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Abstract: Although originally developed to describe the magnetic behavior of matter, the Ising model
represents one of the most widely used physical models, with applications in almost all scientific
areas. Even after 100 years, the model still poses challenges and is the subject of active research.
In this work, we address the question of whether it is possible to describe the free energy A of
a finite-size 2D-Ising model of arbitrary size, based on a couple of analytically solvable 1D-Ising
chains. The presented novel approach is based on rigorous statistical-thermodynamic principles
and involves modeling the free energy contribution of an added inter-chain bond ∆Abond(β, N)

as function of inverse temperature β and lattice size N. The identified simple analytic expression
for ∆Abond is fitted to exact results of a series of finite-size quadratic N × N-systems and enables
straightforward and instantaneous calculation of thermodynamic quantities of interest, such as free
energy and heat capacity for systems of an arbitrary size. This approach is not only interesting from a
fundamental perspective with respect to the possible transfer to a 3D-Ising model, but also from an
application-driven viewpoint in the context of (Li-ion) batteries where it could be applied to describe
intercalation mechanisms.

Keywords: Ising model; statistical thermodynamics; free energy; battery modeling

1. Introduction

The Ising model [1,2] is a simple but at the same time very powerful model. Orig-
inally developed to describe ferromagnetism, the Ising model has evolved to be one of
the most important theoretical models in physics since it was first described 100 years
ago. The applications of the Ising model and derived variants are widespread [3] and
include the description of nucleation phenomena [4], adsorption on solid substrates [5] and
even modeling of social phenomena [6]. Battery modeling represents another interesting
application area for the Ising model. Modern batteries such as lithium-ion batteries rely
on the so-called intercalation mechanism, where empty sites in a host lattice are easily
occupied by Li-ions, which can in principle be reversibly removed from these sites [7].
The similarity to the Ising model is obvious. In ferromagnetic materials, “spin-up” and
“spin-down” are reflected by “1” and “-1”, respectively. One could now easily connect “1”
to “lattice site occupied by an ion” and “-1” (or “0”) to “lattice site not occupied by an
ion”. Thus, the Ising model could serve as a simple but highly efficient model to describe
different phenomena such as phase transitions upon occupation of the electrode host lattice
by movable ions. The Ising model could also be feasibly extended to more disordered
materials such as alloys, e.g., Li-Si. However, beforehand, novel tools must be developed to
handle the Ising model efficiently. It is well known that in three dimensions no analytical
solution is yet available [8]. This paper develops a first approach to use analytical solutions
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of the finite-size Ising-lattice to extrapolate with high accuracies to the infinite lattice. Here,
battery modeling serves the basic idea because a similar approach is executed for aging
simulation in the sense that a set of data for “limited” time slots is available which can be
used for extrapolation. This approach is demonstrated for the 2D-Ising model and will
basically be transferred to the 3D-Ising model in a separate paper. We will show that certain
interconnections and interactions between spins in the 2D-Ising model, which hamper a
simple analytical solution, can be easily and efficiently tackled by calculating finite lattices
and interpolation later. Using the framework of classical statistical thermodynamics, we
present an easy-to-interpret expression for the free energy of quadratic 2D-Ising systems,
which consists of two parts: (i) a purely analytical part based on 1D-Ising chains and (ii) a
part which approximately describes the interactions between the chains. Through this
novel starting approach, described in the present paper, we will stepwise develop a tool to
reflect phenomena occurring upon the occupation of sites in the host electrode matrix with
ions in modern batteries.

The paper is structured as follows: Section 2 summarizes the key statistical-mechanical
and thermodynamic properties of the 1D- and 2D-Ising model with a focus on explicit
calculations on the basis of small systems, which already show the essential model behavior.
Due to the huge amount of literature, we considered it necessary to concisely summarize
the essential aspects that constitute the theoretical framework for the methodology we
applied and which are described in detail in Section 3. Results obtained with the developed
modeling approach are presented and discussed in Section 4, followed by a short conclusion
in Section 5. Appendix A summarizes additional calculations and basic relationships as
relevant for the methodology.

2. Theory: Statistical Thermodynamics of the Ising Model

While we are solely looking at the original Ising model as developed by Lenz [1] and
Ising [2], it should be mentioned that a number of extensions exist, such as the inclusion
of next-nearest neighbor and higher order interactions [9] or the consideration of more
than two states per spin [10]. For a comprehensive overview, we recommend standard text
books on statistical mechanics [11] as well as specialized literature [12,13]. In the absence
of an external magnetic field, the Hamiltonian H evaluates the total interaction energy
(i.e., potential energy only without a kinetic contribution) for a system of interacting spins
placed on a regular lattice where each spin can only interact with its nearest neighbor spins.
In such a setting, H results from summation of pair energies (εi,j):

H(s1, s2, . . .︸ ︷︷ ︸
≡~si

) = ∑
<i,j>

εi,j = − ∑
<i,j>

Ji,j si sj = −J ∑
<i,j>

si sj (1)

where the sum runs over all pairs of nearest neighbor spins < i, j > with two possible
values for the spin number si = ±1, corresponding to the spin-up and spin-down state.
Once all spins are prepared in a particular configuration with specified values for the
spin numbers (e.g., (s1 = 1, s2 = −1, . . .)), H returns the resulting system energy of this
particular configuration. The coupling constant Ji,j carries units of an energy and specifies
the interaction strength between nearest neighboring spins i and j such that the spins
become decoupled, i.e., independent, for Ji,j = 0. Interactions between different particle
types as it becomes relevant for mixtures or in case of impurities could be modeled by using
different Ji,j-values. In the last identity of Equation (1), we assumed isotropic interactions,
i.e., uniform coupling constants J = Ji,j between all pairs in all directions. We implicitly
assumed regular, i.e., ideal or uniform lattices where each spin is assigned to a single
lattice site without any vacancies or impurities in between. Explicit expressions for the
Hamiltonian of the 1D- and 2D-Ising model in case of free boundary (FBC) and periodic
boundary conditions (PBC) are given in Equations (A1a), (A1b) and (A2a)–(A2c). PBC
are typically applied in order to reduce the impact of boundary or surface effects in case
of finite-size systems. However, in the thermodynamic limit, i.e., for infinite lattice sizes,



Batteries 2023, 9, 489 3 of 29

the impact of the boundary conditions on the system’s (thermodynamic) behavior and
thus the difference between FBC and PBC has to vanish. Schematic examples for 1D- and
2D-systems with FBC and PBC are shown in Figure A1 in Appendix A.1. In 1D, FBC
corresponds to a linear chain with open ends, i.e., all spins except for the first and last one
in the chain share two nearest neighbors, while PBC corresponds to a closed ring where the
last spin N also interacts with the first spin 1 such that all spins have two nearest neighbors.
In 2D, a number of Nspins = Nx · Ny spins are arranged onto a regular lattice, with Nx
spins in x-direction (=number of columns) and Ny spins in y-direction (=number of rows),
corresponding to a matrix of dimensions Ny × Nx. In two dimensions, FBC correspond to a
planar graph, with Ny · (Nx − 1) horizontal and Nx · (Ny − 1) vertical interactions, yielding
2N2 − 2N = 2N(N − 1) interactions in total for the special case of quadratic (N × N)
lattices with N ≡ Nx = Ny. In this case, all inner spins have four nearest neighbors, while
spins at the boundary can have two or three neighbors. When PBC are applied in both the
x- and y-direction, the resulting lattice is wrapped around a torus with all spins having
four neighbors. In such an arrangement, we equally have Nx · Ny horizontal and Nx · Ny
vertical interactions, yielding a total of 2N2 interactions in case of a quadratic system. For
the sake of completeness it should be noted that also hybrid boundary conditions can be
used where PBC are applied in one and FBC in the other direction, yielding a lattice with
cylindrical topology.

Once the interactions of the spin system are specified in form of the Hamiltonian H
(cf. Equation (1)), the partition function in the canonical ensemble Z ≡ Z(Nspins, T) at
constant number of spins Nspins and temperature T is obtained via summation of Boltzmann
factors exp(−βH) for all possible spin configurations:

Z = ∑
{si}

e−βH(~si) = ∑
{si}

e−β ∑<i,j> εi,j = ∑
{si}

eβJ ∑<i,j> si sj = ∑
{si}

∏
<i,j>

eβJ si sj (2)

where {si} ≡
{(

s(1)1 , s(1)2 , . . .
)

;
(

s(2)1 , s(2)2 , . . .
)

; . . .
}

denotes the collection of all possible
spin configurations the system can populate, < i, j > is the collection of all nearest neigh-
bor pairs, and β = 1/(kBT) is the inverse temperature with Boltzmann constant kB. All
thermodynamic quantities of interest such as internal energy U, entropy S, isochoric heat
capacity CV (in the following, simply denoted as C) or chemical potential µ can be obtained
rigorously from appropriate partial differentiation of Z (see Equations (A3a)–(A3e)). Since
the total number of possible spin configurations (=number of micro(scopic) states) is
Ωtot = 2Nspins , i.e., the set {si} involves a total of Ωtot different configurations, it is evi-
dent that the number of terms involved in Z grows rapidly with increasing spin number
Nspins and becomes very large even for small systems. Due to this scaling behavior, it
is typically not practicable to evaluate Z by exact enumeration for general systems of
arbitrary size even with state of the art computational resources. Here, simulation-based
approaches such as Markov chain Monte Carlo (MC) can make an important contribution
to estimate quantities such as C with high accuracy [14,15]. Only for very simple systems
such as the 1D-Ising model, it is possible to find exact closed analytic expressions for Z
which are summarized in Equations (A11a) and (A11b) for the cases of FBC and PBC
together with corresponding expressions for the Helmholtz (free) energy A = −kBT ln Z
in Equations (A12a) and (A12b). In 2D, a closed analytical solution exists for the limiting
case of infinite lattices which was derived by Lars Onsager [16] with high mathematical
effort (see Equation (7)). For 2D-systems of finite size, exact solutions for Z exist in case
of PBC [17–19] but to the best of our knowledge not for FBC [20,21]. This means it is
(currently) not possible to directly write down an expression for Z as function of (inverse)
temperature β and Nspins in case of a finite-size Ny × Nx-2D-model with FBC of arbitrary
system size. It is of course possible, at least in principle, to calculate Z for any 2D-system of
arbitrary size on the basis of Equation (2). However as mentioned before, with increasing
lattice size, the evaluation becomes increasingly computationally intensive due to the com-
binatorial part of the calculation given by the power law scaling of the number of possible
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configurations. Alternatively to summing over all possible spin configurations {si} as
conducted in Equation (2), one can first cluster the configurations into a set of discrete
energy levels {En} and then sum over this set of distinct energy levels instead:

Z = ∑
n

Ωn e−βEn︸ ︷︷ ︸
=wn

(3)

where the weights (=frequencies, multiplicities, degeneracies) Ωn ≡ Ω(En) associated
with energy levels En have to fulfill the closure relation ∑n Ωn = Ωtot = 2Nspins . The
energy level of a specific configuration is calculated from Equation (1) according to
En = H

(
s(n)1 , s(n)2 , . . .

)
. The quantity introduced in this way and defined by the com-

bined collection of energy levels En and corresponding weights Ωn is called the density of
states (DOS). The DOS refers to the number of different states at a particular energy level
and can be interpreted as an energy spectrum of the corresponding Ising model. It should
be noted that the DOS itself is temperature-independent while all derived quantities such
as A, U and C depend on T. Calculation of Z based on the DOS is completely equivalent to
the former calculation according to Equation (2) and therefore also allows exact evaluation
of Z. Corresponding expressions for the calculation of derived thermodynamic quantities
involving the DOS are summarized in Equations (A7a)–(A7c). It should be stressed that
even though the number of distinct energy levels n is typically much smaller than the
number of possible spin configurations Ωtot (i.e., the set {En} is smaller than the set {si}),
and consequently the sum in Equation (3) involves considerably fewer terms as compared
to Equation (2), practical calculation of Z via the DOS formulation is, from a computational
point of view, not superior per se towards the first route, since in both cases all possible
configurations {si} have to be generated anyway. However, the DOS formulation allows
a compact representation of the partition function itself. Another difference between the
two formulations for Z is that computation according to Equation (2) involves a number
of Nspins individual sums (see Equation (A15b)) while the summation over energy levels
according to Equation (3) involves a single summation only. Figure 1 shows estimated DOS
for a couple of small quadratic (N × N) 2D-Ising systems with FBC (left) and PBC (right).
In case of FBC, all DOS distributions are symmetric around the maximal value at En = 0,
whereas for PBC, this symmetry is found for even N only. The minimum energy of the
DOS distribution for a generic N × N-system is given by E0/J = −2N(N − 1) for FBC and
E0/J = −2N2 for PBC, respectively, with a weight of Ω0 = 2 for both cases, corresponding
to the two equivalent configurations with all spins being either in the up- or down-state.

In the following, we will take a closer look at the thermodynamic behavior of the
2D-Ising model, using the minimal 2× 2-system (FBC) as an explicit example which is
shown in Figures A1b and A3. In this case, there are Ωtot = 24 = 16 distinguishable
configurations, i.e., microscopic states, but the DOS only involves three distinct energy
states given by En/J = {−4, 0, 4} such that Ω0 = 2 configurations have the minimal
energy of E0 = −4J, Ω2 = 2 configurations have the maximal energy of E2 = 4J and the
majority of Ω1 = 12 configurations have an energy value of E1 = 0 (cf. Figures 1a and A3).
The canonical partition function can then be written as (see also Equation (A15b) in the
Appendix A.3):

ZFBC
2×2 = 2 e4βJ︸ ︷︷ ︸

=w0

+ 12 e0︸︷︷︸
=w1

+ 2 e−4βJ︸ ︷︷ ︸
=w2

. (4)

In order to rationalize the following discussion, it is advantageous to (re)define a normalized
partition function with respect to the lowest-energy state (ground state) E0 = −4J, first:

Z∗ ≡
ZFBC

2×2
w0

= 1 + 6 e−4βJ︸ ︷︷ ︸
=w1/w0

+ e−8βJ︸ ︷︷ ︸
=w2/w0

(5)
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from which expressions for the populated fractions associated with the nth discrete energy
state can be defined as:

pn ≡ Pr(En) =
Ωn e−βEn

Z
=

wn

Z
=

(wn/w0)

Z∗
(6a)

p0 =
1

Z∗
=

1
1 + w1/w0 + w2/w0

=
1

1 + K0→1 + K0→2
=

1
1 + 6 e−4βJ + e−8βJ (6b)

p1 =
w1/w0

Z∗
=

w1/w0

1 + w1/w0 + w2/w0
=

K0→1

1 + K0→1 + K0→2
=

6 e−4βJ

1 + 6 e−4βJ + e−8βJ (6c)

p2 =
w2/w0

Z∗
=

w2/w0

1 + w1/w0 + w2/w0
=

K0→2

1 + K0→1 + K0→2
=

e−8βJ

1 + 6 e−4βJ + e−8βJ . (6d)

For each temperature, the condition ∑n pn = 1 with pn ∈ [0, 1] must be fulfilled. It is
important to emphasize that the meaning of a state here refers to a particular macroscopic
(=energy) state and the fractions pn measure the probability of finding the 2× 2-system in
one of these three discrete energy states E0 = −4J, E1 = 0 or E2 = 4J. On the other hand,
one could also calculate the probability for each of the 16 individual configurations, i.e., mi-
croscopic states (see Equation (A5)). Such a simple three-state model as the 2× 2-system
can be applied in a wide range of applications such as protein thermodynamics where states
0, 1 and 2 could correspond to the native (i.e., folded) state, intermediate (i.e., partially
folded) state and denatured (i.e., unfolded) state of a protein, respectively [22]. The equilib-
rium constants K0→i = wi/w0 = pi/p0, defined above, are a measure for the ratio of two
probabilities and are closely related to the free energy barrier between ground state 0 and
(excited) state i via ∆0,i A ≡ Ai − A0 = −kBT ln K0→i. In principle, the equilibrium constant
for the transition from the ground state to the second (excited) state (0→ 2) could be further
split into two sequential transitions according to 0→ 1→ 2 such that K0→2 = K0→1K1→2
which will not be performed in the following however. In case of the 2× 2-system, the free
energy barriers ∆0,i A relative to the ground state which comprise an energetic and en-
tropic part according to ∆0,i A = ∆0,iU − T∆0,iS are given by ∆0,1 A = 4J − kBT ln 6 and
∆0,2 A = 8J. The energetic contribution is simply given by ∆0,iU = Ei − E0. The entropy
difference which is related to the ratio of the weights of the corresponding states according
to ∆0,iS = kB ln(Ωi/Ω0) reflects the fact that the state E1 = 0 has a six-times higher weight
compared to the ground state E0 = −4J. Figure 2a shows the fractions pn of the three
states as function of temperature where the latter is represented in reduced (dimension-
less) form as T∗ ≡ kBT/J = (βJ)−1. At low temperatures (T → 0, i.e., β → ∞), only p0
corresponding to the ground state E0 = −4J is populated, while at increasing temperatures
(T → ∞, i.e., β → 0), though all three states become thermally accessible, p1 associated
with the zero-energy state E1 = 0 dominates due to its six-times higher statistical weight
Ω1 compared to the other states. As revealed by Figure 2b, at T = 0 when the system is in
the ground state, free energy A and internal energy U coincide (A(0) = U(0) = E0 = −4J)
and the entropic part is zero. It should be stressed that it is the entropic part of the free
energy given by T · S which becomes zero due to T = 0, while the entropy itself becomes
S(0) = kB ln 2 due to the two possible and equivalent configurations (all spins up or all
spins down) associated with the ground state. With increasing T, A becomes more negative
and the entropic part dominates the free energy while the absolute value of U (i.e., the
interactions between the spins) asymptotically decreases to zero. In this case, when all
states are accessible and the system behaves as a collection of non-interacting spins, entropy
becomes S(∞) = kB ln Ωtot with Ωtot = 2Nspins = 16. Different ways to estimate entropy are
outlined in the Appendix A.2.
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Figure 1. Calculated densities of states (DOS) for a couple of quadratic (N × N) 2D-Ising systems:
2× 2 (blue), 3× 3 (green), 4× 4 (orange), 5× 5 (red). (a) Free boundary conditions (FBC), (b) periodic
boundary conditions (PBC).
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Figure 2. Thermodynamics of 2 × 2-Ising model with FBC: (a) fractions (=probabilities) p0 (black),
p1 (blue) and p2 (red) of finding the system in states with system energy −4J, 0, and 4J, respectively,
as function of temperature according to Equations (6b)–(6d). High-temperature asymptotic values for
T → ∞ derived from Equations (6b)–(6d) are given by: p0(∞) = p2(∞) = 0.125, p1(∞) = 0.75.
(b) Temperature-dependence of free energy A (black) and decomposition into internal energy U (blue)
and entropic part−TS (red) according to the Gibbs-Helmholtz equation: A = U− TS. All quantities were
calculated from the corresponding partition function Equation (4) using Equations (A7a), (A7b) and (A3c).
The black dashed line which is shown as guide to the eye corresponds to the high-temperature asymptotic
given by −kBT ln Ωtot with Ωtot = 24 = 16.

For comparison, Figure 3 shows an analogue decomposition analysis for the 5× 5-
FBC-Ising model which in this case comprises a total of 39 distinct energy states with
ground state energy E0 = −40J (cf. Figure 1a). As pointed out earlier, the number of
energy levels is significantly smaller than the number of different spin configurations
Ωtot = 225 ≈ 3.36× 107.

As the system size Nspins further increases, the system can adopt an ever-increasing
number of discrete energetic states while the spacing between these energy levels decreases.
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In the extreme case of the thermodynamic limit (Nspins → ∞), an infinite number of states
(=number of fractions pn), i.e., a continuum of states is required. For this case, for which the
difference between FBC and PBC as present for finite-size system vanishes, the following
expression for the reduced free energy per spin a∗ ≡ βA/Nspins was derived by Lars
Onsager [16]:

a∗∞ ≡ lim
Nspins→∞

a∗ = − ln(2 cosh(2βJ))− 1
2π

∫ π

0
ln
{

1
2

(
1 +

√
1− k2 sin2 ϕ

)}
dϕ (7)

k =
2 sinh(2βJ)
cosh2(2βJ)

Focusing on the reduced quantity a∗ instead of the dimensional free energy A itself which
is an extensive quantity and therefore scales with Nspins allows for a comparison between
finite-size systems of all dimensions including the limiting case of Nspins → ∞. This is
shown in Figure 4 which shows a set of curves for a∗ as function of inverse temperature
for a couple of quadratic (N × N) 2D-Ising models together with the limiting Onsager
expression. In the low-temperature (LT) regime (i.e., high β) in case of FBC, a∗ can be
well-approximated by the scaling law a∗LT

N (β∗) = −2β∗ (1− 1/N) with β∗ = β J which
is linear in β∗ with slope −2 multiplied by a system-size dependent factor [23]. This LT-
approximation holds increasingly better for increasing N (see dashed lines in Figure 4a).
For high temperatures (HT), i.e., β→ 0, all curves independent of system size N converge
to the same limiting value a∗HT = − ln 2 ≈ −0.69.
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Figure 3. Thermodynamics of 5× 5-Ising model with FBC: (a) fractions (=probabilities) pi of finding
the system in one of the 39 distinct energy states (cf. Figure 1a) as function of temperature according
to Equation (6a). The 39 curves are colored according to ascending energy levels from E0 = −40J
(dark blue) to E38 = 40J (dark red). The black dashed lines corresponds to state 20 at the maximum
of the DOS distribution in Figure 1a with corresponding energy level E19 = 0, showing the highest
high-temperature asymptotic value (p19(∞) ≈ 0.130) among all states. (b) Temperature-dependence
of free energy A (black) and decomposition into internal energy U (blue) and entropic part −TS
(red) according to the Gibbs-Helmholtz equation: A = U − TS. All quantities were calculated from
the corresponding partition function using Equations (A7a), (A7b) and (A3c). The black dashed
line which is shown as guide to the eye corresponds to the high-temperature asymptotic given by
−kBT ln Ωtot with Ωtot = 225 ≈ 3.36× 107.

A main characteristic of the 2D-Ising model and major difference compared to the
1D-Ising model is that it features a phase transition when the number of spins increases to
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infinity. This phase transition is characterized by a discontinuity or singularity at a critical
temperature in different physical observables when monitored as function of temperature
such as (isochoric) heat capacity or the derivative of the (spontaneous) magnetization. For
a 2D-lattice of infinite size and in the absence of a magnetic field, this critical temperature
T∗c ≡ kBTc/J is given by [16,24]:

T∗c =
2

ln
(

1 +
√

2
) ≈ 2.269 (8)

As revealed for example by MC simulations, below this critical temperature (T < Tc),
a phase exists comprising large domains where most of the spins have identical spin
numbers si (either +1 or −1) together with small isolated clusters with opposite si [25].
Such a phase can coexist with a phase of opposite magnetization, i.e., where all spins
are reversed. For T > Tc on the other hand, only a single homogenous (“disordered”)
phase exists.
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Figure 4. Reduced free energy per spin a∗ = βA/Nspins as function of inverse temperature
βJ = J/kBT for a couple of quadratic (N × N) 2D-Ising systems: 2× 2 (blue), 3× 3 (green), 4× 4
(orange), 5× 5 (red). (a) Free boundary conditions (FBC), (b) periodic boundary conditions (PBC). For
completeness, the Onsager solution for the case of an infinitely sized system according to Equation (7)
is also shown (black curve). Dashed lines in (a) correspond to the low-temperature (LT) approximation
as applicable for FBC given by a∗LT

N (β∗) = −2β∗ (1− 1/N) with β∗ = β J [23].

Figure 5 shows the temperature-dependence of the reduced heat capacity per spin
c∗ ≡ C/kBNspins calculated for a couple of quadratic (N × N) 2D-Ising systems based on
their DOS for FBC (a) and PBC (b). For comparison, the limiting heat capacity for the 1D-
Ising model, given by c∗ 1D

∞ = (βJ/ cosh(βJ))2 is also shown (purple dashed-dotted curve).
The finite height of this curve over the whole temperature range demonstrates the absence
of a phase transition in case of the 1D-Ising model. Since the first part of Equation (7) is
almost identical to the limiting value of a∗ for the 1D-Ising model (a∗ 1D

∞ = − ln(2 cosh(βJ)),
cf. Equation (A14a)) it can be concluded that it is the second part of the Onsager expression
for a∗∞, i.e., the integral which gives rise to the phase transition. The black curve in Figure 5
which shows the aforementioned singularity at the critical temperature T∗c according
to Equation (8) (black dashed line) corresponds to the limiting reduced heat capacity
for a 2D-lattice. It was derived from the Onsager expression Equation (7) according to
c∗ = −β2(∂2a∗/∂β2) but can not be expressed in closed form. Here, we applied an
automatic differentiation approach based on (hyper-) dual numbers to obtain c∗ [26].
Despite the fact that, both for the FBC and PBC case, the curves for c∗ clearly seem to
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converge towards the limiting Onsager solution with increasing N (peaks become higher
and corresponding peak temperature gets closer to T∗c ), the heat capacity values for all
finite-size N× N systems will remain finite and a singularity is only found for macroscopic
systems in the thermodynamic limit, i.e., for N → ∞. Different methods for estimating the
critical temperature of the infinite system based on extrapolation from a couple of finite-size
systems will be discussed in more detail in the context of another planned publication.
In addition to the temperature at the peak maximum of the heat capacity curve, other
characteristic parameters can be deduced from the profile giving access to insights into
the thermodynamic behavior of the system. In analogy to calorimetric experiments [22],
the integration of the heat capacity profile over the whole temperature range delivers the
so-called calorimetric change in internal energy and entropy:

∆Ucal/J = U(∞)/J −U(0)/J =
1
kB

∫ ∞

0
C(T∗)dT∗ (9a)

∆Scal/kB = S(∞)/kB − S(0)/kB =
1
kB

∫ ∞

0

C(T∗)
T∗

dT∗ (9b)

with T∗ = kBT/J. Using the state function property of U and S as it was performed in the
first equality, the value of the integral between the given temperature bounds on the right-
hand side can be evaluated without the need to actually integrate the heat capacity profile
mathematically. For a N × N-system based on FBC, one obtains ∆Ucal/J = 2N(N − 1)
with U(∞)/J = 0 and U(0)/J = E0/J = −2N(N − 1) and ∆Scal/kB = ln

(
2N2−1

)
=

(N2 − 1) ln 2 with S(∞)/kB = ln Ωtot = ln
(

2N2
)

and S(0)/kB = ln 2. For quadratic PBC-

systems, one obtains ∆Ucal/J = 2N2 due to the different value for the ground state energy
U(0)/J = E0/J = −2N2 while ∆Scal/kB remains the same as for FBC. In order to compare
the behavior of FBC and PBC when the number of spins Nspins increases, it is beneficial to
divide Equations (9a) and (9b) by Nspins = N2:

∆u∗cal =
∫ ∞

0
c∗(T∗)dT∗ =

∫ ∞

0

c∗(β∗)

β∗2
dβ∗ =

{
2(1− 1/N) (FBC)
2 (PBC)

(10a)

∆s∗cal =
∫ ∞

0

c∗(T∗)
T∗

dT∗ =
∫ ∞

0

c∗(β∗)

β∗
dβ∗ = (1− 1/N2) ln 2 (10b)

with β∗ = βJ = 1/T∗ and the dimensionless per-spin quantities ∆u∗cal = ∆Ucal/JNspins
and ∆s∗cal = ∆Scal/kBNspins. The integrals now involve the reduced heat capacity per
spin c∗ = C/kBNspins as plotted in Figure 5. From Equation (10a), one can see that the
difference for ∆u∗cal between FBC and PBC as present for finite lattice sizes vanishes in the
thermodynamic limit as expected. ∆s∗cal on the other hand is identical for both boundary
types at all lattice sizes. One also sees that ∆u∗cal which corresponds to the area under
the curve c∗(T∗) remains finite even for infinite lattice size despite the singularity at the
aforementioned critical temperature T∗c (see black curve in Figure 5) and takes a value
of ∆u∗cal = 2 in this case. The conditions given by Equations (10a), (10b) can be used as
diagnostic test for assessing the quality of the presented modeling approach for c∗ in an
integral sense.



Batteries 2023, 9, 489 10 of 29

0 1 2 3 4 5
Temperature kBT/J (-)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ed

uc
ed

 h
ea

t c
ap

ac
ity

 p
er

 sp
in

 c
*  (-

)

2x2, FBC
3x3, FBC
4x4, FBC
5x5, FBC
Onsager
1D, N

(a)

0 1 2 3 4 5
Temperature kBT/J (-)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ed

uc
ed

 h
ea

t c
ap

ac
ity

 p
er

 sp
in

 c
*  (-

)

2x2, PBC
3x3, PBC
4x4, PBC
5x5, PBC
Onsager

(b)

Figure 5. Reduced heat capacity per spin c∗ = C/kBNspins as function of temperature for a couple
of quadratic (N × N) 2D-Ising systems: 2× 2 (blue), 3× 3 (green), 4× 4 (orange), 5× 5 (red). (a) Free
boundary conditions (FBC), (b) periodic boundary conditions (PBC). The corresponding heat capacity
for the thermodynamic limit was derived from the Onsager expression for a∗∞ in Equation (7) (black
curve). The black dashed line corresponds to the critical temperature in the thermodynamic limit
(kBTc/J ≈ 2.269) as given by Equation (8). The left graph also shows the limiting heat capacity for
the 1D-Ising model (fine purple dashed-dotted line).

3. Materials and Methods

The central idea as tested in this work is based on the question if it is possible to
develop a free energy expression on the basis of 1D-Ising chains that can reproduce the
results of a finite-size 2D-Ising model with FBC at least qualitatively. Here, we focus on
the description of quadratic N × N-Ising models with Nspins = N2 spins. The goal is to
obtain an analytic and, in the best case, simple expression for the reduced free energy
per spin a∗ = βA/N2 which approximates the exact solution as good as possible for
any N × N-Ising model and therefore allows fast estimation without the rapidly growing
computational effort for increasing lattice sizes as it is the case for the exact evaluation
based on Equation (2). The model should be applicable to small lattice dimensions N on
the one hand but should also feature a phase transition in case of infinite N as described
by the Onsager solution (see Equation (7)). While the modeling takes place on the basis
of the reduced free energy a∗, the reduced heat capacity per spin c∗ = C/kBNspins follows
straightforwardly at any (inverse) temperature from the second derivative with respect
to β: c∗ = −β2(∂2a∗/∂β2). The general idea is illustrated in Figure 6 for the example of a
5× 5-FBC-system.

Initial state 0 State 1

System of non-
interacting spins

Spins summarized to 
non-interacting Ising-
chains

Ch. 1 (len.: 1)

Ch. 2 (len.: 3)

Ch. 3 (len.: 5)

Ch. 4 (len.: 7)

Ch. 5 (len.: 9)
State 2

…

Final state

Chains connected via 
first layer of interactions

Adding further 
interactions

Fully connected NxN 
system

Figure 6. Schematic representation of the approach: starting from a system of non-interacting spins
for the 2D-topology of interest (=state 0), the spins are first summarized to a set of non-interacting 1D-
systems, i.e., Ising chains (=state 1). In the following steps, successive layers of inter-chain interactions
(=bonds) between neighboring chains are added sequentially, resulting in a fully connected graph at
the final state (here a 5× 5-FBC-system).
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Initially, the number of Nspins = N2 non-interacting spins corresponding to the desired
N × N-system is placed on the lattice (=initial state 0). As a first step, a total of N(N − 1)
interactions are added by summarizing the spins to N non-interacting, i.e., independent
Ising chains as shown in Figure 6 (=state 1). In this scheme, the chains are labeled beginning
from chain-ID 1, corresponding to the minimal length of 1 (i.e., a single spin) to chain-ID N,
corresponding to the longest chain, consisting of 2N − 1 spins. In this notion, the added
N(N− 1) interactions correspond to intra-chain bonds since they connect neighboring spins
within a chain. For the remainder of the work, the expressions “interactions” and “bonds”
are used synonymously. In order to obtain a fully connected 2D-Ising system, another
equal amount of N(N − 1) interactions have to be added to the graph, corresponding to
inter-chain bonds since they establish interactions between adjacent chains, i.e., to couple
neighboring spins assigned to different chains. This could be performed in a series of steps
by successively adding more layers of inter-chain bonds. A specific example is shown in
Figure 6 where chains are connected via a set of edge bonds such that the edge spin of
chain i is connected via 2 bonds to 2 spins of chain i + 1, resulting in a weakly coupled
graph (=state 2). We emphasize that this procedure to go from state 1 (non-interacting
Ising chains) to the final state of a fully coupled N × N-system is by no means unique,
i.e., there are several ways of adding the remaining N(N − 1) inter-chain bonds and as it
turns out, this part represents the actual challenge. From a statistical-mechanical point of
view, the described approach (denoted by superscript “app.”) corresponds to a free energy
construction of the kind:

Aapp.
N×N = Achains +

m

∑
k=1

nk ∆A(k)
bond (11)

= Achains + n1 ∆A(k=1)
bond + n2 ∆A(k=2)

bond + . . . + nm ∆A(k=m)
bond .

In such an additive construction scheme, the final free energy estimate Aapp.
N×N for

the interacting N × N-system results from addition of different free energy contributions
∆A(k)

bond, associated with the inclusion of specific inter-chain bonds of type k to the reference

system of non-interacting Ising chains Achains. If ∆A(k)
bond represents the free energy contri-

bution for the addition of a single bond of type k, the corresponding coefficients nk have to
add up to the total number of remaining inter-chain bonds: ∑m

k=1 nk = N(N − 1). Explicit

expressions for Achains and ∆A(k)
bond will be derived in the following. Ideally, the constructed

Aapp.
N×N would correspond to the exact AN×N for the N × N-FBC-system as calculated from

the corresponding exact 2D-partition function based on Equation (2). Equation (11) can be
equivalently formulated in terms of partition functions:

Zapp.
N×N = Zchains ·

(
z(k=1)

bond

)n1 ·
(

z(k=2)
bond

)n2 · . . . ·
(

z(k=m)
bond

)nm
(12)

with the relations Aapp.
N×N = −kBT ln Zapp.

N×N , Achains = −kBT ln Zchains and

∆A(k)
bond = −kBT ln z(k)bond. From the latter relation it follows that z(k)bond actually does not

represent an absolute partition function but rather a partition function ratio corresponding
to the inclusion of a single bond of type k into the graph which is emphasized by the use of
a lowercase letter z.

3.1. Free Energy of Independent Ising Chains

The first step corresponding to state 1 in Figure 6 is to summarize the N2 non-
interacting spins on the lattice to N independent Ising chains which implies the inclusion
of N(N − 1) intra-chain bonds to the graph. The first and smallest chain has a length of
1, i.e., an isolated spin while the last chain N is the longest with a length of 2N − 1 spins.
Since the chains are independent, the combined partition function for the whole set of N
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chains is given exactly by the product of the partition functions of the individual chains,
i.e., it factorizes into N partition functions:

Zchains =
N−1

∏
k=0

Z1D, FBC
2k+1 =

N

∏
k=1

Z1D, FBC
2k−1 = Z1 · Z1D, FBC

3 · . . . · Z1D, FBC
2N−1 (13)

with Z1D, FBC
N = 2N coshN−1(βJ) according to Equation (A11a) where the special case

Z1 ≡ Z1D, FBC
1 = 2 corresponds to the partition function of a single isolated spin. In terms

of free energy, the corresponding expression reads as:

Achains =
N−1

∑
k=0

A1D, FBC
2k+1 =

N

∑
k=1

A1D, FBC
2k−1 = A1 + A1D, FBC

3 + . . . + A1D, FBC
2N−1 (14)

with A1D, FBC
N = −kBT ln Z1D, FBC

N according to Equation (A12a) and A1 ≡ A1D, FBC
1 =

−kBT ln 2. Using the Gaussian sum formula, Equation (14) can be simplified to give the
following expression for the (reduced) free energy:

Achains = −kBT
(

N2 ln 2 + N(N − 1) ln(cosh(βJ))
)

(15a)

a∗chains = − ln 2−
(

1− 1
N

)
ln(cosh(βJ)) (15b)

which is identical to the expression for the reduced free energy per spin of a single 1D-Ising
chain of length N with FBC (compare Equation (A12c)).

3.2. Inclusion of Inter-Chain Interactions

In this work, we applied a simplified variant of the presented approach discussed
above where only one bond type in Equation (11) with a single value for the free energy
contribution ∆Abond is considered. In this case, one adds all inter-chain bonds simulta-
neously and thus transitions directly from state 1 to the final state of a fully connected
N × N-system without any intermediate steps (compare Figure 6):

Aapp.
N×N = Achains + N(N − 1)∆Abond (16a)

a∗app.
N×N = a∗chains +

(
1− 1

N

)
β∆Abond (16b)

where a∗chains is given by Equation (15b). For the 5× 5-FBC-system in Figure 6 this would
correspond to the addition of 20 equal bonds to the graph in state 1, where the free energy
contribution of each added bond is identical and given by ∆Abond. At this point it should
be stressed that although only one bond type is considered, ∆Abond(β, N) is not a constant,
but a function of N and β. Further, it should be emphasized that the decomposition of the
free energy into an intra-chain and an inter-chain part does not involve any approximation
so far and is exact (i.e., a∗app.

N×N = a∗N×N) as long as one calculates the bond contribution
∆Abond consistently:

∆Abond/J = T∗
N

N − 1

(
a∗app.

N×N − a∗chains

)
(17)

with T∗ = kBT/J. For infinite lattice size, the equation changes into:

∆A∞
bond/J = T∗

(
a∗∞ − a∗chains,∞

)
(18)

where ∆A∞
bond is now a function of temperature only, a∗∞ is given by the Onsager expres-

sion Equation (7) and a∗chains,∞ = − ln(2 cosh(βJ)). From the comparison of the Onsager
expression with Equation (16b), it can be seen that the second term of the latter equation
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which involves ∆Abond should be given by the integral of the Onsager expression in case
of N → ∞ and is thus responsible for the phase transition.

Based on Equation (16b), an equivalent decomposition can also be obtained for the
heat capacity via c∗ = −β2(∂2a∗/∂β2):

c∗app.
N×N = c∗chains +

(
1− 1

N

)
∆c∗bond (19a)

=

(
1− 1

N

)
(βJ)2

cosh2(βJ)
−
(

1− 1
N

)
β2
(

∂2(β∆Abond)

∂β2

)
N

(19b)

with
(

∂2(β∆Abond)

∂β2

)
N
= 2

(
∂∆Abond

∂β

)
N
+ β

(
∂2∆Abond

∂β2

)
N

where c∗chains was derived from Equation (15b). For infinite lattice size this expression becomes:

c∗app.
∞ = c∗chains,∞ + ∆c∗bond,∞ (20a)

=
(βJ)2

cosh2(βJ)
− β2

(
∂2(β∆A∞

bond)

∂β2

)
N

(20b)

where c∗app.
∞ only depends on β.

From the derived expressions it becomes evident that the initial problem of expressing
the free energy of a (finite-size) 2D-Ising model by means of 1D-Ising chains is now reduced
to the estimation of ∆Abond(β, N) as function of system size N and (inverse) temperature β.
A requirement for the calculation of c∗app.

N×N is that the function ∆Abond(β, N) is two times
differentiable with respect to β. The route taken in this work was to compute ∆Abond
according to Equation (17) from the exact a∗ for a couple of finite-size N × N-systems and
then perform an approximation based on a two-dimensional fit in N- and β-space. For the
calculation of a∗, we used the optimized code of Karandashev et al. [27] which evaluates the
exact partition function Z of a given 2D-Ising model at specified temperature and is publi-
cally available [28]. Since the code returns ln Z(β∗), ln Z(β∗ + ∆β∗) and ln Z(β∗ + 2∆β∗)
with ∆β∗ = 10−5, the (reduced) heat capacity was computed from a finite-differences
(second-order forward) approach. We validated this code for small system dimensions
through comparison with self-written (non-optimized) code which evaluates the exact
partition functions of Ny × Nx-systems based on the DOS formalism by systematically
generating all possible Ωtot = 2Nspins = 2Nx ·Ny configurations using the Python itertools-
module [29]. Relative deviations in a∗ between the two implementations for the considered
temperature range were found to be in the order of 10−13.

Among different investigated modeling approaches for ∆Abond(β, N), the following
has been found to be the most suitable: (i) calculation of exact values for ∆Abond according
to Equation (17) for a couple of N × N-systems (e.g., 2× 2 to 20× 20) within a defined
discretized (inverse) temperature interval; (ii) fitting the results with the inverse power law
or generalized hyperbola function Equation (21a) in N-space with the four temperature-
dependent model parameters a, b, c, d, separately for every discrete β-value (the reader has
to be aware of not to confuse the model parameter a with the reduced free energy a∗):
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∆Afit
bond(β∗, N)/J =

a(β∗)

(N − b(β∗))c(β∗)
+ d(β∗) (21a)(

∂∆Afit
bond/J

∂β∗

)
N

=
a′

(N − b)c +
a c b′

(N − b)c+1 −
a ln(N − b) c′

(N − b)c + d′ (21b)(
∂2∆Afit

bond/J
∂β∗2

)
N

= [1] · a′ + [2] · b′ + [3] · c′ (21c)

+
a′′

(N − b)c +
a c b′′

(N − b)c+1 −
a ln(N − b) c′′

(N − b)c + d′′

with β∗ = βJ, a′(β∗) = da/dβ∗ and a′′(β∗) = d2a/dβ∗2 (analogously for the other model
parameters b, c, d) and the following abbreviations:

[1] =
c b′

(N − b)c+1 −
c′ ln(N − b)
(N − b)c (22a)

[2] =
c a′

(N − b)c+1 +
a c (c + 1) b′

(N − b)c+2 −
a c c′ ln(N − b)
(N − b)c+1 +

a c′

(N − b)c+1 (22b)

[3] = − a′ ln(N − b)
(N − b)c +

a c′ (ln(N − b))2

(N − b)c +
a b′

(N − b)c+1 −
a c b′ ln(N − b)
(N − b)c+1 . (22c)

As can be seen from Equation (21a), for positive exponent c, the asymptotic value of
∆Afit

bond for infinite lattice dimension is given by the temperature-dependent offset parame-
ter d: ∆A∞ fit

bond/J ≡ ∆Afit
bond(β∗, ∞)/J = d(β∗); (iii) interpolation of the discretized model pa-

rameter values in β-space using cubic splines. Using Equations (21a)–(21c) and (22a)–(22c),
the reduced free energy and heat capacity can then be calculated according to Equation (16b)
and Equation (19b), respectively, at any temperature and system size.

The quality of the predicted approximations was assessed through a comparison with
the exact results for a∗ and c∗ as obtained with the code of Karandashev et al. As mentioned
above, alternative and lower-complexity modeling approaches for ∆Afit

bond(β∗, N)/J, such
as a second-degree polynomial function in inverse lattice dimension Ninv ≡ 1/N with only
three β∗-dependent model parameters were also tested but found not to be suitable (data
not shown). Nonlinear fitting of Equation (21a) was performed using the optimize-package
of the open-source Python library SciPy [30]. For piecewise cubic splines interpolation,
the SciPy interpolate-package has been used. The routine returns not only the interpolated
function value itself for the fitting parameters (e.g., a(β∗)) but also the corresponding first
(a′(β∗)) and second derivative (a′′(β∗)) at this temperature as required for the evaluation
of Equations (21b)–(21c) and (22a)–(22c). At this point, it should be emphasized again
that the approximation of the modeling approach is introduced by specifying a specific
functional form for ∆Afit

bond(β∗, N)/J (in our case the generalized hyperbola Equation (21a))
and not through Equations (16a), (16b) which are exact. For the sake of completeness, it
should be noted that the analytical expression ∆Afit

bond(β∗, N)/J further enables a direct
and straightforward calculation of the chemical potential µ

app.
N×N for arbitrary quadratic

systems as function of lattice size and temperature (see Appendix A.4).

4. Results and Discussion

Figure 7 demonstrates the success of the described modeling procedure for ∆Abond(β, N)
(see methods section for details) involving fitting with the hyperbola-based approach in
Equation (21a) to system sizes 2× 2 to 20× 20. Therefore, exact reference solutions for
∆Abond were calculated for these systems using the code of Karandashev et al. [27] at
200 equidistant temperature points in the interval βJ = [0.01, 2] for each system. The
shown results for systems 21× 21 to 40× 40 were not incorporated into the fitting process
and thus represent (interpolated) predictions. However, it has been found that it is also
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necessary to prescribe the Onsager solution for infinite N by constraining the offset param-
eter d of the fitting function via: ∆Afit

bond(β∗, ∞)/J = d(β∗) = T∗
(

a∗∞ − a∗chains,∞

)
where

Equation (18) has been applied in the second equality. By doing this, d becomes fixed such
that only three free adjustable model parameters (a, b, c) remain. Without constraining d,
the (reduced) heat capacity profile will become unphysical for increasing N and will not
converge towards the correct Onsager solution in thermodynamic limit (see Figure A4
in the Appendix A.5). Furthermore, the exponent c was restricted to positive values. As
can be seen from Figure 7, ∆Afit

bond shows a pronounced dependence on system size and
temperature, both of which seem to be well reproduced by our approach. As expected,
the free energy contribution of an added bond diminishes with increasing temperature.

The corresponding adjusted model parameters are shown in Figure 8 as function of
inverse temperature. It can be seen that all parameters are bound and well-behaved within
the studied temperature-range.
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Figure 7. Free energy contribution of a single inter-chain bond ∆Abond/J as function of lattice size
(left) and temperature (right): (a) circles (closed and open) represent exact solutions for ∆Abond/J
calculated according to Equation (17). Dashed lines correspond to fitting results according to
Equation (21a) at constant temperature within βJ = [0.01, 2] using 200 equidistant points. Closed
(open) circles represent points that were (not) incorporated into the fitting process. The coloring
scheme of the lines refers to ascending order in temperature, with blue curves at the bottom cor-
responding to low temperature (high β) and red curves at the top to high temperature (low β).
(b) ∆Abond/J as function of reduced temperature kBT/J for selected N × N-systems: 2× 2 (blue),
5× 5 (cyan), 10× 10 (green), 20× 20 (orange), 40× 40 (red). The limiting Onsager solution is shown
in magenta. Colored curves correspond to exact results according to Equation (17) whereas superim-
posed black dashed lines refer to modeling results from (a). The shown 40× 40-system (red) was not
taken explicitly into account into the fitting process but is a prediction.

Figure 9 shows the modeling results for the reduced free energy per spin a∗ and
reduced heat capacity per spin c∗ based on Equation (16b) and Equation (19b), respectively,
as functions of inverse temperature for selected N × N-systems. By construction through
constraining the model parameter d, both a∗ and c∗ become identical to the corresponding
Onsager expressions for N → ∞. While the agreement between the tested model approach
and corresponding exact results are close to perfect in case of a∗, a fact which is also
confirmed by the very low percentage relative deviation (<0.1%) in Figure 10, deviations for
c∗ are more pronounced. This behavior is due to the fact that c∗ is proportional to the second
derivative of a∗ and thus is very sensitive to small local changes in the curvature of a∗(β∗).
For all system sizes, some artifacts are present in c∗ around the critical temperature which
cause the curves to become increasingly rugged near the maximum as N increases and
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makes an unambiguous determination of the peak maximum and the corresponding peak
temperature difficult. These numerical artifacts can be mainly attributed to two origins: (i) a
side effect of the imposed constraint to match the Onsager solution for infinite N and (ii) the
limited number of temperature points as used for interpolation. The latter can be seen when
more temperature points are used which increases the resolution in β-space at the expense
of increased computational effort. Although a higher β-resolution reduces the artifacts near
the critical temperature and makes the curves smoother around the maximum, this creates
small local disturbances (see Figure A5 in the Appendix A.5). For large N-values outside
the fitting range, the maximum of the approximated c∗-curve is already determined by the
critical temperature β∗c = βc J = (kBTc/J)−1 ≈ 0.44, whereas the peak temperature of the
exact curve does not yet match it (see result for the 40× 40-system in Figure 9b). However,
despite these deviations in the shape of the profiles, the evaluation of the integral conditions
in Equations (10a), (10b) yielded a maximal violation in the order of 1% from the nominal
value. In this context, the impact of including the exact results from more N × N-systems in
the fitting process at the same temperature resolution was also investigated (see Figure A6
in the Appendix A.5). For small system sizes the aforementioned artifacts close to β∗c
become more pronounced when more systems were taken into account for fitting (at same
β-resolution) while for the prediction of larger system sizes the description near the peak
becomes better. However, the qualitative behavior is identical for the studied cases where
a different number of reference solutions was involved. Figure 10 further shows that the
deviations in a∗ disappear for very high and low temperatures at all system sizes. Although
it appears that local extrema emerge at certain intervals which increase with increasing N,
in the limiting case for infinite N, all deviations must by construction decrease to zero for
all temperatures.
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Figure 8. Model parameters a (blue), b (green), c (orange) and d (red) of the generalized hyperbola function
for ∆Afit

bond/J (see Equation (21a)), corresponding to Figure 7a as function of inverse temperature. For
the fitting procedure, the c-parameter was constrained to positive values and the parameter d was not
taken as free parameter but constrained to the exact limiting value of ∆Abond/J for N→ ∞ according to
Equation (18). The black dashed-dotted line is shown as guide to the eye and corresponds to the inverse
critical temperature in the thermodynamic limit (βc J = (kBTc/J)−1 ≈ 0.44) as given by Equation (8).
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Figure 9. Reduced free energy (a) and reduced heat capacity per spin (b) as a function of inverse
temperature for selected N × N-systems: 2× 2 (blue), 5× 5 (cyan), 10× 10 (green), 20× 20 (or-
ange), 40× 40 (red). The left graph also includes the limiting Onsager solution (magenta). For
the fitting procedure, 200 equidistant points within the interval βJ = [0.01, 2] were applied for
system sizes 2 ≤ N ≤ 20. Systems with dimensions 21 < N < ∞ represent predictions. Colored
curves correspond to exact results while black (dashed) lines represent modeling results based on
Equations (16b) and (19b), respectively. The black dashed-dotted line in the right graph is shown
as guide to the eye and corresponds to the inverse critical temperature in the thermodynamic limit
(βc J = (kBTc/J)−1 ≈ 0.44) as given by Equation (8).
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Figure 10. Relative deviation (in percent) between exact and approximated reduced free energy per
spin (a∗app.

N×N − a∗N×N)/|a∗N×N | × 100% as function of inverse temperature for selected N × N-systems
(a) and as function of lattice size for specified inverse temperatures (b). a∗app.

N×N denotes the modeled
reduced free energy per spin according Equation (16b) while a∗N×N corresponds to the exact reference
solution, evaluated via the code of Karandashev et al. [27]. For the fitting procedure, 200 equidistant
points within the interval βJ = [0.01, 2] were applied for system sizes 2 ≤ N ≤ 20. Systems with
dimensions 21 < N < ∞ represent predictions. Shown system sizes in (a): 2× 2 (blue), 5× 5 (cyan),
10× 10 (green), 20× 20 (orange), 30× 30 (dark red), 40× 40 (red). The black dashed-dotted line
corresponds to the inverse critical temperature in the thermodynamic limit (βc J = (kBTc/J)−1 ≈ 0.44)
as given by Equation (8). Shown isothermes in (b): βJ = 0.01 (blue), βJ = 0.44 (cyan), βJ = 0.50
(green), βJ = 0.70 (orange), βJ = 1.00 (red), βJ = 2.00 (magenta).
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As already mentioned in the introduction, a separate publication will focus on the
adaption of the Ising model such that it can be applied to the description of intercalation
phenomena such as the intercalation of Li-ions into an electrode host matrix. Here, we will
only briefly illustrate a possible roadmap for such a modeling attempt. In the simplest case,
one could study a one-dimensional cut through a (finite-sized) crystal lattice composed of
N lattice sites where each site can be either occupied by an ion (si = 1) or empty (si = 0).
Such a description could be used for example to model the diffusion of Li-ions diffusion
into tunnel-like structures of LiFePO4 [31,32]. Therefore, a Hamiltonian based on pairwise
ion-ion interactions could be constructed in the following way:

H1D, FBC
N =

N−1

∑
i=1

N

∑
j=i+1

εi,j (23)

= {ε1,2 + ε2,3 + . . . + εN−1,N}︸ ︷︷ ︸
N-1 terms

+ {ε1,3 + ε2,4 + . . . + εN−2,N}︸ ︷︷ ︸
N-2 terms

+ . . . + {ε1,N}︸ ︷︷ ︸
1 term

with the pair energy εi,j = Ji,j si sj between lattice sites i and j. Equation (23) involves a total
of N(N− 1)/2 pair interactions in case of FBC, comprising N− 1 possible nearest neighbor
interactions between adjacent lattice sites, N− 2 possible next-nearest neighbor interactions
between lattice sites which have another site in between and so on. Due to the long-range
nature of electrostatic interactions it might be necessary to include interactions which go
beyond nearest neighbors which is a clear difference compared to the classic Ising model
(compare Equation (A1a)) and the simplifying assumption of a uniform coupling constant
Ji,j might not be applicable. A possible modeling approach of the distance-dependence
of Ji,j for interaction sites which are n ≥ 1 sites apart could be derived in analogy to
Coulomb’s law according to Ji,i+n = J/n. Here, the coupling constant J ≡ Ji,i+1 between
ions sitting directly next to each other (i.e., si = si+1 = 1) could be treated as adjustable
model parameter. Another degree of freedom could be introduced by the multiplication of
J with a distance-dependent screening parameter αi,j to better incorporate the effect of the
electrode matrix on the alteration of the ion-ion interactions. For computational reasons it
might be necessary to define a certain cut-off distance beyond which the interactions are
assumed to be zero which can be included into αi,j in combination with a special switching
function. Of course, both Ji,j and αi,j could further be treated as temperature-dependent.
Due to the inherent periodicity of the crystal, inclusion of PBC might yield a more realistic
description for finite-size systems. For a 1D-crystal with N lattice sites, the corresponding
canonical partition function Z1D

N involves a total of Ωtot = 2N possible configurations,
including states with 0, 1, . . . , N ions and can (in principle) be calculated for every lattice
size according to Equation (2). In 1D, the transfer matrix method offers a route to obtain
a closed analytic solution for ZN [33]. However, in order to apply this kind of model for
intercalation of Li-ions into other host materials where two- or three-dimensional diffusion
takes place such as graphitic carbon [34] or LiMn2O4 spinel [35], respectively, efficient
approximative approaches for the evaluation of the higher-dimensional Ising model are
required which was the main motivation of the present work. For these situations, a similar
approach as presented in this work will be followed, comprising calculation of exact
partition functions (or free energies AN×N) for a couple of finite-size N × N-systems,
followed by approximation of AN×N with a suitable analytic expression and extrapolation
to other lattice dimensions of interest. In contrast to the classic Ising model, it is known that
such a proposed model based on the Hamiltonian above features a phase transition even in
1D due to the presence of long-range interactions [36,37]. The advantages of such a simple
but at the same time physically based model and its implications for battery modeling are
versatile: it could be used not only to predict the most probable electrode composition at a
particular temperature but also transition temperatures between different phases from the
heat capacity profile. Through the combination with experimentally or computationally
determined ionic conductivities or diffusion coefficients, a link to transport properties
of ionic species within crystal lattices can be achieved. Microscopic origins of hysteresis
effects during dis-/charging which are highly relevant for battery energy efficiency and are
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thought to be related to lattice reorganization, could be possibly incorporated into such a
model through further factorization of the coupling constant.

5. Conclusions

The central question addressed in this work was whether it is possible to develop
a free energy expression on the basis of 1D-Ising chains that can reproduce the results
of a finite-size 2D-Ising model with FBC at least qualitatively. Therefore, we considered
an arbitrary N × N-system as a combination of an intra-chain part which is given by a
set of non-interacting Ising chains and an inter-chain part through which interactions
among neighboring chains are established. In this context we considered the free energy
contribution of a single inter-chain bond ∆Abond(β, N) that is added to the system and
shows a distinct dependence on (inverse) temperature and lattice size. It could be shown
that with the chosen modeling approach based on 1D-Ising chains in combination with an
analytic expression for ∆Abond for which the involved model parameters were adjusted to
exact results from a couple of finite-size 2D-systems, a satisfying reproduction of the exact
data in terms of ∆Abond(β, N) can be achieved. However, extrapolation to lattices, which
are significantly larger than those included for the fit, is only possible when the limiting
solution for infinite N is explicitly incorporated into the fitting step. This is especially true
for the reduced heat capacity per spin (to a much lesser extent for the reduced free energy
per spin), which is as a second-derivative property extremely sensitive to subtle local
changes in curvature of a∗. This shows the limitation of the current approach which could
be attributed to the particularly chosen fitting approach. However, it must be emphasized
that the primary goal of the current work was not to find an optimal working approach
that reproduces the exact results as closely as possible, but to show a principal (qualitative)
route for how such a model could be built. Based on the obtained results, we will extend
the modeling approach by trying to split the process of adding inter-chain bonds to the
system of non-interacting Ising chains into different intermediate steps as it is illustrated in
Figure 6 which will then also be tested for the 3D-Ising model.
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Appendix A

Appendix A.1

In the following, explicit expressions for the Hamiltonian H for 1D- and 2D-Ising
models in the absence of an external magnetic field with free (FBC) and periodic boundary
conditions (PBC) will be presented. In case of the 1D-Ising model, i.e., a chain with
Nspins = N spins, it follows from the general Equation (1):

H1D, FBC
N =

N−1

∑
i=1

εi,i+1 = −J
N−1

∑
i=1

si si+1 (A1a)

= ε1,2 + . . . + εN−1,N︸ ︷︷ ︸
N-1 interactions (= bonds)

= −J (s1s2 + . . . + sN−1sN)

H1D, PBC
N =

N

∑
i=1

εi,i+1 = −J
N

∑
i=1

si si+1 (A1b)

= ε1,2 + . . . + εN−1,N + εN,N+1︸ ︷︷ ︸
N interactions (= bonds)

= −J (s1s2 + . . . + sN−1sN + sNsN+1︸ ︷︷ ︸
=sN s1

)

with εN,N+1 = εN,1 = ε1,N = −J s1sN

where εi,j denotes the pair energy between neighbor spins i and j and si = ±1 the spin
number (spin up or spin down) of spin i.

For a 2D-Ny × Nx-system with a total of Nspins = Nx · Ny spins where Nx spins
are placed in x-direction (=number of columns) and Ny spins are placed in y-direction
(=number of rows) of the lattice, the Hamiltonian involves a double sum and can be spit
into a horizontal interaction part (Hx) and a vertical interaction part (Hy) according to:

HNy×Nx = Hx + Hy (A2a)

with Hx = −J
Ny

∑
i=1

Nx

∑
j=1

si,j si,j+1︸ ︷︷ ︸
right neighb.

and Hy = −J
Ny

∑
i=1

Nx

∑
j=1

si,j si+1,j︸ ︷︷ ︸
lower neighb.

si,Nx+1 = 0 (FBC) or si,Nx+1 = si,1 (PBC), ∀i =
{

1, . . . , Ny
}

(A2b)

sNy+1,j = 0 (FBC) or sNy+1,j = s1,j (PBC), ∀j = {1, . . . , Nx} (A2c)

Hx only involves summation over horizontal (i.e., right) next neighbors, while Hy involves
summation over vertical (i.e., lower) next neighbors. Figure A1 shows some explicit
examples for simple 1D- and 2D-systems. For 2D-systems, we will typically use the single-
index numbering scheme as shown in the upper right of Figure A1b. As can be seen for the
example of the 2× 2-system, although the number of possible configurations (Ωtot = 2N2

)
is identical for a finite-size N × N-system with FBC and PBC, both models differ in their
possible energy values due to the modified interactions (compare also Figure 1a,b).
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(a)
1D-Ising model of length N = 4 with FBC 
(= chain with open ends):

1D-Ising model of length N = 4 with PBC 
(= Ising-ring):

H = -J

H = 0

(b)

2D-Ising model with 4 spins:

2D-Ising model (Ny x Nx) with alternative numbering schemes

H = 4J H = 8J

Figure A1. Explicit examples for simple 1D-Ising models (a) and 2D-Ising models (b) with free
boundary conditions (FBC) and periodic boundary conditions (PBC). Color scheme: black spheres
correspond to spins in the up-state (si = +1), white spheres to spins in the down-state (si = −1). For
1D and 2D, the given values of the Hamiltonian H associated with the presented configurations were
calculated according to Equations (A1a), (A1b) and Equations (A2a)–(A2c), respectively.

Appendix A.2

Here, we summarize the most important statistical-mechanical relations with regard to
how to calculate free energy A, internal energy U, entropy S, constant-volume (=isochoric)
heat capacity CV (here only denoted as C) and chemical potential µ from the (canonical)
partition function Z. For detailed derivations, we refer to standard textbooks on statistical
mechanics [38]. The general relations between the listed thermodynamic quantities and Z
are as follows:

A = −kBT ln Z ←→ βA = − ln Z (A3a)

U = 〈H〉 = −
(

∂lnZ
∂β

)
Nspins

= kBT2
(

∂lnZ
∂T

)
Nspins

(A3b)

S
kB

= −βA + βU = ln Z− β

(
∂lnZ
∂β

)
Nspins

= ln Z + T
(

∂lnZ
∂T

)
Nspins

(A3c)

µ =

(
∂A

∂Nspins

)
T
= −kBT

(
∂ ln Z

∂Nspins

)
T

(A3d)

C
kB

=
1
kB

(
∂U
∂T

)
Nspins

= β2
(

∂2lnZ
∂β2

)
Nspins

= 2 T
(

∂lnZ
∂T

)
Nspins

+ T2
(

∂2lnZ
∂T2

)
Nspins

(A3e)

where 〈X〉 denotes the ensemble average for a generic quantity X(~si) which depends on
the particular configuration ~si ≡ (s1, s2, . . .), i.e., the current values of the spin numbers for
all spins in the system. The calculation of the ensemble average involves summation over
all possible spin configurations {si}:

〈X〉 ≡ 1
Z ∑
{si}

X(~si) e−βH(~si)
Equation (2)

=
∑{si} X(~si) e−βH(~si)

∑{si} e−βH(~si)
= ∑
{si}

X(~si) pmic
i (A4)
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where in the last equality, we introduced the probability of a particular configuration, i.e., a
single specific micro state according to:

pmic
i ≡ Pr(~si) =

e−βH(~si)

Z
=

e−βH(~si)

∑{si} e−βH(~si)
(A5)

pmic
i can be computed for every of the Ωtot = 2Nspins configurations and must be clearly

distinguished from the fractions pi defined in Equation (6a) which refer to the probability of
an energetic (i.e., macroscopic) state of the system. However, both probabilities are closely
related and differ only by the incorporation of the degeneracy factor Ωn:

pn
Equation (6a)

=
Ωn e−βEn

Z
= Ωn

e−βH
(

s(n)1 ,s(n)2 ,...
)

Z
Equation (A5)

= Ωn pmic
n (A6)

with En = H
(

s(n)1 , s(n)2 , . . .
)

.
In case of the equivalent DOS formulation for Z (see Equation (3)), the relations for A,

U and C can be written as:

A = −kBT ln Z = −kBT ln

(
∑
n

Ωn e−βEn

)
(A7a)

U = 〈H〉 = 〈E〉 = ∑n En Ωn e−βEn

∑n Ωn e−βEn
(A7b)

C
kB

= β2
(
〈E2〉 − 〈E〉2

)
︸ ︷︷ ︸

=σ2
E

= β2 ∑n(En − 〈E〉)2 Ωn e−βEn

∑n Ωn e−βEn
(A7c)

where all sums run over the number of distinct energy levels En which is typically much
smaller than the number of all possible spin configurations Ωtot = 2Nspins . As can be seen,
C is directly proportional to the energy fluctuation (=variance) σ2

E. With the fractions
pn ≡ Ωn e−βEn /Z = wn/Z as defined in Equation (6a), the ensemble average for a generic
quantity X (such as the mean energy 〈E〉) could also be written as:

〈X〉 = 1
Z ∑

n
Xnwn = ∑

n
Xn pn (A8)

where Xn, wn and pn denote the discrete value of quantity X, the non-normalized weight
and the (normalized) fraction associated with the nth discrete energy state, respectively.

While the free energy A and internal energy U were calculated from the partition
function Z according to the DOS formulation (Equations (A7a), (A7b)), entropy S was
calculated from the difference of both quantities, according to the Gibbs-Helmholtz equa-
tion S/kB = β(U − A) as given in Equation (A3c). Alternatively to this thermodynamic
approach, one could equally apply the entropy concept developed by Shannon in the
context of information theory [39] which will therefore be denoted as “Shannon measure of
information” (SMI) [40]:

SSMI/kB = −∑
i

pmic
i ln pmic

i (A9)

where the sum considers all Ωtot = 2Nspins micro states, i.e., the full set of all possible
spin configurations {si} and pmic

i denotes the probability of a particular micro state as
defined in Equation (A5). Equation (A9) can be transformed such that it only contains the
thermodynamic fractions pn as defined in Equation (6a) instead of pmic

i :
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SSMI/kB = Smac
SMI/kB + ∑

n
pn ln Ωn (A10)

with Smac
SMI/kB = −∑

n
pn ln pn

where the sum now considers all distinct energy levels instead. Be aware of the different
meanings of the probabilities pmic

i and pn as outlined before (see also Equation (A6)).
As can be seen from Figure A2 both approaches (i.e., Gibbs-Helmholtz and SMI) are
completely equivalent.
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Figure A2. Reduced entropy S/kB as function of temperature for a couple of quadratic (N × N)
2D-Ising systems with free boundary conditions (FBC): 2× 2 (blue), 3× 3 (green), 4× 4 (orange),
5× 5 (red). The low- and high-temperature limiting values are given by S(0)/kB = ln 2 and
S(∞)/kB = Nspins · ln 2, respectively. Full colored lines refer to the calculation based on the Gibbs-
Helmholtz equation (Equation (A3c)), while black dashed lines refer to the calculation based on the
SMI (Equation (A10)).

Appendix A.3

For the 1D-Ising model, i.e., a chain with Nspins = N spins, closed analytic expressions
for Z (FBC and PBC) can be derived [11,41]:

Z1D, FBC
N = 2

(
eβJ + e−βJ

)N−1
= 2N coshN−1(βJ) (A11a)

Z1D, PBC
N =

(
eβJ + e−βJ

)N
+
(

eβJ − e−βJ
)N

(A11b)

= 2N
(

coshN(βJ) + sinhN(βJ)
)
= 2N coshN(βJ)

(
1 + tanhN(βJ)

)
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or equivalently, on a (reduced) free energy basis:

A1D, FBC
N = −NkBT ln 2− (N − 1) kBT ln(cosh(βJ)) (A12a)

A1D, PBC
N = −NkBT ln 2− NkBT ln(cosh(βJ))− kBT ln

(
1 + tanhN(βJ)

)
(A12b)

a∗1D, FBC
N = − ln 2−

(
1− 1

N

)
ln(cosh(βJ)) (A12c)

a∗1D, PBC
N = − ln(2 cosh(βJ))− 1

N
ln
(

1 + tanhN(βJ)
)

(A12d)

Expressions for the heat capacity C and chemical potential µ can be derived from
Equation (A12a) using the appropriate derivative relations from Equations (A3d) and (A3e):

1
kB

C1D, FBC
N = (N − 1)

(βJ)2

cosh2(βJ)
(A13a)

µ1D, FBC = −kBT ln(2 cosh(βJ)) (A13b)

For PBC, the corresponding expressions are slightly more complicated, however, in the
thermodynamic limit N → ∞, expressions for the reduced free energy per spin a∗ ≡ βA/N,
µ and the reduced heat capacity per spin c∗ ≡ C/kBN = −β2(∂2a∗/∂β2) become identical
for FBC and PBC:

a∗1D
∞ ≡ lim

N→∞
a∗1D, FBC

N = lim
N→∞

a∗1D, PBC
N = − ln(2 cosh(βJ)) (A14a)

µ1D
∞ ≡ lim

N→∞
µ1D, FBC = lim

N→∞
µ1D, PBC = −kBT ln(2 cosh(βJ)) (A14b)

c∗1D
∞ ≡ lim

N→∞
c∗1D, FBC

N = lim
N→∞

c∗1D, PBC
N =

(βJ)2

cosh2(βJ)
(A14c)

As can be seen, the limiting values for the reduced free energy per spin and the reduced
chemical potential are identical: limN→∞ a∗1D

N = limN→∞ βµ1D = − ln(2 cosh(βJ)). The
limiting heat capacity c∗1D

∞ as function of temperature is shown in Figure 5a (purple dashed-
dotted line).

While for the finite-size 2D-Ising model with FBC no closed analytic expressions can be
given for Z [20,21], it can be evaluated (in principle) for all system sizes from Equation (2)
or equivalently Equation (3). Using the minimal 2× 2-FBC-system as explicit example,
application of Equations (A2a), (A2b) and (2) yields:

HFBC
2×2 = ε1,2 + ε3,4︸ ︷︷ ︸

horizontal (=Hx)

+ ε1,3 + ε2,4︸ ︷︷ ︸
vertical (=Hy)

= −J (s1s2 + s3s4 + s1s3 + s2s4) (A15a)

ZFBC
2×2 = ∑

{si}
e−βHFBC

2×2 (A15b)

= ∑
s1=±1

{
∑

s2=±1

[
e−βε1,2 · ∑

s3=±1

(
e−βε1,3 · ∑

s4=±1
e−βε2,4 · e−βε3,4

)]}
= 2 e4βJ + 12 e0 + 2 e−4βJ

Note that in contrast to H which can be decomposed into a horizontal (Hx) and a vertical
(Hy) interaction part, such a decomposition is not possible for the partition function,
i.e., Z can not be factorized into different contributions resulting from horizontal and
vertical interactions. Factorization in the form of Z = Zx · Zy would only be possible if
these contributions are independent, i.e., when the whole system comprises independent
(=non-interacting) subsystems. Graphical visualization of the Ωtot = 2Nspins = 16 possible
configurations together with the corresponding values of H for the 2× 2-FBC-system are
shown in Figure A3.
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It can be seen that based on the value of H, the 16 possible configurations can be
assigned to three energy states or levels En/J = {−4, 0, 4} with corresponding weights
Ωn = {2, 12, 2} which together define the density of states (DOS). In addition, it should be
noted that two configurations can have the same number of spins in the up-state (as denoted
by the order parameter nup), but differ in the energy H. Although more efficient ways exist
to calculate Z without the need to generate all possible Ωtot = 2Nspins configurations as it is
performed in the brute-force approach, still the exact enumeration of Z for a 2D-system
of arbitrary size becomes computationally challenging at some point. It should be noted
that for the regarded special case of the 2× 2-FBC-system (and only for this!), the partition
function is identical to the partition function of a 1D-system of length N = 4 with PBC,
i.e., ZFBC

2×2 = Z1D, PBC
4 (compare Figure A1).

H = -4J H = 0 H = 0 H = 0 H = -4J

H = 0 H = 0 H = 0

H = 0 H = 4J H = 0

H = 0 H = 4J H = 0

H = 0

H = 0

nup = 0 nup = 1 nup = 2 nup = 3 nup = 4
1 2

43

Figure A3. All Ωtot = 2Nspins = 16 possible configurations of the minimal 2× 2-Ising model (FBC).
Color scheme: black spheres correspond to spins in the up-state (si = +1), white spheres to spins in
the down-state (si = −1). The numbering scheme is shown in the upper left corner. The configurations
are classified according to the order parameter nup, denoting the number of spins in the up-state with
nup =

{
0, 1, . . . , Nspins

}
. The value of the Hamiltonian H associated with a particular configuration

(given in the center of configuration) was calculated according to Equation (A15a).

Appendix A.4

Based on a given explicit equation for ∆Abond(β, N), an analytic expression for the
chemical potential µ

app.
N×N for arbitrary quadratic N × N-systems as function of lattice size

and temperature can be calculated:

µ
app.
N×N

J
=

(
∂Aapp.

N×N/J
∂Nspins

)
β∗

=

(
∂Aapp.

N×N/J
∂N

)
β∗

·
(

dN
dNspins

)
︸ ︷︷ ︸

=(2N)−1

(A16a)

Equation (16a)
=

1
2N

(
∂Achains/J

∂N

)
β∗︸ ︷︷ ︸

=µchains/J

+
1

2N

(
∂

∂N

{
N(N − 1)

∆Abond
J

})
β∗︸ ︷︷ ︸

=∆µbond/J

(A16b)

Equation (15a)
= − kBT

J

(
ln 2 +

(
1− 1

2N

)
ln(cosh(βJ))

)
(A16c)

+

(
1− 1

2N

)
∆Abond

J
+

N − 1
2

(
∂∆Abond/J

∂N

)
β∗
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which now only requires an expression for ∆Abond and its derivative with respect to N. For
∆Abond = ∆Afit

bond according to Equation (21a), the latter is given by:(
∂∆Afit

bond/J
∂N

)
β∗

= − ac
(N − b)c+1 (A17)

In case of infinite N when the offset-parameter d of Equation (21a) is constrained to
the limiting Onsager solution as it was performed for the derived results presented in the
corresponding section in the main text, the following limiting chemical potential is obtained
from the expression above:

µ
app.
∞

J
= − kBT

J
ln(2 cosh(βJ)) + d =

kBT
J

a∗∞ (A18)

This is equivalent to βµ
app.
∞ = a∗∞ and was already derived for 1D-systems (see Appendix A.3).

For this result, we used the vanishing limit of the following expression which is ful-
filled when the model parameter c (i.e., the exponent in Equation (21a)) is restricted to
positive values:

lim
N→∞

N − 1
2

(
∂∆Afit

bond/J
∂N

)
β∗

 = − ac
2

lim
N→∞

{
N − 1

(N − b)c+1

}
= 0 (A19)

Appendix A.5

In this section, supplementary parametric studies to the reported results from the
corresponding section of the main text are compiled.
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Figure A4. Influence of treating the offset-parameter d of ∆Afit
bond as free adjustable parameter.

(a) reduced heat capacity per spin as function of inverse temperature for selected N × N-systems:
2× 2 (blue), 40× 40 (red), infinite lattice size (black). (b) corresponding model parameters a
(blue), b (green), c (orange), d (red) as function of inverse temperature. For the fitting procedure,
200 equidistant points within the interval βJ = [0.01, 2] were applied for system sizes 2 ≤ N ≤ 20
without constraining d to the limiting exact Onsager solution. The black dashed-dotted line is shown
as guide to the eye and corresponds to the inverse critical temperature in the thermodynamic limit
(βc J = (kBTc/J)−1 ≈ 0.44) as given by Equation (8).
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Figure A5. Influence of increased temperature-resolution in the parameter optimization step: re-
duced heat capacity per spin as function of inverse temperature for selected N × N-systems: 2× 2
(blue), 5× 5 (cyan), 10× 10 (green), 20× 20 (orange), 40× 40 (red). The model parameters were
parametrized based on exact results of systems with 2 ≤ N ≤ 20, using 400 (a) and 800 (b) equidistant
points in the temperature-range βJ = [0.01, 2]. The parameter d was constrained to the exact limiting
value of ∆Abond/J for N → ∞ according to Equation (18). Colored and black lines refer to exact
and modelled results, respectively. The black dashed-dotted line is shown as guide to the eye and
corresponds to the inverse critical temperature in the thermodynamic limit (βc J = (kBTc/J)−1 ≈ 0.44)
as given by Equation (8).
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Figure A6. Influence of including different numbers of exact reference solutions into the parameter
optimization step of the modeling approach: reduced heat capacity per spin as function of inverse
temperature for a 2× 2-FBC-system (a) and 40× 40-FBC-system (b). Exact reference solutions are
shown in black. Colored lines refer to modeling results for which an increasing number of exact
reference solutions of N × N-systems were considered in the fitting step: 2× 2− 10× 10 (blue),
2× 2− 20× 20 (green), 2× 2− 30× 30 (orange), 2× 2− 40× 40 (red). This means, for example,
the underlying model parameters (a, b, c, d according to Equation (21a)) for the blue curve in the left
graph which represents the prediction for c∗ for a 2× 2-FBC-system were optimized from fitting to
exact reference solutions of systems 2× 2, 3× 3, . . . , 10× 10. All variants were fitted to 200 equidistant
temperature reference points within the interval βJ = [0.01, 2]. The parameter d was constrained to
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the exact limiting value of ∆Abond/J for N → ∞ according to Equation (18). The black dashed-
dotted line is shown as guide to the eye and corresponds to the inverse critical temperature in the
thermodynamic limit (βc J = (kBTc/J)−1 ≈ 0.44) as given by Equation (8).
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