__}"),

),

],

)

Listing 6.7: Metadata of the Ridge Loss Plugin as a Multi-Step Plugin.
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6.7 Exemplary Minimizers and Objective Functions

The implementation encompasses two distinct minimizer plugins and three OF plugins to illustrate
the capabilities of the plugin-based optimization framework. Specifically, the minimizer plugins
scipy-minimizer and scipy-minimizer-grad and the OF plugins ridge-loss, hinge-loss, and neural-
network.

Minimizer Plugins: At the core, both plugins use scipy.optimize.minimize as their minimization
algorithm. The scipy-minimizer plugin leverages this method to minimize the loss function without
needing a gradient. Its sole input hyperparameter is the minimization method, restricted to methods
that operate without a gradient.

On the other hand, the scipy-minimizer-grad plugin employs the same method but incorporates
the gradient for loss minimization. It accepts input hyperparameters that exclusively pertain to
methods necessitating the gradient. Regardless of their approach, both plugins yield the weights
that optimize the loss function’s minimization.

Objective Function Plugins: The ridge-loss plugin encapsulates the ridge loss function, as
depicted in 6.8. It operates with the regularization parameter alpha as its input hyperparameter. In
a similar vein, the hinge-loss plugin embodies the hinge loss function, showcased in 6.9, and uses
the regularization parameter C as its input.

The neural-network plugin employs a neural network featuring a single hidden layer. Its hyperpa-
rameters include the count of neurons present in this hidden layer. Notably, this plugin facilitates
the gradient calculation for the loss function, making it compatible with the scipy-minimizer-grad
plugin. The user is encouraged to refer to the code repository for a more in-depth understanding of
how a more sophisticated method is implemented for loss calculation.

def ridge_loss(X: numpy.ndarray, w: numpy.ndarray, y: numpy.ndarray, alpha: float) -> float:

# Calculate the predicted values using the weight vector

y_pred = X.dot(w)

# Compute the mean squared error between actual and predicted values

mse = mean((y - y_pred) ** 2)

# Calculate the ridge penalty using the weight vector

ridge_penalty = alpha * sum(w**2)

# Combine the mean squared error and ridge penalty to get the total ridge loss

total_loss = mse + ridge_penalty

return total_loss

Listing 6.8: Ridge Loss Calculation

def hinge_loss(X: numpy.ndarray, w: numpy.ndarray, y: numpy.ndarray, C: float) -> float:

# Get the number of samples from the input matrix

n_samples, _ = X.shape
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# Initialize the loss to zero

loss = 0.0

# Iterate over each sample in the dataset

for i in range(n_samples):

# Calculate the score for the current sample using the weight vector

score = np.dot(w, X[i])

# Compute the hinge loss for the current sample and accumulate

loss += max(0, 1 - y[i] * score)

# Apply the regularization term to the accumulated loss

loss = C * loss / n_samples

# Add the l2 regularization term to the loss

loss += 0.5 * np.dot(w, w)

return loss

Listing 6.9: Hinge Loss Calculation

6.8 Comparative Analysis of Plugin-Based Implementation
Strategies

The implementation resulted in two distinct methods for constructing a plugin-based optimization
framework. This section outlines the intrinsic differences that characterize each strategy.

6.8.1 Decoupled Plugin Approach

The foundational idea behind the first approach is promoting maximal decoupling between plugins,
which particularly applies to the OF plugin. This idea entails minimizing data transfer between
plugins and emphasizing data retrieval directly from the database whenever feasible.

Specifically, the OF plugin archives its hyperparameters in the database. The coordinator invokes
the pass_data endpoint, which stores input and target data in the database. Thus, for the pass_data
endpoint, which determines the number of input weights, the coordinator plugin only passes the
input and target data since the OF plugin fetches the hyperparameters from the database. The loss
calculation endpoints calc_loss, calc_grad, and calc_loss_and_grad solely need the weights as
input, leveraging already stored hyperparameters and data. Listing 6.10 illustrates an exemplary
schema for the calc_loss endpoint.

Consequently, for the minimizer plugin, there is no occasion where knowledge of the OF ’s
hyperparameters or its data is essential, leading to a lean input schema for the minimization endpoint,
as depicted in Listing 6.11. However, it mandates that the task’s database ID be communicated to the
coordinator plugin through the microfrontend callback process, essential for managing interaction
endpoint URLs, as discussed in 6.6.
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class CalcLossOrGradInputSchema(MaBaseSchema):

x0: NumpyArray = NumpyArray(required=True, allow_none=False)

Listing 6.10: CalcLossOrGradInputSchema Schema for multistep-plugin approach.

class MinimizerInputSchema(MaBaseSchema):

x0 = NumpyArray(required=True, allow_none=False)

calc_loss_endpoint_url = marshmallow.fields.Url(required=True, allow_none=False)

calc_gradient_endpoint_url = marshmallow.fields.Url(required=False, allow_none=True)

calc_loss_and_gradient_endpoint_url = marshmallow.fields.Url(required=False, allow_none=

True)

callback_url = marshmallow.fields.Url(required=False, allow_none=True)

Listing 6.11: MinimizerInputSchema Schema for multistep-plugin approach.

6.8.2 Integrated Plugin Approach

The second strategy embodies a tighter integration. This approach does not implement the OF plugin
as a multi-step plugin. Such an implementation implies that no shared context exists among the
plugin’s endpoints, necessitating the passing of all required data during each endpoint invocation.

This design requires the microfrontend callback process to relay the hyperparameters to the
coordinator plugin. The coordinator then transmits the hyperparameters and data to the OF plugin’s
pass_data endpoint. In this setup, the minimizer plugin must also store the hyperparameters and
data since it must relay this to the OF plugin’s loss calculation endpoint. Listing 6.12 exhibits
the input schema for the calc_loss endpoint, while Listing 6.13 demonstrates the minimization
endpoint’s schema. Passing the hyperparameters of a OF plugin ensures that neither the coordinator
nor the minimizer plugin requires in-depth knowledge of the hyperparameters irrespective of the
OF ’s internal mechanics. As a trade-off, there is no need to relay a task’s database ID to the
coordinator.

class CalcLossOrGradInputSchema(MaBaseSchema):

x: NumpyArray = NumpyArray(required=True, allow_none=False)

y: NumpyArray = NumpyArray(required=True, allow_none=False)

x0: NumpyArray = NumpyArray(required=True, allow_none=False)

hyperparameters: dict = marshmallow.fields.Dict(required=True, allow_none=False)

Listing 6.12: CalcLossOrGradInputSchema Schema for non-multistep-plugin approach.

class MinimizerInputSchema(MaBaseSchema):

x0 = NumpyArray(required=True, allow_none=False)

x = NumpyArray(required=True, allow_none=False)

y = NumpyArray(required=True, allow_none=False)

hyperparameters = marshmallow.fields.Dict(required=True, allow_none=False)

calc_loss_endpoint_url = marshmallow.fields.Url(required=True, allow_none=False)

calc_gradient_endpoint_url = marshmallow.fields.Url(required=False, allow_none=True)

calc_loss_and_gradient_endpoint_url = marshmallow.fields.Url(required=False, allow_none=

True)

callback_url = marshmallow.fields.Url(required=False, allow_none=True)

Listing 6.13: MinimizerInputSchema Schema for non-multistep-plugin approach.
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This chapter explains the outcomes achieved with the current implementation, emphasizing system
performance, plugin interchangeability, and developer usability.

Performance benchmarks are conducted on a MacBook Pro. The system’s detailed specifications
include:

• Model: MacBookPro18,1

• CPU: Apple M1 Pro

• RAM: 32 GB

• GPU: Apple M1 Pro (16 Cores, Metal 3 support)

• Operating System: macOS Version 13.4.1

7.1 Benchmark Results

Given its recurrent invocation, the loss function call is the most resource-intensive phase of the
minimization process. The benchmarks employ the ridge-loss plugin as the OF, configuring alpha
at 0.5. The scipy-minimizer plugin acts as the minimizer, with the method set to L-BFGS-B.

Table 7.1 displays the frequency of loss evaluations during the minimization process for varying
datasets, underscoring the significance of efficient loss function computation.

Number of Data Points Number of Evaluations

200 264
400 341
600 370
800 430
1000 480
1200 520
1400 570

Table 7.1: Number of times the loss function gets evaluated during minimization across different
dataset sizes.

Figure 7.1 shows the time it takes for a single call of the loss function for different dataset sizes for
the decoupled plugin-based implementation approach as described in 6.8.1. The Calculation Time
captures only the actual time it takes to calculate ridge loss. The Database Time measures the time
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Figure 7.1: Time it takes for a single call to the calc_loss endpoint of the ridge-loss plugin for
different dataset sizes for the decoupled plugin-based implementation approach.

it takes to retrieve the data from the database. The Network Time measures the time it takes to send
the data to the OF plugin and receive the result. The total time it takes from the point at which
the minimizer plugin calls the calculation endpoint until it receives the result is the sum of the
Calculation Time, Database Time, and Network Time. The Database Time is the most significant
contributor to the total time as the data is retrieved from the database for every call. With increasing
dataset size, the time it takes to retrieve the data also increases. The Network Time is comparably
shorter but still significant. It increases only slightly with an increasing dataset size since the data
sent over the network does not change significantly.

Figure 7.2 captures the same measurements as 7.1 but for the integrated plugin-based implementation
approach as described in 6.8.2. The diagram does not show the Database Time since this version
does not make calls to the database. The Network Time significantly increases for this approach
as the vast amounts of data previously retrieved from the database are now sent over the network.
Additionally, the Network Time increases with increasing dataset size since the amount of data sent
over the network also increases.

Figure 7.3 compares the total times it takes to get the loss value across different implementations,
including the Jupyter Notebook implementation. The Jupyter Notebook implementation is the
fastest as it does not have to deal with network or database latency.

Figure 7.4 measures the same metrics as Figure 7.3, but this time it ignores the Database Time and
the Network Time only measuring the actual Calculation Time. The result shows that a plugin-based
implementation approach does not significantly impact the time it takes to calculate the loss
function.
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Figure 7.2: Time it takes for a single call to the calc_loss endpoint of the ridge-loss plugin for
different dataset sizes for the integrated plugin-based implementation approach.

Figure 7.3: Comparison of the total time it takes to get the loss value across different implementa-
tions, including the Jupyter Notebook implementation.
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Figure 7.4: Comparison of the time the actual loss calculation takes across different implementations,
including the Jupyter Notebook implementation.

One can see that the Jupyter Notebook implementation is the fastest across the board as it does
not have to deal with network or database latency. Especially for the decoupled plugin-based
implementation, the database latency is a bottleneck that significantly decreases the performance,
but that can be mitigated by caching the data, as described in the next section.

7.2 Caching of Data

A caching mechanism is implemented for the decoupled plugin-based approach to avoid database
latency. Since the input and target data and the hyperparameters do not change during the
minimization process, they can be cached. That means the data is retrieved from the database
during the first call of the calc_loss endpoint and cached for subsequent calls. The implementation
uses the flask-caching library and keeps the cached data in memory. Figure 7.5 shows the average
time for a single call of the calc_loss endpoint for different dataset sizes when using caching.

Figure 7.6 compares the total times it takes to get the loss across different implementations, including
a cached version of the decoupled plugin-based implementation approach.

Finally, Figure 7.7 shows the total time it takes to complete the minimization process for the different
implementations. The measurements for the plugin-based implementations do not include the time
it takes a user to input data but instead start when the coordinator plugin calls the minimization
endpoint of the minimizer plugin.
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Figure 7.5: Time it takes for a single call to the calc_loss endpoint of the ridge-loss plugin for
different dataset sizes with caching.

Figure 7.6: Comparison of the total time it takes to get the loss value across different implementa-
tions, including a cached version of the first plugin-based implementation approach.
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Figure 7.7: Comparison of the total time it takes to complete the minimization process across
different implementations.

7.3 Interchangeability and Standardization

This segment evaluates the plugins’ adherence to predefined standards and their interchangeability.
The governing standards, as enumerated in Chapters 5 and 6, encompass:

• All invocable plugins should list interaction endpoints in their metadata.

• Such plugins must also offer interaction endpoints compliant with respective argument and
response schemas.

• Both invoking and invoked plugins should uphold the callback mechanisms delineated in
Section 6.5.

• Each plugin should retain its intended functionality as specified in Section 5.1.

Successful compliance ensures plugin interchangeability. All example plugins in the implementation
segment conform to these standards, ensuring mutual compatibility. Users can combine any
minimizer plugin with any OF without changing any code. It is important to note that to leverage the
gradient calculation provided by the neural-network plugin, one has to use the scipy-minimizer-grad
plugin.

The combination of all minimizer plugins with all OF plugins is extensively tested manually, and
the results have been documented in Table 7.2 to ensure that the plugins are fully interchangeable.
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ridge-loss hinge-loss neural-network
scipy-minimizer ✓ ✓ ✓

scipy-minimizer-grad ✓ ✓ ✓

Table 7.2: Compatibility between example implementation of plugins.

7.4 Developer Usability Assessment

This section assesses the system’s developer-friendliness. The steps required to implement new
minimizer and OF plugins are documented to underpin the evaluation. For every new plugin, the
first step is to copy an existing plugin into a new directory as a template.

Minimizer Plugin Development: For crafting a novel minimizer plugin:

1. Replicate the scipy-minimizer plugin into a distinct directory.

2. Update the plugin’s name in the __init__.py file.

3. Integrate requisite hyperparameters into the MinimizerSetupTaskInputSchema schema.

4. Implement the minimization algorithm within the minimize_task function.

Objective Function Plugin Development: For devising a new OF plugin:

1. Duplicate the ridge-loss plugin into a fresh directory.

2. Modify the plugin’s name in the __init__.py file.

3. Incorporate necessary hyperparameters into the HyperparamterInputSchema schema.

4. Implement the input weight calculation within the of_pass_data endpoint.

5. Construct the loss function’s computation in the calc_loss endpoint.

The outlined steps demonstrate the approach to developing new plugins within the system. By
starting with existing templates, developers are spared the repetitive tasks of setting up basic
functionalities and can focus on the unique aspects of their specific plugins.
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This chapter delves into the critical discussions surrounding architectural choices, the model’s
practical execution, and the consequential outcomes. It starts by evaluating the plugin-based
optimization framework’s architectural decisions and how it is implemented. Subsequently, it
analyzes the performance of the plugin-based optimization framework and compares it to the Jupyter
Notebook implementation. Finally, this concept addresses how the results influence the developer
experience when implementing new minimization and OF plugins.

8.1 Architecture and Implementation

Decomposing the minimization process into separate minimizer and OF plugins aligns perfectly with
the plugin-based optimization framework’s ethos. This delineation ensures clarity and specificity
and establishes a transparent interface between the two plugins. The success of libraries like
SciPy and how it handles the minimization process [VGO+20] reinforces the effectiveness of
this decomposition. Entrusting the coordinator plugin with the responsibility of overseeing the
optimization eliminates the need for the minimizer and OF plugins to manage interactions, enabling
developers to concentrate solely on enhancing plugin functionalities.

Interaction endpoints serve as the core of the plugin-based optimization framework, offering a
unified mode of interaction across plugins. This standardization supports developers by delineating
available endpoints and their operational functionalities. By presenting these endpoints even before
passing through the UI process, developers can now bypass the UI and directly trigger the requisite
endpoint in a standardized and, thus, reliable way. Such a setup is invaluable for those seeking
automation. By precisely defining input-output expectations, this approach also ensures seamless
plugin interchangeability.

The callback mechanism is an essential facet of the plugin-based optimization framework. Its design
ensures a distinct separation of responsibilities. The coordinator plugin, devoid of internal insights
into the minimizer or OF plugin, solely relies on available endpoints. This mechanism prevents the
need for database or API polling, offering updates upon minimization completion. The distinctive
implementation of the callback mechanism for the minimization endpoint further underlines the
modularity, as it fully decouples the procedure from the minimizer plugin. The event-driven model
[HW11] drives adaptability for all kinds of asynchronous processes in QHana

The rationale behind the pass_data endpoint merits discussion. While it introduces an additional
layer, the trade-offs justify its existence. Directly passing vast datasets as query parameters to the
UI endpoint is not feasible. Transferring data as files to the UI endpoint burdens the OF plugin with
the data extraction process, which should not be its responsibility. Receiving data as a NumPy array
allows the OF plugin to focus on its primary role: loss value computation.
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The two plugin-based implementation strategies show the trade-off between the complexity of
handling interaction endpoints and the amount of data that has to be passed between plugins. The
decoupled approach, where the OF plugin is implemented as a multi-step plugin, is more complex
since the coordinator plugin has to format the interaction endpoint URL to reflect the database
ID. Nevertheless, it also has the advantage that the minimizer plugin does not have to pass the
hyperparameters and data to the OF plugin since the OF plugin retrieves them from the database. In
general, that means by passing along a single parameter, the database ID, any volume of data can be
loaded and used for context. The integrated approach, where the OF plugin is not implemented as a
multi-step plugin, is less complex since the coordinator plugin does not have to handle formatting
the interaction endpoint URL. However, it also has the disadvantage that the minimizer plugin
has to pass the hyperparameters and data to the OF plugin since the OF plugin cannot retrieve
them from the database. Both approaches have advantages and disadvantages and should show that
the plugin-based optimization framework is flexible enough to support both approaches. As the
benchmarking results show, by caching the data, the first approach is arguably the better one of the
two.

Standardization is paramount in the plugin-based optimization framework. The metadata, interaction
endpoints, callback protocols, and plugin functionalities are meticulously defined to foster uniformity.
This organized structure creates seamless plugin interchangeability. The modular nature of this
framework not only simplifies the optimization process but also encourages a modular development
course, paving the path for universal plugin interactions within QHana.

8.2 Performance Insights

Performance metrics underscore the plugin-based optimization framework’s viability when compared
against the Jupyter Notebook model. Absent caching, both plugin methods suffer from network
and database latencies. However, Figure 7.4 stands out, highlighting that the intrinsic time for loss
function computation remains unaffected across methods.

Caching within the first plugin-based model increases performance significantly, as evidenced by
Figure 7.5. However, network latencies persist and cannot be minimized further as data sent and
received is minimal. Additionally, some database overhead is still present, as the data has to be
retrieved from the database once and stored in the cache. As dataset sizes increase, these latencies
diminish in relative significance. Additionally, the primary use case of this optimization framework
is VQA, where the actual loss function calculation takes significantly longer than the network and
database latencies. When fortified with caching, the decoupled plugin-based approach emerges as a
compelling alternative to the Jupyter Notebook implementation.

8.3 Developer Experience

The plugin-based optimization framework manifests developer-centricity. Shielded from the
difficulties of plugin interactions, developers can emphasize plugin functionalities. The regimented
structure of the interaction endpoints liberates developers from concerns about other plugins. This
contrasts with the Jupyter Notebook implementation, where developers must know the entire
optimization process when implementing a new minimizer or OF. As the results in 7.4 show,
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implementing new minimizer and OF plugins is straightforward and can be done in a few steps.
What simplifies the process even more is that all plugins of the same type have the same structure,
meaning that the first step is only to copy an existing plugin. By copying an existing plugin,
everything concerning the plugin’s metadata, interaction endpoints, and callback protocols is
already implemented. The standardized architecture means developers can focus on hyperparameter
customization and core calculations during implementation. With several existing example plugins,
developers can leverage these to understand how the core implementations are realized. Detailed
documentation of the plugin-based optimization framework that explains the architecture and
implementation further enhances the understanding.
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Beisel et al. [BBG+23] detail the implementation of VQAs within a workflow-based system. They
delve into the intricacies of incorporating the quantum aspect of the algorithm into such a system
while emphasizing the interaction between its various components less. In their approach, the
conventional computing segment of the algorithm is split into two services: the Objective Evaluation
Service and the Optimization Service. Similar to this thesis, the Optimization Service utilizes SciPy
for optimization tasks.

In a subsequent paper [BBB+23], Beisel et al. elaborate on the architecture of the workflow-based
system, shedding light on the interplay between its components. They explain that the system’s
components are realized as microservices, each offering a RESTful API for interaction. Central
to this architecture is a Gateway, which handles the internal communication with the various
microservices and presents a unified RESTful interface to the outside.

Mayer et al. [MMS03] advocate simplifying the intricacies of expansive software systems through
a plugin-based architecture. They argue that the system gains flexibility and becomes more
maintainable by minimizing the core system and encapsulating most functionalities as plugins.
They introduce the concept of Plugin-in Component Architecture (PICA), where each plugin must
provide a list of interfaces the core can call and a description of how to use them.

Wolfinger et al. [WDPM06] present a plugin architecture tailored for the .NET platform, drawing
parallels with the Eclipse platform. The authors emphasize the structured interaction between
plugins through the concepts of slots and extensions. A plugin host defines slots that indicate how
to extend the plugin, while plugin contributors provide extensions to fill these slots. This structured
interaction ensures seamless integration of plugins. The architecture also leverages .NET features
to embed relevant plugin information directly within the application’s source code, arguing for
improved readability and maintainability.

Birsan et al. [Bir05] delve into the plugin architectures of the Eclipse platform. Birsan underscores
the importance of well-defined extension points, allowing plugins to interact seamlessly. The work
highlights the intricate interplay between plugins, emphasizing the need for structured interfaces for
effective interaction.

Thullier et al. [THG21] introduce a machine learning workbench, emphasizing a modular approach
to machine learning processes for smart homes. The workbench divides the machine learning
workflow into distinct services: the Windowing Module, the Feature Extraction Module, and the
Machine Learning Module. This modular design ensures efficient parallel processing and scalability.
The paper does not aim to split the machine learning service into different components.

A similar optimization loop, wherein a OF is evaluated iteratively to minimize the loss value,
is adopted by popular machine learning frameworks like TensorFlow [ABC+16] and PyTorch
[PGM+19]. These frameworks process input data, compute the discrepancy or loss between
predictions and actual values, and refine the model’s parameters based on this computed loss. The

63
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iterative process continues until a specified stopping criterion, such as a predetermined number
of epochs or a desired accuracy threshold, is met. While there are architectural and functional
distinctions between TensorFlow and PyTorch, at a high level, their optimization loops embody this
core principle. However, these frameworks do not offer a distributed optimization loop, a crucial
feature of the plugin-based optimization framework.

In a comprehensive survey by Verbreaken et al. [VWK+20], the authors delve deep into the
paradigms and challenges of Distributed Machine Learning. The authors categorize Distributed
Machine Learning techniques based on their key characteristics, such as data distribution, model
updates, and communication strategies. The study sheds light on various challenges, including
communication overhead. They further highlight the significance of an efficient communication
strategy, emphasizing the need for a robust communication protocol. As discussed in the result
section of this work, the decoupled plugin-based implementation already minimizes communication
overhead by caching data and reducing the amount of data sent over the network.
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10 Conclusion and Outlook

This thesis embarked on the challenging journey of conceptualizing and realizing the plugin-based
optimization framework within the QHana environment. What emerged is an innovative approach
to optimization and a pioneering framework that establishes protocols for plugin interactions within
QHana. This framework’s versatility hints at its potential applicability beyond just optimization
tasks.

The example implementations of both the minimizer and the OF plugins are a testament to
the system’s functionality and adaptability. Performance benchmarks highlight the framework’s
robustness and efficiency, especially with caching, trying to minimize network and database
latencies from a distributed system. A particularly commendable aspect is the strict adherence to
standardization, which ensures modularity and paves the way for seamless plugin interchangeability.
This design philosophy also creates a developer-friendly system, simplifying plugin development
while ensuring versatility.

The current ecosystem provides a substantial opportunity to diversify by introducing a broader
array of minimizer and OF plugins. Expanding this repertoire will not only enrich the optimization
solutions available but also enhance the robustness and adaptability of the system.

As the thesis lays out the complete foundation to implement VQAs, a new OF plugin that handles
the quantum part would be a valuable and easily implementable addition. The energy state of a
quantum system is then perceived as the loss value, while an existing minimizer plugin is used to
minimize this loss.

Building upon the inherent interchangeability and modularity of the current design, a novel concept
draws attention: viewing the OF or the minimizer as hyperparameters themselves. In a traditional
setting, hyperparameters are parameters set before the learning process begins. However, given the
modularity, one could envision running parallel optimization processes with different OF plugins
but the same minimizer. This would be similar to a hyperparameter search, where each OF is a
candidate and aims to find the best fitting OF for a given dataset or problem. Similarly, different
minimizers can be benchmarked against a fixed OF.

In conclusion, with its modularity, standardization, and user-friendliness, the plugin-based opti-
mization framework offers many opportunities. From diversifying its offerings to delving deep into
quantum algorithms, the journey ahead is teeming with potential.
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Appendix

import numpy as np

import pandas as pd

from sklearn.datasets import make_regression

# Set random seed for reproducibility

np.random.seed(42)

# Example dataset size

size = 1000

# Number of features determined by size

n_features = int(np.sqrt(size) * 1.5)

# Create data

X, y = make_regression(n_samples=size, n_features=n_features, noise=10)

# Generate IDs for each row

ids = ["entity" + str(i) for i in range(1, len(X) + 1)]

# Create a dictionary to hold data

data_dict = {"ID": ids}

for i in range(n_features):

data_dict[f"x{i+1}"] = X[:, i]

data_dict["y"] = y

# Create a DataFrame with the data

data = pd.DataFrame(data_dict)

# Save the DataFrame to a CSV file

data.to_csv("data.csv", index=False)

Listing 10.1: Source code for generating a sample test dataset for benchmarking with 1000 samples,
47 features, 10 noise and 1 target.

.
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