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Nomenclature

Upper Case Roman

Cm wall inertia coefficient
Ck wall spring stiffness coefficient
Cd wall damping coefficient
Cb wall bending stiffness coefficient
CTx streamwise wall tension coefficient
CTz spanwise wall tension coefficient
Ci induced tension coefficient
Cν transversal contraction coefficient
E disturbance energy
L reference length
N degrees of freedom / N -factor
Nc number of collocation points
QE energy weight matrix
Re Reynolds number
U8 reference velocity

Lower Case Roman

cph. phase speed
e⃗ unit vector
i imaginary unit (“

?
´1)

p pressure
t time
t1 . . . t6 terms of the Orr-Sommerfeld and Squire ens.
t8 term of the free stream boundary condition
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Nomenclature

u streamwise velocity
v wall-normal velocity
w spanwise velocity
wcc Clenshaw-Curtis quadrature weights
x streamwise coordinate / solution vector
y wall-normal coordinate
z spanwise coordinate
z1 . . . z6 disturbance quantities of the Orr-Sommerfeld

and Squire eqns.

Upper Case Greek

Ψ wave propagation angle
Ω wall-normal vorticity
Λ diagonal eigenvalue matrix

Lower Case Greek

α streamwise wavenumber (complex)
β spanwise wavenumber (complex)
γ shear strain
δ1 displacement thickness
δ2 momentum thickness
δ99 boundary layer thickness
δij Kronecker delta (“ e⃗i ¨ e⃗j )
ϵ normal strain / BC residual
ζ spanwise wall elongation
η wall-normal wall elongation
θ anisotropy angle
κ resulting wavenumber (complex)
λ wavelength
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µ dynamic viscosity / boundary condition pa-
rameter

ν kinematic viscosity
ξ streamwise wall elongation
ρ density
σ normal stress / singular value
τ shear stress
φ flow quantity
ϕ wall quantity
ψ yaw angle
ω (complex) angular frequency

Symbols

D differentiation operator with respect to y

Subscripts

r, i real & imaginary part
w wall
x vector component / derivative in x-direction
y vector component / derivative in y-direction
z vector component / derivative in z-direction
8 reference quantity

Superscripts

‹ dimensional quantity
¯ mean quantity
´ disturbance quantity
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Nomenclature

ˇ quantity in the (unmapped) domain r´1, 1s

˘ quadrature weights within y P r0, ymaxs

˜ modal quantity (complex)
˚ complex conjugate
H transpose complex conjugate

Abbreviations

BC boundary condition
BL boundary layer
CFD computational fluid dynamics
CIFI compliance-induced flow instability
FISI flow-induced surface instability
LST linear stability theory
OS Orr-Sommerfeld
PIV particle-image velocimetry
SQ Squire
SVD singular value decomposition
TS Tollmien Schlichting
app. appendix
eqn. equation
eqns. equations
fig. figure
sect. section
chap. chapter
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Abstract

In this work three-dimensional disturbances in the boundary layer over
anisotropic compliant walls are investigated by application of linear stability
theory. A surface-based was model is used to simulate the compliant wall.
Hereby, the anisotropic wall model of Carpenter [15] is extended to accom-
modate an additional yaw angle with respect to the flow direction. Based
on this wall model a boundary condition for the linear stability theory is
derived. Since this novel boundary condition couples the Orr-Sommerfeld
and Squire equation, two novel solvers, a shooting solver and a matrix solver,
which account for this circumstance were developed.

The shooting solver transforms the governing eigenvalue problem to a
boundary value problem and uses a classical approach of shooting and min-
imizing the boundary condition residual, to solve the problem. The solver
incorporates a Gram-Schmid orthonormalization procedure to account for
the numerically stiff problem and its intrinsic parasitic-error growth. With
the use of a novel phase scaling of the residual, which is to be minimized, it
is robust and performant to investigate a given spatial or temporal mode.

For temporal stability investigations the coupled Orr-Sommerfeld and
Squire eigenvalue problem is solved with the matrix solver. The quadratic
eigenvalue problem that the compliant wall introduces is taken care of.
Hereby, a pseudospectral discretization using Chebyshev collocation points
is used. Special care is taken in the formulation of the discretized problem to
reduce numerical errors. The numerical accuracy of the solvers is scrutinized
to make sure that the results are grid independent.

To investigate the potential of compliant walls to delay laminar-turbulent
transition the approach of Carpenter [15] was adopted. Carpenter optimized
compliant-wall parameters to attenuate Tollmien-Schlichting (TS) modes
as far as possible, while leaving Flow-Induced Surface Instability (FISI)
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Abstract

modes marginally stable. This approach was chosen, because FISI modes
can exhibit absolute instability, which can lead to immediate transition.
Stability calculations were carried out for two sets of wall parameters, which
Carpenter has optimized with his two-dimensional framework. Hereby, not
only three-dimensional disturbances are considered, but also an additional
yawing of the compliant wall was investigated as well. Results are judged
with respect to temporal stability of the TS and FISI modes, and with respect
to the spatial amplification and transition prediction using N -factors. It is
shown that three-dimensional disturbances reach given N -factors before
their two-dimensional counterparts. The predicted laminar length is slightly
shorter than it its predicted in two-dimensional solvers. Also it appears that
yawing of the compliant material is not favorable for transition delay for the
underlying wall and flow parameters.

Finally, optimal perturbations are calculated for the anisotropic compliant
wall to investigate transient energy growth. Hereby, the initial amplitudes of
the computed eigenmodes are optimized, so that the superposition of these
modes reaches its maximum energy growth for a given time. The envelope
of these optimal perturbations is then calculated for varying streamwise and
spanwise wavenumbers, and varying time of growth. Results show that
no relevant transient growth is introduced by the compliant materials. It is
shown that the classical transient growth mechanism, which prevails in the
rigid wall case, is not altered.
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Kurzfassung

In dieser Arbeit werden dreidimensionale Störungen in der Grenzschicht
über anisotropen nachgiebigen Wänden mit linearer Stabilitätstheorie unter-
sucht. Ein oberflächenbasiertes Modell wird verwendet, um die nachgiebige
Wand abzubilden. Hierbei wird das anisotrope Wandmodell von Carpen-
ter [15] erweitert, um einen zusätzlichen Schiebewinkel der Wand bezüglich
der Strömungsrichtung einzubringen. Basierend auf diesem Wandmodell
wird eine Randbedingung für die Lineare Stabilitätstheorie hergeleitet. Auf-
grund der Tatsache, dass diese Randbedingung die Orr-Sommerfeld- und
Squire-Gleichung koppelt, wurden zwei neuartige Lösungsverfahren, ein
Schießverfahren und ein Matrixlöser, für diesen besonderen Umstand entwi-
ckelt.

Der Schießlöser transformiert das zugrunde gelegte Eigenwertproblem
in ein Randwertproblem und verwendet ein klassisches Schießverfahren
zur Lösung des Problems. Um das numerisch steife Problem mit seinem
parasitärem Fehlerwachstum zu berücksichtigen beinhaltet das Lösungsver-
fahren eine Gram-Schmid Orthonormierungsroutine. Durch eine neuartige
Skalierung der Phase des zu minimierenden Residuums wird das zeitliche
und räumliche Modell robust und performant für gegebene Eigenmoden
gelöst.

Das durch die gekoppelte Orr-Sommerfeld- and Squire-Gleichung entste-
hende Eigenwertproblem wird auch mit einer Matrix-basierenden Methode
gelöst. Das durch die nachgiebige Wand entstehende zeitliche quadratische
Eigenwertproblem wird dabei berücksichtigt. Hierbei wird eine pseudo-
spektrale Diskretisierung mit Chebyshev-Kollokation verwendet. Besonders
betrachtet wird die Formulierung des diskretisierten Problems auf seine
numerischen Fehler. Die numerische Genauigkeit der Lösungsverfahren
wird genau überprüft, um die Gitterunabhängigkeit der Ergebnisse sicher-
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Kurzfassung

zustellen.
Um das Potenzial der nachgiebigen Wände zur Verzögerung des laminar-

turbulenten Umschlags zu untersuchen, wurde die Vorgehensweise von
Carpenter [15] übernommen. Carpenter optimierte die Parameter der nach-
giebigen Wand so, dass Tollmien-Schlichting (TS) Moden so weit wie möglich
abgeschwächt werden, während Fluid-Struktur (FISI) Moden grenzwertig
stabil bleiben. Dieses Vorgehen wurde ausgewählt, weil Fluid-Struktur Mo-
den absolut instabil sein können, was zu sofortigem Strömungsumschlag
führen kann. Stabilitätsrechnungen wurden ausgeführt für zwei Sätze von
Wandparametern, die Carpenter mit seinem zweidimensionalen Rahmen-
werk optimiert hat. Hierbei wurden nicht nur dreidimensionale Störungen
betrachtet, sondern es wurde auch der Einfluss des neu eingebrachten Schie-
bewinkels der nachgiebigen Wand untersucht. Die Ergebnisse wurden be-
züglich der zeitlichen Anfachung der TS- und FISI-Moden, und bezüglich
des mit N -Faktoren vorhergesagten Umschlagspunkts beurteilt. Es wird
gezeigt, dass dreidimensionale Störungen bestimmte N -Faktoren vor ihren
zweidimensionalen Pendants erreichen. Die vorhergesagte laminare Län-
ge ist etwas kürzer als mit zweidimensionalen Verfahren vorhergesagt. Es
scheint als ob der eingebrachte Schiebewinkel für die untersuchten Parame-
tersätze keinen Vorteil bezüglich Laminarhaltung bringt.

Schließlich wurden optimale Störungen berechnet, um das Transiente
Energiewachstum für die anisotrope nachgiebige Wand zu untersuchen.
Hierbei wurden die Anfangsverteilungen von Eigenmoden so optimiert,
dass deren Überlagerung ein maximales Energiewachstum für eine vorgege-
bene Zeit erfährt. Die Einhüllende dieser optimalen Störungen wird dann
für variierende Wellenzahlen in Strömungs- und Spannweitenrichtung, und
variierende Wachstumszeit berechnet. Die Ergebnisse zeigen kein durch die
nachgiebige Wand hervorgerufenes relevantes transientes Wachstum. Es
wird gezeigt, dass der klassische Mechanismus für transientes Wachstum,
der bei der steifen Wand dominiert, nicht verändert wird.

xvi



1 Introduction

There has also been some work done on the stability
of inviscid flows over flexible coatings. [. . . ] The main
feature that their models lack is the viscosity of the
fluid.

R. D. Joslin

Reduction of aerodynamic drag is of interest in various engineering fields,
while in aerodynamic vehicles frictional drag is superior to pressure drag.
Different approaches exist to reduce friction drag—these are, e.g., shape
optimization, modification of the turbulent boundary layer (BL) or delay of
laminar-turbulent transition. Since laminar-turbulent transition is caused by
the instability of the laminar flow, it is possible to delay transition by altering
its stability properties. For flows dominated by Tollmien-Schlichting (TS)
type instabilities, this can be done by heating or cooling of the wall (depend-
ing on the fluid), boundary layer suction, shape optimization, or—in focus
of this work—the application of compliant coatings. The TS instability can
be attenuated or even inhibited with the application of compliant coatings.

Due to the fact that both, the boundary layer and the compliant wall are
wave-bearing media, the analysis of the combined system is more compli-
cated than the analysis of the boundary layer over a rigid wall. Additional
instability modes emerge, which are dominated by wall oscillations. Carpen-
ter [13, 14] named these modes flow-induced surface instability (FISI) modes.
In contrast to that Yeo [70, 68, 69] named these modes compliance-induced
flow instability (CIFI) modes. For convenience and without judgment the
term FISI is used in this work. FISI modes can become unstable and, more
importantly, can become absolutely unstable. Commonly a change of a
compliant wall property has opposing effects on the stability of the TS mode
and the FISI modes: stabilizing the TS eigenvalue and destabilizing the FISI
modes, or vice versa. So a trade-off is to be made. Carpenter proposed to

1



1 Introduction

optimize the wall parameters such that the TS mode is maximally stabilized
while keeping the FISI modes stable to avoid possible absolute instabilities.
Moreover, the consideration of three-dimensional (oblique) disturbances
is fundamental for the assessment of external flows over compliant walls
(e.g. [39, 69]). Depending on the wall parameters oblique-traveling distur-
bances can be more or less dominant. In spite of these facts, the use of
compliant walls can lead to significant transition delays.

1.1 Historical Overview

Comprehensive reviews on the effects of compliant walls on boundary
layers exist in literature (e.g. [36, 52, 25, 17]). Most reviews generally address
different topics together: the effect on laminar-turbulent transition, the
reduction of turbulent skin friction, and the suppression of flow-induced
noise and vibrations. In this short review the focus is on linear stability of
external flows.

In the 1950s the influence of compliant walls on drag reduction was investi-
gated by Kramer [41]. He reported a significant drag reduction caused by an
increase in laminar length and provided a simplified theory. Kramer argued
that the rubber coating in close contact to the fluid increases the damping
in the boundary layer and thus delays breakdown to turbulence. Indeed,
this sound explanation is somewhat too simple—friction can actually cause
fluid instabilities as it is the case in the Blasius boundary layer, which is
inviscidly stable. Theoretical works in the following years (e.g. [5, 42, 6])
indicated that a delay of transition is generally possible. Investigators also
tried to reproduce Kramer’s findings experimentally, but no significant drag
reduction was reported. However, in these experiments the joints between
the solid and the compliant coating as well as the free-stream turbulence
level were problematic. Attention was then drawn to the effects of compliant
coatings on turbulent boundary layers, because it might have been the case
that the reduction of skin friction in Kramer’s experiments could have been
caused by a reduction of turbulent skin friction, but this physical mechanism
is out of the scope of this work.

2



1.1 Historical Overview

In the mid 1980s Carpenter and Garrad [13, 14] investigated the effects of
compliant coatings by numerical solution of the Orr-Sommerfeld equation,
and theoretical considerations. They reported only marginal improvements
concerning the materials Kramer has used, but also reported that “Kramer-
type coatings are theoretically capable of considerable transition postpone-
ment [. . . ].” Shortly after that Gaster [26] presented that compliant coatings
are also practically, i.e. in an experiment, capable of transition postponement.
He found good agreement between linear stability calculations and experi-
mental measurements in the low-disturbance environment of a towing tank.
The best surface tested showed an increase of 30 percent in the transition
Reynolds number.

In 1990 Carpenter and Morris [15] as well as Yeo [68] presented inves-
tigations of anisotropic compliant coatings with considerable potential to
improve transition delay. A rise of the transition Reynolds number ten times
as well as seven times the value of rigid walls has been reported, respectively.
Additionally, Joslin and Morris [37] pointed out techniques to optimize com-
pliant wall parameters numerically. However, these works considered only
two-dimensional disturbances.

Three-dimensional disturbances were then investigated by Joslin [39] and
Yeo [69] with the conclusion that three-dimensional TS-instabilities are more
unstable than their two-dimensional counterparts for sufficiently compliant
walls. This leads to an overestimation of the transition Reynolds number,
but still a significant transition delay can be achieved in case surface modes
are inhibited. Their findings indicate that three-dimensional disturbances
do play a critical role in transition over compliant coatings. Secondary
instability was investigated by Joslin [38], who reported that compliant walls
are also capable of attenuating secondary instabilities compared to the rigid
wall case, and confirmed that suppression of primary instability growth also
results in a suppression of secondary instability growth.

3



1 Introduction

1.2 Compliant Walls in Nature

Various flow-control features exist in swimming fishes and mammals and
birds. Of popular interest has been shark skin which features streamwise
microgrooves that reduce turbulent skin friction. These so-called riblets
can reduce the local friction coefficient by up to 8% for practical configura-
tions [4]. Other drag reducing features are the long chained polymers of
fish slime (e.g. [19]) or micronized air bubbles on the plumage of penguins
which reduce skin friction (cf. Davenport [20]).

Delphinidae feature in contrast to the aforementioned species a smooth
and noticeable compliant epidermis. In the 1930s Sir James Gray [29] an-
alyzed the musculature of dolphins and came to the conclusion that del-
phinidae must either have enormously powerful muscles or must have a
mechanism that reduces their hydrodynamic drag. This is called Gray’s para-
dox. The experiments of Kramer [41] indicated that the compliant epidermis
of dolphins could lead to a postponement of laminar-turbulent transition,
which reduces frictional drag and could solve Gray’s paradox. Recently,
Legac et.al. [43] performed PIV measurements of swimming dolphins and
concluded that Gray was in error with his calculation of the propulsive
power that dolphins can develop—Gray’s paradox was solved. Still it has
not been proven wrong that the dolphin could possess a drag reduction
mechanism with it’s appreciable compliant epidermis.

The investigation of dolphin’s epidermis is not trivial, because it changes
it’s mechanical properties, i.e. its compliance, postmortem. Additionally,
these properties can be altered by the tension of the skin muscle. Hence,
tests if its physical properties are capable of damping fluid instabilities
must be done in vivo. Practical, ethical, and monetary reasons prohibit the
investigation of the mechanical properties of dolphins skin. Pavlov [49]
investigated the epidermis of harbor porpoises (Phocoena phocoena) and
compared the local skin morphology to the local flow conditions which
were calculated using CFD. He hypothesized that the epidermis acts like an
anisotropic compliant wall due to dermal ridges within the papillary layer.
Furthermore, he reported that these dermal ridges make an angle to the local

4



1.3 Transient Growth in the Flow over Compliant Walls

flow direction which varies over the streamwise location. These findings
inspired the extension of the physical wall model used by Carpenter [15],
which is presented in chap. 2. Two numerical solvers incorporating this
extension of the wall model are presented in chap. 3 and 4. Investigations
using this novel wall model are presented in chap. 5 and 6.

1.3 Transient Growth in the Flow over Compliant Walls

In the derivation of the Orr-Sommerfeld and Squire equation a modal ansatz
was introduced (cf. app. B) which leads to the eigenvalue problem. The
exponential growth or decay of these modes determines if the flow is asymp-
totically unstable or stable, respectively, to these modes for large times
(t Ñ 8). However, the short-time dynamics of disturbances are only cap-
tured by these modes in disguise. Generally a disturbance can be described
as a superposition of these modes. Since these modes are generally non-
orthogonal, which is also the case for external flow over compliant walls,
a short-time growth to a certain disturbance level can occur long before
the least stable mode would reach the same level. Additionally, a flow can
exhibit disturbance growth within a finite-time horizon even though it is
asymptotically stable for t Ñ 8. This type of growth that can not be ascribed
to a single mode is commonly termed non-modal growth or transient growth.
A concise review of non-modal stability can be found in Schmid [54].

Commonly, non-modal stability theory is relevant for flows in which
modal growth is very low or non-existent. Since optimized anisotropic com-
pliant walls exhibit low growth rates of the TS-mode, as a matter of fact
non-modal growth becomes a more relevant route to turbulence. In sect. 4.7
of this work it was suggested that numerical errors, due to non-orthogonality
of the eigenmodes, are larger for compliant walls than for the rigid wall. This
indicates that the non-modal growth of flow over compliant walls might be
larger than flow over rigid walls. Therefore, we investigate in the following
if and how anisotropic compliant walls change the transient behavior of dis-
turbances in the boundary layer. We calculate optimal perturbations based
on the temporal eigenmodes of the Orr-Sommerfeld and Squire equation

5



1 Introduction

and compare the rigid-wall case to the compliant-wall case.
Butler and Farrell [12] investigated the non-modal growth of disturbances

inter alia in the Blasius BL over rigid walls. They compared 2-D optimal per-
turbations with 3-D optimal perturbations and reported that 3-D structures
exhibited clearly stronger growth factors. They found energy growth factors
up to Epτq{Ep0q “ 1514 for three-dimensional structures (at Reδ1 “ 1000).
Zengl and Rist [72] investigated transient growth in the Blasius boundary
layer over anisotropic compliant walls, but the author admits that the en-
ergy norm under consideration did not include the potential energy of the
compliant wall, which can cause misleading conclusions. Later Hœpffner et
al. [34] investigated the evolution of non-modal growth in channel flow be-
tween isotropic compliant walls. They found an additional transient-growth
mechanism which involves both FISI modes forming a standing wave in two
forms—a sinuous (antisymmetric to the channel half width) and a varicose
(symmetric to the channel half width) form. 2017 Tsigklifis and Lucey [66]
investigated the two-dimensional global, local and transient stability of a
compliant panel in the Blasius boundary layer. They found that, depending
the compliant material properties, considerable transient growth can take
place.

6



2 Physical Wall Model

One of the central problems of carrying out any
numerical investigation of boundary-layer stability
over a compliant wall is the proliferation of
parameters relating to the wall properties.

Peter W. Carpenter and Philipp J. Morris

For the numerical computation of linear stability properties a physical model
must be used to resemble the compliant wall characteristics. In this chapter
the kinematic model of the compliant wall is presented. The non-dimen-
sionalization and derivation of the equation of wall motion is scrutinized.
Boundary conditions for the two formulations of equations are derived for
the application in local linear-stability theory. Finally, application of Squire’s
findings is discussed under the aspect of external boundary layers with
increasing thickness.

2.1 Kinematic Model of the Compliant Wall

In order to investigate the stability properties of compliant walls, e.g., by
stability theory or direct numerical simulations, the compliant wall must be
modeled. Two types of wall models prevail in literature: so-called volume-
based wall models (e.g. [70, 68, 69]) which treat the compliant coating as con-
tinuous volume, and so-called surface-based wall models (e.g. [13, 14, 15])
which treat the compliant coating as a spring-backed flexible plate. The
volume-based approach resembles the physics of the applied compliant coat-
ing by application of the Navier equation, while the surface-based approach—
which was chosen for this work—simplifies the wall as a spring backed plate
and is therefore less complex. Duncan [21] provides a comparison between
the two approaches.

The compliant-wall model used in this work is an extension of the model

7



2 Physical Wall Model

used in Carpenter [15]. A cross-section is shown in fig. 2.1. The wall is

x̌

y̌

ηa

θ

Figure 2.1 Cross-section of the anisotropic compliant wall model.

represented as a spring-backed flexible plate bound to a rigid base by stiff
swivel arms. These swivel arms feature springs and dampers which are
attached to them. It is assumed that there are sufficiently enough swivel
arms compared to the smallest wavelength under consideration so that their
effect on the wall motion can be seen as continuous. The anisotropy angle, i.e.
the angle of swivel arms to the surface plane, is denoted as θ. The absolute
value of the wall elongation perpendicular to the swivel arms is denoted as
ηa. As an extension to Carpenter [15] the wall can be yawed by the angle ψ
with respect to the flow direction, which is illustrated in fig. 2.2.

x

y

z ψ

ψ

θ

flow direction

rigid base

swivel arm

Figure 2.2 Illustration of the yawed anisotropic compliant wall model.

The elongation of a point on the surface of the wall in streamwise, wall-
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2.2 Non-Dimensionalization of the Compliant Wall Parameters

normal, and spanwise direction is termed ξ, η, and ζ, respectively. The
swivel arms of the anisotropic wall couple this movement so that

ξ “ sinpθq cospψq ηa (2.1)

η “ cospθq ηa (2.2)

ζ “ sinpθq sinpψq ηa . (2.3)

For θ “ 0 only a movement in wall-normal direction is possible which re-
sembles the isotropic compliant wall. In fact the equations of the anisotropic
and the isotropic compliant-wall boundary conditions are identical in this
case.

2.2 Non-Dimensionalization of the Compliant Wall Parameters

Various material properties play a role for the different inner forces of the
compliant wall. Non-dimensional wall parameters can be formed which
relate these properties to the fluid properties. Two definitions of dimension-
less parameters are used in this thesis. These are listed in Table 2.1. Hereby

Table 2.1 Dimensionless parameters of the anisotropic compliant-wall.

non-dimensional parameter definition I definition II

wall inertia Cm “
ρ‹
mb‹

m
ρ‹L‹ C

pνq
m “

ρ‹
mb‹

mU‹
8

ρ‹ν‹

spring stiffness Ck “
k‹
mL‹

ρ‹U‹
8

2 C
pνq

k “
k‹
mν‹

ρ‹U‹
8

3

wall damping Cd “
d‹
m

ρ‹U‹
8

C
pνq

d “
d‹
m

ρ‹U‹
8

bending stiffness Cb “ B‹

ρ‹U‹
8

2L‹3 C
pνq

b “
B‹U‹

8

ρ‹ν‹3

longitudinal tension CTx “
T‹
x

ρ‹U‹
8

2L‹ C
pνq

Tx “
T‹
x

ρ‹U‹
8ν‹

transversal tension CTz “
T‹
z

ρ‹U‹
8

2L‹ C
pνq

Tz “
T‹
z

ρ‹U‹
8ν‹

induced tension Ci “
E‹

b b
‹
m

ρ‹U‹
8

2L‹
1

1´ν2
p

C
pνq

i “
E‹

b b
‹
m

ρ‹U‹
8ν‹

1
1´ν2

p

transversal contraction Cν “
1`νp

2
C

pνq
ν “

1`νp
2

anisotropy angle θ θ

yaw angle ψ ψ

9



2 Physical Wall Model

starred quantities denote dimensional parameters. Note that a reference
length L‹ must be chosen for the non-dimensionalization of the parameters,
as it can be seen in definition I. In the numerical implementation of the pro-
grams used for this thesis, a user-specified global Reynolds number defines
the reference length L‹

“ Re ν{U8. Carpenter and others typically choose
the local displacement thickness δ‹

1 of the velocity profile under investigation.
This implies that the non-dimensional wall parameters generally vary over
the steamwise coordinate in case the dimensional wall parameters are con-
stant over the streamwise coordinate. The so-called viscous lengthL‹

ν “ ν{U8

is an alternative to the local displacement thickness as a reference length. It is
constant over the streamwise coordinate and leads to definition II. Thus our
dimensionless wall parameters remain constant in the boundary layer for
constant dimensional parameters. Please note that definition I is generally
used in the equations of this work unless the compliant wall parameters are
marked with the superscript pνq.

2.3 The Equation of Wall Motion

An equation of motion can be determined for the wall by considering its
inner forces, i.e. the forces due to

• the springs and dampers,

• the bending stiffness of the flexible plate,

• the longitudinal and transversal tensioning of the flexible plate,

• and the restricted motion of the swivel arms.

Hereby, it is assumed that the neutral wall position is planar. These inner
forces are balanced by its inertia and the force of the fluid on the wall, i.e. the
pressure and shear stress at the interface. All forces acting on the compliant
wall must be in dynamic equilibrium, and the velocities and stresses of the
fluid and the wall must be equal at their interface. The following forces
on the wall act in the direction of the degree of freedom, or in other words
perpendicular to the swivel arms.

10



2.3 The Equation of Wall Motion

Due to the springs of the kinematic model the surface-specific force

fk “ Ckηa (2.4)

acts on the wall. Since the kinematic model also features dampers, the
surface-specific damping force is

fd “ Cd
Bηa
Bt

. (2.5)

The surface-specific bending force [32, sect. 3.6]

fb “ cos2 θ Cb

ˆ

B
4ηa

Bx4
` 2

B
4ηa

Bx2Bz2
`

B
4ηa

Bz4

˙

(2.6)

of the flexible plate acts on the wall. In case the plate has a longitudinal
or transversal tension T ‹

x in x-direction and T ‹
z in z-direction, the surface

specific force [32, sect. 3.5]

ft “ ´ cos2 θ

ˆ

CTx
B
2ηa

Bx2
` CTz

B
2ηa

Bz2

˙

. (2.7)

acts on the wall. The stiffeners of the compliant-wall model induce a tension
in the flexible plate when it is elongated. The derivation of the induced
tension follows the ansatz of Boyer [9]. When considering an infinitely wide
compliant material, or a finite material which is not allowed to contract at
the sides, a transversal contraction is inhibited. This results in a state of
biaxial stress. With Hooke’s law [31, eqns. (3.11)-(3.12)]

ϵxE “ σx ´ νpσz (2.8a)

ϵzE “ σz ´ νpσx (2.8b)

γxzE “ 2 p1 ` νpq τxz , (2.8c)

the mechanical equilibrium conditions [31, eqn. (2.21)]

Bσx

Bx
`

Bτxz
Bz

`
fix
bm

“ 0 (2.9a)

Bσz

Bz
`

Bτxz
Bx

`
fiz
bm

“ 0 , (2.9b)

11



2 Physical Wall Model

and the strains [31, eqn. (3.6)]

ϵx “
Bξ

Bx
, (2.10a)

ϵz “
Bζ

Bz
, and (2.10b)

γxz “
1

2

ˆ

Bξ

Bz
`

Bζ

Bx

˙

(2.10c)

we obtain

fi “ ´Ci sin
2 θ

˜

B
2

Bx2
`

B
2

Bz2
´ Cν

ˆ

sinψ
B

Bx
´ cosψ

B

Bz

˙2
¸

ηa (2.11)

for the surface-specific induced tension force in the direction of elongation.
Note that Carpenter [15] uses, in contrary to the present implementation, a
uniaxial stress state for the determination of the induced tension. In order to
compare the results with Carpenter, a Poisson ratio of νp “ 0 must be used
for the calculation of Ci and Cν .

The wall-normal stress of the fluid and the wall must be equal. The stress
tensor of an incompressible fluid is [3, sect. 4.1]

σ‹
ij “ ´p‹ δij ` µ

ˆ

Bu‹
i

Bx‹
j

`
Bu‹

j

Bx‹
i

˙

. (2.12)

After non-dimensionalization using (B.1) we find that the surface-specific
force of the fluid acting on the wall surface must be

f⃗f “ ´p n⃗`
1

Re

»

—

–

2 Bu
Bx

Bu
By

` Bv
Bx

Bu
Bz

` Bw
Bx

Bv
Bx

` Bu
By

2 Bv
By

Bv
Bz

` Bw
By

Bw
Bx

` Bu
Bz

Bw
By

` Bv
Bz

2 Bw
Bz

fi

ffi

fl

n⃗ . (2.13)

Hereby,

n⃗ “
e⃗y ´

`

cosψ Bη
Bx

` sinψ Bη
Bz

˘

pcosψ e⃗x ` sinψ e⃗zq
b

`

cosψ Bη
Bx

` sinψ Bη
Bz

˘2
` 1

(2.14)

is the vector normal to the surface of the compliant wall. Note that due to
linearization the wall-normal vector can be simplified to n⃗ “ e⃗y , because the
wall elongations in (2.14) drop out upon inserting the normal vector in (2.13).
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2.4 Derivation of the Resulting Compliant Wall Boundary Conditions

Hence, the force of the wall acting on the fluid in the direction of freedom is
accordingly

ff “ cos θ

ˆ

´p`
2

Re

Bv

By

˙

`

sin θ

Re

ˆ

cosψ

ˆ

Bu

By
`

Bv

Bx

˙

` sinψ

ˆ

Bw

By
`

Bv

Bz

˙˙

. (2.15)

Finally, the dynamic equilibrium is

Cm
B
2ηa
Bt2

` fk ` fd ` fb ` ft ` fi “ ff . (2.16)

2.4 Derivation of the Resulting Compliant Wall Boundary
Conditions

The boundary conditions of the solved equations—in this work the linear
stability equations—need to be derived according to the wall model. The
boundary conditions in the linear stability theory are prescribed at the neu-
tral wall position, i.e. at y “ 0. This is the position where the wall is in static
mechanical equilibrium. The location where the boundary conditions are
prescribed is generally different to the momentarily wall position. Therefore,
we use a Taylor series at the neutral wall position with the distance of the
wall elongation to relate the fluid quantities at the wall to the fluid quantities
at y “ 0.

After application of the same linearization and modal approach as in
the derivation of the Linear Stability equations we receive a set of three
equations that serve as the boundary conditions for the Orr-Sommerfeld and
the Squire equation. In general these equations couple the two equations so
that both equations must be solved in combination. The consequences of
this coupling are addressed in sect. 2.5.

The fluid and wall velocities must be equal at the fluid-wall interface.
Therefore, we postulate

upξ, η, ζq “
Bξ

Bt
(2.17)

13



2 Physical Wall Model

vpξ, η, ζq “
Bη

Bt
(2.18)

wpξ, η, ζq “
Bζ

Bt
. (2.19)

A Taylor series of the fluid velocities, the fluid pressure, and the fluid
velocity gradients in (2.17)-(2.19) and (2.15) is used. For the fluid velocity in
x-direction follows exemplarily

upξ, η, ζq “ u

ˇ

ˇ

ˇ

ˇ

y“0

` ξ
Bu

Bx

ˇ

ˇ

ˇ

ˇ

y“0

` η
Bu

By

ˇ

ˇ

ˇ

ˇ

y“0

` ζ
Bu

Bz

ˇ

ˇ

ˇ

ˇ

y“0

`Opξ2, η2, ζ2q . (2.20)

The quadratic and higher order terms will drop out in the following due to
linearization.

As in appendix B, the fluid quantities are divided into a steady mean-flow
and an unsteady sufficiently small disturbance, which are denoted by an
overbar and an acute accent, respectively. Furthermore, it is assumed that the
mean wall displacement is zero. Accordingly, the wall elongations ξ, η and
ζ are disturbance quantities by definition. The equations are linearized so
that products of disturbance terms drop out. For the velocity in x-direction
we obtain the simplifications

ūpξ, η, ζq
loooomoooon

“
Bξ̄
Bt

“0

`úpξ, η, ζq “ ū

ˇ

ˇ

ˇ

ˇ

y“0
loomoon

“0

`ú

ˇ

ˇ

ˇ

ˇ

y“0

` ξ
Bū

Bx

ˇ

ˇ

ˇ

ˇ

y“0

` ξ
Bú

Bx

ˇ

ˇ

ˇ

ˇ

y“0
looomooon

“0

`η
Bū

By

ˇ

ˇ

ˇ

ˇ

y“0

`

η
Bú

By

ˇ

ˇ

ˇ

ˇ

y“0
looomooon

“0

`ζ
Bū

Bz

ˇ

ˇ

ˇ

ˇ

y“0

` ζ
Bú

Bz

ˇ

ˇ

ˇ

ˇ

y“0
looomooon

“0

`Opξ2, η2, ζ2q
loooooomoooooon

“0

(2.21)

exemplarily. For the other Taylor expanded fluid quantities the linearization
is analogous.

Like in the derivation of the Orr-Sommerfeld and the Squire equation, the
modal approach

ϕpx, z, tq “ ϕ̃ eipαx`βz´ωtq
` complex conjugate (2.22)

is then used for the wall elongation ξ, η, and ζ. Derivatives with respect
to streamwise and spanwise direction and with respect to time result in a
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2.4 Derivation of the Resulting Compliant Wall Boundary Conditions

multiplication with streamwise and spanwise wavenumber and with angular
frequency, respectively, in the acute-accent equations.

Regarding the governing quantities z1 to z6 (cf. sect. B) the wall boundary
conditions

ωz1 ` pit2 ´ ωt4 tan θq z3 “ 0 , (2.23)

`

´ cos2θ 2 iωκ2
˘

z1 ` psinθ cosθ ωt4q z2`

iκ2
psinθ cosθ pωt4 ` t6q ´ CReq z3 `

`

´ cos2θ ωκ2Re
˘

z4`

psinθ cosθ ωt5q z6 “ 0 , (2.24)

and
pit3 ´ ωt5 tan θq z3 ` ωz5 “ 0 (2.25)

emerge with

t4 “ α cosψ ` β sinψ (2.26)

t5 “ α sinψ ´ β cosψ (2.27)

t6 “ ūyy cosψ ` w̄yy sinψ (2.28)

and

C “ ´ω2Cm ´ iωCd ` cos2θ κ4Cb`

cos2θ α2CTx ` cos2θ β2CTz ` sin2θpκ2
´ Cνt

2
5qCi ` Ck . (2.29)

Note that the multiplier of z6 in (2.24) drops out for the case of θ “ 0, i.e.
for the isotropic compliant wall case, as well as for the case of t5 “ 0, i.e.
for the case that the phase propagation angle arctan

`

β
α

˘

is equal to the yaw
angle ψ of the material. In these two cases, the Orr-Sommerfeld and Squire
equation are not coupled and can be solved independently. Since only two-
dimensional waves over isotropic or unyawed anisotropic materials were
considered in the works [13, 14, 15] the equations were decoupled and only
the Orr-Sommerfeld eqn. had to be solved.

Regarding the formulation in terms of the wall-normal velocity ṽ and
wall-normal vorticity Ω̃ the boundary equations result in

it2ṽ “ ω rtanθ t4 ´ iDs ṽ , (2.30)
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2 Physical Wall Model

it3ṽ “ ω
”

tanθ t5ṽ ´ iΩ̃
ı

, (2.31)

and

“

κ2ReCd ` cos2θ
`

D3
´ 3κ2D

˘

` cos2θ iRe pt2 ´ t7Dq

´ sinθ cosθ it4
`

κ2
` D2

˘‰

ṽ`

κ2
“

ReCk `Re cos2θ
`

Cbκ
4

` α2CTx ` β2CTz

˘

` sin2θ CiRe
`

κ2
´ Cνt

2
5

˘

´ sinθ cosθ t6s η`

r´ sinθ cosθ it5Ds Ω̃ “ ω
“

iRe
`

κ2Cm ´ cos2θD
˘‰

ṽ , (2.32)

with
t7 “ αū` βw̄ , (2.33)

and
iṽ “ ωη̃ . (2.34)

Note that the compliant wall boundary conditions contain the square of
the complex angular frequency ω and the sixth power of κ, or rather the
sixth power of the streamwise wavenumber α. Hence the temporal problem
becomes a quadratic eigenvalue problem and the spatial problem becomes a
polynomial eigenvalue problem of sixth order. Also note that in the absence
of a spanwise mean velocity pw̄ “ 0q and spanwise wavenumber β “ 0, the
spatial problem reduces to fifth order.

2.5 Squire Theorem, Squire Modes and Squire Equation

Squire [59] showed up, that “For the study of the stability of flow between
two parallel walls it is sufficient to confine attention to disturbances of two-
dimensional type.” This can be achieved by using an equivalent transfor-
mation of the Orr-Sommerfeld equation which links a neutrally stable three-
dimensional mode with a corresponding neutrally stable two-dimensional
mode at a lower Reynolds number. For the special case of two-dimensional
self-similar external flows over rigid walls the same theory can be applied by
non-dimensionalization of the equation with the local boundary-layer thick-
ness, to prove that the first mode to become unstable is a two-dimensional
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2.5 Squire Theorem, Squire Modes and Squire Equation

mode. Indeed, in most cases two-dimensional instability modes also show
the highest cumulative growth, but this must not be taken as given. However,
the application of this theory is not valid for flows with boundary conditions
that vary over the streamwise location when non-dimensionalized with the
local boundary-layer thickness. This is the case for the compliant walls
present in this work. These exhibit constant dimensional properties in the
streamwise direction—hence, three-dimensional disturbances must be and
are considered here. Yeo [69] noted that for isotropic compliant walls the
three-dimensional stability problem can be reduced to an equivalent two-
dimensional problem, which then exhibits a higher (non-dimensional) wall
stiffness. So three-dimensional disturbances experience a higher stiffness
than their two-dimensional counterpart. He named this phenomenon the
stiffness rescaling effect.

Instability modes for which the wall-normal disturbance velocity is zero,
i.e. the trivial solutions of the Orr-Sommerfeld equation, are named Squire
modes. Squire [59] has shown that these modes are always stable for flows
between parallel walls. Beyond that, this can be generalized to all parallel
flows. For compliant walls, Squire modes exhibit no wall-oscillations in
the y-direction and consequently no wall-oscillation in the x- or z-direction,
unless θ “ 90˝ which is not covered by the wall-model in this work anyway.
Consequently, the Squire modes of the considered wall-model are identical
to the Squire modes over a rigid wall. Since these are always stable it is
unnecessary to solve for them.

In general (local) linear stability is constituted by the Orr-Sommerfeld and
the Squire equation which pose an eigenvalue problem. Hereby, the Orr-
Sommerfeld equation contains only the wall-normal velocity and the Squire
equation contains the wall-normal velocity and the wall-normal vorticity. For
problems where the boundary conditions of the Orr-Sommerfeld equation
do not depend on wall-normal vorticity the eigenvalue problem can be
split into two smaller problems: (1) The eigenvalue problem of the Orr-
Sommerfeld equation. (2) The eigenvalue problem of the Squire equation
where the wall-normal velocity is set to zero. Hereby, the Squire equation is
needed to calculate the wall-normal vorticity of the eigenfunctions of the Orr-
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2 Physical Wall Model

Sommerfeld equation. Consequently, the eigenvalues of the Squire equation
where the wall-normal velocity is set to zero are stable. Therefore, only the
eigenvalues of the Orr-Sommerfeld equation need to be calculated to find
all possible unstable modes unless its boundary condition is dependent on
wall-normal vorticity.

For the calculation of three-dimensional disturbances over anisotropic
compliant walls, generally both equations are coupled by the wall boundary
condition and must be solved in combination. The first mode to become
unstable can be an oblique-traveling wave. There is no indication that two-
dimensional modes reach certain amplitudes earlier than three-dimensional
modes.
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3 Shooting Solver

We cannot repeat this too often: Asymptotic
concepts like “convergence order” are meaningful
only for large n. For small n, who knows!

John P. Boyd

In this chapter a numerical method is presented to solve the stability equa-
tions using “shooting.” The boundary-value problem is reduced to an initial-
value problem. Hereby, streamwise wavenumber α or angular frequency
ω are a parameter of this problem and determined, so that the boundary
conditions of the boundary-value problem are fulfilled. The integration
scheme is presented, the free-stream solutions that are used for starting
the integration are shown, the orthogonalization procedure and the wall
boundary conditions that must be met are explained. The iteration of the
eigenvalues and the calculation of eigenfunctions is elucidated. Finally, the
numerical accuracy of the shooting solver is scrutinized.

To solve the linear stability equations, namely the Orr-Sommerfeld and the
Squire equation, one can rewrite the equations as a system of n first-order
equations with k boundary conditions on one side, and pn ´ kq boundary
conditions on the other side. We obtain a linear boundary-value problem of
the form

d

dy
zpyq “ Apyq zpyq , (3.1)

Bzpy “ 0q “ 0 , (3.2)

Czpy “ ymax.q “ 0 , (3.3)

with the solution vector zpyq “ rz1pyq, . . . , znpyqs
T , A as an nˆ n matrix, B

as a full rank pn´ kq ˆ n matrix, and C as a full rank k ˆ n matrix. For this
purpose, we choose to use equations (B.16)-(B.19) when only the solution of
the Orr-Sommerfeld system is needed, and use equations (B.16)-(B.21) when
the solution of the coupled Orr-Sommerfeld and Squire equation system is
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3 Shooting Solver

needed. Hereby follows n “ 4 and k “ 2, or n “ 6 and k “ 3, respectively.
Since the system of equations is linear, we can write its solution as a sum of
n linearly independent base solutions zpiq

pyq in the form

zpyq “ c1z
p1q

pyq ` c2z
p2q

pyq ` . . .` cnz
pnq

pyq . (3.4)

3.1 Integration Scheme

The baseflow in the interval r0, ymaxs is divided into generally non-equidis-
tant subintervals according to the data given at the Np wall-normal grid
points yj , (j “ 1, . . . , Np). We write k linearly independent base solutions
of equation (3.4) which meet the boundary condition (3.3) in the columns of
the nˆ k matrix Ypyq, with

Ypyq “

»

—

—

–

z
p1q

1 pyq ¨ ¨ ¨ z
pkq

1 pyq

...
. . .

...
z

p1q
n pyq ¨ ¨ ¨ z

pkq
n pyq

fi

ffi

ffi

fl

. (3.5)

This matrix must satisfy the equation

d

dy
Ypyq “ ApyqYpyq . (3.6)

For numerical reasons the base solutions are integrated in the direction
towards the wall. A standard Runge-Kutta (e.g. [47]) scheme

K1 “ Apyj`1qYj`1 , (3.7)

K2 “ Apyj`0.5q
`

Yj`1 ` 1
2
hjK1

˘

, (3.8)

K3 “ Apyj`0.5q
`

Yj`1 ` 1
2
hjK2

˘

, (3.9)

K4 “ Apyjq pYj`1 ` hjK3q , (3.10)

Yj “ Yj`1 ` 1
6
hj pK1 ` 2K2 ` 2K3 ` K4q (3.11)

with
hj “ yj ´ yj`1 (3.12)

is applied. For the intermediate stages of the Runge-Kutta scheme, the
baseflow and its derivatives are interpolated with a piecewise Lagrangian
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3.2 Free-Stream Boundary Condition

polynomial approximation of fourth order. An Aitken-Neville [11, sect. 19.6]
algorithm was implemented for this purpose. The derivatives of the baseflow
are calculated by fourth-order finite differences.

3.2 Free-Stream Boundary Condition

In the free stream, outside of the boundary layer, the base flow is uniform.
The system of equations becomes a homogeneous linear system with con-
stant coefficients, and has the solution

zpyq “ eApy´yrefqzpyrefq “ SeΛpy´yrefqS´1zpyrefq , (3.13)

with S being the matrix containing the eigenvectors of A, and the diagonal
matrix Λ containing the corresponding eigenvalues λi of A.

We denote the streamwise mean velocity by ū0 and the spanwise mean
velocity by w̄0 and obtain

S “

»

—

—

—

—

—

—

—

—

—

–

1 t8,0 0 1 t8,0 0

´κ ´t28,0 0 κ t28,0 0

iκ´1 i 0 ´ iκ´1
´ i 0

´t1,0κ
´2 0 0 ´t1,0κ

´2 0 0

0 0 1 0 0 1

0 0 ´t8,0 0 0 t8,0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.14)

Λ “ diagp´κ,´t8,0,´t8,0,`κ,`t8,0,`t8,0q , (3.15)

with
t1,0 “ pαū0 ` βw̄0 ´ ωq , (3.16)

and
t8,0 “

a

κ2 ` iRe pαū0 ` βw̄0 ´ ωq . (3.17)

Two eigenvalues have a geometric and algebraic multiplicity of two. The
free-stream base solutions have three eigensolutions which grow and three
eigensolutions which decay in the free stream direction. Both, the growth
rates as well as the decay rates differ considerably in their real part, which
means that the system of equations is stiff. Note that four eigenfunctions
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exhibit z5 “ z6 “ 0 and that two eigenfunctions exhibit z1 “ z2 “ z3 “ z4 “

0. There eigenvalues directly correspond to the Orr-Sommerfeld, and the
Squire equation, respectively. We use these eigenfunctions as base solutions.

Since we are interested in the disturbances inside the boundary layer, we
require that the solution decays for y Ñ 8. Hence the boundary condition
at y “ ymax is that the solution is in the space spanned by the eigenvectors
of the k decaying base solutions. In the notation of equation (3.3) the ma-
trix C contains the transposed vectors which are normal to the decaying
eigenvectors.

3.3 Orthonormalization Procedure

When the k base solutions which decay toward the free stream are to be
integrated numerically, it is necessary to set the direction of integration to be
towards the wall. In this case the solutions amplify during the integration
process, and numerical errors which are not in the linear space of the three
solutions under consideration decay. However, numerical errors in the
linear space of the strongly growing solutions are generated during the
integration of the weakly growing solution. These errors then grow with the
amplification rate of the strongly growing solution and spoil the integration
of the weakly growing solution. This phenomenon is termed parasitic error
growth.

The problem of parasitic error growth can be overcome by various ap-
proaches. The so-called compound matrix method (cf. Ng and Reid [48])
reformulates the problem to a new set of variables yielding a linear sys-
tem of equations which is less prone to parasitic error growth but increases
the numerical expense. In comparison to that, the so-called Riccati method
(cf. Scott [56]) transforms the linear system of equations to a nonlinear
(quadratic) system of equations which becomes singular during the integra-
tion process. This singularity can then be overcome, e.g., by integration in
the complex plane.

For the current work we apply the approach of Godunov [27] and or-
thonormalize the base solutions in regular intervals by QR-decomposition.
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3.4 Wall Boundary Condition

This prevents the loss of linear independence of the base solutions. Numeri-
cally, this is implemented by the Gram-Schmid1procedure (e.g. [28]). This
approach is computationally very efficient, when the k (i.e. two or three)
base solutions are integrated. It is important to note that the base solutions in
equation (3.4) can be chosen arbitrarily, as long as they are linearly indepen-
dent. The orthonormalization essentially changes the linearly-independent
solution base to a new unitary solution base. Conte [16] applies this ap-
proach to example equations and recommends checking the orthogonality
of the base solutions using scalar products, and orthonormalize only when
a certain margin is exceeded. Computations show that this margin is ex-
ceeded quite regularly, and that the calculation of the scalar products is
almost as expensive as the Gram-Schmidt orthonormalization itself. Hence,
it is cheaper to orthonormalize at fixed predetermined intervals than testing
non-normality every step. Orthonormalizations every five integration steps
for solving solely the Orr-Sommerfeld, and every two integration steps for
solving the coupled Orr-Sommerfeld and Squire equation system provide
good results.

We apply the incomplete Gram-Schmid orthonormalization

Yj “ QjRj (3.18)

to obtain the unitary matrix Qj and the upper triangular matrix Rj . The
unitary matrix Qj replaces the matrix Yj and the integration is continued.
The upper triangular matrix Rj is only stored when the eigenfunction of the
mode is to be calculated, otherwise it is discarded.

3.4 Wall Boundary Condition

In the shooting process, the base solutions are integrated toward the wall
for a given set of the streamwise wavenumber α, spanwise wavenumber β,
and angular frequency ω. Then it is tested if they can satisfy the boundary

1Throughout this work only the stable variant of the Gram-Schmid procedure is used, which is
commonly referred to as the “modified Gram-Schmid” procedure.
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3 Shooting Solver

condition at the wall (3.2). In the rigid wall case, we have the no-slip, no-
penetration boundary condition

B “

»

—

–

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

fi

ffi

fl

, (3.19)

and in the compliant wall case, we have the dynamic-equilibrium, no-slip,
and no-penetration boundary condition formulated in equations (2.23),
(2.24), and (2.25). The resulting solution z is a superposition of the base
solutions in Y with expansion coefficients c

z “ Yc . (3.20)

Inserted in (3.2) we require that

Kc “ 0 , (3.21)

with
K “ BY1 , (3.22)

and
c ‰ 0 (3.23)

for the wall boundary condition to be satisfied. The determinant of K must
be zero for this condition to be fulfilled.

We calculate the expansion coefficients of the base solutions c by choosing
the coefficient ck to be the pkkq minor2of K, and determining the other
coefficients using all but the last equation of (3.21). By this choice the
residual ϵpα, β, ωq of the last equation in (3.21) then is

ϵpα, β, ωq “ det pKq . (3.24)

Depending on either the temporal model or the spatial model, the complex
eigenvalues ω or α, respectively, are iterated so that ϵ “ 0. Arbitrary root
finding methods for complex functions can be used to achieve this. However,

2The pijq minor of K is the determinant of the pk ´ 1q ˆ pk ´ 1q matrix formed by removing
the i-th row and the j-th column of K.
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3.4 Wall Boundary Condition

applying root finding methods to the residual in the present form shows poor
convergence because the residual strongly varies its phase in the complex
plane. To remedy this poor convergence, we scale the residual with the
phase of the disturbance pressure at the wall. The disturbance pressure was
chosen because it is the only quantity that is certainly unequal to zero for
all modes but Squire-modes. This scaling improves the convergence of root
finding methods significantly with the drawback that Squire-modes do not
converge. However, Squire-modes are proven to be asymptotically stable at
all times [59] and play no role in the asymptotic stability of the boundary
layer, i.e., when transient growth is not of concern.

Fig. 3.1 shows a comparison of the residual in the complex phase speed
plane with and without phase scaling for the Blasius boundary layer with
parameters chosen by Mack [44, sect. 3], when solely the Orr-Sommerfeld
equation is solved. Mack has used the intersections of the zero lines to deter-
mine the eigenvalues of the Orr-Sommerfeld equation. At the roots of the
residual, the zero lines of the real and imaginary part intersect. In fig. 3.1(a),
where the phase scaling was not applied, seven distinct intersections of the
zero lines exist for phase speeds less than one, and several others exist for
a phase speed of one. In the vicinity of the seven eigenvalues the residual
phase varies clearly. Here a root finding algorithm converges only if the ini-
tial guess is close to the according eigenvalue. In contrast, fig. 3.1(b) displays
the case with phase scaling. Here, the complex phase of the residual scarcely
changes in the vicinity of the distinct eigenvalues, and initial guesses further
away from the according eigenvalue converge. Note that intersections of
zero lines do not necessarily mean that the residual is zero. This is visible
for the continuous spectrum, i.e. for cr “ 1, and several distinct locations
where phase scaling was applied. Also note that the zero lines of fig. 3.1(a)
depend on the domain height. With increasing domain height, the number
of zero lines in the viewport of this plot increases. Its number is also higher
when the coupled Orr-Sommerfeld and Squire system is solved.
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3.5 Eigenvalue Iteration

3.5 Eigenvalue Iteration

The eigenvalue is iterated until the residual of the wall boundary condition
and the last variation of the eigenvalue estimate are below the predefined
limits

ϵ ă ϵmax ^

ˇ

ˇ

ˇ

ˇ

∆α ūE

ω

ˇ

ˇ

ˇ

ˇ

ă cpαq
max (3.25)

for the spatial case, and

ϵ ă ϵmax ^

ˇ

ˇ

ˇ

ˇ

∆ω

α ūE

ˇ

ˇ

ˇ

ˇ

ă cpωq
max (3.26)

for the temporal case. For the current work diverse root finding methods
were implemented:

Secant method To improve the eigenvalue estimate, the root of the secant
through the last two functional values is used. Its order of convergence
is 1.618. The secant method can be viewed as a variant of Newton’s
method3, where the derivative of the function is approximated by the
finite difference of the last two functional values. Therefore, the initial
step size is chosen to be relatively small to ensure a good approxima-
tion of the derivative.

Muller’s method An extension to the secant method with a convergence
order of 1.839 is Muller’s method [46]. The last three functional values
are used to construct a parabola whose root is calculated to deter-
mine the next approximation. The numerical implementation of Press
et.al. [50] is applied. To start this method the secant method is used to
calculate the first three iterates.

Trust-region secant method For optimal robustness a trust-region secant
method is used. The step size to the next iterate is restricted to stay
within a given limit. If the residual has decreased in the last step the
limit is increased by a preset factor, and otherwise decreased. Factors
of 10 and 0.2, respectively, show rapid convergence and robustness.

3Indeed, in the literature of Orr-Sommerfeld shooting solvers this method is often termed
Newton’s method which suggests a convergence order of 2.0.
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3 Shooting Solver

In the close vicinity of the root, this method converges as fast as the
secant method.

“Trial-and-error” method The iterate is varied by a certain amount in the
positive and negative direction of the real and imaginary axis. Only
if the residual has reduced the new value is accepted. In case the
residual cannot be reduced any more, we reduce the step size. This
simple algorithm is computationally considerably more expensive
than the other presented methods. On the other hand, it is robust and
converges for Squire-modes because it does not depend on the phase
of the residual.

The calculation of the stability diagram for a given instability mode, i.e.,
the values of ωpxi, αj , βkq for the temporal case, or the values of α(xi, ωj ,
βk) for the spatial case, is carried out in the following manner:

1. For the temporal or spatial framework, the user chooses the start point
pxi, αj , βkq or pxi, ωj , βkq of the iteration and an initial guess for the
eigenvalue ωstart or αstart, respectively.

2. The first eigenvalue at the start point is iterated using the trust-region
secant method, because of its high robustness.

3. αj or ωj is increased successively with the eigenvalue previously found
as the initial guess for the next iteration. After that the same procedure
is carried out with decreasing αj or ωj . Here, Muller’s method is used,
because of its fast convergence.

4. Starting from the converged eigenvalues, βk is increased and decreased
successively with initial guesses of the previously converged eigenval-
ues.

5. Likewise, the streamwise location xi is increased and decreased suc-
cessively.

During this process, the initial guesses for the shooting method are improved
by first-order approximation of the eigenvalue gradient with respect to the
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3.6 Calculation of the Eigenfunction

parameter which was increased or decreased. To ensure computational
efficiency the number of iterations per point is limited. In case the iteration
was not successful at a certain point, an intermediate point is calculated
between the grid points to improve the initial guess for the next point. The
calculation of the eigenvalue at intermediate points is successively refined
up to a given recursion depth. Hereby, the baseflow profile ūpyq and w̄pyq at
intermediate points is linearly interpolated.

3.6 Calculation of the Eigenfunction

In some cases, not only the amplification rate of an instability mode, but also
the eigenfunction is of interest. Then the eigenvalue is first iterated until the
conditions (3.25) or (3.26) are fulfilled. At the wall, the expansion coefficients
of the base solutions c1 are determined as described in section 3.4, and then
successively determined towards the free stream. At the locations where
an orthonormalization was performed, the expansion coefficients must be
transformed to the next set of base solutions using backsubstitution (cf.
Scott [57])

Rjcj`1 “ cj . (3.27)

At locations where no orthonormalization was performed the coefficients
are kept constant cj`1 “ cj . The final solution is then calculated by

zj “ Yjcj . (3.28)

In case one needs the values of the eigenfunction at some location y ą

ymax, then it is feasible to determine the function of the eigensolution ana-
lytically. When the expansion coefficients of the base solutions at ymax have
been discarded, then one can recalculate the expansion coefficients of the
decaying eigensolutions in (3.13) by a least-squares approximation. We write
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3 Shooting Solver

the decaying eigensolutions of (3.14) in the columns of a matrix

Ŝ “

»

—

—

—

—

—

—

—

—

—

–

1 t8,0 0

¯κ ¯t28,0 0

˘ iκ´1
˘ i 0

´t1,0κ
´2 0 0

0 0 1

0 0 ˘t8,0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.29)

orthogonalize it

Ŝ “ Q̂R̂ , (3.30)

and solve for the coefficients c in

R̂c “ Q̂HzNp (3.31)

using backsubstitution.

3.7 Numerical Accuracy of the Shooting Solver

Table 3.1 lists the computed eigenvalues for the parameters used in fig. 3.1.
The significant digits were determined by a grid study. The values are in
excellent agreement with Mack [44]. Differences only appear in the fourth
digit after the decimal point. These could be caused by small differences in
the streamwise wavenumber α. Note that all values behind the second digit
are of purely academic interest, because of the assumptions involved in the
derivation of the solved equations.

Fig. 3.2 shows a grid study for the TS eigenvalue of the Blasius boundary
layer. The relative deviation to the solution calculated on the finest grid is
plotted over the grid spacing. A grid convergence of fourth order is clearly
visible. For increasing resolution, the relative deviation of the eigenvalue
does not decrease any further than 10´12 due to round-off errors. Note
that the maximum achievable accuracy is dependent on the eigenvalue
under consideration. For the given parameters the other eigenvalues in the
spectrum converge at least to a relative deviation of 10´9.
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3.7 Numerical Accuracy of the Shooting Solver

Table 3.1 Temporal eigenvalues of the Blasius boundary layer with Reδ1 “

998 and α “ 3.0862 ˆ10´4U8{ν.

mode cr{U8 ci{U8

1 0.3641218582633 0.0079621468973
2 0.2897238514584 -0.2768735025583
3 0.483943169789 -0.192081324334
4 0.55721993015 -0.36535103558
5 0.68628627708 -0.33078484801
6 0.793685627 -0.434097786
7 0.887406422 -0.414760019

Expedient resolutions are in the order of 100 grid points within the bound-
ary layer under investigation (∆y{δ1 « 0.03). Certainly, higher resolutions
result in a higher accuracy, but due to the assumption of local parallelism,
differences to, e.g., direct numerical simulations are in general larger than
the numerical inaccuracy of the eigenvalue determination.
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Figure 3.2 Numerical error versus wall-normal grid spacing for the calcu-
lation of the temporal TS eigenvalue with Reδ1 “ 998, α “ 3.0862 ˆ

10´4U8{ν and ymax{δ1 “ 20. The dashed line displays 4th-order con-
vergence.
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Pseudospectral algorithms are simply Nth order finite
differences in disguise.

John P. Boyd

Depending on the temporal or the spatial case, the Orr-Sommerfeld and
Squire equation constitute a generalized eigenvalue problem with the eigen-
value ω or a polynomial generalized eigenvalue problem of fourth order [18]
with the eigenvalue α, respectively. By coordinate transformation, the spatial
Orr-Sommerfeld problem can be reduced to a quadratic eigenvalue prob-
lem [33]. In general the compliant-wall boundary conditions theirself imply
a quadratic eigenvalue problem in the temporal case, and a polynomial
eigenvalue problem of sixth order in the spatial case. In the present work
the temporal eigenvalue spectrum is solved using a so-called matrix solver.

We choose to solve the Orr-Sommerfeld and the Squire equation in the for-
mulation of eq. (B.25) and eq. (B.26). These can be written in their discretized
form as

Axi “ ωiBxi , (4.1a)

or AX “ diagpωqBX , (4.1b)

with the generalized eigenvectors xi and their according generalized
eigenvalues ωi, or the matrix X containing the generalized eigenvectors in
columns and the vector ω containing the according generalized eigenvalues.
The eigenvalues are the complex wavenumber, whose real part is the distur-
bance frequency, and whose imaginary part is the temporal amplification
rate. We solve this eigenvalue problem by QZ-decomposition (cf. Golub
and Van Loan [28]) using LAPACK routines [1] to obtain the full eigenvalue
spectrum.

In this chapter the method of discretization, computational domain and
coordinate mapping is presented. The formulation of boundary conditions,
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and the implementation of the generalized eigenvalue problem as well as
the numerical quadrature of the eigenfunctions is elucidated. Finally, the
effects of compliant walls on eigenspectra and the numerical accuracy of the
matrix scheme is scrutinized.

4.1 Discretization

For the current application spectral methods have the advantage of a high
accuracy for a given degree of freedom. However, high-resolution spectral
calculations have a tendency to be spoiled by round-off errors. So the
numerical implementation of the differentiation must be directed towards
low round-off errors and numerical stability. The equations are discretized
using pseudospectral Chebyshev collocation. We approximate a function by its
values at the Nc Chebyshev-Gauß-Lobatto points

y̌i “ cos

ˆ

Nc ´ i

Nc ´ 1
π

˙

i “ 1, . . . , Nc . (4.2)

For this point distribution the interpolation error is particularly small [24].
We discretize the mth derivative using a differentiation matrix Dpmq. Elab-
orate tests have shown that the recursion formula for off-diagonal ele-
ments [67]

Ď
pmq

ij “
m

y̌i ´ y̌j

ˆ

wj

wi
Ď

pm´1q

ii ´ Ď
pm´1q

ij

˙

, (4.3)

in combination with the negative-sum trick [2]

Ď
pmq

ii “ ´

Nc
ÿ

j“1
j‰i

Ď
pmq

ij (4.4)

reduce the round-off errors of differentiation considerably. Hereby,

wi “
1

ś

k‰ipy̌i ´ y̌kq
i “ 1, . . . , Nc (4.5)

are the barycentric weights (cf. Berrut [7]) of the collocation points. Indeed
this type of differentiation is a finite difference in disguise—the entries of the
differentiation matrix are the weights of a finite-difference stencil spanned
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4.2 Computational Domain and Coordinate Mapping

over all collocation points. These stencils could be calculated using the
Fornberg algorithm [23], but at a much higher computational cost.

4.2 Computational Domain and Coordinate Mapping

The stability equations of the flow within a boundary layer can either be
solved in a finite interval (domain truncation) or in a semi-infinite domain
by coordinate mapping to infinity. The distance between the collocation
points increases successively towards the free-stream when the equations
are mapped to a semi-infinite domain, so that at some point oscillations of
the eigenfunction can not be properly resolved any further due to aliasing.
Grosch and Orszag [30] inter alia compared domain truncation, exponential
mapping, and algebraic mapping for the Tollmien-Schlichting eigenvalue
of the Orr-Sommerfeld equation. They concluded that results using the
algebraic mapping are superior in this case, but also stated that mapping
to infinity fails for solutions that oscillate towards infinity. Since the matrix
solver is also supposed to resolve the continuous spectrum which exhibits
oscillations towards infinity, we use domain truncation.

We truncate the domain to the interval y P r0, ymaxs, and use the rational
map

y “ fpy̌q “
ymymaxpy̌ ` 1q

y̌ p2ym ´ ymaxq ` ymax
(4.6)

pointed out in Schmid and Henningson [55, Appendix A.4]. Hereby, the
points are distributed so that half of the points are above and below y “

ym. This map allows to concentrate points in the boundary layer, e.g., by
choosing ym “ δ99, to resolve particular eigenvalues better. In the light
of basis functions, polynomials in y̌ become rational polynomials in y for
ym ‰ ymax{2. However, the full eigenvalue spectrum is resolved best when
ym “ ymax{2. In this case the mapping becomes a linear mapping which
preserves the behavior of the basis functions.

Numerically, the coordinate mapping is implemented by transformation
of the differentiation matrices using the equations

D
p1q

ij “ f1py̌jq
´1Ď

p1q

ij , (4.7)
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D
p2q

ij “ f1py̌jq
´3

´

f1py̌jqĎ
p2q

ij ´ f2py̌jqĎ
p1q

ij

¯

, (4.8)

D
p3q

ij “ f1py̌jq
´5

´

f2
1 py̌jqĎ

p3q

ij ´ 3f2py̌jqf1py̌jqĎ
p2q

ij `

`
`

´f3py̌jqf1py̌jq ` 3f2
2 py̌jq

˘

Ď
p1q

ij

¯

, (4.9)

and

D
p4q

ij “ f1py̌jq
´7

´

f3
1 py̌jqĎ

p4q

ij ´ 6f2py̌jqf2
1 py̌jqĎ

p3q

ij

`
`

´4f3py̌jqf2
1 py̌jq ` 15f2

2 py̌jqf1py̌jq
˘

Ď
p2q

ij

`
`

´f4py̌jqf2
1 py̌jq ` 10f3py̌jqf2py̌jqf1py̌jq ´ 15f3

2 py̌jq
˘

Ď
p1q

ij

¯

, (4.10)

given by Boyd [8, Appendix E] with fm “ B
mf{By̌m.

4.3 Formulation of Boundary Conditions

At the wall we have the no-slip, no-penetration boundary conditions, as
well as the dynamic equilibrium in the case of a compliant wall. At the
free-stream boundary of the truncated domain we require the wall-normal
velocity ṽ to exhibit an exponential decay with the (inviscid) decay rate
of expp´κyq, and the wall-normal vorticity Ω̃ to be zero. This can be jus-
tified when the domain height is large enough so that the magnitude of
the base solution of equation (3.13) that decays with the (viscous) decay
rate of expp´

a

κ2 ` iRe pαū0 ` βw̄0 ´ ωq yq becomes negligibly small with
respect to the inviscid decay rate. The exponential decay of the disturbance-
velocity components can be expressed as

D2ṽ ` κDṽ “0 (4.11)

Dṽ ` κṽ “0 (4.12)

Ω̃ “0 . (4.13)

These equations do not contain the eigenvalue ω, so we introduce the pre-
defined complex parameter µ (cf. Schmid [55, sect. A.5]) and write the
equations in the form

µ
`

D2ṽ ` κDṽ
˘

“ω
`

D2ṽ ` κDṽ
˘

(4.14)
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µ pDṽ ` κṽq “ω pDṽ ` κṽq (4.15)

µΩ̃ “ωΩ̃ . (4.16)

This approach maps the spurious eigenvalue associated with the boundary
condition to the location of µ in the complex plane. It is evident that the
eigenfunction of an eigenvalue ω ‰ µ must fulfill equations (4.11)-(4.13),
and that the (spurious) eigenvalues ω “ µ must be removed from the result,
because they generally do not satisfy the boundary conditions.

4.4 Implementation of the Generalized Eigenvalue Problem

Since the solution of a generalized eigenvalue problem has a numerical
cost of O

`

N3
˘

, we minimize the size of the solution vector x by choosing
the formulation of equations(B.25) and (B.26). So for a given number of Nc

collocation points yj , the values of ṽj and Ω̃j at these locations are unknowns
and are to be calculated. The boundary condition represented by equation
(2.32) implicitly poses a quadratic eigenvalue problem of ω which becomes
visible if the unknown η̃ is replaced using equation (2.34). This quadratic
eigenvalue problem can be overcome by increasing the size of the problem
and, introducing another variable that is equal to pωṽ1q(cf. Tisseur [61]).
To keep our equations related to the physical problem we use the variable
η̃ “ iṽ{ω, which also has the effect of removing the quadratic term in ω.
Hence, the solution vector contains 2Nc ` 1 elements. We define it as

x “

´

ṽT , Ω̃T , η̃
¯T

. (4.17)

Note that the quadratic term in ω appears only in one boundary condition
so that only an additional scalar and not an additional vector is introduced.

We require the Orr-Sommerfeld equation (B.25) to be satisfied at the col-
location points except for two points at the wall and two points at the
free-stream boundary, where the four boundary conditions (2.30), (2.32),
(4.14), and (4.15) must be satisfied. Analogously, we require the Squire equa-
tion (B.26) to be satisfied at the collocation points except for the wall and
free-stream boundary, where the boundary conditions (2.31) and (4.16) must
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be satisfied. Finally, we require the definition of η̃, equation (2.34), to be
satisfied. Upon discretization, the derivative operator Dm is replaced by the
differentiation matrix Dpmq (cf. sect. 4.1) so that the contents of the matrices
A and B in equation (4.1) are straightforward to fill, which is documented
in Appendix C.

4.5 Numerical Quadrature of the Eigenfunctions

For post-processing of the eigenfunctions, e.g. for the calculation of their dis-
turbance energy, a method of numerical integration is needed (cf. eqn. (6.1)).
This method must have positive non-zero integration weights for all grid
points to ensure that the energy given by equation (6.3) is positive for all
non-zero eigenvectors. For that reason it was chosen to use Clenshaw-Curtis
quadrature weights w̌cc,j to approximate the integral of a function gpy̌q over
the computational domain as

ż 1

´1

gpy̌qdx «

Nc
ÿ

j“1

w̌cc,jgpy̌jq . (4.18)

These weights are calculated by [63]

w̌cc,1 “ w̌cc,Nc “

$

&

%

1
pNc´1q2´1

if Nc odd,
1

pNc´1q2
if Nc even,

(4.19)

and

w̌cc,j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2
Nc´1

¨

˝1 ´
cosppj´1qπq

pNc´1q2´1
´

Nc´3
2

ř

k“1

2 cos
´

2k Nc´j
Nc´1

π
¯

4k2´1

˛

‚ if Nc odd,

2
Nc´1

¨

˝1 ´

Nc´2
2

ř

k“1

2 cos
´

2k Nc´j
Nc´1

π
¯

4k2´1

˛

‚ if Nc even.

(4.20)
Analogous to the mapping of the differentiation matrices, the integration
weights are mapped by

w̆cc,j “ f1py̌jqw̌cc,j . (4.21)
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To integrate to infinity we make use of the decay boundary condition at
the truncated domain. A disturbance quantity φ̃ decays exponentially at
y ą ymax with φ̃ „ expp´κyq so we can write it as

φ̃pyq “ φ̃pymaxq e´κpy´ymaxq . (4.22)

Analytically, we obtain
ż 8

ymax

φ̃pyq
˚ φ̃pyq dy “

1

absp2κq
φ̃pymaxq

˚ φ̃pymaxq (4.23)

for αi “ βi “ 0, so we can increase the integration weight w̆cc,Nc by
1{ absp2κq and get

ż 8

0

φ̃pyq
˚ φ̃pyq dy «

Nc
ÿ

j“1

wcc,j φ̃pyjq
˚ φ̃pyjq , (4.24)

with

wcc,j “

$

&

%

w̆cc,j if j ă Nc,

w̆cc,j ` 1
absp2κq

if j “ Nc.
(4.25)

4.6 Effect of Compliant Walls on Eigenvalue Spectra

The temporal eigenvalue spectrum of the Orr-Sommerfeld and Squire equa-
tion for the Blasius boundary layer is plotted in fig. 4.1 for the parameters
investigated by Mack [44]. The spectrum was calculated using the matrix
solver. In a second step the obtained eigenvalues were used as the initial
guess for the shooting solver. Open symbols are the eigenvalues obtained
by the matrix method and filled symbols are the eigenvalues for which the
shooting solver also converges. The eigenvalue number 1 is the Tollmien-
Schlichting eigenvalue. The eigenvalues with the numbers 2-7 are further
eigenvalues resulting from the Orr-Sommerfeld equation. In between these
eigenvalues are the so-called Squire-modes, which are characterized by a
wall-normal velocity equal to zero. These modes are not present when the
Orr-Sommerfeld equation is solved solely. The shooting solver does not
converge for these eigenvalues, due to the implementation of the boundary
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condition at the wall (cf. sect. 3.4). The continuous spectrum is located
at cr “ 1 and is represented as a line of discrete eigenvalues due to the
discretization. The deviation of the continuous spectrum to lower phase
speeds can be explained with numerical errors, since it is dependent on
discretization.
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Figure 4.1 Temporal eigenvalue spectrum of the Blasius BL over a rigid
surface for Reδ1 “ 998, α “ 3.0862 ˆ10´4U8{ν and ymax{δ1 “ 20.
Filled symbols denote discrete eigenvalues for which the shooting solver
converges.

Two additional eigenvalues, the FISI modes, typically appear when the
rigid wall is replaced by a compliant wall. In fig. 4.2 an eigenvalue spectrum
is plotted for the same parameters as before, but with an anisotropic compli-
ant wall (parameter set 2, cf. app. A). Now, the TS eigenvalue, eigenvalue
1, is stable. The FISI modes are eigenvalue 2, with a positive phase speed,
and the eigenvalue 3, with a negative phase speed. Both FISI modes can
exhibit phase speeds larger or smaller than ˘U8. These two modes are
characterized by maximum disturbance velocities at the wall and a decay
towards the free-stream.
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Figure 4.2 Temporal eigenvalue spectrum of the Blasius BL over the aniso-
tropic compliant surface, case 2, forReδ1 “ 998, α “ 3.0862 1̂0´4U8{ν

and ymax{δ1 “ 20. Filled symbols denote discrete eigenvalues for which
the shooting solver converges.

4.7 Numerical Accuracy of the Matrix Scheme

When computing the numerical solution of the stability equations the ques-
tion of the achieved numerical accuracy must be faced. Commonly, accuracy
considerations are restricted to a review of the discretization error. For
large, increasing resolution (degrees of freedom) this error typically decays
algebraically for finite-difference schemes, and geometrically for spectral
methods. When increasing the resolution further than a certain point round-
off errors become noticeable. Two effects of these round-off errors can be
observed. On one hand, the equation of the eigenvalue problem is disturbed
by the representation error which occurs when noting the matrices A and B

in floating point numbers. On the other hand, the calculation of the ma-
trices is furthermore disturbed by round-off errors during the calculation of
the pseudospectral differentiation matrices. These errors incurred by cal-
culating derivatives using Chebyshev polynomials have been investigated
by Breuer [10] and grow algebraically with increasing numerical order, i.e.
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collocation points.

In fig. 4.3 a grid convergence study of the matrix method is shown for the
eigenvalues plotted in fig. 4.1. Hereby the Orr-Sommerfeld and Squire equa-
tion system is solved. For this study the eigenvalue spectrum was calculated
with different resolutions, i.e. number of collocation points. The eigenvalue
was compared to the result with the next larger and the next smaller res-
olution and the smallest delta in phase speed is plotted over the number
of collocation points Nc. A geometric convergence of the matrix method is
visible for resolutions up to 120 to 160 collocation points, depending on the
eigenvalue. For higher resolutions the error remains at a small plateau, and
then increases again. There exists an optimal resolution for each eigenvalue
where the numerical errors are minimal. For the current parameters a reso-
lution of 200 collocation points is optimal for all discrete eigenvalues shown.
However for this resolution, the TS eigenvalue is predominantly affected by
round off errors, while the eigenvalue number 6 is approximately equally
affected by discretization and round off errors.
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Figure 4.3 Grid convergence study of the matrix method for the eigenvalue
spectrum of the Blasius BL over a rigid surface for Reδ1 “ 998, α “

3.0862ˆ10´4U8{ν and ymax{δ1 “ 20. Eigenvalue numbers correspond
to fig. 4.1.
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4.7 Numerical Accuracy of the Matrix Scheme

In fig. 4.4 the same grid convergence study is shown for the anisotropic
compliant wall, case 2, for the eigenvalues plotted in fig. 4.2. Again a geomet-
ric convergence of the matrix method is visible—in this case for resolutions
up to 105 to 145 collocation points, depending on the eigenvalue. For higher
resolutions the numerical error forms a plateau. When the resolution is
further increased the numerical error rises again. Again we can see that an
optimal resolution exits for all discrete eigenvalues. Here a resolution of
160 collocation points minimizes the largest numerical error of the shown
discrete eigenvalues.
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Figure 4.4 Grid convergence study of the matrix method for the eigenvalue
spectrum of the Blasius BL over the anisotropic compliant surface, case 2,
for Reδ1 “ 998, α “ 3.0862 ˆ10´4U8{ν and ymax{δ1 “ 20. Eigenvalue
numbers correspond to fig. 4.2.

Note that a different behavior can be seen with respect to numerical errors,
depending on the individual eigenvalue. This can be seen for the rigid and
the compliant wall case. Due to the non-orthogonality of the eigenvectors,
the associated eigenvalues some eigenvalues are more prone to round-off
errors of the stability matrices than others. Their sensitivity to errors in the
matrices is addressed by Reddy [51] and Trefethen [65] and can be visualized
by calculating the ϵ-pseudospetrum of the generalized eigenvalue problem.
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To evaluate these ϵ-pseudospectra, we calculate the resolvent energy norm
›

›

›

`

z ´ B´1A
˘´1

›

›

›

E
“ σmin

`

F
`

z ´ B´1A
˘

F´1
˘

(4.26)

on a computational grid in the complex plane and evaluate its contours.
Hereby, we use the energy norm, which is defined in sec. 6.1 and calculate
the smallest singular value σmin by SVD. More elaborate ways of computing
pseudospectra can be found in Trefethen [62].

Fig. 4.5 shows contour plots of the resolvent energy norm for the rigid wall,
calculated by using 400, 300 and 250 collocation points. Also plotted is the
eigenvalue spectrum calculated by the matrix solver. The ϵ-pseudospectra
of different resolutions are only congruent in a dedicated region. Depending

Figure 4.5 Resolvent energy norm for the Blasius BL over a rigid surface,
for Reδ1 “ 998, α “ 3.0862 ˆ10´4U8{ν and ymax{δ1 “ 20. Contours
and black lines were calculated withNc “ 400, dashed blue and green
lines were calculated with Nc “ 300 and Nc “ 250, respectively. Red
dots denote eigenvalues.

on the level of the contour lines, deviations between the different resolutions
can ben seen. Contour lines exhibit bulges for one resolution, but not for the
others. Due to the dependence of the results on the number of collocation
points, a quantitative judgment cannot be made. Merely increasing the
number of collocation points further is not helpful here. However, from
qualitative perspective, we can conclude that that the discrete eigenvalues
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4.7 Numerical Accuracy of the Matrix Scheme

which are closer to the continuous spectrum are more prone to round-off
errors. This corresponds to the plateaus of the computed errors in fig. 4.3
and explains the fact that certain eigenvalues can only be computed up to a
certain precision.

In fig. 4.6 the according resolvent energy norm for the compliant wall,
case 2, and the eigenvalues are plotted. Here, we can also see deviations

Figure 4.6 Resolvent energy norm for the Blasius BL over compliant surface,
case 2, for Reδ1 “ 998, α “ 3.0862 ˆ10´4U8{ν and ymax{δ1 “ 20. Con-
tours and black lines were calculated withNc “ 400, dashed blue and
green lines were calculated with Nc “ 300 and Nc “ 250, respectively.
Red dots denote eigenvalues.

between the contours generated with different resolution. Again, the ϵ-
pseudospectrum qualitatively corresponds to the computed errors in fig. 4.4
and explains the fact that certain eigenvalues can only be computed up to a
certain precision.

The convergency study shows that round-off errors affect the solution of
the compliant-wall spectra by orders of magnitude larger than for the rigid
wall case. Various methods of discretization, formulation of the equations,
and implementations for calculation of the differentiation matrices were
tried to find out that the method described in this thesis works best for the
calculation of the eigenspectra of the coupled Orr-Sommerfeld and Squire
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equation for external flows over anisotropic compliant walls. During the de-
velopment of the numerical solver, it turned out that some implementations
just could not accomplish the needed accuracy. For some implementations it
was not possible to calculate the eigenvalue 8, because, depending on the
resolution, either the numerical error or the discretization error were in the
order of the exact value.

In conclusion we find that the formulation of the problem, numerical
scheme and implementation are crucial for solving the undelying problem.
Even though a suitable scheme was found, some investigations, such as
the global calculation of ϵ-pseudospectra cannot be performed. In the fol-
lowing, all results generated by the matrix scheme were either validated by
the shooting solver or by a second calculation with a different number of
collocation points was performed to ensure grid-independence.
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5 Yawing of the Anisotropic Compliant Wall

A computation is a temptation that should be resisted
as long as possible.

J. P. Boyd, paraphrasing T. S. Eliot

5.1 The Dolphins’ Inspiration

Previous investigators, e.g., Carpenter [15] and Yeo [68], have restricted their
investigations to the case where the flow direction is perpendicular to the
stiffeners of the compliant wall. Hereby, Carpenter [15] published a method
to optimize compliant-wall parameters of his anisotropic compliant wall
model for minimal growth of the TS mode and marginal stability of the FISI
modes. It leaves one open parameter which can be varied to account for the
optimization with respect to a specific eN -Factor. Also, it needs a certain
downstream-location to optimize for, so it is based on local optimization.
These investigators however used solely two-dimensional approaches and
did not account for three-dimensional modes.

Pavlov [49] investigated the skin properties of harbor porpoises and
showed that the dermal ridges—these are comparable to the stiffeners of the
anisotropic compliant wall model—are aligned in lines and make an angle
(yawing) to the local flow direction. In fig. 5.1 is a visualization of the local
flow direction (color scaled) and alignment of the dermal ridges (in brown)
taken from Pavlov [49] (with permission of the author). This leads to the
question, whether yawing of the anisotropic compliant wall with respect to
the flow direction can be beneficial for transition delay.

Zengl and Rist [71] investigated the effect of compliant-wall yawing on
the temporal stability of the Blasius boundary layer up to Rex “ 3.0ˆ106.
They concluded that an increasing yaw angle of the anisotropic compliant
wall moves the propagation direction of the least stable TS mode to oblique-
traveling waves, while the least stable FISI mode is moved in the opposite
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5 Yawing of the Anisotropic Compliant Wall

Figure 5.1 Visualization of the flow field over the dorsal fin, and the align-
ment of the dermal ridges of a harbor porpoise (source [49]).

direction. The TS mode is slightly stabilized and a FISI mode is destabilized
by yawing of the wall. In the computational box it appears that a FISI
mode becomes unstable at a yaw angle between ψ “ 36˝ and ψ “ 54˝ for
compliant wall parameter set 2 (cf. app. A).

What remains unclear is the effect of yawing on the predicted transition
location. This topic is addressed in this chapter and is based on three-
dimensional spatial and temporal linear stability investigations of the wall
parameter set 2 and 3 with Reynolds numbers up to Rex “ 3.9ˆ107. With
this choice of the computational domain eN -calculations were carried out up
to N ą 10, which is more than enough to predict the transition location for
realistic disturbance environments. Spanwise-traveling waves were taken
into account by variation of the real part of the spanwise wavenumber β,
while its imaginary part was set to zero. The step width of the yaw angles
was refined to ∆ψ “ 5˝ in order to narrow the region of ψ in which the
FISI mode becomes unstable. As a reference and introduction to the reader
three-dimensional linear stability diagrams of the Blasius boundary layer
over a rigid wall are presented.

In this chapter two sets of anisotropic compliant wall parameters pub-
lished by Carpenter [15] where adopted. These are listed in app. A and
correspond to dimensional values in [15, Table 2]. These parameters have
the advantage that results with these parameters are available for compari-
son, and that marginal stability of the FISI modes in the three-dimensional
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5.2 Three-Dimensional Linear Stability Diagrams for the Rigid Wall

case and for yaw angles up to a certain yaw angle has been shown. Con-
cerning the question whether these are "optimal parameters", they are at
least in a region where approximately a four-fold transition delay can be
demonstrated, which will be shown later in this chapter.

5.2 Three-Dimensional Linear Stability Diagrams for the Rigid
Wall

With our linear stability calculations we solve the dispersion relation
D

`

Rex, α, β, ω
˘

“ 0. Hereby, Rex is equivalent to Upyq and/or W pyq. In
the temporal problem we vary the parameters pRex, α, βq and solve for
ωr and ωi. Note that the wavenumbers are scaled with U8{ν in contrast
to the scale of δ1 which is frequently found in literature. A temporal
linear stability diagram of the Blasius boundary layer over a rigid wall is
shown in fig. 5.2. Only the unstable region of the eigenvalues, i.e. ωi ą 0,
is shown. A translucent isosurface of neutral stability is plotted in gray.
Neutral stability lines are plotted for constant values of β with a spacing of
∆β “ 2.5ˆ10´5U8{ν, while the line of β “ 0 is drawn thicker. Contours
of the temporal amplification rate ωi are plotted in sections of constant ωr .
Hereby, ωr is varied with a delta of ∆ωr “ 2.0ˆ10´5U2

8{ν starting from
ωr “ 2.0ˆ10´5U2

8{ν. Using this type of stability diagram three-dimensional
stability properties of a specific flow problem can be assessed.

In the spatial problem we vary the parameters pRex, ω, βq and solve for
αr and αi. A spatial linear stability diagram of the Blasius boundary layer
over a rigid wall is shown in fig. 5.3. Again, only the unstable region of the
eigenvalues, i.e. αi ă 0, is shown. The neutral stability surface is displayed
in gray (translucent). Contour lines of constant β at neutral stability are
plotted with the line of β “ 0 drawn thicker. These contour lines have a
delta of ∆β “ 2.5ˆ10´5U8{ν. Contours of the spatial amplification rate αi

are plotted in planes of constant ωr starting from ωr “ 2.0ˆ10´5U2
8{ν with

a delta of ∆ωr “ 2.0ˆ10´5U2
8{ν.
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Figure 5.2 Temporal linear stability diagram of the Blasius BL over a rigid
wall.

Figure 5.3 Spatial linear stability diagram of the Blasius BL over a rigid
wall.
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5.3 Three-Dimensional Linear Stability Diagrams for Anisotropic
Compliant Walls

As stated in chap. 1 the FISI modes of a compliant wall can become absolutely
unstable. In contrast to that, TS modes can only be convectively unstable. In
practice an absolute instability instantaneously triggers laminar-turbulent
transition and leads to a failure in transition postponement. For the choice
of a compliant wall, we follow Carpenter’s approach [13] to constrain its
properties so that the FISI modes are stable at all times, even though a con-
vectively unstable FISI mode is not necessarily harmful. An instability mode
is convectively or absolutely unstable if and only if it exhibits temporal in-
stability (cf. Huerre and Monkewitz [35]). Hence, our aim is that FISI modes
are temporarily stable and that the TS mode is as stable as possible. Now
that the TS modes are typically damped with increasing suppleness of the
compliant wall, and FISI modes typically amplified with increasing supple-
ness, optimized parameters usually exhibit marginal stability of FISI modes.
It can be argued that transition could be further delayed if a convective
instability of the FISI mode is accepted in order to reduce the TS instability
further, but in the stability investigations performed for this work the FISI
mode was, if it was unstable, always considerably more unstable than the
TS mode of the rigid wall. Thus the investigations indicate that Carpenter’s
approach is reasonable. This approach also has the advantage, that extensive
investigations whether a FISI mode is absolutely or convectively unstable
are not necessary.

For the following temporal stability diagrams the TS mode and the FISI
modes were computed and the unstable regions of all modes are shown in
the same diagram. Note that this is not apparent since only the unstable
regions are visualized. The temporal stability calculations of the individual
modes were performed with the shooting method. Additionally, the matrix
solver was used to make sure no other unstable mode exists, which has
not already been tracked by the shooting method. For the following spatial
stability diagrams only the TS mode was computed using the shooting
method.
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5 Yawing of the Anisotropic Compliant Wall

Figure 5.4 Temporal linear stability diagram of the Blasius BL over a com-
pliant wall with parameter set 2, θ “ 60˝, and ψ “ 0˝.

A temporal stability diagram of parameter set 2 is plotted in fig. 5.4.
The visualization of surfaces, contour planes, etc. is analogous to fig. 5.2,
except for a modified color legend. Note the considerably smaller maximum
(temporal) amplification rate of ωi,max “ 0.12ˆ10´5U2

8{ν compared to the
rigid wall case of ωi,max “ 0.31ˆ10´5U2

8{ν. Also the region of instability
is notably smaller than in the rigid wall case. Its extension in the α-, and
β-direction is reduced, and branch II has moved slightly forward. Looking
at the planes of constant ωr , we can see that for lower values of ωr there
are two local maxima on either side of the plane β “ 0 compared to one
maximum in the rigid wall case. In comparison to Zengl and Rist [71] the
computations extend considerably further downstream. As predicted by
Carpenter [15] the FISI modes are stable in the whole domain.

The according spatial stability diagram of parameter set 2 is plotted in
fig. 5.5. The visualization of surfaces, contour planes, etc. is analogue
to fig. 5.3, except for a modified color legend. The (spatial) maximum
amplification rate of αi,min “ ´0.28ˆ10´5U8{ν is also notably smaller
than in the rigid wall case of αi,min “ ´0.75ˆ10´5U8{ν. in analogy to the
temporal case, there are also two local maxima in the planes of constant ωr

In the presented linear stability diagrams we can see that the maximum
amplification rate as well as the size of the instability region is decreased
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Figure 5.5 Spatial linear stability diagram of the Blasius BL over a compliant
wall with parameter set 2, θ “ 60˝, and ψ “ 0˝.

in the case of the anisotropic compliant wall parameter set 2. Other than
the TS mode, no additional unstable modes are present in the temporal
case—so no absolute instability is present here. It is also to note that the
amplification rate contours at lower values of ωr and accordingly αr exhibit
two symmetric maxima at β ‰ 0.

5.4 N -Factor Analysis of the Anisotropic Compliant Wall

We use N -factor analysis to examine the effect of the yawed anisotropic com-
pliant walls on the transition location. The basic idea of this type of analysis
for prediction of the transition location is, to calculate where the highest
amplification factor of unstable waves reaches an empirically determined
threshold. More information on transition prediction using N -factors can
be found e.g., in [17, 53, 55]. For a disturbance of frequency ω and spanwise
wavenumber β, we define Npx, β, ωq as

eNpx,β,ωq
“

Apx, β, ωq

A px pαi “ 0q , β, ωq
“

ż x

xpαi“0q

´αipx, β, ωq dx for x ě xpαi “ 0q . (5.1)

In a low disturbance environment such as free flight the transition location is
typically at N “ 9. Since we search for the highest wave amplification over
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5 Yawing of the Anisotropic Compliant Wall

the streamwise coordinate, we need to take the envelope over all frequencies
into account. We define it as:

Nωpx, βq “ max
ω

pN px, β, ωqq . (5.2)

This envelope still varies over the spanwise wavenumber β. We define the
envelope over ω and β as:

Nω,βpxq “ max
ω,β

pN px, β, ωqq . (5.3)

It should be noted that the N -factor analysis does not account for the
receptivity of the disturbances, their nonlinear growth, and their nonlinear
interactions. Taking the envelope over all frequencies and/or spanwise
wavenumbers basically assumes that these factors are equal for all waves,
which is unlikely to be the case. Furthermore, it is only valid for low distur-
bance environments.
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(b) Compliant wall with parameter set 2; θ “

60˝,ψ “ 0˝.

Figure 5.6 N -Factor development of the Blasius boundary layer for β “ 0

and different angular frequencies. The envelope Nω is shown as a
dashed line.

N -Factor over x diagrams for two-dimensional TS modes (i.e. β “ 0) with
different angular frequencies ω are shown in fig. 5.6 for (a) the rigid wall
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5.4 N -Factor Analysis of the Anisotropic Compliant Wall

and (b) a compliant wall with parameter set 2. Their envelope Nω is shown
as a dashed line. In the boundary layer over the rigid wall the amplification
factor of e9 is first reached at the downstream location of x “ 32 ˆ 105ν{U8.
The according wave has an angular frequency of approximately ωr “ 2.5ˆ

10´5U2
8{ν. For the compliant wall, the amplification factor of e9 is first

reached by a 2-D wave at x “ 130 ˆ 105ν{U8. Here the according wave has
an angular frequency of approximately ωr “ 0.75ˆ10´5U2

8{ν. So if only 2-D
waves are under consideration, the laminar length is enlarged by a factor
of 4.06. The frequencies of the TS modes that lead to transition are reduced
down to approximately ωr “ 0.75ˆ10´5U2

8{ν, so that the lower frequencies
play a larger role for the compliant wall under consideration.

As stated in sect. 2.5, three-dimensional instabilities have to be taken into
account for an authoritative investigation of the stability properties and
prediction of the transition location. Therefore, we extend the diagrams with
the dimension of the spanwise wavenumber. In return, we restrict ourself
to display the N -factor envelope over all frequencies Nω . In fig. 5.7 the N -

Figure 5.7 N -factor envelope over all frequencies for the rigid wall

factor envelope Nω is plotted over the streamwise coordinate and spanwise
wavenumber for the rigid wall. We can see that at x “ 32ˆ 105ν{U8 a wave
with β “ 0 first reaches the amplification factor of e9. It can be seen that
two-dimensional waves reach given N -factors earlier than oblique-traveling
waves. Hence, the transition location in a low disturbance environment is
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5 Yawing of the Anisotropic Compliant Wall

predicted to be at x “ 32 ˆ 105ν{U8.

Figure 5.8 N -factor envelope over all frequencies for the anisotropic com-
pliant wall with parameter set 2; θ “ 60˝, ψ “ 0˝.

In contrast to that, the N -factor envelope Nω is plotted in fig. 5.8 over
the streamwise coordinate and spanwise wavenumber for the anisotropic
compliant wall with parameter set 2. For Nω ą 0.6, it can be seen that
three-dimensional waves reach given amplification factors first. Therefore,
three-dimensional waves lead to transition. Since wall and flow field are
symmetrical in spanwise direction, the amplifications are symmetrical as
well. Here, the transition location based on the amplification factor of e9

is predicted at x “ 120 ˆ 105ν{U8. So the predicted transition location is
∆x “ 10 ˆ 105ν{U8 further upstream than in the 2-D based prediction. The
predicted enlargement of the laminar length is 3.75 times greater than in
the rigid wall case. It is evident that the transition prediction based only on
two-dimensional solutions overpredicts transition delay. The streamwise
and spanwise wavenumbers of the wave that first reaches the amplification
factor of e9 are αr “ 2.4ˆ10´5U8{ν and β “ 2.0ˆ10´5U8{ν and the
angular frequency ω “ 0.7ˆ10´5U2

8{ν. That corresponds to a phase speed
of cph. “ 0.30 and a wave propagation angle of Ψ “ tan´1

`

β
α

˘

“ 40˝.
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5.5 Yawing of the Compliant Wall with θ “ 60˝

In a parameter study, the yaw angle was increased in steps of ∆ψ “ 5˝ up
to a value of ψ “ 90˝. A spatial linear stability diagram for the compliant

Figure 5.9 Spatial linear stability diagram of the Blasius BL over a compliant
wall with parameter set 2, θ “ 60˝, and ψ “ 35˝.

wall parameter set 2 with ψ “ 35˝ is plotted in fig. 5.9. For this case,
temporal LST shows that both FISI modes are temporarily stable. So only
the TS mode is unstable in the computational domain. As one would expect,
the diagram is asymmetric with respect to β “ 0. We can see that the
maximum amplification rate has moved from β “ 0 to approximately β “

10 ˆ 10´5U8{ν with a growth rate of αi,min “ ´0.287ˆ10´5U8{ν. For
lower frequencies two local maxima exist for left- and right-traveling waves.
Hereby, the local maximum for right-traveling waves exhibits the higher
growth rate. In the amplification rate contour of ωr “ 2.0 ˆ 10´5U2

8{ν the
right-traveling maximum shows a higher amplification rate than in the case
of ψ “ 0.

The according Nω-diagram of the TS mode is presented in fig. 5.10. All
waves that reach a particular N -factor first have a positive spanwise wave-
number β. It is also evident that transition delay is overpredicted if only
two-dimensional waves are taken into account. The amplification factor e9 is
first reached at x “ 117 ˆ 105ν{U8. A comparison to the results with ψ “ 0
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5 Yawing of the Anisotropic Compliant Wall

Figure 5.10 N -factor envelope over all frequencies for the anisotropic com-
pliant wall with parameter set 2; θ “ 60˝, ψ “ 35˝

shows, that the yawing of the compliant wall is not beneficial for delaying
transition. The simulations at the intermediate steps between ψ “ 0˝ and
ψ “ 35˝ show a continuous change of the amplification rates and N -factor
plots, as well as the absence of instabilities other than the TS mode.

This changes for ψ “ 40˝—here a FISI mode becomes temporally unstable,
with the potential risk of absolute instability. The instability of this mode
prevails in all other cases up to ψ “ 90˝. A temporal linear stability diagram
for ψ “ 45˝ is shown in fig. 5.11. Here the TS mode as well as a FISI
mode is visible i.e. unstable. The FISI mode only exhibits amplification in a
region with β ă 0 and is stable for β “ 0. Hence, if only two-dimensional
stability investigations were performed, a FISI mode, which can exhibit
absolute instability, would be present without showing up in the results.
The N -factor envelope of the FISI mode over frequency is shown in fig 5.12.
Apparently, if the FISI mode is only convectively unstable, it will not trigger
transition, because the TS mode reaches given N -factors first. At ψ “ 50˝

the unstable FISI mode is also unstable at β “ 0.

Increasing the yaw angle further to ψ “ 70˝ the TS waves location of the
maximum growth rate shifts from a right-traveling wave to a left-traveling
wave. This can be observed in fig. 5.13. Here, the spatial amplification
rates of the global maximum of the amplification rate is now on the side of
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5.5 Yawing of the Compliant Wall with θ “ 60˝

Figure 5.11 Temporal linear stability diagram of the Blasius BL over a com-
pliant wall with parameter set 2, θ “ 60˝, and ψ “ 45˝.

Figure 5.12 N -factor envelope over all frequencies of the unstable FISI
mode for the anisotropic compliant wall with parameter set 2; θ “

60˝, ψ “ 45˝.
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5 Yawing of the Anisotropic Compliant Wall

Figure 5.13 Spatial linear stability diagram of the Blasius BL over a compli-
ant wall with parameter set 2, θ “ 60˝, and ψ “ 70˝.

left-traveling waves. For the low frequencies, which play the key role for
transition in a low disturbance environment, the maximum amplification
rate also occurs at a left-traveling wave. The diagram displays some type of
symmetry in the extent of the unstable region. Two-dimensional instabilities
are greatly reduced, which is perceivable by the thick line at β “ 0. How-
ever, a FISI mode is unstable (detected in the according temporal stability
investigations), rendering any benefit of damping the TS wave as useless.

5.6 Yawing of the Compliant Wall with θ “ 75˝

The effects that we have seen for the compliant wall parameter set 2 also
show up for compliant wall parameter set 3. In fig. 5.14 is a temporal LST
diagram for the yaw angle of ψ “ 0˝. Only the TS mode is unstable/visible.
Its amplification rate is further reduced compared to the case of θ “ 60˝ with
a maximum amplification rate of ωi,max “ 0.835ˆ10´5U2

8{ν in the temporal
case, and a maximum amplification rate of αi,min “ ´0.207ˆ10´5U8{ν in
the spatial case. Additionally, the unstable region is smaller. Again there
exist two symmetric local maxima for the low frequencies, and these are
relevant for laminar turbulent transition.

With increasing yaw angle the location of the maximum amplification rate
moves to positive spanwise wavenumbers. In fig. 5.15 is a temporal LST

60



5.6 Yawing of the Compliant Wall with θ “ 75˝

Figure 5.14 Temporal linear stability diagram of the Blasius BL over a com-
pliant wall with parameter set 3, θ “ 75˝, and ψ “ 0˝.

diagram for θ “ 30˝ which shows that the maximum amplification rate has
increased toωi,max “ 0.936̂ 10´5U2

8{ν and is located at β “ 10.0̂ 10´5U8{ν.
In the low frequency region the unstable region has increased slightly with
approximately the same level of amplification rates as in ψ “ 0˝.

Figure 5.15 Temporal linear stability diagram of the Blasius BL over a com-
pliant wall with parameter set 3, θ “ 75˝, and ψ “ 30˝.

Fig. 5.16 shows that forψ “ 55˝ the location of the maximum amplification
rate also switches to a left-traveling wave. Here it is also visible that the plane
for β “ 0 exhibits a clearly smaller instability region and lower amplification
rates than in the case of ψ “ 0.
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5 Yawing of the Anisotropic Compliant Wall

Figure 5.16 Temporal linear stability diagram of the Blasius BL over a com-
pliant wall with parameter set 3, θ “ 75˝, and ψ “ 55˝.

At a yaw angle of ψ “ 70˝ a FISI mode becomes temporally unstable
rendering the setup as prone to suffer absolute instability. The according
temporal LST diagram is shown in fig. 5.17. It is visible that the maximum
amplification rate has risen. Also the unstable region in the low frequency
range is larger and exhibits higher amplification rates.

Figure 5.17 Temporal linear stability diagram of the Blasius BL over a com-
pliant wall with parameter set 3, θ “ 75˝, and ψ “ 70˝.

So when the wall with parameter set 3 is yawed, the flow over the com-
pliant wall shows similar effects as the flow over the compliant wall with
parameter set 2, but amplification rates and the specific angle at which the
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5.7 Conclusions on Yawing of the Compliant Wall

effects takes place are different.

5.7 Conclusions on Yawing of the Compliant Wall

The effect of yawing the anisotropic compliant wall with respect to the flow
direction can be evaluated using fig. 5.18. Here the N -factor envelope over
frequency and spanwise wavenumber is plotted versus the streamwise di-
rection. It can be seen that with increasing yaw angle the laminar length
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Figure 5.18 N -factor envelope with respect to frequency and spanwise
wavenumber versus streamwise direction for rigid wall, compliant
wall parameter set 2 (θ “ 60˝.), and set 3 (θ “ 75˝) for different yaw
angles, and when only two-dimensional waves are considered (β “ 0).
Symbols represent digitized data of Carpenter [15, fig.22]

shortens for both, the compliant wall with parameter set 2, and with pa-
rameter set 3 . Hereby, the previous findings are that a FISI mode becomes
unstable at a certain point. The comparison with Carpenter [15, fig. 22]
shows that the rigid-wall results of our method and Carpenter are in good
agreement with each other. Since Carpenter has based his results on two-
dimensional calculations the N -factor envelope of parameter set 2 and set
3 with respect to all frequencies is plotted for β “ 0. Here the result of
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5 Yawing of the Anisotropic Compliant Wall

Carpenter does not agree with the according curve of our method. How-
ever, it can be seen that Carpenter’s curve for θ “ 60˝ is in good agreement
with our curve for θ “ 75˝. A plausible explanation is that Carpenter’s
curve might be labeled wrong, since the curves for the rigid wall are in
good agreement and since other comparisons to Carpenter shown in app. D
exhibit good agreements. The comparison of the two-dimensional to the
three-dimensional results shows that the transition delay is overpredicted
for all underlying N -factors in the plotted range.

In the previous sections spatial and temporal linear stability calculations
were presented. These have shown that the spanwise wavenumber, where
the maximum amplification rate of the TS mode is located at, can be altered
by the yaw angle. For low disturbance environments, N -Factor calculations
have shown that the relevant waves leading to laminar-turbulent transition
for anisotropic compliant walls exhibit lower frequencies than in the rigid
wall case. Also these waves have a much lower frequency than the waves
which exhibit the highest growth rate. Furthermore, for the anisotropic
compliant walls (parameter sets 2 and 3), the waves that lead to transition are
not two-dimensional waves, rather they are waves with wave propagation
angles in the order of Ψ “ 40˝. This implies that the breakdown scenario is
fundamentally different compared to rigid walls. Here, oblique breakdown
(cf. Fasel et.al. [22], Thumm[60]) can play a role, as well as other types
of breakdown scenarios, such as subharmonic breakdown (cf. Kosinov
et.al. [40]) or oblique-subharmonic resonance (cf. Zengl, von Terzi, and
Rist [73]).

The assessments in this chapter show that concise stability investigations
of anisotropic compliant walls must incorporate oblique-traveling waves.
The findings are:

1. FISI modes can exhibit temporal stability for two-dimensional waves,
but temporal instability at oblique-traveling waves. Since FISI modes
can exhibit absolute instability this can be counterproductive for the
delay of transition.

2. Two-dimensional waves can be significantly more stable than oblique-
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5.7 Conclusions on Yawing of the Compliant Wall

traveling waves. Prediction of laminar-turbulent transition can lead
to inherently wrong results if it is only based on two-dimensional
instabilities.

In conclusion, for the chosen wall parameters, no benefits on the transition
location could be obtained by yawing of the compliant wall with a yaw
angle which is constant in streamwise direction. The results have underlined
the significance of oblique-traveling waves for their relevance on laminar-
turbulent breakdown.
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6 Transient Growth

The failure to take the nonorthogonality of the modes
of the linearized dynamical system into account can
lead to some misleading conclusions [. . . ].

Kathryn M. Butler and Brian F. Farrell

In the previous chapters the behavior of disturbances in low disturbance
environments, where exponential disturbance growth is relevant, were as-
sessed. The higher the disturbance level, the more relevant is the short-term
behavior, i.e. transient growth, of fluid instabilities. In sect. 4.7 it is shown
that, when the resolution is increased, the numerical results of the eigen-
value problem deteriorate earlier for compliant walls than for rigid walls.
This indicates that the compliant wall might alter the transient behavior of
instabilities considerably.

To examine the long-term behavior of instabilities, we investigate the
growth or decay of eigenmodes in the boundary layer. Hereby, the least
stable eigenmode typically triggers transition. To examine the short-term
behavior of instabilities, i.e., their transient growth, we now investigate
a superposition of several eigenmodes, independent of weather they are
stable or not. Hereby, the initial condition—the starting disturbance—which
exhibits the strongest transient growth typically triggers transition. Even
if all eigenmodes are stable, their superposition can result in a transient
growth, because the eigenmodes of the Orr-Sommerfeld and Squire equation
are non-orthogonal. With a chosen disturbance measure, we evaluate how
different initial conditions, i.e. initial disturbances, develop over time, before
they resemble the shape of the least unstable eigenmode.
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6 Transient Growth

6.1 The Choice of Disturbance Measure

To quantify the amplitude of disturbances in the boundary layer over a
compliant wall, we need an appropriate measure. This measure should be
independent of numerical parameters, such as resolution and domain size,
and should ideally have a physical meaning. From a mathematical point-of-
view the measure must result in a mathematical norm. In incompressible
flows the use of the kinetic energy in the fluid disturbance is a common
choice. Since the compliant wall generally also exhibits distortions due to
the disturbances, the energy of the wall must be considered as well. Taking
solely the fluid kinetic energy will result in initial conditions where little
energy is in the flow but large energy is stored in the kinetic or potential
energy of the wall, which leads to skyrocketing energy growth when energy
is transferred from the wall to the fluid. Therefore, we choose to use the sum
of the energy of the fluid

Efluid “

ż 8

0

ũH ũ` ṽH ṽ ` w̃Hw̃ dy , (6.1)

and the kinetic and potential energy of the compliant wall

Ewall “
Cm

cos2 θ
ṽHw ṽw `

ˆ

Ck

cos2 θ
` κ4Cb ` α2CTx ` β2CTz`

Ci tan
2 θ

`

α2
` β2

´ Cν pα sinψ ´ β cosψq
2
˘

˙

η̃H η̃ . (6.2)

as our measure of disturbance amplitude. Hence the only source of distur-
bance amplitude is the base flow.

After discretization, we can write the energy of an arbitrary disturbance
as

Eptq “ xH QE x , (6.3)

with x (defined in eqn. (4.17)) being the complex state of the disturbance,
and the energy weight matrix

QE “ UH diagpwccqU ` VH diagpwccqV ` WH diagpwccqW
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

fluid energy

`

68



6.1 The Choice of Disturbance Measure

Cm

cos2θ
V0

HV0
looooooomooooooon

kinetic wall energy

`

ˆ

Ck

cos2θ
` κ4Cb ` α2CTx ` β2CTz ` tan2θ Ci

`

κ2
´ t25Cν

˘

˙

ηHη
looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

potential wall energy

. (6.4)

Hereby the matrices

U “
i
κ2

”

αDp1q
´βDp0q 0pNcˆ1q

ı

, (6.5)

V “

”

Dp0q 0pNcˆNcq 0pNcˆ1q

ı

, (6.6)

W “
i
κ2

”

βDp1qαDp0q0pNcˆ1q

ı

, (6.7)

V0 “

”

1p1ˆ1q 0p1ˆ2Ncq

ı

, (6.8)

and

η “

”

0p1ˆ2Ncq 1p1ˆ1q

ı

(6.9)

transform the disturbance state x to the fluid velocities u, v, w, wall velocity
v0 and wall elongation η, respectively, e.g., like u “ Ux.

Note that the matrix QE is positive definite due to the choice of Clenshaw-
Curtis quadrature, which has positive nonzero weights. Hence, a Cholesky
decomposition exists for QE “ FHF so that we obtain the energy-based
norm of a disturbance x as

}x}E “ }Fx}2 . (6.10)

Using the SVD of QE “ UΣVH we calculate a Cholesky factor of it with

F “ Σ
1
2VH , (6.11)

and the inverse of the Cholesky factor with

F´1
“

´

VH
¯H

Σ´
1
2 . (6.12)
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6 Transient Growth

6.2 Calculation of Transient Growth and Optimal Perturbations

Starting from the eigenvalue spectrum obtained by the matrix method, we
choose a set of eigenmodes to consider, and optimize a superposition of
these modes with respect to maximum growth within a time span τ . With
the matrix X containing the eigenvectors we consider in columns, we can
write an arbitrary disturbance x as a superposition of these modes with the
amplitudes ki

x “ Xk . (6.13)

Since the amplitudes k of the modes are time dependent, we define the
Matrix Λ as the diagonal matrix containing the amplification rates ωi on its
diagonal and obtain

k “ e´ iΛtk0 “

»

—

—

–

e´ iω1t

. . .

e´ iωN t

fi

ffi

ffi

fl

k0 . (6.14)

Hence, the energy of an arbitrary disturbance formed by the eigenmodes
under consideration is

Eptq “ xH QEx “ kH
0

´

e´ iΛt
¯H

XHQEX
loooomoooon

M“SHS

e´ iΛtk0 . (6.15)

The matrix M is named the matrix of angles and we use the symbol S for its
Cholesky factor.

We define an optimal perturbation to be a disturbance, which exhibits
maximum energy growth within a certain time span. To calculate the max-
imum energy gain Gptq, we want to know the initial amplitudes k0 of all
modes under consideration which maximize the energy gain within the time
span t. This can be written as

Gptq “ max
k0

Eptq

Ept “ 0q
. (6.16)

The function Gptq forms an upper envelope for all time transients in energy.
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6.2 Calculation of Transient Growth and Optimal Perturbations

In case the eigenvectors of X are scaled with their disturbance energy, we
can rewrite the energy gain as follows (cf. Schmid [55], sect. 4.4.2):

Gptq “ max
k0

kH
0

`

e´ iΛt
˘H

SHSe´ iΛtk0

kH
0 SHSk0

(6.17)

“ max
k0

›

›Se´ iΛtk0

›

›

2

2

}Sk0}
2
2

(6.18)

“ max
k0

›

›Se´ iΛtS´1
pSk0q

›

›

2

2

}Sk0}
2
2

(6.19)

“

›

›

›
Se´ iΛtS´1

›

›

›

2

2
. (6.20)

The initial amplitudes k0, representing the optimal disturbance, can be deter-
mined with the principal left singular vector v1 of the matrix

`

Se´ iΛtS´1
˘

(cf. Schmid [55], sect. 4.4.3) using

k0 “ S´1v˚
1 . (6.21)

To calculate Gptq, we

1. solve the Orr-Sommerfeld-Squire eigenvalue problem,

2. choose a set of eigenmodes to be considered for transient growth,

3. scale the eigenvectors with their disturbance energy,

4. calculate the according matrix of angles M,

5. determine its Cholesky factor S,

6. calculate the Euclidian norm of the matrix
`

Se´ iΛtS´1
˘

,

7. and finally take the square.

The Singular Value Decomposition (SVD) was chosen for the calculation of
the Cholesky factor of M because it is less prone to numerical errors than the
Cholesky algorithm (cf. Trefethen [64]). Furthermore, the SVD is used for the
calculation of the Euclidian matrix norm. LAPACK routines [1] are used for
the numerical implementation of the SVD. Note that the current method was
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6 Transient Growth

validated with results published in Schmid [55], results of this comparison
can be found in App. D. Also, excellent quantitative agreement was found
with Butler [12] regarding the location, magnitude and amplification time of
the global optimal.

As an example, and for convenience of using the same parameters as in
chap. 3 and chap. 4, energy transients of four different optimal perturbations
and their envelope Gptq are plotted over time in fig. 6.1 for the Blasius BL
with Re “ 998 and α “ 3.0862 ˆ10´4U8{ν. The calculations of the matrix
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Figure 6.1 Energy transients of optimal perturbations with maximum
growth within time span τ and their envelope

a

Gptq for the Blasius
BL over a rigid wall, with Reδ1 “ 998, α “ 3.0862 ˆ10´4U8{ν, and
β “ 0 : ——, τ “ 0.07U2

8{ν ˆ 10´5 ; ——, τ “ 0.3U2
8{ν ˆ 10´5 ; ——,

τ “ 0.595U2
8{ν ˆ 10´5 ; ——, τ “ 0.75U2

8{ν ˆ 10´5 ; – – –,
a

Gptq.

and shooting solver have shown, that the TS mode is unstable in this case.
Hence, all transients and their envelope show an exponential growth with
a

Eptq{Ep0q „ eωit for t Ñ 8. This is already visible for three perturbations.
The optimal perturbation for τ “ 0.07U2

8{ν ˆ 10´5 shows this behavior for
t " 10U2

8{νˆ 10´5, which is out of the viewport of this graph. A maximum
energy growth1ofEptq{Ep0q “ 25.4 can be seen for the optimal perturbation
with τ “ 0.595U2

8{ν ˆ 10´5 and an immediate exponential growth due
to a TS-type instability with ωi “ 0.246ˆ10´5U2

8{ν. This 2D-case shows
significantly less transient growth potential compared to the 3D case, which
can exhibit transient growth up to Eptq{Ep0q “ 1514 at Reδ1 “ 1000 (cf.

1Note that the energy growth is the square of the plotted energy norm.
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6.3 Transient Growth for the Anisotropic Compliant Wall Case

Butler [12]).

In contrast to that, the compliant wall case, with θ “ 60˝ is shown in fig. 6.2.
Here, all eigenvalues are stable. Consistently to that, all perturbations decay
over time with the decay rate of the least stable discrete mode, i.e. the TS
mode with ωi “ ´0.055ˆ10´5U2

8{ν. In this case the maximum transient
growth exhibits Eptq{Ep0q “ 34.1, which is larger than in the rigid wall
case, but still significantly less than in the 3D-case which will be shown later.
Note that the time transients in the compliant wall case exhibit oscillations in
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Figure 6.2 Energy transients of optimal pertubations with maximum
growth within timespan τ and their envelope

a

Gptq for the Blasius
BL over the anisotropic compliant surface, case 2, with Reδ1 “ 998,
α “ 3.0862 ˆ10´4U8{ν, and β “ 0 : ——, τ “ 0.07 ; ——, τ “ 0.3 ;
——, τ “ 0.555 ; ——, τ “ 0.75 ; – – –,

a

Gptq.

time, which can be explained by superposition of two or more eigenmodes of
similar amplitude. Even though the compliant surface stabilizes the TS mode
in this case, the maximum transient energy growth increases. Therefore, the
transient behavior is investigated in the α–β-plane in the following section.

6.3 Transient Growth for the Anisotropic Compliant Wall Case

To assess the influence of the compliant walls, with parameter set 2 and set 3,
with θ “ 60˝ and θ “ 75˝, respectively, we follow Butler and Farrell [12] and
Schmid [55] and calculate the maximum transient growth in the α–β-plane
for Reδ1 “ 1000. Here, we plot the largest singular value σmax “

a

Gptq of
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6 Transient Growth

the matrix
`

Se´ iΛtS´1
˘

, which corresponds to the maximum growth of an
optimal perturbation in the energy norm (6.10). Note that this corresponds
to the (local) maximum in the diagrams shown in the previous section.

Fig. 6.3 shows the contours of maximum transient growth for the rigid
wall case. Hereby, the exponentially unstable region is omitted, and the
exponential growth rate is plotted in black-white contours. The region

Figure 6.3 Colour-contours of maximum transient growth σmax in the α–
β-plane for Reδ1 “ 1000 in the rigid wall case. Black-white contours
denote the exponentially unstable region with temporal amplification
rate ωi.

where κ ă 5ˆ10´5U8{ν is also omitted, because towards κ “ 0 the solution
becomes increasingly more dependent on the domain height. This is due to
the implemented decay boundary condition in the free stream which requires
larger domain heights for smaller resulting wavenumbers κ. Increasing
domain height could partly remedy this effect, but therefore more collocation
points would be necessary with according loss of precision (cf. sec. 4.7).

Fig. 6.4 shows the contours of maximum transient growth for the compli-
ant wall case for parameter set 2, i.e. for θ “ 60˝. Here we can see the typical
reduction of the exponential growth in size and magnitude. It can clearly be
seen that the global optimal at α “ 0 and β “ 65 ˆ10´5U8{ν is not affected
in magnitude and location. The compliant wall does not affect this transient
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6.3 Transient Growth for the Anisotropic Compliant Wall Case

growth mechanism at all. For small spanwise wavenumbers the compliant
wall alters the transient growth of disturbances, with only a slight increase
of maximum transient growth.

Figure 6.4 Color-contours of maximum transient growth σmax in the α–β-
plane for Reδ1 “ 1000 in the compliant wall case, with θ “ 60˝ and
ψ “ 0˝. Black-white contours denote the exponentially unstable region
with temporal amplification rate ωi.

Fig. 6.5 shows the contours of maximum transient growth for the compli-
ant wall case for parameter set 3, i.e. for θ “ 75˝. Again, the global maximum
transient growth is not altered by the compliant wall. Changes in transient
growth are only visible in the region of smaller spanwise wavenumbers α.
Also, the maximum transient growth is altered only in the region where
transient growth is small compared to the global maximum.

We can conclude that the compliant walls under consideration do not
exhibit a new relevant transient growth mechanism. However, the classical
transient growth mechanism which is prevalent in the rigid wall case is not
altered by the compliant walls under consideration of this work. So while
exponential growth is attenuated by these compliant walls, transient growth
is not attenuated.
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Figure 6.5 Color-contours of maximum transient growth σmax in the α–β-
plane for Reδ1 “ 1000 in the compliant wall case, with θ “ 75˝ and
ψ “ 0˝. Black-white contours denote the exponentially unstable region
with temporal amplification rate ωi.

6.4 Effect of Yawing on Transient Growth of the Compliant Wall
Case with θ “ 60˝

Since yawing of the compliant wall material was investigated in chap. 5
regarding exponential growth and transition prediction using N -factors, we
investigate yawing of the anisotropic compliant walls also regarding tran-
sient growth as well. Since yawing of the compliant wall breaks symmetry
of left- and right-traveling waves, we need to consider negative spanwise
wavenumbers β.

In fig. 6.6, the maximum transient growth is shown for a yaw angle of
ψ “ 35˝. Compared to the case with ψ “ 0˝, the exponentially unstable
region is larger for β ą 0. Again, the global maximum of transient is
unaltered. For the 2D-case, i.e. β “ 0, the transient growth is slightly
reduced compared to the case of ψ “ 0˝ and the rigid wall case. So yawing
of the compliant wall indeed has an influence on transient growth, but in this
case no change of the classical transient growth mechanism can be observed.
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Figure 6.6 Color-contours of maximum transient growth σmax in the α–β-
plane for Reδ1 “ 1000 in the compliant wall case, with θ “ 60˝ and
ψ “ 35˝. Black-white contours denote the exponentially unstable region
with temporal amplification rate ωi.

6.5 Conclusions on Transient Growth for the Anisotropic
Compliant Wall

In this chapter the transient growth of disturbances of the Blasius boundary
layer over anisotropic compliant walls was investigated. Hereby the wall
parameters were chosen based on the two-dimensional investigations and
optimization of Carpenter [15]. It was shown, that the compliant wall can
indeed alter the transient growth of disturbances. In the two-dimensional
case it increased maximum transient growth slightly. The two-dimensional
case is however not relevant, due to the much stronger three-dimensional
transient growth.

In contrast to the works of Hœpffner [34], who has shown that spanwise
standing waves of the compliant wall can be involved with transient growth
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within plane channel flow, such a mechanism was not found for the chosen
compliant walls. What is remarkable in the investigations is, that the classical
transient growth mechanism of streamwise vortices is not altered by the
compliant wall at all. This gives rise to the question whether this mechanism
can be altered by compliant walls in general.

The attenuation of modal growth by using compliant walls with an effec-
tive reduction of N -factors increases the importance of transient growth for
these materials. The fact that the investigated compliant materials do not
introduce any relevant transient growth is good news. However, for the flow
over compliant walls, transient growth must be considered more than for
the rigid wall case.
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The effect of anisotropic compliant walls on three-dimensional disturbances
in the Blasius boundary layer was investigated in this work. The prevailing
surface-based anisotropic compliant wall model found in literature was
extended to allow yawing of the compliant material with respect to the flow.
It is important to note that most works on the stability of flow over compliant
walls consider only two-dimensional disturbances. While it is true that the
two-dimensional case can be transformed to the three-dimensional case,
and vice versa, via Squire transformation, this is rarely a valid approach.
The current work incorporates a compliant wall model which enforces a
coupling of the Orr-Sommerfeld and the Squire equation. This leads to the
implication, that the Squire-transformation is no longer applicable. Also the
Squire-theorem is no longer valid in this case, and that three-dimensional
modes can reach certain amplitudes to trigger laminar-turbulent transition
before their two-dimensional counterparts has always been the case.

Two complimentary numerical solvers, a shooting solver, and a matrix
solver, were developed to enable the evaluation of three-dimensional linear
instabilities. A novel approach was introduced in the shooting solver, which
highly increases robustness by scaling the boundary condition residual at
the wall with disturbance pressure. The implementation of these solvers is
also somewhat special, because the two governing equations must be solved
in coupled form. The numerical accuracy of the solvers was evaluated, and it
appears that the solvers produce results of sufficient accuracy to investigate
exponential (modal) and transient (non-modal) instabilities.

Due to the plethora of compliant wall parameters, two parameter sets
found in literature were chosen, which were optimized in a purely two-
dimensional framework for attenuation of the Tollmien-Schlichting insta-
bility, while keeping Flow-Induced Surface Instabilities marginally stable.
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7 Conclusions and Outlook

The presented investigations have shown that purely two-dimensional sta-
bility calculations can lead to inherently wrong conclusions on the stability
of flows over compliant surfaces. Also, the calculations have shown that
transition prediction based on N -factors is slightly overpredicted. However,
for the two chosen materials, a significant delay of laminar-turbulent transi-
tion is predicted. Therefore it confirms that anisotropic compliant walls can
significantly delay transition.

Investigations on transient growth have also been carried out for the
two compliant wall parameter sets. These have shown that no additional
transient growth mechanism with relevant amplification is introduced by
the compliant walls. Here it is important to note that the classical transient-
growth mechanism, incorporating streamwise vortices, is not altered by the
compliant walls. These results show that it is unlikely for compliant walls to
attenuate this transient-growth mechanism.

A yawing of the chosen compliant materials, inspired by findings that
dermal ridges in delphinoidea make an angle to the local flow direction, have
not turned out to show a benefit in delay of laminar-turbulent transition for
the investigated parameters sets. This was the case for modal and non-modal
growth. Concerning modal growth, it was shown that yawing alters the
wave propagation angle of the most amplified wave. This suggests, that
yawing of the anisotropic material could help in optimization of compliant
wall parameters if a variation of wall parameters in the downstream direction
is admitted.

In the presented investigations the compliant wall parameters have been
kept constant in streamwise direction. Also, the boundary layer was re-
stricted to Blasius flow. However, the stability solvers which were devel-
oped for this work can be used for a much wider field of investigations. The
inclusion of crossflow and pressure gradients in the governing equations
gives the possibility to apply the presented numerics to various external
flows, like e.g., the Falkner-Skan-Cooke boundary layers. A local adap-
tion of the compliant wall parameters could be used to attenuate instability
waves even more. This will lead to an ambitious optimization problem for
compliant wall parameters. Hereby, the solvers for the calculation of the
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stability equations must be very robust. The temptation to optimize wall
parameters should be resisted as long as possible, because the optimized
wall parameters need to be realizable in a future practice. Otherwise, the
result will be of little use.

A weak point of most investigations which incorporate compliant walls,
including this work, is that they lack comparisons with experiments. Exper-
imental evidence is a key factor for a future application of these findings
and should be taken as priority in future investigations. The author hopes
that the current work can help finding an experimental setup for future
investigations.
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A Employed Compliant Wall Parameters
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B Linear Stability Equations

It is not the linearization that limits insight. It is the
nature of the state that we choose to linearize about.

Erik Eady

Coordinate System

We define a Cartesian coordinate system where the x‹-axis points in stream-
wise direction, the y‹-axis in wall-normal direction and the z‹-axis combines
the axes to a right-handed coordinate system pointing in spanwise direc-
tion. The fluid velocities in the aforementioned directions are u‹, v‹ and w‹,
respectively, with starred quantities denoting dimensional quantities.

Non-Dimensionalization

The quantities in the equations of this work are non-dimensionalized using
the following relations:

x “
x‹

L‹
y “

y‹

L‹
z “

z‹

L‹

u “
u‹

U‹
8

v “
v‹

U‹
8

w “
w‹

U‹
8

t “
U‹

8

L‹
t‹ ρ “

ρ‹

ρ‹
8

p “
p‹

ρ‹
8U‹

8
2 (B.1)

Hereby, the quantities U‹
8, ρ‹

8, L‹ are a reference velocity, reference den-
sity, and reference length, respectively, and can be chosen arbitrarily. The
Reynolds number

Re “
ρ‹

8U
‹
8L

‹

µ‹
“
U‹

8L
‹

ν‹
, (B.2)

with µ‹ and ν‹ being the dynamic and the kinematic viscosity, respectively,
depends on these chosen quantities. Dimensional quantities sharing the
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B Linear Stability Equations

same units are scaled analogous, e.g., Young’s modulus E and pressure p.
Furthermore, we define the wall-normal vorticity as

Ω “
Bu

Bz
´

Bw

Bx
. (B.3)

Linearization

To apply the linear stability theory (LST) on fluid flows, the governing
equations must be linearized. Hereby, the fluid quantities φ are written as a
superposition of their steady mean part φ̄ and their fluctuating part φ́ as

φpx, y, z, tq “ φ̄px, y, zq ` φ́px, y, z, tq . (B.4)

Additionally, it is assumed that the fluctuating part of the fluid quantities
are much smaller than their mean part

φ́px, y, z, tq ! φ̄px, y, zq . (B.5)

Unless otherwise denoted, a Falkner-Skan similarity solution was taken as
the steady mean part of the flow, which was calculated by an improved
version of Seebach’s [58] implementation.

Local Parallelism

Since boundary layers are typically thin with respect to their streamwise
extent, some terms in the linearized Navier-Stokes equations are negligible.
Analyzing the order of magnitude of the different terms, it can be shown
that terms involving v̄ are orders of magnitude smaller compared to terms
involving ū and w̄, and that terms with derivatives with respect to x and z
are orders of magnitude smaller than terms with derivatives with respect to
y. This approach is analogous to the derivation of Prandtl’s boundary layer
equations. Assuming that all disturbance velocity components have the
same order of magnitude, the linearized Navier-Stokes equations simplify
as if one assumes that the baseflow velocity profile is only dependent on the
wall-normal direction y and that the baseflow has no velocity component in
y direction, i.e.

ū “ ūpyq w̄ “ w̄pyq v̄ “ 0 . (B.6)
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The mean flow is virtually assumed as parallel flow. Therefore, one speaks
of the locally-parallel assumption. This procedure implicitly assumes that
the streamwise wavelength of the disturbances is small compared to the
streamwise extent of the boundary layer.

Modal Approach

The form of the disturbance equations suggests introducing a modal ap-
proach of the form

φ́px, y, z, tq “ φ̃pyq eipαx`βz´ωtq
` complex conjugate , (B.7)

with modes that are waves and have an amplitude φ̃ which is dependent on
y only. This reduces the disturbance equations to a set of ordinary differential
equations. The generally complex quantities α, β, and ω are the streamwise
wavenumber, spanwise wavenumber, and the angular frequency, respec-
tively, and are in general complex quantities. The real part of the complex
wavenumbers is the physical wavenumber and the real part of the complex
angular frequency is the physical angular frequency. The imaginary part of
the complex wavenumbers is the spatial amplification rate and the imagi-
nary part of the complex angular frequency is the temporal amplification
rate. The phase velocity of the disturbance modes is

cph. “
ωr

αr
. (B.8)

For simplicity we define the complex resulting wavenumber as

κ “
a

α2 ` β2 . (B.9)

Note that in general the real part of κ is not equal to the resulting physical
wavenumber.

The modal approach implies periodicity in spanwise direction in case the
imaginary part of the spanwise wavenumber β is zero. Throughout this
work this is assumed to be the case: All derivatives of the baseflow with
respect to the spanwise direction are zero.
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B Linear Stability Equations

Formulations of the Linear Stability Equations

Different formulations of the linear stability equations can be chosen which
of course have their own advantages and disadvantages. Mack [45, sect. 2.5],
inter alia, presents the following definition of the quantities

z1 “ αũ` βw̃ (B.10)

z2 “ αũy ` βw̃y (B.11)

z3 “ ṽ (B.12)

z4 “ p̃ (B.13)

z5 “ αw̃ ´ βũ (B.14)

z6 “ αw̃y ´ βũy (B.15)

that form the linear stability equations

z1,y “ z2 (B.16)

z2,y “
`

κ2
` iRet1

˘

z1 `Ret2z3 ` iκ2Rez4 (B.17)

z3,y “ ´ iz1 (B.18)

z4,y “ ´ iRe´1z2 ´
`

it1 ` κ2Re´1
˘

z3 (B.19)

z5,y “ z6 (B.20)

z6,y “ Ret3z3 `
`

κ2
` iRet1

˘

z5 . (B.21)

Some terms of the linear stability equations are simplified as

t1 “ αū` βw̄ ´ ω (B.22)

t2 “ αūy ` βw̄y (B.23)

t3 “ αw̄y ´ βūy (B.24)

to reduce the length of the equations. In the implemented solver, these
terms are stored after their calculation when they are used again, e.g., for the
different stages of the Runge-Kutta scheme. The equations (B.16)-(B.19) are
equivalent to the Orr-Sommerfeld equation and the equations (B.20)-(B.21)
are equivalent to the Squire equation.

88



In contrast to the formulation as a system of first order equations, the
stability equations can be written as two coupled equations of each fourth
and second order. The fourth-order equation, namely the Orr-Sommerfeld
equation, is

Re pαū` βw̄q
`

ṽyy ´ κ2ṽ
˘

` i
`

ṽyyyy ´ 2κ2ṽyy ` κ4ṽ
˘

´Re pαūyy ` βw̄yyq ṽ “ ω
“

Re
`

ṽyy ´ κ2ṽ
˘‰

, (B.25)

and the second order equation, namely the Squire equation, is

Re pαw̄y ´ βūyq ṽ ` i
´

κ2Ω̃ ´ Ω̃yy

¯

´ Re pαū` βw̄q Ω̃ “ ω
”

´ReΩ̃
ı

.

(B.26)

Choice of the Formulation

Equations (B.10)-(B.15) have the advantage, that they contain solely the
base flow and its first derivative. Errors emerging from taking the second
derivative of the base flow do not appear. This is valuable when experimental
data is used. Also, their quantities contain the disturbance pressure directly,
so that it does not have to be calculated out of the disturbance velocities,
which incorporates up to third derivatives with respect to y.

Equations (B.25) and (B.26) have the advantage, that only the wall-normal
disturbance velocity ṽ and the wall-normal vorticity Ω̃y appear in the equa-
tions. This fact is important when computing the LST-eigenvalue problem
with a dense-matrix method, such as the QZ-algorithm because the size of
the discretized matrix is the number of collocations points times the num-
ber of variables. Moreover, the computational cost of the QZ-algorithm is
proportional to the size of the matrix to the power of three. Hence, this
formulation has a significantly lower computational cost when using dense-
matrix methods.
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B Linear Stability Equations

Useful Formulas

For conversion between the formulations of the linear stability equations
present in this work we have:

z1 “ iṽy

z2 “ iṽyy

z3 “ ṽ

z4 “
`

ṽyyy ´
`

κ2
` iRe pαū` βw̄q ṽy

˘

` iReωṽy ` iRet2ṽ
˘ 1

κ2Re

z5 “ iΩ̃

z6 “ iΩ̃y

ũ “ κ´2
pαz1 ´ βz5q “ iκ´2

´

αṽy ´ βΩ̃
¯

ṽ “ z3

w̃ “ κ´2
pβz1 ´ αz5q “ iκ´2

´

βṽy ` αΩ̃
¯

p̃ “ z4

Ω̃ “ ´ iz5

t1 “ αū` βw̄ ´ ω

t2 “ αūy ` βw̄y

t3 “ αw̄y ´ βūy

t4 “ α cosψ ` sinψ

t5 “ α sinψ ´ β cosψ

t6 “ ūyy cosψ ` w̄yy sinψ

t7 “ αū` βw̄
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C Contents of the Stability Matrix

In the following is explained how the matrices are composed for the
compliant-wall stability problem. The matrices A and B of equation (4.1)
can be written as

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Ap1,1q 0 0

Ap2,1q Ap2,2q Ap2,3q

Ap3,1q 0 0

Ap4,1q 0 0

Ap5,1q 0 0

Ap6,1q 0 0

Ap7,1q Ap7,2q 0

0 Ap8,2q 0

Ap9,1q 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (C.1)

and

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Bp1,1q 0 0

Bp2,1q 0 0

Bp3,1q 0 0

Bp4,1q 0 0

Bp5,1q 0 0

Bp6,1q Bp6,2q 0

0 Bp7,2q 0

0 Bp8,2q 0

0 0 Bp9,3q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (C.2)

Each row of the matrices constitutes a boundary condition or a governing
equation evaluated at the collocation points. The submatrices

Ap1,1q
“ it2D

p0q

1,1:Nc
, (C.3)
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C Contents of the Stability Matrix

and

Bp1,1q
“ tan θt4D

p0q

1,1:Nc
´ iDp1q

1,1:Nc
(C.4)

constitute the boundary condition (2.30). The submatrices

Ap2,1q
“ κ2ReCdD

p0q

1,1:Nc
` cos2 θ

´

D
p3q

1,1:Nc
´ 3κ2D

p1q

1,1:Nc

¯

`cos2 θ iRe
´

t2D
p0q

1,1:Nc
´ t7D

p1q

1,1:Nc

¯

´sin θ cos θ it4
´

κ2D
p0q

1,1:Nc
` D

p2q

1,1:Nc

¯

,

(C.5)

Ap2,2q
“ ´ sin θ cos θt5 iDp1q

1,1:Nc
, (C.6)

Ap2,3q
“ κ2

`

ReCk ` cos2 θRe
`

κ4Cb ` α2CTx ` β2CTz

˘

` sin2 θReCi

`

κ2
´ Cνt

2
5

˘

´ sin θ cos θt6
˘

, (C.7)

and

Bp2,1q
“ iRe

´

κ2CmD
p0q

1,1:Nc
´ cos2 θD

p1q

1,1:Nc

¯

(C.8)

constitute the boundary condition (2.32). The submatrices

Ap3,1q
“ Re pα diagpu3:Nc´2q ` β diagpw3:Nc´2qq

´

D
p2q

3:Nc´2,1:Nc
´ κ2D

p0q

3:Nc´2,1:Nc

¯

`

i
´

D
p4q

3:Nc´2,1:Nc
´ 2κ2D

p2q

3:Nc´2,1:Nc
` κ4D

p0q

3:Nc´2,1:Nc

¯

´Re pα diagpuyy,3:Nc´2q ` β diagpwyy,3:Nc´2qqD
p0q

3:Nc´2,1:Nc
, (C.9)

and

Bp3,1q
“ Re

´

D
p2q

2:Nc´1,1:Nc
´ κ2D

p0q

2:Nc´1,1:Nc

¯

(C.10)

constitute the Orr-Sommerfeld equation (B.25) evaluated at the points
y3 . . . yNc´2. The submatrices

Ap4,1q
“

´

D
p2q

Nc,1:Nc
` κD

p1q

Nc,1:Nc

¯

µ , (C.11)

and

Bp4,1q
“

´

D
p2q

Nc,1:Nc
` κD

p1q

Nc,1:Nc

¯

(C.12)
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constitute the boundary condition (4.14). The submatrices

Ap5,1q
“

´

D
p1q

Nc,1:Nc
` κD

p0q

Nc,1:Nc

¯

µ , (C.13)

and
Bp5,1q

“

´

D
p1q

Nc,1:Nc
` κD

p0q

Nc,1:Nc

¯

(C.14)

constitute the boundary condition (4.15). The submatrices

Ap6,1q
“ it3D

p0q

1,1:Nc
, (C.15)

Bp6,1q
“ tan θt5D

p0q

1,1:Nc
, (C.16)

and
Bp6,2q

“ ´ iDp0q

1,1:Nc
(C.17)

constitute the boundary condition (2.31). The submatrices

Ap7,1q
“ Re pα diagpwy,2:Nc´1q ´ β diagpuy,2:Nc´1qqD

p0q

2:Nc´1,1:Nc
,

(C.18)

Ap7,2q
“ i

´

κ2D
p0q

2:Nc´1,1:Nc
´ D

p2q

2:Nc´1,1:Nc

¯

´Re pα diagpu2:Nc´1q ` β diagpw2:Nc´1qqD
p0q

2:Nc´1,1:Nc
, (C.19)

and
Bp7,2q

“ ´ReD
p0q

2:Nc´1,1:Nc
(C.20)

constitute the Squire equation (B.26) evaluated at the points y2 . . . yNc´1.
The submatrices

Ap8,2q
“

´

D
p1q

Nc,1:Nc
` κD

p0q

Nc,1:Nc

¯

µ , (C.21)

and
Bp8,2q

“

´

D
p1q

Nc,1:Nc
` κD

p0q

Nc,1:Nc

¯

(C.22)

constitute the boundary condition (4.16). The submatrices

Ap9,1q
“ iDp0q

1,1:Nc
, (C.23)

and
Bp9,3q

“ 1 (C.24)

constitute equation (2.34).
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D Validation of the Linear Stability Solvers

For code validation numerical results of the shooting method are compared
to results in literature. Fig. D.1 shows neutral stability curves in the pαδ1q´

pReδ1q plane, for the Blasius boundary layer over rigid and compliant walls.
Symbols denote scanned and digitized data of Carpenter [15, fig.19], lines
denote the solution obtained by the shooting method. The results for the
compliant walls are in perfect agreement to each other. For the rigid wall
case the results are in less than perfect agreement. A comparison to other
rigid-wall results in literature shows perfect agreement with our shooting
method. So the differences can be explained by a deviation of Carpenters
results.

0 1000 2000 3000 4000
Re

δ
1

0

0.1

0.2

0.3

0.4

α
 δ

1

rigid

θ=0
0

θ=60
o

θ=75
o

symbols: Carpenter
lines: shooting method

Figure D.1 Neutral stability curves, for the Blasius boundary layer over
rigid and compliant walls, in the pαδ1q´pReδ1q plane. Symbols denote
scanned and digitized data of Carpenter [15, fig.19], lines denote the
results of the shooting method. Wall parameters are listed in table A.1.

Fig. D.2 shows contours of maximum transient growth in the α´β plane
for the Blasius boundary layer over a rigid wall at Reδ1 “ 1000. These
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D Validation of the Linear Stability Solvers

results show very good agreement of the present method and the scanned
and digitized data of Schmid [55].
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Figure D.2 Contours of maximum transient growth in the α´β plane for
the Blasius boundary layer over a rigid wall at Reδ1 “ 1000. Lines
denote the results of the current method, symbols denote scanned and
digitized data of Schmid and Henningson [55, fig. 4.6].

The results obtained by the implementations of the numerical methods,
presented in this work, are in perfect agreement to well-respected results lit-
erature. It is notable that the results of Carpenter were obtained by different
numerical methods, different formulations of the governing equations, and
different boundary conditions. Furthermore, it is to note that both, the im-
plementation of the shooting method, and the implementation of the matrix
method, exhibit results which are also in perfect agreement. Hereby, these
methods also use different formulations of equations, boundary conditions.
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