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Figure 1: We propose an interactive system that is able to reconstruct face images residing only in a user’s mind. Over multiple
iterations, the system shows different face images to the user, which they have to rank according to the perceived similarity
with their mental image. This feedback is used to extract relevant image features across iterations and combine them to visually
reconstruct the user’s mental image.

ABSTRACT
We introduce an end-to-end interactive system for mental face re-
construction – the challenging task of visually reconstructing a
face image a person only has in their mind. In contrast to existing
methods that suffer from low usability and high mental load, our
approach only requires the user to rank images over multiple itera-
tions according to the perceived similarity with their mental image.
Based on these rankings, our mental face reconstruction system
extracts image features in each iteration, combines them into a
joint feature vector, and then uses a generative model to visually
reconstruct the mental image. To avoid the need for collecting large
amounts of human training data, we further propose a computa-
tional user model that can simulate human ranking behaviour using
data from an online crowd-sourcing study (N=215). Results from
a 12-participant user study show that our method can reconstruct
mental images that are visually similar to existing approaches but
has significantly higher usability, lower perceived workload, and
is 40% faster. In addition, results from a third 22-participant lineup
study in which we validated our reconstructions on a face rank-
ing task show a identification rate of 55.3%, which is in line with
prior work. These results represent an important step towards new

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 36th Annual ACM
Symposium on User Interface Software and Technology (UIST ’23), October 29-November
1, 2023, San Francisco, CA, USA, https://doi.org/10.1145/3586183.3606795.

interactive intelligent systems that can robustly and effortlessly
reconstruct a user’s mental image.

CCS CONCEPTS
• Computing methodologies → Reconstruction; • Human-
centered computing→ User models.
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1 INTRODUCTION
Visually reconstructing mental images, i.e., images of objects, faces,
or concepts one only has in their mind, has held a long-time fascina-
tion and has thus attracted significant research interests. Mental im-
age reconstruction is promising for a range of applications, such as
for the creation of personalised game avatars or the reconstruction
of a criminal’s face from witnesses’ memory. At the same time this
task is highly challenging: Mental images are encoded in the com-
plex neural dynamics of the brain that are still only poorly under-
stood [28]. Early work has therefore explored brain sensing modali-
ties, such as electroencephalogram (EEG) [3, 10, 37, 47] or functional
magnetic resonance imaging (fMRI) [1, 9, 16, 25, 36, 38, 42] for this

https://orcid.org/0000-0002-3787-3062
https://orcid.org/0000-0002-1446-379X
https://orcid.org/0000-0001-6317-7303
https://doi.org/10.1145/3586183.3606795
https://doi.org/10.1145/3586183.3606795
https://doi.org/10.1145/3586183.3606795


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Strohm, et al.

task. More recently, to avoid the need for special-purpose sensing
equipment that is either invasive (EEG) or expensive and not prac-
tical for everyday use (fMRI), other works have started to explore
passive monitoring of human gaze for mental image reconstruc-
tion. While gaze is known to be a strong mediator of cognitive
processes, including memory [4], prior works have only achieved
limited reconstruction quality so far [34, 35, 40, 41].

In this work, we study a practically more feasible approach in
which human and AI collaborate to jointly reconstruct a user’s
mental image based on active user feedback. Mental image recon-
struction in the form of facial composite generation as studied
in this work is particularly challenging as small changes to facial
features can make the face be perceived as being completely differ-
ent [27]. This task can be broadly grouped into constructive, holistic,
and hybrid methods. Constructive composite systems maintain a
large catalogue of images for each facial feature that users have to
select from, such as the eyes, nose, and mouth [6, 12, 23, 24]. The
key limitation of this approach is that humans struggle to correctly
identify specific facial features in isolation but rather perceive and
recall faces holistically [13]. Holistic composite creation tools such
as EvoFIT [14] try to address this limitation by allowing users to
iteratively compose entire faces through an evolutionary algorithm.
However, controlling and guiding holistic image generation is more
challenging compared to changing a specific feature based on a
catalogue. To overcome the limitations of constructive and holis-
tic approaches, hybrid methods (e.g. CG-GAN [46]) allow users to
iteratively combine faces through interactive refinement and addi-
tionally provide constructive control over specific facial features.
Despite significant advances, existing hybrid composite genera-
tion tools are limited in terms of usability as they require manual
edits which are slow and tedious. Moreover, previous methods
rely on random search within the high-dimensional appearance
space around faces that have been selected by users for further
refinement.

We address these limitations by proposing a novel interactive
mental face reconstruction system (MFRS) that is specifically geared
towards maximising the information gained from user feedback and
that does not rely on random exploration. Our method only requires
users to iteratively rank sets of face images proposed by our system
with respect to the subjective visual similarity to their mental image.
Using these images and the corresponding user-provided ranking as
input, our system extracts facial appearance information about the
mental image over multiple iterations. To integrate this information
across iterations, we propose an end-to-end, data-driven model that
predicts a feature vector encoding of facial features that are likely
part of the mental image. To visually decode the image, our MFRS
finally uses a state-of-the-art generative face model [21]. Collecting
a large amount of human ranking feedback to train our method
is impractical. We instead propose a computational user model to
simulate human ranking behaviour. The user model consists of a
pre-trained face identification network [11] that we fine-tuned on a
face similarity task using human labels that we crowd-sourced from
215 users using Amazon Mechanical Turk (AMT). This approach
allows us to generate arbitrary amounts of human rankings to train
our reconstruction system.

The contributions of our work are three-fold: First, we propose
an end-to-end trainable method for mental face reconstruction that

learns to integrate explicit user rankings and facial image informa-
tion across multiple iterations. Second, we present a computational
user model for ranking that we trained on a novel crowd-sourced
dataset of human face ranking information. This, in turn, allows us
to synthesise arbitrary amounts of data to train our method. 1 Third,
we report evaluations of our method on data collected from 12 users
that show that our method is significantly more usable and faster
than existing methods without sacrificing image reconstruction
quality. Finally, a study with 22 independent participants shows
that the human recognition rate of our system is on par with the
current state of the art.

2 RELATEDWORK
Our work is related to prior work on mental face reconstruction
with 1) implicit and 2) explicit feedback.

2.1 Mental Face Reconstruction with Implicit
Feedback

Related work on face reconstruction using implicit feedback has
focused on EEG, fMRI and gaze. The first work for fMRI-based
face reconstruction was conducted by Cowen et al. [8], where they
linearly mapped fMRI responses to principal components of the
face manifold called Eigenfaces, which allowed the reconstruction
of faces by linearly combining them. Nestor et al. [30] inferred
a face feature space from fMRI responses directly instead of pre-
computing Eigenfaces from images only. They trained an SVM to
discriminate the face identities based on the fMRI response and
subsequently calculated template faces for each axis in the dis-
covered space using the training data. To reconstruct faces, they
mapped an fMRI response into this feature space and accordingly
interpolated the template faces. Later, Nemrodov et al. [29] adopted
this approach to successfully reconstruct faces from EEG responses
instead. VanRullen and Reddy [42] proposed an approach using
a VAE-GAN architecture to encode faces into a low-dimensional
latent space. A simple regression model maps fMRI responses onto
the latent image space, from which the face can be reconstructed
using the VAE-GAN decoder. Unlike previous work, they were
also able to reconstruct images from fMRI responses elicited when
participants only thought of a face, without actually seeing it. Re-
cently, Dado et al. [9] collected fMRI responses for synthetic faces
generated from a pre-trained PGGAN [19]. Similar to VanRullen
and Reddy [42], they then trained a linear regression model to
map fMRI responses to the latent space of this GAN, allowing the
reconstruction of faces from fMRI responses.

While the discussed methods for face reconstruction from fMRI
and EEG achieve promising results, their usage is highly invasive
and expensive. Additionally, a main drawback of such methods is
that they are hard to generalise to new participants, as these models
are trained on specific subjects.

Recently, Strohm et al. [40] proposed a method for gaze-based
mental face reconstruction. The subjects observed a set of faces, and
the so evoked gaze behaviour was used to predict which features
of a face are relevant. They combined the extracted features from
multiple faces and generated the mental image using a pre-trained
1Project code and collected data is available at https://perceptualui.org/publications/
strohm23_uist/
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decoder. While their method is less invasive and expensive than
fMRI and EEG-based methods, it requires prior knowledge about
the target. They later proposed an iterative system [41], removing
the need for prior knowledge but they still could only operate in a
controlled environment and with high-precision gaze data. Instead,
our system operates in the less constrained domain of real faces
and only requires simple user feedback.

2.2 Mental Face Reconstruction with Explicit
Feedback

Given the current limitations of methods using implicit feedback,
methods based on explicit feedback are still dominating. Earlier
systems were solely based on the constructive face creation par-
adigm [6, 12, 23, 24], which allow witnesses to separately choose
facial features like eyes and nose from a large template catalogue.
However, the performance of such systems is limited by insights
into human face perception, which show that humans perceive
faces holistically and struggle to correctly recognise isolated facial
features [13]. Therefore, Frowd et al. [14] proposed the EvoFIT sys-
tem, that allows the holistic interpolation of faces in the Eigenface
space. Users are shown a collection of faces and have to select those
that they perceive to be similar to their mental image in some aspect
over multiple iterations. Based on their proposed evolutionary algo-
rithm, the EvoFIT system then generates a new collection of faces
based on the Eigenfaces of the selected faces. A similar approach
has been proposed by Gibson et al. [15], with the additional func-
tionality of controlling age and adding details to the face such as
wrinkles. Later, Bontrager et al. [2] proposed deep interactive evo-
lution which deploys the evolution algorithm proposed by Frowd
et al. [14] in the latent space of a pre-trained GAN instead of the
Eigenface space, improving image quality. Xu et al. [45] further
improved reconstruction results utilising a GAN conditioned on
facial landmarks and performed a search in the landmark space.
They iteratively trained an online classifier based on user relevance
feedback to find the optimal landmarks. Zaltron et al. [46] proposed
CG-GAN which extended the work by Bontrager et al. [2] with ad-
ditional constructive functionalities. Using binary face labels such
as glasses and beard, they discovered axes in the latent space of a
pre-trained GAN and allowed users to change faces along these
axes. Finally, Chiu et al. [5] proposed a method that allows the
user to explore randomly sampled one-dimensional sub-spaces of
a pre-trained GAN. Users iteratively select the best point using
sliders until they cannot improve the result further.

In contrast to prior work, we propose a newmethod which learns
to extract information from user feedback by training a system
end-to-end, replacing the naive evolutionary algorithm or random
exploration techniques.

3 INTERACTIVE MENTAL FACE
RECONSTRUCTION

The goal of mental face reconstruction is to generate an image
𝑓rec of a face that only resides in a user’s mind 𝑓m, such that 𝑓rec
matches the identity of 𝑓m. To generate images we make use of a
generative model𝐺 , StyleGAN2 [21], which was pre-trained on the
FFHQ dataset [20] and widely used for face generation tasks. Given
a vector 𝑧 of size 512 encoding latent image features, the generator

𝐺 generates a single image of a human face. Therefore, the goal of
our proposed mental face reconstruction system (MFRS) is to find
a vector 𝑧rec, such that:

𝐺 (𝑧rec) = 𝑓rec
𝑖𝑑
= 𝑓m .

To gain information about 𝑧rec our system shows a set of 𝑛 pre-
defined auxiliary face images Faux = {𝑓1, ..., 𝑓𝑛} to a user. Subse-
quently, the user’s task is to rank these auxiliary images according
to the perceived similarity with their mental image 𝑓m. A recon-
struction network utilises this user ranking to extract information
about 𝑓m. Gaining enough information about 𝑓m would likely re-
quire a large number of auxiliary images 𝑛 to be shown to the user.
As the number of possible rankings grows with 𝑛!, the ranking task
quickly becomes infeasible for users. To address this, our approach
is based on an iterative design paradigm, where the model collects
evidence about 𝑓m over multiple iterations. This allows us to keep
the number of auxiliary images 𝑛 shown per iteration low. Con-
sequently, we set the number of auxiliary faces to show in each
iteration to 𝑛 = 6 for our MFRS, which has also been used in related
work and proven not to overwhelm users [32, 40]. Furthermore, we
set the number of iterations used in our final MFRS to 20, which
we determined through experimental testing. This allows us to
collect enough information about the mental image while prevent-
ing user fatigue and keeping the system execution time low. The
architecture of our proposed iterative MFRS is shown in Figure 2.

The auxiliary face images F 𝑖
aux = {𝑓 𝑖1 , ..., 𝑓

𝑖
6 } for each itera-

tion 𝑖 are generated once with StyleGAN2 [21] by decoding ran-
domly sampled latent vectors. Therefore, for each set of auxil-
iary images F 𝑖

aux we also have the corresponding latent vectors
𝑍 𝑖
aux = {𝑧𝑖1, ..., 𝑧

𝑖
6}, 𝑖 = 1 . . . 20. Similarly to Zaltron et al. [46], we

divide the input space to our MFRS into four different categories
based on sex (female/male) and age (young/old). Since there are 20
iterations with six faces each, our system requires 20 ∗ 6 = 120 dif-
ferent auxiliary images for each category. We used the InsightFace2
toolbox to determine the sex and age (young ≤ age 40, follow-
ing [26]) of each generated face to assign them one of the four
categories.

3.1 Reconstruction Network
The goal of the reconstruction network is to predict a latent vector
𝑧rec which, when decoded with the generator 𝐺 , results in a face
image that resembles the mental image 𝑓𝑚 as closely as possible.
Input to the reconstruction network are all sets of auxiliary latent
vectors 𝑍 𝑖

aux, where the vectors of each set are ordered based on
the user ranking. A sequence of recurrent and dense layers extracts
information from each iteration separately and is then the input
to another final sequence of recurrent and dense layers in order to
combine the information across iterations and predict 𝑧rec.

Training the reconstruction network to directly optimise for 𝑧rec
is unlikely to ensure that 𝑧rec

𝑖𝑑
= 𝑧m, since two similar latent vectors

are not necessarily decoded by 𝐺 into faces that are perceived to
be similar by humans. For example, Figure 3 shows three faces that
were generated by a state-of-the-art StyleGAN2 [21] generator. Face
A and B are visually more similar to each other than face B and C.
However, the mean absolute difference between 𝑧𝐴 and 𝑧𝐵 is higher
2https://insightface.ai/projects

https://insightface.ai/projects


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Strohm, et al.

Auxiliary Faces  

Loss 
Computation

Ranked Auxiliary
Latents 

Reconstruction
Network 

Reconstructed 
Latent 

User (Model)

Ranked Auxiliary
Latents 

User (Model) Mapping 
Network 

20
Iterations

Target 
Embedding

Reconstructed 
EmbeddingAuxiliary Faces  

Embedding 
Network 

Generator

Target

Figure 2: Our system shows users sets of auxiliary faces over multiple iterations, which the users have to rank according to the
similarity with their mental image. A reconstruction network predicts the latent vector of the mental image according to the
ranked auxiliary latents. This vector can be decoded with a pre-trained generator to reconstruct the image. To optimise the
reconstruction network, a pre-trained mapping network maps the predicted latent vector into a meaningful embedding space,
where it is compared against the true embedding vector.

A B C

Figure 3: Three example images generatedwith a state-of-the-
art StyleGAN2 [21] generator. The mean absolute difference
between the corresponding latent vectors 𝑧𝐴 and 𝑧𝐵 is higher
compared to the difference between 𝑧𝐵 and 𝑧𝐶 , although im-
ages A and B are visually more similar. However, when using
face embeddings extracted with ArcFace [11], the difference
between the face embeddings 𝑒𝐴 and 𝑒𝐵 is smaller compared
to 𝑒𝐵 and 𝑒𝐶 .

compared to 𝑧𝐵 and 𝑧𝐶 . One reason for this is that the latent space
encodes image features that are not relevant to the similarity of the
generated faces such as background, pose and lighting. Additionally,
facial features which are perceived to be similar by humans do not
necessarily have to be close in the latent space. To address this
issue, we instead aim to optimise a more meaningful embedding
vector that allows us to calculate a perceived similarity between
faces. Models such as ArcFace [11] map faces into an embedding
space which is highly relevant for identity recognition as they are
trained specifically for this task. Contrary to the latent space 𝑧,
using such face embeddings 𝑒𝐴,𝐵,𝐶 for faces in Figure 3 results
in a mean absolute difference between 𝑒𝐴 and 𝑒𝐵 that is smaller
compared to 𝑒𝐵 and 𝑒𝐶 . Therefore, we define the loss function to
train the reconstruction network as follows:

L = − 𝐸 (𝐺 (𝑧rec)) · 𝐸 (𝐺 (𝑧M))
∥𝐸 (𝐺 (𝑧rec))∥ ∥𝐸 (𝐺 (𝑧M))∥

(1)

where 𝐺 is a pre-trained generator network that maps from latent
to image space, and 𝐸 is a pre-trained face embedding network that
maps from image to embedding space.

3.2 Mapping Network
Training with the loss function defined in Equation 1 is slow and
unstable as gradients have to be propagated through the generator
and embedding networks before actually optimising the reconstruc-
tion network. Therefore, instead of actually calculating 𝐸 (𝐺 (𝑧)),
we build a compact mapping network which approximates this
mapping:𝑀 (𝑧) ≈ 𝐸 (𝐺 (𝑧)). Given a pre-trained generator and em-
bedding networks, arbitrary amounts of training tuples (𝑧, 𝑒) can
be generated to learn𝑀 by sampling random latent vectors 𝑧 and
calculating 𝐸 (𝐺 (𝑧)) = 𝑒 . The network can then be trained by min-
imising the mean squared error between the true and predicted
embedding:

Lmapping = (𝑒pred − 𝑒true)2 (2)
Using this mapping network allows us to efficiently calculate the
loss when training the reconstruction network by calculating𝑀 (𝑧)
instead of 𝐸 (𝐺 (𝑧)) reducing the loss function in Equation 1 to

Lrec = −
𝑀 (𝑧rec) ·𝑀 (𝑧M)
∥𝑀 (𝑧rec)∥ ∥𝑀 (𝑧M)∥

. (3)

3.3 Computational User Model for Face
Similarity Ranking

Training the mental face reconstruction network end-to-end re-
quires a dataset that is very expensive to collect. For one training
sample, a user has to memorise a generated face such that 𝑧m is
known and subsequently rank 6 auxiliary images 20 times according
to their similarity with the memorised face. Therefore, we propose
a novel user model that simulates human behaviour for the ranking
task, which enables us to synthesise arbitrary amounts of training
data. At the core of the user model stands a face embedding network
that extracts embedding vectors that allow the computation of the
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Algorithm 1: The following algorithm defines our proposed user
model. First, the auxiliary and target faces are mapped into an em-
bedding space. Then, the cosine similarities between each of the
auxiliary face embeddings and the target face embedding are cal-
culated. Finally, the auxiliary face latents are ranked according to
these similarities, i.e. the most similar face ranks first while the least
similar face ranks last.

1: Input: Auxiliary faces of current iteration F𝑖aux,
corresponding latents 𝑍 𝑖

aux, target face 𝑓m,
and a face embedding network 𝐸.

2: Output: Ranked auxiliary latents (𝑧𝑅1, 𝑧𝑅2, ..., 𝑧𝑅𝑛 ), 𝑧𝑅 ∈ 𝑍 𝑖
aux

3: similarities← []
4: for 𝑓 in Faux do
5: similarity← cosineSimilarity(𝐸 (𝑓 ), 𝐸 (𝑓m ) )
6: similarities.append(similarity)
7: end for
8: rankedIndices← argSort(−similarities)
9: rankedLatents← 𝑍 𝑖

aux [rankedIndices]
10: return rankedLatents

similarity between two faces. Using this network, we define the
user model in Algorithm 1: Given a set of auxiliary faces F 𝑖

aux, their
latent vectors 𝑍 𝑖

aux, a target face 𝑓𝑚 , and an embedding network
𝐸, the cosine similarities between target and auxiliary face embed-
dings are calculated. Subsequently, the auxiliary latent vectors are
sorted according to these similarities, where the most similar face
is ranked first followed by the other faces in order of decreasing
similarity.

Existing models to extract face embeddings are trained on the
task of face identification [11, 31, 43, 44]. While models trained on
this task extract meaningful embeddings, comparing and ranking
faces is not explicitly learned. Sadovnik et al. [32] analysed this and
showed that measuring identity is not necessarily measuring simi-
larity, which results in rankings dissimilar from human judgement.
Therefore, it is beneficial to fine-tune an existing model for face
identity on a small face similarity dataset based on human feedback
to align the user model and human behaviour. For fine-tuning we
use a small dataset consisting of triplets (𝑓𝑎, 𝑓𝑝 , 𝑓𝑛), where 𝑓𝑎 is
some reference face (anchor) and 𝑓𝑝 a face that is more similar to 𝑓𝑎
(positive pair) than 𝑓𝑛 is to 𝑓𝑎 (negative pair) based on human judge-
ment. Using this dataset, the embedding network can be fine-tuned
with a triplet margin loss objective defined as:

Lc =𝑚𝑎𝑥 ((𝑓𝑎 − 𝑓𝑝 )2 − (𝑓𝑎 − 𝑓𝑛)2 +𝑚, 0) (4)

where m defines the required margin between the positive and
negative pair to achieve a loss of zero. This requires the network
to adjust the embeddings such that faces that are perceived to be
similar by humans also have to be similar in the embedding space.

4 DATA COLLECTION
We collected data from humans ranking our 20 sets of six auxiliary
faces based on the similarity to a target face. This provides us
with a validation set to optimise hyper-parameters of our MFRS
on real human data. Additionally, triplets can be generated from
this data to fine-tune the face embedding network as discussed in
Subsection 3.3.

4.1 Procedure
We implemented the data collection experiment as a website and
collected data via Amazon’s Mechanical Turk (AMT) platform. Par-
ticipants had to complete 23 trials which consisted of a memori-
sation and a ranking step. During memorisation, participants had
to observe a face 𝑓𝑚 randomly generated by StyleGAN2 [21] until
they had memorised it. The target face was fixed for all 23 trials,
and participants could refresh their memory during the other mem-
orisation steps. Afterwards, they were shown each set of auxiliary
faces F 𝑖

aux of the corresponding sex/age category of the target and
were instructed to rank the six images according to the perceived
similarity with the memorised face. In addition to the 20 iterations
showing each auxiliary set, participants had to complete three addi-
tional test trials in between, which were used to ensure data quality.
During test trials, we replaced one of the auxiliary faces with the
target face. If participants properly engaged in the data collection
study, we expected them to rank the target face as most similar.

4.2 Dataset Statistics
We cleaned the dataset by strictly removing data from participants
that failed to pass all three test trials. From 317 participants, 62 failed
all three test trials, 33 failed two, and seven failed one, resulting in
a total of 215 participants in our dataset. Rejecting about a third of
the participants based on standard attention checks is common for
data collected via AMT [33].

Our collected dataset includes 15 target images for which we
collected data from two different participants, allowing us to calcu-
late the rank correlation between participants. Figure 4 shows the
agreement between two human raters for each rank. Each cell (𝑖, 𝑗)
shows the probability that two independent human raters assign
ranks 𝑖 and 𝑗 to the same face. While the chance of humans assign-
ing the same rank is at most 34%, chances for strong disagreements
are low. The average Kendall rank correlation coefficient between
participants was 0.267 (p<0.05), suggesting that humans tend to
rank faces similarly, but that there is also considerable variability
in rankings.

After removing the 15 duplicates, we randomly held out 50 out
of 200 remaining participants as a validation set to measure the
MFRS performance on real human data during training. The data of
the remaining 150 participants were split into 140 used to generate
the triplets to fine-tune the ArcFace [11] embedding network and
10 for validation. For each iteration a participant completed, we can
generate

(6
2
)
= 15 different (𝑓𝑎, 𝑓𝑝 , 𝑓𝑛) triplets, where 𝑓𝑎 = 𝑓𝑚 and

(𝑓𝑝 , 𝑓𝑛) are all 15 possible tuples of the six auxiliary images. The
image ranked higher in a tuple is defined as the negative example
𝑓𝑝 while the lower ranked image is defined as the positive example
𝑓𝑛 . This yields a total of 15 ∗ 20 = 300 triplets for fine-tuning per
participant, resulting in a total of 45000 triplets for training and
3000 for validating.

5 EXPERIMENTS
5.1 Implementation Details & Model Training

Embedding Network. For the embedding network used in our
computational user model and MFRS loss calculation, we use the
state-of-the-art face recognition network ArcFace [11] which was
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Figure 4: Face ranking agreement between humans. Each
cell (𝑖, 𝑗) shows the probability that two independent human
raters assign ranks 𝑖 and 𝑗 to the same face. We observe a
positive correlation between the human rankings with an
average Kendall’s Tau of 0.267. Furthermore, humans tend
to agree more for the most and least similar face, while the
rankings are more noisy for middle ranks.

trained on the IBUG-500K dataset (11.96 million images with 493K
identities). The network consists of a ResNet50 [17] feature ex-
tractor with frozen weights extracting 2048 4𝑥4 feature maps. The
feature maps are flattened and input to an output model consist-
ing of a Batch-Normalization [18], Dropout (40% drop rate) [39],
fully-connected (512 neurons) and a Batch-Normalization layer.
The weights are initialised with the pre-trained ArcFace model.
The ResNet50 feature extractor is frozen while the output model
is fine-tuned using the collected triplets described in the Section 4.
The network was trained with the contrastive loss with a margin of
0.1 (Equation 4) and Adam [22] optimiser with default parameters
and a batch size of 32.

To evaluate the effectiveness of the fine-tuning step, we com-
pared the performance of the user model as defined by Algorithm 1
before (a) and after (b) fine-tuning the embedding network (see Fig-
ure 5). Each cell (𝑖, 𝑗) in the two matrices indicates the probability
that humans assign rank 𝑖 and the user model rank 𝑗 to the same
face. We notice that the probabilities along the main and adjacent
diagonals increased overall, indicating higher agreement between
user ranking and the fine-tuned user model. Before fine-tuning,
the user model achieves an average Kendall’s Tau of 0.205 (p<0.05)
on the validation set, while after fine-tuning it achieved a value
of 0.297 (p<0.05), resulting in an improvement of 45%. Compared
with the ranking agreement between humans in Figure 4, our com-
putational user model appears to provide rankings very similar to
humans. Since we trained our MFRS only on rankings predicted by
the user model, these results are important as it allows our MFRS
to generalise to actual human feedback.

MappingNetwork. Themapping network takes a 512-dimensional
vector as an input, which is first input to a normalisation layer iden-
tical to the normalisation in StyleGAN2 [21], ensuring that it can
be correctly interpreted and decoded by StyleGAN2 after training.
Following the normalisation are five blocks each consisting of a
fully-connected layer, LeakyReLU activation function with a slope
of 0.2, and a Batch-Normalization [18] layer. Each fully-connected
layer has 1024 neurons except for the last one which maps onto
a 512-dimensional embedding. To train the mapping network, we
sampled one million random latent vectors from a normal distri-
bution and generated corresponding face images with StyleGAN2.
We used our fine-tuned embedding network to generate the corre-
sponding face embeddings. The model was trained to minimise the
mean squared error with the Adam optimiser [22], batch size of 32
and exponential learning rate decay (initial learning rate of 0.005,
decay rate of 0.9 and 80000 decay steps).

Reconstruction Network. The reconstruction network takes 20
times six ranked latent vectors of size 512 as an input, which corre-
spond to the six ranked auxiliary faces for each of the 20 iterations.
Each set of ranked auxiliary latents is then input to a separate
feature extraction module specific to each iteration. Each of these
modules consists of a recurrent layerwith 1024 gated recurrent units
(GRUs) [7] to capture the user ranking information followed by
three blocks consisting of a fully-connected layer with 512 neurons,
LeakyReLU activation with slope 0.2 and a Batch-Normalization
layer. The output of each iteration module is used in a final pre-
diction module consisting of a recurrent layer with 2048 GRUs
followed by four blocks each consisting of a fully-connected layer
with 1024 neurons, a LeakyReLU activation with a slope of 0.2 and
a Batch-Normalization layer. A final fully-connected output layer
with 512 neurons predicts the 512-dimensional latent vector 𝑧rec of
the target image.

To train the model, we generated one million target images by
randomly sampling latent vectors from a normal distribution and
decoding them with StyleGAN2 [21]. Together with the fixed sets
of auxiliary images and the user model, we simulated the human
ranking of the auxiliary images for each of the generated target
images. The loss function used was the cosine similarity between
the embeddings using the mapping network to map the predicted
latent vector by the reconstruction network into the embedding
space as defined in Equation 3. We trained the model with the Adam
optimiser [22] with default parameters except for a learning rate of
0.0001 and batch size of 32 for 100K steps. As the validation set, we
use the 50 left-out participants of the data collection study and keep
the model achieving the lowest validation loss. Due to the small
validation set of real user data, the validation loss fluctuates during
training. Therefore, we train a total of six reconstruction networks
and use them as an ensemble in the user study. After participants
finished the 20 iterations using our system, we showed them the
six reconstructions and asked them to select the best image.

5.2 User Study
For evaluation of our MFRS, we compare the performance against
the current state-of-the-art method CG-GAN [46]. We conducted
a user study with 12 participants (four female) aged between 20
and 35 (Mean=25.4; SD=5.2). Participants were recruited through
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Figure 5: Face ranking agreement between humans and our user model. Each cell (𝑖, 𝑗) shows the probability that the human
raters assign rank 𝑖 and the user model rank 𝑗 to the same face. Figure (a) shows the agreement for the user model before and (b)
after fine-tuning. Comparing figures (a) and (b), we observe that more probability mass is distributed across the main diagonal,
showing higher agreement between human and model ranking.

the university mailing list and financially compensated for their
effort. Our study design was approved by the university’s ethics
commission.

5.3 Procedure
After giving their informed consent, participants had to complete
two reconstruction experiments, one using our MFRS and one using
CG-GAN. For each experiment, an explanation of the corresponding
reconstruction system was given and participants could familiarise
themselves with it. Once they were confident in using the system,
a random target face was shown which they had to memorise.
Since the generator of CG-GAN was pre-trained on the celebA-HD
dataset [19] while our StyleGAN2 was pre-trained on the FFHQ
dataset [20], we selected an equal number of random target faces
from both datasets for a fair comparison. No time limit was given
for the memorisation step, but participants were not able to see
the image again after starting the experiment. The same target face
was used for both experiments allowing us to compare the recon-
structions for each participant. The order of the two experiments
was counterbalanced between participants to average out possible
memorisation effects. Following memorisation, participants used
the first system without a time limit to reconstruct their mental
image. After they were done, the reconstructed mental image of the
system was presented. To compare the two systems, we collected
five evaluation metrics:

• Mental rating: Participants were asked to rate the similarity
between the image that they had memorised and the produced
reconstruction on a seven-point Likert scale. The target mental

image was not shown for this rating – users had to provide a
rating based only on their memory of the target image.
• Visual rating: Participants were asked to visually rate the simi-
larity between the target and the reconstructed image on a seven-
point Likert scale. In contrast to theMental rating, the two images
were now shown side by side.
• System Usability Scale (SUS): A questionnaire for assessing
the system’s usability. It produces a single usability score ranging
from 0 to 100, with higher scores corresponding to more usability.
• NASA Task Load Index (NASA-TLX): A multidimensional
questionnaire for assessing the users’ perceived workload. The
final metric is a combination of the results from each subscale:
mental demand, physical demand, temporal demand, overall per-
formance, effort, and frustration level. The workload score is a
value between 0 and 100 (lower is better).
• Task completion time: The amount of time participants needed
to obtain the reconstruction. In the CG-GAN condition, partici-
pants could spend as much time as they wanted, until they were
happy with the reconstruction result.

The same procedure was then repeated for the second experi-
ment. Participants had to take a three-minute break between the
experiments and could take additional breaks before and after us-
ing the systems. The duration of the study was about one hour,
depending on how long participants needed to reconstruct their
mental face with each system.
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Target

Ours

CG-GAN

Figure 6: Example reconstructions from the user study. Each column shows the results for one participant. The first row shows
the target face the participant had to memorise, the second row shows the reconstruction with our MFRS and the third row
shows the reconstruction with CG-GAN.

Method Mental
Rating
↑

Visual
Rating
↑

SUS ↑ NASA-
TLX ↓

Time
(mins) ↓

Ours 4.0∗ ± .8 4.1 ± .9 85∗ ± 13 27∗ ± 18 10∗ ± 4.1
CG-GAN 4.8∗ ± .8 3.9 ± .9 59∗ ± 13 43∗ ± 11 17∗±5.6

Table 1: Comparison of our system with CG-GAN [46] based
on the user study results. The best result in each column is
highlighted in bold. Our method outperforms CG-GAN in
every metric except for the mental rating. ∗ indicates statis-
tically significant differences at the 𝑝 < 0.05 level. ↑ and ↓
indicate if a higher or lower value is better.

5.4 Results
Figure 6 shows example reconstructions from the conducted user
study. The top row shows the target image that participants had
to memorise. The second row shows reconstructions that resulted
from our MFRS and the last row results from CG-GAN. Additional
reconstructions of our MFRS are shown in Figure 11 and Figure 12
in the appendix. Quantitative results of the user study are shown in
Table 1. For each metric, we computed whether the difference be-
tween ourmethod and CG-GANwas significant using a paired t-test
or Wilcoxon signed-rank test, depending on whether the compared
samples stemmed from a normally distributed population, which
we identified through a Shapiro-Wilk test. For a Bonferroni–Holm
corrected p-value of < 0.05 we assumed that the difference was
significant, indicated with an asterisk (∗) in Table 1.

In terms ofmental rating, study participants rated the reconstruc-
tions produced by CG-GAN higher than our method, 4.8 (SD=.80)
vs. 4.0 (SD=.82). The visual rating of our system was higher than
CG-GAN’s, 4.1 (SD=.95) vs. 3.9 (SD=.95). However, the differences
between the two conditions were not statistically significant. We

also compared the change in scores from the mental rating to the
visual rating, which reflects the users’ perception of the reconstruc-
tion before and after seeing the target and the reconstructed image
side by side. The increase in visual rating (4.1) for our method was
not significantly different from the mental rating (4.0). However,
the sharp decrease in rating for CG-GAN from a 4.8 mental rating to
a 3.9 visual rating was statistically significant. Furthermore, Table 1
reports the average System Usability Scale (SUS) score, NASA Task-
Load-Index (NASA-TLX) and task completion time. For all three
metrics, our method significantly outperformed CG-GAN. The av-
erage SUS score increased from 59.0 (SD=12.7) to 84.6 (SD=12.9)
with our system, a significant improvement in usability. Similarly,
the perceived user workload is drastically reduced from a NASA-
TLX rating of 43.4 (SD=10.9) to only 27.2 (SD=18.4). Finally, the
average time it took participants to reconstruct their mental image
was reduced by 40%, from about 17mins (SD=5.6mins) to about
10.0mins (SD=4.1mins).

5.5 Lineup Study
In addition to the metrics collected during the main study as re-
ported in Table 1, we conducted another evaluation study to mea-
sure the identification rate of the produced reconstructions in a
lineup study. Depending on the task, e.g. in forensics, it might not
be necessary to produce perfectly accurate reconstructions as long
as the portrayed person can be identified. To calculate the identifi-
cation rate we need to create a lineup of potential candidate images
containing the true target and similar looking faces. The task of
participants is to rank this lineup according to the similarity with a
given reconstruction. Similar to Zaltron et al. [46] we then define
the identification rate 𝐼𝐷 based on the ranking as:

𝐼𝐷 =
#Rank 1
#Votes × 100. (5)
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Figure 7: Example lineups used in our lineup study. Partici-
pants had to rank the lineup according to the similarity with
the reconstruction.

Creating a reasonable lineup is crucial for this metric and can bias
the outcome. If the lineup contains faces that are dissimilar in ap-
pearance to the target, identification is trivial and the identification
rate is inflated. To create the lineup Zaltron et al. [46] added noise
to the latent vector of the generated target faces, which allowed
them to create faces similar to the target. Since our targets are real
faces, it is not straightforward to generate variations of the faces.
Instead, we searched the three nearest neighbours in the respective
datasets the target faces were selected from, FFHQ or CelebA-HQ.
To find the nearest neighbours we selected faces with the most
similar embedding vector using the ArcFace [11] embedding space,
excluding image variations of the same person. This results in 12
lineups consisting of four candidate faces, each paired with the re-
constructions from CG-GAN and our MFRS. Example lineups used
for this study are shown in Figure 7. Although this study enables us
to compare the identification rate of our system with CG-GAN, it is
crucial to acknowledge that our lineups always include the target
face. This aspect cannot be guaranteed in real-world scenarios and
may lead to an inflation of the identification rate for both methods.

We recruited 22 colleagues and friends as independent raters for
an online evaluation study without financial compensation. Each
participant was randomly assigned to one of two groups and had
to complete 12 trials in random order. For each trial they had to
rank a lineup according to the similarity with the reconstruction
from either our MFRS or CG-GAN, depending on the group. The
first group had to rank a subset of six lineups based on our MFRS
reconstruction and another six based on the CG-GAN reconstruc-
tion, while this assignment was flipped for the second group. This
ensured that each participant saw each lineup only once to avoid
unwanted side effects, while still evaluating all reconstructions
between groups. Based on the results of this study we achieve a
identification rate 𝐼𝑅 of 55.3% while CG-GAN achieves a identifica-
tion rate of 56.1%. The target face was ranked within the top three

Target 5 Iterations 10 Iterations 15 Iterations 20 Iterations

Figure 8: Reconstructions of our proposed system that show
an increasing similarity with the target face with an increas-
ing number of iterations. The first column shows three ex-
ample target faces from the validation set. The following
columns show the reconstruction for 5, 10, 15 and 20 itera-
tions.

Target Ours Optimize z w/o Fine-tune

Figure 9: Results of our conducted ablation experiments. The
first column shows three example targets from the valida-
tion set and the second column the respective reconstruction
with our proposed system. The last two columns show ab-
lated versions where we train the reconstruction network to
optimise the latent vector 𝑧 of an image directly instead of
the embedding (column 3) or train with the non fine-tuned
user model (column 4).

using MFRS reconstructions in 94.0% of cases and with CG-GAN in
95.0% of cases. A p-value of 0.54 for a Wilcoxon signed-rank test
indicates that there is no significant difference between our MFRS
and CG-GAN in terms of the identification rate.
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5.6 Ablated Models
In addition to the user study, we conducted several ablation studies
to evaluate different system components and hyper-parameters.
One such hyper-parameter is the number of iterations participants
had to complete. To evaluate this, we modified the MFRS to not only
predict one latent vector 𝑧rec based on all 20 iterations but to predict
20 vectors 𝑧𝑖rec, 𝑖 = 1, 2, . . . , 20 using only the information from
iterations 1 to 𝑖 . For this, we trained the reconstruction network
similarly as before except that we averaged the loss over all 20
predictions:

Lrec = −
1
20

20∑︁
𝑖=1

𝑀 (𝑧𝑖rec) ·𝑀 (𝑧M)𝑀 (𝑧𝑖rec) ∥𝑀 (𝑧M)∥ . (6)

This allowed us to visualise the MFRS reconstruction after every
iteration. Figure 8 shows three target faces from the validation set
and reconstructions of our MFRS after 5, 10, 15 and 20 iterations.
As expected, we observe that the similarity between target and
reconstruction increases the more user ranking information the
MFRS receives.

Another important component of our system is the mapping
network, which allowed us to compute the loss in the embedding
space instead of the latent space of the generator. To evaluate the
importance of this step, we trained the reconstruction network such
that it optimises the mean squared error between the target 𝑧𝑚 and
reconstructed 𝑧𝑟𝑒𝑐 latent vector directly instead of the similarity
in the embedding space. Figure 9 shows three example target faces
from the validation set in column one, the reconstructions with our
method in column two and reconstructions without the mapping
network in the third column. The results indicate that our method
produces visually more similar mental face reconstructions with
the mapping network.

Finally, we evaluated the importance of the fine-tuning step of
the embedding network used in the user model. For this, Figure 9
additionally shows qualitative results of our method without fine-
tuning the user model in the last column. Results appear inferior
when compared to our method with fine-tuning.

6 DISCUSSION
In the sections that follow, we discuss our system’s performance and
the difficulty in evaluating mental image reconstruction systems.

6.1 Comparison with CG-GAN
Results from our user study (see Table 1) demonstrated signifi-
cant performance improvements in system usability, workload, and
task completion time without sacrificing the reconstruction quality
when compared to the current state of the art [46]. To assess the
quality of the reconstructions, we introduced two metrics: the men-
tal rating and visual rating. The mental rating captures the users’
perception of similarity to the target image at the end of an exper-
iment based on what the users remember. In contrast, the visual
rating compares the two images side by side, i.e. the target image
and the reconstruction, thereby allowing users to more accurately
judge the reconstruction quality. While CG-GAN outperformed
our method on the mental rating (4.8 vs. 4.0), our method’s per-
formance on the visual rating was comparable to CG-GAN’s (4.1
vs. 3.9). These results show a sharp decrease in performance for

CG-GAN from a mental rating of 4.8 to a visual rating of 3.9, which
suggests a difference in what participants remembered, compared
to the actual target image they had to memorise. One reason for this
discrepancy might be that CG-GAN always visualises the current
state of the face being edited. Because of this, we hypothesised
that the participants’ mental images changed during the lengthy
editing process with CG-GAN. This interesting finding was vali-
dated through post-study interviews with the participants. Three
of the twelve participants mentioned that they were surprised to
see the actual target after using CG-GAN, as they expected it to
look different. In addition, they reported that it was difficult to
memorise the target while actively manipulating facial features.
While further work is necessary to validate this hypothesis, it is
likely that a participant’s mental image changes and moves closer
to the image that they try to generate using, for example, CG-GAN.
The impact of such a “mental shift” depends on the application.
While it may be minimal for generating faces of digital avatars or
characters, it is severe for facial composite generation in criminal
investigations. However, it remains unclear why and to which de-
gree this mental image shift occurs. We suspect that the degree of
familiarity with the target image plays an important role. In our
user study, familiarity was low as participants were exposed to the
target face for the first time. While the scenario of unfamiliar target
faces is more in line with the task of composite generation from a
witness’s memory, a comparison of the systems with familiar faces
will be interesting for future work.

For many tasks, especially in forensics, the objective is not to
maximise the perceived similarity of the reconstruction to the target,
but rather the recognition rate of the target given a reconstruction.
Through an additional user study, we estimated the recognition
rate of our MFRS and CG-GAN to be 55.3% and 56.1%, respectively,
with no significant difference between the systems. This finding
reinforces that the significant usability improvements of our MFRS
do not come at the expense of reconstruction quality. Furthermore,
it confirms the overall effectiveness of our system in producing rea-
sonable reconstructions. Considering that the CelebA-HQ [19] and
FFHQ [20] datasets comprise 30K and 70K images, respectively, and
we select the nearest neighbours for the lineups, a recognition rate
of 55.3% is substantial. In 94% of the cases, the target face was not
assigned the last rank, indicating that our reconstruction was closer
to the target than to at least one of the three nearest neighbours.
Moreover, the comparable identification rates observed between
CG-GAN and our MFRS suggest that the higher mental rating of
CG-GAN does not necessarily result in a higher identification rate.
This further underscores the possibility of an unintended side-effect
associated with CG-GAN, as previously discussed.

While our method is similar to CG-GAN in terms of reconstruc-
tion quality, our face reconstruction system significantly outper-
forms it on three usability metrics. Our method achieved a signifi-
cantly higher SUS score, a lower task load index, and a much faster
task completion time. We believe the main reason for the high SUS
scores is our user-friendly system design: splitting the reconstruc-
tion objective into multiple small ranking tasks is easy to explain,
understand, and execute for participants. This also allows for a
much simpler user interface: Figure 10 shows the main interface of
our proposed system at the top and the main interface of CG-GAN
at the bottom. Visually comparing these two interfaces shows that



Usable and Fast Interactive Mental Face Reconstruction UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

(a)

(b)

Figure 10: Figure (a) shows the user interface of our system.
Users are presented with six faces that they can rank via drag
and drop. Figure (b) shows the main interface of CG-GAN.
Users are presented with 9 faces that they can manipulate
via randomising, mutating or manual editing.

the interface of our system is much simpler, which is likely another
contributing factor to the significantly higher usability score.

While our system reconstructs the mental face based on user
rankings, participants have to actively reconstruct their mental
image with CG-GAN. Finding a good initial face with CG-GAN
heavily relies on randomness without much user control. Similarly,
optimising the reconstructions through the evolutionary algorithm
is based on random exploration but also requires the users to se-
lect appropriate faces. Manual editing of faces adds a significant
amount of complexity and participants reported frustration because
certain face controls were missing or the existing controls were
heavily entangled with multiple features, often preventing them

from implementing their intended changes. The increased complex-
ity and higher user frustration are also reflected in the significantly
higher task load index of 43.4 compared to 27.2 with our system
(see Table 1).

6.2 Analysis of the Reconstruction System
We conducted several ablation experiments to study the impor-
tance of each component of our method. Our results (Figure 8),
including comparisons to CG-GAN (Figure 6, Table 1), suggest
that performing 20 iterations is a good trade-off between recon-
struction quality and task completion time. Even though the change
between 15 and 20 iterations led to minor changes in reconstruction
quality (Figure 8), we decided to go for the best mental face recon-
struction, which was still 40% faster than CG-GAN. Our proposed
loss function in Equation 6 allowed us to not only visualise the
reconstructions at every iteration but also has interesting usability
implications. While participants had to complete all 20 iterations in
our evaluation study, the modified optimisation objective allows for
stopping the reconstruction process at any iteration. Users could
see the reconstruction result after a few iterations, deciding when to
stop the system. However, how and when to visualise intermediate
reconstructions is an open question: visualising the reconstruction
after every iteration could cause a “mental shift”, as discussed in
Subsection 6.1. Another possibility is to define an automatic stop
criterion through the system, e.g. stop if the difference between
two iterations is below a threshold 𝛼 :𝑀 (𝑧𝑖rec) −𝑀 (𝑧𝑖+1rec ) < 𝛼 .

Another important factor is the selection of auxiliary faces that
are presented to the participants. While we chose the auxiliary
faces for each iteration at random, it might be possible to carefully
select these to increase overall system performance. While we do
not expect this to influence the reconstruction quality, it might
reduce the number of iterations needed to extract the same amount
of information. We conducted a preliminary experiment in which
the objective was to learn the auxiliary faces. Instead of passing
the ranked auxiliary latent vectors into the reconstruction network,
we provided a constant value as input which was followed by a
fully connected layer to predict the auxiliary latent vectors for a
given iteration. Since the user model is fully differentiable, it could
be integrated into the reconstruction network to rank the learned
faces during training. However, this approach has two main draw-
backs. First, we would not be able to collect real human ranking
data for the auxiliary faces to fine-tune the user model as those are
not known before training the reconstruction network. Second, the
learned auxiliary faces would often be extremely different in ap-
pearance. While this maximises the information the reconstruction
network can extract from the faces in each iteration, it would make
it more difficult for humans to rank and compare, resulting in noisy
feedback.

6.3 Challenges in Evaluating Mental Image
Reconstruction Systems

Looking beyond the discrepancy between CG-GAN’s mental and
visual rating, both methods achieved an average visual rating of
around four out of seven. While this indicates, on the one hand, that
reconstructions were similar in quality, it also highlights, on the
other hand, a significant gap to the actual mental image. Visually
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comparing the target and reconstructed faces in Figure 6, Figure 11
and Figure 12 leaves the same impression. Given the immense vari-
ability in face appearance, the reconstructed faces of both systems
look similar compared to the targets overall. However, participants
never thought that they looked like the same person, which raises
the question of how much better such reconstruction systems can
become. As we are reconstructing high-fidelity images from human
memory, this task is inherently noisy. Consequently, the evaluation
of such systems remains an open challenge. While the mental rating
considered the users’ mental image, their mental encoding may it-
self be influenced by the system as discussed in Subsection 6.1. The
visual rating is also limited because participants often focused on
features unrelated to the identity such as facial expression and hair.
Therefore, future systems might benefit from disentangling these
features by showing neutral faces without hair and accessories,
which is also done similarly in classical systems like EvoFit [14].
After reconstructing the inner facial features and the head shape,
these features could then be identified and added post-hoc. This
could potentially improve reconstruction performance and allow
for a visual rating more focused on the identity of individuals.

7 CONCLUSION
In this work, we presented an end-to-end trainable, interactive
system for mental face reconstruction. In stark contrast to prior
works that required users to explicitly reconstruct mental images
using tedious and time-consuming tools, our system only requires
users to rank images of faces according to the similarity to their
mental images over multiple iterations. Our reconstruction system
combines the image features from each iteration into a single vector
that is visually decoded into an image with a state-of-the-art gen-
erative model. Through quantitative and qualitative evaluation in a
12 and 22-participant user study, we demonstrated superior perfor-
mance in terms of system usability, cognitive load, and usage time
without sacrificing reconstruction quality or identification rate –
our method’s reconstruction performance was comparable to prior
work. As such, our work presented a new interactive intelligent
system that can be used to quickly and effortlessly reconstruct a
user’s mental image and has yielded interesting insights that could
help to further improve such systems in the future.
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Figure 11: Additional reconstructions of our method on the validation set using real human ranking. Each image pair shows
the target face on the left and our reconstruction on the right.
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Figure 12: Additional reconstructions of our method on the validation set using real human ranking. Each image pair shows
the target face on the left and our reconstruction on the right.
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