
Intraoperative Localization and Scene Reconstruction using
Differentiable Rendering and Graph-based Landmark

Registration with Application to Cystoscopy

Von der Fakultät

Konstruktions-, Produktions- und Fahrzeugtechnik

der Universität Stuttgart

zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Abhandlung

vorgelegt von

Johannes Matthias Schüle

geboren in Göppingen

Hauptberichter: Prof. Dr.-Ing. Dr. h. c. Oliver Sawodny
Mitberichter: Prof. Dr. rer. nat. Alois Herkommer

Prof. Dr.med. Dr. h. c. Arnulf Stenzl
Tag der mündlichen Prüfung: 12.06.2023

Institut für Systemdynamik der Universität Stuttgart

2023





Vorwort

Die vorliegende Arbeit entstand während meiner wissenschaftlichen Tätigkeit am In-
stitut für Systemdynamik (ISYS) der Universität Stuttgart in der Zeit von April 2020
bis April 2023. Mein Projekt zur Problemstellung der intraoperativen Lokalisierung
war Teil des Graduiertenkollegs 2543 »Intraoperative multisensorische Gewebedif-
ferenzierung in der Onkologie«. Dieses wird gemeinsam mit weiteren Instituten der
Universität Stuttgart, der Eberhard-Karls-Universität Tübingen und dem Univer-
sitätsklinikum Tübingen durchgeführt und von der Deutschen Forschungsgemein-
schaft finanziell unterstützt.

Die Zeit meiner Promotion war für mich eine herausragende Erfahrung, die mir
stets große Freude bereitet hat und zugleich eine Vertiefung meiner fachlichen Inter-
essen ermöglichte. An dieser Stelle möchte ich mich bei den zahlreichen Personen
bedanken, die mich während dieser Zeit auf vielfältige Weise unterstützt haben.

Mein besonderer Dank gilt meinem Doktorvater Prof. Dr.-Ing. Dr. h.c. Oliver
Sawodny, der am ISYS die Rahmenbedingungen für eine tolle Forschungsatmosphäre
für meine Kollegen und mich ermöglicht hat. Ich bin ihm nicht nur für seine fachliche
Anleitung und seine kritisch konstruktiven Anmerkungen dankbar, sondern auch für
das Vertrauen, das er in mich gesetzt hat, und die Freiheit und Verantwortung, die
er mir während der Forschung gewährt hat. Prof. Dr.-Ing. André Casal Kulzer vom
Institut für Fahrzeugtechnik Stuttgart danke ich für die Übernahme des Prüfungsvor-
sitzes. Des Weiteren möchte ich Prof. Dr. rer. nat. Alois Herkommer vom Institut
für Technische Optik und Prof. Dr. med. Dr. h. c. Arnulf Stenzl von der Klinik für
Urologie am Universitätsklinikum in Tübingen für ihr Interesse an meiner Arbeit,
ihre Unterstützung und die Zusammenarbeit während des gesamten Projektverlaufs
sowie die Übernahme des Mitberichts danken. Das Institut für Technische Optik
führte wesentliche experimentelle Versuche durch, unterstützt durch Valese Aslani.
Die wesentliche klinische Expertise und die notwendigen Videodaten wurden von der
Klinik für Urologie in Tübingen bereitgestellt. Mein besonderer Dank gilt Dr. med.
Niklas Harland und Dr. med. Simon Walz, die im klinischen Alltag die Aufnahmen
von zystoskopischen Videodaten integriert und so die für das Projekt erforderlichen
intraoperativen Daten akquiriert haben.

Ich schätze meine Zeit am ISYS sehr und bin dankbar für die vielen wertvollen Fre-
undschaften, die ich während dieser Zeit aufbauen konnte. Mein aufrichtiger Dank
gilt allen Mitarbeiter:innen des ISYS, die immer bereit waren, mit Rat und Tat zur
Seite zu stehen und ein familiäres Arbeitsklima am Institut schafften. Marion Fleis-
cher, Corina Hommel und Gerlind Preisenhammer danke ich für die Übernahme aller

I



Vorwort

administrativen Aufgaben, die es mir ermöglichten, mich auf die wissenschaftlichen
Problemstellungen zu konzentrieren. Zudem möchte ich Dr.-Ing. Eckhard Arnold
und Dr.-Ing. Michael Böhm danken, die mir als Ansprechpartner und Mentoren zu
jeglichen Themen zur Seite standen, sei es in der Lehre oder in Diskussionsrunden
zur Optimierung und vielen weiteren Themen.

Außerdem möchte ich meinen Projekt- und Bürokollegen Peter Somers und Carina
Veil für eine Promotionszeit danken die geprägt war von intensiver Zusammenar-
beit und Freundschaft. Ebenfalls möchte ich mich bei Mark Burkhardt für un-
sere Wohngemeinschaft bedanken, die durch eine Vielzahl von nachfeierabendlichen
Nachbesprechungen des Arbeitstages geprägt war. Es freut mich, dass Franziska
Krauß als meine Nachfolgerin das Forschungsprojekt weiterführt. Ich möchte mich
bei Ihr für die Unterstützung vor der mündlichen Promotionsprüfung danken.

Ein weiterer Dank geht an alle fleißigen Korrekturleser des Instituts: Melanie Gschweng,
Kathrin Hoffmann, Anja Lauer, Bernd Müller, Christos Parlapanis, Jonas Stiefel-
maier und Frank Wolff. Weiter möchte ich meinen lieben Freunden Salehah AR,
Carmen Bannert, Lena Braun und Johannes Dunke danken. Sie haben meine Ar-
beit nicht nur in kürzester Zeit korrekturgelesen, sondern waren auch eine konstante
mentale Unterstützung während der gesamten dreijährigen Promotionszeit.

Nicht zuletzt gilt mein ausdrücklicher Dank meiner gesamten Familie für die bedin-
gungslose Unterstützung und den großen Rückhalt. Meine Faszination für Technik
und naturwissenschaftliche Fragestellungen wurde immer mit geduldiger und aus-
führlicher Beantwortung bohrender Kinderfragen gefördert. Schließlich wurde ich
während meiner gesamten Ausbildungs- und Promotionszeit stets unterstützt.

Büchenbronn, Juli 2023 Johannes Schüle

II



Abstract

Minimally invasive procedures offer many advantages to patients and surgeons for di-
agnosis and therapy, as they significantly reduce the surgical trauma. An endoscope
tailored to the specific anatomy is inserted into the body through targeted incisions
or natural orifices. However, the limited access and restricted field of view in the
surgical site can pose significant challenges for navigation and visual orientation. As
a result, intraoperative navigation and scene reconstruction have become essential
areas of focus in computer-assisted surgery and are receiving increasing attention in
the literature. Nevertheless, traditional geometry-based localization and mapping
techniques are inadequate for this purpose. In general, there is a lack of holistic
approaches in the literature that describe a comprehensive solution for dealing with
deformable intraoperative environments.

This work addresses intraoperative localization and scene reconstruction, particu-
larly for deformable environments. Motivated by the specific challenges of bladder
endoscopy - cystoscopy -, a holistic approach to intraoperative localization and scene
reconstruction that meets the requirements for robustness and accuracy in intraop-
erative conditions is proposed. The proposed reconstruction concept relies on a
monocular camera image, but can be flexibly extended to include additional sen-
sor data. Furthermore, the presented concept enables the reconstruction of camera
position, geometry, and texture based on gradient-based optimization formulations.
The fundamental reconstruction strategy employed in this work follows the question:
How does the model representation and camera perspective need to be adjusted such
that the rendering of the model matches the current observation?

The objective of the reconstruction is to solve several optimization problems, which
ultimately require fully differentiable rendering mappings. Therefore a differentiable
rendering process is employed, and the inverse rendering method is proposed, in
which 2D image data is projected from the camera viewpoint onto a 3D mesh model.
This projection results in new mesh-bound data in a differentiable form: the inter-
section point with the mesh itself, the normal direction of this point, and the surface
texture. By including the normal information in addition to the intersection points
of the given image patterns, the associated pose of the current observation can be re-
constructed. In order to determine orientation, specific landmark information must
be acquired and registered accordingly. Therefore, visible vascular structures are
extracted into a graphical representation and used as intraoperative landmarks that
allow for a deformation-invariant description of the landmark information. A ro-
bust graph-matching method based on deformation-tolerant descriptor descriptions
is presented to determine related structures. Additionally, a new structure-based
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Abstract

and deformation-invariant outlier classification is proposed to check given matches
based on anatomical features. A match is identified as an outlier, if it requires
anatomically invalid - self-intersecting - vascular structures to match. The validated
matching structures are stored in a global model representation after an appropri-
ate gradient-based pose reconstruction so that in case a new observation is made,
the observed structures can be matched with all previously observed structures in a
single step.

Any discrepancies between related patterns that remain unresolved after pose re-
construction are compensated for by adjusting the model geometry. However, such
geometry reconstruction often results in an over-determined optimization problem.
To address this, new regularization costs are proposed that take the intraoperative
requirements into account. Once the current camera perspective and geometry ra-
tios are reconstructed, the currently observed vessel structure in the model texture
can be updated. Recurrent structures are also identified to establish recognition
reliabilities for each individual tissue structure. This helps to limit the complexity
of the reconstruction to reliably identifiable structures, which benefits the entire
reconstruction process by relying on unique patterns. In conclusion, graph-based
landmark registration is used to enhance the overall robustness of the reconstruc-
tion pipeline, while gradient-based reconstruction accounts for the overall complexity
of geometry and texture mapping.
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Kurzfassung

In der Diagnose und Therapie bieten minimalinvasive Verfahren viele Vorteile für
den Patienten und den Chirurgen, da sie das Verletzungstrauma drastisch reduzie-
ren. Ein auf die spezifische Anatomie zugeschnittenes Endoskop wird durch gezielte
Schnitte oder natürliche Körperöffnungen in den Körper eingeführt. Durch den mi-
nimierten Zugangsweg sind der Bewegungsradius und das Sichtfeld des Chirurgen al-
lerdings sehr eingeschränkt. Eine umfassende Rundumsicht ist im Allgemeinen nicht
gewährleistet, sodass die Orientierung im Körperinneren für die Operierenden eine
große Herausforderung darstellt. Intraoperative Navigation und Szenenrekonstruk-
tion sind folglich zentrale Fragestellungen für die Weiterentwicklung der computer-
gestützten Chirurgie. Dabei stellt vor allem die Erfassung deformierbarer intraope-
rativer Umgebungen eine große Herausforderung dar; herkömmliche Lokalisierungs-
und Kartographietechniken werden der intraoperativen Komplexität im Allgemei-
nen nicht gerecht. Dementsprechend fehlt es in der Literatur an Ansätzen, die eine
ganzheitliche Lösung für deformierbare intraoperative Umgebungen beschreiben.
Diese Arbeit thematisiert intraoperative Lokalisierung und Szenenrekonstruktion,
insbesondere für deformierbare Umgebungen. Motiviert durch die spezifischen Her-
ausforderungen einer Blasenspiegelung - einer Zystoskopie - wird ein ganzheitlicher
Ansatz zur intraoperativen Lokalisierung und Szenenrekonstruktion vorgestellt, der
die Anforderungen an Robustheit und Genauigkeit der intraoperativen Bedingun-
gen erfüllt. Das vorgeschlagene Rekonstruktionskonzept setzt in der allgemeinsten
Formulierung ausschließlich ein monokulares Kamerabild voraus, kann aber flexibel
um zusätzliche Sensordaten erweitert werden. Darüber hinaus ermöglicht das vorge-
stellte Rekonstruktionskonzept die Rekonstruktion von Kameraposition, Geometrie
und Textur auf der Basis einer gradientenbasierten Optimierung. Die grundlegende
Rekonstruktionsstrategie, die in dieser Arbeit angewendet wird, folgt der Frage: Wie
müssen die Modellrepräsentation und die Kameraperspektive angepasst werden, da-
mit das Rendering des Modells mit der aktuellen Beobachtung übereinstimmt? Das
Rekonstruktionsziel wird durch verschiedene Optimierungsprobleme vorgegeben, die
letztlich vollständig differenzierbare Rendering-Abbildung erfordern. Für den diffe-
renzierbaren Renderingprozess selbst wird in diesem Zusammenhang der umgekehrte
Prozess das Inverse Rendering Verfahren vorgeschlagen, wodurch Bildinformationen
direkt auf eine Mesh-Oberfläche übertragen werden, sodass der Schnittpunkt mit der
Modelloberfläche, die Normalenrichtung und die Oberflächentextur in einer differen-
zierbaren Form bestimmt werden können. Unter Berücksichtigung der zugehörigen
Punktinformationen und Normalenrichtungen, die durch die abgebildeten Muster
bestimmt werden, kann schließlich die zugehörige Kamerapose der aktuellen Beob-
achtung rekonstruiert werden. Zur Orientierung werden spezifische Landmarken
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erfasst und entsprechend registriert. Zu diesem Zweck werden die sichtbaren Ge-
fäßstrukturen extrahiert und als Graphen dargestellt und dienen als intraoperative
Landmarken, die eine deformationsinvariante Beschreibung ermöglichen. Es wird
eine robuste Graphmusterregistrierung auf der Grundlage eines deformationstole-
ranten Deskriptordesigns vorgestellt, um zusammengehörige Strukturen zu identi-
fizieren. Darüber hinaus wird eine neue strukturbasierte und deformationsinvari-
ante Ausreißerklassifizierung vorgeschlagen, um gegebene Übereinstimmungen auf
der Grundlage anatomischer Merkmale zu überprüfen. Eine Übereinstimmung wird
dann als Ausreißer identifiziert, wenn die erforderliche Übereinstimmung anatomisch
unzulässige - sich kreuzende - Gefäßstrukturen erfordert. Die gültigen übereinstim-
menden Strukturen werden nach einer geeigneten gradientenbasierten Posenrekon-
struktion in einer globalen Modellrepräsentation gespeichert, sodass bei einer neuen
Beobachtung die beobachteten Strukturen mit allen zuvor beobachteten Strukturen
in einem Zug abgeglichen werden können. Etwaige Diskrepanzen zwischen zusam-
mengehörigen Mustern, die durch die Posenrekonstruktion nicht aufgelöst werden
können, werden durch Anpassung der Modellgeometrie kompensiert. Die Geome-
trierekonstruktion durch entsprechende Anpassung der Geometrie führt allerdings
im Allgemeinen zu einem überbestimmten Optimierungsproblem. Zu diesem Zweck
werden neue Regularisierungskosten vorgeschlagen, die den intraoperativen Anfor-
derungen gerecht werden. Nach Rekonstruktion der aktuellen Kameraperspektive
und Geometrieverhältnissen kann die aktuell beobachtete Gefäßstruktur in der Mo-
delltextur aktualisiert werden. Zusätzlich werden wiederkehrende Strukturen identi-
fiziert, um Wiedererkennungszuverlässigkeiten für jede einzelne Gewebestruktur zu
etablieren. Dadurch kann die Komplexität im Abgleich auf die zuverlässig identifi-
zierbaren Strukturen reduziert werden, sodass das gesamte Rekonstruktionskonzept
von eindeutigen Mustern profitiert. Die vorgestellte Gesamtrekonstruktionspipeline
erzielt Robustheit durch eine graphenbasierte Landmarkenregistrierung, während
die gradientenbasierte Rekonstruktion die Gesamtkomplexität der Geometrie- und
Texturabbildung Rechnung trägt.
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Introduction 1
Minimally invasive surgery (MiS) is a surgical approach that aims to minimize the
surgical trauma of the procedure by reducing potential damage to living tissue dur-
ing the surgery. Reducing surgical trauma is a key focus in modern medicine, as
the goal is to minimize the collateral damage caused by the surgical procedure while
still achieving the main objectives of the respective intervention. MiS involves us-
ing a camera and instrument system called an endoscope to access the target area
through small incisions or natural openings in the body, such as the mouth, esoph-
agus, trachea, ear, nose, urethra, rectum, vagina, or tear ducts. This is in contrast
to a traditional open surgery, which involves making a larger incision to access the
target area.

1.1 Endoscopy

The term ’endoscope’ is a neologism from ancient Greek, origin from ’éndon’ and
’skopein’ and means ’to observe from the inside’. A modern endoscope consists of
optical lenses, a light source, and a camera sensor that can be located inside or
outside the body, depending on the implementation of the optical setup.
The use of endoscopic procedures has expanded from diagnosis to complete surgical
procedures, making it a current state-of-the-art procedure. For the surgical inter-
vention beyond the diagnostic imaging, the endoscope is equipped with a working
channel through which instruments can be inserted and actuated. Figure 1.1 shows
a rigid endoscope with a working channel for instruments.
Endoscopy has become part of the daily routine in many medical disciplines, e.g.
gastroenterology, urology, gynecology, somatic-abdominal surgery, and pneumology.
There are highly specialized endoscope variants for almost every field of application
– from thin metal tubes to flexible rubber tubes tailored to the respective anatomical
conditions. The endoscope adapted to the anatomical constraints is usually referred
to by the Latin name of the organ and the suffix scope, e.g. gastroscopy, laparoscopy,
cystoscopy, hysteroscopy, arthroscopy, laryngoscopy, bronchoscopy, to take up a few
selected examples from the above-mentioned medical fields, whereby the respective
terminology does not describe an independent medical discipline itself, but instead
refers to the respective medical technology [58].
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sheath
working channel

camera coupling

camera body

(a) Assembly of a rigid cystoscope with an attached video camera.

direction of view

rod lenses light post

eyepiecelens
fibre optics

(b) The components of the telescope include an array of rod lenses surrounded by fiber
optics, which make up the endoscope’s optical system. The cross section of the telescope
reveals this arrangement.

Figure 1.1: Components of a rigid endoscope. The endoscope consists of an optical
system and is connected to a video camera, allowing the surgeon to inspect the
bladder during a minimally invasive procedure.

1.1.1 Advantages of Endoscopy

Compared to traditional open surgeries, minimally invasive procedures offer several
benefits, including less tissue damage, smaller incisions, and reduced scarring [127].
These advantages encompass diminished blood loss, which consequently decreases
the probability of complications and minimizes the requirement for blood transfu-
sions [58]. Furthermore, patients undergoing minimally invasive surgery experience
less pain after the procedure, resulting in an improved recovery experience and re-
duced need for pain medication [127]. These procedures are also associated with
faster wound healing, as smaller incisions cause less trauma to the surrounding tis-
sue, resulting in quicker healing and a reduced risk of infection [58, 127]. Shorter
hospital stays are another benefit of minimally invasive surgery, as patients typically
become mobile more quickly and can leave the hospital sooner, resulting in reduced
costs for both the patient and the healthcare system [58]. For the sake of complete-
ness, it is important to note that minimally invasive surgery may not be suitable for
all patients or all types of procedures. The decision to undergo minimally invasive
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surgery should be made on a case-by-case basis.

1.1.2 Limitations of Endoscopy

Despite the enormous advantages of endoscopy, various challenges, and difficulties
are addressed briefly. Due to the narrow working area, the few incisions that are
made must be planned precisely in order to reach the target structures. The move-
ments of the instruments used in this process are highly dependent on the chosen
anatomical approach, which can result in very limited movement. This limited
movement of the endoscope means that only a small area of the surgical field can
be covered, making it challenging to obtain a clear view of the surgical area. Ad-
ditionally, the camera optics may not always be optimally aligned, further adding
to the difficulty in achieving a clear view. Furthermore, the type of access and
endoscope used can cause a leverage effect around the pivot point constrained by
the anatomical structure. This leverage effect can significantly alter the force ratios
acting on the tissue. Accordingly, due to the non-uniform positioning of the instru-
ments around the anatomical pivot point, a reversal of motion is caused, where the
instrument handle and tip move in opposite directions. Furthermore, various factors
can compromise image quality during the intervention, such as distortions, uneven
illumination, and disturbances like smoke caused by the electrical resection loop.
In the worst-case scenario, bleeding or pieces of tissue can obstruct the endoscope,
leading to a complete loss of vision during the procedure.
Furthermore, due to the lever-like transmission and friction of the contact surfaces,
the tactile sensation, and the mechanical palpation of the surgeon are taken. In open
surgery, the surgeon can obtain essential information about non-visible tissue layers
by palpation; for example, indications of tumor margins as tumors typically exhibit
in increased mechanical stiffness. Accordingly, due to the limited field of view and
the lack of haptics, it is challenging to detect risk structures such as blood or nerve
vessels solely from the image observations. In addition, the surgeon is often standing
in an ergonomically unfavorable position, sometimes for several hours, bending over
the patient while constantly keeping an eye on the camera image. This can lead to
physical and mental exhaustion, which may have a notable impact on the accuracy
and speed of the procedure.
Any unforeseen event during the operation, such as severe bleeding, is more difficult
to handle due to the range of challenges. In some cases, the remaining operation
may even need to be completed as open surgery. It is therefore important to work on
overcoming these challenges in endoscopy and to continually improve the procedure.

1.2 Problem Description and Focus of the Work

Active computer-assisted surgery is a highly challenging and still a wide open field.
This work addresses intraoperative navigation for challenges posed by deformable
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environments. Localization is a prerequisite for any computer assisted sensor fusion
algorithm that correlates information and provides the surgeon with the necessary
information. In particular, this work addresses the open field of localization and
scene reconstruction problems for deformable environments.

To meet the needs of surgeons and minimize invasiveness during interventions, it
is essential to understand several concepts in medical technology which are related
to the challenges at hand. Therefore, this review examines medical interventions
from an engineering perspective, assessing their potential to meet the requirements
of surgeons during medical procedures. The primary objective of this review is
to investigate the role of localization and scene reconstruction in current trends in
medical engineering, with a case study on interventions around the urinary blad-
der. The urinary bladder is one of the most geometrically variable organs, yet it
simultaneously provides distinct and clear vascular structures.

In addition, recent advances in medical technology have emphasized multisensory
tissue differentiation in oncology. By correlating data from various sources, a higher
level of data validity can be achieved, which in turn requires highly reliable local-
ization of measurement data. This review goes beyond motivating the research and
provides the critical groundwork for developing an intraoperative localization frame-
work by exploring recent medical technology developments and the need for reliable
localization and scene reconstruction methods. Furthermore, it provides a detailed
description of the localization and scene reconstruction requirements necessary to
satisfy both medical and engineering perspectives.

1.2.1 Clinical Applications of Cystoscopy

Cystoscopy is a medical procedure that allows a physician to examine the inside of
the urinary bladder and urethra using a cystoscope, as shown schematically for the
bladder inside end wall in Figure 1.2. The cystoscope is inserted through the urethra
into the bladder, allowing the physician to screen the condition of the urethra and
bladder wall visually. To improve the visibility of all surfaces and abnormalities, the
bladder is typically inflated with saline solution to increase its volume.

Cystoscopy is crucial for diagnosing and treating urinary bladder and urethral condi-
tions like diverticula, stones, tumors, strictures, incontinence, inflammation, sphinc-
ter and prostate gland changes in men. Photodynamic diagnostics (PDD) is an
advanced diagnostic technique used in cystoscopy for improved tumor detection.
This method involves the administration of a specialized fluorescent dye, such as
Hexvix® (developed by GE Healthcare), which is injected into the bladder through
a thin catheter. Clinical studies have demonstrated that PDD increases the de-
tection rate of bladder tumors, thereby providing enhanced assistance to clinicians
during diagnosis [49]. Hexvix® is the only commercially available product for this
technique, and it has been proven to be a useful diagnostic tool for detecting bladder
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Figure 1.2: The endoscope, which is inserted through the urethra, provides the sur-
geon with an endoscopic camera image that enables examination of the bladder wall
for abnormalities such as tumorous tissue. An additional working channel in the cys-
toscope gives the physician the ability to perform interventions with various tools
or sensors. Furthermore, the vascular structures provide landmark information for
orientation during the procedure.

tumors. Upon irradiation, tumor cells absorb the fluorescent dye, causing them to
fluoresce red when illuminated with blue light. This process significantly enhances
tumor visualization and allows for more accurate diagnosis and treatment. The PDD
technique is considered safe for patients since the dye is harmless and does not cause
any adverse reactions. Figure 1.3a and Figure 1.3b demonstrate how PDD improves
tissue visualization by showing tumor tissue under white light illumination and blue
light fluorescence illumination, respectively.

In addition to visual inspection, a physician may also take a small tissue sample
(a biopsy) from suspicious areas for further examination by a pathologist. To do
this, the bladder volume is usually reduced to minimize the risk of damaging deeper
tissue layers during the biopsy procedure. The necessary instruments are inserted
through the working channel of the cystoscope to remove the tissue sample or to
ablate superficial tumors using an electrical resection loop, as shown in Figure 1.4.
An electrical cutting loop is a thin, wire-like device connected to an electrical current,
which cuts the tissue through thermal development. This method has the advantage
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(a) Recording under white light illumination. (b) Recording under blue light illumination.

Figure 1.3: Under white light illumination, tumor boundaries are only vaguely dis-
cernible; compared to photodynamic diagnostics, the tumorous tissue illuminates in
its typical red fluorescence and can accordingly be identified.

(a) Cystoscopic surgery set-up. (b) Resection of suspicious tissue.

Figure 1.4: During a minimally invasive transurethral resection, the surgeon employs
an electrode resection loop through the working channel of the cystoscope to remove
abnormal tissue.
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of simultaneously cauterising the tissue, which helps to stop bleeding by occluding
affected vessels, as opposed to mechanical cutting with a scalpel.

The European Urological Society recommends documenting all abnormalities, tumor
macroscopic features, and mucosal irregularities on a bladder map during cystoscopy,
as illustrated in Figure 1.5 [135]. In clinical practice, this involves manually marking
the positions of biopsies, abnormalities, and removed tumors on a paper map so that
the biopsy results can be appropriately associated with the relevant locations in the
event of subsequent pathological findings. However, this method is qualitative, prone
to individual variability, and challenging to maintain in a busy clinical environment.
A computer-assisted documentation framework has the valuable potential to enhance
accuracy and efficiency in recording and tracking crucial cystoscopy information.

Figure 1.5: A bladder map used to document the qualitative location of abnormalities
on the bladder wall. Confer with [102, 135].

The development of an automated procedure that accurately documents the loca-
tions of biopsies, abnormalities, and excised tumors could significantly enhance data
correlation, leading to improved diagnostics based on an enlarged data basis. For
the treatment of bladder carcinoma, a second transurethral resection of the bladder
is generally required within two to six weeks of the initial resection. In this scenario,
reconstructing the patient-specific surface of the bladder could furnish surgeons with
vital information about areas of concern identified during the first procedure [110].
This approach would allow for a detailed evaluation of raw data in conjunction with
current observations, facilitated by multi-modal data correlation. For example, in-
formation obtained from the initial tumor resection can be instrumental in guiding
the diagnosis and treatment strategies during subsequent resections. This method-
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ology is consistent with the principles of multi-modal data correlation, which in-
volves assimilating data from various sensor types across different physical domains
(e.g., imaging, impedance measurements, mechanical assessments, optical evalua-
tions, etc.) to refine diagnostic accuracy. Presently, multi-modal data correlation
is a burgeoning research field due to its potential to provide a more thorough and
diverse range of information, thereby enhancing the final tissue classification [139].

1.2.2 Review on Multimodal Data Diagnostics

Novel multisensory methods for tissue differentiation may help to improve the accu-
racy and efficiency of tumor resections in the future. These methods involve using
sensors to measure and analyze the properties of the intratumoral1 and peritumoral2
milieu, including changes in the mechanical, electrical, optical, and biochemical prop-
erties of tissue. Tumor tissue exhibits altered morphology and biochemical composi-
tion compared to healthy tissue, and these changes can be detected through sensors
that measure, for example, changes in stiffness, capacitive properties, and water
and salt content [9, 12, 111, 136]. By combining the information from multiple
sensors, it may be possible to achieve a more reliable and accurate differentiation
between tumor and healthy tissue, which helps to reduce the radicality, duration,
and complication rate of the operation [115, 139].

Multi-modal approaches, including the evaluation of tissue stiffness through elas-
tography, have been successfully applied in various medical contexts, such as the
diagnosis and treatment of urinary incontinence, and the integration of preoperative
and endoscopic imaging data [4, 17, 52, 139]. In the context of tumor resections,
the use of multi-modal approaches may be beneficial for improving the accuracy
of diagnosis and treatment planning, as well as for guiding the surgeon during the
procedure. Furthermore, ongoing research explores the integration of various preop-
erative diagnostic techniques for breast cancer and the combination of preoperative
and endoscopic imaging data [99].

In a broad and schematic representation, multi-modal sensor classification is de-
picted in Figure 1.6. However, several challenges must be addressed to effectively
implement and utilize multi-modal approaches in surgery. To analyze and merge
the intraoperatively acquired multimodal sensor data, raw sensor signals must be
accompanied by coherent spatial information [125]. As a result, precise knowledge
of local positions and orientations of tools and corresponding measurement points
is essential and constitutes a critical aspect of any subsequent classification task.
This requires the development of robust and reliable tracking and localization tech-
niques, which can be challenging due to the complexity and variability of the surgical
environment.
1 Intratumoral refers to a location or process occurring within a tumor.
2 Peritumoral refers to the area surrounding a tumor, which often includes healthy tissue and

blood vessels.
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Figure 1.6: Multi-sensory determination of tissue properties across various physical
domains holds great promise as a reliable technique for predicting tumor bound-
aries. However, for any type of multi-modal data fusion of spatially distributed data
measurements, a corresponding position informant for the respective sensor mea-
surements is required. Registration involves incorporating these measurements into
a sensor fusion network of the tissue at the correct corresponding locations. The
sensor localization task deals with registration and obtaining the correct surface po-
sitions with respect to the suspicious tissue and is, therefore, a vital part of surgical
navigation.

1.2.3 Problem Statement

The challenge at hand is to achieve accurate intraoperative localization in deformable
environments, encountered during endoscopic surgery, while fully utilizing the poten-
tial of multi-modal sensor information. Currently, it is difficult to identify the precise
location of tissues, organs, and other structures within the surgical site, especially
when the surrounding tissues are altered or distorted. This results in difficulties in
avoiding damage to critical structures, precisely targeting specific areas for biopsy
or removal, and orienting surgeons for re-screening suspicious tissue in subsequent
interventions.
In addition, precise localization is essential to make a multi-modal sensor fusion of
various sensor measurements, taken at different locations, feasible. Inaccurate local-
ization can hinder proper alignment and combination of data from different sensors,
potentially leading to errors or misinterpretations. To overcome these challenges,
solutions adapted to the deformable environments are necessary. Intraoperative lo-
calization concepts are needed that enable the surgeon to locate structures within
the surgical site more precisely and maximize the potential of multi-modal sensor
information. Potential solutions must adapt to changes in tissue shape or position
and provide guidance for the placement of surgical instruments and the orientation
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of the surgeon. The primary focus is to provide a solution that enhances the ac-
curacy of endoscopic surgeries and enables the development of multi-modal sensor
fusion concepts, particularly for deformable environments.

1.3 Analyzing Scene Reconstruction Algorithms: A Review of the
Literature and Future Directions.

Endoscopic vision has been the subject of extensive research and advancements by
various laboratories and endoscope manufacturers. Currently, rigid mono-endoscopes
are the most commonly used systems in clinical settings for laparoscopic interven-
tions. This literature review aims to provide a comprehensive overview of the current
state and future developments in advanced endoscopic vision, including navigation,
tracking, depth estimation, and 3D surface reconstruction. With a focus on laparo-
scopic interventions, the surveys presented in [31, 105, 128] give a general overview
of the current literature on intraoperative localization and scene reconstruction. In
order to obtain a comprehensive understanding of the current state of endoscopic nav-
igation, this literature review takes a broad approach by looking beyond laparoscopic
interventions and providing an overview of navigation and localization algorithms.
However, a comprehensive solution that addresses deformable environments remains
elusive as the problem is the subject of ongoing research.

Physical and Geometric Reconstruction Techniques: The Simultaneous Localization
and Mapping (SLAM) algorithm is a state-of-the-art solution for solving the problem
of localization and mapping in unknown environments in robotics. It creates maps
of the environment while simultaneously determining the system’s location within
the map. In the field of intraoperative environments, SLAM algorithms have been
utilized in various works to reconstruct tissue surfaces using a monocular endoscope
[10, 36, 43, 89, 97, 119, 146].

Visual SLAM (V-SLAM) algorithms are typically classified into two categories: di-
rect and indirect methods. Direct methods use the entire image, relying on image-
level changes such as optical flow for precise reconstruction of the 3D environment.
However, they can be vulnerable to larger changes between images [1, 53, 130]. In
contrast, indirect methods use intermediate representations such as sparse repre-
sentations, instead of raw image data, and rely on recognizable image features to
determine landmark positions, providing robust results in challenging environments.
The so-called ORB landmark feature detection is recognized as one of the state-of-
the-art feature detection algorithms for indirect methods in robotics [109]. ORB
stands for Oriented FAST and Rotated BRIEF, two algorithms used for feature de-
tection and description in Visual SLAM (V-SLAM) methods for robotics. FAST is
an abbreviation for Features from Accelerated Segment Test [138], a corner detection
algorithm that identifies key points or interest points in an image. BRIEF is short
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for Binary Robust Independent Elementary Features [13], a feature descriptor that
produces a binary string as output for a given image patch. Together, these algo-
rithms make up the ORB landmark feature detection algorithm, which is considered
a state-of-the-art feature detection method for a wide range of image registration
tasks in robotics.

Based on this, ORB-SLAM, which has been presented in its latest versions [14,
82, 83], is a well-established VI-SLAM algorithm that leverages ORB features for
landmark determination. It has demonstrated its versatility in both rigid robotic
environments and intraoperative scenarios [14, 71, 97]. Despite the focus on rigid
scenarios, ORB-SLAM has inspired further research in handling deformation for sur-
gical scenes [61, 71, 95, 126]. In [18], ORB-SLAM [14] is used for scenarios with slow,
quasi-rigid deformations between two images, which allows the algorithm to handle
small deviations and iteratively adjust the pose and scene based on previous images.
However, in this approach, the pose and map reconstruction may experience drift if
deformations occur over an extended period. The method attempts to approximate
deformations using single rigid registrations to address this. Some studies tackle
SLAM in a known environment, where the mapping is given a prior with an anatom-
ical geometry model [78, 89, 134]. In [134], a patient-specific anatomical MRI model
was utilized as a solution to address the challenge of navigation in the endonasal
skull base. The method simplified the SLAM problem by transforming it into a
localization problem within the provided geometry map. The algorithm updates
the features in the map but does not determine the spatial information itself. An
evaluation was conducted on an endonasal skull surgery of a pig, which achieved a
pose accuracy of less than 1mm with the aid of an optical tracking system. However,
the authors note that the precision of the reconstruction is limited by the accuracy
of the pre-operative geometry model.

In [80], a solution for handling deformations in non-rigid environments, particularly
during lung endoscopy, is presented. This approach involves continuously updating
the model surface based on a lung motion model, which effectively addresses the
non-rigid environment and produces accurate results in the presented work. A real-
time capable simultaneous finite element model (FEM) simulation based on [28] is
employed in [114] to address deformations in intraoperative scenes. This method
takes into account the underlying deformation and incorporates available model
information, such as the organ’s Young’s modulus or the forces generated by the in-
struments, to predict the deformation in the scene. The SLAM algorithm then uses
the updated map, reflecting current observations. The proposed framework can be
applied to any deformable scene in an intraoperative environment, but requires extra
sensor data and extensive patient-specific initialization information for any practi-
cal surgical application. Despite these challenges, the method offers the advantage
of considering underlying deformations and incorporating available information for
improved accuracy [30].

Similarly to V-SLAM algorithms, the Structure from Motion (SfM) algorithm uses a
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batch of images to calculate and optimize the map all at once. Although this method
can achieve higher accuracy and a denser map reconstruction compared to the on-
line SLAM algorithm, it relies on the assumption that there were no deformations
between the images in the batch [145]. Nevertheless, combining SfM with SLAM
can enhance the accuracy and robustness of 3D reconstruction in scenarios with
deformations. Non-Rigid Structure from Motion (NRSfM) [34, 46] is an extension
of SfM, specifically designed for handling deformable environments. However, SfM’s
requirement for offline processing limits its feasibility for real-time applications. To
overcome this challenge, the field of 3D reconstruction of deforming scenes has made
significant progress through the integration of SfM and SLAM algorithms.

The fusion of these two algorithms can effectively address the limitations of tradi-
tional SLAM algorithms, such as drift errors [61]. This is because the SfM approach
prioritizes the accuracy of reconstructed 3D structures. However, traditional SfM
methods are not suitable for real-time applications as they rely on offline batch
processing. This limitation is overcome by the DefSLAM library [61], a monocular
SLAM solution designed specifically for deformable scenes. The DefSLAM algorithm
integrates Sparse Feature from Tracking (SfT) and Non-Rigid Structure from Mo-
tion (NRSfM) through a parallel-threaded fusion of separate map reconstructions.
The SfT operates in a tracking thread for faster performance, while NRSfM runs in
parallel in an optimization thread to reconstruct the deformed map. Therein, the
ORB-SLAM [14] serves as the backbone of the algorithm, providing online localiza-
tion and feature registration. This approach offers a promising solution for real-time
3D reconstruction in deformable environments. However, the DefSLAM algorithm
still faces challenges in maintaining stable reconstruction in the presence of viewing
loss. To tackle this problem, statistical information is integrated into the localization
procedure to improve the likelihood of finding similar landmarks when the view is
regained [35]. Despite exhibiting promising results, the DefSLAM algorithm still de-
pends on the clear retrievability of landmark features. To overcome this limitation,
some works even rely on manually specified landmark correspondences to explore
the deformation aspects from a more methodical perspective [73].

Another effective non-rigid SfM approach for handling cardiac surgeries is presented
in [40]. This approach used only image segments of the same phase in the cardiac
cycle for reconstruction, providing an elegant solution to the deformation of the
heart muscle as the same heart deformation repeated over the cycle. Building on
the proposed concept for cardiac surgeries, the authors extended their approach to
the liver in [84].

Accurate and robust landmark information is crucial for both SLAM and SfM algo-
rithms. However, identifying landmarks in intraoperative settings can be challenging
due to factors such as blurred textures and underlying deformations. To address
this challenge, ongoing research is focused on developing tailored landmark extrac-
tion methods that are more robust in such environments. One promising concept
is leveraging the vascular structure of the retina, as suggested in [23]. For example,
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based on that, the EyeSLAM approach [10] facilitates the vascular structure of the
retina to enhance mapping and orientation during intraocular microsurgery.

When landmarks are absent, the Shape from Shading (SfS) concept offers a viable
alternative method for determining relative depth information solely based on the
variations in shading originating from the scene’s reflectance properties and over-
all brightness. The approach assumes that the surface reflects light equally from
all viewing angles. This means that when light hits the surface, it scatters in all
directions, resulting in uniform brightness from all viewing angles. Thus, the SfS
approach is particularly well-suited for homogeneous textures and uniform depth
changes [128]. Despite this, the use of SfS in endoscopy continues to pose a complex
challenge due to its lack of robustness in handling various endoscopic surface con-
ditions. Previous works, such as those described in [64, 80], offer a comprehensive
overview of various perspectives, including perspective-based methods [41, 140] that
face robustness and accuracy issues with varying lighting conditions. The research
presented in [62] explores the potential of combining SfS methods with feature-based
or stereoscopic approaches to overcome the limitations of each. In [51], a novel com-
bination of SfM and SfS was introduced, leveraging SfS for surface reconstruction at
each time sample and SfM for the temporal registration of corresponding surfaces
via feature detection. The proposed method was evaluated through the use of virtual
colonoscopy images.

Data Driven Reconstruction Techniques: Recent advances in research have led to
the development of data-driven approaches for scene reconstruction, offering the
advantage of being specifically tailored to meet the needs of a particular scene. One
of the pioneering works in this field is presented in [27], which proposed one of the
first depth prediction networks based on Convolutional Neural Networks (CNNs).

Supervised Monocular Depth Estimation is a method that uses a single image as
input and a ground truth depth map as a supervision signal to estimate the depth of
each pixel in the image. It can be viewed as a regression problem, where the goal is to
predict the continuous depth value for each pixel. Recent studies have demonstrated
promising results in this area, with both [76] and [59] reporting strong performance
using a fully convolutional residual network (FCRN) as the fundamental architec-
ture. Recent studies have combined Generative Adversarial Networks (GANs) with
common SLAM and SfM algorithms to provide ground truth data for training. The
works in [145] and [16] use depth prediction to obtain depth information from monoc-
ular image data and register the image and depth observations using a well-known
SLAM algorithm. However, the existing methods for supervised training have limi-
tations. For example, they may be constrained by the limited availability of ground
truth data. Furthermore, if SLAM and SfM algorithms are used to provide the
ground truth data, the accuracy may be hindered by the same challenges faced by
SLAM and SfM, including weak textures, reflections, and tissue deformations. As a
result, beyond the architecture itself, data driven scene reconstruction concepts are
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inherently limited by the quality of the available data.
To overcome the limitations of supervised depth estimation, unsupervised approaches
have been proposed as an alternative solution. In these methods, instead of rely-
ing on a ground truth depth map, the network is trained to infer depth from a
single image. Early works in this field trained their models on a per-patient basis,
while later works such as [100, 123] employed a synthetic training set and employed
domain adaptation through a Generative Adversarial Network (GAN) architecture.
The GAN is trained to generalize the model’s behavior to real-world observations, al-
lowing the use of real-world data in an unsupervised manner. However, the training
of a GAN can be challenging to balance, and the results may not be reliable.
The limitations of the network’s predictions are attributed to the adaptation of real
data to synthetic data during the training process. This approach relies on finding
the most equivalent representation in the synthetic environment, which fails to ac-
count for physical-based constraints. As a result, the predictions may be incorrect
or misleading, particularly in scenarios that were not accounted for during training.
Recent studies [72, 77] have reviewed the current image-based localization methods
for minimally invasive surgeries and identified significant limitations in their robust-
ness and concerns regarding the evaluation methods used in the literature. Based
on these findings, it is concluded that current surface reconstruction systems are not
yet suitable for clinical use and require improvements in robustness before they can
be integrated into clinical workflows. Non-rigid registration is a key challenge high-
lighted by both studies, posing difficulties for accurate orientation and significantly
limiting the robustness of the available methods.

1.4 Reconstruction Concept Proposed in this Work

This work takes a new perspective on solving the problem of intraoperative recon-
struction and localization. The main contribution of this work is a holistic approach
to the intraoperative reconstruction problem, which aims to achieve both robustness
and high accuracy in the reconstruction results simultaneously. In order to achieve
the goal, a hybrid approach is proposed that combines a graph-based pattern map-
ping technique for robustness with a gradient-based reconstruction optimization to
satisfy accuracy requirements.
To facilitate orientation and reconstruction, distinctive structures are extracted from
an initial image observation. Vascular structure courses are represented using bi-
nary segmentation and graph representations. Figure 1.7a illustrates the schematic
flowchart of model initialization, displaying and initializing corresponding patterns
for an image observation. The simultaneous representation at the graph level and
pattern progression at the pixel level provides a robust and lightweight represen-
tation through graph depiction, while the texture representation allows for precise
high-resolution representation.
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(a) Initialization of the model representation by the binary skeleton and graph pattern of
the initial image observation.

(b) Reconstruction process for consecutive observations: The camera pose is sequentially re-
constructed using the graph pattern, which provides a robust foundation for reconstruction
relative to the initial camera position. Skeleton patterns are employed in the sequential
reconstruction to refine the camera pose. Subsequently, any remaining discrepancies on
the image plane of corresponding patterns are addressed by adjusting the model geometry
according to the camera reconstruction. Upon reconstructing the pose and geometric rela-
tions, the model representation is updated with the newly observed texture information.

Figure 1.7: Overall reconstruction pipeline, including initialization and reconstruc-
tion scheme for consecutive observations.

Once an initial model representation is established, any consecutive observation can
be oriented relative to the given model representation. The reconstruction process
for successive observations is shown in Figure 1.7b. For each new observation, the
respective graph pattern is extracted and registered with the global graph representa-
tion. This registration enables an initial pose reconstruction based on the deviation
of the registered graph patterns from the global graph. Due to potential inaccura-
cies in graph extraction and matching, a finer pose reconstruction is performed by
pattern-matching the entire vascular structures at the pixel level with the model rep-
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resentation. The pose reconstruction facilitated by the graph allows for assignment
independent of the initial pose, ensuring reliable assignment in the observed area
regardless of the initial pose. The subsequent direct pattern matching provides the
necessary accuracy but is highly sensitive to initial conditions. The remaining devia-
tions of the associated patterns, which could not be resolved by adjusting the camera
pose, are attributed to the underlying deformation of the scene between the previ-
ous reconstruction and the current observation. The remaining discrepancy between
the model and current observations is resolved by adjusting the geometry. Finally,
the global graph model and texture are updated with the latest observations after
adjusting the camera pose and geometry, ensuring that the model representation
reflects current conditions and is ready for new observations.

1.5 Delimitation of the Work & Main Contributions

The main reconstruction concept in this work involves a parameterized model rep-
resentation of the organ. This is adjusted such that the model rendering accurately
reflects the real-world image observation. Traditional rendering processes often in-
volve various discrete, non-differentiable sub-operations. To overcome this, the study
leverages recent advancements in differentiable rendering processes. This work builds
on the most recent developments in the field and significantly extends the work of [65]
and [101].

The main contributions of this work include the application of differential rendering
to intraoperative navigation and the integration of computer vision techniques that
differ from the current state-of-the-art. These individual contributions build up the
overall reconstruction pipeline, which is illustrated in Figure 1.8 and described in
detail as follows:

Endoscopic Projection Model: One of the contributions of this work is the math-
ematical model that represents the endoscopic imaging process, encompassing a
general organ model, the kinematics of the endoscope, and the digital camera imag-
ing. The modeling of the endoscopic kinematics and optics is especially important,
as the kinematics-based projection of the image coordinates does not align with the
actually observed image. The result of this comprehensive mathematical representa-
tion of the entire imaging process is a differentiable formulation that can be used in
a supervised, gradient-based reconstruction of the intraoperative scene from given
image observations.

Differential Rendering for Intraoperative Scene Reconstruction: A reliable geome-
try adaptation is crucial because any enumerated orientation and evaluation process
becomes obsolete if the most fundamental size relations are not correctly reflected.
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1

Figure 1.8: The main contributions of this work are: 1) a parameterized model rep-
resentation of the organ and endoscopic projection, 2) an inverse rendering process
for determining spatial information from pixel data, 3&4) a differentiable scene rep-
resentation and tailored geometry regularization losses facilitate the use of a single
silhouette observation for geometry and pose reconstruction, 5) a vascular structure
extraction algorithm for robust landmark determination, 6) a graph representation
for landmark registration, and embedding graph observations into a global repre-
sentation enables comparison and updates with previously seen patterns in a single
calculation, and 7) a comprehensive reconstruction pipeline that integrates all these
concepts to achieve robust pose, geometry, and texture reconstruction from a single
monocular image observation.

Therefore, and to resolve the over-determinacy given at the geometry reconstruc-
tion, new regularization losses are presented that are adapted for intraoperative
conditions. For instance, a scale-invariant regularization error is proposed to ensure
that the observed scale on the image plane is accurately propagated to the entire
3D model reconstruction, including regions not visible in the current image. This
approach addresses the specific needs of cystoscopy, where the bladder volume must
be continually adjusted during surgery. This includes the potential exploitation of
silhouetted image data, which for example is highly advantageous in laparoscopic
surgeries where landmark data is limited due to visual constraints.
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Inverse Differential Rendering: A significant contribution of this work is the devel-
opment of an inverse rendering process, which is a differentiable design of the inverse
mapping of the traditional rendering process. While conventional rendering maps
model information to the image plane, the proposed inverse rendering allows for
the transformation of image information directly to the model surface. This means
that image pixels can be registered directly on the model, representing position in-
formation on the image plane. For each surface position, the corresponding normal
directions and feature values can be determined. The ability to directly supervise
related features in 3D space using surface position and normal directions opens up
new opportunities for formulating optimization objectives. This results in a more
robust pose reconstruction using 3D information rather than 2D information. This
is a methodological contribution to the field of computer vision that improves the
accuracy and efficiency of the pose reconstruction considered in this work.

Vascular Graph Extraction for Landmark Information: The visible vascular struc-
tures are used as features for orientation, so-called landmarks, which correspond to
the intraoperative complexity and thus help to provide robust orientation in this
work. The practice of representing vascular structures as graphs has its roots in
research that focuses on retinal analysis, where retinal structures are represented as
graphs to provide essential underlying and diagnostic information. While previous
research dealt with retinal structures in a static environment, the graph information
in this study is specifically formulated to address the needs of deformable environ-
ments. Therefore the structural information are embedded in node positions. In
addition, the extraction of edge information, including edge lengths and curvature,
improves the representation’s ability to retrieve associated patterns. In the context
of medical imaging, the extraction of edges is a crucial step in the analysis of vascu-
lar structures and is a well-known challenge. However, traditional edge extraction
methods can produce unreliable results in the presence of lighting variations and
image artifacts, and they depend heavily on the preprocessing pipeline. To address
these limitations, a novel data-driven approach utilizing a deep neural network archi-
tecture is proposed in this work. The approach accounts for image uncertainties and
enables reliable identification of connected structures. This contribution provides
real-time edge extraction capabilities, advancing the field towards more robust and
reliable landmark identification.

Graph Matching, Outlier Removal, Global Graph: Based on extracted graph fea-
tures in the image plane, a novel approach is proposed, which includes graph match-
ing, deformation-invariant outlier elimination for vascular structures, and the con-
struction of a global graph representation. These steps are designed to comprehen-
sively describe all observed patterns in a global model representation. This approach
provides the following individual contributions to intraoperative landmark-based lo-
calization.
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(i) Descriptor-based Node Matching: Based on extracted information from the
graph, robust descriptors are defined to express the structural properties
of a location within the graph. These descriptors enable the comparison
of patterns from different observations and determine their similarity. The
descriptor-based matching follows conventional procedures found in liter-
ature, with the key difference being the design of the descriptors, which
incorporates graph information. This approach provides robustness against
deformation, as the structural integration of graph information is fully defor-
mation invariant. Additional descriptors are designed to be scaling invariant
and can be updated if a geometry update is available.

(ii) Structure-based Outlier Removal: In the descriptor-based matching method,
erroneous assignments of landmark information inevitably occur due to am-
biguous descriptor similarities. This issue is common among many prevalent
matching methods in the literature. The usual approach is to verify that
matches agree with the camera model consensus, and outliers are then elim-
inated. However, this concept is limited to rigid observation environments
and is invalid for deformable environments. This work introduces a new de-
formation invariant structure-based outlier classification that employs the
anatomical vascular structures for outlier classification. The proposed de-
formation invariant outlier elimination is developed for 2D to 2D graph
matching and generalizable for 3D graph comparison as needed in the re-
mainder of the work.

(iii) Global Graph Representation: For robust pattern matching, a 3D global
graph model is created to represent all previously seen patterns, providing
a patient-specific map of vascular structures. Unlike other localization meth-
ods in the literature, the current observation does not need to be matched to
previous image observations on the image plane. Instead, it can be matched
with the global graph representation containing all detected patterns at once.
This allows all descriptor information to be updated simultaneously with the
observed geometry deformation, even for areas not captured in the current
view. It also allows for the matching to proceed smoothly when the view is
restored after a temporal perturbation.
The global graph representation is created using gradient-based reconstruc-
tion and inverse differential rendering. Inverse rendering transfers 2D image
information to the model surface, while gradient-based geometry reconstruc-
tion updates the model geometry to match the spatially dependent landmark
descriptors to the current observations. To ensure that the global graph
representation contains all necessary structures and is not overloaded with
outdated or unreliable structures, patterns are individually checked to de-
termine which are new in the current observation and not yet present in the
global graph, as well as which patterns are present in the global structure
but are no longer observable in the current graph extraction. In addition, a
reliability metric is designed, which is determined for each landmark struc-
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ture individually to ensure that only the most reliable structures are used
for localization.

Holistic Intraoperative Scene and Pose Reconstruction: The presented approach in-
volves a holistic reconstruction method for cystoscopy’s intraoperative needs and
challenges, based on the inverse rendering method, graph extraction, and matching.
The method combines the advantages of the gradient-based and graph-based match-
ing concepts to ensure the reconstruction’s robustness and accuracy. The graph-
based matching method uses vascular landmark structures to provide a robust map-
ping from any view to previously seen patterns, which can still be effective even if
there is a temporary loss of view. Although the extracted landmarks and established
matches can be disrupted, the graphs still yield a robust orientation. Meanwhile,
using inverse differential rendering, the gradient-based reconstruction method allows
for a refined pose reconstruction with increased accuracy by leveraging the entire
vessel structures. As a result of the pose reconstruction, any remaining deviation
of the model observation from the current image observation is resolved by adjust-
ing the model geometry. The pose and geometry reconstruction are sequentially
executed, ultimately resulting in matching patterns. Previously unmapped patterns
can be updated through appropriate pattern matching in the texture model.

1.6 Structure of the Work

The remainder of the work is structured as follows: This work is structured around
the proposed holistic reconstruction pipeline, which outlines the methods and tech-
niques that are all deployed in the proposed intraoperative reconstruction pipeline.
In Chapter 2, the geometric relations between image projection and the 3D envi-
ronment are established. In this context, the physical ray projection from the 3D
environment to the image plane is introduced first, followed by the synthetic imaging
process that goes from model representation to the digital image plane. As a result,
the specific kinematics and the camera of the endoscope are taken into consideration.
For the rendering process, a triangular mesh model is introduced to parameterize
the human bladder. The rendering process, specific to the model representation, is
discussed for differentiability. Building upon that, a probability-based formulation is
presented to resolve discontinuities presented by state-of-the-art rendering pipelines.
Therefore, image rendering is discussed for both texture and silhouette information.
Building on this foundation, the proposed gradient-based reconstruction is explicitly
formulated in Chapter 3. Geometry and texture reconstruction are discussed for
intraoperative scenarios. To this end, adapted regularization losses for geometry
and texture reconstruction are presented.
In Chapter 4, the technique of inverse differential rendering is proposed as a way
to enhance the accuracy and reliability of the reconstruction process. This method
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transforms image information into corresponding 3D point information and normal
direction on the model surface in a differentiable form. Thus, more precise informa-
tion for supervision is established such that surface information can be included in
the optimization objective rather than relying solely on error formulations on the
image plane.

In Chapter 5, a pipeline is introduced for extracting visible vascular structures to
provide reliable landmark information. This includes highlighting the vascular struc-
tures in the respective image, as well as presenting the graph extraction process,
which encompasses the edge extraction network.

The corresponding graph matching procedure is presented in Chapter 6, where a
global graph representation is used to propose a deformation-tolerant matching and
outlier removal process. This chapter also covers the process of updating the graph
for newly seen patterns and a geometry update to ensure reliable spatial ratios.

Finally, in Chapter 7, the holistic reconstruction pipeline is presented, where a proof
of concept validation for pose and geometry reconstruction is provided. Additionally,
the flexible solution of the reconstruction formulation is demonstrated for the concept
of reconstruction of in-plane deformation.
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2
A gradient-based optimization formulation is proposed to address the endoscopic
scene reconstruction problem. State-of-the-art computer vision techniques are em-
ployed to tackle image reconstruction from a top-down perspective, optimizing model
parameters so that the synthetic model accurately represents the recorded real-world
data. Consequently, the reconstruction problem is formulated as a gradient-based
optimization problem with the objective of minimizing the difference between syn-
thetic and observed data.

To accomplish this, it is necessary to establish an appropriate linkage between the
endoscopic real-world observations and the synthetic model observations. Therefore,
the digital image rendering process must be designed in accordance with the physical
endoscope set-up to facilitate the comparison between real-world observations and
model adaptation during scene reconstruction. In the realm of computer graphics,
rendering entails generating a digital image of a synthetic scene representation by
projecting the model’s information onto an image plane while considering the cam-
era’s perspective and lighting conditions. Furthermore, the model representation,
including its geometry and texture, is combined with the extrinsic scene parame-
ters and the camera to create a realistic image. Figure 2.1 illustrates the synthetic
scene, encompassing the model representation, endoscope kinematics, and lighting
conditions.

In contrast to a rigid camera system, modeling an endoscopic image recording re-
quires accounting for kinematic and optical degrees of freedom. This is due to
the connection between scene illumination and rotational movements with the endo-
scope’s kinematics. For instance, in a rigid-fiber optics endoscope system, the optical
relay system may yield unexpected image results. In such cases, the image-based
camera reconstruction is not situated on the physical endoscope body but at the
opposite end of the endoscope, referred to as the tool center point (TCP) in this
context.

Additionally, the inherent rotational degrees in a fiber optic endoscope system can
cause the observed camera image sequence to diverge from the anticipated physical
rotation of the TCP. This misalignment results in a discrepancy between the TCP
pose and the image-based pose reconstruction.
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Figure 2.1: Overview of the rendering process. The synthetic model representation
consists of a mesh model which describes the geometry of the organ and correspond-
ing texture for modeling the tissue surface. The computation of a synthetic image
of the model scene depends on lighting and camera optics, as well as endoscope
kinematics. All dependencies must be considered to calculate a synthetic image that
can be used to supervise the model adaptation.

To comprehensively model endoscopic imaging, it is essential to incorporate relevant
kinematics into the camera projection model while adhering to established rendering
procedures. This strategy also enables the linkage between the endoscope’s pose and
the image rendering outcome. This chapter utilizes methods from the domains of ray
optics, computational photography, computer vision, and imaging science to achieve
the following research objectives:

• Developing a mathematical model that integrates the kinematics and ray op-
tics of an endoscopic camera system, providing a representation of real-world
endoscope imaging.

• Constructing a synthetic model representation capable of depicting the de-
formable surgical site encountered during a cystoscopy.

• Implementing an efficient synthetic imaging process that renders the synthetic
model representation on a digital image plane, based on the camera projection
model, lighting model, and scene representation.

• Establishing differentiability for the image rendering, enabling the evaluation
of the sensitivity of the synthetic image rendering with respect to the model
parameters.

The chapter is structured as follows: initially, an analytical camera model for the

23



2 Rendering Pipeline following the State-of-the-Art

endoscope is presented, followed by the introduction of the digital model representa-
tion and imaging process. In Section 2.1, the analytical camera model is devised to
precisely depict the kinematic intricacies of a rigid cystoscope, as well as its distor-
tion effects. Section 2.2 introduces a suitable synthetic model representation for the
surgical site and expounds on the rendering process, which is founded on the analyt-
ical camera model. This rendering process generates a photorealistic digital image
that takes spatial occlusion into account. In Section 2.3, the non-differentiable oper-
ations present in a state-of-the-art rendering process are identified and reformulated
for differentiability.

2.1 Analytical Camera Model

The analytical camera model presented in this study delineates the projection of a
3D scene onto a 2D image plane and the kinematic behavior of the camera during
this process. This representation is crucial for rendering 3D scenes onto a 2D image
plane, imitating the image capture of a real-world camera observation.

This research presents a general approach for reconstructing the camera pose solely
based on intraoperative image observations. Therefore, the camera projection model
is introduced in a general form that accommodates the camera perspective deter-
mined by the system’s rotation and translation. However, a specific endoscope kine-
matic is indispensable when external pose measurements are incorporated for vali-
dation or integration into the reconstruction framework. As such, this study takes
into account the technical implementation of a rigid cystoscope without restricting
the generality intended for all methods presented in this work. Additionally, the
proposed endoscope model integrates constraints on both the endoscope kinematics
and the projection to respect the given degree. The procedure can be applied to
any rigid fiber optics camera system. It is important to note that while the specific
camera kinematic is crucial for sensor fusion and validation purposes, the purely
image-based reconstruction does not rely on the particular camera kinematics.

2.1.1 Pinhole Camera Model

The pinhole camera model is one of the most elementary and fundamental camera
projection models. It models the projection of a three-dimensional point onto a
two-dimensional image plane through a pinhole, as illustrated in Figure 2.2. Within
the pinhole camera model, the camera’s optical projection center is located at the
origin of the world coordinate system, while the z-axis signifies the camera’s viewing
direction. The retinal plane R is defined as the shifted xy-plane at z = 1. Additionally,
the intersection of the retinal plane and the optical axis specifies the focal length f ,
which is given herein as f = 1.
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Figure 2.2: Point projection on the image space following the pinhole camera model.

However, in reality, the optical center is located between the spatial point and the
image plane, leading to a reflected image. To simplify the model and eliminate
reflection effects, the image plane is virtually placed in front of the optical center.
In accordance with the ray theorem, the projection process of a 3D point P =[
Px, Py, Pz

]T ∈ R3 onto the image plane is modeled by

xR =
Px

Pz
yR =

Py

Pz
, (2.1a)

where xR and yR are the coordinates of the retinal imaging plane. The nonlinear
mapping prescription can be transformed into a homogeneous representation


xR
yR
1

 ∝

1 0 0 0
0 1 0 0
0 0 1 0





Px

Py

Pz

1


(2.1b)

that allows for linearly proportional model relations.

2.1.2 Intrinsic Camera Projection

The pinhole camera model, as represented by (2.1b), requires modification to de-
scribe a more general camera projection. In an real world camera system, the dis-
tance between the projection center and the retinal plane, known as the focal length
f , is typically not equal to one. As a result, the image coordinates in (2.1b) must
be scaled according to the focal length f . Additionally, the projection coordinates
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on the retinal plane do not directly correspond to the final image coordinates cap-
tured by a digital camera image. The captured image depends on camera-specific
parameters, including the pixel size ∆p, skew angle αskew, and position of the sensor
relative to the optical axis, specified by the principal point c. Accounting for the
camera-specific parameters, the transformation from retinal coordinates to image
coordinates results in


x
y
1

 ∝


f
∆px

f
∆py

tan(αskew) cx

0 f
∆py

cy

0 0 1




xR
yR
1

 (2.2a)

with x and y that specify the projection point p =
[
x y

]T of P in the respective
continuous image coordinate system. However, the parameterization is sufficiently
specified in the projection model


x
y
1
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︸               ︷︷               ︸

K


xR
yR
1

 . (2.2b)

The projection model described in this study uses a simplified notation for the cali-
bration matrix K. This matrix includes the measured focal lengths fx and fy, which
are determined separately for the x and y directions, respectively, along with a skew
factor sskew that accounts for non-rectangular pixel sizes. By combining these cam-
era parameters into a single calibration matrix K a more compact representation of
the camera projection is provided. Cameras with fixed optics are consistent across
all images captured using the same optics. However, modern endoscopes with auto-
matic zoom and focus control may require ongoing adjustments to the calibration
matrix’s parameterization to accommodate changes in focal length.

2.1.3 Image Distortion

The optical lens typically introduces image distortions that increase from the optical
center outward, which are particularly noticeable at the edges of the optical lens, as
illustrated in Figure 2.3. This ultimately produces misleading depth information in
the 3D reconstruction. The shorter the focal length and the wider the lens angle,
the greater the distortion. In endoscopes, wide-angle lenses are typically deployed
to enlarge the field of view. As a result, the distortion caused in endoscopic images
is particularly pronounced and must be corrected accordingly [105, 149].
A model is necessary to compensate for the distortion effects. By exploiting an
analytical model that takes into account the distortion parameters, it becomes pos-
sible to transform a distorted image into its undistorted equivalent. If not rectified,
lens distortion can disrupt the pattern alignment across different observation per-
spectives. This can result in the misidentification of depth information as image
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(a) Barrel distortion. (b) Pincushion distortion.

Figure 2.3: Around the principal point, the image surface behaves like a pinhole
(violet plane). However, due to optical aberrations and imperfections in the camera
lens, the captured image can become distorted. This distorted image is represented
by the surface Ĩ , while the equivalent undistorted image is represented by the surface
I . Confer with [48].

distortion could potentially be misclassified as deformation effects after completing
the pattern matching.

More specifically, lens distortion can generally be classified into two categories: radial
and tangential distortion. Radial distortion arises when light rays deflect from the
image center, becoming more prominent as the rays refract further from the lens
center. Tangential distortion occurs when the lens and the image plane are not
parallel, causing rectangular geometries to appear as trapezoids in the image plane.

Radial Distortion: Radial distortion is a form of lens distortion that occurs when
the pixels in an image are radially displaced from their accurate positions. This is
caused by the fact that the image is formed on a curved surface, rather than a plane,
due to the refraction of light as it passes through the lens. The degree of refraction
depends on the lens material’s index of refraction and the lens shape. Smaller lenses,
characterized by shorter focal lengths and stronger curvatures, typically generate
more radial distortion. This is because the light that passes through these lenses
bends more sharply, leading to a greater degree of image curvature and distortion
that must be corrected when projecting the image onto a flat surface.

There are multiple approaches to model radial distortion. A common empirical
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(a) Observed endoscopic image with distor-
tion.

(b) Undistorted equivalent of (a) after cali-
bration.

Figure 2.4: Images showing the effect of distortion correction on an endoscopic image.
The image in (a) shows radial distortion, which is corrected in (b) through the use
of camera calibration.

model is given by
[
x̃
ỹ

]
=

[
x(1 + k1r2 + k2r4 + k3r6)
y(1 + k1r2 + k2r4 + k3r6)

]
(2.3a)

where r2 = x2+y2 relates the distorted image coordinates p̃ =
[
x̃, ỹ

]T to the undistored
image coordinates p =

[
x, y

]T with the distortion parameters k{1,2,3} [70, 144]. For
lenses producing less complex distortions, the third parameter (k3) may be omitted.

Tangential Distortion : Tangential distortion occurs when the lens and the image
plane are not perfectly aligned parallel to each other. This can cause rectangles to
appear as trapezoids in the captured image. The tangential distortion is typically
modeled through the empirical model formulation

[
x̃
ỹ

]
=


x + 2t1 xy + t2

(
r2 + 2x2

)

y + t1

(
r2 + 2y2

)
+ 2t2 xy

 (2.3b)

holding the tangential model parameters t1,2 to relate the distorted pixel coordinates
x̃ and ỹ to the respective distortion free coordinates x and y [70, 144].

2.1.4 Image Undistortion

The distortion model presented in (2.3) can be used to recalculate an undistorted
image based on a given parameterization. The nonlinear models for radial distor-
tion (2.3a) and tangential distortion (2.3b) are combined in the general notation
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fdist, with the corresponding inverse mapping denoted by fundist for ease of notation.
Figure 2.4a displays an endoscopic image capture of a checkerboard in its original
distorted state, while Figure 2.4b shows the corresponding undistorted image in its
’unwarped’ form.

The camera parameters are commonly identified by utilizing predefined patterns
such as regular checkerboard patterns. The calibration process involves capturing
images of the pattern from different perspectives. To accurately model the camera’s
free movement, the extrinsic camera parameters such as the rotation and translation
must be integrated into the overall projection model [94].

2.1.5 Integrating Intrinsic and Extrinsic Parameters for a General Camera
Projection Model

In the projection model (2.2b), the camera perspective is fixed to a pre-defined
coordinate system. A transformation is necessary, to accommodate arbitrary camera
perspectives. This transformation is expressed as

W P = WRC
C P + W T , (2.4)

where W P ∈ R3 is the projection point in the world coordinate system {W}. This
point is transformed to its representation in the camera coordinate system {C}. The
transformation involves an orthogonal rotation matrix WRC ∈ R3×3 (simplified as
R), which transforms the direction of the vector without affecting its length, and a
corresponding translation vector T ∈ R3. These components„ termed the extrinsic
camera parameters, facilitate the modeling of any camera perspective. Alterations in
the camera’s perspective can be perceived as the corresponding reverse displacement
of the scene in the camera coordinate system {C}.
The inverse mapping of (2.4), with CRW =

WR
T
C, captures the image flow as the

camera transitions from world to camera coordinates. The collection of all sub-
models (2.1b),(2.2b), and(2.4) facilitates synthesis of both intrinsic and extrinsic
parameters, forming a comprehensive analytical camera projection model
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, (2.5)

where the resulting matrix M ∈ R3×4 is referred to as the camera projection matrix [94].
The projection matrix (2.5) provides the general description for projecting model
information onto the image plane depending on the camera parameters. For the
scope of this work, a parameterization of the external camera parameters consisting
of rotation and translation is needed.
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2.1.6 Parameterization of the Extrinsic Motion Parameters

The rotation matrix R ∈ R3×3 has nine degrees of freedom which are not independent
and must be condensed into a unique parameterization that is suitable for the for-
mulation of a well-conditioned optimization problem. A standard parameterization
is given by the Euler angles, which represent the orientation of the camera as three
separate rotational angles around the x, y, and z axes. However, Euler angles have
limitations, such as the potential for singularities, which can result in discontinuities
in the camera’s orientation [57, 142]. An alternative approach is to employ quater-
nions coordinates, a mathematical representation of rotations in 4D space that are
more compact than rotation matrices but may be more challenging to work with
mathematically and are less intuitive to interpret than Euler angles [20, 57, 74, 75,
142].

In this work, the rotation matrix R is parameterized by the so-called Rodrigues
vectors as discussed in [21, 74]. The Rodrigues vector is a representation of 3D
rotations defined by

r =
ϑ

2
i (2.6a)

where r is the Rodrigues vector, i is the unit vector representing the axis of rotation,
and ϑ is the rotation angle. The angle of rotation ϑ is given by the norm ϑ = |r|.
The Rodrigues vector is related to the axis of rotation and the rotation angle and
can be used to parametrize a rotation matrix R. The rotation matrix is calculated
by

R = E +
sin |r|
|r| [r]× +

1 − cos |r|
|r|2 rr⊺, (2.6b)

where E is the identity matrix, and [r]× denotes the skew-symmetric matrix corre-
sponding to the cross product with r.

Compared to Euler angles, Rodrigues vectors are less susceptible to singularities
and error accumulation, and are easier to interpret compared to quaternion coordi-
nates [38]. The Rodrigues parameterization is used in this work because it allows
for the continuous optimization of rotations; small changes in the Rodrigues vec-
tor correspond to small changes in the rotation, making it useful in optimization
problems where incremental changes to the rotation are necessary. Additionally, Ro-
drigues vectors are more numerically stable than Euler angles because the quantified
deviation between Rodrigues vectors is more uniformly related to the corresponding
change of pose. This property is essential for any parameter update of the form (A.1),
where a uniformly distributed parameter update over the entire vector supports a
more stable convergence behavior during optimization [42]. Finally, to provide a
comprehensive notation for the threedimensional pose representation that includes
both the translation vector T and the rotational degrees expressed by the Rodrigues
vector r, this work defines the pose representation ϕ = [T, r].
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2.1.7 Calibration of the Camera Model

Calibration is typically accomplished using a calibration object with predefined pat-
tern, such as a checkerboard pattern, captured from multiple viewpoints. The cor-
responding point correspondences are used to determine the camera parameters.
The camera model projects spatial points onto the image plane according to (2.5).
However, since this projection is not invertible, the inverse mapping is ambiguous.
To unambiguously determine a point in space, it is necessary to capture the same
point from at least two intersecting perspectives based on the triangulation principle,
which is illustrated in Figure 2.2. The triangulation principle exploits corresponding
point matches m p̃A↔ p̃B in two or more images, and then intersecting the rays passing
through those points in the respective camera spaces A and B. The intersection of
these rays results in the location of the corresponding 3D point P.

Figure 2.5: Triangulation principle; based on the known projection matrices, a 3D
point P can be reconstructed from two matching image points p̃A and p̃B. Confer
with [94].

Thus, based on the triangulation principle, the intrinsic and extrinsic parameters
are determined by minimizing the discrepancy

W R−1
A K−1 fundist

(
p̃A

) − W R−1
A TAW =

W R−1
B K−1 fundist

(
p̃B

) − W R−1
B TBW , (2.7)

where the distortion is included in the back transformation, allowing for the unique
determination of the intrinsic parameters. The extrinsic parameters can be recon-
structed up to an arbitrary scaling factor. A sufficient number of matching node
pairs p̃A ↔ p̃B must be established through redundancy in the formulation of (2.7)
to ensure accuracy and robustness.

To enhance the identification of point correspondences, a calibration object, like
the checkerboard pattern presented in Figure 2.6a, is employed. The geometric
arrangement of the checkerboard pattern and the utilization of basic edge detection
techniques enable the accurate detection of landmarks with high precision down to
the sub-pixel level. Moreover, the predetermined dimensions of the checkerboard
provide the scale ratio without any ambiguity.
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To determine the extrinsic parameters for a batch of images, pixel matches are used,
while the intrinsic parameters may be determined using the entire dataset to increase
accuracy and account for outliers. As an illustration, the calibrated intrinsic camera
parameters of the Storz endoscope [131] (shown in Figure 1.1b) are presented below:

• Focal length in mm : fx = 18.24 mm, fy = 18.26 mm
• Principal point in pixels: cx = 639.5 pixels, cy = 359.5 pixels
• Skew coefficient (unitless): sskew = 0.01
• Distortion coefficients (unitless): k1 = −0.4, k2 = 0.21, k3 = 0.00, t1 = 0.0,

t2 = 0.00

The alignment of checkerboard pairs is commonly used to solve the regression prob-
lem for calibrating and determining camera parameters, as depicted in the general
formulation (2.7). Although various studies, such as [29, 79, 94, 149] have presented
alternative self-calibration techniques and more comprehensive reconstruction pro-
cedures, they are outside the scope of this work and will not be further discussed.

(a) Checkerboard with detected edges. (b) Reconstructed poses.

Figure 2.6: For camera calibration, 30 independent checkerboard images were cap-
tured from distinct perspectives. The reconstructed poses obtained from the calibra-
tion process are shown in (b).

2.1.8 Kinematic Model of a Rigid Cystoscope

The image-based perspective reconstruction, as specified in (2.7), offers a versatile
and distinct solution without compromising generality or uniqueness. To accurately
tie the reconstructed camera perspective to a specific position on the endoscope,
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it is imperative to take into account the endoscope’s physical kinematics, like its
angled tip and given degrees of freedom. Relying solely on a simplified virtual
camera position within the observed image can be insufficient. This consideration
becomes especially critical in this work when validating the reconstruction with
external measurement markers on the endoscope. In this section, a kinematic model
is derived for a rigid cystoscope to demonstrate the modeling of rigid endoscopes
and manipulator systems. Therefore, the technical aspects of a rigid cystoscope are
briefly reviewed first.

2.1.8.1 Technical Description of the Cystoscope

In medical endoscopy, the technical implementation of image transmission relies
on either fiber-optic or purely optical-electronic concepts, depending on the clini-
cal needs and anatomical conditions. For procedures that require minimal access
trauma, small and flexible endoscopes are typically used. However, larger endoscope
diameters may be required for wider lenses and working channels to ensure optimal
image quality and surgical intervention space for certain applications.

Figure 2.7: The notch at the distal
end of the endoscope is visible as
a small triangle in the captured
image. The angle of the notch
can be extracted from the imaged
notch relative to the correspond-
ing image coordinate system.

In cystoscopy procedures, both rigid and flexi-
ble cystoscopes are available; however, the rigid
form is more commonly utilized in clinical prac-
tice [105]. The rigid endoscope consists of a
telescope that determines the area of invasion
and depth of penetration, while an external light
source illuminates the surrounding tissue. Re-
flected light from the tissue is focused at the tip
of the endoscope and transmitted through a se-
ries of rod lenses to the eyepiece, offering a clear
view of the internal tissue. Additionally, a con-
nected camera digitizes the image seen through
the eyepiece, allowing the surgeon to operate
with the appropriate resolution on a screen.
A schematic cross-section of a rigid cystoscope
is shown in Figure 1.1b. To increase the field
of view, rigid cystoscopes often have observa-
tion lenses at various angles, some of which can
be adjusted or fixed in angle, as shown in Fig-
ure 1.1a. This provides the surgeon with an ad-
ditional field of view beyond the range of motion limited by anatomy. For example,
a 120◦ tip may even allow the surgeon to see in reverse directions. Accordingly, the
cystoscope’s field of view is controlled by the rotation of the telescope.
To facilitate orientation, the camera sensor typically has a degree of rotational free-
dom with the eyepiece. This allows for adjusting the field of view by rotating the
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telescope without rotating the camera image itself. The visual outcome for a change
in the telescope rotation of the cystoscope kinematics is illustrated in Figure 2.8.
Moreover, a small notch is included in the cystoscope image output to monitor the
relative rotation of the camera and cystoscope, as highlighted in Figure 2.7 and vis-
ible in all preceding endoscopic image captures, which were shown in Figure 1.3a,
Figure 1.3b, and Figure 1.4b. The notch indicates the angle between the camera and
cystoscope and enables the surgeon to determine the orientation of the tip, helping
to avoid collisions with the surrounding anatomy.

αC

(a) Cystoscope has no relative rotation to
the camera, θn = 0.

αC

θn

θn

(b) Cystoscope is rotated θn > 0 relative to
the camera.

Figure 2.8: Relative rotation between the cystoscope shaft, characterized by tip angle
αC , and the physical camera. The camera’s resulting image is displayed on the top
left, where a notch indicates the relative rotation θn between the shaft and the camera.
This notch corresponds to the angular displacement of the light post from the vertical
axis of the attached camera, causing the object in view to appear increasingly off-
center due to the tip angle.

2.1.8.2 Kinematic Model of a Rigid Cystoscope

The Denavit-Hartenberg convention [22] is a prevalent method of modeling kinematic
chains in robotics, which also applies to the given endoscope kinematics. This model
description is dedicated to the kinematics of a rigid cystoscope, while also considering
the rotational degree of the fiber optic system in the projection model. Although the
model outlined in this description is tailored to the cystoscope depicted in Figure 1.1,
the model approach is generally applicable to any other fiber optic endoscope and
telemanipulator system. To introduce the required body-fixed coordinate systems,
the rotational coupling of the camera to the eyepiece is referred to as the frame {P}
at the center of the pivot, accounting for the relative telescope rotation. The distal
end of the cystoscope, referred to as the center of view (TCV), is referenced in the
coordinate system {E}. As shown in Figure 2.9, the frame {E} has an angular offset
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Figure 2.9: Kinematic model of the endoscope.

of αc relative to the frame {P}, which corresponds to the angled direction of view
of the cystoscope. Initially, frames {E} and {C} share a common origin, with OE

equivalent to OC . Since frame {E} is attached to the physical end of the cystoscope,
the x and y axes of {E} rotate around the long axis of the cystoscope according to
the rotation of the cystoscope shaft. This rotation is specified by the notch angle
θn and corresponds to the angular displacement of the notch seen in the respective
video image. The resulting overall transformation from the observed virtual camera
perspective {V} to the reference point of the endoscope, located in the handle of
the camera body without loss of generality, follows a serial transformation of joints
and connections according to the DH convention [22]. This yields a transformation
CTB(χ) from {B} to {C} concerning the joint degrees of freedom χ of {V}, where
frame {B} characterizes the cystoscope’s hand-piece. The full kinematic diagram
and corresponding DH parameters of the joints

χ =
[
θ1 θ2 θ3 d4 d5 d6 θn

]T ∈ R7 (2.8)

are listed and shown in Figure 2.10 following the DH convention. In this kinematic
model, the camera’s end position in {B} maintains a distinct position and orientation
relative to the pivot point in {P}. Since the image origin {E} coincides with the camera
position, OE is tantamount to OC . When the cystoscope undergoes θn rotation, the
camera’s optical axis {C} inevitably aligns with the cystoscope’s viewing direction,
thus establishing {E} ≡ {C}.
However, due to the rotating mechanism of the telescope, there is a disconnect be-
tween the image-based pose reconstruction and the actual physical camera, with
the handpiece serving as the target reference point. Since the physical camera is
located opposite {P} and {C} represents the projection of the physical camera’s ori-
entation, the orientation of the frame {C} remains unchanged during shaft rotation
θn. This implies that xE , xC and yE , yC , leading to a mismatch between the image-
reconstructed perspective and the physical TCP orientation at {E}. To account for
this mismatch, the axes xC and yC are constrained using θn in combination with
the image observation. Therefore, a compensation joint E → C is defined so that a
rotation around P → E can be corrected. This ensures that the optical axis zC re-
mains collinear with zE while accurately aligning the image-based camera axis with
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{B}
{1}

θ2

{2}

θ3

{3}

d4

{4}

{5}
d6

{P}
θn

{E}

−θn

αC

l
{C}

d5

θ1

CTB(χ)

i α a d θ

1 90◦ 0 0 θ1 + 90◦

2 −90◦ 0 0 θ2 − 90◦

3 0◦ 0 0 θ3

4 90◦ 0 d4 0◦

5 90◦ 0 d5 90◦

6 (P) 90◦ 0 d6 −90◦

E αc 0 l θn

C 0◦ 0 0 −θn

Figure 2.10: The kinematic diagram illustrates the Denavit-Hartenberg (DH) param-
eters of the sensor setup.

the physical shaft alignment. Except for the shaft rotation angle θn, all lengths
and angles are fixed and can be determined using the system specifications of the
cystoscope. The shaft rotation angle θn can be easily obtained from the notch in
the transmitted image, which rotates with the telescope housing and indicates the
relative rotation between the shaft and the camera, as outlined in Section 2.1.8.1
and seen in Figure 2.9.

2.2 Intraoperative Model Representation and Synthetic Image
Projection

The rendering process generates a digital image representation of a synthetic 3D
scene. This goes beyond the analytical image projection as it involves the interaction
between object, light, and material properties in the scene to synthesize the final
image data. Essentially, the rendering is a synthetic camera projection of a virtual
model, capturing a digital image.

The process of rendering involves generating a digital representation of a synthetic
3D scene. Unlike the analytical image projection, rendering requires calculating the
interactions among objects, lights, and materials within the scene to produce the
final image data.
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In the following, a synthetic model representation suitable for intraoperative use
is introduced in Section 2.2.1. Building upon the synthetic model representation
and the analytical projection model, the conventional rendering process is presented
in Section 2.2.5. In this context, all operations within the rendering process are
classified for differentiability.

2.2.1 Scene Representation

Rendering algorithms and model representation are tightly linked. The choice of a
suitable model representation depends on the complexity of the application and the
desired model resolution. Model representations frequently employed in rendering
algorithms encompass point clouds, voxels, meshes, and implicit neural network
representations. Furthermore, the rendering process’s efficiency and precision are
depended on the chosen model representation. As such, the model representation
selection must meet the requirements of both the complexity of the application and
the desired resolution of the model.

Point clouds depict the model geometry through an assembly of points in 3D space.
Nonetheless, extracting pertinent information, such as surfaces and normals, can
be computationally demanding and ambiguous, particularly in the case of sparse
point clouds. In contrast, voxel models represent interconnected volumes using unit
cubes. This makes them straightforward to handle, but they are constrained to small
scenes with low resolution due to the considerable number of parameters needed.
Furthermore, there are implicit model representations that rely on a neural network
formulation to delineate an object’s geometric constraints. Typically, the network
models the distance from a point to the object’s surface, implicitly characterizing the
surface as the set of points P fulfilling the condition of the network prediction N (P) =
0 . Although this method necessitates a constant, resolution-independent parameter
space, it remains unfeasible for real-world applications, given the requirement for
accurate ground truth data to train the network.[50]

Meshes represent surfaces using a limited number of parameters, thereby facilitat-
ing efficient optimization despite high geometric complexity. They prove especially
advantageous when focusing on surface information exclusively and can be utilized
with a high level of detail and a minimized parameter space. Owing to these at-
tributes and the emphasis on cystoscopic interventions, where a spherical mesh can
accurately represent the bladder surface, the mesh model is deemed the optimal
choice for model representation in this work. The combination of efficient parame-
terization and high surface resolution in mesh models without neglecting intricate
details, while the minimized parameter space reduces the computational demands.
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Figure 2.11: Triangular mesh at two different resolutions, shown in red with a
number of |V| = 212 vertices and in grey with a number of |V| = 10242 vertices,
used to parameterize the geometry of a human urinary bladder.

2.2.2 Digital Model Representation

Polygon meshes are one of the prevalent model representation in computer graphics
for depicting 3D surface information. A polygon mesh comprises vertices, edges,
and faces that delineate the shape of the model. Within this structure, a face
can be a triangle, square, or any other n-dimensional convex polygon. Moreover,
various operations can be performed on a mesh, including smoothing, subdivision,
and logical operations. This work exclusively focuses on triangular meshes, which are
particularly well-suited for the rendering process and constructing a differentiable
framework due to their unique properties. Triangles are both planar and convex,
enabling straightforward computational relationships when intersecting with lines
or normals. The weighted centroid of adjacent vertices also allows for efficient and
tractable interpolation of properties across the entire spanned space. Furthermore,
as most modern graphics units and algorithms are optimized for triangle meshes,
they facilitate accelerated rendering and more efficient mesh processing.

The architecture of a triangular mesh is composed of a set of vertices, denoted as
V, wherein each vertex V j is expressed as a 3D coordinate V j ∈ R3. Additionally, a
list of faces F j is defined by their respective indices j ∈ N, which correspond to the
vertices present in the vertex list. An example of such a structure is illustrated in
Figure 2.11, which depicts the surface geometry of a urinary bladder parameterized
by a triangular mesh. The model representation’s resolution is dictated by the
number of mesh vertices.

In polygon meshes, the viewing direction is determined by organizing the vertices in a
mathematically counterclockwise orientation. This specific orientation is responsible
for establishing the front and back facets of a face, subsequently influencing the
lighting and shading effects during the rendering process.
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2.2.3 Parameterization of the Surface Geometry

The resolution and geometry of a polygon mesh depend on the vertices V and faces
F, which determine the connectivity between the vertices in the mesh. A face F j is
defined by its corresponding vertex coordinates

[
V j,a,V j,b,V j,c

]
and determines the

surface plane of the mesh. The coordinates of a point P within the face F j are
determined by

P j = V j,a + u
(
V j,b − V j,a

)
+ v

(
V j,c − V j,a

)
, (2.9)

which can be interpreted as the weighted center of gravity of the respective face plane.
The respective weighting of the vertices is given by the barycentric coordinates u ∈ R
and v ∈ R. Constraining the coordinate space according to

0 ≤ u, v ≤ 1, and u + v = 1, (2.10)

reduces the spanned plane (2.9) to the set of coordinates within the area covered by
the face F j.

2.2.4 Texture Model

The faces and barycentric weighting of face coordinates in a mesh model define all
points on the surface. In addition to geometric shape, surface appearance is crucial
to model representation, as it involves color and light interaction. These character-
istics, such as roughness, metallicity, specularity, opacity, and other surface effects,
are represented in a feature space and must be assigned to the mesh surface using
an appropriate texture representation. Three common texture representations ex-
ist; vertex texture mapping, uv-texture mapping, and atlas texture mapping. The
following gives a brief overview of each method, along with its advantages and dis-
advantages in the context of this work.

Vertex Texture: The most elementary texture representation is provided by vertex
texture representation. In this approach, each vertex in the mesh is assigned a
feature vector space C containing texture properties such as surface color and other
material properties. Given a point P j on a face F j, the corresponding surface feature
C j is determined by continuous interpolation

C j = C j,a + u
(
C j,b − C j,a

)
+ v

(
C j,c − C j,a

)
(2.11)

based on the uv-value parameterization. This interpolation relies on the respective
feature vectors assigned to the vertices of the face, as illustrated in Figure 2.12a.
While intuitive and straightforward to implement, vertex texture is not well-suited
for intricate and complex textures on meshes with large face areas.
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(a) Vertex texture. (b) Texture uv-map.

Figure 2.12: Panel (a) illustrates the color distribution on a triangular mesh face
based on it vertex features, while panel (b) showcases the texture uv-map in con-
junction with the mesh skeleton.

UV Texture: The uv-texture map is a widely used texture model for rendering.
This mapping technique involves projecting a two-dimensional map onto a three-
dimensional mesh surface, or vice versa, which entails mapping mesh information
onto a two-dimensional feature map. Instead of embedding the texture in the three-
dimensional geometry space, this approach maps the feature space in a separate
image space. By interpolating between discrete pixel values texture mapping pro-
vides continuous feature allocation and surface coloring based on the triangular query
and corresponding coordinates.

Figure 2.12b illustrates an example of a uv-texture map applied to synthetic bladder
geometry. Assigning fixed two-dimensional coordinates to each vertex in the mesh
is a crucial step in the mapping process. Various methods exist for initializing these
coordinate assignments. It’s important to note that the texture map itself is just a
memory location, and its interpretation is not always straightforward. The initial
assignment of coordinates to the feature map is not unique, and neighboring faces
may not have consecutive references.

Atlas Texture Mapping: The atlas texture model is similar to the uv-texture model
and relies on reference-based feature mapping. However, in atlas texture mapping,
each face of the mesh has its own two-dimensional texture atlas, providing unambigu-
ous initial reference alignment of the texture attributes. Furthermore, this flexible
representation allows for different resolutions in the mesh and even to easily manipu-
late the resolutions and texture at any time without re-initializing the whole texture
map. Intraoperative data analysis benefits particularly from the dynamic increase of
resolution in the examined areas. This approach allows for a high level of resolution
in the examined areas without adding unnecessary complexity to the overall model.
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Both the uv-mapping and atlas texture mapping models enable arbitrarily high
resolution and detailed coloring at any geometry resolution in the mesh, making
them state-of-the-art in computer rendering processes of technical or architectural
models.

2.2.5 Synthetic Image Projection Following the State-of-the-Art

The specific steps involved in rendering, such as modeling, texturing, lighting, an-
imation, and post-processing, can vary depending on the software, hardware, and
requirements of the application. In this study, image rendering is limited to the
rendering process specific to a mesh as a synthetic scene representation. The estab-
lished camera projection model serves as the analytical foundation for subsequent
rendering. Furthermore, the rendering process systematically examines the model
representation to uniformly cover the entire discrete image space. This involves iden-
tifying visible surface information and determining which aspects are obscured by
other mesh faces from the given camera perspective.

Figure 2.13: Schematic illustration of primary sub-operations in state-of-the-art ren-
dering pipeline.

Figure 2.13 provides a schematic overview of the rendering process examined in
this study, which aligns with widely-used real-time rendering pipelines such as
OpenGL [96]. The process involves a transformation scheme that relates the camera
and scene coordinate systems, enabling the analytical computation of normals N,
depth information z, and barycentric coordinates U of the mesh M associated with
the camera perspective ϕcam. Subsequently, the color information for the image
plane Ĩ is determined based on the texture model C and the lighting conditions L.
For non-transparent objects, it is essential to map the closest surface information of
the model representation from the camera perspective onto the image plane and to
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assess the opacity and visibility of all included model points. Finally, these individ-
ual operations are interconnected to produce a discretized image information in the
rasterized image matrix Ǐ.

Decomposed, the rendering process follows a series of steps and preparatory proce-
dures presented in the respective subsections, including:

• Defining the digital image space in Section 2.2.5.1 to set the requirements for
the rendering pipeline and tailor it to the desired output data.

• Performing the analytical projection in Section 2.2.5.2 to generate image infor-
mation for each pixel in the digital image based on the camera perspective and
the model. This involves calculating the position and properties of objects in
the scene as they would appear from the perspective of the camera.

• Addressing the occlusion problem in Section 2.2.5.3 to ensure that the appro-
priate surface information is determined for each pixel in the digital image.

• Implementing the appropriate lighting model in Section 2.2.6 based on the
camera perspective to add realism and depth to the scene. The lighting model
calculates the intensity of the surface color based on the lighting conditions.

• Presenting the combination of the texture and lighting information in Sec-
tion 2.2.7 using the method of color interpolation known as Phong shading.

2.2.5.1 Digital Image Space

A digital image is composed of a grid of pixels, which are individual points arranged
in a rectangular matrix I to represent the image intensities. Grayscale pixels have
intensity values ranging from black to white in the integer interval [0, 255], while
color pixels require three channels to encode the corresponding color information
through the additive mixture of three primary colors. It is important to note that
color is subjective and the mixture of colors does not adhere to the physical laws of
optics. Instead, it mirrors the physiological response of the human eye to light [122].
Various color systems employ distinct primary colors as the foundation for their
respective color spaces, which can be transformed into one another via coordinate
representations. The most prevalent color system relies on the primary colors red,
green, and blue (RGB), wherein any color can be expressed as a three-dimensional
vector encoding the weights of the respective primary colors. In computer graphics,
discrete pixel intensities are generally scaled to a continuous range between zero
and one, facilitating continuous image processing in either color or grayscale. In this
study, the continuous representation of pixel intensities and the RGB color space are
utilized. The integer indices h ∈ H ⊂ N and w ∈ W ⊂ N specify the discrete location
of pixels within the image matrix. The corresponding Euclidean coordinate in the
image plane is denoted by ph,w.
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2.2.5.2 Analytical Ray Tracing

The rendering of the digital image requires the computation of pixel intensity by
aggregating the relevant surface information for each pixel, based on the camera’s
perspective and light conditions. This process, known as ray tracing, involves passing
a ray from the camera’s perspective through each pixel of the image plane and
checking for the closest intersection with the scene model [91]. This technique can
be extended by tracing the rays further past the first hit with the respective surface.
Ray tracing is also known as ’backward tracing’ because the rays are traced from the
camera’s viewpoint instead of starting from the light sources. However, this approach
enables the simulation of physical phenomena such as absorption and reflection,
resulting in highly realistic and detailed shading effects.

Following the ray tracing principle, the intersection of a chosen pixel (h, w) with
an arbitrarily selected face F j is determined by passing a ray from the projection
center Ocam of the camera through the Euclidean pixel position ph,w to the respective
face F j. It is essential to note that (h, w) works as an index of the image matrix
and does not represent any Euclidean information. In contrast, ph,w describes the
respective Euclidean distances according to the given origin on the image plane
according to (2.5). Including the focal length f , the principal point c, and the
camera orientation in the world coordinate system, the pixel position in the three-
dimensional space is given by

Ph,w =


cx + ph,wx

cy + ph,wy

f

 . (2.12a)

Thus, the corresponding ray passing through the camera origin and the given pixel
can be expressed by

Rh,w = Ocam + µray
(
ph,w − Ocam

)
, (2.12b)

where µray ∈ R is a scalar parameter, which parameterizes a point Ph,w on the ray Rh,w.
The intersection point Ph,wj of the ray (2.12b) with the given face plane (2.9) of F j is
found by equating (2.12b) with spanned face plane (2.9), and solving for the inter-
section point. The face plane is parameterized by µray and the uv coefficients of the
respective face F j. If the parameterization satisfies the barycentric constraint (2.10),
the intersection point lies within the face boundaries. If not, the intersection point
lies outside the face. In a brute-force approach to aggregating pixel values, the in-
tersection point for each given face must be calculated and evaluated to determine
whether it lies inside or outside the given face boundaries. This results in a point
cloud Ph,wj∈∥F∥ of ∥F∥ individual number of intersections for the pixel ph,w.

However, for the final aggregation of pixel values, at least for opaque bodies, only
the closest surface in the field of view is relevant, which requires additional depth
information to be queried. If an admissible intersection point Ph,w is determined
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within the face triangle under consideration, the pixel intensity Ih,w that corresponds
to the surface intersection Ph,w, is temporarily assigned to the pixel’s feature space.
The corresponding texture Ih,w is used after the occlusion evaluation to determine
the pixel intensity in conjunction with the lighting conditions.

2.2.5.3 Occlusion Check

Several occlusion detection algorithms exist in the literature, which can be classi-
fied into two broad categories: methods that analytically determine the visibility in
the object space and methods that exploit the image space and sparsely perform
for each pixel an opacity check. In modern graphics systems, either the Z-buffer
algorithm [132], which offers high computational efficiency, or the ray tracing algo-
rithm [32], which generates photorealistic, high-resolution renderings, are commonly
employed.
Like ray tracing, Z-buffering checks for each pixel which elements of a scene need
to be drawn or hidden from the perspective of the viewer. In the Z-buffering pro-
cess, both the face IDs and the distances of intersections are recorded for all pixels.
Therefore, the Z-buffer entries are initialized with an infinite value to represent the
background, and then iterated for all pixels over all faces. The entries are then
updated whenever smaller distances along the z-axis are observed [132]. Figure 2.14
illustrates the Z-buffer algorithm, and the matrix update can be formally defined by

Zbuffer[h, w] =


Zbuffer[h, w], if Zbuffer[h, w] ≤

[
Ph,wj

]
C,z[

Ph,wj

]
C,z
, if Zbuffer[h, w] >

[
Ph,wj

]
C,z

. (2.13)

Figure 2.14: Illustration of the Z-buffer principle, where the distances to individual
faces are checked for each pixel to determine the closest face information in view for
the corresponding pixel. Confer with [147].

44



2.2 Intraoperative Model Representation and Synthetic Image Projection

The determined depth value for pixel (h, w) is stored in the Z-buffer entry Zbuffer[h, w],
while the specific depth values

[
Ph,wj

]
C,z

is determined by the z coordinate of the
intersection point Ph,wj,C defined in the camera coordinate system {C}. Moreover,
Zbuffer[h, w] 7→

[
Ph,wcview, I

h,w
cview

]
encodes the visibility of the respective intersection point

Ph,wcview and feature information Ih,wcview based on the calculated face intersections as de-
fined in 2.12. By parallelizing the distance calculations on modern graphic processing
units (GPU), the Z-buffering process becomes computationally highly efficient.

2.2.6 Lighting and Shading Model

The lighting conditions must be considered when determining the final pixel inten-
sity and color rendering. An illumination model in computer graphics simulates the
light behavior during the rendering process, ultimately determining the brightness
and pixel color based on viewing direction, angle of light incidence, material proper-
ties, and light source. In this work, the Phong illumination model [93] is employed
due to its analytical approach and inherent ability to support differentiation and
real-time calculations. The Phong lighting model is a local illumination model that
provides an analytical description of lighting effects and is suitable for smooth sur-
faces with specular lighting effects. It is based purely on empirical evidence and
does not have a direct physical foundation. However, it is computationally efficient
and can produce photo-realistic results. Other local illumination models, such as
the Schlick [112] or Kook Torrance [19] model, are physically based and adhere to
the energy conservation law, meaning that they do not reflect more photons than
they irradiate. These models, however, require more computational resources.

The Phong reflection model consists of ambient, ideal diffuse, and ideal specular
reflection. Each of these components contributes to the overall reflection intensity
of a surface under illumination from a light source. Each of the sub-models is
empirically formulated as follows:

Ambient: The ambient reflection

Iamb = κambIint (2.14a)

is exclusively dependent on the intensity of the ambient light Iint and the empiric
material-dependent reflection coefficient κamb. Thus, the ambient reflection is inde-
pendent of the camera perspective and the angle of incidence of the light source.

Diffuse: Lambert’s law describes the relation between the intensity of diffuse reflec-
tion from a surface and the angle between the incident light beam and the surface
normal. Specifically, the intensity of diffuse reflection is inversely proportional to
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Figure 2.15: Image rendering using Phong illumination submodels, featuring ambi-
ent, diffuse, and specular components and the resulting superimposed image.

the angle between the incident light beam and the surface normal. When the in-
cident light beam is perpendicular to the surface, the diffuse reflection is at its
maximum intensity. As the angle between the incident light beam and the surface
normal increases, the intensity of the diffuse reflection decreases. This relationship
is mathematically represented by

Idiff = κdiffIint cos(αdirt) = κdiffIint
(
ϕlightN j

)
, (2.14b)

where κdiff is the material-dependent reflection coefficient, Iint is the intensity of the
incoming light source, and αdirt is the angle between the orientation ϕlight of the
incident light beam and the surface normal N j. It is worth noting that Lambert’s
law applies only to diffuse reflection, which is characterized by a diffuse, uniform
scattering of light in all directions. It does not apply to specular reflection, which is
characterized by a concentrated reflection in a single direction.

Specular: The specular reflection component involves the dependence on the cam-
era perspective. It is defined by the angle αspec between the observer’s viewing
direction Rview and the direction of an ideal reflection Rref. Thus, the ideal reflec-
tion is determined by

Ispec = κspecIint cos(αspec)κref,spec = κspecIint (RviewRref)κref,spec . (2.14c)

The material exponent κref,spec characterizes the surface condition. As κref,spec ap-
proaches zero, the surface becomes coarser, while as κref,spec approaches ∞, the
model behaves like a perfect mirror. In addition, the reflection is influenced by the
empirical, material-dependent reflection coefficient κspec.

2.2.7 Image Aggregation

Finally, the color intensity of each pixel I hw can be determined based on the visible
texture information and the light conditions established by the Phong model (2.14).
The visual texture information is assigned to the feature intersection evaluated for
visibility through Z-buffering.
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2.3 Pixel Intensity-based Differentiable Rendering

The resulting color appearance of the pixel information is determined by the Phong
shading interpolation model [93] through

Ih,w = (Ih,wamb + Ih,wdiff)Ih,wcview + Ih,wspec . (2.15)

Thus, the aggregated color information Ih,w is calculated by the product of the re-
spectively visible texture information Ih,wcview with the ambient (2.14a) and diffuse
reflectance (2.14b) in addition to the specular reflectance (2.14c). Figure 2.15 shows
the resulting image aggregations of a synthetic bladder model, which is obtained by
applying different light intensities, reflectance properties, and roughness values in
the Phong shading process. It is important to note that the Phong shading model
is distinct from the Phong illumination model; the former defines only the interpo-
lation rule for using ambient, diffuse, and specular light properties, while the latter
is a model for simulating light behavior in the rendering process.

2.3 Pixel Intensity-based Differentiable Rendering

Building upon the state-of-the-art rendering concept discussed in Chapter 2, the
remaining challenge is to ensure differentiability of the rendering process such that
a gradient-based scene reconstruction of the form given in (3.1) becomes feasible.
The sub-operations involved in the rendering process are depicted in Figure 2.16,
with each operation categorized as either differentiable or non-differentiable. Dis-
continuities stemming from image rasterization and Z-buffering are illustrated in
Figure 2.17.

In more detail, the conventional Z-buffering procedure discretely determines the pix-
els in an image based on the closest face in view. Discontinuous shifts may occur in
the aggregated pixel information when the camera or a captured mesh face moves in
depth, as another surface approaches the camera image plane along the z-direction.
Likewise, a shift in the xy-plane can also result in a discontinuity in pixel aggregation.
These discontinuities are intrinsically linked to changes in aggregated pixel informa-
tion. As a result, if facial information is not represented in the image plane, it will
be absent in any image-based loss definition. This absence constrains the availabil-
ity of information necessary for back-propagation in gradient-based reconstruction,
making distant or occluded vertices problematic, as they cannot contribute to the
proposed image-based reconstruction formulation. This issue can quickly cause the
reconstruction to become trapped in a local minimum for those vertices. Although
some progress has been made in the literature on formulating differentiable rendering
processes, many of the proposed solutions still struggle with limited effectiveness [50].

The problem of establishing a differentiable rendering process raises the following
specific challenges and research questions:

• How can a discrete occlusion check be transformed into a continuous mapping
to ensure differentiability, especially when depth relations in the model change?
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• In what way should pixel information be aggregated to prevent discontinuities
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Figure 2.16: Structure and categorization of non-differentiable sub-operations within
a modern rendering pipeline. The flow chart showcases the solutions presented in
this work to organize these concepts in their respective locations throughout the
overall pipeline process. Confer with [65].

z discontinuity

xy discontinuity

Solution: soft aggregation

Blend closest K
faces in the z

direction.

Consider faces which fall
within a blur radius r.

y

z

x

y

z

x

δz

shift by +δz

pixel overlap with pixel overlap with

z0 z0 + δz
z

Step change
in pixel color

z
1

2 . . .
K

y

z

x

pixel overlap with no pixel overlap

y

z

x

δx

shift by +δx

x0 x0 + δx
x

Step change
in pixel color

r

Figure 2.17: Discontinuities in a conventional pipeline hinder differentiation. Soft
aggregation, based on the weighted average of multiple intermediate rendering in-
formation, provides a continuous distribution and enables differentiation. Confer
with [101].

48



2.3 Pixel Intensity-based Differentiable Rendering

in the mapped information when there is a shift in the camera or the model
relative to the xy camera coordinates?

• How can rendering mappings be fine-tuned and tailored for gradient-based
reconstruction and intraoperative use, leveraging silhouette data to provide
more reliable information when texture features are indistinct?

To overcome these challenges and attain true differentiability in the rendering pro-
cess, a sensitivity-based approach is adopted. This is depicted in Figure 2.16 through
the design of soft rasterization, which makes the differentiation of the rendered im-
age matrix feasible. This novel formulation originally presented in [69] and further
elaborated in [65, 101] represents a significant advancement in the field.

In the following Section 2.3.1, the gradient required for model reconstruction is
analytically decomposed to constrain and classify the differentiability for each sub-
operation. A sensitivity distribution is then designed in Section 2.3.2 to map infor-
mation to the corresponding pixels reliably. In Section 2.3.3.1, image aggregation is
used to present solutions to both the xy and z discontinuities through weighted av-
eraging based on the sensitivity distribution. Further, in Section 2.3.3.2, silhouette
rendering is proposed to provide robust aggregation information by representing the
confidence if object or non-object information is aggregated in the respective pixel
intensity. This approach enables the supervision of size relations without relying on
texture information, making it particularly useful for intraoperative reconstructions.

2.3.1 Specifying the Discontinuity Given in the Rendering Pipeline

The analytical decomposition of the state-of-the-art rendering process, as discussed
in Section 2.2, provides a systematic approach for the identification and resolution
of discontinuities in the rendering process. The gradients with respect to the mesh
geometry, given by its vertex positions V, is formulated through

∂I
∂V
=
∂I
∂p

∂p
∂V
+
∂I
∂z

∂z
∂V
+
∂I
∂N

∂N
∂V

. (2.16a)

Similarly, the gradient with respect to the camera pose ϕcam is expressed by

∂I
∂ϕcam

=
∂I
∂p

∂p
∂ϕcam

+
∂I
∂z

∂z
∂ϕcam

+
∂I
∂N

∂N
∂ϕcam

. (2.16b)

Given the partial derivatives in (2.16a) and (2.16b), the respective gradients

∂p
∂V

,
∂p

∂ϕcam
,
∂z
∂V

,
∂z

∂ϕcam
,
∂I
∂N

,
∂N
∂V

,
∂N

∂ϕcam
(2.16c)

are analytically determinable by differentiating the projection matrix (2.5), and the
illumination model (2.15). However, as previously mentioned, the gradients ∂I

∂p and
∂I
∂z cannot be obtained in a conventional rendering pipeline due to the discontinuities
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2 Rendering Pipeline following the State-of-the-Art

caused by the discretization of the image plane and the occlusion check, as given in
this work through the Z-buffering process.

The necessity of establishing a differentiable rendering process raises the following
specific challenges: How can the rasterization and depth-related visibility check
be reformulated to make the aggregated image differentiable with respect to the
model parameters required in (2.16a) and (2.16b). Therefore, two main modifica-
tions from [65] are adopted. First, a sensitivity distribution D is included, which
makes the rendered pixel intensities I differentiable with respect to the considered
model parameters. Thereby, the influence of a particular face F j on a pixel (h, w) is
represented by a sensitivity distribution Dh,wj , which ultimately factorizes the gradi-
ent ∂I

∂p =
∂I
∂D

∂D
∂p and enables the differentiation of ∂I

∂p .

Second, the depth-dependent discontinuity ∂I
∂z is addressed by continuously merging

the available intersection points Ph,wj for a given pixel by involving a depth-dependent
weighting of neighboring information. In this process, the Z-buffering visibility check
is replaced. Thus, the final pixel color is aggregated based on the color information
C of the corresponding face intersections using the respective sensitivity distribution
D and depth-dependent weighting design W. This process ensures that all spatial
information is incorporated into the aggregated pixel, enabling the respective gradi-
ent to reflect sensitivities about the scene parameters. To address the challenges of
rendering, the sensitivity distribution is designed in the following section.

2.3.2 Sensitivity Distribution for Resolving Discontinuity

The distribution design proposed in [65] aims to assess the confidence of the pro-
jected face information F j of F j in predicting the vulnerability of pixel (h, w) to
discontinuities. Therefore, the considered distribution D relies on the distance dh,wj

of the pixel ph,w to its closest boundary to the projected face information F j of the
arbitrarily chosen face F j on the image plane as illustrated in Figure 2.18. Based on
that, the sensitivity distribution Dh,wj is defined as

Dh,wj = sigmoid

δ
h,w
j

(
dh,wj

)2

σdiff

 j ∈ [1, |F|] . (2.17)

The design parameter σdiff controls the slope of the distribution, with steeper slopes
indicating a stronger influence of the face F j on the pixel (h, w). Moreover, regarding
the distance measurement, it is fundamental to the design of the distribution (2.17)
to specify whether the distance of a pixel location ph,w to the projected face F j falls
inside or outside the the respective boundaries F ▲j , which is determined by the sign
indicator

δh,wj =
{
+1, if ph,w ∈ F ▲j

∣∣∣ − 1, otherwise
}
, (2.18)
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2.3 Pixel Intensity-based Differentiable Rendering

Figure 2.18: The face projection F j,k,l represents the projection of the faces F j,k,l onto
the image plane. For a given pixel (h, w), the closest distance to the projected face
boundary F j is indicated by dh,wj .

that takes on the value of +1 if the pixel position ph,w is within the projection bound-
aries F ▲j , and −1 otherwise. The designed sensitivity distribution provides a math-
ematical formulation for predicting the discontinuity vulnerability as the distance
dh,wj determines the contribution of face F j to the pixel aggregation of pixel (h, w).

The sigmoid function in 2.17 limits the effect of a face on a pixel to a smooth range
between zero and one. For instance, pixels located far within the projected face
plane F j are strongly affected, while pixels located outside the projected area are
only slightly affected. However, by incorporating boundary regions in a continuous
manner as designed in 2.17, the information about the face is maintained in the
resulting pixel and can be traced in the gradient representation. The distribution
Dh,wj is aimed to quantify the xy-discontinuity problem and to control the impact
of the face information on pixel (h, w) in the aggregation process. The design of
Dh,wj is not intended to have statistical significance but instead serves as a tool for
predicting the discontinuity vulnerability of pixels based on their distance to the
closest boundary of the projected face information. Thus, this allows for many
variations on how Dh,wj is defined, as long as it is continuous with respect to changes
of its distance to the projected face boundaries.

The spatial course of the distribution D is qualitatively depicted in Figure 2.19, in
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2 Rendering Pipeline following the State-of-the-Art

Figure 2.19: Visualization of the distribution design Dh,wj for a face projection F j,
where the color intensity at a specific location indicates the weight of the distribution
for each pixel location.

dependence of the control parameter σdiff. This parameter regulates the sharpness
of the mapping D, such that when σdiff → 0, the distribution closely follows the
geometry of the face projection, resulting in a conventional rasterization on the
image grid.

Finally, the distribution design (2.17) facilitates the differentiation of ∂D
∂p . To demon-

strate this, the matrix

U j =


x1 x2 x3

y1 y2 y3

1 1 1


F j

. (2.19)

is used to represent the Euclidean positions of the projected vertices of V of face
F j on the image projection F j plane. Thus, any point specified by the barycentric
coordinates th,wj ∈ R3 can be related to its corresponding coordinates p in Euclidean
space following the mapping

ph,w = U j th,wj . (2.20)

The mapping enables a comprehensive examination of the gradient formation of
∂D
∂p by converting points specified in the barycentric coordinate space of the face
projection F j to the corresponding positions in the respective Euclidean image space.
In addition, the barycentric coordinates th,wj enable the representation of the point
on the face boundary that is closest to a selected pixel ph,w. Thus, the corresponding
distribution based on the signed Euclidean distance is specified as

Dh,wj = sigmoid

δh,wj

σdiff
∥U j th,wj − ph,w∥2

 . (2.21)

As the sigmoid function is differentiable, the gradient ∂D
∂p is given by

∂D
∂p
= 2


δh,wj

σdiff
∥U j th,wj − ph,w∥


(
th,wj

)T
, (2.22)

based on the reformulation of (2.17) through (2.21).
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2.3 Pixel Intensity-based Differentiable Rendering

2.3.3 Pixel Aggregation

Based on the designed sensitivity distribution (2.17), the remaining task is to address
the z-discontinuity and to aggregate the pixel intensity Ih,w. Therefore, two distinct
aggregation functions are presented in the following. The first is used to render image
information with realistic color features, while in the second aggregation formulation
an adapted silhouette rendering function is presented that serves to differentiate
between object and background information.

2.3.3.1 Image Aggregation

As demonstrated in (2.16), the visibility of the closest faces in view primarily deter-
mines the final pixel aggregation in the image space. However, the discrete occupa-
tion check, as implemented by the Z-buffering approach, can cause a discontinuity
issue, as illustrated in Figure 2.17 in the top row. To address this issue, individual
image features are weighted for the image feature aggregation to reduce the effect
of discontinuity. As such, the relative depths zh,wj of ph,w to the corresponding face
intersection Ph,w are employed for the weight design

wh,wj =
Dh,wj exp

(
zh,wj /γdiff

)

∑
kDh,wk exp

(
zh,wk /γdiff

)
+ exp

(
ϵtransp/γdiff

) . (2.23)

The depth-depend weighting (2.23) allows for a continuous aggregation of the pixel
intensities Ihw based on the weighted average

Ihw =
∑

j∈∥F∥
wh,wj Ch,wj + wh,wbackCback , (2.24)

where the weight wh,wback for the background color Cback is inherently determined by
the required normalization ∑

j∈∥F∥
wh,wj + wh,wback = 1 . (2.25)

This formulation is consistent with the image aggregation as proposed in [65]. The
parameter ϵtransp accounts for the transparency of the object. As ϵtransp increases, the
effect of the background color Cback becomes stronger for all faces that are considered
to be background faces determined by the respective face indices back. Additionally,
the sharpness of the aggregation is controlled by γdiff. As the control parameter γdiff
increases, the weighting of more distant faces is increasingly attenuated compared
to that of closer faces. This is due to the normalization of the weights, which assigns
more weight to closer faces and correspondingly less weight to more distant faces.
As a result, the aggregation function reproduces the traditional z-buffering process
as γdiff 7→ 0 approaches zero.
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To summarize, the sensitivity distribution Ch,wj enables the weighting wh,wj to be dif-
ferentiable in shifts in the xy direction, while the depth-dependent weighting (2.23)
additionally ensures continuity in the z direction. As such, the aggregated image
pixel Ihw reflects not only the neighboring and hidden face projections, but also
preserves their sensitivities in the respective gradient.

For a general notation, the differentiable rendering process can be represented in

I = Rϕcam (M) , (2.26)

where the synthetic image I is obtained by rendering the mesh model M from the
camera perspective ϕcam. The differentiability is reflected in the analytical formula-
tions for ∂I

∂D and ∂I
∂z , which are described in

∂Ih,w

∂Dh,wj

=
wh,wj

Dh,wj

(
Ch,wj − Ih,w

)
(2.27a)

∂Ih,w

∂zh,wj

=
wh,wj

γdiff

(
Ch,wj − Ih,w

)
. (2.27b)

The computation of the partial derivatives relies on the aggregation and weighting
design specified in (2.23) and (2.24). It should be noted that the given image pixel
aggregation (2.24) is not unique and can be tailored to suit the needs of the applica-
tion. The work in [66] also investigates the use of a universal aggregation based on
a neural network. Initial results indicate that this approach may slightly improve
accuracy for synthetic scenes, albeit at increased computational and efficiency costs.

2.3.3.2 Silhouette Aggregation

The aggregation (2.24) is designed for rendering color intensities while incorporat-
ing transparency information. This concept can be similarly extended for aggregat-
ing the proposed silhouette information by utilizing the transparency design given
by (2.24). However, the concept of a weighted average of various face information
is not optimal for the purpose of silhouetting. In addition to the depth depen-
dency reflected in (2.23), it is necessary to determine binary information specifying
whether any object or background information maps to the respective pixel (h, w).
The probabilistic interpretation of Dh,wj suggests the following silhouette aggregation
function

Ihwsil = 1 −
∏

j∈∥F∥

(
1 −Dh,wj

)
, (2.28)

independent of the object’s color and relative depths. The design of the aggregation
function in (2.28) offers a probabilistic confidence interpretation of the silhouetted
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image pixel Ihwsil that at least one face F j∈[1,|F|] is being projected onto the pixel (h, w).
Respectively, the gradient for the silhouette can be explicitly expressed through

∂Ih,wsil

∂Dh,wj

=
1 − Ih,wsil

1 −Dh,wj

. (2.29)

Notably, the silhouette aggregation is independent of the depth values z j of the faces
in the mesh, resulting in a vanishing gradient ∂Ih,wsil

∂zh,wj
= 0 with respect to the depth

values. Overall, the silhouette rendering function Rsil(M,ϕcam) 7→ Isil calculates the
silhouetted image renderings Isil of the mesh model M, for the camera perspectives
ϕcam, irrespective of the object’s color or relative depths.

2.4 Summary & Conclusion

In summary, this chapter has presented the fundamental concepts required to deter-
mine a digital image from a synthetic model representation that aligns with state-
of-the-art practices. The core aspects discussed include the analytical projection
equations and the synthetic rendering process. Specifically, the analytical camera
model provides the basis for understanding the relationship between 3D data and
projected 2D image data. Additionally, by incorporating the kinematics of the en-
doscope, it is also feasible to relate image-based camera coordinates to the physical
location of the endoscope.

A mesh model was chosen for the synthetic representation of the urinary bladder
due to its efficiency and suitability for spherical organ problems. With the mesh
representation and analytical camera model, the rendering process was introduced,
facilitating the synthetic imaging of mesh model representations. This process es-
tablishes the connection between the model representation and a digital real-world
image observation. Although most calculations in state-of-the-art real-time render-
ing pipelines are differentiable, the discrete occlusion check in the Z-buffering pro-
cedure and the discrete image rasterization impede gradient calculation for image
observation concerning scene parameters.

To address this, the conventional rendering process was transformed into a fully dif-
ferentiable rendering process. Following the concepts in the works of [65, 101], a
probability-based formulation for image information was utilized to aggregate pro-
jection data through a weighted average formulation. This approach ensures that
pixels accurately reflect changes in the model’s geometry, texture, and perspective,
allowing the generation of gradients needed for optimization of the proposed gradient-
based scene reconstruction. Furthermore, a silhouette aggregation technique was
introduced, providing valuable information about pixel confidence concerning object
surfaces or backgrounds, thereby expanding loss definition options beyond conven-
tional texture-based image comparisons.
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Texture and Geometry Reconstruction 3
The proposed methodology for intraoperative scene reconstruction relies on a gradient-
based optimization, enabling the generation of an accurate 3D reconstruction of the
surgical site. For this objective, an unconstrained optimization problem

M⋆, ϕ̂
⋆
= arg min

ϕ̂,M

t∑

i=t−h

L
(
I i,R

(
M, ϕ̂i

))
, (3.1)

is formulated, wherein each optimization iteration incorporates a batch of data ac-
cumulated from the last h observations up to the present observation at time step
t. The goal of this optimization problem is to ascertain the optimal synthetic model
representation M⋆ and camera perspectives ϕ̂⋆ by minimizing the discrepancy be-
tween a batch of observed mages I and synthetic images produced from the 3D
model. The rendering function

R(M,ϕ) = I (3.2)

calculates a batch of synthetic images I for the batch of camera perspectives ϕ and
the provided model representation M. The disparity between the observations and
the rendering is assessed by the loss function L, which serves as the objective function
in the context of the reconstruction formulation. Consequently, devising an effective
loss function constitutes the pivotal component of the proposed optimization-based
reconstruction approach.

The differentiable formulation of the rendering process enables a gradient-based re-
construction objective at the image level, adhering to the general formulation (3.1).
Despite the established differentiability of the rendering process, finding the solution
to the general differential rendering reconstruction optimization problem remains a
formidable challenge for real-world applications. Furthermore, the intraoperative
scenario presents particularly challenging aspects with respect to the deformation
problem at hand. For instance, the intraoperative environment restricts the variety
of available data, limits the perspectives employed due to the minimally invasive
access path, and potentially provides an intraoperative image that lacks clear visual
features for reference. Concerning geometry reconstruction, this means that geome-
try adaptation is ambiguous due to the underdetermined nature of the problem com-
plexity. For example, some parts of the mesh may not be observed from the current
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rendering perspective and could potentially shift arbitrarily without significantly im-
pacting the information at the image level. This results in an ill-conditioned problem
for geometry adaption where not all geometry parameters of the mesh model are in-
cluded in the optimization objective, which then potentially causes the optimization
process to get stuck in local minima or even become numerically unstable.

Despite there being even more aspects and arising challenges for real-world intraoper-
ative scene reconstruction, the specific research questions formulated in the following
are addressed with the objective of developing holistic and methodological evaluation
for the reconstruction problem as given by (3.1):

• How can the optimization problem for geometry adaptation be regularized to
prevent an ill-posed optimization problem?

• How to regularize the objective function so that scaling observed on the image
plane is propagated holistically to the overall model, even for surface informa-
tion that is not observable in the rendering from the current perspective?

• How can the required degrees of freedom be efficiently incorporated into the
optimization formulation to allow for the simultaneous use of texture and geom-
etry with limited complexity in the reconstruction, avoiding an overly complex
or computationally expensive reconstruction problem?

The challenges of reconstructing the model’s geometry and texture are separately
addressed in Section 3.1 and Section 3.2 before their joint reconstruction is explored
in Section 3.3. New mesh regularizations are introduced for geometry matching,
including the reconstruction of geometry using silhouette information which does
not require the explicit use of high-resolution texture information. The scaling of a
silhouette to the entire geometry through regularization design is analyzed in this
process. Section 3.2 delves into the use of texture information, introducing a mesh
subdivision strategy that allows for attaining high texture resolution in the model
without unnecessarily increasing mesh complexity. The techniques outlined in this
chapter form the foundation for the work’s aims and have the potential for practical
use, especially with regard to silhouette-based geometry adaptation.

3.1 Geometry Reconstruction

The following geometry reconstruction aligns in its core design with the general
reconstruction formulation of (3.1), where the degrees of freedom are limited to ver-
tex positions in this process. The resulting geometry adaption may be hindered
by various factors, such as the non-convexity of the optimized loss function and
the overall poorly conditioned nature of the geometry-based optimization problems.
In addition, the update process of the high-dimensional interdependent geometry
parameter space poses various challenges. To stabilize the geometry adaptation pro-
cess, a simple yet effective parameter transformation is introduced in Section 3.1.1.
In Section 3.1.2, several mesh regularization losses are proposed that are tailored
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to the specific problem conditions of this work to effectively address the ill-posed
optimization problems that may arise during geometry reconstruction.

3.1.1 Geometry Parameter Transformation

To enhance numerical stability during the optimization process, the parameter space
is transformed to the difference ∆V = V − V0 between the initial V0 and the current
vertex positions V, rather than applying the current vertex positions directly as the
adjustable parameter set. The core design of the geometry adaptation is then stated
as

V⋆ = V0 + arg min
∆V

t∑

i=t−h

L
(
I i,R

(
M, ϕ̂i

))
, (3.3)

where ∆V is the optimizable parameter set in the general image-based optimization
objective as introduced in (3.1).

3.1.2 Mesh Regularization

The purely image-based geometry adaptation in the form of (3.3) leads to an un-
derdetermined and ill-conditioned optimization problem. A simple yet illustrative
scenario of this occurs when a mesh geometry needs adjustment from a single per-
spective. In this case, the gradient along the corresponding rendered image provides
information exclusively for the vertices visible from that perspective. Consequently,
all non-visible vertices do not influence the optimization objective, leading to an un-
derdetermined reconstruction problem with multiple possible solutions, which may
be partially noisy or discontinuous depending on the initial conditions. Thus, due
to the underdetermined nature of the problem the reconstruction problem results
in poor numerical conditions . To address the issues of underdetermination and
numerical instability, the optimization problem must be reformulated to establish
a unique solution and enhanced numerical stability. This can be accomplished by
incorporating the entire geometry parameter space into the optimization objective
through regularization. Regularization adds constraints to the solution, such as
smoothness or sparsity, which limit the number of potential solutions and improve
the numerical stability of the optimization procedure. Mesh regularization losses, as
discussed in [81, 85, 143], aim to ensure uniformity in the size and shape of faces and
reduce non-uniform and irregular deformations of individual faces. The principles
discussed in previous literature are extended in this work to create scale-independent
loss functions and designs that can be tailored to specific objectives. As a result, tem-
plate meshes are introduced to provide prior shape information in a scale-invariant
manner.
In the following sections, the individual mesh regularization techniques, which build
upon existing designs from the literature as well as extended scale-invariant reg-
ularization concepts, are presented. While each design has its unique strengths,
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the most effective results can be achieved by combining multiple regularization ap-
proaches. To control the sensitivity and contribution of each regularization term to
the overall loss, a weighting parameter λ is assigned to each loss design.

Normal Loss: To attain a uniform and consistent surface and penalize strong vari-
ations in corner angles, the following normal loss can be employed. For a given a
mesh M, the normal similarity loss is calculated as the sum of the normal similarity
measures for all adjacent faces F▲ ∈ N(Fi) of the corresponding face Fi. Thus, the
normal similarity measure is expressed as

Lnor(M) = λnor
∑

Fi∈∥F∥


∑

F▲j ∈N(F j)

(
cos2 ∡

(
N(F),N(F▲)

) − 1
)
 , (3.4)

where N(F) and N(F▲) denote the normal vectors for the respective faces, and ∡
represents the intersection angle between them [143]. The design of (3.4) ensures
that the loss is zero for faces with normal vectors oriented in the same direction,
while the loss increases continuously as the angle between them increases. When
applied to a uniform and closed mesh, the global minimum of this loss function
would result in a perfect sphere.

Normal Loss with Template: To set the default geometry for the loss function, a
template mesh M♢ is utilized as a stabilizing reference. The template mesh M♢ can
be initialized using an magnetic resonance image (MRI) geometry reconstruction
or a reconstruction from a previous time step. Then, instead of evaluating normal
consistency between neighboring faces, a normal similarity measure is applied with
respect to the template mesh. The normal similarity is quantified by the inclusion
angle between the vertex normals N in the parameterized mesh M and the corre-
sponding vertex normals N♢ in the template mesh. The overall normal similarity
between the two meshes is computed as

L♢nor(M,M♢) = λ♢nor

∑

Ni ,N♢i ∈N,N♢

(
cos ∡

(
Ni,N♢i

)
− 1

)2
, (3.5)

where the equilibrium is given for M ∝ M♢ as a scaled version of the given template
mesh. To ensure accurate computation of the normal similarity, it is necessary that
the template M♢ mesh possesses the same topology as the parameterized mesh M,
such that each vertex normal N in M has a corresponding vertex normal N♢ in the
template mesh M♢.

Edge loss: The scale invariant edge regularization

Ledg(M) = λedg
∑

V j∈V


∑

V▲∈N(V j)

(
∥∥V j − V▲∥ − ledg∥2

)
 (3.6a)
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3 Texture and Geometry Reconstruction

is designed to penalize large variations in face sizes, promoting uniform faces and
suppressing "flying vertices". In contrast to many approaches that regulate edge
length uniformly at zero, this work requires a uniform distribution of edge length
to maintain the overall shape of the model, particularly for vertices that are not
supervised by the primary visual loss. To achieve this, the average edge length
ledg(M) in the given mesh is calculated as

ledg(M) = λedgMean
(∥V − V▲∥) , (3.6b)

where V▲ specifies the neighboring vertices. This design promotes uniform edge
lengths.

Laplacian loss: The Laplacian loss is introduced to prevent self-intersecting mesh
surfaces by penalizing significant geometry changes, as described in [143]. The Lapla-
cian coordinates, defined as

Υi = V j −
∑

V▲∈N(V j)

V▲

∥N(V j)∥ , (3.7a)

penalizes vertices that deviate from the average of the surrounding centroids. The
total Laplacian loss is given by

Llap(M) = λlap
∑

i

∥Vi − Υi∥ . (3.7b)

The Laplacian loss promotes smooth and uniform mesh geometries by penalizing
significant changes between iterations and encouraging neighboring vertices to move
similarly. The respective regularization minimum for a fully connected mesh is a
sphere, which is similar to the normal consistency loss stated in (3.4).

Laplacian Loss given Predetermined Minimum: To preset the energy minimum of
the Laplacian loss to a predefined geometry, a Laplacian similarity measure is applied
with respect to a given template mesh M♢. This is achieved by using the Laplacian
coordinates Υ♢ of the template mesh to calculate the loss

L♢lap(M,M♢) = λ♢nor

∑

i

∥Υi − Υ♢i ∥2 . (3.8)

The Laplacian coordinates (3.7a) utilized in this design enable the predetermination
of the energy minimum of the Laplacian loss.
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3.1 Geometry Reconstruction

3.1.3 Silhouette-based Supervised Geometry Reconstruction

Subsequently, the objective is to reconstruct the geometry for specific observation
perspectives, focusing on the analysis of geometry regularization. To keep the ren-
dering complexity low and provide flexibility for regularization, the reconstruction
process is based on a silhouette based reconstruction formulation without simulta-
neously incorporating texture-based supervision. To ensure that the developments
meet the needs of the surgical scene reconstruction, the first step is to place silhouette
reconstruction into the surgical context in Section 3.1.3.1. In Section 3.1.3.2, the sil-
houette loss is specified for supervision. The geometry reconstruction is conducted in
Section 3.1.3.3 for multiple given perspective observations, where in Section 3.1.3.4,
the scale propagation is addressed based on a single image observation.

3.1.3.1 Background of the Field of Application

Object silhouettes that are clearly distinguishable from their backgrounds provide
a useful, albeit coarse, source of information for geometry reconstruction. This is
especially helpful in cases where the structural information of the object is ambigu-
ous and no reliable landmark features are present on the observed texture. While
the silhouette information is primarily limited to contributing to the scaling of the
geometry to match the observed object silhouette, it can still be challenging to fully
reconstruct the camera position due to the inherent complexity of the problem. How-
ever, the theoretical hypotheses concerning the knowledge of the camera position and
the visibility of silhouettes can be applied in a variety of practical contexts, such
as laparoscopic surgeries. For example, in robotic-assisted laparoscopic procedures
like the cystectomy, measurements of joint positions and the camera endoscope are
provided by the robot kinematics. This reduces the reconstruction problem to a
geometry adaption for the given observation perspective. Especially in laparoscopic
environments, distinguishable and clear landmark features are hardly retrievable in
the image observations. In contrast, the silhouette of the target organ is often still
identifiable from different angles, allowing for the scaling of the geometry model by
matching the observed object silhouette, making the silhouette-based supervision
an effective and reliable approach for highly deformable environments with limited
clear visual landmark observations.

3.1.3.2 Silhouette-based Geometry Supervision

The silhouette rendering function Rsil(M,ϕcam) 7→ Isil, as introduced in Section 2.3.3.2
through (2.28), calculates an intensity-based silhouette rendering Isil. For each pixel
(h, w), the resulting silhouetted rendering data Ih,wsil indicates whether the correspond-
ing image pixel traces through any object area of M or is part of the background.
In contrast, the simplest approach to extract silhouette information from an image
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3 Texture and Geometry Reconstruction

observation I involves using a threshold value τsil to classify the image data into its
corresponding silhouetted image representation I sil. In this method, the silhouetted
data I h,wsil is labeled as true if the respective pixel intensity I h,w holds I h,w ≥ τsil, and
false otherwise. However, for more complex scenes with multiple visible object enti-
ties in the image, a more complex classification algorithm is needed to determine the
object mask for the respective image data. For segmenting real-world observations,
where a simple threshold is insufficient, there are various segmentation techniques,
including unsupervised segmentation filters and data-driven network architectures
[2, 24, 25, 45, 56, 86, 129, 153]. To maintain the focus and scope of this chapter
on geometry reconstruction,the segmentation problem for image silhouetting is not
discussed any further in this chapter. Nonetheless, readers can find a more detailed
examination of this problem in Chapter 5.

Given the silhouetted data, the respective images must be evaluated for their simi-
larity in order to formulate the optimization objective. In fact, one way to determine
the silhouette loss between the masked silhouette images is to use the Euclidean er-
ror of the pixel intensity. However, this method of supervision is weakly conditioned
and may result in local minima in the case of unfavorable shapes and overlaps. To
address this issue, a more well-conditioned optimization problem can be achieved by
using the intersection over union loss, also known as the Jaccard index. This loss is
calculated as the ratio of the intersection of the two surfaces to the union of the two
surfaces

Liou(I sil, Isil) = λiou
∥I sil ∩ Isil∥
∥I sil ∪ Isil∥ . (3.9)

The Jaccard index (3.9) is often used as the standard evaluation metric in the liter-
ature for measuring the similarity of binary data sets and is used in this manner for
learning bounding boxes or binary object classifications [137]. The loss (3.9) reaches
its global minima when the two surfaces align coincidentally.

3.1.3.3 Optimization Geometry Reconstruction

The geometry reconstruction process tailored to the silhouetted data results in min-
imizing the following objective

V⋆ = V0 + arg min
∆V

t∑

i=t−h

Liou
(
I sil,Rsilhou

(
M,ϕcam,i

))
+Lnor(M) +Ledg(M) +Llap(M) .

(3.10)
The optimization is performed by finding the optimal delta, ∆V, to the initial ver-
tex positions, V0, in order to minimize the intersection over union loss, as formu-
lated by (3.9). In addition, the objective function is regularized by the geometry-
dependent regularization terms (3.4), (3.6), and (3.7), where the relative importance
of these loss terms is controlled by the loss weighting parameters λnor, λedg, and λlap.
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3.1 Geometry Reconstruction

The optimization-based scene reconstruction formulation (3.10) is parameterized by
the mesh vertices V j. This consideration also applies to the general reconstruc-
tion problem, where additional factors such as texture parameters are taken into
account and added to the optimization’s parameter space. Consequently, adapting
the parameterized triangle mesh becomes a high-dimensional optimization problem
with potentially millions of interdependent parameters, necessitating efficient and
numerically stable optimization algorithms.

In this work, the Adaptive Moment Estimation (ADAM) solver is employed for solv-
ing the optimization problems considered. The ADAM solver is a suitable choice for
this work due to its adaptive learning rate and momentum-based capabilities, which
effectively handle the challenges posed by high-dimensional optimization problems.
Furthermore, the stochastic nature of the ADAM solver allows for overcoming local
minima, improving the chances of finding global optima in complex and non-convex
parameter spaces. Additionally, its efficient convergence properties and computa-
tional effectiveness make it particularly suitable for large-scale optimization tasks,
as encountered in this work. A review and discussion of numerical solvers, includ-
ing the ADAM solver, can be found in Appendix A.1, where the ADAM update
equation is given by (A.2). Furthermore, automatic gradient calculation techniques
with respect to the given parameter set are required for precise and dependable
optimization. The optimization problem is solved through the use of the ADAM
solver (A.1).

For testing, a synthetic data set consisting of 20 samples is generated by rendering
a synthetic bladder model. This model is based on the full male anatomy model,
which includes both geometry and texture, as presented in the reference [103]. The
resulting images can be viewed in Figure 3.1a and are produced from a set of pre-
defined camera perspectives depicted in Figure 3.2a. The corresponding silhouettes,
obtained through thresholding, are shown in Figure 3.1b. To reconstruct the blad-
der’s geometry, the optimization problem (3.10) is considered. The resulting mesh
reconstruction in grey, depicted in Figure 3.2b, represents the converged opti-
mization. The ground truth geometry is overlaid in red for comparison. The
bladder’s geometry can be seen to approximate the ground truth.

The recorded loss trajectory, as depicted in Figure 3.2d, reaches a minimum around
the 100th iteration, at which point the silhouette loss and the deployed regularization
losses can be considered to be fully converged. This suggests that beyond this
point, the geometry does not continue to adapt to the ground truth as the influence
of the regularization terms becomes dominant. However, this is not a concern in
this particular scenario as the ground truth data has low resolution and would also
incorporate sharp edges in its reconstruction. In real-world applications, smooth and
uniform geometries are generally preferred over sharp edges, especially when dealing
with fuzzy data such as silhouetted images. Hence, the regularization terms prevent
the reconstruction of overly detailed or jagged geometry, resulting in a smoother
final model surface for the considered problem.
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3 Texture and Geometry Reconstruction

(a) Textured image dataset; showing a rendered bladder model from 20 distinct perspectives.

(b) Silhouetted image dataset; corresponding to the textured images shown in (a) and con-
structed using shape recognition.

Figure 3.1: Dataset of textured images captured from 20 distinct perspectives, along
with corresponding silhouetted images constructed using shape recognition based on
the textured image data shown in (a).
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3.1 Geometry Reconstruction

(a) Recording perspectives for the dataset
renderings, shown in Figure 3.1a.

(b) Geometry reconstruction vs. model ge-
ometry: in grey the adapted model ge-
ometry, in red the corresponding ground
truth.

(c) The figure shows the superimposition of
silhouettes from one of the recording posi-
tions, which is highlighted in 3.2a.

(d) Loss trajectory of the geometry adaption.

Figure 3.2: Problem statement for geometry adaptation from multiple perspectives.
In (a), the camera perspectives and ground mesh used for data generation are shown.
In (b), the adapted model is compared to the ground truth, based on silhouetted
image data. For a selected observation pose ϕcam,i=4, (c) overlays the corresponding
silhouette observed on the image plane with the initial sphere and the respective
silhouetted ground truth. Additionally, (d) compares the resulting loss trajectories
from the optimization process.
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3 Texture and Geometry Reconstruction

3.1.3.4 Form Preserving Geometry Reconstruction

As the availability of a diverse selection of images from various perspectives is of-
ten limited in practice, single-view supervision is considered in the following. The
proposed scaling invariant regularization design plays a crucial role in propagating
proportions from single-view information to the overall mesh. Based on that, the
respective optimization problem is modified to
V⋆ = V0 + arg min

∆V
Liou

(
I ,Rsilhou

(
M,ϕcam,i=4

))
+L♢nor(M,M♢)+Ledg(M)+L♢lap(M,M♢) ,

(3.11)
analogously to (3.10), where the individual deviations are found in the regulariza-
tion terms employed. In order to maintain the primary form of the model for all
structures, which are not explicitly supervised by the primary silhouette loss (3.9),
the shape-preserving (3.5), (3.8) and scale-invariant regularization design (3.6) are
deployed.
The resulting mesh M⋆ obtained from the previous multiple view-based reconstruc-
tion problem (3.10), where M⋆ is shown in Figure 3.2b, serves as the foundation for
testing the template regularization technique. A test scenario involves applying a
25% shrinkage to the mesh Mgt ∝ M⋆ to create a scaled change, with the ultimate
goal of fitting the mesh to the target ground truth shape Mgt through a single sil-
houette observation based on (3.11). Figure 3.3a presents the initial source mesh,
M⋆, colored in grey, and the scaled target mesh Mgt, colored in red. This
figure also displays the selected camera perspective from which the geometry recon-
struction is monitored. Figure 3.3b shows the silhouettes of both the output and
the target, observed from the corresponding pose, superimposed for comparison.
To validate and test the mesh regularization, the pure scaling from the image plane to
the model is employed, utilizing the synthetic scaling of the mesh as a ground truth
for comparison with the reconstruction. Both meshes possess the same topology,
thus allowing for the assignment of corresponding size information from the current
mesh M to the target mesh M⋆ as Mgt ∝M⋆. Based on this, the distance similarity
of the vertices and the normal similarity can be defined as metrics to evaluate the
quality of the reconstruction. The distance similarity Svert =

Vgt−V
Vgt

is defined by
comparing the vertex positions of the current observation V to those of the target
observation Vgt, while the normal similarity evaluated analogously by the cosine
regularization according to (3.5). In each case, a value close to one corresponds to
an optimal level of similarity.
Figure 3.3c shows the resulting loss trajectories, while the respective similarity
courses of the parametrized adaption model to the ground truth mesh are displayed
in Figure 3.3d for the stated reconstruction (3.3d). As the solution iterates, the
reconstruction losses L decrease, while the model similarities S increase, indicating
the effectiveness of the proposed template regularization design. In the following
analysis, the solution progressions are carefully examined and analyzed for a se-
lected weight parameterization, with the aim to avoid any over-interpretation of
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3.2 Texture Reconstruction

individual numerical progressions. Nevertheless, the loss progressions reveal gener-
alizable effects, eliminating the need for detailed parameter studies for a specific
weight design.

As seen in Figure 3.3c and in the similarity values given in Figure 3.3d, the re-
construction begins to converge around the 700th iteration. The silhouette loss, in
particular, is susceptible, displaying high-frequency oscillations. This is due to the
fact that even small changes in the mesh vertices may have a significant impact on
the resulting image, particularly in areas of overlapping faces. Conversely, hidden
vertices may undergo significant spatial changes without any visible effect on the
silhouetted image aggregation.

As the initial adaptation model and the ground truth mesh are ideally scaled ver-
sions of each other, the template regularizations are zero in the initial iterations.
Furthermore, over the progression, the regularization is observed to be at least one
order of magnitude smaller than the primary silhouette-based image supervision
Liou(I sil, Isil). Therefore, the geometry adaption is predominately supervised by the
silhouette-based image observations, while the regularization becomes relevant only
when there is no information available from the primary silhouette-based image su-
pervision. In Figure (3.3d), the shaded area represents the standard deviation of the
sensitivities. As overconvergence occurs, the overall mesh undergoes minor adjust-
ments, leading to a consensus in position and orientation of the vertices. Nonetheless,
it should be noted that the model may not achieve perfect convergence to 100% sim-
ilarity or complete consensus to the given ground truth data.

3.2 Texture Reconstruction

For a comprehensive reconstruction, it is necessary to incorporate texture informa-
tion into the reconstruction process explicitly. As outlined in Section 2.2.4, one ap-
proach is to assign texture information to the feature space corresponding to vertex
positions. This allows for continuous texture traversal over the surface, facilitating
the connection of image patterns with surface textures and corresponding vertex
positions. However, the texture representation is limited to coarse meshes, which
may not sufficiently capture complex and detailed textures.

To address the limitation of low surface density in triangular meshes, a mesh sub-
division algorithm known as scalable geometry techniques is used [8, 26, 68, 81,
124]. A high mesh resolution is necessary to represent texture information in the
corresponding vertex feature space adequately. However, using a high-dimensional
mesh representation can make the geometry reconstruction too complex due to the
highly coupled geometry regularization, as even a small change in a vertex position
can significantly impact all related vertices. Therefore, it is crucial to select a mesh
resolution that represents the required level of geometry detail without causing ex-
cessive complexity. However, even with an appropriate resolution, the geometry
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3 Texture and Geometry Reconstruction

(a) In grey, the mesh geometry to be
adapted is shown, while the target ground
truth geometry is represented in red.

(b) Overlaid silhouette image data.

(c) Loss trajectory of the optimization pro-
cess.

(d) Similarities of the geometry adaptation
with respect to the ground truth.

Figure 3.3: Problem statement for geometry adaptation from a single pose. In (a)
the unadapted model is compared to the ground truth, considering the given ob-
servation pose. The corresponding silhouette from the perspective is shown in (b).
Additionally, the resulting loss and similarity trajectories from the optimization pro-
cess are compared in (c) and (d).
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3.2 Texture Reconstruction

mesh in the corresponding vertex feature space may still not provide sufficient tex-
ture representation. To address this issue, a subdivision strategy is followed, which
allows for alternating between levels of detail, from a coarse to a highly accurate
infinite mesh representation and vice versa, while preserving the correspondences
between the respective face topologies. This simultaneously fulfills the requirements
for controllable geometric complexity and detailed texture representation [124]. In
the following section, the subdivision strategy is presented, where in Section 3.2.2,
the optimization problem for a texture reconstruction based on predefined camera
perspectives and a predefined model geometry is detailed.

3.2.1 Mesh Subdivision Strategy

Starting with an initial triangular mesh model, the following subdivision procedure
generates additional degrees of freedom, enabling an increase in the level of detail.
Traditional mesh subdivision methods iteratively subdivide polygons, increasing the
number of vertices, faces, and edges and organizing the newly created faces and
edges into a revised topology according to predefined rules [68].

V j,a V j,b

V j,c

Vnew
j,ab

Vnew
j,bcVnew

j,ca

(a) Triangle face F j, which is resolved by subdividing the individual face into four new faces.

(b) Iterative subdivision of a mesh, starting with 212 vertices and going up to 53762 vertices
for each of the meshes shown from left to right, with resolutions of 212, 842, 3362, 13442,
and 53762 vertices, respectively.

Figure 3.4: Visualization of iterative mesh subdivision using triangle splits as an
iterative process.

The face-based method is a common solution to this problem, which involves adding
a vertex (the centroid) at the center of each triangle and linking it to the vertices
of the initial triangle [8]. However, this generally results in non-uniformly shaped
triangles. In contrast, the edge-based subdivision method produces more uniform
surfaces by splitting each edge E j in the mesh into two individual edges, referred to
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as a dyadic split
Vnew

ab =
1
2

(Va + Vb) , (3.12)

where a new vertex Vnew
ab is inserted at the intersection of Va,Vb ∈ E j, defining

the edge E j. In this process, the vertex Vnew
ab is added to the mesh along with a

corresponding feature vector Cnew
ab , and the mesh topology is revised to include the

new edge structure.

New edges are created and connected to new adjacent vertex pairs within the same
face, resulting in a triangle being divided into four evenly spaced new triangles,
as shown in Figure 3.4. Repeating this procedure establishes a general itrsubdiv-
loop subdivision technique. This leads to an increase in the number of faces in the
resulting mesh, which is equal to four raised to the power of itrsubdiv. The overall
process of subdividing the entire mesh can be summarized in

M+ = S itrsubdiv (M) , (3.13)

where M+ is the output mesh after performing an itrsubdiv-fold subdivision based
on an arbitrary input mesh M. This function allows for the efficient and flexible
refinement of the mesh to increase the resolution and the capacity of the feature
space.

3.2.2 Texture Reconstruction

The subdivision process (3.13) facilitates the representation of the input mesh MG,
and the output mesh MT in a single entity for further processing. MG resolves the
geometry and determines the spatial resolution of MT for texture representation.
A direct link is established between the two meshes, ensuring that all connections
are preserved, and each vertex in VT has a corresponding vertex in VG. This link
allows for the determination of the gradient across the texture in VT along the cor-
respondence to the vertices of VG, enabling the use of pure visual image information
for geometry adjustments. The interconnection between the meshes allows for de-
tailed and high texture resolution while keeping the geometry complexity limited
and manageable.

The problem of mapping texture information onto known geometry can be formu-
lated as an optimization problem

C∗T = arg min
CT∈MT

t∑

i=t−h

Ltex
(
I i,R

(
M, ϕ̂i

))
, (3.14)

where the objective is to adjust the vertex feature CT of the mesh MT to minimize
the texture error between the rendered images and the target images. The texture
loss

Ltex(I i,R(M,ϕ)) = λtex∥I −R(M,ϕ)∥ = λtex∥I − I∥22 (3.15)
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quantifies the visual difference between synthetic and observed images using the
Euclidean distance between all pixel intensities, which is controlled by the weighting
parameter λtex ∈ R+. The rendering function R takes the mesh and pose of the image
as inputs and returns the rendered image. The mesh M represents both the mesh
MT and the mesh geometry MG as the global notation for the model representation.
The adaption of the feature space is directly supervised on the image plane, with
the rendering function establishing the connection between the 2D image plane and
the 3D model representation.

In this specific application, the texture space CT is extended through the use of a
3-fold subdivision based on the previously generated mesh geometry MG, as shown
in Figure 3.2b. The generated image and pose data, as depicted in Figures 3.1a
and 3.2a, are then employed in the optimization (3.14) for texture reconstruction.

The texture reconstruction for a particular pose is displayed in Figure 3.5a. In
this rendering, purely ambient light is applied without any reflection parameters to
ensure that the texture values are clearly visible. The reconstruction demonstrates
the model’s ability to suppress light effects resulting from texture data redundancy
in overlapping surfaces or shine effects in the original recordings, as shown in Figure
3.1a.

The same approach is applied with minimal changes to the geometry model, in
which the deviation of the geometry is altered by introducing random and unfore-
seen changes to the vertex positions, accounting for 0.1% of the total size of the
geometry dimension. The corresponding texture reconstruction is shown in Figure
3.5b. It is evident that even small deviations in the geometry can cause the texture
reconstruction to fail completely. The misalignment between the geometry and tex-
ture data makes it impossible to reconcile the interconnected texture values without
additional parameterization of the geometry in the reconstruction problem.

3.3 Simultaneous Texture and Geometry Reconstruction

Following individual examination of the optimization problems related to geometry
and texture reconstruction, the question naturally arises: what does the reconstruc-
tion look like when both geometry and texture are reconstructed simultaneously in
a joint optimization?

Therefore, principles of both geometry and texture reconstruction are applied in a
holistic optimization based on image observations. To investigate the complexity of
the reconstruction jointly, the conflating optimization problem is specified by

[
V⋆,C⋆

T
]
= arg min

V0+∆V,CT

t∑

i=t−h

Ltex
(
I i,R

(
M, ϕ̂i

))
+L♢nor(M,M♢) +Ledg(M) +Llap(M) .

(3.16)
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(a) Texture reconstruction on the given
ground truth geometry.

(b) Texture reconstruction on a slightly
altered geometry model compared to the
ground truth.

Figure 3.5: Texture reconstruction for given geometry and camera perspectives, based
on image data similar to the data provided in Figure 3.1a, but with additional
structures to enhance landmark information.

For comparability, the following examples consider a feature space with a total of
|∆V| + |CT| = 14 284 elements, comprising |∆V| = 842 geometry parameters and |CT| =
13 442 texture parameters. However, the presence of two tasks with distinct dynamics
in the optimization increases its complexity.

The complexity of simultaneous geometry and texture reconstruction lies in the
strong interconnection of the geometry adjustment. Due to regularization, a change
in one vertex directly affects the error similarity of neighboring vertices. Further-
more, texture influences the geometry adaptation, as the texture provides corre-
sponding landmark information, and it influences the geometry adaptation.

To address this complexity, different learning rates are employed for the parameter
adjustments during initialization, as dictated by the optimizer design, as discussed
in Section A.1. Setting the learning rates is a critical task that can significantly
affect the convergence and the final results. Generally, a higher learning rate is
recommended for geometry adaptation compared to texture learning. If the texture
learning rate is too fast, it can force the geometry to follow the reconstructed tex-
ture. Furthermore, due to the interplay between these parameter domains, a stable
convergence is generally fragile, which makes the problem even more complex.

Throughout various parameterizations, it has been necessary to increase regulariza-
tion to stabilize the optimization process and prevent it from diverging. Moreover,
the solution processes observed are sensitive to the weights of the individual losses
and the ratio between the texture and geometry learning rates. While testing multi-
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ple reconstructions with different weightings and learning rates, satisfactory recon-
struction quality has only been achieved to a limited extent. However, a slightly
higher learning rate for texture generally has a positive effect on stabilizing the
overall optimization process, as the mapped texture pattern can be leveraged for
geometry adjustment.

(a) Initial condition gener-
ated from a initial spherical
geometry model.

(b) Initial condition with
noisy geometry and poor
texture conditions.

(c) Initial condition with
noisy geometry but image
data with enhanced land-
mark information.

Figure 3.6: Simultaneous geometry and texture reconstruction based solely on image
observations. The results are obtained from various initial inputs and different tex-
ture conditions.

To understand the performance of simultaneous texture and geometry reconstruction
and its inherent complexity, three cases with separate, distinct conditions are evalu-
ated and compared to each other. The first case involves general adaptation starting
from an uninitialized unit sphere, as demonstrated in the reconstruction procedure
for geometry reconstruction in Section (3.1.3.3). The second case involves adapting
from a mesh which is slightly noisy but close to the ground truth, as considered
in the previous texture reconstruction, with an average deviation of 1.5% from the
ground truth mesh dimensions. The third case is examined with the same noised
initial mesh geometry, but it uses additional structures to support and increase the
available landmark information in the image data. The respective results are shown
in Figure 3.6.
Figure 3.6a shows the reconstruction starting from a unit sphere, which demon-
strates a very fragile reconstruction. The texture and geometry cannot be stabilized
simultaneously in this case, and only the available silhouette information in the data
supports the adaptation from a spherical form to the rough silhouette form of the
bladder, even though the result is far from the original ground truth. Even for mi-
nor geometry deviations, as considered in the second case, the surface texture and
geometry still show fluctuations and unreliable adaptation, as shown in Figure 3.6b.
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Stable results are achieved only by incorporating essential landmark information, as
depicted in Figure 3.6c, which highlights the need of unique landmark information
in the image data for successful reconstruction and stabilization of the geometry
adaptation. The extraction of reliable landmark structures of cystoscopic images is
discussed in Chapter 5.
However, the resulting reconstruction for all examined cases is not satisfactory, as the
inclusion of texture does not improve the reconstruction quality when considering the
more robust silhouette information, which is also implicitly included in the image
information. In summary, the complexity of the optimization problem makes it
difficult to stabilize and prone to descending into various sub-minima. Therefore,
the simultaneous reconstruction formulation is not suitable for the intraoperative
real-world application addressed at this stage and remains a current research topic.

3.4 Summary & Conclusion

In this chapter, the methods for reconstructing scene geometry and texture are in-
vestigated both separately and within a combined formulation. The focus of the ge-
ometry reconstruction was on addressing the overdetermined reconstruction problem
through the development of novel regularization losses. To do this, geometry-specific
regularization costs were introduced to reformulate the ill-posed geometry reconstruc-
tion into a well-defined optimization problem, enabling a unique optimal solution.
To achieve this, advanced mesh regularization terms were presented. Based on state-
of-the-art designs, extended regularization designs were introduced to achieve scale
invariance in regularization. In addition, by implementing template meshes, the
energy minima of a given geometry can be shifted to a predetermined target geom-
etry, which is particularly useful for geometry matching when only a partial view is
available. This approach specifies a default geometry for all unsupervised vertices,
providing more accurate reconstructions.
To evaluate the proposed geometry reconstruction method, monitoring was per-
formed on the image plane using silhouette-based techniques. The complexities
of cystectomy surgery highlight the need for robust silhouette-supervised geometry
reconstructions, further underscoring the proposed method as a proof of concept.
Clear object silhouettes, marked by a distinct boundary between the object and
its background, offer reliable, albeit coarse, data for geometry reconstruction. Such
silhouettes are especially valuable when reconstructing objects with ambiguous struc-
tural details that lack visible reliable landmark features. The complexity is confined
to the geometry parameters, ensuring robust application with a predefined cam-
era position. In this context, accurately representing proportions becomes essential.
However, the constraints of laparoscopic conditions mean a lack of trustworthy tex-
ture information for geometry reconstruction. Nonetheless, the representation of pro-
portions and geometric forms greatly supports automated information assignment
and other spatial data algorithms. With the proposed scale invariant regularization
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design, it is possible to propagate scaling or distortion observed on the image plane
to the entire model geometry.

In addition, a subdivision technique was utilized to integrate the texture and geom-
etry, enabling geometry parameterization with high resolution, while maintaining
manageable complexity. By observing the texture, corresponding adjustments can
be made to the geometry. However, it is essential to note that attempting to re-
construct geometry and texture simultaneously using only texture observation is
unstable and fails due to the overdetermined nature of the problem. Even with
the use of a silhouette loss to reinforce the texture at the same parameterization of
texture and geometry, the optimization problem’s complexity makes it vulnerable to
quickly falling to a local minimum. Consequently, new methods must be developed
that go beyond synthetic reconstruction to enable the reconstruction of geometry
and texture in real-world applications.
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Inverse Differentiable Rendering 4
In the preceding chapter, the main emphasis was on the methodological concepts for
geometry and texture reconstruction. The central focus of this chapter is to present
a new approach for reconstructing the camera perspective by proposing the concept
of an inverse differential rendering approach. Portions of the proposed concept have
been published in [117]. The proposed method maps pixel information from the
image plane to the 3D mesh surface. It can be thought of as a back projection,
referred to as an inverse rendering process due to the reversed input-output flow.
Importantly, this formulation couples the projected information, including the sur-
face intersection, normal, and feature value, directly to the mesh parameters, such
that any update to the geometry results in a direct and inherent update of the
re-projected surface information.

For context, the differentiable (forward) rendering function, introduced in Chap-
ter 2.3, maps the respective model description to the synthetic image plane depend-
ing on the respective camera perspective. The differentiable formulation provides a
means to quantify the impact of model parameters on image pixel intensities. This,
in turn, enables the model to be adjusted as required to match the corresponding
image observations.

It is worth noting that a spatially defined objective function is not differentiable due
to the discrete images rasterization of the image rendering. This is also true for the
presented differentiable (forward) rendering, which only facilitates differentiation
of the aggregated pixel intensities. The integer-based image indices prevent the
differentiation of spatially defined objective functions across different pixel locations.
Nevertheless, to formulate objective functions that can lead to robust reconstructions
and enable the solution of geometry matching and pose reconstruction problems, it
is essential to incorporate the spatial information of pixel locations.

The inverse rendering concept proposed in this chapter allows for mapping pixel
locations to the underlying mesh model. This is made possible by the fact that
intersection points are differentiable with respect to the model parameters. The
inverse rendering approach can be used to develop new methods for the camera pose
reconstruction. As an illustration, consider the scenario where point-based landmark
pairs are given in an image. The corresponding point patterns can be aligned directly
on the model surface using a tailored loss formulation that incorporates the surface
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4.1 Inverse Rendering Concept for a Differentiable Back-Projection
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Figure 4.1: Flow diagram of the presented concept of a differentiable inverse mesh
rendering pipeline.

information, including the locations and respective surface normals. This approach
helps prevent singularities that may occur when aligning patterns based solely on
their 2D image locations.

The proposed inverse rendering design raises several specific and relevant research
questions that are addressed in this chapter. These questions, which pertain to the
design of the proposed inverse rendering function, include:

• How can the information from the image be consistently and accurately mapped
back onto the surface without encountering singularities or discontinuities that
arise due to the discrete enumeration of the faces in the mesh topology?

• For application, how is optimization-based camera pose reconstruction for-
mulated by employing the inverse rendering concept for a given set of point
correspondences?

• How does the inverse rendering process compare to the forward rendering ap-
proach in terms of performance, accuracy, and robustness, and in what contexts
does it offer distinct advantages?

The design of inverse rendering is presented in the following Section 4.1. The recon-
struction of the camera pose based on pre-assigned point matches is addressed in
Section 4.2. The impact of the control parameters of the inverse rendering function
on the convergence of the camera pose reconstruction is analyzed in Section 4.2.1.
Section 4.2.2 investigates the design of the objective function for pose reconstruction
by comparing the use of surface positions and normal information from the inverse
rendering function with 2D landmark correspondences as commonly exploited in
the literature. The purpose of this analysis is to determine the contribution of each
approach to the overall performance of the application.

4.1 Inverse Rendering Concept for a Differentiable Back-Projection

For reconstruction, the discrete face indices description presents similar challenges for
the inverse rendering process, as do discrete faces on the discrete pixel rasterization
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4 Inverse Differentiable Rendering

in the forward rendering process. For example, a gradient can be created for the
intersection point with respect to the given barycentric coordinates within the face
boundaries. However, when back-projected intersection points are close to a face
boundary, there is no information available in the corresponding gradient to indicate
which neighboring face the back-projection should be adjusted to. The absence
of information in the gradient impedes the reduction of the defined loss caused
by discrete face indexing of the mesh topology. Furthermore, the back projection
process also faces a depth discontinuity issue when faces move in front of other faces
across successive iterations.
The proposed inverse rendering process, as shown in Figure 4.1, is based on a prob-
abilistic formulation similar to the differentiable (forward) rendering approach de-
scribed in Chapter 2.3. However, its primary objective is to evaluate the reliability
of a pixel’s intersection with the corresponding mesh faces, rather than quantifying
the mapping of any mesh information onto the respective pixel color intensity.
This process involves aggregating multiple back-projections of a pixel through proba-
bility weighted recombination, resulting in a weighted average that enables a contin-
uous flow of information that can be represented in the gradient. Thus, the gradient
provides sensitivity information about the weights of individual back-projections,
guiding the direction of adjustment in the optimization process. For the inverse
rendering concept, a probability distribution is established in Section 4.1.1 to ad-
dress discontinuities at face boundaries. Building on this, a depth-dependent weight
design is proposed to address depth discontinuities. The final aggregation is then
performed while taking into account the designed weighting, whereupon the inverse
rendering concept is verified for the camera pose reconstruction problem.

4.1.1 Sensitivity of a Face Intersection for a given Pixel Re-Projection

The back-projection of a pixel location (h, w) onto a face F j is calculated by tracing
the flow of information from the camera origin through the corresponding pixel onto
the mesh surface. This process can be seen as a linear algebraic back-projection
following (2.12), where the resulting intersection point on the mesh is denoted by
⋆Ph,wj . Therefore, the intersection point is determined through the analytical ray
tracing calculation, as specified by (2.12b). Focusing on the pose reconstruction, the
objective is to adjust the camera perspective so that the pixel’s intersection point
P coincides with the target position P

⋆ on the mesh geometry. Moreover, in this
manner, the respective normal N and feature C information can be included in the
objective design, depending on the specific prerequisites of the problem.
To determine how the camera perspective must be adjusted to minimize the for-
mulated optimization objective, the intersection point P, normal N, and feature C
must be respectively differentiable with respect to the camera perspective. Since
the following inverse rendering design comprehensively is used to determine the in-
formation on the mesh surface for a given pixel (h, w), the general rendering variable
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4.1 Inverse Rendering Concept for a Differentiable Back-Projection

Figure 4.2: Illustration of the proposed back-projection process. A truncated cone is
created around the ideal back-projection point ⋆Ph,wj , which represents the sphere of
influence that controls the neighboring back projections.

X is introduced for general notation, covering X = [P,N,C], respectively. Thus, the
respective gradient can be decomposed through

∂X
∂ϕcam

=
∂X
∂F

∂F
∂ϕcam

+
∂X
∂z

∂z
∂ϕcam

. (4.1)

The gradient is factorized by the Barycentric parameterized face planes F and the
depth z of the face information relative to the camera perspective ϕcam.

As the intersection points P are calculated, the partial derivatives ∂F
∂ϕcam

and ∂z
∂ϕcamare determined for the respective data X by differentiating the camera projection

model in (2.5). However, as discussed before, the gradients ∂X
∂F and ∂X

∂z are subject
to discrete constraints of the face planes. Changes in mesh overlaps can cause
discontinuities, as shown in Figure 2.17. To overcome these issues, a probability-
based formulation is employed that resolves discontinuity in the gradients ∂X

∂F and
∂X
∂z . This is achieved through the soft rasterization design described in Section 4.1.2,
whereupon the corresponding point aggregation is outlined in Section 4.1.3.

4.1.2 Soft Rasterization

To aggregate the necessary adjacency information around the ideal ray intersection
point ⋆Ph,wj , a blur uncertainty δp ∈ R2 is introduced on the pixel position p through

p̃ = p+ δp . (4.2)
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4 Inverse Differentiable Rendering

Moreover, the vectorial blur uncertainty

δp =
{
δp,{x,y}, j ∈ R2 | δp,{x,y}, j ∽ N(0, σ2

inv), j ∈ [1, k]
}

(4.3)

is designed based on normally distributed data courses in each direction. The nota-
tion δp,{x,y}, j ∽ N(0, σ2

inv) specifies that each respective direction δp,x, δp,y in the set δp
is statistically normally distributed with zero mean and variance of σ2

inv. Based on
that, an analytical intersection ray is defined as

R̃h,w = Ocam + µray




p̃x
p̃y
f

 − Ocam

 , (4.4)

which includes the necessary spatial information for a soft aggregation design. Thus,
based on the spatially distributed ray bundle the respective surface intersection
points P̃h,wj∈[1,k̃] are determined through the analytical relations given by the analyti-
cal projection model (2.12). These intersection points serve as the set of intermediate
auxiliary information used to quantify the spatial dependence around the ideal point
intersection ⋆Ph,wj . Each individual ray is assumed to intersect the mesh nisec times,
resulting in a total of k × nisec intersections. However, since the number of inter-
sections at different depths can vary, the index for the total length of the resulting
point cloud is specified by k̃. Indeed, it is not necessary to require a continuous
coverage of intersection with all faces given in the mesh. Therefore, limiting the
number of evaluations to k̃ is more efficient and computationally practical while still
maintaining a high level of accuracy.
As shown in Figure 4.2, the ray bundle is associated with a pixel (h, w) and parame-
terized by the control parameter σinv, which progressively blurs the ideal ray in the
form of a cone. For any pixel (h, w), intersection information is covered in P̃h,wj∈[1,k̃],
and the Euclidean intersection coordinates Ph,wj are calculated according to (2.12).
The task at hand is to aggregate the k̃ distinct temporary auxiliary points P̃h,wj∈[1,k̃]
into a final 3D back-projection Ph,w for the pixel (h, w) on the mesh surface M.

To determine the contribution of each intermediate intersection point P̃h,wj∈[1,k̃] with
the mesh surface to the final endpoint aggregation Ph,wj , a probabilistic weight design
⊙Dh,wj is proposed, which is tailored to the spatial aggregation. Here and in the
following, the subscript notation ⊙ is used to refer to the inverse rendering concept.
The distribution design in this context is guided by the differentiable design used for
the (forward) rendering, as detailed in (2.17), while also addressing the particular
challenges posed by the 3D mesh surface model. In order to avoid discontinuities
at face boundaries, the influence of each intersection point Ph,wj is weighted by its
minimal distance to the corresponding face boundaries. The distribution

⊙Dh,wj = sigmoid


⊙δh,wj

(⊙dh,wj

)2

σinv

 j ∈
[
1, k̃

]
(4.5a)
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4.1 Inverse Rendering Concept for a Differentiable Back-Projection

Figure 4.3: The closest distance from the face intersection point Ph,wj to the respective
face boundaries F▲j of face F j is specified by ⊙dh,wj . This distance is used to measure the
fragility of an intersection point Ph,wj to become a non-intersection point (Ph,wj < F▲j )
if the camera is marginally displaced.

is designed to reduce the weight of critical projections that are close to face bound-
aries, as they are more likely to obstruct the gradient calculation. The minimal
Euclidean distance of a point Ph,wj to any boundary of its corresponding face F j,
denoted as ⊙dh,wj , is shown in Figure 4.3. The Boolean information

⊙δh,wj =
{
+1, if Ph,wj ∈ F▲j ; −1, otherwise

}
(4.5b)

is determined by whether the ray bundle R̃h,wj intersects the spanned face plane F j

inside the specified face boundaries F▲j as specified by Ph,wj ∈ F▲ or intersects the face
plane F j outside the respective given face boundaries Ph,wj < F▲.

To prevent discontinuities at face boundaries in the aggregated point cloud P̃h,wj∈[1,k̃],
projection points that are close to face boundaries or do not pass through the plane
within the face area are given less weight in the distribution ⊙D. It is important
to note that the distribution and distances are defined on the surface plane of the
respective faces and are processed in 3D space, in contrast to 2.17, where distances
are defined directly on the image plane.

The sigmoid function ensures that ⊙D is continuous between zero and one, with
σinv controlling the distribution’s sharpness. As σinv increases, the back projections
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4 Inverse Differentiable Rendering

become sharper, and the influence of Ph,w on the unblurred ideal intersection ⋆Ph,wj

becomes stronger. On the other hand, decreasing σinv 7→ 0 spreads the output Ph,w
more widely, which in turn strengthens the influence of more distant faces on the
gradient formation due to their increased significance.

4.1.3 Aggregation of Spatial Surface Information

The distribution design in (4.5a) effectively addresses discontinuities at face bound-
aries. However, to circumvent optimization impasses potentially arising from alter-
nating overlapping faces, it is crucial to incorporate depth information into the final
aggregation of X = [P,N,C]. This approach enables the assignment of more signif-
icant influence to intersection points situated closer to the image plane during the
aggregation process, while reducing the impact of those at greater distances. This
is because the probability of intersecting hidden faces increases with depth when
viewed from the camera’s perspective, as illustrated in Figure 2.17 in Chapter 2.3.

To accomplish this, the aggregation weight for an auxiliary point Ph,wj is determined
by considering the corresponding depth information zk, which is incorporated into
the weight design through

⊙wh,wj =
⊙Dh,wj exp

(
zh,wj /γinv

)
. (4.6)

The control parameter γinv can be adjusted to fine-tune the object’s transparency and
control the consideration of hidden faces. For example, setting the control parameter
γinv 7→ 0 has the effect that only the closest face in view is respected. To determine
the final surface information for X = [P,N,C] the weighted average is calculated
based on the given weighting (4.6). While only the intermediate intersection points
P are relevant for the distribution design (4.5a), the respective normals N and
feature values C are required for the aggregation design. These are determined
correspondingly to the intermediate intersection points P. Thus, the aggregation
function is defined for the auxiliary state representation X = [P,N ,C] by

Xh,w =
∑

j
⊙wh,wj Xh,wj∑

j
⊙wh,wj

. (4.7)

For notation, the overall inverse rendering process is summarized in the inverse
rendering function:

[P,N,C] = ⊙RP,N,C
ϕcam

(M, (h, w)), (4.8)

which maps the information of a pixel (h, w) to a given mesh surface M, based on the
corresponding camera perspective ϕcam. The notation ⊙RP,⊙RN, and ⊙RC are used
to respectively specify the inverse rendered intersection point Ph,w, the unit normal
Nh,w, and the corresponding feature aggregation Ch,w.
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4.2 Inverse Rendering-based Pose Reconstruction

4.2 Inverse Rendering-based Pose Reconstruction

The inverse rendering process facilitates the integration of spatial distribution for
corresponding pixel information into the surface model representation. This integra-
tion allows for the establishment of a gradient-based reconstruction problem, which
is grounded in related point landmark information observed on the image plane.
In particular, the relative gradient-based camera pose reconstruction leverages in-
formation extracted from the image plane to reconstruct corresponding points on
the model, directly incorporating both 3D point information and surface normals
through the optimization problem

ϕ⋆cam = arg min
ϕcam

t∑

i=t−h

Leuc
(
P∗, ⊙RP(M,ϕcam

))
+Lnor

(
N∗, ⊙RN(

M,ϕcam
))
. (4.9)

The objective is to match the inverse rendered point cloud (P) to the target point
cloud (P∗) by adjusting the camera location ϕcam. This problem is illustrated in
Figure 4.4 and describes the optimization problem as stated in (4.9). The loss for-
mulation for this problem relies on the Euclidean distance Leuc between correspond-
ing point matches and also considers the normal similarities Lnor of the associated
intersection points, as described in (3.4) and (3.5). The included angles between
corresponding normal directions quantify the normal similarity by

Lnor(N,N∗) = (cos ∡(N,N∗) − 1)2 . (4.10)

4.2.1 Control Parameter Influence on the Reconstructions Performance

In the following study, the differentiability of the inverse rendering process is ana-
lyzed with respect to the control parameters of the blur factor σinv and the number
of re-projections k for the stated optimization problem (4.9).

To demonstrate the influence of the control parameters σinv and k on the solution pro-
cess, a set of predetermined target points P⊙ and normals N⊙ are exploited, which
are illustrated in Figure 4.4. The loss history for the iteratively solved optimiza-
tion (4.9) is shown in Figure 4.5. First, note that for σinv = 0, the loss decreases
initially for a limited number of iterations before remaining constant for subsequent
iterations. This behavior is expected, as the gradient with respect to the barycentric
coordinates provides information on the decrease in loss. However, when an inverse
rendered point is located close to a face boundary, the aggregation is based on the
single face plane, which provides no additional information on the direction in which
the camera needs to be adjusted to include further face projections. As a result, it
is not possible to assign weights to the spatially distributed intersection points used
to calculate the actual gradient.
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Figure 4.4: To reconstruct the camera position, the pose ϕ⋆cam is reconstructed start-
ing from the initial camera position ϕcam,0. An Euclidean distance error measure,
highlighted in red, is defined as the Euclidean distance between corresponding
node pairs. The black graph represents the initial graph patterns that are already
represented by the model initialization at the current time step, while the observed
patterns on the mesh surface are shown in yellow.

In contrast, for σinv > 0, the weights receive an information flow, with larger values
of sigma increasing the spatial extent of influence on the surface. However, it is
essential to note that increasing σinv does not necessarily improve the performance
of the solving process. In fact, an increase in σinv results in a decrease in accuracy,
as observed in the plateauing loss histories for the respective optimizations. Re-
markably, the solving process performs comparably well even for a single k = 1 and
σinv > 0. In this scenario, the information is randomly distributed to neighboring
faces between iterations, as defined in (4.3). A continuous gradient is maintained
across the barycentric coordinates if the corresponding intersection point hits a suit-
able surface. However, for finer meshes, the barycentric coordinates may only cover
shorter distances, requiring more information to be contributed through the arbi-
trary aggregation of new face information in the general optimization process.

4.2.2 Comparison of Different Formulations for the Pose Reconstruction

The optimization objective outlined in (4.9) utilizes the inverse rendering approach,
which combines 3D points with normal directions to incorporate model-specific spa-
tial information. To evaluate the benefits of this approach, it is compared to the
conventional triangulation-based 2D supervision. Instead of transferring image land-
marks pI to the model, as in (4.9), the pattern correspondences P⋆ represented on
the 3D model surface are brought to the image plane through the analytical camera
projection model

p⋆ = M(ϕcam,i)P⋆, (4.11)
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4.2 Inverse Rendering-based Pose Reconstruction

Figure 4.5: The overall error trajectories of the reconstruction formulation are influ-
enced by design parameters k and σinv. These parameters govern the differentiability
of the inverse rendering approach, while the number of matches used, ∥m∥, impacts
the conditioning of the objective function.

ensuring full differentiability by following the analytical camera model (2.5). The
distances between the structures represented by the point clouds p⋆vas and pI can
then be compared on the image plane through the Euclidean distances between
corresponding landmark locations, leading to the optimization problem

ϕ⋆cam = arg min
ϕcam

t∑

i=t−h

∥p⋆vas − pI ∥22 , (4.12)

which is supervised through point correspondences evaluated by their respective 2D
distances on the image plane.

The camera pose reconstruction typically requires at least three matching landmark
features between corresponding image data. In contrast, the inverse rendering for-
mulation only requires two matching point pairs between an image observation and
a feature point specified on the model surface, relying on the intersection points
and normal data with the mesh surface. Nonetheless, given that this optimization
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+&

Figure 4.6: Comparison of error trajectories between different definitions of the opti-
mization objective. The objective function defined on the image plane is compared
to the objective functions defined directly on the model surface, both with and with-
out using the respective normal directions of the intersection points.

problem is typically regarded as overdetermined, with more constraints than neces-
sary, a robust solution is derived by minimizing the deviation between the overde-
termined dataset. This approach contributes to a more dependable reconstruction.
The process of identifying landmark points with corresponding matches mpI↔P⋆ and
detecting outliers is covered in Chapter 5 and Chapter 6.

The exploitation of normal information in the reconstruction process leads to an
enhanced convergence performance, as depicted in Figure 4.6. This method outper-
forms the exclusive penalization of Euclidean 3D distances for reconstruction and is
also more effective than the image plane-based supervision (4.12).

To ensure more equitable comparisons, the error sum of the total loss is normal-
ized by its initial loss, represented as L̃ = L/L0, , in the multicriteria optimization
described by (4.9). While this normalization helps to mitigate dependence on the
specific weight of the objective loss, it cannot fully eliminate the influence of partic-
ular hyperparameters within the objective functions. Nevertheless, it is crucial to
recognize that the unique design of these objective functions complicates compar-
isons based solely on loss trajectories.
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Figure 4.7: The objective function of pose reconstruction problems is defined as the
deviation of patterns from the initial camera pose with pre-defined correspondence
to the target pattern. The resulting camera poses along the optimized adjustment
trajectories are shown, with supervision on the image plane indicated in red, super-
vision using Euclidean information indicated in turquoise, and the reconstruction
trajectory including both in the optimization objective indicated in grey.

Figure 4.8: Point observations
p⋆vas and pI on the image plane
of the scene given in Figure 4.7.

Thus, a comparison is only possible to a limited
extent. Nevertheless, the inverse rendering-based
reconstruction method distinguishes itself as a
more effective and resilient technique when com-
pared to the image-based reconstruction, partic-
ularly in challenging scenarios where the initial
pose is displaced considerably from the target
camera pose, as demonstrated by the results in
Figure 4.7.

In this case, the reconstruction on the image
plane shows that the pose reconstruction termi-
nates in a local minimum, as observable in Fig-
ure 4.7. This sub-optimal solution is character-
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ized by a uniformly distributed loss among the corresponding node pairs p⋆vas and pI
on the image plane. The corresponding landmarks on the mesh P⋆ are projected onto
a line-shaped trace on the image plane p⋆ at the perspective of the terminated pose,
as shown in Figure 4.8. This suggests that the camera captures a cross-sectional view
of the target area, resulting in a singularity of the corresponding objective function.
In contrast, the 3D objective function defined in equation (4.9) reaches the optimal
solution smoothly, regardless of whether normals are included in the optimization
objective or not.
The incorporation of normal directions in the camera pose reconstruction results in
a smoother pose adaption towards the target pose, compared to using only surface
positions, which shows numerous fluctuations. Furthermore, it is observed that
when using a normal loss, the pose adaptation is perpendicular in the adaptation
direction in the final stages before reaching the optimal pose. This indicates that
the normal loss has already converged, and the camera is now adjusting along the
z-axis in the camera coordinate system to optimize the remaining Euclidean loss and
align precisely with the target pose. However, it is possible to reduce this effect by
decreasing the weight of the normal loss, without compromising the robustness of
the results.
The inclusion of normal information in the optimization objective leads to a more
stable and reliable reconstruction than an image-based pose reconstruction. The
normal loss aids in achieving a stable convergence towards the optimal pose by
providing a robust specification of the gradient direction and preventing the termi-
nation in sub-optimal local minima. Conversely, the projection of 3D model surfaces
onto the image plane introduces ambiguity, as multiple points in 3D can correspond
to a single image point. This can reduce the amount of information available in
the 2D image, resulting in a tendency towards convergence in neighboring minima.
Although errors can be minimized through the use of appropriate weighting and
regularization, the Euclidean surface error design is more reliable as it is not subject
to any projection ambiguity. Additionally, the incorporation of directional spatial
information further enhances the robustness of the pose reconstruction, as evidenced
by the results presented in Figure 4.7 and Figure 4.8. This is particularly relevant
in challenging intraoperative scenarios where significant deviations occur from the
initial to the optimal solution.

4.3 Summary & Conclusion

In this chapter, the concept of inverse rendering was presented and applied to the
issue of camera pose reconstruction. The proposed inverse rendering concept in-
volves remapping image information from the pixel to the model representation to
enable the differentiability of model-level information (surface point intersections,
corresponding surface normals, and texture features) across discrete surface bound-
aries. Therefore, a probabilistic description of the reliability of individual projection
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bundles of pixel information was formulated. This enables the differentiation of in-
tersection points along surface boundaries and the computation of continuous and
invariant weights, providing sensitivities of the respective mesh faces. The differen-
tiable formulation of inverse rendering not only facilitates the transfer of information
from the image to the model level but also enables the utilization of the resulting
data in gradient-based reconstruction problems.

In the context of pose reconstruction, utilizing corresponding 3D landmark locations
and corresponding normal directions on the mesh surface may result in a more ro-
bust reconstruction than the traditional image plane-based loss definition. The 3D
and normal direction formulations produce a reliable gradient directed towards the
global minimum. The normal direction specifies the orientation, resulting in robust
convergence. In contrast, significant deviations in the initial conditions during im-
age plane reconstruction often result in constellations where the optimization process
terminates in local sub-minima. This is due to the projection ambiguity along the
projection line, resulting in singularities that worsen the conditioning of the objective
function compared to using 3D information directly. The inverse rendering approach
has proven to be an effective method for transferring observations from 2D to the
3D model scene, offering superior accuracy and reliability compared to conventional
supervised 2D reconstruction methods. Therefore, it is a valuable tool for intra-
operative applications. However, the availability of corresponding landmark data is
still a prerequisite for inverse rendering-based pose reconstruction, which remains an
outstanding task for the real-world application of the outlined pose reconstruction
capability.
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Landmark Extraction 5
To realize an accurate localization, the captured images must possess clearly retriev-
able and well-distinguishable patterns. This requires that a given image contains
features that are characteristic of the location of the captured surface so that upon
reacquisition of the surface, the respective image observation can be unambiguously
assigned to the same feature pattern. Owing to their location specificity, these fea-
tures are referred to as landmark features and facilitate orientation.

Identifying unique landmark features is fundamental for reconstruction approaches
that rely on the specific location of features within an image, such as the pose recon-
struction method described in the previous chapter. Nevertheless, the reconstruction
concept of this work was initially motivated by an image-to-image correlation on a
pixel level rather than relying on a sparse pattern representation. However, as dis-
cussed in Section 3.3, even for the image comparison of a synthetic database, the
geometry reconstruction can lead to an ill-posed optimization problem, which tends
to become trapped in a local minimum. This is expected to be even more pronounced
for real-world intraoperative image data, which is often noisier and non-uniform.

To mitigate this limitation, it is essential to isolate the significant structures to
facilitate a more robust reconstruction objective. This involves reducing the in-
formation content to only the most significant and reliably visible structures and
eliminating interfering and inconsistent structures. However, extracting the Land-
mark feature for intraoperative applications presents a scientific challenge on its
own. The so-called ORB landmark features are commonly used as the state-of-the-
art in robotics for landmark identification and localization problems, as reviewed in
Section 1.3. However, as demonstrated in Figure 5.2, ORB features are unable to
capture the local characteristics of cystoscopic images accurately. This may severely
impact subsequent landmark matching since ORB features rely on brightness and
color differences, making them susceptible to inaccuracies in the presence of noise
or blurriness.

In this study, the visible vascular structures on tissue surfaces are used as land-
marks for intraoperative orientation during cystoscopic interventions, as shown in
Figure 5.1. These structures can be represented as graphs, providing a deformation-
invariant feature space that is robust to changes in graph length caused by de-
formation. Despite potential changes in graph length caused by deformation, the
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Figure 5.1: The connectivity of the blood vessels is invariant under deformation and
thus provides robust landmark information for reconstruction. The representation
of the vascular network as a graph, with nodes representing vessel bifurcations and
edges along the vessel trajectories, offers a deformation-invariant description and the
ability to match corresponding nodes across multiple observations.

Figure 5.2: Detection of ORB features [109] in a succeeding pair of cystoscopic image
observations. The identified ORB feature locations are indicated in yellow. The
inconsistent and noisy distribution of feature locations makes it challenging to match
corresponding features across the respective image observations.
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underlying structure remains unchanged, leading to the use of the term ’deformation-
invariant feature space’ to describe the underlying landmark representation [7, 116,
150, 151]. During deformation the inter-connectivity of the vascular structure re-
mains unchanged even if the graph is deformed spatially. Thus, the vascular struc-
ture cannot intersect in an unexpected and different pattern due to deformation.
This makes the graph representation an effective representation for deformable vas-
cular structures in endoscopic images, ensuring the consistency of the graph struc-
ture. Moreover, the graph representation redefines the matching problem, enabling
the adaptation of a robust graph matching procedure to align individual graphs
extracted from different observations, which is discussed in the up-followed Chap-
ter 6. The main objective of this chapter is to extract reliable graph features from
an intraoperative image observation while addressing the following challenges:

• Separating visible vascular structures suitable for landmarking from the ob-
served intraoperative image data.

• Representing the identified image structures using a graph representation suit-
able for graph matching.

• Make the graph extraction robust against small modifications in intensity and
blur in the raw data.

To address the problem of vascular pattern and graph extraction, a multi-step solu-
tion is proposed. The procedure is illustrated in Figure 5.3. First, a preprocessing
classification network is employed to enhance the data quality by separating unusable
image samples and regions. Second, a filter design is utilized to extract the dominant
vascular structures, ensuring only relevant information is used in subsequent steps.
Additionally, curvature information is identified to improve the distinguishability of
landmark representation and aid in the graph-matching task. Finally, a data-driven
approach is introduced through a network architecture designed to handle changes
in image observations, such as blurs or lighting conditions, thereby improving the
robustness of the graph-based landmark representation.

These approaches are outlined in the following sections: preprocessing in Section 5.1,
structure segmentation in Section 5.2, pattern-based graph extraction in Section 5.3,
data driven-edge extraction in Section 5.4, and attribute extraction to enhance spe-
cific landmark information in Section 5.5.

5.1 Preprocessing of the Image Data

For the endeavor of this work, the University Hospital of Tübingen has provided
the raw video data of a cystoscopic intervention. To extract pertinent information
from the video data, several preprocessing steps are required, including trimming,
sampling, and resizing of the image data, as illustrated in Figure 5.4. These steps
enable the decomposition of the video material into individual images that can be
used as input for further processing in a persistent data format.
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segmen-
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node
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Figure 5.3: Graph Extraction Pipeline including the following preprocessing stages:
Segmentation & Preprocessing: Replaces the segmentation step in the original graph
extraction procedure. Node extraction & Graph extraction: Extracts nodes and
node attributes from the skeletonized image output of the previous network. Edge
extraction & Graph extraction: Completes the graph by extracting the edges from
the skeletonized image.

Non-contributory video segments that do not assist with the localization task must
be eliminated. As these sections are recorded, the vascular structure is invisible,
or the view is disturbed. For instance, when the endoscope is removed from the
bladder for cleaning, or the view is blocked by cut tissue, as seen in the data shown
in Figure 5.5, the resulting images do not contain any useful landmark information
and even may harm the localization algorithm later. Thus, disturbed images must
be disregarded. In addition to entirely none usable images, certain images may
have sub-regions that are suitable for landmark identification. Therefore, pixels
that represent moving objects such as tools, air bubbles, and resected tissue must
be individually identified, as these can disrupt the orientation process. Figure 5.5
presents a set of disturbing images. Some images are obstructed by air bubbles,
as depicted in Figure 5.5a. Others are blocked by the moving electrical cutting
loop, as shown in Figure 5.5b, or covered by cut and flowing tissue, as illustrated in
Figure 5.5c.

Thus, the objective is to generate for each image I i its corresponding mask Mi, which
accordingly restricts the usable image space. Therefore, a Convolutional Neural Net-
work (CNN) architecture is employed to segment the image data. More specifically,
the so-called U-Net architecture is used in this work as a state-of-the-art network
architecture for the image segmentation task. The U-Net network architecture was

Trim bad
sections

Sample
frames

Resize,
crop

Video
input

RGB
images

256 × 256
RGB images

Figure 5.4: Pre-processing steps for sampling subsequent images from raw video data.
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(a) Obstructed view due to
air bubbles and cauterized
tissue.

(b) Obstructed view due to
the moving electrical cut-
ting loop.

(c) Obstructed view due
to the freely flowing tissue
sample.

Figure 5.5: Video frames captured with an obstructed view.

first introduced in [106] for biomedical image segmentation and further leveraged
and extended in [45, 88, 108, 155] for wide range of image segmentation tasks. The
U-Net architecture is referred to by its distinctive U-shaped network architecture
that combines a contracting path for capturing context and a symmetric expanding
path for precise localization based on a convolutional filter design. The network de-
sign allows for accurate segmentation of corresponding images based on the learned
filter parameters. A general overview and discussion of the U-Net network architec-
ture can be found in Appendix A.2. The specific architecture used in this work is
based on the ResNet50 backbone [118]. It encompasses a set of 25 million trainable
parameters, which are optimized during training.

(a) Input image. (b) Manually annotated
ground truth.

Figure 5.6: Training data comprising input images and their corresponding labeled
ground truth segmented images. The images depict cystoscopic procedures using a
electrode resection loop, with segmentation performed for the tool, bluer and
bubbles, suspicious tumorous tissue, and (by default) background pixels.

For training the parameterized network, a data set of 1600 hand-labeled images was
built. These images are diversified through augmentation techniques such as image
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rotation, translation, and mirroring to enhance the training process. The most
significant perturbations in the image can be detected by identifying classes such
as ’tool,’ ’bubble,’ or ’tumor,’ for which the network has been trained. Figure 5.6
displays a hand-labeled dataset with the corresponding network predictions.

The training process was performed for over 230 epochs with an 80/20 data split
between training and validation data. The results of a validation batch for the fully
trained network are depicted in Figure 5.7, which showcases two randomly selected
samples. The prediction, as demonstrated in Figure 5.7c, accurately segments the
tool, electrical loop, and water bubbles, as depicted in the input data presented
in Figure 5.7a. While the network predictions may be less reliable in detecting
suspicious tumor tissue, this does not affect its performance in masking the raw data
for landmark identification. However, tumor classification is not covered in this study
and would entail a larger dataset, leading to an expansion of the current research
objectives. Ultimately, data-driven image segmentation facilitates the identification
of potential regions in the image that are suitable for landmark extraction. These
regions are specified in the image-specific mask Mi and allow for the detection of
reliable and persistent pixels that potentially can serve as landmark features, thus
enhancing the accuracy of the orientation process.

(a) Input Images. (b) Ground Truth. (c) Predictions.

Figure 5.7: A comparison of a given input image, the corresponding ground truth
labels, and network prediction based on the input image data. The ground truth and
prediction are color-labeled according to the following categories: tool, bluer
and bubbles, suspicious tumorous tissue, and background pixels (default). The
tool and water bubbles are detected satisfactorily compared to the ground truth.
However, the prediction for suspicious tissue is over-classified, which is a known
limitation of the current approach and one that requires further investigation and
improvement.
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5.2 Vascular Pattern Segmentation

Vascular structure segmentation in cystoscopy images is a challenging problem due
to the poor quality of the images, which often contain signal noise and distortion
effects and vary significantly in lighting conditions and imaging perspectives. This
leads to significant variations in the appearance of blood vessels between subsequent
frames. In the literature, there are both supervised and unsupervised approaches
to this problem. Manually annotated training data is used to train pixel-based dis-
criminators in supervised methods, including deep neural networks and Gaussian
process architectures. As shown in [47, 54], these approaches are effective in classify-
ing retinal blood vessels. However, the specific characteristics of cystoscopy images,
such as relatively low resolution and high levels of noise, pose unique challenges for
blood vessel segmentation in this context. Although there is a wealth of research
on the segmentation of vascular structures, a large portion of the latest publica-
tions is focused on retinal image segmentation and rely on supervised segmentation
techniques [15, 47, 54, 92, 129, 155].

For retinal treatments, there is usually an extensive database available as data is
collected at the time of diagnosis and treatment and is often annotated for diagnostic
purposes. However, the vascular structure of the urinary bladder is not typically a
diagnostic indicator. Therefore, pre-labeled data is not readily available for this type
of data. Given this, unsupervised classification methods are preferred in this study,
as they can be more effectively adapted to the characteristics of cystoscopy and
offer a higher degree of segmentation sensitivity without the need for an annotated
dataset.

The overall pattern segmentation flow followed in this work is illustrated in Figure 5.8.
The goal is to represent the vascular structures in the image space as a binary narrow
line structure. Therefore, an unsupervised segmentation filter is first applied to
separate the vascular structures from the surrounding tissue. Next, the resulting
structures are binarized and thinned to a single pixel width, forming a skeleton that
highlights the primary paths of the vascular structures.

256 × 256
RGB input image

filtered
image

binarized
image

skeletonized
image

Figure 5.8: Workflow for preprocessing images to enhance main visible structures in
a binary format, to be used as landmark information.
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5.2 Vascular Pattern Segmentation

5.2.1 Segmentation Filter for Vascular Structures

The filter design employed in this work is based on multiple shifted filter responses to
detect pathlines and bar structures, as presented in [5]. The filter is designed to seg-
ment blood vessels regardless of their orientation, which is critical for its robustness.
Furthermore, the filter’s response is developed through a flexible template structure,
allowing for precise regulation of its selectivity via a customizable parameterization
procedure.
As an initial preprocessing step, the input colored image I is converted to its corre-
sponding grey-scale image representation Igrey to focus on the pattern of vascular
structures within the image. This reinforces the segmentation design to rely on ac-
tual pattern courses rather than specific color distributions, which can be influenced
by patient-specific factors. The texture contrast of a given color distribution also
highly depends on the patient’s bladder condition, which can be influenced by age
and disease. In contrast, grey-scale images provide a more accurate representation of
the structural course and interconnectivity. The conversion to grey-scale is achieved
by calculating the average of the red, green, and blue channels at each pixel. This
results in a single grey-scale intensity I h,wgrey value for each pixel (h, w).
The core design of the segmentation filter is based on the Difference of Gaussian
(DoG) filter

DoGσ2
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(
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 . (5.1)

The DoG filter is a kernel function that compares the pixel intensities of adjacent
pixels with respect to a reference pixel at position ph,w. The filter consists of a pass-
ing central region, which allows certain pixel intensities to pass through the filter
unchanged, and a blocking edge region, which blocks or attenuates other pixel inten-
sities. Moreover, the sensitivity of the passing filter shape region can be controlled
by adjusting the filter variance σ2

DoG. In image processing, the DoG filter is commonly
used to detect specific patterns within an image, as it can effectively highlight dif-
ferences in pixel intensities. This filter is widely used for edge detection, feature
extraction, and other image-processing tasks. It is a well-established method in the
literature and has been employed in various research studies, such as [6, 7]. Fig-
ure 5.9 illustrates the corresponding filter design, providing a visual representation
of its distribution.
Thus, for a given image the corresponding filter response is given by the convolution
of the image with the DoG filter kernel (5.2) where the convolution operation is
given by

I DoG
(
ph,wx , ph,wy

)
= Igrey ⊛ DoGσ2

DoG
. (5.2)

To tailor the filter design to the segmentation of vascular line structures, a seg-
mentation filter is developed that involves multiple sampling procedures around the
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Figure 5.9: Determination of segmented structure space I h,wsgt through pixel-wise ag-
gregation. A pixel at location (h, w) is identified as a bar structure if adjacent pixels in
the Gaussian-filtered image I DoG individually exhibit high intensities. In this segmen-
tation approach, closer neighboring points carry greater weight than more distant
pixels. The evaluation is considered for all pixels along a straight line, parameterized
by the direction Ψ j and the distance ιi.

reference point, as illustrated in Figure 5.9. Concentric circles are sampled around
the spatial reference pixel location ph,w, where the corresponding set

Ω =

{(
σ2
DoG, ιi,Ψ j

) ∣∣∣∣∣ ιi ∈ ι, Ψ j ∈ Ψ
}
, (5.3)

is parameterized by the standard deviation σ2
DoG, the distance ιi ∈ ι, and the orienta-

tion Ψ j ∈ Ψ. These parameters are chosen from sets of pre-defined set of distances
ι, and orientations Ψ. A given distance parameter ιi specifies the radial distance
from the reference pixel ph,w, while the orientation parameter Ψ j specifies the angle
of rotation of the sampled points around the reference pixel (h, w).
Thereby

ιi =

{
± l
|ι|

∣∣∣∣∣ ιi ∈ ι
}

(5.4)

determines a pre-parameterized distance set, where the specified length l is uniformly
sampled in the positive and negative directions by a total number of |ι|, while

Ψ j =

{
π

|Ψ|
∣∣∣∣∣ Ψ j ∈ Ψ

}
(5.5)

is a uniformly distributed orientation set used to represent the respective circular
information around the referenced pixel position px,y. Hence, for a given parameter
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triple Ωi, j the corresponding euclidean position is given by ∆px,{i, j} = −ιi cosΨ j and
∆py,{i, j} = −ιi sinΨ j.

To gather the intensity information of adjacent pixels for a given pixel position px,y,
the DoG filter (5.1) is applied to the image while taking into account the set of
parameters (5.3), which includes the radial distance and orientation to the reference
pixel (h, w). By sampling multiple points at different orientations and distances
around a reference pixel px,y, the corresponding angle Ψ⋆

j that leads to the maximum
intensity set is determined by

ΩΨ∗j = max
Ψ j∈Ψ


∑

j

I DoG
(
ph,wx − ιi cosΨ j, ph,wy − ιi sinΨ j

) ∣∣∣∣∣ιi ∈ ι
 . (5.6)

As a result, the specified subset ΩΨ j
represents the line structure with the strongest

filter responses of (5.1). The angle Ψ j specifies the direction of the bar structure,
where the set ΩΨ∗j is a discrete sample set that defines the identified bar structure’s
location, orientation, and distance from the reference location ph,w.

Figure 5.9 depicts the specification of a template pattern, where the intensities pass-
ing through the segmentation process are detected through the intensity search (5.6).
In the example shown, there are five different passing points with the bar for each
circle. The number of points depends on the complexity chosen for the parameter
set (5.3).

The final objective is to merge the intensity set specified by (5.6) into a single final
segmentation signal for the pixel at position px,y. Finally, the image segmentation
I sgt for the given input image I is aggregated through the weighted average

I h,wsgt =

∣∣∣∣∣∣∣∣∣


|Ω|∏

i=1

(ΩΨ j ,ιi ,σ
2
DoG

(h, w))ωi



1
/∑|Ω|

i=1 ωi
∣∣∣∣∣∣∣∣∣
T

with ωi = exp−Ψ
2
j

2κ
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1
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i∈{1...|Ω|}

{ιi} ,

(5.7)

Table 5.1: Filter parameters.
parameter value range
ι [0, 7.5]
Ψ

[
− π

4 ,
π
4

]

σ2
DoG 0.6

by respecting the DoG filter design (5.2) and
the pixel intensity search (5.6). The operation
| · |T () thresholds the aggregation to the continu-
ous image space between zero and one such that
I h,wsgt ∈ [0, 1]. Furthermore, the respective seg-
mented pixel intensity I h,wsgt determines if a pixel
at position (h, w) constitutes a bar structure in
the filtered image space I DoG. Specifically, this
occurs when all shifted responses in (5.7) are greater than zero along the direction
with maximum intensity response in (5.6). However, as the individual DoG filters
move farther from the kernel center, their contribution to the overall signal decreases
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due to respective weighting. The segmentation filter only activates when all DoG
filters are active, creating a smooth transition at blood vessel ends. Due to the mul-
tiplicative concatenation in the aggregation (5.7), the segmentation is continuously
attenuated at a vessel end.

Figure 5.10b shows cystoscopic images that are processed using the described fil-
ter design. The blood vessels of the urinary bladder are detected and highlighted,
demonstrating a strong detection quality. The filter parameters were determined
through an iterative procedure, and the resulting values are listed in Table 5.1. In
order to achieve the objectives of further pattern-based reconstruction, it is essential
that large, widely distributed blood vessels are accurately segmented and sharply
imaged at this stage of the process.

(a) Cystoscopic input image I after masking
and rescaling.

(b) Segmented vascular structures in the seg-
mented image I sgt.

Figure 5.10: Segmented image I sgt, where each greyscale pixel intensity corresponds
to the confidence level of the pixel (h, w) belonging to a vessel structure in the input
image.

5.2.2 Histogram Equalization of the Image

The intensity of a segmented image indicates the level of confidence in the segmen-
tation result, indicating whether a pixel is part of a bar structure (i.e., a vascular
structure) or not. To ascertain the discrete shape information, it is necessary to
binarize the continuous classification intensities. A general threshold function may
be employed for this purpose. Consequently, pixels with intensity values surpassing
a specified threshold are classified as part of the structure, while those with intensity
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values below would be classified as background pixels. However, the pixel intensities
can significantly vary from one image to another (e.g., due to different exposures),
so a single global threshold is unsuitable for evaluating all images. Instead, a dy-
namic threshold adjustment is required that adapts to each image individually. The
core idea of automated threshold adjustment is to minimize the binarization error
that may occur when pixels are incorrectly categorized. Following [87], an adaptive
binary categorization concept is formulated by maximizing the variance between the
two classes and minimizing the variance within each category.

In the initial stage, the image intensities of I sgt are considered in an equivalent inte-
ger pixel grayscale color space representation I h,wint with an intensity range of [0, 255].
As introduced in Section 2.2.5.1, there is an equivalent integer representation in the
range of [0, 255] for the continuous intensity values of [0, 1], which is primarily con-
sidered in this work. The integer representation allows for constructing a histogram
of sorted intensity values I h,wint for all pixels (h, w) ∈ H ×W.

Subsequently, the so-called Otsu threshold τotsu following the work [87] of Nobuyuki
Otsu is determined by calculating the histogram of the input image and the cor-
responding probabilities for each intensity level, I h,wint ∈ [0, 1, 2, ..., L − 1], where L
represents the number of intensity levels. An example of this can be seen in the
histogram plot shown in Figure 5.11, which displays the distribution of segmented
pixel intensities from the sample in Figure 5.10b sorted in ascending order. Next,
the algorithm identifies the optimal threshold value τotsu = τ

⋆, which maximizes the

Figure 5.11: Histogram of pixel intensities in the image, with the Otsu threshold
indicated by a vertical red line. The Otsu threshold separates the image into two
classes based on pixel intensity, with all pixels above the threshold representing
vascular structures and all pixels below the threshold belonging to the background.
In the resulting segmented image, non-vascular areas are black, which results in a
high number of black pixels.
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between-class variance

σ2
b(τ) = ω0(τ)ω1(τ)(µ0(τ) − µ1(τ))2. (5.8)

Therein, ω0(τ) and ω1(τ) denote the probabilities that the intensity, I h,wint, of pixel (h, w)
is either smaller or larger than the threshold value τ, respectively. Additionally, µ0(τ)
and µ1(τ) represent the average intensities of the two classes, which depend on the
threshold value τ.

Finally, the Otsu threshold τotsu is then determined by the parameterization of τ that
maximizes the variance σ2

b(τ) between the structure and background pixels to achieve
an optimal threshold classification for the given pixel set. This facilitates an optimal
adaptation of the segmentation to the conditions of the individual image data. For
the example considered in Figure 5.10b, the corresponding thresholded image pair is
shown in Figure 5.12a. The vascular thicknesses are classified contiguously across the
image matrix, while non-essential areas are classified as background. Nevertheless,
due to the binary thresholding, interruptions of vascular structures can be observed
that are actually expected to be contiguous. This issue is further addressed in
Section 5.4 in the context of the data-driven graph extraction process.

5.2.3 Structure Skeletonization

In order to extract meaningful features from the binarized structures, it is necessary
to reduce the structures to a one-pixel-thin line, a process known as skeletonization
or thinning in literature [63]. The skeletonization problem has been approached in
various ways, including the wave expansion method presented in [11]. This method
starts at the structure boundaries of the object and propagates inward to define the
skeleton structure along the line of coincident wavefronts. However, the analytic for-
mulation of this method results in a computationally expensive optimization process
that can be impractical to solve in practice.

In addition to the analytical approach, there exist various unsupervised thinning
methods that iteratively sample the shape from the boundary and progressively
remove selected pixels until only a single-pixel thin skeleton remains. These methods
are often very similar to the optimal analytical solution [67].

In general, iterative thinning methods analyze the Figure Eight-NeighborhoodN8(h, w)
of each pixel (h, w) to determine whether it should be removed or kept as part of the
skeleton structure. The Figure Eight Neighborhood N8(h, w) of a pixel (h, w) covers
all surrounding pixels (h, w)adj that are directly adjacent to the central pixel (h, w)
within a 3 × 3 image pixel raster [33]. To simplify the process and achieve an op-
timal skeleton solution that closely approximates the analytical model, an iterative
thinning approach is followed in this work.

Applying the iterative thinning algorithm to the binarized image produces the skele-
tonized image depicted in Figure 5.12b. Alongside the more prominent vascular
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(a) Threshold binarization. (b) Skeletonized image with inverted pixel in-
tensity space for improved visualization.

Figure 5.12: The intraoperative image shown in Figure 5.10b is segmented and bina-
rized using Otsu thresholding. The resulting thresholded image is then skeletonized,
which involves thinning all connected structures in the thresholded image to a one-
pixel width line structure. Note, the skeletonized image is presented with inverted
pixel intensities so that the black background is white and the white structures are
shown in black to enhance their visibility for presentation purposes.

structures, there are some isolated elements composed of only few pixels. However,
these sparse structures have limited informational value due to their poor connectiv-
ity and unreliable recognition potential. Furthermore, tissue deformation or camera
perspective shifts can cause them to disappear, which makes them unsuitable as
reliable landmark features.

5.2.4 Pruning of Isolated Pixel Clusters

Clear pixel orderings are necessary to extract a graph from a skeletonized image by
pre-defined rules. Additionally, any resulting ambiguous pixel clusters after skele-
tonization must be identified and resolved to represent the skeletonized image in a
clear and well-defined form that is suitable for graph extraction [54, 154].

Figure 5.13 displays a critical pixel cluster pattern at a skeletonized vascular in-
tersection, where it is unclear which pixels should be classified as crossing pixels.
Therefore, the thinning process needs to be refined to establish unambiguous crite-
ria for extracting node features based on their pixel neighborhood. Ambiguous pixel
patterns after skeletonization have been widely recognized in the literature and dis-
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cussed in various publications [54, 67, 141, 150, 151, 154]. An iterative selection
procedure to remove ambiguous pixel patterns from skeletonized fingerprint images
is presented in [154].

Following the work of [152], all segmented pixels are individually scanned by checking
their respective Figure-Four neighborhood. The Figure-Four NeighborhoodN4((h, w))
of a pixel (h, w) covers all surrounding pixels that are adjacent to the central pixel
(h, w), excluding the diagonal neighborhood in the respective 3×3 image raster [33, 54,
152]. A pixel is considered ambiguous if there are more than two white pixels in its
Figure-Four neighborhood. In the example shown in Figure 5.13, the pixels labeled
as ⊗ are considered ambiguous because they have more than three neighboring white
pixels within their neighborhood of four. Iteratively, these pixels are checked and
then either removed or declared distinct [152].

⊗

⊗

(a) Pixel accumulation at a ves-
sel junction with defective pixels
marked as ⊗.

(b) Clear structures after eliminat-
ing defective pixels.

Figure 5.13: Image clusters at pixel level. In (a) Pixel accumulation at a vessel
junction with defective pixels marked as ⊗. The clear structures at the intersection
of two curve structures after eliminating defective pixels are presented in (b) .

Therefore, the pattern is iteratively adjusted by removing a particular erroneous pixel
and re-checking the remaining listed ambiguous pixels in its N4(h, w) neighborhood.
If the neighborhood of a particular pixel becomes unique with less than two white
pixels after the removal of the erroneous pixel, that pixel is removed from the list of
ambiguous pixels[152]. This delete and re-check procedure is performed iteratively
until no more ambiguous pixels can be identified. Through this process, a clear
skeleton structure is established.

5.3 Graph Extraction for Landmark Representation

For graph extraction, graph nodes are identified by scanning the skeletonized and
pre-processed structure information for specific patterns. In addition, corresponding
edge information is derived by tracing the skeletonized pixel paths.
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For notation, a simple graph G(E,V) can be defined as a structure that consists of
nodes V = {ni} and edges E = {ek}. In this work, only undirected graphs are consid-
ered, where the direction of the edges E is insignificant. The matrix formulation of
the graph not only provides a structured data representation, but also enables vari-
ous matrix operations for the analysis and correlation of pattern information. The
following Section 5.3.1 presents the node extraction process, followed by the edge
extraction process in Section 5.3.2. These pattern extraction methods are essential
to construct the graph data, which is then represented in Section 5.3.3. This aids in
addressing ambiguities like node sequencing and parallel edges.

5.3.1 Node Point Extraction

In this work, graph nodes are categorized as either end nodes or crossing nodes. End
nodes are located at pixels where the vascular structures terminate, while crossing
nodes are located at pixels where two or more structure paths intersect. To determine
the node classes, i.e., endpoints and intersections, the N8 (h, w) neighborhood for
each pixel in the selected pixel set is examined for concise patterns. Following the
proposed algorithm in [54], a pixel (h, w) can be uniquely classified if one of the
following pattern structures appears in its neighborhood N8(h, w):

• One white neighbor pixel identifies a structure end.
• Two neighboring skeleton pixels identify edge structures.
• If there are exactly three white neighboring pixels, a crossing node can be

identified.

If any of the described patterns is present in the N8 neighborhood of a pixel, it
can be confidently classified as an edge pixel, an end pixel, or a crossing pixel. For
example, Figure 5.14 shows a vessel end at the pixel level. The pixel labeled as ⊗
contains a single white pixel in its N8, allowing the pixel to be classified as an end
node.

⊗

Figure 5.14: Structure end at pixel level, where the corresponding end node pixel is
labeled as ⊗.

However, there are cases where there are more than three white neighboring pixels in
the pre-cleaned skeleton structure. This occurs because the skeleton structure cannot
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a b

c

Figure 5.15: Node extraction at pixel level. Each of the pixels a, b, and c have three
white pixels in their N8 neighborhood. According to the predefined node extraction
rules, pixel b is selected a graph node.

compensate for all configurations, as attempting to accommodate every configuration
would result in broken structure segments. Figure 5.15 presents an example of this,
depicting a four-part bifurcation at the pixel level. Pixels a, b, and c could potentially
be classified as intersection nodes because they each have three white pixels in their
N8 neighborhood. However, an additional condition must be met for them to be
accurately identified as crossing nodes. Specifically, the neighboring pixels with
three white pixels in their N8 neighborhood must not be connected by their N4

neighborhood. As a result, pixels a and c cannot be classified as nodes since they
are connected to pixels b and a, respectively, by their N4 neighborhood. The same is
valid for pixel c, which is connected to pixels a and b by its N4 neighborhood. Only
pixel b satisfies this condition and can be properly identified as a crossing node.

◦ ⊗

Figure 5.16: Central and right column: central node with more than three white
pixels in the corresponding figure-eight neighborhood. The pixel marked as ◦ should
not be identified as a graph node, while the pixel marked as ⊗ can be uniquely
identified as a crossing node.

To accurately identify node features in an image, it is necessary to impose an addi-
tional constraint on pixels with more than three white pixels in their N8 neighbor-
hood. Such a pixel must have at least one neighboring pixel that is not connected
to any other neighbor in the N4 neighborhood to be classified as a node [154]. This
is because the presence of a high number of white pixels in the N8 neighborhood
does not necessarily indicate a node. It could simply be a strongly bent curve struc-
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ture. For example, consider Figure 5.16. Without the additional constraint, the
pixel labeled ⊗ may not be accurately classified as a node due to the multiple white
pixels in its N8 neighborhood. However, the presence of an isolated white pixel in
the N4 neighborhood enables the pixel to be confidently classified as a node when
the referred constraint as propsped in[154] is applied.

Figure 5.17: Ambiguous structural intersections, wherefore additional criteria are
needed.

Furthermore, as shown in Figure 5.17, there are specific structures for which none
of the criteria for node classification described above apply. For these fairly rare
occasions, further small-step queries would be required to provide an unambiguous
classification. Nevertheless, despite the limitation of the scope of the pattern queries,
the vast majority are correctly detected, and only rare outliers are observed that
are misclassified. Figure 5.18 presents the node point extraction applied to the
skeletonized image shown in Figure 5.12b. The end noes are depicted in red and
crossing nodes are depicted in blue.

Figure 5.18: Node classification: endpoints in red and crossing nodes in blue.
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5.3.2 Edge Extraction

To build the graph, it is essential to determine all corresponding edge pixels. Starting
from the extracted node pixel positions pn, the corresponding end nodes of the edges
are traced through the eighth neighborhood along the skeletonized structure. The
default pattern along the structure is characterized by two pixels (h, w) and (h, w)adj,
where (h, w)adj ∈ N8(h, w). These two pixels can be traversed along the skeletonized
structure by following the sequence (h, w) → (h, w)adj to iteratively determine the
corresponding end node (h, w)→ (h, w)end. However, when dealing with more complex
structures, it becomes necessary to remove pixels that have already been visited from
the tracing space to avoid revisiting them.
The exploration process ends when all possible path structures have been thoroughly
traversed, starting at individual pixel nodes (h, w)n ∈ pV and ending at their respec-
tive end nodes (h, w)n→adj(n). Next, the edges connected to a specific node (h, w)n are
analyzed, and the graph information is synthesized with respect to its adjacent node
and edge information. The corresponding pixel set pe is then integrated into the
feature space for each edge e, allowing for lightweight pattern analysis through the
extracted graph representation. If necessary, in-depth analysis of the structural in-
formation can be performed using the corresponding pixel set pe linked to the related
edge e.

5.3.3 Adjacency-based Graph Representation

V =
{
0 1 2 3 4 5

}

E =
{
e0 e1 e2 e3 e4

}
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0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
1 1 0 0 0 1
0 0 1 1 1 0



Figure 5.19: Example of a sim-
ple graph with undirected edges,
Graph A.

Based on the identified node and the edge infor-
mation, the respective data can be unified in an
adjacency matrix representation. The square ad-
jacency matrix A ∈ Zn×n, with n as the number of
nodes in the graph, maps the edge information E
into its respective matrix entries. Thereby, the
matrix row i corresponds to the i-th node in the
graph, and the entry ai j in that particular row
refers to the number of edges connecting node
i to node j. Since the structure only allows for
the description of undirected edge information,
the entry ai j must be equal to a ji, and as a result,
the adjacency matrix A = AT is symmetric. The
adjacency matrix representation allows for a dis-
tinguishable but deformation-invariant data rep-
resentation, as demonstrated in the graph repre-
sentation in Figure 5.19. The node and edge
information of the graph encode deformation-
invariant properties by preserving the intercon-
nection structure of the nodes, irrespective of
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any spatial deformation that may occur, provided that the node arrangement is not
disrupted.
A loop pattern is formed when edges have the same start and end node. This
pattern can create difficulties in graph-based representations, making it challenging
to extract edge attributes and leading to ambiguities in the matrix representation.
As a result, graph matching may be hindered.
Graph-based representations may encounter issues when handling edges that form
loops, meaning structures that have the same start and end node. Extracting edge
attributes from these edges can create ambiguities in the matrix representation,
which can hinder the process of graph matching. This is evident in the adjacency
matrix of Figure 5.20a, where nonzero entries on the diagonal indicate the presence
of loop structures. To create an unambiguous representation for feature extraction
and graph matching, auxiliary nodes are inserted into the loop structures. The
original looping edge is replaced by two parallel edges between the original node and
an auxiliary node, as shown in Figure 5.20b. This process results in the insertion
of an auxiliary node at the center of the original loop, and the extension of the
adjacency matrix with a new column and row containing only zeros on the diagonal.
However, the creation of multiple adjacencies between the node pair through the
use of parallel edges can be problematic as it lacks a clear correspondence between
the entries in the adjacency matrix and the actual edges in the graph, which is cru-
cial for graph matching. To address this issue, another auxiliary node, as shown in
Figure 5.20c, is inserted to ensure an unambiguous representation of the correspond-
ing structure. This insertion extends the adjacency matrix with another row and
column and eliminates loop structures and parallel edges. As a result, the graph
data is exclusively represented by binary-valued adjacency matrices with zeros on
the diagonal, enabling unique constraints on graph attributes and facilitating graph
matching.

A

B

B
A

[
0 1
1 1

]

(a) Graph with a loop.

A

B

H1

B
A
H1


0 1 0
1 0 2
0 2 0



(b) Graph with parallel edges.

A

B

H1

H2

B
A
H1
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0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0



(c) Graph with helper nodes.

Figure 5.20: Loops and parallel edges in this graph create problematic structures
that can hinder analysis and interpretation. Therefore, helper nodes are introduced
to break up self-adjacency and to retain the adjacency matrix as a binary-valued
matrix.

Based on the graph extraction presented in this section, the resulting graph ex-
traction for the initial image observation shown in Figure 5.10a, processed into the
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skeletonized image shown in Figure 5.12, is presented in Figure 5.21. The graph
representation facilitates a distinguishable and deformation-invariant data represen-
tation. However, for the shown example, there are several interruptions in the graph
pattern that do not match the visible vascular pattern courses in the underlying
input image.

Figure 5.21: The extracted graph overlaid on the original input image observation I .
The graph structure represents the main courses of the visible vascular structures.

5.4 Data Driven Edge Extraction

The graph extraction process described previously is guided by well-defined rules
and procedures to detect vascular structures and patterns accurately. The result-
ing graph should be consistent, regardless of the perspective or conditions of the
image capture from which the structures are extracted. To achieve this, a template
pattern-based recognition is applied to skeletonized image data, enabling a well-
defined identification of both node points and edge information. However, image
processing can lead to uncertainty in the process, as slight changes in lighting can
cause variations in the representation of vascular structures. This uncertainty is fur-
ther compounded by the binarized filter response, which can lead to interruptions
along edge structures at different locations, as illustrated in Figure 5.22. To miti-
gate this problem, a data-driven edge extraction network (EdgeNN)is proposed to
limit the interruption of edges, ensuring that the extracted graph is robust and that
similar images consistently yield similar or identical graphs. The given task is to
determine the adjacency matrix based on the skeletonized and filtered image and the
extracted nodes as input data. However, addressing varying dimensions problems
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Figure 5.22: The extracted graph is superimposed onto the filtered image, with the
skeletonized structures highlighted in orange. In the close-up view, it is apparent
that the skeletonization and graph extraction processes are interrupted at various
vascular structures that may appear to be connected when analyzing the filtered
image data.

of varying node numbers among the respective images is highly challenging as the
network architecture is, in general, fixed in its dimension and still needs to adapt
to different input sizes while maintaining high accuracy. This can be difficult to
achieve with a fixed architecture, as the model needs to handle unseen combinations
of nodes and edges during training, leading to poor performance and difficulty in
generalizing to new data.

The problem of handling varying dimensionality in neural networks is often addressed
through a ’fixed-sized’ method, where input and output data are zero-padded to fit
a matrix of constant dimensions. However, this approach can be computationally ex-
pensive and require significant storage overhead, potentially losing the advantage of
fast prediction times. In contrast, this work employs a ’divide and conquer’ approach
to address the problem of varying dimensionality in neural networks. Therefore, the
graph prediction problem is reduced to the problem of predicting the existence of
an edge between a single pair of nodes first, and the overall graph prediction is
then built based on a cumulative edge prediction scheme. Therefore, an effective
concatenation-based network architecture is exploited. Training and validation are
performed on a consistent, balanced dataset to ensure robust and generalizable re-
sults. To predict the complete graph, a set of single-edge predictions are made for
a batch of potential node pair combinations, which are then used to construct the
final adjacency matrix. This approach effectively handles the varying dimensional
classification problem by reducing it to a fixed dimension problem, thus providing a
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generalizable solution for any graph dimension.

In addition, this approach enables fast and real-time latency evaluations, taking
advantage of the ’embarrassingly parallel’ nature of neural networks. Using neural
networks on graphics processing units (GPUs) or other high-performance architec-
tures such as field-programmable gate arrays (FPGAs) can easily and quickly carry
out classification tasks, potentially outperforming the current process of extracting
a graph from an endoscopy image, which involves several computationally intensive
steps to identify the individual nodes and edges of the graph.

In the following Section 5.4.1, the design of the network architecture, including the
data format, the generation of the training data, and the training, is presented.
In Section 5.4.2, the comprehensive data-driven graph prediction is presented by
introducing a combination scheme for simultaneous edge prediction. Finally, the
results are evaluated in Section 5.4.3.

5.4.1 Network Design

The detection of suspicious broken structures in dependent courses is addressed
through the use of a data-driven edge extraction network. As a prerequisite, prepro-
cessed data including filtered and skeletonized images are considered as input data,
in addition to extracted node positions.

The simultaneous use of skeletonized and filtered images enables the extraction of
high-level information. The skeletonized image reveals the main structures, while the
filtered image provides the necessary context to analyze the reliability of questionable
boundaries. The network design combines two distinct output predictions to reveal
ambiguous edge patterns. The first class, yskel, classifies whether there is an edge
structure between two node points based on the pixel-based edge extraction method
described in Section 5.3.2. Including the graph pattern labels of the pixel-based edge
extraction encourages the network to focus on the main patterns accurately.

Additionally, a second output class ysgt, is implemented to enable the network to
generalize based on the given context. The ysgt class considers both the filtered im-
age context and the skeletonized structure to detect interconnected structures, even
when the skeletonized structure is interrupted along the course of the vascular struc-
ture. The goal is to replicate the prior pixel skeleton-based outcomes in yskel, while
minimizing any uncertainty in ysgt. Incorporating a diversified data representation,
as illustrated in Figure 5.23, enhances the network’s generalizability and robustness.

5.4.1.1 Input/Output Data

The input data is represented in a multi-channel format with dimensions 256× 256×
4. This encompasses: the segmented image I sgt, the skeletonized image I skel, the
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node positions, I p, and a sparse binary channel I c. Notably, I c marks the (x, y)
coordinates of the node pair to predict, with its only non-zero entries indicating
these locations. The outputs from the node extraction network serve as inputs to
the edge prediction network. This is complemented by the inclusion of an additional
input channel, an image matrix I c, which encodes the specific node pair combination
whose neighborhood is to be predicted.

I skel

I c
Ip

I sgt

Figure 5.23: The input image{I sgt,I skel,Ip,I c
} to the edge

extraction network consists of
a skeletonized image, the corre-
sponding node positions, and a
sparse image matrix indicating
the node pair for which the adja-
cency is to be predicted.

The skeletonized data offers insights into the
evolution of structures based on the prior extrac-
tion procedure. Furthermore, filtered data aids
in discerning whether trajectories are connected,
distinct, or mistakenly recognized as separate
due to binary Otsu thresholding and skeletoniza-
tion.Taking into account the full context given
by the segmented image data I sgt enhances the
ability to identify trajectories as connected.

A tuple [
yskel, ysgt

] is designed to serve as an out-
put, summarizing the active input nodes in the
image I c and indicating the presence of poten-
tially broken adjacency edges based on the com-
parison between the skeletonized and filtered im-
ages. Specifically, yskel is intended to be consis-
tent with the results obtained from traditional
methods utilizing skeletonization images. Addi-
tionally, ysgt is designed to predict the validity of the edge information, determining
if it is broken based on the skeletonized image but recognized as continuous based
on the filtered output image yskel. Where respectively, each output [

ysgt, yskel
] is a

binary value, either 0 or 1, corresponding to a prediction of a non-edge or an edge
respectively. The encoding details for these outputs are provided in Table 5.2.

Table 5.2: Edge prediction cases.
Name Description

GOOD node_adjacencies == node_degrees

OK node_adjacencies < node_degrees

BAD node_adjacencies > node_degrees

A

B

C

Figure 5.24: A node pair A-C
that is potentially problematic
during edge prediction. Nodes A
and C are not directly connected,
and therefore, there is no adja-
cency between them.

In the preliminary design phase of the proposed
network, it was observed that keeping the node
positions Ip as input to the EdgeNN is critical for
the prediction task. This is particularly relevant
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when edge prediction is performed on a pair of nodes such as the one shown in
Figure 5.24. In this example, the node pair is connected by a skeletonized structure,
but, according to the graph notion of A-C, no adjacency relation should be predicted
for this pair, in order to determine the adjacency matrix according to the pixel-based
edge extraction established in Section 5.3.2. Instead, the node pair is only indirectly
connected to a common node B. Based on the node positions Ip, the network has
information about the distribution and existence of all other nodes, including the
intervening node B, which prevents the false assumption of adjacency due to the
visible skeletonized structure passing over node B.

5.4.1.2 Network Architecture

The network architecture is based on a modified version of the VGG-16 neural net-
work. The VGG-16 neural network, proposed in 2014 by the Visual Geometry Group
at the University of Oxford, is a widely used convolutional neural network architec-
ture for image classification tasks. It is characterized by its use of multiple convolu-
tional and max pooling layers to extract features from an image and its final layers
perform classification based on those features. For a more in-depth understanding
of the VGG architecture, a general overview is provided in the Appendix A.3. The
design of the proposed EdgeNN builds on this architecture by utilizing a modified

∑
Double conv., b = 1 b = 2

C + A C + A P CACAP ... P C1 A
[
ysgt , yskel

]

256 × 256 × 1

b = 3, 4

global max pooling
instead of dense layers

Legend

C 2D convolution
C1 1D convolution
A activation function
P max pooling
Σ elementwise summation
+ concatenation/skip connection

Ip

I c

I skel

I sgt

Figure 5.25: The proposed EdgeNN architecture is a modified version of VGG-16
[121], where the modifications are depicted as black nodes. The input data, shown
on the left, is a 3-channel image

[
I sgt, I skel, I p, I c

]
. The network has four

convolution blocks in total, b = 1, . . . , 4. The main modifications occur in the first
convolution block b = 1. The dense layers in the original VGG-16 are replaced with
a global max pooling layer and a 1D convolution.

114



5.4 Data Driven Edge Extraction

version of the VGG-16 to better suit the specific conditions and problems of edge
extraction. The proposed architecture of the EdgeNN is illustrated in Figure 5.25.
The EdgeNN is made up of four convolutional blocks, with the first two containing
two convolutional layers, and the last two containing three convolutional layers. The
initial block, b = 1, has a number of convolutional filters, f1 = 6. Each subsequent
block, b, makes use of fb = f1 · 2b−1 kernel in the convolutional layers. To ensure
preservation of information, particularly in the sparse input channel containing pixels
of the I c node pair, the input layers are summed element by element to form a 256×
256 × 1 matrix before being passed through the convolutional layers. To obtain the
node pair information, the node pair channel is added to the end of the convolution
outputs of the first double convolution block.

5.4.1.3 Data Generation

Figure 5.26: Artificial test
sphere.

The training data for the first output, denoted as
yskel, is derived from the pixel-based graph extraction
method discussed in Section 5.3.2. This technique facil-
itates automated labeling of any video material sourced
from endoscopy for yskel. It is noteworthy that the
ground truth for ysgt inherits the limitations of the ex-
traction algorithm and is influenced by the sensitivity
of the prevailing conditions.
To procure ground truth data for the second out-
put, ysgt—aimed at categorizing unwanted interrup-
tions and cohesive edges—the following strategies are
employed:

(i) Data undergoes manual scrutiny to rectify any undesirable breaks in the
adjacency design, wherein the output ysgt is manually set.

(ii) To reduce the extent of manual data inspection, synthetic interruptions are
infused into the skeletonized data. This is achieved by arbitrarily choosing
white pixels and adjusting both the chosen pixel and its adjacent pixels to
zero. The magnitude of this alteration is controlled by a hyperparameter,
selectable as a random integer up to a specified cap, ensuring the dataset’s
relevance to the problem at hand. Given the synthetic nature of these
changes, the ground truth is inherently extracted from the original graph
structure, inclusive of all modifications.

(iii) A prime dataset is crafted from a fabricated test setting, depicted in Fig-
ure 5.26. This environment emulates vascular structures, and the corre-
sponding skeletonized pattern can be reliably extracted without any dis-
cernible interruptions.

By combining these approaches for data generation, the risk of missed or ambigu-
ous inconsistencies in the manually reviewed dataset—such as undetected outliers
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leading to incorrect labeling—is minimized. This reduction in inconsistencies en-
ables the network architecture to effectively generalize and renders the presence of
outliers insignificant.

5.4.1.4 Training

Typically, only a small number of possible node combinations are actually connected,
resulting in imbalanced training data between connected and unconnected node pairs.
To enhance the model’s generalization, the training data is balanced by pre-selecting
an equal number of connected (True) and unconnected (False) node samples in
each epoch. In Figure 5.27, a portion of the ground truth dataset for edge con-
nections for connected and unconnected samples is shown. Specifically, the overall
dataset is imbalanced with a distribution of 80% non-edge and 20% edge pairs. In
addition, during training, batch normalization is applied after each convolutional
layer to normalize the weight distribution and stabilize the learning process. The
model is trained using the Adam solver (A.2) with a learning rate of αlr = 1 × 10−3.
In total, the EdgeNN has 68 089 trainable parameters and is trained over 150 epochs
with a batch size of eight images per epoch step. Figure 5.28 shows the training and
validation losses.
The network is starting to converge from the first epoch, although the convergence
rate is lower compared to the epochs ranging from 10th to 50th epochs. As the val-
idation loss is consistently small and comparable to the training loss, the network
can generalize well on the training data and is considered fully trained by the 80th

epoch. The trained model is evaluated on a test set of 486 images. Four-node pair
combinations were chosen for each image in a ratio of 1:1 edge/non-edge combina-
tions. The evaluation metrics include precision, recall, and the F1 score, which were
averaged over the 486 × 4 node combination pairs based on a true/false database.
The precision and recall were found to be 0.997 and 0.995, respectively, and the F1

score was 0.996. The respective metrics accuracy, precision, recall, and F1 score -
used for evaluating binary classifications - are specified in Appendix A.4.

Figure 5.27: Randomly selected node pair combinations in green from the set of
extracted graph nodes. The accompanying text provides ground truth information
on whether a connection exists through the skeletonized structure or not.
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(a) Training and validation losses. (b) Training and validation precisions.

Figure 5.28: Training and validation losses of the baseline EdgeNN. Best validation
precision: 0.9873 at epoch 127. Best validation loss: 0.014 at epoch 109.

5.4.2 Adjacency Combination Schemes

As the trained EdgeNN model only predicts the presence of edges between one node
pair combination, multiple predictions must be consolidated to infer the overall adja-
cency structure of a graph via an appropriate adjacency combination scheme. This
results in an adjacency matrix representing the graph’s overall topology. Evaluating
the complete graph in a brute-force manner involves the evaluation of all possible
node pair combinations, which in general, pose a computationally expensive proce-
dure. To address this issue, the parallelization capabilities of GPUs is leveraged
to accelerate the evaluation time. However, this may still be limited by the GPU
memory size, resulting in the evaluation of smaller subsets of combinations, denoted
as Ck ⊂ C, where C =

{
ci j | i, j = 0, . . . , n − 1

}
and |C| = n(n − 1)/2. To mitigate this

limitation, a k-nearest neighbor (knn) search is employed to prioritize the evaluation
of the most likely combinations of nodes for adjacent edges by identifying the

NkEN ,i = knn(kEN, vi) (5.9)

nearest nodes for each node in the graph, reducing the number of evaluations for
each edge from n to kEN. To create a pool of potential node pair combinations, the
knn algorithm is used to identify the kEN-nearest neighbors for each node, resulting
in a set Ck. To eliminate duplicates, this set is denoted by CkEN, with

Ck =
⋃

vi∈V

{{
vi, v j

}
| v j ∈ Nk,i

}
(5.10a)

Ck, = unique(Ck), with |Ck,

∣∣∣∣∣ ≤ n · k ≪ n(n − 1)/2 .

Edge prediction for the majority of appearing edges can be efficiently performed
with a single pass of the optimized CUDA implementation of the knn algorithm, as
seen through empirical evidence.
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Thus, the EdgeNN takes a batch of combinations, CkEN ⊂ C, as input and produces
the corresponding batch output of edge predictions, a(CkEN ). Then the predictions
are combined into a final n × n adjacency matrix A, where the number of neighbors
is initialized with kEN0 ≤ n. To improve the comprehensive graph prediction, the
algorithm iteratively searches through more combinations until all relevant ones are
identified, thus improving execution accuracy.

generate
Ck, (k,V)

a(Ck, ) =
EdgeNN.predict(Ck,)

update A from a
A := A + a(Ck, )

(initialise)
kEN := kEN0, A := 0n×n, V

NodesNN outputs

Figure 5.29: The Base Adjacency Combi-
nation (BAC) scheme for combining edge
predictions over a set of node pair combi-
nations Ck, . The prediction results on Ck,
are directly written into A.

The knn evaluation is a technique that
can be used to extract edges from a
graph with a high degree of accuracy
while limiting the number of evaluations
required. This technique works on the
premise that nodes that are closest to
each other are more likely to be con-
nected. To expand the range of poten-
tial edge combinations, the algorithm is
applied iteratively, with the value of k
being gradually increased in each itera-
tion.
A loop evaluation scheme is proposed as
a new approach to enhance the accuracy
of the evaluation process. This scheme
incorporates an early stopping criterion
based on pre-determined node degrees,
which can be obtained by analyzing the
neighboring pixels as described in Sec-
tion 5.3.1. If a node’s predicted edges
match its pre-determined degree, it can
be excluded from further evaluation.
The algorithm operates as follows: For the current evaluation iteration, the max-
imum number of evaluable execution tuples is processed within the given hard-
ware constraints. Each edge is evaluated by examining distant nodes that have
not been considered as long as the edge prediction for the node does not match its
pre-determined degree. If a node is found to have the same number of predicted
edges as its pre-determined degree, it is excluded from further evaluation. A more
detailed description of the evaluation set and termination criterion is presented in
the Appendix A.5.

5.4.3 Evaluation

The prediction performance is demonstrated in Figure 5.30, where the predicted
graph A is overlaid onto the original skeletonized structure. It can be observed that
the model accurately identifies true positive adjacency entries.
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Figure 5.30: A sample prediction of the adjacency matrix based on yskel and the
corresponding graph adjacency perception based on ysgt, where yskel and ysgt are not
aligned with each other. The data-driven prediction exhibits a more robust graph
pattern compared to the underlying filtered image data. Graph edges are considered
connected, where graph patterns according to yskel are interrupted. The predicted
edges are shown in grey and in pink (pink lines =̂ predicted edges) overlaid on
the original skeletonized structure in orange.

The network predicts the problematic cases with high accuracy, and is able to gen-
erate the graph with a single iteration for a small number of nodes (less than 80)
and kEN0 = 20. The network evaluations are performed for a total of n ∗ kEN nodes,
resulting in a complete extraction of the corresponding graph. This supports the
knn execution strategy, where edge overlaps caused by short-term interruptions in
the skeletonized course are located close to each other and thus can be evlauted in
a single iteration.

Table 5.3: Evaluation of the simple combi-
nation scheme.

kEN Precision Recall Time in s

1 0.948 0.576 0.001
2 0.839 0.745 0.001
4 0.793 0.873 0.001
8 0.779 0.953 0.001

The overlaps between nodes are identi-
fied as connected graph edges. These
edges are represented in red or purple,
depending on the prediction values yskel
and ysgt, respectively. When predicting
the overall network, the decision based
on the graph map results in low latency
execution times. Table 5.3 shows the ex-
ecution time complexity and accuracy
for the simplest case of kEN0 as a func-
tion of the size of kEN. The execution time increases with k, but remains highly
satisfactory even for small values of kEN = 10. For kEN up to kEN = 8, the prediction
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times are very small, at t = 0.001 s. However, as kEN increases, the F1 value decreases.
This is because the precision of the prediction declines with increasing kEN, while the
recall improves.

In conclusion, the method of knn is efficient in catching problematic edge overlaps,
while the execution time remains satisfactory even for small values of kEN. Addition-
ally, the graph can be extracted through edge extraction in a filter-based way and
all edges are further evaluated and rechecked by the given data-driven evaluation.
However, this is not the focus of further discussion as the methods are given and all
implementation aspects are specific to the application.

5.5 Node and Edge Attributes

To enhance the available information for matching corresponding graph patterns,
additional attributes of the observed pattern are incorporated into the graph rep-
resentation. Therefore, in the following analysis, edges and node attributes are
evaluated independently.

5.5.1 Node Attributes

The node attributes relevant to this work are node positions and node types. Node
positions are trivially the Euclidean coordinates. For an image observation, the re-
spective pixel coordinates

[
ph,wx , ph,wy

]
are considered. The node points provide spatial

ratios and are essential for graph matching, reconstruction, and localization pur-
poses. In addition, to each node a node type is assigned, which indicates whether it
is a helper node or located at an intersection, the end of a blood vessel, or the edge
of the image area, as shown in Figure 5.31. This information provides a reliability
estimate of the node positions, which is especially important for graph matching
and reconstruction. Crossing nodes can be precisely and unambiguously discerned
by their positions. However, endpoints of a blood vessel may be observed at varying
surface positions for different observations of the same structure. Since blood vessels
do not terminate abruptly but rather exhibit a gradual transition from a distinctly
visible to a uniform surface texture, their position is subject to various influencing
factors. These factors encompass the image observation’s contrast, which is im-
pacted by shadowing determined by the illumination and the endoscope’s viewing
direction.

As a result, crossing nodes present a greater degree of dependability concerning
spatial information in comparison to end nodes. These nodes supply vital structural
details, such as the direction and path of the corresponding edge. However, their
spatial positions themselves are not utilized as they might be inconsistently observed
over different observations. The reliability of helper nodes is primarily determined
by the types of neighboring nodes and the modification of the curvature pattern,
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although there is a well-defined procedure for their insertion. Therefore, the position
of a helper node may be critical for matching processes but may only have moderate
significance for the actual reconstruction objective.

Node
types

Marker
colour

- -
END red

CROSSING blue
BORDER yellow

Figure 5.31: Node type encoding.

5.5.2 Edge Attributes

To provide more descriptive structural information, additional attributes are defined
for edges, including length and curvature attributes. The edge extraction process
classifies the pixels of the corresponding edge structure, which can serve as raw
edge attributes pe. However, these attributes are insufficient for comparing arbi-
trary edges in their raw form during graph matching. To address this issue, further
processing is conducted to derive comparable and strongly characterizing edge at-
tributes suitable for graph matching. The relevant edge curve length is directly
determined by the number of pixels Npx in the corresponding edge e structure de-
fined in the image space I . This eliminates the need for redundant capture of edge
lengths provided by the Euclidean lengths between the respective node locations.
The exploration process concludes when all possible path structures have been thor-
oughly traversed, starting at individual pixel nodes (h, w)n ∈ pV and ending at their
respective end nodes (h, w)n→adj(n). Subsequently, the edges connected to a specific
node (h, w)n are analyzed, and the graph information is synthesized with the node in-
formation. Furthermore, the corresponding pixel set pe is integrated into the feature
space of the edge information, denoted as e. This combination of graph informa-
tion and corresponding pixel structure enables lightweight pattern analysis through
graph representation. If needed, further in-depth analysis of the structural informa-
tion can then be performed based on the corresponding pixel set pe linked to the
edge.

Furthermore, a polynomial approximation is performed to encode the curvature
information of the edge, while the corresponding polynomial coefficients are used as
edge attributes. To ensure a unique polynomial approximation of the given set of
pixels, a local coordinate system is defined with a reference node at the origin and
the alternate edge node located on the x-axis. The pixel set is then rescaled so that
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5 Landmark Extraction

the target node intersects the x-axis at position x = 1. As a result, the curvature
information becomes scale-independent. Thereby, no redundant scale information is
included in the curve attributes. Spatial length information is implicitly mapped by
the corresponding node positions. Finally, comparability is ensured by the reference
system, which is defined according to explicit rules. In Figure 5.32, the alignment of
a local coordinate system to a given edge structure is illustrated for a specific node
reference. Since each node of an edge is considered once as a reference node, two
polynomial approximation results are obtained for one edge. The directed attribute
information provides valuable insights and enables precise similarity checks, leading
to a more reliable identification of matches. This is particularly useful for line
structures consisting of two nodes and an edge, where the matching task would be
ambiguous due to the undirected graph structure.

Figure 5.32: Skeletonized edge pixel, where a coordinate system is aligned through
the adjacent nodes, and a polynomial is approximated to represent the course of the
vascular structure.

To ensure that only strong, descriptive, and robust attributes are considered, the
polynomial complexity is limited such that attribute changes are proportionate to the
deformation of the edge. This approach provides reliable traceability of information.
To achieve this, a polynomial approximation in the form of

f (x) = a2(x − as)2 + a3(x − as)x3 (5.11)

is employed. The polynomial must be sufficiently large to accurately portray the cur-
vature behavior. Simultaneously, its parameter range must not be overly expansive,
ensuring that the polynomial coefficients’ numerical values maintain their character-
istic significance and contribute effectively to the graph matching process. Conse-
quently, a third-order polynomial is utilized, as it precisely represents the curvature
behavior while allowing the polynomial coefficients to contribute to the matching
process. The constant offset is omitted as the curve must, by definition, intersect
the origin. The coefficients a2, a3, and as are determined as curvature attributes.
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5.6 Summary & Conclusion

The edge lengths Npx are assigned to the curvature parameters of the graph as edge

attributes, which are summarized in an asymmetric attribute tensor A of the form

A =



0 c2(v1, v2) c2(v1, v3) · · · c2(v1, vn)
c2(v2, v1) 0 c2(v2, v3) · · · c2(v2, vn)

... 0
...

. . .

c2(vn, v1) · · · c2(vn, vn−1) 0



(5.12)

for the respective edge attributes Ai j ∈ {
Npx, a2, a3, as

} given in the corresponding
graph.

Finally, the curve parameters, along with the node positions, provide a comprehen-
sive representation of the vascular pattern. Figure 5.33 illustrates the superimposi-
tion of the vascular structure on the corresponding polynomial approximation for the
given curve parameters and node positions. It is evident that the curve parameters
effectively approximate the vascular structures.

Additional attributes are conceivable for further description of the depicted structure,
such as the thickness of a vascular structure or the color information of the vascular
structure (which can partially change in its red hue due to the inclusion of different
tissue layers). However, these attributes are not further addressed in this work.
Nonetheless, it is worth noting that incorporating such attributes could potentially
enhance the overall description and uniqueness of the respective pattern description.

5.6 Summary & Conclusion

In this Chapter, an image processing pipeline was introduced for generating accu-
rate landmark information from cystoscopic image data. The processed image data
resulting from the pipeline shows that the cystoscopic image is transformed into a
skeletonized representation and a graph representation, providing a sparser but more
distinctive encoding of the reliable structures. Figure 5.33 depicts the various stages
involved in this process. A network-based approach was applied for pre-evaluation,
identifying image regions suitable for landmark extraction through masking and dis-
regarding distorted, inappropriate, and nuisance regions. The network was trained
using a data-driven process based on hand-labeled datasets explicitly designed for
the cystoscopic environment, excluding artifacts such as tools, water bubbles, oblit-
erated tissue, and resected and floating tissue.

An unsupervised filter design based on Differences in Gaussian (DoG) filters were
employed for vascular segmentation. The filter design, devised explicitly for vas-
cular structures, enables flexible parametrization to adjust segmentation sensitivity
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5 Landmark Extraction

according to the dataset at hand. Through binarization and skeletonization of iden-
tified structures, specific landmark registration of complete structural trajectories
is facilitated. The landmark information is compressed into a limited set of point
representations, with intersection points serving as valuable landmarks due to their
consistent tissue correspondence, even under deformation. To stabilize landmark as-
signment, edge information represents the vascular trajectories between the identified
nodes, resulting in a graph representation that encodes adjacency information. This
transforms the assignment of individual points into a problem of assigning graphs to
one another, facilitating pattern matching. The graph extraction process verifies ad-
jacent structures at the pixel level. However, even minor structural disruptions can
affect the segmented intensity and result in non-contiguous structures. To address
this issue, a data-driven approach was proposed that compensates for these dis-
ruptions, accurately identifying visibly connected structures, even those previously
considered interrupted by traditional pixel-based edge identification. The results
are contingent on the training data used. The network architecture and extraction
procedure offer an efficient solution under varying dimension sizes, transferable and
expandable to extract vascular structures from other organ sites given appropriate
training data. Combining traditional methods with the graph extraction network is
also possible, with the latter providing more robust edge extraction. The proposed
graph network structure holds the potential to be expanded to extract additional
information, such as latency spaces or reliability values, in the future. To enrich
the information content of the graph representation, edge curvatures were extracted
in addition to edge position information. The graph representations with attribute
descriptions provide a mathematical characterization of the underlying structure,
thereby enabling the assignment of patterns that belong to each other.

a

256 × 256 px
RGB image

skeletonized
image

graph
A

0.21 s

segmentation

0.31s

graph
extraction

Figure 5.33: Landmark extraction extraction by image segmentation and graph ex-
traction. The intraoperative image is processed into a binary skeletonized representa-
tion of the main visible vascular structures. The segmentation enables the extraction
of robustly identifiable landmark points at the intersections of vascular structures
while preserving the inter-connectivity of the vascular pattern.
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Graph Matching 6
The localization and scene reconstruction problem relies on the accurate alignment of
corresponding landmark structures. The registration task subsequently follows the
preceding graph extraction. The graph extraction task requires the identification of
the optimal permutation and selection matrix to match equivalent nodes between
similar graphs. The problem can be generally stated as

min
Π

n∑

i=1

Ai, j[Ai , A∗Π(i)] , (6.1)

where Π is the permutation matrix that establishes correspondences between two
adjacency matrices, A and A∗, which can be considered as noisy versions of each
other. The objective of graph matching is to find the permutation matrix Π that
minimizes the sum of the mismatched edges between the respective graph represen-
tations G (A) and G⊖G (A∗). Therefore, the graph registration process must be robust
enough to handle variations in graph representation caused by changes in imaging
conditions and deformations.

In this study, a latent node representation is developed to encapsulate all graph
information with respect to a specific node, facilitating direct node-to-node compar-
isons. This representation conveys the connectivity structure of the graph, which
is crucial for pattern identification. The underlying concept is that similar graph
patterns will exhibit comparable structural contexts.

As demonstrated in [39], an effective method for capturing the connectivity and
structural properties of a graph involves mapping the degrees of adjacent nodes into
descriptors. These descriptors can then be employed to compare and identify similar
patterns within analogous graph representations. In essence, node degrees act as a
means to describe and compare the structural surroundings of nodes in a graph,
ultimately enabling pattern recognition.

However, this approach can result in significant discrepancies and ambiguities for the
descriptor-based matches. For example, a set of matches mG→G∗ found for graph G
within a target graph G∗ may not necessarily satisfy the reverse mG←G∗ of the optimal
matching for graph G∗ within G. Especially when constructing a global graph model
that combines all observed patterns as a navigation map, resolving these ambiguities
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observed
image

observed
graph

target graphsimilarity 25 %
similarity 90 %

Figure 6.1: A graph matching procedure is applied to the extracted graph from the
current intraoperative image by comparing it to subgraphs present in the global
graph representation via a similarity measure. The similarity measure compares the
adjacencies, along with the attributes of the graph nodes and edges.

and adequately accounting for them is crucial to prevent issues during navigation.
The graph matching problem is depicted in Figure 6.1 as it pertains to this work.

The issue of erroneous graph matching is addressed in [104], and specifically, the
matching of vascular retina graphs is addressed in [60]. However, the existing lit-
erature has not thoroughly addressed the robustness of graph matching under de-
formation. Furthermore, the methods for retinal mapping presented in [60] are
susceptible to failure when Euclidean distances are used as the decision criterion for
reliable matches. To address this gap, this work proposes a robust graph-matching
approach that accounts for deformation effects in vascular graph registration, which
is applicable to both image-to-image observations and image-to-reconstructed 3D
surface registration.

This work extends the registration of single image observations from the 2D image
plane by merging individual observations into a global representation on a 3D model
surface. This approach addresses two challenges: first, the 3D model enables the se-
quential registration of observed graph information, allowing individual graphs to be
merged in sequence and enabling comparison of an observed object to all structures
seen up to that point in a single pass. Second, by integrating an embedded geometry
reconstruction, it allows for robust graph registration, as deformation effects can be
inherently respected. However, it may not always be reliable, particularly in cases
of sudden loss of vision, as the imaged surface pattern may show a different surface
location when vision is restored.
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6.1 Descriptor-based Graph Matching

The following questions arise from the investigation into the combination and match-
ing of graph patterns for navigation and the construction of a global navigation map:

• How can a latent space representation for graph features be designed to pro-
duce discriminative and robust node features that are resistant to deformation?

• How can the efficiency of descriptor-based matching, which involves a discrete
evaluation of all node combinations between the relevant graphs, be improved
regarding real-time performance?

• How can outliers be detected from the set of descriptor-based matches to en-
sure that the analyzed matches allow for deformation while accounting for
pathological conditions?

• How can deformation be addressed such that the descriptor space of the con-
structed global navigation map can be updated to reflect the observed geomet-
ric conditions?

• How can newly observed and unmatched structures be incorporated into a
global graph representation, allowing for updates to the navigation map with-
out duplicating the pattern representations?

In this chapter, a three-step procedure is presented to establish a robust and compre-
hensive graph construction that accommodates all patterns under deformation con-
ditions. The procedure begins with a comparison of structural and feature properties
between nodes in different graphs to identify potential node matches, as described
in Section 6.1. This results in a set of similarity-based node matches, although some
outliers may remain. The second step, presented in Section 6.2, employs a novel
outlier removal method based on vascular structures to validate the node matches
thoroughly. Finally, Section 6.3 presents a proposed global graph representation
consisting of two parts. The first part involves storing the graph on a 3D surface,
which allows for restoring the geometry ratios. The second part involves building a
verification process that prevents duplication and overloading of similar information
during updates of newly observed patterns.

6.1 Descriptor-based Graph Matching

The similarity-based graph matching algorithm relies on descriptor-based similarity
comparisons as its cornerstone. The descriptor design serves as a numerical finger-
print that encapsulates the properties of a node and its neighborhood. Based on
the similarities of the descriptors, graph matches are determined. The design of the
descriptor is presented in Section 6.1.1, and the matching operations are constructed
in Section 6.1.2. The matching process is then integrated into a k-dimensional (kd)-
search tree, enabling the implementation of an efficient algorithm for performing
complex membership searches.
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6 Graph Matching

6.1.1 Descriptor Design

The graph properties are encoded in descriptors that facilitate the large-scale match-
ing of pattern information. The structural properties of each node, including adja-
cency information and attribute properties, are combined into a vector-like descrip-
tor design. These descriptors associate pattern properties with a node’s position
and enable the matching of corresponding graph nodes by evaluating their similar-
ity. Therefore, the challenge is to design the descriptors so that the structural and
attribute properties are distinguishable and resilient to deformation. To make the
matching invariant to the initial position, the descriptors must be designed to be
spatially invariant. Furthermore, the descriptors must be designed to be minimally
impacted by potential disruptions in the graph extraction, ensuring that the infor-
mation required for correct assignment is preserved even in the presence of missing
or additional graph information in the current observation.

6.1.1.1 Embedding of Structural Interconnectivity

A structural descriptor set dstr,u is designed to encode the structural interconnec-
tivity within a graph G with respect to the reference node u. As an auxiliary
descriptor representation, the vector d̃k

str,u is defined to enumerate the number of
nodes with degrees equal to or greater than a certain threshold, in accordance with
their order within the neighborhood of k steps from the reference node u. To ensure
comparability and generalizability, the structural descriptor d̃k

str,u is represented as
a fixed-dimensional vector. However, to capture all available structural information
beyond the fixed vector dimension, structures with degrees equal to or greater than
the maximum degree in the graph, denoted by nstr,max, are included in the last entry
in d̃k

str,u. The embedding process of the graph’s structural information is illustrated
in Figure 6.2. Furthermore, to make the descriptor more robust and less sensitive
to changes in the structural graph topology, element-wise logarithmic scaling and
weighting are proposed in (6.2). The descriptor degree and adjacency information
is computed by

dstr,u =

kmax∑

k=0

δk−1
str ln(d̃k

str,u), (6.2)

where δstr assigns less weight to more distant structures.

6.1.1.2 Embedding of Spatial Information

In addition to capturing structural interconnectivity, further structural information
is obtained from the node positions themselves. Although node positions are not
invariant to rotation and translation, Euclidean dependencies can be incorporated
by including edge lengths and angles between edges into the descriptor design, which

128



6.1 Descriptor-based Graph Matching
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(a) Structural graph embedding of GA.
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(b) Structural graph embedding of GB.

Figure 6.2: Comparison of the structural graph embeddings of two similar graphs
with distinct structures reveals the impact of structural modifications in the descrip-
tor representation. The embedding vector is calculated based on (6.2), excluding
the ln operation to simplify the interpretation of the example.

are independent of any coordinate specification. Therefore, the corresponding edge
length for any edge ei, j is determined by

li, j = ∥ni − n j∥ , (6.3)

where ni and n j specify the positions of the start and end nodes of the edge ei, j,
respectively. In addition, the inclusion angles at node ni between adjacent edges are
determined by

αi =



{
∡
(
ei, j, ei, j+1

)}
∀ j ∈ adj(i) ≥ 1

360◦ otherwise
, (6.4)

where ei, j∈adj(i) indicates all edges starting at node ni and connecting to the adjacent
nodes adj (i).

The edge attributes ci,⋆ along the edge lengths li,⋆ pertain to a particular node ni.
The set of intersection angles at node ni is denoted by (6.4). They vary in dimension
depending on the node degree deg (ni) of the reference node ni. In order to ensure
comparability, it is crucial that the descriptors have the same structure and size
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6 Graph Matching

across the entire set. To achieve this, the statistical embedding function

dX = fembd (X) =



∑
j Xi, j

max j Xi, j

min j Xi, j

 ∀i (6.5)

is proposed, where X is the respective embedding vector with an arbitrary dimension.
Thus, any general attribute data X is transferred into a fixed-dimensional vector
representation dX, irrespective of the dimensions of X. Applying (6.5) to all nodes,
a comprehensive descriptor set is created, comprising the following edge and node
attributes in a specified order

• dl = fembd (l) for edge lengths,
• dα = fembd (α) for inclusion angle sets,

• dc = fembd

(
Ai j

)
for edge curve attributes as defined in (5.12).

The resulting descriptor identities can be combined into a complete descriptor rep-
resentation d = [dstr, dl, dα, dc]T, which represents the numerical fingerprint of the
corresponding structure and attribute information, enabling node-based similarity
checks.

6.1.2 Similarity Definition

Once nodes are encoded by their descriptors, their similarities can be compared
to identify corresponding node matches between an observed graph G and a given
target graph G∗. The reliability of a match is assumed to be proportional to the
similarity of its descriptor. Thus, the match between a node u ∈ G and a node v ∈ G∗
is determined by minimizing their differences in similarity, as stated by

mu↔v = {u, v} = min
ṽ∈G∗

sim
(
du, d∗v

)
. (6.6)

The similarity between two descriptors is measured by their difference

simeuc (da, db) = ∥da − db∥ . (6.7)

Alternatively, the cosine similarity, analogously to (6.8), provides a scaling-invariant
similarity measure

simcos (da, db) = 1 −
(

dT
a db

∥da∥∥db∥
)
. (6.8)

The cosine similarity is an appropriate choice for comparing spatial attribute infor-
mation, such as edge lengths, as it is invariant to scaling. This means that identical
patterns will result in the same similarity value, while non-uniform deformations of
patterns lead to a deviation in the calculated similarity.
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6.1 Descriptor-based Graph Matching

6.1.3 Similarity-based Descriptor Comparison Exploiting a KD-Tree
Evaluation

If the similarity sim(d, d∗) between all node combinations in the observed graph G
and target graphs G∗ is calculated individually for all possible combinations |G| ×
|G∗|, the process can become computationally intensive. As the number of nodes
in the two graphs increases, the number of comparisons that need to be processed
increases exponentially. To minimize the computational burden and improve the
efficiency of the matching process, it is beneficial to limit the evaluation to only
those combinations that satisfy certain initial similarity checks.

By organizing descriptors in a kd tree data structure, respective descriptors can be
pre-sorted based on their value ranges. The kd tree serves as an effective tool for
storing and accessing multidimensional data, arranging the data in a tree-like format
according to a predefined sorting rule, which facilitates the search and retrieval of
desired data points [98]. Employing this approach, a single graph image G can be
compared to a collection of known patterns in G∗ by identifying the most similar
nodes in G∗. The kd-tree query aids in an early exclusion of potential matches that
do not meet the required minimum similarity threshold. This strategy enhances the
matching process’s efficiency by reducing the number of explicit similarity evalua-
tions to a preselected set of potential data, resulting in improved overall speed and
accuracy.

6.1.4 Cross Check Condition

Figure 6.3a presents a descriptor-based matching process between two successive
graph observations. It is evident that a significant number of matches are found.
Nonetheless, it is apparent that several outliers are also present, which are high-
lighted in red. It is important to note that the selected node u ∈ G may not necessar-
ily be the optimal choice for the selected node v ∈ G∗ when searching in the reverse

(a) Identified matches between the most sim-
ilar descriptors in the left and right graphs.

(b) Descriptor-based matches that meet the
cross-check criteria. Remaining outliers are
highlighted.

Figure 6.3: Descriptor-based matches found by identifying the most similar descrip-
tors between the left and right graphs. Outliers are highlighted in red.
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direction. The initial comparison between the two graphs results in several potential
matches, but not all of these may be accurate. Some matches may be coincidental
rather than reflect similarities between nodes in their respective neighborhoods. To
validate the matches between u ∈ G and v ∈ G∗, a cross-check is performed by veri-
fying that each match mu↔v satisfies the following conditions: (i) for the given node
u ∈ G, v is the most similar node among all nodes in G∗, and (ii) for the given node
v ∈ G∗, u is the optimal node among all nodes in G. This confirms that the match
is mutually optimal, as the descriptor matches are the most similar between the
two graphs. Verifying the compatibility of matches and avoiding the simultaneous
matching of a single node to multiple nodes helps to eliminate false matches. Fig-
ure 6.3b displays the matches that satisfy the cross-check criteria. Despite passing
the cross-check test, a considerable number of outliers remain present.
These outliers can be detected by contrasting the individual matches against the
consensus, which is established by the majority of matches running from the top
left to bottom right. By classifying them as deviating from the consensus, these
outliers can be removed from the set m̃G→G∗ of potential matches, where the set
m̃G→G∗ represents all cross-checked matches between the respective two graphs G
and G∗.

6.2 Outlier Removal

Although cross-validation techniques are employed to establish graph correspon-
dences, the descriptor-based similarity comparison is vulnerable to outliers. To
address this issue, it is essential to identify and remove outliers from the set of
matches based on their similarity. While the random sampling consensus (RANSAC)
algorithm is widely regarded as the gold standard for outlier classification in image
processing, it may not be suitable for deformable scenes since it relies on a consensus
of matches that aligns with the camera model and a rigid scene.
To overcome this limitation, a structure-based outlier removal (SbOR) concept is
proposed, which is tailored to vascular structures. This method identifies out-
liers in a given set of matches based on pathologically feasible registrations. The
RANSAC method is presented first in the following section, as it can reliably identify
outliers under rigid scene conditions. Next, in Section 6.2.2, the SbOR concept is in-
troduced as a solution to address the issues caused by deforming environments during
intraoperative situations. Finally, in Section 6.2.3, the two methods are compared,
highlighting their advantages and corresponding inaccuracies. This comparison will
help to choose the suitable outlier classification for the current conditions.

6.2.1 RANSAC Outlier Removal

The RANSAC algorithm selects a subset of data points, fits a model to this subset,
and assesses the discrepancy between the model fit and the remaining data points.
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Figure 6.4: RANSAC classification separates data into inliers and outliers by fitting a
model to the data and identifying the consensus set. This method is more robust to
outliers than the least-squares regression, which does not respect the inlier set and
leads to a poor model fit.

The algorithm is presented in Algorithm 1 according to [29]. Ideally, the model
fit that minimally deviates from the entire data set of given matches m contains
no unchecked outliers. Based on the model fit Model⋆ that achieves the highest
consensus, data points are classified as inliers or outliers with respect to the given
error tolerance δRANSAC.
An example of outlier detection based on a linear model is shown in Figure 6.4.
In this case, the RANSAC algorithm identifies the outlier data, while the respective
model fit —according to the RANSAC regression— follows the consensus of the inlier
data points. In contrast, the least squares model fit, which includes all data points,
shows significant deviation from the inlier data set and is heavily influenced by the
outlier data set, as depicted in Figure 6.4. This example illustrates the effectiveness
of the RANSAC algorithm in identifying and removing outliers from a data set.
The triangulation model (2.7) imposes constraints on point matches that are required
to align on the image plane for an image-to-image data comparison. A freely moving
camera model has six unknown degrees of freedom for rotation and translation. To
determine the corresponding parameter space for the model fit Model⋆, at least
five point matches are required. During each iteration of the RANSAC process,
a minimal randomly selected subset mRANSAC of five matches (∥mRANSAC∥ = 5) is
selected from the original set of matches m to calculate a model fit Model⋆. The
resulting model fit of each iteration is compared to the entire set of matches m. Thus,
the consensus is established by iteratively checking the current model fit against all
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Algorithm 1: RANdom SAmple Consensus (RANSAC) Algorithm
Data: m ; /* Descriptor-based matches */
Result: mRANSAC ; /* Verified matches that are consistent with the

model */
nBestInliers← 0 ; /* number of identified inliers */
nIterations← NRANSAC ; /* number of iterations */
Model← (2.5) ; /* define underlying consensus model */
ErrorModel← δRANSAC ; /* error tolerance */
m̃RANSAC ← ∅ ; /* temporary inlier matches */
for i ≤ nIterations do

i + + ;
m[5] = SelectSubSet (m) ; /* select a subset m[5] ⊂ m given by five
random samples in m */

Modeli (R,T) = ModelFit
(
m[5]

)
; /* exploit m[5] to identify free model

paramters R and T for (2.7) */
for match m in m do

if distance (Modeli ↔ m) ≤ δRANSAC then
m̃RANSAC+ = m; /* determine set of all points that respect a
predefined error tolerance */

end
end
if NrIn (m̃RANSAC) ≤ nBestInliers then

nBestInliers = NrIn (m̃RANSAC); /* size of best inlier set up to
this point */
Model⋆ = Model (R,T) ; /* best model fit up to this point */

end
end
mRANSAC ← distance (Model⋆ ↔ m

) ≤ δRANSAC ; /* determine set of
inliers according to best model fit seen */

descriptor-based matches m.

Figure 6.5 illustrates an example where the RANSAC algorithm with 40 iterations
is applied to detect outlier matches, which are highlighted in red. To establish a
consensus, all matches are checked against the camera model. Figure 6.5a shows
reliable matches established for two consecutive observations of an intraoperative
scene. To further assess the reliability of the RANSAC algorithm, the synthetic blad-
der model is used to test a more challenging matching problem, where only a limited
part of the visible area has a corresponding coincident pattern, as depicted in Fig-
ure 6.3b. Despite the increased complexity, the descriptor-based graph matching,
along with the RANSAC outlier classification, is able to establish robust and reliable
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matches with no visibly undetected outliers. These results prove the effectiveness of
the descriptor-based graph matching technique and the RANSAC algorithm in iden-
tifying and eliminating outlier matches for challenging matching problems.

(a) Descriptor-based matches with detected outliers for intraoperative
data.

(b) Descriptor-based matches with detected outliers for synthetic bladder
model.

Figure 6.5: Descriptor-based similarity matches between node pairs. Corresponding
pairs are indicated with a dashed line in distinct colors. Detected outliers, identified
by the RANSAC outlier check, are highlighted in red. Manual examination confirms
that the remaining matches mRANSAC are deemed correct.

Significant deformation between individual observations can cause the corresponding
camera model to become invalid, which in turn leads to failure of the RANSAC procedure.
As a result, all identified matches may be classified as outliers since no consensus in
agreement with the camera model can be established. To address this issue, the error
threshold δRANSAC for matching onto a rigid camera model (2.7) could be increased.
Nevertheless, increasing the error threshold δRANSAC is insufficient for accurately re-
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lating deformed graph patterns to a rigid projection model. This limitation impedes
the use of the RANSAC method in addressing the deformation-invariant reconstruc-
tion pipeline and achieving the specific goal of a deformation-invariant outlier detec-
tion procedure. Moreover, the entire descriptor-based matching approach becomes
obsolete without outlier elimination, as unidentified outliers can seriously harm and
undermine the entire image-based scene reconstruction.

6.2.2 SbOR Algorithm

To meet the needs of intraoperative applications, a deformation-invariant and structure-
preserving outlier removal method is proposed. This method respects pathological
conditions and overcomes intraoperative challenges by exploiting the connections
between structures, rather than relying on a consensus for a rigid surface descrip-
tion. The method is tailored for vascular structures, which may undergo changes in
length ratios and orientation due to applied forces and resulting deformation. How-
ever, from a pathological perspective, it can be excluded that blood vessels change
their vascular interconnections due to deformation.

Graph G̃ Target Graph G∗

Figure 6.6: Descriptor-based matches between two images, where deformation occurs.
For example, two problematic outlier matches mi and mii are highlighted that must
be identified.

The proposed deformation-invariant outlier classification method aims to accurately
identify feasible matches under deformation while detecting matches that require self-
intersections, which are pathologically infeasible. Figure 6.6 illustrates a destructive
match that is not permitted due to the pathological nature of the tissue. Matches
associated with edges ẽa and ẽb of the current graph observation G̃, which intersect to
align with the corresponding target nodes n∗a1 and n∗b1 of the undeformed target graph
G∗, may need to be classified as outliers. Therefore, matches associated with ẽa, ẽb,
or even all matches associated with the nodes n∗a1 and n∗b1, may need to be classified
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as outliers. However, graph edges whose correspondence does not constrain the
initial and final nodes are unproblematic, as they can move according to the forced
deformation in the deformed plane.

(a) The analyzed graph G̃ in white
overlaid with the target graph struc-
ture G∗ in blue. Descriptor-
based node matches between the given
graphs are highlighted in yellow.

(b) Deformed target graph G∗ with
pulled graph edges e♣ that do not have
any consecutive match.

Figure 6.7: Two graphs are shown: a reference graph G̃ and a deformed target graph
pattern G∗. Unmatched nodes, denoted as n♣, are not problematic as they do not
cause any self-intersecting patterns and are carried along the deformation process,
as illustrated in (b).

Figure 6.7 illustrates an exemplary phenomenon of a tuple of corresponding graph
patterns under deformation. Specifically, nodes identified as n♣, which do not have
corresponding matches, are impacted by their neighboring nodes that do have corre-
sponding node matches. As a result, relatively displaced edges e♣ are visible in the
deformed plane. This displacement is characteristic of the tissue pathology, where
the tissue layer between blood vessels remains unchanged while the surrounding tis-
sue layers undergo deformation due to redistribution induced by the matched node
points to align the respective graph patterns before and after deformation.
Based on these two scenarios, it is recognized that matches, which lead to self-
intersecting edges when matching the respective graph geometry of related nodes in
a target graph, are problematic. Consequently, matches that lead to pathological,
infeasible geometry adjustments must be classified as outliers. In contrast, edges
that do not exhibit any matches are generally unproblematic, as they are not bound
by one-to-one correspondences and consequently shift relatively along with the de-
formed surface geometry. Based on this principle, a deformation-invariant outlier
removal procedure is designed to remove pathologically invalid matches, as outlined
in Algorithm 2. In the proposed outlier removal approach, the examined graph G̃
is first pruned to all unproblematic structures by removing all nodes with adjacent
edges, where no match is found. Subsequently, the resulting pruned graph G̃⊖ is
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aligned according to the established matches to coincide with their respective target
nodes in G∗. Ultimately, the structures aligned to the observed deformation allow
for the identification of ambiguous matches mx that require self-intersecting edges
to follow the deformed target structure G∗.
For a given pair of consecutive graph observations and given matches, Figure 6.8
shows the corresponding pruned graph G̃⊖ and the graph geometry adapted such
that matching nodes of G̃⊖ and G∗ coincide, which thereby reveal all self-intersecting
edges.

(a) Current graph extrac-
tion G in white where the
target graph G∗ is overlaid
in blue. The correspond-
ing node matches are speci-
fied in yellow.

(b) Pruned target graph
G∗⊖. All nodes and adja-
cent edges of G∗ that do
not have any corresponding
match with G are deleted.

(c) The pruned graph G∗⊖ is
adjusted to align with the
current graph extraction G,
based on the given descrip-
tor matches m̃.

Figure 6.8: Outlier matches are detected by observing the self-intersection of the
vascular structures in the pruned graph, which resulted from adjusting the given
descriptor matches m̃.

It must be noted that the actual location of the intersection point itself is insignificant
since the reproduced deformation is a three-dimensional surface problem. However,
the simplified two-dimensional test provides sufficient qualitative information about
whether or not the edges would be forced to intersect by any particular match. Thus,
the procedure reveals the three-dimensional self-intersection problem qualitatively
at limited complexity. The identified intersections are associated with contradictory
matches that would cause dubious structural changes. In tracing the intersecting
edges, ẽa = {na1, na2} and ẽb = {nb1, nb2}, to all involved nodes na1, na2, nb1, and nb2, it
may be necessary to remove all associated matches, which can include up to four
individual node matches. However, to avoid simply discarding all involved matches,
the similarities of the respective descriptors identified for matching is compared to
obtain more information about the reliability of the individual matches.

The reliability of a match is assessed by determining the ratio of descriptor similari-
ties ma1,b∗ ↔ sim (da1, d∗b∗

) and ma2,b∗∗ ↔ sim (da2, d∗b∗∗
) for matches to arbitrary nodes

nb∗ and nb∗∗ in the target graph. A match is considered an outlier if its descriptor
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similarity is significantly lower than the residual similarities related to the intersect-
ing edges. When this occurs, the intersection process is repeated for all matches
related to the nodes na1, na2, nb1, and nb2 to determine whether the self-intersection
issue is resolved iteratively. If the retesting resolves the self-intersection point, the
remaining matches are considered legitimate and assigned to the set mSbOR ⊆ m that
adheres to the pathological constraints under deformation.

For instance, if the intersection between the two edges ẽa and ẽb persists, the match
of the second largest descriptor similarity discrepancy is discarded next, and the
procedure is repeated until all involved matches are identified as outliers or the self-
intersection point is resolved, as outlined in Algorithm 2. This approach enables
the identification and verification of all acceptable matches mSbOR ⊆ m that comply
with the pathological constraints under deformation.

Algorithm 2: Graph-based Outlier Removal
Data: m, G, G∗ ; /* Descriptor-based matches, input graph and the

target graph */
Result: m⋆, m↮ ; /* verfied matches and outlier matches */

Ĝ ← empty;
m⋆ ← m ;
m↮ ← empty;
G̃⊖ = PrunedGraph

(
G̃⊖,m

)
; /* Prune current graph observation G̃ to

graph with purely critical edges -> G̃⊖ */
for match m in m do

e ({n1, n2}) = getAssociatedEdge (G,m) ;
ẽ = {ñ1, ñ2} = updateNodePostionsAccordingToTarget (e = {n1, n2} ,G∗);
Ĝ+ = ẽ = {ñ1, ñ2} ; /* add matched edges with updated positions to
pruned graph */

end
for possible edge combinations e1, e2 in Ĝ do

while hasIntersection (e1, e2) do
ne1 ,1, ne1 ,2, ne2 ,1, ne2 ,2 = adjacentNodes (e1, e2);
ñe1 ,1, ñe1 ,2, ñe2 ,1, ñe2 ,2 = adjacentNodes (ẽ1, ẽ2) ;
ñe⋆ = max ˜e1 ,e2 sim

(
dn⋆, d∗n⋆

);
m = getCorrespondingMatch

(
ñe⋆

);
m⋆ −= m; /* remove outlier match from feasible match list */
m↮ += m; /* add match to outlier list */

RemoveOutlierEdgeFromGraph
(
Ĝ,m

)

end
end
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6.2.3 Verification of Outlier Classification Concepts based on a Synthetically
Generated Data Set

To evaluate the effectiveness and stability of the proposed SbOR detection concept, a
synthetic test dataset is created by distorting and randomly deleting graph informa-
tion. Figure 6.9 displays a representative sample of the generated dataset. The dis-
tortion of node points is simulated using the state-of-the-art distortion model (2.3),
with carefully selected distortion parameters. In addition, noise is introduced by
deleting random nodes and all adjacent edges. Since the modifications are artifi-
cially induced, the ground truth node correspondences between the original and
distorted graphs are readily available for comparison.

(a) Initial graph extraction
G .

(b) Distorted Graph Geom-
etry G̃ with node and edge
deletion in red.

(c) Resulting modified dis-
torted target Graph G̃.

Figure 6.9: A synthetically generated dataset using image distortion and edge dele-
tion (where edges in red are deleted) is used to simulate deformation and uncertainty
in graph extraction. The availability of ground truth data allows for an accurate
comparison as the distorted target graph G̃ is a modified version of the given arbi-
trary input graph G.

To ensure comparability, the distortion measure

δdist =
∥V − Ṽ∥2

V
(6.9)

is defined to quantify the changes in node positions resulting from the application of
the distortion models (2.3a) and (2.3b). The distortion parameter δdist provides a
metric for analyzing the impact of spatial changes on outlier detection in the graph.
Additionally, a deletion rate δdelet is introduced, where a proportion of nodes in G
and their corresponding edges are randomly selected and removed to produce the
modified graph G̃. To avoid potential bias in the results, the reverse operation of
adding arbitrary nodes and edges is omitted for simplicity. Both larger and smaller
graphs are considered alternatively for matching to ensure a balanced analysis be-
tween larger target and smaller base graph matching. Figure 6.9 depicts a test graph
pair, where the modified version is generated by applying distortion and randomly
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deleting edges (δdelet = 6%). These artificial graph alterations present a degree of
complexity that is comparable to actual data exposed to deformation, rendering
them appropriate for a realistic assessment of the graph-matching procedure.

The effect of graph modification on the accuracy of the matching process is investi-
gated for the descriptor-based matching procedure with outlier elimination. The test
set includes 200 initial graphs that are similar in complexity to the graph displayed
in Figure 6.9. The entire test set and corresponding modifications are analyzed for
each tested parameter. During each parameter evaluation, the original and modified
graphs serve as the output and target graphs alternatively, resulting in a total of 400
graphs analyzed for each parameter set. The descriptor-based matching method is
utilized for matching; based on that, the RANSAC and SbOR concepts are applied for
outlier elimination. The empirical results are summarized in Table 6.1, demonstrat-
ing the impact of modification parameters δdist and δdelet on the inlier and outlier
matches relative to the ground truth. The outlier detection rate (ODR) denotes
the proportion of accurately detected outliers in m̃ compared to the ground truth,
while the false none outlier detection rate (FNODR) represents all matches that are
incorrectly classified as outliers matches.

The evaluation reveals that the descriptor method generates a dense distribution
of potential matches for unmodified data. However, this density decreases as the
degree of modifications (measured by δdist and δdelet) increases. The proportion of
outliers in descriptor-based matches also increases with the extent of modification, as
confirmed by available ground truth information. Regarding outlier detection, the
RANSAC approach demonstrates exceptional precision with minimal bias and can
accurately identify outliers while maintaining a consistently low proportion of δdist.
However, as the degree of deformation increases, the RANSAC method progressively
misclassifies more matches as false negatives, represented by the FNODR, resulting
in the elimination of all matches beyond a certain threshold. Consequently, all
available matches are incorrectly classified as outliers. Although it is possible to
adjust the error tolerance for the RANSAC method in response to more significant
deformation, doing so may result in the exclusion of more outliers. There is a
trade-off in accurately detecting outliers, where either misclassifying non-outliers is
accepted or increasing the error threshold to maintain inliers but risking unreliable
outlier detection. In contrast, the structure-based outlier method is not significantly
impacted by deformation. As a result, the ODR and the rate of FNODR remain
relatively stable.

After evaluating the data, it is concluded that the RANSAC method is more accurate
than the SbOR concept for non-deformed environments. However, the RANSAC method
is ineffective at handling deformations, whereas the structure-based method performs
reliably in such cases. Furthermore, a closer examination of the outlier matches that
were not detected by the SbOR procedure reveals the presence of non-critical, self-
intersecting edges. These cases can only occur when references to nodes in the
environment do not require intersections with other edges and do not differ signif-
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Table 6.1: Outlier classification for a given set of descriptor- based matches m̃.

δdist δdelete Outlier
Ratio

ODR a FNODRa

RANSAC

0.04 0.05 0.04 0.99 0.06
0.12 0.05 0.06 0.95 0.23
0.24 0.05 0.28 0.98 1.0

0.04 0.25 0.04 0.99 0.06
0.12 0.25 0.06 0.95 0.23
0.24 0.25 0.28 0.98 1.0

SbOR

0.04 0.05 0.04 0.967 0.0772
0.16 0.05 0.06 0.923 0.0743
0.32 0.05 0.28 0.956 0.0838

0.04 0.25 0.04 0.918 0.0623
0.16 0.25 0.06 0.957 0.052
0.24 0.25 0.28 0.924 0.083

a Calculated as a weighted average over the images in the holdout test set, with the number of
nodes per image as weights.

icantly from actual matches for arbitrary degrees of deformation. Therefore, it is
necessary to accept some level of uncertainty in graph matching. Furthermore, the
SbOR concept is effective at detecting outliers in the presence of deformation. How-
ever, its performance is limited by the descriptor-based matching method’s ability
to handle deformations. As the level of deformation becomes more pronounced, the
accuracy of matches obtained through descriptor-based matching decreases signifi-
cantly, which means that only a few reliable matches can be obtained in cases of
extreme deformation. Consequently, the number of usable matches remains insuffi-
cient to even apply any outlier classification to the given descriptor-based matches.

6.3 Global Graph Model

The proposed method of descriptor-based matching and outlier removal enables an
efficient and reliable identification of node correspondences between two noisy graphs.
To compare graphs across multiple image observations, the current graph observation
Gi = FGraph(I i) is integrated into a global graph representation GG. This representa-
tion includes all previously acquired observations in one domain, allowing for a new
observation to be compared with the entire set of previously observed patterns in
a single matching process, as depicted in Figure 6.10. A global pattern representa-
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tion has significant potential, especially in the context of intraoperative navigation.
When there are disturbances in the field of view or significant changes in camera pose
ϕcam, the precision of pattern observations may be limited. In such cases, a compar-
ison with only the immediately preceding pattern observations may quickly become
inadequate, resulting in the loss of orientation-critical landmark information.

The objective of this process is to establish a reliable mapping of partially matched
patterns Gi to the global graph representation GG. This involves registering rec-
ognized patterns from the current observation Gi, and updating the global graph
representation GG based on observed modifications. However, the precision of the
descriptor-based matching procedure is insufficient to merge individual graph obser-
vations Gi accurately. Additionally, matching the graphs can be challenging due to
numerous smaller structures that occur irregularly between graph observations.

Therefore, a post-analysis of the descriptor-based matches is necessary to ensure
that the merged global graph image is not cluttered with small structures that have
no value for matching subsequent structures. This analysis involves assessing the
optimal inclusion of each node and edge in the global graph representation. In addi-
tion to identifying matches not detected by the descriptor-based procedure, it is also
necessary to determine the individual differences between two graphs, Gi ⇆ GG, to
deduce the most suitable embedding strategy for each edge and node into the global

observed
image

observed
graph

global graph map
on organ model

similarity 25 %
similarity 90 %

Figure 6.10: To build a global graph representation, a geometry model is used, which
enables the geometry update step. This step updates the spatial attributes of the rep-
resented pattern, ensuring that the graph attributes remain up-to-date and improv-
ing matching for subsequent observations. Moreover, the spatial attribute update
step facilitates the identification of newly observed graph patterns not yet repre-
sented in the global graph representation. Identifying new observations is critical to
update the global representation accurately and to avoid overloading it with unreli-
able information.
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graph representation GG. Therefore, a graph-editing procedure is implemented,
which transforms the respective graphs into each other, exposing all differences and
similarities between the graphs under consideration.

The proposed global graph representation GG is based on descriptor-based similarity
registrations. Matches between the current observation and the 3D global graph
representation allow for adapting the model geometry of the global graph to the
current observation. Given the updated geometry relations, spatially dependent fea-
ture descriptors can be updated accordingly. As a result, the updated descriptors
facilitate accurate graph analysis by incorporating Euclidean information in the em-
bedding strategy. This enables the identification of differences between the current
observation and the represented graph pattern, and enhances the ability to detect all
changes in the model representation. In the following Section 6.3.1, the initialization
of a global graph representation GG and the corresponding geometry adaptation for a
new observation Gi is proposed. Subsequently, in Section 6.3.2, the graph embedding
strategy is presented, effectively expanding the graph to include new data.

6.3.1 Mapping and Geometry Adaption of 3D Model

The adaptability of a triangle mesh enables the mapping of individually observed
graph patterns using inverse rendering, as detailed in

⊙Rϕcam,0 (M, p) 7→
[
PGi ,NGi

]
. (6.10)

This process enables the determination of the spatial positions PGi and normal direc-
tions NGi of the intersections between nodes and the surface of the geometry model
MG. As shown in Figure 6.11, the back projection of an initial graph Gi=0 onto a
unit sphere can be achieved through the application of (6.10). Upon initialization
of the spatial representation of the global graph GG on the mesh surface, descriptor-
based matching is employed to identify matches between new observations Gi and
the global graph representation GG, as depicted in Figure 6.10.

The objective function for supervising the adaptation of geometry is defined on the
image plane to align the corresponding graph patterns given by Gi ↔ GG.

To achieve this, the node points in the 3D world graph are first projected onto the
image plane. However, transferring surface points to the image plane directly using
the proposed rendering function is not feasible, as it would lead to a discretized
representation in the image matrix, thereby compromising differentiability across
pixel locations. To address this issue, the node pairs that match between Gi and the
global graph GG, denoted as Pm

GG
, are projected onto the image plane according to the

analytical camera model (2.5). The projection results in matching node pairs defined
on the image plane pGi

↔ pGG
without discretization, which ensures differentiability

across pixel locations. This procedure is identical to the pose reconstruction method
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2D

Figure 6.11: Pattern alignment and registration of image planes onto the model
surface.

employed in Section 4.2.2 for correlating corresponding node pairs on the image plane.
Here, it allows for the formulation of the geometry adaptation

V⋆
G = VG,0 + arg min

∆V

t∑

i=t−h

(
pGi
− pGG

)2
+Ledg(M) +Llap(M) , (6.11)

where the regularization losses, described in Section 3.1.2, are exploited to promote
desirable scaling characteristics in the resulting geometry adaptation.

The matches mGi↔GG between partially matching patterns provide the necessary infor-
mation on how to adjust the surface geometry of the model MG to achieve spatially
coinciding patterns. As previously outlined in Section 6.2.2, the geometry adapta-
tion can replicate the relevant spatial ratios, at least qualitatively, when a sufficient
number of matches mGi↔GG , is available. In this process, mismatched patterns are
also captured, and the corresponding node positions are updated accordingly. This
can be observed in Figure 6.11, where the transferred graph patterns of an initial
mapping G0 onto the model surface are displayed. A subsequent graph observation
Gi=1 is extracted and registered with respect to the nodes of the graph representa-
tion GG on the image plane, as shown in Figure 6.12, along with the corresponding
Euclidean error deviation defined on the image plane.
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Figure 6.13: The model geometry is adjusted so that the corresponding landmark
locations of the current image observation Gi and the global graph representation
GG coincide on the image plane, as shown in Figure 6.12.

Figure 6.12: Pattern registration of the
node location of the current graph obser-
vation Gi with the attributes of the global
graph GG on the image plane.

The error deviation is minimized to
resolve the discrepancy of the corre-
sponding landmark data, and the re-
sulting geometry adaptation is shown
in Figure 6.13. Therein, it is ob-
served that the unmapped nodes are
correctly entrained by the surrounding
node matches, demonstrating the abil-
ity of the method to update spatial
node and edge features based on the up-
dated model geometry. The proposed
method leverages the spatial propor-
tions and distances of patterns to differ-
entiate between a disturbed graph G∗
and a target graph G. In this way,
the dependence on distance does not
contradict the deformation-tolerant pro-
cessing. The geometry reconstruction
of the 3D model uniformly adapts the
non-matching nodes along the deformed
surface mesh, creating feasible relations
that accurately represent the deformed
scene.
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6.3.2 Graph Editing Paths

The remaining task is to identify and update the global graph representation with the
current graph data that is not yet included in the global graph representation. For
this purpose, the error-tolerant editing distance method, as outlined in [5, 60, 104],
is adapted. The fundamental concept behind the edit-bipartite graph alignment is
to find a modification policy, denoted as π(G̃)→ G, that can transform a noisy graph,
G̃, into a target graph, G, with minimal modifications. By means of this strategy,
dissimilarities between the present graph Gi and global graph representation GG are
identified, facilitating the inclusion of the latest observations from Gi that are not yet
added to the global graph GG. In other words, this enables the update of the global
graph GG with the most recent observations from Gi that are currently missing. A
modification policy, denoted as π, defines a general graph-editing policy capable of
transforming any noisy graph G̃ into a target graph G by employing a sequence of
editing actions a. These actions encompass insertion, deletion, and substitution of
nodes and edges [3].
This work discusses editing operations primarily for node operations, as the transi-
tion of any edge information is included by considering the edge information as a pair
of nodes e = {u, v} in G. Thus, the transition of the edge is inherently implied by the
corresponding node pair operations. To establish a general notation, the deletion of
a node w̃ in G̃ is represented by (w̃→ ∅). The reverse notation (∅→ w̃), in G̃ refers
to the insertion of new node information w̃ into G̃. Additionally, the substitution of
a node ũ in G̃ with any chosen node w in G is denoted as (ũ→ w).
The graph editing concept [3] is adapted in this work to address the problem at
hand by searching for the policy π(GG)→ Gi to identify the differences necessary for
updating GG. However, the complexity of this problem is reduced by considering the
following aspects: Firstly, the complexity and redundancy can be reduced by directly
assigning each descriptor-based node match as a substitution operation. This means
that editing operations for matching node pairs are assigned as substitutions

m 7→ {w ∈ GG → w̃ ∈ Gi∥ (w, w̃) ∈ m} , (6.12)

and are eliminated from the remaining search space for the corresponding editing
policy. If a substitution operation is chosen as an editing strategy from the remaining
set, it pertains to a match that has not yet been determined by the descriptor-based
matching procedure.
Secondly, the scope of the graph editing search is limited to the currently visible
region in the global graph. This exclusion is realized through the design of the mask
Mmatched by the convex hull

Mmatched = ConvexHull
(
mGG

)
, (6.13)

which includes all node positions Pm ∈ GG of the currently matched nodes in the
global graph. The mask Mmatched is designed to exclude all non-visible regions and
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graph patterns outside the surface space of the matched nodes in GG from the editing
analysis.

As a result, the search for the transfer policy is restricted to the matching graph en-
tities in G̃ = G⊖G, where G⊖G is the restricted global surface defined by the mask (6.13).
In this way, the overall problem is reduced to the problem of determining π(G⊖G)→ Gi,
where π(G⊖G) is the pre-determined editing set policy that includes all substitutions
already given by the descriptor-based matches.

Finally, the editing policy is derived by examining each node pair u, v ∈ U in G and
ũ, ṽ ∈ Ũ in G⊖G separately, for w ∈ {u, v} based on the following conditions:

• If node w ∈ U in G and w̃ ∈ Ũ in G⊖G are present in both graphs, a node
substitution is implied.

• If there is a node w ∈ U in G, but no corresponding node w̃ ∈ Ũ is found in G⊖G,
then a node insertion (∅→ w) must be performed in G⊖G.

• Conversely, if there is a node w̃ ∈ Ũ in G⊖G, but no node w ∈ U is found in G,
then a node deletion (w̃→ ∅) must be performed in G⊖G.

However, the outlined approach is ambitious due to the multitude of feasible op-
eration strategies that can be specified in an editing set Γ

(
G⊖G,G

)
= {π1, · · · , πk} of

feasible adaptation policies.

The established formulations in [3, 5, 60, 104] assume the existence of ideal graphs,
where related nodes and edges have the same exact graph representation in their
spatial distribution and feature representation. However, in this work, it is essential
to consider the graphs as noisy versions of each other due to changes and various in-
fluences resulting from subsequent observations. The heavy reliance on ideal graphs
can create issues when attempting to identify a suitable editing strategy for noisy
graphs. For example, it may result in the deletion of the whole existing informa-
tion and the insertion of all new information rather than accurately evaluating the
similarities between the graph patterns.

To avoid ambiguity, costs are assigned to each operation to discourage excessive
changes and obtain the modification policy with the lowest modification cost c. To
account for spatial deviations in the matching analysis, the cost design considers the
Euclidean distances after the geometry adaptation (6.11). Patterns that are close to
each other are supported by low costs and are detected as matching patterns. In the
cost design, a recurrence rate is introduced to weight patterns based on retrievable
recurrence in observed data. Therefore, the recurrence rate of an edge

arec =
ndetect

nview
, (6.14)

is assigned to each edge and indicates how often, on average, the edge is rediscov-
ered. Specifically, ndetect represents the total number of detections of the edge, while
nview represents the total number of times the area covered by the edge is visible
within the current mask defined in (6.13). In the cost design it is aimed to assign
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lower costs to recurring, well-recognizable structures and higher costs to unreliable
structures by taking into account the recurrent detection rates. This approach helps
to prioritize the more reliable structures and avoid less reliable structures. Indeed,
the edge recurrence rate arec is defined for all individual edge patterns. However, the
editing procedure and cost design are defined on a node level. To relate the edge re-
currence rate to the respective adjacent node information, the embedding function
defined in (6.5) is deployed, such that the recurrence rate can be integrated into
the similarity comparisons and node-based cost design by expanding the respective
node descriptors: d += drec. Finally, the substitution of a node (w→ w̃) is penalized
by the Euclidean distances on the mesh surface and the expanded descriptor-based
similarity measure through

cw̃,w = ∥w̃xy − wxy∥ + ∥dw̃ − dw∥ . (6.15a)
The substitution cost is designed to consider the variations in sensitivity based on
the current geometry prediction M⋆

i and Euclidean ratios, which ensures a robust
and accurate solution to the graph transition process. The cost design supports
correspondences between points at close distances, while those at greater distances
are more likely to be considered as new individual nodes. To ensure that new node
insertions in G⊖G do not introduce redundant information that already exists in its
own neighborhood, node insertion actions are penalized by

c∅,w =
1

∑k
i ∥w − NG⊖G ,i(w)∥ . (6.15b)

This penalty is based on the Euclidean distance between the new node w and its
k spatially closest graph nodes in G⊖G, where NG⊖G (w) evaluates the sum over the k
neighboring nodes. The cost for node insertion is calculated as the reciprocal of this
sum, resulting in a higher cost for nodes that are very similar to their neighbors. This
cost design aims to discourage unnecessary insertions and preserve the structure of
the graph.
For a node deletion, (w̃→ ∅), the norm of the respective descriptor information is
incorporated into the cost design by

cũ,∅ = ∥dstruc,w̃∥ + ∥drec,w̃∥ . (6.15c)
The norm of the descriptor takes into account the structural constraints and their im-
pact on structural changes induced by various actions. It assigns a heavier penalty to
nodes with higher degrees in the graph and their first-order neighborhoods. More-
over, the norm of the respective recurrence rate is considered to account for the
deletion of reliably detected graph structures by deleting the respective graph node
w.
Finally, the optimal graph transition from G⊖G to G is formally specified by the
problem description

π⋆(G⊖G,G)→ G = min
(a1 ,..,ak)∈Γ

(
G⊖G ,G

)
∑

c
(
a
(
G⊖G

))
, (6.16)
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which minimizes the sum of the modification costs for a sequence of feasible adapta-
tion strategies (a1, . . . , ak) ∈ Γ

(
G⊖G,G

)
, respecting the cost design (6.15) with c, and

including the respective individual weighting of the separate costs. The solution
space is defined by the sequence of feasible adaptation strategies (a1, .., ak) ∈ Γ

(
G⊖G,G

)
.

Consequently, the deduced objective is to solve problem (6.16) efficiently.

Algorithm 3: Graph editing problem based on the A⋆-algorithm
Data: Noisy input graph G⊖G, target graph G
Result: π⋆(G⊖G,G)→ G;
e.g. π⋆ = {ũ1 → u4, ũ8 → ∅, ...,∅→ u5};
; /* Optimal editing policy to transfer the noisy input graph to
given target graph. */
Initialize the open action set aOPEN;
For each node v ∈ G, insert substitution {ũ1 → v} in the open action set aOPEN;
Add all deletions {ũ1 → ∅} to the open action set aOPEN;
for match m in m do

π⋆ = arg minπ∈aOPEN
∑

a∈π c(a) + l(c (aleave) p);
if π⋆ is a complete editing policy then

Return π⋆ as the solution
end
π⋆ = {ũ1 → ui1, ..., ũk → uik};
if k ≤ |Ũ | then

for each u ∈ U\ {ui1, ..., uik}, insert π⋆ ∪ {ũk+1 → u} into aOPEN;
add π⋆ ∪ {ũk+1 → ∅} to aOPEN;

else
add π⋆ ∪⋃

v∈U\{ui1 ,...,uik} {∅→ v} to aOPEN;
end

end

Solving the graph-editing problem using the A⋆ algorithm. The graph transition
problem (6.16) is a combinatorial optimization problem that is known to be NP-
hard, making it computationally demanding to find an exact solution for large-scale
graphs. In this work, an A⋆ algorithm is used, which provides a best-first search
algorithm commonly used in path finding and graph traversal. In the approach of
this work, the graph nodes are defined as states and the costs as a heuristic function.
This approach yields an efficient and effective solution for the graph editing problem
when compared to other heuristic methods, such as Munger’s algorithm and the
Hungarian algorithm [120].

To solve the problem (6.16), the A⋆ algorithm, based on [37], is employed. This
algorithm finds the optimal policy π⋆(G⊖G,G) → G through a heuristic search of the
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6.3 Global Graph Model

solution space. The method is based on the concept presented in [104] and utilizes
a search tree that is constructed dynamically at run-time [148]. The overall solution
process, adapted to problem (6.16), is outlined in Algorithm 3. During the process,
nodes are processed in the given order, and the corresponding actions are applied
cumulatively. Subsequent nodes are created during the processing and considered
in the search tree.

The OPEN portion of the algorithm refers to the set of nodes that have not yet been
fully processed, while the search tree expands by evaluating subsequent nodes. In
this approach, the cumulative costs from the initial a0 to the current modification
at are represented as gA⋆ (a), while hA⋆ (a) is used to estimate the costs from at to
the final state, where G⊖G ≡ G. During the iterative solving process, the states are
classified into one of the following three categories:

• unknown states; which are not yet encountered during the search, and as such,
no path is known to the corresponding nodes. Initially, every node except the
starting node is classified as an unknown state.

• known states; to which a (suboptimal) path is known. The known nodes are
stored along with the respective cost value gA⋆ (a) + hA⋆ (a)) in the so-called
OPEN List. The most promising node is selected and explored from this list for
the next iteration.

• checked states; to which the shortest path is known. The finally examined
nodes are registered in the so-called CLOSED list to avoid repetitive node in-
spections.

The algorithm terminates upon the final examination of the target state, and the
found path is reconstructed using the predecessor output state. If the OPEN list is
empty, the algorithm terminates immediately, indicating that no solution was found.
Therefore, the A⋆ algorithm aims to find the lowest cost solution for gA⋆ (a) + hA⋆ (a)
in the heuristically guided search.

The resulting graph editing policy is depicted in Figure 6.14, where all nodes labeled
in red represent descriptor-based matches and thus are excluded from the editing
search. Figure 6.15 illustrates the resulting optimal editing policy for transferring
the illustrated graphs. The nodes and edges information labeled in blue, red,
and purple represent substitution, deletion, and insertion operations, respectively.
In conclusion, the update of the global graph based on the established editing policy
adheres to the distinct editing policy π⋆(G⊖G) → Gi. Any insertion and deletion
operations can be directly transferred from editing G⊖G to GG. This ultimately leads
to the updating of GG by the current observation.

6.3.3 Global Graph Update

The resulting optimal graph policy π⋆(G⊖G) → Gi yields an exact copy of the target
graph. Indiscriminately adding or deleting information from the global graph can
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6 Graph Matching

(a) Current image observation Gi.
(b) Updated global graph GG. The truncated
graph G⊖G is highlighted in the red oval area.

Figure 6.14: The global graph GG is updated with newly observed graph structures
Gi. Nodes with descriptor-based matches define the search space for editing the
world graph, and are highlighted in red. The truncated graph G⊖G defines this
search space. Common edge structures recognized in both Gi and G⊖G are highlighted
in blue, while newly added structures are highlighted in green .

(a) Initial graph G⊖G. (b) Graph transition
π⋆(G⊖G)→ Gi.

(c) Observed target graph
G.

Figure 6.15: Graph editing: In (a) and (c) two different graph observations G⊖G and
G are given. The corresponding graph transition is shown in (b), with deletions
highlighted in red, insertions in blue, and node and edge substitutions in grey.

lead to significant robustness issues, particularly in situations where data uncertainty
is present. To address this challenge, the recurrence rate as defined in (6.14) is
deployed for the global graph update. Rather than naively overriding the graph
representation with the determined policy, the global graph is updated by adjusting
the respective recurrence rates in GG based on π⋆.
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6.4 Summary & Conclusion

The recurrence rate nview += 1 for the viewed pattern is incremented by one for all
edges whose corresponding nodes are visible within the current view specified by
the mask (6.13). The recurrence rates specific for re-detected patterns are adjusted
for each edge individually. When an edge is re-detected based on a substitution
operation, the respective ndetect += 1 is increased. Conversely, if the edge is not re-
detected but a deletion is considered, the corresponding recurrence value ndetect −= 1
is decreased. For the initial pattern observation, the respective detection number
ndetect ≡ 1 is initialized within the graph. To avoid relying solely on a single obser-
vation in the initial mapping process, the recent correspondence of the information
of the nodes on the mesh is mapped on the 3D surface for each new observation,
including recurrently detected node patterns. Then, the node position is updated
through the weighted average

P⋆
Gi
= aupd,rec PGi + (1 − aupd,rec)PGG , (6.17)

where based on the update rate 0 ≤ aupd,rec ≤ 1, the node positions PGG of the global
graph GG are iteratively updated by the corresponding latest observation given by
PGi . This approach ensures a reliable graph representation that gradually becomes
more accurate over time.

6.4 Summary & Conclusion

The central research objectives of this chapter is summarized as follows: registration
of corresponding graph features while addressing intraoperative constraints, such as
a deformable scene and temporarily blocked pattern observations. The proposed
descriptor design offers a quasi-deformation-invariant similarity measure for struc-
tural graph information, facilitating an efficient matching procedure. To realize a
diversification of the solution space and to avoid a high dependence on individual
matches, each descriptor is matched individually in the proposed descriptor-based
matching procedure.
Due to mutually independently determined matches, many outliers may be present
in the resulting solution set. However, conventional outlier classification methods
found in the literature may not be sufficient in the presence of deformation, resulting
in all descriptor-based matches being classified as outliers. To address this issue, a
new outlier classification concept called SbOR was introduced. This concept utilizes
pathological structures as a reference point, and any match that requires resectioning
visible vascular structures is classified as an outlier. The efficacy of this method was
demonstrated using a synthetically generated and distorted dataset. The proposed
descriptor-based matching and SbOR outlier removal technique are generalizable to
any pathological domain and provide a significant contribution to landmark-based
orientation concepts for intraoperative conditions.
A 3D model embedding has been proposed to improve the field of intraoperative
orientation. The embedding integrates subsequently observed patterns into a global
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6 Graph Matching

representation, allowing a current pattern observation to be matched with all pre-
viously observed patterns in a single query. This approach is particularly useful in
scenarios, where vision is temporarily impaired, as it enables comparison with all
previous observations when vision is restored, rather than conducting sequential and
time-consuming pattern matching across recent observations.

The embedded model representation can update the model geometry to the cur-
rent conditions, which helps ensure robust pattern matching for future observations.
Additionally, the geometry reconstruction adaptation ensures feasible relations that
represent the deformed scene by uniformly entraining the non-matched nodes along
the deformed surface mesh.

To update the global graph representation based on the latest pattern observations,
a graph editing technique is applied to accurately identify differences between the
new graph and the global graph. This approach focuses on updating only the newly
added elements, which helps to avoid introducing ambiguities into the global graph.
As a result, the information content of the global graph is preserved, which is crucial
for ensuring a continuous progression. Although the editing algorithm used in this
procedure is well-established in the literature, it is often too complex to be readily
applied. Nevertheless, in this work, the algorithm has been successfully adapted to
the requirements of the task by limiting its complexity. This has been achieved by
utilizing descriptor-based matches as a predefined editing policy and by efficiently
restricting the editing space.

In summary, this chapter offers the following contributions: a tailored descriptor
design for handling intraoperative challenges, a related outlier classification utilizing
pathological constraints, and an inclusive view of pattern representation in a global
model to update geometry based on new observations. A 3D model representation
was developed to register the associated global graph information. This 3D model
maintains Euclidean ratios for all spatial graph information, which is updated by
adjusting the model geometry as needed.
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Intraoperative Navigation and Scene
Reconstruction

7
Intraoperative navigation and scene reconstruction are subject to enormous chal-
lenges under real-life conditions. Despite this, there remains a lack of comprehensive
solutions in the literature. Thus, new concepts are required to establish a robust
workflow for reconstruction purposes. In the previous chapters, new methodologi-
cal solutions for specific problems were developed. Building on that, this chapter
aims to holistically establish a comprehensive localization and reconstruction pro-
cess that addresses real-world complexity for intraoperative navigation and scene
reconstruction.

By integrating and combining all methods presented in this thesis so far, a com-
prehensive approach strategy is formulated, leveraging the unique strengths of each
technique to address the complex intraoperative scene reconstruction problem holis-
tically. The graph-based landmark orientation provides robust orientation through
generalized pattern matching, regardless of initial location. Building on this, the
gradient-based reconstruction approach improves pose accuracy and reconstructs
geometry and texture information. By utilizing the graph-based orientation as a ro-
bust initial pose for the gradient-based reconstruction strategy, the resulting method
compensates for the gradient-based method’s high sensitivity to initial conditions.
In this way, the proposed combination leverages the robustness of the matching
method and the accuracy of the reconstruction method, providing a more reliable
and accurate approach to the problem at hand.

The proposed concept integrates individual processes to capture ambiguities and
enable the reconstruction of pose, geometry, and texture under intraoperative con-
ditions. However, the graph-based landmark correspondences are insufficient for a
holistic reconstruction process to achieve the desired accuracy since the correspond-
ing node space might be distributed sparsely, and some node matches might even be
obsolete. However, a pure image comparison may lead to complex stability problems,
as described in Chapter 3. For this purpose, the extracted skeletonized pattern infor-
mation is exploited, providing increased information gain for reconstruction purposes
while ensuring high robustness given an appropriate loss formulation.

To address a holistic intraoperative reconstruction problem, this chapter is orga-
nized as follows. In Section 7.1, the overall reconstruction pipeline is presented, and
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the proposed concept is validated through two successive experiments. The first
experiment, discussed in Section 7.2, involves reconstructing the camera’s pose and
comparing it with indoor localization measurements by attaching markers to the
endoscopic camera. In the second experiment, outlined in Section 7.2.2, the focus
is on reconstructing the object’s geometry using a fringe projection sensor. The
experiment involves manipulating the volume of a balloon by inflating and deflating
it with water, capturing changes in the object’s geometry, and then comparing the
image-based geometry reconstruction to the measured geometry data.

Finally, in Section 7.3, the reconstruction concept is extended by incorporating ex-
ternal depth map measurements into the reconstruction objective. The simultaneous
integration of depth map data and image data demonstrates the comprehensive un-
derstanding and generalizability of the proposed reconstruction approach. From a
methodological perspective, this concept provides a solution for the analysis of in-
plane deformation and strain ratios. Moreover, the proposed reconstruction concept
of in-plane deformation presents a high potential for the medical field of applications
for multi-sensory data classification.

7.1 Holistic Reconstruction Pipeline

The initialization and update steps are presented separately in the following subsec-
tions. Therefore, a graphical flowchart representation has already been presented
for the outline of the work in Chapter 1.4, for initialization and consecutive update
steps in Figure 1.7.

7.1.1 Initialization

In the initial step, graph Gi is extracted from the current image observation I i 7→ Gi,
as discussed in Chapter 5. The inverse rendering (4.8) facilitates the remapping of
the graph nodes onto the geometry mesh MG. The graph is re-projected from an
initial camera location ϕcam,0, with the assumption that the perspective captures
the entire model, such that all back projections have feasible intersection points
for all pixels with the geometry mesh MG. Then, consecutive observations can be
aligned relative to the initial perspective. In addition, the image information I i can
be mapped to the texture model MT based on the forward rendering process out-
lined in (2.26). This results in a texture-based optimization problem, as formulated
in (3.14).

However, as discussed in Section 3.3, relying solely on monitoring the intensity of
the rasterized image data can lead to significant robustness issues during the recon-
struction of a synthetic bladder model. This can result the convergence to a local
minimum, which is exacerbated by factors such as gloss effects, image noise, and dis-
tortion effects in real-world images, particularly for intraoperative data. To enhance
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7.1 Holistic Reconstruction Pipeline

the information content of the texture image for intraoperative scene reconstruction,
the skeletonized vascular image information I skel is incorporated. This approach
incorporates skeletonized vascular image information to facilitate pattern-based sim-
ilarity alignment between real-world image data and the model representation, while
suppressing noise effects and allowing for the use of various loss formulations.

The image pattern can be reconstructed in a texture model by means of an image
comparison following (3.15). However, unfavorably recorded pattern information,
such as blurred image capture, can result in the omission of critical information
from the global texture model and the inclusion of disturbed texture information.
Additionally, if the previous pose or geometry reconstruction deviates slightly from
the actual position, a mismatch can be quickly induced into the texture model,
causing robustness issues to the overall reconstruction process.

Therefore, the texture is not updated based on an image comparison according
to (3.15), but rather, the skeletonized pixel set pe is assigned to the texture mesh
MT directly through the inverse rendering process outlined in (4.8), separately for
each extracted graph edge e. The corresponding skeleton pixel set pe is extracted as
part of the graph extraction process, which was introduced in Section 5.3.2. This
combination of the global graph representation GG alongside the skeletonized struc-
ture representation MT allows for a lightweight pattern analysis. If needed, the
corresponding pixel set pe linked to the edge facilitates a further in-depth analysis
of the structural information.

The skeletonized pattern information is represented in the respective vertex grey
feature space Cskel of MT. Furthermore, the geometry of the texture model MT is
driven by the geometry mesh MG and determined by the mesh subdivision (3.13)
as introduced in Section 3.2.1. This allows for the representation of texture with
high resolution while simultaneously ensuring manageable complexity. As a result,
MT serves as a repository of the observed and skeletonized structures, providing the
necessary information for scene reconstruction.

Without prior model knowledge, a unit sphere can be used to initialize the geom-
etry model MG. However, if prior knowledge is available, for example from MRI
geometry reconstruction, it can be utilized to initialize the geometry representation.
Despite this approach, challenges may arise, particularly regarding the registration
of the preoperative model with intraoperative image data, which can be especially
challenging for soft organs. Therefore, the non-trivial task of preoperative data reg-
istration is not considered in the scope of this work. Instead, it is proposed that the
geometry parameterization MG can be initiated from any initial state. Thus, a unit
sphere is chosen as an initial template mesh without imposing any constraints on the
generality. Figure 7.1a shows an initial texture observation I skel, while Figure 7.1b
presents the corresponding initialized global graph GG, and Figure 7.1c displays the
respective initialized texture model MT.
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7 Intraoperative Navigation and Scene Reconstruction

(a) Skeletonized image
observation I skel
masked by Mmatched
according to (6.13).

(b) Mapped pixel paths
from image planes to model
surface MG.

(c) Initialized texture
model MT.

Figure 7.1: Based on a predefined initial camera perspective ϕcam,0, the model repre-
sentation of the global graph model GG on the geometry mesh MG and the texture
model MT are initialized by the skeletonized image structure I skel.

7.1.2 Iterative Model Update

Once the model representation covers initial observations, any further observations
can be aligned with respect to the initial camera perspective ϕcam,0. Therefore,
the pattern in the global graph GG and in the texture model MT are sequentially
exploited for pose reconstruction.

The graph extraction Gi for the current image observation I i is compared to the
global graph representation GG using the descriptor-based graph matching proce-
dure described in Section 6.1. This process enables a pattern alignment, which is
independent of the initial reconstruction guess. Additionally, the descriptor-based
graph matching procedure is coupled with deformation-invariant outlier removal.
This process produces a set of matches mGi↔GG that provides the necessary pattern
registration for pose reconstruction. Through the inverse rendering mapping (4.8),
the extracted node positions p ∈ Gi can be transferred from the image plane to the
model surface of MG. This information is used to formulate the reconstruction objec-
tive in terms of 3D Euclidean distances and normal similarities, as shown in (4.10),
while leveraging the given match correspondences mGi↔GG . The deduced optimiza-
tion objective is formulated analogously to (4.9). This objective is demonstrated
to exhibit well-conditioned convergence behavior in Section 4.2.2. However, due to
the sparse and error-prone nature of the graph-based landmark representation, the
resulting perspective reconstruction ϕ̃cam must be considered as a preliminary and
approximate solution. Thus, while the deduced pose optimization of the form (4.9)
is well solvable, inaccuracies in the assignments may result in the corruption of the
loss formulation itself, either through incorrect node matches or an erroneous graph
extraction process.
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To improve the accuracy of the graph-based pose reconstruction and compensate
for any associated uncertainties, the pose reconstruction is repeated by exploiting
the skeletonized structures provided through the texture model MT. While the opti-
mization problem can be formulated directly on the image plane by supervising the
differences of the pixel intensities ∥I skel−I∥, as shown in (3.16), the convergence prop-
erties of this pattern-matching formulation are inferior, as discussed in Section 3.3.
When corresponding patterns differ slightly in the initial stages, the optimization
can quickly converge to a local minimum in the subsequent iterations. To address
this issue, a point-cloud-based pose reconstruction similar to the graph-based pose
reconstruction (4.9) is followed. This procedure has been shown to exhibit improved
convergence behavior, as demonstrated in Section 3.3. However, unlike the graph-
based pose reconstruction, no predefined point registrations are available.

The graph extraction process provides the corresponding pattern curves of all match-
ing edges pe based on the skeletonized image I skel. Additionally, the established
matches mGi↔GG enable the reduction of pattern areas to the potentially matchable
pixel locations pIM in the image plane I skel that fall within the given mask Mmatched
as specified in (6.13). To compare the inverse rendered spatial structures of pIM
depicted in MT, the resulting vertices PIM and normal data NIM must be aligned
to the corresponding structure representation, which is represented in the model by
Pvas and Nvas.

Thus, for camera reconstruction, the deduced objective is to adjust the camera
position ϕcam,i to achieve spatial coincidence between the patterns in the point cloud
PIM and the vascular structure Pvas. Unlike the graph-based node correspondences
mGi↔GG , the point clouds PIM ↔ Pvas and corresponding normals NIM ↔ Nvas do not
have predetermined point registrations. Therefore, a differentiable error function is
required to formulate an optimization objective that expresses the difference between
the listed point clouds.

The Chamfer distance is a suitable loss measure that expresses the difference between
two point clouds regardless of their relative size. It is defined as

Lchf(J,Q) = |J |−1
∑

(J,Q)∈ΩJ,Q

∥J − Q∥2

+ |Q|−1
∑

(Q,J)∈ΩQ,P

∥Q − J∥2

with ΩQ,J =

{(
J, arg min

Q
∥Q − J∥

)
: J ∈ J

}
,

(7.1)

where ΩQ,J is the set of node pair combinations (J,Q) where Q ∈ Q is the closest
point to a corresponding point J ∈ J [101]. The brute force implementation of (7.1)
requires up to |J | × |Q| individual evaluations of point pair combinations. A more
efficient implementation of (7.1) can be achieved by using the Cuda-based imple-
mentation of a k-nearest neighbor search [101] in a kd tree query. This approach
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(a) Model rendering with initial camera pose
ϕ̃cam.

(b) Model rendering with adjusted camera
pose ϕ⋆cam .

Figure 7.2: Rendered image with extracted structure based on model texture in
blue and extracted point cloud based on the structure of the target image in
red.

reduces computational cost by over an order of magnitude [90]. Additionally, this
implementation enables the Chamfer distance to be differentiable with respect to
the Euclidean distances of the data points, making it suitable for gradient-based
optimization. Although the point assignments ΩQ,J must be recomputed at each
iteration, the gradient is not compromised as differentiability is only required within
one iteration. Thus, the Chamfer distance (7.1) enables the formulation of the de-
duced optimization problem

ϕ⋆cam = arg min
ϕ

t∑

i=t−h

Lc

( [
Pvas
Nvas

]
,


⊙RP

ϕ

(
M, pIM,i

)

⊙RN
ϕ

(
M, pIM,i

)

)
. (7.2)

The iterative search for the solution of (7.2) starts by initializing it with the pose
reconstruction obtained from the initial sparse graph-based pose reconstruction given
by the initial graph-based pose reconstruction ϕ̃cam. The accuracy of the point cloud-
based pose reconstruction is demonstrated in Figure 7.2b, which shows the coincident
patterns in high detail compared to the initial condition in Figure 7.2a.

7.1.2.1 Deformation

Subsequently, the camera perspective and deformation of the observed object are
reconstructed from the monocular camera image. However, distinguishing between
visual changes caused by changes in the camera’s position and those caused by object
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deformation is ambiguous without using additional sensors to capture the camera
trajectory. The analytical camera model (2.5) only applies to visual changes caused
by perspective changes. Object deformations, on the other hand, are generally un-
constrained and do not follow any specific model. For example, changes in the size of
patterns in the image plane could be due to a change in camera perspective or a self-
scaling deformation. Either way, camera movements generally proceed much faster
than deformation. As a result, the following empirical approach can be employed to
separate the influence of each on the observed image: First, changes in the observed
patterns on the image plane are resolved by adjusting the camera perspective. Then,
any remaining inconsistencies not accounted for by the camera model are resolved
by adjusting the model geometry.

In this manner, the discrepancy between observed and target patterns is attributed
to deformation effects. The spatial graph model is adjusted in advance using node-
based assignment reconstructions, as opposed to the geometry update covered in
Section 6.3. However, relying on a limited number of point assignments for the
similarity objective is insufficient, and outliers may compromise the overall recon-
struction. To enhance information quality and detail, the main vessel structures
are utilized, similar to the approach used in previous perspective reconstructions.
Skeletonized point clouds are processed based on their Chamfer distances to achieve
complete structural alignment, as outlined in problem formulation (7.2). Although
the vascular structures in the model MT, represented by Pvas, are exploited for ori-
entation, they cannot be directly guided by 3D spatial coordinates and associated
normals. Instead, the structures must be made coincident on the image plane by
adjusting the model’s geometry to match the patterns observed from the associated
camera perspective. However, the surface information cannot be directly transferred
to the image plane by the proposed rendering function, as the resulting point clouds
would be discretized in the image matrix, making gradients infeasible across pixel
locations.

The analytical camera model is used to map the structure-forming point cloud Pvas

to the image plane, similar to the global graph adaptation. However, analogously
to the camera reconstruction (7.2) there are no predefined point alignments of the
corresponding pattern. As such, the structure-forming points must be checked for
visibility before proceeding with any subsequent pattern correlation. Therefore, the
structure-forming point cloud Pvas is sorted depending on the distances to the image
plane while discarding obscured and unobservable structures. Once the visibility
check is completed, which in principle follows the Z-buffering procedure (2.13), the
checked points P⋆

vas are projected onto the image plane according to the analytical
camera model

p⋆vas = M(ϕcam,i)P⋆
vas, (7.3)

according to (2.5), to ensure differentiability. The Chamfer distance (7.1) is then
used to compare the distances between the structures represented by the point clouds
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p⋆vas and pIM. This ultimately leads to the formulation of the optimization problem

V⋆
G = V0

G + arg min
∆V

t∑

i=t−h

Lchf
(
p⋆vas, pIM

)
+L♢nor(M,M♢) +Ledg(M) +Llap(M), (7.4)

where VG co-determines the vertices positions associated with MT, as discussed in
Section 3.2.1.

The geometry adaptation, as discussed in Section 3.1.2, is subject to regularization
terms to prevent the optimization from becoming ill-posed. This robust loss design
applies to all vertices that are not covered by the primary supervision of the struc-
tural adaptation. The template mesh, M♢, guides the regularization of areas not
monitored by the primary pattern, ensuring that unsupervised regions of the model
do not deviate from the previous reconstruction. Moreover, the regularization losses
are scale-invariant, which allows any observed pattern scaling to be uniformly prop-
agated across the entire mesh. For further details, refer to Section 3.1.3.4, where
the inherent scaling is tested and discussed within the context of scaled silhouetted
image observations.

(a) Rendering with initial model geometry. (b) Rendering with adjusted model geometry.

Figure 7.3: Model renderings with extracted structures based on represented texture
in blue and extracted point cloud based on the structure of the target image in

red. The model geometry is adjusted to align with the respective pattern depicted
on the image plane.

To test the geometry adaptation, a synthetic distortion is imposed upon the struc-
tural discrepancy in accordance with the image distortion model, as depicted in
Figure 7.3a. As there is no remaining residual error after pose reconstruction for
the example shown in Figure (7.2b), a comparison is made between the observed
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(a) Texture model MT with skele-
tonized pattern.

(b) Geometry model VG with graph
pattern.

Figure 7.4: Model geometry resulting from the definition of texture-driven recon-
struction objective in respective model representations.

target structures and the undistorted structures within the model MT, as shown in
Figure 7.3a. The figure showcases the undistorted structures ( p⋆vas) and the tar-
get structures subjected to the synthetic distortion ( pIM). Figure 7.3b presents
the p⋆vas and pIM point cloud patterns arranged in a unified manner, demonstrating
the effective adaptation of the corresponding pattern courses. The error trajecto-
ries depicted in Figure 7.5 demonstrate a fast decrease of the Chamfer distance and
convergence behavior during the initial iterations.

Figure 7.5: Loss trajectories of
pattern-based geometry reconstruc-
tion.

However, it should be noted that there is a
small increase in regularization losses, as the
Chamfer distance enforces a non-uniform
distribution of the meshes, preventing any
invariant changes as outlined in the de-
sign of the regularization losses. The final
geometry adaptation is illustrated in Fig-
ure 7.4a for the skeletonized mesh represen-
tation MT, whereas the corresponding geom-
etry model MG is shown in the mesh plot in
Figure 7.4b.

It is worth noting that, in general, it is
technically infeasible to conclusively verify
whether the reconstructed geometry repre-
sents the correct geometry. The geometric
triangulation principle for monocular image
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data necessitates at least two images taken from two distinct perspectives. While
this requirement may be met in specific formulations, it is not guaranteed in reality,
as ongoing deformation between images would invalidate the reconstruction. In its
most general formulation, the proposed reconstruction pipeline processes only one
observation per iteration to be able to respect deformation in between multiple ob-
servations. Despite the limitations imposed by using only one image observation for
geometry reconstruction, the resulting reconstruction is deemed sufficiently accurate,
as it is demonstrated in Section 7.2.2 through the evaluation with additional depth
measurements.

Update Global Graph Model. Once the camera position is reconstructed and the
geometry is matched to the currently observed pattern, the remaining task is to
update the global graph model GG with the patterns from the current image obser-
vation that are not included in the current representation of GG. The graph editing
policy, as presented in Section 6.3.2, is employed for the respective model update of
GG for Gi. The resulting editing policy π⋆(G⊖G) → Gi is used for the pattern update
according to (6.16). The update for GG is given by the insertion and respective
deletion operations resulting from the specified editing policy π⋆.

As new edges are inserted and existing edges are re-detected during the update pro-
cess, the corresponding re-occurrence rate arec for each edge is updated in accordance
with (6.17). The re-occurrence rate, defined for all edges in (6.14), determines which
structures can be regarded as significant and reliably re-detectable, thereby enhanc-
ing the matching procedure. Consequently, only structures that have achieved at
least the required re-occurrence rate a⋆rec are deemed reliable. Simultaneously, pat-
terns failing to meet this criterion are eliminated as potential matching candidates.
This helps to prevent the graph from becoming overfilled, as outlined in Section 6.3.2.

Update Texture Model. The established graph editing policy π⋆ facilitates the up-
date of the individual texture pattern pE analogously to the corresponding graph
edges E. This process involves removing prior pattern information that corresponds
to the updated structure from the texture model MT. In addition, through the edge
extraction process for each edge e, the corresponding pixel set pe is linked, which
encodes the respective pattern course. This enables the reassignment of feature
information, represented by ce, related to pe to the feature space CMT according to

⊙RC(
MT, pe, ce

) 7→ CMT . (7.5)

In analogy to the proposed pattern update (7.5), respective pattern information can
be inserted or removed in MT for a given edge e if a repeated recognition or non-
recognition of the individual edge information is detected for a new pattern structure
that does not correspond to the model representation. Therefore, a binary repre-
sentation is used to represent either the existence or non-existence of the structure.
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7.2 Experimental Validation of the Rendering-based Scene Reconstruction

(a) Sphere with painted
structure.

(b) Cystoscope with motion
markers.

(c) Work space of the opti-
track system.

Figure 7.6: Experimental test set-up to validate pose and texture reconstruction.

Thus, edge-specific information is added or removed from the texture representa-
tion CMT if the respective edge information is detected or not detected within the
required recurrence rate a⋆rec.

Accordingly, a given structure pe observed in the image plane can be deleted in the
model representation by the feature update by setting ce ≡ 0 for non-existence and
ce ≡ 1 for existence, following (7.5). In this way, the texture model can be continu-
ously updated without inadvertently deleting reliable structures or unintentionally
adding unclear structural observations during poor image acquisition. As a result,
the information value of the texture model is preserved, providing reliable pattern
information for an accurate scene reconstruction while overcoming intraoperative
challenges.

7.2 Experimental Validation of the Rendering-based Scene
Reconstruction

The challenge of simultaneously validating pose and geometry variations on the im-
age observation highlights their interdependent impact. To evaluate the performance,
the problem is separated, and the camera reconstruction and geometry matching are
independently validated in separate experiments. In Section 7.2.1, image observa-
tions are used to reconstruct the pose and texture of a rigid environment model.
In Section 7.2.2, the texture and geometry adaptations are compared with depth
measurements obtained from a fringe projection sensor for a given camera pose.

7.2.1 Validation of the Camera Pose Reconstruction

The objective of this experiment is to reconstruct the perspective from a captured
image sequence and its corresponding pattern representations, as described in the
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Figure 7.7: Reconstructed graph patterns in the form of global graphs GG are shown
on the model surface MG. The corresponding reconstructed camera position for the
observation is shown in grey, and the measured trajectory by the Optitrak system
is shown in purple.

proposed reconstruction pipeline. Therefore, an 18 cm diameter sphere with artificial
vascular texture on its surface is considered as a test object. The sphere is shown in
Figure 7.6a.

The proposed reconstruction pipeline employs sparse image data for the entire re-
construction process. Specifically, the raw video data is sampled at 2.5 s intervals.
This results in a sparse dataset of 25 images that is used for the validation of the
proposed pose reconstruction. In Section 6.2, Figure 6.5b illustrates a pair of sub-
sequent images of the spherical model, used as an example in the proposed graph
matching procedure for outlier removal.

To assess the accuracy of the reconstructed camera poses, a comparison is made
with externally tracked pose positions obtained using an OptiTrack system. The
OptiTrack system employs infrared cameras and reflective markers to precisely track
objects in 3D space. As illustrated in Figure 7.6b, markers are mounted on the
endoscopic camera to make the stable detection of reference points on the tracked
endoscope possible. The system consists of six independent cameras that triangulate
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the redundant detections in the camera recordings to determine the 3D position of
a marker. The overall setup is shown in Figure 7.6c and enables a tracking accuracy
for each of the mounted markers within 0.1 mm. The kinematic camera model, as
described in Section 2.1.8, is utilized to compute the respective endoscope pose
using the redundant marker positions. Figure 7.7 displays the measured course of
an manually followed arbitrary trajectory along with the camera poses reconstructed
from the observed camera images.

The experiment aimed to evaluate the accuracy of reconstructing the perspective of
an image sequence using a synthetic model with a working range of 85 cm × 85 cm.
The total accuracy of the absolute position is satisfactory, with an average error of
0.65 cm. However, the rotational angles show deviations in the range of 6◦, indicating
a lower level of success. Nonetheless, the method validates its principle despite the
relatively high level of reconstruction error.

Increasing the image resolution is presumed to improve the precision of pose re-
construction. With higher resolution, the landmark information is more accurate,
leading to increased precision. It should therefore be noted that the current resolu-
tion of 256 × 256 pixels significantly limits the overall reconstruction precision.

7.2.2 Experimental Validation of the Geometry Reconstruction

To validate the proposed geometry reconstruction for a real-world application, the
monocular image-based geometry reconstruction is compared to an externally mea-
sured depth map. A balloon is used as a deformable test object whose volume can be
manipulated by inflating or deflating it with water. A water pump is implemented
to control the flow rate to test the geometry reconstruction for different levels of
deformation. The setup shown in Figure 7.8 captures the balloon with a tested max-
imum volume of 1.6 L. Additionally, the homogeneous balloon surface is textured
to approximate vascular structures and to provide unique landmark information for
the reconstruction targets.

To evaluate against the proposed monocular image-based geometry reconstruction,
a fringe projection sensor is used to measure the deformation. The sensor setup
consists of an endoscopic camera pointed at the object, with the fringe projector
installed at an angle to the camera. The fringe projector illuminates the object’s
surface with a series of regularly spaced stripes, which the endoscopic camera records
from a different viewpoint. Depth information is calculated from the captured image
by applying the triangulation principle to the predefined light pattern and the ob-
served pattern. The stripe patterns projected onto the object surface intersect with
those observed by the camera, enabling the determination of corresponding depth
information for each pixel in the camera plane. It is worth noting that the fringe pro-
jection sensor employed in this setup is specifically designed for non-contact depth
scanning in intraoperative applications, as outlined in [133].
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Figure 7.8: The experimental setup involves a camera, a rigid projector, and a balloon
used as test object. The object’s surface is illuminated by a small projector installed
at an inclined angle to the camera, projecting a fringe pattern that encodes the 3D
shape into the image data. [113]

A measurement observation, denoted as O, consists of a data pair O = {I , D}, where
the color image I and the corresponding depth map D are at the same resolution
and depict the same scene and perspective at the same time.
Figure 7.9a displays the observation of the balloon in its undeformed state as Oud =

{Iud, Dud}. The respective image observation Iud is shown in Figure 7.9a, which
displays the projection patterns on the surface of the balloon captured in the camera
image. The corresponding reconstructed depth map Dud is shown in Figure 7.9b.
Furthermore, the experiment involves deflating the balloon to a specific volume,
resulting in a decrease in volume and a corresponding deformed observation tuple
Odef = {Idef, Ddef}. The image data Idef is displayed in Figure 7.9c, which shows the
projection patterns on the surface of the deformed balloon captured in the camera
image. The corresponding depth map measurement Ddef is shown in Figure 7.9d.
As the camera perspective is fixed, any observed variation in the image between pre-
and post-deformation observations can be attributed solely to the object’s deforma-
tion. Thus, in the proposed reconstruction procedure, it is assumed that the camera
perspective remains constant, and the sphere geometry is initially aligned with the
depth measurements to facilitate the comparison of the reconstructed geometry with
the measured depth-map data. Therefore, the depth map is transformed into a spa-
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(a) Iud (b) Dud (c) Idef (d) Ddef

Figure 7.9: Observation of experimental data, including balloon surface in unde-
formed state Oud = {Iud, Dud} and in the deformed state Odef = {Idef, Ddef}, where
each observation contains the corresponding image observation I and depth map
data D.

(a) Depth map measurement vs. model cor-
respondence.

(b) Point cloud differences observed before
and after geometry adaptation.

Figure 7.10: A geometry model is fitted to the measured surface point cloud, where
the corresponding depth information from the depth map is referred to the 3D space
based on the given observation perspective.

tial representation where each pixel in the depth map and its corresponding image
have a corresponding spatial point cloud representation, as respectively shown in
Figure 7.10b and Figure 7.10a.

Each pixel in the image I or value in the depth map D is mapped to a corresponding
point cloud representation P on the mesh surface of MG by ⊙R

(
MG,ϕcam,Iud

) 7→
Pud, allowing for a direct comparison between the measured depth information Dud
and the given surface geometry of MG. This leads to the objective of adapting
the mesh vertices to minimize the deviation between the mesh geometry and the
corresponding 3D positions of the depth map. In Figure 7.2a, the depth map is
depicted in relation to the camera’s position in 3D space, along with the mesh
geometry adapted by the reconstruction, as described by (7.4). Once the initial
proportions of the geometry are reconstructed, the initial texture observation is
applied to the initial mesh geometry following (7.5).
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As outlined in Section 7.1.2.1, the geometry reconstruction adjusts the model’s ge-
ometry to match the pattern of the new image observation given an initial model
representation. The goal of the geometry reconstruction, as defined by the objec-
tive (7.4), is to establish a correspondence between the observed patterns of the
model representation and the structures observed on the image plane.

Figure 7.11: Geometry adaption
of MG to the initial observation
Ddef.

The initialized model MT is rendered with the
initial image observation, shown in Figure 7.12a,
where extracted structures from the second obser-
vation, Odef = {Idef, Ddef} are overlaid in red for
comparison. The respective image Idef of the de-
flated observation is shown in Figure 7.12b. The
adapted model’s rendering in the adapted geome-
try is depicted in Figure 7.12c. The resulting cor-
responding pattern of the model structure and the
observed target structure of the deformed observa-
tion demonstrates consistent and satisfactory re-
sults. The resulting overall geometry adaptation
in 3D is depicted in Figure 7.11. The structures
provide reliable monitoring of the reconstruction
problem for the comparatively large geometry de-
formation. Remarkably, the image pattern pro-
vides reliable landmark information, even in the presence of interferences caused by
observed light patterns.
The objective of evaluating the geometry adaption is to assess the accuracy of the
mesh geometry beyond a qualitative assessment given by the coincident structure
pattern observed on the image plane. Therefore, the inverse rendering function is
used to sample the mesh geometry, assigning a geometry point from the mesh to each
measurement point, as shown in Figure 7.10b. This allows for the calculation of the
corresponding error measure. Furthermore, the differences between the point clouds
of the depth map measurement and the sampled model geometry are depicted in
Figure 7.10b. The precision of the reconstruction of the depth information compared
to the measured depth information lies within ±1.1 mm.
The effectiveness of the scale-invariant regularization design can be evaluated by
measuring the deflated fluid volume, which allows for the determination of how well
the observed deformation in the image data is represented in the overall model. In
the case presented, the drained fluid volume was found to be 400.28 mL using a weight
scale corresponding to a volume change of 9%. When comparing the mesh volume
before and after deformation, a change of 7% was observed. Although this yields only
a rough estimate, it serves to validate the practicality of the regularization design in
real-world scenarios, particularly in cystoscopic applications that have inspired its
specific design.
In conclusion, the proposed monocular geometry reconstruction technique yields
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satisfactory results for the tested use case, although accurately reconstructing ge-
ometry ratios from a single image observation is in general an ambiguous problem.
It is important to note that the validity of the experiment is limited to the specific
experimental setup, and the determined accuracy cannot be generalized to other
observation perspectives. However, the proposed approach allows for the reconstruc-
tion of precise geometry ratios from multiple consecutive images in a partially rigid
environment. This is accomplished by integrating additional sensor measurements,
assuming that no deformation occurs between observations.

(a) unadapted 2D model ob-
servation.

(b) deformed pattern observa-
tion

(c) adapted 2D model obser-
vation.

Figure 7.12: The geometry of the mesh geometry model MG is adjusted to match the
structure patterns of the deformed observation Idef on the image plane, from the
given observation perspective, exploiting the structures contained within the texture
model MT

7.3 In-Plane Deformation

In the following, the flexibility of the framework is demonstrated by incorporating
additional external measurement data for multi-sensory reconstruction of deforma-
tion effects. Specifically, depth information, previously used for validation in the
preceding section, is combined with visual camera image data to achieve a unified
geometry reconstruction. This approach ensures an unambiguous geometry recon-
struction and requires data acquisition at only one observation time. Furthermore,
the concept of in-plane reconstruction is introduced, which holds significant value
in the context of intraoperative classification and highlights the potential of the
proposed methods for real-world applications.

To provide a brief background on the problem description and in-plane reconstruc-
tion, reference is made to the main approaches discussed in Section 7.3.2. An exper-
imental evaluation and discussion are presented in Section 7.3.3.
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7.3.1 Motivation for the Field of Application

It is well-established that tumors tend to be stiffer than healthy tissue due to vari-
ous factors, such as an enhanced cross-linking of the extracellular matrix. However,
surgical palpation during minimally invasive surgery is constrained by limited inter-
vention space and mechanical leverage effects, as discussed in the limitations of en-
doscopy in Section 1.1.2. To overcome this constraint, specialized sensors have been
developed to measure tissue stiffness and offer the surgeon a more comprehensive
understanding of tissue abnormalities. One such sensor concept [133] is developed
at the Institute of Applied Optics [44]. This sensor principle [133] involves applying
a predetermined force to the tissue and measuring the resulting deformation with a
fringe projection sensor to ascertain the stiffness of the material. In this manner, a
strain matrix can be derived by comparing the measured depth map distribution be-
tween successive observations. This strain matrix encodes the distribution of tissue
stiffness and holds the potential to facilitate intraoperative tissue classification and
diagnosis.

By comparing successive depth map measurements, the fringe projection sensor mea-
surement facilitates the evaluation of the material’s deformation in the longitudinal
direction, which is in reference to the camera’s principal axis. However, in-plane
deformation, which refers to the change in the dimension in a plane that is per-
pendicular to its normal axis, has not received much attention for intraoperative
scenarios. For instance, evaluating the depth map measurements of an object sur-
face with changed geometry rations may appear in the same shape. This similarity
can make it difficult to detect in-plane deformation using the majority of existing
sensor principles, as illustrated in Figure 7.13.

in-plane

lo
ng
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ud

in
al

tissue

deformation

Figure 7.13: Problem description of observability of in-plane strain. The shape of
the tissue can be observed equally for different deformations in-plane. In plane
deformation is not observable by evaluating the depth profile. Confer with [113].

This work presents a novel method for detecting in-plane deformations by fusing
depth-map sensor measurements with observed image data. The approach involves
a gradient-based reconstruction formulation that utilizes depth information and vi-
sual data simultaneously to identify and quantify in-plane deformation. The depth
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measurement supervises the geometry adaptation, while the visual data matches
corresponding landmark features to infer in-plane deformation. By comparing re-
constructed geometries in different states, the distribution of in-plane strain can be
determined. This presents a promising technique that offers a new way of identifying
tissue abnormalities during surgery.

7.3.2 In-Plane Reconstruction Scheme

The author has partially published the proposed approach for in-plane strain recon-
struction using the methods discussed and developed in this work in [113]. The pro-
posed concept focuses on assessing the geometric changes between two consecutive
observations, specifically Oud = {Iud, Dud} and Odef = {Idef, Ddef}, which represent
the states before and after deformation, respectively. The reconstruction process
consists of three primary steps, as illustrated in Figure 7.14:

1) Initialization: The model’s shape and texture are adjusted to correspond
with the measurements of the initial observation Oud in the undeformed
state.

2) Adaptation to Deformed State: The image and shape information are aligned
to match the deformed observation state Odef. During this model adaptation,
only the geometry parameters are taken into account.

3) Decoding In-Plane Deformation: The in-plane deformation is decoded by
comparing the model’s geometry before and after the adjustment and by
evaluating the relative change in length for the corresponding mesh edges.

For scene reconstructions, the camera position is considered fixed in this set-up to
limit the complexity. Thus, the multi-criteria reconstruction problem is formulated
as

M
⋆
= arg min

M
∥IM(M) − ID∥2︸             ︷︷             ︸

LI(M)

+ ∥PM(M) − PD∥2︸              ︷︷              ︸
LG(M)

+Lreg(M) . (7.6)

This formulation follows the general form of geometry adaptation in (7.4), and it in-
corporates the depth map data D to supervise the geometry adaptation between the
model and the depth map measurement. The image similarity loss, LI(M), is based
on the Euclidean distances between each pixel’s intensities, while the geometry loss,
LG(M), quantifies the deviation between the model representation M and the depth
map measurements D. The geometry regularization loss, Lreg(M), is a combination
of the regularization designs from (3.5), (3.6), and (3.7).

To guide the geometry adaptation, for every pixel on the image plane, intersection
points on the mesh surface, denoted as Pm, are determined by utilizing the inverse
rendering function represented by (4.8). This helps to depict the current shape of
the mesh. By using the camera’s calibration matrix and the evaluated pose θcam,
the captured depth map, labeled as Ds, can be transformed into a 3D point cloud,
termed as Ps. The geometry loss LG, quantifies the disparity between these two point
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Figure 7.14: Proposed in-plane strain reconstruction concept. First, the model M
is fitted to observation Oud = {Iud, Dud}, encompassing both shape and texture.
Post deformation, this observation Odef = {Idef, Ddef} is compared with the synthetic
model data Õ. The goal is to modify the model’s geometry to match the synthetic
model Õ after deformation. The model’s reconstruction before deformation is de-
noted as Õud, and the one after deformation is represented as Õdef. Confer with
[113].

clouds, Ps(Ds) and Pm, and is calculated based on the spatial distance between both
sets of points.

Through the loss design LG(M), the geometry adaptation is supervised directly on
the mesh surface. This approach contrasts with conventional methods that rely on
depth map comparisons in the image plane. Further, the inverse rendered point
correspondences P ( fID, uv) can be parameterized by respective face IDs fID and
barycentric uv values. This inherently allows for the spatial point cloud update
P⋆

(
M⋆

G,
{
fID,init, uvinit

}), which remains consistent with the mesh surface for any ge-
ometry adaption of M⋆

G. The geometry invariant surface parameterization is crucial
for the initialization of the model for the first observation data. It allows for the
simultaneous adaptation of the model’s texture and geometry in the first observation
with fixed correspondences for the mesh MG to the depth map data Dud. As previ-
ously discussed in Section 3.3, the simultaneous supervision of texture and geometry
on the image plane reveals an ambiguous reconstruction problem. In the first itera-
tion, the inverse rendering function (4.8) is applied to determine the respective face
IDs fID,init and uvinit values of the intersection. Then, in any subsequent iterations,
the determined surface point cloud P can be updated by adapted geometry M⋆

G.
This is possible as the correspondences of the respective fID,init and uvinit values are
consistent. Therefore, the 3D point cloud information P

(
fID,init, uvinit

) is encoded by
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deformation invariant mesh parameters fID,init and uvinit, making the simultaneous
geometry and texture adaption well-defined.

In the second adaptation, the texture of the previously initialized model is held
constant and not part of the optimization process. Instead, only the geometry pa-
rameterization of MG is considered as the variable parameter space and optimized
to simultaneously match the image and geometry data of the post-deformation ob-
servation Odef = {Idef, Ddef}. During optimization, the inverse rendering mapping
is applied at each iteration to recalculate the surface point cloud. This step pro-
vides the necessary flexibility to accurately represent in-plane deformation in the
reconstruction of MG for the observation Odef.

7.3.3 Experimental Evaluation

The experimental discussion of the reconstruction process is based on the balloon
experiment, which utilizes the same setup as the validation in Section 7.2.2. The
experiment simulates large volume changes by inflating and deflating the balloon
with water. Additionally, the concept is applied to pig bladder tissue to demonstrate
its real-world potential and the challenges it poses.

7.3.3.1 Geometry Reconstruction based on a Balloon Deformation

As a recapitulation of the test experiment introduced in Section 7.2.2, the balloon is
observed in its undeformed state at 400.28 mL. The volume is subsequently reduced
by 9% to a final deflated volume of 372.28 mL. The initial volume of 400.28 mL serves
as the undeformed reference observation Oud, while the deflated volume presents the
corresponding deformed observation Odef of the object surface. [113]

The camera and depth map measurements used in this experiment are consistent
with those considered in Section 7.2.2. Figure 7.9 shows the corresponding exper-
imental set-up. The observation of the supervised pattern correspondences on the
image plane are observed similarly as the pattern observation based on a purely
image-based geometry reconstruction. As a result, the respective outcomes are es-
sentially observed as the same, making it necessary to refer again to Figure 7.12c.

The outlined reconstruction process is applied to the undeformed observation Oud,
where the resulting model reconstruction Mud is subsequently adapted to the de-
formed observation Odef, which is represented in the geometry model Mdef. Based on
the respective model reconstructions, the in-plane strain distribution ϵM =

Mdef−Mud
Mud

is calculated as the ratio of the difference between the respective model reconstruc-
tions Mud and Mdef. The resulting strain distribution ϵM is shown in Figure 7.15.
The visualization indicates that the majority of the mesh undergoes contraction,
which is consistent with the characteristics of the homogeneous latex material of the
air balloon. Furthermore, the deformation extends to areas outside the observed
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Figure 7.15: Reconstructed geometry Mud for the balloon experiment is shown after
deformation in observation Odef. To encode the relative in-plane strain distribution,
the edges of the reconstructed geometry are color-coded: red for expansion and blue
for contraction. This color-coding is based on the change in length of the edges
relative to the geometry reconstruction Mud in the undeformed stage. The in-plane
strain distribution is then evaluated as ϵ = Mdef−Mud

Mud
. [113]

region due to the regularization design, which promotes uniform edge lengths. On
average, the edges exhibit a 12% change in length. The change in volume can con-
firm the corresponding change in strain if the balloon is approximated as a hollow
sphere. Therefore, the circumferential strain ϵC =

∆C
Cud

is given by the relative change
of the circumference ∆C = ∥Cud −Cdef∥ with respect to the initial circumference Cud,
or correspondingly, by the relative change of the radius ∆r = ∥rud − rdef∥ with respect
to the initial radius rud as the relation between the circumference C and the radius
r are given by C = 2πr. Moreover, the relation between the circumference C and vol-
ume V of a sphere is C = 2π(( 3V

4π )1/3). This leads to a relative change of circumference
ϵC = −23% for a −9% change in volume. The reconstructed in-plane distribution with
an average of ϵav = 0.18 is comparable in magnitude. Supplementary techniques such
as landmark registration and increasing the mesh and image resolution are expected
to further improve the accuracy of the method. Nevertheless, the experimental setup
is considered promising and demonstrates the in-plane reconstruction concept.

7.3.3.2 Geometry Reconstruction for Deformed Tissue of a Pig Bladder Sample

The reconstruction approach is based on identifying corresponding landmark fea-
tures, which can be challenging in real-world scenarios. For instance, determining
and assigning intraoperative landmarks for ex-vivo bladder tissue samples, as shown
in Figure 7.16a, can be difficult due to the tissue’s hardly visible vascular struc-
ture and shiny surface texture. To overcome this limitation during testing, visible
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landmarks are manually identified in subsequent tissue recordings. Although this
approach acknowledges the limitations of manual determination of associated land-
marks, it provides a solution and highlights the potential for more realistic data. The
method involves using an air jet to induce deformation in a pig bladder’s flexible tis-
sue, and the object’s texture can be observed in both configurations Oud = {Iud, Dud}
and Odef = {Idef, Ddef}, as seen in Figure 7.16. The dent created by the air-jet is
located on the left part of the deformed observation in Figure 7.16b.

(a) unadapted 2D model ob-
servation.

(b) deformed pattern observa-
tion

(c) adapted 2D model obser-
vation.

Figure 7.16: Geometry reconstruction MB for the balloon experiment at stage B after
deformation. The edges are shaded based on the variation in length when compared
to the geometry during phase A. This illustrates the relative distribution of in-plane
strain, calculated as ϵ = MB−MA

MA . Confer with [113]

Figure 7.16c shows how the model adaptation matches the landmark information to
the target localities on the image plane. In certain areas, the model surface lacked
identifiable features because of bright light reflections seen in the images. Conse-
quently, the in-plane reconstruction in these areas remains ambiguous. This study
presents valuable findings on the proposed in-plane strain reconstruction methods
for real-world applications, while also highlighting their current limitations and fu-
ture potential. The findings emphasize the importance of reliable intraoperative
landmark identification and suggest promising research directions for future work in
this area. Additionally, the results of this study demonstrate the broader potential
of the proposed methods for a range of other applications beyond in-plane strain
reconstruction.

7.4 Summary & Conclusion

In this chapter, the various methods discussed and introduced in this thesis were
integrated into a comprehensive reconstruction pipeline. This pipeline addresses the
intraoperative challenge of localization and scene reconstruction in the context of
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deformable environments. In its most general form, the reconstruction pipeline was
formulated on the premise of requiring only a single monocular image observation.
To this end, a separation approach is followed in which any changes in the image
that cannot be attributed to camera position are attributed to changes in geometry.
The initial step of the proposed reconstruction pipeline involves reconstructing the
pose through landmark detection, utilizing graph-based methods for robust and effi-
cient solutions. Subsequently, accuracy is enhanced by incorporating visible pattern
matching, leveraging the strengths of each method to compensate for their respective
limitations. The graph-based reconstruction provides a lightweight, robust solution
that is independent of the initial camera location, enabling the observation of all
patterns encountered so far. To account for potential inaccuracies, the Chamfer dis-
tance is used in matching all patterns at each iteration step, eliminating the need
for pre-determined landmark correspondences. The method also leverages the en-
tire pattern course to increase accuracy through gradient-based methods. Then, the
model geometry is adapted to resolve discrepancies in previously measured structures
that could not be resolved solely through adjustments in camera pose reconstruc-
tion. New structures observed in the image acquisition that are not yet represented
in the model are incorporated into the model through the editing procedure that
avoids overwriting any previously established patterns. Reliable visible patterns are
strengthened through appropriate weighting, thus reinforcing the overall reliability
of the solution. For validation, the proposed reconstruction framework was tested
based on two separate setups to evaluate the effectiveness of camera pose reconstruc-
tion and geometry reconstruction independently. Camera pose reconstruction was
validated by measuring the kinematics of a camera using an external optical system.
A rigid sphere with visible structures was used as test object. The reconstructed
camera pose was compared to the OptiTrack measurements. The respective pose
reconstructions exhibited an average deviation of 10 mm to the measurement, which
can be attributed to the resolution of the image data and the quality of the landmark
information. Geometry reconstruction was validated through external measurement
of a balloon’s geometry using a fringe projection sensor. The results of this experi-
ment revealed a reconstruction error of 1.8 mm in depth, which is a highly satisfactory
level for the targeted intraoperative application. Expanding on the validation of ge-
ometry reconstruction, an in-plane reconstruction concept was introduced, which
embeds the measured depth map data into the reconstruction formulation. In addi-
tion to its methodological significance, this approach addresses the critical issue of
in-plane deformation reconstruction. The effectiveness of this approach is evaluated
by comparing the mesh length between two consecutive observations of an object’s
surface. The results show great promise for real-world applications, particularly in
determining tissue stiffness distribution and identifying hardened tissue boundaries
such as tumor margins.
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Conclusion 8
In this thesis, a comprehensive strategy was introduced for reconstructing camera
perspective, geometry, and texture information from a single image observation in
dynamic intraoperative environments. The proposed processing pipeline was moti-
vated by the specific challenges encountered during cystoscopic interventions. The
reconstruction framework is based on gradient-based optimization, aiming to adapt
the model representation to the most recent camera observation. Essentially, the
concepts of differential rendering and graph-based landmark extraction and mapping
techniques were employed and developed to address the complexity of the problem
and the robustness requirements of intraoperative challenges.

8.1 Summary and Contribution to the State-of-the-Art

The main contributions of this work to the state-of-the-art arise from the method-
ological contributions around the problem of intraoperative scene reconstruction for
deformable environments. In contrast to prevalent reconstruction concepts in the
literature, a different perspective on the problem of localization and scene recon-
struction has been taken. The design of a differential rendering mapping allowed for
the general objective formulation: How does the model representation have to be ad-
justed in terms of geometry, texture, and viewing direction of the camera model such
that the rendered image approximates the actual image observation? Nevertheless,
the reconstruction of the geometry, pose, and texture information presents a signifi-
cant challenge as the deduced optimization problem is commonly over-determined.

A significant contribution of this work is the reformulation and separation of the
ill-posed optimization problem into well-defined reconstruction problems, allowing
for model reconstruction from monocular image observations. A workflow has been
proposed to reduce complexity by performing pose, geometry, and texture recon-
structions sequentially. Therefore, a triangle mesh has been used as the initial model
representation, leveraging a subdivision strategy to allow for high texture resolution
while maintaining a geometry representation at a manageable complexity. Following
the proposed separation strategy for reconstruction, the model is initialized by the
image patterns of the first observation. For any subsequent observation, the cam-
era perspective is adjusted such that the rendered structure matches the structures
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of the current observation. In this manner, any discrepancies that could not be
eliminated by adjusting the camera perspective are then attributed to deformation
effects. Furthermore, by adjusting the model geometry, the synthetically rendered
image patterns of the model in the image plane can be brought to coincide with the
current pattern observation. Finally, with the adapted geometry ratios, patterns de-
tected in the current observation that were not previously represented in the model
can be appropriately updated. Based on the represented pattern, any subsequent
observation can be aligned to the pattern courses represented in the model represen-
tation. However, it could be shown that the alignment of the corresponding pattern
based on image intensities is likely to result in a sub-optimal solution.

To meet the real-world challenges, a two-stage pose reconstruction method was pro-
posed. Specifically, to enhance the information content, the first processing stage
of the pose reconstruction method relies on predetermined landmark point matches
between the model pattern and the current image pattern. This ensures a fast and
reliable, albeit approximate, solution for pose reconstruction. In the second stage,
the accuracy of the reconstructed pose is improved by matching the entire pattern
profiles instead of relying solely on a subset of predefined point matches. To identify
the necessary point matches, the visible vessel structures are extracted as graphs to
obtain robust landmark information.

A graph extraction method was presented to encode unique pattern descriptions
for each image observation. Graph features were then matched according to their
descriptor similarities. Consequently, a structure-preserving descriptor design was
introduced to describe these patterns while considering their spatial dependencies
robustly. Furthermore, the graph representation was incorporated into the overall
model, which allowed for updates to the spatial similarity descriptions using the
most recent observations. This approach ensures that corresponding features remain
updated and applicable even under changing geometric constraints.

Despite the efforts that have been undertaken to make the descriptors as unambigu-
ous as possible, outliers in the set of similarity matches are generally unavoidable.
Therefore, a new - deformation invariant - SbOR outlier classification algorithm
for intraoperative scenes was presented by employing the vascular structures. The
proposed outlier detection is based on the assumption that blood vessels must main-
tain their structural interconnection regardless of deformation. Given this principle,
blood vessels cannot suddenly re-intersect and change their connectivity due to de-
formation. To validate the proposed structure-based outlier detection, a synthetic
dataset was generated where image distortions artificially induced the deformation
effect. It could be shown that the proposed outlier method reliably detects outliers
with an accuracy of 94% compared to the given ground truth, regardless of the sever-
ity of the deformation. In contrast, the conventional RANSAC outlier classification
fails even for moderately distorted image pairs. Nevertheless, the matches that pass
the SbOR outlier detection may still contain a small number of undetected false
matches. Specifically, the proportion of outliers matches but legitimate alignments
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according to the SbOR check was less than 5%. However, the pose reconstruction
may also be disturbed by the landmarks’ inaccuracy, originating from the graph
extraction. As stated, the point matches have proven to result in well-conditioned
reconstruction objectives. Nevertheless, due to the inherent uncertainties, the result-
ing pose reconstruction is only to be considered as an initial approximation of the
respective pose.

The proposed reconstruction framework enhances approximation accuracy through
subsequent pose reconstruction by integrating information from the entire pattern
space. In this method, pattern courses are represented as point sets, allowing for
determination of similarities between the model and current observation based on
distance measures between given point cloud data, eliminating the need for prior
registration. Additionally, pattern differences are defined directly on the model
surface, considering both 3D positions and normal orientations.

Therefore, this work presented the concept of inverse rendering, which enables the
back-projection of 2D observations onto the 3D model surface in a differentiable
manner. While the conventional differentiable (forward) rendering approach facili-
tates differentiation of pixel intensities, the proposed inverse differential rendering
process transfers 2D information onto the 3D scene model in reverse. Furthermore,
utilizing spatial information derived from the inverse rendering process has been
demonstrated to result in more robust pose reconstruction compared to relying solely
on image-based landmark information associated with the image plane.

The proposed inverse rendering concept is designed by spatially aggregating mul-
tiple auxiliary points. The distributed auxiliary points are combined based on a
weighted average design, which facilitates the differentiation of the aggregated sur-
face information. Moreover, the spatial point distribution and weight design mainly
determine the differentiability. Consequently, the control parameters were evaluated
based on their influence and performance in pose reconstruction using the inverse
rendering design. However, a high dispersion of the auxiliary point distribution can
cause noise in the sharpness of the back-projection image while also accelerating the
convergence. Nevertheless, it was observed that the proposed method exhibits satu-
ration, indicating that increasing the variance of the distribution design indefinitely
would not contribute to the overall solvability of the problem. For geometry recon-
struction, the model is adapted to reduce the discrepancy between corresponding
image patterns. However, the geometry adaption can be challenging as unobserved
occluded faces can alter arbitrarily without affecting the image-based optimization
objective. To address this issue, regularization losses were introduced to ensure the
stability of the reconstruction process. Particularly for intraoperative applications,
a template-based mesh regularization concept was proposed to guide the orientation
of unobserved regions to previously observed patterns to preserve the overall shape
of unsupervised areas. Furthermore, the proposed regularization is scaling-invariant,
ensuring that an observed scaling ratio in the image plane propagates throughout
the entire geometry reconstruction, even for unobserved surface areas.
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For pattern representation, a combination of graph representation and skeletonized
pattern structure was exploited to achieve robustness and accuracy simultaneously.
The graph representation provides simplicity and robustness through graph match-
ing, while the representation of entire pattern profiles ensures the necessary resolu-
tion. However, directly transferring the established matches of currently observed
patterns to the model presentation may overwrite previously seen patterns in the
texture representation. Moreover, unmapped structures may be transferred in the
graph representation, potentially leading to duplication in the global graph represen-
tation in the case of unrecognized matches. To address this, a processing strategy for
the graphs was proposed to identify differences in the structures beyond the detected
matches. Based on this strategy, the graph and skeletonized structures belonging
to a graph edge can be updated in the global graph and texture map. Moreover,
additional detection features have been introduced to reduce the structures to the
most reliable and recognizable components for matching. Within the overall re-
construction problem, robust and well-visible patterns are reinforced, ensuring that
small, irregularly observed structures are suppressed and do not negatively impact
the overall reconstruction process.

8.2 Discussion and Limitations

Distinguishing between changes in a monocular image resulting from a shift in cam-
era perspective and those resulting from deformation effects is not feasible without
supplementary sensor information. However, the approach adopted in this study of
adjusting the camera pose first and then resolving any remaining error by adjusting
the geometry is suitable for the given application. This is because camera movements
typically occur more quickly than intraoperative deformation effects. Additionally,
any change in image observation caused by a change in camera perspective must
adhere to the camera model, while deformation effects can cause arbitrary nonlin-
ear distortions in the image plane. Nevertheless, the reconstruction concept can be
easily extended by adding external position information and is not limited to using
monocular images alone.

It is important to emphasize that a single monocular image observation does not
necessarily provide a veracious depth reconstruction due to inherent physical limi-
tations. Nevertheless, by accumulating observations of the same scene from varying
viewpoints, depth information can be calculated through the geometric triangulation
of feature points. If deformation occurs between successive observations, this pro-
cedure can become problematic. For an automated documentation and registration
algorithm, the actual spatial precision may not be decisive; however, it is crucial
to ensure that the current model observation aligns with the current observation.
This issue was addressed in this work by presenting a comprehensive reconstruction
pipeline. The adaptive model representation is able to accurately reflect what is
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visualized to correctly re-register the intraoperative observations and measurement
data in the model with the appropriate surface positions.

The reconstructed geometry was compared to external depth map measurements
obtained by a fringe projection sensor for experimental validation. The experiment
demonstrated the effectiveness of reconstructing geometry ratios based on a single
monocular image observation. Specifically, a monocular image observation was used
to reconstruct the geometry of an air balloon with an 80% decrease in volume, achiev-
ing a geometric accuracy of 94% when compared to external depth measurements.
However, it is essential to note that the validity of this accuracy is limited to the
specific experiment and the image resolution of 256 × 256 pixels utilized. Neverthe-
less, the experiment highlights the concept’s efficacy, which is considered sufficient
for a wide range of applications.

In its most general formulation, the presented reconstruction pipeline relies solely
on one monocular image. This eliminates the need for any technical modifications
and makes the proposed image-based scene reconstruction universally applicable.
However, supplementary information such as external position or depth measure-
ments can be easily incorporated to enhance the optimization formulation. There-
fore, versatility and universality are achieved through the proposed reconstruction
formulation.

Furthermore, the proposed optimization objective indirectly facilitates a sensor fu-
sion concept, where image data and depth-map measurements were considered in
a combined geometry reconstruction. Apart from its methodological aspect as a
multi-objective geometry reconstruction, a concept for in-plane reconstruction was
proposed. The relative change of the mesh between successive observations quan-
tifies the in-plane strain. This quantified in-plane deformation presents a valuable
and promising technique for tissue classification, with methodological foundations
provided in this work.

In-plane reconstruction enables the detection of hardened tissue areas for any uni-
form tissue excitation. The material stiffness can be estimated from the relative
tissue deformation, as the deformation is relative to its material stiffness. The po-
tential of this method to determine material stiffness and identify hardened tissue
boundaries, including tumor borders, in intraoperative settings makes further ad-
vancement of this contribution highly valuable.
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Appendix A
A.1 Numeric Optimization Following the Gradient-Decent

In general, the objective of an optimization problem is to identify the set of parame-
ters θ∗ that yields the minimum value minθ L(θ) of a specified loss function L(θ). In
some cases, it may not be practical or even possible to find the exact solution to this
optimization problem using analytical methods. Therefore, numerical optimization
techniques are employed to approximate the optimal solution. These techniques in-
volve iteratively updating the parameters to minimize the loss function over multiple
iterations until the convergence criteria are met.

θ

L(θ)

L(θ)

θ∗

L(θ∗)

θt−1

−▽θL

θt

Figure A.1: Numerical minimiza-
tion of the cost function L(θ) by
traversing the negative gradient.

One such technique is the gradient descent algo-
rithm, which involves updating the parameters
in the direction of the steepest descent, as deter-
mined by the gradient of the loss function. The
procedure can be generalized as iteratively up-
dating the parameters in the direction of the neg-
ative gradient of the loss function, which points
towards the minimum of the function. The up-
dating rule for this procedure is given by

θt = θt−1 − αt−1▽θL(θt−1) , (A.1)

where θt is the current parameter set, θt−1 is the
previous iteration’s parameter set, αt−1 is the
learning rate from the previous iteration, and
−▽θL(θt−1) is the negative gradient of the loss function from the previous iteration.
The iterative parameter results in a minimal loss, e.g. as shown in Figure A.1.

The unmodified pure gradient descent algorithm is generally not the most effective
choice for high-dimensional optimization problems due to its fixed learning rate,
which can lead to numerical instability or being stuck in local minima. Therefore,
two specific algorithms are presented in the following to facilitate robustness.
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Stochastic gradient descent: Stochastic gradient descent (SGD) and its variants
provide practical improvements over the standard gradient descent algorithm. In-
stead of computing gradients using the entire dataset, they randomly sample data
at each iteration, resulting in faster and more efficient computations. This stochas-
tic approach is widely used in machine learning due to its ability to handle large
and complex datasets. Moreover, stochastic gradient descent enables progress in
non-uniform parameter distributions, assists in escaping local minima, and prevents
overfitting through regularization. Additionally, random sampling introduces noise
into the optimization process, which can help avoid saddle points and other subop-
timal solutions.

Adaptive Moment Estimation: The Adaptive Moment Estimation (Adam) opti-
mizer is applied in this work to solve gradient-based optimization problems, owing
to its demonstrated reliability in high-dimensional optimization problems [55]. The
Adam algorithm, a variant of SGD, modifies the parameter update (A.1) to

θt = θt−1 − αt−1▽θL(θt−1)︸           ︷︷           ︸
orig. step size

(
m̂t√
v̂t + ε

)
∈ RP, (A.2)

with the update operation performed for every parameter θp in θ ∈ RP, p = 1, . . . ,P.
During the parameter update, the original step size in (A.1) is multiplied with the
original step size from SGD to yield the final parameter update. The Adam solver
uses first-order gradients and adapts the learning rate for each parameter based on
estimates of the first and second moments of the gradients. The first moment mt of
the gradient is its mean, which is estimated using an exponential moving average
with a decay rate of β1. After updating mt, a bias correction m→ m̂ is applied

mt = β1mt−1 + (1 − β1)▽θL(θt) ∈ Rp, β1 ∈ [0, 1] (A.2a)

m̂t =
mt

1 − βt
1
. (A.2b)

The second moment vt of the gradient is its uncentered variance, similarly estimated
by an exponential moving average that decays at a rate of β2. The respective esti-
mates are calculated using exponential moving averages that decay at a rate of β1

and β2, respectively. An bias correction is applied by

vt = β2vt−1 + (1 − β2)▽θL2(θt) ∈ RP, β2 ∈ [0, 1] (A.2c)

v̂t =
vt

1 − βt
2
. (A.2d)

to obtain the final estimates m̂t and v̂t. The Adaptive Moment Estimation (Adam)
optimizer incorporates the regularization term ε to prevent division by zero. This
algorithm leverages first-order gradient information and an adaptive learning rate
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for each parameter, making it effective for high-dimensional optimization problems,
such as those addressed in this work.

The exponential moving averages and bias correction applied in Adam can effectively
mitigate the impact of noisy gradients, which are a common issue in high-dimensional
optimization problems, especially in ill-posed cases. As a result, the robustness of
Adam to noisy gradients and the choice of an initial learning rate make it a strong
choice for the problems covered in this work for adapting the parameterized mesh
model and also for training the proposed data-driven deep learning concepts.

A.2 U-Net Network Architecture

The U-Net derives its name from the U-shaped pattern formed by its contracting
and expanding convolution pathways, as illustrated in Figure A.2. This network
architecture was originally developed for biomedical segmentation applications [107].

Legend

pooling layer
convolutional layer

b = 1, f1 = 64

b = 2, f2 = 128

b = 3, f3 = 256

b = 4, f4 = 512

b = 5, f5 = 1024

deconvolution layer
crop and concatenate

b = 1R, f1 = 64
b = 2R, f2 = 128

b = 3R, f3 = 256

b = 4R, f4 = 512

Input

Output
segmentation
maps

Figure A.2: U-Net architecture as described in [107]. The network is composed of a
contracting path that starts at level l = 1 (input level), progresses to l = 5 (model’s
internal representation), and returns to level l = 1 (output level) via an expanding
path. Skip connections (in green) connect the output feature map of the contracting
path at level l to the up-sampled output at level l of the expanding path.
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The U-Net processes a square input image through two consecutive convolution
operations, each followed by a nonlinear activation. The input block b = 1 utilizes
f1 = 64 convolution filters. Downsampling of the intermediate output is performed
by a pooling layer. The contracting path involves repeated double convolutions
and downsampling until the dimensions 32 × 32 × 512 are attained. Each block of
consecutive double convolutions is assigned an id b, with the associated number of
convolution filters being fb = f1 · 2b−1.
In the expanding path, two consecutive 2D convolutions are carried out, each fol-
lowed by a ReLU activation. The output is then upsampled using a 2× 2 deconvolu-
tion operation. This sequence of double convolutions and deconvolution is executed
the same number of times as the corresponding downsampling sequence in the con-
tracting path [107].
A crucial aspect of the U-Net architecture involves the integration of skip connec-
tions. These connections are established by combining output feature maps from
the contracting pathway, prior to down-sampling, with those generated by the up-
sampling process in the expanding pathway. To concatenate these feature maps,
they must possess identical width and height dimensions, necessitating cropping of
the contracting pathway’s feature map if required. The incorporation of skip con-
nections facilitates localization of image patches throughout the entire architectural
framework [107].
It is worth mentioning that in the original U-Net, as proposed in [107], output feature
maps from each convolution operation are smaller than their respective input feature
maps before convolution. This is because the objective in [107] focused on classifying
image patches rather than conducting pixel-wise classification. Consequently, main-
taining consistent spatial dimensions was not a requirement in the original U-Net.
At the concluding stage, a 1x1 convolution is executed on the final output feature
map for each class predicted [1]. For a more in-depth examination of the network
architecture design, please refer to [106].

A.3 VGG Network Structure

While the U-Net framework is primarily employed for image segmentation tasks, the
VGG network is predominantly designed for whole-image classification. This archi-
tecture ranked as one of the top contenders in the 2014 ImageNet Challenge [121].
The structure of the VGG network is illustrated in Figure A.3.
The VGG neural network takes a square RGB image as its input, as initially im-
plemented in [121]. A series of convolutional operations with 3 × 3 kernel size are
applied to this input image. The convolutions are padded to maintain the original
input dimensions of the tensor [121]. These convolutional operations can be orga-
nized into blocks b, each sharing the same width and height dimensions. Each block
consists of either two or three convolutional layers. A 2×2 max pooling layer follows
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f1 = 64

f2 = 128

f3 = 256

f4 = 512

f5 = 512

Legend

softmax activation
fully connected layer
pooling layer
convolutional layer

1 × 1 ×C

1 × 1 × 4096

Input

Figure A.3: The VGG-16 structure. The network is organized into blocks of convolu-
tional layers. Each block is parameterized by fb kernels/filters per convolution layer
in block b. Dense layers and a softmax activation conclude the network.

each block. In the original VGG architecture, there are two blocks b = {{} 1, , 2} with
two successive convolutions and three blocks b = {3, , 4, , 5}, each containing three con-
secutive convolutions. The VGG structure, as presented in [121], ends with several
fully connected layers and a softmax layer, ultimately producing class probabilities
for C classes.

A.4 Evaluation Metrics for Binary Classification

The training of a neural network involves determining a parameter set θ that min-
imizes the loss function L(θ) by employing gradient-based techniques. Since the
neural network model is part of the loss function L(θ), it influences the gradient
▽θL(θ) of the loss function, subsequently affecting the parameter optimization pro-
cess. This means that different model architectures may perform quite differently to
one another.

After training, it is crucial to assess the performance of different model variants.
Multiple metrics can be utilized to evaluate the performance of classification models,
all of which compare the predicted classes ŷ to the actual classes y of the data in
some manner.
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Accuracy is a widely used metric, expressed as

accuracy = TP +TN
TP +TN + FP + FN . (A.3)

Intuitively, accuracy represents the proportion of correct predictions out of the total
number of predictions. However, in the presence of significant class imbalance within
the data, the accuracy metric might be deceptive. For instance, a model consistently
predicting TRUE for data predominantly containing TRUE classes will demonstrate
high accuracy. Consequently, accuracy alone does not provide a comprehensive
understanding of the model’s capacity to generalize on data belonging to the FALSE
class.

For imbalanced data, alternative metrics such as precision and recall are often em-
ployed. Precision focuses on the accuracy of positive predictions, essentially asking,
"Of all the positive predictions, how many were actually correct?" On the other hand,
recall emphasizes the detection of actual positive cases, asking, "Of all the genuine
positive cases, how many were accurately identified?" The mathematical definitions
of precision and recall are as follows

precision = TP
TP + FP (A.4)

recall = TP
TP + FN . (A.5)

Owing to the definitions of both of these metrics, there is a trade-off between preci-
sion and recall. Raising the decision threshold1 leads to increased precision, while
recall diminishes, and vice versa. Therefore, it is crucial to determine which of these
two metrics should be prioritized based on the problem being addressed.

Alternatively, the F1 score can serve as a standalone metric. The F1 score represents
the harmonic mean of precision and recall and is defined as

F1 = 2
precision · recall
precision + recall . (A.6)

A.5 Iterative Loop-based Graph Extraction Strategy

The Loop Adjacency Combination (LAC) scheme is an adjacency matrix predictor is
built on the Base Adjacency Combination (BAC) scheme by taking into account the
degree of each node. Part of this work is published in [116]. The prediction process
involves repeatedly analyzing combinations of node pairs, as shown in Figure A.4.
1 For instance, a cutoff probability value that differentiates between the classes TRUE and FALSE

in binary classification.
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generate
Ck, (,V) ∩ C

a(Ck, ), p(a(Ck, )) :=
EdgeNN.predict(Ck, ) ,

degpred(V)

update A, C
(case by case: VGOOD → VOK → VBAD)

(initialise)
k := k0, A := 0n×n,

V, degref(V)

NodesNN outputs

remove ‘found’
nodes
V := V − Vfound
C := C − Cfound

(V = ∅) ∨ (C = ∅)

no yes

k := 2k

do for all 3 cases

Vcase

BAD nodes VBAD
degpred(v) > degref(v)

OK nodes VOK
degpred(v) < degref(v)

GOOD nodes VGOOD
degpred(v) = degref(v)

generate case combinations
Ccase ⊆ Ck, , a(Ccase)

obtain Cnc from Ccase

A := A + a(Cnc)
C := C − Ccase

for each vi ∈ VBAD with degree
di = degref(vi), only use the top

di node pair combinations
ci j ∈ Ck,

A
end

Figure A.4: The Loop Adjacency Combination (LAC) is a technique for creating a
full adjacency matrix A by combining predictions of edges between a set of node
pairs Ck, . The predictions are not immediately added to the matrix. Instead, they
are first screened for potential inaccuracies by using information about the degree
of each node. The diagram in Figure A.4 illustrates the process of updating the
adjacency matrix, starting with nodes VGOOD, whose predicted edges match the
degree values, followed by nodes VOK with inadequate predicted edges, and finally,
nodes VBAD with an excessive number of predicted edges. [116]

Initialization For initialization, information about the degree of each node, repre-
sented as degref(vi), is extracted from the graph. Based on a pre-determined number
of neighboring nodes, denoted as k0, initial combinations of node pairs, represented
by Ck, (k0,V), are generated based on Ck.

Prediction After the combination of node pairs Ck, is generated, a batch prediction
is executed by using the edge extraction network EdgeNN. This prediction process
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delivers a binary classification outcome for each combination, indicated as a(Ck, ), and
also the corresponding output probabilities/scores, represented by p(a(Ck, )), that fall
in the range of 0 to 1. For every node present within the node pair combinations,
the total of predicted connections is represented by

degpred(vi) =
∑

ci j∈Ck,

a(ci j) +
n−1∑

x=0

Aix . , (A.7)

which is obtained by adding up the current predictions for the node pair combinations
and the entries already present in the predicted adjacency matrix, represented by A.

Classification of Prediction Cases It’s worth noting that due to the uncertain na-
ture of edge prediction, it may happen that fewer or more edges are detected than
expected. To avoid such conflicts, the initial adjacency predictions represented by
a(Ck, ) are not directly inserted into the placeholder adjacency matrix, represented
by A.

To prevent conflicts caused by inaccuracies in the predictions of node pair combina-
tions, each node represented by vi present in Ck, (k,V) is assigned to one of the three
groups: VGOOD, VOK, or VBAD as illustrated in Figure A.4. This grouping is done
by evaluating the discrepancy between the reference node degrees, represented by
degref(vi), and the sum of the node’s predicted connections, represented by degpred(v).
The groups are defined by

VGOOD =
{
vi ∈ V | degpred(vi) = degref(vi)

}
(A.8a)

VOK =
{
vi ∈ V | degpred(vi) < degref(vi)

}
(A.8b)

VBAD =
{
vi ∈ V | degpred(vi) > degref(vi)

}
(A.8c)

and are dealt with in a specific order: VGOOD, then VOK, and finally VBAD. During
each step, the current group is assigned to the variable Vcase.

The processing of certain nodes, referred to as VBAD, involves an additional step.
For each node vi within this set, a limited number of combinations with the highest
adjacency scores p(a(ci j)) are retained. Specifically, only the top degref(vi) combi-
nations are kept, and the predicted adjacencies for the remaining combinations are
set to zero. This ensures that the resulting node adjacencies satisfy the condition
degpred(vi) ≤ degref(vi) for all nodes vi ∈ V before further processing can take place.
The next step is to identify the node pair case combinations, denoted as Ccase. These
are combinations containing nodes from the current prediction case Vcase, and are
selected from the set Ck, , according to the following

Ccase :=
{{

vi, v j

}
∈ Ck,

∣∣∣∣ (vi ∈ Vcase) ∨ (v j ∈ Vcase)
}
. (A.9)
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Removal of Conflicting Combinations For each node vi included in the set Ccase,
the adjacencies and degrees of the node are evaluated once more. Any node, whose
accumulated adjacencies degpred(vi) surpasses the reference degrees degref(vi) is con-
sidered to be in conflict with other nodes. As a result, any combination that includes
conflicting nodes is not used in the current iteration. This results in only the non-
conflicting case combinations remaining

Cnc =
{
ci j ∈ Ccase

∣∣∣degpred(v) ≤ degref(v) ∀ v ∈ ci j

}
. (A.10)

Adjacency Matrix Update With the identification of the non-conflicting case combi-
nations, the adjacency matrix A can be updated to include their adjacencies, denoted
as a(Cnc):

A := A + a(Cnc) (A.11a)

To prevent any repeat predictions in the next iteration of the algorithm, these case
combinations Ccase are removed from the set of possible node pair combinations,
denoted as C:

C := C − Ccase . (A.11b)

This ensures that the next iteration of the algorithm will not consider the same
combinations again and thus avoid duplicated predictions.

Checking of Node Degrees Nodes that have reached their maximum degree based
on the degree information from the node extraction output are recognized as

Vfound =

vi ∈ V

∣∣∣∣∣∣∣

n−1∑

x=0

Aix = degref(vi)

 . (A.12)

These nodes are removed from the global set of nodes V, and any combinations
Cfound that contain these nodes are also removed from the pool of potential node
pair combinations C with

V := V − Vfound (A.12a)
C := C − Cfound . (A.12b)

This approach allows the algorithm to focus on the nodes that have not reached
their maximum degree, and avoid including any combinations that contain those
that have.
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Continuation/Termination The algorithm follows a gradual process in identifying
the neighboring nodes for each node. It starts by selecting a minimal number of
neighbors and progressively increases it. At the end of each iteration, the number of
neighbors is multiplied by two and a new search is performed on the remaining set of
nodes V to find the closest neighbors, resulting in an updated list of combinations,

Ck, := Ck, (k,V) ∩ C , (A.13)

which are then utilized to repeat the steps of predicting edges, updating the matrix
and resolving conflicts. The process is repeated with continually rising values of k
until either every node has been given combinations that align with their degree or
all possible node combinations C have been used up. The termination condition is
given by

(V = ∅) ∨ (C = ∅). (A.14)

The final outcome of the adjacency combination scheme is the adjacency matrix A
of the most recent update step. Once all possible node pair combinations have been
exhausted, the program triggers the STOP flag and no further iterations are executed.
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Abbreviation

Abbreviation

ADAM Adaptive Moment Estimation
BAC Basic combination scheme
CNN Convolutional Neural Network
DefSLAM Deformable SLAM
DoG Difference of Gaussians
EdgeNN Edge Neural Network
FEM Finite Element Method
FN False negative
FNODR False none outlier detection rate
FPGA Field-Programmable Gate Array
GAN Generative Adversarial Network
GPU Graphics Processing Unit
LAC Loop adjacency scheme
MIS Minimally invasive surgery
MRI Magnetic Resonance Imaging
NNRSfM Non-Rigid Structure from Motion
ORB Oriented FAST and Rotated BRIEF
ORB-SLAM Oriented FAST and Rotated BRIEF SLAM
ODR Outlier detection rate
PDD Photodynamic diagnostics
RANSAC Random sampling consensus
RGB Red Green Blue
SbOR Structure-based Outlier Removal
SfM Structure from Motion
SfT Shape from Template
SLAM Simultaneous Localization and Mapping
TP True positive
U-Net U-Net Convolutional Neural Network
VGG16 Visual Geometry Group Network with 16 layers
V-SLAM Visual Simultaneous Localization and Mapping
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Symbol Description

Image Space: Introduced in Chapter 2 and used from page 24.

αskew Skew angle of a camera
ϑ Rodrigues camera angle
ϕ Pose of an object
ϕ̂ Underlined pose of an object
∆p Pixel length
c Principal point of a camera
f Focal length
fdist Refers to a function that adds distortion to an image to

simulate the effects of a specific camera lens
fundist Refers to a function that removes distortion from an image

caused by the camera lens
i Rodrigues unit vector
K Camera calibration matrix
k Radial distortion parameter
M Camera projection matrix that describes how a 3D point is

projected onto a 2D image by a camera
Ocam Camera origin (position of camera)
P Point Cloud in 3D
ph,w Continuous reference position in image space for discrete

pixel location (h, w)
R Retinal image plane
R Rotation matrix
r Rodrigues vector
sskew Skew factor of a camera
T Translation vector
t Tangential distortion parameter
x̃ Real distorted x-coordinate
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ỹ Real distorted y-coordinate
■x specifies x-dimension of vector representation
■y specifies y-dimension of vector representation
■z specifies z-dimension of vector representation

Endoscope Kinematics: Introduced in Chapter 2 and used from page 34.

αc cystoscope tip angle
θn cystoscope shaft/notch rotation
{W} world coordinate system
OW origin of {W}
W x vector x given in {W}
W
B ẋ derivative of vector x with {B} as the reference CS for the

differentiation, given in {W}
x 4D quaternion representation of x ∈ R3

R {q} rotation matrix which corresponds to the quaternion q
WRB rotation matrix which rotates Bx to W x
W pC/B position of OC relative to OB, given in {W}
W pB position of OB relative to OW , given in {W}, W pB =

W pB/W
CTB 4 × 4 homogeneous transformation matrix containing CRB

and C pB

■ω quantity related to the IMU angular velocity
■a quantity related to the IMU acceleration
■m measured quantity
χ degrees of freedom of the joints

Mesh Parameters: Introduced in Chapter 2 and used from page 38 .

C Vertex feature matrix
F Set of mesh faces
F▲ Neighboring faces
F▲j ∈ N(F j) All neighboring faces of a specific face F j

M Mesh
N Function returning adjacent mesh data, as common vertices,

features and faces
N Normal matrix associated to the surface vertices V
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V Vertex matrix of a mesh
V▲ Neighboring vertices of a vertex V j

∆V Vertex displacement matrix
u First barycentric coordinate
v Second barycentric coordinate
uv Texture coordinates
∡ Angle between two vectors
■silhou Subscript related to silhouetted image data
■a Index of vertex A of a face
■b Index of vertex B of a face
■c Index of vertex C of a face
3D Three-dimensional space
2D Two-dimensional space

Image Rendering: Introduced in Chapter 2 and used from page 41.

αdirt Angle of incidence of the direct light in the Phong reflection
model.

αspec Angle of reflection of the specular light in the Phong reflec-
tion model.

κref,spec Phong specular reflection parameter, which controls the size
and sharpness of the reflective highlights in a scene.

ϕcam Camera’s perspective, including the position and orientation
in 3D space.

ϕlight Direction of the light source in a reflection model.
Leuc Loss function for Euclidean distance between points
Ltex Loss function for texture consistency
Rref Refers to the ideal reflection ray in a reflection model.
Rview Refers to the ray from the camera to a pixel in an image.
Iint Intensity of the light source in a reflection model.
I Light reflection intensity for a pixel.
κ Material reflectance parameters that determine the appear-

ance of an object in a scene.
■amb Refers to the ambient lighting component in the Phong re-

flection model, which represents the indirect light in a scene.
■diff Refers to the diffuse lighting component in the Phong reflec-

tion model, which represents the direct light in a scene.
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■spec Refers to the specular lighting component in the Phong re-
flection model, which represents the reflective highlights in
a scene.

Differentiable Rendering: Introduced in Chapter 2 and used from page 47.

τsil Threshold for silhouetting
γdiff Control Parameter to influence the spatial distribution of

auxiliary data
ϵtransp Parameters used to calculate the aggregation weight in dif-

fusion rendering
δh,wj Delta sign from pixel (h,w) to face j
σdiff Sigma used in differentiable rendering for sharpness
d Closest distance from a pixel to a face
dh,wj Closest distance from pixel (h,w) to face j
p Continuous pixel positions in an image
ph,w Continuous pixel location for given pixel index tuple (h,w)
D Distribution used for differentiable rendering
Dh,wj Distribution of face j on pixel (h,w)
fID,proj Indices of projected face indices
sigmoid Sigmoid function used in differentiable rendering
W Weighting function that determines the respective data ag-

gregation
w Weights for the aggregation of auxiliary data points
R Rendering function
Rsil Silhouette rendering function
th,wj Barycentric coordinate parameterization of the closest

boundary point to pixel (h,w) on face j
U Barycentric coordinates of a pixel in image space
■ j Index of a face in a mesh
■sil Silhouette indices to specify silhouette-specific operations

Reconstruction Formulation: Introduced in Chapter 3 and used from page 58.

L General loss function to formulate the optimization objective
Ledg Loss function for mesh edge lengths
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ledg Length of edge used for edge loss
L♢lap Loss function for predefined Laplacian smoothing
Llap Loss function for Laplacian smoothness on a sphere
Leuc Loss function for Euclidean distance between points
Lnor Loss function for normal consistency with respect to similar

points
Lnor Loss function for normal consistency on a sphere
Lnor Temporary variable for normal consistency on a sphere
L♢nor Loss function for normal consistency between the mesh and

the template mesh
Liou Loss function for silhouetting
Ltex Loss function for texture consistency
λ Weighting factor for the loss function
λedg Weighting factor for mesh edge lengths
λlap Weighting factor for Laplacian smoothness on a sphere
λnor Weighting factor for normal consistency on a sphere
λtex Weighting factor for texture loss

Subdivision Strategy: Introduced in Chapter 3 and used from page 67.

CT Texture features associated with vertices of a texture mesh
Cskel

T Texture features associated with vertices of a texture mesh
used to represent skeleton information

MG Mesh with only geometry
MT Mesh with texture coordinates
Mrgb

T Mesh with texture coordinates and color information
MT Mesh with texture coordinates and skeleton information
VG Vertex set of a geometry mesh
VT Vertex set of a mesh with texture coordinates
S Subdivision function that refines a mesh
itrsubdiv Number of iterations for mesh subdivision
M+ Mesh resulting from the application of a subdivision algo-

rithm
■G Subscript indicating a mesh with only geometry
■T Subscript indicating a mesh with texture coordinates
■skel Subscript indicating a mesh with skeleton information
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Inverse Rendering: Introduced in Chapter 4 and used from page 77.

⊙δh,wj Sign of the delta between the pixel and a specific face
σinv Blurring factor applied to the pixel
σ Standard deviation of Gaussian blur applied to pixels
A Aggregation function used in the inverse rendering pipeline
c 2D pixel position used to compute inverse-rendered feature
⊙dh,wj Closest distance between the pixel and a specific face
⊙Dh,wj Distribution used to calculate weights for a specific face F j

k̃ Number of depth intersections to account for in inverse ren-
dering

nisec Number of ideal intersections per ray
p̃ Distorted pixel position due to blurring
P̃ Re-projected3D position for blurred pixel p̃
⋆Ph,wj Intersection point on mesh in ideal 3D position
Ph,w Intersection point cloud with blurred positions
R⋆h,w Ideal ray passing through a pixel in camera coordinates
R̃h,w Ray passing through a blurred pixel in camera coordinates
X Auxiliary data of inverse rendering aggregation parameters
X Result of inverse rendering aggregation
U Barycentric coordinates of a point in the mesh
uvh,wj The barycentric coordinates of a 3D face, used for inverse

diffusion rendering
p Position of a specific node in the mesh, typically the pixel

position
k Number of faces to consider during the inverse rendering

process
⊙RP,N,C Inverse rendering function for a given point, normal, and

feature
⊙R Inverse rendering pipeline with unspecified inputs
⊙wh,w Weighting of faces in the mesh based on their distance to

the pixel
z Depth at which inverse rendering aggregation is performed
γinv Weight parameter used in the aggregation step of the inverse

rendering pipeline
■↔ Symbol indicating a matching relation between two graphs
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■⇆ Symbol indicating that two graphs are compared to deter-
mine their differences

⊙■ Subscript symbol indicating an inverse rendering operation

Image Segmentation: Introduced in Chapter 5 and used from page 97.

⊛ Convolution operation between two functions
I DoG Image convoluted with the Difference of Gaussian (DoG) fil-

ter
DoG Difference of Gaussian filter
σ2
DoG Standard deviation of the Difference of Gaussian (DoG) filter

l Length of the segmentation filter distance set
ι Set of possible distances for segmentation filters
[1, nι] Range of possible values for the segmentation filter distance

set
|ι| Maximum number of distances in the segmentation filter dis-

tance set
Ψ Set of possible orientations for segmentation filters[
1, nψ

]
Range of possible values for the segmentation filter orienta-
tion set

|Ψ| Maximum number of orientations in the segmentation filter
orientation set

Ω Set spatial segmentation

Image Segmentation: Introduced in Chapter 5 and used from page 100.

p Probability of a pixel in an image
p Cumulative probability of a pixel in an image
σ2

var Variance of pixel intensities in an image
τotsu Threshold determined by Otsu’s method
τvasc Threshold for high intensity pixels for Otsu thresholding
τback Threshold for low intensity pixels for Otsu thresholding
µ̂ Mean intensity of pixels in an image

Structure Skeletonization: Introduced in Chapter 5 and used from page 102.
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I skel Image skeleton
p̃ Point on the surface of the skeleton
pskel Position of a pixel in the skeleton
δΩ Surface of the skeleton
Ω Binarized version of the original image
ξΩ Set of pixels belonging to the skeleton
⌈ Distance function used for skeletonization

Graph Extraction: Introduced in Chapter 5 and used from page 104.

A adjacency matrix
n number of nodes in a graph
E Set of edges in the mesh
e edge
⊗ End node
⊗ Pixel whose segmentation is ambiguous
⊖ Truncation operation

Data Driven Graph Extraction: Introduced in Chapter 5 and used from page 110.

H(p) entropy of a distribution p
I image tensor
l layer of a neural network
L total number of layers of a neural network
ϕ activation function
Wl weights of the l-th layer
bl biases of the l-th layer
θ learnable model parameters, θ = {W, b}
L(θ) loss function which depends on θ
▽θL(θ) gradient of the loss function
α learning rate
λ model hyperparameters
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fb number of convolution filters in block b
bn use of batch normalisation
b block number (out of all convolution blocks)
D depth of the network; total levels bmax

nc2 number of double convolution blocks
nc3 number of triple convolution blocks

Combination Scheme: Introduced in Chapter 5 and used from page 117.

acc accuracy
k number of neighbour nodes
F1 harmonic mean of precision and recall

Graph Embedding: Introduced in Chapter 6 and used from page 125.

α Set of inclusion angles for a node
δstr Discount factor for weighting degrees in descriptor genera-

tion

A Tensor of edge attributes constructed analogously to the ad-
jacency matrix A

d Descriptor vector
Dk

u Set of descriptor degrees for a node k steps away from the
reference node

dk
u Descriptor vector for a node k steps away from the reference

node
ndeg Position of a degree in the descriptor
e An edge in the graph
E Set of edges in a graph
l Length of an edge in a graph
X Vector variable with arbitrary dimension used for the data

embedding
N4 Function for defining the 4-neighborhood of a pixel
N8 Function for defining the 8-neighborhood of a pixel
n A node in the graph
V Set of nodes in a graph

204



Symbol List

pn Subset of pixels in the image that correspond to nodes in
the graph

k Number of steps away from the reference node for descriptor
design

str Descriptor structure used for encoding local information
■start Starting node for an edge

Graph Matching: Introduced in Chapter 6 and used from page 130.

da Descriptor vector for node a
db Descriptor vector for node b
FGraph Function for extracting the current graph from a set of

graphs
G (Current) graph
G̃ Current graph to be matched
G Observed graph
m Set of matched node pairs
mRANSAC Set of matched node pairs after checking with RANSAC
mSbOR Set of matched node pairs after checking for correct structure
m⋆ Set of filtered matched node pairs
m̃ Set of raw matched node pairs
τ Threshold for similarity metric
■u Index of node a in the graph
■v Index of node b in the graph
■sim Similarity metric used for matching
■euc Euclidean distance
■∗m Set of matched node pairs after checking for correct structure

and with RANSAC
■x Subscript indicating ambiguous self-intersection
■⊖ Subscript indicating a pruned object

Graph Editing: Introduced in Chapter 6 and used from page 147.

A⋆ A* algorithm
aupd,rec recurrence rate for parameters
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arec Recurrence rate for edge features
c Modification costs
c0 Constant scaling factor for modification cost
d∗ Descriptor vector for a target object
d̃ Transformed descriptor vector
drec Recurrence rate for descriptors
fembd Function for embedding features
G̃ Graph with distortions for verification purposes
GG Global graph
Gi Global graph at update iteration i
G⊖G Truncated global graph
G⊖G Noisy graph
G∗ Graph representing a target object
Mean Mean value
Mmatched Mask for the convex hull of current matches
ndetect Number of iterations for object detection
nview Number of iterations for object viewing
nkd Number of most similar items to find using a kd-tree
π Policy for modifying a graph
Γ Set of modification policies
∅ Empty set
sim Similarity metric
■
∗ Denotes a target object

Overall Scene Reconstruction: Introduced in Chapter 7 and used from page 155.

D An image that contains the distance of each pixel from the
camera.

O A variable representing an observation or measurement.
p⋆vas 3D model origin for a point cloud and a pixel
pI 3D observation origin for a point cloud and a pixel
pIM 3D observation origin for a point cloud, a pixel and a skeleton

with optional additional subscript
■def Subscripts used to distinguish between variables after defor-

mation.
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■ud Subscripts used to distinguish between variables before de-
formation.
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