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Abstract: Lithium-ion cells are widely used in various applications. For optimal performance and
safety, it is crucial to have accurate knowledge of the temperature of each cell. However, determining
the temperature for individual cells is challenging as the core temperature may significantly differ
from the surface temperature, leading to the need for further research in this field. This study presents
the first sensorless temperature estimation method for determining the core temperature of each cell
within a battery module. The accuracy of temperature estimation is in the range of ∆T ≈ 1 K. The
cell temperature is determined using an artificial neural network (ANN) based on electrochemical
impedance spectroscopy (EIS) data. Additionally, by optimizing the frequency range, the number of
measurement points, input neurons, measurement time, and computational effort are significantly
reduced, while maintaining or even improving the accuracy of temperature estimation. The required
time for the EIS measurement can be reduced to 0.5 s, and the temperature calculation takes place
within a few milliseconds. The setup consists of cylindrical 18,650 lithium-ion cells assembled into
modules with a 3s2p configuration. The core temperature of the cells was measured using sensors
placed inside each cell. For the EIS measurement, alternating current excitation was applied across the
entire module, and voltage was measured individually for each cell. Various State of Charge (SoC),
ambient temperatures, and DC loads were investigated. Compared to other methods for temperature
determination, the advantages of the presented study lie in the simplicity of the approach. Only
one impedance chip per module is required as additional hardware to apply the AC current. The
ANN consists of a simple feedforward network with only one layer in the hidden layer, resulting in
minimal computational effort, making this approach attractive for real-world applications.

Keywords: lithium-ion batteries; temperature estimation; sensorless temperature measurement;
artificial intelligence; artificial neural network

1. Introduction

The market for electric vehicles containing lithium-ion batteries (LIBs) is growing
steadily. The forecasts for the next few years predict further significant growth [1]. Nonethe-
less, a significant demand remains for further research and development within the realm
of LIBs, aiming to enhance both performance and safety. Precise knowledge of the cell
temperature is crucial to operate them within the optimal range, as operation outside the
specified temperatures causes accelerated cell aging. Lithium plating can occur at low
temperatures due to reduced reaction kinetics, resulting in damage to the solid electrolyte
interface (SEI) and loss of electrolyte and lithium when the SEI is repaired. At excessively
high temperatures, decomposition of cell components and accelerated side reactions may
occur [2]. Hence, ensuring thermal safety is vital during the progression of lithium-ion
battery pack technology. In the most severe scenario, a cell malfunction can trigger a
thermal runaway event. The thermal runaway of one cell can spread to surrounding cells
and cause propagation throughout the battery pack [3,4]. The Chinese authorities have
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required that the driver of the vehicle receive a warning in the event of a thermal runaway.
In this case, the driver must receive the notification 5 min before the first effects of smoke
or heat inside the vehicle [5].

The United Nations Global Technical Regulation on Electric Vehicle Safety (GTR EVS),
specifically Sections I. E. 7 c 112, II. 5.3.3, and II. 7.2.3, outlines the need for a functional
safety mechanism. This mechanism is expected to effectively detect the occurrence of a
thermal runaway in a single cell of the traction battery, immediately notify the problem
to the driver, and give all passengers a few minutes to safely exit the vehicle before a
potentially dangerous situation arises [6,7].

For this reason, it is essential to detect the current cell temperature as accurately as possible
in order to monitor the cells and switch them off in the event of a fault. It would be optimal if
the temperature of each individual cell within a module or a battery pack could be determined.

There are various methods used to determine the cell temperature [8–12]. A compre-
hensive overview is presented by Raijmakers et al. [13]. The most accurate method would
be to place temperature sensors inside each cell. However, this approach is not feasible
from an economic and technical standpoint [2,14]. A technically simpler solution is to
attach sensors to the surface of the cells. However, since the temperature inside the cell can
be significantly higher under load than on the surface, the actual cell temperature is only
captured with a delay or complex thermal models are required [12,15–17]. Furthermore, the
accuracy of temperature measurement is influenced by the thermal contact and positioning
of the temperature sensors. It is important to note that not all cells are outfitted with sensors.
As a result, the design of the pack must consider this factor to effectively detect potential
hotspots [18]. As the temperature determination using internal temperature sensors is
too complex and external temperature sensors are not accurate due to time delays, there
are various approaches to estimate the temperature based on the electrical parameters
of the cell. Thermal models attempt to determine heat generation using current, voltage,
and ambient data. These models are capable of predicting cell temperature with sufficient
accuracy [19–21]. However, these methods also come with several challenges. Since the
calculations often rely on the assumption that heat generation is formed by the product of
current squared and internal resistance, the resistance must be accurately known. However,
it is dependent on cell temperature, aging condition, and state of charge. Furthermore, the
measurement data must be continuously recorded and fed to the model to make reliable
predictions. This results in high data traffic and computational effort.

Impedance-based methods overcome many of these challenges. The impedance spec-
trum represents a characteristic pattern that can be associated with a particular condition.
The pioneering work of Srinivasan et al. recognized a relationship between impedance
at frequencies ranging from 40 to 100 Hz and temperature. It is noteworthy that other
parameters such as SoC and state of health (SoH) have little influence on impedance within
the temperature range of −20 ◦C to 66 ◦C [22]. Schmidt et al. show that using the real
part of the impedance measurement at elevated frequencies allows accurate precise sen-
sorless determination of the average internal temperature within a prismatic cell. This is
particularly advantageous as the time constant exhibits a notably diminished correlation
with the SoC, allowing improved temperature estimation even in cases where the SoC is
unknown [23]. Richardson et al. investigated the impact of internal thermal gradients
on impedance. By combining impedance measurements with the Kalman filter (KF), it
is possible to estimate the core temperature of LIBs. This integrated approach not only
enables the detection of internal hotspots without any time delays but also provides an
estimation of the volume-average temperature [14]. The pronounced correlation between
impedance and temperature is illustrated in Figure 1. A noticeable decrease in impedance
response is evident with rising temperatures, as observed in the measurements carried out
by the researchers. The EIS measurements were executed on LG INR18650MH1 cells across
various temperature levels. Further information regarding the experimental procedure can
be found in the specified Section 2.2.
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Figure 1. Nyquist plot of an LG INR18650MH1 cell at different temperatures from −10 ◦C to 60 ◦C.
The impedance spectrum exhibits a strong dependence on the cell temperature.

As a result, the impedance-based method enables the determination of the average
cell temperature without the need for temperature sensors [24]. In their study, Li et al.
offer a comprehensive overview of different impedance-based methods used to indicate
temperatures in LIBs [11].

Almost all publications found in the literature either show a correlation between a
measured quantity and the desired state of a single cell or focus on temperature deter-
mination in individual cells. However, there are very few publications that deal with
temperature determination using impedance spectroscopy of individual cells that have
been connected in series or parallel to modules or battery packs. One of the reasons for
this is the so-called cross-talk interference. The common approach is often to perform
separate EIS measurements with an impedance chip on each cell in a connection. This
leads to errors in the measurement due to the influence of neighboring cells [25]. Another
challenge lies in the selection of parameters used for temperature determination and the
data processing approach. The impedance spectrum of a cell depends on numerous factors.
Besides the strong correlation between temperature and impedance, the state of charge and
aging condition also influence the impedance spectrum. Beelen et al. compared several
approaches for temperature determination and demonstrated in their study the significance
of choosing the optimal parameters [26].

The presented study utilizes ANNs as they are capable of independently learning and
representing multidimensional systems. A significant advantage of this methodology is
its automatability and applicability to different cell chemistries. In the literature, there are
only a few available studies that address temperature estimation using ANNs. Some of
these studies combine physical models with ANNs to improve temperature estimation [27],
while others are based on a nonlinear autoregressive exogenous ANN and time series
data, such as current and ambient temperature [28]. Additionally, some studies employ
ANN-based methods for SoC or SoH estimation [29–32].

Combining impedance data with ANNs has been the focus of only a few studies.
Messing et al. included impedance data for both the parameterization of the equivalent
circuit and as input for the ANN [33]. However, the majority of approaches still rely on
methods that require significant computational effort, such as solving partial differential
equations, fitting physical models, or analyzing time series data.

The combination of impedance data with simple ANNs, requiring low computational
effort, for temperature estimation in individual cells was previously presented by the
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authors in an earlier publication [34]. It was shown that temperature determination on a
single cell using ANN based on impedance data can be performed with high accuracy. The
next step, which is worked out in this publication, is the determination of the temperature
of each individual cell within a series-parallel circuit. To overcome the challenge of cross-
talk interference, a galvanostatic AC excitation is applied across the entire module, and
the voltage at each cell is measured. This approach offers the significant advantage of
requiring only a few additional hardware components. As it is necessary for safety reasons
to measure the voltage of each individual cell in a module in order to comply with the
permissible voltage limits, no further voltage sensors are required. For AC excitation, only
one additional impedance chip per module is required.

The aim of this publication is to determine the temperature of each individual cell
within a circuit consisting of lithium ion cells connected in series and parallel. From the
directly measurable quantities of the EIS measurements (voltage, current, time), the real
and imaginary parts of the impedance are calculated. Data processing is performed using
ANNs, where the real and imaginary parts of the impedance at different frequencies serve
as input data for the ANN to estimate the temperature.

According to the authors’ knowledge, this is the first publication presenting tempera-
ture estimation in individual cells for a connection of multiple cells without temperature
sensors. In Section 2, the authors describe cell preparation, data acquisition, and the
architecture of the ANN. Section 3 subsequently showcases the outcomes of the tempera-
ture estimation.

2. Materials and Methods

Temperature sensors were inserted into the center of cylindrical lithium-ion cells to
measure the core temperature. The prepared cells were then connected in a 3s2p configura-
tion. Impedance measurements were conducted within a temperature chamber at different
temperatures and state of charge conditions, using different superimposed DC currents,
while measuring the core temperature. To simulate real-world applications, electrochemical
impedance spectroscopy measurements were performed immediately after reaching the
SoC without relaxing the cells. During the EIS measurement, the cell was continuously
charged/discharged. The recorded EIS measurements, along with their corresponding core
temperatures, were divided into two datasets: a training dataset and a test dataset. The
training dataset is used to train the ANN, then validated using the test dataset to ensure its
accuracy in estimating temperatures from impedance measurements.

2.1. Cell Preparation

For the experiments, LG INR18650MH1 lithium-ion cylindrical cells were used, with
a nominal voltage of UN = 3.6 V and a capacity of Q = 3200 mAh. Since the cells
were new, initially, 20 full cycles were performed as we observed slight changes in the
impedance spectrum during the first cycles. Subsequently, the cells were discharged to
Umin = 2.5 V using a CC/CV (constant current/constant voltage) method. The preparation
with temperature sensors was carried out in an MBraun LabStar glovebox (Germany) under
an argon atmosphere. The water and oxygen content in the glovebox was less than 0.5 ppm.
As shown in Figure 2, the core of the cell is hollow. Since the negative pole consists only of
the bottom of the cell cup and the current collector, it was suitable for the preparation with
the temperature sensor. The cells were opened in the middle of the negative pole using
a drill (diameter d = 1.3 mm). Subsequently, two negative temperature coefficient (NTC)
sensors (NTC Thermistor 10k Perle SC30F103V by Amphenol Thermometrics, United
Kingdom) were inserted into each cell.

The temperature sensors used in the experiment have a diameter of dsens = 0.81 mm
and are coated with a polyimide that can withstand the electrolyte for a sufficient period
of time. After inserting the sensors, the opening was sealed (the first setups used the two-
component adhesive UHU PLUS ENDFEST by UHU from Germany, and later the UV-light
sensitive adhesive Polytec UV 2133 from Polytec PT GmbH Germany). The adhesive from
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UHU was left to dry for 24 h under an argon atmosphere. Polytec’s adhesive is solid after
only a few seconds when irradiated with UV light (wavelength approximately 400 nm).
After the cell preparation, electrochemical impedance spectroscopy measurements were
conducted before and after cell preparation to ensure that the cells were not damaged
during the preparation process.

The prepared cells were connected in a 3s2p configuration using soldering. A schematic
representation of the setup is shown in Figure 3.

TemperaturesensorsCavity

Figure 2. Left: An opened 18,650 cylindrical cell. In the center of the winding, there is a cavity,
and the negative pole consists only of a metal bottom and the current collector. Right: Schematic
representation of cell preparation with temperature sensors.

V

V

V V

V

V
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sensors

Gamry

Thermal-

chamber

Figure 3. Schematic representation of the 3s2p experimental setup.

The setup consists of two series connections, each with three cells, that are connected
in parallel. The voltage is directly measured from each individual cell. Each cell is equipped
with two temperature sensors, which are calibrated after the preparation in a temperature
chamber of type ICP 110 (temperature accuracy: ∆T = ±0.1 K) manufactured by Memmert
(Germany). For calibration, the entire setup is adjusted to different temperatures between
10 ◦C < T < 50 ◦C inside the temperature chamber. After a relaxation time of 2 h, the
sensor measurement value is determined for calibration. A separate measuring system
was developed to read and analyze the sensor values. The resistance of the sensor was
measured using a voltage divider setup with an SL1TTE1002F resistor from KOA Speer
Electronics Inc. The analog data were converted into a digital format using an ADS1115
module by Adafruit. An Arduino Mega 2560 was used to process the data and store it on a
Micro-SD card. The measuring system has a logging capability of approximately 4.5 data
points per second. Following the recording process, the digitized data was transformed into
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temperature values using the sensor’s manual as reference. A more detailed description of
the system is described in Ref. [35]. All further measurements are also conducted within
the temperature chamber. The AC is applied to the entire circuit using the Potentiostat
reference 3000 AE by Gamry (Pennsylvania, USA). The voltage measurement from the
individual cells is also performed using the Potentiostat by Gamry.

2.2. Electrochemical Impedance Spectroscopy

EIS allows for gathering extensive information about an electrochemical system with-
out causing any damage to it. The impedance is composed, according to Equation (1),
of the complex current, complex voltage, and phase shift. Subsequently, the real R and
imaginary jX components of the impedance can be calculated.

Z =
u
i
= R + jX (1)

The system is subjected to a sinusoidal excitation, and the phase-shifted response
is measured. By introducing AC currents at various frequencies (typically ranging from
10 kHz to 10 mHz), an electrochemical impedance spectrum is generated. The outcomes of
an EIS measurement are graphed on a Nyquist plot. As previously described, the cells were
additionally charged/discharged during the EIS measurements to simulate realistic scenar-
ios. This led to the selection of the galvanostatic mode for EIS measurements, ensuring the
conservation of charge carriers. The frequency range of operation was configured spanning
from f = 10 kHz down to f = 1 Hz, encompassing 15 frequencies within each decade for
a cumulative count of 61 frequencies. Furthermore, this frequency band was delimited
to encompass the variations in charge that might arise from the application of potentially
superimposed current. To strike a balance, an alternating current with a C-rate of 1/20 C
was employed for all measurements. In this context, capacity denotes the circuit’s overall
capacity. This choice guarantees linearity and a favorable signal-to-noise ratio. The SoC
was set using a CC/CV charge/discharge (current limit C/100) for each measurement. The
target voltage for SoC setting corresponds to the open circuit potential.

Various measurement series were conducted. In the first series, called “Setup 1”, a 3s2p
configuration was examined at a constant SoC of 70% without overlaid DC current. For the
training data, EIS measurements were performed between T1 = 10 ◦C and T2 = 50 ◦C in
steps of ∆T = 2.5 ◦C at a constant ambient temperature. For the test data, the temperature
chamber was initially set to 50 ◦C and then cooled down to 10 ◦C. EIS measurements were
conducted on the cells during the cooling process, generating a temperature gradient of up
to ∆T = 5 ◦C between the cell surface and the cell core. This was intended to simulate the
temperature gradient within cells under high currents.

For the second series, called “Setup 2”, measurements were conducted on two 3s2p
configurations to verify the reproducibility. The temperature chamber was set to different
constant temperatures for these measurements. EIS measurements were performed for
different SoC values between 10% and 90% in steps of 20%. During the EIS measurements,
various DC currents up to C-rate = C/2 were applied in charging and discharging directions
to simulate a realistic operation. During these investigations, a relaxation period of 2 h was
observed only after changing the temperature of the temperature chamber. The cells were
not relaxed during the remaining measurements.

2.3. Artificial Neural Network Architecture

In this study, the ANN employed is based on the MATLAB Neural Network Toolbox.
The structure is characterized by a feed-forward architecture, featuring a sole output
contingent upon the relevant state (temperature), and is illustrated in Figure 4.

The ANN can be divided into three parts. The input layer neurons receive the input
data. In this study, the input data consists of the real and imaginary parts of the impedance
spectrum at various frequencies, and optionally information about the SoC and the applied
DC current. During training, the output layer neuron is given the target value (tempera-
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ture) that the cell had during the impedance measurement. After the training phase, the
test phase follows, during which the network’s output neuron represents the calculated
temperature. To validate the methodology, the calculated temperature is compared with
the actually measured temperature. The hidden layer is the core of the network where
the “magic” happens. During the training process, the network adjusts the weights of
the neurons iteratively until it can accurately represent the investigated system. For the
purpose of identifying the most suitable number of neurons, a grid search method is uti-
lized. This involves gradually augmenting the count of neurons within the hidden layer,
until the enhancement in prediction accuracy plateaus, while ensuring the preservation
of generalization capability. The number of neurons in the hidden layer will be reported
separately for each investigated case in the discussion. To perform computations in the
hidden layers, a hyperbolic tangent sigmoid transfer function (tansig) is used. This transfer
function allows for non-linear transformations, which is essential for the network to learn
complex relationships in the data and make accurate predictions, defined as:

tansig(n) =
2

(1 + exp(−2n))− 1

For the exploration of the optimal parameters of the ANN, the Bayesian regularization-
backpropagation algorithm is employed in all tests. The evaluation of prediction accuracy
involves the utilization of root mean square error and the coefficient of determination. The
code for this assessment was created using the ANN toolbox. The number of hidden layers
is limited to 1, as it has already yielded very good results. A low number of hidden layers
also has the advantage of requiring less computational power. The number of neurons
in the hidden layer is varied between 3 and 10 neurons for each experimental setup. For
each neuron configuration, 3 training runs are conducted. The training data is not divided
into smaller batches but is presented as a whole to the network. The maximum number of
training iterations is limited to 10,000. Training is terminated if there is no improvement in
100 consecutive iterations.

Figure 4. Diagram illustrating the employed ANN, where inputs consist of the real and/or imaginary
components of impedance measurements.

3. Results

In this section, we first discuss the preceding characterization and analysis of the
impedance data, which serves for selecting the optimal parameters. Subsequently, the
results of Setup 1 are presented, where various temperatures were investigated at a constant
SoC. This is followed by the presentation of Setup 2, which demonstrates temperature
determination with varying SoCs and overlaid DC currents during the EIS measurements.
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3.1. Preliminary Characterization

Figure 5 exemplifies the results of the EIS measurements before and after the sensor
preparation. In all cells, the ohmic resistance is approximately 1 mΩ higher after the
preparation compared to before. This increase was observed in all cells. This rise in
resistance is likely due to the drilling of the negative pole, which also punctures the
current collector tab of the electrode, leading to a reduction in the current-conducting
area. The increase in the ohmic resistance of the cells due to the preparation by 1 mΩ
corresponds to an increase of approximately 2.5%. Considering that the end of life criterion
of a cell is only reached with a resistance increase of 200%, a 2.5% increase is negligible.
Additionally, as shown in Figure 1, it becomes evident that the charge transfer resistance is
temperature-dependent, particularly affected by temperature fluctuations. However, this is
not compromised during the preparation involving the sensors.

42 44 46 48 50
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40

30

0

20 Pre

Post

Im
(Z

) /
 m

Re(Z) / m

10

Figure 5. Nyquist plots of a cell before and after the preparation with a temperature sensor.

Furthermore, the impedance spectra recorded at the beginning and the end of the data
collection were compared. However, no changes were observed, so they are not presented
here. Since there were no changes, it is assumed that the cells remained sealed after closure,
and no significant further aging occurred.

Figure 6 depicts the Bode plot of a cell at a constant temperature of T = 25 ◦C for
different SoC levels.

In the Bode plot, the real part (top) and the imaginary part (bottom) of the impedance
are plotted against frequency. In both representations, it is evident that the SoC has only a
minimal influence on the impedance at frequencies above approximately 50 Hz. However,
at lower frequencies, there is a more pronounced correlation between impedance and SoC.
In Figure 7, the Bode plot for different overlaid DC currents during the EIS measurement
is presented. In this case, the cell was charged or discharged with the specified C-rate
while simultaneously conducting an EIS measurement. The ambient temperature was
kept constant at 25 ◦C, and the SoC was set to 50% for each measurement. The results
demonstrate that overlaid DC currents have only a minor influence on the impedance
spectrum of a cell.
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Figure 6. Bode plot at 25 ◦C with different SoC between 10% and 90%.
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Figure 7. Bode plot at 25 ◦C and 50% SoC with different DC currents during the EIS measurement at
C-rates between 1 C and −1.75 C.

The Bode plot for different temperatures at 70% SoC and without DC currents is shown
in Figure 8. As known from the literature, there is a strong correlation between temperature
and cell-impedance. At frequencies above 1 kHz, the influence of temperature on the
impedance becomes minimal. The real part of the impedance exhibits strong temperature
dependence at lower frequencies, which decreases significantly with increasing frequency.

The imaginary part shows particularly strong temperature dependence in the range
between 800 Hz and approximately 1 Hz. By examining the frequency analysis, the range
of frequencies used can be significantly narrowed down. The temperature analysis shows
that the impedance is only slightly dependent on temperature for frequencies above 1 kHz,
providing almost no information for the ANN. The frequency analyses for the SoC and
DC current dependence of the impedance indicate an influence for frequencies below
approximately 30–50 Hz.
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The influences of temperature and SoC on the impedance of a lithium-ion cell, de-
scribed so far, become even more evident in Figure 9. Here, impedance data for SoCs of
10%, 50%, and 90% are presented at ambient temperatures of 20 ◦C and 50 ◦C.
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Figure 8. Bode plot at 70% SoC with different temperature between −10 ◦C and 60 ◦C.
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Figure 9. Bode plot for SoCs of 10%, 50%, and 90% at ambient temperatures of 20 ◦C and 50 ◦C.

It is clearly evident that the influence of temperature on impedance is significantly
stronger than the influence of SoC. To verify these findings, the ANNs will be initially
provided with information for all frequencies between 10 kHz and 1 Hz, and then for
frequencies between 800 Hz and 30 Hz.

3.2. Temperature Estimation: Setup 1

Setup 1 consists of a 3s2p configuration. The training data was generated at constant
temperatures, while for the test data, the temperature chamber was cooled down to create
a temperature gradient between the cell core and surface. The gradient reached up to
∆T = 5 ◦C. The results of the temperature estimation are shown in Figure 10. The ANN was
provided with the real and imaginary parts of the impedance for all measured frequencies
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between 10 kHz and 1 Hz. The SoC was kept constant at 70%, and no DC current was
applied. The collective root mean square error (RMSE) is below 1 K. The highest RMSE
observed for an individual temperature estimation is approximately 1.4 K.
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Measured temperature: T / °C
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target value

Figure 10. The plot depicts the estimated temperature against the measured temperature, with a
black line serving as a guide for the target value. For temperature estimation, both the real and
imaginary parts of all 61 frequencies were used. The frequency range spans from 10 kHz to 1 Hz. The
overall RMSE is less than 1 K. The legend indicates the RMSE for each individual cell. The cells are
connected in a 3s2p configuration.

On the y-axis, the temperature estimated by the ANN is shown, while the values on
the x-axis represent the actually measured temperatures. The black line is a guide for the
eye. Ideally, all estimated values would lie on the black line. The results indicate that,
in general, the ANN is capable of estimating the temperature from a corresponding EIS
spectrum for a multi-cell system. Figure 11 depicts the training progression of the ANN.
The training process is halted when the Mean Squared Error (MSE) does not continue to
decrease over 100 consecutive iterations. The minimum was reached after 464 iterations,
and the training was stopped after 564 iterations. The MSE trajectory was employed to
determine an optimal ANN setup. The showcased outcomes are derived from a Bayesian
regularization-backpropagation neural network, featuring a solitary hidden layer housing
7 neurons. Introducing more than 7 neurons to the hidden layer often results in overfitting.

Figure 11. The plot showcases the evolution of MSE throughout the training epochs for temperature
estimation of the 3s2p arrangement. A minimum MSE was reached after 464 epochs, and after an
additional 100 epochs without a further reduction in MSE, the training was concluded.

In the previous subsection, a frequency analysis was conducted for the different
influencing factors (temperature, SoC, DC current). For temperature estimation, the fre-
quency range between 800 Hz and 30 Hz was identified as particularly suitable. From
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the impedance data generated for setup 1, the real and imaginary parts for the mentioned
frequency range were extracted and provided to the ANN. The results are depicted in
Figure 12.
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Figure 12. The plot displays the estimated temperature against the measured temperature, with a
black line as a guide representing the target value. For training and testing the ANN, the frequency
range was restricted to 800 Hz to 30 Hz, resulting in a reduction of the number of examined frequencies
from 61 to 21. The overall RMSE for is less than 1 K. The legend indicates the RMSE for each
individual cell.

The global RMSE remains below 1 K. The highest RMSE observed for an individual
temperature estimation is approximately 1.7 K. The number of neurons in the hidden layer
could be reduced from 7 neurons to 5 neurons while maintaining the same level of accuracy.

3.3. Temperature Estimation: Setup 2

The measurement data from Setup 2 aims to closely represent reality. For this purpose,
EIS measurements were conducted at various temperatures and different SoC levels ranging
from 10% to 90%. During the EIS measurements, the cells were charged or discharged with
various currents with maximum C-rates of ±C/2. Figure 13 displays the results of the
temperature estimation. Again, impedance data for the entire frequency range between
10 kHz and 1 Hz and the SoC and DC current were provided to the ANN. The overall
RMSE is below 0.9 K. The ANN utilized a hidden layer with 6 neurons.
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Figure 13. The plot displays the estimated temperature against the measured temperature, with a
black line as a guide representing the target value. Various SoC and DC currents during the EIS
measurements were investigated for data generation. The data from the entire frequency range were
considered for the calculations. The overall RMSE for is less than 0.9 K. The legend indicates the
RMSE for each individual cell.
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Due to the significant increase in the measurement matrix resulting from the additional
investigation of different SoC and DC currents at each temperature, the total number
of examined temperatures had to be reduced. By conducting measurements at further
temperatures, more data could be provided to the ANN, potentially improving its accuracy.
Nevertheless, the results demonstrate that successful temperature determination in a multi-
cell module under pseudo real conditions using impedance data processed with a simple
ANN is achievable.

For this setup as well, the reduction of the frequency range was investigated. In this
case, only impedance data for the frequencies between 800 Hz and 300 Hz was provided to
the ANN. The results are presented in Figure 14.
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Figure 14. The plot displays the estimated temperature against the measured temperature, with a
black line as a guide representing the target value. For the temperature calculation, only the data
from the reduced frequency range of 800 Hz to 30 Hz were considered. The overall RMSE for is less
than 0.8 K. The legend indicates the RMSE for each individual cell.

The overall RMSE is lower than 0.8 K. The accuracy of the estimation was even
improved by reducing the impedance data. The number of neurons used in the ANN was
reduced from 6 neurons to 5 neurons.

3.4. Further Discussion

For all the presented results, a Bayesian regularization-backpropagation ANN with
one hidden layer is used. As input parameters, both the real and the imaginary part of the
impedance and SoC and DC current are fed to the ANN. The training of the ANN can also
be conducted without providing the SoC, but this leads to an increase in computational time
during training while maintaining nearly the same accuracy. The influences of operating
parameters (temperature, State of Charge, and DC current during EIS measurements)
investigated in Section 3.1 reveal that the frequency range between 800 Hz and 30 Hz
is particularly affected by temperature, while the State of Charge and DC current show
almost no influence. Therefore, the number of used frequencies was reduced from 61 to 21,
resulting in a reduction of the input parameters from 124 to 44 (21 real parts, 21 imaginary
parts, SoC, and DC current). By reducing the number of frequencies, the measurement
time is significantly decreased, resulting in a reduction of the required capacity for the
EIS measurements. The applied AC current corresponds to a C-rate of C/20. With the
reduced frequency range, it is possible to conduct the measurement in less than 0.5 s. If
measurements are performed only every 10 s, the normalized continuous current required
for the measurement methodology is reduced to a C-rate of C/400. It is evident that
the presented method is only practical with cost-effective measurement technology. The
potentiostat introduced in this study by Gamry is too expensive for real-world battery
systems. Koseoglou et al. present an impedance measurement system in their study,
where a sinusoidal alternating current is applied to a cell through discharge using a
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MOSFET [36]. In a future study, this setup will be reconstructed and applied to a system
of interconnected cells. The previously mentioned limitation of the required frequency
range also represents a significant simplification for the hardware development of an
impedance chip, as the demands on measurement accuracy increase with rising frequency.
Furthermore, the reduction of input data significantly decreases the required computational
power. A major advantage of the demonstrated temperature estimation using ANN is
that the necessary computational power is very low once the ANN is trained. Indeed,
this characteristic makes the approach even more attractive and practical for industrial
applications. The ANN training process only takes a few minutes for each system. In
further investigations, it will be determined whether the number of required frequencies
can be further reduced. This could potentially lead to further reductions in measurement
time and computational complexity.

As part of this study, an attempt was made to determine the SoC using the presented
method. However, since the SoC, as demonstrated, has only a very limited influence on the
impedance spectrum, convincing results could not be obtained in this regard.

The accuracy of the presented method for temperature estimation, with an average
error of approximately 1 K and a maximum deviation between 2 K and 3 K, is comparable
to the results found in the literature. Some literature reports even claim accuracy within 1 K,
but these often pertain to static systems that are at equilibrium, with the entire cell having
the same temperature. In contrast, in dynamic systems, it becomes a matter of definition to
determine the temperature of the cell at any given moment, as different regions within the cell
may have varying temperatures. In this study, the temperature was measured in the core of the
cell, but the average temperature of the entire cell tends to be lower during dynamic operation.

For real-world applications, such as electric vehicles, an accuracy of 1 K or 2 K is
perfectly adequate, as there is usually no practical distinction between a cell temperature of
50 °C or 52 °C. To make the methodology for temperature determination truly usable, other
factors such as computational power become relevant. In an electric vehicle with hundreds
to thousands of individual battery cells, it is crucial that determining the temperature
of a single cell consumes minimal computational resources. This is where the presented
methodology shines. Unlike most thermal models that require continuously sampling and
processing time-series data, a single snapshot during an EIS measurement is sufficient.
This significantly reduces data traffic. The use of a simple ANN with only one hidden
layer has the advantage that it does not require solving partial differential equations or
data fitting, thus keeping the computational demands very low. After the ANN is trained,
its state estimation calculations are swiftly executed within milliseconds. Given its data-
driven essence, we propose that this approach could be flexibly extended to other cell
chemistries, provided a strong correlation between the EIS spectra and the target state can
be established. The introduced ANN technique demonstrates noteworthy effectiveness,
especially in elevated temperatures, where the influence of the DC current is lessened. This
characteristic renders it exceptionally well-suited for real-world applications.

4. Conclusions

In this study, we introduced a sensorless approach for temperature prediction of
lithium-ion cells using ANNs and electrochemical impedance spectroscopy as input data.
The investigation was conducted on LG INR18650MH1 lithium-ion cylindrical cells, which
were connected in a 3s2p configuration. Variations in the SoC and the application of
superimposed DC current during EIS measurements were considered to simulate real-
world scenarios. The overall RMSE for all temperature estimations was approximately
1 K, which underscores the appeal of the presented method for practical implementation.
To further optimize the methodology, an analysis of the influence of temperature, SoC,
and DC current on impedance at different frequencies was conducted. As a result of
this analysis, the frequency range was reduced from the original 10 kHz to 1 Hz to a
range of 800 Hz to 30 Hz. The number of frequencies for the impedance spectrum was
reduced from 61 to 21, and the number of input neurons was reduced from 124 to 44.
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The accuracy of temperature estimation was even improved to some extent by reducing
the frequency range. At the same time, the time required for measurements and the
computational efforts for the ANN were significantly reduced. The method presented here
boasts several advantages when compared to other temperature estimation techniques.
Firstly, this approach eliminates the need to fit a battery model to the data and avoids
the necessity of solving differential equations. Additionally, the ANN solely relies on a
single EIS spectrum to estimate cell temperature, obviating the handling of time series data.
This predictive technique exhibits promise in accurately gauging internal cell temperature
swiftly, demanding minimal measurement and computational resources.
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