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Abstract

The widespread adoption of autonomous vehicles is expected to lead to an overall increase in traffic.
Ride-pooling can counter this downside of an otherwise promising technology, but the majority
of current ride-pooling platforms utilise centralised designs that allow companies to collect vast
amounts of user data. To solve this problem, we propose the decentralised ride-pooling platform
GETACAR that focuses on privacy-preservation. GETACAR utilises blockchain technology to
allow for the transparent and immutable tracking of ride processes without exposing personal
information to other participants or the platform itself. To realise the platform, we develop its
design, define its interactions and create a prototypical implementation. GETACAR is comprised
of several components, including a customer and ride provider frontend allowing humans and
autonomous vehicles to interact with GETACAR. We introduce an off-chain matching service to find
the best possible match between customers and ride providers via a Vickrey auction. GETACAR
also connects with crypto exchanges that allow the platform to use cryptocurrencies for internal
transactions while users can still handle payments via fiat currencies. An authentication service
verifies all parties wishing to participate on the platform, ensuring accountability and impeding the
use of multiple identities. To ensure safety across the platforms, a robust rating system is in place
that allows all parties to rate each other. In addition, a number of privacy mechanisms are in place
to minimise the exposure of personal information, including location cloaking, pseudonyms, and
frequently changing wallets. A prototype validates the GETACAR platform design by showcasing
the platform’s key features, including a fully realised user frontend, the matching service, and smart
contracts running on the Ethereum blockchain. All these components are connected and working
together, allowing for a customer to request a ride with multiple ride providers bidding on the ride.
The implemented matching service determines the winner, and smart contracts manage the overall
ride, including the rating process. Both the design of the platform and the prototype showcase the
potential of blockchain technology to create next-generation ride-pooling platforms that ensure
transparency while preserving privacy.
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Kurzfassung

Es ist zu erwarten, dass die Verbreitung autonomer Fahrzeuge zu einem allgemeinen Anstieg
des Verkehrsaufkommens führen wird. Ride-Pooling kann diesem Nachteil einer ansonsten
vielversprechenden Technologie entgegenwirken, aber aktuelle Ride-Pooling-Plattformen nutzen
zentralisierte Designs, die es Unternehmen ermöglichen, große Mengen an Benutzerdaten zu
sammeln. Um dieses Problem zu lösen, setzt die dezentrale Ride-Pooling-Plattform GETACAR auf
den Schutz der Privatsphäre. GETACAR nutzt die Blockchain-Technologie, um eine transparente
und nicht manipulierbare Verfolgung von Fahrten zu ermöglichen. Die Plattform besteht aus einem
Kunden- und Fahranbieter-Frontend, das es Menschen und autonomen Fahrzeugen ermöglicht,
mit GETACAR zu interagieren. Es wird ein Off-Chain Matching-Service eingeführt, um über
eine Vickrey Auktion die Kunden bestmöglich mit passenden Fahranbietern zusammenzubringen.
Die Plattform ist mit einem Authentifizierungsdienst ausgestattet, der Pseudonyme generiert
und Krypto-Wallets verifizieren kann, um sicherzustellen, dass Benutzeridentitäten nicht auf
der Plattform preisgegeben werden. GETACAR ist mit Krypto-Börsen verbunden, die es der
Plattform ermöglichen, Kryptowährungen für interne Transaktionen zu verwenden, während
Benutzer weiterhin Zahlungen über Fiat-Währungen abwickeln können. Um die Sicherheit auf
der Plattform zu gewährleisten, gibt es ein robustes Bewertungssystem, das es allen Parteien
ermöglicht, sich gegenseitig zu bewerten. Ein Prototyp validiert das GETACAR-Plattformdesign,
indem er die wichtigsten Funktionen der Plattform präsentiert, darunter ein vollständig realisiertes
Benutzer-Frontend, den Matching-Service und Smart Contracts, die auf der Ethereum Blockchain
laufen. Alle diese Komponenten sind miteinander verbunden und arbeiten miteinander, sodass ein
Kunde eine Fahrt bei mehreren Fahranbietern anfordern kann und diese auf die Fahrt bieten können.
Der implementierte Matching-Service ermittelt den Gewinner und Smart Contracts verwalten
die gesamte Fahrt, einschließlich des Bewertungsprozesses. Sowohl das Design der Plattform
als auch der Prototyp verdeutlichen das Potenzial der Blockchain-Technologie zur Schaffung von
Ride-Pooling-Plattformen der nächsten Generation, die Transparenz gewährleisten und gleichzeitig
die Privatsphäre wahren.
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1 Introduction

With autonomous vehicles expected to become a reality in the near future, an increase in overall
traffic on the roads can be expected. The mass utilisation of ride-pooling platforms can counter
this development, but the current ride-pooling platforms are built centralised and collect large
amounts of sensitive user data [RGA+22]. Therefore, this research aims to create a decentralised,
privacy-preserving ride-pooling platform that provides a feasible alternative to the current platform
landscape.

1.1 Problem Statement

Technological breakthroughs in the area of autonomous driving have accelerated in recent years.
While autonomous vehicles provide the ability to make travelling more convenient and efficient,
they also can create problems regarding general traffic conditions [RGA+22].

The fast adoption of autonomous vehicles, once they enter the mass market, will inevitably result
in more vehicles on the roads. This increase can be explained through the number of upsides
that make autonomous vehicles appealing. Without the need to drive manually, more people will
decide to travel with a personal autonomous vehicle and against public transport methods, creating
stagnation and traffic jams. Therefore, while the technology promises several advantages, without
proper intervention, it can also negatively affect travel [RGA+22].

Ride-pooling is one solution to tackle this problem. The concept centres around the idea of using
a single vehicle to transport multiple passengers who all travel in a similar direction. Thereby,
ride-pooling reduces the overall traffic of individual vehicles on the roads by improving the utilisation
of seating capacity inside the vehicles. However, in practice, ride-pooling faces many challenges
[RGA+22].

One of the big challenges with current ride-pooling platforms is the centralised nature of the
available platforms. This centralisation allows companies to collect huge amounts of personal
and transaction data, containing highly sensitive information like residential addresses, payment
information, and travel habits that can be sold and utilised for targeted advertising. Having a single
entity in control of the ride-pooling platforms also results in worse conditions for ride providers and
higher prices for customers [BBA+21].

With this background, it becomes clear that a new approach towards ride-pooling platforms is
needed to tackle the industry’s problems and further popularise the concept of ride-pooling. This
paper promotes the creation of a decentralised, trust-based ride-pooling platform which can tackle
the problems of the current industry.
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1 Introduction

Blockchain technology has proven itself to be a capable tool for creating decentralised platforms
in recent years. Platforms built with blockchain technology offer data immutability, transaction
transparency, and decentralisation over a network of worker nodes by design. Blockchain technology
addresses many of the problems inherent in centralised platforms. While the technology provides
several advantages, it also brings with it several unique challenges regarding the privacy and
anonymity of user activity on the platform, as all transactions running through the blockchain
network are public by design [MAA22].

Therefore, this study takes up the challenge of conceptualising, designing, prototyping and evaluating
a platform for ride-pooling based on blockchain technology that preserves privacy. This platform
will bring customers and ride providers together to allow for seamless ride-pooling that ensures the
privacy of transactions and creates an environment where parties only share necessary information
with each other.

1.2 Objectives

To achieve the overall goal of this research, creating a decentralised ride pooling platform that
provides an alternative to the centralised solutions, several research objectives have to be met:

Design of the Components and Interaction Flow between the Platform, Customer, and Ride
Provider

The research needs to provide a design blueprint for the decentralised ride-pooling platform. This
design should communicate the general vision of the platform and explain the key concepts. At
its core, the platform is an ecosystem of components interacting with each other. Therefore, it is
also necessary to design a streamlined, secure, and efficient flow for these interactions. It is also
important to showcase how the individual components are deployed, especially in regard to the
off-chain components that make up the platform. The objective here is to develop an interaction flow
that ensures seamless ride booking, facilitates trustworthy transactions, and preserves privacy.

Design of a Trust Mechanism for Customer and Ride-Providers

Trust is a necessity for every platform but is especially relevant for decentralised platforms as these
platforms are not managed by a single owner that can single-handedly settle disputes or resolve
unexpected edge cases. Therefore, it is necessary for the platform to have a robust reputation system
that sanctions malicious behaviour and promotes good behaviour.

Evaluation of Customer and Ride-Provider Anonymity and Privacy throughout the Platform

One of the disadvantages of blockchain-based platforms is that the high level of transparency can
result in a neglect of customer and ride-provider anonymity and privacy. This counts especially
for ride pooling platforms where large amounts of personal data like location and transaction data
get exchanged. That is why it is important to assess the platform design regarding privacy and
anonymity to show that no entity can collect critical amounts of data from the platform.
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Proposal of Solutions for Physical Issues and Edge Cases

While the general focus of the research lies in creating digital processes that allow handling as much
of the user flow through the platform as possible, it is important to also design solutions for potential
damage to vehicles by passengers or inappropriate actions by individuals towards other passengers
that need to be handled outside the platform. Therefore, the aim is to ensure accountability and
conceptualise reporting mechanisms.

Prototypical Realisation of the Decentralised Platform

Based on the theoretical design, a prototype implementation of the platform is constructed. By
building the platform, it is possible to simulate real-world scenarios, understand unforeseen
challenges, and refine the design in response to them.

To ensure a realistic scope for this research, there are exclusions to some aspects of the platform.
Therefore, this research will not cover creating a decentralised authentication service for the platform.
The reason for this is that an authentication service is a generic component that is used for all
kinds of decentralised platforms. However, the platform will discuss the general authentication flow
that the platform will utilise. While ensuring the platform is generally economically feasible, this
research will not cover the economic intricacies of running a decentralised ride-pooling platform.
Through the defined objectives, the goal is to construct a platform that shows that the concept of a
decentralised, privacy-protecting ride-pooling platform is feasible.

1.3 Methodology

It is important to utilise a structured approach when designing the decentralised ride-pooling
platform. The following methodology provides a step-by-step process where each step builds
upon the previous one, ensuring the platform viability, resulting in the design and prototypical
implementation of a decentralised, privacy-preserving ride-pooling platform that showcases the
current state of technology and scientific research in that field.

1. Literature Research about Current Solutions: First, it is important to understand the
current state of scientific research. Therefore, this paper will conduct an in-depth analysis
of the current state of scientific literature, reviewing academic papers, industry reports, and
white papers about ride-pooling, decentralised systems, and related technologies. The output
of this step is a comprehensive overview of what has been achieved in the area of decentralised
ride-pooling so far.

2. Identification of Shortcomings: Building upon the previous stage, this research will work
out potential shortcomings of the current research landscape, point them out and propose
solutions to balance out these shortcomings. This allows for the decentralised ride-pooling
platform built through this research to not only be a gathering of existing research findings
but also to provide added value to the research landscape.

3. Proposal of a Solution Design: The next step is to create a comprehensive design for the
platform based on the findings of the research analysis. This phase includes designing the
architecture of the decentralised platform, defining interaction flows and outlining trust and
privacy mechanisms.
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4. Prototypical Implementation of the Solution Design: To prove the viability of the design,
it is necessary to build a prototype that can showcase that the core functions and components
work as intended. Therefore, this step includes the programming of smart contracts, user
interfaces and other components and enabling them to communicate with each other. The
finished prototype allows for real-world testing and iterative refinement.

5. Evaluation Whether the Previously Set Requirements are met: Based on the results
from the working prototype, it is then important to analyse if all research objectives set for
the decentralised ride-pooling platform are met. Based on this evaluation, it is possible to
determine if the platform is a success and can provide a contribution to research.

6. Identification of Limitations and Proposal of Possible Improvements: The evaluation is
also meant to bring up shortcomings of the research and aspects of the platform that require
further investigation. These shortcomings and possible improvements are clearly pointed out
so that future researchers can take the findings of this work and use it as the base for their
research.

In summary, this iterative methodology ensures a scientific step-by-step approach to developing the
privacy-preserving ride-pooling platform. The research approach, therefore, helps meet all research
objectives set for this work.
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2 Background Information

In the following chapter, we elaborate on relevant concepts and technologies that are necessary
to understand for this research including autonomous driving, ride-pooling, blockchain and
decentralised platforms. We additionally present an overview of the current state of academic
literature in the field of decentralised ride-pooling platforms.

2.1 Autonomous Driving and Ride-Pooling

The advantages of autonomous driving, combined with the growing significance of ride-pooling,
promise to have a strong impact on urban mobility [SKMM23]. We dive into the details of both
concepts, exploring their origins, developments, and the potential synergy they hold for the future
of transportation.

2.1.1 Autonomous Driving

Autonomous, or self-driving vehicles, combine hardware and software to navigate and control the
car without human intervention [SKMM23]. Classified into levels 0 to 5, with five being fully
autonomous, these vehicles rely on intricate systems of sensors, cameras, lidars, and radars. They
continuously gather data about their environment, which is then processed by advanced algorithms
to make driving decisions [HMS22]. Projects like the EUREKA Prometheus Project in the 1980s
and the DARPA Grand Challenge in the early 2000s played essential roles in developing autonomous
technologies [HMS22]. Today, significant tech and automobile companies compete to build fully
autonomous vehicles for mass adoption [SKMM23]. The potential benefits of autonomous driving
are vast:

Safety: Human error, responsible for most road accidents, could be drastically reduced [HMS22].

Efficiency: Optimal driving by autonomous cars might reduce traffic congestion and lead to more
streamlined traffic flows [SKMM23].

Accessibility: Those unable to drive due to age, disability, or other factors can enjoy independent
mobility [HMS22].

Economic Impact: A reduction in accidents implies decreased costs in healthcare and vehicle
repairs [SKMM23].

However, challenges still exist. Technical complications, legal barriers, ethical questions (like
decision-making in unavoidable accidents), and public scepticism must be addressed for a broader
acceptance [HMS22].
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2.1.2 Ride-Pooling

Ride-pooling allows for multiple people to share a single vehicle for a trip, where all passengers
have different destinations but share a similar route [PHSB21]. Platforms like UberPool and
Lyft Line have popularised ride-pooling in urban environments. The appeal of such services lies
in their promise of reduced cost of travel for passengers, decreased overall traffic, lower carbon
emissions, and the potential reduction of occupied parking spaces [Sha18]. However, ride-pooling
is not without its challenges. Efficient route optimisation to ensure minimal detours, balancing
demand and supply, and ensuring passenger safety are areas that ride-pooling providers struggle
with [PHSB21].

The synergy of autonomous driving and ride-pooling offers a promising vision of the future of
urban mobility [SKMM23]. Autonomous vehicles offer more efficiency while also reducing the
overall cost of operation without the need for a human driver. This also allows for more overall
vehicle space for additional passengers and cargo. In addition, autonomous vehicles can potentially
work around the clock without downtime or increased prices for night trips [HMS22; SKMM23].
Regarding environmental impact, the combination of electric and autonomous vehicles, when
integrated with ride-pooling services, allows for a reduction in environmental pollution [HMS22;
SKMM23].

Autonomous ride-pooling also has an effect on city planning, as the design of modern cities is largely
centred around vehicles moving and parking. Through a reduction of overall traffic and a sharp
decline of needed parking spaces, large areas can be repurposed for housing, parks or recreational
areas [SKMM23]. Lastly, at the core of these advancements lies an increase in accessibility.
Autonomous ride-pooling systems lower barriers created by age, disability, or socioeconomic status
and thereby allow large groups of society to participate in urban mobility that were previously
excluded. [HMS22]. However, autonomous ride-pooling is not without potential downsides. Job
losses, especially for human ride providers, the challenge of adjusting infrastructure to accommodate
autonomous vehicles, and the need to build robust and safe systems are concerns that need to be
addressed [HMS22].

In conclusion, autonomous ride-pooling platforms represent technological advancements and can
change our approach towards transportation [Sha18], promising a more efficient, environmentally
friendly, and inclusive transportation landscape [SKMM23]. However, the development of such
platforms brings up the challenge of balancing the immense potential benefits with the inherent
difficulties.

2.2 Blockchain Technology and Smart Contracts

The blockchain concept represents a technological breakthrough. The decentralised, immutable
ledger at the core of the technology allows blockchains to be utilised in a number of industries,
including finance and supply chain management, where the integrity and immutability of information
play an important role [Zho23]. The decentralised consensus approach of blockchain ensures that
data modifications are only possible through the unanimous approval of all participating systems.
This ensures that information that is written onto the ledger becomes immutable. To provide all

22



2.2 Blockchain Technology and Smart Contracts

the important information on blockchain for this research, we provide an overview of the current
state of blockchain, explain the technical concepts behind blockchain in more detail, discuss the
applications of smart contracts and take a closer look at the security of blockchain [TK22].

2.2.1 Introduction to Blockchain

Blockchain technology as we know it today originated with the introduction of Bitcoin in 2008
[Nak09]. Satoshi Nakamoto, the pseudonymous individual or group behind Bitcoin, introduced
the concept as a solution to the double-spending problem in digital currencies [Nak09]. Digital
currencies before Bitcoin faced the problem that it was very difficult to ensure that no token could
be spent more than once. The solution to this problem presented by Nakamoto is a decentralised
ledger, where every transaction gets verified by a network of nodes through a consensus mechanism
[TK22]. This technological breakthrough was groundbreaking because it allowed the creation of
decentralised currencies that are not controlled by a single entity like a government.

One of the outstanding features of blockchain technology is its decentralisation [GBE+18]. Unlike
traditional databases, such as an SQL database operated by a central entity, blockchains operate on
a peer-to-peer network [GBE+18]. Every participant (or node) has access to the entire database and
the complete history of all transactions. This means that no single participant has control over the
data, and all participants collectively maintain the integrity of the data.

Immutability is another critical feature of blockchains. Once a transaction is recorded on the
blockchain, it becomes extremely difficult to alter [Pil16]. This is because each block contains
a cryptographic hash of the previous block, creating a chain of blocks [Pil16]. To change a
single block, one would need to alter all subsequent blocks, which is computationally impractical,
especially in large networks [CSJ+17].

Transparency is inherently built into the system due to its open-source nature. Every transaction
on the blockchain is visible to anyone who chooses to view it, ensuring full transparency in the
network [BKB21]. However, personal information about the users conducting the transactions
remains private as each user is commonly represented through some form of Public Key [Wei22].
This ensures a balance between transparency and privacy.

While the foundational principles of blockchains remain consistent, there are different types tailored
to specific needs [GBAC21]. Public blockchains, like Bitcoin and Ethereum, are open to anyone and
are simply secured by their cryptographic algorithms [GBAC21]. In contrast, private blockchains,
like the Hyperledger Blockchain Projects, can be restricted to a specific group of participants, often
used by businesses for internal processes. Private Blockchains can also be used as consortium
blockchains or federated blockchains, operated under the leadership of a group [LPZ+23]. They
provide a balance between the openness of public blockchains and the restrictions of private ones.

2.2.2 How Blockchain Works

Diving deeper into the mechanics of blockchain technology shows the interplay of cryptographic
principles, network theory, and consensus algorithms [XCW+22]. At the core of this technology
are blocks, which are essentially records of transactions. Each block typically contains a timestamp,
a reference to the previous block (known as the parent block), and a list of transactions. These
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transactions are represented as cryptographic hashes, which are fixed-size strings of characters
generated from input data of any size. The advantage of these hashes is that even a small change in
the input data results in a completely different hash, ensuring the integrity of transaction records
that can be traced back to the very first block, known as the genesis block [XCW+22].

Central to the operation of a blockchain is the concept of consensus mechanisms [TSA22]. These
are protocols that ensure all participants in the network agree on the validity of transactions. The
most well-known consensus mechanism is Proof of Work (PoW). In PoW, participants, often
referred to as "miners", solve complex mathematical problems to validate transactions and create
new blocks. This process requires significant computational power and energy. An alternative
mechanism, Proof of Stake (PoS), determines the creator of a new block based on their stake or
ownership of the cryptocurrency. It is seen as a more energy-efficient alternative to PoW. Delegated
Proof of Stake (DPoS) further refines this by allowing coin holders to vote for a few trusted nodes to
validate transactions, streamlining the process and reducing the energy footprint [KUC21].

The blockchain network is maintained by nodes, which are computers participating in the net-
work [XCW+22]. In general, there are two primary types of nodes: full nodes and light
nodes [MTD21]. Full nodes store the entire blockchain and validate all transactions and blocks.
They serve as the network’s backbone, ensuring data integrity and consistency. Light nodes, on the
other hand, store only a subset of the blockchain and rely on full nodes for transaction validation
and other heavy operations [MTD21]. Their primary role is facilitating faster and more efficient
interactions with the blockchain.

Transactions allow users to interact with the blockchain. Once a transaction is initiated, it is
broadcast across the blockchain network and placed in a pool of unconfirmed transactions. Worker
nodes then take these transactions from the pool and validate them against the ledger history to
ensure that they are valid. If a transaction is determined as valid, it is placed in a block, together
with other valid transactions. Once the block is full, it is shared with the network for verification
through the consensus mechanism. After this, the block is added to the chain, and the transaction
becomes a permanent part of the ledger history [XCW+22].

2.2.3 Smart Contracts

As one part of blockchain technology, smart contracts have emerged as an advanced tool, extending
the use-cases of blockchains beyond the record keeping of transactions [UX23]. A smart contract is
a self-executing contract where the terms of agreement or conditions are represented through written
lines of code [ZMM22]. They are protocols that verify and enforce credible transactions without the
need for third parties [ZMM22]. At their core, they are digital contracts that automatically execute
actions when predefined conditions are met.

The concept of smart contracts is not new, but its practical application gained popularity with
the advancements of blockchain technology [Pie21]. Ethereum, launched in 2015, demonstrated
the potential of smart contracts [Pie21]. Ethereum’s platform is designed specifically to create
and execute smart contracts, providing a more flexible scripting language and a platform for
creating a Decentralised Applications (DApp) [Pie21]. Since Ethereum’s creation, a number
of other blockchains have integrated smart contract capabilities, offering unique features and
optimisations.
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Once deployed, smart contracts operate without human intervention, ensuring that transactions
are carried out correctly when conditions are met [UX23]. This allows for interactions among
parties that are not required to trust each other. Since the contract is on a blockchain, all parties
can verify the contract’s code and monitor its execution [UX23]. The decentralised nature of
blockchains also ensures that smart contracts are secure from tampering, providing an added layer
of security [ZMM22].

Understanding the life cycle of a smart contract provides insights into its operational model. The
journey begins with its creation, where the contract’s terms are defined and encoded. Once the
code is written and tested, it is deployed onto the blockchain, appearing as an immutable part of
the ledger [TK22]. After the deployment, the contract is now active and can start receiving and
processing information. Execution occurs when the conditions specified in the contract are met,
triggering the actions encoded in the contract [Pie21]. While many smart contracts are designed to
run without a predefined end, there are scenarios where they might have a termination condition,
ending the contract’s active state on the blockchain [TK22].

Even though smart contracts have many advantages, they also come with their own set of limitations
and challenges [Nzu19]. One notable challenge in the Ethereum network is the concept of Gas
fees. Every operation, from contract deployment to execution, requires computational resources.
Users pay for these resources using so-called Gas, and with increased network activities, these fees
can rise. Scalability remains a concern as well. As more complex smart contracts and DApps are
developed, there is a growing demand for blockchains to process more transactions per second
without compromising on security or decentralisation [TK22]. Lastly, smart contracts are only
as good as the code they’re written in. Coding errors or oversights can lead to vulnerabilities,
potentially allowing malicious actors to exploit the contract [ZMM22].

In conclusion, smart contracts represent a significant leap in how agreements and transactions can
be managed on a decentralised network [Nzu19]. While they offer many advantages, it is necessary
to consider their challenges to utilise their full potential [Nzu19].

2.2.4 Blockchain Security

Blockchain’s decentralised nature, which is often used for its resilience and transparency, also
presents unique security challenges. One of the most discussed vulnerabilities is the 51 Percent
attack. In such an attack, if a single entity gains control of more than half of the network’s nodes, it
can potentially double-spend coins and stop or reverse transactions. This undermines the trust and
integrity of the blockchain. Similarly, Sybil attacks occur when a single party controls multiple
nodes, aiming to flood the network with false transactions or undermine mechanisms that rely on
redundancy and trust [SHY21].

Smart contracts have their own set of security concerns [ANWK21]. Reentrancy attacks are a
prime example, where an attacker drains funds from a contract by repeatedly calling its functions
before the initial function call is completed [ANWK21]. Issues like overflow and underflow, where
variable values exceed their set limits, can also be exploited, leading to unintended consequences in
contract execution [GCZ+22]. These vulnerabilities underscore the importance of rigorous code
audits and testing before deploying smart contracts on a live network.
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Most blockchains offer pseudonymity, where transactions are linked to a cryptographic address rather
than personal identities. However, through analysis, patterns can emerge, potentially de-anonymizing
users [KL22].

In essence, while blockchain offers robust security mechanisms at the core of its design, it is not
impenetrable. As the technology matures, addressing these vulnerabilities will be an important part
of ensuring its general adoption and trustworthiness.

2.3 Decentralised Platforms and Data Privacy

Decentralised platforms, at their core, are systems where components, like resources or operations,
are not controlled or managed by a single, central entity. Instead, they are distributed across multiple
nodes, with each having equal authority and autonomy. This is in direct contrast with traditional
centralised systems, where a single entity or a group of entities holds all the power and control.
In the following chapter, we will introduce the core concepts behind decentralised platforms and
showcase how data privacy can be handled in a system without a central authority.

2.3.1 Introduction to Decentralised Platforms

One of the primary characteristics of decentralised platforms is that it does not have a central point
of control. This means that no single entity has the authority to make decisions on their own or
changes without consensus from most of the network’s participants. This leads to enhanced security,
as the absence of a single point of failure makes the system more resilient to attacks [MLC+22].
Additionally, decentralised platforms often employ cryptographic techniques to ensure data integrity,
privacy, and authentication. This ensures that transactions and interactions on the platform are
secure, verifiable, and immutable.

Comparing decentralised platforms with centralised systems reveals strong differences in their
operational philosophies. Centralised systems, such as traditional databases or web servers, are
controlled by a single entity. This central authority has the power to set rules, make changes and
grant or deny access [MLC+22]. While this centralisation can lead to efficiencies in terms of
decision-making and simpler system architectures, it also presents vulnerabilities. A single point of
failure in a centralised system can lead to the entire system collapse. Moreover, centralisation often
results in data silos, where a single entity has control over large amounts of data [RMP+22].

On the other hand, decentralised platforms operate on the principles of democracy and transparency.
Decisions are made based on consensus algorithms, ensuring that no single participant can dominate
or manipulate the system. This democratisation of control can result in trust among users, as the
platform operations are transparent [HSY+22]. Data in decentralised systems is typically stored
across multiple nodes, ensuring redundancy and resilience. Even if one or more nodes fail, the
system can continue to operate seamlessly [RMP+22].

There are several potential benefits for decentralised platforms. Firstly, they offer enhanced security
and resilience due to their distributed nature. The risk of system-wide failures or attacks is
significantly reduced [MLC+22]. Secondly, they promote transparency and trust among users, as
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decisions are made collectively and openly. Additionally, decentralised platforms lead to innovations
in peer-to-peer transactions, like smart contracts and decentralised applications, that allow for new
business models [RMP+22].

However, decentralised platforms come with a set of challenges [HSY+22]. The lack of a central
authority can lead to slower decision-making, as achieving consensus can be time-consuming.
Additionally, the technology enabling decentralised platforms, such as blockchain, is still maturing,
leading to scalability and performance issues. Interoperability between different decentralised
platforms is also a challenge [Zha22].

2.3.2 Data Privacy: Definition and Importance

Data privacy, at its core, refers to the right of individuals to control or influence what information
about them is collected and how it is used. It centres around the rules put in place to protect personal
information and ensure that individuals remain in control of it [CSFS20]. This concept is crucial
for several reasons.

Data privacy is directly linked to personal autonomy and dignity. Personal data can reveal intimate
details about an individual’s life, preferences, and habits. Ensuring that such information is not
misused or mishandled is vital [CSFS20]. Without robust data privacy measures, individual rights
can be violated, leading to a loss of trust in digital systems and platforms.

Furthermore, in the context of businesses and services, data privacy is important for maintaining
consumer trust. Companies that fail to protect user data or misuse it can face significant reputational
damage, legal consequences, and financial losses [LWW+19]. In sectors like decentralised ride-
sharing, where users share location data, payment details, and personal preferences, ensuring data
privacy can be the difference between a successful platform and one that users abandon due to trust
issues [LWW+19].

While data privacy is a critical concept, it is essential to differentiate it from related terms like data
security and data protection, as they are often used interchangeably but have distinct meanings. Data
security refers to the protective measures and technologies used to secure data from unauthorised
access. It focuses on defending data from malicious threats, like hackers, malware, or other
cyber-attacks. For instance, using encryption to secure data to prevent unauthorised access is an
example of data security practices.

On the other hand, data protection is a broader concept that includes both data privacy and data
security. It refers to the policies, procedures, and legal measures designed to ensure that data is
collected, stored, and used in a way that respects individual rights and complies with relevant laws
and regulations [CSFS20].

In conclusion, data privacy is the right of individuals to control their personal information and its
usage [CSFS20]. As we continue to integrate digital platforms into our everyday life, understanding
and prioritising data privacy will become even more important.
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2.3.3 Mechanisms of Data Privacy in Decentralised Blockchain Systems

Decentralised blockchain systems are a revolutionary technology offering data transparency,
immutability and security. However, the nature of public blockchains, which are open and
transparent, creates significant privacy challenges. Every transaction and its associated data are
visible to anyone who accesses the blockchain, leading to potential privacy breaches and exposure
of sensitive information.

Encryption plays an important role in addressing these challenges. At its core, encryption involves
converting data into a code to prevent unauthorised access. In the context of blockchains, wallets
consisting of a public key (often linked to an address on the blockchain) and a private key are widely
used. A public key, visible to everyone, is used to encrypt data, while a private key, known only
to the owner, is used to decrypt it. This ensures that only the intended recipient can access the
information. Furthermore, end-to-end encryption ensures that data remains encrypted during its
entire journey from the sender to the recipient, preventing potential eavesdroppers from accessing
the information during transmission [TK22].

One approach to establishing an encrypted connection over a public network is the Diffie-Hellman
Key Exchange. The Diffie-Hellman Key Exchange, introduced by Whitfield Diffie and Martin
Hellman in 1976, is a cryptographic protocol that allows two parties to independently generate
a shared secret key over an insecure communication channel. The protocol is based on the
mathematical properties of modular arithmetic and discrete logarithm problems. Specifically, given
a prime number 𝑝 and a base 𝑔 (where 𝑔 is a primitive root modulo 𝑝), each party selects a private
key and computes a public key. The public keys are then exchanged, and each party uses the other’s
public key along with their own private key to compute the shared secret. The security of the
protocol relies on the difficulty of the discrete logarithm problem: while it is computationally easy
to generate the public key from the private key, the reverse operation is considered infeasible with
current technology when large prime numbers are used [DH76].

Another advanced cryptographic technique employed in blockchains is zero-knowledge proofs
(ZKPs). ZKPs allow one party to prove to another that a statement is true without revealing any
specific information about the statement itself. For instance, in a transaction, a user can prove they
have sufficient funds without revealing the exact amount. This ensures transaction validity while
preserving user privacy [TK22].

Homomorphic encryption offers another layer of privacy. It allows computations to be performed
on encrypted data without first decrypting it. The result, when decrypted, remains accurate. This
means that blockchain systems can process transactions and maintain data integrity without exposing
the actual data, a boon for privacy-centric applications [PDKJ22].

While public blockchains offer transparency, they create challenges for the development of
applications, especially those requiring higher levels of privacy. Private and consortium blockchains
emerge as alternatives in such scenarios. Private blockchains restrict participation to selected
entities, while consortium blockchains involve multiple organisations governing the network. Both
these types limit data visibility to only authorised participants, enhancing data privacy [NDT20].

Off-chain storage is another solution to the privacy challenges. Instead of storing all data on
the blockchain, only essential information is kept on-chain, while the rest is stored off-chain in
secure databases. This reduces the amount of data exposed on the public ledger, ensuring privacy
[YTH+22].
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Lastly, layer 2 solutions, built on top of the primary blockchain, offer scalability and privacy
improvements. By processing transactions off the main chain and only writing the final state
on-chain, these solutions can ensure faster transactions and enhanced privacy [SKK+22]. In
conclusion, while decentralised blockchain systems present certain inherent privacy challenges, a
combination of cryptographic techniques and architectural solutions can effectively address these
concerns.

2.4 Current Solutions and Shortcomings

Due to the diverse literature regarding decentralised ride-pooling platforms, the proven approach of
a systematic literature search according to Vom Brocke was chosen [vSN+09]. In this way, quality
criteria such as traceability and reproducibility can be ensured through a clearly defined process.
Two common cross-publisher research databases and one common publisher database were used
for the literature search. The selection of several cross-publisher research databases is intended
to ensure that the search provides a representative overview of existing research on decentralised
ride-pooling platforms. The selection of the database of a publisher with a focus on information
technology is intended to show how the research topic is treated in the literature from a primary
information technology perspective. The cross-publisher research databases used are Scopus and
Ebscohost. The publisher database is IEEE Xplore. The goal is to obtain research literature as a
search result that deals with the development of decentralised ride-pooling platforms. To obtain
results covering mainly decentralised platforms, the search phrase “decentralised” was used. The
following three synonyms were used to obtain search results that deal with the topic of ride-pooling:
“ride-sharing”, “ride-pooling” and “ride-hailing”. Initial tests have shown that results with this
search phase return suitable research papers without noticeable gaps in regard to the topics covering
decentralised ride-pooling.

The complete search phrase looks as follows:

("decentralised" AND ("ride-pooling" OR "ride-sharing" OR "ride-hailing"))

For Scopus, Epscohost (all selectable databases included) and IEEE Xplore, the search phrase
was applied to the title, abstract and keywords of the publications. Initial tests have shown that
restricting the search to title, abstract, and keywords is the best compromise between the quantity
and quality of the search results. Only literature that was published after 2014 (2015 – 2023) was
considered for the literature search. This is to ensure that the specialist literature found is of current
relevance without overly restricting the scope of the existing research literature. Likewise, after the
initial compilation of the search results, all duplicates were removed. In this way, it is avoided that
publications are counted twice because they are listed in several literature databases.

2.4.1 Selection of the findings

The literature search was carried out between the 28. July and the 18. of August 2023, resulting in
86 hits. A criteria-based selection was made beyond the search phrase and the time limit for the
publication of the specialist literature. The exclusion criteria used in the criteria-based selection are
no publications in languages other than English, no panels and comments, and no literature dealing
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with decentralised platforms or ride-pooling. In addition, publications that are not freely available
or accessible via a license from the University of Stuttgart had to be excluded. The inclusion
criteria used are only publications in English, only publications from 2015 onwards, and only papers
discussing the technical development of decentralised ride-pooling platforms [BFG+15]. Following
Bandara, a first check of the actual relevance of the hits for answering the research question was
carried out by screening the title, keywords and abstract. A full-text analysis was then carried
out on the literature that was still considered relevant after the initial screening. Applying the
inclusion and exclusion criteria in the initial screening and the subsequent full-text analysis, 10
relevant publications were identified from the 86 search hits for answering the research question.
Additionally, two more relevant papers could be identified by following citations from the relevant
literature. Table 2.1 shows how the relevant research literature is distributed across the research
databases.

Table 2.1: Results of the Literature Search
Scientific Database Search Results Excluded Literature Included Literature
Scopus 54 49 5
Epscohost 2 2 0
IEEE 30 25 5
Citation search 2
Total 86 76 12

The analysis of the publications shows that many different approaches are discussed in the scientific
literature on how decentralised ride-pooling platforms can be built. For the results of the literature
analysis to be evaluated and interpreted, the results must first be structured. For this purpose, a
concept matrix approach, according to Webster and Watson, is pursued [WW02]. Based on the
concept matrix approach, the specialist literature identified as relevant is assigned to eight topics
relevant to creating a decentralised ride-pooling platform. These eight topics are derived from a
general analysis of the topics covered by the scientific literature combined with topics relevant to
fulfilling the research objectives:

Blockchain Utilisation: Blockchain is the underlying technology used for the creation of the
decentralised ride-pooling platform. The literature needs to show in detail how blockchain
technology is utilised by smart contracts and cryptocurrencies to build a ride-pooling platform.

Payments and Service Fees: The decentralised ride-pooling platform must manage ride pay-
ments and general service fees. Therefore it is important for the literature to show how
these financial transactions can be implemented and how to ensure that ride providers are
compensated fairly for their services inside the decentralised ride-pooling platform.

Privacy and Anonymity: Using blockchain technology demands a robust architecture that ensures
privacy and anonymity for all users inside the platform. The scientific literature must showcase
how users can engage with the platform and other users without revealing their identity
directly or implicitly by sharing too much personal data with the platform over a longer time
period.
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Security and Resilience: For a decentralised platform to gain widespread adoption, it must
guarantee the safety and security of all parties. While the blockchain itself already provides
many security features by design, it is important for the literature to show how the off-chain
components are hardened and how to prevent the off-chain components from providing false
information to the on-chain components.

Trust Mechanisms: As decentralised platforms cannot rely on a central trusted authority, robust
trust mechanisms become essential. The research papers must explain how community trust
mechanisms can be successfully implemented into a decentralised platform.

Off-Chain Edge Cases: It is impossible to handle every edge case through the decentralised
platform. As there is no central authority, it is important to provide alternative solutions to
solve these problems without contradicting the decentralised nature of the platform. The
research needs to recognise the existence of these edge cases and has to provide solutions to
handle them.

Customer and Ride Provider Interaction Flow: The customer and ride provider interaction
flow stands in the centre of the decentralised ride-pooling platform. The literature needs
to provide insights into how this flow should look to utilise the advantages of blockchain
technology.

Prototypical Realisation: Before building a market-ready version, the decentralised ride-pooling
platform should be built as a prototype that showcases the most important aspects of the
platform and proves its feasibility. Therefore, it is important for the literature to include a
prototypical realisation of the platform that provides important insights that cannot be derived
from the architecture alone.

As a result, the concept matrix shows the frequency with which the concepts dealt with in the
specialist literature are distributed over the nine topics of decentralised ride-pooling. The assignment
of the concepts on the x-axis to authors of the relevant specialist literature on the y-axis can be seen
in Table 2.2. If a research paper covers a topic in detail, it is marked with ✓ ✓. if a research paper
covers some aspects of a topic, it is marked with a ✓ . If a paper does not cover a topic at all or in a
way that does not align with the objectives of this research, it is marked with a ×.
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Table 2.2: Literature Search Matrix
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B-Ride: Ride Sharing With
Privacy-Preservation, Trust and
Fair Payment Atop Public
Blockchain

[BLM+21] ✓ ✓ ✓ ✓ ✓ × × ✓ × ✓

Application of Blockchain Tech-
nology to Smart City Service: A
Case of Ridesharing

[CC19] ✓ ✓ × ✓ ✓ ✓ × × ×

Ride-Hailing for Autonomous
Vehicles: Hyperledger Fabric-
Based Secure and Decentralize
Blockchain Platform

[SRF+21] ✓ ✓ × ✓ × × × ✓

RiderS: Towards a Privacy-Aware
Decentralized Self-Driving Ride-
Sharing Ecosystem

[BFJ20] ✓ ✓ ✓ ✓✓ ✓ × × ✓

A Decentralized Ride-Hailing
Mode Based on Blockchain and
Attribute Encryption

[ZZHH22] ✓ ✓ ✓ ✓ ✓ × × × ✓

Enhancing Blockchain-based
Ride-Sharing Services using
IPFS

[MAA22] ✓✓ ✓✓ ✓ ✓ ✓ × × ✓

BlockWheels - A Peer to Peer
Ridesharing Network

[JSD+21] ✓ ✓✓ ✓ ✓ × × × ×

A Light Blockchain-Powered
Privacy-Preserving Organization
Scheme for Ride Sharing Ser-
vices

[BMS+20] ✓ ✓ ✓ ✓ ✓ × × × ×

Continued on next page
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Table 2.2 – continued from previous page
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BlockV: A Blockchain Enabled
Peer-Peer Ride Sharing Service

[PR19] ✓ ✓ ✓ × ✓ ✓ ✓ ✓

Blockchain-Based Ride-Sharing
System with Accurate Matching
and Privacy-Preservation

[BBA+21] ✓ ✓ × ✓ ✓ ✓ × × ×

Towards Blockchain-based Ride-
sharing Systems

[VL21] ✓ ✓ ✓ ✓ ✓ ✓ × × ✓

Co-utile P2P ridesharing via
decentralization and reputation
management

[SMD16] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×

2.4.2 Scientific Literature findings

The concept matrix 2.2 shows that the literature review did not identify a single paper that provides
detailed coverage of all topics and would thereby allow us to answer all research objectives. The
matrix also shows that while many of the papers discuss multiple topics, they often remain on
a conceptual level without the goal of developing a feature-complete platform. It is still very
important to take a detailed look at the identified literature to discuss their approaches to developing
a decentralised ride-pooling platform. In the following, we will take a look at the outstanding
features that are proposed in each paper and evaluate how they can support the creation of our
feature-complete ride polling service.

Akbar et al. introduce B-Ride, a decentralised ride-sharing service built on public
Blockchain [BLM+21]. B-Ride ensures ride data privacy for both drivers and riders. To counter
malicious users exploiting the blockchain’s anonymity, the system introduces a time-locked deposit
protocol using smart contracts and zero-knowledge set membership proof. This ensures trust and
commitment from all participants. A unique "pay-as-you-drive"methodology is proposed for fair
payment, where drivers are compensated based on the distance covered. This system has many
advantages. It ensures that the ride provider gets paid for the driven distance, and the customer
does not have to deposit more money than necessary at once. The problem with this approach is,
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that it requires a so-called Location Prover. These hardware devices ensure that the car provides
honest location information about its position. While this technology is superior to systems that
do not rely on Location Prover, a global network of Location Provers is currently not feasible.
Therefore our platform will utilise an upfront deposit of the expected ride cost by the user that
can be claimed by the ride provider after completing the ride. Additionally, B-Ride features a
decentralised reputation management mechanism, rating drivers on past behaviour and incentives
them to maintain good conduct. The system was successfully implemented and tested on the
Ethereum blockchain, highlighting its real-world applicability. While a rating system is needed to
ensure trust on the platform, B-Rides implementation also relies on Location Provers. Therefore,
we will look at other research papers and their approaches in regards to rating mechanisms.

The authors Chang and Chang, highlight in their research paper the challenges faced by traditional
ridesharing platforms [CC19]. To address the challenges of traditional ridesharing platforms, the
SmaRi system leverages blockchain technology and smart contracts. This approach not only ensures
secure and automated transactions but also promotes decentralised decision-making. The research
emphasises the potential of blockchain in reshaping ridesharing services. A notable design decision
by the authors is to use an off-chain authentication service called social networking service. This
service allows users to utilise social media accounts to share rides with friends and to authenticate
against the platform. While this concept is not covered in depth it provides insides into the many
advantages of an off-chain authentication service.

Shivers et al. address the problems of centralised ride-sharing platforms. The authors propose
a decentralised approach using blockchain technology, allowing individual autonomous vehicle
owners to contribute their vehicles to a community-driven fleet when not in use. [SRF+21] The
chosen blockchain platform for this endeavour is Hyperledger Fabric. The paper is notable for
utilising a private blockchain to tackle the problems regarding anonymity and privacy, which are
inherent downsides of public blockchains. The decision between a public and a private blockchain is
one of the core architectural decisions for our own ride-sharing platform. After taking the arguments
by [SRF+21] as well as other research papers into consideration, we decided to go forward with a
public blockchain for our platform. With privacy being a focus of our ride pooling platform, there
should be no possibility to trace individual user activity by monitoring the chain activities, even if it
is public. Therefore we prioritise the increased decentralisation of public chains. Using a public
chain allows us to utilise generic public nodes to handle smart contracts. Thereby we do not need to
build a private network of independent node providers to build a private blockchain. Other research
papers also prove the feasibility of decentralised ride pooling platforms on public chains [MAA22]
[JSD+21] [BMS+20]

Bathen et al. introduce RiderS [BFJ20]. Central to RiderS is the emphasis on user privacy, achieved
through a privacy-first biometric technology. Instead of traditional passwords, users become their
own unique identifiers, ensuring genuine system interactions. To fortify this ecosystem, blockchain
technology is employed, offering benefits like decentralisation and auditability. Each participant,
whether a rider or an autonomous vehicle, accesses the system via a ”Wallet”. This software client
manages credentials, facilitates transactions, and serves as the primary gateway into the blockchain.
Monetary exchanges within this ecosystem utilise a stable coin named ”Mobi”, anchored to various
cryptocurrencies and fiat currencies. This system is very useful and should be adapted by our
platform. By introducing a Crypto Exchange to the platform, we allow the users to pay with a
variety of different currencies, including fiat currencies, while still utilising the advantages of crypto
currencies in our platform. A standout feature is the emphasis on privacy. Users can generate
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single-use addresses, ensuring anonymity for each ride. This also should be adapted by our platform.
Even though the wallet owner is anonymous on the chain, it prevents wallet tracking over a long
period of time, which could lead to the exposure of the wallet holder.

Zhang et al. present a novel ride-hailing approach using blockchain and attribute encryp-
tion. [ZZHH22] The system includes a decentralised Blockchain-Based Ride-Hailing Mode.
This mode has roles such as the Passenger, who generates encrypted ride details; the Driver, who
decrypts and decides on ride acceptance; the Location Prover, verifying the driver’s location; and the
Authentication Center, distributing keys and authenticating identities. Thereby, the paper introduces
a number of concepts that help us create our privacy-preserving ride-pooling platform. First of all,
the concept of creating a shared secret between the customer and ride provider should be used to
share sensitive information on-chain, like exact coordinates. With the Authentication Center, the
paper also introduces an off-chain authentication service, which further promotes the concept of
an off-chain authority that can verify wallets to handle on-chain interactions with the ride-pooling
platform.

Mahmoud et al. propose a decentralised ride-sharing system to address challenges in centralised
services, such as security concerns and single points of failure. [MAA22] The solution integrates
blockchain with the Interplanetary File System (IPFS). Instead of storing all ride-sharing data on the
blockchain, the system moves this data to IPFS and only retains a compact hash on the blockchain.
This approach reduces data storage on the blockchain, leading to faster processing and lower costs.
The system uses smart contracts on the Ethereum platform for management, and experimental
results highlight its scalability and efficiency. This concept should be utilised if the prototype
implementation or future iterations of the platforms should struggle with managing the amounts of
data necessary to handle rides, resulting in high gas prices or slow blockchain performance.

Joseph et al. [JSD+21] introduce a sophisticated ride-matching system, utilising geolocation tools
to pair riders with nearby drivers. While our platform is utilising an auction-based approach to
match customers with ride providers, this paper showcases the advantages of an off-chain matching
approach to handle the complex matching with an on-chain ride handling that tracks the actual
ride.

Baza et al. introduce a decentralised system using a public blockchain, eliminating the central
third-party vulnerabilities. [BMS+20] This system ensures location and time privacy by employing
spatial and temporal cloaking techniques, allowing riders and drivers to share generalised locations
and time intervals instead of exact details. This approach should also be utilised with our platform.
With a location matching based on approximated data, we can ensure that the customer only needs
to share their exact location with the ride provider that will fulfill the ride request. BlockWheels
participants also use changing pseudonyms for each trip, ensuring untraceability. With BlockWheels
also promoting this concept, it shows that this approach to ensuring untraceability is a best practice
in regard to on-chain user activities. The entire scheme has been practically implemented and tested
on the Ethereum platform, showcasing its feasibility and effectiveness in real-world scenarios.

The authors’ Pal and Ruj introduce a decentralized ride-sharing solution using blockchain [PR19] .
BlockV ensures fairness in ride-sharing in two main ways: Payment Fairness: It allows any network
peer to compute the ride cost based on path details. Ride Fairness: In case of disputes, the system
collaborates with Road Side Units (RSUs) to determine and penalize any malicious activity by
drivers or riders. The BlockV system involves four key participants: the DRIVER, RIDER, BlockV,
and RSUs. The process starts with riders selecting a route and fare from a decentralised database.
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Once chosen, they confirm the ride and lock in the fare. At the ride’s end, riders can either complete
the ride, release funds, or raise complaints if unsatisfied. The system then verifies complaints using
RSUs and takes appropriate action. With the RSUs, BlockV provides a solution to the problem of
how to manage edge cases like customer complaints. While this concept relies on the existence of
RSUs and mainly focuses on the handling of false routes taken by the ride provider, it showcases
the importance of robust edge case handling.

Badr et al. propose a method of dividing the ride-sharing coverage area into small cells using
overlapping grids [BBA+21]. This ensures that customers and ride providers are matched with
location accuracy, as they report their locations by cell numbers. When their exact locations coincide
within a common cell across any grid, a match is made. While this approach does not utilise the
planned auction system proposed by our platform, it promotes a grid-based approach that can help
to ensure that potential matching services can be bound to specific areas. By assigning matching
services to single tiles in a grid, we can ensure that each customer can find their local matching
service and that no matching service can collect data for areas that are too large.

Sefraoui et al. address privacy concerns in their paper by also utilising spatial cloaking and an
off-chain matching service [VL21]. When a passenger requests a ride, an off-blockchain algorithm
matches them with suitable drivers based on this cloaked data. To foster a sense of trust, both parties,
the ride provider and the customer, post a deposit fee through a smart contract. This deposit acts as
a commitment, and if either party defaults, the other is automatically compensated. This flow very
much aligns with our vision of the interaction flow of our decentralised ride-pooling platform. The
main advantage of this approach is that it allows for more complex matching algorithms without
dramatically increasing gas fees while still utilising the advantages of blockchain by tracking the
actual ride and related payments on-chain.

Sánchez et al. focus on preserving user privacy [SMD16]. In practice, this means that only when a
driver’s and passenger’s trips align will they be privy to each other’s identity, desired trip details,
and reputation. This selective disclosure ensures that personal data remains confidential. This
also aligns with the research objectives of our decentralised ride-pooling platform and needs to be
considered in the final design. Addressing privacy alone is not enough; trust is equally important.
The authors tackle this by weaving in a decentralised reputation management mechanism. Post
a shared ride, both drivers and passengers have the liberty to rate each other. This allows peers
to gauge the aggregated reputation of others based on historical ratings in a manner that’s both
transparent and trustworthy. This is a common best practice even with centralised ride-sharing
platforms. For our decentralised platform, the rating should also be managed on-chain, as it profits
from the tamper-proof nature of blockchain.

2.4.3 Conclusion

The detailed literature review shows that there are many different approaches to how a decentralised
ride-pooling platform should be designed, with different authors focusing on different aspects of
the platform. While there are many common best practices in regard to safety and user privacy,
there is also no uniform approach to designing the different components of the platform. While
some papers suggest handling all interactions with the platform on-chain, others suggest taking
some elements off-chain to allow for more complex flows. Therefore, we can not rely on simply
combining the platforms from the research papers into a single, feature-complete platform.
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2.4 Current Solutions and Shortcomings

Therefore, to create a feature complete ride pooling platform, it will be necessary to make design
decisions that will contradict the suggested approaches of some papers to embrace design decisions
made by other papers. These decisions will be made based on our research objectives, which state
that the maximisation of privacy, security and transparency is the underlying goal of our platform.
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Having delved into the details of the current research landscape surrounding decentralised ride-
pooling platforms, we can now construct our own platform based on the findings of the scientific
literature. The goal is not to replicate existing platforms but to set a benchmark that encapsu-
lates best practices from various research papers while also proposing improvements to current
methodologies.

We want to look at the platform holistically and incorporate all the attributes in our design that are
necessary to operate the platform, including Blockchain utilisation, transparency, user and provider
interaction protocols, payments and service fees, privacy and anonymity, security and resilience,
trust mechanisms, off-chain edge cases, and a prototypical realisation.

Therefore, in this chapter, we provide an overview of the conceptual design of the decentralised
platform, discuss the inner workings of each component that is part of the platform in detail and
showcase the data privacy and trust mechanisms of the platform. Through these explanations, we
aim to provide a comprehensive blueprint for a decentralised ride-pooling platform that meets and
exceeds the expectations set by the current academic and industry standards.

For convenience, the proposed platform will, from now on, be called GETACAR. We chose the
name for its ability to describe the core offering of the platform, to get-a-car ride, while also being
short, recognisable and easy to remember.

(The name also sounds phonetically similar to the title of the 1997 science fiction movie Gattaca,
starring Ethan Hawke, Uma Thurman, and Jude Law, which the author of this paper immensely
enjoyed.)

3.1 Conceptual Design of the Decentralised Platform

For ride-pooling platforms, the user experience for customers and ride providers is most important.
From a customer perspective, the GETACAR platform’s conceptual design is intentionally straight-
forward. GETACAR aligns its user flow with established centralised solutions such as Uber Pool
and Lyft [Ube23] [Lyf23].

The reason behind this design decision is evident. Platforms like Uber and Lyft have invested
significant resources to optimise user flow. Over the years, they have collected valuable insights
and established best practices that have proven effective. It is counterproductive to reinvent the
wheel when these robust ride flow models already exist. Instead, by basing the ride flow on these
best practices, GETACAR aims to provide an experience that is not only familiar to users but also
efficient and intuitive. One of the primary objectives of GETACAR is to provide an offer that rivals
(if not surpasses) current centralised solutions. GETACAR aims to get users to transition from
centralised platforms to a decentralised counterpart by emulating the ride flow of these established
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platforms. To further promote the transition to GETACAR, the platform offers increased privacy
and competitive pricing. Competitive pricing is achieved by offering reduced platform fees, which
translates to better end-user prices.

Figure 3.1: Ride Booking Flow
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As shown in diagram 3.1, a generic customer-ride provider flow looks as follows: The customer
journey begins by opening the app. This is followed by entering their destination. They then choose
the type of ride they prefer by adjusting their ride settings and confirming their pickup location.
Once these steps are completed, they request a ride and wait for a driver match. After receiving a
match, the customer can track the driver’s location in real-time. The customer enters the vehicle
when the driver arrives and confirms their readiness to start the ride. This is a crucial step with
autonomous vehicles; it lets customers signal their readiness. At the destination, the customer exits
the car, ends the ride, and has the opportunity to rate and review their experience.

The process starts on the ride provider’s side by opening the app if the ride provider is human.
Autonomous vehicles will just need to connect to the platform and set their status to online. The
ride provider then waits for a ride request. After receiving a request, they can choose to accept
it. If accepted, the ride provider navigates to the pickup location. Upon arrival, they confirm to
the customer that they arrived at the pickup location. The provider begins the drive to the dropoff
location after the customer confirms they are ready to start the ride. Once the ride is concluded, the
driver receives their payment and, like the customer, has the chance to rate the experience. After
this, the driver waits for the subsequent ride request, completing the cycle.

Offering rides and interacting with the platform as a ride provider must also be designed to be as
straightforward and user-friendly as possible. To compete with existing centralised platforms, which
already employ huge fleets of ride providers, GETACAR needs to ensure a massive influx of ride
providers. Therefore, it is essential to ensure that it is easy to connect autonomous vehicles to the
platform and allow human ride providers to interact with it.

The decision to primarily focus on the interaction between a single ride provider and a single
customer, without putting extra emphasis on the ride pooling aspect of the platform, was done
so on purpose. For our vision of a decentralised ride-pooling platform, the difference between a
classic taxi service and a ride-pooling service is minimal. From a customer point of view, the only
difference between a taxi service and our ride pooling service is that the customer can select how
many passengers are allowed to ride with them, what their minimum rating is supposed to be and
how much time they are willing to take into account for detours to pick up other passengers. While
a customer does not need to share their ride with other customers, they are incentivised to do so, as
it results in lower overall ride cost and higher chances of finding matches.

On the other hand, this operation model creates a very competitive market for ride providers. Ride
providers can maximise their sales volume by taking on multiple customers at once for a ride pool.
But with an increased number of customers joining a ride, the chances of delays also increase,
which can result in bad customer reviews. This constant decision-making about which customer
to offer a ride to and which not allows for various operation strategies by the ride providers and
promotes calculated decision-making and risk-taking.

3.1.1 Organisational Overview

While our research focuses on creating the technical architecture and design for our feature-complete
decentralised ride-pooling platform, it is necessary to consider the organisational structure behind
the platform. For the platform to grow, it is most important to have some form of supervising
entity capable of developing updates for the technical components, representing and promoting
the platform to external parties and verifying the trustworthiness of some components. When
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implementing this kind of supervising entity, it is necessary to ensure that its centralised nature
does not revert to the decentralised nature of the ride-pooling platform. Luckily, many examples
from open-source software projects successfully showcase how to enable such an organisational
structure. One example of this is the Open Source Initiative (OSI). OSI is a California-based public
benefit corporation that has been educating about and advocating for the benefits of open source
since 1998 [Ini23]. Therefore, we will assume, for the design of the technical components, that a
so-called GETACAR Foundation exists that can handle organisational tasks necessary for creating
a feature-complete ride pooling platform. To fund the foundation code is implemented into the
smart contracts that transfer 10% of the overall ride cost of a successfully completed ride to a wallet
managed by the GETACAR Foundation. The exact structure of this organisation should be part of
future research in this field.

3.1.2 Component Overview

As previously discussed, ensuring that the user experience remains intuitive and seamless for all
parties is important. To achieve this, the GETACAR platform is built upon several interconnected,
decentralised components, each serving a distinct purpose to allow for an intuitive user flow that
does not comprise security, transparency and privacy. The components can be seen in figure 3.2.

In the following, we will provide an overview of these components:

1. Customer Frontend:

• Purpose: This is the primary interface for customers to interact with the platform.

• Features:

– Allows customers to request rides.

– Enables customers to rate ride-providers and fellow passengers.

– Provides settings for customers to specify preferences, such as the minimum
acceptable rating for ride providers.

• Mode of decentralisation: Self-hosted

2. Ride Provider Frontend:

• Purpose: This interface is tailored for ride providers to manage their services.

• Features:

– Enables ride providers to view and bid on open ride requests.

– Allows ride providers to rate passengers.

– Provides settings for ride providers to specify preferences, like the minimum
acceptable rating of passengers.

• Mode of decentralisation: Self-hosted

3. Authentication Service:

• Purpose: To ensure the security and privacy of user data.

42



3.1 Conceptual Design of the Decentralised Platform

• Features:

– Manages customer and ride provider accounts and their associated ratings.

– Ensures that customer and ride provider pseudonyms are kept separate from their
real identities, providing an added layer of privacy.

• Mode of decentralisation: Self-hosted

4. Matching Service:

• Purpose: To optimise the pairing of customers with ride providers.

• Features:

– Facilitates an auction mechanism where customers post ride requests visible to all
ride providers in the vicinity.

– Ride providers can anonymously bid on these requests, ensuring competitive pricing
and optimal matching.

• Mode of decentralisation: Self-hosted / Blockchain based

5. Ride Contract Service:

• Purpose: To manage the intricacies of the ride and payment process.

• Features:

– Manages each phase of the ride process, from initiation to completion.

– Handles the ride and payment process, ensuring secure and auditable transactions
between customers and ride providers.

• Mode of decentralisation: Blockchain based

6. Crypto Exchange:

• Purpose: To bridge the gap between traditional fiat currency and the cryptocurrency
used within the platform.

• Features:

– Allows customers and ride providers to transact in fiat currency for their real-world
needs.

– Facilitates the conversion between fiat and cryptocurrency, ensuring that all platform
transactions remain crypto-based for added security and transparency.

• Mode of decentralisation: Blockchain based

Each of the components is decentralised, either in the sense that the component is designed so that
an individual or a group is able to run and host it themself, to interact with the network, or the
component runs decentralised on the blockchain. After providing a small overview of the important
components of the GETACAR platform, we will use the following Sections of this Chapter to dive
deeper into the concepts and architecture behind each component.
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Figure 3.2: UML Component Diagram: GETACAR Platform

3.1.3 Customer Frontend

In the context of creating a decentralised ride-pooling platform, the user interface plays an important
role in ensuring a seamless experience for both customers and ride providers. Therefore, the
GETACAR frontend also draws inspiration from established platforms like Uber and Lyft. To build
a comprehensive ride booking frontend, three distinct views are needed:

The primary point of interaction for customers is the booking view. This view lets customers easily
input their desired pickup and dropoff locations through a search bar. Once the locations are set, this
view previews the planned route on a map. This allows the customers to have a visual representation
of their upcoming trip. Alongside the map, customers are presented with some additional details,
such as the expected arrival time at the trip destination and the total distance of the ride. A button
allows customers to commit to the route and request their ride. This initiates the matching service
to find a fitting match for the customer.

Once a match is found, the frontend switches to the on-ride view, guiding the customer through the
ride experience. The view first presents important information about the matched ride provider.
This information includes the vehicle type, the ride provider rating, the number of passengers
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already in the vehicle, the expected pickup time and the maximum price that the ride will cost. Two
distinct buttons allow customers to either accept the ride offer or decline it. The customer has a
fixed amount of time to accept the offer before it gets automatically declined.

Accepting the offer results in the customer depositing the maximum ride cost. After that, the
view transitions the customer to the next phase of the on-ride flow, where the customer receives
real-time status updates about the ride provider’s current status. This includes ”Vehicle is on its
way”, ”Arrived at Pickup Location” and ”Arrived at Dropoff Location”. Once inside the vehicle,
customers can confirm they’re ready to start the journey and, upon reaching the destination, confirm
the ride’s successful completion. After completing the ride, the customer will get paid back any
additional money they deposited that exceeded the actual ride cost. At any point between ride
confirmation and completion, the customer has the option to abort the ride. The complete ride flow
from the customer’s point of view can be seen in figure 3.3. In that case, the money automatically
gets deposited to the ride provider. If the reason for the aborted ride lies with the ride provider, the
customer can contact the GETACAR foundation to initiate a complaint. Aborting rides because of
the misconduct of ride providers is considered an edge case, especially when considering that most
ride providers are expected to be autonomous vehicles. After the ride, customers can rate the ride
provider and potential passengers, which is a crucial part of the platform’s trust mechanisms.

Figure 3.3: UML Activity Diagram: Ride Booking Flow

A settings view allows customers to manage their accounts and customise their ride experience.
A customer can look up details about their account, including their rating. They can also adjust
their ride preferences by specifying a minimum rating for ride providers. This ensures they are
only matched with ride providers that meet their standards. Similarly, customers can adjust the
minimum rating required for passengers to share a ride with them. This setting allows the customer
to ensure a comfortable ride environment. This section also allows customers to manage other
account settings. This includes payment methods and other privacy preferences. In conclusion,
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the frontend design consisting of the booking view, the on-ride view and the settings view aims to
provide an intuitive experience for customers through a focus on customer needs. The design of the
GETACAR frontend will contribute to the platform’s success and customer adoption.

To ensure transparency, the code of the frontend is open source. This allows everyone who is
interested in it to take a look at the structure of this component in detail. This also allows customers
to make personal adjustments to the application and to compile the frontend themselves.

3.1.4 Ride Provider Frontend

The design and functionality of the Ride Provider Frontend largely depend on the nature of the
ride provider, be it a human pilot or an autonomous vehicle. To ensure a wide adoption by ride
providers, the GETACAR Platform aims to cater to both types of providers.

For human ride providers, GETACAR provides a frontend similar to the customer frontend. This
interface presents a view that allows ride providers to scroll through open ride requests. This view
allows them to check ride details and place bids on ride requests. When an auction for a ride
request results in the provider winning the ride opportunity and the customer confirming the ride,
the frontend informs the ride provider that they have indeed won the auction. To confirm the ride
and to receive the exact pickup and dropoff location of the customer, the ride provider needs to
deposit 10% of the customer deposit themselves to ensure that they will actually carry out the ride.
The ride provider can claim their deposit back once the ride is successfully completed.

After this confirmation, a second view becomes visible that allows the ride provider to manage
the actual ride process. This flow mirrors the customer’s journey. The provider confirms their
commitment to the customer to take on the ride request and confirms their drive to the pickup
location. When reaching the pickup point, the ride provider informs the customer of their arrival.
The customer can then board the vehicle and initiate the ride. The ride provider then starts the travel
to the dropoff location. After reaching the destination, the ride provider confirms the arrival via the
frontend. This concludes the ride from their perspective. Once the customer leaves the vehicle and
confirms the ride’s end, the provider is able to claim the actual ride cost. This cost is deducted from
the maximum ride cost deposit made by the customer at the ride’s start. Just like the customer, the
provider retains the option to abort the ride at any point between the ride’s confirmation and the
confirmation of arrival at the pickup location. The complete ride flow is shown in figure 3.7

Like the customer frontend, the Ride Provider frontend also includes a view offering general infor-
mation and settings, mirroring the customer frontend. It is worth noting that all the functionalities
are present, even if the ride provider is an autonomous vehicle. The distinguishing factor here is the
absence of a visual user interface for autonomous vehicles. Instead, the computer that controls the
autonomous vehicle can interact directly with the endpoints of the platform.

3.1.5 Authentication Service

The linchpin of security and user anonymity on the platform is the authentication service. Any
user, be it a customer, ride provider, or a hoster of a matching service, must first register with an
authentication service to interact with the platform. This service is the only component that manages
user data such as name, age, address, and the associated rating. It also oversees the registration of
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new autonomous vehicles and human ride providers, storing details like the number plate, VIN
number, the responsible entity (company or individual) for the vehicle, and the vehicle’s associated
rating.

Once registered, users can use the authentication service to receive login tokens and pseudonyms.
This also includes verifying crypto wallets that the user themself generates. The pseudonyms and
credentials enable users to validate their permissions to engage with other platform components
without sharing personal information, as seen in figure 3.4. For on-chain interactions, users can use
the frequently changing wallets linked to their authentication service account. This approach not
only ensures user anonymity during on-chain engagements but also prevents external entities from
monitoring the chain and tracking user activities.

Figure 3.4: Customer Pseudonyms trough Multiple Components

The architecture also facilitates rating tracking by the authentication service. For example, a
customer utilises five different crypto wallets across five rides and receives five ratings from ride
providers. Monitoring of the blockchain only reveals five separate wallets, each with a single rating,
between a pool of other wallets on the platform with individual ratings. The authentication service,
however, is able to connect all five wallets to the customer, as it knows all pseudonyms and wallets
linked to the customer, enabling it to compute an aggregate rating. The authentication service also
ensures that users can not register multiple times with the platform to escape a series of bad ratings,
for example.

Beyond user authentication and rating computation, the service also validates rating information
about other users. For example, a ride provider can verify a user’s claimed rating by forwarding the
rating and the user’s pseudonym to the matching service.
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In edge cases, the authentication service can unveil a user’s identity, such as when a ride provider
seeks to make an insurance claim to a customer due to intentional vehicle damage by a customer or
when a passenger wishes to report harassment to law enforcement. While revealing a user’s identity
should be rare, it’s an indispensable feature to ensure platform security and safety.

Given the immense power held by the authentication service, it is important to prevent it from
morphing into a centralised control point. Therefore, the design allows anyone to host their
authentication service and request it to be verified by the GETACAR foundation. First-time platform
registrants can also choose their preferred authentication service from the list of verified services.
All verified authentication services communicate with each other, ensuring that users can not
secretly create identities across multiple services. This inter-service exchange is executed without
revealing the users managed by each service to one another.

3.1.6 Matching Service

The primary responsibility of the matching service is to match ride requests from customers
with suitable ride providers. Traditional centralised services, such as Uber, employ algorithmic
matching systems [Ube23]. These algorithms consider various factors like proximity, availability,
and customer preferences to quickly assign a driver to a customer’s request. While efficient, this
centralised approach often lacks transparency, and the decision-making process is entirely controlled
by the platform, potentially leading to biases or unfair advantages for certain drivers or riders.

Recognising these challenges, GETACAR has adopted an auction-based ride-matching system.
This approach offers several advantages. Firstly, it introduces a competitive environment where ride
providers can bid for rides, ensuring that customers get the most cost-effective offers. Secondly, it
promotes transparency by making the selection method known to everyone. Lastly, it empowers ride
providers by giving them the autonomy to bid on rides based on their preferences and profitability.
The complete matching flow between the customer, ride provider and platform can be seen in figure
3.5.

Within this framework, GETACAR employs a Vickrey auction for its matching. The second-price
Vickrey auction has distinct advantages. In this model, the highest bidder wins but pays the amount
bid by the second-highest bidder. This encourages ride providers to bid their true valuation without
the fear of overpaying. It promotes honest bidding, reduces the chances of strategic manipulation,
and ensures that customers receive competitive prices while providers are fairly compensated.
Building upon the generalised, anonymous second-price auction concept, the intricate auction flow
within the matching service unfolds as follows:

A customer initiates the process by submitting a ride request to the matching service. This
request encapsulates an approximation of both the pickup and drop-off locations, ensuring that the
precise coordinates are exclusively shared between the customer and ride provider once a mutual
commitment to the ride is established. Additionally, the request contains ride details such as the
customer’s rating, the minimum acceptable rating for the ride provider, the minimum rating for
potential co-passengers, and the maximum passenger count.
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Figure 3.5: BPMN 2.0 Activity Diagram: Customer, Ride Provider Matching Service Flow

Upon receiving the ride request, the matching service marks it as an open auction, inviting ride
providers to place their bids. This auction remains accessible for a predetermined duration, during
which ride providers can submit their bids. These bids contain the proposed ride price and are
accompanied by additional data like the provider’s rating, anticipated arrival time and the vehicle
model.

Following the auction’s closure, the matching service identifies the winning bid and communicates
the result to the customer. Subsequently, the customer is granted a fixed time window to review and
accept the offer before it lapses.

Should the customer confirm the winning bid, they generate a ride contract containing the agreed-
upon sum from the bid. The winning bidder is then notified of their successful bid and receives the
ride contract’s address, marking the commencement of their service obligation.

Lastly, the matching service will be used to establish a secure connection to share sensitive
information on-chain. Therefore, the matching service initiates a Diffie-Hellman Key Exchange by
sharing the necessary prime number, base and submitted customer and ride provider public keys
between the two parties. Based on this information, the customer and ride provider can compute a
shared secret for encrypted interactions on the blockchain.

This secure connection will allow customers and ride providers to share detailed location data and
other bits of personal data via blockchain without exposing the information to the ledger.
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Having explained the core concept of the matching service, it is important to also explain how
decentralisation is achieved for this service and how we ensure that the matching service can not
collect too much transaction data. One conceivable method to ensure decentralisation is to execute the
matching process on-chain. Running the matching service on-chain offers transparency, immutability,
and a trustless environment, ensuring that all transactions are verifiable and irreversible.

However, this on-chain approach is not without challenges. Even with the use of pseudonyms and
location approximations, all ride requests and bids would be publicly accessible on the blockchain.
This transparency, while advantageous in some contexts, could possibly expose patterns, preferences,
and behaviours of users, potentially compromising their privacy and anonymity. Moreover, executing
the intricate matching flow on the blockchain, especially at a large scale, demands significant
computational resources. This would inevitably increase the platform’s overall costs, thereby
inflating ride prices and reducing the profits for ride providers.

To circumvent these challenges, the platform adopts an approach similar to the authentication service.
Individuals or organisations can host their independent matching service, which, post-registration,
undergoes verification by the GETACAR foundation.

To ensure an equal distribution of ride requests between the matching services and to prevent
matching services from collecting excessive amounts of personal data, a grid-based distribution
system is proposed. The grid-based system assigns each service-specific grid field as their
jurisdiction zone.

To stop a single service from collecting long-term data within a grid, we mandate that each grid
be managed by at least two distinct matching services. The GETACAR Foundation also has the
possibility to rearrange the grid jurisdiction zones in time intervals for additional security.

For a customer, the process of finding the right matching service looks as follows: Every customer
frontend contains a list of all verified matching services and their corresponding grid jurisdictions.
The customer is then able to determine the matching services responsible for their current grid
square. Customers can then provide the list of possible matching services to an on-chain service
and receive the best matching service from the available options within their grid. This on-chain
service guarantees an even distribution of requests within a grid square by monitoring the number
of requests for each service and the amount of successfully completed rides through the matching
service. This allows for a load balancing between the matching services so that no service can
collect too much data. Furthermore, it allows for the creation of a rating for every matching service,
derived by dividing the total number of requests processed by the service by the number of rides
successfully completed through it. The complete flow can be seen in figure 3.6.

3.1.7 Ride Contract Service

Within the blockchain, various events and statuses related to the ride-pooling process are recorded.
Initially, the ride provider accepts the ride, and a ”Ride-provider accepted” status is written to the
blockchain. Following this, the ride provider starts driving to the pickup location, and once they
arrive, a ”Ride-provider arrived at pickup location” status is documented. Meanwhile, the customer
indicates they are ready to start the ride, prompting a ”Customer ready to start ride” status to be
written to the blockchain. The ride provider then starts the ride, leading to a ”Ride-provider started
ride” status getting written onto the blockchain. Upon the ride’s conclusion, when the ride provider
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Figure 3.6: BPMN 2.0 Activity Diagram: Customer and Matching Contract Interaction

arrives at the drop-off location, a ”Ride-provider arrives at dropoff location” status is recorded. The
customer then marks the ride as complete, resulting in a ”Customer marked ride complete” status
on the blockchain. The complete flow can be seen in 3.7

Figure 3.7: BPMN 2.0 Swimlane Diagram: Customer, Platform and Ride Provider

Each event that gets posted to the blockchain also contains a custom message that can be determined
by the entity posting the event. These messages will be encrypted by the key that was exchanged
between customer and ride provider via the Diffie-Hellman Key Exchange. These Messages can
contain a number of different information depending on the status of the ride. A typical message
sent by the ride provider as part of the initial “Ride-provider accepted” event would be a tracking
link that allows the customer to track the vehicle. The contract also contains a number of additional
functions in regard to trust and privacy that are described in detail in subsection 3.2.2 and subsection
3.2.3.

This decentralised ride-pooling platform ensures transparency and trustworthiness by recording
every significant event on the blockchain, with both the customer and the ride provider actively
interacting with it, ensuring a smooth and verifiable ride process.
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3.1.8 Crypto Exchange

The Crypto Exchange plays an important role in bridging the gap between traditional fiat currencies
and cryptocurrencies, ensuring that all transactions within the platform can utilise the advantages of
cryptocurrencies. When a customer books a ride, the frontend instantiates a new wallet. To fund
this wallet for the ride, the customer pays a crypto exchange, which then credits the wallet with
the required amount of cryptocurrency. Post-ride, ride providers have the option to convert the
cryptocurrency they have received into fiat currency via the crypto exchange.

This enables the platform to utilise the benefits of blockchain and cryptocurrency, such as
transparency and security. Simultaneously, it offers the flexibility for customers and ride providers
to transact in the more universally accepted fiat currency, thereby enhancing usability.

However, a significant privacy concern emerges when considering that most crypto exchanges
mandate personal identification for buying and trading cryptocurrency. This could potentially
establish a traceable link between real-world identities and wallet owners, undermining the platform’s
commitment to privacy. There are several solutions to solving this problem. One approach involves
collaborating with an exchange that solely requires verification from a GETACAR authentication
service to authorise trades, bypassing the need for personal identification. Alternatively, diversifying
transactions across multiple crypto exchanges or employing coin mixers can obfuscate transaction
trails. A coin mixer, or cryptocurrency tumbler, is a service that mixes potentially identifiable
cryptocurrency funds with others, making it challenging to trace specific coins back to their original
source. This ensures enhanced privacy and anonymity for users, making transactions less traceable
on the blockchain.

Another proposition is for the authentication service to function themself as a crypto exchanges.
This would further strengthen the platform’s services, potentially offering a more streamlined user
experience. The decision on which approach to flow depends on multiple external factors including
the willingness of cooperation from crypto exchanges and the liquidity of the authentication
services.

3.2 Privacy Measures and Trust Mechanism Design

GETACAR utilises several privacy and trust mechanisms to ensure the safety of all customers and
ride providers. In the following section, we will describe these mechanisms in detail and showcase
how personal data is shared across the platform.

3.2.1 Data Privacy from a Customer and Ride Provider Perspective

Now that we have explained the functions and concepts behind all the components relevant to the
GETACAR ride pooling platform in detail, we can analyse how data privacy is affected by the
platform’s design.

To assess the data privacy of the platform based on its design, it is important to showcase how the
personal data of customers and ride providers is shared between the GETACAR services.
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Table 3.1 is a compilation of data points relevant to ride-pooling apps. The list is inspired by the
data points revealed when exporting all personal data collected by Uber 1.

To facilitate clarity and ease of interpretation, each data point, in the context of each service, is
represented using specific symbols:

• ✓: Symbolises that the service possesses access to the respective information.

• •: Denotes the necessity for the information to be available to this party.

• ×: Indicates the service’s lack of access to the particular information.

• (×): Indicates that the service can access parts of the information.

The table provides a detailed breakdown of these data points about the various services within the
platform.

Table 3.1: Customer Data Privacy Matrix
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Basic Personal Details:
Full name ✓• × × × ✓• ×
Gender ✓• × × × ✓• ×
Date of birth ✓• × × × ✓• ×
Contact Information:
Email address ✓• × × × ✓• ×
Phone number ✓• × × × ✓• ×
Home address ✓• × × × ✓• ×
Payment Information:
Credit/debit card details ✓• × × ✓• × ×
Bank account details ✓• × × ✓• × ×
Payment history ✓• × × (×) ✓ ×
Billing address ✓• × × ✓• × ×
Ride Details:
Pickup and drop-off locations ✓• ✓• (×) × × ×
Date and time of rides ✓• ✓• (×) × ✓ ×
Ride preferences ✓• ✓• (×) × × ×
Ride history ✓• × × × × ×
Location Data:
Real-time location during a ride ✓• ✓• × × × ×

Continued on next page

1https://help.uber.com/en-GB/riders/article/whats-in-your-data-download-?
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Table 3.1 – continued from previous page
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Frequent locations ✓• × × × × ×
Route taken during the ride ✓• ✓• × × × ×
Device Information:
Device type ✓• × × × × ×
Operating system ✓• × × × × ×
App version ✓• × × × × ×
Device identifiers ✓• × × × × ×
Communication Data:
In-app messages between driver and rider ✓• ✓• × × × ×
Behavioral Data:
App usage patterns ✓• × × × × ×
Click patterns within the app ✓• × × × × ×
Features frequently used ✓• × × × × ×
Safety and Security Data:
Records of any incidents or disputes during rides ✓• ✓• × × × ×
Ratings:
Ratings provided about drivers ✓• × × × ✓ ×
Ratings received from drivers about the user × ✓• × × ✓ ×
Preferences and Settings:
Language preference ✓• × × × × ×
Notification settings ✓• × × × × ×

The GETACAR platform has been designed to focus on user privacy. Through its architecture, the platform
ensures that user data is managed with the utmost discretion, granting access only where necessary across its
components. The table provided offers a detailed overview of this data-sharing.

When it comes to basic personal details such as the full name, gender, and date of birth, these are exclusively
accessible by the customer and the authentication service. This design choice ensures that these personal
identifiers remain shielded and are not exposed to other platform components. Similarly, contact details like
the email address, phone number, and home address are secure, with access limited to the customer and the
authentication service. This setup ensures that personal contact details remain undisclosed to ride providers
or other services. As explained in subsection3.1.5, the only time the authentication service exposes these data
points to third parties is in extreme edge cases, for example, when a ride provider seeks to lodge an insurance
claim due to intentional vehicle damage by a customer or when a passenger wishes to report harassment to
law enforcement.

In the realm of payment information, details like credit/debit card numbers and bank account specifics are
only shared between the customer and the crypto exchange. This arrangement allows for crypto transactions
without sharing personal payment information with other parties. In addition the payment history is accessible
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only to the customer if they utilise several different crypto exchanges or other methods to hide their payment
history, as explained in subsection 3.1.8. The only other entity that has access to the payment history is the
used Authentication Service, as it knows about all wallets linked to the user.

Ride details are at the centre of the platform’s operations. Information such as pickup and dropoff locations,
the date and time of rides, and specific ride preferences are shared between the customer and the ride provider.
While most of the ride details are shared only between the customer and ride provider, the date and time of
rides are also visible by the authentication service because the service can look up on-chain activities of users
because the service knows all wallet addresses connected to one customer. While the matching service only
receives this information linked to a pseudonym, it is important to follow the grid-based matching approach
to ensure that the service can not unveil identities through the long-term collection of data.

Additionally, location data, including real-time location during a ride and the route taken, are encrypted and
shared only between the customer and the ride provider executing the ride, as decided in subsection3.1.6.

Device-related information, which encompasses details like the device type, operating system, app version,
and unique device identifiers, remains confidential, with access restricted to the customer. As decided in
subsection 3.1.3, this is ensured by providing the frontend as open-source code with no user data collection
features.

Communication, especially in-app messages between the driver and the rider, is encrypted, ensuring that
all communication remains confidential as described in subsection 3.1.6. Behavioural data, which includes
insights into app usage patterns, click patterns within the app, and frequently accessed features, is kept private,
with access limited exclusively to the customer. This is ensured by providing the frontend as open-source
code with no user data collection features.

Ratings form an integral part of the platform’s security mechanism. Customer Ratings about drivers are
accessible to both the customer and the authentication service. On the other side, driver ratings about the
customer are accessible to the ride provider and the authentication service. This dual-access system ensures
transparency in the rating process while also ensuring user privacy, as described in subsection 3.2.2.

Looking at the ride provider data privacy, the table 3.1 can equally be applied to the ride providers. Ride
providers have some additional information managed by the authentication service, like the vehicle’s number
plate, its VIN and, in the case of autonomous vehicles, the individual or company owner that has authorised
the vehicle to be part of the GETACAR platform. Like the customer contract information, they are not shared
with other services. The same goes for interactions with Matching Services and Crypto Exchanges.

The table and its accompanying explanation underscore the GETACAR platform’s commitment to securing
user data. Thanks to pseudonyms and changing wallets, there is no publicly available data that unveils a user’s
identity or allows for long-term tracing to make assumptions about the identity of a user. This is an excellent
achievement for a decentralised, transparent, blockchain-based platform. Additionally, the data available to
services that do not explicitly need access to this information is reduced to a minimum and could be further
reduced by applying complex and computationally intensive cryptography like homomorphic encryption,
which could potentially impact the user experience. Another option would be utilising layer 2 solutions that
might allow us to tackle some potential platform shortcomings. Solutions like the Raiden Network for the
Ethereum blockchain2 can increase transaction times and impede transactions from being logged on to the
public ledger, but they also impact decentralisation, and the introduction of another component that has
access to sensitive user data can be counterproductive to achieving the research goals [NIR+23]. Assessing
the best possible ways to increase data privacy further can be part of future research.

2https://raiden.network
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3.2.2 Rating Trust Mechanisms

Rating systems are an important tool for ensuring trust and safety on ride-pooling platforms and are considered
a best practice based on the scientific literature. When passengers and drivers are allowed to rate each other, it
creates a feedback mechanism that makes both parties accountable. Providing customers with the possibility
of viewing the ratings of other customers and ride providers allows them to make informed decisions about
which ride providers to choose based on previous experiences of other customers. Additionally, a rating
system can promote better service from ride providers. Equally, customers are encouraged to show better
behaviour towards passengers and the ride provider. As it is the goal of this research paper to design and build
the technical foundation of the GETACAR platform, we will assume that a generic five-star rating system
with time-weighted ratings provides optimal results. The GETACAR platform’s design ensures that several
rating systems are supported. Determining the best possible rating system for the GETACAR platform should
be part of future research.

As discussed in 3.1.3 the platform allows customers to rate their ride providers and passengers and allows
ride providers to rate their customers. The ratings are posted onto the ride contract running on the Blockchain
through a rating function. This allows for much flexibility regarding the rating system because the smart
contract can easily be adjusted to change the rating system, for example, from a five-star rating to a ten-star
rating. The process of how ride providers and customers rate each other is seen in figure 3.8.

Figure 3.8: UML Sequence Diagram: Customer and Ride Provider rate each other on Blockchain

To allow customers to rate passengers, the ride provider shares a list of all passengers that are present during
the ride. The shared list contains the passenger’s pseudonym, the seating portion of the passenger and the
start time of their ride. This information allows the customer to post ratings to each passenger without
passengers needing to reveal their identities. This flow can be seen in figure 3.9.

The authentication service monitors all contracts. If a rating is posted on the Blockchain that affects a
pseudonym that belongs to a user managed by an authentication service, this instance of the authentication
service adds the rating to the user profile. Thereby, the authentication service has a list of all ratings that
belong to a single user alongside metadata like the time the rating was posted. This allows the rating service
to implement more complex rating systems that provide more accurate ratings.

To ensure that users do not lie about their ratings, the authentication services work as a verification service for
the ratings they manage through a request that contains the non-verified rating and the pseudonym connected
with it. The flow can be seen for customer and ride provider in figure 3.10 and 3.11. This by itself creates
a small risk that users can find connected pseudonyms by analysing ratings posted on the Blockchain. To
counter this, all ratings the authentication service provides (including the rating presented to a user as their
own rating) are rounded to 0.3 steps (e.g. possible ratings are 5, 4.7, 4.3, 4, ... ).

To put it in a nutshell, the combination of on-chain ratings combined with off-chain rating accumulation
allows for more complex and accurate rating systems while still utilising the transparency and auditing
abilities of a blockchain-based rating system, which ensures a secure and trustworthy environment on the
platform.
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Figure 3.9: UML Sequence Diagram: Ride Provider adds Passengers to Ride Contract and Customer
rates them

Figure 3.10: UML Sequence Diagram: Get Rating from Authentication Service as Ride Provider

Additionally, the completely blockchain-based rating system is in place for the matching services as described
in 3.1.6, allowing customers to ensure that they are utilising a well-performing matching service without
risking exposing personal information by utilising the same instance of the matching service too often.

3.2.3 Deposit Trust Mechanisms

While the rating system provides a solid foundation for ensuring trust in the platform, many research papers
utilise money deposits by the customer and ride provider to ensure that the cost of the ride will be paid and
to counter malicious activities on the platform. In the following, we will focus on how to implement such
deposit functions into the platform with the help of smart contracts. It is not part of this research to determine
what the exact amounts of deposited money should be to ensure trust between customer and ride provider.
This should be part of future research.
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Figure 3.11: UML Sequence Diagram: Get Rating from Authentication Service as Customer

The implementation of the deposit-based trust mechanism in GETACAR looks as follows: After the customer
reviews and accepts the winning bid from a ride provider, they create a ride contract on the blockchain as
described in subsection 3.1.7. This contract is loaded with a deposit by the customer that is equal to the
maximum ride cost set by the ride provider in their bid. This ensures that the ride provider has enough
money to pay for the ride. It also ensures that the customer can not be overplayed by the ride provider as the
maximum ride cost is limited by the deposit in the contract.

To ensure that the ride provider has honest intent on completing the ride, they have to deposit 10% of the
maximum ride cost into the contract themselves to be able to be allowed to handle the ride. This deposit will
be transferred back to the ride provider after completing the ride. After the ride is marked as completed by
both the customer and the ride provider, the ride provider can now claim the amount of money from the ride
contract that they determined as the actual ride price. The rest gets transferred back to the customer. By
managing all the transactions through a smart contract, we can ensure that no trusted third party is needed as
well, and no trust between the customer and ride provider is needed to ensure that all transactions are handled
properly.

3.2.4 Conclusion

Based on the current state of the scientific literature and best practices from the industry, we designed the
GETACAR ride-pooling platform. This chapter has shown how each of the components of the GETACAR
platform works and how components interact with each other. The design was also assessed on how it
handles data privacy, and we explained how trust mechanisms are implemented into the platform. Now that
we have successfully designed the platform, it is important to show that the design successfully transports
into reality.
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To validate the design of the GETACAR Platform, it is important to showcase that an actual implementation
of the services is feasible. Therefore, in the following chapter, we showcase how each component is built.
The goal of this implementation is not to create a ready-to-release platform but to prove that the core features
and functions of the platform work as previously described. Because of that, the aim is to build this prototype
with as many standardised and commonly utilised technologies as possible.

The goal is to present a prototype that can be used as a blueprint to build and release a marked-ready
decentralised ride-pooling platform. Therefore, it should be easy to adapt the design of the GETACAR
platform with a variety of different underlying tech stacks.

The prototype we describe on the following pages does cover the smart contracts that enable the ride flow,
the matching service and both the frontend for the customer and the interface for the ride provider. All
components interact with each other and provide a complete ride experience. Not part of the prototype is
the authentication service. As described in the introduction of this paper, the realisation of a decentralised
authentication service is not part of the scope of this research. Additionally, the prototype does not fully
implement the Crypto Exchange component, as it would require corporations with multiple companies to
provide crypto exchange services. Therefore, this prototype utilises a crypto wallet with an integrated crypto
exchange to allow for the manual stimulation of the buying and selling cryptocurrency on the GETACAR
platform.

4.1 Smart Contracts

Smart contracts make up the backbone of the GETACAR ride-pooling platform. They allow for the secure
and transparent ride ordering flow that is the standout feature of the platform. Therefore, we will start with
the construction of these smart contracts for the prototype.

Before writing the contracts, it is necessary to decide on a programming language. This decision is crucial
because it will also affect the compatibility of the smart contracts with the available blockchain platforms.

Looking at the smart contract programming languages used by the research papers and the adaption of smart
contract programming languages by blockchains, the decision is clear: Solitidy1 is a broadly adapted smart
contract programming language that is not only utilised by the Ethereum blockchain2 but also other popular
blockchains like the BNB Chain3, Tron4 and Avalanche5. Besides being widely adopted it is also utilised
in a number of papers from the identified scientific literature to build decentralised ride-pooling platforms
[BLM+21] [MAA22] [BMS+20].

1https://soliditylang.org
2https://ethereum.org/en/
3https://www.bnbchain.org/en/smartChain
4https://tron.network
5https://www.avax.network
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Solidity is a high-level programming language originally tailored for the Ethereum blockchain’s smart
contracts. Influenced by JavaScript, Python, and C++, its syntax allows developers to craft self-executing
contracts where terms are coded directly. These contracts are compiled to bytecode for the Ethereum Virtual
Machine (EVM). Given blockchain’s immutable nature and financial implications, Solidity emphasises
security and exception handling [Sol23].

Selecting this smart contract programming language for the development of the GETACAR prototype ensures
easy adaption by future developers. Additionally, the high adaption rate of Solidity ensures a future-proof
reference implantation in the fast-evolving crypto landscape, compared to languages that are proprietorially
used by smaller blockchains. For the creation of the prototype, the smart contracts are deployed on an
Ethereum Blockchain Node and utilise ETH as their underlying currency for Gas Fees and payments. The
complete smart contracts described in the following section can be found in the appendix of this paper.

4.1.1 Contract Factory

There are two design approaches to utilise a smart contract to manage all critical ride events. Firstly, it is
possible to create a single, smart contract that can be used by all customers and ride providers to log their
rides. The advantage of this approach is lower gas fees because no new contract is generated for every trip.
The downside of this approach is that it drastically increases the complexity of the contract to ensure that
all trips stay separated inside the contract. It also increases the impact of security loopholes in the contract
because it could possibly allow users to influence the rides of other users.

The second approach would utilise the concept of a contract factory. A contract factory allows the generation
of smart contracts based on a predefined template through a second smart contract, the so-called contract
factory. The main disadvantage of a contract factory is increased gas prices because the deployment of a new
smart contract is generally more expensive than the interaction with an existing one. But the contract factory
approach also provides a number of upsides. It allows for each ride contract to be capsuled into its own smart
contract, which improves security and decreases the complexity of the ride contract itself.

Because data privacy and security are most important to the design of the GETACAR platform, it is decided
to follow the contract factory approach. The contract factory that is designed to generate ride contracts looks
as follows:

At the centre of the contract factory exists the createContract() function that creates a new ride contract
that takes the amount of ETH (that represents the maximum ride cost) as a deposit, as seen in listing 4.1.
The deposit holder will be the newly created ride contract, which will only return the deposit if the right
circumstances are met. createContract() also executes some additional code that helps authentication
services track newly created contracts. Each contact gets assigned a contract number determined by the
contract counter and is mapped to a timestamp that represents its creation date. Additionally, the contract gets
registered to the Matching Smart Contract. The interaction between the Ride Contract and other contracts
can be seen in figure 4.1. The reason for the interactions with the Matching Contract will be explained at a
later point.
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Figure 4.1: Interactions between Smart Contract

Listing 4.1 ContractFactory.sol: createContract() Function

39 function createContract(uint256 _amount) public payable {

40 require(msg.value == _amount, "Sent value does not match the specified amount.");

41 Contract newContract = new Contract{value: _amount}(msg.sender);

42 userContracts[msg.sender].push(newContract);

43
44 // Increment contract counter and map new contract's address to the counter

45 contractCounter++;

46 contractsByID[contractCounter] = address(newContract);

47
48 // Store the current block's timestamp

49 timestampByID[contractCounter] = block.timestamp;

50
51 // Call registerNewContract with the new contract's address

52 this.registerNewContract(address(newContract));

53
54 emit ContractCreated(msg.sender, newContract, contractCounter);

55 }

The helper functions that are contained in the contract factory to help authentication services to better track
newly created contracts can be seen in listing 4.2.
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Listing 4.2 ContractFactory.sol: Authentication Service Helper Functions

57
58 function getContractsByUser(address user) public view returns (Contract[] memory) {

59 return userContracts[user];

60 }

61
62 function getContractByID(uint256 contractID) public view returns (address) {

63 return contractsByID[contractID];

64 }

65
66 // Fetch the timestamp by contract ID

67 function getContractTimestampByID(uint256 contractID) public view returns (uint256) {

68 return timestampByID[contractID];

69 }

4.1.2 Ride Contract

Now that we have shown how a ride contract is created through the ride contract factory, it is important to
look at the ride contract itself. The Solidity smart contract under consideration allows the ride provider and
the customer to interact with each other and tracks these interactions as described in figure 3.1.

The contract starts with the initiation of the variables that are used to track the status of the ride through a
constructor, seen in listing 4.3. The constructor also sets the wallet address of the customer who initiated the
contract through the contract factory as ”party1”. The address that is mapped to party one represents the
customer inside the contract.

Listing 4.3 Contract.sol: Constructor

30 constructor(address _party1) payable {

31 party1 = _party1;

32 rideProviderAcceptedStatus = false;

33 rideProviderArrivedAtPickupLocation = false;

34 userReadyToStartRide = false;

35 rideProviderStartedRide = false;

36 rideProviderArrivedAtDropoffLocation = false;

37 userMarkedRideComplete = false;

38 userCanceldRide = false;

39 rideProviderCanceldRide = false;

40
41 }

After the contract is created by the customer, the address of the contract is shared via the matching service
with the ride provider. The ride provider then uses the signContract() function to co-sign the contract as
”party2” and thereby activates the ride contract, seen in listing 4.4. The ride provider also has to deposit 10%
of the predefined maximum ride cost into the contract as part of the deposit trust mechanism.

Now that both parties have signed the contract the actual ride flow can start, as decided in figure 3.7 with the
”Ride Provider accepts ride” event. All event functions are structured similarly. Therefore, we will use the
setRideProviderAcceptedStatus() function, seen in listing 4.5 as an example to showcase how each event is
represented by a function inside the smart contract. The function takes a message as an input that will later be
written onto the chain permanently. This message is used by the customer and the ride provider to exchange
encrypted information on the blockchain as decided via the Diffie-Hellman Key Exchange. The function also
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Listing 4.4 Contract.sol: signContract() Function

76 function signContract() public payable {

77 require(party2 == address(0), "Party2 has already signed the contract.");

78 require(!isActive, "Contract is already active.");

79 require(!userCanceldRide, "User cannceld ride ");

80 require(msg.sender != party1, "Party2 cannot be identical to Party1.");

81
82 party2 = msg.sender;

83 isActive = true;

84
85 uint256 tenPercent = (address(this).balance * 10) / 100;

86 require(msg.value >= tenPercent, "Party2 must deposit an amount equal to 10% of the contract

balance.");

87
88 // Refund any excess amount deposited by party2

89 if (msg.value > tenPercent) {

90 payable(msg.sender).transfer(msg.value - tenPercent);

91 }

92 }

Listing 4.5 Contract.sol: setRideProviderAcceptedStatus() Function

97 function setRideProviderAcceptedStatus(string memory _message) public {

98 require(isActive, "Contract is not active.");

99 require(msg.sender == party2, "Only Party2 can set the ride provider accepted status.");

100 require(!rideProviderAcceptedStatus, "Ride Provider Accepted Status can only be set once.");

101
102 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

103 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

104
105 rideProviderAcceptedStatus = true;

106 emit UpdatePosted(msg.sender, _message, "rideProviderAcceptedStatus");

107 }

contains a number of checks utilising the require() function to make sure that it is only used as intended.
Among others, these checks include the requirement to only be called by the right entity (depending on the
event, this can be the customer or the ride provider). Additionally, a check is applied to ensure that the events
are called in the ride order as designed in the ride flow. At last, three more checks make sure that the contract
is active, not cancelled, and a ride provider has accepted the contract. If all checks are successful, it can be
ensured that the function is used as intended and the event is written onto the chain as secure and auditable
proof that it accrued. This is done by calling the UpdatePosted() function.

The UpdatePosted() function can be seen in listing 4.6 It gets called by an event function and takes the wallet
of the entity calling the function, the message and the name of the event function and emits it as an event
onto the chain. These events are permanent and can not be changed.

Listing 4.6 Contract.sol: updatePosted() Event

94 event UpdatePosted(address indexed author, string message, string functionName);
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Listing 4.7 Contract.sol: setUserCanceldRide() Function

176 function setUserCanceldRide(string memory _message) public {

177 require(msg.sender == party1, "Only Party1 can set the user cancelled ride status.");

178
179 if(!isActive) {

180 uint256 balance = address(this).balance;

181 payable(party1).transfer(balance);

182 return;

183 }

184
185 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

186 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

187
188 userCanceldRide = true;

189
190 if(isActive) {

191 uint256 balance = address(this).balance;

192 payable(party2).transfer(balance);

193 }

194
195 emit UpdatePosted(msg.sender, _message, "userCanceldRide");

196 }

Listing 4.8 Contract.sol: setRideRating() Function

222 function setRideRating(uint _rating) public {

223 require(msg.sender == party1, "Only Party1 can set the ride rating.");

224 require(!isRideRatingSet, "Ride rating can only be set once.");

225 require(_rating >= 0 && _rating <= 5, "Rating must be between 0 and 5.");

226 require(isActive, "Contract is not active.");

227 rideRating = _rating;

228 isRideRatingSet = true;

229 }

Now that the functions that enable the general ride flow are shown, it is important to take a look at edge cases
that are handled on-chain. As described in figure 3.1, both the customer and ride provider have the ability to
cancel the ride and if one of the parties cancels the ride the other party gets automatically deposited the money
managed by the ride contract. The ride contract provides these features through a setUserCanceldRide() and
as setRideProviderCanceldRide() function. In the flowing, we will describe their functionality using the
setUserCanceldRide() function as an example, seen in figure 4.7. If the customer calls the function to cancel
their ride, two if clauses check if the contract is active and, therefore a ride provider has already signed the
contract. If this is the case, all money inside the contract gets deposited to the ride provider. If for some
reason, no ride provider is signing the contract, the customer gets their money back. This ensures that the
customer does not get their deposit stuck inside a ride contract if a ride provider decides not to sign a contract.
Additionally, the customer has the possibility to emit a message onto the chain that contains information on
why the ride was cancelled. Lastly, the contract gets marked with the status userCanceldRide = true.

As described in subsection 3.2.2, the rating is also managed via the smart contract. Both customers and ride
provider can post their ratings through similar functions. The customer can use the setRideRating() function
for this process which takes the selected rating as input, as seen in figure 4.8. The function ensures, besides
other checks, that the rating is in the predefined range of allowed ratings.
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Listing 4.9 Contract.sol: addPassenger() Function

53 function addPassenger(string memory _passengerID, uint _seatingPosition, string memory _startTime)

public {

54 require(isActive, "Contract is not active.");

55 require(msg.sender == party2, "Only Party2 can add passengers.");

56
57 Passenger memory newPassenger = Passenger({

58 passengerID: _passengerID,

59 seatingPosition: _seatingPosition,

60 startTime: _startTime,

61 rating: 5

62 });

63
64 passengers.push(newPassenger);

65 }

It is also possible for the customer to rate passengers. Therefore the addPassenger() function is used by the
ride providers to add passengers to the ride contract, as seen in 4.9. This will allow customers to rate their
passengers. For privacy reasons, the customer will only see the pseudonyms known to the ride provider for
the passengers. The user can then rate the passengers based on their seating position inside the vehicle and
the starting time of their ride. Through this system, it is possible for customers sharing a vehicle to rate each
other without the need to share personal information like a name or a profile picture.

The claimETH() function is used by the ride provider to get the applicable amount of money to cover the ride
cost from the smart contract, as seen in figure 4.10. The function can only be triggered once the customer
has marked the ride as successfully completed. After all, checks are successfully completed, the contact
sends 10% of the total amount of money on hold inside the contract to a predefined address managed by the
GETACAR foundation. Afterwards, the remaining money gets deducted from the amount of money that
is claimed by the ride provider to cover the ride cost. This amount is then transferred to the wallet of the
ride provider. The remaining deposit left inside the smart contract then gets sent back to the wallet of the
customer.

4.1.3 Matching Contract

The Matching Contract provides the fully on-chain rating and load-balancing for the off-chain matching
services as described in 3.1.6. At its core, the function provided by the Matching contract is simple: A
customer can provide an array of matching services and a minimum rating, and the smart contract returns the
matching service out of this array that complies with the rating requirements and has the lowest number of
handled matches so far. This allows for a load balancing between the matching services so that no service
can collect too much data.

All matching services that are available to the GETACAR platform are registered inside the Matching
contract with a struct that contains the name of the service, the number of matches that were handled by
the matching service (that resulted in completed rides) and the number of requests that where managed
by the service, as seen in figure 4.11. To ensure that the request counter is accurate, the contract counts
a request every time a specific matching service gets suggested by the Matching Contract, as the design
assumes that the customer will follow the suggestion and post their ride request to the suggested matching
service. For example, a customer provides an array containing the names of matching services A, B and
C without defining a minimum rating. The matching contract determines that matching service A has had
the lowest amount of requests out of the three so far and, therefore, suggests the use of matching service A
to the customer. This suggestion is counted as a request, and the request counter of matching service A is
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Listing 4.10 Contract.sol: claimETH() Function

232 function claimETH(uint256 amount) public {

233 require(isActive, "Contract is not active.");

234 require(msg.sender == party2, "Only Party2 can claim the deposited ETH.");

235 require(userMarkedRideComplete, "User must mark the ride complete before claiming the deposited

ETH.");

236 require(amount <= address(this).balance, "Requested amount exceeds the contract balance.");

237
238 address payable hardcodedAddress = payable(0xE39a3085CB78341547F30a1C6bD12977d51aa967); //

Address of the GETACAR Foundation

239
240 uint256 balance = address(this).balance;

241 uint256 tenPercent = balance / 10;

242 uint256 remainder = balance - tenPercent;

243
244 hardcodedAddress.transfer(tenPercent);

245
246 uint256 payback = remainder - amount;

247 remainder -= payback;

248
249 payable(party1).transfer(payback);

250 payable(party2).transfer(remainder);

251 }

Listing 4.11 Matching.sol: MatchingServiceObject Struct

6 struct MatchingServiceObject {

7 string name;

8 uint256 matches;

9 uint256 requests;

10 }

increased by one. In the prototype implementation, the load-balancing factor is the number of successful
matches managed by the matching service, as this value is hard to manipulate. As an alternative, the number
of requests can also be used as the load-balancing factor. Further research is needed to determine which
factor is best suited for balancing requests between the matching services.

The actual recommendation function can be seen in listing 4.12. For the prototype, the flow does not support
automatic filtering by rating.

After explaining the request counter, it is important to take a look at how the match counter works, as it is
equally necessary for calculating the rating of the matching service. What makes the calculation of this
value more complicated is the fact that the contract needs to verify that only rides are counted that were
officially handled by the GETACAR platform. If this is not the case, it would open up doors for rating
manipulations through external parties. To prevent that, the addMatch() function is not called by a customer
who has successfully completed a ride but can only be called by the ride contracts themselves. It can be seen
in listing 4.13 The function utilises a for loop that checks a list that contains all contracts that are created
by the official contract factory. If the contract that calls the function is on the list, the value of the utilised
matching service is increased by one.
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Listing 4.12 Matching.sol: getMatchingService Function

59 function getMatchingService(string[] memory names) public {

60 uint256 lowestMatches = type(uint256).max;

61
62 string memory lowestMatchServiceName = "";

63 uint256 lowestMatchServiceRating;

64
65 for (uint i = 0; i < names.length; i++) {

66 for (uint j = 0; j < services.length; j++) {

67 if (keccak256(bytes(services[j].name)) == keccak256(bytes(names[i]))) {

68 if (services[j].matches < lowestMatches) {

69 lowestMatches = services[j].matches;

70 lowestMatchServiceName = services[j].name;

71 lowestMatchServiceRating = (services[j].matches * 100) / services[j].requests; //

Multiply by 100 for two decimal places

72 services[j].requests += 1;

73 }

74 }

75 }

76 }

77 // Emit the event with the result

78 emit LowestMatchService(lowestMatchServiceName, lowestMatchServiceRating);

79 }

Listing 4.13 Matching.sol: addMatch() Function

81 function addMatch(string memory serviceName) external onlyRegisteredContracts {

82 for (uint i = 0; i < services.length; i++) {

83 if (keccak256(bytes(services[i].name)) == keccak256(bytes(serviceName))) {

84 services[i].matches += 1;

85 }

86 }

87 }

To enforce that only the contract factory can add ride contract addresses to the list of verified addresses, an
onlyFactory() modifier is implemented, as seen in listing 4.14. Similarly, a onlyRegisteredContracts()

modifier ensures that only contracts from the list of verified contracts can add successful matches to the rating
services.

Listing 4.14 Matching.sol: onlyFactory() and onlyRegisteredContracts() Modifier

24 modifier onlyFactory() {

25 require(msg.sender == FACTORY_ADDRESS, "Only the factory can call this");

26 _;

27 }

28
29 modifier onlyRegisteredContracts() {

30 require(registeredContracts[msg.sender], "Only registered contracts can call this");

31 _;

32 }
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4.2 Customer Frontend and Virtual Vehicle

While the smart contracts represent the backbone of GETACAR, it is the frontend for customers and ride
providers that enables the users to interact with the platform. The developed prototype provides a fully
designed frontend for customers. The ride provider frontend is built as a service daemon called Virtual
Vehicle that could be utilised by autonomous vehicles to interact with the platform and atomically interacts
with the platform by posting bids on new rides and interacting with the ride contracts.

4.2.1 Customer Frontend Flow

The customer frontend prototype is built using Angular 6 and the web3 package 7 to interact with the Ethereum
blockchain and crypto wallets. While the market-ready implementation of a decentralised ride-pooling
platform would probably utilise native smartphone apps, the Angular web implementation allows for a fast,
platform-independent development to showcase the most important features of the customer ride-pooling
frontend.

The customer frontend follows the three-view design approach described in subsection 3.1.3, offering a
booking view, an on-ride view and a settings view.

The process of ordering a ride follows the customer flow seen in figure 3.1 by opening the app and entering the
destination and pickup location. The customer frontend provides a map that can preview the trip. Additionally,
the frontend provides a compass needle button as part of the pickup location input field. Pressing this button
allows the customer to select their current location as their pickup location, shown in figure 4.3.

6https://angular.io
7https://www.npmjs.com/package/web3
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Figure 4.2: Frontend: Welcome Screen Figure 4.3: Frontend: Map Screen

After the customer presses the ”Find Route” button, they will be presented with a preview of their trip,
including some additional information like the expected duration and distance of the travel. The customer
now has the possibility to post a ride request by pressing the ”Request Ride” button, as shown in figure
4.4. This will send a ride request to the matching service (that was suggested through the matching smart
contract). As long as the auction is running on the matching service, the customer frontend will display the
loading screen seen in figure 4.5.
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Figure 4.4: Frontend: Map Trip Screen Figure 4.5: Frontend: Search Ride Screen

Once the auction is closed, the customer is presented the winning bid with all the important information
about the ride, as shown in figure 4.6. In the top right corner, a timer counts down the time that is left before
the offer expires. As long as the offer has not expired, the customer is able to press the ”Book Ride” button
to confirm the ride and thereby create a ride contract on the blockchain. The frontend also has dedicated
screens that inform the customer if the matching service could not find a ride or if the offer expired because
the customer did not press the ”Book Ride” button.

After a ride is found and the customer confirms the ride, the frontend changes into the on-ride view that
provides status updates about all activities happening on the ride and tracks them via the ride contract. Figure
4.7 shows the ”waiting Confirmation Screen”. At this stage, the frontend monitors the blockchain and waits
for the event from the ride contract that signals that the ride provider has co-signed the ride contract.
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Figure 4.6: Frontend: Ride Overview
Screen

Figure 4.7: Frontend: Awaiting Confirma-
tion Screen

When the ride provider has signed the contract and confirmed that they started driving to the agreed pickup
location, the on-ride screen changes to display the new status of the ride, as seen in figure 4.8. A market-ready
version of the platform would also show the live position of the ride provider to the customer that the ride
provider has shared as an encrypted message through the ride contract. However, this feature is not part of
the prototype implementation as the prototype only utilises virtual vehicles as ride providers that are not able
to provide real-time GPS position updates.

Once the ride provider has arrived at the pickup location and posted this update on the ride contract, the
customer’s frontend changes again to display the update, shown in figure 4.9. The customer now enters the
vehicle, and once they are ready to start their ride, they confirm this through the ”Start Driving” button.
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Figure 4.8: Frontend: Pickup Location
Drive Screen

Figure 4.9: Frontend: Vehicle Arrived
Screen

After the ride provider has received the update from the customer that they are ready, the ride provider
starts the ride to the destination. This is also represented via a status screen in the customer frontend, as
shown in figure 4.10. When arriving at the dropoff location, the ride provider posts this information onto
the ride contract. The customer frontend notices this new event on the blockchain and updates the status
of the frontend, as seen in figure 4.11. On this screen, the customer has the possibility to confirm the ride
completion and thereby end the ride process.

It is important to note that each status screen also provides a ”Cancel Ride” button at all times that allows the
customer to exit the ride process.
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Figure 4.10: Frontend: Driving Screen Figure 4.11: Frontend: Destination Screen

Once the ride has ended, the customer is provided with a ”Ride Completed” screen that allows the customer
to rate the ride provider itself and their passengers, seen in figure 4.12. As described in subsection 3.2.2, the
problem with rating passengers is that no personal information should be exchanged through the platform
about the passengers. This makes it complicated to ensure that the customer knows who is who when rating
multiple passengers. To solve this problem, the ride provider shares the seating position and the start time of
each passenger with the customer. The seating position is then visualised by the frontend, as seen in figure
4.13. In this example, the passenger that is getting rated was sitting on seat number one, which is the seat on
the front row on the left.
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Figure 4.12: Frontend: Rate Ride Provider
Screen

Figure 4.13: Frontend: Rate Passenger
Screen

Last but not least, the prototype frontend also contains the settings view as seen in figure 4.14, which can be
opened by pressing the wallet icon in the top right corner of the UI. Here, the customer has a number of
sliders available to adjust ride booking preferences, like the minimum ride provider rating and the maximum
amount of passengers that they want to share the ride with at once. This view also shows the rating of the
customer themself as well as some additional information like the wallet id that is used to connect to the
platform and the account balance of the wallet. This information is only implemented for the prototype as the
market-ready implementation of the frontend would manage multiple wallets at once. One for each ride. The
wallets would be managed by the frontend in the background as the customer does not have to manage all the
wallets by themselves self and each wallet will only be charged with the amount of money needed for one
ride through a crypto exchange.
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Figure 4.14: Frontend: Settings Screen

4.2.2 Customer Frontend Logic

Now that the user flow of the customer frontend is shown, it is important to take a short look at the code logic
behind the UI. While most of the logic behind the frontend is standard angular code, the utilisation of the
web38 package is notable, as it allows the frontend to interact with smart contracts directly. To demonstrate
this interaction, the setUserReadyToStartRide() function is chosen as an example. This function gets
triggered when a customer presses the ”Start Driving” button shown in figure 4.9. First, the function checks
if a wallet is connected with the frontend. The prototype utilises the external wallet provider MetaMask9 to
manage multiple wallets. After the check is successful, the function initiates a new, local instance of the
contract. Once this is done successfully, the method calls the setUserReadyToStartRide() function inside the
ride contract with an encrypted userReadyToStartRideMessage as input, first to calculate the excepted Gas fee
and after the transaction is confirmed through Meta Mask by the user, a second time to actually trigger the
setUserReadyToStartRide() function inside the ride contract, as seen in listing 4.15.

All functions that are contained within the customer frontend follow this basic flow to interact with the ride
contract on the blockchain.

8https://www.npmjs.com/package/web3
9https://metamask.io
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Listing 4.15 booking.component.ts: async setUserReadyToStartRide() Function

24 async setUserReadyToStartRide(){

25
26 if (!this.web3) {

27 console.error('Wallet not connected');

28 return;

29 }

30
31 const accounts = await this.web3.eth.getAccounts();

32 const selectedAddress = accounts[0];

33
34 // Initialize the contract instance

35 this.contract = new this.web3.eth.Contract(

36 contractAbi as AbiItem[],

37 this.rideContractAddress,

38 );

39
40 // Call the createContract function

41 const gasEstimate = await this.contract.methods

42 .setUserReadyToStartRide(userReadyToStartRideMessage)

43 .estimateGas({ from: selectedAddress });

44
45 this.contract.methods

46 .setUserReadyToStartRide(userReadyToStartRideMessage)

47 .send({ from: selectedAddress, gas: gasEstimate })

48 .on('transactionHash', (hash: string) => {

49 console.log('Transaction hash:', hash);

50 })

51 .on('receipt', (receipt: any) => {

52 console.log('Transaction receipt events:', receipt);

53 })

54
55 .on('error', (error: Error) => {

56 console.error('Error:', error);

57 });

58 }

4.2.3 Virtual Vehicle

The Virtual Vehicle represents a new component introduced for the prototype implementation of the
GETACAR platform. The Virtual Vehicle is a software daemon that automatically interacts with the
platform as a ride provider. The Virtual Vehicle is written in Node.js and utilises the same web3 package
implementation to interact with the blockchain as the customer frontend. It differentiates itself from the
customer frontend by not providing a user frontend but by interacting with the platform in an automated way.
When starting the Virtual Vehicle, it automatically connects to a predefined matching service and begins
to scan for open ride requests. Once it has found a ride request it automatically bids a random amount of
money to handle the right. If the Virtual Vehicle wins the auction, it will sign the ride contract and start
to follow the predefined ride flow until the right is completed. Once the ride is completed or in case the
Virtual Vehicle does not win the auction, it starts to bid on new ride requests. To test the platform and the
matching service, it is possible to spin up multiple Virtual Vehicles that all simultaneously interact with the
platform. In conclusion, the Virtual Vehicles help with simulating platform traffic and testing the prototypical
implementation of the GETACAR platform by acting as virtual ride providers.
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4.3 Matching Service

After showcasing the implementation of the smart contracts and the customer and ride provider frontend,
the last component that is part of the prototype implementation of the GETACAR platform is the Matching
Service. The matching service is written in Node.js10 and the bids are stored inside MongoDB11 as a NoSQL
database. The design decision of utilising a NoSQL database in connection with the matching service was
made for several reasons. NoSQL databases provide high performance and simplify the storage of the ride
requests and ride bids that are stored as simple JSON objects. Lastly, there is also no need for complex SQL
functions inside the matching service that would promote the usage of an SQL database.

4.3.1 Endpoints and Data

The Node.js application provides four core endpoints for customers and ride providers to handle all interactions
with the matching service. Following ride flow, the first endpoint that is typically utilised is the POST
/requestRide endpoint. The customer frontend utilises this endpoint to post ride requests to the matching
service. The request contains the following data points:

userId: The customer pseudonym provided by an authentication service

pickupLocation: The cloaked pickup location

dropoffLocation: A cloaked dropoff location

userRating: The rating of the customer

rating: The rating of the customer requesting the ride

userPublicKey: A newly generated public key from the customer used for the Diffie-Hellman Key Exchange

maxWaitingTime: The maximum time the customer is willing to wait for the arrival of the ride provider

minRating: The minimum rating necessary for a ride provider to have to be allowed to manage the ride

minPassengerRating: The minimum rating for passengers to have to be allowed to share the ride with the
customer

maxPassengers: The maximum amount of passengers the customer is willing to have at once

The Matching Service adds the following data points to the ride request and writes them onto the database:

rideRequestId: A unique id to identify the ride request

gridLocation: The grid square from where the ride request came from. This makes it easier for ride provider
to find fitting ride requests if a matching service is deployed for a number of different grid squares.

auctionStartedTimestamp: The timestamp represents the moment the data was posted onto the matching
service visible for ride providers to bid on the ride request.

auctionStatus: The status of the auction. The auction can have one of four different statuses: ’open’,
’determining-winner’, ’waiting-for-signature’ or ’closed’.

auctionWinner: The winner of the auction. If the winner was not determined yet, this field is empty.

10https://nodejs.org/en
11https://www.mongodb.com
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winningBid: The unique identifier of the winning bid. If the winner was not determined yet, this field is
empty.

p: The prime number used for Diffie-Hellman key exchange.

g: The base used for Diffie-Hellman key exchange.

Once the complete ride request is available in the database, it can be read by ride providers. Ride providers
can use the GET /rideRequests endpoint to receive a JSON object containing all ride requests with open
auctions. The ride provider can search this dataset and, once they find a fitting ride request, bid on it. To bid
on a ride request, the ride provider can utilise the POST /bid endpoint. A bid request contains the following
data points:

rideRequestId: The id of the ride request that this bid is for

rideProviderId: The ride provider pseudonym provided by an authentication service

amount: The maximum ride cost that the ride provider is willing to offer the ride for

rating: The rating of the ride provider

model: The model of the vehicle

estimatedArrivalTime: The time to get to the customer pickup location

passengerCount: The number of passengers inside the vehicle when arriving at the pickup location

vehiclePublicKey: A newly generated public key from the ride provider used for the Diffie-Hellman Key
Exchange

Before a bid can be posted to the database, the Matching Service compares the timestamp of the bid with
the timestamp of the ride request the bid is associated with to ensure that the auction is truly open. For this
prototype, the time frame for this is set to 30 seconds. The bid also gets extended with additional data points
by the matching service itself before it gets written onto the database. These are the additional data points:

bidId: A unique id to identify the bid

bidPlacedTimestamp: Timestamp representing the moment the bid is posted

With ride requests and associated bids being written to the database, the next step for the matching service
is handling the running auction. Each auction is posted with the status ”open”. A function managed by
the Matching Service continuously crawls the database for ride requests where the auction is older than 30
seconds. If such an auction is found, the auction status changes from ”open” to ”determining-winner”. A
second function then takes the ride request and analyses all bids connected with the request to determine the
winning bid based on the principles of the second price auction. The winning bid is then written into the ride
request itself, changing the auction status to ”waiting-for-signature”.

The customer is able to check the status of their auction through the GET /rideRequest/:rideRequestId

endpoint by providing the identifier of their ride request inside the URL. This endpoint returns the status of the
auction, and in case a winning bid is found, it additionally returns the winning bid itself. Based on the winning
bid, the customer can then decide if they want to take the ride or not. If the customer decides to take the ride,
they follow the ride flow and create a ride contract through the contract factory that contains the maximum ride
cost as a deposit. They then need to use the GET setContractAddress/:rideRequestId/:contractAddress

endpoint to update their ride request with the contact’s address on the blockchain. As the creation of the
contract is understood as the initial signing of the ride contract, the status of the auction changes from
’waiting-for-signature’ to ’closed’.
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The GET /rideRequest/:rideRequestId endpoint also enables the ride provider to track the status of the
auction. Through the endpoint, the auction winner is able to receive the address of the ride contract and is,
therefore, able to co-sign the contract as a ride provider.

4.3.2 Grid System

As described in 3.1.6, the design of the Matching Service includes a map grid that is utilised to assign
matching services to specific jurisdiction zones and to cloak the exact pickup and dropoff locations of
customers. There are many possible ways to create a map grid that would allow for this use case. The
GETACAR prototype implementation uses H312, a hexagonal hierarchical geospatial indexing system that
provides a predefined grid for the platform to use. The advantage of H3 is that it provides a number of grid
resolutions, as each grid is made up of hexagons and pentagons that themself are made up of smaller hexagons
and pentagons, as seen in figure 4.15. An algorithm allows one to easily check if a hexagon/ pentagon of
a smaller resolution is contained within a hexagon/ pentagon of a higher resolution. This approach would
allow GETACAR to utilise dynamic resolutions for the jurisdiction zones and the location cloaking with
higher resolutions used for crowded areas with high traffic, like cities and lower resolutions that cover larger,
less crowded areas with less traffic. [H3G23] The prototype uses fixed resolutions with Res 9 for the location
cloaking and Res 6 for the jurisdiction zones of the matching services. The available resolutions are displayed
in table 4.1.

Figure 4.15: H3 Grid Visualisation [H3G23]

12https://h3geo.org
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Res Average Hexagon Area (km2) Pentagon Area (km2) Ratio (P/H)
0 4,357,449.416078381 2,562,182.162955496 0.5880
1 609,788.441794133 328,434.586246469 0.5386
2 86,801.780398997 44,930.898497879 0.5176
3 12,393.434655088 6,315.472267516 0.5096
4 1,770.347654491 896.582383141 0.5064
5 252.903858182 127.785583023 0.5053
6 36.129062164 18.238749548 0.5048
7 5.161293360 2.604669397 0.5047
8 0.737327598 0.372048038 0.5046
9 0.105332513 0.053147195 0.5046
10 0.015047502 0.007592318 0.5046
11 0.002149643 0.001084609 0.5046
12 0.000307092 0.000154944 0.5046
13 0.000043870 0.000022135 0.5046
14 0.000006267 0.000003162 0.5046
15 0.000000895 0.000000452 0.5046

Table 4.1: H3 Grid Resolution [H3G23]
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After designing the GETACAR platform and developing a prototype based on this design it is important
to evaluate the platform to prove its viability. To do so we will validate the GETACAR platform against
the objects defined at the beginning of this research in section 1.2. Afterwards, we will conduct a final
privacy assessment of the platform and the prototype to ensure that we meet all privacy goals. At last, we
will showcase the results from testing the completed GETACAR prototype.

5.1 Validation against Research Objectives

It is important to validate the results of this research against our initial objectives to determine if the research
is a success. The following table 5.1 lists all five research objectives that are defined in section 1.2 with the
corresponding evaluation.

Table 5.1: Research Objective Assessment
Research Objectives Description Evaluation Fulfilled
Design of the Com-
ponents and Interac-
tion Flow between the
Platform, Customer,
and Ride Provider

The research needs to provide a
design blueprint for the decen-
tralised ride-pooling platform.
This design should communicate
the general vision of the platform
and explain the key concepts. At
its core, the platform is an ecosys-
tem of components interacting
with each other. Therefore it is
also necessary to design a stream-
lined, secure, and efficient flow
for these interactions. The objec-
tive here is to develop an interac-
tion flow that: Ensures Seamless
ride booking, facilitates trustwor-
thy transactions and preserves
privacy.

Section 3.1 providers a detailed
overview of the platform, including
a component overview and detailed
descriptions of the design of the cus-
tomer frontend, ride provider fron-
tend, authentication service, match-
ing service, the ride contracts and
the integration of crypto exchanges.
The interaction flow for each com-
ponent is described, and additional
diagrams are provided. By bas-
ing the overall customer and ride
provider flow on already established
and tested flows while also utilising
the advantages of blockchain technol-
ogy, GETACAR provides seamless
ride booking, while also facilitating
trustworthy transactions and preserv-
ing privacy throughout the platform.

Yes

Continued on next page
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Table 5.1 – continued from previous page
Research Objectives Description Evaluation Fulfilled
Design of a Trust
Mechanism for Cus-
tomers and Ride-
Providers

Trust is a necessity for every
platform but is especially rele-
vant for decentralised platforms
as these platforms are not man-
aged by a single owner that can
single-handedly settle disputes
or resolve unexpected edge cases.
Therefore, it is necessary for the
platform to have a robust trust
system that sanctions malicious
behaviour and promotes good be-
haviour.

The GETACAR platform design in-
cludes a detailed design of the trust
mechanism, as described in section
3.2. This includes the rating trust
mechanisms that allow customers
to rate their ride providers and pas-
sengers as well as allowing ride
providers to rate their customers. All
ratings are posted anonymously, and
every user of the platform can re-
quest ratings from other users based
on their pseudonyms. This method
allows transparent ratings through-
out the platform without exposing
the identities of the users. Addi-
tionally, the platform utilises deposit
trust mechanisms that ensure that
monetary incentives are in place for
all parties to act according to the
predefined ride flow.

Yes

Evaluation of
Customer and Ride-
Provider Anonymity
and Privacy through-
out the Platform

One of the disadvantages of
blockchain-based platforms is
that the high level of trans-
parency can result in a neglect
of customer and ride-provider
anonymity and privacy. This
counts especially for ride pooling
platforms where large amounts
of personal data like location and
transaction data get exchanged.
That is why it is important to
assess the platform design re-
garding privacy and anonymity
to show that no entity can collect
critical amounts of data from the
platform.

Ensuring ride-provider anonymity
and privacy is especially important
on a blockchain-based platform as
all transactions are publicly visible.
Therefore GETACAR implements
robust privacy mechanisms, as de-
scribed in section 3.2. GETACAR
utilises authentication services that
provide pseudonyms for users and
verifies newly generated wallet ad-
dresses. This allows ride providers
and customers to take on new iden-
tities any time they interact with the
platform, be it on-chain or off-chain.
This system provides a solid founda-
tion for ensuring that the identities
of users are not exposed when inter-
acting with the platform

Yes

Continued on next page
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5.2 Privacy Considerations

Table 5.1 – continued from previous page
Research Objectives Description Evaluation Fulfilled
Proposal of Solutions
for Physical Issues
and Edge Cases

While the general focus of the
research lies in creating digital
processes that allow handling as
much of the user flow through
the platform as possible, it is im-
portant to also design solutions
for potential damage to vehicles
by passengers or inappropriate
actions by individuals towards
other passengers that need to
be handled outside the platform.
Therefore, the aim is to ensure
accountability and conceptualise
reporting mechanisms.

Ensuring privacy throughout the plat-
form while also enforcing account-
ability for all users is a complex en-
deavour. The GETACAR platform
solves this problem by utilising au-
thentication services that are the only
entities inside the platform that can
match pseudonyms and wallet ad-
dresses to their owners as described
in subsection 3.1.5. To ensure de-
centralisation, everyone can get ver-
ified by the GETACAR Foundation
to host an authentication service in-
stance. Thereby, each authentica-
tion service only holds a subset of
all users registered on the platform.
This system enables flows for solving
physical issues on vehicles or other
edge cases, like if a ride provider
wants to make an insurance claim
because a customer has damaged a
vehicle, they can do so by provid-
ing the pseudonym of the user to
the authentication service with a re-
quest for revealing the identity to the
insurance company.

Yes

Prototypical Realisa-
tion of the Decen-
tralised Platform

Based on the theoretical design,
a prototype implementation of
the platform is constructed. By
building the platform, it is possi-
ble to simulate real-world scenar-
ios, understand unforeseen chal-
lenges, and refine the design in
response to them.

The design of the GETACAR plat-
form is verified through a prototype
that showcases the core functions of
the GETACAR platform and the in-
teraction between the components.
The prototypical realisation is show-
cased in chapter 4.

Yes

5.2 Privacy Considerations

Insuring privacy throughout the platform is one of the most important aspects of GETACAR. While we
showed the general spread of user information across the components of the platform, as shown in table3.1,
it is important to put the platform through a privacy assessment. This assessment is meant to ensure that
the privacy design at its core does not contain any loopholes that could endanger user privacy. OMAR et
al. provide such an assessment for an anonymity-oriented privacy-preserving reputation system, as it is
implemented into GETACAR [HBB22].

GETACAR fulfils the requirements for this assessment as the true identity of users are hidden on the platform,
interactions stay anonymous, users are represented by multiple pseudonyms, and transactions can get carried
out anonymously.
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The paper itself focuses on the privacy preservation of rating systems, but the assessment itself works on a
platform level, as the same systems that preserve privacy for users when they interact with the rating systems
are also in place for all other interactions on GETACAR. Table 5.2 shows all twelve points of assessment and
how the GETACAR platform is evaluated for each.

Table 5.2: User Anonymity-Oriented Privacy-Preserving Reputation System Properties [HBB22]
Property Description Evaluation Fulfilled
Multiple Pseudonyms A user can assume multiple

pseudonyms, either per context
or per transaction.

Every user can take on a new
pseudonym for each new transac-
tion. For off-chain interactions, the
authentication service provides the
pseudonyms directly; for on-chain
transactions, the user is able to gen-
erate their own new wallet, which
then gets registered with the authen-
tication service.

Yes

User-Pseudonym Un-
linkability

The true identity of a user is not
linkable to any pseudonym they
use.

By knowing the identity of a
user, it is not possible to identify
pseudonyms that belong to the user
as there is no information contained
in the pseudonym that would allow
us to make this connection.

Yes

Pseudonym-
Pseudonym Un-
linkability

Two different pseudonyms of the
same user cannot be linked.

The pseudonyms are not linked di-
rectly to each other. Therefore, it
is not possible to conclude which
pseudonyms belong to the same user.

Yes

Rater Anonymity A user can rate another user with-
out revealing their true identity.

On GETACAR the rater stays anony-
mous as they use a newly generated
wallet as their pseudonym for the
ride flow and to post their rating on
the blockchain

Yes

Ratee Anonymity A user can receive a rating with-
out their real identity being dis-
closed.

GETACAR also provides Ratee
anonymity, as users only rate
other users based on their wallet
pseudonyms on-chain.

Yes

Inquirer Anonymity A user can inquire about another
user’s reputation anonymously.

Every user can request the rating of
another user without exposing their
identity. To get a rating, it is only
necessary to provide the pseudonym
of the user to the authentication ser-
vice. The authentication service can
then return the rating of the user
connected to the pseudonym.

Yes

Reputation Transfer
and Aggregation

A ratee can transfer and ag-
gregate reputation among their
pseudonyms.

As each pseudonym is connected to
a single user by the authentication
service, the rating transfers between
all pseudonyms

Yes

Continued on next page
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Table 5.2 – continued from previous page
Property Description Evaluation Fulfilled
Reputation Unforge-
ability

A ratee cannot show reputation
higher than their pseudonyms’
cumulative reputation.

Reputation forgeability is not possi-
ble as a user does not provide their
rating themself but through the au-
thentication service that represents
a trusted authority

Yes

Distinctness Reputation of a ratee is an aggre-
gate of votes from distinct raters.

As all ratings are posted to a smart
contract on the blockchain that logs
the rater and ratee and verifies that
both parties are part of the platform,
distinctness of ratings is ensured.

Yes

Accountability Users are accountable for adver-
sarial actions.

The rating systems keep users ac-
countable for their actions and allow
for the revelation of the identity of a
user in edge cases.

Yes

Authorizability of
Ratings

Only users who have had a trans-
action with the ratee are allowed
to rate her.

The smart contracts ensure that all
ratings are valid, as customers and
ride providers can only rate each
other after signing a ride contract
on-chain.

Yes

Verifiability by Ratee A ratee should be able to iden-
tify all published feedback linked
to their identity and verify their
authenticity.

As each user knows all their
pseudonyms themselves, they can
calculate their rating on their own to
verify the calculations of the authen-
tication service.

Yes

As seen in the table 5.2 GETACAR is able to satisfy all properties of the assessment. While the fulfilment of
some of these points relies on the implementation of the authentication service, which is not completely
realised in this paper, this is still a very notable achievement, as the paper [HBB22] does not identify a single
source out of 26 analysed research papers, that fulfils all of the properties of the assessment.

5.3 Testing and Results

After assessing the research objectives and the security measures of the GETACAR platform, it is important
to also document the results of prototype implementation.

The prototype shows that the design of the frontends, the matching service, and the smart contracts successfully
translates into a working implementation. All components work in tandem, and it is possible to complete
the ride-booking flow. The simulation was conducted with one frontend and ten virtual vehicles bidding on
the ride request. The matching service successfully determined the winner of the Vickrey auction, and the
frontend was able to generate a ride contract from the contract factory based on the winning bid. The virtual
vehicle with the winning bid co-signed the contract, and the ride flow itself was tracked through the smart
contract, including the deposit payout and the rating posted by the ride provider and customer.

The smart contracts are deployed on the Ethereum node simulator Ganache. The Gas fees, which represent
the resulting computation cost of an exemplary ride when interacting with the smart contract, can be seen in
table 5.3 and 5.4. It is important to note that the smart contracts are not optimised for reduced Gas cost and
that the cost of each transaction may change depending on factors like the length of the encrypted message
provided as part of the emitted events on-chain.
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Transaction Gas Cost
Determining best Matching Service for current Hexagon/Pentagon 7341.82
Creation of Ride Contract on-chain from the Contract Factory 479152.27
Posting the ”Start driving” Event 3915.45
Posting the ”Ride completed” Event 6834.56
Rating Ride Provider 8025.45
Rating one Passenger 5778.64
Sum 511048.19

Table 5.3: Gas consumption for the Ride Customer transactions

Transaction Gas Cost
Co-Signing Ride Contract 2458.82
Posting the ”Accepted Ride” Event 1458.86
Adding first passenger 5396.68
Adding second passenger 4619.41
Posting the ”Arrived at pickup location” Event 1482.50
Posting the ”Ride-provider started ride” Event 1470.18
Posting the ”Ride-provider arrived at dropoff location” Event 1483.55
Claiming Deposit 2414.77
Sum 20784.77

Table 5.4: Gas consumption for the Ride Provider transactions

To put these Gas prices into context, we calculate the total cost of completing the ride flow for the customer
on the Ethereum blockchain based on the current Ethereum prices available at the time of writing. 1

Given:

• Gas Cost: 𝐺 = 511048.19

• Gas Price: 𝑃 = 20 Gwei (where 1 Gwei = 10−9 ETH)

• Price of 1 ETH in USD: 𝑅 = $1649.36

The total cost in Gwei for executing the smart contract is calculated as:

𝐶Gwei = 𝐺 × 𝑃

𝐶Gwei = 511048.19 × 20

𝐶Gwei = 10220963.8Gwei

To convert the cost from Gwei to ETH:

𝐶ETH =
𝐶Gwei

1, 000, 000, 000

1https://etherscan.io/gastracker
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𝐶ETH =
10220963.8

1, 000, 000, 000
𝐶ETH = 0.0102209638ETH

Finally, to calculate the cost in USD:

𝐶USD = 𝐶ETH × 𝑅

𝐶USD = 0.0102209638 × 1649.36

𝐶USD ≈ $16.86

Thus, the total cost of executing the smart contract on the Ethereum blockchain, given the provided parameters,
is approximately $16.86 USD. While $16.86 USD transaction costs for the customer would be too expensive
to make the platform economically feasible, it is important to point out that the Ethereum price frequently
undergoes strong fluctuations and that Ethereum is, in general, a very expensive chain for running Solidity
smart contracts. A more fitting blockchain for hosting the GETACAR smart contracts could be Avalanche,
which provides high-speed smart contract transactions at a low price. Based on the Avalanche Gas prices
available at the time of writing, the calculation looks as follows2:

Given:

• Gas Cost, 𝐺 = 511048.19

• Gas Price, 𝑃 = 26 nAVAX

• Price of 1 AVAX in USD, 𝑅 = $9.27

The total cost in nAVAX for executing the smart contract is calculated as:

𝐶nAVAX = 𝐺 × 𝑃

𝐶nAVAX = 511048.19 × 26

𝐶nAVAX = 13287253.14nAVAX

To convert the cost from nAVAX to AVAX:

𝐶AVAX =
𝐶nAVAX

1, 000, 000, 000

𝐶AVAX =
13287253.14

1, 000, 000, 000
𝐶AVAX = 0.01328725314AVAX

Finally, to calculate the cost in USD:

𝐶USD = 𝐶AVAX × 𝑅

𝐶USD = 0.01328725314 × 9.27

𝐶USD ≈ $0.12

2https://tokentool.bitbond.com/gas-price/avalanche
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Therefore, the total cost of executing the smart contract on the Avalanche blockchain, given the provided
parameters, is approximately $0.12 USD. Calculating the maximum amount of platform operations costs that
would still allow for a feasible business case and determining the best blockchain for running a decentralised
ride-pooling platform in production has to be part of future research.

Another point of future research has to prove that widespread utilisation of GETACAR actually results in a
reduction in road traffic. A fitting tool for this kind of simulation is Simulation of Urban MObility (SUMO),
a traffic simulation software that is able to handle large networks. To assist this future research, we converted
the road network of San Francisco into a SUMO map, as seen in 5.2.

Figure 5.1: SUMO Map: San Francisco, California

In addition, we created a simulation for randomised traffic on the map, as seen in 5.1. When connecting
the API interface provided by the SUMO simulation with the GETACAR customer frontend and the virtual
vehicles, future researchers can simulate the effects of the GETACAR ride-pooling platform on large road
networks.
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Figure 5.2: SUMO Traffic Simulation
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6 Conclusion & Outlook

With an expected increase in overall traffic in the near future caused by the widespread adaptation of
autonomous vehicles, ride-pooling solutions are needed to decrease the number of individual trips on the road.
As current ride-pooling platforms have shown to be insufficient for tackling this problem because of their
centralised nature and how they deal with data privacy, this paper introduces GETACAR, a decentralised,
privacy-preserving ride-pooling platform. The design of the GETACAR ride-pooling platform is based
on a comprehensive literature analysis that outlines the current state and shortcomings of decentralised
ride-pooling platforms in scientific research. The design of the GETACAR platform combines the findings
from the research analysis with best practices from the industry and contributes its own design suggestions to
the discourse. The design of the GETACAR platform demonstrates how blockchain can be used to track
rides, how the interaction flow between customers and ride providers is supposed to look like and how
payments and service fees can be managed throughout the platform. Additionally, the design covers concepts
that ensure privacy and anonymity for all users as well as decentralised trust mechanisms. GETACAR also
describes how security is ensured throughout the platform and how edge cases can be handled off-chain.

The design of GETACAR is verified through the creation of a prototype that showcases all relevant features
of the platform and allows a simulation of the complete ride flow between the customer, platform and
ride provider. The prototype proves the feasibility of the GETACAR platform design and decentralised,
privacy-preserving ride-pooling in general.

Therefore, the findings gained in this work can be used as a basis for future research. The design can be used
as a blueprint to create market-ready, privacy-preserving ride-pooling platforms that favour user interests over
corporate gains. We hope that GETACAR contributes to the research landscape of decentralised ride-pooling
and, therefore, helps to solve the problem of increased traffic caused by autonomous vehicles.

6.1 Limitations

While the GETACAR platform design provides an in-depth overview of all relevant components necessary
to create a decentralised privacy-preserving ride-pooling platform, it is essential to note that the creation
of such a platform is highly complex, and the area still provides room for improvement. First of all, smart
contracts, the platform’s backbone, are written highly verbose to better illustrate the key functions of the
contracts. Optimising the contracts will result in lower Gas fees, which decrease the operation cost of the
platform overall. Secondly, while the platform is built with decentralised authentication services in mind, the
prototype does not include the component. There is also no mash of crypto exchanges connected with the
prototype, allowing customers and ride providers to use fiat currency on the platform. These factors currently
limit the proof of feasibility. While the on-chain interaction flow is worked out in detail, there is no predefined
communication protocol for the encrypted interaction between customer and ride provider, enabled through
the Diffie-Hellman Key Exchange. The technical implementation for exchanging encrypted messages is
fully realised, but no standardised format for these messages has been defined yet. Lastly, it is important to
note that the privacy and security aspects are verified on an architecture and general platform design level.
Professional penetration testing of the prototype is needed to fully verify these aspects of the platform.

91



6 Conclusion & Outlook

6.2 Outlook

By providing a fully developed platform design and a functional prototype, GETACAR lends itself to future
research in the area of decentralised ride-pooling. A point of interest for future research should be the
continuation of the quantitative and qualitative validation of the GETACAR platform design. The quantitative
evaluation can be done by creating complex simulations on top of the platform through SUMO. The SUMO
simulations should be able to mimic customer and ride provider behaviour at a large scale to evaluate if the
platform is able to process these vast amounts of data without running into bottlenecks. While the design of
the platform, customer and ride provider flow is heavily based on the findings from the scientific literature, it
should be further verified through qualitative testing. Therefore, the platform prototype should be given out
to potential customers and ride providers for real-world testing and further refinement of the platform.

Further verifying the design of the GETACAR platform is important for the creation of a successful,
market-ready decentralised ride-pooling platform, but there are also other research topics related to the
creation of such a platform that have not been covered in the paper. This includes a detailed legal analysis of
how the GETACAR Foundation should be set up, how the foundation should handle tasks like assigning
the matching services to the world grid, and how the foundation’s process should look for verifying new
authentication services. While we try to ensure basic economic feasibility for the platform, detailed research
on this topic is needed to develop a detailed business case for GETACAR.
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A Smart Contracts

A.1 Smart Contract: Matching.sol

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3
4 contract MatchingService {

5
6 struct MatchingServiceObject {

7 string name;

8 uint256 matches;

9 uint256 requests;

10 }

11
12
13 MatchingServiceObject[5] public services;

14
15 address public FACTORY_ADDRESS;

16 bool public isFactoryAddressSet = false;

17
18 mapping(address => bool) public registeredContracts;

19 address[] public registeredContractsList;

20
21 // Declare the event

22 event LowestMatchService(string serviceName, uint256 serviceRating);

23
24 modifier onlyFactory() {

25 require(msg.sender == FACTORY_ADDRESS, "Only the factory can call this");

26 _;

27 }

28
29 modifier onlyRegisteredContracts() {

30 require(registeredContracts[msg.sender], "Only registered contracts can call this");

31 _;

32 }

33
34 //Hardcoded Dummy Matching Services

35 constructor() {

36 services[0] = MatchingServiceObject("ms1", 10, 15);

37 services[1] = MatchingServiceObject("ms2", 15, 20);

38 services[2] = MatchingServiceObject("ms3", 20, 30);

39 services[3] = MatchingServiceObject("ms4", 5, 10);

40 services[4] = MatchingServiceObject("ms5", 8, 12);

41 }

42
43 function setFactoryAddress(address _factoryAddress) external {

44 require(!isFactoryAddressSet, "Factory address is already set");

45 FACTORY_ADDRESS = _factoryAddress;

46 isFactoryAddressSet = true;
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47 }

48
49 function registerContract(address contractAddress) external onlyFactory {

50 require(!registeredContracts[contractAddress], "Contract is already registered"); // Additional

check to prevent duplicate addresses

51 registeredContracts[contractAddress] = true;

52 registeredContractsList.push(contractAddress);

53 }

54
55 function getAllRegisteredContracts() external view returns (address[] memory) {

56 return registeredContractsList;

57 }

58
59 function getMatchingService(string[] memory names) public {

60 uint256 lowestMatches = type(uint256).max;

61
62 string memory lowestMatchServiceName = "";

63 uint256 lowestMatchServiceRating;

64
65 for (uint i = 0; i < names.length; i++) {

66 for (uint j = 0; j < services.length; j++) {

67 if (keccak256(bytes(services[j].name)) == keccak256(bytes(names[i]))) {

68 if (services[j].matches < lowestMatches) {

69 lowestMatches = services[j].matches;

70 lowestMatchServiceName = services[j].name;

71 lowestMatchServiceRating = (services[j].matches * 100) / services[j].requests; //

Multiply by 100 for two decimal places

72 services[j].requests += 1;

73 }

74 }

75 }

76 }

77 // Emit the event with the result

78 emit LowestMatchService(lowestMatchServiceName, lowestMatchServiceRating);

79 }

80
81 function addMatch(string memory serviceName) external onlyRegisteredContracts {

82 for (uint i = 0; i < services.length; i++) {

83 if (keccak256(bytes(services[i].name)) == keccak256(bytes(serviceName))) {

84 services[i].matches += 1;

85 }

86 }

87 }

88 }

A.2 Smart Contract: ContractFactory.sol

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3
4 import "./contract.sol";

5 import "./matching.sol"; // Assuming both contracts are in the same directory

6
7 contract ContractFactory {

8
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9 MatchingService private matchingServiceInstance;

10 address[] public registeredContracts;

11
12 uint256 public contractCounter = 0; // Counter to keep track of contract IDs

13
14 // Mapping from contract ID to contract address

15 mapping(uint256 => address) public contractsByID;

16
17 // Mapping from contract ID to contract timestamp

18 mapping(uint256 => uint256) public timestampByID;

19
20
21 constructor(address _matchingServiceAddress) {

22 matchingServiceInstance = MatchingService(_matchingServiceAddress);

23
24 // Set this contract as the factory address in the MatchingService contract

25 matchingServiceInstance.setFactoryAddress(address(this));

26 }

27
28 mapping(address => Contract[]) public userContracts;

29 event ContractCreated(address indexed user, Contract newContract, uint256 contractID); // Added

contractID to the event

30
31 function registerNewContract(address _contractAddress) external {

32 // Call the registerContract() function on the MatchingService contract

33 matchingServiceInstance.registerContract(_contractAddress);

34
35 // Optionally, store the registered contract's address in this factory for record-keeping

36 registeredContracts.push(_contractAddress);

37 }

38
39 function createContract(uint256 _amount) public payable {

40 require(msg.value == _amount, "Sent value does not match the specified amount.");

41 Contract newContract = new Contract{value: _amount}(msg.sender);

42 userContracts[msg.sender].push(newContract);

43
44 // Increment contract counter and map new contract's address to the counter

45 contractCounter++;

46 contractsByID[contractCounter] = address(newContract);

47
48 // Store the current block's timestamp

49 timestampByID[contractCounter] = block.timestamp;

50
51 // Call registerNewContract with the new contract's address

52 this.registerNewContract(address(newContract));

53
54 emit ContractCreated(msg.sender, newContract, contractCounter);

55 }

56
57 function getContractsByUser(address user) public view returns (Contract[] memory) {

58 return userContracts[user];

59 }

60
61 function getContractByID(uint256 contractID) public view returns (address) {

62 return contractsByID[contractID];

63 }

64
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65 // Fetch the timestamp by contract ID

66 function getContractTimestampByID(uint256 contractID) public view returns (uint256) {

67 return timestampByID[contractID];

68 }

69 }

A.3 Smart Contract: Contract.sol

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3
4 interface IMatchingService {

5 function addMatch(string memory serviceName) external;

6 }

7
8 contract Contract {

9 address public party1;

10 address public party2;

11 bool public isActive;

12 bool public rideProviderAcceptedStatus;

13 bool public rideProviderArrivedAtPickupLocation;

14 bool public userReadyToStartRide;

15 bool public rideProviderStartedRide;

16 bool public rideProviderArrivedAtDropoffLocation;

17 bool public userMarkedRideComplete;

18 bool public userCanceldRide;

19 bool public rideProviderCanceldRide;

20
21 uint public userRating;

22 uint public rideRating;

23 bool public isUserRatingSet;

24 bool public isRideRatingSet;

25
26 //Hard Coded Address of the Matching Service to bump up Matching Count of Rating Service

27 address constant MATCHING_SERVICE_ADDRESS = 0x0991df810C73d820c776b024Eb720d39e9CfBb1a;

28
29
30 constructor(address _party1) payable {

31 party1 = _party1;

32 rideProviderAcceptedStatus = false;

33 rideProviderArrivedAtPickupLocation = false;

34 userReadyToStartRide = false;

35 rideProviderStartedRide = false;

36 rideProviderArrivedAtDropoffLocation = false;

37 userMarkedRideComplete = false;

38 userCanceldRide = false;

39 rideProviderCanceldRide = false;

40
41 }

42
43 struct Passenger {

44 string passengerID;

45 uint seatingPosition;

46 string startTime;

47 uint rating;
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48 }

49
50
51 Passenger[] public passengers;

52
53 function addPassenger(string memory _passengerID, uint _seatingPosition, string memory _startTime)

public {

54 require(isActive, "Contract is not active.");

55 require(msg.sender == party2, "Only Party2 can add passengers.");

56
57 Passenger memory newPassenger = Passenger({

58 passengerID: _passengerID,

59 seatingPosition: _seatingPosition,

60 startTime: _startTime,

61 rating: 0

62 });

63
64 passengers.push(newPassenger);

65 }

66
67 function addPassengerRating(uint _passengerIndex, uint _rating) public {

68 require(isActive, "Contract is not active.");

69 require(msg.sender == party1, "Only Party1 can rate passengers.");

70 require(_rating >= 0 && _rating <= 5, "Rating must be between 0 and 5.");

71 require(_passengerIndex < passengers.length, "Passenger not found.");

72
73 passengers[_passengerIndex].rating = _rating;

74 }

75
76 function signContract() public payable {

77 require(party2 == address(0), "Party2 has already signed the contract.");

78 require(!isActive, "Contract is already active.");

79 require(!userCanceldRide, "User cannceld ride ");

80 require(msg.sender != party1, "Party2 cannot be identical to Party1.");

81
82 party2 = msg.sender;

83 isActive = true;

84
85 uint256 tenPercent = (address(this).balance * 10) / 100;

86 require(msg.value >= tenPercent, "Party2 must deposit an amount equal to 10% of the contract

balance.");

87
88 // Refund any excess amount deposited by party2

89 if (msg.value > tenPercent) {

90 payable(msg.sender).transfer(msg.value - tenPercent);

91 }

92 }

93
94 event UpdatePosted(address indexed author, string message, string functionName);

95
96
97 function setRideProviderAcceptedStatus(string memory _message) public {

98 require(isActive, "Contract is not active.");

99 require(msg.sender == party2, "Only Party2 can set the ride provider accepted status.");

100 require(!rideProviderAcceptedStatus, "Ride Provider Accepted Status can only be set once.");

101
102 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");
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103 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

104
105 rideProviderAcceptedStatus = true;

106 emit UpdatePosted(msg.sender, _message, "rideProviderAcceptedStatus");

107 }

108
109 function setRideProviderArrivedAtPickupLocation(string memory _message) public {

110 require(isActive, "Contract is not active.");

111 require(msg.sender == party2, "Only Party2 can set the ride provider arrived status.");

112 require(rideProviderAcceptedStatus, "Ride Provider Accepted Status must be set before setting

arrived status.");

113 require(!rideProviderArrivedAtPickupLocation, "Ride Provider Arrived Status can only be set once.

");

114
115 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

116 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

117
118 rideProviderArrivedAtPickupLocation = true;

119 emit UpdatePosted(msg.sender, _message, "rideProviderArrivedAtPickupLocation");

120 }

121
122 function setUserReadyToStartRide(string memory _message) public {

123 require(isActive, "Contract is not active.");

124 require(msg.sender == party1, "Only Party1 can set the user ready to start ride status.");

125 require(rideProviderArrivedAtPickupLocation, "Ride Provider Arrived Status must be set before

setting user ready to start ride status.");

126 require(!userReadyToStartRide, "User Ready To Start Ride Status can only be set once.");

127
128 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

129 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

130
131 userReadyToStartRide = true;

132 emit UpdatePosted(msg.sender, _message, "userReadyToStartRide");

133 }

134
135 function setRideProviderStartedRide(string memory _message) public {

136 require(isActive, "Contract is not active.");

137 require(msg.sender == party2, "Only Party2 can set the ride provider started ride status.");

138 require(userReadyToStartRide, "User Ready To Start Ride Status must be set before setting ride

provider started ride status.");

139 require(!rideProviderStartedRide, "Ride Provider Started Ride Status can only be set once.");

140
141 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

142 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

143
144 rideProviderStartedRide = true;

145 emit UpdatePosted(msg.sender, _message, "rideProviderStartedRide");

146 }

147
148 function setRideProviderArrivedAtDropoffLocation(string memory _message) public {

149 require(isActive, "Contract is not active.");

150 require(msg.sender == party2, "Only Party2 can set the ride provider arrived at dropoff location

status.");

151 require(rideProviderStartedRide, "Ride Provider Started Ride Status must be set before setting

ride provider arrived at dropoff location status.");

152 require(!rideProviderArrivedAtDropoffLocation, "Ride Provider Arrived At Dropoff Location Status

can only be set once.");

104



A.3 Smart Contract: Contract.sol

153
154 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

155 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

156
157 rideProviderArrivedAtDropoffLocation = true;

158 emit UpdatePosted(msg.sender, _message, "rideProviderArrivedAtDropoffLocation");

159 }

160
161 function setUserMarkedRideComplete(string memory _message) public {

162 require(isActive, "Contract is not active.");

163 require(msg.sender == party1, "Only Party1 can set the user marked ride complete status.");

164 require(rideProviderArrivedAtDropoffLocation, "Ride Provider Arrived At Dropoff Location Status

must be set before setting user marked ride complete status.");

165 require(!userMarkedRideComplete, "User Marked Ride Complete Status can only be set once.");

166
167 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

168 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

169
170 userMarkedRideComplete = true;

171 //Call Matching Service, ms1 is hardcoded. For a real implementation this value would be provided

by the forntend when calling the setUserMarkedRideComplete() function

172 IMatchingService(MATCHING_SERVICE_ADDRESS).addMatch("ms1");

173 emit UpdatePosted(msg.sender, _message, "userMarkedRideComplete");

174 }

175
176 function setUserCanceldRide(string memory _message) public {

177 require(msg.sender == party1, "Only Party1 can set the user canceld ride status.");

178
179 if(!isActive) {

180 uint256 balance = address(this).balance;

181 payable(party1).transfer(balance);

182 return;

183 }

184
185 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

186 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

187
188 userCanceldRide = true;

189
190 if(isActive) {

191 uint256 balance = address(this).balance;

192 payable(party2).transfer(balance);

193 }

194
195 emit UpdatePosted(msg.sender, _message, "userCanceldRide");

196 }

197
198 function setRideProviderCanceldRide(string memory _message) public {

199 require(isActive, "Contract is not active.");

200 require(msg.sender == party2, "Only Party2 can set the ride provider canceld ride status.");

201
202 require(!rideProviderCanceldRide, "Ride Provider Canceld Ride Status can only be set once.");

203 require(!userCanceldRide, "User Canceld Ride Status can only be set once.");

204
205 rideProviderCanceldRide = true;

206
207 uint256 balance = address(this).balance;
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208 payable(party1).transfer(balance);

209
210 emit UpdatePosted(msg.sender, _message, "rideProviderCanceldRide");

211 }

212
213 function setUserRating(uint _rating) public {

214 require(msg.sender == party2, "Only Party2 can set the user rating.");

215 require(!isUserRatingSet, "User rating can only be set once.");

216 require(isActive, "Contract is not active.");

217 require(_rating >= 0 && _rating <= 5, "Rating must be between 0 and 5.");

218 userRating = _rating;

219 isUserRatingSet = true;

220 }

221
222 function setRideRating(uint _rating) public {

223 require(msg.sender == party1, "Only Party1 can set the ride rating.");

224 require(!isRideRatingSet, "Ride rating can only be set once.");

225 require(_rating >= 0 && _rating <= 5, "Rating must be between 0 and 5.");

226 require(isActive, "Contract is not active.");

227 rideRating = _rating;

228 isRideRatingSet = true;

229 }

230
231
232 function claimETH(uint256 amount) public {

233 require(isActive, "Contract is not active.");

234 require(msg.sender == party2, "Only Party2 can claim the deposited ETH.");

235 require(userMarkedRideComplete, "User must mark the ride complete before claiming the deposited

ETH.");

236 require(amount <= address(this).balance, "Requested amount exceeds the contract balance.");

237
238 address payable hardcodedAddress = payable(0xE39a3085CB78341547F30a1C6bD12977d51aa967); //

replace with the actual GETACAR Foundation address

239
240 uint256 balance = address(this).balance;

241 uint256 tenPercent = balance / 10;

242 uint256 remainder = balance - tenPercent;

243
244 hardcodedAddress.transfer(tenPercent);

245
246 uint256 payback = remainder - amount;

247 remainder -= payback;

248
249 payable(party1).transfer(payback);

250 payable(party2).transfer(remainder);

251 }

252
253 }
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