
Institute of Information Security

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

OpenID for Verifiable Credentials:
Formal Security Analysis using the

Web Infrastructure Model

Fabian Hauck

Course of Study: Informatik

Examiner: Prof. Dr. Ralf Küsters

Supervisor: Dr. Daniel Fett
Pedram Hosseyni, M.Sc.

Commenced: April 4, 2023

Completed: October 2, 2023

Abstract

In our increasingly connected world, digital identities play a fundamental role in delivering secure
online services around the globe. To enable the seamless exchange of identification data among
various entities, the adoption of standardized protocols is essential. The protocol family OpenID for
Verifiable Credentials (OID4VC) is ideally suited for exchanging identities. The two most important
protocols in this family are OpenID for Verifiable Credential Issuance (OID4VCI) and OpenID for
Verifiable Presentations (OID4VP) with a wide range of applications in e-government as well as in
the private sector. A prominent example is the European Digital Identity Framework [20], which
includes these two protocols, among others. This means that any future wallet in the European
Union will implement OID4VCI and OID4VP. Therefore, it is extremely important to guarantee
their security.

This thesis performs a rigorous formal security analysis of both the OpenID for Verifiable Credential
Issuance [16] and the OpenID for Verifiable Presentations [19] protocols. In particular, we focus
on analyzing the security of both protocols when they interact in an ecosystem. It is not sufficient
to consider the two protocols separately, because the interaction between them may introduce
new vulnerabilities. Therefore, the formal model created in this thesis models both protocols
simultaneously. The model is based on the Web Infrastructure Model (WIM) [7], which closely
follows existing web technologies. To describe what security means in this context, we define an
authentication security property and a session integrity security property for OID4VCI and OID4VP.
We prove that the model is secure with respect to the security properties under the assumption of a
vigilant user. If this assumption is violated, we have discovered a number of attacks.

This work makes several contributions to the protocol specifications: First, the discovered vulnera-
bilities were brought to the attention of the working group. Second, several issues were filed to
improve the quality and security of the specifications. Lastly, we engaged in ongoing discussions on
related issues.

3

Kurzfassung

In unserer immer stärker vernetzten Welt spielen digitale Identitäten eine fundamentale Rolle
bei der Bereitstellung von sicheren Online-Dienstleistungen auf der ganzen Welt. Um den
nahtlosen Austausch von Identitätsdaten zwischen verschiedenen Organisationen zu ermöglichen,
ist die Einführung von standardisierten Protokollen unerlässlich. Die Protokollfamilie OpenID for
Verifiable Credentials (OID4VC) ist ideal geeignet für den Austausch von Identitäten. Die beiden
wichtigsten Protokolle der Familie sind OpenID for Verifiable Credential Issuance (OID4VCI) und
OpenID for Verifiable Presentations (OID4VP). Diese haben ein breites Anwendungsspektrum
sowohl bei E-Government Services als auch in der Privatwirtschaft. Ein prominentes Beispiel ist das
European Digital Identity Framework [20], das unter anderem die beiden Protokolle OID4VCI und
OID4VP beinhaltet. Das bedeutet, dass jedes zukünftige Wallet in der Europäischen Union diese
Protokolle implementieren wird. Daher ist es äußerst wichtig, ihre Sicherheit zu gewährleisten.

In dieser Arbeit wird eine gründliche formale Sicherheitsanalyse der Protokolle OpenID for
Verifiable Credential Issuance [16] und OpenID for Verifiable Presentations [19] durchgeführt.
Insbesondere konzentrieren wir uns auf die Analyse der Sicherheit beider Protokolle, wenn sie in
einem Ökosystem interagieren. Es reicht nicht aus, die beiden Protokolle getrennt zu betrachten, da
die Interaktion zwischen ihnen neue Schwachstellen hervorbringen kann. Daher modelliert das in
dieser Arbeit erstellte formale Modell beide Protokolle gleichzeitig. Das Modell basiert auf dem
Web Infrastructure Model (WIM) [7], das sich eng an bestehenden Webtechnologien orientiert.
Um zu beschreiben, was Sicherheit in diesem Zusammenhang bedeutet, definieren wir die beiden
Sicherheitseigenschaften Authentication und Session Integrity für OID4VCI und OID4VP. Dann
zeigen wir, dass das Model in Bezug auf diese Sicherheitseigenschaften unter der Annahme eines
aufmerksamen Benutzers sicher ist. Für den Fall, dass diese Annahme verletzt wird, haben wir eine
Reihe von Angriffen entdeckt.

Diese Arbeit liefert mehrere Beiträge zu den Protokollspezifikationen. Erstens wurden die entdeckten
Schwachstellen der Arbeitsgruppe zur Kenntnis gebracht. Zweitens wurden mehrere Issues zur
Verbesserung der Qualität und Sicherheit der Spezifikationen eingereicht. Zudem haben wir aktiv
an den laufenden Diskussionen zu den Themen teilgenommen.

4

Acknowledgment

First of all, I would like to thank Prof. Ralf Küsters for providing me the opportunity to write a
master’s thesis in the field of formal security analysis. The analysis of protocols from the OpenID for
Verifiable Credentials family was especially interesting for me because I have practical experience
with them and they are important for the European Digital Identity Framework. Thanks also to my
supervisor Pedram Hosseyni at the University of Stuttgart for his constructive feedback during the
entire process.

This master’s thesis was generously supported by Verimi GmbH through the IDunion project. I am
especially grateful to my supervisor Daniel Fett for always answering my questions and giving me
valuable advice throughout the process. Furthermore, I would like to thank my family for supporting
me during the time of writing this thesis and my girlfriend Vanessa for her help in correcting the
language and grammar.

5

Contents

1 Introduction 17

2 OpenID for Verifiable Credentials 21
2.1 OpenID for Verifiable Credential Issuance . 22
2.2 OpenID for Verifiable Presentations . 24

3 Formal Model 29
3.1 Web Infrastructure Model . 29
3.2 OpenID for Verifiable Credentials Model . 30

4 Security Properties 35
4.1 Presentation Authentication . 36
4.2 Issuance Authentication . 36
4.3 Presentation Session Integrity . 36
4.4 Issuance Session Integrity . 36

5 Security Proof 37
5.1 Proof of Presentation Authentication . 37
5.2 Proof of Issuance Authentication . 40
5.3 Proof of Presentation Session Integrity . 40
5.4 Proof of Issuance Session Integrity . 42

6 Discovered Attacks 45
6.1 OpenID for Verifiable Credential Issuance . 46
6.2 OpenID for Verifiable Presentations . 50

7 Contributions to Standards 53
7.1 Issues . 53

8 Summary and Outlook 57

Bibliography 59

A Verifiable Credentials Web System 61
A.1 Identities and Secrets . 62
A.2 Issuers . 64
A.3 Wallets . 69
A.4 Verifiers . 75
A.5 Web Browser Extension . 80

7

B Formal Security Properties 83
B.1 Presentation Authentication . 83
B.2 Issuance Authentication . 84
B.3 Presentation Session Integrity . 84
B.4 Issuance Session Integrity . 85

C Proof of Security Properties 89
C.1 Lemmas . 89
C.2 Proof of Presentation Authentication . 90
C.3 Proof of Issuance Authentication . 95
C.4 Proof of Presentation Session Integrity . 99
C.5 Proof of Issuance Session Integrity . 101

8

List of Figures

1.1 Three-party model. 17
1.2 Formal security analysis using the WIM. 19

2.1 Three-party model. 21
2.2 Pre-authorized code flow. 23
2.3 Authorization code flow. 25
2.4 Same device flow using the default response_mode=fragment. 26
2.5 Same device flow using response_mode=direct_post. 27
2.6 Cross device flow. 27

4.1 Violation of the authentication security property. 35
4.2 Violation of the session integrity security property. 35

5.1 Proof structure of the Presentation Authentication security property. 39
5.2 Proof structure of the Issuance Authentication security property. 41
5.3 Proof structure of the Presentation Session Integrity security property. 42
5.4 Proof structure of the Issuance Session Integrity security property. 44

6.1 Authentication attack against the pre-authorized code flow. 47
6.2 Authentication attack against the authorization code flow. 48
6.3 Session integrity attack against the pre-authorized code flow. 49
6.4 Authentication attack against the cross device flow. 50
6.5 Session integrity attack against OID4VP. 51

7.1 Session integrity attack against OID4VP same device flow with response code. . 54

9

List of Tables

6.1 Overview over the discovered attacks. 45

A.1 List of scripts in S with their string representation and definitions. 61
A.2 List of placeholders used by an issuer. 64
A.3 List of placeholders used by a wallet. 69
A.4 List of placeholders used by a verifier. 75

11

List of Algorithms

1 Relation of an issuer 𝑅𝑖: Processing HTTPS requests. 65
2 Relation of an issuer 𝑅𝑖: Function to build and sign a credential. 68
3 Relation of script_issuer_form. 68
4 Relation of a wallet 𝑅𝑤: Processing HTTPS requests. 70
5 Relation of script_wallet_index. 72
6 Relation of script_wallet_form. 73
7 Relation of a wallet 𝑅𝑤: Processing HTTPS responses. 73
8 Relation of a wallet 𝑅𝑤: Processing trigger messages. 74
9 Relation of a verifier 𝑅𝑣: Processing HTTPS requests. 76
10 Relation of a verifier 𝑅𝑣: Function to verify a credential. 78
11 Relation of script_verifier_get_fragment. 79
12 Relation of script_verifier_index. 79
13 Web Browser Model: Execute a script. 81
14 Web Browser Model: Process an HTTP response. 81

13

Acronyms

DY Dolev-Yao. 29

IdP Identity Provider. 21

OID4VC OpenID for Verifiable Credentials. 3

OID4VCI OpenID for Verifiable Credential Issuance. 3

OID4VP OpenID for Verifiable Presentations. 3

PAR OAuth 2.0 Pushed Authorization Requests. 24

PKCE Proof Key for Code Exchange. 24

SIOPv2 Self-Issued OpenID Provider v2. 18

WIM Web Infrastructure Model. 3

15

1 Introduction

Every few years, the United Nations measures the level of digitization in each of its 193 member
states with the E-Government Development Index. This index comprises the dimensions of online
services, human capacity, and telecommunication connectivity. The global average of this index
has risen from 0.36 in 2003 to 0.61 in 2022, with values ranging from 0 to 1.1 This shows how
important digitization has become for societies around the world.

The fundamental building block for secure digital services, especially e-government services, are
tamper-proof digital identities. Most current systems use a federated identity model, which means
that a single authority controls all identities. This has major privacy and data sovereignty drawbacks.
For these reasons, the three-party model2 using verifiable credentials has been developed. The

Figure 1.1: Three-party model.

three-party model consists of issuers, wallets, and verifiers, as seen in Figure 1.1. The verifiable
credentials are issued by an issuer and stored in the user’s wallet. The user can then use the verifiable
credentials, more or less independently of the issuer, with any verifier that wants to know verified
data about the user.

1https://publicadministration.un.org/egovkb/en-us/Data-Center
2Also known as the issuer-wallet-verifier model, decentralized identity, or self-sovereign identity (SSI).

17

https://publicadministration.un.org/egovkb/en-us/Data-Center

1 Introduction

To enable the exchange of verifiable credentials between different parties, standardized protocols
are needed. Today, many different credential formats exist, such as SD-JWT [8], ISO mDL [12],
W3C Verifiable Credentials [18], and AnonCreds [2]. The challenge is that most of these credential
formats use their own transport protocol, which makes interoperability very difficult. This has led
to the need for a credential format independent transport protocol.

Since OAuth 2.0 and OpenID Connect are already battle-tested protocols for resource authorization
and identity transfer, it makes sense to build on top of them to create protocols for credential exchange.
With this in mind, the protocol family OpenID for Verifiable Credentials (OID4VC) was developed.
The OID4VC family is unique because, to our knowledge, it is the only format independent,
standardized credential exchange protocol. The OID4VC protocol family includes OpenID for
Verifiable Credential Issuance (OID4VCI), OpenID for Verifiable Presentations (OID4VP), Self-
Issued OpenID Provider v2 (SIOPv2), OpenID for Verifiable Presentations over BLE, and OpenID
Connect UserInfo Verifiable Credentials.

The OpenID for Verifiable Credential Issuance [16] and OpenID for Verifiable Presentations [19]
protocols are the most important because there are already implementation plans and prototypes
based on these specifications. For example, OID4VP will be implemented by the NIST National
Cybersecurity Center of Excellence and is included in the DIF JWT VC Presentation Profile.3
Furthermore, OID4VCI and OID4VP are part of the European Digital Identity Framework [20],
which implies that any future wallet in the European Union will support them. This means that it is
extremely important to ensure the security of these two protocols.

This thesis performs a rigorous formal security analysis of the OpenID for Verifiable Credential
Issuance and OpenID for Verifiable Presentations protocols using the Web Infrastructure Model
(WIM) [7]. The focus of this analysis is to analyze the interaction of OID4VCI and OID4VP in an
ecosystem. It is not sufficient to analyze the protocols in isolation, as the interaction may create
new vulnerabilities. Such a detailed formal security analysis of three-party model protocols used
in practice is a novelty since, to the best of our knowledge, it has never been done for similar
protocols.

A formal security analysis with the WIM is different from a penetration test. With the WIM
specifications are analyzed, whereas in a penetration test implementations are tested. This means
that the WIM cannot find vulnerabilities in implementations, whereas a penetration test can. The
benefit of the WIM is that it can find unknown types of attacks, while a penetration test usually
only finds known types of attacks. The advantage of a formal security analysis with the WIM over
a penetration test is that the formal approach proves the security of the protocols with respect to
the definition of security. This means that there is a much higher security guarantee than with a
penetration test.

A formal analysis with the WIM is done in three steps, as shown in Figure 1.2. The first step is
to create a formal model from the OID4VCI specification and the OID4VP specification. The
underlying protocols are described in Chapter 2 and the formal model is described in Chapter 3.
The second step is to define what security means in this context, for example, that an attacker
cannot log in as an honest user. The definition of security is formalized in the security properties
found in Chapter 4. We have defined two types of security properties: One is the authentication
security property for the OID4VCI and OID4VP protocols, and the other one is the session integrity

3https://openid.net/sg/openid4vc/

18

https://openid.net/sg/openid4vc/

Formal definition of the protocols (similar to pseudocode)

Definition of what security means (e.g. the attacker cannot log in as an honest user)

Proof that the protocols fulfill the definition of security

Figure 1.2: Formal security analysis using the WIM.

security property for the OID4VCI and OID4VP protocols. The final and central part of the analysis
is the security proof, which shows that the formal model is secure with respect to the security
properties. While trying to prove these security properties, we discovered attacks, which means
that the model needs to be fixed and the proof repeated. These fixes are typically changes to the
protocol or assumptions about user behavior, and they model real-world mitigations. The proof
sketch presented in Chapter 5 and the formal proof in Appendix C show that the fixed model is
secure with respect to the security properties.

This thesis makes substantial contributions to several standardization documents to improve their
quality and security. The first contribution is the disclosure of the discovered attacks described in
Chapter 6 to the working group. The second contribution is the submission of issues to improve the
clarity of the specifications, which can be found in Chapter 7. The third and final contribution is
active participation in ongoing discussions on issues that can also be found in Chapter 7.

19

2 OpenID for Verifiable Credentials

Moving from a federated identity model to a three-party model (Figure 2.1) requires the introduction
of verifiable credentials. Verifiable credentials are typically a set of claims digitally signed by an
issuer. The issuer (equivalent to an Identity Provider (IdP) in the federated identity model) holds
user claims and issues the verifiable credentials. User claims are information about a person, such
as name, birthday, or address. The verifiable credential is issued in a wallet that securely stores
the credential and private keys. Private keys are required for credentials that are cryptographically
bound to a private key (holder key) so that only the user can use them (holder binding). The
stored credential can be used to prove the user’s identity to the verifier. To present the credential
to a verifier, also known as a relying party in the federated identity model, the credential must be
embedded in a presentation. Such a presentation typically contains an identifier of the verifier
(audience) and a transaction-specific nonce to prevent replay attacks. If the credential has a holder
binding, the presentation must be signed with the holder key. The verifier then verifies the signature
of the credential and decides whether or not to trust the issuer.

Figure 2.1: Three-party model.

To exchange verifiable credentials and presentations between entities, standardized protocols are
needed. There are many different protocols, such as the ISO-compliant driving licence protocol [12]
or DIDcomm [3] for AnonCreds [2] and W3C Verifiable Credentials [18]. These protocols have the
disadvantage that they are designed to exchange a specific credential format. To our knowledge, the
OpenID for Verifiable Credentials protocol family is the only transport protocol that is credential
format independent. The OID4VC protocol family consists of five standardized protocols. To
reduce complexity and make formal security analysis feasible, this thesis focuses on the two most
important protocols, OID4VCI and OID4VP. This chapter provides an introduction to these two
protocols.

21

2 OpenID for Verifiable Credentials

2.1 OpenID for Verifiable Credential Issuance

The OpenID for Verifiable Credential Issuance specification [16] defines a protocol for issuing
verifiable credentials regardless of their format. The protocol is based on OAuth 2.0 [9], which means
it can use all the parameters of OAuth 2.0 and its extension mechanisms, but the recommendations
in the OAuth 2.0 Security Best Current Practice [14] document should be considered.

The specification defines three new endpoints for issuing credentials. The first is a mandatory
endpoint to issue a single credential (credential endpoint), the second is an optional endpoint to issue
multiple credentials at once (batch credential endpoint), and the last is also an optional endpoint to
issue credentials at a later time when they are not ready at issuance (deferred credential endpoint).
These endpoints use the access token obtained from the token endpoint to authorize the issuance
of verifiable credentials. Any grant type defined for OAuth 2.0 can be used to obtain an access
token, but the implementer must consider the OAuth 2.0 Security Best Current Practice [14]. This
means, for example, that grant types that return access tokens in the authorization response should
not be used. In addition to the existing grant types, the OID4VCI specification defines a new flow
called pre-authorized code. In this flow, the issuer, as the IdP, initiates the issuance. The two most
common credential issuance flows are the authorization code flow and the pre-authorized code flow.
The following subsection describes these flows in more detail. For the sake of brevity, the figures in
these subsections show only the most important parameters in the flows.

For high-security use cases, it is important for the issuer to know what type of wallet the credential
is being issued to. To ensure that the wallet complies with certain regulations and protects the
private keys appropriately, the wallet needs to authenticate itself to the issuer. The specification
recommends the use of OAuth 2.0 client authentication as defined in RFC 6749 [9] to establish
trust.

In addition, this specification defines new metadata for the issuer that describes what kind of
credentials can be issued with what claims and in what format.

2.1.1 Pre-Authorized Code Flow

The pre-authorized code flow is a newly designed grant type in the OID4VCI specification. The
flow begins by authenticating the user and sending a credential offer to the wallet. The credential
offer always contains an issuer identifier and details about the credentials to be issued. There are
two ways to use this flow: First, the credential offer can be used to instruct the wallet to initiate an
authorization code flow. In this case, the credential offer can include the issuer_state parameter to
pass the user’s state to the wallet. The second option is for the issuer to create a credential offer with
a pre-authorized code and a user_pin_required value. The pre-authorized code essentially acts as
an authorization code that can be exchanged at the token endpoint. If the user PIN is required, the
wallet must send the user PIN along with the pre-authorized code to the token endpoint to obtain
the access token. The user PIN is sent to the user out-of-band, such as by email or SMS. The token
request typically includes the grant type, pre-authorized code, client ID, and optionally the user
PIN. The token response contains the access token and optionally a refresh token and c_nonce. The
second option with the pre-authorized code can be seen in Figure 2.2.

22

2.1 OpenID for Verifiable Credential Issuance

The access token can be used on the credential endpoint or the batch credential endpoint to obtain
the credential. To invoke the credential endpoint, the wallet has to authenticate with the access
token, send information about the format of the credential, and optionally include a cryptographic
proof of ownership of a private key. The proof of ownership must include the c_nonce obtained
at the token endpoint or the credential endpoint. The credential response contains the credential
format, the credential or a transaction ID, and optionally a new c_nonce. The transaction ID is used
if the credential could not be issued immediately and the wallet needs to try again at a later time.
The batch credential endpoint is used in the same way as the credential endpoint, except that all
parameters are sent in an array for each credential requested. Accordingly, the response is also
an array with one entry for each credential. The last endpoint is the deferred credential endpoint,
which is used to issue a credential at a later time if the credential cannot be issued immediately.
To call this endpoint, the wallet needs the access token and transaction ID for the credential that
could not be issued. The response will contain the format and the credential or an error, e.g. the
credential is not yet ready.

Browser

Browser

Issuer

Issuer

Wallet

Wallet

Prepare credential
(e.g. user authentication)

Credential Offer

Credential Offer (credential_issuer, pre-authorized_code, [user_pin_required])

Token Request (grant_type, pre-authorized_code, [user_pin])

Token Response (access_token, [c_nonce])

Credential Request (Bearer: access_token, [proof])

Credential Response (credential OR transaction_id, [c_nonce])

opt

Batch Credential Request
(Bearer: access_token, credential_requests = [proof0, proof1, ...])

Batch Credential Response
(credential_responses = (credential0 OR transaction_id0,
credential1 OR transaction_id1, ...), [c_nonce])

opt

Deferred Credential Request (Bearer: access_token, transaction_id)

Deferred Credential Response (credential)

Figure 2.2: Pre-authorized code flow.

2.1.2 Authorization Code Flow

The authorization code flow is another grant type discussed in the OID4VCI specification. In
this flow, the wallet initiates the credential issuance instead of the issuer. Figure 2.3 shows the
authorization code flow to issue a credential. The flow starts with an authorization request, which

23

2 OpenID for Verifiable Credentials

includes parameters from OAuth 2.0 and can also include parameters from its extensions. A typical
authorization request would include the response type, client ID, redirect URI, code challenge, code
challenge method, and authorization details. The code challenge is included because the use of Proof
Key for Code Exchange (PKCE) [17] is recommended, and the authorization details are included to
tell the issuer what types of credentials should be issued. In addition to the authorization details,
it is also possible to request a predefined credential type with a scope value. The authorization
request parameters can be sent directly to the issuer, but for security reasons it is recommended to
use OAuth 2.0 Pushed Authorization Requests (PAR) [15] and only send the request URI through
the front channel to the issuer. When the user authenticates to the issuer, the issuer may initiate a
dynamic credential request to retrieve credentials already present in the wallet. In this case, the
issuer becomes the verifier and the wallet is the IdP. It is recommended to use OID4VP to request the
credentials. After successfully authenticating the user, the issuer redirects the user back to the wallet
with the authorization response containing the authorization code, the iss parameter, and the state
parameter if present in the authorization request. The iss parameter is a recommended parameter in
the OAuth 2.0 Security Best Current Practice [14] document to prevent mix-up attacks.

The next step for the wallet is to exchange the authorization code for an access token at the token
endpoint. This follows the rules of OAuth 2.0, which means that the request typically includes
the authorization code, grant type, client ID, redirect URI, and code verifier. The token response
contains an access token and optionally a c_nonce. With the access token and the c_nonce, the
wallet can obtain a credential in the same way as described above for the pre-authorized code flow.

2.2 OpenID for Verifiable Presentations

OpenID for Verifiable Presentations [19] is a protocol on top of OAuth 2.0 [9] to present verifiable
credentials. The protocol can be used together with OpenID Connect or SIOPv2 and can also send
an access token along with the presentation. All parameters from OAuth 2.0 and its extension
mechanisms can be used, but the implementer should consider the OAuth 2.0 Security Best Current
Practice [14] document. This means that any OAuth 2.0 grant type and response mode can be used
to send the presentation to the verifier. In addition, this specification defines a new response mode
direct_post that allows the wallet to send the authentication response directly to the verifier in a
POST request. To transport the presentation, OID4VP defines a new parameter in the authentication
response called vp_token. A vp_token can contain one or more tokens of the same or different
formats. Furthermore, the specification extends the OAuth 2.0 metadata with additional parameters
to indicate, for example, which cryptographic algorithms are supported in the vp_token.

The following subsections describe the three most common OID4VP flows for presenting a
presentation. The first is the same device flow with the response mode fragment, the second is the
same device flow with the response mode direct_post, and the third is the cross device flow with
the response mode direct_post. Same device means that the user started the flow on the device
where their wallet is installed. Cross device means that the device where the user started the flow
is not the device where their wallet is installed, e.g. a user logs in on a laptop but their wallet is
installed on a smartphone. For the sake of brevity, the figures in the following subsections show
only the most important parameters in the flows.

24

2.2 OpenID for Verifiable Presentations

Wallet

Wallet

Browser

Browser

Issuer

Issuer

Authorization Request
(response_type, client_id, redirect_uri, code_challenge, [state])

Authorization Request

Authenticate user

Authorization Response

Authorization Response (code, iss, [state])

Token Request (grant_type, client_id, redirect_uri, code, code_verifier)

Token Response (access_token, [c_nonce])

Credential Request (Bearer: access_token, [proof])

Credential Response (credential OR transaction_id, [c_nonce])

opt

Batch Credential Request
(Bearer: access_token, credential_requests = [proof0, proof1, ...])

Batch Credential Response
(credential_responses = (credential0 OR transaction_id0,
credential1 OR transaction_id1, ...), [c_nonce])

opt

Deferred Credential Request (Bearer: access_token, transaction_id)

Deferred Credential Response (credential)

Figure 2.3: Authorization code flow.

2.2.1 Same Device Flow response_mode=fragment

This configuration is the simplest way to get a presentation. The flow starts with an authorization
request that typically contains the parameters response type, client ID, redierect URI, presentation
definition, nonce, and optionally a state. This is not a complete list of parameters and options
that can be included in the authorization request. See the OID4VP specification [19] for more
information. The client ID is either the redirect URI if the verifier is not registered with the wallet,
or behaves as specified in OAuth 2.0 if the verifier is registered with the wallet. There are other
options controlled by the client id scheme parameter that can be found in the specification. The
presentation definition expresses what types of credentials the verifier wants to obtain, and the
nonce parameter should be embedded in the presentation to bind the presentation to the transaction.
The authorization response is sent to the verifier in the redirect URI fragment with the vp_token,
the presentation submission, the iss parameter, and optionally the state. The state is only included
in the response if it is present in the authorization request. The presentation submission contains
information about the credentials in the vp_token. The iss parameter contains a wallet identifier
to prevent mix-up attacks as recommended in the OAuth 2.0 Security Best Current Practice [14]

25

2 OpenID for Verifiable Credentials

document. Note that the iss parameter is not required in the OID4VP flows analyzed in this thesis,
as shown in the Presentation Authentication security proof (Appendix C.2). This flow can be seen
in Figure 2.4.

Browser

Browser

Verifier

Verifier

Wallet

Wallet

Authorization Request

Authorization Request
(response_type, client_id, redirect_uri, nonce, [state])

Get user consent
and pick credential

Authorization Response (vp_token, iss, [state])

Authorization Response

Figure 2.4: Same device flow using the default response_mode=fragment.

2.2.2 Same Device Flow response_mode=direct_post

In this flow, the wallet sends the authorization response to the verifier’s direct-post endpoint via
an HTTPS POST request. This has the advantage that the wallet and the verifier do not need to
be on the same device and that authorization responses that exceed the URL length limit can be
transmitted. The authorization request has the same parameters as described above, except that
there is the additional parameter response mode and the redirect URI is replaced with the response
URI. The response URI contains the verifier’s POST endpoint to which the authorization response
must be sent. The authorization response is also the same as for the response mode fragment, except
that it is sent in the body of the POST request. In the response to the HTTTPS POST request, there
is a redirect URI parameter that instructs the wallet to send the user agent to this URI. The redirect
URI must contain a secure nonce, called a response code in this work, to ensure that only the owner
of the redirect URI can retrieve the authorization response. After redirecting the user, the flow is
complete. Figure 2.5 shows this flow with response_mode=direct_post.

2.2.3 Cross Device Flow

This flow assumes that the verifier and the wallet are on different devices. For example, a QR code
can be used to transmit the authorization request from one device to another. The authorization
request has the same parameter as in the same device flow with response_mode=direct_post, and
the authorization response is also sent via an HTTPS POST request. The difference is that the
response to the POST request does not include a redirect URI. After the POST request is sent, the
flow is complete. Figure 2.6 shows the cross device flow.

26

2.2 OpenID for Verifiable Presentations

Browser

Browser

Verifier

Verifier

Wallet

Wallet

Authorization Request

Authorization Request
(response_type, response_mode=direct_post, client_id, response_uri, nonce, [state])

Get user consent
and pick credential

POST Authorization Response (vp_token, iss, [state])

200 Response (redirect_uri (response_code))

Open redirect_uri (response_code)

Open redirect_uri

Figure 2.5: Same device flow using response_mode=direct_post.

Browser

Browser

Verifier

Verifier

Wallet

Wallet

Authorization Request

Authorization Request
(response_type, response_mode=direct_post, client_id, response_uri, nonce, [state])

Get user consent
and pick credential

POST Authorization Response (vp_token, iss, [state])

200 OK

Figure 2.6: Cross device flow.

27

3 Formal Model

This chapter introduces the formal model of the OpenID for Verifiable Credentials protocols. The
model uses the WIM which is first introduced in [6] and briefly described in Section 3.1. This
chapter does not give a comprehensive explanation of how the WIM works, but rather focuses on
the OpenID for Verifiable Credentials model. This work is based on the current version of the WIM,
which can be found in [7] for detailed information. Section 3.2 describes the processes involved in
the OID4VC model and the web browser extension needed for the security proof.

3.1 Web Infrastructure Model

This section describes the basics of the Web Infrastructure Model and is based on the description
of the WIM in [5]. A detailed formal description of the WIM can be found in [7]. The WIM
is a Dolev-Yao (DY) style model that closely models existing web standards such as HTTP and
HTML.

The central building block of the WIM is the communication model. Each entity in the model is a
process that listens to one or more IP addresses and consumes events. An event has a message as
well as a sender and a receiver IP address. At each processing step of the model, an event is non-
deterministically selected from the “pool” of events and delivered to the appropriate process. The
entity processes the event and outputs one or more events that are added to the “pool” of events.

A message is a formal term over a signature Σ. The signature contains constants (such
as strings and nonces) and sequence, projection, and function symbols. Examples of func-
tions are methods for encrypting and decrypting messages or signing terms. The signature
Σ can be used to show what an example message would look like for an HTTP request to
“http://verifier.ex.com/response?response_code=1234”:

𝑟 := ⟨HTTPReq, 𝑛0, GET, verifier.ex.com, /response, ⟨⟨response_code, 1234⟩⟩, ⟨⟩, ⟨⟩⟩

The last two arguments are empty because the request does not contain a body or a list of headers.

The equational theory defines a congruence relation ≡ that expresses the relationship between
function symbols in Σ. An example is the encryption and decryption with the key 𝑛1 of the term 𝑟

with a symmetric cipher:

decs(encs(𝑟, 𝑛1), 𝑛1) ≡ 𝑟

A process has a set of IP addresses, a set of states containing terms, and a relation. The relation uses
an input event and the state of the process to non-deterministically compute a set of output events.

29

3 Formal Model

The WIM defines a special process for the attacker. The attacker process collects all received events
and outputs all events that can be derived from the collected events. Note that there is a strict
definition of what is derivable, e.g. the attacker cannot decrypt a symmetric cipher without knowing
the key. There are two types of attackers: First, there is the web attacker who can only listen to their
IP address and can only send messages from their IP, and second, there is the network attacker who
can listen to all IP addresses and spoof messages with an arbitrary source IP address. Furthermore,
the attacker can corrupt any honest process and thereby learn the contents of the corrupted party’s
state.

The web browser is another predefined process of the WIM. A web browser models a user by
non-deterministically performing user actions such as following a link or entering credentials into a
form. The browser stores user credentials in its initial state per domain and only passes them to
scripts running under that domain. This means that credentials are not just sent to a malicious site,
as could happen in the real world in a phishing attack. The browser also models the behavior of
windows, documents in windows, cookies, and web storage data.

The browser can execute scripts, which are similar to DY processes and model JavaScript code. A
script receives a state from the web browser and returns a new state and a command to be executed
by the browser. This command can be, for example, sending a POST request to a server or following
a link.

The web browser is part of a web system that formalizes the web infrastructure and web applications.
In addition to web browsers, it typically includes honest web servers, honest DNS servers, and a web
or network attacker. To simplify the modeling of a web server, the WIM defines a generic HTTPS
server that already handles, among other things, the receiving and sending of HTTPS requests.

3.2 OpenID for Verifiable Credentials Model

This section provides an informal introduction to the OpenID for Verifiable Credentials web system.
The formal definition can be found in Appendix A. This model provides the basis for the reasoning
in the proof that follows. The web system contains a set of issuers, wallets, verifiers, web browsers
(users), and a network attacker. These entities are modeled as DY processes, which are described in
the following subsections.

The WIM is designed to model web-based applications, but in this work we also wanted to model
native applications running on mobile operating systems. This model treats native applications as
an HTTPS server and a browser running on the same device. Since there is no definition of custom
schemes in the WIM, this behavior is approximated by leaking the URL to an arbitrary IP address.
This is a stronger assumption than custom schemes, because custom schemes only leak the URL if
the user selects a malicious application. When the wallet is a native application, the model uses the
approximation of custom schemes for the credential offer and authorization request in the OID4VP
flow. The authorization responses in both OID4VCI and OID4VP are defined as app links that are
verified by the operating system and cannot leak to a malicious application. We also assume that
native applications can safely open URLs in a browser on the device without leaking the URLs to
the attacker. Using these assumptions, a native application can be modeled on top of the generic
HTTPS server defined in the WIM.

30

3.2 OpenID for Verifiable Credentials Model

Note that anything related to metadata, error handling, or credential types is not part of such a
formal model.

3.2.1 Issuer

An issuer is a Dolev-Yao process based on the generic HTTPS server described in [7] and formally
defined in Appendix A.2. It implements the PROCESS_HTTPS_REQUEST handler to process
incoming HTTPS requests, and there is also a script for user authentication. The issuer is modeled
as a web application that supports the pre-authorization code flow and the authorization code flow.
Furthermore, there is no trust relationship between issuers and wallets, which means there is no
client authentication. This is omitted because in the model it does not make sense for the issuer
to check that the wallet complies with certain regulations and protects the private keys because a
process is either honest or corrupt.

The issuer model supports pre-authorized code flow with and without the user PIN option. Starting
an authorization code flow with the credential offer is not supported. From a security analysis
perspective, this would be the same as simply starting the authorization code flow as long as there is
no issuer_state parameter in the credential offer. The credential offer uses a custom scheme when
the wallet is a native application, which means that the credential offer can be leaked to the attacker
in the model as mentioned above. We do not distinguish between a native and a web wallet because
leaking the credential offer is a worst-case scenario, meaning that a stronger security assertion can
be made by always leaking the URL.

The other supported flow is the authorization code flow, which is always used without PAR. In the
authorization code flow, there is an option for the issuer to dynamically request credentials from the
wallet during user authentication (Section 5.1.5 of [16]), which is not included in the model.

The pre-authorized code or authorization code can be exchanged at the token endpoint for an access
token and a c_nonce, but there are no refresh tokens. Note that the c_nonce at the token endpoint is
not optional in the model and is always returned. Refresh tokens are not included because they
are rarely used in real-world deployments, and access tokens never expire in the model. For more
details on refresh tokens in the WIM, see [4].

The access token can be used to issue the credential at the credential endpoint or the batch credential
endpoint. These endpoints return either credentials or transaction IDs, but not a c_nonce because a
c_nonce is only important if the issuer wants to update it. This model does not include it, because if
security can be proven without it, then it should be secure with a fresh nonce. The issued credentials
always have a cryptographic holder binding, otherwise the attacker could obtain a credential with a
malicious verifier and use the credential to authenticate to an honest verifier. On a more technical
level, cryptographic holder binding means that the public key of the private holder key is included
in the credential.

The last endpoint implemented by the issuer is the deferred credential endpoint, which is modeled
as described in the specification.

The OID4VCI specification has no restrictions on the allowed grant types, but we cannot include all
of them in the formal analysis because it would be too complex. Therefore, the model focuses on
the most important and commonly used flows in practical applications to make the proof feasible.

31

3 Formal Model

3.2.2 Wallet

A wallet is a Dolev-Yao process based on the generic HTTPS server described in [7] and formally
defined in Appendix A.3. It implements the PROCESS_HTTPS_REQUEST handler to process
incoming HTTPS requests, the PROCESS_HTTPS_RESPONSE handler to process HTTPS
responses to requests sent by the wallet, and the PROCESS_TRIGGER handler to send requests to
the deferred credential endpoint. The wallet also has two scripts: The first to initiate an OID4VCI
authorization code flow with the issuer, and the second to authenticate the user to the wallet. The
model includes an OID4VCI client and an OID4VP IdP. To implement cryptographic holder binding,
the wallet has one asymmetric holder key pair for all issued credentials. The wallet is modeled
as both a web service and a native application running on a mobile device. Each wallet belongs
to exactly one browser (user) who knows the credentials to the wallet and can use it. A browser
can have multiple wallets. The user PIN in the OID4VCI flow that the user enters into a wallet is
only used in honest wallets and never in a malicious wallet. The user of the wallet is a perfect user,
which means that they are always aware of the flows they have started. Read more about this in
Section 3.2.4 below.

3.2.3 Verifier

A verifier is a Dolev-Yao process based on the generic HTTPS server described in [7] and formally
defined in Appendix A.4. It implements the PROCESS_HTTPS_REQUEST handler to process
incoming HTTPS requests and two scripts: One to start the OID4VP flow and another to extract the
fragment from an authorization response. The verifier can be either a web application running in a
browser or a native application running on a mobile operating system. There is no trust relationship
between a verifier and a wallet, so there is no client registration.

Three flows are implemented: First, the response_mode = direct_post with response_code,
second response_mode = direct_post without response_code, and third response_mode =
fragment. The response_code is included as a GET parameter in the redirect URI returned in
the direct-post endpoint. This is an important detail because the specification does not specify an
exact way to include the response_code in the URI. Also, the response_code is bound to a
browser session, as recommended in Section 11.5. of [19]. The authorization request uses a custom
scheme when the wallet is a native application, which means that the authorization request does
leak to the attacker in the model.

3.2.4 The Perfect User

As mentioned in the previous Section 3.2.2, the user must always keep track of which flows they
have started. This is important in the cross device flow because otherwise an attacker could send an
authorization request to an honest user and have them authenticate the request with their wallet.
This would allow the attacker to log in as the honest user. Since there are no practical and provable
solutions to this problem, as analyzed in previous works [1] and [13], we defined that the user pays
attention. To model this behavior, the browser model is extended to store in its state all started flows
identified by a nonce and a domain. Subsequently, the method validateRequest(⟨domain, nonce⟩)

32

3.2 OpenID for Verifiable Credentials Model

can be used by the wallet to check if the browser controlling the wallet has a corresponding state or
not. To make this work, a new browser script command called START has been defined. The formal
definition of the browser extension to model a perfect user can be found in Appendix A.5.

This browser extension is also used in the pre-authorized code flow because it is not possible to
ensure that the credential offer is created by the honest user. This is important because otherwise,
an attacker could inject a credential offer bound to their identity into an honest wallet.

Using this model of the perfect user effectively excludes the attacks described above, but is very
close to a user who is careful when using their wallet. This is a minimal mitigation for these attacks,
which should not exclude other types of attacks.

In addition, the perfect user checks the redirect URI in the OID4VCI authorization code flow so that
no credentials are issued to a malicious wallet, and always uses the user PIN in the pre-authorized
code flow in an honest wallet so that the PIN is not leaked to the attacker.

33

4 Security Properties

This chapter gives a high-level overview of the security properties we have defined for the OpenID
for Verifiable Credentials web system model. The formal definition of these security properties
can be found in Appendix B. Security properties are needed to define what security means in the
context of the model. The intuitive security property we want to achieve is that the attacker cannot
log in as an honest user to an honest verifier (Figure 4.1). This is called the authentication security
property in the OID4VP protocol.

Figure 4.1: Violation of the authentication security property.

It is also desirable to have a security property called session integrity. Informally, session integrity
means two things: First, the user has explicitly expressed the wish to log in, and second, after the
login flow is complete, the user is logged in under their identity. This means that it should not
be possible for an attacker to initiate the login flow and login the honest user under their identity
(Figure 4.2). A typical example of such an attack would be a CSRF attack where the attacker
logs in the user under their identity. Note that by proving the session integrity security property,
we exclude all types of these attacks, not just CSRF attacks. The following sections describe the
security properties used in this thesis.

Figure 4.2: Violation of the session integrity security property.

35

4 Security Properties

4.1 Presentation Authentication

The informal definition of the Presentation Authentication security property is that an attacker
cannot log in under the identity of an honest user to an honest verifier. There are, of course, certain
prerequisites for this property to hold: First, the browser, the user’s wallets, and the credential issuer
must be honest, and second, the user must reject the authorization request in the cross device flow
in their wallet that they did not initiate. The attacker has broken the Presentation Authentication
security property if they are in possession of a session cookie associated with an honest user ID.
The formal definition of this property can be found in Appendix B.1.

4.2 Issuance Authentication

Informally, the Issuance Authentication security property guarantees that an attacker cannot “use”
an honest user’s credential. Being able to “use” a credential in this context means that the attacker
has control of the holder key, because each credential is cryptographically bound to the holder’s
private key. In order to fulfill this security property, certain preconditions must be met: First, the
browser, the user’s wallets, and the credential issuer must be honest; second, the pre-authorized
code flow is always used with a user PIN; and third, the authorization code is only issued to an
honest wallet. The formal definition of this property can be found in Appendix B.2.

4.3 Presentation Session Integrity

At a high level, the Presentation Session Integrity security property means two things: First, the
user has explicitly chosen to log in to an honest verifier, and second, the user ends up logging in
under the identity they chose in their wallet. On a more technical level, this means that the user’s
browser does not have a session cookie associated with an attacker’s identity. To ensure this, certain
prerequisites must be met. One requirement is that the browser, wallet, and credential issuer are
honest. Another precondition is that the authorization request does not leak, because then the
attacker could inject their presentation into the flow. The formal definition of this property can be
found in Appendix B.3.

4.4 Issuance Session Integrity

The informal definition of the Issuance Session Integrity security property is that first, the user has
explicitly expressed a desire to issue a credential, and second, the identity in the credential is the
identity used to authenticate to the issuer. This means that as long as certain conditions are met, the
user cannot load a credential with the attacker’s identity into their wallet against their will. The
conditions are that the issuer, browser, and wallet involved in the issuance process are honest. The
formal definition of this property can be found in Appendix B.4.

36

5 Security Proof

The formal security proof is the central part of this thesis. It uses the formal model of the OID4VC
protocols from Chapter 3 to prove that the security properties from Chapter 4 cannot be violated by
the attacker. This proof provides strong security guarantees for the analyzed OID4VC protocols. In
this chapter, the high-level ideas of the formal proofs are given and presented in a tree structure.
The formal version of the security proofs can be found in Appendix C.

5.1 Proof of Presentation Authentication

To prove the Presentation Authentication security property, it must be shown that the attacker cannot
obtain a session cookie associated with the identity of an honest user. The only place such a cookie
is created is at the endpoint where the verifier receives the authorization response (redirect endpoint).
Since no honest party leaks such a session cookie, the malicious actor must successfully call the
redirect endpoint. The redirect endpoint can be called with either a redirect URI and response code,
an authorization request with a vp_token, or without any parameters.

To call the redirect endpoint with a redirect URI and response code, the attacker needs to know the
response code and a login session ID associated with the response code and a vp_token. Neither
of these are leaked by an honest party, so the malicious actor must create a login session ID for
themselves and send a vp_token to the direct-post endpoint. As we will see later, the attacker cannot
obtain a vp_token with the identity of an honest user, so the attacker must send the authorization
request in a phishing attack to an honest user. There are two cases, because the attacker can either
modify the response URI in the authorization request or not modify it. In the first case, the user
sends the vp_token to the attacker, but includes the attacker as the audience in the vp_token, making
it unusable for the attacker to log in to an honest verifier. In the second case, the user sends the
vp_token to the honest verifier who does not have a session with them.

The attacker also cannot obtain a vp_token to send to the redirect endpoint because an honest party
does not leak a vp_token, the malicious party cannot “use” an honest user’s credential (Issuance
Authentication security property), and the attacker cannot make an honest wallet create a vp_token.
Forcing an honest wallet to create a vp_token does not work as described in the previous paragraph
because either the audience value is wrong or the malicious actor cannot obtain the vp_token.

The third and final way to use the redirect endpoint is for the attacker to know a login session ID
associated with an honest user’s vp_token. Since a login session ID is not leaked by an honest
party, the attacker must trick a user into sending their vp_token to the direct-post endpoint, which
contains the nonce of the attacker’s authorization request. This cannot happen because the perfect
user recognizes that the authorization request is not initiated by them and rejects the authentication
in their wallet.

37

5 Security Proof

In summary, the attacker cannot obtain a session cookie associated with the identity of an honest
user. A graphical representation of this proof can be seen in Figure 5.1 and Appendix C.2 contains
the formal version of this proof.

38

5.1
ProofofPresentation

Authentication
Service token

does not leak to
the attacker

Same-Device Flow
with direct_post Same-Device Flow

Cross-Device Flow

Redirect endpoint
cannot be successfully
called by the attacker

Via leak

Via creation

Attacker does not
know an authenticated

response_code and
session ID

Attacker cannot create
a presentation with
an honest user's ID

Attacker does not
know an

authorized session ID

Session ID and
 response_code

 do not leak

Attacker cannot make
an honest wallet

create an arbitrary
presentation

Attacker does not
know the private holder

key for an honest
user's credential

Issuance Authentication
security property

Session ID does
not leak

Attacker creates his
own session ID
with the verifier

Attacker cannot use an
honest wallets

authentication endpoint

Attacker sends authz
request with

response_mode=fragment
to user via phishing

Wallet sends presentation to
honest verifier via a browser
since the aud value has to be

the honest verifier

Attacker sends authz
request with

response_mode=direct_post
to user via phishing

Wallet sends presentation to
honest verifier's direct_post

endpoint, since the aud value
must be the honest verifier

As long as the wallet,
browser and verifier are

honest the presentation does
not leak to the attacker

Service token is
not leaked by an

honest party

Presentation does
not leaked

The browser redirecting the
response must be honest
because this browser was
authenticated to the wallet

Authorization request
is send

to user via phishing

User notices that the
authz request was

not initiated by them
This models a perfect

user who always knows
which flows they started

Attacker has a
session ID for the

verifier in his browser

Session ID must be
authenticated by
an honest user

Attacker uses script
in honest user's
browser to visit

authz request URL

User wallet
authenticates
authz request

Because of the honest verifier's
response_uri the user will

be redirected to
the honest verifier

Attacker changes
response_uri to a

domain he controls

Attacker will receive
presentation but with
them as the audience

Attacker changes
response URI

Attacker does not
alter response URI

Via creation Via leak

Figure 5.1: Proof structure of the Presentation Authentication security property.39

5 Security Proof

5.2 Proof of Issuance Authentication

Showing that the Issuance Authentication security property holds requires showing that the private
key associated with a credential is not known to the attacker. There are two ways that the malicious
actor could know the private key: First, an honest wallet leaks the private key, and second, the
attacker can inject their own key during credential issuance. Since an honest wallet does not leak
the private holder key, the attacker must inject their credential during credential issuance.

The only places where the cryptographic holder binding takes place are in the credential endpoint
and the batch credential endpoint. Calling either of these endpoints requires an access token
and a c_nonce for the holder binding. Since the access token and c_nonce are not leaked by an
honest party, they must be obtained at the token endpoint. To invoke the token endpoint, either an
authorization code and code verifier or a pre-authorized code and user PIN is required.

Since the authorization code and code verifier are not leaked, the attacker must trick a user into
authenticating an authorization request. This is not possible because the perfect user rejects
authorization requests that they did not initiate, as specified in the security property.

The other way to call the token endpoint is to present a pre-authorized code and a user PIN. The
pre-authorized code leaks, but the user PIN does not and is only used in an honest wallet. This
means that the attacker cannot obtain an access token from the token endpoint.

In summary, the wallet does not leak its private key, and the attacker cannot inject their key
during credential issuance. A graphical representation of this proof can be seen in Figure 5.2 and
Appendix C.3 contains the formal version of this proof.

5.3 Proof of Presentation Session Integrity

Proving the Presentation Session Integrity security property requires to show two things: First, the
user started the flow. Second, the identity the user chose in their wallet is the one under which they
are logged in at the end of the flow. At the end of the login flow the user gets a session cookie that
is associated with an identity.

First, we want to prove that this user also started the login flow. The only way to obtain a session ID
is by successfully calling the redirect endpoint of the verifier. This is only possible if the request
contains a valid login session cookie. This cookie must be stored in the browser under the domain
of the verifier. Since the cookie has the __Host prefix, it could have been only set by a secure
response from the verifier. Such a cookie is only created in the verifier’s endpoint that created
the authorization request. Considering that this endpoint makes an origin check only a script of
the verifier can call this endpoint. This means that the browser (user) must have been explicitly
executed a script of the verifier to start the login flow.

To show that the user’s wallet selected the credential we track where the vp_token came from. It is
clear that the verifier does not create vp_tokens but receives them through different channels. To
create a valid vp_token one must know the nonce from the authorization request. From the security
properties preconditions it is known that the authorization request does not leak. Since the nonce
does also not leak through other parties the nonce is only known to the honest verifier, browser,
and the user’s wallet. Considering that only the wallet creates vp_tokens, we can conclude that the

40

5.3 Proof of Presentation Session Integrity

Private key is not
derivable by
the attacker

Honest wallet does
not leak

the holder key

Attacker injects
their own public key
into the credential

issuance flow

Credential issued at
deferred credential
endpoint called with

a transaction ID

Transaction ID created
in batch credential

endpoint

Transaction ID created
in credential endpoint

Credential issued at
batch credential

endpoint

Credential issued
at the credential

endpoint

Token endpoint is the
only place where
access token and

c_nonce are created

Transaction ID can
leak because the
holder binding is

already done

A code is only
created in the
authentication

endpoint

code and
code_verifier
do not leak

pre-authorized code
does leak but can

only be used together
with the user PIN

code and
code_verifier

needed to call the
token endpoint

pre-authorized code
and user PIN is

needed to call the
token endpoint

To call the authentication
endpoint, the attacker
needs credentials for

 an honest user
that are not leaked

The code does not leak
 because the security
property checks that

the redirect_uri belongs
to an honest wallet

The code_verifier does
not leak because it is
only sent to the issuer
along with the code

User PIN does not
 leak because it is

only used in an
honest wallet and
send via HTTPS

messages

The precondition
of the security

property demands
the use of a

user PIN

Note that in practice
the attacker could
ask for the user

 PIN when the attacker
 app receives the
credential offer

Access token and
c_nonce do not leak

Authorization Code Flow Pre-Authorized Code Flow

To call these
endpoints an access
token and c_nonce

are needed

Figure 5.2: Proof structure of the Issuance Authentication security property.

wallet selected one of its credentials and created the vp_token. From the Issuance Session Integrity
security property it is known that the wallet contains only credentials that contain identities of the
honest user. This means that the user selected one of their credentials.

In summary, the user started the flow and selected the credential that is used to login. This means
that the Presentation Session Integrity security property holds. A graphical representation of this
proof can be seen in Figure 5.3 and Appendix C.4 contains the formal version of this proof.

41

5 Security Proof

User got a session
cookie from the

redirect endpoint

HTTPS request to
the verifier contained
a login session cookie

A login session cookie
is only created in the

start endpoint

This means the
user interacted with
the verifier to login

The verifier's state
contains a vp_token

vp_token is received
via a fragment or

POST request (made
by another process)

The cookie is saved
 in the browser under

 the domain of
the verifier

__Host prefix
guarantees that the

cookie is set by
the verifier

The start endpoint
can only be called
by a script of the

verifier (origin check)

The nonce in the
authz request is only

known by the browser,
wallet, and verifier

Only the wallet
creates a vp_token

with the nonce in the
auth endpoint

This means the user
chose a credential
with their identity

The wallet contains
only honest user's
identities (Issuance
Session Integrity)

Figure 5.3: Proof structure of the Presentation Session Integrity security property.

5.4 Proof of Issuance Session Integrity

To prove the Issuance Session Integrity security property, we must show that either the user initiated
an authorization code flow and selected an identity during user authentication at the issuer, or the
user initiated a pre-authorized code flow to issue a credential. The credential is issued at either the
deferred credential endpoint, the credential endpoint, or the batch credential endpoint.

If the credential is issued at the deferred credential endpoint, there must have been a previous
request to the credential endpoint or the batch credential endpoint, otherwise the wallet would not
have a transaction ID. To use either of these endpoints, the wallet must have previously made a
token request to obtain an access token. Making a token request requires either an authorization
code and code verifier or a pre-authorized code and user PIN.

If a pre-authorized code is used at the token endpoint, that code is received first at the credential
offer endpoint. Since the perfect user would reject credential offers not initiated by them, there is a
guarantee that the credential offer is created by the user at the issuer. This includes that the user
authenticated to the issuer with a username and password, and that this identity is the one contained
in the credential. This is the first part of the security property.

42

5.4 Proof of Issuance Session Integrity

If an authorization code is used at the token endpoint, it must have been received with the
authorization response. This request must include a valid session cookie. Since the session cookie
is stored in the browser under the wallet’s domain and has the __Host prefix, it must have been set
by a secure response from the wallet. The only endpoint that sets such a cookie is the endpoint that
creates an authorization request. Considering that this endpoint checks the origin header, only a
script of the wallet can call it. This means that the browser (user) explicitly executed a script of the
wallet to start the credential issuance flow.

We also need to show that the user authenticated to the issuer. From the token request, it is known
that the wallet and the issuer share a code challenge - code verifier pair. Since this pair is not leaked
to the attacker, it can be inferred that the browser called the issuer’s authentication endpoint with
the authorization request. In this step, the browser also provides the user’s identity and password.
This means that the user provided the identity for the credential.

In summary, in each case the user initiated the issuance flow and provided the identity contained in
the credential. This proves that the model fulfills the Issuance Session Integrity security property.
A graphical representation of this proof can be seen in Figure 5.4 and Appendix C.5 contains the
formal version of this proof.

43

5 Security Proof

User stores the
issued credential

in their wallet

Wallet receives the
credential from

the issuer

Response from the
credential endpoint

Response from the
batch credential

endpoint

Response from the
deferred credential

endpoint

There is a token
response

There is a credential
request to the issuer

Token request is
made after receiving
an authorization code
in an HTTPS request

Token request is
made from the
credential offer

endpoint

The HTTPS request
contains a

session cookie

There is a batch
credential request

to the issuer

There is a
deferred credential

request with a
transaction ID

Transaction ID from
credential response

Transaction ID from
batch credential

response

To call the token
endpoint a code
and code_verifier

is necessary

User rejects credential
offers not initiated

by them

Note that this
models a perfect
user who always

knows which flows
they have started

Pre-Authorized Code Flow

This means that
the user starts
the issuance

The user
authenticates to the
issuer with identity

and password

The user's identity
is embedded in the
credential and the

user started the flow

A session cookie
is only created in the

start endpoint

This means the
user interacted with
the wallet to start

the issuance

The cookie is saved
 in the browser under

 the domain of
the wallet

__Host prefix
guarantees that the

cookie is set by
the wallet

The start endpoint
can only be called
by a script of the

wallet (origin check)

Wallet and issuer
share a code

challenge - code
verifier pair

Code challenge and
code verifier do

not leak

The browser sends
the authorization

request to the issuer

The browser (user)
authenticates to

the issuer

This means that the
user provides the

identity for
the credential

Authorization Code Flow

Figure 5.4: Proof structure of the Issuance Session Integrity security property.

44

6 Discovered Attacks

This chapter contains detailed descriptions of all attacks discovered during the formal security
analysis of the protocols. It is important to note that while several attacks were found during the
security proof, no other attacks were discovered in the limits of the model, as the formal security
proof shows. Table 6.1 gives an overview of the attacks found, sorted by protocols and the security
property they violate. Furthermore, to the best of our knowledge, such a detailed formal security
analysis has not yet been performed for other three-party model protocols used in practice. This
means that similar attacks may also be found in other protocols.

Verifiable Credential Issuance Verifiable Presentations
Authentication
Security Property

Code and user PIN phish-
ing in pre-authorized code flow
(even with wallet attestation)
(Section 6.1.1)

Attacker can trick user into au-
thorizing an authorization re-
quest in the cross device flow
(Section 6.2.1)

Malicious app could start an au-
thorization code flow to obtain a
code (Section 6.1.2)

Session Integrity
Security Property

Inject pre-authorized code
bound to attacker identity
(Section 6.1.3)

If the authorization request
leaks, the attacker can an-
swer it with their credential
(Section 6.2.2)

Table 6.1: Overview over the discovered attacks.

The attacks discovered in OID4VCI and OID4VP are not entirely new or surprising to people
familiar with the specifications. For example, the cross device attack has already been described in
the context of SIOPv2 [1]. The underlying issue here is the transfer of a session from one party
to another, which is also the reason for the discovered pre-authorized code flow vulnerabilities.
In addition, the credential offer with an issuer_state parameter also transfers a session between
entities, making it vulnerable to this type of attack. This class of vulnerabilities is not specific to
OAuth 2.0 based protocols and it is likely to be present in other web flows as well, as described
in the Cross-Device Flows: Security Best Current Practice document [13]. To date, no practical
and provable fixes have been found for this type of attack. To mitigate this class of vulnerabilities,
profound changes must be made to browsers and operating systems. One such technology is the
Federated Credential Management API1, currently implemented in the Chrome browser, which may

1https://developer.chrome.com/en/docs/privacy-sandbox/fedcm/

45

https://developer.chrome.com/en/docs/privacy-sandbox/fedcm/

6 Discovered Attacks

solve these problems in the future. Since no mitigation is currently available, we have introduced
the perfect user (Section 3.2.4) into the model. This is not optimal because relying on the user for
security is not good practice, as the user is often the weakest link.

6.1 OpenID for Verifiable Credential Issuance

The first section of this chapter contains all discovered attacks against the OID4VCI protocol.
Three attacks were found there: First, an attack on the pre-authorized code flow that violates the
authentication security property, which works by leaking the credential offer and user PIN to a
malicious application. Second, an attack on the authorization code flow that also violates the
authentication security property, where a malicious application initiates the issuance flow and
obtains an authorization code. Lastly, an attack on the pre-authorized code flow that violates the
session integrity security property, which works because the sender of the credential offer cannot be
verified.

The OID4VCI specification contains a Security Considerations chapter (Chapter 11 in [16]) in
which known attacks and mitigation techniques are discussed, but none of the attacks found in this
thesis are already described there.

6.1.1 Authentication Attack on Pre-Authorized Code Flow

The pre-authorized code flow is a new flow introduced in the OID4VCI specification. In this flow,
the issuance is initiated by the issuer, not by the wallet, and there is no authorization request. So the
issuer immediately sends a pre-authorized code to the wallet in a so-called credential offer. The
custom scheme openid-credential-offer:// is a suggested method in the specification to invoke a
wallet. Since there are no restrictions on which application can register for such a custom scheme
in typical operating systems, it is possible for a malicious application to register for the custom
scheme. As a result, the credential offer, including the pre-authorized code, can leak to the attacker
if the user chooses the wrong application when presented with a choice by the operating system.
This can happen to less technologically-skilled users, of course, but even people who understand
the technology could click on the wrong application by accident or because they are in a hurry. In
the absence of other security mechanisms, the attacker could directly exchange the pre-authorized
code at the token endpoint for an access token to obtain a credential for an honest user.

The OID4VCI specification includes user PINs as a security feature to prevent attacks where the
attacker scans the QR code with the credential offer from the user’s computer (see Section 11.3.1 of
[16]). The user PIN is a secret that is sent out-of-band (e.g., via e-mail) to the user, and the user
must enter this secret into the wallet application. This prevents the attack where the attacker scans
the QR code because they do not know the user PIN. Even if the attacker does shoulder surfing to
find out the user PIN, the user will most likely send the request first, and since the pre-authorized
code is one-time-use only, the attacker will not be able to obtain a credential.

The problem is that the user PIN does not prevent the attack described above, where the user chooses
a malicious application to process the credential offer. In this case, the attacking application has
UI control and can simply ask for the user PIN. If the user thinks that they are using a legitimate
wallet application or does not pay attention, they will enter the user PIN. Note that the user PIN

46

6.1 OpenID for Verifiable Credential Issuance

mechanism is different from, for example, a banking PIN. In the banking use case, the user is
supposed to use the PIN in software from the same vendor, whereas in the credential issuance flow,
the user is using the PIN in a wallet, which is most likely from a different vendor than the issuer.
The attacker then enters the credential offer and the user PIN into their own wallet application and
obtains a user credential. This works even if wallet attestation is enabled because the attacker can
use an official wallet application to communicate with the credential issuer. This attack can be seen
in Figure 6.1.

The underlying problem here is that a session is being transferred from one party to another. This
means that the attack works not only on a credential offer with pre-authorized code, but also if the
credential offer contains the issuer_state parameter. It can be concluded that this is a broad problem
that affects other web flows as well, and will require extensive changes to browsers and operating
systems in order to be solved.

User Device Attacker Device

User Browser

User Browser

Issuer

Issuer

OS

OS

Fake Wallet

Fake Wallet

Attacker Server

Attacker Server

OS

OS

Wallet

Wallet

User authentication

Credential Offer

Credential Offer using custom scheme
(pre-authorized_code, user_pin_required)

User selects
attacker app

Credential Offer

Attacker app
asks for user PIN

Send credential offer
and user PIN

Credential Offer

Credential Offer

Attacker inputs
user PIN

Token Request (pre-authorized_code, user_pin)

Token Response (access_token, c_nonce)

Credential Request (Bearer: access_token, proof)

Credential Response (credential)

Figure 6.1: Authentication attack against the pre-authorized code flow.

6.1.2 Authentication Attack on Authorization Code Flow

The authentication attack on the authorization code flow assumes that an attacker application is
installed on the user’s device and that the application can convince the user to log in to the issuer.
For example, the malicious application could be a game that requires the user to log in with a
credential before playing. Instead of redirecting the user to their wallet application, the app opens
the issuer’s website to issue a credential. A user paying attention to the process would probably
notice that this is an attack, but many users would probably just follow the flow. After authenticating
to the issuer, the user is redirected back to the application with the authorization response. Since

47

6 Discovered Attacks

the attacking application knows the client ID, redirect URI, code verifier, and code, it can exchange
the code for an access token at the token endpoint. With the access token, the attacker can retrieve a
user credential from the credential endpoint that is bound to a private key known to the attacker.
This means that the attacker can use this credential wherever they want because they have full
control over the credential. Using defenses such as nonce, state, or PKCE [17] does not mitigate
this attack because the authorization request is initiated by the malicious application. The attack
described here can be seen in Figure 6.2.

The attack can also work when wallet attestation is used. In this case, the attacking application uses
an authorization request from an honest wallet on the attacker’s device and opens that authorization
request on the victim’s device. To capture the authorization response, the attacker must register for
the domain or custom scheme of the authorization response. This may or may not work depending
on whether the honest wallet application is already installed on the victim’s device, but if it works,
the attacker can inject the authorization response into their own unmodified wallet application.
Wallet attestation makes the attack more difficult, but not impossible, so ultimately the user has to
be careful which wallet the credential is issued to.

This attack also works on a standard OAuth 2.0 or OpenID Connect flow. The malicious application
must interact with the IdP, so the IdP must either allow public clients (the malicious application can
register the redirect URI of an existing client in the OS), dynamic client registration, or depending
on the ecosystem, there could also be a malicious client registered with the IdP. The difference
with the OID4VCI attack is that the attacker would only gain access to a user’s resources at a
particular service or obtain an ID token. Whereas in the attack described here, the malicious actor
obtains a credential that can most likely be used across multiple services, which has more severe
consequences.

User Device

Attacker App

Attacker App

Browser

Browser

Issuer

Issuer

Authorization Request (code_challenge)

Authorization Request (code_challenge)

User Authentication

Authorization Response (code)

Authorization Response (code)

Token Request (code, code_verifier)

Token Response (access_token, c_nonce)

Credential Request (Bearer: access_token, proof)

Credential Response (credential)

Figure 6.2: Authentication attack against the authorization code flow.

48

6.1 OpenID for Verifiable Credential Issuance

6.1.3 Session Integrity Attack on Pre-Authorized Code Flow

In this attack, the malicious actor uses the credential offer of the pre-authorized code flow to load a
credential with the attacker’s identity into an honest user’s wallet. The underlying problem is the
transfer of a session between parties as described above. The attack is carried out as follows. The
attacker initiates an issuance flow and authenticates to the issuer. Depending on the issuer’s policy,
the attacker may also receive a user PIN, e.g. via email. The attacker then embeds the credential
offer as a QR code in a web page and sends this web page to a user in a phishing attack. If the issuer
requires a user PIN, the PIN is also included on the web page. The user opens the link on their
computer and scans the QR code with their wallet. The wallet asks for a user PIN, which is included
on the website if required by the issuer. The user then confirms the issuance of the credential and
has a credential with the attacker’s identity in their wallet.

This can be a problem, for example, if the user uses this credential to authenticate to a cloud storage
and uploads sensitive documents, since the attacker also has access to the cloud storage. Note that
wallet attestation or a claimed URL for the credential offer would not prevent this attack because the
attacker uses a genuine issuer to create the credential offer. This attack can be seen in Figure 6.3.

User Device

Attacker

Attacker

Issuer

Issuer

Browser

Browser

Wallet

Wallet

Start issuance

Credential Offer
(pre-authorized_code bound to attacker identity)

user_pin send out-of-band, e.g. e-mail

Credential Offer (pre-authorized_code), e.g. via phishing

Credential Offer

Display user_pin

Enter user_pin

Token Request
(pre-authorized_code, user_pin)

Token Response
(access_token, c_nonce)

Credential Request
(Bearer: access_token, proof)

Credential Response
(credential)

Figure 6.3: Session integrity attack against the pre-authorized code flow.

49

6 Discovered Attacks

6.2 OpenID for Verifiable Presentations

This chapter describes all attacks found against the OID4VP protocol. Two attacks have been
discovered: First, an attack against the cross device flow that violates the authentication security
property, where the attacker sends an authorization request to the victim for authentication. Second,
an attack against all analyzed flows that violates the session integrity security property, where an
attacker responds to a leaked authorization request. The first attack is described in the Security
Considerations chapter of the OID4VP specification (Section 12.2 of [19]), but the second attack is
not yet mentioned in the specification.

6.2.1 Authentication Attack on Cross Device Flow

In the cross device flow, the user initiates authentication to a verifier on one device and authenticates
the authorization request on another device. This leads to the problem that there is no browser
session available at the verifier when the authorization response is received at the direct-post
endpoint. Therefore, it is possible for an attacker to initiate authentication at a verifier and send the
authorization request in a phishing attack to an honest user. The user authenticates the authorization
request in their wallet, which sends a presentation with their credential to the verifier. Since the
attacker started the authentication with their browser, it is their browser that is logged in under the
honest user’s identity. This attack is widely known and already described in Section 12.2 of the
OID4VP specification, but there are no practical and provable fixes against it, as described in [13].
The described attack can be seen in Figure 6.4.

Attacker

Attacker

Verifier

Verifier

User Wallet

User Wallet

Start Authentication

Authorization Request

Authorization Request e.g. via phishing

User authenticates request

POST Authorization Response (vp_token)

200 OK

Logged in as honest user

Figure 6.4: Authentication attack against the cross device flow.

50

6.2 OpenID for Verifiable Presentations

6.2.2 Session Integrity Attack

One way to invoke a wallet application in the OID4VP specification is to use the custom scheme
openid4vp:// (Section 7 of [19]). As explained above (Section 6.1.1), there is typically no restriction
on which application can register for such a custom scheme, which means that the authorization
request can leak to the attacker’s application. If this happens, the attacker can use the nonce from the
authorization request to generate a presentation with a credential containing the attacker’s identity.
The malicious application then sends the presentation either to the direct-post endpoint or via the
redirect URI fragment to the verifier. If the direct-post endpoint responds with a redirect URI, the
application opens the URL in the browser. This means that the attack works with all analyzed
response modes of OID4VP. The attack described here can be seen in Figure 6.5.

User Device

Verifier

Verifier

Browser

Browser

Attacker Wallet

Attacker Wallet

User starts authentication

Authorization Request
(response_mode, nonce)

Authorization Request

Create presentation
with attacker's identity

opt response_mode=fragment

Authorization Response
(vp_token)

Authorization Response (vp_token)

response_mode=direct_post

POST Authorization Response (vp_token)

redirect_uri (response_code)

Open redirect_uri

Figure 6.5: Session integrity attack against OID4VP.

51

7 Contributions to Standards

This chapter provides an overview of this work’s contributions to the standards. The two main
contributions to the standards were the presentation of results at the OAuth Security Workshop
2023 and the submission of issues. In total, five issues were raised, one of which resulted in a pull
request that changed the OID4VCI specification.

The OAuth Security Workshop is one of the most important conferences when it comes to OAuth 2.0
and OpenID Connect security, with attendees from all over the world. The presentation of this
work at the OAuth Security Workshop 2023 included a summary of the analyzed protocols, an
introduction to the formal analysis technique, and the discovered attacks as described in Chapter 6.
The audience included some of the authors of the specifications. The discovered attacks were
acknowledged as problems that need to be discussed further in order to find mitigations that can be
incorporated into the specifications. In particular, the use of custom schemes was discussed and
possible fixes were debated.

7.1 Issues

This section describes the five issues raised during this work on the formal analysis of the OID4VC
protocols and indicates the status of each issue at the time of writing. In addition, we have
commented on two issues regarding the OID4VP cross device flow and the pre-authorized code
flow.

7.1.1 Allowing Arbitrary Grant Types

The OID4VCI specification leaves open which grant types can be used. If the Implicit Grant is used
without a claimed redirect URL, the access token could fall into the hands of the attacker because
there is no guarantee that the user will be redirected back to the wallet they started with.

The issue was resolved by referring to the OAuth 2.0 Security Best Current Practice [14] document,
which states that the Implicit Grant should not be used.

URL: https://bitbucket.org/openid/connect/issues/1939

53

https://bitbucket.org/openid/connect/issues/1939

7 Contributions to Standards

7.1.2 Is the Acceptance Token One-Time Use?

The OID4VCI specification was unclear as to whether the acceptance token (now transaction
ID) was a one-time use or not. The response to this issue is that the acceptance token should
be invalidated after the credential is successfully issued, but not if there is an error response at
the deferred credential endpoint. Mentioning this is important to avoid security vulnerabilities
in implementations. The result of this issue was a pull request to update the specification
(https://bitbucket.org/openid/connect/pull-requests/571/).

URL: https://bitbucket.org/openid/connect/issues/1940

7.1.3 Binding Response Code to Session

The OID4VP specification provides the ability to use the direct_post response mode along with a
redirect URI containing a cryptographically secure nonce (response code). It is unclear from the
specification whether the response code is bound to a browser session or not. It is really important
to bind it to a browser session, because otherwise an attacker could violate the Session Integrity
security property by starting a login flow and sending the redirect URI with the response code to a
victim in a phishing attack. The assumption here is that anyone who opens the redirect URI with
the response code is logged in to the verifier because it is not bound to a session. The flow of the
attack can be seen in Figure 7.1. This issue was also discussed extensively with some of the authors
at the OAuth Security Workshop 2023, and the result was that the response code needs to be bound
to a browser session. At the time of writing, this solution is not documented on the issue.

URL: https://github.com/openid/OpenID4VP/issues/27

Attacker

Attacker

Attacker Browser

Attacker Browser

Attacker Wallet

Attacker Wallet

User Browser

User Browser

Verifier

Verifier

Start authentication

Authorization Request

Authorization Request

POST Authorization Response

200 OK redirect_uri (response_code)

redirect_uri (response_code)

redirect_uri (response_code) e.g. via phishing attack

redirect_uri (response_code)

User is logged in as the attacker

Figure 7.1: Session integrity attack against OID4VP same device flow with response code.

54

https://bitbucket.org/openid/connect/pull-requests/571/
https://bitbucket.org/openid/connect/issues/1940
https://github.com/openid/OpenID4VP/issues/27

7.1 Issues

7.1.4 Checks in Section 11.2

Section 11.2 of the OID4VCI specification [16] states that certain checks should be performed upon
receipt of a credential offer. There is no further information about the checks in that section, nor is
there a reference to another resource. One of the authors responded that checking the credential
issuer means obtaining metadata and deciding whether the issuer is trustworthy or not. This is not
explicitly stated in the specification and could be improved, but there is no further information on
this issue at the time of writing this thesis.

URL: https://github.com/openid/OpenID4VCI/issues/50

7.1.5 Lifetime of an Authorization Code / Pre-Authorized Code

This issue came up during a discussion at the OAuth Security Workshop 2023. Section 6.3 of the
OID4VCI specification [16] introduces the “authorization_pending” error response, which means
that the wallet must use polling to see when the issuer is ready to issue the credential. This means
that the authorization code is long-lived, which is against the recommendation in RFC 6749 [9]
section 10.5. The same is true for the pre-authorized code, but the problem is worse there because it
can be easily leaked since the credential offer typically uses a custom scheme or the user posts the
QR code to their social media thinking the transaction is complete when it is not. To improve the
security of the protocol, the lifetime of the authorization code and the pre-authorized code should
be as short as possible. At the time of writing, there is an ongoing discussion with no result yet.

URL: https://github.com/openid/OpenID4VCI/issues/60

7.1.6 direct_post response mode, response with a redirect_uri, and protection
against session fixation

This issue discusses the use of the redirect URI in the OID4VP cross device flow. We did not create
this issue, but commented on it because from a security perspective it does not make sense to have
the user enter a response code on their laptop that is displayed in the smartphone’s browser. Such a
code is easily leaked if the user starts the flow on a malicious website, because the user is supposed
to enter the code on a different device. This issue has not been resolved at the time of writing.

URL: https://github.com/openid/OpenID4VP/issues/25

7.1.7 Make pre-authorized code flow optional?

This issue was not created by us, but is based on the results of this work presented at the OAuth
Security Workshop 2023. This issue discusses whether the pre-authorized code flow should be used
in use cases that require a high level of security, because even with the user PIN there are possible
attacks as described in Section 6.1.1. We commented on this issue because there is a comment
saying that wallet attestation would prevent this attack, although this is not true. Furthermore, we
explained the discussed attack in more detail with a sequence diagram.

URL: https://github.com/vcstuff/oid4vc-haip-sd-jwt-vc/issues/60

55

https://github.com/openid/OpenID4VCI/issues/50
https://github.com/openid/OpenID4VCI/issues/60
https://github.com/openid/OpenID4VP/issues/25
https://github.com/vcstuff/oid4vc-haip-sd-jwt-vc/issues/60

8 Summary and Outlook

Within the scope of this thesis, a rigorous formal security analysis was performed on both the
OpenID for Verifiable Credential Issuance protocol and the OpenID for Verifiable Presentations
protocol. Under the assumption of a vigilant user, we were able to prove the security of both
protocols. More formally, we have proven that the authentication security property and the session
integrity security property hold in the limits of the formal model. This provides very strong security
guarantees for the two most important protocols in the OpenID for Verifiable Credentials protocol
family. Since these protocols are part of the European Digital Identity Framework, this work will
improve the security of every future wallet in the European Union.

However, the assumption that users are attentive may not always be realistic in practice. Phishing
attacks, for example, cause economic damage of several million euro every year in Germany alone.1
Under the assumption of a non-attentive user, five attacks were discovered during the formal proof
in this thesis. Three of them are in the OID4VCI protocol, two of which are violations of the
authentication security property and one of which is a violation of the session integrity security
property. In the OID4VP protocol we found one violation of the authentication security property
and one violation of the session integrity security property. The attacks were disclosed to the
working group and possible mitigation strategies were discussed. Discussions took place online in
issues and at the OAuth Security Workshop 2023. In the course of this work, five issues were filed
and two others were actively discussed to improve the clarity and to strengthen the defenses of the
analyzed protocols. Overall, there have been substantial contributions to the specifications that have
resulted in lasting improvements in security and quality.

Outlook

The assumption of an attentive user is a strong assumption that often does not hold true in practice.
For this reason, protocols or operating system components should be modified to ensure secure
operation even when the user is not paying attention. For example, in the future there may be
changes in browsers or operating systems to make cross device flows more secure against phishing
attacks. One promising technology to address this issue is the Federated Credential Management
API2 in the Chrome browser.

As the OpenID for Verifiable Credentials protocol family grows in popularity, it is important to
perform formal security analysis on the other protocols that have not yet been analyzed. One such
protocol would be OpenID for Verifiable Presentations over BLE.

1https://www.bsi.bund.de/dok/12872520
2https://developer.chrome.com/en/docs/privacy-sandbox/fedcm/

57

https://www.bsi.bund.de/dok/12872520
https://developer.chrome.com/en/docs/privacy-sandbox/fedcm/

Bibliography

[1] C. Bauer. “Formal analysis of self-issued OpenID providers”. masterThesis. 2022. isbn:
9781817794047. doi: 10.18419/opus-12398. url: http://elib.uni-stuttgart.de/handle/
11682/12417 (visited on 06/23/2023) (cit. on pp. 32, 45, 80).

[2] S. Curran, A. Philipp, H. Yildiz, S. Curren, V. M. Jurado. AnonCreds Specification. url:
https://hyperledger.github.io/anoncreds-spec/ (visited on 09/13/2023) (cit. on pp. 18,
21).

[3] S. Curren, T. Looker, O. Terbu. DIDComm Messaging v2.0. url: https://identity.

foundation/didcomm-messaging/spec/v2.0/ (visited on 09/13/2023) (cit. on p. 21).

[4] D. Fett. “An expressive formal model of the web infrastructure”. doctoralThesis. 2018. doi:
10.18419/opus-10197. url: http://elib.uni-stuttgart.de/handle/11682/10214 (visited on
05/12/2023) (cit. on pp. 31, 61).

[5] D. Fett, R. Kuesters, G. Schmitz. The Web SSO Standard OpenID Connect: In-Depth
Formal Security Analysis and Security Guidelines. arXiv:1704.08539. type: article. arXiv,
Apr. 27, 2017. arXiv: 1704.08539[cs]. url: http://arxiv.org/abs/1704.08539 (visited on
08/31/2023) (cit. on p. 29).

[6] D. Fett, R. Küsters, G. Schmitz. “An Expressive Model for the Web Infrastructure: Definition
and Application to the Browser ID SSO System”. In: 2014 IEEE Symposium on Security
and Privacy. 2014 IEEE Symposium on Security and Privacy. ISSN: 2375-1207. May 2014,
pp. 673–688. doi: 10.1109/SP.2014.49 (cit. on p. 29).

[7] D. Fett, R. Küsters, G. Schmitz. “The Web Infrastructure Model (WIM)”. In: (). url:
https://www.sec.uni-stuttgart.de/research/wim/WIM_V1.0.pdf (visited on 05/15/2023)
(cit. on pp. 3, 4, 18, 29, 31, 32, 61, 63, 64, 69, 75, 80, 89, 91–94, 96–103).

[8] D. Fett, K. Yasuda, B. Campbell. Selective Disclosure for JWTs (SD-JWT). Internet Draft draft-
ietf-oauth-selective-disclosure-jwt-05. June 30, 2023. 84 pp. url: https://datatracker.
ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt (visited on 09/15/2023) (cit. on
p. 18).

[9] D. Hardt. The OAuth 2.0 Authorization Framework. Request for Comments RFC 6749. Oct.
2012. 76 pp. doi: 10.17487/RFC6749. url: https://datatracker.ietf.org/doc/rfc6749
(visited on 09/10/2023) (cit. on pp. 22, 24, 55).

[10] F. Helmschmidt. “Security analysis of the Grant Negotiation and Authorization Protocol”.
masterThesis. 2022. isbn: 9781809048349. doi: 10.18419/opus-12203. url: http://elib.
uni-stuttgart.de/handle/11682/12220 (visited on 06/23/2023) (cit. on p. 80).

[11] P. Hosseyni, R. Küsters, T. Würtele. “Formal Security Analysis of the OpenID Financial-grade
API 2.0”. In: (). url: https://openid.net/wordpress-content/uploads/2022/12/Formal-
Security-Analysis-of-FAPI-2.0_FINAL_2022-10.pdf (visited on 09/27/2023) (cit. on pp. 62,
83, 84, 86).

59

https://doi.org/10.18419/opus-12398
http://elib.uni-stuttgart.de/handle/11682/12417
http://elib.uni-stuttgart.de/handle/11682/12417
https://hyperledger.github.io/anoncreds-spec/
https://identity.foundation/didcomm-messaging/spec/v2.0/
https://identity.foundation/didcomm-messaging/spec/v2.0/
https://doi.org/10.18419/opus-10197
http://elib.uni-stuttgart.de/handle/11682/10214
https://arxiv.org/abs/1704.08539 [cs]
http://arxiv.org/abs/1704.08539
https://doi.org/10.1109/SP.2014.49
https://www.sec.uni-stuttgart.de/research/wim/WIM_V1.0.pdf
https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt
https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt
https://doi.org/10.17487/RFC6749
https://datatracker.ietf.org/doc/rfc6749
https://doi.org/10.18419/opus-12203
http://elib.uni-stuttgart.de/handle/11682/12220
http://elib.uni-stuttgart.de/handle/11682/12220
https://openid.net/wordpress-content/uploads/2022/12/Formal-Security-Analysis-of-FAPI-2.0_FINAL_2022-10.pdf
https://openid.net/wordpress-content/uploads/2022/12/Formal-Security-Analysis-of-FAPI-2.0_FINAL_2022-10.pdf

Bibliography

[12] ISO/IEC 18013-5:2021. url: https://www.iso.org/standard/69084.html (visited on
09/13/2023) (cit. on pp. 18, 21).

[13] P. Kasselman, D. Fett, F. Skokan. Cross-Device Flows: Security Best Current Practice.
Internet Draft draft-ietf-oauth-cross-device-security-02. July 10, 2023. 40 pp. url: https:
//datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/02 (visited on
09/26/2023) (cit. on pp. 32, 45, 50, 80).

[14] T. Lodderstedt, J. Bradley, A. Labunets, D. Fett. OAuth 2.0 Security Best Current Practice.
Internet Draft draft-ietf-oauth-security-topics-23. June 5, 2023. 62 pp. url: https://

datatracker.ietf.org/doc/draft-ietf-oauth-security-topics-23 (visited on 09/09/2023)
(cit. on pp. 22, 24, 25, 53).

[15] T. Lodderstedt, B. Campbell, N. Sakimura, D. Tonge, F. Skokan. OAuth 2.0 Pushed Authoriza-
tion Requests. Request for Comments RFC 9126. Sept. 2021. 18 pp. doi: 10.17487/RFC9126.
url: https://datatracker.ietf.org/doc/rfc9126 (visited on 08/30/2023) (cit. on p. 24).

[16] T. Lodderstedt, K. Yasuda, T. Looker. “OpenID for Verifiable Credential Issuance”. In:
(May 18, 2023). Git commit: e64463b017a31fcbda5a2ebc8571edb1bf07720d. url: https:
//openid.bitbucket.io/connect/openid-4-verifiable-credential-issuance-1_0.html

(visited on 09/11/2023) (cit. on pp. 3, 4, 18, 22, 31, 46, 55).

[17] N. Sakimura, J. Bradley, N. Agarwal. Proof Key for Code Exchange by OAuth Public
Clients. Request for Comments RFC 7636. Sept. 2015. 20 pp. doi: 10.17487/RFC7636. url:
https://datatracker.ietf.org/doc/rfc7636 (visited on 09/08/2023) (cit. on pp. 24, 48).

[18] M. Sporny, G. Noble, D. Longley, D. C. Burnett, B. Zundel, K. D. Hartog. Verifiable
Credentials Data Model v1.1. Mar. 3, 2022. url: https://www.w3.org/TR/2022/REC-vc-
data-model-20220303/ (visited on 09/13/2023) (cit. on pp. 18, 21).

[19] O. Terbu, T. Lodderstedt, K. Yasuda, T. Looker. “OpenID for Verifiable Presentations”.
In: (Mar. 25, 2023). Git commit: 11157695d140f4c47f742f5d82e25283b90dd952. url:
https://openid.net/specs/openid-4-verifiable-presentations-1_0-17.html (visited on
09/11/2023) (cit. on pp. 3, 4, 18, 24, 25, 32, 50, 51).

[20] The European Digital Identity Wallet Architecture and Reference Framework. Jan. 1, 2023.
url: https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-
wallet-architecture-and-reference-framework (visited on 09/15/2023) (cit. on pp. 3, 4,
18).

All links were last followed on September 27, 2023.

The icons in Figure 1.1, Figure 4.1, and Figure 4.2 are taken from uxwing.com.

60

https://www.iso.org/standard/69084.html
https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/02
https://datatracker.ietf.org/doc/draft-ietf-oauth-cross-device-security/02
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics-23
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics-23
https://doi.org/10.17487/RFC9126
https://datatracker.ietf.org/doc/rfc9126
https://github.com/openid/OpenID4VCI/blob/e64463b017a31fcbda5a2ebc8571edb1bf07720d/openid-4-verifiable-credential-issuance-1_0.md
https://openid.bitbucket.io/connect/openid-4-verifiable-credential-issuance-1_0.html
https://openid.bitbucket.io/connect/openid-4-verifiable-credential-issuance-1_0.html
https://doi.org/10.17487/RFC7636
https://datatracker.ietf.org/doc/rfc7636
https://www.w3.org/TR/2022/REC-vc-data-model-20220303/
https://www.w3.org/TR/2022/REC-vc-data-model-20220303/
https://github.com/openid/OpenID4VP/blob/11157695d140f4c47f742f5d82e25283b90dd952/openid-4-verifiable-presentations-1_0.md
https://openid.net/specs/openid-4-verifiable-presentations-1_0-17.html
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://uxwing.com/

A Verifiable Credentials Web System

The following algorithms model the OpenID for Verifiable Credential Issuance and the OpenID
for Verifiable Presentations protocols. The model is based on the OAuth 2.0 and OpenID Connect
model from the dissertation "An expressive formal model of the web infrastructure" by Daniel Fett [4].

These protocols are modeled in a Verifiable Credentials web system VCWS𝑛
= (W , S , script, 𝐸0).

The system W = Hon ∪ Net consists of a network attacker process in Net. Hon =

Issuers ∪ Wallets ∪ Verifiers ∪ B contains a finite set of issuers Issuers, a finite set of wal-
lets Wallets, a finite set of verifiers Verifiers, and a finite set of browsers B. The processes are
described in more detail in the following sections. There are no DNS servers explicitly modeled
because they are subsumed by the network attacker. The set of scripts S and the mapping script can
be seen in Table A.1. The set 𝐸0 is defined as in Definition 42 of [7].

𝑠 ∈ S script(𝑠) Defined in
script_issuer_form script_issuer_form Algorithm 3
script_wallet_index script_wallet_index Algorithm 5
script_wallet_form script_wallet_form Algorithm 6

script_verifier_get_fragment script_verifier_get_fragment Algorithm 11
script_verifier_index script_verifier_index Algorithm 12

Table A.1: List of scripts in S with their string representation and definitions.

In the following list there are definitions of functions needed for the model:

• Let userPinOfId : ID→ N associate each user ID with a unique nonce that serves as a user
PIN sent out-of-band (e.g., via email).

• Let browserOfWallet : Wallets→ B match every wallet to exactly one browser.

• Let HASH : TN → N be a cryptographically secure hash function.

• Let GETURL(tree, docnonce) be defined as in B.1.1 of [4].

• In a run 𝜌 of a Verifiable Credential web system VCWS𝑛, within a relation of a wallet 𝑤
we say that validateRequest(𝑥) ≡ ⊤ iff there exists a configuration (𝑆, 𝐸, 𝑁) that contains a
state with 𝑥 ∈ 𝑆(𝑏).authStarted and 𝑏 = browserOfWallet(𝑤).

Additionally, WalletDoms = {𝑑 |𝑑 ∈ dom(𝑤) ∧ 𝑤 ∈ Wallets} is the set of domains used by wallet
processes.

61

A Verifiable Credentials Web System

A.1 Identities and Secrets

This section outlines the initialization process for identities, keys, and secrets in the Verifiable
Credentials web system VCWS𝑛. The following subsections are taken from Section 4 in [11] and
customized to be suitable for the VCWS𝑛.

A.1.1 Identities

Identities consist, similar to email addresses, of a user name and a domain part. For our model, this
is defined as follows:
Definition A.1.1
An identity 𝑖 is a term of the form ⟨name, domain⟩ with name ∈ S and domain ∈ Doms. Let ID be
the finite set of identities. We say that an id is governed by the DY process to which the domain of the
id belongs. This is formally captured by the mappings governor : ID→W , ⟨name, domain⟩ ↦−→
dom−1(domain) and ID𝑦 := governor−1(𝑦).

A.1.2 Keys and Secrets

The set N of nonces is partitioned into disjoint sets, an infinite set 𝑁 , and finite sets 𝐾𝑇𝐿𝑆 , 𝐾𝑠𝑖𝑔𝑛,
and Passwords:

N = 𝑁 ⊎ 𝐾𝑇𝐿𝑆 ⊎ 𝐾𝑠𝑖𝑔𝑛 ⊎ Passwords

These sets are used as follows:

• The set 𝑁 contains the nonces that are available for the DY processes

• The set 𝐾𝑇𝐿𝑆 contains the keys that will be used for TLS encryption. Let tlskey : Doms→
𝐾𝑇𝐿𝑆 be an injective mapping that assigns a (different) private key to every domain. For an
atomic DY process 𝑝 we define tlskeys𝑝 = ⟨{⟨𝑑, tlskey(𝑑)⟩|𝑑 ∈ dom(𝑝)}⟩ (i.e., a sequence
of pairs).

• The set 𝐾𝑠𝑖𝑔𝑛 contains the keys that will be used by issuers to sign credentials and by wallets
to sign presentations. Let signkey : Issuers ∪Wallets→ 𝐾𝑠𝑖𝑔𝑛 be an injective mapping that
assigns a (different) signing key to every issuer and wallet.

• The set of Passwords is the set of passwords (secrets) the browsers share with servers. These
are the passwords the users use to log in. Let secretOfID : ID→ Passwords be a bĳective
mapping that assigns a password to each identity.

A.1.3 Passwords

Definition A.1.2
Let ownerOfSecret : Passwords → B be a mapping that assigns to each password a
browser which owns this password. Similarly, we define ownerOfID : ID → B as 𝑖 ↦−→
ownerOfSecret(secretOfID(𝑖)), which assigns to each identity the browser that owns this identity
(i.e., this identity belongs to the browser).

62

A.1 Identities and Secrets

A.1.4 Web Browsers

Web browser processes (i.e., processes 𝑏 ∈ B) are modeled as described in [7]. Before defining
additional constraints on the initial states of web browsers, we introduce the following set (for some
process 𝑝):

Secrets𝑏,𝑝 = {𝑠 |𝑏 = ownerOfSecret(𝑠) ∧ (∃𝑖 : 𝑠 = secretOfID(𝑖) ∧ 𝑖 ∈ ID𝑝)}

Definition A.1.3 (Initial Web Browser State for VCWSn)
The initial state of a web browser process 𝑏 ∈ B follows the Definition 33 in [7], with the following
additional constraints:

• 𝑠𝑏0 .ids ≡ ⟨{𝑖 |𝑏 = ownerOfID(𝑖)}⟩

• 𝑠𝑏0 .secrets contains an entry ⟨⟨𝑑, S⟩, ⟨Secrets𝑏,𝑝⟩⟩ for each 𝑝 ∈ Issuer∪{𝑤 ∈ Wallets|𝑏 =

browserOfWallet(𝑤)} and every domain 𝑑 ∈ dom(𝑝) (and nothing else), i.e.,

𝑠𝑏0 .secrets ≡ ⟨{⟨⟨𝑑, S⟩, ⟨Secrets𝑏,𝑝⟩⟩|∃𝑝, 𝑑 : 𝑝 ∈ Issuer
∪ {𝑤 ∈ Wallets|𝑏 = browserOfWallet(𝑤)} ∧ 𝑑 ∈ dom(𝑝)}⟩

• 𝑠𝑏0 .keyMapping ≡ ⟨{⟨𝑑, pub(tlskey(𝑑))⟩|𝑑 ∈ Doms}⟩

63

A Verifiable Credentials Web System

A.2 Issuers

An issuer 𝑖 ∈ Issuers is a web server modeled as an atomic DY process (𝐼 𝑖 , 𝑍 𝑖 , 𝑅𝑖 , 𝑠𝑖0) with the
address 𝐼 𝑖 := addr(𝑖). The following definition defines the states 𝑍 𝑖 of 𝑖 and the initial state 𝑠𝑖0
of 𝑖.

Definition A.2.1
A state 𝑠 ∈ 𝑍 𝑖 of an issuer 𝑖 is a term of the form

⟨pendingDNS, pendingRequests,DNSaddress, keyMapping, tlskeys, corrupt,
codes, atokens, signingKey⟩

with pendingDNS, pendingRequests, DNSaddress, keyMapping, tlskeys, corrupt as defined in
Definition 43 in [7], codes ∈

[
N × TN

]
, atokens ∈

[
N × TN

]
and signingKey ∈ N .

An initial state 𝑠𝑖0 of 𝑖 is a state of 𝑖 with 𝑠𝑖0.pendingDNS = ⟨⟩, 𝑠𝑖0.pendingRequests = ⟨⟩,
𝑠𝑖0.DNSaddress ∈ IPs, 𝑠𝑖0.keyMapping = ⟨{⟨𝑑, pub(tlskey(𝑑))⟩|𝑑 ∈ Doms}⟩, 𝑠𝑖0.tlskeys =

tlskeys𝑖 , 𝑠𝑖0.corrupt = ⊥, 𝑠𝑖0.codes = ⟨⟩, 𝑠
𝑖
0.atokens = ⟨⟩ and 𝑠𝑖0.signingKey = signkey(𝑖).

The relation of an issuer 𝑖 is based on the generic HTTPS server as defined in [7]. The following
algorithms 1 to 3 overwrite and extend the generic HTTPS server. Methods that are not overwritten
are defined as in [7]. Table A.2 shows a list of placeholders used by an issuer.

Placeholder Usage
a1 new pre-authorized code
a2 new authorization code
a3 new access token
a4 new c_nonce
a5 new transaction ID

Table A.2: List of placeholders used by an issuer.

64

A.2 Issuers

Algorithm 1 Relation of an issuer 𝑅𝑖: Processing HTTPS requests.
1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: let preAuthCode := urn:ietf:params:oauth:grant-type:pre-authorized_code
3: if 𝑚.path ≡ / then → Start pre-authorized code flow
4: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨script_issuer_form,

↩→ ⟨/startCredOffer⟩⟩⟩, 𝑘)
↩→ → Reply with script_issuer_form in pre-authorized code mode

5: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
6: else if 𝑚.path ≡ /startCredOffer ∧ 𝑚.method ≡ POST then

↩→ → Start credential offer endpoint
7: if m.body[username] ≡ ⟨⟩ ∨ m.body[password] ≡ ⟨⟩ ∨ m.body[wallet] ≡ ⟨⟩ then
8: stop
9: let username := m.body[username]

10: let wallet := m.body[wallet]
11: if 𝑚.body[password] . secretOfID(username) then
12: stop
13: let useUserPin← {⊤,⊥}
14: let preAuthorizedCode := a1
15: let 𝑠′.codes := 𝑠′.codes +⟨⟩ ⟨preAuthorizedCode, ⟨useUserPin, username⟩⟩
16: let credOffer := ⟨m.host, preAuthorizedCode, useUserPin⟩
17: let parameters := ⟨credential_offer, credOffer⟩
18: let credentialOfferURL := ⟨URL, S,wallet, /vci/credentialOffer, parameters,⊥⟩
19: let m′ := encs (⟨HTTPResp, 𝑚.nonce, 303, ⟨⟨Location, credentialOfferURL⟩⟩, ⟨⟩⟩, 𝑘)

↩→ → Use status code 303 (see other) as recommended by the OAuth 2.0 Security BCP
20: let leak := ⟨LEAK, credentialOfferURL⟩ → Model a possible leak via custom scheme by

sending an unencrypted message with the credential offer URL
21: let a′← IPs
22: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩, ⟨ 𝑓 , 𝑎′, leak⟩⟩, 𝑠′
23: else if 𝑚.path ≡ /authentication then
24: if m.method ≡ GET ∨ (m.method ≡ POST ∧ (m.body[username] ≡ ⟨⟩

↩→ ∨ m.body[password] ≡ ⟨⟩)) then
25: let data := m.parameters
26: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨script_issuer_form,

↩→ ⟨/authentication, data⟩⟩⟩, 𝑘)
↩→ → Reply with script_issuer_form in authorization_code mode

27: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
28: else if m.method ≡ POST then
29: if 𝑚.headers[Origin] . ⟨𝑚.host, S⟩ then
30: stop →Without the origin check the session integrity property would break because

an attacker script could use this endpoint
31: let username := m.body[username]
32: if m.body[client_id] ≡ ⟨⟩ ∨ m.body[redirect_uri] ≡ ⟨⟩

↩→ ∨ m.body[code_challenge] ≡ ⟨⟩ then
33: stop
34: let clientID := m.body[client_id]
35: let redirectUri := m.body[redirect_uri]
36: let codeChallenge := m.body[code_challenge]
37: if 𝑚.body[password] . secretOfID(username) then
38: stop

65

A Verifiable Credentials Web System

39: let authorizationCode := a2
40: let 𝑠′.codes := 𝑠′.codes +⟨⟩ ⟨authorizationCode, ⟨clientID, redirectUri,

↩→ codeChallenge, username⟩⟩
41: let redirectUri.parameters := redirectUri.parameters +⟨⟩ ⟨𝑐𝑜𝑑𝑒, authorizationCode⟩
42: let redirectUri.parameters := redirectUri.parameters +⟨⟩ ⟨𝑖𝑠𝑠, 𝑚.host⟩

↩→ → Issuer identifier to prevent mix-up attacks recommended by the OAuth 2.0 Security BCP
43: let redirectUri.parameters := redirectUri.parameters +⟨⟩ ⟨𝑠𝑡𝑎𝑡𝑒,m.body[state]⟩
44: let m′ := encs (⟨HTTPResp, 𝑚.nonce, 303, ⟨⟨Location, redirectUri⟩⟩, ⟨⟩⟩, 𝑘)

↩→ → Use status code 303 (see other) as recommended by the OAuth 2.0 Security BCP
↩→ → This URL does not leak because it uses a claimed URL

45: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′

46: else if 𝑚.path ≡ /token ∧ 𝑚.method ≡ POST then
47: if m.body[client_id] ≡ ⟨⟩ then
48: stop
49: if m.body[grant_type] ≡ preAuthCode then
50: let code := m.body[pre-authorized_code]
51: let codeInfo := s′.codes[code]
52: if codeInfo ≡ ⟨⟩ then
53: stop
54: let userPin := m.body[user_pin]
55: if codeInfo.1 ≡ ⊤ ∧ userPin . userPinOfId(codeInfo.2) then → Check user pin
56: stop
57: let username := codeInfo.2
58: else if m.body[grant_type] ≡ authorization_code then
59: if m.body[redirect_uri] ≡ ⟨⟩ ∨ m.body[code_verifier] ≡ ⟨⟩ then
60: stop
61: let clientID := m.body[client_id]
62: let redirectURI := m.body[redirect_uri]
63: let codeVerifier := m.body[code_verifier]
64: let code := m.body[code]
65: let codeInfo := s′.codes[code]
66: if codeInfo ≡ ⟨⟩ ∨ codeInfo.1 . clientID ∨ codeInfo.2 . redirectURI

↩→ ∨ codeInfo.3 . HASH(codeVerifier) then
67: stop
68: let username := codeInfo.4
69: let s′.codes := s′.codes − code
70: let accessToken := a3
71: let cNonce := a4
72: let s′.atokens := s′.atokens +⟨⟩ ⟨accessToken, ⟨⟨username, username⟩, ⟨c_nonce, cNonce⟩⟩⟩
73: let body := ⟨⟨access_token, accessToken⟩, ⟨c_nonce, cNonce⟩⟩
74: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, body⟩, 𝑘)
75: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
76: else if 𝑚.path ≡ /credential ∧ 𝑚.method ≡ POST then
77: let authHeader := m.header[Authorization]
78: if authHeader ≡ ⟨⟩ ∨ authHeader.1 . BEARER ∨ 𝑠′.atokens[authHeader.2] ≡ ⟨⟩ then
79: stop
80: let tokenInfo := 𝑠′.atokens[authHeader.2]
81: let proof := m.body[proof]

66

A.2 Issuers

82: let aud, cNonce, pubKey such that
↩→ ⟨aud, cNonce, pubKey⟩ ≡ extractmsg(proof)
↩→ if possible; otherwise stop

83: if tokenInfo[c_nonce] . cNonce ∨ 𝑚.host . 𝑎𝑢𝑑 ∨ checksig(proof , pubKey) ≡ ⊥ then
84: stop
85: let username := tokenInfo[username]
86: let issueCred← {⊤,⊥}
87: if issueCred ≡ ⊤ then
88: let 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 := BUILD_CREDENTIAL(𝑠′, username, 𝑚.host, pubKey)
89: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨⟨credential, credential⟩⟩⟩, 𝑘)
90: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
91: else
92: let transactionId := a5
93: let tokenInfo[transaction_ids] := ⟨⟨transactionId, ⟨public_key, pubKey⟩⟩⟩
94: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨⟨transaction_id, transactionId⟩⟩⟩, 𝑘)
95: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′

96: else if 𝑚.path ≡ /batchCredential ∧ 𝑚.method ≡ POST then
97: let authHeader := m.header[Authorization]
98: if authHeader ≡ ⟨⟩ ∨ authHeader.1 . BEARER ∨ 𝑠′.atokens[authHeader.2] ≡ ⟨⟩ then
99: stop
100: let tokenInfo := 𝑠′.atokens[authHeader.2]
101: let credResp := ⟨⟩
102: for proof ∈ 𝑚.body[credential_requests] do
103: let aud, cNonce, pubKey such that

↩→ ⟨aud, cNonce, pubKey⟩ ≡ extractmsg(proof)
↩→ if possible; otherwise stop

104: if tokenInfo[c_nonce] . cNonce ∨ 𝑚.host . 𝑎𝑢𝑑 ∨ checksig(proof , pubKey) ≡ ⊥ then
105: stop
106: let username := tokenInfo[username]
107: let issueCred← {⊤,⊥}
108: if issueCred ≡ ⊤ then
109: let 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 := BUILD_CREDENTIAL(𝑠′, username, 𝑚.host, pubKey)
110: let credResp[credentials] := credResp[credentials] +⟨⟩ credential
111: else
112: let transactionId := a5
113: let tokenInfo[transaction_ids] := tokenInfo[transaction_ids] +⟨⟩

↩→ ⟨transactionId, ⟨public_key, pubKey⟩⟩
114: let credResp[transaction_ids] := credResp[transaction_ids] +⟨⟩ transactionId
115: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨⟨credential_responses, credResp⟩⟩⟩, 𝑘)
116: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
117: else if 𝑚.path ≡ /deferredCredential ∧ 𝑚.method ≡ POST then
118: let authHeader := m.header[Authorization]
119: if authHeader ≡ ⟨⟩ ∨ authHeader.1 . BEARER ∨ 𝑠′.atokens[authHeader.2] ≡ ⟨⟩ then
120: stop
121: let tokenInfo := 𝑠′.atokens[authHeader.2]
122: let transactionID := 𝑚.body[transaction_id]
123: if transactionID ∉ tokenInfo[transaction_ids] then
124: stop
125: let pubKey := tokenInfo[transaction_ids] [transactionID] .public_key
126: let tokenInfo[transaction_ids] := tokenInfo[transaction_ids] − transactionID

↩→ → Transaction ID can only be used once to obtain a credential

67

A Verifiable Credentials Web System

127: let 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 := BUILD_CREDENTIAL(𝑠′, tokenInfo[username], 𝑚.host, pubKey)
128: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨⟨credential, credential⟩⟩⟩, 𝑘)
129: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′

130: stop

Algorithm 2 Relation of an issuer 𝑅𝑖: Function to build and sign a credential.
1: function BUILD_CREDENTIAL(s′, username, iss, pubKey)
2: let credentialBody := ⟨username, iss, pubKey⟩
3: let credential := sig(credentialBody, 𝑠′.signingKey)
4: return credential

Algorithm 3 Relation of script_issuer_form.
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let url := GETURL(tree, docnonce)
2: let url′ := ⟨URL, S, url.host, scriptstate.1, ⟨⟩, ⟨⟩⟩
3: let formData := scriptstate.2
4: let username← ids
5: let password← secrets
6: let wallet←WalletDoms → Let the user choose their wallet
7: let formData[username] := username
8: let formData[password] := password
9: let formData[wallet] := wallet

10: let command := ⟨START, url′, formData⟩
11: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

68

A.3 Wallets

A.3 Wallets

An wallet 𝑤 ∈ Wallets is a web server modeled as an atomic DY process (𝐼𝑤 , 𝑍𝑤 , 𝑅𝑤 , 𝑠𝑤0) with the
address 𝐼𝑤 := addr(𝑤). The following definition defines the states 𝑍𝑤 of w and the initial state 𝑠𝑤0
of 𝑤.

Definition A.3.1
A state 𝑠 ∈ 𝑍𝑤 of a wallet 𝑤 is a term of the form

⟨pendingDNS, pendingRequests,DNSaddress, keyMapping, tlskeys, corrupt,
credentials, holderKey, userPins, sessions, transactionIds⟩

with pendingDNS, pendingRequests, DNSaddress, keyMapping, tlskeys, corrupt as defined in
Definition 43 in [7], credentials ∈ TN , holderKey ∈ N , userPins ∈

[
Doms ×N

]
, sessions ∈[

N × TN
]
, and transactionIds ∈ TN .

An initial state 𝑠𝑤0 of 𝑤 is a state of 𝑤 with 𝑠𝑤0 .pendingDNS = ⟨⟩, 𝑠𝑤0 .pendingRequests = ⟨⟩,
𝑠𝑤0 .DNSaddress ∈ IPs, 𝑠𝑤0 .keyMapping = ⟨{⟨𝑑, pub(tlskey(𝑑))⟩|𝑑 ∈ Doms}⟩, 𝑠𝑤0 .tlskeys =

tlskeys𝑤 , 𝑠𝑤0 .corrupt = ⊥, 𝑠𝑤0 .credentials = ⟨⟩, 𝑠𝑤0 .holderKey = signkey(𝑤),
𝑠𝑤0 .userPins = ⟨{⟨𝑖.domain, userPinOfId(i)⟩|∀𝑖 ∈ 𝑠𝑏0 .ids with 𝑏 ∈ browserOfWallet(w)}⟩,
𝑠𝑤0 .sessions = ⟨⟩, and 𝑠𝑤0 .transactionIds = ⟨⟩.

The relation of a wallet 𝑤 is based on the generic HTTPS server as defined in [7]. The following
algorithms 4 to 8 overwrite and extend the generic HTTPS server. Methods that are not overwritten
are defined as in [7]. Table A.3 shows a list of placeholders used by a wallet.

Placeholder Usage
a1 new code challenge
a2 new session ID
a3 new HTTP request nonce
a4 new state value

Table A.3: List of placeholders used by a wallet.

69

A Verifiable Credentials Web System

Algorithm 4 Relation of a wallet 𝑅𝑤: Processing HTTPS requests.
1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if 𝑚.path ≡ /vci then

Start issuance via Authorization Code Flow
3: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨script_wallet_index⟩⟩, 𝑘)
4: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
5: else if 𝑚.path ≡ /vci/credentialOffer then

Issuance via pre-authorized Code Flow
6: let preAuthCodeFlow := urn:ietf:params:oauth:grant-type:pre-authorized_code
7: let credentialOffer := 𝑚.parameters[credential_offer]
8: let issHost, preAuthorizedCode, useUserPin such that

↩→ ⟨issHost, preAuthorizedCode, useUserPin⟩ ≡ credentialOffer
↩→ if possible; otherwise stop

9: if ¬validateRequest(⟨𝑖𝑠𝑠𝐻𝑜𝑠𝑡, preAuthorizedCode⟩) then
10: stop → This check models a perfect user who knows which issuer they started the flow

with
11: let sessionID := a2
12: let session := ⟨⟨host, issHost⟩, ⟨pre-authorized_code, preAuthorizedCode⟩,

↩→ ⟨use_user_pin, useUserPin⟩⟩
13: let 𝑠′.sessions := 𝑠′.sessions +⟨⟩ ⟨sessionID, session⟩
14: let clientID← {⟨URL, S, 𝑑, /vci/redirect, ⟨⟩, ⟨⟩⟩|𝑑 ∈ dom(r)} → client_id = redirect_uri
15: let body := ⟨⟨grant_type, preAuthCodeFlow⟩, ⟨client_id, clientID⟩,

↩→ ⟨pre-authorized_code, preAuthorizedCode⟩⟩
16: if useUserPin ≡ ⊤ then
17: let body[user_pin] := 𝑠′.userPins[issHost]
18: let url := ⟨URL, S, issHost, /token, ⟨⟩,⊥⟩
19: let message := ⟨HTTPReq, a3, POST, url.host, url.path, url.parameters, ⟨⟩, body⟩
20: call HTTP_SIMPLE_SEND(⟨⟨responseTo, TOKEN⟩, ⟨session, sessionID⟩⟩,message, url, 𝑠′)
21: else if 𝑚.path ≡ /vci/startCodeFlow ∧ 𝑚.method ≡ POST then

Issuance via Authorization Code Flow
22: if 𝑚.headers[Origin] . ⟨𝑚.host, S⟩ then
23: stop →Without the origin check the session integrity property would break because an

attacker could start a flow in the background
24: let codeVerifier := a1
25: let parameters := ⟨⟨code_challenge,HASH(codeVerifier)⟩⟩
26: let redirectUri← {⟨URL, S, 𝑑, /vci/redirect, ⟨⟩, ⟨⟩⟩|𝑑 ∈ dom(r)}
27: let parameters := parameters +⟨⟩ ⟨redirect_uri, redirectUri⟩
28: let parameters := parameters +⟨⟩ ⟨client_id, redirectUri⟩
29: let identity := 𝑚.body
30: let authUrl := ⟨URL, S, identity.domain, /authentication, ⟨⟩,⊥⟩

↩→ → Use the user selected issuer to start the issuance
31: let useState← {⊤,⊥}
32: if useState ≡ ⊤ then
33: let parameters := parameters +⟨⟩ ⟨state, a4⟩
34: else
35: let parameters := parameters +⟨⟩ ⟨state, ⟨⟩⟩
36: let sessionID := a2
37: let session := parameters +⟨⟩ ⟨⟨host, authUrl.host⟩, ⟨code_verifier, codeVerifier⟩⟩
38: let 𝑠′.sessions := 𝑠′.sessions +⟨⟩ ⟨sessionID, session⟩
39: let authUrl.parameters := authUrl.parameters ∪ parameters
40: let headers := ⟨⟨Location, authUrl⟩⟩
41: let headers := headers +⟨⟩ ⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨sessionID,⊤,⊤,⊤⟩]⟩

70

A.3 Wallets

42: let m′ := encs (⟨HTTPResp, 𝑚.nonce, 303, headers, ⟨⟩⟩, 𝑘)
↩→ → Use status code 303 (see other) as recommended by the OAuth 2.0 Security BCP
↩→ → This URL does not leak because a browser can be securely opened

43: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
44: else if 𝑚.path ≡ /vci/redirect then

Process Authentication Code Flow issuance response
45: let sessionID := 𝑚.header[Cookie] [⟨__Host, sessionID⟩]
46: if sessionID ∉ 𝑠′.sessions then
47: stop
48: let session := 𝑠′.sessions[sessionID]
49: let issHost := session[host]
50: if 𝑚.parameters[iss] . issHost then →Mix-up attack mitigation
51: stop
52: if 𝑚.parameters[state] . session[state] then
53: stop
54: let redirectUri := session[redirect_uri]
55: let code := 𝑚.parameters[code]
56: let session := session +⟨⟩ ⟨code, code⟩

↩→ → Required only for the Issuance Authentication property (this value is never used)
57: let body := ⟨⟨grant_type, authorization_code⟩, ⟨client_id, redirectUri⟩,

↩→ ⟨redirect_uri, redirectUri⟩, ⟨code, code⟩, ⟨code_verifier, session[code_verifier]⟩⟩

58: let url := ⟨URL, S, issHost, /token, ⟨⟩,⊥⟩
59: let message := ⟨HTTPReq, a3, POST, url.host, url.path, url.parameters, ⟨⟩, body⟩
60: call HTTP_SIMPLE_SEND(⟨⟨responseTo, TOKEN⟩, ⟨session, sessionID⟩⟩,message, url, 𝑠′)
61: else if 𝑚.path ≡ /vp/authentication then

Process verifiable presentations authorization request
62: if 𝑚.method ≡ GET ∨ (m.method ≡ POST ∧ (m.body[username] ≡ ⟨⟩

↩→ ∨ m.body[password] ≡ ⟨⟩)) then
63: let data := m.parameters
64: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨script_wallet_form, data⟩⟩, 𝑘)

↩→ → Reply with script_issuer_form
65: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
66: else if m.method ≡ POST then
67: if 𝑚.body[password] . secretOfID(m.body[username]) then
68: stop →Make sure that only the user of the wallet can use the wallet
69: let responseMode := 𝑚.body[response_mode]
70: if responseMode ≡ fragment then
71: let authRespUri := 𝑚.body[redirect_uri]
72: else if responseMode ≡ direct_post then
73: let authRespUri := 𝑚.body[response_uri]
74: if authRespUri . 𝑚.body[client_id] then
75: stop → Check if the redirect_uri or response_uri parameter equals the client_id

parameter because it is required by the spec
76: let credential← 𝑠′.credentials

↩→ → User chooses a credential and approves the presentation to the verifier
77: let username, iss, pubKey such that

↩→ ⟨username, iss, pubKey⟩ ≡ extractmsg(credential)
↩→ if possible; otherwise stop

71

A Verifiable Credentials Web System

78: let validateAuthRequest← {⊤,⊥}
79: if validateAuthRequest ≡ ⊤

↩→ ∧ ¬validateRequest(⟨authRespUri.host, 𝑚.body[nonce]⟩) then
80: stop → In the cross-device flow the wallet needs to check whether the user started the

authentication because otherwise phishing attacks would be possible
81: let nonce := 𝑚.body[nonce]
82: let aud := authRespUri.host
83: let presentation := ⟨credential, nonce, aud⟩
84: let vpToken := sig(presentation, s′.holderKey)
85: let parameters := ⟨⟨vp_token, vpToken⟩⟩
86: let parameters := parameters +⟨⟩ ⟨iss, 𝑚.host⟩
87: let parameters := parameters +⟨⟩ ⟨state, 𝑚.body[state]⟩
88: if responseMode ≡ fragment then
89: let authRespUri.fragment := authRespUri.fragment ∪ parameters
90: let m′ := encs (⟨HTTPResp, 𝑚.nonce, 303, ⟨⟨Location, authRespUri⟩⟩, ⟨⟩⟩, 𝑘)

↩→ → Use status code 303 (see other) as recommended by the OAuth 2.0 Security BCP
↩→ → This URL cannot leak as long as a native app verifier uses a verified app link

91: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
92: else if responseMode ≡ direct_post then
93: let sessionID := a2
94: let session := ⟨⟨message, 𝑚⟩⟩
95: let session := session +⟨⟩ ⟨receiver, 𝑎⟩
96: let session := session +⟨⟩ ⟨sender, 𝑓 ⟩
97: let session := session +⟨⟩ ⟨key, 𝑘⟩
98: let 𝑠′.sessions := 𝑠′.sessions +⟨⟩ ⟨sessionID, session⟩
99: let message := ⟨HTTPReq, a3, POST, authRespUri.host, authRespUri.path, ⟨⟩, ⟨⟩, parameters⟩
100: call HTTP_SIMPLE_SEND(⟨⟨responseTo, DIRECT_POST⟩, ⟨session, sessionID⟩⟩,

↩→ message, authRespUri, 𝑠′)

Algorithm 5 Relation of script_wallet_index.
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let switch← {issuance, link}
2: if switch ≡ issuance then
3: let url := GETURL(tree, docnonce)
4: let url′ := ⟨URL, S, url.host, /vci/startCodeFlow, ⟨⟩,⊥⟩
5: let id← ids
6: let command := ⟨FORM, url′, POST, id,⊥⟩
7: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
8: else
9: let protocol← {P, S}

10: let host← Doms
11: let path← S
12: let parameters← [S × S]
13: let fragment← S
14: let url := ⟨URL, protocol, host, path, parameters, fragment⟩
15: let command := ⟨HREF, url,⊥,⊥⟩
16: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

72

A.3 Wallets

Algorithm 6 Relation of script_wallet_form.
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let url := GETURL(tree, docnonce)
2: let url′ := ⟨URL, S, url.host, /vp/authentication, ⟨⟩,⊥⟩
3: let formData := scriptstate
4: let username← ids
5: let password← secrets
6: let formData[username] := username
7: let formData[password] := password
8: let command := ⟨FORM, url′, POST, formData,⊥⟩
9: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

Algorithm 7 Relation of a wallet 𝑅𝑤: Processing HTTPS responses.
1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, 𝑎, 𝑓 , 𝑠′)
2: if reference[responseTo] ≡ TOKEN then
3: let sessionID := reference[session]
4: let session := 𝑠′.sessions[sessionID]
5: if 𝑚.body[access_token] ≡ ⟨⟩ ∨ 𝑚.body[c_nonce] ≡ ⟨⟩ then
6: stop
7: let accessToken := 𝑚.body[access_token]
8: let session[access_token] := accessToken
9: let cNonce := 𝑚.body[c_nonce]

10: let issHost := session[host]
11: let useBatchCredEndpoint← {⊤,⊥}
12: if useBatchCredEndpoint ≡ ⊥ then
13: let proofPossBody := ⟨issHost, cNonce, pub(s′.holderKey)⟩
14: let proof := sig(proofPossBody, s′.holderKey)
15: let 𝑢𝑟𝑙 := ⟨URL, S, issHost, /credential, ⟨⟩,⊥⟩
16: let headers := ⟨Authorization, ⟨BEARER, accessToken⟩⟩
17: let body := ⟨proof, proof ⟩
18: let message := ⟨HTTPReq, a3, POST, url.domain, url.path, url.parameters, headers, body⟩
19: call HTTP_SIMPLE_SEND(⟨⟨responseTo, CREDENTIAL⟩,

↩→ ⟨session, sessionID⟩⟩,message, url, 𝑠′)
20: else
21: let credentialRequests := ⟨⟩
22: for 𝑖 ∈ {1, 2, ..., 𝑛} 𝑛 ∈ N do
23: let proofPossBody := ⟨issHost, cNonce, pub(s′.holderKey)⟩
24: let credentialRequests := credentialRequests +⟨⟩ sig(proofPossBody, s′.holderKey)
25: let 𝑢𝑟𝑙 := ⟨URL, S, issHost, /batchCredential, ⟨⟩,⊥⟩
26: let headers := ⟨Authorization, ⟨BEARER, accessToken⟩⟩
27: let body := ⟨credential_requests, credentialRequests⟩
28: let message := ⟨HTTPReq, a3, POST, url.domain, url.path, url.parameters, headers, body⟩
29: call HTTP_SIMPLE_SEND(⟨⟨responseTo, BATCH_CREDENTIAL⟩,

↩→ ⟨session, sessionID⟩⟩,message, url, 𝑠′)
30: else if reference[responseTo] ≡ CREDENTIAL then
31: let sessionID := reference[session]
32: let session := 𝑠′.sessions[sessionID]
33: if 𝑚.body[credential] . ⟨⟩ then
34: let 𝑠′.credentials := 𝑠′.credentials +⟨⟩ 𝑚.body[credential]
35: let session[credentials] := session[credentials] +⟨⟩ 𝑚.body[credential]

73

A Verifiable Credentials Web System

36: else if 𝑚.body[transaction_id] . ⟨⟩ then
37: let 𝑠′.transactionIds := 𝑠′.transactionIds +⟨⟩

↩→ ⟨session[access_token], session[host], 𝑚.body[transaction_id], sessionID⟩
38: else if reference[responseTo] ≡ BATCH_CREDENTIAL then
39: let sessionID := reference[session]
40: let session := 𝑠′.sessions[sessionID]
41: for credential ∈ 𝑚.body[credential_responses] .credentials do
42: let 𝑠′.credentials := 𝑠′.credentials +⟨⟩ credential
43: let session[credentials] := session[credentials] +⟨⟩ credential
44: for transactionId ∈ 𝑚.body[credential_responses] .transaction_ids do
45: let 𝑠′.transactionIds := 𝑠′.transactionIds +⟨⟩

↩→ ⟨session[access_token], session[host], transactionId, sessionID⟩
46: else if reference[responseTo] ≡ DEFERRED_CREDENTIAL then
47: let sessionID := reference[session]
48: let session := 𝑠′.sessions[sessionID]
49: let 𝑠′.credentials := 𝑠′.credentials +⟨⟩ 𝑚.body[credential]
50: let session[credentials] := session[credentials] +⟨⟩ 𝑚.body[credential]
51: else if reference[responseTo] ≡ DIRECT_POST then
52: if 𝑚.body[redirect_uri] . ⟨⟩ then
53: let sessionID := reference[session]
54: let session := 𝑠′.sessions[sessionID]
55: let headers := ⟨⟨Location, 𝑚.body[redirect_uri]⟩⟩
56: let m′ := encs (⟨HTTPResp, session[message] .nonce, 303, headers, ⟨⟩⟩, session[key])

↩→ → Use status code 303 (see other) as recommended by the OAuth 2.0 Security BCP
↩→ → This URL cannot leak because it is only used if the verifier is a web server

57: stop ⟨⟨session[sender], session[receiver], 𝑚′⟩⟩, 𝑠′
58: else
59: stop

Algorithm 8 Relation of a wallet 𝑅𝑤: Processing trigger messages.
1: function PROCESS_TRIGGER(𝑎, 𝑠′)
2: let sendDeferredCredentialRequest← {⊤,⊥}
3: if sendDeferredCredentialRequest ≡ ⊤ then
4: let tokenInfo← 𝑠′.transactionIds

↩→ → Choose non-deterministically one of the pending deferred credential requests
5: if tokenInfo ≡ ⟨⟩ then
6: stop
7: let 𝑠′.transactionIds := 𝑠′.transactionIds −⟨⟩ tokenInfo
8: let accessToken := tokenInfo.1
9: let issHost := tokenInfo.2

10: let transactionId := tokenInfo.3
11: let sessionID := tokenInfo.4
12: let 𝑢𝑟𝑙 := ⟨URL, S, issHost, /deferredCredential, ⟨⟩,⊥⟩
13: let headers := ⟨Authorization, ⟨BEARER, accessToken⟩⟩
14: let body := ⟨transaction_id, transactionId⟩
15: let message := ⟨HTTPReq, a3, POST, url.host, url.path, url.parameters, headers, body⟩
16: call HTTP_SIMPLE_SEND(⟨⟨responseTo, DEFERRED_CREDENTIAL⟩,

↩→ ⟨session, sessionID⟩⟩,message, url, 𝑠′)

74

A.4 Verifiers

A.4 Verifiers

An verifier 𝑣 ∈ Verifiers is a web server modeled as an atomic DY process (𝐼𝑣 , 𝑍𝑣 , 𝑅𝑣 , 𝑠𝑣0) with the
address 𝐼𝑣 := addr(𝑣). The following definition defines the states 𝑍𝑣 of v and the initial state 𝑠𝑣0
of 𝑣.

Definition A.4.1
A state 𝑠 ∈ 𝑍𝑣 of a verifier v is a term of the form

⟨pendingDNS, pendingRequests,DNSaddress, keyMapping, tlskeys, corrupt,
issuers, sessions⟩

with pendingDNS, pendingRequests, DNSaddress, keyMapping, tlskeys, corrupt as defined in
Definition 43 in [7], issuers ∈

[
Doms × pub(N)

]
and sessions ∈

[
N × TN

]
.

An initial state 𝑠𝑣0 of 𝑣 is a state of 𝑣 with 𝑠𝑣0 .pendingDNS = ⟨⟩, 𝑠𝑣0 .pendingRequests = ⟨⟩,
𝑠𝑣0 .DNSaddress ∈ IPs, 𝑠𝑣0 .keyMapping = ⟨{⟨𝑑, pub(tlskey(𝑑))⟩|𝑑 ∈ Doms}⟩, 𝑠𝑣0 .tlskeys =

tlskeys𝑣, 𝑠𝑣0 .corrupt = ⊥, 𝑠𝑣0 .issuers = {⟨𝑑, pub(signkey(𝑖))⟩|𝑑 ∈ dom(𝑖) ∧ 𝑖 ∈ Issuers} and
𝑠𝑣0 .sessions = ⟨⟩.

The relation of a verifier 𝑣 is based on the generic HTTPS server as defined in [7]. The following
algorithms 9 to 12 overwrite and extend the generic HTTPS server. Methods that are not overwritten
are defined as in [7]. Table A.4 shows a list of placeholders used by a verifier.

Placeholder Usage
a1 new response code
a2 new service token
a3 new state value
a4 new session ID
a5 new nonce value

Table A.4: List of placeholders used by a verifier.

75

A Verifiable Credentials Web System

Algorithm 9 Relation of a verifier 𝑅𝑣: Processing HTTPS requests.
1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if 𝑚.path ≡ / then
3: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨script_verifier_index⟩⟩, 𝑘)
4: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
5: else if 𝑚.path ≡ /start ∧ 𝑚.method ≡ POST then

Generate authentication request
6: if 𝑚.headers[Origin] . ⟨𝑚.host, S⟩ then
7: stop →Without the origin check the session integrity property would break because an

attacker could start a flow in the background
8: let nonce := a5
9: let responseMode← {fragment, direct_post}

10: let parameters := parameters +⟨⟩ ⟨response_mode, responseMode⟩
11: let parameters := parameters +⟨⟩ ⟨nonce, nonce⟩
12: if responseMode ≡ direct_post then
13: let responseUri← {⟨URL, S, d, /directPost, ⟨⟩,⊥⟩|𝑑 ∈ dom(v)}
14: let parameters := parameters +⟨⟩ ⟨response_uri, responseUri⟩
15: let parameters := parameters +⟨⟩ ⟨client_id, responseUri⟩
16: else
17: let redirectUri← {⟨URL, S, 𝑑, /redirect, ⟨⟩, ⟨⟩⟩|𝑑 ∈ dom(v)}
18: let parameters := parameters +⟨⟩ ⟨redirect_uri, redirectUri⟩
19: let parameters := parameters +⟨⟩ ⟨client_id, redirectUri⟩
20: let session := ⟨⟨nonce, nonce⟩⟩
21: let domain←WalletDoms → User chooses their wallet
22: let authUrl := ⟨URL, S, domain, /vp/authentication, ⟨⟩,⊥⟩
23: let session := session +⟨⟩ ⟨host, authUrl.host⟩
24: let useState← {⊤,⊥}
25: if useState ≡ ⊤ then
26: let state := a3
27: let parameters := parameters +⟨⟩ ⟨state, state⟩
28: let session := session +⟨⟩ ⟨state, state⟩
29: else
30: let session := session +⟨⟩ ⟨state, ⟨⟩⟩
31: let sessionID := a4
32: let 𝑠′.sessions := 𝑠′.sessions +⟨⟩ ⟨sessionID, session⟩
33: let authUrl.parameters := authUrl.parameters ∪ parameters
34: let headers := ⟨⟨Location, authUrl⟩⟩
35: let headers := headers +⟨⟩ ⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨sessionID,⊤,⊤,⊤⟩]⟩
36: let m′ := encs (⟨HTTPResp, 𝑚.nonce, 303, headers, ⟨⟩⟩, 𝑘)

↩→ → Use status code 303 (see other) as recommended by the OAuth 2.0 Security BCP
37: let leakUrl← {⊤,⊥}
38: if leakUrl ≡ ⊤ then
39: let leak := ⟨LEAK, authUrl⟩

↩→ → This URL leaks because it can be a custom scheme request to a native app
40: let a′← IPs
41: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩, ⟨ 𝑓 , 𝑎′, leak⟩⟩, 𝑠′
42: else
43: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′

76

A.4 Verifiers

44: else if 𝑚.path ≡ /directPost ∧ 𝑚.method ≡ POST then
Process back-channel response

45: let vpToken := 𝑚.body[vp_token]
46: let state := 𝑚.body[state]
47: if vpToken ≡ ⟨⟩ then
48: stop
49: let credential, nonce, aud such that

↩→ ⟨credential, nonce, aud⟩ ≡ extractmsg(vpToken)
↩→ if possible; otherwise stop

50: call VERIFY_PRESENTATION(𝑚, 𝑠′, presentation, nonce)
↩→ → Verify presentation but do not check nonce because it cannot be connected to a session here

51: let sessionID, host such that
↩→ ⟨sessionID, ⟨⟨nonce, nonce⟩, ⟨host, host⟩, ⟨state, state⟩⟩⟩ ∈ 𝑠′.sessions
↩→ if possible; otherwise stop

↩→ → Search with nonce for an existing session. The state parameter can be empty.
52: if 𝑚.body[iss] . host ∨ 𝑚.body[state] . state then

↩→ →Mix-up attack mitigation and state parameter verification (aud parameter is already checked
in VERIFY_PRESENTATION method)

53: stop
54: let 𝑠′.sessions[sessionID] := 𝑠′.sessions[sessionID] +⟨⟩ ⟨vp_token, vpToken⟩
55: let useRedirectUri← {⊤,⊥}
56: let 𝑠′.sessions[sessionID] := 𝑠′.sessions[sessionID] +⟨⟩

↩→ ⟨useRedirectUri, useRedirectUri⟩ → Important for the security properties
57: if useRedirectUri ≡ ⊤ then
58: let respCode := a1
59: let parameters := ⟨⟨response_code, respCode⟩⟩
60: let body := ⟨⟨redirect_uri, ⟨URL, S, 𝑚.host, /redirect, parameters,⊥⟩⟩⟩

↩→ → This URL cannot leak because it is implemented as a verified app link
61: let 𝑠′.sessions[sessionID] := 𝑠′.sessions[sessionID] +⟨⟩ ⟨response_code, respCode⟩
62: else
63: let body := ⟨⟩
64: let m′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, body⟩, 𝑘)
65: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
66: else if 𝑚.path ≡ /redirect then

Receive authentication response
67: let sessionID := 𝑚.header[Cookie] [⟨__Host, sessionID⟩]
68: if sessionID ∉ 𝑠′.sessions then
69: stop
70: let session := 𝑠′.sessions[sessionID]
71: if session[response_code] . ⟨⟩ then

↩→ → Same-Device Flow with response_mode direct_post and redirect_uri
72: if 𝑚.parameters[response_code] . session[response_code] then
73: stop
74: let presentation := session[vp_token]
75: else if 𝑚.body[iss] . ⟨⟩ ∧ 𝑚.body[vp_token] . ⟨⟩ then

↩→ → Same-Device Flow with Authentication Response via fragment
76: if session[host] . 𝑚.body[iss] ∨ session[state] . 𝑚.body[state] then

↩→ → Check the iss parameter because it is recommended by the OAuth 2.0 Security BCP
77: stop
78: let session := session +⟨⟩ ⟨vp_token, 𝑚.body[vp_token]⟩

↩→ → The vp_token is only saved here to simplify the session integrity proof
79: let presentation := 𝑚.body[vp_token]

77

A Verifiable Credentials Web System

80: else if session[vp_token] . ⟨⟩ then
↩→ → Cross-Device Flow (URL contains no parameters)

81: if session[response_code] . ⟨⟩ then
82: stop
83: let presentation := session[vp_token]
84: else if 𝑚.method ≡ GET then
85: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨script_verifier_get_fragment⟩⟩, 𝑘)
86: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
87: else
88: stop
89: let nonce := session[nonce]
90: call VERIFY_PRESENTATION(𝑚, 𝑠′, presentation, nonce)
91: let credential, pNonce, aud such that

↩→ ⟨credential, pNonce, aud⟩ ≡ extractmsg(presentation)
↩→ if possible; otherwise stop

92: let username, iss, pubKey such that
↩→ ⟨username, iss, pubKey⟩ ≡ extractmsg(credential)
↩→ if possible; otherwise stop

93: let serviceToken := a2
94: let session[serviceTokenId] := serviceToken
95: let session[userInfo] := ⟨username, iss, session[host]⟩
96: let url := ⟨URL, S, 𝑚.host, /, ⟨⟩,⊥⟩
97: let headers := ⟨⟨Location, url⟩⟩
98: let headers := headers +⟨⟩ ⟨Set-Cookie, [serviceToken : ⟨serviceToken,⊤,⊤,⊤⟩]⟩
99: let m′ := encs (⟨HTTPResp, 𝑚.nonce, 303, headers, ⟨⟩⟩, 𝑘)
100: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′

101: stop

Algorithm 10 Relation of a verifier 𝑅𝑣: Function to verify a credential.
1: function VERIFY_PRESENTATION(𝑚, 𝑠′, presentation, nonce)
2: let credential, pNonce, aud such that

↩→ ⟨credential, pNonce, aud⟩ ≡ extractmsg(presentation)
↩→ if possible; otherwise stop

3: if aud . 𝑚.host then
4: stop
5: if pNonce . nonce then
6: stop
7: let username, iss, pubKey such that

↩→ ⟨username, iss, pubKey⟩ ≡ extractmsg(credential)
↩→ if possible; otherwise stop

8: if checksig(presentation, pubKey) ≡ ⊥ then
9: stop

10: if checksig(credential, s′.issuers[iss]) ≡ ⊥ then
11: stop

78

A.4 Verifiers

Algorithm 11 Relation of script_verifier_get_fragment.
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let url := GETURL(tree, docnonce)
2: let url′ := ⟨URL, S, url.host, /redirect, ⟨⟩,⊥⟩
3: let command := ⟨FORM, url′, POST, url.fragment,⊥⟩
4: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

Algorithm 12 Relation of script_verifier_index.
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩
1: let switch← {issuance, link}
2: if switch ≡ issuance then
3: let url := GETURL(tree, docnonce)
4: let url′ := ⟨URL, S, url.host, /start, ⟨⟩,⊥⟩
5: let command := ⟨START, url′, ⟨⟩⟩
6: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
7: else
8: let protocol← {P, S}
9: let host← Doms

10: let path← S
11: let parameters← [S × S]
12: let fragment← S
13: let url := ⟨URL, protocol, host, path, parameters, fragment⟩
14: let command := ⟨HREF, url,⊥,⊥⟩
15: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

79

A Verifiable Credentials Web System

A.5 Web Browser Extension

In this work, we needed to extend the web browser model to secure the cross-device flow and the
pre-authorized code flow. The problem is that an attacker can start a cross-device flow on their
computer and send the authentication request to a victim who authenticates the request. As a result,
the attacker is logged in under the identity of an honest user. Previous work [1] and [13] did not
find a practical and provable solution to this problem. In addition, the user must be able to tell in
the pre-authorized code flow whether they have initiated the flow or not. Otherwise, an attacker
could send a credential offer with a pre-authorized code tied to their identity to the honest user’s
wallet. This violates the Issuance Session Integrity security property because the user would be
issued a credential with the attacker’s identity.

Therefore, in this work, we decided to model a perfect user who always knows which flows they
have started and with which parameters, e.g., domain and nonce or domain and pre-authorized code.
We model this by introducing a new script command in the browser model, which is similar to a
FORM command with the POST method. The difference is that the POST requests must be sent to
the same domain that the script is running on. This is important so that only scripts from the honest
party can initiate flows. Additionally, a new reference is used in this request so that the response
can be identified and the parameters of the response can be stored in a new browser state called
“authStarted”. After that, the wallet can use the method “validateRequest(⟨domain, nonce⟩)” to
check if the user has started the flow or not. The extension is similar to the one described in A.1.2
of [10], but has some major differences to fit the problem in this work.

Definition A.5.1 (Web Browser State Extension)
A state 𝑠 ∈ 𝑍webbrowser of a browser b is extended by the following sub term in this work:

started

with started ∈ TN
In the initial state 𝑠𝑏0 of 𝑏 the variable is initialized with the following value: 𝑠𝑏0 .started = ⟨⟩.
Everything else is defined as in Definition 33 of [7].

80

A.5 Web Browser Extension

Algorithm 13 Web Browser Model: Execute a script.

1: function RUNSCRIPT(w, d, 𝑎, 𝑠′)
...

17: let docorigin := 𝑠′.d.origin
18: switch command do
19: case ⟨START, url, data⟩
20: if url.host . docorigin.host ∨ url.protocol . S then
21: stop

The following code is like the FORM command but adjusted to this use case
22: let w′ := GETNAVIGABLEWINDOW(w, ⊥, ⊥, 𝑠′)
23: let reference := ⟨START, 𝑠′.w′.nonce⟩
24: let parameters := url.parameters
25: let origin := docorigin
26: let req := ⟨HTTPReq, a4, POST, url.host, url.path, parameters, ⟨⟩, data⟩
27: let 𝑠′ := CANCELNAV(reference, 𝑠′)
28: call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, 𝑎, 𝑠′)
29: case ⟨HREF, url, hrefwindow, noreferrer⟩

...

Algorithm 14 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response, reference, request, requestUrl, 𝑎, 𝑓 , 𝑠′)

...

7: if Referer ∈ request.headers then
8: let referrer := request.headers[Referer]
9: else

10: let referrer := ⊥
11: if 𝜋1 (reference) ≡ START then
12: let redirectUrl := response.headers[Location]
13: let preAuthCodeCase← {⊤,⊥}
14: if preAuthCodeCase ≡ ⊤ then
15: let 𝑠′.started := 𝑠′.started +⟨⟩

↩→ ⟨request.host, redirectUrl.parameters[credential_offer] .2⟩
16: else
17: let 𝑠′.started := 𝑠′.started +⟨⟩ ⟨request.host, redirectUrl.parameters[nonce]⟩
18: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then

...

81

B Formal Security Properties

B.1 Presentation Authentication

Informally the Presentation Authentication security property means that an attacker cannot log
in as a user at an honest verifier as long as certain parties involved in the login processes are not
corrupted. An attacker is successfully logged in if they have obtained a service token for a user.
The Definition B.1.2 is close to the definition of the authentication property in [11], but has some
subtle differences that are very important in this analysis.

Definition B.1.1 (Authentication Request is Validated)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that the
authentication request is validated by a wallet w if there is a processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) 𝑒in→𝑤−−−−−→ (𝑆′, 𝐸 ′, 𝑁 ′)

𝑒in = ⟨𝑥, 𝑦, 𝑚⟩, ⊤ is selected for validateAuthRequest in Line 78 of Algorithm 4,
𝑚dec.body[response_uri] .host ≡ 𝑑𝑣 , and 𝑚dec.body[nonce] ≡ nonce with 𝑚dec = deca (𝑚, 𝑘)
and 𝑘 ∈ N . For this event we write authRequestValidated𝑄

𝜌 (𝑤, 𝑑𝑣 , nonce).

Before we can define the Presentation Authentication security property we first need to specify the
set of all wallets belonging to a browser 𝑏: 𝑊𝑏 = {𝑤 ∈ Wallets|𝑏 = browserOfWallet(𝑤)}.

Definition B.1.2 (Presentation Authentication Property)
Let VCWS𝑛 be a Verifiable Credentials web system with a network attacker. The web system
is secure w.r.t. presentation authentication iff for every run 𝜌 of VCWS𝑛, every configuration
(𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌, every 𝑣 ∈ Verifiers that is honest in 𝑆 𝑗 , every 𝑖 ∈ Issuers that is honest
in 𝑆 𝑗 , every 𝑑𝑖 ∈ dom(𝑖), every 𝑥 ∈ TN , every 𝑢 ∈ ID, the browser 𝑏 owning 𝑢 is not fully
corrupted in 𝑆 𝑗 (i.e., the value of isCorrupted is not FULLCORRUPT), all wallets in 𝑊𝑏 are
honest in 𝑆 𝑗 , for every login session lsid ∈ N , for every service token 𝑛 ∈ N recorded in
𝑆 𝑗 (𝑣).sessions[lsid] .serviceTokenId ≡ 𝑛 and 𝑆 𝑗 (𝑣).sessions[lsid] .userInfo ≡ ⟨𝑢, 𝑑𝑖 , 𝑥⟩,
and if 𝑆 𝑗 (𝑣).sessions[lsid] .useRedirectUri ≡ ⊥ there exists a processing step 𝑄 =

(𝑆𝑘 , 𝐸 𝑘 , 𝑁 𝑘) → (𝑆𝑘+1, 𝐸 𝑘+1, 𝑁 𝑘+1) with 𝑘 < 𝑗 in which authRequestValidated𝑄
𝜌 (𝑤′, 𝑑𝑣 , nonce)

with 𝑤′ ∈ 𝑊𝑏, 𝑑𝑣 ∈ dom(𝑣), and nonce = 𝑆 𝑗 (𝑣).sessions[lsid] .nonce is true, it holds that 𝑛 is
not derivable from the attacker’s knowledge in 𝑆 𝑗 (i.e., 𝑛 ∉ 𝑑∅ (𝑆 𝑗 (attacker))).

83

B Formal Security Properties

B.2 Issuance Authentication

At a high level, the Issuance Authentication security property guarantees that an attacker cannot use
a credential with an honest user’s identity from an issuer as long as certain parties involved in the
issuance are not corrupted. An attacker can use such a credential if they know the private key to
the public key embedded in the credential. The Definition B.2.1 is close to the definition of the
authentication property in [11], but has some important additions.

Definition B.2.1 (Issuance Authentication Property)
Let VCWS𝑛 be a Verifiable Credentials web system with a network attacker. The web sys-
tem is secure w.r.t. issuance authentication iff for every run 𝜌 of VCWS𝑛, every configu-
ration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌, every 𝑖 ∈ Issuers that is honest in 𝑆 𝑗 , every 𝑑𝑖 ∈ dom(𝑖), ev-
ery 𝑢 ∈ ID and the browser 𝑏 owning 𝑢 is not fully corrupted in 𝑆 𝑗 (i.e., the value of
isCorrupted is not FULLCORRUPT), all wallets in 𝑊𝑏 are honest in 𝑆 𝑗 , every private key
𝑝 ∈ N , every credential 𝑐 ∈ TN with 𝑐 ≡ sig(⟨𝑢, 𝑑𝑖 , pub(𝑝)⟩, 𝑆 𝑗 (𝑖).signingKey), every
issuance session issid ∈ N , code ≡ 𝑆 𝑗 (𝑤).sessions[issid] .code, 𝑆 𝑗 (𝑖).codes[code] .2 ≡
redirectUri with redirectUri.host ∈ dom(𝑤) and 𝑤 ∈ Wallets being an honest wal-
let in 𝑆 𝑗 , and if 𝑆 𝑗 (𝑤).sessions[issid] .pre-authorized_code . ⟨⟩ we have that
𝑆 𝑗 (𝑤).sessions[issid] .use_user_pin = ⊤, it holds that 𝑝 is not derivable from the attacker’s
knowledge in 𝑆 𝑗 (i.e., 𝑝 ∉ 𝑑∅ (𝑆 𝑗 (attacker))).

B.3 Presentation Session Integrity

Intuitively, session integrity in the OID4VP flow means two things. First, a user must explicitly
express a desire to log in to a verifier, and second, the user must be logged in with the identity they
choose during credential selection in the wallet. This also means that an honest user cannot be
logged in under the attacker’s identity after the presentation flow.

To formalize the session integrity property we need to define certain events. The first event is the
start of the flow which is the execution of the script script_verifier_index. The second event is the
selection of a credential by the user and the third event is the issuance of a service token by the
verifier. The formalized events can be found in the following definitions. The definitions B.3.1,
B.3.3, B.3.4, and B.3.5 are close to the definition of the session integrity property for authentication
in [11] but have some subtle differences that are very important in this analysis.

Definition B.3.1 (User Started a Login Flow)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that the user
of the browser 𝑏 started a login session identified by a nonce lsid at the verifier 𝑣 in a processing step𝑄
in 𝜌 if first, the browser 𝑏 was triggered to select a document loaded from an origin of 𝑣, executed the
script script_verifier_index in that document, and in that script, executed the Line 6 of Algorithm 12,
and second, 𝑣 sends an HTTPS response corresponding to the HTTPS request sent by 𝑏 in 𝑄 and in
that response, there is a header of the form ⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩.
For this event we write started𝑄

𝜌 (𝑏, 𝑣, lsid).

84

B.4 Issuance Session Integrity

Definition B.3.2 (User Chooses Credential)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that
the user of a wallet 𝑤 authenticates to a verifier 𝑣 in a login session lsid using an identity id with
ownerOfID(id) = browserOfWallet(𝑤), the audience aud ∈ dom(𝑣), and the nonce nonce ∈ N
if there is a processing step 𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′) in 𝜌 in which the wallet 𝑤 selects a
credential with the identity id (Line 76 of Algorithm 4) and sends the credential in a presentation
with the audience aud and the nonce nonce ≡ 𝑆(𝑣).sessions[lsid] .nonce (Line 84 of Algorithm 4)
to 𝑣. For this event we write chooseCredential𝑄𝜌 (𝑣, 𝑤, lsid, id).

Definition B.3.3 (User is Logged In)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that a
browser 𝑏 was authenticated to a verifier 𝑣 using a credential with the identity id issued by an issuer
𝑖 in a login session identified by a nonce lsid in a processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) −−−−−−→
𝑣→𝐸𝑜𝑢𝑡

(𝑆′, 𝐸 ′, 𝑁 ′)

and some event ⟨𝑦, 𝑦′, 𝑚⟩ ∈ 𝐸𝑜𝑢𝑡 if 𝑚 is an HTTPS response to an HTTPS request
sent by 𝑏 to 𝑣 and we have that in the header of 𝑚 there is a header of the form
⟨Set-Cookie, [serviceToken : ⟨serviceToken,⊤,⊤,⊤⟩]⟩ for some nonce serviceToken such that
𝑆(𝑣).sessions[lsid] .serviceTokenId ≡ serviceToken and 𝑆(𝑣).sessions[lsid] .userInfo ≡
⟨id, 𝑑𝑖 , 𝑑𝑤⟩ with 𝑑𝑖 ∈ dom(𝑖), 𝑑𝑤 ∈ dom(𝑤). For this event we write loggedIn𝑄

𝜌 (𝑏, 𝑣, 𝑖, id, lsid).

Definition B.3.4 (Verifier Leaked Authorization Request)
Let VCWS𝑛 be a Verifiable Credentials web system with a network attacker. For a run 𝜌 of
VCWS𝑛 with a processing step 𝑄, a browser 𝑏 ∈ B, a verifier 𝑣 ∈ Verifiers, an issuer 𝑖 ∈ Issuers,
and identity id, a login session lsid, and loggedIn𝑄

𝜌 (𝑏, 𝑣, 𝑖, id, lsid), we say that 𝑣 leaked the
authorization request for lsid, if there is a processing step 𝑄′ = (𝑆, 𝐸, 𝑁) −−−−−−→

𝑣→𝐸𝑜𝑢𝑡

(𝑆′, 𝐸 ′, 𝑁 ′) in

𝜌 prior to 𝑄 such that in 𝑄′, 𝑣 executes Line 41 of Algorithm 9 and there is a nonce nonce ∈ N
and an event ⟨𝑥, 𝑦, 𝑚⟩ ∈ 𝐸𝑜𝑢𝑡 with 𝑚.1 ≡ LEAK and 𝑚.2.parameters[nonce] ≡ nonce such that
𝑆′(𝑣).sessions[lsid] [nonce] ≡ nonce.

Definition B.3.5 (Presentation Session Integrity Property)
Let VCWS𝑛 be a Verifiable Credentials web system with a network attacker. We say that VCWS𝑛

is secure w.r.t. presentation session integrity iff for every run 𝜌 of VCWS𝑛, every processing step
𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′) in 𝜌, every 𝑣 ∈ Verifiers that is honest in 𝑆, every 𝑖 ∈ Issuers
that is honest in 𝑆, every identity id, every browser 𝑏 that is honest in 𝑆, every wallet 𝑤 with
𝑏 = browserOfWallet(𝑤) that is honest in 𝑆, for every nonce lsid, 𝑣 did not leak the authorization
request for lsid (see Definition B.3.4), and loggedIn𝑄

𝜌 (𝑏, 𝑣, 𝑖, id, lsid), we have that there exists a
processing step 𝑄′ in 𝜌 (before 𝑄) such that chooseCredential𝑄

′
𝜌 (𝑣, 𝑤, lsid, id) and there exists a

processing step 𝑄′′ in 𝜌 (before 𝑄) such that started𝑄′′
𝜌 (𝑏, 𝑣, lsid).

B.4 Issuance Session Integrity

At a high level, session integrity in the OID4VCI flow means that a user has explicitly expressed
a desire to be issued a credential and that the identity in the credential is the one they used to
authenticate to the issuer. This also means that an honest user cannot get a credential with the
attacker’s identity into their wallet during credential issuance.

85

B Formal Security Properties

To formalize this property, we need to define four events. The first and the second events describe
the user’s desire to issue a credential. This is done either by executing the script script_issuer_form
to start the pre-authorized code flow or by executing the script script_wallet_index to start an
authorization code flow. The third event is the authentication of the user to the issuer during an
authorization code flow, where the user chooses the identity of the credential to be issued. The
fourth and final event is the issuance and storage of the credential in a wallet.

The following definitions are similar to the definition of the session integrity property for authenti-
cation in [11] but have some differences that are very important in this analysis.

Definition B.4.1 (User Started Authentication Code Flow)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that the
user of the browser 𝑏 started an authentication code flow identified by an issuance session id issid
at the wallet 𝑤 in a processing step 𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′) in 𝜌 if first the browser 𝑏 was
triggered to select a document loaded from an origin of 𝑤, executed the script script_wallet_index
in that document, and in that script, executed the Line 7 of Algorithm 5, and second, 𝑤 sends an
HTTPS response corresponding to the HTTPS request sent by 𝑏 in 𝑄 and in that response, there is
a header of the form ⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨issid,⊤,⊤,⊤⟩]⟩. For this event we
write startedCodeFlow𝑄

𝜌 (𝑏, 𝑤, issid).

Definition B.4.2 (User Started Pre-Authorized Code Flow)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that the
user of the browser 𝑏 started a pre-authorized code flow identified by a nonce preAuthorizedCode
at the issuer 𝑖 in a processing step 𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′) in 𝜌 if first the browser 𝑏
was triggered to select a document loaded from an origin of the issuer 𝑖, executed the script
script_issuer_form in that document with the script state scriptstate.1 = /startCredOffer, in
that script selected the identity id in Line 4 of Algorithm 3, selected 𝑑𝑤 ∈ dom(𝑤) in Line 6 of
Algorithm 3, and executed the Line 11 of Algorithm 3, and second, 𝑖 sends an HTTPS response
corresponding to the HTTPS request sent by 𝑏 in 𝑄 and in that response, there is a header of
the form ⟨Location, ⟨URL, S, 𝑑𝑤 , /vci/credentialOffer, parameters,⊥⟩⟩ with parameters =

⟨credential_offer, ⟨𝑑𝑖 , preAuthorizedCode, useUserPin⟩⟩, useUserPin ∈ {⊤,⊥}, 𝑑𝑖 ∈
dom(𝑖) and we have 𝑆(𝑤).sessions[issid] .pre-authorized_code = preAuthorizedCode with
preAuthorizedCode ∈ N .
For this event we write startedPreAuthCodeFlow𝑄

𝜌 (𝑏, 𝑖, 𝑤,issid, id).

Definition B.4.3 (User Authenticated at Issuer)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that the
user of the browser 𝑏 authenticated to an issuer 𝑖 using an identity 𝑖𝑑 for an issuance session identified
by a nonce issid at a wallet 𝑤 if there is a processing step𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′) in 𝜌 in which
the browser 𝑏 was triggered to select a document loaded from an origin of the issuer 𝑖, executed the
script script_issuer_form in that document with the script state scriptstate.1 = /authentication,
selected in that script the identity id in Line 4 of Algorithm 3 and we have that

• the scriptstate of that document contains a nonce code_challenge such that
scriptstate.2[code_challenge] = code_challenge

• 𝑆(𝑤).sessions[issid] .code_challenge = code_challenge

For this event we write authenticated𝑄
𝜌 (𝑏, 𝑖, 𝑤, id, issid).

86

B.4 Issuance Session Integrity

Definition B.4.4 (Credential Stored)
For a run 𝜌 of a Verifiable Credentials web system VCWS𝑛 with a network attacker we say that the
user of the browser 𝑏 stored a credential from the issuer 𝑖 containing the identity id in an issuance
session issid at a wallet 𝑤 in a processing step 𝑄 in 𝜌 with:

𝑄 = (𝑆, 𝐸, 𝑁) 𝑒in→𝑤−−−−−→ (𝑆′, 𝐸 ′, 𝑁 ′)

if the event 𝑒in ≡ ⟨𝑥, 𝑦, 𝑚⟩ and 𝑚 being an HTTPS response to an HTTPS re-
quest from 𝑤 to 𝑖 containing a body with 𝑐 ≡ 𝑚dec.body[credential] or 𝑐 ∈
𝑚dec.body[credential_responses] .credentials (𝑚dec = deca (𝑚, 𝑘) and 𝑘 ∈ N) and 𝑐

being a credential of the form ⟨id, iss, pubKey⟩ ≡ extractmsg(𝑐) with iss ∈ dom(𝑖) we have that:

• 𝑖𝑠𝑠 ≡ 𝑆(𝑤).sessions[issid] .host

• 𝑐 ∈ 𝑆′(𝑤).credentials

• 𝑐 ∈ 𝑆′(𝑤).sessions[issid] .credentials

For this event we write stored𝑄
𝜌 (𝑏, 𝑤, 𝑖, id, issid).

Definition B.4.5 (Issuance Session Integrity Property)
Let VCWS𝑛 be a Verifiable Credentials web system with a network attacker. We say that VCWS𝑛

is secure w.r.t. issuance session integrity iff for every run 𝜌 of VCWS𝑛, every processing step
𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′) in 𝜌, every 𝑖 ∈ Issuers that is honest in 𝑆, every identity id, every
browser 𝑏 that is honest in 𝑆, every wallet 𝑤 with 𝑏 = browserOfWallet(𝑤) that is honest in 𝑆,
every nonce issid, and stored𝑄

𝜌 (𝑏, 𝑤, 𝑖, id, issid), we have that:

1. there exists a processing step 𝑄′′ in 𝜌 (before 𝑄) such that startedCodeFlow𝑄′′
𝜌 (𝑏, 𝑤, issid)

2. and there exists a processing step𝑄′ in 𝜌 (before𝑄) such that authenticated𝑄′
𝜌 (𝑏, 𝑖, 𝑤, id, issid)

OR

3. there exists a processing step 𝑄′′′ in 𝜌 (before 𝑄) such that
startedPreAuthCodeFlow𝑄′′′

𝜌 (𝑏, 𝑖, 𝑤, issid, id).

87

C Proof of Security Properties

This chapter shows that the Verifiable Credentials web system VCWS𝑛 fulfills the Presentation
Authentication (Definition B.1.2) the Issuance Authentication (Definition B.2.1), Presentation
Session Integrity (Definition B.3.5), and the Issuance Session Integrity (Definition B.4.5) security
properties.

C.1 Lemmas

Lemma 1 (Verifier session id does not leak)
Let VCWS𝑛 be a Verifiable Credentials web system with a network attacker. For every run
𝜌 of VCWS𝑛, every configuration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌, every browser 𝑏 that is honest in 𝑆 𝑗 ,
every verifier 𝑣 that is honest in 𝑆 𝑗 , every nonce lsid ∈ N and a processing step 𝑄 in 𝜌

we have that if 𝑏 sends an HTTPS request to 𝑣, 𝑣 selects a session id lsid in 𝑄 (Line 31
of Algorithm 9), and answers with an HTTPS response that contains a cookie of the form
⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩ (Line 35 of Algorithm 9) then lsid is not
derivable from the attackers knowledge in 𝑆 𝑗 (i.e., lsid ∉ 𝑑∅ (𝑆 𝑗 (attacker))).

Proof. From the precondition, we know that the honest verifier 𝑣 sends an encrypted HTTPS
response containing a cookie of the form ⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩
to an honest browser 𝑏. According to Lemma 1 in [7] this response will not leak to any party other
than 𝑣 and 𝑏.

The browser uses the host of the corresponding HTTPS request to store the cookie under the domain
of 𝑣 in Line 4 of Algorithm 8. The cookie has two flags: Firstly, the secure flag which means that it
will only ever be sent out over an encrypted connection, and since it is stored under the domain of 𝑣
it will only be sent out to 𝑣 over an encrypted connection (Line 4 in Algorithm 4 in [7]). Lemma 1
of [7] guarantees that these messages cannot be decrypted by the attacker. Secondly, the cookie uses
the HTTP-only flag which means that it cannot be leaked by a script because it cannot be accessed
by scripts (Line 3 of Algorithm 7 in [7]). In summary, 𝑏 will not send the cookie to any other party
than 𝑣.

Looking at the relation of the verifier it can be seen that there are four endpoints where messages
are received. The first endpoint (Line 2 of Algorithm 9) and the second endpoint (Line 5 of
Algorithm 9) do not process the cookie header of incoming requests and do not extract data from
the state. This means that they cannot leak the lsid session id. The third endpoint (Line 44 of
Algorithm 9) does also not process the cookie header but does extract the session from the state via the
nonce of the authorization response (let lsid, host such that ⟨lsid, ⟨⟨nonce, nonce⟩, ⟨host, host⟩,
⟨state, state⟩⟩⟩ ∈ 𝑠′.sessions if possible; otherwise stop). There are no requests made to other
servers and the lsid is also not included in the response in Line 64 of Algorithm 9. The fourth and

89

C Proof of Security Properties

last endpoint (Line 66 of Algorithm 9) does process the cookie header and extracts the session id
(lsid = 𝑚.header[Cookie] [⟨__Host, sessionID⟩]). In Line 70 of Algorithm 9 lsid is used to
get the session info from the state (session := 𝑠′.sessions[lsid]). After that line, the lsid nonce
is not used anymore. This means in particular that it is not included in any further requests or the
response.

Since the lsid nonce is not leaked by the browser and not leaked by the verifier, the attacker cannot
derive lsid from its knowledge. □

Lemma 2 (Wallet Contains only Honest Identities)
Let VCWS𝑛 be a Verifiable Credentials web system with a network attacker. If for every run 𝜌 of
VCWS𝑛, every processing step𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′) in 𝜌 every 𝑖 ∈ Issuers that is honest in
𝑆, every identity id, every browser 𝑏 that is honest in 𝑆, every wallet𝑤 with 𝑏 = browserOfWallet(𝑤)
that is honest in 𝑆, every nonce issid, and stored𝑄

𝜌 (𝑏, 𝑤, 𝑖, id, issid) (Definition B.4.4), we have that
browserOfWallet(𝑤) = 𝑏 = ownerOfID(id).

Proof. The first part browserOfWallet(𝑤) = 𝑏 follows immediately from the precondition.
For the second part, we have to show that 𝑏 = ownerOfID(id). The preconditions says that
stored𝑄

𝜌 (𝑏, 𝑤, 𝑖, id, issid) is true. From the Issuance Session Integrity property (Definition B.4.5) it is
known that either authenticated𝑄

𝜌 (𝑏, 𝑖, 𝑤, id, issid) or startedPreAuthCodeFlow𝑄
𝜌 (𝑏, 𝑖, 𝑤, issid, id)

happened in a previous processing step. Both of these events involve the execution of the
script script_issuer_form (Algorithm 3) and specifically the Line 4 in which 𝑏 selects one of its
identities. Since the browser chooses the identity, 𝑏 = ownerOfID(id) must be true. It follows that
browserOfWallet(𝑤) = 𝑏 = ownerOfID(id). □

C.2 Proof of Presentation Authentication

This section contains the formal proof of the Presentation Authentication security property
(Definition B.1.2). The property is shown directly by proving that the property holds in a Verifiable
Credentials web system VCWS𝑛.

Lemma 3 (Presentation Authentication Holds)
Definition B.1.2 holds.

Proof. By Definition B.1.2 we have an arbitrary lsid with 𝑆 𝑗 (𝑣).sessions[lsid] [service-
TokenId] ≡ 𝑛 where 𝑛 ∈ N is the service token, which cannot be derived by the
attacker. The service token is connected via the login session lsid with the user id 𝑢

(𝑆 𝑗 (𝑣).sessions[lsid] .userInfo ≡ ⟨𝑢, 𝑑𝑖 , 𝑥⟩ with 𝑑𝑖 ∈ dom(𝑖) and 𝑥 ∈ TN). The only place a
service token is created is at the verifier’s redirect endpoint in Line 93 of Algorithm 9. There are
two ways an attacker could obtain such a service token: First, the service token is leaked by an
honest party, and second, the attacker calls successfully the verifier’s redirect endpoint (Line 66 of
Algorithm 9). In the following, we will show that both of these cases are not possible.

This paragraph shows that the service token does not leak if it is sent to an honest party. Looking
at the relations of the parties it can be seen that an honest wallet, issuer, and verifier will not
send a request to the verifier’s redirect endpoint (Line 66 of Algorithm 9). Out of these three

90

C.2 Proof of Presentation Authentication

parties, only the wallet ever sends HTTPS requests. The wallet sends requests to the token endpoint
(Line 20 of Algorithm 4 and Line 60 of Algorithm 4), credential endpoint (Line 19 of Algorithm 4),
batch credential endpoint (Line 29 of Algorithm 4) and deferred credential endpoint (Line 16
of Algorithm 4) of the issuer as well as to the direct-post endpoint of the verifier (Line 100 of
Algorithm 4) but not to the verifier’s redirect endpoint. The service token is created in Line 93 of
Algorithm 9 in the redirect endpoint of the verifier. The honest browser is the only party receiving
the service token in an encrypted response answering an encrypted request. The browser is storing
the cookie with the secure and HTTP-only flag under the origin of the verifier (Line 4 of Algorithm
8 in [7]) so it will only be sent over an encrypted connection to the honest verifier and it cannot
be accessed by a script. The service token is transferred via an encrypted message. This makes
it impossible for the attacker to derive the token from the message because they cannot break the
encryption algorithm, the encryption keys are not leaked, and the domain to public key mapping is
correctly preconfigured in the initial state of each process. A more detailed proof of why HTTPS
messages between a browser and a generic HTTPS server do not leak can be found in Lemma 1
of [7]. Looking at the relation of the verifier, it can be seen that the service token cookie is never
retrieved from a request, so it cannot be leaked if it is sent to 𝑣. Since 𝑏 and 𝑣 do not leak the service
token and no other honest party receives it, the service token will not be leaked to the attacker by an
honest party.

The second way for the attacker to obtain the service token is to successfully use the verifier’s
redirect endpoint (Line 66 of Algorithm 9). To use this endpoint, the attacker has to successfully
pass the if-else-if conditions in Line 71 of Algorithm 9:

1. session[response_code] . ⟨⟩ (Line 71 of Algorithm 9): The first possibility is that the
attacker knows the session ID and the response code of a session in which 𝑣 has already
stored the presentation of an honest user. This is the case for the same-device flow that uses
the direct-post endpoint (Line 44 of Algorithm 9) to transmit the presentation to the verifier.
This means 𝑣 chooses useRedirectUri = ⊤ in Line 55 of Algorithm 9.

By tracking the response code, it can be seen that it is not being leaked to the attacker by
an honest party. The response code is created in Line 58 of Algorithm 9 and stored in
the session identified by lsid in the subsequent lines. The response code is included in the
encrypted response of the direct-post endpoint to 𝑤 ∈ 𝑊𝑏 (Line 44 of Algorithm 9). Since
the presentation is sent to the endpoint only 𝑤 could have sent it because as argued below
(2) the attacker cannot obtain a credential with an honest user’s identity. This means the
response code is sent to 𝑤. The attacker could send a request to the direct-post endpoint and
store their presentation in an honest user’s session because they know the nonce from the
authorization request (authUrl.parameters[nonce]). This is due to the fact that authUrl
leaks (Line 41 of Algorithm 9) but it does not violate the Presentation Authentication security
property because the attacker has to be logged in under an honest user’s identity. Looking
at the other endpoints of a verifier it can be seen that the response code is not leaked. The
start-script endpoint in Line 2 of Algorithm 9 and start endpoint in Line 5 of Algorithm 9
do never retrieve the response code from the session and the redirect endpoint (Line 66 of
Algorithm 9) does only retrieve the response code to compare the value with parameters in
the request (𝑚.parameters[response_code] . session[response_code]). Specifically,
this endpoint does not include the response code in the response or in a request.

91

C Proof of Security Properties

Out of all parties, only the wallet ever makes HTTPS requests to other parties. The only point
where a request is sent to the direct-post endpoint of the verifier is in Line 100 of Algorithm 4
in the wallet relation. From Line 13 and Line 17 of Algorithm 9 it is known that the request
to the direct-post endpoint is encrypted. According to Lemma 4 of [7], the request and
especially the response do not leak to the attacker. The wallet 𝑤 does receive the response in
Line 51 of Algorithm 7 and in the following lines the redirect URL with the response code is
processed. As it can be seen in the relation of a wallet the response code is never stored and
only sent out in a Location header (⟨Location, redirectUri⟩) in an encrypted response to the
browser 𝑏. The content of the encrypted message cannot be derived by the attacker according
to Lemma 1 of [7]. The browser does store the redirectUri in its state but only to send it to
redirectUri.host as it can be seen in Line 11ff. of Algorithm 8 in [7]. Since the redirectUri
is generated by 𝑣 (Line 60 of Algorithm 9) and cannot be manipulated by the attacker, only 𝑣
will receive the response code (redirectUri.host ∈ dom(𝑣)). From this, it follows that the
response code does not leak.

According to Lemma 1 we know that a verifier session id lsid send in a header of the form
⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩ from 𝑣 to 𝑏 does not leak. This
means that the attacker cannot use an honest user’s session ID and response code at the
verifier’s redirect endpoint to obtain a service token.

Besides leaking a session ID, the attacker can also obtain a valid session ID by calling the
start endpoint (Line 5 of Algorithm 9) of the verifier. To get a service token, the attacker
needs to pass the condition session[response_code] . ⟨⟩ in Line 71 of Algorithm 9 and
must add a presentation with an honest user’s identity to session[vp_token]. The only
endpoint in the verifier relation that allows these values to be added to the session is the
direct-post endpoint (Line 44 of Algorithm 9). To call the endpoint and log in as an honest
user, the attacker must send a vp_token with the identity of an honest user. From the next
case (2) below it follows that the attacker cannot create or obtain such a vp_token. This
means that the attacker must load a malicious script into 𝑏 and redirect the user to their
wallet with the authorization request from the start endpoint. The authorization request
has the parameter response_mode = direct_post and the response URI of the honest
verifier. If the attacker changes the response URI to their own domain they would get the
presentation but the aud parameter (aud = authRespUri.host) would have the wrong value
and is rejected by the honest verifier (aud . 𝑚.host). The attacker could also try to change
the path in the response URI to forward the response code to their domain. This is not
possible because the only endpoint on the verifier that has a redirect URI in its response body
(Line 60 of Algorithm 9) is the direct-post endpoint, and that redirect URI has the verifier’s
host (𝑚.host). Not changing the response URI means that the user after authenticating
the authorization request is redirected to the honest verifier with the response code in the
redirect URI (assuming useRedirectUri = ⊤ in Line 55 of Algorithm 9). Since 𝑏 is honest
there is no way for the attacker to obtain the response code because it does not leak as shown
above. In summary, the attacker knows a session ID that has a presentation with an honest
user’s identity in session[vp_token] but they do not know the response code, which makes
it impossible for them to get the service token.

2. 𝒎.body[vp_token] . ⟨⟩ (Line 75 of Algorithm 9): The second way an attacker can use
the redirect endpoint of a verifier is to create or obtain a leaked presentation containing a
credential with the identity of an honest user. With the presentation, they can answer the

92

C.2 Proof of Presentation Authentication

authorization request and use the redirect endpoint to obtain a service token. The presentation
has to contain the domain of the honest verifier as the audience because it would not be
accepted otherwise. There are several ways to obtain a presentation:

a) Leaked presentation: One possibility is that the presentation is leaked to the
attacker by an honest party. To find out if a presentation addressed to 𝑣 can leak we
trace the lifecycle of a presentation. The only point where an honest party creates a
presentation of the form extractmsg(presentation) ≡ ⟨⟨𝑢, 𝑑𝑖 , pubKey⟩, c_nonce, aud⟩
(pubKey, c_nonce ∈ N and aud ∈ Doms) is in Line 84 of Algorithm 4. No honest
party will send a request to 𝑤 to create a presentation except for 𝑏 which is instructed
by 𝑣 to redirect to 𝑤. This is because, as explained above, only the wallet ever sends
requests, and never to itself. This means that we have response_uri ∈ dom(𝑣) and
redirect_uri ∈ dom(𝑣).

In the case of response_mode = direct_post 𝑤 sends the presentation over an
encrypted connection directly to 𝑣 (Line 100 of Algorithm 4). If the presentation
is addressed to 𝑣 (aud ∈ dom(𝑣)) and valid (checksig(presentation, pubKey) ≡ ⊤) it
will be saved in the state (Line 54 of Algorithm 9). In following processing steps the
presentation is retrieved from the state (Line 74 and Line 83 of Algorithm 9) but never
send out over the network again.

In the case of response_mode = fragment the presentation is sent over an encrypted
connection to a browser that is authenticated via username and password to 𝑤. Since
passwords are only sent to the domain they are stored for in 𝑏 (follows from the definition
of secrets in [7]) and the receiving parties do only use passwords to check them with
the method secretOfID(𝑢), the passwords do not leak. This means that only the honest
browser 𝑏 receives the presentation and does not leak it. In the next step, a script from
𝑣 sends the presentation via an encrypted POST request to the domain under which the
script is running (Line 3 of Algorithm 11), and 𝑣 stores the presentation in its state.
After that the presentation is validated by 𝑣 (Line 90 of Algorithm 9) and the user id is
extracted (Line 92 of Algorithm 9).

The verifier does not include the presentation in the response of the redirect endpoint
(Line 66 of Algorithm 9) or the direct-post endpoint (Line 44 of Algorithm 9). Looking
at the other endpoints of the verifier in Line 5 and Line 2 of Algorithm 9 it can be seen
that they do not process the presentation and therefore cannot leak it.

In summary, we can say that no matter which path the presentation takes it will not leak
to the attacker.

b) Use honest wallet: The only point where an honest party creates a presentation is
Line 84 of Algorithm 4. To create a presentation, the attacker has to load a malicious
script inside 𝑏 and redirect the browser with the authorization request to the wallet 𝑤.
We know that 𝑏 = browserOfWallet(𝑤) because only then can 𝑏 authenticate to the
wallet and create a presentation as argued above. The audience of the presentation
has to have the value aud ∈ dom(𝑣) because otherwise the check aud . 𝑚.host in
Line 3 of Algorithm 10 is true and the presentation will be rejected. This means that

93

C Proof of Security Properties

the attacker has to use redirect_uri.host ∈ dom(𝑣) or response_uri.host ∈ dom(𝑣)
depending on the response_mode parameter in the authorization request because the
host of these URIs becomes the value of the aud parameter (Line 82 of Algorithm 4).

If the response_mode = direct_post 𝑤 will send the presentation over an encrypted
connection (Line 100 of Algorithm 4) to 𝑣 because of response_uri.host ∈ dom(𝑣).
From Lemma 4 of [7] it is known that such an encrypted message cannot be decrypted
by the attacker. In addition, there is only one endpoint at the verifier that includes a
redirect_uri parameter in the response body (Line 60 of Algorithm 9), and that body
does not include any of the parameters sent to the endpoint. Therefore, the attacker
cannot use an endpoint of 𝑣 to forward the presentation to a domain under their control.

If the response_mode = fragment 𝑤 will redirect 𝑏 to 𝑣 with a Location header in
an encrypted response (Line 90 of Algorithm 4). During the redirection in the browser,
it is clear from Line 11ff. of Algorithm 8 in [7] that the authorization response is not
leaked by 𝑏 to the attacker. The URL is saved in 𝑏’s state but never sent out to another
party than 𝑣 and is not accessible to scripts not loaded from 𝑣’s origin. From Lemma 1
in [7] it is known that the encrypted requests and responses between 𝑏 and 𝑤 or 𝑣 cannot
be decrypted by the attacker. In addition, 𝑣 has no endpoint that includes parameters
from the request in a redirect to another domain. The verifier has only two places where
a redirect is sent to the browser (Line 34 and Line 97 of Algorithm 9). The first one in
Line 34 of Algorithm 9 contains no parameters from the request and the second one in
Line 97 of Algorithm 9 contains no parameters at all. Therefore, the attacker cannot use
a customized redirect URI to forward the presentation to a domain under their control.

In summary, it is known that first, the presentation will not be leaked by an honest party,
and second, the attacker cannot force an honest party to create a presentation and send
it to him.

c) Own user credential: The final way to create a presentation is for the attacker to control
the private key of a credential that contains the identity of an honest user. According to
the Issuance Authentication security property (Definition B.2.1) it is known that the
attacker does not know the private key for a public key contained in an honest user’s
credential. This means that the holder key of an honest wallet 𝑤 ∈ 𝑊𝑏 does not leak
and that the attacker cannot inject their public key in an issuance flow with 𝑖, 𝑏, and 𝑤.

3. session[vp_token] . ⟨⟩ (Line 80 of Algorithm 9): The third possibility to use the verifier’s
redirect endpoint is to execute a cross-device flow (useRedirectUri = ⊥ in Line 55 of
Algorithm 9) in which the attacker has to call the redirect endpoint (Line 66 of Algorithm 9)
with an authenticated login session id lsid. This means that the presentation is sent to the
verifier via the direct-post endpoint (Line 44 of Algorithm 9) and stored in the session
associated with lsid. To obtain an authenticated login session ID, the attacker can either
derive the lsid from their knowledge or create the lsid and try to trick an honest user into
authenticating.

Since the Lemma 1 already proves that the login session ID does not leak, there is no way an
attacker can derive an authenticated session ID from its knowledge.

94

C.3 Proof of Issuance Authentication

The other option for the attacker is to create the lsid and trick an honest user into au-
thenticating. Note that this is similar to what is discussed above in (1) but we have
useRedirectUri = ⊥ in Line 55 of Algorithm 9. First, the attacker calls the start end-
point (Line 5 of Algorithm 9) of the verifier, and in the response, they receive the
lsid (⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩) and an authorization request
(⟨Location, authUrl⟩) with response_mode = direct_post. Second, the lsid has to be
authenticated by somebody via a POST request to the direct-post endpoint (Line 44 of
Algorithm 9) with a vp_token that contains an honest user’s identity. From the case
(2) above it is known that the attacker cannot obtain such a vp_token. This means
the attacker has to load a malicious script into 𝑏 and let the user authenticate the au-
thorization request with their wallet 𝑤 (𝑤 chooses a credential with the identity 𝑢).
We know that 𝑏 = browserOfWallet(𝑤) because only then can 𝑏 authenticate itself
to 𝑤. Since 𝑆 𝑗 (𝑣).sessions[lsid] .useRedirectUri ≡ ⊥ it is clear that the method
validateRequest(⟨authRespUri.host, 𝑚.body[nonce]⟩) (Line 79 of Algorithm 4) is called.
This method checks whether 𝑏 has ⟨authRespUri.host, 𝑚.body[nonce]⟩ ∈ 𝑆(𝑏).started.
The only way a domain-nonce combination is added to 𝑆(𝑏).started is by executing Line 17
of Algorithm 14. To execute this line a response to a request with the reference START is
needed (𝜋1(reference) ≡ START Line 11 of Algorithm 14). This request can only be sent by
a script executing a new script command defined in Line 19 of Algorithm 13. This script
command sends a POST request to a URL and checks that the URL has the same domain
as the script (url.host . docorigin.host ∨ url.protocol . S Line 20 of Algorithm 13).
That makes it impossible for a malicious script to add the domain-nonce combination to
𝑆(𝑏).started for a domain not controlled by the attacker, e.g. a domain of 𝑣. This means
that the attacker cannot force a user into authenticating an arbitrary authorization request.
Consequently, the attacker cannot use the verifier’s redirect endpoint in the cross-device flow
mode to obtain a service token.

Looking at all the possible uses of the verifier’s redirect endpoint, there is no way an attacker could
use it to obtain a service token. Since the service token is also not leaked by an honest party,
the attacker cannot derive a service token for an honest user from its knowledge. This proves
Lemma 3. □

C.3 Proof of Issuance Authentication

This section contains the proof of the Issuance Authentication security property (Definition B.2.1).
The property is shown directly by proving that the property holds in a Verifiable Credentials web
system VCWS𝑛.

Lemma 4 (Issuance Authentication Holds)
Definition B.2.1 holds.

Proof. By Definition B.2.1 there is an arbitrary credential 𝑐 ≡ sig(⟨𝑢, 𝑑𝑖 , pub(𝑝)⟩,
𝑆 𝑗 (𝑖).signingKey). To show that 𝑝 is not derivable by the attacker (𝑝 ∉ 𝑑∅ (𝑆 𝑗 (attacker))),
we trace all the ways a malicious actor could control the private key in the credential. There are

95

C Proof of Security Properties

two ways that 𝑝 can be derived by the attacker: First, the private holder key (𝑆 𝑗 (𝑤).holderKey)
of 𝑤 ∈ 𝑊𝑏 is leaked, and second, the attacker is able to provide their public key during credential
issuance.

This paragraph shows that 𝑆 𝑗 (𝑤).holderKey does not leak. 𝑆 𝑗 (𝑤).holderKey is used in the
authentication endpoint (Line 61 of Algorithm 4) to create a signature in Line 84 of Algorithm 4.
Since the cryptography is secure the private key will not be exposed from the signature or the signed
data. Signatures with this key are also created in the token response (Line 2 of Algorithm 7) in
Line 13 and Line 23 of Algorithm 7. In the token response the public key (pub(𝑆 𝑗 (𝑤).holderKey))
of the holder key is embedded in the proof of possession (Line 13 and Line 23 of Algorithm 7)
and included in the HTTPS requests to the credential endpoint (Line 19 of Algorithm 4) and the
batch credential endpoint (Line 29 of Algorithm 4). But again: Since cryptography is secure, the
private key cannot be derived from the public key. The start endpoint (Line 2 of Algorithm 4),
the credential offer endpoint (Line 5 of Algorithm 4), the start code flow endpoint (Line 21 of
Algorithm 4), and the redirect endpoint (Line 44 of Algorithm 4) never use the holder key and the
requests to the token endpoint (Line 20 and Line 60 of Algorithm 4), the request to the direct-post
endpoint (Line 100 of Algorithm 4), and the deferred credential endpoint (Line 16 of Algorithm 4)
do not include the holder key 𝑆 𝑗 (𝑤).holderKey. In addition, the holder key is never written in the
wallet relation because it is set in the initial state, so there is no way to overwrite the key.

The other way an attacker knows 𝑝 is by injecting pub(𝑝) with 𝑝 ∈ 𝑑∅ (𝑆 𝑗 (attacker)) into 𝑐 during
an issuance flow between 𝑤 ∈ 𝑊𝑏, 𝑏 and 𝑖. To show that this is not possible, we trace the creation
of 𝑐 at the issuer. A credential can be created in the credential endpoint (Line 76 of Algorithm 1),
batch credential endpoint (Line 96 of Algorithm 1), or deferred credential endpoint (Line 117 of
Algorithm 1).

The public key cannot be injected into 𝑐 at the deferred credential endpoint because this endpoint
only needs an access_token and a transaction_id to issue the credential. At this point, the public
key for the credential is already contained in the state of 𝑖 and the attacker would only obtain the
credential. This means that it is not important whether the attacker knows the transaction_id or not
because they can always obtain such a credential by tricking the user into logging in at a corrupted
verifier.

From the relation of an issuer, it is clear that the public key can only be injected into the credential
in the credential endpoint or the batch credential endpoint. To call one of these endpoints an
access_token and a c_nonce are needed. The POST requests to these endpoints include a proof
of possession of 𝑝 which is a signature of the form proof ≡ sig(⟨di, c_nonce, pub(𝑝)⟩, 𝑝). In the
credential endpoint the public key is included in 𝑐 in Line 88 of Algorithm 1 or written to the state
in Line 93 of Algorithm 1 to later be included in the credential created in the deferred credential
endpoint (Line 127 of Algorithm 1). In the batch credential endpoint the public key is included in 𝑐
in Line 109 of Algorithm 1 or added to the state in Line 113 of Algorithm 1 to be included at the
deferred credential endpoint.

To derive the access_token from the attacker’s knowledge, the attacker has to either call the token
endpoint (Line 46 of Algorithm 1) or obtain it via a leakage. To show that the access_token does
not leak we trace the lifecycle of the token. The access_token is created in Line 70 of Algorithm 1,
stored in the state of 𝑖, and sent in an encrypted response (secure after Lemma 4 of [7]) to 𝑤. To

96

C.3 Proof of Issuance Authentication

prove that it is indeed sent to 𝑤 there must be two cases considered: First, the token endpoint is called
with a code and a code_verifier and second, the token endpoint is called with a pre-authorized_code
and a user_pin because of 𝑆 𝑗 (𝑤).sessions[issid] .use_user_pin = ⊤.

1. ⟨⟨code, code⟩, ⟨code_verifier, code_verifier⟩⟩ (Line 58 of Algorithm 1)

To show that the token endpoint is called by 𝑤 we have to prove that the code and the
code_verifier do not leak to the attacker. The code is created in the authentication endpoint
(Line 23 of Algorithm 1) in Line 39 of Algorithm 1. In the following lines, it is stored in the
state of 𝑖 and sent via a browser redirect to the redirect_uri. From the precondition, it is known
that the redirect_uri belongs to an honest wallet. This means that the authorization request
came from 𝑤 and that the code is being sent to 𝑤. It makes no sense for an attacker to send an
authorization request with a domain of 𝑤 in the redirect URI because there is no way to get
the authorization code. Looking at the relation of a wallet, there are only two places where a
Location header is included in the response (Line 40 and Line 90 of Algorithm 4) and in
both places there is no code parameter from the request in the redirect URI. The browser that
authenticated towards the authentication endpoint must be 𝑏 because otherwise there would
be no honest identity 𝑢 in 𝑐 as shown below. It is also clear that the redirect_uri is always an
HTTPS URL because of Line 26 of Algorithm 4 and because the authorization request is
an encrypted request (Line 30 of Algorithm 4). The code is not leaked during redirect in 𝑏
because the redirect_uri is written to the state of 𝑏 but only sent to redirect_uri.host (Line
11ff. Algorithm 8 in [7]). The wallet 𝑤 receives the code in the redirect endpoint (Line 44
of Algorithm 4) and sends it back to 𝑚.parameters[iss] ≡ 𝑆 𝑗 (𝑤).sessions[issid] .host.
From this, it is clear that the code is sent back to 𝑖 via an encrypted message to the token
endpoint (Line 58 of Algorithm 4). The wallet also stores the code in the state, but only for
formal reasons of the model. The code in the state is never retrieved or written to again.
At the token endpoint 𝑖 checks that the code is issued by itself (Line 66 of Algorithm 1)
and in the following lines it is deleted from the state. The issuer does not include the code
in the response or a request. Looking at the other endpoints it can be seen that only the
start credential offer endpoint writes to 𝑆 𝑗 (𝑖).codes as well but does not read from it. The
start endpoint (Line 3 of Algorithm 1), credential endpoint (Line 76 of Algorithm 1), batch
credential endpoint (Line 96 of Algorithm 1), and deferred credential endpoint (Line 117 of
Algorithm 1) do not read or write to 𝑆 𝑗 (𝑖).codes.

The attacker can also try to authenticate as an honest user at the authentication endpoint.
For this, they need an honest password that is leaked somewhere. The only two locations
where passwords are sent from 𝑏 to a server are in Line 5 of Algorithm 3 and Line 5 of
Algorithm 6. Both scripts select a password from the list of passwords for their origin (follows
from the definition of secrets in [7]) and send it via an HTTPS request to the instance. From
Lemma 1 in [7] it is clear that the attacker cannot decrypt such a message. At the endpoints
the passwords are compared with the result of the method secretOfID(id) in Line 67 of
Algorithm 4 and Line 37 of Algorithm 1 but are not stored or send out again. That means
that passwords do not leak and the attacker cannot authenticate to the authentication endpoint
as an honest user. From this, we can conclude that the code does not leak.

To show that the code_verifier does not leak, we look at its lifecycle. The code_verifier is
created in Line 24 of Algorithm 4 in the start code flow endpoint of the wallet (Line 21 of
Algorithm 4) and stored in the state. A hashed version of it is sent out over the network but

97

C Proof of Security Properties

since the cryptography is secure it is impossible to recover the plain text. The only place
where the code_verifier is read from the state is Line 57 of Algorithm 4 and in the following it
is sent to 𝑚.parameters[iss] ≡ 𝑆 𝑗 (𝑤).sessions[issid] .host which is 𝑖 as shown above.
The issuer compares the code_verifier in Line 66 of Algorithm 1 with the code_challenge
from the authorization request and does not do any further processing of the code_verifier.
In particular, it is not stored, included in the response, or sent out in a request. It can be seen
that the code_verifier does not leak as well.

Since the code and the code_verifier do not leak, 𝑤 is the only party that can send the token
request. This means that the access_token will be sent to 𝑤 in the token response.

2. ⟨⟨pre-authorized_code, pre-authorized_code⟩, ⟨user_pin, user_pin⟩⟩
(Line 49 of Algorithm 1)

Sending a pre-authorized_code and a user_pin to the token endpoint is the second option
to use the endpoint. To guarantee that only 𝑤 can send the token request either the
pre-authorized_code or the user_pin are not allowed to leak. Since the pre-authorized_code
leaks in the credential offer (Line 22 of Algorithm 1), we must show that the user_pin remains
a secret. The only location where a user PIN is added to a request or a response in a wallet is
in Line 17 of Algorithm 4 (body[user_pin] = 𝑆 𝑗 (𝑤).userPins[issHost]). The user PIN
is sent to the domain for which it is selected (url = ⟨URL, S, issHost, /token, ⟨⟩,⊥⟩) via an
HTTPS request in Line 20 of Algorithm 4. It is known from Lemma 4 in [7] that this message
cannot be decrypted by the attacker. The issuer compares the user PIN from the token request
with the result of the method userPinOfId(𝑢) in Line 55 of Algorithm 1. The issuer does
not process the user PIN any further and has no user pins in its state. Note that the verifier
also does not have any user pins in its state and does not receive any user pins. Since the
comparison of the user PIN is successful it can be concluded, that the token request is sent
from 𝑤 to 𝑖 because only these two know the user pin. It follows that the access_token is sent
to 𝑤.

The wallet 𝑤 stores the access_token in the state in Line 8 of Algorithm 7 and sends it in an
encrypted message either to the credential endpoint (Line 19 of Algorithm 4), batch credential
endpoint (Line 29 of Algorithm 4) or deferred credential endpoint (Line 16 of Algorithm 8) of 𝑖.
It is clear that the messages go to 𝑖 because all these requests use the same domain as the token
request (𝑆 𝑗 (𝑤).sessions[issid] .host). The wallet does not include the access_token in any other
response or request. The issuer receives the access_token in the credential endpoint (Line 76 of
Algorithm 1), batch credential endpoint (Line 96 of Algorithm 1), or deferred credential endpoint
(Line 117 of Algorithm 1) and verifies that it is issued by itself. After that, the access_token is not
processed further in those endpoints and is not included in the response or any request. The start
endpoint (Line 3 of Algorithm 1), the start credential offer endpoint (Line 6 of Algorithm 1), and
the authentication endpoint (Line 23 of Algorithm 1) do not read or write to 𝑆 𝑗 (𝑖).atokens which
contains access tokens. All of the above shows that the access_token does not leak.

The attacker also cannot use the token endpoint to obtain an access_token because, as shown above,
the code, code_verifier, and user_pin do not leak.

From this, it can be concluded that the attacker cannot derive the c_nonce from the token response
(Line 74 of Algorithm 1). On the wallet side the c_nonce is never stored in the state and only
included in the proof (Line 13 and Line 23 of Algorithm 7) that is sent via an encrypted message

98

C.4 Proof of Presentation Session Integrity

to the credential or batch credential endpoint of 𝑖. These requests are sent to 𝑖 because otherwise
the access_token leaks to the attacker which contradicts the proof above. The issuer compares the
c_nonce with the value from its state (Line 83 and Line 104 of Algorithm 1) and does not do any
further processing. The c_nonce is not contained in any other response or request of 𝑖, so there is
no way the attacker can derive the value.

Since the attacker does not know the access_token and the c_nonce, they cannot inject pub(𝑝) into
𝑐. This, and the fact that 𝑆 𝑗 (𝑤).holderKey does not leak, proves Lemma 4. □

C.4 Proof of Presentation Session Integrity

This section contains the formal proof of the Presentation Session Integrity security property
(Definition B.3.5). The property is shown directly by proving that the property holds in a Verifiable
Credentials web system VCWS𝑛.

Lemma 5 (Presentation Session Integrity Holds)
Definition B.3.5 holds.

Proof. Definition B.3.5 says that loggedIn𝑄
𝜌 (𝑏, 𝑣, 𝑖, id, lsid) is true and the state of 𝑣 contains

𝑆(𝑣).sessions[lsid] .serviceTokenId ≡ serviceToken and 𝑆(𝑣).sessions[lsid] .userInfo ≡
⟨id, 𝑑𝑖 , 𝑑𝑤⟩. This means in particular that 𝑣 contains a valid login session with the nonce lsid (i.e.
𝑆(𝑣).sessions[lsid] . ⟨⟩). To show that the Presentation Session Integrity security property
holds, the two events started𝑄′′

𝜌 (𝑏, 𝑣, lsid) and chooseCredential𝑄
′

𝜌 (𝑣, lsid, id) must be shown.

1. started𝑸′′

𝝆 (𝒃, 𝒗, lsid)

A service token for the session id lsid is only created in Line 93 of Algorithm 9. To
execute this line 𝑣 has to receive an encrypted HTTPS request containing the header
⟨Cookie, ⟨⟨__Host, sessionID⟩, lsid⟩⟩. Definition B.3.3 says that this request is sent by the
browser 𝑏. From the definition of the browser in the WIM it is easy to see that Algorithm 4
in [7] is always used to send HTTP requests. From Line 4 of Algorithm 4 in [7] (cookies =
⟨{⟨𝑐.name, 𝑐.content.value⟩|𝑐 ∈⟨⟩ 𝑠′.cookies[message.host] ∧ (𝑐.content.secure ≡
⊤ ⇒ (url.protocol ≡ S))}⟩) it is clear that the sessionID cookie is only included in a
request to 𝑣 if it is stored under a domain of 𝑣. In Line 4 of Algorithm 8 in [7] it can be seen
that a cookie is always stored under the host of the request (𝑠′.cookies[request.host] =
AddCookie(𝑠′.cookies[request.host], 𝑐, requestUrl.protocol)) and Definition 37 of [7]
assures that cookies with the __Host prefix can only be set via an encrypted re-
sponse. This means that 𝑏 received an encrypted response from 𝑣 with the header
⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨lsid,⊤,⊤,⊤⟩]⟩. The only point where 𝑣 creates a
response with such a header is Line 32 and Line 35 of Algorithm 9 and in the same processing
step 𝑄′′ the login session lsid is created. In Line 6 of Algorithm 9, the origin header is
checked in the processing step 𝑄′′, which means that only a script loaded from 𝑣 can send
this request. A verifier has only two scripts: the script script_verifier_get_fragment is to get
the authorization response from a URL fragment and the script script_verifier_index is to
start the authentication flow. If the latter is executed, specifically Line 6 of Algorithm 12, the
script command START is executed, which sends a POST request to 𝑣 containing the origin

99

C Proof of Security Properties

header ⟨𝑑𝑣 , S⟩ with 𝑑𝑣 ∈ dom(𝑣) (Line 25 of Algorithm 13). In a subsequent processing step,
𝑄′′ will be executed in the run 𝜌. This means that all conditions for started𝑄′′

𝜌 (𝑏, 𝑣, lsid) are
fulfilled.

2. chooseCredential𝑸
′

𝝆 (𝒗, lsid, id)

From Definition B.3.3 we know that 𝑣 contains the state 𝑆(𝑣).sessions[lsid] .userInfo ≡
⟨id, 𝑑𝑖 , 𝑑𝑤⟩, which means that Line 95 of Algorithm 9 is executed. From this, it can be
concluded that the if-else-if condition in Line 70ff. of Algorithm 9 is executed without stopping
the processing step which means there exists the state 𝑆(𝑣).sessions[lsid] .vp_token ≡
vp_token and extractmsg(vp_token) ≡ ⟨⟨id, 𝑑𝑖 , pubKey⟩, 𝑛, aud⟩ with 𝑛, pubKey ∈ N and
aud ∈ dom(𝑣). The aud parameter must be a domain of 𝑣 because it is checked in Line 90
of Algorithm 9. A term of the form of the vp_token is never created by a verifier because
a verifier does never sign terms. By tracing the vp_token back it can be seen that it is
either received via a URL fragment (Line 75 of Algorithm 9) and send to 𝑣 by the script
script_verifier_get_fragment (Line 3 of Algorithm 11) or it is received via a POST request in
Line 45 of Algorithm 9. This means that another process must have created the vp_token.
The only honest parties creating signatures are wallets and issuers. To create a valid vp_token
the party must know the nonce 𝑛 from the authorization request.

The nonce 𝑛 is created in Line 8 of Algorithm 9, stored in the session state
(𝑆(𝑣).sessions[lsid] .nonce) and subsequently send in the authorization request via a
Location header to the browser 𝑏 in an encrypted response. The authorization request is not
leaked in Line 41 of Algorithm 9 because of Definition B.3.5. The browser redirects to the
Location header in Line 11ff. of Algorithm 8 in [7] and stores the authorization request in its
state, but never sends it to anyone other than 𝑤. The authorization request is then transferred
via an encrypted message to 𝑤. The wallet uses 𝑛 only to create a valid presentation, does
not store it anywhere, and does only send the nonce via a HTTPS POST message (Line 100
of Algorithm 4) directly to 𝑣 or uses the Location header (Line 90 of Algorithm 4) again to
redirect the user back to the verifier. The redirect also uses only encrypted HTTPS messages.
The verifier compares the nonce in the presentation with the nonce from the session in Line 5
of Algorithm 10 and does not do any further operations with 𝑛. This especially includes that
𝑛 is not send out in a response again in Line 64 of Algorithm 9 or Line 99 of Algorithm 9 and
a verifier does also not do any requests to other servers. As a side note the endpoint in Line 2
of Algorithm 9 does also not process or send 𝑛. This means that the nonce 𝑛 does not leak
since it is never sent over an unencrypted connection. Note that as argued earlier the transfer
of secrets via an encrypted connection is secure. In conclusion, only 𝑣, 𝑏 and 𝑤 get to know
the nonce 𝑛.

It follows that only 𝑤 knows the nonce 𝑛 and signs a term of the form of a vp_token in
the processing step 𝑄′ in Line 84 of Algorithm 4. From this, it can be concluded that
only 𝑤 can create the vp_token. From started𝑄′′

𝜌 (𝑏, 𝑣, lsid) it is clear that the authoriza-
tion request is sent by 𝑣 to 𝑤, that means the aud parameter of the vp_token is set to
authRespUri.host ∈ dom(𝑣) in Line 82 of Algorithm 4. Before this in Line 76 of Algo-
rithm 4 a credential with the identity id is chosen from the state of 𝑤. Since 𝑖, 𝑏 and 𝑤 are
honest Lemma 2 can be applied which guarantees for the identity id of the credential stored
in 𝑤 that ownerOfID(id) = browserOfWallet(𝑤). With all the above the requirements for
chooseCredential𝑄

′
𝜌 (𝑣, lsid, id) are fulfilled.

100

C.5 Proof of Issuance Session Integrity

This proves Lemma 5 because if we have loggedIn𝑄
𝜌 (𝑏, 𝑣, 𝑖, id, lsid), there must have been the

events started𝑄′′
𝜌 (𝑏, 𝑣, lsid) and chooseCredential𝑄

′
𝜌 (𝑣, 𝑤, lsid, id) before. □

C.5 Proof of Issuance Session Integrity

The following is the proof of the Issuance Session Integrity security property (Definition B.4.5).
The property is shown directly by proving that the property holds in a Verifiable Credentials web
system VCWS𝑛.

Lemma 6 (Issuance Session Integrity Holds)
Definition B.4.5 holds.

Proof. From Definition B.4.5 we know that the stored𝑄
𝜌 (𝑏, 𝑤, 𝑖, id, issid) event happened. This

event says that the state of 𝑤 contains a credential 𝑐 with 𝑐 ∈ 𝑆′(𝑤).sessions[issid] .credentials
and that 𝑐 is received in an encrypted response body (𝑐 ≡ 𝑚dec.body[credential] or 𝑐 ∈
𝑚dec.body[credential_responses] .credentials). There are three points in the wallet relation
where such a state is created: First, in the credential response (Line 35 of Algorithm 4), second, in
the batch credential response (Line 43 of Algorithm 4), and third, in the deferred credential response
(Line 50 of Algorithm 4). The attacker cannot send such a response because they would have to
know the symmetric key (Line 20 of Algorithm 18 in [7]) of a previously sent HTTPS request with
the correct reference. This is not possible because the attacker cannot learn symmetric keys in an
HTTPS response or request (Lemma 4 of [7]). That means there must have been a corresponding
request made by 𝑤 first.

Starting with the deferred credential response there must have been a deferred credential request first.
The only point in the wallet relation where such a request is sent is Line 16 of Algorithm 4. To execute
this line there must have been a trigger,⊤must have been assigned to sendDeferredCredentialRequest
in Line 2 of Algorithm 8, and 𝑆(𝑤).transactionIds . ⟨⟩. From this, it is known that something
must have been added to 𝑆(𝑤).transactionIds in a previous processing step. There are two
points where something is written to 𝑆(𝑤).transactionIds: First, in the credential response
(Line 37 of Algorithm 4), and second, in the batch credential response (Line 45 of Algorithm 4).
This means one of these two responses must have been received previously and for them to be
received there must have been a corresponding request first.

As it can be seen in the relation of the wallet the batch credential request is only made in the token
response in Line 29 of Algorithm 4 if useBatchCredEndpoint is true in Line 11 of Algorithm 7.
The credential request is also only sent in the token response if useBatchCredEndpoint is false in
Line 11 of Algorithm 7. This in turn means that there must have been a token request. The token
request must have been made regardless of whether the deferred credential endpoint was used or not
because if the deferred credential endpoint was not used, the credential would have been written to
𝑆′(𝑤).sessions[issid] .credentials by the credential response or the batch credential response,
as discussed above.

There are two locations in the relation of a wallet where a token request is made: The first one is in
Line 60 of Algorithm 4 where an authorization request is received and the second one is in Line 20
of Algorithm 4 where a credential offer is received.

101

C Proof of Security Properties

1. startedCodeFlow𝑸′′

𝝆 (𝒃, 𝒘, issid)

To execute Line 60 of Algorithm 4 the redirect endpoint (Line 44 of Algorithm 4) has to be
called successfully. This requires an HTTPS request from 𝑏 containing a cookie of the form
⟨Cookie, ⟨⟨__Host, sessionID⟩, issid⟩⟩. From Line 4 of Algorithm 4 in [7] it is clear that
the sessionID cookie is only included in a request to 𝑤 if it is stored under the domain of 𝑤.
In Line 4 of Algorithm 8 in [7] it can be seen that a cookie is always stored under the host
of the request and Definition 37 of [7] assures that cookies with the __Host prefix can only
be set via an encrypted response. This means that 𝑏 received an encrypted response from
𝑤 with the header ⟨Set-Cookie, [⟨__Host, sessionID⟩ : ⟨issid,⊤,⊤,⊤⟩]⟩. The only point
where 𝑤 creates a response with such a header is in the start-code-flow endpoint (Line 21 of
Algorithm 4) in Line 41 of Algorithm 4 and in Line 38 of Algorithm 4 in the same processing
step 𝑄′′ the issuance session issid is created. The issid session contains the parameters from
the authorization request, e.g. 𝑆(𝑤).sessions[issid] .code_challenge ≡ code_challenge
(Line 25 of Algorithm 4). In Line 22 of Algorithm 4, the origin header is checked in the
processing step 𝑄′′. Since the browser 𝑏 is honest only a script from 𝑤 can execute this
endpoint to start the issuance. A wallet has only two scripts: the script script_wallet_form
is to authenticate a user towards the wallet and the script script_wallet_index is to start the
issuance flow. If the latter one is executed particularly Line 7 of Algorithm 5, the FORM script
command is run which sends a POST request to 𝑤 containing the origin header ⟨𝑑𝑤 , S⟩ with
𝑑𝑤 ∈ dom(𝑤) (Line 48 of Algorithm 7 in [7]). In a subsequent processing step, 𝑄′′ will be
executed in the run 𝜌. This means that all conditions for startedCodeFlow𝑄′′

𝜌 (𝑏, 𝑤, issid)
are fulfilled.

2. authenticated𝑸′

𝝆 (𝒃, 𝒊, 𝒘, id, issid)

We know that the token endpoint of the issuer (Line 46 of Algorithm 1) was success-
fully called and that two parameters are required: First, a valid code and second a
valid code_verifier. The code is sent by 𝑏 to 𝑤 in the authorization response to the
redirect endpoint in Line 44 of Algorithm 4 and the code_verifier is taken from the
state (𝑆(𝑤).sessions[issid] .code_verifier = code_verifier). This means that the
start-code-flow endpoint (Line 21 of Algorithm 4) was executed in a previous pro-
cessing step because this is the only location where the code_verifier is stored in the
state. From Line 25 of Algorithm 4 we can conclude that there must also be the
state 𝑆(𝑤).sessions[issid] .code_challenge = code_challenge = HASH(code_verifier).
The token endpoint of the issuer compares the code_verifier with the code_challenge
(codeInfo.3 . HASH(codeVerifier) Line 66 of Algorithm 1). The only place where codeInfo.3
is stored in the state is Line 40 of Algorithm 1 in the authentication endpoint of the issuer
(Line 23 of Algorithm 1). The parameter code_challenge is received via the body of a POST
request. Since the endpoint checks the origin header in Line 29 of Algorithm 1, only an issuer
script can send this POST request. The issuer only has the script script_issuer_form that adds
parameters from the script state to the POST request (Line 3 of Algorithm 3) and chooses the
identity id in Line 4 of Algorithm 3. The script can be loaded from two locations: First, in
Line 4 of Algorithm 1 for the pre-authorized code flow and second in Line 26 of Algorithm 1
for authentication at the authentication endpoint of the issuer. The latter one must have been ex-
ecuted because otherwise the code_challenge would not have been stored in codeInfo.3. This
means we have scriptstate.1 = /authentication. The code_challenge parameter must have
been received by the authentication endpoint in a GET parameter (data = m.parameters)

102

C.5 Proof of Issuance Session Integrity

because these parameters are added to the script state scriptstate.2 (Line 26 of Algorithm 1).
This means we have scriptstate.2[code_challenge] = code_challenge. From the relation
of the parties it is known that an issuer and a verifier never make HTTP requests and the wallet
only calls the token endpoint (Line 20 of Algorithm 4 and Line 60 of Algorithm 4), credential
endpoint (Line 19 of Algorithm 4), batch credential endpoint (Line 29 of Algorithm 4) and
deferred credential endpoint (Line 16 of Algorithm 4) of the issuer as well as to the direct-post
endpoint of the verifier (Line 100 of Algorithm 4) but never the authentication endpoint of
the issuer.

Looking at the code_challenge it can be seen that it will not leak. To show that the
code_challenge does not leak it is also necessary to show that code_verifier does not leak
because of code_challenge = HASH(code_verifier). The code_challenge is created in
Line 24 of Algorithm 4 and subsequently send out in the Location header (Line 40 of
Algorithm 4) of an encrypted response to 𝑏 (secure after Lemma 1 of [7]) and stored in
the state of 𝑤 (Line 38 of Algorithm 4). During the redirection in the browser, it is clear
from Line 11ff. of Algorithm 8 in [7] that the authorization request is not leaked by 𝑏 to the
attacker. The URL is stored in the state of 𝑏 but never sent out to another party than 𝑖 and is
not accessible to scripts not loaded from the origin of 𝑖.

The issuer receives the code_challenge at the authentication endpoint (Line 23 of Algorithm 1)
and stores it in its state (Line 40 of Algorithm 1). The only location where 𝑖 retrieves this
state is in Line 51 and Line 65 of Algorithm 1 but only in Line 65ff. the code_challenge is
used to compare it with the incoming code_verifier (codeInfo.3 . HASH(code_verifier)). In
all other endpoints in Line 3, Line 6, Line 76, Line 96, and Line 117 of Algorithm 1 and
in the function BUILD_CREDENTIAL (Algorithm 2) the state 𝑆(𝑖).codes is never read or
written to. The code_verifier is received by 𝑖 in the token endpoint (Line 46 of Algorithm 1)
and compared to the code_challenge in Line 66 of Algorithm 1 but never stored in the state
or send out again to another party.

Taking a closer look at the wallet relation it can be seen that the code_challenge and
code_verifier are never retrieved from the state in the endpoints of Line 2, Line 5, Line 61 of
Algorithm 4, in Algorithm 7, and in Algorithm 8. The code_challenge is also not retrieved
in the redirect endpoint in Line 44 of Algorithm 4 but the code_verifier is retrieved there
and send out to the domain 𝑆(𝑤).sessions[issid] .host via an encrypted message. The
attacker cannot derive the code_verifier from the encrypted message after Lemma 4 of [7].
The domain in 𝑆(𝑤).sessions[issid] .host is the domain of the identity that is chosen by 𝑏
in Line 5 of Algorithm 5 and thus a domain of 𝑖 (𝑆(𝑤).sessions[issid] .host ∈ dom(𝑖)).

Since only 𝑤, 𝑖, and 𝑏 know the code_challenge the browser 𝑏 has to make the request to the
authentication endpoint and subsequently picks the identity id in Line 4 of Algorithm 3. This
means that all conditions for authenticated𝑄′

𝜌 (𝑏, 𝑖, 𝑤, id, issid) are fulfilled.

From the above it can be seen that if there is the stored𝑄
𝜌 (𝑏, 𝑤, 𝑖, id, issid) event and the token endpoint

is called from Line 60 of Algorithm 4 there has to be before the authenticated𝑄′
𝜌 (𝑏, 𝑖, 𝑤, id, issid)

and the startedCodeFlow𝑄′′
𝜌 (𝑏, 𝑤, issid) events.

103

3. startedPreAuthCodeFlow𝑸′′′

𝝆 (𝒃, 𝒊, 𝒘, issid, id)

The other place where a wallet makes a token request is in Line 20 of Algorithm 4.
This means the state of 𝑤 contains the preAuthorizedCode (𝑆(𝑤).sessions[issid]
.pre-authorized_code = preAuthorizedCode in Line 12 of Algorithm 4) and the
validateRequest(⟨𝑑𝑖 , preAuthorizedCode⟩) method validated the credential offer received in
the credential offer endpoint (Line 5 of Algorithm 4) successfully. From this method it is
clear that 𝑏 must contain ⟨𝑑𝑖 , preAuthorizedCode⟩ in 𝑆(𝑏).started. The only place where
such parameters are written into the state of 𝑏 is in Line 15 of Algorithm 14. To execute
this line there must be a response with the reference START and a corresponding request.
Such a request is only sent in Line 28 of Algorithm 13 which means that the script command
START must have been executed. This script command can only make an encrypted POST
request to the domain the script is running on, due to the check in Line 20 of Algorithm 13.
From the validateRequest(⟨𝑑𝑖 , preAuthorizedCode⟩) method and Line 15 of Algorithm 14
it can be concluded that 𝑑𝑖 = request.host. This means that 𝑑𝑖 is the domain under which
the script that executes the START command is running. The only script an issuer has is
script_issuer_form and the only location where a credential offer is created is Line 16 of
Algorithm 1 in the start credential offer endpoint (Line 6 of Algorithm 1). To call this
endpoint, the script must have the script state scriptstate.1 = /startCredOffer. It can be
concluded that 𝑏 executes that script and selects the identity id in Line 4 of Algorithm 3.
Furthermore, 𝑏 selects the domain 𝑑𝑤 ∈ dom(𝑤) of the wallet in Line 6 of Algorithm 3
and sends a POST request (Line 11 of Algorithm 3) to the start credential offer endpoint of
𝑖. From the relation of the issuer it can be seen that the response to this request contains a
header of the form ⟨Location, ⟨URL, S, 𝑑𝑤 , /vci/credentialOffer, parameters,⊥⟩⟩ with
parameters = ⟨credential_offer, ⟨𝑑𝑖 , preAuthorizedCode, useUserPin⟩⟩. This means all
the conditions for startedPreAuthCodeFlow𝑄′′′

𝜌 (𝑏, 𝑖, 𝑤, issid, id) are fulfilled.

This proves Lemma 6 because if there is a stored𝑄
𝜌 (𝑏, 𝑤, 𝑖, id, issid) event in a run 𝜌 of VCWS𝑛

either the events startedCodeFlow𝑄′′
𝜌 (𝑏, 𝑤, issid) and authenticated𝑄′

𝜌 (𝑏, 𝑖, 𝑤, id, issid) or the
event startedPreAuthCodeFlow𝑄′′′

𝜌 (𝑏, 𝑖, 𝑤, issid, id) happend before. □

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 OpenID for Verifiable Credentials
	2.1 OpenID for Verifiable Credential Issuance
	2.2 OpenID for Verifiable Presentations

	3 Formal Model
	3.1 Web Infrastructure Model
	3.2 OpenID for Verifiable Credentials Model

	4 Security Properties
	4.1 Presentation Authentication
	4.2 Issuance Authentication
	4.3 Presentation Session Integrity
	4.4 Issuance Session Integrity

	5 Security Proof
	5.1 Proof of Presentation Authentication
	5.2 Proof of Issuance Authentication
	5.3 Proof of Presentation Session Integrity
	5.4 Proof of Issuance Session Integrity

	6 Discovered Attacks
	6.1 OpenID for Verifiable Credential Issuance
	6.2 OpenID for Verifiable Presentations

	7 Contributions to Standards
	7.1 Issues

	8 Summary and Outlook
	Bibliography
	A Verifiable Credentials Web System
	A.1 Identities and Secrets
	A.2 Issuers
	A.3 Wallets
	A.4 Verifiers
	A.5 Web Browser Extension

	B Formal Security Properties
	B.1 Presentation Authentication
	B.2 Issuance Authentication
	B.3 Presentation Session Integrity
	B.4 Issuance Session Integrity

	C Proof of Security Properties
	C.1 Lemmas
	C.2 Proof of Presentation Authentication
	C.3 Proof of Issuance Authentication
	C.4 Proof of Presentation Session Integrity
	C.5 Proof of Issuance Session Integrity

