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Abstract

This thesis addresses several questions about the uniqueness and reconstruction of the

conductivity γ from knowledge of the boundary information encapsulated in the Dirichlet-to-

Neumann map Λγ . This problem is well-known in the literature as Calderón problem.

In two dimensions, we extend the uniqueness of Calderón problem in two dimensions for

complex conductivities with curves of discontinuity based on the stationary phase method and

the introduction of new exponentially growing solutions.

In three dimensions, we extend the result established by Nachman for real conductivities with

two derivatives, by noting that most of the proof holds with the need of extending some of the

results to encapsulate the complex case. Moreover, we establish a methodology to recover the

complex conductivity from small complex frequencies, but some open questions are left about

this reconstruction process.

Furthermore, we reduce the differentiability condition for uniqueness to hold. We have

shown that the Dirichlet-to-Neumann map uniquely determines complex conductivities with one

derivative. Our approach is completely novel and introduces a quaternionic analysis approach

to deal with the problem in three dimensions.

With the quaternionic framework we also introduce a possible path to show uniqueness for

real conductivities in L∞. This is a step in the direction of a complete answer to Calderón’s

question in three dimensions.

This problem is also relevant for practical applications, in particular medical imaging where

it is used in Electrical Impedance Tomography (EIT). For practical implementations, a recon-

struction algorithm is required to transform the boundary measurements into a conductivity

profile. We use iterative methods to obtain a reconstruction method and our goal is to provide

a simple and effective way to compute the required Jacobian matrix This approach is based in

automatic differentiation (AD) tools .

We show that AD can be used to efficiently and effectively compute the Jacobian matrix

of a numerical method that simulates the voltages measurements. Further, we show that this

computation is as effective as analytical closed-forms applied in general iterative method in order

to reconstruct the conductivity profile.





Zusammenfassung

Diese Dissertation beschäftigt sich mit mehreren Fragen zur eindeutigen Rekonstruierbarkeit

der Leitfähigkeit γ aus in der Dirichlet-zu-Neumann-Abbildung Λγ enthaltenen Randinforma-

tionen. Dieses Problem ist in der Literatur als Calderón-Problem bekannt.

In zwei Dimensionen erweitern wir die Eindeutigkeit des Calderón-Problems auf für komplexe

Leitfähigkeiten mit Unstetigkeiten entlang von Kurven. Das Resultat basiert auf der Methode

der stationären Phase und der Einführung eines neuen Typs exponentiell wachsender Lösungen.

In drei Dimensionen erweitern wir das Resultat von Nachman für reelle Leitfähigkeiten

der Klasse C2 unter Beibehaltung wesentlicher Beweisideen auf komplexe γ. Darüber hinaus

etablieren wir eine Methode, die Leitfähigkeit unter Nutzung niedriger Frequenzen zu rekon-

struieren. Allerdings bleiben einige offene Fragen bei diesem Rekonstruktionsprozess.

Witerhin reduzieren wir die Differenzierbarkeitsbedingungen an γ für eindeutige Rekonstru-

ierbarkeit. Dabei haben wir gezeigt, dass die Dirichlet-zu-Neumann-Abbildung einfach differen-

zierbare komplexe Leitfähigkeiten eindeutig bestimmt. Unser Ansatz ist neu und basiert in drei

Raumdimensionen auf quaternionischer Analysis.

In diesem quaternionischen Rahmen zeigen wir einen möglichen Weg zum Beweis der Ein-

deutigkeit für reelle Leitfähigkeiten γ ∈ L∞ auf. Dies ist ein wichtiger Schritt in Richtung einer

vollständigen Beantwortung des Calderón-Problems in drei Dimensionen.

Dieses Problem ist auch für praktische Anwendungen von Bedeutung, insbesondere in der

medizinischen Bildgebung, wo es in der Elektrischen Impedanztomographie (EIT) verwendet

wird. Für praktische Umsetzungen ist ein Rekonstruktionsalgorithmus erforderlich, um die

Randwertmessungen in ein Leitfähigkeitsprofil zu transformieren.

Wir verwenden iterative Methoden, um ein Rekonstruktionsverfahren zu erhalten. Dabei ist

es unser Ziel, eine einfache und effektive Möglichkeit zur Berechnung der erforderlichen Jacobi-

matrix des zugrundeliegenden Simulationsverfahrens bereitzustellen. Dieser Ansatz basiert auf

automatischen Differenzierungs-Tools (AD).

Wir zeigen, dass AD verwendet werden kann, um die Jacobimatrix der numerischen Meth-

ode, die die Spannungsmessungen simuliert, effizient und effektiv zu berechnen. Des Weiteren

zeigen wir, dass diese Berechnung ebenso effektiv ist wie analytische geschlossene Formen, die in

allgemeinen iterativen Methoden zur Rekonstruktion des Leitfähigkeitsprofils angewendet wer-

den.
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Chapter 1

Introduction

1.1 Motivation

While working in a research project for an Argentinian geophysical prospecting company in the

1950s, Alberto Calderón dealt with the possibility of determining the electrical conductivity

inside a domain by making electrical measurements at the boundary. Only in 1980 he was

convinced by colleagues to publish the problem and a partial answer for it [18]. This work

pioneered a new area of mathematical research in inverse boundary value problems.

Let us start by defining the Calderón problem as initially posed. Suppose that Ω ⊂ Rn is a

bounded domain with n ≥ 2. Let σ : Ω → C a measurable function with positive lower bound,

i.e., σ ≥ c > 0. Then given f ∈ H1/2(∂Ω) let u ∈ H1(Ω) be the unique solution to ∇ · (σ∇u) = 0 in Ω,

u|∂Ω = f.
(1.1)

Physically, this equation describes the behavior of an electrical potential u inside a body

with isotropic conductivity σ, when a voltage f is applied at its surface. We call it conductivity

equation and it describes the direct problem. Uniqueness of solutions is guaranteed for σ ∈
L∞(Ω), σ ≥ c > 0 by Theorem 4.10 in chapter 4 of McLean’s book [62] through the study of

strongly elliptic and coercive differential operators.

These solutions allow the determination of the so-called Dirichlet-to-Neumann map, which

is formally defined as:

Λσ : H1/2(∂Ω) → H−1/2(∂Ω) (1.2)

f 7→ σ
∂u

∂n
,

where n is the unit outward normal vector to ∂Ω. Given a voltage applied to the boundary

we have that Λσf represents the electrical current passing ∂Ω. Here, we said formally because

this strong definition only holds when we have more regular boundary values. In any case, the
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proper weak formulation is given as

⟨g,Λσf⟩H1/2(∂Ω),H−1/2(∂Ω) =

∫
Ω
σ∇u · ∇w dV (x), (1.3)

for w ∈ H1(Ω) with w|∂Ω = g.

The Dirichlet-to-Neumann map (DtN) describes the relation between voltage and electrical

current on the boundary of Ω. In this sense, Calderón was interested in knowing if we can deter-

mine the internal conductivity σ from the outside information. Mathematically, the Calderón

problem is succinctly stated as:

“Can we uniquely determine the conductivity σ ∈ L∞(Ω), σ ≥ c > 0 from its

Dirichlet-to-Neumann map Λσ? If so, how can we reconstruct it?”

Initially, Calderón was able to show that the linearized problem at constant conductivities

has a unique solution, which sets an initial framework for all further developments.

We remark that Calderón problem is posed under the most general conductivities. The only

requirement is that σ is bounded below, in order to have uniqueness of the direct problem we

mentioned above. Otherwise, we assume conductivities that are bounded.

However, this has proven to be a difficult task. The initial results obtained by researchers re-

quired more regularity assumptions. Iteratively, conditions have been relaxed to achieve L∞(Ω)

conductivities.

Kohn and Vogelius were one of the firsts dealing with the Calderón problem. In [56] they

established that all derivatives of conductivities at the boundary are uniquely determined by

the Dirichlet-to-Neumann map. Hence, by analytical continuation this shows that if σ is real-

analytic in Ω then it is uniquely determined by Λσ. As a first step, this work established an

essential foundation for later ones, since the determination of conductivities at the boundary

was essential for many of them.

In 1986, Sylvester and Uhlmann [87] extended the work of Calderón by showing uniqueness

for σ ∈ W 3,∞(Ω) close to 1 in two dimensions. This work established the foundations for all

uniqueness proofs that came afterwards by introducing the concept of exponentially growing

solutions depending on a complex parameter.

In 1988, Novikov [72] solved the more general inverse scattering problem for bounded po-

tentials and, hence, for twice-differentiable conductivities. One key idea that persisted to later

proofs and reconstruction formulas is the concept of a scattering transform. This transform

relates the complex frequency defining the exponential growing solutions to the boundary infor-

mation, in particular the Dirichlet-to-Neumann map, and the potential inside.

In 1987, Sylvester and Uhlmann [88] used these solutions to extract information about the

Fourier transform of σ at every frequency from asymptotics for large complex frequencies. With

it, they have proven that smooth conductivities are uniquely determined by DtN map in Rn, n ≥
3.
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In the year afterwards, Nachman in [68] extended these results for conductivities with only

two derivatives over domains in Rn, n ≥ 3. Not only he was able to provide a uniqueness result,

it is the first work explicitly working in the Calderón problem that introduces the concept

of scattering transform and how one can reconstruct the conductivity from it. In this work,

Nachman transforms the conductivity equation into a Schrödinger equation and reconstructs

the potential from boundary data.

Up to 1988, global uniqueness for smooth conductivities was still an open question in two

dimensions. The difficulty arises from the fact that the inverse problem is no longer overdeter-

mined and all of the information about Λσ needs to be used, while for n ≥ 3 the large complex

frequency information has been sufficient for global uniqueness. All proofs mentioned above

relied on this over determinacy.

Afterwards, Sun and Uhlmann [86] were the first to extend these results in order to obtain

uniqueness for generic conductivities with three-derivatives. In 1996, Nachman [69] improved

them by loosening the condition for two derivatives and at the same time providing a recon-

struction method based on ∂̄-equation.

Based on this result and similar ideas, Brown and Uhlmann [15] decreased the regularity in

order to only require σ ∈ W 1,p(Ω). They use the Dirac scattering equation to transform the

problem and establish the uniqueness result before setting it for the conductivities. Based on

this proof a reconstruction method was obtained in [55].

Only in 2006 a full answer to Calderón problem was given by Astala and Päivärinta [8]

for two-dimensions. They used the theory of quasi-conformal mappings to show the existence

and uniqueness of exponentially growing solutions to a Beltrami equation obtained from the

conductivity equation without requiring derivatives of σ.

Unfortunately, since most of the tools used to prove uniqueness in two-dimensions are based

on complex analysis they cannot be immediately used for higher dimensions.

The best known result for higher dimensions was obtained by Caro and Rodgers [19] for

σ ∈ W 1,∞(Ω) for Lipschitz domain and around the same time by Haberman for conductivities

with unbounded gradient [36].

In the meantime an extension of Calderón problem to admittivities γ = σ + iωϵ appeared.

The admittivity considers both the conductivity and permittivity of the body Ω which may

change with respect to the current frequency ω. This problem is more physically natural to

study since it incorporates information about the frequency of the electrical current. This was

avoided previously when deducing from Maxwell equations the conductivity equation (1.1) by

considering it was negligible.

This generalization is important for application purposes, since it helps distinguish more

inner domains from the extra information provided by the permittivity and the admittivity

relation with the current frequency. For simplicity, we also call γ complex conductivity through

out the text.
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With respect to the direct problem nothing changes and we can still consider equation (1.1)

with σ extended to γ. Here, the condition Re γ = σ ≥ c > 0 is still assumed. In fact, it is

necessary to ensure existence and uniqueness of the electrical potential u ∈ H1(Ω) solution to

the extended conductivity equation for a given voltage potential f ∈ H1/2(Ω). For reference

purposes, the complex conductivity equation is thus given as follows: ∇ · (γ∇u) = 0 in Ω,

u|∂Ω = f.
(1.4)

We remark that for γ ∈ L∞(Ω) with the above condition on σ the uniqueness and existence

of a solution is guaranteed by Theorem 4.10 of McLean’s book [62]. Furthermore, the respective

Dirichlet-to-Neumann map still holds analogously by:

Λγ : H1/2(∂Ω) → H−1/2(∂Ω) (1.5)

f 7→ γ
∂u

∂n
.

The proper weak formulation is similarly given for w ∈ H1(Ω), w|∂Ω = g through

⟨g,Λγf⟩H1/2(∂Ω),H−1/2(∂Ω) =

∫
Ω
γ∇u · ∇w dV (x). (1.6)

The Calderón problem is formulated almost as before with the slight consideration of the

frequencies:

“Can we uniquely determine the conductivity γ ∈ L∞(Ω), Re γ = σ ≥ c > 0 from its

Dirichlet-to-Neumann map Λγ at a single frequency ω0? If so, how can we reconstruct

it?”

While for some researchers there was evidence that some results could be easily extended for

complex conductivities, the first uniqueness result was published in 2000 by Francini [30] for γ ∈
W 2,∞(Ω) with small frequencies in two dimensions. This work based itself on the results obtained

by Brown and Uhlmann for real conductivities with the Dirac system [15]. The smallness

assumption pends on a perturbation argument to show uniqueness of exponentially growing

solutions. Furthermore, these solutions still exist when γ is in W 1,∞(Ω) but the uniqueness

proof presented requires higher regularity.

In 2008, Bukhgeim [16] presented a novel approach that drops the smallness requirement

for γ ∈ W 2,∞(Ω) in two dimensions. His work is not specifically focused on the conductivity

equation, instead it is centered around the Schrödinger equation and Dirac system. Through the

stationary phase method a uniqueness result for the potential is obtained from large complex

frequency asymptotics. Joining this result with Theorem 5.1 of Francini the uniqueness proof

follows for the complex conductivity.
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The Bukhgeim scheme was extended by other works [6, 28, 89]. Another work to keep in

mind [58] devised a reconstruction method based on ∂̄-equation. However, none of these were

able to decrease the regularity to once-differentiable complex conductivities.

The first work to decrease the regularity assumption to γ ∈W 1,∞(Ω) was obtained in [57] by

Lakshtanov, Tejero and Vainberg. The authors combined the works of Francini and Bukhgeim

to establish a uniqueness proof based on scattering data for large complex frequencies.

The only extension of this result was obtained in [75] for complex conductivities with dis-

continuity over curves. The author introduced a new set of exponentially growing solutions that

allows the determination of the complex conductivity on a set of special points, designated by

admissible points. As far as we are aware this is the best known result in two dimensions present

in the literature.

Furthermore, notice that all of the above works were for the two-dimensional case. In

fact, there is no explicit reference for the three-dimensional Calderón problem with complex

conductivities. However, based on results for the Schrödinger inverse problem present in [70]

a uniqueness proof for γ ∈ W 2,∞(Ω) can be obtained by establishing a relation between the

Dirichlet-to-Neumann map for the potential and the complex conductivity.

Notice that there is a common line for all uniqueness and reconstruction methods. Here we

highlight the main steps:

1. Transform the conductivity equation (1.4) into another boundary value problem for which

the coefficient of interest is not affected by derivatives. Examples in the literature involved

the Schrödinger equation, Dirac system and Beltrami equation.

2. Extend this problem into the whole space and convert it into an integral equation.

3. Study a set of exponentially growing solutions depending on a complex parameter for the

integral equation.

4. Either establish a scattering transform that is related with the boundary measurements

and with the exponential growing solutions, or establish an identity that makes use of

the exponential growing solutions to generate a Fourier transform of the coefficient. An

example of the latter is Alessandrini’s identity [5].

5. Devise a relation between the scattering data or the identity to obtain the coefficient of

interest;

6. Finally, relate the coefficient with the conductivity by connecting the Dirichlet-to-Neumann

map to the scattering data or identity.

The last steps vary slightly according to the equation we are dealing with and the respective

exponentially growing solutions. Moreover, the scattering transform has been mostly used for

possible reconstruction methods, while the identity are uniquely used for the uniqueness proof.
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Besides the mathematical interest, Calderón’s problem also has a role in practical appli-

cations. As initially mentioned, Calderón had an application in mind to introduce it, namely

geophysical prospecting. As of today, one of its largest applications is in medical imaging, where

it is called Electrical impedance tomography (EIT).

Electrical Impedance Tomography (EIT) is a non-invasive imaging method that produces

images by first determining electrical conductivity inside a subject using only electrical measure-

ments obtained at its surface. More specifically, sinusoidal currents are applied to the subject

through electrodes placed in certain locations at the surface of the object, and the resulting

voltages are then measured, making it possible to infer certain internal properties of the objects.

EIT is a low-cost method and since it only applies low amplitude currents is non-harmful for

living beings. Further, it allows for real-time monitoring of various subjects in harsh conditions.

There are applications of this technology for medical purposes, in scenarios such as ventilation

monitoring, detecting brain hemorrhages and breast cancer. Besides that, it is also used in

geophysical imaging, flow analysis and other industrial purposes. For further insight into the

applications, see [3, 26,92].

In order to reconstruct the electrical conductivity from the measurements one can use either

direct or iterative reconstruction methods.

Direct methods are scarce, but yet they are powerful. The idea behind these methods is to

obtain the conductivity through the Dirichlet-to-Neumann map by solving a set of steps in once.

The most general is based on the ∂̄-equation that was initially proposed by Nachman in [69]

and successfully implemented in a stable manner by [48]. Further, theoretical extensions have

been done in [54], application to simulated data in [53, 66, 67] and for experimental setup and

in vivo data see [49, 50, 65]. Another ∂̄-method was based on the uniqueness proof in [15] and

the reconstruction method established in [55]. This method was immediately tested for complex

conductivities since the work in [30] is heavily based on the real conductivities work [37] and

tested in experimental data in [38] and [41].

In the last couple of years, there has been an attempt to use the direct methods Nachman

introduced in [68] with implementations proposed on the following articles [23–25]. More testing

with simulated electrode data has been shown in [42], with even an unreferenced extension to

complex conductivities. All of these algorithms rely on the asymptotic behavior of exponentially

growing solutions with respect to large complex frequencies. As such, since it is computationally

impossible to obtain a limiting behavior these methodologies are very unstable when noise

corrupts the electrical measurements.

Recall that the physical nature of the problem is inherently three-dimensional. While the

direct methods for two-dimensions have been successfully tested and implemented to obtain

results in practice, there is still a long way to go for direct algorithms in three-dimensions. In

particular, when complex conductivities are involved.

Therefore, in three-dimensions EIT has been mostly solved by iterative methods. These
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methods can be further split into two categories: linear and non-linear. On the first case, a

linearization of EIT problem is applied. These methods only allow for the detection of small

changes with respect to the initial approximation. While they are fast to be applied in practice,

they lack the resolution required for clinical practice. The latter methods are based on iteratively

improving an approximation of the conductivity by solving on each step a PDE to simulate new

measurements and compared them with the real measured ones. Furthermore, the computation

of the Jacobian matrix, with respect to a numerical model, is required to appropriately update

the conductivity. Both steps require careful consideration since they are heavy computational

tasks.

Some of the relevant work in this direction are more focused on the appropriate choice of

optimization algorithm, see [13,74,82,90] for a nice review of the literature. The software package

EIDORS is available in MATLAB and was implemented based on this work [4].

From this confined literature review we verify the existence of several open problems in the

literature, in particular, in terms of complex conductivities and the computational hardship of

iterative methods. To this end, we have solved some of them and give a brief summary of the

results obtained in the following section.

1.2 Main results

The aim of the present work is to prove uniqueness of the Calderón problem under various

assumptions and to simplify the reconstruction procedure under an optimization framework.

The following theorem gives uniqueness of Calderón problem for complex conductivities in

two dimensions with a discontinuity curve. We refer to Chapter 3 for the theorem and proof.

Theorem 1.2.1. Let Ω be a bounded Lipschitz domain in R2 and Γj , j = 1, ...,m be a set of

closed Lipschitz curves with interior domains denoted by Dj and their union denoted as D.

Let γ = σ + iωϵ ∈ ∪nk=1W
2,∞(Dk) ∪W 2,∞(Ω \ D) with Re γ(x) ≥ c > 0 almost everywhere.

Further, we denote by γ− the traces from the inside of the curves and γ+ from the outside.

If the jumps
√

γ−

γ+
− 1 are small enough in L∞(Γj) over all curves j = 1, ..., n, then the

Dirichlet-to-Neumann map Λγ uniquely determines the conductivity γ in a set of proper admis-

sible points.

While this theorem does not show uniqueness over the full domain, it is the best result known

so far for complex conductivities, since all previous results still require continuity of γ.

In three dimensions, the following theorem combines the results obtained in chapter 4 and

stated separately in Theorems 4.1.1 and 4.1.2. The nature of the proofs is based on similar

ideas, but the tools used in the proof is completely different.

Theorem 1.2.2. Let Ω be a bounded Lipschitz domain in R3. Let γi for i = 1, 2 be two complex-

valued conductivities with Re γi ≥ c > 0 and Λγi be their respective Dirichlet-to-Neumann maps.
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(i) If Ω is a C1,1-domain and γi ∈ C1,1(Ω), we have that Λγ1 = Λγ2 ⇒ γ1 = γ2 in Ω.

(ii) If γi ∈W 1,inf ty(Ω) then it holds that Λγ1 = Λγ2 ⇒ γ1 = γ2 in Ω.

Notice that the second part is an improvement over the first one. This was possible by

applying quaternionic analysis to extend of the Dirac system of Brown, Uhlmann [15] and other

authors (see [57]) to three-dimensions. Further, this last theorem still requires continuity of the

conductivity, but it matches the best yet known result, even for the case when γ is purely real.

Calderón problem with discontinuous conductivities still remains an open question in three

dimensions, even for real conductivities. The proof in two dimensions is built on complex

analysis and quasi-holomorphic mappings which are unavailable for higher dimensions with the

same properties. In Chapter 5, we establish a framework with some open questions remaining

to obtain the uniqueness proof for real conductivities. Thus, the goal is to prove the following

conjecture.

Conjecture 1.2.3. Let Ω be a bounded Lipschitz domain. Let σi ∈ L∞ for i = 1, 2 and denote

the Λσi as their respective Dirichlet-to-Neumann maps.

Then, it holds:

Λσ1 = Λσ2 ⇒ σ1 = σ2 in Ω

Recall that the Calderón problem also encapsulates the reconstruction process. With this

in mind we also established some ground work in the reconstruction process through iterative

methods. In Chapter 6, we have shown that automatic differentiation (AD) method is effective

at computing the required Jacobian matrix used in most iterative methods and, therefore, in

solving the inverse problem. The core of this work reveals that this method can be used to

iterate faster on the optimization solvers, rather than on the efficiently implementation of the

analytical form of the Jacobian matrix. Hence, we have shown the effectiveness of AD to solve

the inverse problem.
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Chapter 2

Preliminaries

2.1 Some functional analysis

In this section we introduce the basic definitions of functional analysis that are required for the

following chapters. A complete introduction can be found in many textbooks, e.g., [2, 32, 62].

The framework we will introduced is based on the first two.

We start by introducing bounded domains and their boundaries, then we define Lebesgue

spaces and Sobolev spaces on both. Thereafter, we introduce the space embeddings and when

they are compact.

2.1.1 Domains and properties

Let Ω be a bounded and open set of Rn and define ∂Ω = Ω̄ ∩ (Rn \ Ω) to be its boundary. For

most results on this thesis concerning Sobolev spaces we need our domain Ω to satisfy some

properties described below, as well as a certain regularity on its boundary. All the definitions

below are present in [2].

Definition 2.1.1 (Lipschitz Domain). We say that Ω is a Lipschitz domain if its boundary

can be locally represented by Lipschitz continuous function. Namely, if for any x ∈ ∂Ω there

exists a neighborhood of x, Vx ⊂ Rn, such that Vx ∩ ∂Ω is the graph of a Lipschitz continuous

function under a proper local coordinate system.

In this sense, for some N ≥ 1, there exists Ω1, . . . ,ΩN connected components of the Lipschitz

domain, such that Ω =
⋃N
j=1Ω

j and for each j ∈ {1, ..., N} the boundary ∂Ωj is given by the

graph of a Lipschitz function ϕj : Rn−1 → R through ∂Ωj = {x ∈ Rn : xn = ϕ(x′) ∀x′ ∈ Rn−1}.
Moreover, for any Lipschitz domain Ω there exists a surface measure dσ and we can define

the integration over the boundary also through:∫
∂Ω

f(x) dσ(x) =

N∑
j=1

∫
∂Ωj

f(x1, x2, ..., xn−1, ϕj(x1, x2, ..., xn−1))
√

1 + |∇ϕj(x1, ..., xn−1)|2 dx1...dxn−1;

By Rademacher theorem and the fact that is Lipschitz, ϕj is differentiable almost everywhere

and bounded for any j ∈ {1, ..., N}.
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Definition 2.1.2 (Higher regularity domains). We say that Ω is of class Ck,α, 0 ≤ α ≤ 1,

if at each point x0 ∈ ∂Ω there is a ball B = B(x0) and a one-to-one mapping ψ of B onto

D ⊂ Rn such that:

(i) ψ(B ∩ Ω) ⊂ Rn+;

(ii) ψ(B ∩ ∂Ω) ⊂ ∂Rn+;

(iii) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).

Definition 2.1.3 (Cone Condition). Let v be a nonzero vector in Rn and let ∠(x, v) be the

angle between the position vector x ̸= 0 and v. For such given v, and ρ > 0, and κ satisfying to

0 < κ ≤ π, the set

C = {x ∈ Rn : x = 0 or 0 < |x| ≤ ρ,∠(x, v) ≤ π/2}

is called a finite cone of height ρ, axis direction v, and aperture angle κ with vertex at the origin.

We say that a domain Ω satisfies the cone condition if there exists a finite cone C such

that each x ∈ Ω is the vertex of a finite cone Cx contained in Ω and congruent to C. Note that

Cx need not be obtained from C by a parallel translation, but simply by rigid motions (rotation,

reflection and/or translation).

2.1.2 Lp and Sobolev Spaces

Definition 2.1.4 (Lebesgue spaces). Let Ω be a domain in Rn and let p ∈ [1,∞]. We denote

by Lp(Ω) the class of all measurable functions u defined on Ω for which∫
Ω
|u(x)|p dx <∞, if 1 ≤ p <∞ (2.1)

sup
x∈Ω

|u(x)| <∞ (2.2)

Two functions are said equivalent if they are equal almost everywhere in Ω. In this sense,

an element of Lp(Ω) is just a representative of an equivalence class of measurable functions

satisfying (2.1 or 2.2) , and we will work with these equivalence classes of functions without

making further comments.

The space is a Banach Space with the norm

∥u∥Lp(Ω) =

[∫
Ω
|u(x)|p dx

]1/p
(2.3)

∥u∥L∞(Ω) = sup
x∈Ω

|u(x)| (2.4)

Moreover, for p = 2, the space is in fact a Hilbert Space, with the inner product:

⟨f, g⟩ =
∫
Ω
f(x)g(x) dx (2.5)
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In our thesis, the measure dx will always represent the Lebesgue measure in Rn, although,
the above statement work for any measure.

The concept of Sobolev Spaces comes from the definition of weak derivative, which we will

not present here, and from the above definition ofLp space.

Definition 2.1.5 (Sobolev spaces). Let Ω be a domain in Rn, p ∈ [1,∞] and k be a positive

integer. We denote by W k,p(Ω) the space of functions such that all the weak (or distributional)

partial derivatives Dα, for 0 ≤ |α| ≤ k, are in Lp(Ω), that is:

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ k} (2.6)

This space is a Banach space under the norm:

∥u∥Wk,p(Ω) =

 ∑
0≤|α|≤k

∥Dαu∥pLp(Ω)

1/p

, if 1 ≤ p <∞, (2.7)

∥u∥Wk,∞ = max
0≤|α|≤m

∥Dαu∥L∞(Ω) (2.8)

Similarly to above, when p = 2 it is an Hilbert space, under the sum of the inner products in

L2 of all the derivatives. Hence, we change notations in this case: W k,2(Ω) = Hk(Ω).

Theorem 2.1.6 (Lp embeddings over bounded domains). Suppose that Ω is a domain

such that vol(Ω) =
∫
Ω 1 dx <∞. Let 1 ≤ p ≤ q ≤ ∞. If u ∈ Lq(Ω) then u ∈ Lp(Ω) and

∥u∥Lp(Ω) ≤ (vol(Ω))1/p−1/q ∥u∥Lq(Ω) (2.9)

We denote this embedding as Lq(Ω) ↪→ Lp(Ω).

Theorem 2.1.7 (Sobolev Embedding Theorem). Let Ω be a domain in Rn. Let j ≥ 0 and

m ≥ 1 be integers and let 1 ≤ p <∞.

PART I Suppose that Ω satisfies the cone condition.

Case A If either mp > n or m = n and p = 1, then

W j+m,p(Ω) → CjB(Ω). (2.10)

For p ≤ q ≤ ∞, we have

Wm,p(Ω) → Lq(Ω) (2.11)

Case B If mp < n then, for p ≤ q ≤ p∗ = np/(n−mp), we have

Wm,p(Ω) → Lq(Ω) (2.12)

PART II Suppose that Ω is a Lipschitz domain. Then, we have the following refinement

holds: if mp > n > (m− 1)p then

W j+m,p(Ω) → Cj,λ(Ω) for 0 < λ ≤ m− (n/p). (2.13)
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Theorem 2.1.8 (Sobolev Inequality). When mp < n then there exists a finite constant K

such that:

∥ϕ∥Lp̃(Rn) ≤ K

 ∑
|α|=m

∥Dαϕ∥pLp(Rn)

1/p

for p̃ = np/(n−mp) and ϕ ∈ C∞
c (Rn). (2.14)

In particular, for n ≥ 2 and 1 ≤ p < 2 we get

∥ϕ∥Lp̃(Rn) ≤ K∥∇ϕ∥Lp(Rn) (2.15)

Theorem 2.1.9 (Rellich-Kondrachov Theorem). Let Ω be a domain in Rn and Ω0 a bounded

sub-domain of Ω. Let j ≥ 0 and m ≥ 1 be integers and let p ∈ [1,∞).

PART I If Ω satisfies the cone condition and mp ≤ n, then the following embedding is

compact:

Wm,p(Ω) → Lq(Ω0), if 1 ≤ q ≤ np/(n−mp). (2.16)

PART II If Ω satisfies the cone condition and mp > n, then the following embedding is compact:

Wm,p(Ω) → CB(Ω0). (2.17)

Theorem 2.1.10 (Trace operator). Let Ω be a domain in Rn. We define the trace operator

in this domain by:

tr : D(Ω̄) → D(Γ)

u 7→ tr(u) = u|Γ.

(i) If Ω is a Ck−1,1 and 1
2 < s ≤ k, then tr has a unique extension to a bounded linear operator

tr : Hs(Ω) → Hs−1/2(Γ).

(ii) If Ω be a Lipschitz domain and 1
2 < s < 3

2 , then tr has a unique extension to a bounded

linear operator

tr : Hs(Ω) → Hs−1/2(Γ).

Both extensions have a continuous right inverse.
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2.1.3 Other related results

Here we introduce some of the results that are required throughout the chapters but due not fit

any specific section.

Theorem 2.1.11 (Maximum and minimum principles for elliptic operators, [32]). We

consider the differential operator L defined as:

Lu =
n∑

i,j=1

Di(a
ij(x)Dju(x)),

whose coefficients aij (i, j = 1, ..., n) are assumed to be measurable functions on a domain

Ω ∈ Rn (we consider this operator in a weak sense).

Let the operator L satisfy the conditions:

1. The operator L is strictly elliptic: ∀x ∈ Ω, ξ ∈ Rn∃λ > 0 :
∑n

i,j=1 a
ij(x)ξiξj ≥ λ|ξ|2,

2. L has bounded coefficients:
∑n

i,j=1 |aij(x)|2 ≤ Λ2

Then, if u ∈ H1(Ω) is a solution of Lu = 0, with u|∂Ω = f ∈ H1/2(∂Ω) we have

sup
Ω
u ≤ sup

∂Ω
f+ inf

Ω
u ≤ sup

∂Ω
f−,

where f = f+ + f−, f+ = max{f(x), 0}, f− = min{f(x), 0}.

Theorem 2.1.12 (Hardy-Littlewood-Sobolev inequality, [84]). Let f ∈ Lp(Rn). We de-

fined the Riesz potential of f by:

(Iαf) (x) =
1

γ(α)

∫
Rn

f(y)

|x− y|n−α
dy, for 0 < α < n (2.18)

with γ(α) = πn/22αΓ(α/2)
/
Γ ((n− α)/2). Moreover, for 1 < p, q <∞, such that 1

q = 1
p −

α
n , it

holds

∥Iα(f)∥Lq(Rn) ≤ Ap,q∥f∥Lp(Rn).

In particular, for 1 < p < 2, we have:

∥I1(f)∥Lp̃(R2) ≤ Ap̃∥f∥Lp(R2),

where p̃ is the Sobolev conjugate 1
p̃ = 1

p −
1
2 .

Theorem 2.1.13 (Riemann-Lebesgue lemma, [12]). Let f be a function in L1(Rn). Then

its Fourier transform is defined as:

Ff(ξ) :=
∫
Rn

f(x)e−ix·ξ dx,
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and fulfills

Ff(ξ) → 0, as |ξ| → +∞.

The result holds also by extension for L2 functions.

For any f ∈ L2(∂Ω) where Ω is a Lipschitz domain, we have by the above integration over

the surface that the Riemann-Lebesgue lemma also holds for this functions, since√
1 + |∇ϕj(x′)|2f(x′) ∈ L2(Rn−1).

Moreover, the Fourier transform is invertible in L2(Rn) and the inverse is densely defined

as

F−1f(ξ) :=

∫
Rn

f(x)eix·ξ dx.

2.2 Quaternionic analysis

We introduce here the quaternionic framework necessary for the work presented in the Chapter

4 and 5. This introduction is heavily based on the books of Gürlebeck and Sprössig [34,35].

Real quaternions

Let e0, e1, e2, e3 be the basic elements in R4 where each ek identifies with the 4-tuple for which

the k+1-th component has the number one and is zero otherwise. An arbitrary element x ∈ R4

now has the representation x = x0e0 + x1e1 + x2e2 + x3e3.

The idea of quaternionic analysis is to introduce a product in R4. To be an algebra the basic

elements must fulfill the following conditions:

(i) e21 = e22 = e23 = −1,

(ii) e1e2 = e3, e2e3 = e1 e3e1 = e2,

(iii) eiej + ejei = 0, (i, j = 1, 2, 3; i ̸= j).

The tuple (R4, ·) is called algebra of real quaternions. The quaternions were initial described

by W.R. Hamilton in 1843 and thus we denote them by H in his honor. By simplicity we can

assume that e0 = 1 and thus in general a element x ∈ H can be written as

x = x0 + x1e1 + x2e2 + x3e3, with xj ∈ R, j = 0, 1, 2, 3. (2.19)

For x, y ∈ H we denote xy for the resulting quaternion product. We note that this product

is not commutative and a simple example is given by e1e2 = −e2e1. Now we denote the scalar

part by Sc x = x0 and the vector part by Vec x = x1e1 + x2e2 + x3e3. The quaternion

x̄ = x0 − (x1e1 + x2e2 + x3e3), (2.20)
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is called the conjugate of x ∈ H. For two quaternions x, y ∈ H it holds that xy = ȳx̄. It also

holds that Sc x = 1
2 (x+ x̄) and Vec x = 1

2(x− x̄).

The inner product in R4 that is given as ⟨x, y⟩R4 = x0y0 + x1y1 + x2y2 + x3y3 can also be

written through quaternions as

⟨x, y⟩R4 = Sc(x̄y) = Sc(xȳ) =
1

2
(xȳ + yx̄).

We note that a quaternion-valued inner product is also possible and given as ⟨x, y⟩H = x̄y.

With this inner product we have that H is an Hilbert space and the resulting norm is the usual

Euclidean norm, ∥x∥H :=
√

⟨x, x⟩H =
√
x̄x =

√
|x|2.

Complex quaternions

An extension of the quaternions to consider, is assuming xj are complex-valued. This allows us

to later on to introduce the exponentially growing solutions.

Let us consider x ∈ C4. Then we can define a complex quaternion in the same way by

x = x0 + x1e1 + x2e2 + x3e3. We denote this space by C⊗H. Here, we use the same generators

(e0, e1, e2, e3) as before, with the same multiplication rules, however, the coefficients of the

quaternion can be complex-valued. A complex quaternion can also be denoted as x = xR + ixI

with xR, xC ∈ H

Here, we want to clarify the conjugation one can apply, since both the complex numbers and

quaternions can be conjugated.

First and foremost, we keep the notation for when we only apply the quaternion conjugation,

that is, for x ∈ C⊗H we denote the quaternion conjugation as

x̄ = x̄R + ix̄I = x0 − (x1e1 + x2e2 + x3e3), xj ∈ C. (2.21)

In second, we can define the complex conjugation of a complex quaternion as

x̄c = xR − ixI = x̄C0 + x̄C1 e1 + x̄C2 e2 + x̄C3 e3, (2.22)

where for z ∈ C we define z̄C as the usual complex conjugation.

Finally, the quaternion and complex conjugation together is denoted as

x̄† = x̄R − ix̄I . (2.23)

Similarly to the real case, we introduce an associated inner product and norm in C⊗H by

means of this conjugation as follows:

⟨x, y⟩C4 := Sc
(
x̄†y
)

and ∥x∥C⊗H :=
√

Sc (x̄†x). (2.24)
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2.2.1 Quaternion-valued functions

In the interest of the work established later, we define the following quaternionic-valued functions

f : R3 → C⊗H

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3

where fj : R3 → C.
Furthermore, from now one we relate the vector x ∈ R3, x = (x0, x1, x2) with a quaternion

through the same notation as x = x0 + x1e1 + x2e2. It will be clear from the context if we are

using one or another.

The Banach spaces Lp, Wn,p of C ⊗ H-valued functions are defines by requiring that each

component is in such space. On L2(Ω) we introduce the C⊗H-valued inner product through

⟨f, g⟩ =
∫
Ω
f̄ †(x)g(x) dx. (2.25)

Analogously to the Wirtinger derivatives in complex analysis, we establish the Cauchy-

Riemann operators through the coordinates (x0, x1, x2) of R3 by

D = ∂0 + e1∂1 + e2∂2, (2.26)

where ∂j is the derivative with respect to the xj , j = 0, 1, 2 variable, and

D̄ = ∂0 − e1∂1 − e2∂2. (2.27)

The vector part of the Cauchy-Riemann operator is designated as Dirac operator. It holds

that DD̄ = ∆ where ∆ is the Laplace operator.

Analogous to holomorphic functions we introduce the following definition.

Definition 2.2.1. Let Ω be a domain in R3. Any function f : Ω → C⊗H is called a monogenic

function if Df = 0 over Ω.

Moreover, due to the non-commutative nature of quaternions the derivative rule for products

of functions does not hold in the same way as in complex or real analysis. In this sense, we

introduce a Leibniz rule for quaternionic functions.

Lemma 2.2.2. Let f : R3 → C×H and g : R3 → C×H be two quaternionic-valued differentiable

functions.

Then, the following rule for the derivative of their product holds:

D (fg) = (Df) g − f̄
(
D̄g
)
+ 2Sc (fD)g, (2.28)

with Sc (fD) = f0∂0 −
∑2

k=1(fk∂k).

We remark that if f is a scalar-valued function one recovers the classical Leibniz’s rule

D(fg) = (Df)g + f(Dg).
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A bit of Operator Theory

Let Ω be a bounded domain and f : Ω → C ⊗ H. We introduce now the Teoderescu transform

in the quaternion, also just called the T -operator, by

(Tf) (x) = − 1

ω3

∫
Ω

y − x

|y − x|3
f(y) dy for x ∈ Ω, (2.29)

where E(x, y) = − 1
ω3

y−x
|y−x|3 is the generalized Cauchy kernel and ω3 = 4π stands for the surface

area of the unit sphere in R3. This operator is the right-inverse for the Cauchy-Riemann operator,

i.e., for x ∈ Ω and f ∈ Lp(Ω) it holds that DTf = f.

The operator T has the following mapping properties.

Theorem 2.2.3. Let Ω be a bounded domain in R3.

(i) For 1 < p <∞ the operator T :W k,p(Ω) →W k+1,p(Ω) is bounded for k ∈ N0.

(ii) For 1 < p < 3 the operator T : Lp(Ω) → Lp
′
(Ω) with p′ < 3p

3−p

Theorem 2.2.4. Let Ω be a domain in R3 and let 1 ≤ p < 3. In particular, Ω can be R3. Then,

the operator T : Lp(Ω) → Lp̃(Ω) is a bounded operator for p̃ = 3p/(3− p).

Proof. The proof of this theorem is immediate from Hardy-Littlewood-Sobolev inequality intro-

duced above in Theorem 2.1.12.

Furthermore, we introduce the boundary integral operator for x /∈ ∂Ω

(F∂Ωf) (x) =
1

ω3

∫
∂Ω

y − x

|y − x|3
α(y)f(y) dS(y), (2.30)

where α(y) is the outward pointing normal unit vector to ∂Ω at y and dS is the measure at the

boundary.

We get the well-known Borel-Pompeiu formula

(F∂Ωf) (x) + (TDf) (x) = f(x) for x ∈ Ω.

Obviously, DF∂Ω = 0 holds through this formula and F∂Ω acts from W
k− 1

p
,p
(∂Ω) into W k,p(Ω),

for k ∈ N and 1 < p <∞.

One of the other well-known results we will need for our work is the Plemelj-Sokhotzki

formula is obtained by taking the trace of the boundary integral operator.

To present it, we introduce another operator over the boundary of Ω.

Proposition 2.2.5. Let 1 < p <∞, k ∈ N and f ∈W k,p(∂Ω). Then the integral exists

(S∂Ωf) =
1

2π

∫
∂Ω

y − x

|y − x|3
α(y)f(y) dS(y) (2.31)

for all points x ∈ Ω in the sense of Cauchy principal value. Furthermore, the operator S∂Ω is

bounded in W k,p(∂Ω).
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The Plemelj-Sokhotzki formula is now given as follows.

Theorem 2.2.6. Let 1 < p < ∞, k ∈ N and f ∈ W k,p(∂Ω). By taking by taking the non-

tangential limit of F∂Ω it holds

lim
x→x0,

x∈Ω, x0∈∂Ω
(F∂Ωf) (x) =

1

2
(f(x0) + (S∂Ωf) (x0)) .

One of the corollaries concerns the limit to the boundary acting as a projector. That is,

Corollary 2.2.7. Let P∂Ω denote the projection onto the space of all H−valued functions which

may be extended to a monogenic function over the domain Ω.

Then this projection may be represented as

P∂Ω =
1

2
(I + S∂Ω) .
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Chapter 3

Complex Conductivities in 2D with

jumps

This chapter focus on the Calderón problem for complex conductivities in two dimensions.

One of the core ideas in this line of work is to use stationary phase method, which uses high

oscillatory behavior of exponentials to cancel out in the integral except at the stationary points

of the exponential phase. From this, we can reconstruct the conductivity through oscillatory

integrals. The method was introduced by Bukhgeim in [16] and is the best known approach to

establish uniqueness for complex conductivities in two dimensions.

Our work deepens this method by the introduction of a new family of exponentially growing

solutions and the study of respective integral equations. The first version was published in [75].

Here, we present a more in depth version with simplified proofs. These new family of solutions

leads us to uniqueness of complex-conductivities which can be smooth enough except for certain

curves, where they possess a discontinuity.

3.1 The Problem

Let Ω ⊂ R2 be a bounded Lipschitz domain and define γ ∈ L∞(Ω) to be an isotropic complex

conductivity γ = σ+iωϵ, as defined in the Introduction. It is also called admittivity in literature.

The direct problem we focus here is given in Eq. (1.4) and we recall it here for simplicity.

Let f ∈ H1/2(∂Ω) be a voltage established at the boundary ∂Ω. Then, we want to find the

unique electrical potential u ∈ H1(Ω) that fulfills the conductivity equation:∇ · (γ∇u) = 0 in Ω,

u|∂Ω = f.
(3.1)

Further, recall that uniqueness is guaranteed in H1(Ω), as long as Re γ ≥ c > 0. As such,
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we can define the Dirichlet-to-Neumann map from this solution. Formally, it is defined as:

Λγ : H1/2(∂Ω) → H−1/2(∂Ω) (3.2)

f 7→ γ
∂u

∂n
,

where n is the unit outward normal vector to ∂Ω. However, in the strong sense it only holds in

cases when we have more regularity of the boundary values.

In any case, the proper weak formulation is given as

⟨g,Λγf⟩H1/2(∂Ω),H−1/2(∂Ω) =

∫
Ω
γ∇u · ∇v dx, for v ∈ H1(Ω), v|∂Ω = g. (3.3)

As mentioned in the introduction, in most cases we require stronger assumptions on γ to

prove uniqueness of Calderón problem.

Here, we initial consider the that the complex conductivity has a discontinuity along a single

closed curve Γ, see Figure 3.1 for an example, but are smooth otherwise. We denote by D the

interior region inside Γ. In the last section of this chapter, we consider the general case with

more than one discontinuity curve, which proves the general Theorem 1.2.1.

Figure 3.1: Complex conductivity γ which is smooth inside and outside the domains divided by

the curve Γ.

Due to this discontinuity the solution u of (3.1) must fulfill the following transmission con-

dition: u−(x)− u+(x) = 0

γ− ∂u−

∂n (x)− γ+ ∂u+

∂n (x) = 0
for x ∈ Γ, (3.4)

where u−, u+ and γ−, γ+ represent the traces of these functions at Γ from inside and outside,

respectively.

For the sake of presenting the main result of this chapter, we introduce the concept of an

admissible point. These points are where uniqueness of the conductivity is guaranteed from the

Dirichlet-to-Neumann map. Their definition arises from the results required to show uniqueness.
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Definition 3.1.1. We say that a point w ∈ Ω is an admissible point if there is a constant

λΩ ∈ C such that

Aw := sup
x∈Ω̄

Re
[
λΩ(x− w)2

]
< 1/2

Bw := sup
x∈D̄

Re
[
λΩ(x− w)2

]
< −1/2

Furthermore, if w is an admissible point and Aw + Bw < 0 then we say that w is a proper

admissible point.

These points are essential to build the full uniqueness proof, as they allow to introduce

a new set of exponentially growing solutions and to define a reconstruction formula based on

them. With this in mind, we present one of the main results in this chapter which holds for one

discontinuity curve. Later on, we explain how to generalize the proof so that the conductivities

can possess more than one discontinuity curve.

Theorem 3.1.2. Let Ω ⊂ R2 be a bounded Lipschitz domain and Γ ⊂ Ω be a closed Lipschitz

curve, with interior denoted by D. Further, let γ ∈W 2,∞(D)∪W 2,∞(Ω\D̄) be a complex-valued

conductivity such that Re γ ≥ c > 0.

Then, if
√

γ−

γ+
− 1 is small enough on L∞(Γ) we have that the Dirichlet-to-Neumann map

Λγ uniquely determines the conductivity γ in any proper admissible point.

We have to remark that this only gives uniqueness in the proper admissible points, but this

approach allows to overcome the current limitation of Lipschitz conductivities in the current

literature. Further, while the condition
√

γ−

γ+
− 1 being small means that the jump of γ should

be small, it is a technical restriction.

3.2 The relation with Dirac equation

One of the essential steps in solving the Calderón problem has been the conversion into another

similar inverse problem. In what follows we use complex analysis to pass our problem into

an Inverse Dirac problem. In this new setting it is easier to prove uniqueness since the

important parameter is not affected by any derivatives. Thereafter, we can use this result to

prove uniqueness for the Calderón problem.

Hereby, we identify any point x ∈ R2 by its respective complex number z := x1 + ix2 ∈ C.
Assume, we know the complex conductivity γ and let u ∈ H1(Ω) be the unique solution to (3.1)

for a given voltage at the boundary. We define the vector function ϕ := (ϕ1, ϕ2) = γ1/2
(
∂u, ∂̄u

)t
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and compute
(
∂̄ϕ1, ∂ϕ2

)
to obtain the following system of equations∂̄ϕ1 = ∂̄

(
γ1/2∂u

)
∂ϕ2 = ∂

(
γ1/2∂̄u

) ⇔

∂̄ϕ1 =
(
∂̄γ1/2

)
∂u+ γ1/2

(
∂̄∂u

)
∂ϕ2 =

(
∂γ1/2

)
∂̄u+ γ1/2

(
∂∂̄u

)
⇔

∂̄ϕ1 = 1
2γ

−1/2∂̄γ∂u+ 1
4γ

1/2∆u

∂ϕ2 = 1
2γ

−1/2∂γ∂̄u+ 1
4γ

1/2∆u
⇔

∂̄ϕ1 = 1
2γ

−1/2∂̄γ∂u− 1
4γ

−1/2∇γ · ∇u

∂ϕ2 = 1
2γ

−1/2∂γ∂̄u− 1
4γ

−1/2∇γ · ∇u.

The last step follows due to u being a solution of the conductivity equation ∇·(γ∇u) = 0, which

by expansion leads to γ1/2∆u = −γ−1/2∇γ · ∇u.
Further notice that ∇γ · ∇u = 2

(
∂̄γ∂u+ ∂γ∂̄u

)
. Substituting and making the adequate

subtraction of the other terms leaves us with∂̄ϕ1 = −1
2γ

−1/2∂γ∂̄u

∂ϕ2 = −1
2γ

−1/2∂̄γ∂u
⇔

∂̄ϕ1 = −1
2
∂γ
γ ϕ2

∂ϕ2 = −1
2
∂̄γ
γ ϕ1

Recall that any solution u of (3.1) will be defined on Ω \ Γ with a transmission condition

coupling the function inside and outside the curve.

Therefore from u we can determine a solution ϕ := γ1/2
(
∂u, ∂̄u

)t
to the Dirac system(

∂̄ 0

0 ∂

)
ϕ(z) = q(z)ϕ(z), z ∈ Ω \ Γ. (3.5)

where q is a potential and defined also on Ω \ Γ by

q(z) =

(
0 q12(z)

q21(z) 0

)
, q12 = −1

2

∂γ

γ
, q21 = −1

2

∂̄γ

γ
. (3.6)

The usual treatment of Calderón problems is to study the transformed equation over the

whole space C\Γ, which allows us to attribute non-physical asymptotic behavior to our solutions.

First, we assume that γ ≡ 1 near ∂Ω and further extend it by γ = 1 outside Ω, that is, over

C \ Ω. The fact that we are assuming γ = 1 near the boundary is not restrictive, since we are

able to enlarge the domain with this condition and the problems will be related, see section 2

of [8] for a well described explanation of this construction.

Our study focuses on solutions ϕ to the system of equations (3.5) in C \Γ and on the unique

determination of the potential q from boundary data.

Additionally to the system of equations, we still need a missing piece that ϕ must fulfill to

complete the connection. Since u satisfies a transmission condition in Γ we must also define one

for ϕ.

Let n(z) = (nx(z), ny(z)) denote the unit outer normal vector in Γ, given as ν(z) = nx(z) +

i ny(z) in C. Then, we relate the transmission condition (3.4) to solutions of Dirac system

through next lemma.
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Lemma 3.2.1. The transmission condition (3.4) takes the formϕ+1 − ϕ−1

ϕ+2 − ϕ+2

 =
1

2

α+ 1
α − 2 (α− 1

α)ν̄
2

(α− 1
α)ν

2 α+ 1
α − 2

ϕ−1
ϕ−2

 (3.7)

where α =
√

γ−

γ+
.

Proof. Let τ(z) = (−ny(z), nx(z)) be a unit tangent vector to Γ. Applying the tangential

derivative to the first condition u+ − u− = 0 of (3.4) we obtain

∂

∂τ
(u+(z)− u−(z)) = 0.

Multiplying this equation by
√
γ+ leads to

√
γ+u+τ =

√
γ+u−τ , where uτ := ∂u

∂τ . Subtracting

on both sides
√
γ−u−τ we get

√
γ+u+τ −

√
γ−u−τ =

(√
γ+ −

√
γ−
)
u−τ

=
√
γ−

(√
γ+

γ−
− 1

)
u−τ =

√
γ−
(
1

α
− 1

)
u−τ .

Let us denote as well the normal derivative by un := ∂u
∂n for ease of notation. Immediately,

we get from the second condition of (3.4) that u+n = γ−

γ+
u−n . Hence, we find

√
γ+u+n −

√
γ−u−n =

√
γ+
(
γ−

γ+

)
u−n −

√
γ−u−n

=

(
γ−√
γ+

−
√
γ−

)
u−n =

√
γ−(α− 1)u−n .

Combining the relations between complex derivatives, normal and tangential derivatives

given by

∂u =
1

2
(ν̄un − iν̄uτ ) (3.8)

∂̄u =
1

2
(νun + iνuτ ) (3.9)

we can establish a relation for ϕ+i − ϕ−i , i = 1, 2 together with conditions derived above. We

obtain

ϕ+1 − ϕ−1 =
√
γ+∂u+ −

√
γ−∂u−

=
ν̄

2

[√
γ+u+n −

√
γ−u−n

]
− iν̄

2

[√
γ+u+τ −

√
γ−u−τ

]
=
ν̄

2

√
γ−(α− 1)u−n − iν̄

2

√
γ−
(
1

α
− 1

)
u−τ
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and

ϕ+2 − ϕ−2 =
√
γ+∂̄u+ −

√
γ−∂̄u−

=
ν

2

[√
γ+u+n −

√
γ−u−n

]
+
iν

2

[√
γ+u+τ −

√
γ−u−τ

]
=
ν

2

√
γ−(α− 1)u−n +

iν

2

√
γ−
(
1

α
− 1

)
u−τ

These relations take the matrix formϕ+1 − ϕ−1

ϕ+2 − ϕ−2

 =
1

2

(α− 1) ν̄
(
1
α − 1

)
(−iν̄)

(α− 1) ν
(
1
α − 1

)
(iν)

√γ−u−n√
γ−u−τ

 . (3.10)

To finalize, we need to convert the right-hand side vector. This easily follows by conditions

(3.8) and (3.9). Multiplying by
√
γ both equations, writing them in matrix form and taking the

trace from inside, gives: √γ−∂u−√
γ−∂̄u−

 =
1

2

ν̄ −iν̄

ν iν

√γ−u−n√
γ−u−τ

 .

By definition of ϕ through u, the left-hand side is exactly ϕ. Inverting the two-by-two matrix

with unit outer normal ν, we obtain√γ−u−n√
γ−u−τ

 =

 ν ν̄

iν −iν̄

ϕ−1
ϕ−2

 .

Joining this expression with (3.10) leads to the desired result.

We are now ready to explore solutions of Dirac system that satisfy the equation (3.5) and

transmission condition (3.7). For such, we construct a new set of exponential growing solutions

that allows reconstruction of the potential later on.

3.3 Exponentially growing solutions

The second piece of the puzzle in Calderón problem uniqueness proofs has been exponential

growing solutions. In our case, we start from typical Bukhgeim exponential functions, also used

in [6, 8, 47,57,71], to name a few.

For this purpose, we consider solutions ϕ have the following asymptotic behavior:ϕ1(z, w, λ) → eiλ(z−w)
2/2 [U(z, w, λ) + o(1)]

ϕ2(x,w, λ) → e−iλ(z−w)
2/2o(1)

as |z| → ∞, (3.11)

where z, w ∈ C, λ ∈ C and U is an entire function in z, that we define later on.
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Since these asymptotics complicate the specific study of the equation, we consider the fol-

lowing related functions:

µ1(z, w, λ) = ϕ1(z, w, λ)e
−iλ

2
(z−w)2 , (3.12)

µ2(z, w, λ) = ϕ2(z, w, λ)e
iλ(z−w)2/2. (3.13)

Given that ϕ fulfills the Dirac system (3.5) in C\Γ and the exponential functions e−i
λ
2
(z−w)2 ,

eiλ(z−w)
2/2 are holomorphic and anti-holomorphic, respectively, then by direct substitution we

see that µ is a solution to the following system(
∂̄ 0

0 ∂

)
µ(z) =

(
0 q12(z)e

−iRe(λ(z−w)2)

q21(z)e
iRe(λ(z−w)2) 0

)
µ(z)

=: Qλ(z)µ(z), z ∈ Ω \ Γ. (3.14)

Analogously, we obtain the transmission condition in µ:µ+1 − µ−1

µ+2 − µ−2

 =
1

2

 α+ 1
α − 2 (α− 1

α)ν̄
2e−iRe(λ(z−w)2)

(α− 1
α)ν

2eiRe(λ(z−w)2) α+ 1
α − 2

µ−1
µ−2


=: Aλ(z)µ

−, z ∈ Γ. (3.15)

Our interest now resides in solving (3.14) with (3.15) and fulfilling the respective asymptotics

(µ1, µ2)
t → (U, 0)t as |x| → ∞.

To start our study, we determine the corresponding integral equation and define appropriate

spaces to establish existence and uniqueness of a solution.

Proposition 3.3.1. Let µ be a solution of (3.14) satisfying (3.15) and has asymptotics (3.11).

Then µ is a solution of the following integral equation:

[I + PAλ −DQλ]µ =

(
U

0

)
, (3.16)

where I is the identity operator, D =

(
∂̄−1 0

0 ∂−1

)
with

∂̄−1f(z) = − 1

π

∫
C

f(ξ)

ξ − z
dσξ

and ∂−1 is given through the integral kernel (ξ − z)
−1

and dσξ = dξ1dξ2.

Furthermore, P =

(
P+ 0

0 P−

)
is a matrix operator defined by Cauchy projector and its

complex adjoint, respectively:

P+f(w) =
1

2πi

∫
Γ

f(z)

z − w
dz, P−f(w) =

1

2πi

∫
Γ

f(z)

z − w
dz, w ∈ C. (3.17)

39



Proof. The approach we follow for this proof is based on [58]. Let G be an arbitrary bounded

domain with smooth boundary and f ∈ C1(Ḡ). Then Cauchy-Green formulas hold as follows

f(z) = − 1

π

∫
G

∂f(ξ)

∂ξ̄

1

ξ − z
dσξ +

1

2πi

∫
∂G

f(ξ)

ξ − z
dξ, z ∈ G,

0 = − 1

π

∫
G

∂f(ξ)

∂ξ̄

1

ξ − z
dσξ +

1

2πi

∫
∂G

f(ξ)

ξ − z
dξ, z /∈ Ḡ.

Now, for each z ∈ G we denote by DR a disk of radius R and centered at z, and take

D−
R = DR \ D̄. We recall that D is the interior part of Γ.

Without loss of generality, we assume that z ∈ D and f = µ1 in both formulae. Further,

taking G = D in the first formula, G = D−
R in the second and adding them up together we obtain

µ1(z, λ) =
1

2πi

∫
DR\Γ

∂µ1(ξ)

∂ξ̄

1

ξ − z
dσξ +

1

2πi

∫
Γ

µ−1 (ξ)

ξ − z
dξ +

1

2πi

∫
∂DR\D

µ+1 (ξ)

ξ − z
dξ

=
1

2πi

∫
DR\Γ

(Qλµ)1 (ξ)
1

ξ − z
dσξ +

1

2πi

∫
Γ

[µ1](ξ)

ξ − z
dξ +

1

2πi

∫
∂DR

µ+1 (ξ)

ξ − z
dξ

since µ1 is a solution to (3.14) and [µ1] = µ−1 − µ+1 .

Noticing, that µ1 converges at infinity to an entire function U and using Cauchy integral

formula U(z) = 1
2πi

∫
∂DR

U(ξ)
ξ−z dξ, we obtain by taking the limit R→ ∞

µ1(z, λ)−
1

2πi

∫
C
(Qλµ)1 (ξ)

1

ξ − z
dσξ +

1

2πi

∫
Γ

(Aλµ)1 (ξ)

ξ − z
dξ = U(z).

The equation also holds for z ∈ D−
R , with analogous computations. The case for µ2 follows

analogously through adjoint Cauchy-Green formulas and 0 being a trivial entire function.

3.4 Function spaces

To study our resulting integral equations we need to establish appropriate function spaces. In

other works with an approach based on the Dirac system, like Brown and Uhlmann [15] and

Lakshtanov, Tejero and Vainberg [57], the used spaces are mixed in z, λ of the form:

L∞
z (Lqλ).

These spaces are essential to show a contraction argument for the corresponding integral

operators. Actually, in the above work, the integral equation is based on I −DQλ. Therefore,

this is our starting point to define the appropriate space, which allows us to reuse some arguments

presented in those papers.

Since the transmission condition adds a projector to our integral equation, it is essential to

have a space that deals with it. Given we are dealing with a Cauchy integral and the respective

projections, there is a very well understood interplay between them and Hardy spaces, see for
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example [27]. In this sense, we combine the above mixed space with another one coming from

Hardy spaces.

Let us introduce our desired spaces and show some of the interesting properties!

Let L∞
z (B) be the space of bounded functions in z ∈ C with values in a Banach space B.

Thus, picking B = Lpλ(|λ| > R) we introduce the first space as

Hp
1 :=

{
f = (f1, f2)

t : fj ∈ L∞
z

(
Lpλ(|λ| > R)

)
and continuous in z

}
(3.18)

To simplify notation ahead, we introduce the following function space:

S :=

{
g : Γ× {λ ∈ R : λ > R} → C s.t.

2∑
i=1

∫
|λ|>R

∫
Γ
|gi(z, λ)|p d|z|dσλ

}
.

Now, we define our second space through Cauchy projector P by

Hp
2 :=

{
F ∈ R(P ) :

2∑
i=1

∫
|λ|>R

∫
Γ
|F−
i (z, λ)|p d|z|dσλ

}
,

where dσλ = dλ1dλ2 and R(P ) is the range of the matrix operator P with domain S. To be

clear, this means that if F ∈ Hp
2 there exists a function f ∈ S such that F = Pf and it fulfills

F− = f. Moreover, we endow this space with the norm

∥F∥pHp
2
:=

2∑
i=1

∫
|λ|>R

∫
Γ
|F−
i (z, λ)|p d|z|dσλ =

2∑
i=1

∫
|λ|>R

∫
Γ
|fi(z, λ)|p d|z|dσλ.

Finally, our space is given as

Hp = Hp
1 +Hp

2

and endowed with the norm

∥t∥Hp = inf
u+v=t

u∈Hp
1,v∈H

p
2

max
(
∥u∥Hp

1
, ∥v∥Hp

2

)
. (3.19)

We remark that intersection and union of two Banach spaces are correctly defined if all terms

can be continuously embedded into a common locally convex space, see [17] and [60]. In our

situation this common locally convex space is endowed with semi-norms∫
|λ|>R

∫
G

1

|λ|2
|f(z, λ)| dσzdσλ,

where G is an arbitrary domain and dσz = dxdy.

If f ∈ Hp
1 the embedding is evident. For f ∈ Hp

2 we have

∥Pf∥Lp(G) ≤ C∥f∥Lp(Γ),

so that
[
∥Pf∥Lp(G)

]p ≤ [∥f∥Lp(Γ)

]p
and∫ (∫

G
|Pf(z)|p dσz

)
dσλ ≤

∫
[∥f∥Lp(Γ)]

p dσλ =

∫
|λ|>R

∫
Γ
|f(z, λ)|p d|z|dσλ.

The boundedness of each semi-norm follows from continuity of embedding Lp(G) into L1(G).
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Lemma 3.4.1. The operators P̂± : f → (Pf)|Γ± are bounded in the space with norm[∫ ∞

R

∫
Γ
|f(z, λ)|p d|z|dσλ

]1/p
.

Proof. During the proof, we omit the sign ± in the projectors. From continuity of Cauchy

projectors in Lp(Γ) it follows

∥P̂ f∥Lp(Γ) ≤ C∥f∥Lp(Γ).

and therefore (
∥P̂ f∥Lp(Γ)

)p
≤ Cp

(
∥f∥Lp(Γ)

)p
.

Finally

∥PP̂f∥Hp
2
=

∫
|λ|>R

(
∥P̂ f∥Lp(Γ)

)p
dσλ

≤ Cp
∫
|λ|>R

(
∥f∥Lp(Γ)

)p
dσλ = Cp

∫
|λ|>R

∫
Γ
|f(z, λ)|p d|z|dσλ.

Lemma 3.4.2. Let u ∈ Hp
1. Then P (u|Γ) ∈ Hp

2.

Proof. From the definition of Hp
1, combined with u being a continuous function, we get

∥u∥Lp
λ
∈ L∞

z (Γ).

Since Γ is a bounded set, the Lp norm is bounded by the L∞ norm and, therefore

∥∥u∥Lp
λ
∥Lp

z(Γ)
≤ C∥u∥Hp

1
.

To finish, note that the left-hand side is Hp
2 norm.

Using the space Hp we now study existence and uniqueness of solutions to the integral

equation (3.16).

3.5 Study of the integral equation

In its present form, we are not able to tackle the integral equation (3.16). Brown and Uhlmann

used a simple but efficient trick in [15] to transform it into another integral equation. This trick

was later adapted in [57] for the case of exponential functions with quadratic phase. In our

work, we take it a step further, since extra terms appear due to the projection operators.

This simple trick is based on multiplying our integral equation by (I + DQλ), which leads

to:

(I +DQλ) (I −DQλ + PAλ)µ = (I +DQλ)

(
U

0

)

⇔ [I −DQλDQλ +DQλPAλ + PAλ]µ = (I +DQλ)

(
U

0

)
.
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Basically it cancels out the single DQλ term of previous equation, since even though bounded

it is harder to verify the decay in terms of λ parameter.

By setting M = PAλ −DQλDQλ +DQλPAλ, we can re-writhe the integral equation as:

(I +M)µ = (I +DQλ)

(
U

0

)
. (3.20)

The existence and uniqueness of solutions to this integral equation follows in two steps: first

we show that M is a contraction in Hp for R > 0 large enough and small jumps; thereafter,

we show (I + DQλ) is in Hp, in some sense. The latter means we need to add an extra term

to control the behavior at infinity, which is part of the reason why we introduce a new set of

admissible points.

Lemma 3.5.1. Let Re γ ≥ c > 0, p > 1 and R > 0. Further, let the matrix operator Aλ be in

L∞(Γ). Then,

1. DQλPAλ and DQλDQλ are bounded operators in Hp;

2. There, exists an R > 0 large enough, such that for all |λ| > R the operators DQλPAλ and

DQλDQλ are contractions.

3. If the jump α =
√

γ−

γ+
is close to 1 in L∞(Γ), then PAλ is a contraction in Hp.

Proof. In order to estimate ∥(DQλPAλ)t∥Hp and ∥(DQλDQλ)t∥Hp (recall Definition 3.19) we

consider the representation t = u+ v where infimum is (almost) achieved. It is easy to see that

the desired estimate follows from these operators being a contraction in each of the spaces, Hp
1

and Hp
2. This fact can be shown as follows.

In Lemma 2.1 of [57] it was proved that DQλDQλ is bounded in Hp
1. The proof that it is

also a contraction in Hp
2 and the statement for DQλPAλ follows in a similar manner.

Here, we show it for DQλPAλ. By definition we have:

DQλPAλu(z) =

{ ∫
Γ[Aλu]2(z2)G1(z, z2, λ, w) dz2∫
Γ[Aλu]1(z2)G2(z, z2, λ, w) dz2

where

G(z, z2, λ, w) =

(
G1

G2

)
=

 (2πi)−2
∫
Ω
e−iRe(λ(z1−w)2)/2

z1−z
Q12(z1)
z̄2−z̄1 dσz1

(2πi)−2
∫
Ω
eiRe(λ(z1−w)2)/2

z̄1−z̄
Q21(z1)
z2−z1 dσz1

. (3.21)

By following a similar estimation to proof of Lemma 2.1 as in [57], we obtain by the stationary

phase approximation:

sup
z

|λ|>R

∥Gi(z, ·, λ, w)∥Lq
z2

(Γ) ≤
1

R
, 1/p+ 1/q = 1 and i = 1, 2.

Thus

|DQλPAλu|(z) ≤ ∥G(z, ·, λ, w)∥Lq
z2

(Γ)∥Aλu∥Lp
z2

(Γ).
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Then, we have for

∥DQλPAλu(z)∥Lp
λ
≤ ∥G(z, ·, λ, w)∥Lq

z2
(Γ)∥Aλ∥L∞(Γ)∥u∥Hp

2

where we use that u ∈ Hp
2 is equal to ∥u∥Lp

z2
(Γ) ∈ Lpλ. The final estimate follows from definitions

of both spaces and the above uniform bound on Gi.

If we take R > 0 large enough then it follows that DQλDQλ and DQλPAλ are contractions

in Hp as long as ∥Aλ∥L∞(Γ) is finite.

By definition of Hp, boundedness of PAλ follows from usual Lp boundedness. Since this

operator will not have the same dependence on λ as the others we need the jump to be close

enough to 1 so that the supremum norm of Aλ in z on Γ is small enough and allows the operator

norm to be less than 1.

A rough estimate for this norm is given in terms of the jump by:

∥Aλ∥L∞(Γ) ≤ 2 |α− 1|
(
1 +

∣∣∣∣ 1α
∣∣∣∣) ≤ 4ϵ,

where ϵ > 0 is an upper bound for |α− 1|. Hence for PAλ to be a contraction on Hp we need

that

|α− 1| ≤ 1

4∥P∥Hp
.

3.5.1 Hausdorff-Young type inequality

Before studying the integral equation we introduce the so-called Hausdorff-Young type inequality.

This inequality will be used from now on in many proofs. It is a basic estimate initially obtained

in [57], that we extend here in order to consider vaster exponentially growing solutions.

We show an auxiliary result to start.

Lemma 3.5.2. For 1 ≤ q < 2. Then the following estimate is valid for an arbitrary a ∈ C and

constant C = C(q,M): ∥∥∥∥ 1

u(
√
u− a)

∥∥∥∥
Lq(u:|u|<M)

≤ C|a|1−δ

Proof. To start we apply a change of variables u = |a|2v dσu = |a|4dσv to find∥∥∥∥ 1

u(
√
u− a)

∥∥∥∥
Lq(u:|u|<M)

=

[∫
|v|<M/|a|2

∣∣∣∣ 1

|a|2v (|a|
√
v − |a|ȧ)

∣∣∣∣q |a|4 dσv
]1/q

, where ȧ =
a

|a|

=

[∫
|v|<M/|a|2

|a|4−3q

∣∣∣∣ 1

v (
√
v − a)

∣∣∣∣q dσv
]1/q

= |a|
4
q
−3

[∫
|v|<M/|a|2

∣∣∣∣ 1

|v|q |
√
v − ȧ|q

∣∣∣∣q dσv
]1/q

.
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Without loss of generality we assume that M > 2 and split the proof into two cases. In the

case |a| ≥ 1, then M
|a|2 ≤M and the above computation reduces to

∥∥∥∥ 1

u(
√
u− a)

∥∥∥∥
Lq(u:|u|<M

= |a|
4
q
−3

[∫
|v|<M

1

|v|q |
√
v − ȧ|q

dσv

]1/q
.

Since ȧ has norm 1, we can split the integral into two regions where we have a singularity of

order |u|q on one and |u|q/2 in the other. Both parts are easily bounded by a constant, since

q, q/2 < 2 and we are in two dimensions. Therefore, the norm above is bounded by C|a|4/q−3.

In the other case, |a| < 1 it is almost the same idea, but we just need to understand how the

domain with R/|a|2 works. First we split the integral into two regions:∫
|v|<M/|a|2

1

|v|q|
√
v − ȧ|q

dσv =

∫
|v|<M

1

|v|q|
√
v − ȧ|q

dσv +

∫
M≤|v|≤M/|a|2

1

|v|q|
√
v − ȧ|q

dσv.

The first integral on the right can be bounded by a constant exactly like the previous scenario

with |a| ≥ 1. As such, we only provide an estimate for the second one. With the reverse triangle

inequality help we get∫
M≤|v|≤M/|a|2

1

|v|q|
√
v − ȧ|q

dσv ≤
∫
M≤|v|≤M/|a|2

1

|v|q
∣∣|v|1/2 − 1

∣∣q dσv
≤
∫
M≤|v|≤M/|a|2

1(
|v|1/2 − 1

)2q ∣∣|v|1/2 − 1
∣∣q dσv,

which follows since 2 ≤ M ≤ |v| ⇒
∣∣|v|1/2 − 1

∣∣ = |v|1/2 − 1 and
(
|v|1/2

)2 ≥
(
|v|1/2 − 1

)2
. Then

we only need to estimate∫
M≤|v|≤M/|a|2

1

|v|q|
√
v − ȧ|q

dσv ≤
∫
M≤|v|≤M/|a|2

1(
|v|1/2 − 1

)3q dσv
≤ Cθ

∫ M/|a|2

M

r(
r1/2 − 1

)3q dr.
By applying polar change of variables and thereafter setting t = r1/2 − 1, dr = 2(t + 1)dt we

have ∫
M≤|v|≤M/|a|2

1

|v|q|
√
v − ȧ|q

dσv ≤ Cθ

∫ M/|a|2

M

r(
r1/2 − 1

)3
q
dr

= Cθ

∫ √
M/|a|−1

√
M−1

2(t+ 1)3

t3q
dt

≤ Cθ

∫ √
M/|a|−1

√
M−1

t3−3q dt = Ct2−3q
∣∣√M/|a|−1√
M−1

=
[
C̃ + C̃(M/|a| − 1)2−3q

]
≤ C.

Due to 1 ≤ q < 2 it holds 2− 3q < 0. As such M − 1 < M
|a| − 1 ⇒ 1

M/|a|−1 < 1/(M − 1) implies

the bound by a constant.
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Therefore, we obtain for both cases∥∥∥∥ 1

u (
√
u− a)

∥∥∥∥
Lq(|u|<M)

≤ C|a|4/q−3 ≤ C|a|−1+δ,

where δ = 4
q − 2 > 0.

We are ready to introduce an Hausdorff-Young type inequality that takes into account the

quadratic phase and the sub-exponential term given by U . A first approach in this sense was

obtained in [57] with just the quadratic phase. To control the sub-exponential growth term

we divide by |λ|Aw , and therefore the behavior is analogous to the initial estimate provided by

Lakshtanov, Vainberg and Tejero.

Lemma 3.5.3. Let Ω be a bounded Lipschitz domain and ϕ ∈ L∞(Ω) a function with compact

support in Ω. Let z ∈ C and w ∈ suppϕ. Further, let p > 2.

Then, for λΩ ∈ C \ {0} with Aw = supz∈Ω̄Re(λΩ(z − w)2) it holds:∥∥∥∥∥ 1

|λ|Aw

∫
C
ϕ(z)

eiRe(λ(z−w)2)eln |λ|λΩ(z−w)2

z − ζ
dσz

∥∥∥∥∥
Lp
λ(|λ|>R)

≤ CΩ,δ
∥ϕ∥∞

|ζ − w|1−δ
, (3.22)

with δ(p) > 0 and CΩ,δ > 0 a constant only depending on Ω, δ.

Proof. We start by defining the internal integral as

F (w, ζ;λ) =

∫
C
ϕ(z)

eiRe(λ(z−w)2)eln |λ|λΩ(z−w)2

z − ζ
dσz.

The objective is to first understand the behavior in terms of λ of F (w, ζ;λ) and only later

we show the inequality in terms of λ. First, lets apply the change of variables

u = (z − w)2 and dσu = 4|z − w|2 dσz, which leads to

F (w, ζ;λ) =
∑
±

1

4

∫
C
ϕ(w ±

√
u)

eiRe(λu)eln |λ|λΩu

|u| [±
√
u− (ζ − w)]

dσu,

where now Re(λΩu) ≤ Aw in w ±
√
u ∈ suppϕ.

Further, we simplify the function we are evaluating like

ψ±
w (u) =

ϕ(w ±
√
u)

|u| [±
√
u− (ζ − w)]

with support equal to suppϕ.

With these in mind, we apply another change of variables defined by û = u− u0 where u0 is

given as

u0 = argmaxw±
√
u∈suppψ±

w
Re(λΩu), which implies Re (λΩû) < 0.
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This allows us to take out of integration the possible growing exponential. As such, we

obtain:

F (w, ζ;λ) =
∑
±

1

4
eiRe(λu0)eln |λ|λΩu0

∫
C
ψ±
w (û+ u0)e

iRe(λû)eln |λ|λΩû dσû.

To complete, we do yet another change of variables as follows ũ = λΩû ⇒ Re(ũ) < 0 in

suppψ±
w and û = λ̄Ω

|λΩ|2 ⇒ dσû = 1
|λ|2 dσũ. Applying it we obtain

F (w, ζ;λ) =
∑
±

1

4|λΩ|2
eiRe(λu0)eln |λ|λΩu0

∫
C
ψ±
w (ũ/λΩ + u0)e

iRe
(
ũ λ

λΩ

)
eln |λ|ũ dσû.

Remark that all changes of variables applied are meant to take out growing terms from the

non-complex exponential, which may imply growth.

Notice, that if we set ũ = x+ iy then support of ψ±
w (ũ/λΩ + u0) is a subset of {z = x+ iy ∈

C : x < 0}. With this, we now obtain:

F (w, ζ;λ) =
∑
±

1

4|λΩ|2
eiRe(λu0)eln |λ|λΩu0

∫
R

∫ ∞

0
ψ±
w

(
x+ iy

λΩ
+ u0

)
e−zλΩ (λ)x dx eiz̃λΩ (λ)y dy,

where we have established the following definitions:

zλΩ(λ) = ln |λ|+ i
λx
λΩ
,

that is a monotone curve for |λ| > R and is in C+, in the sense that both real and imaginary

terms are monotone functions. Further, we define

z̃λΩ(λ) = ln |λ| − λy
λΩ
.

We are ready now to bring back the desired estimate. Given the last expression for F (w, ζ;λ)

we get:∥∥∥∥∥ 1

|λ|Aw

∫
C
ϕ(z)

eiRe(λ(z−w)2)eln |λ|λΩ(z−w)2

z − ζ
dσz

∥∥∥∥∥
Lp
λ(|λ|>R)

=

∥∥∥∥ 1

|λ|Aw
F (w, ζ;λ)

∥∥∥∥
Lp
λ(|λ|>R)

≤
∑
±

1

4|λΩ|2

[∫
|θ|=1

∫ ∞

R

∣∣∣∣∫
R

∫ ∞

0
ψ±
w

(
x+ iy

λΩ
+ u0

)
e−z(τθ)x dx eiz̃(τθ)y dy

∣∣∣∣p dτdθ
]1/p

≤
∑
±

1

4|λΩ|2

∫
|θ|=1

∫
R

[∫ ∞

R

∣∣∣∣∫ ∞

0
ψ±
w

(
x+ iy

λΩ
+ u0

)
e−z(τθ)x dx

∣∣∣∣p dλ]1/p dydθ,
where we have changed to polar coordinates λ = τθ and applied Minkowski integral inequality

to switch integrals in θ, τ and y.

The idea is to use a result of Sadov and Merzon that proves an Hausdorff-Young inequality

over curves in C+ that are either convex or monotone, which is exactly our case, see [63] and [80].
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As such, given p > 2 and its Hölder conjugate 1
q = 1− 1

p it follows∥∥∥∥ 1

|λ|Aw
F (w, ζ;λ)

∥∥∥∥
Lp
λ(|λ|>R)

≤
∑
±

1

4|λΩ|2

∫
|θ|=1

∫
R

[∫ ∞

0

∣∣∣∣ψ±w

(
x+ iy

λΩ
+ u0

)∣∣∣∣q dx]1/q dy
≤Cs∥ψ±

w∥Lq(|u|<M),

since the Hausdorff-Young inequality constant does not depend on the curve, and therefore not

on θ. Further, the last inequality arises forM large enough so that |u| < M includes the support

of ψ±
w and due to ∫

R

[∫ ∞

0

∣∣∣∣ψ±w

(
x+ iy

λΩ
+ u0

)∣∣∣∣q dx]1/q dy ≤ ∥ψ±
w∥Lq(|u|<M),

by applying the Hölder inequality in L1 with the characteristic function of the support of ψ±
w .

Given the previous Lemma 3.5.2, we then obtain our desired inequality:∥∥∥∥∥ 1

|λ|Aw

∫
C
ϕ(z)

eiRe(λ(z−w)2)eln |λ|λΩ(z−w)2

z − ζ
dσz

∥∥∥∥∥
Lp
λ(|λ|>R)

≤ CΩ,δ
∥ϕ∥∞

|z − w|1−δ
.

3.5.2 Enrichment of the set of exponentially growing solutions

As mentioned above the second step to study (3.20) is to show that the right-hand side in (3.20)

is also in Hp. However, we have not yet specified which entire function U we choose. The

purpose of it is to show how far we can go until we need to define it. In fact, many works can

follow from this by taking variants of U and obtain further results.

Given that we already have exponential growth, our approach is to define a term U that is

sub-exponentially growing. For this purpose, our choice is given by

U(z, w;λ) = eln |λ|·λΩ(z−w)2 = |λ|λΩ(z−w)2 , (3.23)

where λΩ ∈ C is fixed with respect to w. In essence, we will only work with functions U such

that w is an admissible point with respect to λΩ, as established in Definition 3.1.1.

We start by not making any requirements on λΩ ∈ C and denote for w ∈ Ω:

Aw := sup
z∈Ω̄

Re
(
λΩ(z − w)2

)
<∞

Bw := sup
z∈D̄

Re
(
λΩ(z − w)2

)
<∞.

In order for a unique solution µ in Hp to (3.20) to exist we show the following lemma.

Lemma 3.5.4. Let p > 2 and R > 0 large enough. If w ∈ Ω \ C such that there exists λΩ ∈ C
for which (Aw −Bw) >

2
p , then

1

|λ|Aw
(I +DQλ)

(
U

0

)
∈ Hp.
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Proof. Since the norm in Hp is given as

∥f∥Hp = inf
u+v=t

u∈Hp
1,v∈H

p
2

max
[
∥u∥Hp

1
, ∥v∥Hp

2

]
,

one possible partition (u, v) is given by

u = 0, and v =
1

|λ|Aw
(I +DQλ)

(
U

0

)
.

Therefore, the norm in Hp is less than the norm in Hp
2 with this split. Thus, we prove that

1
|λ|Aw

(U, 0)t ∈ Hp
2 and 1

|λ|Aw
DQλ(U, 0)

t ∈ Hp
2. We start with the first.∥∥∥∥∥ 1

|λ|Aw

(
U

0

)∥∥∥∥∥
Hp

2

=

[∫
|λ|>R

∫
Γ

∣∣∣∣ 1

|λ|Aw
U(z, w, λ)

∣∣∣∣p d|z|dσλ
]1/p

=

[∫
|λ|>R

∫
Γ

∣∣∣∣ 1

|λ|Aw
eln |λ|λΩ(z−w)2

∣∣∣∣p d|z|dσλ
]1/p

≤

[∫
|λ|>R

∫
Γ

(
1

|λ|Aw
eln |λ|Re(λΩ(z−w)2)

)p
d|z|dσλ

]1/p
, since |ea+bi| = ea,

≤

[∫
|λ|>R

∫
Γ

(
1

|λ|Aw
|λ|Bw

)p
d|z|dσλ

]1/p
≤ |Γ|

[∫
|λ|>R

|λ|(Bw−Aw)p dσλ

]1/p

≤ |Γ|
[∫ ∞

R
τ (Bw−Aw)p+1 dτ

]
≤ |Γ|

[
τ (Bw−Aw)p+2

(Bw −Aw)p+ 2

]∣∣∣∣∣
∞

R

<∞, if (Bw −Aw)p+ 2 < 0

By hypothesis (Aw −Bw) > 2/p the last inequality holds.

Let us look into the second term. Due to matrices D and Qλ being diagonal and anti-

diagonal, respectively, the norm simplifies as∥∥∥∥∥ 1

|λ|Aw
DQλ

(
U

0

)∥∥∥∥∥
Hp

2

=

∥∥∥∥∥ 1

|λ|Aw

(
0

∂−1 (Q21U)

)∥∥∥∥∥
Hp

2

≤

[∫
|λ|>R

∫
Γ

∣∣∣∣ 1

|λ|Aw
∂−1 (Q21U) (z)

∣∣∣∣p d|z|dσλ
]1/p

,

where Q21 is the respective entry of Qλ. Therefore, by Fubini theorem it holds∥∥∥∥∥ 1

|λ|Aw
DQλ

(
U

0

)∥∥∥∥∥
Hp

2

≤

∫
Γ

(∫
|λ|>R

∣∣∣∣ 1

|λ|Aw
∂−1 (Q21U) (z)

∣∣∣∣p dσλ
)p/p

d|z|

1/p

≤

[∫
Γ

(∫
|λ|>R

∣∣∣∣ 1

2πi|λ|Aw

∫
C
eln |λ|λΩ(ξ−w)2eiRe(λ(ξ−w)2) q21(ξ)

ξ − z
dσξ

∣∣∣∣p dσλ
)
d|z|

]1/p
≤
∫
Γ
C

∥q21∥∞
|z − w|1−δ

d|z| <∞.

The last inequality follows by an Hausdorff-Young type inequality on Lemma 3.5.3.
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This result requires

Aw −Bw >
2

p
.

We are yet to restrict our conditions to the ones in Definition 3.1.1. The results are established

with conditions on Aw, Bw depending on p and only by the end we specify the definition of an

admissible point based on all of the conditions.

Together with Lemma 3.5.1 we now show existence and uniqueness of solutions to (3.20).

Proposition 3.5.5. Let p > 2 and w ∈ C\Γ such that there exists λΩ ∈ C for which Aw−Bw >
2/p. Moreover, let R > 0 be large enough and α− 1 ∈ L∞(Γ) for Γ a known Lipschitz curve be

small enough.

Then, there exists a unique solution µ̃ in Hp to the integral equation:

(I +M) µ̃ =
1

|λ|Aw
(I +DQλ)

(
U

0

)
,

where µ̃ = 1
|λ|Aw

µ and µ solves (3.20).

Existence and uniqueness allows us to define a key concept for reconstruction methods of

the Calderón problem. This key idea is the scattering transform and we introduce it for our

case.

3.6 Reconstruction from the scattering transform

The importance of admissible points becomes clear in this section. Since the work of Bukhgeim

the quadratic phase points w allow application of the stationary phase method to reconstruct

potentials over those points.

Our work is not much different and is heavily based on this idea. However, due to the

discontinuity a new term is introduced in our scattering transform, when compared with the

works [16,57].

Our scattering transform is defined through an integral over ∂Ω with the boundary data.

Definition 3.6.1. Let Ω ⊂ C be a bounded Lipschitz domain and Γ a connected Lipschitz curve

inside Ω.

For q ∈ W 2,∞(D) ∪W 2,∞(Ω \ D̄) and µ the corresponding solution to the integral equation

(3.20), we define at each admissible point w ∈ C \ Γ the scattering transform through

h(λ,w) =

∫
∂Ω
eln |λ|λΩ(z−w)2µ2(z) dz̄. (3.24)

The idea behind any scattering transform is to make a connection between boundary data,

in particular the Dirichlet-to-Neumann map, and the parameter inside, now with an emphasis

in the potential q. Later on, we describe how to uniquely determine this scattering transform

from Λγ .
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To transform boundary information to inside information, we use Green identities, i.e., for

f ∈ C1(Ω̄) by ∫
∂Ω
f dz̄ = −2i

∫
Ω
∂f dσz.

Since our function is defined over two domains with a transmission condition over Γ, we

need to take that into account when connecting it with the potential. Initially let us assume

f ∈ C1(Ω̄) then we get∫
∂Ω
eln |λ|λΩ(z−w)2f(z) dz̄ = −2i

∫
Ω
∂
(
eln |λ|λΩ(z−w)2f(z)

)
dσz

= −2i

∫
D
∂
(
eln |λ|λΩ(z−w)2f(z)

)
dσz − 2i

∫
Ω\D

∂
(
eln |λ|λΩ(z−w)2f(z)

)
dσz

=

∫
Γ
eln |λ|λΩ(z−w)2f(z) dσz − 2i

∫
Ω\D

eln |λ|λΩ(z−w)2∂ (f(z)) dσz,

where we have used that Ū is an anti-holomorphic function in C. By a density argument it also

holds for µ ∈ Hp and applying this to our scattering data we obtain

h(λ,w) =

∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dσz + 2i

∫
Ω\D

eln |λ|λΩ(z−w)2∂ (µ2(z)) dσz,

=

∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dσz + 2i

∫
Ω\D

eln |λ|λΩ(z−w)2q21(z)e
iRe(λ(z−w)2)µ1(z) dσz. (3.25)

The last equation is fundamental to reconstruct the potential. Informally, our plan is to first

kill the boundary integral and afterwards obtain the potential q at the admissible points w. Let

us proceed in this direction.

To facilitate our presentation, we define the following operator:

Tλ (G) (w) = 2i

∫
Ω\D

eln |λ|λΩ(z−w)2q21(z)e
iRe(λ(z−w)2)G(z) dσz. (3.26)

Furthermore, due to D and Qλ being diagonal and anti-diagonal matrices, respectively,

remark that [
(I +DQλ)

(
U

0

)]
1

= U.

With all this in mind, we are ready to present a reconstruction theorem.

Theorem 3.6.2. Let Ω be a bounded Lipschitz domain and Γ ⊂ Ω a closed Lipschitz curve.

Let q be a potential function obtained from a complex conductivity γ ∈W 2,∞(D)∪W 2,∞(Ω \ D̄)

satisfying Re γ ≥ c > 0.

If the jump α− 1 is small enough in L∞(Γ) and w is an admissible point in Ω \ D̄, then we

can reconstruct the potential in any proper admissible point w through the formula

q21(w) = lim
R→∞

1

4π ln 2

∫
R<|λ|<2R

h(λ,w)

|λ|
dσλ. (3.27)
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Observe that this theorem is not equivalent to our main Theorem 3.1.2 in this chapter. The

missing link is to obtain the scattering data uniquely from Λγ .

To prove this result and obtain a reconstruction formula, we are required to piece various

results together which we are going to establish next. Thereafter finalize the proof of the above

theorem in a clean manner.

From expression (3.25) we have two integrals. As already mentioned, our approach starts by

showing the first integral divided by |λ| is in L1
λ(|λ| > R) and thereafter we split µ1 into further

terms. Set f as

f = µ− (I +DQλ)

(
U

0

)
(3.28)

where µ solves (3.20). Applying the operator (I +M) to both sides leads to

(I +M)f = (I +M)µ− (I +DQλ)

(
U

0

)
−M (I +DQλ)

(
U

0

)

= −M (I +DQλ)

(
U

0

)
.

Since for w ∈ C satisfying Aw −Bw > 2/p, we have

1

|λ|Aw
(I +DQλ)

(
U

0

)
∈ Hp

andM is a bounded operator and even a contraction if R > 0 is large enough, the above equation

has a unique solution
1

|λ|Aw
f ∈ Hp.

Therefore we can decompose µ1 in the term Tλ[µ1], in order to understand its behaviour as

R→ ∞ through f , M and U in Hp. Hereby, we get

µ1 = f1 +

[
(I +DQλ)

(
U

0

)]
1

= f1 + U (3.29)

= − [Mf ]1 −

[
M(I +DQλ)

(
U

0

)]
1

+ U, (3.30)

which substituted in Tλ[µ1] gives

Tλ (µ1) = Tλ ([Mf ]1) + Tλ

([
M(I +DQλ)

(
U

0

)]
1

)
+ Tλ (U) . (3.31)

The proof of Theorem 3.6.2 follows by showing the first two elements are in Lqλ(|λ| > R)

with 1 ≤ q < 2 and the last one reconstructs the potential at the desired admissible points.
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3.6.1 Asymptotic behavior of Tλ

Let us start by studying the asymptotic behaviour of Tλ. Hereby, we rely heavily on the

Hausdorff-Young type inequality . For the first term in (3.25) we can state the following lemma.

Lemma 3.6.3. Let p > 2 and Γ a closed Lipschitz curve in Ω. For R > 0 be large enough and

w ∈ C \ Γ such that there exists λΩ ∈ C fulfilling the condition

Aw +Bw <
2

p
− 1,

we have

1

|λ|

∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dz̄ ∈ L1

λ(λ : |λ| > R). (3.32)

Proof. Let µ be a unique solution to (3.20) given by Proposition 3.5.5 for R > 0 large enough.

Further, we define f through (3.28) such that

µ2 = f2 +

[
(I +DQλ)

(
U

0

)]
2

= f2 + [DQλ]2 = f2 + ∂−1 (Q21U) .

Hence,∫
|λ|>R

1

|λ|

∣∣∣∣∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dz̄

∣∣∣∣ dσλ =

∫
|λ|>R

1

|λ|

∣∣∣∣∫
Γ
|λ|Aweln |λ|λΩ(z−w)2 µ2(z)

|λ|Aw
dz̄

∣∣∣∣ dσλ
≤
∫
|λ|>R

∫
Γ

1

|λ|

∣∣∣|λ|Aweln |λ|λΩ(z−w)2
∣∣∣ ∣∣∣∣ 1

|λ|Aw
µ2(z)

∣∣∣∣ d|z̄|dσλ
≤

[∫
|λ|>R

∫
Γ

∣∣∣∣ 1

|λ|1−(Aw+Bw)

∣∣∣∣q d|z̄|dσλ
]1/q [∫

|λ|>R

∫
Γ

∣∣∣∣ 1

|λ|Aw
µ2(z)

∣∣∣∣p d|z̄|dσλ
]1/p

,

which follows by Hölder inequality with p > 2. Given that 1
|λ|Aw

µ2 ∈ Hp we obtain

∫
|λ|>R

1

|λ|

∣∣∣∣∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dz̄

∣∣∣∣ dσλ ≤ |Γ|
∥∥∥∥ 1

|λ|Aw
µ2

∥∥∥∥
Hp

[∫
|λ|>R

|λ|(Aw+Bw−1)q dσλ

]1/q

≤ |Γ|
∥∥∥∥ 1

|λ|Aw
µ2

∥∥∥∥
Hp

[∫ ∞

R
τ1+(Aw+Bw−1)q dτ

]1/q
≤ |Γ|

∥∥∥∥ 1

|λ|Aw
µ2

∥∥∥∥
Hp

[
τ2+q(Aw+Bw−1)

2 + q(Aw +Bw − 1)

]1/q∣∣∣∣∣∣
∞

R

<∞,

if 2 + q(Aw +Bw − 1) < 0 ⇔ Aw +Bw < 2− 1/q = 2/p− 1 which follows by hypothesis.

We remark that the conditions in this Lemma and Lemma 3.5.4 for a point w ∈ C \Γ, given
for p > 2 as Aw −Bw >

2
p

Aw +Bw <
2
p − 1

(3.33)
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define the admissible points.

Further, let us look into the terms containing f in the scattering transform.

Lemma 3.6.4. Let q < 2 and R > 0 be large enough. Further, let f be defined as in (3.28).

Then, for U(z, w, λ) defined through w, λΩ ∈ C with Aw < 1/2, it holds

1

|λ|
Tλ

(
M(I +DQλ)

(
U

0

))
∈ Lqλ(λ : |λ| > R), (3.34)

and

1

|λ|
Tλ (Mf) ∈ Lqλ(λ : |λ| > R). (3.35)

Proof. Given the structure of M = PÃλ+DQ̃λ−DQ̃λDQ̃λ and that 1
|λ|Tλ is a linear operator,

it is enough to show that each term applied to both, (U, 0)t and DQλ(U, 0)
t, belongs to Lpλ(λ :

|λ| > R).

We look directly into the computations of each term. By using Fubini’s Theorem, Minkowski

integral inequality, Hölder inequality, and Lemma 3.5.3 we can show that all of these terms are

in fact in Lqλ(λ : |λ| > R). Since the computations for each term follow roughly the same lines,

for convenience of the reader, we present just the computation in one of these cases. We look

at the term

1

|λ|
Tλ

(
DQλDQλ

(
U

0

))
∈ Lqλ(λ : |λ| > R).

Let us denote ρ(z) = iRe[λ(z−w)2]+ln |λ|λΩ(z−w)2 and Aw = supz∈Ω Re[λΩ(z−w)2] < 1/2.

∥∥∥∥∥ 1

|λ|
Tλ

(
DQλDQλ

(
U

0

))∥∥∥∥∥
Lq(λ:|λ|>R)

=

=

[∫
|λ|>R

∣∣∣∣∣ 1

4π2|λ|

∫
Ω\D

eρ(z)q21(z)

·
∫
Ω

e−iRe[λ(z1−w)2]

z1 − z
q12(z1)

∫
Ω

eρ(z2)

z2 − z1
q21(z2) dσz2dσz1dσz

∣∣∣∣∣
q

dσλ

]1/q
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=

[∫
|λ|>R

∣∣∣∣∣ 1

4π2|λ|

∫
Ω

(∫
Ω\D

eρ(z)

z1 − z
q21(z) dσz

)(∫
Ω

eρ(z2)

z2 − z1
q21(z2) dσz2

)

· q12(z1)e−iRe[λ(z1−w)2] dσz1

∣∣∣∣∣
q

dσλ

]1/q

≤
∫
Ω

[∫
|λ|>R

∣∣∣∣∣ |λ|2Aw

|λ|

(
1

|λ|Aw

∫
Ω\D

eρ(z)

z1 − z
q21(z) dσz

)

·

(
1

|λ|Aw

∫
Ω

eρ(z2)

z2 − z1
q21(z2) dσz2

)∣∣∣∣∣
q

dσλ

]1/q
|q12(z1)| dσz1

≤ ∥Q∥L∞

∫
Ω

∥∥∥∥∥ 1

|λ|Aw

∫
Ω\D

eρ(z)

z1 − z
q21(z) dσz

∥∥∥∥∥
L2q(λ:|λ|>R)

·

∥∥∥∥∥ 1

|λ|Aw

∫
Ω

eρ(z2)

z2 − z1
q21(z2) dσz2

∥∥∥∥∥
L2q(λ:|λ|>R)

dσz1

≤ C∥Q∥L∞

∫
Ω

1

|z1 − w|1−δ
1

|z1 − w|1−δ
dσz1 <∞.

Notice that 2q > 2 and we can use the Hausdorff-Young inequality in Lemma 3.5.3. Thus, these

calculations we obtain (3.34).

To show (3.35) we have shown previously that 1
|λ|Aw

f ∈ Hp for any p > 2. We con-

sider T applied to each term of M . Again, we present only the computations for the case
1
|λ|Tλ

(
DQ̃λDQ̃λf

)
, since the other computations follow analogously, with special attention to

the behavior of 1
|λ|Aw

f . Furthermore, we only present the calculation for the first term of the

vector. [∫
|λ|>R

∣∣∣∣∣ 1|λ|
∫
Ω\D

eρ(z)q21(z)

∫
Ω

e−iRe(λ(z1−w)2)

z1 − z
q12(z1)

·
∫
Ω

eiRe(λ(z−w)2)

z2 − z1
q21(z2)f1(z2) dσz2 dσz1 dσz

∣∣∣∣∣
q

dσλ

]1/q
≤ C∥Q∥3∞

∫
Ω

∫
Ω

1

|z2 − z1|
1

|z1 − w|1−δ

∥∥∥∥ 1

|λ|Aw
f1(z2)

∥∥∥∥
L2q
λ

dσz2 dσz1

≤ C∥Q∥3∞
∥∥∥∥ 1

|λ|Aw
f1

∥∥∥∥
H2q

∫
Ω

∫
Ω

1

|z2 − z1|
1

|z1 − w|1−δ
dσz2 dσz1 <∞

Since 2q > 2 and 1
|λ|Aw

f ∈ H2q the norm is finite and boundedness of integrals easily

follows.

3.6.2 Stationary phase method

As we have seen the reconstruction formula is obtained from the asymptotic behavior of TλU .

The decaying properties of this integral in terms of λ are a variant of the stationary phase

method. From Hörmander’s and Stein’s books (see [46,85]) it is well-known that the stationary
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phase method works as long as the exponential phase has negative real part. However, on our

case we cannot guarantee such hypothesis.

Starting from unpublished ideas by Hoop, Holman and Uhlmann [45], that we obtained from

Chapter drafts available online of a new book we derive the required asymptotics. In essence,

due to the presence of an exponential term like eln |λ|ϕ(z,w) we lose some decay, but it still provides

enough decay for our desired reconstruction formula.

The original result in [75] was proven directly and without a link to the stationary phase

method. As such, decaying properties were only roughly proven but our goal is to obtain some

clear understanding of their behaviour.

Therefore our objective is to understand the asymptotic behaviour for integrals of the form

I(w, λ) =

∫
eiRe(λ(z−w)2)aλ,w(z) dσz (3.36)

as |λ| → ∞.

Intuitively, exponentials with phase Re
(
λ(z − w)2

)
oscillate rapidly with respect to z for

large |λ|. These oscillations cancel out in the integral except at the stationary points of

Re
(
λ(z − w)2

)
, that is, points where the gradient is zero. In our particular case they are

z = w for each fixed w ∈ C.

Some of the proofs can work for rather general aλ,w but require more smoothness than we

desire. As such, we denote by

aλ,w(z) = e2 ln |λ|Re(λΩ(z−w)2)ϕ(z), (3.37)

and only require ϕ ∈ W 1,∞(Ω) to be compactly supported in Ω and w ∈ Ω to be an admissible

point, that is, there exists λΩ ∈ C such that Aw = supz∈Ω̄Re
(
λΩ(z − w)2

)
< 1

2 .

Some of the estimates are variants of Hausdorff-Young type inequality. In fact we combine its

proof with integration by parts to bring further asymptotically decay. This works particularly

well for our aλ,w of interest in (3.37).

First and foremost, the following asymptotic behaviour of aλ,w holds.

Lemma 3.6.5. Let ϕ ∈W 1,∞(Ω) for Ω a bounded Lipschitz domain with suppϕ ⊂ Ω. Further,

let w ∈ Ω and define for λΩ ∈ C

Aw := sup
z∈Ω̄

Re
(
λΩ(z − w)2

)
. (3.38)

Then, for aλ,w = e2 ln |λ|Re(λΩ(z−w)2)ϕ(z) we have

∥aλ,w∥W 1,∞(Ω) = O
(
|λ|2Aw+δ

)
with δ > 0 arbitrarily small.
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Proof. By applying derivatives the term ln |λ| drops from the exponential. At infinity has

behavior O(|λ|δ) where δ > 0 can be extremely small.

Furthermore, e2 ln |λ|Re(λΩ(z−w)2) = O(|λ|2Aw) by hypothesis. Applying derivatives to aλ,w

and joining all of these with a compactly supported ϕ inW 1,∞(Ω) we obtain our desired estimate.

The first result establishes asymptotically decay on |λ| when w is not in the support of ϕ.

Lemma 3.6.6. Let aλ,w = e2 ln |λ|Re(λΩ(z−w)2)ϕ(z) with ϕ ∈ W 1,∞(Ω) compactly supported on a

bounded Lipschitz domain Ω such that Aw < 1/2.

Suppose that w ∈ Ω is not in the support of ϕ. Then, the oscillatory integral

I(w, λ) :=

∫
eiRe(λ(z−w)2)aλ,w(z) dσz, (3.39)

has the following behavior I(w, λ)/|λ| ∈ L1(λ : |λ| > R).

Proof. Since by hypothesis w ∈ Ω is not on the support of aλ,w, then there exists an ϵ > 0 such

that supp aλ,w ⊂ {z ∈ Ω| |z − w| > ϵ}.
Hence, we can apply integration by parts over |z − w| > ϵ and since the functions have

compact support the boundary integral disappears. As such, we obtain with an interplay of

λ = τθ and the change of variables u = (z − w)2 the following:

Iw(λ) :=

∫
|z−w|>ϵ

eiτRe(θ(z−w)2)eln |λ|Re(λΩ(z−w)2)ϕ(z) dσz

=
∑
±

∫
|u|>

√
ϵ
eiτRe(θu)eln |λ|Re(λΩu)

ϕ(w ±
√
u)

|u|
dσu

=
∑
±

1

iλ/2 + ln |λ|λΩ

∫
|u|>

√
ϵ
eiτRe(θu)e2 ln |λ|Re(λΩu)∂u

(
ϕ(w ±

√
u)

|u|

)
dσu

Now, the last derivative is given as follows:

∂u

(
ϕ(w ±

√
u)

|u|

)
=

±∂u
√
u (∂zϕ(w ±

√
u)) |u| − ϕ(w ±

√
u)∂u|u|

|u|2

=
± 1

2
√
u
(∂zϕ(w ±

√
u)) |u| − ϕ(w ±

√
u) ū

2|u|

|u|2

⇒
∣∣∣∣∂u(ϕ(w ±

√
u)

|u|

)∣∣∣∣ ≤ ∥ϕ∥W 1,∞χsuppϕ(u)

|u|3/2
,

where χ is the indicator function of the support of ϕ. Notice that, we have used the fact that ϕ

is a Lipschitz function and w not in its support.

Now, the idea is to use exactly the approach provided in the proof of Lemma 3.5.3 to find

our estimate. Define

ψ(u) = ∂u

(
ϕ(w ±

√
u)

|u|

)
χ|u|>

√
ϵ(u).
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It follows by Hölder inequality for p > 2:

∫
|λ|>R

∣∣∣∣Iw(λ)|λ|

∣∣∣∣ dσλ ≤ 2

∫
|λ|>R

∣∣∣∣∣ 1|λ| 1

|λ|

∫
|u|>

√
ϵ
eiτRe(θu)e2 ln |λ|Re(λΩu)ψ(u) dσu

∣∣∣∣∣ dσλ
≤ 2

[∫
|λ|>R

1

|λ|(2−2Aw)q
dσλ

]1/q ∥∥∥∥ 1

|λ|2Aw

∫
eiτRe(θu)e2 ln |λ|Re(λΩu)ψ(u) dσu

∥∥∥∥
Lp(|λ|>R)

.

Following the proof of the Hausdorff-Young type inequality, we can make a change of variables

to cut-off the growth of the exponential term with |λ|2Aw in the outside. Thereafter, we can

apply Sadov’s Hausdorff-Young inequality for convex curves [63], as before, and obtain:∥∥∥∥ 1

|λ|2Aw

∫
eiτRe(θu)e2 ln |λ|Re(λΩu)ψ(u) dσu

∥∥∥∥
Lp(|λ|>R)

≤ C∥ψ∥Lq(
√
ϵ<|u|<M)

where M is chosen large enough so that {u : |u| < M} includes the support of ψ.

Hence, we obtain by a change of variables through polar coordinates∫
|λ|>R

∣∣∣∣Iw(λ)|λ|

∣∣∣∣ dσλ ≤ C
([
τ2−(2−2Aw)q

]∞
R

)1/q
∥ψ∥Lq(|u|<M) < C ′∥ϕ∥W 1,∞ ,

where the last inequality follows by applying Hölder generalized inequality to control the singu-

larity |u|−3/2. The result holds as long as Aw < 1/p and thus follows with Aw < 1/2.

Theorem 3.6.7. Let aλ,w ∈ C∞(C) be arbitrary with compact support and ∥aλ,w∥W 5,∞ =

O(|λ|m+δ) with δ > 0.

If w ∈ Ω is in the support of aλ,w, then the oscillatory integral has the following asymptotic

behaviour: ∣∣∣∣I(w, λ)− π

|λ|
aλ,w(w)

∣∣∣∣ = O(|λ|m+δ−2), (3.40)

where δ > 0.

Proof. For simplicity, we consider λ = τθ, where |λ| = τ and θ ∈ S1.

I(w, λ) =

∫
C
eiRe(λ(z−w)2)aλ,w(z)dσz =

∫
C
eiRe(λz2)aλ,w(z + w) dσz

= −2i

∫
R2

e−iτ⟨Ax,x⟩/2aλ(x+ w) dx1dx2

where we make a change of variables and used z = x1 + ix2 and w = w1 + iw2 or w = (w1, w2)

and A =

(
θ1 −θ2
−θ2 −θ1

)
.
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Applying F−1 and F , by using the definition of F−1 on S ′(R2), which is possible since aλ

has compact support, we obtain

I(w, λ) = −2i

∫
Fx
[
e−iτ⟨Ax,x⟩/2

]
(ξ)F−1

x [aλ,w(x+ w)](ξ) dξ

= −2i

∫ (π
τ
e−⟨A−1ξ,ξ⟩/2

)
F−1
x [aλ,w(x+ w)](ξ) dξ

= −2i
π

τ

∫
e−

i
4τ

Re(θ(ξ1+iξ2)2)F−1
x [aλ,w(x+ w)](ξ) dξ.

Next, we split the exponential function eb like:

eb = 1 + b

(
eb − 1

b

)
,

where g(b) ∈ C∞(C) satisfies |g(b)| ≤ |eb| and setting b = − i
4τRe

(
θ(ξ1 + iξ2)

2
)
,

I(w, λ) =
π

τ

∫
F−1
x [aλ,w(x+ w)](ξ) dσξ

− 2i
π

τ

∫
−i
4τ

Re
(
θ(ξ1 + iξ2)

2
)
F−1
x [aλ,w(x+ w)](ξ) g(b) dξ

=
π

τ

∫
F−1
x [aλ,w(x+ w)](ξ) dσξ

− 2π

τ2

∫
F−1
x

[
Re
(
θ(∂x1 + i∂x2)

2
)
aλ,w(x+ w)

]
(ξ)g(b) dξ.

Finally, by
∫
F−1(f)(ξ) dξ = f(0) it holds:∣∣∣Iaλ,ϕ − π

τ
aλ(w)

∣∣∣ = ∣∣∣∣2πτ2
∫

F−1
x

[
Re
(
θ(∂x1 + i∂x2)

2
)
aλ(x+ w)

]
(ξ)g(b) dξ

∣∣∣∣
≤ 2π

τ2
sup |g(b)|

∥∥F−1
x

[
Re
(
θ∂2z
)
aλ,w

]∥∥
L1(Ω)

< ∥Re(θ∂2z )aλ,w∥W 3,∞

= O(|λ|m+δ−2).

Theorem 3.6.8. Let ϕ ∈W 1,∞(Ω) for Ω a bounded Lipschitz domain with suppϕ ⊂ G. Further,
let w ∈ Ω and define for λΩ ∈ C

Aw := sup
z∈Ω̄

Re
(
λΩ(z − w)2

)
< 1/2. (3.41)

Then, for R > 0 large enough the following asymptotic formula holds∫
G
eiRe(λ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)ϕ(z) dσz = 2π

ϕ(w)

|λ|
+O(|λ|2Aw+δ−2) +Rw(λ), (3.42)

with Rw(λ)/|λ| ∈ L1(|λ| > R).
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Proof. The proof follows from joining the previous results with an estimate based on ϕ being

Lipschitz.

Let ϵ > 0 and split Ω as follows

Ω1 = {z ∈ Ω : |z − w| < 3ϵ}, Ω2 = {z ∈ Ω : |z − w| > ϵ}.

We define a partition of unity with α1, α2 ∈ C∞(Ω) such that α1+α2 = 1 and αj compactly

supported in Ωj .

Accordingly, we split our integral of interest:∫
Ω
eiRe(λ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)ϕ(z) dσz =

∫
Ω1

eiRe(λ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)α1(z)ϕ(z) dσz

+

∫
Ω2

eiRe(λ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)α2(z)ϕ(z) dσz.

Remark that w is not inside Ω2 and setting aλ,w(z) = e2 ln |λ|Re(λΩ(z−w)2)α2(z)ϕ(z) it holds

for arbitrary δ > 0 that ∥aλ,w∥W 1,∞(Ω2) = O(|λ|2Aw+δ). Therefore, aλ,w fits the hypothesis of

lemma 3.6.6. As such, setting

1Rw(λ) :=

∫
Ω2

eiτRe(θ(z−w)2)aλ,w(z) dσz

it holds that 1Rw(λ) /|λ| ∈ L1(|λ| > R).

To integrate over Ω1 we start by decomposing ϕ in two terms:

ϕ(z) = ϕ(w) + [ϕ(z)− ϕ(w)] .

Due to independence of the integration variable we bring ϕ(w) outside of integration and

obtain: ∫
Ω1

eiτRe(θ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)α1(z)ϕ(z) dσz =

ϕ(w)

∫
Ω1

eiτRe(θ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)α1(z) dσz

+

∫
Ω1

eiτRe(θ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)α1(z) [ϕ(z)− ϕ(w)] dσz.

For the first integral, we define bλ,w = e2 ln |λ|Re(λΩ(z−w)2)α1(z) and verify that b is under the

conditions of Theorem 3.6.7. Therefore, it holds

ϕ(w)

∫
Ω1

eiτRe(θ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2)α1(z) dσz = ϕ(w)

[
π

|λ|
bλ,w(w) +O(|λ|2Aw+δ−2)

]
=

π

|λ|
ϕ(w) +O

(
|λ|2Aw+δ−2

)
,

since bλ,w(w) = 1 by definition of α1 and cancellation of the exponential. This results in the

reconstruction part.
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We cast our focus on second term of integration, that we define as 2Rw(λ) . To finish we

show 2Rw(λ) /|λ| ∈ L1(λ : |λ| > R).

The idea is analogous to Lemma 3.5.3. Without loss of generality we dismiss α1 as it fulfilled

its purpose. We start by applying a change of variables u = (z − w)2 and obtain∫
Ω1

eiτRe(θ(z−w)2)e2 ln |λ|Re(λΩ(z−w)2) (ϕ(z)− ϕ(w)) dσz

=
∑
±

∫
eiτRe(θu)e2 ln |λ|Re(λΩu)

ϕ(w ±
√
u− ϕ(w))

|u|
dσu

=
∑
±

∫
1

iτθ + 2 ln τλΩ
eiτRe(θu)e2 ln |λ|Re(λΩu)∂u

(
ϕ(w ±

√
u)− ϕ(w)

|u|

)
dσu.

Due to ϕ ∈W 1,∞(Ω) and thus being a Lipschitz continuous function it holds∣∣∣∣∂u(ϕ(w ±
√
u)− ϕ(w)

|u|

)∣∣∣∣ = ∣∣∣∣∂zϕ(w ±
√
u)

2
√
u|u|

− (ϕ(w ±
√
u)− ϕ(w)) ū

2|u|3

∣∣∣∣ ≤ C

|u|3/2
+

L

|u|3/2
.

We define ψ(u) := ∂u

(
ϕ(w±

√
u)−ϕ(w)
|u|

)
and choose M > 0 large enough so that {u| |u| < M}

includes the support of ψ.

To complete the estimate we apply Hölder inequality to integration in terms of λ with p = 2

as follows:∫
|λ|>R

∣∣∣∣ 1|λ|Rw(λ)
∣∣∣∣ dσλ ≤

∫
|λ|>R

∣∣∣∣∣ 1

|λ|2−2Aw

(∑
±

1

|λ|2Aw

∫
eiτRe(θu)e2 ln |λ|Re(λΩu)ψ(u) dσu

)∣∣∣∣∣ dσλ
≤ 2

[∫
|λ|>R

1

|λ|(2−2Aw)2
dσλ

]1/2 ∥∥∥∥ 1

|λ|2Aw

∫
eiτRe(θu)e2 ln |λ|Re(λΩu)ψ(u) dσu

∥∥∥∥
L2(|λ|>R)

≤ C
[
τ2−(2−2Aw)2

]∞
R
∥ψ∥L2(|u|<M) <∞,

where the boundedness follows since 2− (2− 2Aw)2 < 0 ⇔ Aw < 1/2 and the inequality follows

as above.

Further, the estimate∥∥∥∥ 1

|λ|2Aw

∫
eiτRe(θu)e2 ln |λ|Re(λΩu)ψ(u) dσu

∥∥∥∥
L2(|λ|>R)

≤ CM∥ψ∥L2(|u|<M),

follows exactly as in the proof of Lemma 3.5.3 by cutting exponential growth 2 ln |λ| with |λ|2Aw

and apply Hausdorff-Young inequality for p = 2. Notice that the Lemma 3.5.3 does not hold for

p = 2, but this is because of the kernel 1
z−w being present under the integral.

We can relax the condition on admissible point much more, that is, Aw can be a bit larger

than 1/2. But that requires extra smoothness conditions on ϕ in order to apply further inte-

gration by parts, which leads to more decay. In fact, with more derivatives we do not strictly

require the Hausdorff-Young type inequality.

These results allows us now to bring back the scattering transform and provide a simple

proof to the reconstruction formula.
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3.6.3 Proof of the reconstruction formula

As we have already indicated before, the reconstruction formula follows by decomposing the so-

lution µ1 of (3.20) into further terms like (3.28). Hence, we can re-write the scattering transform

over the domain (3.25) with this expansion and to finish we just need to know the asymptotic

behavior of all terms as R→ ∞.

Since these asymptotics were proved in the previous subsection, we collect now all results

together to provide the reconstruction proof.

For this purpose, we note that the reconstruction is only possible on the points w ∈ Ω that

fulfill the following conditions for p > 2:

Aw < 1/2, Aw −Bw >
2

p
, Aw +Bw <

2

p
− 1.

From these conditions, we now deduce a loose condition for Bw. The first condition implies

that −Aw > −1/2, which together with the second condition leads to

Aw −Bw >
2

p
⇔ −Bw >

2

p
−Aw >

2

p
− 1/2

⇔ Bw < 1/2− 2

p
.

Further, since p > 2 we have that −1/2 < 1/2 − 2/p < 1/2. Thus, if Bw < −1/2 the

condition deduced above is met.

As such in a loose manner we obtain the Definition 3.1.1 of admissible points. We recall that

w ∈ Ω is an admissible point if there exists a λΩ ∈ C such that:

Aw := sup
z∈Ω

Re(λΩ(z − w)2) < 1/2,

Bw := sup
z∈D̄

Re(λΩ(z − w)2) < −1/2.

Note that this definition originated with independence of the chosen p > 2. The last condition

can be simplified to Aw+Bw < 0 by choosing an appropriate p during the proof of Lemma 3.6.3.

With this definition we are ready to prove the main theorem of this chapter on proper

admissible points.

Proof of Theorem 3.6.2

Let us re-write the scattering transform over the whole domain.

h(λ,w)

|λ|
=

1

|λ|

∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dσz

+
2i

|λ|

∫
Ω\D̄

eln |λ|λΩ(z−w)2q21(z)e
iRe(λ(z−w)2)µ1(z) dσz

=
1

|λ|

∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dz̄ +

1

|λ|
Tλ (µ1) .
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Applying the splitting (3.29) to µ it holds that

µ1 = − [Mf ]1 −

[
M (I +DQλ)

(
U

0

)]
1

+ U.

Therefore, the scattering data follows as

h(λ,w)

|λ|
=

1

|λ|

∫
Γ
eln |λ|λΩ(z−w)2µ2(z) dσz −

1

|λ|
Tλ ([Mf ]1)

− 1

|λ|
Tλ

([
M (I +Qλ)

(
U

0

)]
1

)
+

1

|λ|
TλU

Due to Lemmas 3.6.3 and 3.6.4 we have that:

lim
R→∞

∫
R<|λ|<2R

1

|λ|

∫
Γ
elnλλΩ(z−w)

2
µ2(z) dz̄dσλ = 0,

lim
R→∞

∫
R<|λ|<2R

1

|λ|
Tλ ([Mf ]1) dσλ = 0,

lim
R→∞

∫
R<|λ|<2R

1

|λ|
Tλ

([
M (I +Qλ)

(
U

0

)]
1

)
dσλ = 0.

As such, it follows from Lemma 3.6.8 that:

lim
R→∞

∫
R<|λ|<2R

h(λ,w)

|λ|
dσλ = lim

R→∞

∫
R<|λ|<2R

2π

|λ|2
q21(w) dσλ

+ lim
R→∞

∫
R<|λ|<2R

C

|λ|3−2Aw+δ
dσλ + lim

R→∞

∫
R<|λ|<2R

1

|λ|
|Rw(λ)| dσλ.

The last term goes to zero, since we have shown that 1
|λ|Rw(λ) ∈ L1(|λ| > R). The second

term can be treated quickly with polar coordinates as

lim
R→∞

∫
R<|λ|<2R

1

|λ|3−2Aw−δ dσλ = lim
R→∞

2π

∫
R<τ<2R

τ2Aw+δ−2 dτ = lim
R→∞

[
τ2Aw+δ−1

]∣∣∣2R
R

= 0,

holds for 2Aw + δ − 1 < 0, which is true since δ > 0 can be arbitrarily small and Aw < 1/2.

As such, the limit as R → ∞ of the scattering transform only depends on the first term,

which is trivially computed at the admissible points w ∈ Ω \ D̄:∫
R<|λ|<2R

2π

|λ|2
q21(w) dλ = 4πq21(w) [ln τ ]|2RR = 4π ln 2 q21(w).

The conditions of the theorem are mostly concerned with existence and uniqueness of the

solutions µ, since the scattering transform is defined through them and they need to have the

appropriate asymptotics for everything to hold together.

The nature of admissible points is very visible through the proofs, but we want to highlight

that is also an essential step for application of the stationary phase method in the last step of

reconstruction formula.
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Remark, that the work we have achieved so far only allows us to reconstruct the potential

from data {µ|∂Ω}. In order to uniquely determine the complex conductivity we show how to

establish a one-to-one connection between this boundary data and the Dirichlet-to-Neumann

map. With this connection Theorem 3.6.2 proves the Calderón problem for complex conductiv-

ities with a discontinuity curve.

3.7 Scattering data for the Dirac equation via the Dirichlet-to-

Neumann map

Our next objective is to establish a relation between the Dirichlet-to-Neumann map for equation

(3.1) and the traces of the solutions (3.5) on ∂Ω. For this purpose, we define the Cauchy data

set for a potential q ∈ L∞(Ω) by

Tq :=

{
ϕ|∂Ω : ϕ =

(
ϕ1

ϕ2

)
is a solution of (3.5) and (3.4), ϕ1, ϕ2 ∈ H1(Ω)

}
. (3.43)

Let u ∈ H2(Ω \ D̄) ∩ H2(D) be a solution of (3.1) with u|∂Ω = f ∈ H3/2(∂Ω). Consider

ϕ = γ1/2(∂u, ∂̄u) ∈ H1(Ω \ D) ∩H1(D). Then, formally

ϕ|∂Ω =
1

2

(
ν̄ −iν̄
ν iν

)(
Λγf

∂sf

)
, (3.44)

where Λγ is the co-normal D-t-N map and ∂s is the operator of the tangential derivative. In-

verting we get (
Λγf

∂sf

)
=

(
ν ν̄

iν −iν̄

)
ϕ|∂Ω. (3.45)

We normalize ∂−1
s in such a way that ∫

∂Ω
∂−1
s fds = 0.

Then (3.45) can be written as a boundary relation

(I − iΛγ∂
−1
s )(νϕ1|∂Ω) = (I + iΛγ∂

−1
s )(ν̄ϕ2|∂Ω) (3.46)

Let us show the generalization of [55, Thm 3.2] where γ ∈ C1+ϵ(R2) to the case of non-continuous

γ.

Theorem 3.7.1. Let γ ∈ W 1,∞(Ω \ D̄) ∩W 1,∞(D) with Re γ ≥ c > 0. Further, let q be the

complex potential defined through γ by (3.6). Then, the respective Cauchy data satisfies the

following equality:

Tq =
{
(h1, h2)

t ∈ H1/2(∂Ω)×H1/2(∂Ω) : (I − iΛγ∂
−1
s )(νh1) = (I + iΛγ∂

−1
s )(ν̄h2)

}
(3.47)
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Proof. First we show that any pair (h1, h2)
t ∈ H1/2(∂Ω)×H1/2(∂Ω) that satisfies the boundary

relation above is in Tq. Consider a solution u ∈ H2(Ω \ D̄) ∩H2(D) of (3.1) with the boundary

condition

u|∂Ω = i∂−1
s (νh1 − ν̄h2) ∈ H3/2(∂Ω).

Since γ ∈W 1,∞(Ω\D̄)∩W 1,∞(D) and γ is separated from zero, it follows that γ1/2 ∈W 1,∞(Ω\
D̄) ∩W 1,∞(D). Then, both components of the vector ϕ = γ1/2(∂u, ∂̄u)t belong to H1(Ω \ D̄) ∩
H1(D) and ϕ satisfies (3.5). The fact ϕ|∂Ω = (h1, h2)

t follows from (3.44) and (3.46).

Conversely, we start with a solution ϕ ∈ H1(Ω \ D̄) ∩H1(D) of (3.5) satisfying (3.7) on Γ.

From (3.5) and (3.6) the following compatibility condition holds on Γ

∂̄(γ−1/2ϕ1) = ∂(γ−1/2ϕ2).

Poincaré lemma ensures the existence of a function u such that(
ϕ1

ϕ2

)
= γ1/2

(
∂u

∂̄u

)
on Ω \ Γ.

It is easy to check that u is a solution to (3.1) on Ω \ Γ and belongs to H2(Ω \ D) ∩ H2(D).

Moreover, through the Poincaré Lemma and (3.7) it satisfies the transmission condition (3.4).

Then, (3.44)-(3.46) proves that h = ϕ|∂Ω satisfies the boundary relation stated in the theorem.

We want to highlight that the uniqueness proof and the boundary determination require

different regularities of the conductivity γ. At least, this shades light in possible improvements

on this methodology, if we are able to surpass the necessity of two-derivatives of γ on the

reconstruction formula obtained by the stationary phase method.

A future idea to explore concerns the actual determination of the trace of ϕ at ∂Ω from

the Dirichlet-to-Neumann map Λγ . This is an essential step to obtain a reconstruction method

based on the uniqueness proof given in Theorem 3.6.2. A hint to this is given in [55, Th. III.3.]

for γ ∈ C1+ε(R2), although in here the exponential growing solutions are of the type eikz.

For such, we denote Sλ,w : H1/2(∂Ω) → H1/2(∂Ω)

Sλ,wf(z) =
1

iπ

∫
∂Ω
f(ς)

e−λ(z−w)
2+λ(ς−w)2

ς − z
dς

The integral is to be understood in the sense of principal value. This allows to state the following

conjecture for our method.

Conjecture 3.7.2. The only pair (h1, h2) ∈ H1/2(∂Ω)×H1/2(∂Ω) which satisfies

(I − Sλ,w)h1 = 2eλ(z−w)
2
, (3.48)

(I − Sλ,w)h2 = 0, (3.49)

(I − iΛγ∂
−1
s )(νh1) = (I + iΛγ∂

−1
s )(ν̄h2) (3.50)
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is (ϕ1|∂Ω , ϕ2|∂Ω), where ϕ1, ϕ2 are the solutions of Dirac equation (3.5) satisfying the asymp-

totics (3.11).

3.8 Complex conductivities with more discontinuity curves

Assuming that the conductivity only has one discontinuity curve is a rather restrictive assump-

tion when one thinks of applications. The existence of one discontinuity curve may be repre-

sentative of a tumour inside a breast, however it does not represent clinical scenarios of lung

ventilation or brain haemorrhages.

To consider these new scenarios one needs to extend the previous work for more than dis-

continuity curve. Without loss of generality we show the procedure for the extension with two

discontinuity curves, see Figure 3.2 for the two possibilities.

Figure 3.2: Complex conductivities with more than one discontinuity curve. The left-hand side

represents complex conductivities for which there are two separate discontinuity curves and

on the right-hand domain represents scenarios where we have a discontinuity curve inside the

interior domain of the other.

There are a few key steps essential for the generalization. By their respective order they are:

1. Devising a transmission condition for each discontinuity curve;

2. Determining the integral equation for the more than one discontinuity curve;

3. Generalizing the function spaces;

4. Determining the scattering transform and apply the stationary phase method to obtain

an analogous reconstruction formula.

Since most of the results are analogous we briefly describe how each step follows without

being extensive about them.

First and foremost, the transmission condition can be obtained exactly the same as in Lemma

3.4. Instead of one transmission condition we will have two, one for each discontinuity curve.

This is a clear procedure since we will need also to consider two transmission conditions for

the conductivity equation. Furthermore, we also will take into account two jumps α1, α2 to

construct these conditions over the two discontinuity curves Γ1,Γ2.
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Remark that the exponentially growing solutions can be exactly the same and no further

consideration needs to be taken. As such, we can obtain the µ solutions to (4.71) in Ω\(Γ1∪Γ2).

Transforming the above transmission conditions for µ we obtain two matrix operators Aλ,1, Aλ,2

with respect to the condition over each curve.

The second step follows now swiftly and using the ideas in Proposition 3.3.1 we obtain an

analogous integral equation:

[I + PAλ,1 + PAλ,2 −DQλ]µ =

(
U

0

)
. (3.51)

To study this equation the function spaces need to be carefully adapted. Recall that the

space Hp
2 was introduced to deal with the behavior over the discontinuity curve. As such, we

split this space in order to deal with all curves. We can define Hp
2 = Hp

2,1 + Hp
2,2 where each

Hp
2,j space treats its respective curve Γj like in the single scenario. In the space Hp

2 we consider

the norm

∥f∥Hp
2
:= min

f=f1+f2,
fj∈Hp

2,j

[
∥f1∥Hp

2,1
+ ∥f2∥Hp

2,2

]
.

Finally, we multiply the new integral equation by (I + DQλ) and obtain an operator M

defined as:

M = PAλ,1 + PAλ,2 +DQλ (PAλ,1 + PAλ,2)−DQλDQλ.

This operator is a contraction in Hp for a large R > 0 as long as the jumps αj are close to

1 in L∞(Γj), j = 1, 2. This allows us to ensure the existence and uniqueness of a solution µ to

the integral equation (I +M)µ = (I +DQλ)(U, 0)
t in Hp as achieved in Lemma 3.5.4 with the

multiplication by the factor 1/|λ|Aw . The proof already relies on the notion of an admissible

point. Here, the only different aspect is the definition of Bw, which we set for Dj = int Γj to be

Bw = sup
z∈D1∪D2

Re
[
λΩ(z − w)2

]
< −1/2.

Lastly, one needs to understand how the scattering data relates with the potential. Here,

there is a splitting between both scenarios.

If the inner domains of the curves are disjoint, like on the left case presented in Figure 3.2,

then the scattering data is analogous. In this case, we have two terms that consider the curves

given as ∫
Γj

eln |λ|λΩ(z−w)2µ2(z) dz̄,

where µ2 is the trace from the inner domain of Γj . Thereafter, the asymptotics are proven as

in the extension of Lemma 3.6.3.
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For the other scenario, care needs to be taken, because the integral over the inner curve has

to account for the behavior from the inside and outside. Let us see how to obtain it. For such,

consider that Γ1 is the inner curve and Γ2 the outer one. Further, let Dj = intΓj

h(λ,w) =

∫
∂Ω
eln |λ|λΩ(z−w)2µ2(z) dz̄ = −2i

∫
Ω
∂
(
eln |λ|λΩ(z−w)2µ2(z)

)
dσ(z)

= −2i

[∫
D1

+

∫
D2\D1

+

∫
Ω\D2

∂
(
eln |λ|λΩ(z−w)2µ2(z)

)
dσ(z)

]

=

∫
Γ1

eln |λ|λΩ(z−w)2µ2(z) dz̄ +

∫
∂D2\D1

eln |λ|λΩ(z−w)2µ2(z) dz̄

− 2i

∫
Ω\D2

∂
(
eln |λ|λΩ(z−w)2µ2(z)

)
dσ(z)

=

∫
Γ1

eln |λ|λΩ(z−w)2
(
µ−2 (z)− µ+2 (z)

)
dz̄ +

∫
Γ2

eln |λ|λΩ(z−w)2µ2(z) dz̄

− 2i

∫
Ω\D2

∂
(
eln |λ|λΩ(z−w)2µ2(z)

)
dσ(z).

Due to the transmission condition over the Γ1 the first integral is given as:∫
Γ1

eln |λ|λΩ(z−w)2
(
µ−2 (z)− µ+2 (z)

)
dz̄ = −

∫
Γ1

eln |λ|λΩ(z−w)2 [Aλ,1µ]2 dz̄.

The decay this last integral at infinity holds as in Lemma 3.6.3 by bringing the term Aλ,1

since it is in L∞(Γ1).

Essentially, for both scenarios these type of terms disappear when taking the limit of R→ ∞
on the reconstruction formula. Furthermore, the stationary phase method allows to obtain the

potential q at the admissible points.

Hence, we are still able to reconstruct the potential uniquely when it has more than one

discontinuity curve which shows the full picture of Theorem 1.2.1.
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Chapter 4

Complex conductivities in three

dimensions

In this chapter we consider the Calderón problem in the case of complex conductivities in three

dimensions.

Our focus lies in the uniqueness question posed by Calderón for L∞ conductivities. The

history of the Calderón problem starts with stronger assumptions, like C∞ conductivities [88],

and proceeds to improve the results with new techniques but a similar proof structure. Here we

present two lines of work based in different techniques that successively decreases the conduc-

tivity smoothness requirements.

We introduce an approach for uniqueness of complex conductivities in C1,1 and an approach

when they belong to W 1,∞. The first focusses heavily on the work of Nachman [68] while the

latter focusses on novel work with quaternionic analysis.

We start by introducing the general problem and theorems we want to prove. Thereafter,

we split our presentation into two sections. One focusing on C1,1 conductivities and making an

extension of the works [22] and [68] for complex conductivities. The second focuses onW 1,∞ and

is based on quaternionic analysis to introduce a Dirac inverse problem and new exponentially

growing solutions.

4.1 The problem

Let Ω ⊂ Rn be a bounded Lipschitz domain and define γ ∈ L∞(Ω) to be an isotropic complex

conductivity γ = σ + iωϵ, as defined in the Introduction.

The direct problem we focus here is given in Eq. (1.4) and we recall it here for simplicity.

Let f ∈ H1/2(∂Ω) be a voltage established at the boundary ∂Ω. Then, we want to find the
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unique electrical potential u ∈ H1(Ω) that fulfills the conductivity equation:∇ · (γ∇u) = 0, in Ω

u|∂Ω = f.
(4.1)

Further, recall that uniqueness is guaranteed in H1(Ω) for Re γ ≥ c > 0 and as such, we can

define the Dirichlet-to-Neumann map from this solution. Formally, it is defined as:

Λγ : H1/2(∂Ω) → H−1/2(∂Ω)

f 7→ γ
∂u

∂n

∣∣∣∣
∂Ω

.

This provides all the boundary information we can acquire in practice, and therefore we can

formulate the inverse Calderón problem through it.

In this chapter, we work on two different assumption settings. Our main objective will be

the proof of the following two theorems.

Theorem 4.1.1. Let Ω ⊂ Rn, n ≥ 3 be a bounded C1,1-domain. Let γi ∈ C1,1(Ω) with Re γi ≥
c > 0 for i = 1, 2 and denote Λγi as their respective Dirichlet-to-Neumann maps.

If Λγ1 = Λγ2 then γ1 = γ2 in Ω.

Theorem 4.1.2. Let Ω ⊂ R3 be a bounded Lipschitz domain. Let γi ∈ W 1,∞(Ω) with Re γi ≥
c > 0 for i = 1, 2 and denote Λγi as their respective Dirichlet-to-Neumann maps.

If Λγ1 = Λγ2 then γ1 = γ2 in Ω.

4.2 Complex conductivities in C1,1(Ω)

Nachman’s work [68] starts by connecting the Calderón problem with an analogous Schrödinger

inverse problem. The focus is to obtain a reconstruction method to determine a real conduc-

tivity from its Dirichlet-to-Neumann map. Uniqueness was established slightly earlier in [70] by

Nachman, Sylvester and Uhlmann. Furthermore, it is clearly extended to complex conductivities

with positive real-part, since there was no restrictive assumption for this in the proof.

In this section, we give a brief overview of the uniqueness proof and thereafter proceed to

present the extension of Nachman’s reconstruction proof to complex conductivities in C1,1(Ω)

in C1,1 domains. To be explicit, we state clearly where new results are required to fit the case

of complex conductivities.

One problem of this approach is related with the asymptotic behaviour of the reconstruction

formula, which is hard to implement in a stable manner. To tackle this, we also extend the work

in [22] for complex conductivities in order to obtain a more stable reconstruction procedure.
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However, this is based on a smallness condition of the complex conductivity and therefore, it is

just a small step towards a general reconstruction method.

As always, we start by transforming our initial equation (4.1) into another one, this method

in particular changes it into a Schrödinger equation.

4.2.1 The relation with Schrödinger equation

The initial relation was established in [87] and allows a connection with scattering theory and

with the many tools already established for that. This transformation was one of the starting

points for uniqueness proofs of Calderón problems.

Let u ∈ H1(Ω) be the unique solution of (4.1) with boundary values f ∈ H1/2(∂Ω). Then,

the substitution u = γ−1/2w yields with the potential q = ∆γ1/2

γ1/2
the equation−∆w + qw = 0, in Ω

w|∂Ω = γ1/2f.
(4.2)

Remark since Re γ > 0 and γ ∈ C1,1(Ω) then γ1/2 is well-defined and twice-weakly differen-

tiable. Therefore, the potential q is also well-defined and in L∞(Ω).

Now, from these assumptions on γ we have that 0 is not a Dirichlet eigenvalue of∇·(γ∇u). As
such, and due to the bijection between solutions of both problems (4.1) and (4.2) for γ ∈ C1,1, we

have that 0 is also not a Dirichlet eigenvalue of the Schrödinger operator. In the proofs Nachman

always made an emphasis of this to provide mathematical generality. Since our interest resides

in complex conductivities we use it as an assumption in order to avoid repetition of the results.

To this end we define a special type of potential:

Definition 4.2.1. Let γ ∈ C1,1(Ω) be a complex conductivity with Re γ ≥ c > 0, thus 0 is not

a Dirichlet eigenvalue for the operator ∇ · (γ∇u).
We call the following potential a complex conductivity potential

q =
∆γ1/2

γ1/2
, (4.3)

and therefore 0 is not a Dirichlet eigenvalue of (−∆+ q).

In general, if 0 is not a Dirichlet eigenvalue of the Schrödinger operator in Ω, then the respec-

tive Dirichlet-to-Neumann map Λq is well-defined from H1/2(∂Ω) to H−1/2(∂Ω) and formally is

given by

Λqg =
∂w

∂n

∣∣∣∣
∂Ω

,

where w is the unique solution of (−∆+ q)w = 0, w|∂Ω = g.

The inverse problem is to determine the conductivity potential q from the Dirichlet-to-

Neumann map Λq uniquely. In this manner, we are focusing on the Schrödinger equation.
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However, for the proof of Theorem 4.1.1 we need to establish a connection between Λγ and

Λq for complex conductivities and its respective potential.

In fact, let γ be a complex conductivity, f ∈ H1/2(∂Ω) boundary value, and u ∈ H1(Ω) the

unique solution of ∇·(γ∇u) = 0 in Ω, with u|∂Ω = f . Since γ ∈ C1,1(Ω) it holds that w = γ1/2u

is the unique solution of (−∆+ q)w = 0 in Ω with w|∂Ω = γ1/2f .

Applying the normal derivative at the boundary to w we get:

Λq(γ
1/2f) =

∂w

∂n

∣∣∣∣
∂Ω

=

[
1

2
γ−1/2 ∂γ

∂n
u+ γ1/2

∂u

∂n

]∣∣∣∣
∂Ω

=
1

2
γ−1/2 ∂γ

∂n
f + γ−1/2Λγf

which assuming g = γ1/2f leads to

Λq = γ−1/2

(
1

2

∂γ

∂n
+ Λγ

)
γ−1/2.

Therefore, for us to determine Λq we also require γ and ∂γ
∂n at ∂Ω. We will show that these

boundary values are uniquely determined by Λγ , which implies that Λq is uniquely determined

from Λγ .

4.2.2 Exponentially growing solutions

We start by extending our equation to Rn. Since, q is in L∞(Ω) we can extend it by 0 outside

Ω and study solutions of

−∆ψ + qψ = 0 in Rn. (4.4)

Thanks to Sylvester and Uhlmann [88] we can now transfer the problem to one at infinity,

through the, by now famous, exponentially growing solutions given as:

ψ = eix·ζ (1 + µ(x, ζ)) for ζ ∈ Cn such that ζ · ζ = 0. (4.5)

Substituting into Schrödinger equation (4.4) we get that µ must fulfill

−∆µ− 2iζ · ∇µ+ qµ = −q in Rn, (4.6)

which is obtained through harmonic nature of the exponential function, given that we assume

ζ ∈ Cn satisfies ζ · ζ = 0. The choice of exponential functions is indeed done with this purpose

in mind.

From scattering theory we inherited Faddeev-Green’s function (see [29]) which takes a prin-

cipal role in the study of the above equation (4.6). It is defined as Gζ(x) = eix·ζgζ(x) where gζ

is the fundamental solution of operator (−∆− 2iζ · ∇) given as:

gζ(x) =
1

(2π)n

∫
Rn

eix·ξ

|ξ|2 + 2ζ · ξ
dξ. (4.7)
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By definition of gζ it holds that Gζ is a fundamental solution of the Laplacian, and therefore it

differs from the classical one G0 by an harmonic function Hζ , that is,

Gζ(x) = G0(x) +Hζ(x).

This decomposition is important to provide estimates about the solutions w.

Given a fundamental solution Gζ of the Laplace operator, we obtain an integral equation

associated with (4.4)

ψ(x, ζ) = eix·ζ −
∫
Gζ(x− y)q(y)ψ(y, ζ) dy (4.8)

and with the assumption (4.5), we obtain the following integral equation for µ:

µ+ gζ ∗ (qµ) = −gζ ∗ q. (4.9)

These integral equations are essential to study exponentially growing solutions. We show

that there exists a unique solution to (4.9) for large values of |ζ|. This result is based on a gζ

estimate on a weighted L2 space, initially introduced in [88] in the case of real conductivities.

However, this last assumption is not necessary and the proof works even if q is a complex

potential.

Let ⟨x⟩ = (1 + |x|2)1/2. We define a weighted L2-space for δ ∈ R as

L2
δ(Rn) :=

{
f : ∥f∥δ := ∥⟨x⟩δf∥L2(Rn) <∞

}
.

Then the convolution operators with gζ and Gζ satisfy the following estimates.

Proposition 4.2.2. For all ζ ∈ Cn with ζ · ζ = 0 and |ζ| ≥ a the convolution operator with gζ

satisfies

∥gζ ∗ f∥δ−1 ≤
c(δ, a)

|ζ|
∥f∥δ, for 0 < δ < 1. (4.10)

Moreover, let H2
δ (Ω) :=

{
f : Dαf ∈ L2

−δ(Rn), 0 ≤ |α| ≤ 2
}

be the weighted Sobolev space with

norm

∥f∥2,δ =

∑
|α|≤2

∥Dαf∥2δ

1/2

.

Then, for any ζ ∈ Cn with ζ · ζ = 0 it holds for δ ∈ (12 , 1) that

∥gζ ∗ w∥2,−δ ≤ c(δ, ζ)∥w∥2,δ.

Furthermore, under the definition

Gζw(x) =

∫
Ω
Gζ(x− y)w(y) dy

it holds that

∥Gζw∥H2(Ω) ≤ c(ζ,Ω)∥w∥L2(Ω).
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Proof. The first estimate can be found in [88, Corollary 2.2] while the rest is in [68, Lemma 2.11]

With these estimates, uniqueness of solutions to (4.4) with the desired asymptotics follows

quickly.

Corollary 4.2.3. Let 0 < δ < 1 and q ∈ L∞(Ω) be complex-valued potential and extended to

zero outside Ω.

Then there exists an R > 0 such that for all ζ ∈ Cn with ζ · ζ = 0 and |ζ| > R the integral

equation (4.8) is uniquely solvable with e−ix·ζψ(x, ζ)− 1 ∈ L2
δ−1(Rn). Furthermore, it holds

∥e−ix·ζψ(x, ζ)− 1∥δ−1 ≤
c̃(R, δ)

|ζ|
∥q∥δ. (4.11)

Proof. The proof can be found in [70] and [68], but we present it here for clarity.

Let Mqϕ = qϕ be the multiplication operator with q. We start by showing that for q ∈
L∞(Rn) with compact support Mq : L

2
δ−1(Rn) → L2

δ(Rn) is a bounded operator.

Indeed, we have for f ∈ L2
δ−1(Rn)

∥Mqf∥δ =
[∫

Rn

(1 + |x|2)δ|q(x)f(x)|2 dx
]1/2

=

[∫
Rn

(
1 + |x|2

)
|q(x)|2

(
1 + |x|2

)δ−1 |f(x)|2 dx
]1/2

≤ ∥⟨x⟩q∥∞∥f∥δ−1 < c∥f∥δ−1,

where c = ∥⟨x⟩q∥∞ is finite due to the compact support of q.

Now, we define the operator Aζ = CζMq, where Cζ is the convolution with gζ and is given

by

Aζf(x) =

∫
Rn

gζ(x− y)q(y)f(y) dy = CζMqf (4.12)

By proposition 4.2.2 for |ζ| ≥ R we obtain

∥Aζf∥δ−1 = ∥CζMqf∥δ−1 ≤
c(δ,R)

|ζ|
∥Mqf∥δ ≤

c(δ,R)

|ζ|
∥⟨x⟩q∥∞ ∥f∥δ−1

Therefore, Aζ is bounded in L2
δ−1(Rn) and if

|ζ| > R := c(δ,R) ∥⟨x⟩q∥∞

then Aζ is a contraction, which implies that I +Aζ is invertible by Neumann series.

Since q ∈ L∞ and has compact support then it is in L2
δ and therefore the right-hand side of

(4.9) is in L2
δ−1. Hence, the unique solution to (4.6) is given by

µ(x, ζ) = − [I +Aζ ]
−1 (gζ ∗ q) .
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From here, we have

ψ = eix·ζ
(
1− [I +Aζ ]

−1 (gζ ∗ q)
)

solves the integral equation (4.8). Furthermore, the estimate (4.11) easily follows from [I+Aζ ]
−1

being bounded in L2
δ−1 and the estimate (4.10) in Proposition 4.2.2.

To establish uniqueness, suppose that there exists two solutions ψ1, ψ2 of (4.8) such that

µj = e−ix·ζψj − 1 ∈ L2
δ−1.

Then, the difference µ1 − µ2 = e−ix·ζ(ψ1 − ψ2) is also in L2
δ−1 and both fulfil the equation

[I +Aζ ]µj = −gζ ∗ q.

This implies [I + Aζ ]
(
e−ix·ζ(ψ1 − ψ2)

)
= 0 and thus ψ1 ≡ ψ2 by the invertibility of I + Aζ in

L2
δ−1. Hence, uniqueness of the integral equation (4.8) is established for exponentially growing

solutions.

Remark, that during the proof there is no requirement of q being real or complex, since it

follows by a contraction argument.

When a solution does not exist or is not unique, we define ζ as an exceptional point. The

above result guarantees that there are no large exceptional points. To be clear, we define them

as follows.

Definition 4.2.4. Let q ∈ L∞(Ω) complex-valued and extended to zero outside Ω.

Let ζ ∈ V := {ζ ∈ Cn \ {0}| ζ · ζ = 0}. Then we call ζ ∈ V an exceptional point for q

if there is no unique exponential growing solution of (−∆+ q)ψ = 0 in Rn, that is, there is no

unique solution of the type

ψ(x, ζ) := eix·ζ (1 + µ(x, ζ)) , with µ ∈ L2
δ−1(Rn), 0 < δ < 1. (4.13)

4.2.3 Uniqueness of complex conductivities

The uniqueness proof given in [70] for potentials q ∈ L∞ only requires large ζ. There is no

explicit mention of potentials being real-valued, and from an overview of the used arguments

and results, it is clear that this is also not required. For completeness, we follow this proof

to establish uniqueness for complex conductivity potentials q from their Dirichlet-to-Neumann

map Λq. Thereafter, we connect the dots with further results from the literature on differential

equations for complex conductivities to provide a proof of Theorem 4.1.1.

A first step is to show that the exponentially growing solutions outside Ω are uniquely

identified by the Dirichlet-to-Neumann map. Recall, for complex conductivity potentials q, 0 is

not a Dirichlet eigenvalue of (−∆+ q) in Ω.
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Lemma 4.2.5. Let q1, q2 ∈ L∞(Ω) be complex conductivity potentials, extended to zero outside

Ω. Further, let ζ ∈ V a non-exceptional point for q1, q2. Suppose that Λq1 = Λq2 and ψ1, ψ2 are

the unique solutions of (−∆+ qj)ψj = 0 in Rn of the form eix·ζ (1 + ψj). Then

ψ1 = ψ2, in Rn \ Ω.

Proof. Since 0 is not a Dirichlet eigenvalue of (−∆+ q), let v ∈ H1(Ω) be the unique solution of

−∆v + q2 v = 0, in Ω

v|∂Ω = ψ1|∂Ω .

Then we define

h =

{
v, in Ω

ψ1, in Rn \ Ω
.

Since Λq1 = Λq2 it holds that Λq1 ψ1|∂Ω = Λq2 ψ1|∂Ω and thus ∂ψ1

∂n = ∂v
∂n . This implies that h

as well as ∂h
∂n is continuous over ∂Ω. Therefore, h solves −∆h + q2 h = 0 in Rn and has the

appropriate asymptotics since ψ1 has them. By the uniqueness theorem it follows that h = ψ2

and thus ψ1 = ψ2 in Rn \ Ω.

With this equality outside, we can now show uniqueness of potential inside like [70]. There-

after, we can use this result to prove Theorem 4.1.1.

Theorem 4.2.6. Let q1, q2 ∈ L∞(Ω) be complex conductivity potentials extended to zero outside

Ω.

If Λq1 = Λq2, then q1 = q2.

Proof. Let k ∈ Rn be fixed and for m, s ∈ Rn we set

ζ =
1

2
((k + s) + im) and ζ̃ =

1

2
((k − s)− im)

with k · s = k ·m = s ·m = 0 and |k|2 + |s|2 = |m|2. The ζ, ζ̃ are in Cn and fulfil the condition

ζ · ζ = 0. Hence, taking s, m large enough we obtain solutions ψj of the integral equation (4.8)

for their respective potentials with respect to ζ̃ by Corollary 4.2.3.

Since ∆eix·ζ = 0, by applying the second Green identity we obtain the following relation for

each j = 1, 2: ∫
Ω
eix·ζqj(x)ψj(x) dx =

∫
Ω
eix·ζ∆ψj(x)− ψj∆e

ix·ζ dx

=

∫
∂Ω
eix·ζ

∂ψj
∂n

− ψj (n · iζ) eix·ζ dS(x),

where dS is the surface element.

By hypothesis Λq1 = Λq2 it holds from Lemma 4.2.5 that ψ1|∂Ω = ψ2|∂Ω.
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As such, it further holds
∂ψ1

∂n

∣∣∣∣
∂Ω

=
∂ψ2

∂n

∣∣∣∣
∂Ω

as ψj solve the interior problem (−∆+ qj)ψj = 0 with boundary value ψj |∂Ω.
Hence, the fact that the right-hand side of the integral above is equal for both qj implies the

relation: ∫
Ω
eix·ζ (q1µ1 − q2µ2) dx = 0.

Due to the asymptotic behaviour of ψj with respect to ζ̃ we get∫
Ω
eix·(ζ+ζ̃) (q1 − q2) dx =

∫
Ω
eix·(ζ+ζ̃) (q1µ1 − q2µ2) dx.

Using ζ + ζ̃ = k and taking modulus we obtain by Cauchy-Schwarz inequality and Corollary

4.2.3 the inequality∣∣∣∣∫
Ω
eix·k (q1 − q2) dx

∣∣∣∣ ≤ 2∑
j=1

∫
Ω
|qjµj | ≤

2∑
j=1

∥qj∥1−δ∥µj∥δ−1

≤
2∑
j=1

C

|ζ̃|
∥qj∥1−δ∥qj∥δ.

Since ζ̃ was arbitrarily depending on s, we can take the limit as |s| → ∞. This implies that the

left-hand side equals to zero for each fixed k ∈ Rn. As such, for all k ∈ Rn it holds∫
Ω
eix·k(q1 − q2) dx =

∫
R3

eix·k(q1 − q2) dx = 0.

Therefore, by Fourier inversion theorem we obtain q1 = q2 in Ω.

Again, recall that there is no requirement or reference to q being complex-valued during

the proofs. All presented work proves uniqueness for complex conductivity potentials q from

their respective Dirichlet-to-Neumann map Λq. This was implicitly present in the literature, in

particular, see [70].

However, it is not yet clear or immediate how this proof also implies uniqueness of the

respective complex conductivity γ from its Dirichlet-to-Neumann map Λγ .

Our contribution is to establish this connection by making clear what results are required

for this to happen. With it, we prove Theorem 4.1.1.

As we have seen a first step is to show that Λq is uniquely determined by Λγ , γ|∂Ω and
∂γ
∂n

∣∣∣
∂Ω

. Furthermore, these boundary values are uniquely determined by Λγ . We prove it later

on by also extending results in [69] to complex conductivities.

To finish, we just need to determine uniquely γ from q. The idea arises from [68] where the

used result is strictly for real-valued potentials. However for complex conductivities it follows

by a result in the book of Gilbarg and Trudinger [32] together with a perturbation argument.
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The restriction may have just been a causality due disinterest in complex conductivities at that

time.

The result to fix the gap is related with uniqueness of the interior problem with a complex

potential.

Proposition 4.2.7. Let Ω be a bounded C1,1-domain in Rn, n ≥ 3. Suppose that q ∈ L∞(Ω̄) is

complex conductivity potential.

Then for every f ∈ H3/2(∂Ω) there is a unique u ∈ H2(Ω) such that(−∆+ q)u = 0 in Ω

u|∂Ω = f.
(4.14)

The solution operator is defined by Pqf := w and has the mapping property

Pq : H
3/2(∂Ω) → H2(Ω).

Moreover, the Dirichlet-to-Neumann map operator has the mapping property

Λq : H
3/2(∂Ω) → H1/2(∂Ω).

Proof. The proof follows by studying first a Laplace interior problem and showing that multi-

plication by q is a compact operator from H2(Ω) to L2(Ω).

Thus, let

P0 : H
2(Ω) → L2(Ω)×H3/2(∂Ω), u 7→ (−∆u, tr u) .

By definition of H2(Ω) and trace properties for C1,1-domains the operator P0 is linear and

bounded. By Theorem 9.15. of [32], there always exists a unique solution in H2(Ω) of −∆u = f,

u|∂Ω = g.

Therefore, the operator P0 is bijective and invertible. In particular, it is Fredholm of index zero.

Analogously, we define the operator

Pq : H
2(Ω) → L2(∂Ω)×H3/2(∂Ω), u 7→ ( [−∆+ q]u, tr u) .

Then, the difference of operators Pq − P0 maps u to (qu, 0) over the same spaces. Since,

the embedding H2(Ω) ↪→ L2(Ω) is compact, it immediately follows that multiplication by q ∈
L∞(Ω) is a compact operator. Hence, by definition Pq − P0 is a compact operator. Since

Pq = P0 + (Pq − P0) is the sum of a Fredholm operator of index zero and a compact operator,

it is a Fredholm of index zero.
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Thus, to show invertibility we prove that ker Pq = {0}. Let u ∈ ker Pq. By definition this

implies u is a solution in H2(Ω) of (−∆ψ + q)u = 0,

u|∂Ω = 0,

but due to the assumption of 0 is not a Dirichlet eigenvalue of (−∆ + q), given that q is a

complex conductivity potential in Ω it follows that u ≡ 0.

Since our main assumption is γ ∈ C1,1(Ω̄), it is in H2(Ω). Therefore, for potentials q given

by a complex conductivity the following statement holds.

Corollary 4.2.8. Let Ω be a bounded C1,1-domain in Rn, n ≥ 3. Let γ ∈ C1,1(Ω̄) such that

Re γ ≥ c > 0.

Further, let q ∈ L∞(Ω) be given as q = ∆γ1/2/γ1/2 for which 0 is not a Dirichlet eigenvalue

of (−∆+ q). Then the unique solution ψ ∈ H2(Ω) of−∆ψ + qψ = 0

ψ|∂Ω = γ1/2
(4.15)

is ψ ≡ γ1/2.

The proof immediately follows by Proposition 4.2.7, and it establishes a unique correspon-

dence between complex conductivity potentials and complex conductivities. Therefore, we have

that Λγ uniquely establishes γ proving Theorem 4.1.1.

4.2.4 Preliminaries for reconstruction method

The first part of Calderón problem is answered for complex conductivities γ ∈ C1,1(Ω), that is,

γ is uniquely determined by Λγ . However, in practical terms the interest resides more on the

second part, the reconstruction of γ from the measurements encapsulated in the Dirichlet-to-

Neumann map.

The novel nature of Nachman’s work in [68] resides precisely on the reconstruction method

for real conductivities. One of the initial results is based on the scattering transform and the

fact we can reconstruct the potential q from its asymptotics. Due to instability of the limiting

procedure, Nachman was not satisfied, so he was able to obtain a procedure to reconstruct

the potential from asymptotic behaviour of the solutions ψ we described before, but by taking

integration. This becomes a more stable process of reconstruction. However, it is still to be

computationally implemented and studied.

Recently, in [39] and [40] there has been an implementation of Nachman’s work based on

the asymptotic behaviour of the scattering transform, that is, the first unstable method we

described in the previous paragraph. They introduce a regularization strategy, like the one
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initially done by Siltanen, Mueller and Isaacson for the 2D case [48]. While their focus is in

real conductivities, they indeed apply the method for Dirichlet-to-Neumann maps given from

complex-conductivities and obtain very reasonable results. However, there was no mention of

Nachman’s work being also feasible for this case.

Therefore, the following subsections are dedicated to this purpose. We extend Nachman’s

reconstruction methods to complex conductivities in C1,1(Ω). Furthermore, we explain how

further results from [22] can also be obtained for complex conductivities. This may be feasible

for future numerical implementations.

In this sense, our work fills the gap in the literature for complex conductivities. Even though

minimalistic most experts assume it to be true. Due to this, we restrict ourselves to stating

some of the results and pointing to the original proofs.

To start, we introduce some preliminaries results concerned with boundary value operators

that are independent of the nature of the conductivity and are connected with Faddeev-Green

function Gζ .

Analogously to the classical single and double layer potentials we define the respective op-

erators for Gζ . The single layer operator is defined as

Sζf(x) =

∫
∂Ω
Gζ(x− y)f(y) ds(y)

and the double layer as

Dζf(x) =

∫
∂Ω

∂Gζ
∂n

(x− y)f(y) ds(y).

Moreover, taking the trace of double layer potential it holds

Bζf(x) := p.v.

∫
∂Ω

∂Gζ
∂n

(x− y)f(y) ds(y), for x ∈ ∂Ω.

Since the singularity of Gζ for x near y is the same as G0, it is locally integrable on ∂Ω and the

trace of Sζ is continuous on the ∂Ω.

We state here the properties that Nachman established in its Appendix and that are essential

to establish the proof of the reconstruction method.

Proposition 4.2.9. Let Ω be a bounded C1,1-domain in Rn, n ≥ 3.

(i) For 0 ≤ s ≤ 1

∥Sζf∥Hs+1(∂Ω) ≤ c(ζ, s)∥f∥Hs(∂Ω). (4.16)

(ii) For 0 ≤ s ≤ 3
2 we have that Bζ is bounded in Hs(∂Ω).

Let ρ0 be a number large enough so that Ω̄ ⊂ {x : |x| < ρ0}. For any ρ > ρ0 we define

Ω′
ρ = {x : x ̸∈ Ω̄, |x| < ρ}.
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Lemma 4.2.10. If f ∈ H1/2(∂Ω), the function ϕ = Sζf has the following properties

(i) ∆ϕ = 0 in Rn \ ∂Ω.

(ii) ϕ ∈ H2(Ω) and ϕ ∈ H2(Ω′
ρ) for any ρ > ρ0.

(iii) ϕ satisfies an analogue to the Sommerfeld radiation condition. For almost every x it holds

lim
ρ→∞

∫
|y|=ρ

[
Gζ(x− y)

∂ϕ

∂n(y)
− ϕ(y)

∂Gζ
∂n(y)

(x− y)

]
ds(y) = 0. (4.17)

In fact, for ρ > ρ0 the above identity holds for |x| < ρ even without taking the limit.

(iv) Let B†
ζ denote the operator on the boundary

B†
ζf(x) = p.v.

∫
∂Ω

∂Gζ
∂n(x)

(x− y)f(y) ds(y). (4.18)

It follows that the (non-tangential) limits ∂ϕ/∂n+, ∂ϕ/∂n− of the normal derivative of ϕ

as the boundary is approached from the outside and inside Ω, respectively, are given by

∂ϕ

∂n±
= ∓1

2
f(x) +B†

ζf(x), for almost every x ∈ ∂Ω. (4.19)

(v) The boundary values ϕ+, ϕ− of ϕ from outside and inside of Ω, respectively, are identical

as elements of H3/2(∂Ω) and agree with the trace of the single layer potential Sζf .

Lemma 4.2.11. If f ∈ H3/2(∂Ω) the function ψ = Dζf defined in Rn \ ∂Ω has the properties

(i), (ii) and (iii) of Lemma 4.2.10.

Moreover, the non-tangential limits ψ+, ψ− of ψ as we approach the boundary from outside

and inside of Ω, respectively, exist and satisfy

ψ±(x) = ±1

2
f(x) +Bζf(x), for almost every x ∈ ∂Ω. (4.20)

Finally, to establish the existence of solutions for small values of ζ we also require the

following estimate on the single layer potential, obtained in [22]. This is based on the difference

Hζ = Gζ −G0 being an harmonic function and on the properties of this operator being related

with Gζ . We have:

Lemma 4.2.12. Let Ω be a bounded C1,1-domain in Rn, n ≥ 3. The Faddeev fundamental

solution Gζ can be given through the decomposition

Gζ(x) = G0(x) +Hζ(x),

where G0 is the classical fundamental solution and Hζ is an harmonic function.
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Moreover, the single and double layer operators have a similar decomposition and, for our

own convenience, we present here the case for the single layer. For f ∈ H1/2(∂Ω) we have

Sζf(x) = S0f(x) +

∫
∂Ω
Hζ(x− y)f(y) ds(y) =: S0f(x) +Hζf(x).

Further, it holds

∥Hζ∥L(H1/2(∂Ω),H3/2(∂Ω)) ≤ C|ζ|n−2,

where the constant C only depends on the domain.

The idea now is to establish a relation between solutions behavior outside and on the bound-

ary ∂Ω.

4.2.5 From the outside to the boundary ∂Ω

The properties of the boundary operator above allow us to establish a one-to-one correspondence

between the solution of a boundary integral equation and of the following exterior problem

(i) ∆ψ = 0, in Ω′ := Rn \ Ω̄,

(ii) ψ ∈ H2(Ω′
ρ), for any ρ > ρ0,

(iii) ψ(x, ζ)− eix·ζ satisfies (4.17),

(iv) ∂ψ
∂n+

= Λqψ on ∂Ω.

(4.21)

In this section, we assume that Ω is a bounded C1,1-domain in Rn, n ≥ 3 and q ∈ L∞(Ω) is

a complex conductivity potential, i.e., 0 is not a Dirichlet eigenvalue of (−∆+ q).

Moving forward, we provide all proofs necessary to establish the reconstruction method.

Remark, that most of them follow directly from Nachman’s work [68]. We highlight, again, the

new pieces needed to put the puzzle together.

Our first step is to establish a relation between a boundary integral equation and the above

exterior problem (4.21). In essence, we are only demonstrating that if a solution to the boundary

integral equation exists than we can define a solution for the exterior problem from it, and vice-

versa.

Lemma 4.2.13. Let ζ ∈ V.

(a) Suppose ψ solves the exterior problem (4.21). Then its trace fζ = ψ+ = ψ|∂Ω solves the

boundary integral equation

fζ = eix·ζ −
[
SζΛq −Bζ −

1

2
I

]
fζ . (4.22)
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(b) Conversely, suppose fζ ∈ H3/2(∂Ω) solves (4.22). Then the function ψ(x, ζ) defined for

x ∈ Ω′ by

ψ(x, ζ) = eix·ζ − (SζΛq −Dζ) fζ(x) (4.23)

solves the above exterior problem under all conditions. Furthermore, ψ|∂Ω = fζ .

Proof. a) Assume ψ solves (4.21). We apply Green’s identity to Gζ and ψ in Ω′
ρ, ρ > ρ0. It

holds (∫
|y|=ρ

−
∫
∂Ω

)[
Gζ(x− y)

∂ψ

∂n+
− ψ+(y, ζ)

∂Gζ
∂n+(y)

(x− y)

]
ds(y) (4.24)

=

∫
Ω′

ρ

[Gζ(x− y)∆ψ(y, ζ)− ψ(y, ζ)∆yGζ(x− y)] dy.

Since ψ is harmonic on Ω′
ρ and Gζ is the fundamental solution of −∆ we obtain for arbitrary

x ∈ Ω′
ρ

ψ(x, ζ) =

∫
|y|=ρ

[
Gζ(x− y)

∂
(
ψ − eiy·ζ

)
∂n

−
(
ψ − eiy·ζ

) ∂Gζ
∂n+(y)

(x− y)

]
ds(y) (4.25)

+

∫
|y|=ρ

[
Gζ(x− y)

∂eiy·ζ

∂n
− eiy·ζ

∂Gζ
∂n(y)

(x− y)

]
ds(y)

−
∫
∂Ω
Gζ(x− y)

∂ψ

∂n+
ds(y)−

∫
∂Ω
ψ+(y, ζ)

∂Gζ
∂n(y)

(x− y) ds(y)

By hypothesis (4.21-iii) the first integral vanishes. The function eiy·ζ is harmonic and a re-

application of Green’s identity to the second integral on |y| < ρ equals eix·ζ . Finally, due to

(4.21- iv) the last integral is [SζΛq −Dζ ]ψ. Thus, for x ∈ Ω′ the function ψ fulfills the identity

ψ(x, ζ) = eix·ζ − [SζΛq −Dζ ] fζ .

Taking the non-tangential limit to the boundary from the outside by Lemmas 4.2.10, 4.2.11

we obtain

fζ(x) = eix·ζ −
[
SζΛq −Bζ −

1

2
I

]
fζ(x).

b) Conversely, suppose fζ ∈ H3/2(∂Ω) solves the boundary integral equation (4.22). Define

a function ψ in Ω′ by

ψ(x, ζ) = eix·ζ − [SζΛq −Dζ ] fζ(x). (4.26)

We show that this ψ solves the exterior problem (4.21) from properties of the single and

double layer (Lemma 4.2.10 and 4.2.11).

It is immediate to see that ψ fulfills the condition i) of (4.21), since for ζ · ζ = 0 the

exponential eix·ζ is harmonic, and SζΛqfζ , Dζfζ are harmonic in Ω′ by the above mentioned
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lemmas. Moreover, it holds that SζΛqfζ , Dζfζ ∈ H2(Ω′
ρ), ρ > ρ0 and further the identity (4.17)

also holds. Hence, the conditions ii) and iii) of the exterior problem follow.

To show the last condition, we approach the boundary ∂Ω non-tangentially from the outside

and we obtain, as in part a),

ψ|∂Ω = eix·ζ −
[
SζΛq −Bζ −

1

2
I

]
fζ .

By virtue of fζ fulfilling the boundary integral equation the right-hand side equals fζ and

therefore ψ|∂Ω = fζ . From this and the first three properties of (4.21), that we already showed

ψ fulfills, we can obtain analogously to part a)

ψ(x, ζ) = eix·ζ − Sζ

(
∂ψ

∂n+

)
+Dζfζ , for x ∈ Ω′. (4.27)

Subtracting both formulae of ψ, (4.27) and (4.26), the following equality holds throughout

Ω′

Sζ

[
Λqfζ −

∂ψ

∂n+

]
= 0. (4.28)

By taking traces from the outside, it actually holds on the boundary ∂Ω. We are reminded

that Sζ

[
Λqfζ − ∂ψ

∂n+

]
is harmonic in Rn \ ∂Ω and since the trace is 0 on ∂Ω uniqueness of the

interior problem for q ≡ 0 implies that the equality (4.28) holds everywhere. Then, its normal

derivatives will be zero and subtracting them on ∂Ω with the help of (4.19) we obtain

[Λq − ∂ψ/∂n+] =
∂Sζ [Λq − ∂ψ/∂n+]

∂n−
−
∂Sζ [Λq − ∂ψ/∂n+]

∂n+
= 0. (4.29)

Thus the last condition of the exterior problem follows.

The end goal is to connect the boundary integral equation to exponential growing solutions

of Faddeev integral equation (4.8). For such, we relate uniquely the exterior problem to these

solutions, and due to the previous result, a connection immediately follows with the boundary

integral equation.

Lemma 4.2.14. Let ζ ∈ V.

(a) Suppose ψ ∈ L2
loc(Rn) is a solution of

ψ(x, ζ) = eix·ζ −
∫
Rn

Gζ(x− y)q(y)ψ(y, ζ).

Then the restriction of ψ to Ω′ solves the exterior problem (4.21) and fulfils the respective

conditions i)-iv).

(b) Conversely, if ψ solves the exterior problem (4.21), there is a unique solution ψ̃ ∈ L2
loc(Rn)

of the integral equation (4.8), such that ψ̃ = ψ in Ω′.
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Proof. a) From the proposition 4.2.2 it follows ψ ∈ H2
loc(Rn), which immediately implies condi-

tion ii) of the exterior problem. Moreover, in Rn it holds (−∆+ q)ψ = 0, thus due to q ≡ 0 on

Ω′ the condition i) holds, i.e., −∆ψ = 0 in Ω′.

Applying Green identity on |y| < ρ yields∫
|y|=ρ

[
Gζ(x− y)

∂ψ

∂n(y)
− ψ(y, ζ)

∂Gζ
∂n(y)

(x− y)

]
ds(y)

=

∫
|y|<ρ

Gζ(x− y)q(y)ψ(y, ζ) dy + ψ(x, ζ), for a.e. x with |x| < ρ.

Now, we can choose ρ large in order to contain the support of q. Since ψ solves the integral

equation this means that the right-hand side equals eix·ζ . Moreover, we already showed that

eix·ζ =

∫
|y|=ρ

[
Gζ(x− y)

∂eiy·ζ

∂n(y)
− eiy·ζ

∂Gζ
∂n(y)

(x− y)

]
ds(y).

Then passing the exponential to the right-hand side, we obtain∫
|y|=ρ

[
Gζ(x− y)

∂
(
ψ − eiy·ζ

)
∂n(y)

−
(
ψ(y, ζ)− eiy·ζ

) ∂Gζ
∂n(y)

(x− y)

]
ds(y) = 0

for all ρ > ρ0. Thus condition iii) follows by taking the limit as ρ→ ∞.

Immediately, we can see that Λqψ− = ∂ψ
∂n−

and since ψ ∈ H2 in a two-sided neighbourhood

of ∂Ω it holds that ψ− = ψ+ and ∂ψ
∂n−

= ∂ψ
∂n+

. This leads to ψ fulfilling the condition iv).

Therefore, the restriction of ψ to Ω′ solves the exterior problem (4.21).

b) Suppose ψ defined in Ω′ solves the exterior problem (4.21). Set ψ̃ by ψ̃ = Pqψ+ in Ω and

ψ̃ = ψ in Ω′. Then on ∂Ω,

ψ̃− = (Pqψ+) = ψ+ = ψ̃+

and
∂ψ̃

∂n−
= Λqψ+ =

∂ψ

∂n+
=

∂ψ̃

∂n+

due to iv). Thus ψ̃ solves (−∆+ q)ψ̃ = 0 on Rn. Applying Green’s formula in |y| < ρ yields∫
|y|=ρ

[
Gζ(x− y)

∂ψ

∂n(y)
− ψ(y, ζ)

∂Gζ
∂n(y)

(x− y)

]
ds(y)

=

∫
|y|<ρ

Gζ(x− y)q(y)ψ̃(y, ζ) dy + ψ̃(x, ζ)

for almost every x with |x| < ρ. Thus by letting ρ→ ∞ the radiation condition iii) implies that

the left-hand side is eix·ζ . Hence ψ̃ verifies the desired integral equation in Rn.
To finalize we prove that this extension is unique. Suppose that we have two extensions

ψ̃1, ψ̃2 ∈ L2
loc(Rn) of ψ which agree in Ω′ and solve the integral equation everywhere. As in part

a), we see that ψ̃1, ψ̃2 ∈ H2
loc(Rn) and (−∆+ q)ψ̃j = 0 in Rn for j = 1, 2. Hence, they are in H2

on a two-sided neighbourhood of ∂Ω. This implies that ψ̃j+ = ψ̃j−, for j = 1, 2, which promptly

leads to ψ̃1
− = ψ̃2

− since they agree on Ω′. Now, from the uniqueness of the interior problem it

follows that ψ̃1 = ψ̃2.
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With Lemma 4.2.13 and 4.2.14 we have therefore established a relation between the boundary

integral equation and exponential growing solutions of the type (4.5) for the Schrödinger equation

in Rn.
One interesting remark, there is no explicit requirement of ζ being large. Hence, by showing

that the boundary integral equation is uniquely solvable for small values of ζ we guarantee the

existence of exponential growing solutions for these ζ.

In the other direction, due to Corollary 4.2.3 we guarantee the existence of a unique solution

for the boundary integral equation for large values of ζ.

Moreover, in all proofs above there is no explicit difference for q being real or complex.

The importance of this relation lies on the boundary integral equation only being dependent

on information we can obtain in practice, i.e., the Dirichlet-to-Neumann map.

Keeping this in mind, we focus on the solvability of the boundary integral equation. The

following proposition glues together the papers [22,68] and applies them to the complex potential.

It uses the uniqueness of the interior problem that we established in Proposition 4.2.7 for this

case.

Proposition 4.2.15. Let Ω be a bounded C1,1-domain in Rn, n ≥ 3. Let q be a complex

conductivity potential in L∞(Ω).

Define

Kζ = SζΛq −Bζ −
1

2
I (4.30)

and for any ζ ∈ V it holds

(a) The operators K0, Kζ are compact on H3/2(∂Ω).

(b) If Re q ≥ 0, then I +K0 is invertible in H3/2(∂Ω).

(c) If Re q ≥ 0 there exists an ϵ > 0 with |ζ| < ϵ for which the operator I +Kζ is invertible in

H3/2(Ω).

(d) There exists an R > 0 such that for all |ζ| > R the operator I + Kζ is invertible in

H3/2(∂Ω).

Proof. Part a) follows by a compact embedding. Let f ∈ H3/2(∂Ω) and set w = Pqf as the

solution of interior Dirichlet problem (4.14). For x ∈ Ω we use the Green’s formula to obtain∫
Ω
Gζ(x− y)∆w(y) dy + w(x) = [SζΛq −Dζ ] f(x)

which is equivalent to∫
Ω
Gζ(x− y)q(y)Pqf(y) dy + w(x) = [SζΛq −Dζ ] f(x)
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By letting x approach the boundary non-tangentially from the inside we thus obtain

tr (Gζ ∗ (qPqf)) + f(x) = SζΛqf(x)−
[
−1

2
f(x) +Bζf(x)

]
and therefore [

SζΛq −Bζ −
1

2
I

]
f = tr (Gζ ∗ (qPqf)) .

Hence, our desired operator satisfies this factorization, where the following mapping properties

hold

Pq : H
3/2(∂Ω) → H2(Ω);

ı : H2(Ω) → L2(Ω) is a compact embedding;

Mq : L
2(Ω) → L2(Ω);

Gζ : L
2(Ω) → H2(Ω) convolution with Gζ , which we prove up next;

tr : H2(Ω) → H3/2(∂Ω).

The operator defined before as tr (Gζ ∗ (qPqf)) is now given as tr (GζMqıPq) f .

The compactness of the embedding implies compactness of the desired operator.

b) Let ζ = 0. In this case G0 is the classical fundamental solution and the corresponding

operators are the classical ones. By part a), we already know that S0Λq−B0− 1
2I is compact on

H3/2(∂Ω). Then I+K0 =
[
1
2I + S0Λq −B0

]
is Fredholm of index zero on H3/2(∂Ω). Therefore,

it is enough to show injectivity.

Let h ∈ H3/2(∂Ω) such that
[
1
2I + S0Λq −B0

]
h = 0. Define w = −S0Λqh + D0h. Then

w is harmonic in Rn, w ∈ H2(Ω) and w ∈ H2(Ω′
ρ) by Lemma 4.2.10 and 4.2.11. Moreover,

approaching the boundary non-tangentially by the inside we obtain

w− = −S0Λqh+

(
−1

2
h+B0h

)
= −

[
1

2
I + S0Λq −B0

]
h = 0.

Since the problem −∆w = 0, w|∂Ω = 0 is uniquely solvable in H2(Ω) it follows that w ≡ 0 in Ω

and thus ∂w
∂n−

= 0 on ∂Ω.

By using the jump relations for the single and double layer operator (see [62]), we can deduce

that

[w] = w+ − w− = w+ = [D0h] = h

and [
∂w

∂n

]
=

∂w

∂n+
= −

[
∂

∂n
S0Λqh

]
= Λqh.
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Now, by Proposition 4.2.7 there is a unique solution u ∈ H2(Ω) of(−∆+ q)u = 0,

u|∂Ω = h,

such that Λqh = ∂u
∂n−

∣∣∣
∂Ω

. We set

v =

u, in Ω

w, in Rn \ Ω

and see that u− = w+ = h and ∂u
∂n−

= ∂w
∂n+

= Λq, thus it holds that v and ∂v
∂n are continuous

over the boundary ∂Ω. Therefore v ∈ H2(Bρ(0)), ρ > 0 and it solves −∆v+ qv = 0 in Rn, since
q ≡ 0, in Rn \ Ω.

Let χρ ∈ C∞
c (Rn) such that χ ≡ 1 in Bρ−ϵ(0) and χ ≡ 0 in ρ− ϵ < |x| < ρ, for ϵ > 0 small

enough.

Then for ϕ ∈ H1(Rn) it follows by Green’s identity∫
|x|<ρ

(−∆v + qv) (χϕ) dx = 0,

which is equivalent to ∫
|x|<ρ

∇v · ∇(χϕ) + qv(χϕ) dx = 0,

as well as ∫
Ω
∇v · ∇ϕ+ qvϕ dx+

∫
Bρ(0)\Ω

∇w · ∇(χϕ) dx = 0.

In particular we can take ϕ = v̄ and since w is given through the classical single and double

layer it follows that ∇w ∈ L2(Bρ(0) \ Ω̄). Thus taking the limit as ρ→ ∞∫
Ω
|∇v|2ϕ+ q|v|2 dx+

∫
Bρ(0)\Ω

∇w · ∇(χw̄) dx = 0,∫
Ω
|∇v|2ϕ+ q|v|2 dx+

∫
Bρ(0)\Ω

|∇w|2 dx =

∫
Bρ(0)\Ω

∇w · ∇((1− χ)w̄) dx,

which yields ∫
Rn

|∇v|2 + q|v|2 dx = 0

and therefore ∫
Rn

|∇v|2 + (Re q)|v|2 dx = 0.

Now, we can apply Hardy’s inequality for H1(Rn)

(d− 2)2

4

∫
Rn

|x|−2|v|2 dx ≤
∫
Rn

|∇v|2 dx
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to finally obtain the condition∫
Rn

[
(d− 2)2

4|x|2
+ (Re q(x))

]
|v|2 dx ≤ 0.

Hence, for Re q ≥ 0 this implies that v ≡ 0 in Rn. Thus h ≡ 0 in ∂Ω. Hence we obtain

invertibility in the case ζ = 0. Notice that we have been loose on the requirement for q, since

this is enough for the purpose of complex conductivity, but this proof works for potentials that

satisfy the estimate Re q(x) ≥ − (d−2)2

4|x|2 .

Part c) follows quite easily by the fact that the set of invertible operators is open. However,

we present the result with the help of some estimates and Neumann series.

For h ∈ H3/2(∂Ω), it holds thatKζ as defined in (4.30) also has the formKζh = Sζ(Λq−Λ0)h,

since due to Green’s formula we have Bζ = −1
2I + SζΛ0.

Moreover, by lemma 4.2.12 and for h ∈ H3/2(∂Ω) we have the decomposition Sζ(Λq−Λ0)h =

S0(Λq − Λ0)h+Hζ(Λq − Λ0)h. Moreover, we also have by the lemma the estimate

∥Hζ(Λq − Λ0)h∥H3/2(∂Ω) ≤ C|ζ|n−2∥(Λq − Λ0)h∥H1/2(∂Ω) ≤ C|ζ|n−2∥h∥H3/2(∂Ω).

From the invertibility of I +K0 we obtain the decomposition

[I +Kζ ] = I +K0 +Hζ (Λq − Λ0) = (I +K0)
(
I + (I +K0)

−1Hζ (Λq − Λ0)
)

and if

∥ (I +K0)
−1Hζ (Λq − Λ0) ∥L(H3/2(∂Ω)) < 1

we obtain invertibility for I +Kζ in H3/2(∂Ω). This norm can be translated to an estimate for

ζ by the above on Hζ . We have

∥ (I +K0)
−1Hζ (Λq − Λ0) ∥L(H3/2(∂Ω))

≤ C|ζ|n−2
∥∥∥(I +K0)

−1
∥∥∥
L(H3/2(∂Ω))

∥Hζ (Λq − Λ0)∥L(H3/2(∂Ω)) < 1.

Hence, for

|ζ| <

 1∥∥∥(I +K0)
−1
∥∥∥
L(H3/2(∂Ω))

∥Hζ (Λq − Λ0)∥L(H3/2(∂Ω))


1/(n−2)

=: ϵ,

invertibility is obtained by Neumann series.

Part d) uses the existence of exponentially growing solutions for large values of |ζ|. Let

R > 0 be large enough such that for ζ ∈ Cn with ζ · ζ = 0, |ζ| > R we have unique exponential

growing solutions of (4.8), corollary 4.2.3 . Under these conditions, we have shown that Kζ :=

SζΛq−Bζ − 1
2I is compact in H3/2(∂Ω). Therefore, I+Kζ is a Fredholm operator of index zero

in H3/2(∂Ω). We need to show that the kernel is empty to prove that it is invertible.
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Let g ∈ H3/2(∂Ω) be in kerK. Then h = [−SζΛq +Dζ ]g solves the exterior problem i), ii),

iv) and fulfils the radiation condition (4.17) (the proof is analogous to Lemma 4.2.13).

Moreover, we can extend h to a solution h̃ of h̃ = −
∫
Rn Gζ(x − y)q(y)h̃(y) dy in all of Rn

(analogous to the previous lemma). By the estimates on Gζ we note that e−ix·ζ h̃ ∈ L2
δ−1(Rn),

0 < δ < 1 and

e−ix·ζ h̃ = −Aζ(e−ix·ζ h̃)

with Aζ defined as in (4.12). Since, we took R > 0 large enough then Aζ is a contraction in

L2
δ−1(Rn) and this forces h̃ ≡ 0. Therefore,

g ≡ 0 and I +Kζ is invertible in H3/2(∂Ω)

and the statement is proven.

We would like to remark that the proof of b) in Proposition 4.2.15 needed some tweaks to

accommodate the complex potential and the spaces in focus. The core idea is the same: prove

invertibility by showing injectivity due to the compactness of K0. In [22] the proof is established

over H1/2(∂Ω), but due to our interest in connecting with Nachman’s work we showed it for

H3/2(∂Ω).

The beauty of this proposition is that now we can solve the boundary integral equation for

small and large values of |ζ| and obtain ψ on ∂Ω by

ψ(x, ζ) =

[
1

2
I + SζΛq −Bζ

]−1 (
eix·ζ

)
.

As we remarked before, this immediately brings that there exists exponentially growing

solutions of (4.8) for large, but most importantly, small values of ζ and we have a method to

obtained their boundary values.

The importance of these boundary values lies in the definition of the scattering transform.

The scattering transform is an essential tool in the reconstruction and uniqueness proofs of

Calderón problem, since it connects the boundary data with inside information about the po-

tential and devises a method to recover it.

As such, all of this work allows us to obtain the following theorem:

Theorem 4.2.16. Suppose that Ω is a bounded C1,1-domain in Rn, n ≥ 3. Let q ∈ L∞(Ω) be

complex-valued and suppose that 0 is not a Dirichlet eigenvalue of −∆+ q in Ω.

We define the scattering transform for non-exceptional points ζ ∈ V by

t(ξ, ζ) =

∫
R3

e−ix·(ζ+ξ)q(x)ψ(x, ζ) dx, ξ ∈ Rn. (4.31)

Then, for each ξ ∈ Rn we can compute the scattering transform for the non-exceptional

points ζ ∈ Vξ :=
{
ζ ∈ Cn \ {0} : ζ · ζ = 0, |ξ|2 + 2ζ · ξ = 0

}
from the solutions of the boundary

integral equation by

t(ξ, ζ) =

∫
∂Ω
e−ix·(ζ+ξ) [Λq + i(ξ + ζ) · n]ψ(x, ζ) ds(x), ξ ∈ Rn. (4.32)
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Proof. From the Lemma 4.2.13 and 4.2.14 we obtain unique exponentially growing solutions of

(4.8) by the one-to-one relation with the boundary integral (4.22). Therefore, by Green identity

it holds

t(ξ, ζ) =

∫
Ω
e−ix·(ξ+ζ)q(x)ψ(x, ζ) dx

=

∫
Ω
e−ix·(ξ+ζ)∆ψ(x, ζ)−

(
∆e−ix·(ζ+ξ)

)
ψ(x, ζ) dx

=

∫
∂Ω
e−ix·(ξ+ζ) [Λq + i(ξ + ζ) · n]ψ(x, ζ) ds(x)

for ξ ∈ Rn and ζ ∈ Vξ such that the boundary integral equation has a unique solution.

4.2.6 From t to γ

Finally, we show how to obtain the desired potential from the scattering transform. This sub-

section is completely focused on this aspect and brings forward two possible methods. One of

them arises from joining results in [22] and [68].

The first method uses large asymptotics of the scattering transform to obtain the potential

Fourier transform. Unfortunately, this requires solving the boundary integral equation for large

values ζ, which is inherently very unstable. In [39] they avoid the boundary integral equation

by using the approximation ψ(x, ζ) ≈ eix·ζ to compute the scattering transform. As we have

already mentioned, this even allowed them to reconstruct complex potentials. However, it is

only an approximation and still contains some reconstruction flaws.

The second method still requires some extra results for practical implementation to be fea-

sible. It is based on the reconstruction of the complex conductivity from exponentially growing

solutions for small values of ζ in Ω. However, there is yet to be an appropriate study of the

method to determine these solutions in Ω. In two dimensions, this was established in [69] through

a ∂̄-method. However, it is still an open question how to solve similar equations introduced by

Nachman in [68] for small values of ζ.

The first method is based on the following asymptotic:

Theorem 4.2.17. Let Ω be a bounded C1,1-domain in Rn, n ≥ 3. Let q ∈ L∞(Ω) be a complex

conductivity potential extended to zero outside Ω. Then for |ζ| > R and 0 < δ < 1 it holds:

|t(ξ, ζ)− q̂(ξ)| ≤ c̃(δ,R)

|ζ|
∥q∥2δ for all ξ ∈ Rn. (4.33)

Proof. The proof follows trivially by the corollary 4.2.3. If q ∈ L∞(Ω) is a complex-valued and

compactly supported potential it follows that q̂ is well-defined and holds true

|t(ξ, ζ)− q̂(ξ)| =
∣∣∣∣∫ e−ix·ξq(x)

[
e−ix·ζψ(x, ζ)− 1

]
dx

∣∣∣∣
≤ ∥q∥1−δ∥e−ix·ζψ(x, ζ)− 1∥δ−1 ≤

c̃(δ,R)

|ζ|
∥q∥2∞.
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This is enough to reconstruct the Fourier transform of the potential q and thereafter one can

obtain γ by solving the Schrödinger equation with boundary value γ1/2 as in Corollary 4.2.8.

Again, we remark that the reconstruction from large complex frequencies is a very unstable

method and therefore there is still interest in obtaining a more stable direct reconstruction

method.

The purpose of the second method is to fix this instability. It is based on the so-called ∂̄

equation and on compatibility equations satisfied by t known since ( [1, 9, 44], ), Nachman was

able to derive a equation in three dimensions, which allows to obtain solutions µ that eventually

permits the computation of q̂ from t(ξ, ζ) for ξ ∈ Rn, |ζ| ≥ M , (ξ + ζ)2 = 0 and its derivative

in ζ. Although more elaborate than in two dimensions, this method does not require taking the

limit of |ζ| → ∞. In essence, the proof follows through for the complex-potential with some

slight adaptations.

For such, let ψ(x, ζ) be the solution of (4.8) with e−ix·ζψ(x, ζ)− 1 ∈ L2
δ−1(Rn), that is, ζ is

not an exceptional point. Define,

µ(x, ζ) := |q(x)|e−ix·ζψ(x, ζ) (4.34)

then µ solves the following integral equation

µ(x, ζ) = |q(x)| − Ãζµ(·, ζ) (4.35)

where

Ãζf(x) := |q(x)|
∫
Rn

gζ(x− y)q̃(y)f(y) dy

with q̃(x) = q(x)/|q(x)| in the support of q and 0 otherwise. Moreover, the scattering transform

is given through

t(ξ, ζ) :=

∫
Rn

e−ix·ξ q̃(y)µ(x, ζ) dx. (4.36)

Lemma 4.2.18. Suppose q ∈ L∞(Rn) is complex-valued potential and as compact support. Let

R > Mc(δ, a)∥q(x)⟨x⟩1−δ∥L∞ with δ ∈ (0, 1), c(δ, a) as in Proposition 4.2.2 and M a constant

depending on the support of q.

(i) If |ζ| > R, ζ · ζ = 0, then (4.35) has a unique solution µ(·, ζ) in L2(Rn) with compact

support.

(ii) For |ζ| > R, ζ · ζ = 0 and all w ∈ Cn with w · ζ̄ = 0,

w · ∂µ
∂ζ̄

(x, ζ) =
−1

(2π)n−1

∫
eix·ξw · ξδ(|ξ|2 + 2ζ · ξ)t(ξ, ζ)µ(x, ζ + ξ) dξ. (4.37)

Proof. (i) By Proposition 4.2.2 we show that Ãζ is bounded in L2(Rn). The idea follows from

Corollary 4.2.3.
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Let f ∈ L2(Rn) and δ ∈ (0, 1) then

∥Ãζf∥L2 = ∥|q(x)|gζ ∗ (q̃f)∥L2 ≤ ∥⟨x⟩1−δ|q|∥∞∥gζ ∗ (q̃f)∥δ−1

≤ c(δ, a)

|ζ|

∥∥∥⟨x⟩1−δ|q|∥∥∥
∞
∥q̃f∥δ ≤

c(δ, a)

|ζ|

∥∥∥⟨x⟩1−δ|q|∥∥∥
∞

∥∥∥q̃⟨x⟩δ∥∥∥
∞
∥f∥L2

Mc(δ, a)

|ζ|

∥∥∥⟨x⟩1−δ|q|∥∥∥
∞
∥f∥L2 ,

where M > 0 such that ∥⟨x⟩δ∥∞ ≤M . The norm of Aζ is less than

Mc(δ, a)|ζ|−1∥q⟨x⟩1−δ∥∞,

so if |ζ| ≥ R we have that Ãζ is a contraction and we obtain the unique solution as

µ(·, ζ) = (I + Ãζ)
−1|q|1/2. (4.38)

(ii) We start by differentiating the distribution gζ defined in (4.7):

w · ∂g
∂ζ̄

=
1

(2π)n−1

∫
eix·ξw · ξδ(ξ2 + 2ζ · ξ) dξ. (4.39)

We claim that the operator

w · ∂
∂ζ̄
Ãζf(x) =

|q(x)|
(2π)n−1

∫
eix·ξw · ξδ(ξ2 + 2ζ · ξ)(q̃f)(ξ) dξ (4.40)

is bounded on L2(Rn). To see this, we regard the right-hand side of the formulation as

the composition of the following operators:

(a) the operator Mq̃ : L
2Rn → L2

δ+1(Rn) given by multiplication with q̃,

(b) the operator FMζ
: L2

δ+1(Rn) → L2(Mζ) which takes f to f̂
∣∣∣
Mζ

that is the restriction

of the Fourier transform to Mζ = {ξ ∈ Rn : ξ2 + 2ζ · ξ = 0},

(c) the operator Mw·ξ : L
2(Mζ) → L2(Mζ) defined as multiplication by w · ξ,

(d) the operator S : L2(Mζ) → L2
−(δ+1)(R

n) given by

h→ 1

(2π)n−1

∫
eix·ξδ(ξ2 + 2ζ · ξ)h(ξ) dξ, (4.41)

(e) the operator M|q| : L
2
−(δ+1) → L2(Rn) of multiplication by |q|.

The operators FMζ
and S are bounded by Theorem IX.39 in [79] by noting that Mζ

is a compact sub-manifold of Rn of co-dimension 2. The multiplier Mw·ξ is bounded by

2|w||ζ| on Mζ . Further, both Mq̃ and M|q| both have norms less than ∥q(x)⟨x⟩1+δ∥1/2∞ .

Differentiating (4.38) we get for |ζ| > R the following equation

w · ∂µ
∂ζ̄

= −
(
I + Ãζ

)−1
(
w · ∂

∂ζ̄
Ãζ

)(
I + Ãζ

)−1
|q|. (4.42)
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Due to the boundedness and continuity as a function in ξ for q̃µ ∈ L1 we obtain by the

Fourier Transform

F
[
q̃
(
I + Ãζ

)−1
|q|
]
(ξ) =

∫
e−ix·ξ q̃(x)µ(x, ζ) dx = t(ξ, ζ). (4.43)

Due to (4.40) we now get

w · ∂µ
∂ζ̄

= − 1

(2π)n−1

(
I + Ãζ

)−1
∫

|q(x)|eix·ξw · ξδ(ξ2 + 2ζ · ξ)t(ξ, ζ) dξ (4.44)

the integral over Mζ being absolutely convergent. Now observe that

e−ix·ξg(x · ζ) = g(x, ζ + ξ), if ξ2 + 2ζ · ξ = 0,

hence, for such ξ and f ∈ L2(Rn), we get

Ãζ(e
i⟨·,ξ⟩f) = ei⟨·,ξ⟩Ãζ+ξf. (4.45)

If ξ2 + 2ζ · ξ = 0, then |ζ + ξ| = |ζ| ≥ R; thus I + Ãζ+ξ is invertible and(
I + Ãζ

)−1 (
ei⟨·,ξ⟩|q|

)
= ei⟨·,ξ∠

(
I + Ãζ+ξ

)−1
|q| (4.46)

= ei⟨·,ξ⟩µ (µ, ζ + ξ) . (4.47)

Substituting the last expression in (4.44) yields the desired equation.

The above Lemma shows that the ∂̄-equation for µ can be solved for large complex frequency

values. However, it is yet to be shown if it is possible to uniquely solve it for small complex

frequency values. While a unique solution µ in L2(Rn) to (4.35) can be proven analogously

through the boundary integral equation, the ∂̄-equation as of now requires the invertibility of

(I + Ãζ). This has only been obtained for large complex frequency values of ζ.

Due to the invertibility of boundary integral operator we have shown that there are no

exceptional points near 0 for complex-valued potentials. The only restriction we need to impose

for this purpose is that γ is equal to 1 near the boundary. This is not a strict restriction since

we can change slightly the domain to obtain it and the new Dirichlet-to-Neumann map follows

from the previous one accordingly.

Therefore, analogously to [22] we are able to obtain an estimate for non-exceptional points

close to zero.

Lemma 4.2.19. Let γ ∈ C1,1(Ω) be the complex-conductivity with σ ≥ c > 0, ϵ ≥ 0, ω ∈ R+

and suppose γ ≡ 1 near ∂Ω. Set q = (∆γ1/2)/γ1/2 ∈ L∞(Ω).

For ζ ∈ V sufficiently small and ψ ∈ H3/2(∂Ω) the corresponding boundary integral solution

of (4.22), it holds

∥ψ(·, ζ)− 1∥H3/2(∂Ω) ≤ C|ζ|. (4.48)
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Proof. Recall that for h ∈ H3/2(∂Ω) it holds that Kζ as defined in (4.30) can also be obtained

through Kζh = Sζ(Λq − Λ0)h, since due to Green’s formula we have Bζ = −1
2I + SζΛ0.

As such, boundary integral equation solutions fulfill

ψ(x, ζ)− 1 =
(
eix·ζ − 1

)
−Kζ (ψ(x, ζ)− 1) .

The introduction of 1 to Kζ follows from Λq1 = 0, since by Proposition 4.2.7 the unique H2-

solution of (−∆+ q)u = 0, u|∂Ω = 1 is γ1/2, which is constant near ∂Ω. Furthermore, Λ01 = 0

due to w = 1 being the unique harmonic function in H2(Ω) with boundary value 1.

Under the conditions on γ it holds that Re q > 0 and hence by proposition 4.2.15 it holds

that [I +Kζ ] is invertible in H3/2(∂Ω) for small ζ and hence,

ψ − 1 = [I +Kζ ]
−1
(
eix·ζ − 1

)
.

By Taylor series we have the estimate ∥eix·ζ − 1∥H3/2(∂Ω) ≤ C1|ζ| for small values of ζ, and∥∥[I +Kζ ]
−1
∥∥
L(H3/2(∂Ω))

is uniformly bounded for small |ζ| due to Neumann series inversion.

Thus,

∥ψ − 1∥H3/2(∂Ω) ≤ C2∥eix·ζ − 1∥H3/2(∂Ω) ≤ C3|ζ|

and the statement follows.

Theorem 4.2.20. Let γ ∈ C1,1(Ω) be the complex-conductivity with σ ≥ c > 0, ϵ ≥ 0, ω ∈ R+

and suppose γ ≡ 1 near ∂Ω. Set q = (∆γ1/2)/γ1/2 ∈ L∞(Ω).

For ζ ∈ V small enough such that (4.8) has unique exponentially growing solutions ψ(x, ζ),

it holds

∥ψ(·, ζ)− γ1/2(·)∥L2(Ω) ≤ C|ζ|. (4.49)

Proof. Since γ = 1 near the boundary ∂Ω we have that γ1/2 is the unique H2(Ω) solution of−∆u+ qu = 0, in Ω

u|∂Ω = 1.

By the elliptic estimates, we obtain that

∥ψ(·, ζ)− γ1/2(·)∥L2(Ω) ≤ ∥ψ(·, ζ)− γ1/2(·)∥H2(Ω)

≤ ∥ψ(·, ζ)− γ1/2(·)∥H3/2(∂Ω) ≤ C|ζ|

and the statement follows.

This theorem states that we can reconstruct the complex-conductivity from the exponentially

growing solutions by

γ(x)1/2 = lim
|ζ|→0

ψ(x, ζ), for a.e. x ∈ Ω. (4.50)
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However, recall that for small ζ we only know how to obtain the boundary values of the expo-

nential growing solutions from the boundary measurements. To provide a reconstruction of γ in

Ω it is necessary to compute these solutions for all small enough ζ inside Ω from the scattering

data or the Dirichlet-to-Neumann map. This might be possible by the ∂̄-equation, but it is still

an open question.

The required layout to obtain a ∂̄ reconstruction method for complex conductivities is as

follows:

1. ∂̄ equation for ζ non-exceptional and considerably small: To establish the ∂̄-

equation (4.37) we required the invertibility of the operator (I + Ãζ) in L
2(Rn), however

this is only available for |ζ| > R and R large enough to guarantee a contraction argument.

In the case of small values a different proof for the ∂̄−equation is required, since the above

argument is not available. Recall, that the existence of exponentially growing solutions

was obtained through the boundary integral equation, but this does not guarantee the

invertibility of the operator for small-values.

2. Solvability of ∂̄ equation: In Lemma 4.2.18 we have deduce the ∂̄ equation that connects

the scattering transform to the exponentially growing solutions. However, the unique

solvability of this equation is still an open question. In this sense, we need to study

the equation in the space V \ {ζ ∈ Cn : ϵ ≤ |ζ| < R} and thereafter we can obtain

the conductivity through the limiting procedure provided in (4.50). Similar work was

established in two-dimensions in [58].

In order to conclude the reconstruction and uniqueness proofs of γ ∈ C1,1(Ω) from its

Dirichlet-to-Neumann map Λγ , we have to establish a relation between Λq and Λγ , where q is

the complex conductivity potential. This is our task for the next subsection.

4.2.7 Reconstruction of Λq from the boundary measurements Λγ

The Dirichlet-to-Neumann map Λγ is bounded from H1/2(∂Ω) to H−1/2(∂Ω). Moreover, it is

properly defined through

⟨Λγf, g⟩ =
∫
Ω
γ∇u · ∇v dx, (4.51)

where u is the unique H1(Ω) solution of the interior problem ∇ · (γ∇u) = 0 in Ω and u|∂Ω = f

and v ∈ H1(Ω) with v|∂Ω = g.

We can also define the Dirichlet-to-Neumann map Λq : H1/2(∂Ω) → H−1/2(∂Ω) for the

Schrödinger operator through the weak-formulation as

⟨Λqf̃ , g̃⟩ =
∫
Ω
∇ũ · ∇ṽ + qũṽ dx, for all ṽ ∈ H1(Ω), s.t. ṽ|∂Ω = g̃,

and ũ ∈ H1(Ω) is the unique solution to (−∆+ q)ũ = 0, in Ω, ũ|∂Ω = f̃ .
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As in the real case, since both problems are interconnected we can obtain Λq from Λγ by

Λq = γ−1/2

[
Λγ +

1

2

∂γ

∂n

]
γ−1/2. (4.52)

This brings to light that we can determine Λq from Λγ and the boundary values γ|∂Ω and ∂γ
∂n

∣∣∣
∂Ω

.

Moreover, if γ ≡ 1 near ∂Ω then for γ ∈ W 2,∞(Ω) it holds that Λq = Λγ . Otherwise, we need

to obtain a method to reconstruct these boundary values.

There are many results to compute these boundary values. However, most of them need

further smoothness. Nachman has proven the best result for the conditions in play. In [69]

he showed that the boundary values can be obtained without further smoothness assumptions.

Following his proof we see that there is no explicit requirement of γ being real, besides the fact

that Re γ ≥ c > 0 and uniqueness of the Dirichlet problem in H1(Ω) holds. Hence, we can

quickly extend the result for complex-conductivities in W 2,∞(Ω).

In this section, we will work with a domain Ω ∈ Rn, for n ≥ 2, which is of Lipschitz type.

Hence the domain can be partitioned into N ≥ 1 connected components Ω1, ...,ΩN . Further, we

defined the Neumann-to-Dirichlet map R (NtD) on the space

◦
H

−1/2(∂Ω) = {h ∈ H−1/2(∂Ω) : ⟨h, 1⟩∂Ωj = 0, j = 1, ..., N} (4.53)

by Rh = w|∂Ω, with w ∈ H1(Ω) the weak solution (unique modulo functions constant on each

Ωj) of ∆w = 0, ∂w∂n = h.

For the proofs we will need to define a new function. Let x0 ∈ ∂Ωj0 , let U = B × I ⊂ Rn be

a cylindrical neighborhood with coordinates chosen so as to have Ω∩U = Ωj0 ∩U = {(x′, xn) ∈
U : xn < ϕ(x′)} with ϕ a Lipschitz function. Let h ∈ L2(∂Ω) with support in ∂Ωj0 ∩U . For any

η ∈ Rn−1 × {0}, we define the function hη to be identically zero on ∂Ωj0 for j ̸= j0, and

hη(x) = h(x)e−ix·η − 1

|∂Ωj0 |

∫
∂Ω∩U

h(y)e−iy·η dσ(y) for x ∈ ∂Ωj0 . (4.54)

First, we establish an auxiliary lemma that connects the conductivity to the Dirichlet-to-

Neumann map and Neumann-to-Dirichlet map at once. Notice, that these results hold for

general dimensions.

Lemma 4.2.21. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2 with connect components

Ω1, ...,ΩN . Assume γ ∈W 1,r(Ω) for r > n and Re γ ≥ c > 0.

Then for any f ∈ H1/2(∂Ω) and h ∈ H̊−1/2(∂Ω) the identity holds

⟨h, (γ −RΛγ)f⟩ =
∫
Ω
u∇w · ∇γ, (4.55)

where u ∈ H1(Ω) is the solution of ∇ · (γ∇u) = 0, u|∂Ω = f, and w ∈ H1(Ω) is a weak solution

of ∆w = 0 in Ω with ∂w
∂n = h and R denotes the Neumann-to-Dirichlet map.
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Proof. Since w is a weak solution of the Neumann problem it follows by the Green identity that

for any v ∈ H1(Ω) the following identity holds:

⟨h, v|∂Ω⟩ =
∫
∂Ω
hv|∂Ω dS =

∫
∂Ω

∂w

∂n

∣∣∣∣
∂Ω

v|∂Ω dS(x) =
∫
Ω
v∆w +∇v · ∇w dV (x)

=

∫
Ω
∇v · ∇w dV (x). (4.56)

Moreover, by definition we have Rh = w|∂Ω (modulo constant functions on each ∂Ωj), so by

the weak definition of the Dirichlet-to-Neumann map (1.6), presented above, it follows

⟨Rh,Λγf⟩ =
∫
Ω
γ∇w · ∇u dV (x), (4.57)

where the constant mentioned above does not affect the computations because by the same weak

formulation we have ⟨1,Λγf⟩∂Ωj = 0.

Multiplication by γ is a bounded operator on H1(Ω) due to the Sobolev embedding of

W 1,r(Ω) ⊂ CB(Ω). Therefore, we can apply (4.56) to v = γu

⟨h, γf⟩ =
∫
Ω
∇w · ∇(γu) =

∫
Ω
γ∇w · ∇u+ u∇w · ∇γ dV (x). (4.58)

Now, we subtract the equation (4.57) from the above one (4.58). Hereby, we use the R

symmetry property, which is obtained through application of the Green identities. Thus, we

have

⟨h, γf⟩ − ⟨h,RΛγf⟩ = ⟨h, γf⟩ − ⟨Rh,Λγf⟩ =
∫
Ω
u∇w · ∇γ dV (x).

In second, we establish a relation for the normal derivative of the conductivity at ∂Ω.

Lemma 4.2.22. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2. Assume γ is in W 2,p(Ω),

p > n/2 and Re γ ≥ c > 0. For any f, g ∈ H1/2(∂Ω) the identity holds

⟨g,
(
2Λγ − Λ1γ − γΛ1 +

∂γ

∂n

)
f⟩ =

∫
Ω
2v∇(u− u0) · ∇γ + v(2u− u0)∆γ dV (x),

where u, u0, v are respectively the H1(Ω) solutions of ∇ · (γ∇u) = 0, ∆u0 = 0 and ∆v = 0, in

Ω, with u|∂Ω = f, u0|∂Ω = f and v|∂Ω = g.

Proof. First by Sobolev embedding theorem it follows that γv ∈ H1(Ω), and again by the DtN

definition (1.6) we have

⟨g, γΛ1f⟩ = ⟨γg,Λ1f⟩ =
∫
Ω
∇(γv) · ∇u dV (x). (4.59)

Moreover, by noting that γ(2u − u0)|∂Ω = γf and γ(2u − u0) ∈ H1(Ω) and that Λ1 is the

Dirichlet-to-Neumann map of the Laplacian we obtain

⟨g,Λ1γf⟩ =
∫
Ω
∇v · ∇(γ(2u− u0)) dV (x). (4.60)
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By hypothesis we have γ ∈ W 2,p(Ω), p > n
2 , thus Sobolev embedding theorem implies that

∂γ
∂n defines a bounded operator from H1/2(∂Ω) to H−1/2(∂Ω) defined via through:〈

g,
∂γ

∂n
f

〉
=

∫
∂Ω
fg
∂γ

∂n
dS(x);

which by applying Green identities also satisfies〈
g,
∂γ

∂n
f

〉
=

∫
Ω
∇(uv) · ∇γ + uv∆γ dV (x) (4.61)

for any u, v ∈ H1(Ω) with traces f , g on ∂Ω, respectively.

Now, if we use the above equation with 2u− u0 instead of just u, we obtain〈
g,
∂γ

∂n
f

〉
=

∫
Ω
∇((2u− u0)v) · ∇γ + (2u− u0)v∆γ dV (x)

=

∫
Ω
(2u− u0)∇v · ∇γ + v∇(2u− u0) · ∇γ + (2u− u0)v∆γ dV (x).

Hence, by using this formula, the (1.6) and the above weak formulations (4.59), (4.60) it

holds〈
g,

(
2Λγ − Λ1γ − γΛ1 +

∂γ

∂n

)
f

〉
= 2 ⟨g,Λγf⟩ − ⟨g,Λ1γf⟩ − ⟨g, γΛ1f⟩+

〈
g,
∂γ

∂n
f

〉
=

∫
Ω
2γ∇v · ∇u−

∫
Ω
∇v · ∇(γ(2u− u0)) dV (x)

−
∫
Ω
γ∇v · ∇u0 + v∇γ · ∇u0 + (2u− u0)∇v · ∇γ dV (x)

+

∫
Ω
v∇(2u− u0) · ∇γ + (2u− u0)v∆γ dV (x)

=

∫
Ω
2v∇(u− u0) · ∇γ + v(2u− u0)∆γ dV (x).

The last equality follows by expansion of all terms and canceling out terms. Consequently,

the result follows.

From both auxiliary lemmas we now obtain the boundary reconstruction formulas.

Theorem 4.2.23. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2. Suppose γ ∈W 1,r(Ω), r >

n and Re γ ≥ c > 0. Let x0 ∈ ∂Ω and let U be a cylindrical neighborhood of x0 as described

above. Then:

(i) γ|∂Ω∩U can be recovered from Λγ by

⟨h, γf⟩ = lim
|η|→∞

η∈Rn−1×{0}

⟨hη,RΛγe
−i⟨·,η⟩f⟩, (4.62)

with f ∈ H1/2(∂Ω) ∩ C(∂Ω) and h ∈ L2(Ω) are assumed supported in U ∩ ∂Ω and hη is

defined as in (4.54).
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(ii) If, moreover, γ ∈ W 2,r, r > n/2, then for any continuous function f, g in H1/2(∂Ω) with

support in ∂Ω ∩ ∂Ω holds〈
g,
∂γ

∂n
f

〉
= lim

|η|→∞
η∈Rn−1×{0}

⟨g, e−i⟨·,η⟩ (γΛ1 + Λ1γ − 2Λγ) e
i⟨·,η⟩f⟩. (4.63)

Proof. 1. We start by defining fη = ei⟨·,η⟩f and apply Lemma 4.2.21 to this function and

hη. The condition hη ∈
◦
H −1/2(∂Ω) follows by duality L2(∂Ω) ⊂ H−1/2(∂Ω) and due to

computation in ∂Ω ∩ U and the supported being in this space for the other parts of the

boundary.

Hence, it follows

⟨hη, (γ −RΛγ)fη⟩ =
∫
Ω
uη∇wη · ∇γ dV (x),

where ∇ · (γ∇uη) = 0, uη|∂Ω = fη and ∆wη = 0,
∂wη

∂n = hη.

From this we obtain the inequality

| ⟨hη, (γ −RΛγ)fη⟩ | ≤ ∥uη∥L∞(Ω)∥∇wη∥L2(Ω)∥∇γ∥L2(Ω). (4.64)

The above estimate is finite because the weak solutions uη satisfy ∥uη∥L∞(Ω) ≤ c∥f∥L∞(∂Ω)

due to Theorem 2.1.11 of [32] and the operator taking hη into the solution of the Neumann

problem wη is bounded from L2(∂Ω) to H3/2(Ω).

The functions hη converge weakly in L2(∂Ω) to zero by Riemann-Lebesgue lemma. More-

over, compact operators map weakly convergent sequences to strongly convergent se-

quences, hence, due to the embedding H3/2(Ω) in H1(Ω) being compact and the com-

position with a compact operator still being compact, follows that wη converges to 0 in

the H1 norm.

With this convergence in mind and with (4.64) it follows:

lim
|η|→∞

η∈Rn−1×{0}

⟨hη, RΛγfη⟩ = lim
|η|→∞

η∈Rn−1×{0}

⟨hη, (γ −RΛγ)fη⟩+ lim
|η|→∞

η∈Rn−1×{0}

⟨hη, γfη⟩

= lim
|η|→∞

η∈Rn−1×{0}

⟨hη, γfη⟩

= lim
|η|→∞

η∈Rn−1×{0}

∫
∂Ω
hη(x)γ(x)e

ix·ηf(x) dS(x)

=

∫
∂Ω
h(x)γ(x)f(x) dS(x)

− lim
|η|→∞

η∈Rn−1×{0}

1

|∂Ω ∩ U |

∫
∂Ω∩U

h(y)e−iy·η dσ(y)

∫
∂Ω
fη(x) dS(x)

= ⟨h, γf⟩ .
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2. Now, consider gη and let u0η, vη ∈ H1(Ω) be the solution to ∆u0η = 0, u0η|∂Ω = 0 and

∆vη = 0, vη|∂Ω = gη, respectively. As in part (i) we have ∥uη∥L∞(Ω), ∥u0η∥L∞(Ω) and

∥vη∥L∞(Ω) are bounded uniformly in η due to Theorem 2.1.11 of [32].

The function uη − u0η satisfies

∆(uη − u0η) = −(∇γ/γ) · ∇uη, and (uη − u0η)|∂Ω = 0. (4.65)

Moreover, the Laplacian ∆ has a bounded inverse as an operator from H1
0 (Ω) to H

−1(Ω)

(Lax-Milgram). By hypothesis γ ∈ W 2,p(Ω), p > n/2, therefore, both γ and it’s first

derivative are bounded on the closure of Ω. Then it follows by embeddings that∥∥uη − u0η
∥∥
H1(Ω)

≤ c

∥∥∥∥1γ∇γ · ∇uη
∥∥∥∥
H−1(Ω)

≤
c∥γ∥L∞(Ω)∥γ′∥L∞(Ω)

c0
∥∇uη∥H−1(Ω)

≤ c′∥uη∥L∞(Ω) ≤ c′′∥f∥L∞(Ω). (4.66)

Now Lemma 4.2.22, together with the Hölder inequality for 1/2 = 1/pn+(1/p− 1/n) and

the Sobolev embedding W 1,p(Ω) → Lnp/(n−p)(Ω) gives∣∣∣∣〈gη,(2Λγ − Λ1γ − γΛ1 +
∂γ

∂n

)〉∣∣∣∣ ≤ 2

∫
Ω

∣∣vη∇(uη − u0η) · ∇γ
∣∣+ ∣∣vη(2uη − u0η)∆γ

∣∣ dV (x)

≤ 2
∥∥∇(uη − u0η)

∥∥
L2(Ω)

∥vη∇γ∥L2(Ω)

+ c∥f∥L∞(Ω)∥γ∥W 2,p(Ω)∥vη∥Lp′ (Ω)

≤ 2
∥∥uη − u0η

∥∥
H1(Ω)

∥vη∥Lpn (Ω) ∥∇γ∥Lnp/(p−n)

+ c∥f∥L∞(Ω)∥γ∥W 2,p(Ω)∥vη∥Lp′ (Ω)

≤ c′′∥f∥L∞(Ω)∥vη∥Lpn (Ω)∥∇γ∥W 1,p(Ω)

+ c∥f∥L∞(Ω)∥γ∥W 2,p(Ω)∥vη∥Lp′ (Ω)

≤ C∥f∥L∞(Ω)∥γ∥W 2,p(Ω)

(
∥vη∥Lpn (Ω) + ∥vη∥Lp′ (Ω)

)
.

The solution operator for the Dirichlet problem is bounded from L2(∂Ω) to H1/2(Ω).

Similarly as above, by Riemann-Lebesgue lemma gη converges weakly in L2(∂Ω) so by

compactness of the embedding H1/2(Ω) ↪→ L2(Ω) it follows that vη converges to zero in

the L2-norm. Now convergence in the Lpn(Ω) immediately follows by Lp inclusions if

pn ≤ 2, and by interpolation if 2 < pn <∞, since in this case

∥vη∥Lpn (Ω) ≤ ∥vη∥1−2/pn
L∞(Ω) ∥vη∥

2/pn
L2(Ω)

≤ c∥g∥1−2/pn
L∞(∂Ω)∥vη∥

2/pn
L2(Ω)

.

Due to Lp inclusions, it follows that Lpn(Ω) ⊂ Lp
′
(Ω), hence, we get convergence to zero

in the Lp
′
-norm.

The desired formulation follows immediately by re-arranging the terms:〈
g,
∂γ

∂n
f

〉
lim

|η|→∞
η∈Rn−1×{0}

〈
e−i⟨·,η⟩g,

(
2Λγ − Λ1γ − γΛ1 +

∂γ

∂n

)
f

〉
.
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4.3 Complex conductivities in W 1,∞(Ω)

The above work is a considerable restriction on the set of possible complex-conductivities in

three-dimensions. The goal would be to show uniqueness for L∞(Ω) conductivities. Even in the

real case this is yet to be achieved, with the best result know so far to be for W 1,n(Ω) ∩L∞(Ω)

real conductivities. Hence, our focus is to lower the condition on complex conductivities to

W 1,∞(Ω).

In this section we will explicitly prove Theorem 4.1.2 for complex-conductivities inW 1,∞(Ω).

The work follows again by transforming the equation into another one that is more easy to deal

with.

The basis of our work starts from Brown and Uhlmann approach with complex analysis [15]

for real-conductivities in two-dimensions. Similarly, we transform our equation into a Dirac

system of equations and study it under new exponential growing solutions. To study this system

we apply ideas from [15, 57, 58] to ensure the existence of solutions and, thereafter, to obtain a

reconstruction formula for complex potentials obtained from conductivities in W 1,∞(Ω).

The only missing step is the connection between Dirichlet-to-Neumann map Λγ and expo-

nential growing solutions outside of Ω. In a completely novel approach due to the restrictions of

quaternionic analysis, we establish the necessary relation to avoid the use of Poincaré Lemma,

which was used by the works cited above. Essentially, the use of Cauchy-Riemann operators

D and D̄, that extend the Wirtinger derivatives of 2D, ends up being a slight restriction, since

through them we cannot obtain all partial derivatives. Such endeavor would require introduc-

tion of more than two derivative operators, which would complicate the study of exponentially

growing solutions. This work is based on the paper [77].

Let’s start by explaining the transformation into a Dirac system of equations!

4.3.1 The relation with Dirac system of equations

The transformation of conductivity equation (4.1) into a Dirac system arises exactly as in [15],

where Brown and Uhlmann initially introduced it. However, in a quaternionic framework we

need to be careful with the non-commutative nature of quaternions. The only constraint from

this is a non-compact formulation of the system.

Afterwards, we obtain a system of equations based on the Cauchy-Riemann operator D

and the focus is to first solve the inverse Dirac scattering problem and subsequently we prove

uniqueness for Calderón problem from it.

Recall from preliminaries that any point x = (x0, x1, x2) ∈ R3 can be connected with a

quaternion through x := x0 + x1e1 + x2e2 ∈ H. Further, the Cauchy-Riemann operator and its
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conjugate are defined as

D = ∂0 + ∂1e1 + ∂2e2

D̄ = ∂0 − ∂1e1 − ∂2e2.

There is a slight abuse of notation here when compared with chapter 3, since there we used D

to define the matrix Cauchy operator which inverts the complex Wirtinger derivatives and the

inverse operator of D is denoted by T .

Assume we know the complex conductivity γ ∈W 1,∞(Ω) and let u be a solution to (4.1) in

H1(Ω) for some boundary function. Let us define

ϕ = γ1/2
(
D̄u,Du

)t
and remark that γ1/2 is well-defined since it is contained in C+. Then, ϕ solves the systemDϕ1 = ϕ2q1,

D̄ϕ2 = ϕ1q2,
in Ω. (4.67)

where q1 = −1
2
D̄γ
γ and q2 = −1

2
Dγ
γ . This transformation arises as follows:

Dϕ1 = D
(
γ1/2D̄u

)
= Dγ1/2D̄u+ γ1/2∆u

= Dγ1/2D̄u− γ−1/2∇γ · ∇u

= Dγ1/2D̄u− 1

2
γ−1/2

(
DγD̄u+DuD̄γ

)
= −1

2

(
γ1/2Du

) D̄γ
γ

= ϕ2q1

The other equation follows analogously. Again, since q = (q1, q2) is in L∞(Ω) then we can

extend it by 0 outside Ω, with the goal to study solutions over R3 of:Dϕ1 = ϕ2q1,

D̄ϕ2 = ϕ1q2,
in R3. (4.68)

4.3.2 Exponentially growing solutions

Starting from the previous section exponential functions, initially introduced by Sylvester and

Uhlmann [88], we derive an exponential behavior that fits our needs. These being the require-

ment that our functions are monogenic, i.e., Df = 0. The idea is to facilitate the study of the

system of equations, since as usual, we focus on the non-exponential part to thereafter obtain a

feasible reconstruction formula.

As such, we start from the exponential behavior defined by ex·ζ , with ζ := (ζ0, ζ1, ζ2) ∈ C3

fulfilling ζ ·ζ := ζ20 +ζ
2
1 +ζ

2
2 = 0. Our first objective is to obtain a exponential function E that is
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growing in some directions and DE = 0. Due to ζ ·ζ = 0, the function ex·ζ is harmonic. Further,

the Laplace operator is factorized by Cauchy-Riemann operator through:

∆ = ∂2x0 + ∂2x1 + ∂2x2 = DD̄.

With all of this in mind, we obtain a monogenic exponential function through:

∆ex·ζ = 0 ⇔ D
(
D̄ex·ζ

)
= 0

⇔ D
(
(ζ0 − ζ1e1 − ζ2e2) e

x·ζ ζ̄
)
= 0 ⇔ D

(
ζ̄ex·ζ

)
= 0

where now ζ is also defined as a quaternion by ζ = ζ0 + e1ζ1 + e2ζ2 ∈ C⊗H.
In this way, we obtain a monogenic exponential function defined as

E1(x, ζ) = ζ̄ex·ζ .

Tweaking this idea for our purposes, we can also establish another exponential function through

E2(x, ζ) = ζ̄cex·ζ̄
C

which is an anti-monogenic function, i.e., D̄E2 = 0. Further, in quaternion form the required

condition is transformed to

ζ · ζ = ζ ζ̄ = ζ20 + ζ21 + ζ22 = 0.

We make a clear statement of when ζ is a complex-quaternion or a complex-vector, but in

most cases it will be clear from context: it is a vector if it is in the exponent and a quaternion

otherwise.

With this exponential behavior we now look for solutions ϕ of (4.68) with the following

asymptotics: ϕ1 = ex·ζ ζ̄µ1,

ϕ2 = ex·ζ̄
C
ζ̄cµ2.

(4.69)

Plugging them in on (4.68), we have µ = (µ1, µ2) solving:D
(
ζ̄µ1
)

= e−x·(ζ−ζ̄
C)ζ̄cµ2q1

D̄
(
ζ̄cµ2

)
= ex·(ζ−ζ̄

C)ζ̄µ1q2,
(4.70)

which follows immediately by Leibniz rule of multiplication and the fact that our exponentials

are monogenic and anti-monogenic (DE1 = 0, D̄E2 = 0).

Setting µ̃1 = ζ̄µ1, µ̃2 = ζ̄cµ2 and substituting we have the equations:Dµ̃1 = e−x·(ζ− ζ̄C)µ̃2q1

D̄µ̃2 = ex·(ζ− ζ̄C)µ̃1q2.
(4.71)
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Further, we assume

µ̃→

(
1

0

)
as |x| → ∞.

The system of equations leads us to an integral equation from which we can extract interesting

behavior for ζ → ∞.

In order to ensure existence and uniqueness of solutions to (4.71) we transform it into a

system of integral equations based on the T operator and e±x·(ζ−ζ̄
C).

4.3.3 Integral equation and function spaces

In order to obtain a integral equation, we approach our system (4.71) similarly to [57], but again

we need to be careful due to the non-commutative nature of quaternions.

Recall, that DT = D̄ T̄ = I (in appropriate spaces). Since, D1 = 0 we can subtract on

the first equation to obtain µ̃1 − 1 and thereafter, we apply the T, T̄ operator from the right to

achieve: 
µ̃1 = 1 + T

[
e−x·(ζ−ζ̄

C)µ̃2q1

]

µ̃2 = T̄
[
ex·(ζ−ζ̄

C)µ̃1q2

]
.

Substituting µ̃1, µ̃2 as given in the other equation we get:
µ̃1 = 1 + T

[
e−x·(ζ−ζ̄

C)T̄
[
ex·(ζ−ζ̄

C)µ̃1q2

]
q1

]

µ̃2 = T̄
[
ex·(ζ−ζ̄

C)q2

]
+ T̄

[
ex·(ζ−ζ̄

C)T
[
e−x·(ζ−ζ̄

C)µ̃2q1

]
q2

]
.

Denoting two new operators M1, M2 by

M1f = T
[
e−x·(ζ−ζ̄

c)T̄
[
ex·(ζ−ζ̄

c)fq2

]
q1

]
(4.72)

M2f = T̄
[
ex·(ζ−ζ̄

c)T
[
e−x·(ζ−ζ̄

c)fq1

]
q2

]
, (4.73)

the integral system of equations simplifies to:µ̃1 = 1 +M1µ̃1

µ̃2 = T̄
[
ex·(ζ−ζ̄

C)q2

]
+M2µ̃2

⇔

[I −M1](µ̃1 − 1) =M11

[I −M2](µ̃2) = T̄
[
ex·(ζ−ζ̄

C)q2

]
.

(4.74)

The goal now is to study uniqueness and existence of these equations. We approach this

task by proving that M is a contraction in certain space and the right-hand side is in it.

Ahead of time, we remark there is no need to work with all ζ ∈ C⊗H that fulfill ζζ̄ = 0. In

fact, we make an appropriate choice through k = k0 + k1e1 + k2e2 ∈ H by

ζ = k⊥ + i
k

2
, k⊥ · k = 0
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and k⊥ can be algorithmically found, i.e., it can be viewed as a function of k.

This already allows us to simplify the definition of our function space, which we define as

S = L∞
x (Lpk(|k| > R)), (4.75)

where the norm in x is taken over R3 and R > 0 is a constant.

In this space we prove that the operator M is a contraction in S:

Lemma 4.3.1. Let 1 ≤ p ≤ ∞. Then

lim
R→∞

∥M j∥S = 0.

Proof. Let us assume, without loss of generality, that f is a scalar function, which implies that

the result also holds for quaternionic-valued functions by M(f + g) = Mf +Mg. Further, we

present the proof for M1. For M2 is analogous.

Recall, that we choose ζ ∈ C(2) with respect to k ∈ R(2) as ζ = k⊥ + ik2 , k⊥ · k = 0.

In vector form it implies that ζ − ζc = ik which simplifies our computations to:

M1f(x) =

∫
R3

e−w·(ζ−ζ̄
C) x− w

|x− w|3

∫
R3

ey·(ζ−ζ̄
C) w − y

|w − y|3
f(y)q2(y) dy q1(w) dw

=

∫
R3

∫
R3

e−iw·k
x− w

|x− w|3
eiy·k

w − y

|w − y|3
f(y)q2(y)q1(w) dwdy

=

∫
R3

A(x, y; k)f(y) dy,

where

A(x, y; k) =

∫
R3

e−i(w−y)·k
x− y

|x− y|3
w − y

|w − y|3
q2(y)q1(w) dw.

Due to the compact support of the potential q2, it holds that A has compact support on the

second variable.

Let us now apply the norm in terms of k to it and Minkowski integral inequality:

∥Mf(x, ·)∥Lp(|k|>R) =

[∫
|k|>R

|Mf(x, ζ)|p dσζ

]1/p

=

[∫
|k|>R

∣∣∣∣∫
Ω
A(x, y; k)f(y) dy

∣∣∣∣p dσk
]1/p

≤
∫
Ω

[∫
|k|>R

|A(x, y; k)f(y)|p dσk

]1/p
dy

≤
∫
Ω
sup
k

|A(x, y; k)| dy ∥f∥S .

In order to complete the proof we show that the first integral goes to zero as R→ ∞.

Let As be given with the extra factor α(s|x−w|)α(s|w−y|) in the integrand, where α ∈ C∞

is 1 outside a neighborhood of the origin and 0 inside a smaller neighborhood of it.
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Since, ∫
B1(0)

∫
B1(0)

1

|w|2
1

|w − y|2
dw dy,

it holds that for any ϵ > 0 there exists an s > 0 such that:∫
Ω
|A−As| dy < ϵ.

Further, we denote As0,n the function As0 with potentials q1, q2 replaced by their L1 smooth

approximation Qn1 , Q
n
2 ∈ C∞. Since the other factors are bounded it holds∫

Ω
|As0 −As0,n| dy < ϵ.

Now it is enough to show that As0,n → 0 as |k| → 0 uniformly.

Since all integrands functions are in C∞ and uniformly bounded, the result immediately

follows by Riemann-Lebesgue.

The proof of this lemma is much more clear with the restriction of ζ through k ∈ R3. This

lemma points to a clear statement that M is a contraction in S.

Corollary 4.3.2. Let 1 ≤ p ≤ ∞. There exists an R > 0 big enough such that M is a

contraction operator in S and [I −M ] is invertible in S, where I is the identity matrix.

Proof. By Lemma 4.3.1, we have that limR→∞ ∥M∥S = 0, therefore by definition of limit, there

exists R > 0 big enough such that ∥M∥S < 1. As such, M is a contraction in S. Neumann

series immediately gives that I −M is invertible in S.

Existence and uniqueness of (4.74) is now ensured by showing for R > 0 the right-hand side

is in S.

Lemma 4.3.3. Let p > 2. Then there exists R > 0 such that

M11 ∈ S, (4.76)

T̄
[
ex·(ζ−ζ̄

C)q2

]
∈ S. (4.77)

Proof. Once again recall that ζ =
(
k⊥ + ik2

)
for k ∈ R3. First we show that M11 ∈ S. We have

M11 =

∫
Ω

∫
Ω
e−iw·k

x− w

|x− w|3
w − y

|w − y|3
eiy·kq2(y)q1(w) dy dw,

and applying the Lp norm in k followed with Minkowski integral inequality we obtain[∫
|k|>R

|M11|pdk

]1/p
≤
∫
Ω

|q1(w)|
|x− w|2

[∫
|k|>R

∣∣∣∣∫
Ω
eiy·k

w − y

|w − y|3
q2(y)dy

∣∣∣∣p dk
]1/p

dw.
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The inner most integral resembles a Fourier transform, hence, applying the Hausdorff-Young

inequality for p > 2 we have[∫
|k|>R

∣∣∣∣∫
Ω
eiy·k

w − y

|w − y|3
q2(y) dy

∣∣∣∣p dk
]1/p

≤

[∫
Ω

|q2(y)|p
′

|w − y|2p′
dy

]1/p′
< C∥q2∥∞,

where the last inequality follows quickly by Young’s convolution inequality and Riesz type esti-

mate of the kernel.

Therefore, by the same Riesz type estimate it holds:[∫
|k|>R

|M11|p dk

]1/p
≤ C∥q2∥∞

∫
Ω

|q1(w)|
|x− w|2

dw ≤ C ′∥q2∥∞∥q1∥∞.

To complete the proof we need to show statement (4.77). Similarly, to the above proof, we

have by Hausdorff-Young Inequality, Young’s convolution inequality and a Riesz type estimate

the following:[∫
|k|>R

∣∣∣∣∫
R3

eiy·k
x− y

|x− y|3
q2(y) dσy

∣∣∣∣p dσk
]1/p

≤

[∫
R3

∣∣∣∣ x− y

|x− y|3
q2(y)

∣∣∣∣p′ dσy
]1/p′

≤ C∥q2∥∞.

All of the lemmas above lead us to conclude existence and uniqueness of solutions (µ̃1, µ̃2)

solving (4.74), which we resume in the following result:

Corollary 4.3.4. Let q ∈ L∞(Ω) extended by zero outside Ω. Further, let p > 2 and R > 0 be

big enough. Then there exists a unique solution(
ϕ1e

−x·ζ(k) − 1, ϕ2e
−x·ζ̄C(k)

)
∈ L∞

x (Lpk(|k| > R)) (4.78)

to the system (4.74).

4.3.4 Reconstruction from scattering data

These solutions are key to define the scattering data, which transforms information on the

domain boundary into knowledge about the potential inside Ω. To accomplish it, we mix ideas

from [57] and [68] with quaternionic theory to obtain a well-defined scattering data and to get

the potential from its asymptotic behaviour.

Starting from Clifford-Green theorem∫
Ω

[
g(x)

(
D̄f(x)

)
+
(
g(x)D̄

)
f(x)

]
dx =

∫
∂Ω
g(x)η(x)f(x) dSx

and using g(x; iξ + ζ) = (iξ + ζ)e−x·(iξ+ζ) for ξ ∈ R3 ∼= R(2) such that (iξ + ζ) · (iξ + ζ) = 0.

This implies that gD̄ = 0.
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We define the scattering data as:

h(ξ, ζ) = (iξ + ζ)

∫
∂Ω
e−x·(iξ+ζ)η(x)ϕ2(x, ζ) dx. (4.79)

Applying now Clifford-Green theorem, we obtain another form for the scattering data:

h(ξ, ζ) = (iξ + ζ)

∫
Ω
e−x·(iξ+ζ)D̄ϕ2(x, ζ) dx

= (iξ + ζ)

∫
Ω
e−ix·ξ

(
e−x·ζϕ1(x, ζ)

)
q2(x) dx, by D̄ϕ2 = ϕ1q2

= (iξ + ζ)

∫
Ω
e−ix·ξ

(
ζ̄µ1(x, ζ)

)
q2(x) dx

= iξ

∫
Ω
e−ix·ξµ̃1(x, ζ)q2(x) dx, since ζ̄ζ = 0

= iξq̂2(ξ) + iξ

∫
Ω
e−ix·ξ [µ̃1(x, ζ)− 1] q2(x) dx

where we use the definition of the Fourier transform for the potential q2.

Thus, we have:

q̂2(ξ) =
h(ξ, ζ)

iξ
−
∫
Ω
e−ix·ξ [µ̃1(x, ζ)− 1] q2(x) dx (4.80)

This is yet not enough to reconstruct the potential, since the integral acts as a residual in

the reconstruction and requires data that we technically do not have. Therefore, we integrate

everything over an annulus in k as∫
R<|k|<2R

q̂2(ξ)

|k|3
dk =

1

iξ

∫
R<|k|<2R

h(ξ, ζ(k))

|k|3
dk

−
∫
R<|k|<2R

1

|k|3

∫
Ω
e−ix·ξ [µ̂1(x, ζ(k))− 1] q2(x) dx.

On the left-side integral, we can take out the Fourier transform of potential, since it does not

depend on k. Taking the limit as R→ ∞ leads the second integral on the right to decay to zero,

and therefore, we obtain a reconstruction formula.

Theorem 4.3.5. Let Ω ⊂ R3 a bounded Lipschitz domain, q ∈ L∞(Ω) be a complex-valued

potential obtained through a conductivity γ ∈W 1,∞(Ω), Re γ ≥ c > 0. Then, we can reconstruct

the potential from

q̂2(ξ) =
1

4π ln(2)
lim
R→∞

1

iξ

∫
R<|k|<2R

h(ξ, ζ(k))

|k|3
dk (4.81)

Proof. The scattering data is defined from solutions of the Dirac system (4.74) and therefore it

holds that µ̃1− 1 ∈ S. Starting from (4.81) we obtain by integrating the right-hand side for any

ξ ∈ R3:

4π ln 2q̂2(ξ) =
1

iξ

∫
R<|k|<2R

h(ξ, ζ(k))

|k|3
dk

−
∫
R<|k|<2R

1

|k|3

∫
Ω
e−ix·ξ [µ̃1(x, ζ(k))− 1] q2(x) dx.
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Let p > 2 and 1/p+ 1/q = 1. We estimate the last integral:∣∣∣∣∣
∫
R<|k|<2R

1

|k|3

∫
Ω
e−ix·ξ [µ̃1(x, ζ(k))− 1] q2(x) dx

∣∣∣∣∣ ≤
≤
∫
R<|k|<2R

1

|k|3

∫
Ω

∣∣∣e−ix·ξ [µ̃1(x, ζ(k))− 1] q2(x)
∣∣∣ dx

≤ CΩ∥q∥∞
∫
R<|k|<2R

1

|k|3
sup
x

|µ̃1(x, ζ(k))− 1| dk

≤ CΩ∥q∥∞

[∫
R<|k|<2R

1

|k|3q
dk

]1/q [∫
R<|k|<2R

sup
x

|µ̃1(x, ζ(k))− 1|p dk

]1/p

≤ CΩ∥q∥∞∥µ̃1 − 1∥S

[∫
R<|k|<2R

1

|k|3q
dk

]1/q
.

Taking the limit as R → 0, the integral that is left goes to zero for q > 1, which implies the

desired decay to zero and leaves us with our reconstruction formula.

Since, scattering data is uniquely defined from the boundary values of ϕ, then the potential

q, obtained from a complex-conductivity, is uniquely determined by them, as well.

To show that complex-conductivities γ ∈ W 1,∞(Ω) are uniquely determined from their

Dirichlet-to-Neumann map, we need to establish a unique relation between Λγ and the boundary

values of ϕ.

4.3.5 From Λγ to the scattering data

To establish a relation between Λγ for γ ∈ W 1,∞(Ω) and the boundary values of respective

solutions to (4.74), we need to introduce some new results that establish the existence of a

solution u from ϕ. Recall, that if we have a solution u to (4.1), then we may obtain solutions ϕ

to the integral equation. Our objective is to achieve the reverse.

This result is more clearly understood in two dimensions since the derivative operators are

intrinsically connected with Poincaré lemma for complex forms. However, in quaternions we

would require the use of four derivative operators to obtain an analogous result. Even though

possible, this would end up creating difficulties on the existence of exponential growing solutions!

Lemma 4.3.6. Let Ω be a bounded Lipschitz domain in R3. If h is a scalar-valued and harmonic

function then

Vec(S∂Ωh) = 0 ⇒ h|∂Ω is constant.

Proof. First, note that I + S∂Ω = P∂Ω is a projector and by Proposition 2.5.12 and Corollary

2.5.15 of [34] it holds that P∂Ωh is the boundary value of a monogenic function in Ω.

Since h is a scalar-valued function it holds that

P∂Ωh = Sc(P∂Ωh) + Vec(P∂Ωh)

= (h+ Sc(S∂Ωh)) + Vec(S∂Ωh).
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Let w = (h+ Sc(S∂Ωh)) and v = Vec(S∂Ωh). Now, we denote f as the monogenic extension

of P∂Ωh in Ω, as such, the boundary values of f fulfill tr f = w + v. Note that by hypothesis

we have that v|∂Ω = 0.

Hence, f is also an harmonic function, which implies that the scalar and vector components

are harmonic:

∆(Vec f) = 0

Vec f |∂Ω = 0.

By a mean value theorem or a maximum principle it holds that Vec f = 0. Due to this

and f being monogenic we obtain that Df = 0 ⇔ D(Sc f) = 0. Thus, Sc f = c since D is a

quaternionic operator.

Consequently, the boundary values are also constant, which means that w = c in ∂Ω. Since,

Sc(S∂Ωh) is an averaging operator it holds that h = c.

In order to connect them we introduce the following result:

Proposition 4.3.7. Let Ω be a bounded domain in R3. Let ϕ = (ϕ1, ϕ2) be a solution of the Dirac

system (4.67) for a potential q ∈ L∞(Ω) associated with a complex-conductivity γ ∈W 1,∞(Ω).

If ϕ1 = ϕ̄2 then there exists a unique solution u of:

D̄u = γ−1/2ϕ1,

Du = γ−1/2ϕ2.
(4.82)

Further, this function fulfills the conductivity equation

∇ · (γ∇u) = 0 in Ω.

Proof. Suppose that (u, v) are solutions to the following equations:

D̄u = γ−1/2ϕ1

Dv = γ−1/2ϕ2.

From applying the operator D and D̄ to the first and second equation respectively, we obtain
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from ϕ2 = ϕ̄1 and q2 = q̄1 the following:

∆u = D(γ−1/2ϕ1) = D(γ−1/2)ϕ1 + γ−1/2Dϕ1

= −1

2
γ−3/2(Dγϕ1) + γ−1/2ϕ2q1

= γ−1/2 [q2ϕ1 + ϕ2q1] = γ−1/2
[
q̄1ϕ1 + ϕ̄1q1

]
= γ−1/2Sc (ϕ̄1q1), and

∆v = D̄(γ−1/2ϕ2) = D̄(γ−1/2)ϕ2 + γ−1/2D̄ϕ2

= −1

2
γ−3/2(D̄γ)ϕ2 + γ−1/2ϕ1q2

= γ−1/2 [q1ϕ2 + ϕ1q2] = γ−1/2
[
q1ϕ̄1 + ϕ1q̄1

]
= γ−1/2Sc (ϕ1q̄1).

The first thing to notice is that both equations imply that u and v must be scalar-valued

functions. Further, it holds that

∆(u− v) = γ−1/2
[
Sc (ϕ̄1q1)− Sc (ϕ1q̄1)

]
= γ−1/2

[
Sc
(
ϕ̄1q1

)
− Sc

(
q1ϕ̄1

)]
= 0.

Therefore, h = u − v is a scalar-valued harmonic function. Our objective is to show that

h ≡ 0, thus showing that u = v.

For such, let us consider the theory of integral transforms in quaternionic analysis. We have

u = T̄ (γ−1/2ϕ1) + F̄∂Ω(γ
−1/2ϕ1), and

u = T̄ (γ−1/2ϕ1) + F̄∂Ω(u),

which implies that

F̄∂Ω(γ
−1/2ϕ1) = F̄∂Ωu.

Analogously, we obtain

F∂Ω(γ
−1/2ϕ2) = F∂Ωv.

Here, we can extrapolate from the first equation and from u being scalar-valued that

γ−1/2ϕ1F∂Ω = F∂Ωu

⇔ γ−1/2ϕ2F∂Ω = F∂Ωu.

Applying the operator F∂Ω on the other side, we obtain:

F∂ΩF∂Ωu = F∂ΩF∂Ω(γ
−1/2ϕ2)F∂Ω and F∂ΩF∂Ωv = F∂Ω(γ

−1/2ϕ2)F∂Ω

⇒ F∂ΩF∂Ωh = F∂ΩF∂Ω(u− v) = 0.
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If we take the trace on both sides, the operator becomes a projector thus we obtain that

tr F∂Ωh = 0. Now, through the Sokhotski-Plemelj formula we obtain:

tr F∂Ωh = h|∂Ω + S∂Ωh = 0, at ∂Ω.

Since h is a scalar-valued function that we decompose this formulation with the scalar and

vector part to obtain two conditions: h+ Sc(S∂Ωh) = 0,

Vec(S∂Ωh) = 0.

Through the second condition and Lemma 4.3.6 we have that h is constant over ∂Ω.

Now, given that h is a scalar constant, the first condition reduces to:

h(1 + Sc(S∂Ω1)) = 0.

By [34] we obtain that 1 + Sc(S∂Ω1) = 1/2 in ∂Ω. Therefore, we conclude that h ≡ 0 in ∂Ω.

Given that h is harmonic, this immediately implies that h = 0 in Ω.

Therefore, we obtain u = v, and therefore there exists a unique solution to the initial system

through the T and F∂Ω operators in Ω.

To finalize, we only need to show that u fulfills the conductivity equation in Ω.

Bringing the first equation to light

D̄u = γ−1/2ϕ1,

changing the side of the conductivity we get γ1/2D̄u = ϕ1 and applying the D operator to both

sides now brings

D
(
γ1/2D̄u

)
= Dϕ1

⇔ D
(
γ1/2

)
D̄u+ γ1/2∆u = ϕ2q1

⇔ D
(
γ1/2

)
D̄u+ γ1/2∆u = γ−1/2Du

1

2

D̄γ

γ

⇔ 1

2
γ1/2DγD̄u+ γ1/2∆u+

1

2
Du

D̄γ

γ1/2
= 0

⇔ ∇γ · ∇u+ γ∆u = 0 ⇔ ∇ · (γ∇u) = 0.

Let us recall the main theorem, that we are now able to prove with all these pieces we

assembled.

Theorem 4.1.2 Let Ω ⊂ R3 a bounded Lipschitz domain, γi ∈ W 1,∞(Ω), i = 1, 2 be two

complex-valued conductivities with Re γi ≥ c > 0.

If Λγ1 = Λγ2 , then γ1 = γ2.
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Proof. Due to Theorem 4.3.5, we only need to show the scattering data h for |k| >> 1 is uniquely

determined by the Dirichlet-to-Neumann map Λγ .

For such, let us start with two conductivities γ1, γ2 in W 1,∞(Ω) for Ω a bounded domain.

By hypothesis Λγ1 = Λγ2 and thus by [76] we have γ1|∂Ω = γ2|∂Ω.
Further, we can extend γj , j = 1, 2 outside Ω in such a way that in R3 \ Ω and γj − 1 ∈

W 1,∞
comp(R3). Let qj , ϕ

j , µj , hj , j = 1, 2 be the potential and the solution in (4.67), the function

in (5.9), and the scattering data in (4.79) all associated with the conductivity γj .

Due to the scattering formulation at the boundary ∂Ω, then we just want to know if ϕ1 = ϕ2

on ∂Ω when |k| >> 1.

First, by Proposition 3.4, we know that there exists an u1 such that

ϕ1 = γ
1/2
1 (D̄u1, Du1)

t,

which is a solution to

∇ · (γ1∇u1) = 0 in R3.

Now, let us define u2 by

u2 =

u1 in R3 \ Ω,

û in Ω.

where û is the solution to the Dirichlet problem∇ · (γ2∇û) = 0 in Ω,

û = u1 on ∂Ω.

Let g ∈ C∞
c (R3). Then,∫

R3

γ2∇u2∇g dx =

∫
R3\Ω

γ1∇u1∇g dx+

∫
Ω
γ2∇û∇g dx

= −
∫
∂Ω

Λγ1 [u1|∂Ω] g dsx +
∫
∂Ω

Λγ2 [ û|∂Ω] g dsx

= 0.

Hence, u2 is the solution of ∇ · (γ2∇u2) = 0 in R3. Further, the following function

ψ2 = γ
1/2
2

(
D̄u2, Du2

)t
is the solution of (4.67) where the potential is given by γ2.

Furthermore, ψ2 has the asymptotics of ϕ1 in R3 \ Ω, thus by Lemma 3.1 and 3.2 it will be

the unique solution of the respective integral equation of (4.67). Thus, ψ2 will be equal ϕ2 when

|k| > R. Since, on the outside ψ2 ≡ ϕ1. Then we obtain:

ϕ1 = ϕ2 in R3 \ Ω.
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In particular, we have equality at the boundary ∂Ω. So, this implies that if the Dirichlet-

to-Neumann maps are equal the respective scattering data will also be the same. Thus, the

Dirichlet-to-Neumann map uniquely determines the potential q.

From the definition of q, we can uniquely determine the conductivity γ up to a constant,

which in the end is defined by γ|∂Ω which is uniquely determined by the Dirichlet-to-Neumann

map Λγ .

As such, we conclude our proof of uniqueness for complex-conductivities in W 1,∞(Ω) from

the Dirichlet-to-Neumann map Λγ . Notice that (4.3.5) even provides a reconstruction formula,

but as mentioned in the previous section it is very unstable for computational purposes.

There is no yet known result in the literature for conductivities just in L∞(Ω), even for real

ones. The next chapter is focused on this, but it only provides a possible path to achieve it.
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Chapter 5

Real Conductivities in 3D

The chapter objective is meant as an exploratory work and to establish a possible framework to

solve the full Calderón problem in three-dimensions for real-conductivities σ ∈ L∞(Ω).

The main ideas arose from the work of Santacesaria [81], where he uses quaternionic anal-

ysis to establish a link with theoretical results presented for two-dimensions on [8]. It starts

by making a connection with a Beltrami equation of quaternionic nature, which allows an im-

mediate relation between the real conductivity and a real-valued coefficient µ without the need

for derivatives. This builds the foundations for a possible solution to Calderón problem with

σ ∈ L∞.

In this seminal paper, Santacesaria provides a uniqueness proof analogous to Calderón in

the original paper [18] for the linearized problem at constant conductivities, which we will not

present here. However, this is the furthest he is able to achieve.

We provide a bit further insight into the quaternionic problem. We obtain an integral

equation for exponential growing solutions and present the essential pieces that are needed to

conclude the proof, and that we weren’t able to achieve for now.

5.1 The problem

Let Ω ⊂ R3 be a bounded Lipschitz domain and define σ ∈ L∞(Ω) to be an isotropic real

conductivity which is positively lower bounded, i.e., σ(x) ≥ c > 0, ∀x ∈ Ω. We remark that this

is the first time we are restricting our assumptions just for real conductivities.

The Direct Problem concerns the determination of an electrical potential u ∈ H1(Ω), for

a given voltage f ∈ H1/2(∂Ω) set at the boundary, satisfying the conductivity equation:∇ · (σ∇u) = 0, in Ω,

u|∂Ω = f
(5.1)

Once again, this problem is uniquely solvable in H1(Ω) due to the positive lower bound of

117



σ. From the corresponding solutions u we define the Dirichlet-to-Neumann map as before:

Λσ : ϕ ∈ H1/2(∂Ω) → H−1/2(∂Ω)

f 7→ σ
∂u

∂n

∣∣∣∣
∂Ω

.

Recall, that Calderón problem is mathematically stated as follows:

“Given Λσ find if σ ∈ L∞(Ω) is uniquely determined by it and if so reconstruct it.”

This has been an open question for a long time and the best known result in three-dimensions

is for the case of Lipschitz conductivities. Here, we are providing a framework for the following

conjecture:

Conjecture 5.1.1. Let Ω ⊂ R3 be a bounded Lipschitz domain. Let σi ∈ L∞(Ω) for i = 1, 2

and denote Λσi as their respective Dirichlet-to-Neumann maps.

If Λσ1 = Λσ2 then σ1 = σ2 in Ω.

We introduce now the Quaternionic-Beltrami equation and an approach based on it that

may provide a bridge to obtain the uniqueness result.

5.2 The relation with Quaternionic-Beltrami equation

In this section, we convert our initial problem into a simpler but analogous one. The key is that

in the latter problem we do not require any derivatives on σ. However, this approach is not as

easy as others for σ with derivatives. Even in two-dimensions, Astala and Päivärinta [8] require

the introduction of quasi-conformal theory to obtain a uniqueness proof.

In three dimensions we do not yet know the path, but the theory of quasi-conformal mappings

breaks down for quaternions.

Now, without loss of generality, lets assume that Ω = B and σ ≡ 1 outside of it (see [81]).

Our equation in (5.1) can be rewritten through

d ⋆ (σdu) = 0,

where d is the exterior derivative and ⋆ the Hodge star. From the properties of both operators

we obtain the following Lemma.

Lemma 5.2.1. Let Ω ⊂ R3, n ≥ 3 be the unit ball, σ ∈ L∞(Ω) bounded from below and

u ∈ H1(Ω) a solution to the conductivity equation (5.1). Then, there exists a (n − 2) form ω,

unique up to dν for a (n− 3) form ν, such thatdω = ⋆σdu = 0,

d ⋆
(
1
σdω

)
= 0.

(5.2)
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Proof. Poincaré lemma states that in B every closed form (dω = 0) is exact.

In this sense, let α = ⋆σdu, then dα = d ⋆ (σdu) = 0, for u ∈ H1(Ω) unique solution of (5.1).

Thus, α is a closed form in B. By Poincaré lemma, there is a (n− 2) form ω such that dω = α,

i.e., ω is exact, and unique up to dχ with χ a (n− 3) form.

In the particular case of three dimensions, (n = 3), we have

ω = u0dx+ u1dy + u2dz.

From (5.2) we can extract that ∇× (u0, u1, u2) = σ∇u. Recall, that ω is unique only up to dω.

However, for our purpose we can establish a one-to-one correspondence by choosing ω in order

to have ∇ · (u0, u1, u2) = 0.

Our objective now is to establish an analogue of the Beltrami equation in the realm of

quaternions. In order to this, we define the following function

ϕ = u− e3(u0 + u1e1 + u2e2). (5.3)

Now by applying the Cauchy-Riemann operator D given as D = ∂0 + ∂1e1 + ∂2e2 to ϕ leads

to:

Dϕ = Du−D(u0e3 + u1e1 − u2e2) = Du− (∂0 + ∂1e1 + ∂2e2)(u0e3 + u1e2 − u2e1) (5.4)

= Du− [(∂1u2 − ∂1u2) + e1(∂2u0 − ∂0u2) + e2(∂0u1 − ∂1u0) + e3(∂0u0 + ∂1u1 + ∂2u2)]

(5.5)

Before proceeding we formulate the previous expression ∇× (u0, u1, u2) = σ∇u in terms of

quaternions. We define the cross-product as:

∇× (u0 + u1e1 + u2e2) :=

∣∣∣∣∣∣∣∣
e0 e1 e2

∂0 ∂1 ∂2

u0 u1 u2

∣∣∣∣∣∣∣∣ = e0(∂1u2 − ∂2u1) + e1(∂2u0 − ∂0u2) + e2(∂0u1 − ∂1u0)

Further, σDu is the quaternionic form of the expression σ∇u, since u is a real-valued function

solving (5.1). Therefore, the previous relation is now given in quaternions as

∇× (u0 + u1e1 + u2e2) = σDu.

This leads now to

Dϕ = Du−∇× (u0 + u1e1 + u2e2) + e3∇ · (u0, u1, u2)

= Du− σDu,

since we choose ν such that ∇ · (u0, u1, u2) = 0.
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Analogously, applying D to ϕ̄ = u+ (u0 − u1e1 − u2e2)e3 leads to:

Dϕ̄ = Du+ (∂0 + e1∂1 + e2∂2)(u0e3 + u1e2 − u2e1)

= Du+∇× (u0 + u1e1 + u2e2) + e3∇ · (u0, u1, u2) = Du+ σDu

The above expressions imply that

Du =
1

1− σ
Dϕ and Du =

1

(1 + σ)
Dϕ̄.

Joining them together we obtain the Quaternionic-Beltrami equation:

Dϕ = µDϕ̄, where µ =
1− σ

1 + σ
. (5.6)

With this definition and the fact that σ ≥ c > 0 it is easily seen that

|µ(x)| < 1, in R3. (5.7)

Furthermore, the support of µ is also restricted to B.
To study the problem, as typical, we introduce the exponential growing solutions that seem

to be appropriate for the exploration and that were initially described in [81].

5.3 Exponentially growing solutions

Due to the nature of exponential functions with quaternionic values we cannot make a clear

connection to Astala and Päivärinta work [8]. The first thing to notice is that these exponentials

would not be monogenic, which has been essential in every piece since it simplifies a lot of

equations for the non-exponential term of the solutions. Furthermore, with quaternions we also

lose the simple derivative-rule for multiplication.

These are the two-main aspects to keep in mind for the following presentation. We start

from the usual exponential complex functions initially presented in the work of Sylvester and

Uhlmann, [88].

These exponential functions are defined for ζ = (ζ0, ζ1, ζ2) ∈ C3 \ {0} by

eix·ζ with x ∈ R3. (5.8)

The essence of these functions is that if ζ · ζ := ζ20 + ζ21 + ζ22 = 0 then they are harmonic

functions, which is only possible if ζ is complex-valued.

Since, the Laplace operator can be decomposed in terms of the D and D̄ we can find expo-

nential functions related to these ones and that are monogenic.

∆ex·ζ = 0 ⇔ D(D̄ex·ζ) = 0.
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In this sense, the functions we are looking for can be defined as

E(x, ζ) = D̄ex·ζ = (ζ0 − ζ1e1 − ζ2e2)e
x·ζ =: ζ̄ex·ζ .

Here, we denote by ·̄H the quaternionic conjugation of a complex-valued quaternion. Throughout

the chapter we simply denote it by ·̄ since we do not apply complex conjugation on this work.

Here, we are mixing two notations for ζ but they are related by the connection of C3 and

C⊗H through:

ζ = (ζ0, ζ1, ζ2) ∈ C3 ⇔ ζ = ζ0 + ζ1e1 + ζ2e2 ∈ C⊗H.

With this connection the have the equivalence between conditions:

ζ · ζ = 0 ⇔ ζ̄ζ = ζζ̄ = 0.

Now, we define our exponential growing solutions to the quaternionic-Beltrami equation as:

ϕ(x, ζ) = E(x, ζ)m(x, ζ), (5.9)

with a quaternionic complex-valued function.

Since, we fixed the exponential behavior we formalize now how the function m should behave

in terms of the differential equation. For such, we substitute (5.9) in (5.6) as follows

D(Em) = µD(m̄Ē).

With the Leibniz rule in the particular case a function is scalar valued (see the Preliminaries),

the above derivatives can be expanded as

D
(
ex·ζ ζ̄m(x, ζ)

)
=
(
Dex·ζ

)
ζ̄m(x, ζ) + ex·ζ

(
Dζ̄m(x, ζ)

)
= ζζ̄m(xζ) + ex,·ζ

(
Dζ̄m(x, ζ)

)
= ex·ζ

(
Dζ̄m(x, ζ)

)
D
(
ex·ζm(x, ζ)ζ

)
=
(
Dex·ζ

)
m(x, ζ)ζ + ex·ζ

(
Dm(x, ζ)ζ

)
= ex·ζζm(x, ζ)ζ + ex·ζ

(
Dζ̄m(x, ζ)

)
By joining both expressions in the quaternionic-Beltrami equation, we obtain:

D(ζ̄m(x, ζ)) = µ(x)
[
ζζ̄m(x, ζ) +Dζ̄m(x, ζ)

]
. (5.10)

Since ζ̄m(x, ζ) is a common term through out the equation, we can define

ψ(x, ζ) = ζ̄m(x, ζ),

in order to obtain the simpler equation

Dψ = µ
[
ζψ̄ +Dψ̄

]
. (5.11)
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Notice that due to the definition of ψ the initial function ϕ solving (5.6) can be defined

through it as:

ϕ(x, ζ) = ex·ζψ(x, ζ).

This hides the term that makes the exponential function monogenic inside ψ and allows a

simpler connection with the same decomposition made in two-dimensions. It also simplifies the

analysis that follows.

In the next section, we introduce a bit of the operator theory in quaternionic analysis and

introduce a integral equation corresponding to (5.11).

5.4 Study of the integral equation

The study of exponential growing solutions to the quaternionic-Beltrami equation is always

coupled with the study of integral equations for the equation with non-exponential growth, in

our case (5.11). This is the focus of this section, where we use the inverse operator of D to

derive it.

We now introduce an extension of the T -operator to R3 by

Th(x) =
1

4π

∫
R3

x− y

|x− y|3
h(y) dy, (5.12)

which acts as a left and right-inverse operator like DTg = g, TDg = g, for g ∈W 1,p(R3).

Further, we set Lp(Ω) over a bounded domain through Lp(Ω) :=
{
g ∈ Lp(R3) : g|R3\Ω≡0

}
.

Proposition 5.4.1. Let Ω be a bounded Lipschitz domain and h ∈ Lp(Ω) for 1 < p <∞. Then,

Th(x) exists for all x ∈ R3 \ Ω̄ and it fulfills the inequality

|Th(x)| ≤ 1

4π
dist(x,Ω)−2∥h∥Lp(Ω).

Proof. For h ∈ Lp(Ω) we get that

|Th(x)| ≤ 1

4π

∣∣∣∣∫
Ω

x− y

|x− y|3
h(y) dy

∣∣∣∣ ≤ 1

4π

∫
Ω

1

|x− y|2
|h(y)| dy

≤ 1

4π
dist(x,Ω)−2∥h∥L1(Ω) ≤

CΩ

4π
dist(x,Ω)−2∥h∥Lp(Ω).

Proposition 5.4.2. Let Ω ⊂ R3 a bounded domain and let p > 3/2. Then,

(i) T : Lp(Ω) →W 1,p(R3) is a bounded operator,

(ii) If 3/2 < p < T : Lp(Ω) → Lp(R3) is a compact operator.

Proof. (i) The proof follows by the boundedness of the operator over bounded domains, i.e.,

T : Lp(Ω) →W 1,p(Ω) and the decay at infinity presented in Proposition 5.4.1.
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(ii) This proof can be treated similarly as in the Lemma 4.2 of the preprint of [69].

The operator T : Lp(Ω) → Lp(R3) can be consider in Lp(R3) as the operator T defined in

(5.12) multiplied with the characteristic function of the domain, like TχΩ.

Under this definition, this operator is compact if and only if dual operator is compact.

Thus, by duality we study the compactness of χΩT̄ , where here T̄ is equivalent to the

operator T but with the kernel without the conjugation. Accordingly, the dual operator

is now defined over the dual space Lr(R3) of Lp(R3) with 1 < r < 3. Thus, we have

∥χΩT̄ f∥Lr(R3) ≤ ∥χΩ∥L3(R3)∥T̄ f∥Lr̃(R3), (5.13)

where r̃ is the Hölder conjugate of r defined as 1
r̃ = 1

r −
1
3 .

Now suppose that χ is a function in C1 with compact support in Ω. Then, it holds that

∥∇ (χΩTf) ∥Lr(R3) ≤ ∥∇χ∥L3(R3)∥∂−1f∥Lr̃(R3) + ∥χ∥L∞(R3)∥∇Tf∥Lr(R3) ≤ c∥f∥Lr(R3).

Therefore, the image under χT of the unit ball in Lr(R3) lies in {u ∈ Lr(Ω) : ∥u∥Lr(Ω) ≤
c, ∥∇u∥Lr(Ω) ≤ c} which is compactly embedding into Lr(Ω) by the Rellich-Kondrachov

theorem. Thus χT is a compact operator in Lr(R3).

Now, let χΩ be the characteristic function of the domain Ω and let {χk} be a sequence

of C1 functions of compact support converging to χΩ in L3(Ω). As we have shown, the

corresponding operators χkT are compact and norm convergent, similarly to the above

estimate (5.13), hence their limit, too, is a compact operator.

The other operator of interest is defined as

Sg = DTg,

which is analogous to the Π-operator introduced in [83], further studied in [33] and extended

in [11].

Since, we already known the Fourier symbol of the integral operator T (see [33]) we can

establish the symbol of S. However, due to the non-commutative nature of quaternions it holds

that

F
(
DTh(x)

)
(ξ) = ξ ĥ(ξ)

ξ̄

|ξ|2
(5.14)

From this we can visualize that S in L2(R3) is an isometry and the norm is equal to 1. The

norm

Dψ = µ
(
Dψ̄ + ζψ̄

)
for x ∈ R3.
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Furthermore, for the general Lp(R3) spaces Theorem 16 in [11] provides the following estimate

for the norm:

∥S∥Lp(R3) ≤ 6max

{
p− 1,

1

p− 1

}
.

One of the most interesting conjectures on the Π− operator, that could be extended for our

case, was introduced by Iwaniec in [51] and states that:

∥Π∥Lp =


1
p−1 , 1 < p ≤ 2,

p− 1, 2 < p <∞.
(5.15)

Let us proceed to determine the integral equation of interest. We assume further that our

desired solution has the following asymptotic behavior:

ψ = 1 + η and η → 0, |x| → ∞. (5.16)

With this in mind, we proceed as in Proposition 4.1 of [8], where TD = I in W 1,p(R3)

Dη − µDη̄ = µζ (1 + η̄)

⇔ Dη − µDTDη = µζ(1 + η̄)

⇔ [I − µS] (Dη) = µζ(1 + η̄).

At least for p = 2 we know that µS is a contraction in L2(R3) due to ∥µ∥∞ < 1. In case the

conjecture 5.15 is true, it holds that:

∥µS∥Lp < ∥µ∥∞(p− 1), for p > 2,

which implies that we have a contraction when

p < 1 +
1

∥µ∥∞
.

This leads to:

Dη = [I − µS]−1 (µζ(1 + η̄))

⇔η = T [I − µS]−1 (µζ(1 + η̄))

⇔[I −Kζ ]η = Kζ1, where Kζ = T [I − µS]−1 (µζ ·) .

Due to the compactness properties of T we want to show that Kζ will be a compact operator,

which implies I −Kζ is Fredholm of index zero. If this holds, then uniqueness of the integral

equation only depends on ker[I −Kζ ] being trivial.

Lemma 5.4.3. Let p > 3/2, ζ ∈ C ⊗ H and µ ∈ L∞(R3) with compact support in B such that

µS is a contraction in Lp(R3). Then, in Lp(R3) it holds:
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• supp [I − µS]−1 (µζḡ) ⊂ B;

• Kζ := T [I − µS]−1(µζ ·) is compact;

• I −Kζ is Fredholm of index zero.

To study the above equation, it follows by Fredholm theory that we just need to show I−Kζ

is injective.

Conjecture 5.4.4. Let p > 3/2, ζ ∈ C ⊗ H and µ ∈ L∞(R3) with compact support in B such

that µS is a contraction in Lp(R3). We denote |ζ|2 := |ζ0|2 + |ζ1|2 + |ζ2|2. Then there exists an

R > 0 such that for |ζ| > R the operator I −Kζ is invertible in Lp(R3).

Therefore, there exists a unique solution ϕ(x, ζ) of the form:

ϕ(x, ζ) = ex·ζ(1 + η), (5.17)

where η is the solution of

[I −Kζ ] η = Kζ1. (5.18)

In the following section we base ourselves on the exponentially growing solutions to prove

we can uniquely determine σ from the Dirichlet-to-Neumann map Λσ.

5.5 From Λσ to σ

The approach we establish up next was initially derived in [81] where he used this result to show

an alternative proof for uniqueness of the linearized problem at constant conductivities, initially

shown by Calderón in its seminal paper [18].

As a follow up and with the exponentially growing solutions in mind, we apply those ideas

to obtain a formula that leads to the unique determination of the conductivity σ ∈ L∞(Ω) from

the Dirichlet-to-Neumann map Λσ, that depends only on the existence of the solutions ψ for

large complex frequencies with asymptotically decay in ζ.

To start we introduce the generalization of Alessandrini’s identity, obtained by Santacesaria

in [81].

Proposition 5.5.1. Let σ1, σ2 ∈ L∞(Ω) be two positively lower bounded conductivities and let

Λ1, Λ2 be their corresponding Dirichlet-to-Neumann maps. Then, for every g1, g2 ∈ H1/2(∂Ω)

we have the identity:

⟨g1, (Λ2 − Λ1) g2⟩H1/2(∂Ω) ,H−1/2(∂Ω) =
1

2

∫
Ω
(µ1 − µ2)

〈
Dϕ̄1, Dϕ̄2

〉
R4 dx, (5.19)

where uj = Scϕj solves

∇ · (σj∇uj) = 0, in Ω, uj = gj on ∂Ω,

and ϕj satisfies Dϕj = µjDϕ̄j in Ω with µj =
1−σj
1+σj

.
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Proof. First, notice that for a quaternionic-valued functions f it holds

f̄ + f = 2Scf and f̄ − f = 2Vecf (5.20)

by the conjugation properties. Our solutions are connected with the conductivity equation

solution uj by ϕj = uj − e3(uj,0 + uj,1e1 + uj,2e2), j = 1, 2 with ∇× (uj,0, uj,1, uj,2) = σj∇uj .
Hence, by the above relations and the computation (5.4) we obtain:

Dϕ̄j +Dϕj
2

= ∂0uj + ∂1uje1 + ∂2uje2, (5.21)

Dϕ̄j −Dϕj
2

= curl0 + curl1e1 + curl2e2 +∇ · (uj,0, uj,1, uj,2)e3, (5.22)

where we have denoted (curl0, curl1, curl2e2) = ∇× (uj,0, uj,1, uj,2).

By Green’s formulas one readily obtains from the Dirichlet-to-Neumann maps the following

Alessandrini’s identity for the Calderón problem [5]:

⟨g1, (Λ2 − Λ1)g2⟩H1/2(∂Ω),H−1/2(∂Ω) =

∫
Ω
(σ2 − σ1)∇u1 · ∇u2 dx.

Here · denotes the Euclidean inner product. For simplicity purposes we denote Uj be the

vector field Uj := (uj,0, uj,1, uj,2) that fulfills ∇× (Uj) = σj∇uj . Then

⟨f1, (Λ2 − Λ1)f2⟩H1/2(∂Ω),H−1/2(∂Ω) =

∫
Ω
(∇× U2) · ∇u1 − (∇× U1) · ∇u2 dx. (5.23)

With the above identities (5.20) it holds that the inner products under the integral are given

as:

(∇× U2) · ∇u1 − (∇× U1) · ∇u2 =
1

4
⟨Dϕ̄2 −Dϕ2, Dϕ̄1 +Dϕ1⟩H

− 1

4
⟨Dϕ̄2 +Dϕ2, Dϕ̄1 −Dϕ1⟩H

Given that ϕj satisfy the respective Beltrami equation Dϕj = µDϕ̄j , we can substitute in

the above formula to obtain:

(∇× U2) · ∇u1 − (∇× U1) · ∇u2 =
1

4
⟨(1− µ2)Dϕ2, (1 + µ1)Dϕ̄1⟩R4

− 1

4
⟨(1 + µ2)Dϕ̄2, (1− µ1)Dϕ̄1⟩R4

=
1

4
((1− µ2)(1 + µ1)− (1 + µ2)(1− µ1)) ⟨Dϕ̄2, Dϕ̄1⟩R4

=
µ1 − µ2

2
⟨Dϕ̄2, Dϕ̄1⟩R4 .

Substituting in the variation of Alessandrini identity (5.23) we obtain our desired identity

(5.19).
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By applying this identity when the Dirichlet-to-Neumann maps Λ1, Λ2 are equal to each

other, we obtain the unique determination of the coefficients µj . That is, if for σj ∈ L∞(Ω), σj ≥
c > 0, j = 1, 2 we have Λ1 = Λ2 then Alessandrini identity implies that:∫

Ω
(µ1 − µ2)

〈
Dϕ̄1, Dϕ̄2

〉
R4 dx = 0. (5.24)

where ϕj are exponentially growing solutions associated with the spectral parameter ζj . We

already know, that at least for some ζj ∈ C3 with ζj · ζj = 0 the following types of solutions

exist in W 1,p
loc (Ω)

ϕj =
(
ex·ζ

j
ζ̄j
)
mj , and recall that for ψj = ζ̄jmj

Dϕ̄j = ex·ζ
j (

(Dm̄j) ζ
j + ζjm̄jζ

j
)
= ex·ζ

j (
Dψ̄j + ζjψ̄j

)
.

Substituting in (5.24) we obtain:∫
Ω
(µ1 − µ2)e

x·(ζ1+ζ2) 〈Dψ̄1 + ζ1ψ̄1, Dψ̄2 + ζ2ψ̄2

〉
R4 dx = 0. (5.25)

Since ζj ∈ C3 it is possible to pick them such that ζ1 + ζ2 = ik, k ∈ R3, but ζj are not

purely imaginary.

Moreover, from our previous assumptions on exponentially growing solutions we further take

the asymptotics ψj = 1 + ηj . This leads to:

〈
ζ1, ζ2

〉
R4

∫
Ω
(µ1 − µ2)e

ix·k dx =

∫
Ω
(µ1 − µ2)e

ix·k
( 〈
Dη̄1 + ζ1η̄1, Dη̄2 + ζ2η̄2

〉
R4 (5.26)

+
〈
Dη̄1 + ζ1η̄1, ζ

2
〉
H +

〈
ζ1, Dη̄2 + ζ2η̄2

〉
R4

)
dx.

Now, the objective is to show that as |ζj | → ∞ the scalar products on the right-side converge

to zero. With this we obtain: ∫
Ω
(µ1 − µ2)e

ix·k dx = 0 ⇒ µ1 = µ2.

This implication is easily obtained by Fourier inversion theorem. The following deductions

are the basis to prove Conjecture 5.1.1, that is, Λσ uniquely determines σ ∈ L∞(Ω).

5.5.1 Open questions

In order to use the above uniqueness theorem there are still two missing pieces one needs to

show before finalizing the proof. Both are related with the exponentially growing solutions ϕ

that solve the Quaternionic-Beltrami equation.

First and foremost, we need to prove Conjecture 5.4.4 that guarantees existence and unique-

ness of exponentially growing solutions to the Beltrami equation for large complex frequencies.

These are the solutions plugged in the Alessandrini identity.
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Recall that the Beltrami equation (5.6) for our type of solutions is equivalent to the integral

equation (5.18), that we make explicit here again

[I −Kζ ] η = Kζ1.

So far, we have shown that Kζ is a compact operator in Lp(R3) and thus the left-hand

side operator is Fredholm of index zero. Thus, to prove invertibility one needs to show that

ker(I −Kζ) is empty.

In the related work of Astala and Päivärinta in two dimensions [8] this was obtained through

the study of pseudo-analytic functions in [10], [91]. This study ends up connecting with quasi-

conformal homeomorphism and the study of the Beltrami equation. The key idea is provided in

their paper and more extensively in Theorem 8.5.3 of [7] and is based on obtaining an analogue

of Liouville theorem through a distortion inequality.

In higher dimensions, suppose f ∈W 1,n
loc (R

n) satisfies the distortion inequality

|Df |n ≤ KJ(x, f) + γ(x)|f |n

with γ ∈ Ln±(Rn), D is the Jacobian and J(x, f) given by its determinant. As far as we are

aware it is still an open question to show that f is continuous and, additionally, if f → 0 as

x→ ∞ then is f ≡ 0.

In two dimensions this inequality simplifies to |∂̄f(z)| ≤ k|∂f(z)| + γ(z)|f(z) due to the

relation between D and the Wirtinger derivatives ∂̄, ∂. Astala and Päivärinta used the above

result that was established through the theory of pseudo-analytic functions to show the desired

uniqueness of the Beltrami equation.

This would be a step to show uniqueness of solutions for all ζ ∈ C3, but a generalization of

pseudo-analytic functions and their study is necessary for quaternions and Clifford algebras. At

this time, it is an infeasible methodology to prove uniqueness.

Another approach which seems more viable, as of now, is to obtain an estimate of Kζ in

terms of |ζ|, that shows its decay as |ζ| → ∞. This would bring a contraction principle and

we could obtain the inverse operator to [I − Kζ ] by Neumann series. This path follows the

uniqueness proofs provided in [88], [68] and others.

Finally, to show the decaying properties on the right-hand side of (5.26) one needs to show

how the exponentially growing solutions behave in terms of |ζ|.

Conjecture 5.5.2. Let ηj ∈ Lp(R3), p > 3 be the solutions in (5.4.4) with respect to σj ∈
L∞(Ω), j = 1, 2. Then, in some topology to be defined, they fulfill the following asymptotics as

ζj → ∞

Dη̄ + ζη̄ → 0 as |ζ| → ∞,

or

η → 0 as |ζ| → ∞.
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An aspect to notice is that in two-dimensions Nachman was able to prove a similar decay

to the last one based on the decay properties (∂ + ik)−1, see Lemma 1.2 in [69], which is

related to the operator above D + ζ. However, for the latter one a different methodology

needs to be used to prove this decay, since we are not able to obtain the decomposition of

(∂ + ik) = e−i(kz+k̄z̄)∂ei(kz+k̄z̄) due to the quaternionic exponential not commuting with the

differential operators.

This chapter provides a novel framework that extends the one proposed by Santacesaria [81]

to solve Calderón problem for σ ∈ L∞(Ω). It gives insight into the quaternionic framework and

how one can use it to extend some of the results provided in [8] for three-dimensions.
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Chapter 6

Automatic Differentiation in EIT

In medical practice, the Calderón problem is designated by Electrical Impedance Tomography

(EIT) and the goal is to reconstruct the conductivity from boundary measurements through a

finite number of electrodes.

This chapter focuses on the reconstruction of conductivities through iterative methods in an

optimization framework. These methods require the computation of derivatives of a complex

numerical method. Thus, in particular, we focus on the problem of effectively computing these

derivatives in a simple manner.

For this purpose we introduce the Automatic Differentiation (AD) method to compute deriva-

tives of complex programs and apply it to solve EIT through iterative methods. This method

can be applied to other inverse problems, where the computation of derivatives are required. For

this purpose, we show that AD is an effective method to compute derivatives of a finite element

method (FEM) with respect to a parameterization of the conductivity and use it to solve the

EIT inverse problem. This work is an extension of [78].

6.1 The problem

An inverse problem can be always posed as a minimization problem, where the goal is to find a

parameter approximation that matches the measurements acquired in practice. For this purpose,

we need to numerically compute those measurements, verify if they are close to the ones measured

in practice and, if not, update the parameter accordingly.

Iterative methods are essentially important for updating the approximation of the parameter.

Most of them require the computation of derivatives either of the loss function or of the numerical

method in terms of the parameter variables. For non-linear inverse problems, this implies the

computation of the derivative of complex programs, for which it can be hard or impossible to

deduce a closed analytical formula for the derivative.

Hence, our goal is to study the effectiveness of the automatic differentiation method when

applied to inverse problems. This study is done on the inverse problem of EIT. This choice is

131



not only to keep the thesis contained in one main theme, but also because we can obtain a closed

analytical formula for the derivative under particular assumptions.

Introduction to EIT

A particularly relevant application of EIT is in the early determination of breast cancer, specif-

ically for young women where the risks of the ionizing X-rays of mammographies outweigh the

benefits of regular check-ups. Fig. 6.1 describes one simplified EIT scenario where the blue

region represents cancer inside the breast Ω. The assumption is that healthy and cancerous

tissue have different conductivity values σ1, σ2, respectively. The goal is to locate a potential

region affected by cancer from measurements on the surface ∂Ω.

Figure 6.1: Example of a target conductivity over the domain Ω that represents a simple model

of breast cancer where tumors have higher conductivity than the background. The domain Ω is

represented by the black circumference which has a conductivity of σout. In a blue circle it is

represented a region with different conductivity σin from the background one σout.

The measurements are obtained by injecting into the domain Ω a fixed set of different electri-

cal current patterns Ij . Each Ij is defined by injecting electrical current through all electrodes in

a particular manner, i.e., for L electrodes we have Ij = (Ij,1, ..., Ij,L). Simultaneously, we mea-

sure the resulting voltages Vj for each current pattern, hence obtaining a voltage measurement

at each electrode, thus Vj = (Vj,1, ..., Vj,L). This leads to a set of true measurements denoted by

mj = (Ij , Vj). Then, the corresponding inverse problem is to determine the electrical conduc-

tivity over Ω that leads to these measurements. In the particular case of Fig. 6.1 we want to

determine σout and σin and the location of the anomaly (in blue).

This is a hard problem because in general there is no analytical expression that maps a set

of electrical measurements back to respective conductivity values.

To solve this inverse problem we first need to understand how to solve the direct problem,

that is, computing electrical measurements Vj for a given set of currents Ij and conductivity.
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The direct problem has an easier solution, since the propagation of electrical current through

the domain obeys well-known physical laws.

Many methods for solving the direct problem are described in the literature, e.g., the finite

element method [82], the boundary element method [31], and, more recently Deep Learning

methods [52].

Independently of the numerical method used to solve the direct problem, such a procedure

is commonly designated as simulation. Hence, for a given conductivity profile we can obtain

through a simulation method the electrical measurements denoted as mSim
j = (Ij , V

Sim
j ), for

each different current pattern with j = 1, ..., N . We can, thus, define an operator that maps

conductivity into voltage measurements, designated by direct operator, given as:

Sim : σ 7→ V Sim = (V Sim
1,1 , .., V Sim

j,l , ..., V Sim
N,L ) ∈ RL·N , (6.1)

where V Sim
j,l represent voltages measured at the l-th electrode for the j-th current pattern.

Our goal is to find a conductivity profile that matches measurements m = (m1, ...,mN ).

Thus, we can formulate EIT as the following minimization problem by making use of the direct

operator Sim:

min
σ

1

2

∥∥Sim(σ)−mtrue
∥∥2
2
. (6.2)

We use the L2-norm here for simplicity, but, in general, we could use any other norm as long

as it is differentiable.

Most classical methods for solving this minimization problem are based on iteratively im-

proving the solution. The update requires computing the derivative of both the loss function

and the Sim operator.

To solve the inverse problem under an optimization framework we introduce in section 6.7

the Levenberg-Marquardt algorithm [59], [61]. It is a simple quasi-Newton method that only

requires the Jacobian of the Sim operator.

In essence, the main challenges to solve inverse problems in an optimization framework with

classic iterative methods are:

• ensure that the simulator is once differentiable with respect to a conductivity parameteri-

zation;

• devise a method to compute the respective derivatives of the simulator.

Our study explores a simulation operator obtained through FEM, which is already well

established for EIT, see [64].

When the Sim operator is given by FEM we can deduce an analytical formula for the

derivative with respect to the conductivity variation. It is simply obtained with respect to a

conductivity discretization over the FEM mesh, see Fig. 6.2. As such, it requires derivative
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Figure 6.2: Circular anomaly defined over a triangular FEM mesh. Electrodes are attached to

the boundary, black lines.

computations with respect to conductivity values over all elements of the mesh. If the conduc-

tivity is defined through a different parameterization we can obtain the respective derivatives

by the chain rule of differentiation. For such endeavor, the analytical formulation needs to be

adapted and derived for each particular parameterization of the conductivity. Accordingly, this

method is hard to derive and implement, see [43] and [90].

Automatic differentiation (AD) is a method that automatically evaluates exact derivatives

for complex programs. It exploits the simple mathematical operations the programs are built

on, to automatically compute the derivative through the chain rule. While the initial con-

cept was developed in the sixties [93], only lately with advancements in hardware and efficient

implementations, like JAX [14], it has gained traction for application in general problems.

In this work, we explore automatic differentiation as an alternative to manual methods for

computing the Jacobian of differentiable simulators. In particular, the goal is to validate its

effectiveness in solving the EIT inverse problem. By doing so we show its versatility compared

with analytic formulation and moreover verify its viability for high resolution images.

The validation is done by comparing the absolute error between solutions obtained by solving

the minimization problem with both methods to compute the derivatives and the absolute error

compared with the true solution. We evaluate the maximum difference between both Jacobian

computations to check if they are evaluating to the same result. Then as a second set of checks,

we explore the memory consumption of AD and show that it is still in reasonable terms for high

resolution meshes.

Our end goal is to show feasibility and practicality of this approach as a tool for lowering

the entry barrier for other inverse problems in partial differential equations, where AD can also

be applied.
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6.2 Automatic differentiation method

AD is a set of techniques to evaluate the derivative of a function specified by a computer

program. No matter how complicated they are, any computer program is based on a simple set

of arithmetic operations and functions, like addition, multiplication, trigonometric functions,

exponentials, etc. We can encode the derivative rule for all of these simple operations and build

up the full derivative of our complex program through the chain-rule. AD evaluates derivatives

with exact precision.

There are two modes for AD implementation: forward-mode and reverse-mode. In any case,

they are not hard to implement through operator overloading techniques. The difficult part is to

provide an efficient and optimal computation of these modes. However, at the present moment

there are libraries that provide efficient implementations of AD for both modes, like JAX for

Python.

The first step in AD is the creation of a computational graph of our program, that explains

the decomposition into simpler operations for which we know the derivative. Let us exemplify

for the following function f(x1, x2) = sin(x1 · x2) + ex1 . The first step is to break things apart

into simpler operations:

w1 = x1, w2 = x2

w3 = w1 · w2

w4 = sin(w3)

w5 = ew1

w6 = w4 + w5 =: f(w1, w2)

This decomposition is more easily visualized through the computational graph in Fig. 6.3.

Figure 6.3: Computational Graph of f(x1, x2) = sin(x1 · x2) + ex1 evaluated at (π/2,−3).

With the computational graph in mind, forward-mode computes derivatives from bottom-

to-top, that is from the variables to output. As such, it allows the derivative computation of all

outputs with respect to a single variable. It can evaluate the derivative simultaneously with the

function, and thus it is proportional to the original code complexity. In this terms, it is more

efficient for functions f : Rn → Rm with m >> n.

Reverse-mode of AD works the other way around, that it is, top-to-bottom. First, it requires

a forward evaluation of all the variables, and thereafter it starts computing the derivatives from

135



output values for the variables involved immediately, doing that successively until the input

variables. Therefore, it allows evaluation of the gradient of an single output function. As such,

it is way more efficient for functions f : Rn → Rm with m << n.

A familiar example is given by neural networks that are described by much more weights than

output variables, in this particular example the reverse-mode is known as back-propagation.

One possible limitation to take into account in AD arises from the computational graph

we described. Due to the computer program complexity this computational graph can be very

expensive to establish and keep in memory. In such scenarios, where the Jacobian is obtained

from a very complex graph, instead of a compact formula like analytic formulation, it can take

a long time to be evaluated. As such, AD is not a tool to be inserted into play whenever needed

and considerations must be made when implementing the Sim operator, to avoid some of these

flaws.

To bypass this problem, JAX can encode loops and conditionals in primitive operations that

are inherent from the domain-specific compilers for linear algebra (XLA). Otherwise, the loops

are unrolled into a set of operations (may be smaller than the general loop, but) that increases

the computational graph size. With the primitives in mind, this will be encoded on the graph

with a single operation, for which we already know the derivative.

With AD the focus is completely in an optimal implementation of the Sim operator, which

is essential to obtain a very efficient inverse problem solver (even with analytical computation

of derivatives). Thereafter, thinking about both modes, we can apply forward-mode to compute

efficiently the derivatives of Sim with respect to the parameterization (r, cx, cy, σin, σout).

Being aware of the inherent problems with both methods is essential for a proper implemen-

tation of the inverse solver.

6.3 Establishing a case study

To make a clear comparison between both methods for computing derivatives, in this section we

introduce a clear case where we establish our study.

This case is based on certain choices for the voltage measurement setup to provide a trans-

parent framework for all the experiments.

6.3.1 EIT scenario for comparison

To demonstrate our claims it is enough to assume that our subjects are two-dimensional. Since

electrical current propagates in three dimensions, this is not physically accurate, but it simplifies

the construction of our case study.

EIT is an ill-posed inverse problem [64] and thus we need to take into account the possible

instability of the problem, i.e., small variations in the measurements may imply large variation

on parameters solution. In practice, this makes it hard to solve the inverse problem since true
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measurements, captured with real-world measuring devices, always contain noise. Therefore,

solutions for noisy input data can be distinct from the true solution.

Due to this, it becomes hard to accurately determine a very large number of parameters

from a small number of measurements. An example would be a conductivity defined over a fine

mesh which has a value at each mesh element, see Fig. 6.2.

To mitigate this problem we want to make as many measurements as possible. However,

the possible number of distinct measurements is constrained by the quantity of electrodes. This

occurs since for L electrodes there are only L−1 linearly independent current patterns for which

the voltage measurements bring independent information of the conductivity, see [64].

The best way to mitigate this issue is to work on simpler cases. By doing so we can reduce

the possible parameter space and have less variability on the solutions, like in Fig. 6.1. This does

not fix completely potential instability issues, but now the measurements represent a smaller

space of possible solutions.

For the sake of comparison we wish to make, it is enough to focuses on conductivities with

a circular region of distinct conductivity value from the background, see Fig. 6.1 and 6.2.

These conductivities are parameterized by their center (cx, cy) inside the domain Ω, radius r

and conductivity value inside and outside σin, σout, respectively.

We work with this simplification for two particular reasons:

• it is easier to obtain a solution to the inverse problem due to the parameterization of such

region being given by only a few parameters;

• it is one of the most complex cases for which we are still able to deduce the analytic formula

of the derivative.

The second reason arises from the need to compute derivatives of Sim with respect to

the parameterization variables. As such, we need to make sure that the parameterization is

differentiable. Our choice of circular regions is based on this, since it is easy to define a smooth

parameterization. For regions with corners two smoothing procedures would be required, one

to smooth the corners and another to smooth the parameterization.

For the reasons above, in our experiments we assume the existence of a single circular

anomaly with conductivity value different from the background, like in Fig. 6.1. We introduce

now the EIT model, the conductivity parameterization definition and the measurement setup

we use to proceed with out comparison.

6.3.2 Voltage measuring setup

We introduce here the measuring setup that is applied for the direct problem.

We have defined the Sim operator in (6.1) and now we simplify its definition accordingly to

the case study and the measurement setup.
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As mentioned before, by attaching L electrodes at the surface ∂Ω, we can at most apply

L− 1 linearly independent current patterns Ij ∈ RL with j = 1, ..., L− 1. The Sim operator is

obtained by solving the direct problem for each Ij and determine the respective voltages Vj ∈ RL

over the electrodes.

The more measurements we can perform the better we are able to potentially reconstruct the

conductivity. Therefore, we need to choose L − 1 linearly independent current patterns. This

choice is non-trivial. One possibility presented in the literature [64] is obtained by injecting

currents in a wave pattern through the electrodes according to

Ij,l =

A cos(jθl), j = 1, ..., L2 ,

A sin
(
(j − L

2 )θl
)
, j = L

2 + 1, ..., L− 1
(6.3)

with θl =
2π
L l and A the constant current amplitude. These patterns have been shown to obtain

the best result on the detection of conductivities profiles with small anomalies in the regions

furthest from the boundary [64].

The experiments are performed in the following setting:

• Ω is a circular domain with radius 10cm;

• Current amplitude of A = 3mA, which is a reasonable value for human subjects, and the

voltages are measured in (mV);

• Attach L = 16 electrodes equally spaced at the boundary with each having fixed length

π/64.

We refer to Figure 6.2 for a visual representation of the setting.

With respect to the fixed case study with circular anomalies and the voltage measurement

setup the simulator is now given as

Sim : R5 → RL(L−1) (6.4)

(r, cx, cy, σin, σout) 7→ (V Sim
1 , ..., V Sim

j,l , ..., V Sim
L−1,L)

with V Sim
j,l ∈ R being the voltage measurement on the l-th electrode obtained by the direct

problem solution for the trigonometric current pattern Ij .

6.4 Modeling EIT

6.4.1 Direct problem

For human subjects, current propagation inside the domain is described by the complete elec-

trode model (CEM) [21]. It accounts for the finite nature of electrodes, for the current injection

through them and for the electro-chemical effects happening between skin and electrode surface.
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Let Ω describe the subject region we are evaluating. To establish a measurement setup, we

attach L electrodes at the subject boundary ∂Ω. Through them we apply an electrical current

pattern I = (I1, ..., IL) into Ω. The objective is to find the electrical potential u inside and the

voltages at electrodes V = (V1, ..., VL) that fulfill the system of equations describing the CEM:

∇ · (σ∇u) = 0, in Ω,∫
El
σ ∂u∂ν dS = Il, l = 1, 2, ..., L

σ ∂u∂ν = 0, in ∂Ω \ ∪Ll=1El

u+ zlσ
∂u
∂ν

∣∣
El

= Vl, l = 1, 2, ..., L

(6.5)

where σ is the conductivity distribution.

The first equation represents electrical current diffusion. The second and third define the

insertion of current through electrodes, meaning current spreads through the whole electrode

before being inserted into the domain and in regions without electrodes there isn’t current flow-

ing. Finally, the last equations model the electrochemical effects at interface of skin-electrode,

with zl designated as contact impedance representing the resistance at that interface.

To ensure the existence and uniqueness of a solution, the current pattern must satisfy Kir-

choff’s law and we fix a reference voltage condition:

L∑
l=1

Il = 0 and

L∑
l=1

Vl = 0. (6.6)

6.4.2 FEM formulation of the direct problem

In order to simulate the voltage measurements with respect to a certain conductivity we apply

the finite element method to the complete electrode model.

In order to apply the FEM, we introduce the variational equation that describes fully (6.5).

In [20] it has been derived and shown that (u, V ) is a weak-solution of (6.5) if for all (w,W ) ∈
H1(Ω)× RL we have:

∫
Ω
σ∇u · ∇vdx+

L∑
l=1

1

zl

∫
El

(u− Vl) (w −Wl) dS =
L∑
l=1

IlWl (6.7)

This formulation joins every condition of (6.5) together into one equation. The first integral

describes the propagation of current throughout the domain, while the second represents skin-

electrode interface condition and the right-hand side explains the insertion of current.

FEM allows the transformation of the continuous problem, described by the variational

equation (6.7) into a discrete system of equations that can be handled by linear algebra methods.

A detailed explanation is provided in any FEM book, and specifically for EIT in [64]. Hereby,

we specify the assumptions that we are using to implement FEM.
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The first step in any implementation is the discretization of the subject domain Ω into smaller

elements. For this purpose we choose the DistMesh algorithm, developed by Per-Olof Persson

and Gilbert Strang in [73]. This algorithm is simple to implement in practice, and we have

extended it to consider L equidistant electrodes at the surface ∂Ω with a pre-defined size. We

denote by N and K the number of nodes and elements of the mesh, respectively.

In a second step, we approximate our solutions u, U through a finite number of basis func-

tions. In particular, we approximate them as

uh(x, y) =
N∑
i=1

αiϕi(x, y) (6.8)

V h =
L−1∑
k=1

βkηk, (6.9)

where ϕi, ηk are basis functions.

The basis functions ϕi is defined for each node (xi, yi) as a linear function over each element,

thus it is piece-wise linear and can over each element behaves as

ϕi(x, y) = aixi + biyi + ci. (6.10)

The coefficients ai, bi, ci are defined implicitly by the condition

ϕi(xj , yj) =

1, i = j,

0, i ̸= j.
(6.11)

We remark that due to this last condition and the piecewise linear nature of the basis

functions ϕi it holds that they are zero over the elements that do not contain (xi, yi) as a node.

Moreover, the basis functions over the boundary ηk ∈ RL are chosen to ensure that the

reference voltage condition (6.6) is fulfilled and thus they can be defined as

η1 = (1,−1, 0, ..., 0)T ,

η2 = (1, 0,−1, 0, ..., 0)T ,

...

ηL−1 = (1, 0, ..., 0,−1)T .

The approximate solutions uh and V h for the direct problem are now determined by the

coefficients

α = [α1, ..., αN ] ∈ RN , β = [β1, ..., βL−1] ∈ RL−1. (6.12)

FEM allows us to obtain a system of linear equations characterizing them. This is achieved by

inserting (uh, V h) into the variational equation (6.7), together with different choices of (w,W ) =

(ϕi, ηj). Gathering all possibilities leads to a linear system of equations:

Aθ = Ĩ , (6.13)
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where θ = [α, β] ∈ RN+L−1 and Ĩ is described through the current pattern I applied at the

electrodes as follows:

Ĩ =
[−→
0 , I1 − I2, I1 − I3, ..., I1 − IL

]
∈ RN+(L−1). (6.14)

The stiffness matrix A can be computed in terms of four blocks

A =

(
B1 +B2 C

CT D

)
. (6.15)

Each term is defined through integration over the domain and over the electrodes like:

B1
ij =

∫
Ω
σ∇ϕi · ∇ϕj dx, i, j = 1, 2, ..., N (6.16)

B2
ij =

L∑
l=1

1

zl

∫
El

ϕiϕj dS, i, j = 1, 2, ..., N (6.17)

Cij = −

[
1

z1

∫
E1

ϕi dS − 1

zj+1

∫
Ej+1

ϕi dS

]
, i = 1, 2, ..., N, j = 1, 2, ..., L− 1 (6.18)

Dij =


|E1|
z1
, i ̸= j

|E1|
z1

+
|Ej+1|
zj+1

, i = j
, i, j = 1, ..., L− 1, (6.19)

with |Ej | being the electrode area.

The derivation of each block arises from application of two different basis functions on the

weak formulation. A full description was done in [64].

After solving the system for θ, the voltages V h are obtained by multiplication with the basis

functions matrix M defined as:

M =



1 1 1 . . . 1

−1 0 0 . . . 0

0 −1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1


(6.20)

through

V h =Mβ.

One detail we want to point out regarding FEM implementation concerns the conductivity

parameterization. For computational purposes, we assume that σ is piece-wise constant, meaning

that it is constant at each element. Mathematically, is defined as

σ(x, y) =
K∑
k=1

σkχk(x, y), (6.21)
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where K is the total number of elements and χk is the indicator function of the k-th element.

From this we can already simplify the computation of the matrix B1. Further, recall that

the basis functions ϕi are only non-zero over the elements for which the node (xi, yi) takes part.

Hence, we have that the inner product of two basis function is only non-zero when the nodes

that defined them are part of at least one element. Therefore, the computation of the matrix

B1 is simplified to

B1
ij =

∑
{k: i,j∈Tk}

σk

∫
Tk

∇ϕi · ∇ϕj dx. (6.22)

In turn, the matrix B1 is sparse and analogously we have that the other blocks, and the

stiffness matrix A, also are sparse.

The parameterization of σ is essential to compute the voltages variation V h with respect to

a conductivity variation, i.e., the derivative. If a parameterization was not applied to σ, then it

would be described as a function from Ω to R. For the latter case a derivative still exists, but

in a theoretically sense, which was described in [43].

Finally, we need to choose a method to solve the linear system of equations. The equation

(6.5) being elliptic implies that the stiffness matrix A is positive definite. This together with the

matrix A being sparse and large implies that the best solver is the conjugate gradient method

(CG).

6.5 Modeling the circular anomaly

In this section, we define the conductivity parameterization formally introduced in Section 6.3.

The parameterization is done through a level-set, i.e., a function that has positive sign inside

the region it describes, negative on the outside and equal to zero on the region boundary. In

particular, a circle level-set LS(x, y) can be defined through a center c = (cx, cy) and a radius r

as follows

LS(x, y) = r2 −
[
(x− cx)

2 + (y − cy)
2
]
. (6.23)

As expected, the circle is fully defined by its center and radius. With this level-set, the

conductivity of interest in this paper is given through

σ(x, y) = σinH(LS(x, y)) + σout (1−H(LS(x, y))) (6.24)

where H(z) is the Heaviside function that equals 1 if z > 0 and 0 otherwise.

Under this formulation σ is not differentiable due to the discontinuity of H at z = 0. In

order to attain differentiability, we use a smooth approximation of the Heaviside function given

as

Hϵ(z) =
1

π
arctan

(z
ϵ

)
+

1

2
.
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The conductivity σ is instead established in terms of Hϵ, where ϵ > 0 works as a smoothing

parameter. The smaller it is the closer Hϵ is to H.

This smoothing procedure is necessary both for the analytical computation as well as AD. In

fact, we need to take into account the mathematical differentiability for a proper implementation

of derivatives through AD. For example, JAX AD applies the derivative to H by following the

conditional operations if else, which implies a derivative of 0 everywhere, which is not true

for z = 0.

6.6 Derivation of Levenberg-Marquardt method

A simple method to solve inverse problems under such an optimization framework is Levenberg-

Marquardt method.

It is a general method since it is independent of the simulator and the method used for

differentiating it. As such, it allows us to demonstrate the effectiveness of various methods to

compute the derivatives, in particular, of automatic differentiation.

Let us recall the minimization problem introduced in (6.2) and given as

min
σ

1

2

∥∥Sim(σ)−mtrue
∥∥2
2
, (6.25)

where mtrue is a set of true measured voltages with respect to N currents applied, as already

introduced.

The goal is to iteratively improve an approximate solution of the minimization problem (6.2)

through

σk+1 = σk + δσk (6.26)

where δσk is an update step and σk is the current approximate solution. This process is done

until a satisfactory solution is found. Each method to solve the minimization problem is defined

by the computation of the update step δσk.

The Levenberg-Marquardt method is a particular type of quasi-Newton methods. We start

by deducing the general form of quasi-Newton methods and there after funnel on our chosen

method.

We hereby assume that σ is discretely given by a parameterization, i.e., σ ∈ Rp. This

simplifies simulation and, more importantly, the derivatives computation process which is now

done with respect to each variable σi, i = 1, ..., p. An example is seen in Figure 6.1 where

σ = (σin, σout).

Denote by L(σ) the loss function in (6.25). Then, assuming that we have an initial guess σ0,

we can re-write it as

L(σ + δσ) =
1

2

∥∥Sim(σ0 + δσ)−mtrue
∥∥2
2

(6.27)
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with an intent to minimize with respect to the parameter variation δσ, which denotes the update

step.

Now, we apply the Taylor expansion to the loss function defined in (6.27), which up to the

quadratic term is given by

L(σ + δσ) = L(σ) + L′(σ)δσ +
1

2
L′′(σ)(δσ)2 +O(δσ3), (6.28)

where L′(σ) and L′′(σ) denotes the gradient and Hessian of the objective function L, with respect

to parameters defining σ.

A minimum with respect to δσ has gradient zero. Thus, we apply the gradient to the Taylor

expansion in (6.28), like,

∂L
∂δσ

(σ + δσ) = L′(σ) + L′′(σ)δσ.

Setting the gradient equal to zero yields

0 = L′(σ) + L′′(σ)δσ ⇔ δσ = −
[
L′′(σ)

]−1 L′(σ).

Since only Sim depends on the conductivity parameterization we can compute the gradient

and Hessian through:

L′(σ) = J(σ)T
(
Sim(σ)−mtrue

)
(6.29)

L′′(σ) = J(σ)TJ(σ) +
∑
i

[Simi(σ)]
′′ (Simi(σ)−mtrue

i

)
, (6.30)

where J is the Jacobian of simulated voltages Sim(σ) with respect to the parameterization of

σ.

Up until here, the derivation is general for quasi-Newton methods.

The Levenberg-Marquardt method distinguishes itself from other quasi-Newton methods by

avoiding the computation of second order derivatives. It substitutes this computation by a scaled

identity matrix λLMI, λ ∈ R+, which acts as a regularizer by improving the condition number

of the Hessian matrix to be inverted. Now, the update can be computed through:

δσLM = −
[
J(σ)TJ(σ) + λLMI

]−1
J(σ)T

(
Sim(σ)−mtrue

)
. (6.31)

As described in equation (6.26), we apply this update rule iteratively, in order to improve

the approximate solution until a satisfactory solution is found.

6.7 Derivatives computation

In order to solve the inverse problem in a minimization framework, we need to compute deriva-

tives of the Sim operator. In this section, we deduce the analytical formula and explain how to

apply AD to Sim, in order to obtain the derivatives with respect to the parameters of interest.

We recall that the direct solver and Sim is independent of the derivative computation

method, but the derivative will depend on it.
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6.7.1 Analytical computation

We recall that (6.4) we have that the FEM simulator operator is given by

Sim : R5 → RL(L−1)

(cx, cy, r, σin, σout) 7→ V Sim =
(
V Sim
1 , ..., V Sim

j,l , ..., V Sim
L−1,L

)
(6.32)

From now forward we denote Vn ∈ RL for the voltages measured j-th current pattern.

The Jacobian matrix J ∈ RL(L−1)×5 is given by

J =
(
∂V Sim

∂cx
∂V Sim

∂cy
∂V Sim

∂r
∂V Sim

∂σin
∂V Sim

∂σout

)
(6.33)

In order to provide an analytical formulation, we specifically focus on the computation of

derivatives for each Vn with respect to a single parameter, which if done for all n = 1, ..., L− 1

determines one column of the Jacobian.

Our method of choice to simulate the measurements is the FEM that we described for the

CEM in Section 6.4.

The FEM solution is based on the coefficients θ = (α, β) ∈ RN+L−1, where α and β describe

the electrical potential in Ω and the voltages at the electrodes through (6.8).

Accordingly, we denote for each current pattern Ij the FEM solution by θj = [αj , βj ] ∈
RN+L−1 with respect to Ĩj on the right-hand side of the FEM system of equations defined in

(6.14).

With this in mind, the voltages are computed by Vj = Mβj where M is the matrix defined

in (6.20) with the basis functions at the electrodes.

Now, if we define M̃ = [0̂M ] ∈ RL×(N+L−1) then we have

Vn = M̃θn = M̃A−1Ĩn. (6.34)

As such, it holds for any parameter w of {cx, cy, r, σin, σout} that:

∂Vn
∂w

=
∂
(
M̃A−1Ĩn

)
∂w

.

Since neither M̃ and Ĩn depend on the conductivity and, therefore, on any of the parameters,

it holds that

∂Vn
∂w

= M̃
∂A−1

∂w
Ĩn = −M̃A−1∂A

∂w
A−1Ĩn (6.35)

with the last equality following from matrix calculus properties.

Thus, in essence, the computation resumes to the stiffness matrix derivative and noticing

that A−1Ĩn = θn. Setting γ = M̃A−1 the computation of the derivative in (6.35) simplifies to

∂Vn
∂w

= −γT ∂A
∂w

θn. (6.36)
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As such, the focus is on the computation of ∂A∂w . The stiffness matrix A is composed of four

blocks, like, [
B1 +B2 C

CT D

]
.

The block B1 is the only one depending on the conductivity. Due to its definition there is a clear

way of computing the derivatives of B1 with respect to each σk (see the Appendix for further

details on its definition):

∂B1
ij

∂σk
=


∫
Tk

∇ϕi · ∇ϕj dx, if i, j ∈ Tk

0, otherwise.
(6.37)

Furthermore, the resulting matrix is independent of σ therefore it can be precomputed at

the start and re-used.

Through the chain rule we have that

∂B1
ij

∂w
=

K∑
k=0

∂B1
ij

∂σk

∂σk
∂w

. (6.38)

We note that due to sparsity of the matrix defined in Eq. (6.37) it can be assembled very

efficiently. However, this optimal performance is an extra layer of complexity that needs to be

solved manually and AD takes care of that automatically.

Note that due to Eq. (6.36) to compute the Jacobian we need to determine γ. Since, A

is a very large sparse matrix the best way to do determine it is by solving the adjoint system

equivalent to γ = M̃A−1 given as

ATγ = M̃T with γ ∈ RN+(L−1)×L. (6.39)

Due to A being dependent on the conductivity, this system needs to be solve once at each

iteration of the inverse solver.

A final formula for the derivatives in Eq. (6.33) is obtained after we solve the adjoint system

(6.39) and compute the derivative of B1 as in (6.38) and is given as:

∂Vn
∂w

= −γT
∂B1

∂w 0

0 0

 θn (6.40)

Through this demonstration, we have seen that it can be very tedious to deduce and im-

plement the analytical derivatives for complex problems. For simple functions, an analytical

derivative in compact form takes the lead in efficiency, however we want to experiment with the

case of more complex functions.
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6.7.2 Automatic differentiation application in EIT

In this section, we use JAX automatic differentiation toolbox [14] to obtain the Jacobian. Further

details about the inner workings of AD and JAX are explained in Section 6.2. Here, we describe

the implementation in practice.

Since our direct operator Sim has more output variables than input variables we note that

the most-efficient AD mode is the forward-mode.

To use JAX AD our focus is the implementation of a differentiable simulator Sim. Our

preparation of the case study as ensured that we obtain a fully differentiable direct opera-

tor. Hence, our Sim operator is differentiable with respect to the parameterization variables

(r, cx, cy, σin, σout) that define the anomaly, as introduced in Section 6.5.

This preparation are a requirement for both derivative methods, but now the derivative

computation with AD is simple to be implemented through JAX.

To do so, we implement a routine that defines the direct operator Sim given in (6.4). The

implementation is established through the solution of the direct problem through FEM, that we

here hide as the simulator method. Listing 1 provides the routine with all of these in mind.

In order to compute the Jacobian defined in Eq. (6.33) with JAX one only needs to call

jax.jacfwd(direct operator) for our direct operator as in Listing 2.

To establish the inverse solver these function definitions are redundant and we can imme-

diately call simulator and jax.jacfwd(direct operator) in the inverse solver routine. This

definition is just for visualization purposes in this section.

6.8 Experimental setup

To compare both analytic and automatic differentiation methods, we explore their evaluation

at different conductivities, and how they fit in to solve the inverse problem. For the latter, we

consider two particular cases for the inverse problem. The first case, that we label as the case of

fixed conductivities is simpler. We want to determine only the location parameters (r, cx, cy)

and we assume the conductivity values inside σin and outside σout are fixed. This scenario can

represent breast cancer, for example, where we know a priori conductivity values of different

tissues, and we are only concerned in determining the anomaly location.

The second case, that we label as the case of general conductivities, we want to determine

all parameters (r, cx, cy, σin, σout). This is a more general scenario where we only know there is

a circular anomaly and want to characterize it in terms of location, radius and conductivity.

Recall that we fix a voltage measurement setup to simplify the comparison. Our only interest

is to show that AD is as good as analytical methods in terms of solution accuracy. Further, we

show that the memory requirements for AD scale reasonably well with the mesh resolution, to

show that AD can be effectively implemented in more realistic cases involving more complex
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import jax

def direct_operator(anomaly_parameters):

"""Simulate measurements for given

input function with JAX.

Args:

anomaly_parameters: Array of shape

(5,) with parametrization variables

of circular anomalies.

Returns:

measurements: Array of shape

(nmb_electrodes(nmb_electrodes-1),) that

contains the voltage measurements for all

current patterns.

"""

# Compute measurements

measurements = simulator(anomaly_parameters)

return measurements

Listing 1: Definition of the direct operator through a general simulator method.

scenarios and 3D meshes.

All of the experiments have been run in a machine with the following hardware specifications:

• CPU Intel Core i5-12400F (released in Q1 2022, 12th gen., 4.4 GHz, 6 cores, 12 threads,

64 GB RAM);

• GPU NVIDIA GeForce RTX 3070 (released in Q4 2020, 6144 CUDA cores, 8 GB memory).

We chose this machine because it has typical med-range specs and can be considered as a

good example of an affordable solution for the numerical computation, compatible with the lower

cost of EIT. We remark that besides automatic differentiation, JAX excels in optimizing the

performance for a given hardware. Therefore, we have not performed any specific optimization,

but appropriate care as been taken in implementation.
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def jacobian(anomaly_parameters):

"""Compute Jacobian with JAX AD

Args:

anomaly_parameters: 1d array of shape

(5,) with parametrization variables

of circular anomalies.

Returns:

Jacobian matrix of shape

(nmb_electrodes(nmb_electrodes-1), 5).

"""

# Define the jacobian through forward-mode

jacobian = jax.jacfwd(direct_operator)

return jacobian(anomaly_parameters)

Listing 2: Computation of the Jacobian matrix through JAX automatic differentiation toolbox.

6.8.1 Establish a ground truth

In order to have a “lab” setup, i.e., one we can control from start to finish, we define a voltage

measurements dataset through simulation. For such, we randomly initialize our conductivity

parameterization under a certain range of parameters and determine their respective voltage

measurements m.

To test new inverse solvers we need to generate measurements with the highest resolution

possible to avoid the so-called inverse crimes. Such crimes occur by using the same resolution to

obtain m and Sim operator computationally. By doing it, we do not account for errors arising

from the approximate nature of the direct solver, which occurs when using true measurements

obtained by a real-world measuring device, which adequately we can think as having infinite

resolution. As such, we need to choose a higher mesh resolution for m than for Sim operator,

since they are obtained both through FEM.

With this in mind we generate our ground truth dataset of voltage measurements with the

highest possible resolution for our hardware specifications. In our work, it was established with

a FEM mesh of 5815 elements that is set accordingly to have each element with a edge length

of h = 0.035 relative to the domain size.

Furthermore, we generate the dataset through the following random initialization of the

anomaly parameters:
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• Uniformly generate conductivity centers anywhere inside the domain Ω = B1(0). For

such, uniformly generate an angle between [0, 2π]. Then, we uniformly generate a value

in [0, 1] to obtain a radius sample by taking square root of it. Joining both through polar

coordinates gives an almost uniformly sampled set of 2D points inside Ω;

• Uniformly generate anomaly radius, taking into consideration the center position generated

on the previous point, so that anomalies are strictly in Ω. As such, for each center we

select the anomaly radius uniformly from [0.1, 1−|c|], where |c| is the distance from center

to origin;

• Uniformly generate conductivity values inside σin from [1, 1.6] S/m and outside σout from

[0.6, 1.] S/m. Such values do not encapsulate any particular medical or industrial scenario.

Our model assumes that contact impedances on each electrode are fixed and have value

z = 5× 10−6Ω·m and recall that Ω is a disk of radius 1.

6.9 Results

To study the effectiveness of AD in EIT we split our study in three sections.

In the first section, we provide a sanity check on the Jacobian evaluation with both meth-

ods, that is, we compute the Jacobian matrix through both methods and evaluate if they are

evaluating equally.

In the second and third section, we solve the inverse problem for different anomalies but

provide a distinct analysis. On the second section we visually present the reconstructions with

both methods and compare them with the true anomaly. In the latter one, we present a large

analysis for two separate datasets each with 1000 cases that is based on error analysis.

The two datasets differ in the amount of variables we try to reconstruction. One is for the

case of fixed conductivities where we randomly generate 1000 anomalies and compute the

respective measurements with fixed conductivity value inside of σin = 1.4 S/m and outside of

σout = 0.7 S/m. Another is for the case of general conductivities where we randomly generate

1000 anomalies and compute their measurements as described above.

6.9.1 Sanity check

The sanity check is to verify if the Jacobian computed through automatic differentiation and the

analytic formulation match. This is what we already expect since AD applies the chain-rule of

differentiation to FEM, which is exactly what we have done by hand to determine the analytic

formulation. The Frobenius norm of the Jacobian difference is given as:

∥∥∥JAD − Janalytic
∥∥∥
Fro

where ∥A∥Fro =

n,m∑
i,j

|aij |2
1/2

.
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Further, we computed the Jacobian with both methods for 100 randomly generated general

conductivities described in section 6.8. Thereafter, we compute their difference and applied the

Frobenius norm in order to obtain an array with dimension 100.

To verify the assumption that both should evaluate to almost the same values we make

an histogram of the losses and provide some statistics, namely, mean, variance, maximum and

minimum. This results are provided in Fig. 6.4 and Table 6.1.

Figure 6.4: Histogram of Jacobian error with both derivative methods evaluated with Frobenius

norm.

Mean S2 Max. Error Min. Error∥∥JAD − Janalytic
∥∥
Fro

0.0271 7.94e-05 0.0552 0.0146

Table 6.1: Statistic analysis of the error between Jacobian matrices obtained through the Frobe-

nius norm.

Statistically we can infer that the Jacobian match closely together with maximum error of

0.0552 and an average of 0.0271. Indeed, the histogram confirms that most evaluations are close

together, with only some outliers compared with the overall picture. Further, these outliers

might just be rounding off errors and are not worrisome since the error is still considerably

small.

6.9.2 Inverse problem reconstructions

To check the convergence of the inverse solver with both methods we randomly generate 4

different conductivities: two where the conductivity values inside and outside are fixed to be

(1.4, 0.7) and one where the conductivity values are to be determined.

The four scenarios were randomly generated and used to generate the respective voltage

measurements. Thereafter, we solve the inverse problem with a 5210 elements mesh, that is

established with h = 0.037.
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The results for the conductivity profiles with fixed σin and σout can be visualized in Figures

6.5 and 6.6.

Figure 6.5: Reconstruction of the anomaly σtrue = (0.3061,−0.5567, 0.2501, 1.4, 0.7) with fixed

conductivity values. The left most plot presents the true conductivity profile. The middle and

right plots present the reconstructions with the AD and analytical method, respectively.

We notice that both reconstructions with fixed conductivities are practically the same as the

true conductivity profile. Further, the reconstructions are more similar to each other than to

the true profile.

Figure 6.6: Reconstruction of the anomaly σtrue = (0.2094, 0.5047, 0.4208, 1.4, 0.7) with fixed

conductivity values. The left most plot presents the true conductivity profile. The middle and

right plots present the reconstructions with the AD and analytical method, respectively.

In Figures 6.7 and 6.8 present the conductivity profiles comparing the reconstructed anoma-

lies in the general setting.

Notice that both reconstructions for general conductivities underestimate and overestimate

some variable parameters. Namely, in Fig. 6.7 we see that for both reconstructions method the

radius of the anomaly is underestimated and the conductivity value inside the anomaly, σin, is

overestimated. In Fig. 6.8 the reverse happens, the radius of the anomaly is overestimated and

the conductivity inside, σin, is underestimated.
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Figure 6.7: Reconstruction of the anomaly σtrue = (0.3061,−0.5567, 0.2501, 1.039, 0.6398) with

general conductivity values. The left most plot presents the true conductivity profile. The middle

and right plots present the reconstructions with the AD and analytical method, respectively.

Figure 6.8: Reconstruction of the anomaly σtrue = (0.4387,−0.0485, 0.4967, 1.5889, 0.9831) with

general conductivity values. The left most plot presents the true conductivity profile. The middle

and right plots present the reconstructions with the AD and analytical method, respectively.

Independently of the error in the reconstructions, the figures for the general conductivities

point out that the reconstructions obtained through the AD and analytical method are identical.

Hence, this is a first hint for the effectiveness of AD to solve inverse problems and shows that it

can be as good as the analytical method.

6.9.3 Inverse problem analysis

In order to solve the inverse problem for the two datasets described above, we use a FEM mesh

with 5210 elements that is set by h = 0.037 to define the Sim operator, in order to avoid

inverse crimes. Our chosen inverse solver is the Levenberg-Marquardt method with a line search

algorithm on each iteration. Further, we establish two stopping criteria based on a maximum
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number of iterations equal to 20 and a relative mean squared loss

1

2

∥∥Sim(σ)−mtrue
∥∥2
2

∥mtrue∥22
< ξ (6.41)

with a feasible threshold of ξ = 0.001. This choice was established empirically, since after that

it becomes hard to improve the anomaly reconstruction.

Let σAD and σanalytic be the solutions obtained through the inverse solver with the different

methods to compute the derivative. In order to verify the effectiveness of AD in solving the EIT

inverse problem we evaluate how σAD and σanalytic compare with the true solution σtrue and how

they compare with each other. This evaluation is based on the mean squared error between the

anomalies, i.e., for two different anomaly parameterizations σ1, σ2 we evaluate

MSE(σ1, σ2) := ∥σ1 − σ2∥2.

In essence, we compute

MSE(σtrue, σAD), MSE(σtrue, σanalytic), MSE(σAD, σanalytic).

Then, we perform an analysis of the mean squared errors by computing simple statistics

of the mean, variance, maximum and minimum error, and by plotting the histogram with a

logarithmic scale in the x-axis.

We remark that the following analysis is focused on a general analysis on the reconstructions

obtained through the different methods and does not verifies the nature of the errors obtained,

i.e., we do not check if the errors are occurring for one specific parameter or for small/large

values of those same parameters.

Case 1: Fixed Conductivities

In this case our goal is to determine the anomaly parameterized by σtrue = (r, cx, cy), since we

know a priori that the conductivity inside and outside are σin = 1.4 S/m and σout = 0.7 S/m,

respectively. Here, we denote σtrue as the conductivity we aim to discover and mtrue for the

respective measurements.

We start from our measurements dataset for the fixed conductivities with a set of 1000

voltage measurements corresponding to different anomalies. This number of experiments was

constrained by time and hardware capabilities.

The statistic analysis for this case is given in Table 6.2 and the histogram for the different

mean squared errors is in Fig. 6.9.

The histogram presented in the Fig. 6.9 shows that the distribution of the mean squared

errors MSE(σtrue, σAD) and MSE(σtrue, σanalytic) is similar. Notice that the mean squared errors

in both cases are concentrated around 10−2 with a set of outliers with error higher than 0.1.
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Mean S2 Max. Min.

MSE(σtrue, σAD) 0.0456 0.0059 0.4177 0.0020

MSE(σtrue, σanalytic) 0.0455 0.0057 0.4007 0.0020

MSE(σAD, σanalytic) 0.002 2.64e-4 0.2702 1.51e-5

Table 6.2: Statistics of mean squared errors of fixed conductivities, case 1, that compares the

reconstructed conductivities obtained through the different derivative methods with the true

anomalies.

Figure 6.9: Histogram of the mean squared errors of fixed conductivities, case 1, comparing

the reconstructed anomalies obtained through the different derivative methods with the true

anomalies.

However, this outliers occur in the same proportion for both methods. In analysis, this shows

that the inverse solver with automatic differentiation matches that with the analytic derivative.

Furthermore, in Fig. 6.9 the histogram on the right shows that the distribution of mean

squared errors between reconstructions MSE(σAD, σanalytic) is highly concentrated around 10−3.

There are some reconstructions that are diverging between both methods, but their error is in

the order of 0.1. Again, this highlights again the effectiveness of AD compared with the analytic

method. However, there are some outliers that shows divergence in the reconstructions between

both methods. These errors seem to be related with round-off errors when we combine this

analysis with the sanity check for the Jacobian.

To complete the discussion of this case, we allude to the statistics Table 6.2. We point

to the mean and variance of the different mean squared errors. This shows that on average

the reconstruction obtained with AD is much closer with the analytic one than with the true

anomalies. Furthermore, the variance between these reconstructions is very small. Once again

it shows the effectiveness of AD to match the analytic derivative method and that other inverse

solver methods need to be improved in order to obtain better reconstruction results.
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Case 2: General Conductivities

For this case the objective is to determine the general anomaly parameterization given by σtrue =

(r, cx, cy, σin, σout). Again, we denote σtrue as the conductivity we aim to discover and mtrue for

the respective measurements.

We start from the measurements dataset for the general conductivities with the set of 1000

voltage measurements corresponding to the different anomalies. Recall, that in this generation

we have assumed that σin is always greater than σout,

The statistic analysis for this case is given in Table 6.3 and the histogram for the different

mean squared errors is in Fig. 6.10.

Table 6.3: Statistics of mean squared errors of general conductivities that compares the recon-

structed conductivities obtained through the different derivative methods with the true anoma-

lies.

Mean S2 Max. Error Min. Error

MSE(σtrue, σAD) 0.2264 0.0292 0.9698 0.0042

MSE(σtrue, σanalytic) 0.2215 0.0273 0.9706 0.0042

MSE(σAD, σanalytic) 0.039 0.0134 0.8838 4.4e-6

Figure 6.10: Histogram of the mean squared errors of general conductivities that compares

the reconstructed anomalies obtained through the different derivative methods with the true

anomalies.

The histogram presented in the Fig. 6.10 shows that the distribution of the mean squared

errors MSE(σtrue, σAD) and MSE(σtrue, σanalytic) is similar. In analysis, this shows that the

inverse solver with automatic differentiation matches that with the analytic derivative. Further,

notice that the mean squared errors in both cases are concentrated around 10−1. In fact by

setting a threshold, we verified that there are at most 50 reconstructions for both methods

where the mean squared error with the true anomaly is higher than 0.5, which together with

the histograms shows that the vast majority of reconstructions is successful.
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Furthermore, the histogram on the right-hand side of Figure 6.10 presents the histogram

of the mean squared errors between reconstructions MSE(σAD, σanalytic) shows that the errors

are more concentrated around the interval [10−4, 10−2]. Again, this highlights again the equiv-

alence of AD compared with the analytic method. However, there are some outliers that shows

divergence in the reconstructions between both methods. These errors seem to be related with

round-off errors when we combine this analysis with the sanity check for the Jacobian.

To complete the discussion of this case, we allude to the statistics Table 6.3. The only aspect

we would like to point out here is the mean of the different mean squared errors. This shows

that on average the reconstruction obtained with AD is much closer with the analytic one than

with the true anomalies. Once again it shows the effectiveness of AD to match the analytic

derivative method and that other inverse solver methods need to be improved in order to obtain

better reconstruction results.

6.9.4 Computational performance of AD

The viability of AD also depends of its scaling capabilities. Namely, we want to understand if

increasing the number of mesh elements, and therefore the resolution and accuracy of the FEM

turns AD unfeasible. This is relevant because AD requires the construction of a computational

graph for the direct problem and then applies the chain-rule throughout the nodes of the graph

to compute the derivatives. As the number of mesh elements increases the computational graph

becomes larger and can be unfeasible to use it for derivative computation.

In order to understand this behavior, we compute for ten different mesh sizes the Jacobian

matrix of 100 distinct general anomalies, randomly generated as described before. For each

mesh size we measure the average GPU memory and load usage through the python package

GPUtil.

Figure 6.11: Percentage of GPU load and memory usage with respect to the number of mesh

elements.

In Fig. 6.11 we plot the average of GPU load and memory usage percent for each of the
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Figure 6.12: Time elapsed to compute Jacobian matrices for 100 random anomalies with respect

to the number of mesh elements.

different mesh resolutions and in Fig. 6.12 we plot the time that took to compute the Jacobian

matrices with respect to each mesh resolution.

It is clear from both figures the growth in GPU memory usage and time to execute this

experiment. Moreover, for meshes with more than 15000 elements we require more than 8Gb of

GPU memory. As of now, we cannot understand the order of growth and further experiments

with finer resolution are needed.

6.10 Conclusion

In this chapter we have compared the effectiveness of AD to solve inverse problems against clas-

sical methods with analytical formulations of the derivative. We have shown how to adequately

construct a FEM differentiable simulator in the context of inverse problems. We successfully

introduced automatic-differentiation for solving inverse problems in an optimization framework,

in particular, electrical impedance tomography. We have shown that AD provides a simple way

of computing derivatives of complex operators, for example, arising from solutions of partial

differential equations, with respect to a set of parameters.

We have shown that AD is indeed effective to compute the derivatives, since it matches

the analytical computation up to minimal error. Further, it was used to solve the electrical

impedance tomography inverse problem and we shown that it is even superior to analytical

methods, in terms of time and resources.

The analytical formulation is nothing more than an application of differentiation rules to

the FEM formulation of the direct operator. By construction AD essentially executes the same

process, but automatically. As such, AD and the analytical formulation can be even performing

the same operations, but the fact that AD is a plug-and-play tool makes it advantageous to use

for complex operators.
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Moreover, it has proven more efficient since it takes less time on average to solve any par-

ticular EIT problem in our case study and scales well with the mesh resolution. This indicates

that with the right hardware AD can be efficiently executed for large-scale problems.

With this tool, we can cast our focus into an efficient implementation of the direct problem

solvers, which is way more understood in literature, and on the methods to solve the inverse

problem. It allows freedom to experiment and deal with difficult equations, without much

thought, bringing focus to the practical application at hand.

Further, we expect that AD extends nicely to higher dimensions, while the analytic for-

mulation will require some re-implementation to accommodate the three dimensional shapes of

anomalies.

Future studies are interested in testing how AD easily handles different shapes of anomalies,

as well as three-dimensions.
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[46] L. Hörmander. The analysis of linear partial differential operators I: Distribution theory

and Fourier analysis. Springer, 2015.

[47] O. Imanuvilov and M. Yamamoto. Inverse boundary value problem for schrödinger equation

in two dimensions. SIAM Journal on Mathematical Analysis, 44(3):1333–1339, 2012.

[48] D. Isaacson, J. Mueller, and S. Siltanen. An implementation of the reconstruction algorithm

of a nachman for the 2d inverse conductivity problem. Inverse Problems, 16(3):681, 2000.

[49] D. Isaacson, J. L. Mueller, J. C. Newell, and S. Siltanen. Reconstructions of chest phantoms

by the d-bar method for electrical impedance tomography. IEEE Transactions on medical

imaging, 23(7):821–828, 2004.

[50] D. Isaacson, J. L. Mueller, J. C. Newell, and S. Siltanen. Imaging cardiac activity by the

d-bar method for electrical impedance tomography. Physiological Measurement, 27(5):S43,

2006.

[51] T. Iwaniec. Extremal inequalities in sobolev spaces and quasiconformal mappings.

Zeitschrift für Analysis und ihre Anwendungen, 1(6):1–16, 1982.

168

https://maartendehoop.rice.edu/microlocal-analysis-inverse-problems
https://maartendehoop.rice.edu/microlocal-analysis-inverse-problems


[52] G. Karniadakis, P. Perdikaris, and M. Raissi. Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations. Journal of Computational physics, 378:686–707, 2019.

[53] K. Knudsen, M. Lassas, J. L. Mueller, and S. Siltanen. D-bar method for electrical

impedance tomography with discontinuous conductivities. SIAM Journal on Applied Math-

ematics, 67(3):893–913, 2007.

[54] K. Knudsen, M. Lassas, J. L. Mueller, and S. Siltanen. Regularized d-bar method for the

inverse conductivity problem. Inverse Problems & Imaging, 3(4):599, 2009.

[55] K. Knudsen and A. Tamasan. Reconstruction of less regular conductivities in the plane.

Communications in Partial Differential Equations, 29:361–381, 2005.

[56] R. Kohn and M. Vogelius. Determining conductivity by boundary measurements. Commu-

nications on Pure and Applied Mathematics, 37(3):289–298, 1984.

[57] E. Lakshtanov, J. Tejero, and B. Vainberg. Uniqueness in the inverse conductivity problem

for complex-valued lipschitz conductivities in the plane. SIAM Journal on Mathematical

Analysis, 49(5):3766–3775, 2017.

[58] E. Lakshtanov and B. Vainberg. On reconstruction of complex-valued once differentiable

conductivities. Journal of Spectral Theory, 6(4):881–902, 2016.

[59] K. Levenberg. A method for the solution of certain non-linear problems in least squares.

Quarterly of applied mathematics, 2(2):164–168, 1994.

[60] J. Lofstrom and J. Bergh. Interpolation spaces. SpringereVerlag, Newe, 1976.

[61] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

Journal of the society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[62] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge university

press, 2000.

[63] A. Merzon and S. Sadov. Hausdorff-young type theorems for the laplace transform restricted

to a ray or to a curve in the complex plane. arXiv preprint arXiv:1109.6085, 2011.

[64] J. Mueller and S. Siltanen. Linear and nonlinear inverse problems with practical applica-

tions. SIAM, 2012.

[65] J. L. Mueller, E. K Murphy, and J. C. Newell. Reconstructions of conductive and insu-

lating targets using the d-bar method on an elliptical domain. Physiological measurement,

28(7):S101, 2007.

169



[66] J. L. Mueller and S. Siltanen. Direct reconstructions of conductivities from boundary

measurements. SIAM Journal on Scientific Computing, 24(4):1232–1266, 2003.

[67] J. L. Mueller and S. Siltanen. The d-bar method for electrical impedance tomogra-

phy—demystified. Inverse problems, 36(9):093001, 2020.

[68] A. Nachman. Reconstructions from boundary measurements. Annals of Mathematics,

128(3):531–576, 1988.

[69] A. Nachman. Global uniqueness for a two-dimensional inverse boundary value problem.

Annals of Mathematics, pages 71–96, 1996.

[70] A. Nachman, J. Sylvester, and G. Uhlmann. Ann-dimensional borg-levinson theorem. Com-

munications in Mathematical Physics, 115(4):595–605, 1988.

[71] R. G. Novikov and M. Santacesaria. Global uniqueness and reconstruction for the multi-

channel gelfand–calderón inverse problem in two dimensions. Bulletin des Sciences Mathe-

matiques, 135(5):421–434, 2011.

[72] Roman G Novikov. Multidimensional inverse spectral problem for the equation—δ ψ+(v

(x)—eu (x)) ψ= 0. Functional Analysis and Its Applications, 22(4):263–272, 1988.

[73] P. Persson and G. Strang. A simple mesh generator in matlab. SIAM review, 46(2):329–345,

2004.

[74] N. Polydorides. Image reconstruction algorithms for soft-field tomography. PhD Thesis,

UMIST, 2002.

[75] I. Pombo. Cgo-faddeev approach for complex conductivities with regular jumps in two

dimensions. Inverse Problems, 36(2):024002, 2020.

[76] I. Pombo. Reconstructions from boundary measurements: complex conductivities. arXiv

preprint arXiv:2112.09894, 2021.

[77] I. Pombo. Uniqueness of the inverse conductivity problem once-differentiable complex con-

ductivities in three dimensions. arXiv preprint arXiv:2301.08663, 2023.

[78] I. Pombo and L. Sarmento. Automatic differentiation as an effective tool in electrical

impedance tomography. arXiv preprint, 2023.

[79] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Vol.: 2. : Fourier

Analysis, Self-Adjointness. Academic Press, 1975.

[80] S. Sadov. Characterization of carleson measures by the hausdorff-young property. Mathe-

matical Notes, 94(3):551–558, 2013.

170



[81] M. Santacesaria. Note on calderón’s inverse problem for measurable conductivities. Inverse

Problems and Imaging, 13(1):149–157, 2019.

[82] T. Savolainen, J. Kaipio, P. J. Vauhkonen, and M. Vauhkonen. Three-dimensional electrical

impedance tomography based on the complete electrode model. IEEE Transactions on

Biomedical Engineering, 46(9):1150–1160, 1999.
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