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Figure 1: SUPREYES is a novel method for up-sampling gaze data recorded using a low(er)-resolution eye tracker, e.g. at 50 Hz
(left), to a multiple times higher spatio-temporal resolution, e.g. 100 Hz (right). Up-sampling is performed in a self-supervised
fashion, i.e. without the need for manual annotation, on the raw horizontal (blue) and vertical (red) gaze angles while preserving
key characteristics of the signal for downstream tasks. The up-sampled gaze data (Up) and the corresponding ground truth
(GT) are illustrated in the right figure.

ABSTRACT
We introduce SUPREYES – a novel self-supervised method to in-
crease the spatio-temporal resolution of gaze data recorded using
low(er)-resolution eye trackers. Despite continuing advances in
eye tracking technology, the vast majority of current eye track-
ers – particularly mobile ones and those integrated into mobile
devices – suffer from low-resolution gaze data, thus fundamen-
tally limiting their practical usefulness. SUPREYES learns a con-
tinuous implicit neural representation from low-resolution gaze
data to up-sample the gaze data to arbitrary resolutions. We com-
pare our method with commonly used interpolation methods on
arbitrary scale super-resolution and demonstrate that SUPREYES
outperforms these baselines by a significant margin. We also test on
the sample downstream task of gaze-based user identification and
show that our method improves the performance of original low-
resolution gaze data and outperforms other baselines. These results
are promising as they open up a new direction for increasing eye
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tracking fidelity as well as enabling new gaze-based applications
without the need for new eye tracking equipment.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
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KEYWORDS
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1 INTRODUCTION
Arguably the most important technical property that mobile and
stationary eye trackers have been continuously improved on, par-
ticularly in recent years, is their spatio-temporal resolution [2, 68].
Spatial resolution refers to the tracker’s gaze estimation accuracy,
typically measured in pixels of an on-screen 2D gaze location or in
degrees of visual angle of a 3D unit gaze vector. Temporal resolution
represents the number of gaze samples an eye tracker can record
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per second (sampling rate). While early stationary eye trackers
(except for those for highly specialised applications, e.g. ophthal-
mologic examinations [7]) only offered sampling rates of a few
hundred Hertz, latest systems achieve sampling rates of multiple
Kilohertz [2, 68]. While advances have also been achieved for mo-
bile trackers they still lack behind in terms of sampling rate [42]. In
parallel, eye tracking accuracy has also continuously improved and
is by now well below one degree of visual angle for both stationary
and mobile eye trackers [77].

Recent studies in eye tracking research demonstrate that high-
resolution gaze data is the key to the success of numerous applica-
tions, such as fast eye movement detection [12, 26, 49], gaze-based
interaction [2, 18], or gaze-based user identification [33]. These
findings suggest the need to upgrade existing low-resolution eye
trackers to benefit from such applications. However, hardware up-
grades are not only expensive given the high purchase cost of these
systems but also time-consuming and cumbersome: First of all,
the prices of eye trackers typically scale with hardware capabil-
ities and may range from hundreds dollars for a low-resolution
device to hundreds of thousands of dollars for a high-resolution
hardware [26, 28]. In addition, research assistants familiar and well-
trained on an existing system have to learn to operate the new one
and their experience or best practices potentially gathered over
years, such as most suitable parameter settings, typically do not
transfer to the new system. Furthermore, specifically for mobile
eye trackers, the need for wearability and unobtrusive integration
pose significant challenges to the use of high-resolution cameras
and high-performance onboard processing, and thus the achievable
spatio-temporal resolution [67, 70].

In this work, we propose a software solution to increase the
spatio-temporal resolution of low(er)-resolution eye trackers (see
Figure 1). Our method, SUPREYES, is motivated by advances in rep-
resentation learning using neural architectures that dominate most
computational areas in Computer Science, such as in computer vi-
sion or natural language processing [14–16, 31, 32, 71]. Most impor-
tantly, recent work on neural radiance fields [56, 59, 60, 75, 79] and
image representation learning [3, 9, 20, 41, 64] has demonstrated
that implicit neural representation learning is highly effective at
identifying and capturing structure in data and that the resulting
representations can be used to synthesise new data that matches
the statistics and is close to indistinguishable visually from real
data. The core idea of SUPREYES is to leverage the power of implicit
neural representation learning to up-sample gaze data to arbitrary
spatio-temporal resolutions. SUPREYES parameterises human eye
gaze as a continuous function with a multilayer perceptron (MLP)
that maps a time 𝑡 and the local features around the time 𝑡 to the
gaze direction expressed as degrees of visual angle. In contrast to
previous works in the image domain that rely on pre-trained image
feature extractors [9, 34], we design a novel gaze feature extractor
for SUPREYES, as no pre-trained feature extractor exists for gaze
data. Additionally, by adding an extra loss function for the feature
extractor in SUPREYES training, we significantly improve the per-
formance of our method. We compare our method with commonly
used interpolation methods on the task of arbitrary scale gaze data
super-resolution (e.g. up-sampling 50 Hz gaze data to 100 Hz, 200
Hz, 500 Hz, and 1000 Hz) and demonstrated that SUPREYES out-
performs these baselines by a significant margin. We then show

how gaze super-resolution can benefit downstream tasks: Using
gaze-based user identification as an example, we show that the up-
sampled gaze data produced by our method performs significantly
better in terms of identification accuracy than the up-sampled data
from other methods and the original low-resolution data, validating
that our method is not only better than other methods in real ap-
plications but can also generate gaze samples that are in line with
characteristics of gaze behaviour that are specific to an individual.
The specific contributions of our work are three-fold:
(1) We propose SUPREYES – the first method for gaze data super-

resolution that learns a continuous implicit neural representa-
tion from low-resolution gaze data to up-sample the gaze data
to arbitrary resolutions.

(2) Through extensive experiments on arbitrary scale gaze data
super-resolution, we demonstrate that our method is effective
at capturing the internal structure of the gaze data and signifi-
cantly outperforms commonly used interpolation baselines.

(3) We demonstrate that SUPREYES can benefit gaze-based down-
stream tasks. Using gaze-based user identification as an ex-
ample, we show that our method improves the performance
of original low- resolution gaze data and outperforms other
baselines. This implies SUPREYES can generate gaze samples
that align with user-specific characteristics.

2 RELATEDWORK
Our work is related to 1) previous works that demonstrate the
importance of high-resolution gaze data and works that propose
high-resolution eye tracking solutions, 2) computational methods
for super-resolution in time-series signals, and 3) recent advances
in implicit neural representation.

2.1 Importance and Solutions of
High-resolution Eye Tracking

Human eyes can move very quickly in real life, sometimes reaching
up to a peak speed of 700◦/𝑠 [19]. In this context, high-resolution
eye tracking is fundamental to the recording of realistic eye move-
ments and is the key to the success of numerous eye gaze-based
research and applications. More specifically, high-resolution eye
trackers have demonstrated superior performance on detecting
fast eye movements than low-resolution ones [12, 26, 49], and es-
pecially some subtle eye movements like microsaccades can only
be detected by high-resolution eye trackers because they usually
last for an extreme short period of time, e.g. 25 ms [45]. In addi-
tion, in real-time applications like gaze-based interaction [18, 63],
high-resolution eye tracking is the key to reduce the latency of
the systems [2]. Furthermore, for biometric purposes such as user
identification, high-resolution eye gaze data (e.g. 250 Hz) has also
demonstrated significant better performance than low-resolution
data (e.g. 30 Hz) [33].

To obtain high-resolution eye gaze data, commercial eye trackers
like EyeLink 1000 Plus1 used high-speed cameras to track human
eyes, making the system much more expensive and power hungry
than low-resolution ones [2, 26, 28]. Some researchers used dynamic
vision sensors to achieve high-resolution eye tracking by adaptively

1https://www.sr-research.com/eyelink-1000-plus/
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sampling when the eye moves [2, 68]. However, this solution also
puts requirement on special-purpose hardware, making it difficult to
generalise to commonly used eye tracking systems which generally
only use ordinary cameras. In contrast, our method produces high-
resolution eye gaze data directly from low-resolution ones without
using any additional equipment, which means our method can
be easily applied to existing commonly used low-resolution eye
tracking systems to improve their sampling frequency. Existing
low-resolution eye tracking datasets [36–39] can also benefit from
SUPREYES by applying it to improve their resolutions.

2.2 Super-resolution in Time-series Signals
Computational methods for super-resolution in time-series sig-
nals have been investigated by many researchers in the past few
decades. Chen et al. focused on wind-induced pressure time series
signals and proposed to use artificial neural networks to capture
the complex variations of the pressure time series for data inter-
polation [8]. Liu et al. concentrated on turbulent flow data and
proposed two convolutional neural networks (CNNs) to reconstruct
high-resolution signals from low-resolution coarse flow data [51].
Su et al. studied the ocean’s subsurface dynamic parameters and
used a convolutional neural network and a light gradient boost-
ing machine to reconstruct high-resolution dynamic parameters
from low-resolution ones [69]. In addition to above time-series
signals, audio signal has also been extensively studied and many
deep learning-based methods have been proposed to reconstruct
high-resolution audio signals, including convolutional neural net-
works [47, 50, 76], generative adversarial networks [21, 35], or
diffusion-based methods [30, 48]. More recently, a more promising
avenue for representation learning of any continuous signals is
implicit neural representation learning.

2.3 Implicit Neural Representation
Implicit neural representation (INR) is a novel approach that, in
contrast to prior works that discretise the input into, e.g. pixels
or voxels, learns a continuous representation of the input signal.
By leveraging the expressive power of neural networks to model
such functions, INR can handle arbitrary topologies and resolutions
and, as such, is well-suited for a number of applications includ-
ing super-resolution. For example, Local Implicit representation
for Super resolution of Arbitrary scale (LISA) [43] is an approach
that can reconstruct the high-level components of an audio signal
from low-level components by using information from neighbour-
ing chunks. A similar approach are Local Deep Implicit Functions
(LDIF) [27], which take one or more depth images as input to learn
a 3D shape representation from multiple DIF functions with over-
lapping images. Local Implicit Image Function (LIIF) [9] is another
approach that uses local information that, given a 2D coordinate
in the image and 2D local deep features, it can predict the RGB
value for any coordinate at arbitrary resolutions. INR methods have
been proposed for photorealistic view synthesis from images [56]
or videos [10, 17, 78]. Furthermore, INRs have also been used in
the time-series domain. Jeong and Shin [40] used INR for detecting
anomalies in multivariate time-series data. Franceschi et al. [23]
proposed a causal dilated convolutions based encoder to obtain

general-purpose representations for variable length and multivari-
ate time series. Fons et al. [22] analysed implicit neural representa-
tions of time-series data and proposed HyperTime, an INR based
hypernetwork for time-series generation.

While implicit neural representations have shown promising re-
sults on several domains, to the best of our knowledge, we propose
the first approach for eye gaze data super-resolution. Our method
draws inspiration from LIIF [9] and incorporates local gaze infor-
mation to learn a continuous representation of eye tracking data.
Unlike LIIF, which utilises a pretrained global feature extractor, we
develop our own global feature extractor as there is currently no
pretrained model for gaze data. In addition, we add a self-supervised
reconstruction objective to the MLP output that enables the global
gaze feature extractor to represent low-resolution gaze data better.

3 IMPLICIT NEURAL REPRESENTATION
LEARNING OF GAZE DATA

Mobile and stationary eye trackers commonly output continuous
(time-stamped) gaze data in the form of 2D x and y (on-screen
gaze position) or 3D x, y, and z (gaze vector) coordinates. While
on-screen gaze data can directly be associated with the visual stim-
ulus, e.g. buttons of a graphical user interface, they depend on the
physical properties of the recording setup, such as the screen size
and resolution as well as the distance between user and display.
2D gaze data is, as such, not directly comparable across recording
setups. 3D gaze vectors, in contrast, are independent of these fac-
tors and, if needed, they can be mapped to 2D on-screen gaze pixel
coordinates. Given these advantages in terms of generalisability,
SUPREYES uses 3D gaze data in terms of degrees of visual angle
(dva) as input. The degrees of visual angle contain the angle of x
axis and the angle of y axis.

In our method, each input sequence of eye tracking data is rep-
resented as global features F. The key idea of our method is to use
an MLP network to approximate a continuous gaze representation
function for each input gaze data using its global features. The
continuous representation can not only reconstruct the input gaze
data but has the ability to up-sample the input gaze data to arbitrary
resolutions. The approximation takes the form:

ℎ\ : (F, 𝑡) → (𝑥,𝑦) (1)

where \ are the parameters of MLP ℎ, 𝑡 is a time coordinate in the
continuous time domain of the input gaze data, and (𝑥,𝑦) is the
gaze position at the time 𝑡 represented as degrees of visual angle of
x-axis and y-axis.

Assume a sequence of eye gaze data that corresponds to a long
duration, to query the gaze position at time 𝑡 using the global
features may introduce redundant information because only the
information from a certain period of time around the time 𝑡 have
an impact on the gaze position at the time. Therefore, we follow
prior works [9, 43] to extract the local features F𝑙𝑜𝑐𝑎𝑙 from the
global features F. We first find the closest time coordinate to 𝑡 in F,
denoted as 𝑡𝑖 . The local features F𝑙𝑜𝑐𝑎𝑙 are formed by the features
around 𝑡𝑖 . We use F𝑙𝑜𝑐𝑎𝑙 and the relative time coordinate 𝑡 − 𝑡𝑖 for
the query. Therefore, the new objective of the MLP is defined as:

ℎ\ : (F𝑙𝑜𝑐𝑎𝑙 , 𝑡 − 𝑡𝑖 ) → (𝑥,𝑦) (2)
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Figure 2: SUPREYES learns continuous representations from low-resolution eye tracking data. In data preparation, the high-
resolution eye tracking data is first down-sampled into low-resolution inputs. We then apply positional encoding to convert
degrees of visual angle into sine and cosine values for both high-resolution and low-resolution eye movements. Given a
sequence of positional encoded low-resolution eye movements, we employ an encoder-decoder architecture, denoted as 𝐸𝜑 and
𝐷𝜑 , to extract its global features. Given a query time t, we find the closest time ti in the input sequence and use the features
around ti to form the local features. The local features and the relative time coordinate t − ti are concatenated and input to
a MLP to query the eye position at the time t. In training, global feature extraction and local query are jointly trained with
reconstruction loss plus position loss.

Figure 2 provides an overview of our method. It consists of three
components: data preparation, global feature extraction, and local
query.

Data preparation. For each training high-resolution sequence
of gaze data with shape (ℎ𝑟, 2), the low-resolution input to our
method with shape (𝑙𝑟 , 2) is generated by down-sampling the high-
resolution sequence. ℎ𝑟 and 𝑙𝑟 refer to the number of samples in
high-resolution gaze data and low-resolution gaze data respectively.
The high-resolution sequence is the ground truth that we use to
supervise the MLP.

Since there are no clear bounds for degrees of visual angle, the
model have problems converging with this kind of training data.
To alleviate this issue, we apply a standard positional encoding
function 𝛾 on each gaze position (𝑥,𝑦) in the training data:

𝛾 (𝑥,𝑦) = [𝑠𝑖𝑛(𝑥), 𝑐𝑜𝑠 (𝑥), 𝑠𝑖𝑛(𝑦), 𝑐𝑜𝑠 (𝑦)]⊺ (3)

After the encoding, all the training data are limited to the range of
[−1, 1] and the input data to the model and the ground truth are
converted to the shapes of (𝑙𝑟 , 4) and (ℎ𝑟, 4), respectively.

Global feature extraction. We use a fully 1D convolutional
encoder-decoder architecture to obtain the global features F of
each input low-resolution gaze data. The encoder consists of three
1D convolutional layers with the channel size of 16, 32, 64 and the
kernel size of 3, 3, 1. The decoder consists of three transposed 1D
convolutional layers to make the global features F have the same

length as the low-resolution input. By having the same length, we
are able to easily control how much local information we want to
use in the local query. The final layer of the decoder has 16 channels.
Therefore, the shape of the global features is (𝑙𝑟, 16).

To make sure the low-resolution input is well represented by the
global features F, we add an additional 1D convolutional layer to
reconstruct the low-resolution input from F. The reconstruction
loss L𝑟𝑒𝑐 is defined as the L2 distance between the reconstructed
sequence 𝛾 (x′

𝑙𝑟
, y′

𝑙𝑟
) and the ground truth sequence 𝛾 (x𝑙𝑟 , y𝑙𝑟 ):

L𝑟𝑒𝑐 =
𝛾 (x′

𝑙𝑟
, y′

𝑙𝑟
) − 𝛾 (x𝑙𝑟 , y𝑙𝑟 )


2 (4)

Local query. To query the gaze position at a given time coor-
dinate 𝑡 , we first find the closest time coordinate 𝑡𝑖 in the input
low-resolution sequence. Then, given a time window 𝑛, the local
features F𝑙𝑜𝑐𝑎𝑙 are formed by 2𝑛 + 1 closest features of time 𝑡𝑖 :

F𝑙𝑜𝑐𝑎𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡 ( [F(𝑡𝑖−𝑛) · · · F(𝑡𝑖 ) · · · F(𝑡𝑖+𝑛)]) (5)

The F𝑙𝑜𝑐𝑎𝑙 undergoes a subsequent 1D convolutional layer and is
flattened prior to concatenating with the local time coordinate 𝑡 −𝑡𝑖 .
As per Equation 2, we utilise a 5-layer MLP with hidden layers of
dimensions 256, 256, 256, 256, 4. The first 4 layers are followed by
ReLU activations and the last layer is followed by a tanh activation
function. This MLP takes the aforementioned concatenation as
input and predicts the gaze position 𝛾 (𝑥 ′𝑡 , 𝑦′𝑡 ) at time 𝑡 . We use
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the L2 loss to penalise the difference between the predicted gaze
position and the ground truth gaze position:

L𝑝𝑜𝑠 =
𝛾 (𝑥 ′𝑡 , 𝑦′𝑡 ) − 𝛾 (𝑥𝑡 , 𝑦𝑡 )


2 (6)

where 𝛾 (𝑥𝑡 , 𝑦𝑡 ) is the ground truth from the high-resolution eye
gaze data.

Objective function and optimisation. The time length of the
training samples is consistent and is set to one second in our ex-
periments. For every training sequence, we assume it represents
the gaze data in time range (−1, 1). Assume the high-resolution
eye tracking data is captured with sampling frequency ℎ𝑟 , a set of
time coordinates for queries is generated, with the starting coor-
dinate 𝑡0 = −1 + 1

2∗ℎ𝑟 and other coordinates 𝑡𝑖 = 𝑡0 + 𝑖
ℎ𝑟
. The time

coordinates for the points inside the low-resolution input is down-
sampled from the high-resolution time coordinates by using the
same method in data preparation. Our proposed model is trained
on the task of reconstructing every single point in high-resolution
eye tracking data from the down-sampled low-resolution input and
the corresponding time coordinates. Two parts of our method, the
global feature extraction and the local query are jointly trained in
an end-to-end fashion with a summed loss term

L = L𝑟𝑒𝑐 + L𝑝𝑜𝑠 (7)

We pick L2 loss instead of L1 loss for both loss terms because
L2 loss is more sensitive to the outliers in the training data. In eye
tracking data, the majority of points belong to fixations, only few
belong to saccades. Using L2 loss helps our model better represent
fast eye movements.

4 GAZE DATA SUPER-RESOLUTION
4.1 Experimental Setup
Dataset.While numerous publicly available eye tracking datasets
exist, most were not collected using high-frequency eye trackers
[58, 66] or do not provide a substantial amount of gaze data from
various tasks although with high-frequency gaze data [1, 65, 80].
In order to provide high-frequency supervision to SUPREYES and
allow it to learn a broad range of gaze data representations, we
utilize the GazeBase dataset [29] for all of our evaluations. Gaze-
Base is a large-scale, longitudinal eye movement dataset collected
using an Eyelink 1000 eye tracker with a sampling frequency of
1,000 Hz. The dataset contains 12,334 eye tracking recordings from
322 individuals, covering a variety of eye movements performed
over nine rounds of recordings spanning 37 months. Each round
consists of two consecutive sessions, with each session compris-
ing seven visual tasks, including fixations, horizontal and random
saccades, reading, two video viewings, and gaze-driven gaming.
Further details on these tasks can be found in the original paper on
the GazeBase dataset [29]. Participants were exclusively recruited
from those who had previously completed the previous round(s),
providing the opportunity for participants to redo a round of study.
We split the GazeBase dataset into training, validation, and test sets
based on the number of participants in each round. Specifically,
we randomly selected 80% of the participants in each round and
used their recordings for training our model. The remaining 20% of

participants were split into the validation and test sets, each con-
taining 10% of the total participants. Our training, validation, and
test set contained 9,814, 1,218, and 1,302 recordings, respectively.

When participants are blinking or their pupils cannot be detected,
the eye tracker returns NaN as the current eye position. Instead
of filling NaNs with a fixed value or interpolation methods [25, 52,
53], to prevent the effect of filling values on learning human eye
movement representations, we cut each recording into segments
by removing the NaNs. Then we keep the segments that are longer
than 3 seconds. In total, there are 49,772 training segments, 6,139
validation segments, and 6,797 test segments.

Implementation details. We fixed the total time length of the
input eye tracking data to our model to 1 second. Given an input
low frequency and a target frequency, we first obtain the input
low-resolution eye movements and ground truth high-resolution
eye movements by downsampling the 1000 Hz segments in our
dataset. Meanwhile, the query coordinates of the target frequency
are downsampled from the time coordinates of 1000 Hz as well.

We train our model with Adam optimizer [44] with initial learn-
ing rate 1𝑒−4 for 500 epochs with batch size 64. We apply learning
rate decay every 200 epochs with decay factor 0.5. At each epoch,
we repeat the segments in our training set 20 times, and each time
we randomly crop a 1-second input sequence from each segment.

For validation and testing, we also crop the segments from the
validation set and test set into 1-second short segments. For each
segment, we start cropping from the beginning, the time interval
between every two cropping starting points is 0.25 seconds. In
total, there are 214,833 1-second segments in validation and 236,236
segments in testing.

We train three different models with input low frequencies of
25 Hz, 50 Hz, 100 Hz and target frequencies of 250 Hz, 250 Hz,
500 Hz. We choose these three input frequencies because the eye
movements at these frequencies are easy to obtain from our 1000
Hz ground truth compared with 30 Hz or 60 Hz. Moreover, many
previous eye tracking studies have used eye trackers with these
sampling frequencies, such as the Dikablis mobile eye tracker (25
Hz) [6, 46, 72, 73, 81] and Tobii Pro Glasses (50 Hz or 100 Hz)
[4, 57, 61]. We choose the target frequencies based on [33], where
the authors suggest that 250 Hz or higher gaze data is better for
biometric purposes. Besides, there are commercial eye trackers with
these target frequencies, e.g. SMI RED eye tracker has 250 Hz and
500 Hz sampling rates. The time window 𝑛 in the local query are
2, 4, 8 for 25 Hz, 50 Hz, 100 Hz inputs respectively to make every
model have local features from the same time range.

Evaluation. To assess the similarity of our generated high-
resolution eye tracking data to the human ground truth, we first
evaluate SUPREYES from a time-series perspective. We apply three
popular time-series metrics, Mean Absolute Errors (MAE), Mean
Square Errors (MSE), and soft Dynamic Time Warping (sDTW)
[11], to measure the performance of our model. These three metrics
complement each other, with MAEmeasuring the overall numerical
similarity, MSE focusing on penalizing the differences in fast eye
movements, and sDTW measuring the similarity of shape between
two time series. In this paper, we use sDTW divergence proposed
in [5] with a smoothing factor 0.001:

𝑠𝐷𝑇𝑊𝑑𝑖𝑣 (𝑠′, 𝑠) = 𝑠𝐷𝑇𝑊 (𝑠′, 𝑠)− 1
2
(𝑠𝐷𝑇𝑊 (𝑠, 𝑠)+𝑠𝐷𝑇𝑊 (𝑠′, 𝑠′)) (8)
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Input Metrics Methods
linear quadratic cubic nearest previous PCHIP cubic spline SUPREYES

Val

25 Hz
MAE↓ 0.102 0.111 0.132 0.141 0.230 0.088 0.132 0.079
MSE↓ 0.185 0.222 0.451 0.463 1.196 0.158 0.451 0.077
sDTW↓ 39.186 73.955 188.472 138.570 138.568 44.780 188.513 24.344

50 Hz
MAE↓ 0.042 0.040 0.044 0.074 0.112 0.036 0.440 0.034
MSE↓ 0.039 0.037 0.051 0.128 0.317 0.033 0.052 0.021
sDTW↓ 10.628 11.971 19,358 45.452 45.452 10.326 19.466 6.879

100 Hz
MAE↓ 0.019 0.017 0.018 0.040 0.062 0.017 0.018 0.022
MSE↓ 0.014 0.014 0.016 0.042 0.098 0.013 0.016 0.010
sDTW↓ 7.975 7.968 9.911 28.629 28.629 7.474 9.938 5.733

Test

25 Hz MAE↓ 0.104 0.113 0.135 0.143 0.234 0.090 0.135 0.079
MSE↓ 0.187 0.223 0.459 0.481 1.254 0.156 0.459 0.071
sDTW↓ 38.214 74.075 191.989 143.446 143.446 43.378 192.129 21.885

50 Hz MAE↓ 0.042 0.040 0.044 0.075 0.114 0.036 0.044 0.034
MSE↓ 0.035 0.031 0.044 0.127 0.327 0.027 0.044 0.015
sDTW↓ 9.153 10.166 16.446 46.279 46.279 8.756 16.557 5.198

100 Hz MAE↓ 0.019 0.017 0.018 0.041 0.063 0.017 0.018 0.022
MSE↓ 0.011 0.011 0.012 0.039 0.097 0.010 0.012 0.006
sDTW↓ 5.830 5.584 6.602 27.924 27.924 5.439 6.697 3.462

Table 1: Quantitative comparison on the validation and test sets. The target resolution is 250 Hz for 25 Hz and 50 Hz inputs, and
500 Hz for 100 Hz inputs. The best results are given in bold, second-best results are underlined.

Input Method Target
50 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

MAE↓ MSE↓ sDTW↓ MAE↓ MSE↓ sDTW↓ MAE↓ MSE↓ sDTW↓ MAE↓ MSE↓ sDTW↓ MAE↓ MSE↓ sDTW↓
25 Hz linear 0.073 0.136 12.889 0.096 0.170 18.340 0.103 0.184 31.250 0.105 0.192 73.839 0.106 0.196 143.972

quadratic 0.080 0.128 12.196 0.104 0.185 27.572 0.112 0.217 58.431 0.115 0.238 154.442 0.116 0.244 313.120
PCHIP 0.063 0.099 9.544 0.082 0.136 18.733 0.089 0.153 34.983 0.091 0.162 86.112 0.092 0.165 170.340

cubic spline 0.092 0.194 18.622 0.122 0.343 59.364 0.133 0.438 147.004 0.139 0.503 419.630 0.140 0.525 874.774
SUPREYES 0.057 0.050 4.312 0.079 0.065 9.376 0.087 0.072 17.526 0.093 0.077 42.045 0.095 0.079 83.080

50 Hz linear 0.031 0.027 4.960 0.041 0.034 7.844 0.044 0.037 15.694 0.044 0.038 27.314
quadratic 0.030 0.022 3.783 0.039 0.030 8.231 0.042 0.034 19.551 0.043 0.035 36.248
PCHIP 0.027 0.019 3.427 0.035 0.026 7.169 0.038 0.029 15.625 0.038 0.030 27.830

cubic spline 0.032 0.026 4.511 0.042 0.041 12.648 0.046 0.051 35.945 0.047 0.054 73.293
SUPREYES w.o. L𝑟𝑒𝑐 0.216 0.234 36 1.041 6.142 2151 0.990 6.077 5737 1.197 7.272 13843

SUPREYES 0.024 0.011 1.777 0.033 0.014 4.156 0.041 0.017 9.954 0.045 0.018 19.011
100 Hz linear 0.015 0.009 3.042 0.019 0.011 5.830 0.020 0.011 9.268

quadratic 0.013 0.008 2.342 0.017 0.011 5.685 0.018 0.011 9.500
PCHIP 0.013 0.008 2.269 0.017 0.010 5.349 0.018 0.010 8.897

cubic spline 0.013 0.009 2.359 0.018 0.012 6.697 0.019 0.013 12.233
SUPREYES 0.021 0.005 1.400 0.022 0.006 3.462 0.034 0.008 8.335

Table 2: Quantitative comparison on arbitrary scale super-resolution and ablation study on the test sets. The best results are
given in bold, second-best results are underlined.

where 𝑠′ is a predicted time series and 𝑠 is the ground truth. The
advantage of using sDTW divergence instead of sDTW or DTW
is that the minimal value 0 is obtained when 𝑠′ = 𝑠 . We refer to
sDTW divergence as sDTW throughout the paper for simplicity.

4.2 Comparison with Interpolation Methods
We follow the default of super-resolution tasks in other application
domains that the super-resolution includes both interpolation and
extrapolation [9, 43] (e.g. in our task 50hz to 500hz, the method
has to extrapolate the last 9 high-res data points.). We compare
SUPREYES with commonly used interpolation methods that also

have extrapolation ability, including linear, quadratic, cubic, near-
est neighbour, Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) [24], cubic spline [13], and naive approaches that simply re-
turn the previous value of the point. All baselines are implemented
using SciPy [74] built-in functions.

Because each SUPREYES model is trained on a certain target
frequency, we first present our model evaluation results on its target
frequencies in training in Table 1. Since interpolation methods do
not need to be trained and validated, we also show the results
on the validation set. Both in the validation set and the test set,
our SUPREYES outperforms all interpolation baselines in all three
time-series metrics for 25 Hz and 50 Hz inputs with a significant
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margin. For 100 Hz inputs, SUPREYES surpasses all interpolation
methods in two out of three time-series metrics, except for MAE
(The explanation for this is discussed in the second last paragraph of
Section 4.2). Moreover, we observe that the nearest neighbour and
previous interpolations perform much worse than other methods,
and cubic and cubic spline have similar performance. Therefore,
for further evaluations, we only keep linear, quadratic, PCHIP, and
cubic spline interpolations as baselines.

SUPREYES aims to learn continuous gaze data representations
from input gaze data which can be used to up-sample the input gaze
data to arbitrary resolutions. To evaluate the quality of the learned
continuous gaze data representations, we evaluate the ability of
SUPREYES to perform arbitrary scale super-resolution and compare
it with the two selected baseline methods. Specifically, the task of
arbitrary scale super-resolution refers to the resolution of input data
is fixedwe up-sample the input data tomultiple different resolutions
and run evaluations. We choose target frequencies of 50 Hz, 100
Hz, 200 Hz, 500 Hz, and 1000 Hz, as these frequencies are easy to
obtain with original 1000 Hz gaze data, and there are commercial
eye trackers with these sampling frequencies, such as Tobbi Pro
Glasses (50 Hz, 100 Hz), Pupil Core and VT3mini remote eye tracker
(200 Hz), SMI RED (500 Hz), and Eyelink 1000 (1000 Hz). We up-
sampled the 25 Hz, 50 Hz, and 100 Hz gaze data to the higher target
frequencies using our trained models and two baseline methods.
Figure 1 presents a qualitative example of using our method to
up-sample 50 Hz gaze data to 100 Hz, we can observe our up-
sampled data is close to human ground truth. Table 2 shows the
results of the arbitrary scale evaluation. We can see that SUPREYES
achieves better performances on MSE and sDTW in all experiments.
For MAE, SUPREYES performs better than baseline interpolation
methods in most of the tasks with 25 Hz inputs and 50 Hz inputs,
but interpolation methods perform better on other tasks.

The use of MAE alone as a metric for evaluating gaze data super-
resolution techniques is limited as it only measures the numerical
difference between two time-series. Interpolation methods, which
interpolate points between given points in the inputs, can achieve
low MAE values as the number of given points in the input in-
creases. However, this does not necessarily indicate whether the
up-sampled gaze data is similar to the human gaze data from a
time-series perspective. Therefore, the use of additional metrics
such as MSE and sDTW is necessary to evaluate the similarity of
fast eye movements and overall shape between the up-sampled
gaze data and the human gaze data.

In general, SUPREYES achieves higher similarity to human gaze
data than all interpolation baselines from a time-series perspective
in the super-resolution task when considering the combination of
these metrics. However, it should be noted that time-series metrics
alone may not be sufficient for evaluating gaze data enhancement
techniques. In particular, whether the up-sampled gaze data is in
line with characteristics of gaze behaviour of the subject is impor-
tant in gaze data super-resolution. To further evaluate SUPREYES
and other baseline methods, we also perform evaluations on a gaze-
based user identification task (details in Section 5).

4.3 Ablation Study
Most works in implicit neural representation learning utilise pre-
trained neural networks to extract global features or latent codes
or any other useful information from inputs, which are then used
as inputs for MLPs [9, 34, 59]. However, for areas such as audio pro-
cessing where pretrained models may not be available, researchers
design their own extractors and jointly trained them with the final
output loss of MLPs [43]. We argue that extractors trained only with
the loss of the final outputs may not be sufficient to extract useful
information from inputs. To confirm our hypothesis, we train an 50
Hz SUPREYES model without the reconstruction loss L𝑟𝑒𝑐 with 250
Hz target frequency. We evaluate this model on the arbitrary scale
super-resolution task described in Section 4.2. The results, shown in
Table 2, indicate that the SUPREYES model without L𝑟𝑒𝑐 performs
extremely poorly on all three time-series metrics, suggesting that
without L𝑟𝑒𝑐 , the global feature extractor fails to extract robust
global features from the inputs.

5 GAZE-BASED USER IDENTIFICATION
Maintaining users’ identity in gaze data super-resolution is crucial
for enhancing mobile eye trackers, as high-resolution gaze data
generated by a method should retain the same user identity as their
low frequency input during practical eye-tracking data collection.
However, there is no explicit way to evaluate this. Alternatively,
we evaluate our method on the task of gaze-based user identifica-
tion. Our assumption is that if the up-sampled gaze data achieves
better performance than the original low-resolution gaze data in
user identification, it implies that the up-sampling method gener-
ated gaze samples that align with the specific characteristics of an
individual’s gaze behaviour.

5.1 Experimental Setup
Problem Definition and Data preparation.We merge the val-
idation and test sets described in Section 4.1 to form the dataset
for closed-set user identification. The merged dataset comprises
eye-tracking data from 130 subjects. Our task involves predicting
which user a given gaze data input belongs to, among the entire
pool of 130 users. Each subject completed two consecutive sessions,
comprising seven tasks in total, as part of the GazeBase dataset
[29]. However, we exclude data from the fixation task since in
this task participants were asked to fixate on a static target at the
screen centre and the results of the previous work show that the
model trained with the gaze data from the fixation task only has
the worst user authentication performance [52]. Specifically, we
utilise data from session one (S1) for training and session two (S2)
for validation purposes. And we downsample the eye tracking data
to different frequencies, including 25 Hz, 50 Hz, 100 Hz, and 200
Hz, and then use SUPREYES and different interpolation methods
to up-sample 50 Hz and 100 Hz data to higher frequencies (the
reason of choosing these frequencies is presented in Section 5.3
and the details of up-sampling are presented in Section 5.2). We
keep the 25 Hz data here because we believe the user identification
performance on the original 25 Hz data can reveal the lower bound
of the performance of 50 Hz up-sampled data. Following prior work
on user authentication [53], we set the duration of the input gaze
data to 5 seconds. To this end, each eye tracking data is cut into
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Figure 3: CNN-based model for user identification. The numbers inside CNN blocks reflect the output channels of CNN layers,
the number inside the fully-connected layer is the size of the hidden layer. Each CNN layer is followed with ReLU activation.
The first 6 CNN layers are with kernel size 3 and padding 1, and the last 3 CNN layers are with kernel size 3,1,1 and no padding.
The output of the final fully-connected layer is the probabilities of the input eye movement data belonging to the 130 users.

non-overlapping 5-second segments starting from the beginning of
the data. NaNs in these segments are filled with the previous valid
value, and if there is no previous valid value, they are filled with the
next valid value. Overall, we obtain 15,544 training segments and
14,947 validation segments for the dataset at different frequencies.

User Identification Method. CNN-based methods have shown
great achievements in user authentication/identification in recent
years [52, 53, 55]. In our experiment, we employed the 9-layer CNN
architecture proposed in [52]. The original model proposed in [52]
has too many parameters, making the network easy to get over-
fitting. Therefore, we reduced the number of channels for each
CNN layer in our implementation. We also changed the flatten
layer in [52] into a 1D global average pooling layer to ensure fair
comparisons between the eye tracking data at different resolutions.
Since the models for inputs at different resolutions have the same
number of learnable parameters, the results change only because
of the different input frequencies. The model architecture of our
implementation is shown in Figure 3. The model takes the posi-
tional encoded (see Equation 3) 5-second eye tracking segments as
input and outputs the probabilities of the input eye movement data
belonging to the 130 users.

Implementation details. To train the CNN model on eye track-
ing data at different frequencies, we employ cross-entropy loss
and Adam optimizer [44] with an initial learning rate of 1𝑒−3. We
trained the models for 500 epochs using a batch size of 64. Since the
models possess the same number of learnable parameters, the low-
resolution input model converges faster than the high-resolution
input model. To avoid overfitting in the low-resolution input model,
we apply early stopping during training. Specifically, if the perfor-
mance on the validation set, does not improve for ten consecutive
epochs we stop the training.

Evaluation.We evaluate all models trained with the up-sampled
eye movements on corresponding ground-truth high-resolution
validation sets with two evaluation metrics - equal error rate (EER)
and the classification accuracy of user identification. EER has been
widely used in evaluating biometric systems [52–55, 62], it refers to
a point on a receiver operating characteristic (ROC) curve where the
false acceptance rate (FAR) is equal to the false rejection rate (FRR).
The lower EER indicates the better performance of a biometric
system.

5.2 Up-sampling Strategy
Given the superior performance in MAE of the interpolation meth-
ods over SUPREYES in the super-resolution task of 100 Hz inputs
(as discussed in Section 4.2), we utilise these four interpolation
methods as baselines for user identification. We up-sample the 50
Hz and 100 Hz eye tracking data in our training set to (100 Hz, 200
Hz) and 200 Hz, respectively, using both the baseline methods and
our proposed method.

The baseline methods are implemented as previously described
in Section 4.2. We directly apply the baseline methods to the degrees
of visual angle in the low-resolution training sets to generate the up-
sampled high-resolution training sets. For SUPREYES, we first apply
positional encoding to the degrees of visual angle and then perform
the up-sampling. We explore three methods for up-sampling eye
tracking data using our proposed method: single-stage up-sampling,
fine-tuning for frequent users, and multi-stage up-sampling.

Single-stage up-sampling. Single-stage up-sampling refers
to directly applying SUPREYES to up-sample the low-resolution
eye movements to target resolution. This method is denoted as
SUPREYES (ss) for simplicity.

Fine-tuning for frequent users. Fine-tuning for frequent users
is an upgrade to SUPREYES (ss). Since SUPREYES is trained on
the eye tracking data from many subjects, in up-sampling, it per-
forms eye movements like an average or aggregated person of these
subjects. However, in practical use cases, it is often necessary to
fine-tune the model to better approximate the eye movements of
a specific user. Assume we have a frequent user of the mobile eye
tracker that is going to be enhanced. To make our model act more
like this user, we can fine-tune SUPREYES on previous gaze record-
ings of this user. In our experiment, we fine-tune SUPREYES for
each user using their own low-resolution data in our training set
for 10 epochs, and up-sample the low-resolution data to target res-
olution using the fine-tuned model. We refer to this approach as
SUPREYES (ss+ft).

Multi-stage up-sampling. The up-sampling of gaze data can
also be done in amulti-stagemanner, whichwe refer to as SUPREYES
(ms). This is motivated by the observation that as the target res-
olution increases, the similarities of up-sampled eye movements
towards the ground truth human eye movements from a time se-
ries perspective drop significantly, as shown in Table 2. However,
we found that in the case of up-sampling scale ×2, SUPREYES is



SUPREYES: SUPer Resolution for EYES Using Implicit Neural Representation Learning

able to perform similarly to a real human. In our experiment, we
use SUPREYES (ms) to up-sample the 50 Hz eye tracking data to
200 Hz. Specifically, we first apply the 50 Hz SUPREYES model to
up-sample the data to 100 Hz, and then use the 100 Hz SUPREYES
model to up-sample the data to the final resolution of 200 Hz. Note
that the SUPREYES (ms) can be a combination of SUPREYES (ss)
and SUPREYES (ss+ft). We use SUPREYES (ss+ft) plus SUPREYES
(ss) for up-sampling 50 Hz to 200 Hz in our experiment.

Implementation details of up-sampling with SUPREYES.
SUPREYES takes 1-second gaze data as input, we need to prepro-
cess the 5-second low-frequency gaze data before passing it to
SUPREYES. One naive approach is to cut the 5-second data into
5 1-second segments. However, in this way, the contextual infor-
mation in the 5-second data is not sufficiently used, which may
lead to lower fidelity. To better use the contextual information, we
cut the data into 1-second segments that overlap with each other.
Specifically, we start cutting the input from the very beginning, and
the time interval between each cutting starting point is 0.8 seconds.
If the last 1-second data is not in the current obtained segments, we
also include the last 1-second data in the segments. These segments
are then upsampled to higher frequencies with SUPREYES. After
obtaining the up-sampled 1-second data, we merge each adjacent
up-sampled 1-second data by replacing the data of the last 0.1 sec-
ond in the first segment with the data from 0.1 second to 0.2 second
in the second segment, except for the last 1-second segment. For the
last segment, we not only just replace the last 0.1 seconds data in its
previous segments with the corresponding part in the augmented
last segment, but also concatenate the rest part in the augmented
last segment after that. This merging process effectively reduces
the discontinuity caused by segmenting the data.

5.3 Results
While previous work suggests that biometric purposes require sam-
pling frequencies of 250 Hz or higher [33], our experimentation
reveals that using 250 Hz inputs do not significantly improve per-
formance compared to 200 Hz data in our experimental settings. As
such, we opt to utilise 200 Hz as the maximum eye tracker sampling
frequency in our study. Conversely, 25 Hz inputs lack sufficient
information to accurately identify users. Our results, as shown in
Table 3, indicate that 25 Hz data perform poorly. Therefore, we
limit our up-sampling to 50 Hz and 100 Hz eye movements in our
experiment

The user identification results on original frequencies are used as
a criterion to evaluate whether an up-sampling method maintains
user identity in the up-sampling process. After up-sampling, if
the user identification results on the high testing frequency are
superior to those on the original input frequency, we assume that
the up-sampling method generates meaningful user-specific gaze
data to some extent.

Table 3 presents the quantitative results of user identification
on our validation set for three different up-sampling tasks: 50 Hz
to 100 Hz, 50 Hz to 200 Hz, and 100 Hz to 200 Hz. We compare
the performance of our proposed method SUPREYES with four
baseline interpolation methods, linear and quadratic, PCHIP, and
cubic spline interpolation.

We observe that for all three up-sampling tasks, all baseline
methods lead to an increase in equal error rate (EER) compared
to the original input frequency. Additionally, only one baseline
(cubic spline) gets a tiny improvement in classification accuracy in
the task 100 Hz to 200 Hz. This suggests that these interpolation
methods fail to approximate user-specific gaze behaviour during
super-resolution. However, for the up-sampling scale of×2 (50 Hz to
100 Hz and 100 Hz to 200 Hz), SUPREYES (ss) leads to improvements
in both evaluation metrics compared to the original 50 Hz and 100
Hz results. Furthermore, by incorporating fine-tuning, SUPREYES
(ss+ft) achieves even better performance, with improvements of
19% in EER and 15% in classification accuracy when up-sampling 50
Hz gaze data to 100 Hz. Similarly, when up-sampling 100 Hz data to
200 Hz, SUPREYES (ss+ft) improves EER by 17% and classification
accuracy by 7%. Notably, the results for the task of up-sampling
100 Hz to 200 Hz rival those of the original 200 Hz eye tracking
data. These findings implicitly demonstrate the effectiveness of
our proposed method in approximating the unique gaze behaviour
traits of each individual during super-resolution of gaze data with
up-sampling scale ×2.

When the up-sampling scale goes higher to ×4 (50 Hz to 200
Hz), the task becomes more challenging. SUPREYES (ss) fails to
improve the performance in up-sampling 50 Hz data to 200 Hz, and
the performance of SUPREYES (ss+ft) deteriorates even further. Our
proposed SUPREYES (ms) is used to address this challenge. With the
help of multi-stage up-sampling, SUPREYES (ms) slightly improves
the results, but still falls far short of the performance achieved on
the original high-frequency data. Considering these results, our
proposed SUPREYES (ms) approach represents an important step
forward in addressing the difficulties of super-resolution tasks at
high up-sampling scales.

6 DISCUSSION
6.1 Factors that Affect Model Performance
Although SUPREYES outperforms existing interpolation baselines
and helps increase user identification results by preserving users’
identity throughout the up-sampling process. However, as shown
in both Table 2 and Table 3, the performance of our method is
highly correlated to the input frequency and the target frequency.
Specifically, when the input frequency is fixed, the performance of
SUPREYES decreases as the target frequency increases. This is due
to the fact that SUPREYES is trained on eye-tracking data frommany
different subjects, it learns the average gaze data representations of
these subjects. When the up-sampling scale is high, the number of
points that need to be generated by the model exceeds the number
of points in the given input. Consequently, our method interpolates
these points by utilising the average knowledge learned from the
subjects in the training set, resulting in a drop in performance in
generating realistic gaze data of the input user. Additionally, we
find that the higher the input frequency, the better the performance
in eye-tracking fidelity. With up-sampling scale ×2, up-sampling
100 Hz gaze data with SUPREYES to 200 Hz rivals the original 200
Hz data in user identification. However, the results of the 50 Hz
to 100 Hz gaze data are still far from reaching the performance of
the original 100 Hz gaze data. This is because 100 Hz gaze data
contains more user-specific information than 50 Hz data, which
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Original input frequency Testing frequency Upsampling method EER(%)↓ Classification accurarcy(%)↓
25 Hz 25 Hz - 16.17 12.55
50 Hz 50 Hz - 3.13 35.56
100 Hz 100 Hz - 1.46 55.78
200 Hz 200 Hz - 1.20 61.93
50 Hz 100 Hz linear 7.78 16.93
50 Hz 100 Hz quadratic 3.97 31.14
50 Hz 100 Hz PCHIP 4.11 29.60
50 Hz 100 Hz cubic spline 4.62 27.72
50 Hz 100 Hz SUPREYES (ss) 2.77 38.30
50 Hz 100 Hz SUPREYES (ss+ft) 2.52 40.89
50 Hz 200 Hz linear 9.87 16.56
50 Hz 200 Hz quadratic 4.65 26.96
50 Hz 200 Hz PCHIP 4.75 28.78
50 Hz 200 Hz cubic spline 5.74 25.14
50 Hz 200 Hz SUPREYES (ss) 4.68 31.14
50 Hz 200 Hz SUPREYES (ss+ft) 5.72 26.98
50 Hz 200 Hz SUPREYES (ms) 3.12 36.03
100 Hz 200 Hz linear 2.64 44.10
100 Hz 200 Hz quadratic 1.58 50.36
100 Hz 200 Hz PCHIP 1.59 52.01
100 Hz 200 Hz cubic spline 1.52 55.88
100 Hz 200 Hz SUPREYES (ss) 1.27 57.91
100 Hz 200 Hz SUPREYES (ss+ft) 1.21 59.67

Table 3: The quantitative results of user identification on the validation set. The user identification results on the high testing
frequency which outperform the results on the original input frequency are underlined. The best results of up-sampling
methods of each (original input frequency, test frequency) pairs are bolded.

helps SUPREYES maintain user consistency during the up-sampling
process. Overall, SUPREYES works well with the up-sampling scale
×2 for low-resolution inputs.

6.2 Applications of SUPREYES
Enhancing low-resolution eye trackers. In Sections 4 and 5,
SUPREYES has shown promising results in generating human-
like gaze data and preserving identity consistency during super-
resolution, particularly in the upsampling scale of ×2. As a result,
it can be utilized as a post-processing technique to enhance low-
resolution eye trackers when higher frequency information is re-
quired.

Augment existing eye tracking datasets. SUPREYES can not
only enhances low-frequency eye-trackers but also enables the aug-
mentation of existing eye-tracking datasets. With the development
of technologies, we believe there will be huge improvements in
increasing the sampling frequency of mobile eye trackers. However,
the datasets collected by these low-resolution mobile eye trackers
cannot upgrade simultaneously. Re-collecting these datasets re-
quires considerable time and effort. Our method offers a convenient
solution by enabling the easy augmentation of these datasets to
higher sampling frequencies without additional effort. Consider the
scenario of a gaze-based user authentication task, where a user au-
thentication model for a VR helmet is trained on gaze data collected
by its built-in 100 Hz eye tracker. Suppose the user wants to up-
grade to a new VR helmet equipped with a 200 Hz eye tracker while
still using a gaze-based authentication model. One naive solution is

to use the new device for a long time and collect enough new 200
Hz data to train a model. Restricting the capacity of the new eye
tracker to 100 Hz is a suboptimal solution, the previous model can
directly adapted, but this defeats the purpose of upgrading to a new
VR helmet. Our proposed method, SUPREYES, is highly beneficial
in such cases, as it allows for the direct up-sampling of the 100 Hz
gaze data captured by the previous device to 200 Hz with almost
no loss in identity information. This enables users to seamlessly
apply a new 200 Hz user authentication model without having to
collect new data. Additionally, during the usage, the 200 Hz data
collected by the new device can be merged into the up-sampled
dataset, further improving the authentication performance.

6.3 Limitations and Future work
Simulating real low-resolution eye tracker through down-
sampling.To facilitate the training of ourmodel using low-resolution
gaze data and corresponding high-resolution ground truth, we
down-sampled the high-resolution gaze data to simulate the output
of a real low-resolution eye tracker. By mimicking the behaviour of
a low-resolution camera, our simulated data closely resembles the
characteristics of real low-resolution gaze data within an ideal data
collection setting. However, it is important to note that practical
usage of low-resolution eye trackers introduces additional factors
that can impact data quality, such as motion blur, varying lighting
conditions, hardware noise, and other sources of noise inherent in
the eye tracker itself. Our simulation only accounts for the ideal
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scenario. How these factors affect our model’s performance remains
to be explored.

Running additional evaluations. In addition to the time-series
evaluation that we showed in Section 4, we plan to conduct fur-
ther evaluations from an eye movement perspective in furture
work. This includes analysing time-series errors for different eye
movement types (saccades, smooth pursuits) to identify areas for
improvement. We also aim to assess whether the generated eye
movements exhibit similar attributes, such as the distribution of eye
movement types and velocity profiles, as observed in real human
data. Furthermore, we will conduct user identification evaluation
on real low-resolution gaze datasets. These evaluations will provide
valuable insights to improve the performance of our approach.

Improving the performance of SUPREYES. In future work,
we plan to improve SUPREYES in up-sampling low-resolution
gaze data with higher up-sampling scales. The multi-stage up-
sampling method SUPREYES (ms) proposed in Section 5.2 suc-
cessfully increases the performance of single-stage up-sampling
method SUPREYES (ss) in up-sampling scale ×4. This indicates that
the multi-scale information of eye tracking data helps with large-
scale up-sampling. However, currently, we train separate models
for the inputs at different scales, e.g. we up-sample 50 Hz data to
200 Hz by up-sampling 50 Hz to 100 Hz first and using 100 Hz
model the continue up-sampling to 200 Hz. This is not ideal when
the up-sampling scale goes higher, since we have to train many
models with different input frequencies. However, our fully con-
volutional encoder-decoder used for extracting global features of
low-frequency inputs theoretically enables us to develop a unified
model for inputs of different frequencies merging the multi-scale
gaze representations. Furthermore, we plan to investigate how
SUPREYES can help with other downstream tasks that can benefit
from high-resolution gaze data, such as learning-based eye move-
ment detection. Additionally, we aim to make SUPREYES run in
real-time, as this is crucial for enhancing low-resolution eye track-
ers during data collection. Currently, our method can be seen as a
post-processing method and cannot be integrated with eye trackers
to enhance the sampling-frequencies in real-time.

7 CONCLUSION
This paper presented SUPREYES, the first learning-based approach
for up-sampling low-resolution gaze data to arbitrary target reso-
lutions. We conducted extensive experiments to evaluate the per-
formance of SUPREYES in arbitrary scale super-resolution and
gaze-based user identification, demonstrating its superiority over
commonly used interpolation baselines. In particular, SUPREYES
can generate gaze samples that are in line with user-specific char-
acteristics during the up-sampling process and can provide high-
frequency information that benefits gaze-based applications. We
believe that SUPREYES has enormous potential to enhance low-
resolution eye trackers and existing eye tracking datasets without
requiring any additional hardware.
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