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Zusammenfassung

Die Eigenschaften moderner Arbeitslasten gegenüber Datenbanken orien-
tieren sich an den Anforderungen von Geschäftsanwendungen, die auf Wis-
sensgewinne und einen technologischen Vorsprung ausgerichtet sind. Diese
Arbeitslasten zeichnen sich durch ein exponentielles Datenwachstum, einen
hohen Anteil an kontinuierlichen Einfügungen und analytische Verarbeitung
aus. Flash Sekundärspeicher sind eine wirtschaftliche Möglichkeit, mit gro-
ßen Mengen modifizierbarer Daten umzugehen, wenn ihre Eigenschaften
effizient genutzt werden. In diesem Kontext führt die Verwaltung von phy-
sisch materialisierten Tupel-Versionen in Basistabellen durch vorteilhafte
Zugriffsmuster auf Sekundärspeichermedien zu einem kostengünstigen und
skalierbaren transaktionalen Durchsatz.

Vorteilhafte Eigenschaften gelten jedoch kaum für gängige unversionierte
sekundäre Zugriffspfade. Ihr tatsächlicher Nutzen wird durch Wartung sowie
zusätzliche Kosten für Suche und Sichtbarkeitsprüfung begrenzt.
Mittels empirischer Methoden, also Literaturstudien und kontrollierter

Experimente, werden spezifische Eigenschaften von modernen Arbeitslas-
ten, Flash-basierten Speichertechnologien und modernster Datenverwal-
tungstechniken in Wissenschaft und Industrie gesammelt, um existierende
Probleme, Forschungsmöglichkeiten und Herausforderungen in deren In-
teraktion zu identifizieren. Auf Basis der daraus abgeleiteten Erkenntnisse
werden sowohl neue als auch ausgereifte Techniken betrachtet, mit dem
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Ziel eine neue multi-versionierte Speicher- und Indexverwaltungsstruktur
für die Eigenschaften moderner Speichertechnologien zu entwickeln. Durch
standardisierten Arbeitslasten wird eine prototypische Implementierung in
bekannten Systemen experimentell evaluiert.
Diese Arbeit leistet einen wichtigen Beitrag zur modernen Datenverwal-

tung mit Multi-Version Partitioned BTrees (MV-PBT). Ferner beinhaltet dies
eine anfüge-basierte Tupel-Versions-Verwaltung für Arbeitslasten mit gleich-
bleibend hohen Dateneinspeisungsraten und analytischer Verarbeitung einer
gemeinsamen Datenbasis, welche sich hauptsächlich auf einem Sekundär-
speicher befindet. Erstens, der Ansatz verbessert die Selektivität sekundärer
Zugriffspfade durch die Einführung von internen Sichtbarkeitsprüfungen.
Dies führt bei gemischten Arbeitslasten zu einer Verdopplung des analy-
tischen und zu einer Erhöhung von 14% des transaktionalen Durchsatzes.
Zweitens, das Tupel-Aktualisierungsverfahren verbessert die Verwaltungskos-
ten von Indizes durch das Hinzufügen logisch verketteter Versionen, womit
ein um 47% erhöhter Durchsatz erzielt wird. Drittens, MV-PBT eignet sich auf-
grund seiner Schreibeigenschaften und kosteneffizienten Suchvorgängen als
Speicherverwaltungsstruktur, welche den Durchsatz im Vergleich zu den ver-
breiteten LSM-Bäumen verdoppelt. Viertens, die logische Verknüpfung von
Versionsdaten erleichtert unabhängige Partitionierungs-, Reorganisations-
und Wartungstechniken, was einen gleichbleibenden und um ein Vielfaches
erhöhten Durchsatz für verschiedene Arbeitslasten ermöglicht. Letztens,
bloomRF ermöglicht als neuartige, kostengünstige Punkt- und Intervall-
Filtertechnik gleichbleibende Leistung für Such- und Wartungsoperationen
in MV-PBT.
In dieser Arbeit werden die Vorteile einer multi-versionierten Hochleis-

tungsindexverwaltung für die Eigenschaften moderner Arbeitslasten erläu-
tert. Darüber hinaus kombinieren erweiterbare Designkonzepte auf Basis
des B+-Baums moderne Hauptspeichertechniken mit enormen Datenmengen
und bilden die Grundlage für die Einbindung dezentraler Verarbeitungs-
und Speichertechnologien. MV-PBT ist für ein breites Anwendungsspektrum
geeignet und bildet einen ganzheitlichen Ersatz für bestehende Speicher-
und Indexverwaltungsstrukturen.
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Abstract

Trends in modern database workload properties are guided by business appli-
cation needs with the characteristics of exponential growth of data, high-rate
continuous insertions and analytical processing, aiming for knowledge gains
and leading edges over competitors. Cheap Flash-based secondary storage
devices provide an economic way to deal with massive amounts of modifiable
data whenever their characteristics are efficiently leveraged. Thereby, it
turned out that maintenance of physical materialized tuple version records
in base tables not only scale with the number of concurrent transactions,
but also provides beneficial access patterns to secondary storage devices,
whereby asset and operational costs become manageable.

However, beneficial characteristics are hardly valid for common version-
oblivious additional access paths. Their actual profit is limited by excessive
maintenance as well as additional search and visibility check costs.
By means of empirical methods, i.e. literature studies and controlled

experiments, characteristics of modern workloads, Flash-based storage hard-
ware as well as state-of-the-art data management techniques in academia
and industry are gathered in order to identify existing problems, research op-
portunities and challenges in mutual interactions. Based on derived findings,
novel as well as matured techniques are considered to design a new kind
of version-aware and hardware leveraging storage and index management
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structure, which is prototypically implemented and integrated in well-known
systems and experimentally evaluated by system performance benchmarks.
This thesis gives significant contributions in modern data management

with Multi-Version Partitioned BTrees (MV-PBT) – i.e. append-based multi-
versioned tuple maintenance, high-rate continuous insertion workloads with
analytical processing on a common dataset instance, which comprises mas-
sive amounts of data on secondary storage devices. First, the approach
massively improves selectivity of additional access paths by introduced index-
only visibility checks, yielding 2× increased analytical and 14% transactional
throughput in mixed workloads. Second, strict append-based and out-of-
place replacement update schemes facilitate improved benefit by maintained
indexes, by 47% improved throughput. Third, due to its near-optimal write
characteristics and cost-efficient searches, the applied approach is highly
qualified as storage management structure, with 2× increased throughput
compared to widely used LSM-Tree. Fourth, logical linkage of version records
facilitate independent partition, reorganization and maintenance techniques
as well as robust performance characteristics for various workload proper-
ties, scaling up to orders of magnitude. Last, bloomRF, as a novel low-cost
point-range filter technique, enables robust performance characteristics for
search and maintenance operations in MV-PBT.
Contributions of this work unambiguously elaborate benefits of high-

performant version-aware index management for recent developments in
modern workload properties. Moreover, extendable design concepts on
base of the ubiquitous B+-Tree combine modern in-memory techniques,
massive amounts of data and form a basis for recent trends in decentralized
processing and storage hardware technologies. MV-PBT exhibits a broad
range of applicability and facilitates a full substitution of matured storage
and index management structures.
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Introduction

This introductory chapter firstly motivates the scope of action and significance
to decision-makers in a general business context. Within this context, I share
my personal experience, when I was involved as a trainee in the launch
of a customer relationship management system and business warehousing
solution upon an existing enterprise resource planning application. Upon
that, consequent challenges of the motivational context are outlined and
treated contributions are specified. A brief list of authors publications within
this research context and following structure of this thesis close the chapter.
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1.1. Motivation

Recent trends in business process requirements to information management
systems result in new types of workloads on their most performance criti-
cal backbone – the database management systems (DBMS). Traditionally,
DBMS workloads can be separated in different categories, such as online
transactional processing (OLTP) or online analytical processing (OLAP).
Characteristics of access patterns as well as effects on data management
technologies massively differ. Emerging popularity of large scale, data in-
tensive, real time analytical applications combine these characteristics in
hybrid transactional and analytical processing workloads (HTAP) on the
same dataset instance [HG20; MBL17; ÖTT17; RVGP20; SDA21].
An HTAP scenario brings several benefits to an enterprise in contrast to

traditional data warehousing approaches, whereby data is extracted from
the transaction processing system, transformed in a special query optimized
form and loaded to an analytical processing system (ETL-process).
First, real time data in HTAP scenarios improve and simplify quality as

well as output of decision-making process in business operations [HG20;
ÖTT17]. ’Greater situation awareness’ and ’improved business agility’ are
required skills to stay competitive [Gar15].

As a personal experience, any delay in relevance of reported data
reduces user experience and increases frustration. Furthermore,
analytical outputs influence decisions in operative tasks, like fore-
casting, pricing or production planning and controlling. Afterwards
or incorrectly maintained data in an OLTP-system deficiently affect
business operations between ETL-processes or require enormous
manual adjustments and manpower. Anyways, significant costs are
affiliated to a company.

Second, if a system is able to adopt the new HTAP-approach, an information
management infrastructure of organizations could be simplified [Gar15;
MBL17]. Less complex infrastructures are cheaper to maintain and evolve.
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Last, global players have (almost) no operative down times. The extraction
process probably stresses an OLTP-system and significantly shrinks transac-
tional throughput for a long period of time1.

Alongside HTAP-characterizations, upcoming technologies, markets, busi-
ness cases and cloud services yield data-intensive and high-rate continuous
insertion workloads. Internet of Things (IoT) platforms [Bos21; IBM21;
Mic21a; Ora21b; SAP21; Ser21] handle data of billions of IoT-devices. The
intention is by no means just storing massive amounts of data, rather a gain
of knowledge and a technological distinct competitive edge. For instance,
an automotive manufacturer could necessitate service intervals based on
evaluated wear and sensor data correlation gathered by cloud IoT platforms.

Quality of service aspects in such cloud approaches are contractually fixed
in service level agreements [Koh18]. Violation of these metrics, e.g. in trans-
actional throughput, response times, availability or consistency, are associ-
ated with noticeably monetary costs [SOSM12]. A key driver for compliance
in data-intensive tasks are naturally located in DBMS and their appropriated
hardware resources. In this context, predominant approaches are evaluated
in [HSB15]. Scaling-up means upgrading powerful components in single
nodes, whereas scaling-out allows acquisition of more processing nodes.

Both approaches, especially in combination, enable management of a mas-
sive amount of data. Accompanying challenges in scale-out methods, like par-
titioning, communication, data locality and skew handling [CL16; RMU+14;
Röd16; XY17; ZBS15], and scaling-up hardware [FZZ+19; KHL18; PDZ+18],
are in scope of recent proposals. Several solutions focus on main-memory
optimizations [DFI+13; FML+12; KN11; Pav14], e.g. in the area of key
sorted indexing [KFM+15; LKN13; LLS13; ZCWJ21]. Essential prerequisites
are large volatile main-memory capacities and powerful processing units as
well as persistent non-volatile secondary storage resources. Increased main-
memory (scale-up) or scaling-out the problem space by new data nodes for
growing dataset sizes are costly in hardware, operation and administration
[LHKN18].

1[Sup21] mentions a general job execution time of 2-4 hours.
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Focusing only on main-memory leads to natural limits – in a technical as
well as in an economical context [Lom18; NF20]. The much cheaper sec-
ondary storage technologies miss scaling principles in main-memory-oriented
configurations and are limited to backup tasks and archiving. Facebook is
a pioneer in introduction and evaluation of new solid state storage devices
(SSD) and upcoming non-volatile memory (NVM) in massive data production
setups [EGA+18; MWKM15]. Leveraging characteristics of new storage
hardware in a complex memory hierarchy allow comparable performance
to expensive up-scaled main-memory solutions and cheap – typically low
main-memory equipped – data nodes. Establishing a technological edge by
leveraging hardware characteristics beyond, could significantly reduce asset,
administrative and operative costs.

In combination of these contexts, current storage manager and structures
of (secondary) access paths encounter problems, outlined in the following
section.

1.2. Problem Statement

Viewed in isolation, aspects of application generated workloads (Section
2.2), characteristics of modern hardware technologies (Section 2.1) and fun-
damentals of DBMS designs (Section 2.3) are well studied and partially
state-of-the-art. Combining these aspects imply new challenges.

Application-generated high-rate continuous insertion and analytical work-
loads become read- and write-intensive to secondary storage hardware of
data nodes. Additional access paths can reduce occurring unnecessary read
effort and improve latencies, but require frequent maintenance. Whereas
basic table storage management structures like Snapshot Isolation Append
Storage (SIAS, compare Section 3.1.5.1) [Got16] obtain beneficial append-
based write patterns very well, traditional strict alpha-numeric-sorted addi-
tional access paths result in a random write pattern, poor latency and high
write amplification (WA, ratio between logically and physically written size
of data). Additional access paths entail massive pressure, amplified by WA
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unbuffered to secondary storage. Bandwidths of secondary storage devices
are not efficiently used and shrink overall throughput of DBMS. Maintenance
costs of the additional access path become more expensive than scanning the
base table. Considering different characteristics of main-memory primary
storage and Flash-based secondary storage techniques, the problem space
grows with complex memory hierarchies (compare in Sections 2.1 and A.1).
Generally, input-/output-operation (I/O) patterns of traditional additional
access paths do not leverage characteristics of Flash-based secondary storage
devices and shrink performance in read- and write-intensive workloads.
By this means, company’s investments are not optimally used. Furthermore,

durability of secondary storage devices shrinks due to high update rates
and WA of additional access paths. Endurance of Flash-based storage media
depends on physical write-/erase-cycles. Write patterns and WA of strictly key-
sorted additional access paths drastically wear out secondary storage devices.
A key characteristic of almost all commercial and academic DBMS is the

application of Multi-Version Concurrency Control (MVCC, compare Section
2.3). Multiple tuple versions are maintained, valid for a different period
in time. Major benefit is an improved throughput in the DBMS because
concurrent reads and writes are not mutually blocking and proceed in their
own calculated snapshot. Supplemental work for detection of a transactions
visible tuple version is necessary. Typically, additional access paths are version-
oblivious due to maintenance costs and the DBMS determines visibility by
means of expensive base table look-ups or large cached in-memory structures.
In principle, Flash-based secondary storage devices perform well on reads
due to internal parallelism and asymmetric read/write behavior (outlined
in Section 2.1), but visibility checking intensifies amount of – in principle –
unnecessary read data, especially in an HTAP-scenario.

Briefly, DBMS and their characteristics are the linkage between application-
generated workloads and the optimal usage of hardware technologies. Lever-
aging these characteristics can reduce running expenses of a business and
allow new types of workloads. Current additional access paths as well as
virtually every storage manager do not provide adequate characteristics. The
goal of this work is to close this gap.
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1.3. Contributions

Central contributions of this thesis are the conception, development and
evaluation of a storage and index management structure, which meet the
demand on modern workloads and hardware technologies. To the best of
one’s knowledge no other storage and index manager fully integrates these
aspects in one single consistent structure with the result of substantial cuts in
performance and endurance of data nodes, architectural fuzziness in DBMS
or massive complexity in evolvement and adjustment of DBMS backend.
The presented approach is Multi-Version Partitioned BTree (MV-PBT),

an unified tree-based multi-version storage and index management structure.
Its origin and basis capabilities of a regular and well studied B+-Tree [BM70]
enable a simple integration in existing architectures and adaptability of
recently published B-Tree techniques. Major benefit of tree structures is the
natural alpha-numeric sort order, which enable – in contrast to hash-based
indexes – powerful range querying in HTAP analytical workloads. In addi-
tion, due to the lack of pre-filtering data ranges, a range filtering approach
is presented. bloomRF (bloom range filter) allows data skipping and in-
crease throughput in MV-PBT by firstly introducing piecewise-monotone
hash functions and prefix hashing in a bloom filter.
Research objectives are formulated on base of the contributing approach

in following research questions (RQ):
RQ1: How could a visibility check of multi-version data be performed in

Partitioned BTrees and leveraging modern hardware characteristics?
RQ2: What further applications arise from timestamp-based index-only

visibility-checking in a MV-PBT?
RQ3: What optimizations for reading behavior are required for MV-PBT

in the areas of data skipping and buffer efficiency?
RQ4: How do online reorganization methods in MV-PBT enable a work-

load adaptivity?
RQ5: What are the performance effects of optimized garbage collection

in MV-PBT?
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More and detailed contributing aspects of this thesis are as follows:
Formulation of findings, how a storage and index management structure

need to interact, based on characterization of modern workloads and hardware
technologies. In order to understand evaluation and conception of its linking
layer – the DBMS storage structures – a brief characterization of modern
workloads and hardware technologies is provided. Impacts on data man-
agement structures are elaborated. Thereby, the relevance of DBMS design
decisions and underlying core mechanics become visible.
Theoretical and experimental evaluation of version models in multi-version

DBMS and K/V-Stores. Primarily, the concepts and impacts of Multi-Version
Concurrency Control (MVCC) designs, buffer management and additional
access paths are focused on. One key finding in DBMS is the contrary optimal
version organization model in base table main storage and additional access
path maintenance.
Analysis of state-of-the-art literature, as well as theoretical and experimental

evaluation of existing storage and indexing approaches. This thesis outlines
a brief review of current state-of-the-art storage and index management
structures in the areas of multi-version capabilities and leveraging modern
storage hardware.
Introduction of Index-Only Visibility Check and demonstration of its rele-

vance, especially in an HTAP scenario. Visibility checking is an expensive
operation with linear growth to the length of version chains, but is required
in multi-version DBMS. Modern indexing approaches require to support this
operation.
Enabling a strict concept of out-of-place update and invalidation. MV-PBT

introduce several different record types, whereby robustness in high concur-
rency and update-intensity situations is enabled.
Conception and evaluation of workload adaptivity, reorganization and garbage

collection techniques in MV-PBT. Whereas state-of-the-art storage manage-
ment structures focus on compaction mechanics for increased look-up per-
formance by reduction of read-amplification (RA), MV-PBT aims to achieve a
near-optimal WA and leverage its natural batch-wise partitioning sequence
in order to guarantee robust access and update performance.
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1.4. Scientific Publications

Contributions of this thesis and influential extensive work have been intro-
duced in various scientific peer-reviewed or preprint publications, denoted
in following list:

[MRBP23] B. Moessner, C. Riegger, A. Bernhardt, I. Petrov. ‘bloomRF: On
Performing Range-Queries in Bloom-Filters with Piecewise-Monotone Hash
Functions and Prefix Hashing’. In: EDBT’23 (accepted) (2023)

[RP22] C. Riegger, I. Petrov. ‘Storage Management with Multi-Version
Partitioned BTrees’. In: ADBIS’22 (accepted) (2022).

[RBMP20] C. Riegger, A. Bernhardt, B. Moessner, I. Petrov. ‘bloomRF: On
Performing Range-Queries with Bloom-Filters based on Piecewise-Monotone
Hash Functions and Dyadic Trace-Trees’. In: CoRR abs/2012.
15596 (2020). arXiv: 2012.15596. url: https://arxiv.org/abs/2012.
15596

[RVGP20] C. Riegger, T. Vinçon, R. Gottstein, I. Petrov. ‘MV-PBT: Multi-
Version Index for Large Datasets and HTAP Workloads’. In: Proceedings
of the 23rd International Conference on Extending Database Technology
(EDBT 2020). Copenhagen, Denmark, 2020.

[VWB+20] T. Vinçon, L. Weber, A. Bernhardt, A. Koch, I. Petrov, C. Knödler,
S. Hardock, S. Tamimi, C. Riegger. ‘nKV in Action: Accelerating KV-Stores on
NativeComputational Storage with Near-Data Processing’. In: Proc. VLDB
Endow. 13.12 (2020), pp. 2981–2984.

[VHR+19] T. Vinçon, S. Hardock, C. Riegger, A. Koch, I. Petrov. ‘nativeNDP:
Processing Big Data Analytics on Native Storage Nodes’. In: ADBIS. 2019
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[PKH+19] I. Petrov, A. Koch, S. Hardock, T. Vinçon, C. Riegger. ‘Native
Storage Techniques for Data Management’. In: 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11,
2019. IEEE, 2019, pp. 2048–2051.

[RVP19] C. Riegger, T. Vinçon, I. Petrov. ‘Indexing Large Updatable Datasets
in Multi-Version Database Management Systems’. In: Proceedings of the
23rd International Database Applications & Engineering Symposium. IDEAS
’19. Athens, Greece: Association for Computing Machinery, 2019.

[RVP18a] C. Riegger, T. Vinçon, I. Petrov. ‘Efficient Data and Indexing
Structure for Blockchains in Enterprise Systems’. In: Proceedings of the
20th International Conference on Information Integration and Web-Based
Applications & Services. iiWAS2018. Yogyakarta, Indonesia: Association for
Computing Machinery, 2018, pp. 173–182.

[RVP18b] C. Riegger, T. Vinçon, I. Petrov. ‘Efficient Data and Indexing
Structure for Blockchains in Enterprise Systems’. In: IBM Technical Report
RC25681. 2018

[PVK+19] I. Petrov, T. Vinçon, A. Koch, J. Oppermann, S. Hardock, C.
Riegger. ‘Active Storage’. In: Encyclopedia of Big Data Technologies. 2019

[PKV+19] I. Petrov, A. Koch, T. Vinçon, S. Hardock, C. Riegger. ‘Hardware-
Assisted Transaction Processing: NVM’. In: Encyclopedia of Big Data Tech-
nologies. 2019

[VHR+18] T. Vinçon, S. Hardock, C. Riegger, J. Oppermann, A. Koch, I.
Petrov. ‘NoFTL-KV: TacklingWrite-Amplification on KV-Stores with Native
Storage Management’. In: Proceedings of the 21th International Conference
on Extending Database Technology (EDBT 2018). Vienna, Austria: Open-
Proceedings, 2018, pp. 457–460
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[RVP17a] C. Riegger, T. Vinçon, I. Petrov. ‘Multi-Version Indexing and
Modern Hardware Technologies: A Survey of Present Indexing Approaches’.
In: Proceedings of the 19th International Conference on Information Integra-
tion and Web-Based Applications & Services. iiWAS ’17. Salzburg, Austria:
Association for Computing Machinery, 2017, pp. 266–275.

[RVP17b] C. Riegger, T. Vinçon, I. Petrov. ‘Write-Optimized Indexing with
Partitioned B-Trees’. In: Proceedings of the 19th International Conference
on Information Integration and Web-Based Applications & Services. iiWAS
’17. Salzburg, Austria: Association for Computing Machinery, 2017, pp.
296–300.

1.5. Structure of this Thesis

Since the motivational context, consequential problem statements and con-
tributions are defined, the residual thesis is structured as follows. In Chap-
ter 2, a brief introduction in the technical background is given. Thereby,
required insights and concepts in the areas of hardware technology char-
acteristics, workload characteristics and fundamentals of DBMS designs are
provided. Based on the outlined findings, several mostly key-sorted indexing
approaches are introduced and evaluated in Chapter 3. The designated
founding approach Partitioned BTrees (PBT) is elaborated and enhanced to
version-aware Multi-Version Partitioned BTree (MV-PBT), coping determined
concepts and capabilities in Chapter 4. Shortcomings in existing point-range
filter techniques – a basic requirement for efficient data skipping in MV-PBT
– lead to the concept and development of bloomRF outlined in Chapter 5.
Chapter 6 provides a full integration and experimental evaluation of MV-PBT
in an append-based DBMS and K/V-Store. Finally, a brief summarization
and opportunity overview is presented in Chapter 7.
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Technical Background

With the aim of understanding the various aspects and challenges of key-
sorted access paths, modern complex memory hierarchies and diverse charac-
teristics of its members are described first. Subsequently, natural behavior of
evolving workload types are outlined. Thereupon, fundamentals of modern
database management system (DBMS) design techniques are provided. With
respect to formulated characterizing statements, an emerging significance
in robust and Flash-leveraging key-sorted multi-version storage and index
management structures is elaborated.
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2.1. Characteristics of modern Hardware Technologies

Understanding basic concepts and characteristics of modern hardware tech-
nologies is crucial for database access method design. Execution time on hard-
ware can be simplified to processing (Tprocessing) and data access (Tdata−access)
costs. Adopting trends towards resource and memory efficiency in modern
K/V-Stores [EGA+18; Inc22; MWKM15], access paths must consider char-
acteristics of secondary storage devices. Even though, instructions in data-
intensive operations are frequently performed, access latencies to massive
amounts of data on high-capacity secondary storage are assumed to become
a dominant factor, so that:

Tdata−access ≫ Tprocessing (2.1)

Therefore, the scope of this work is focused on characteristics of the
memory hierarchy. Due to the reliance of processing and data provisioning,
a quite brief characterization of recent processing evolutions is given.

2.1.1. Highly parallelized and decentralized processing units

Over the past decades, processing power benefits from increasing clock
speeds. Applications generally profit by this trend. Latest developments in
processing units yield increased parallelism and manifold unconventional
calculation design options. Even though the scope of this thesis is not
primarily focused on optimizing processing costs, one central point can
be formulated: Data access methods require to be aware of decentralized
computing models. Multi-core central processing units (CPU) and various
possible hardware accelerator units are probably involved in modern DBMS
[BGHS19] and require to complementary operate on a consistent dataset
instance, without shrinking performance due to concurrency issues, like
excessive cache-invalidation or double buffering. Efficient data provisioning
and persistence for decentralized and parallel calculations is the purpose of
memory hierarchies on data node servers.
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2.1.2. Primary and Secondary Storage Characteristics

Components of the memory hierarchy are the bottleneck of massively data-
intensive tasks. Efficiently using clock-cycles of processing units rely on data
provisioning along these volatile primary and persistent secondary storage
devices.
Latency describes the delay in response time between components. As

a general rule, latencies, but also capacities, increase with higher distance
to a processing unit. CPU caches retrieve cache-line-sized data from main-
memory (e.g. RAM). Whenever an already persistent (mostly volatile) work-
ing copy is not present on a byte-addressable memory device, it is retrieved
by a read I/O operation from a block-addressable storage device. The other
way around, in volatile memory newly allocated data or modified working
copies are persisted on block-addressable secondary storage devices by write
I/O operations.
Traditionally, in DBMS algorithms, only two levels in memory hierarchy

are considered – volatile main-memory and and persistent disk [Gra11].
Latencies of read andwrite I/O operations form amassive access gap (compare
Section A.1). Whereas wait latencies between caches and memory is about
×102, the access gap between caches and HDD (traditional cheap mechanic
Hard Disk Drive) is about ×106. Common behavior in traditional memory
and storage media is formed in symmetric read and write latencies as well
as benefits in sequential operations.
Evolving and recently established storage technologies close the access

gap (compare Complex Memory Hierarchies in Section A.1), but also broaden
the characteristics of devices in memory hierarchies. Reflecting latencies of
solid state drives (SSD) and non-volatile memories (NVM), they naturally
fill the gap, however, their special characteristics1 must be considered:

High level of inherent parallelism. Independent or decomposed execution
of I/O operations within several structural levels of an SSD has been well

1Characteristics are exemplary taken from SSDs. A detailed technical background is given
in Section A.2.
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studied [APW+08; HJF+11; PSS+10; RZA+12; Shi17; SXX+09; WKS15].
Leveraging structural characteristics by such techniques enable much higher
parallelism and I/O-performance as has been known from HDD.
Access structures might leverage high parallelism whilst accessing data – i.e.

SSDs cope with more purposeful I/O of DBMS and K/V-Stores.

Asymmetric read and write performance. Flash mainly supports the na-
tive operations read, write and background erase. Reads perform an order of
magnitude better than writes and two orders of magnitude better than erases
[CKZ09; Got16] regarding latencies and IOPS (I/O per second). Especially
in case of random write I/O, the latency and costs alternate between cheap
sequential write and expensive erase operations [BJB09]. SSDs contain
several on-device caches for many purposes: caching of address translation
mapping tables, performing asynchronous read ahead, concealing asymmet-
ric behavior by write buffering or enabling background tasks. Generally,
operation costs depend on the internal circumstance of an SSD. High-rate
continuous I/O operations uncover asymmetric behavior in steady-state
conditions [DISK20; Got16]. As depicted in Figure 2.1b, write throughput
quickly drop as caches satiate at different utilization levels by block sizes.
In contrast, asymmetric read behavior remains constant in all block sizes
(Figure 2.1a).
Access structures leverage asymmetric I/O characteristics by minimizing write

accesses, whereas SSDs cope with increased read I/O.

Out-of-place update operation. Unlike to HDDs, in which a page at a
specific address can be physically overwritten in-place, Flash require a clean
page status before writing. Rewriting a page requires an out-of-place write
at a different clean page and an update of the address translation mapping
table. The costly erase is performed by a background garbage collection
(GC) task at a later point in time. [CKZ09; DISK20]
Access structures must avoid in-place updates to already persisted data and

replace modifications by out-of-place updates.
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Figure 2.1.: Read and write metrics of Intel DC P3600 enterprise SSD and

Samsung 850/860 Pro consumer SSD applied in the testbed.

Advantages in sequential write I/O pattern. As an effect of out-of-place
page replacement, inherent parallelism and low memory footprint hybrid-
/block-level-mapping in on-device caches, sequential write patterns can
improve performance of an SSD [MFL14]. Sequential sectors can be arranged
and distributed along independent Flash components. Random writes do not
result in sequential sectors, whereby memory footprint of mapping tables
increase and background maintenance operations, like garbage collection,
become more complex and expensive. As a general rule, "random writes
should be limited to a focused area" and "sequential writes should be limited to
a few [concurrent] partitions" [BJB09]. Figure 2.1c indicates roughly equal
very good performance for sequential and random read I/O for different
page sizes and numbers of pending I/O requests (queue depth), however,
random write performance is almost a fraction of the sequential operation
for all measurement points.
Generally, access structures must adapt sequential writes for vast majority of

payload, whereas few random writes of small meta structure data are feasible.
Contrary, read latencies roughly remain unaffected by access patterns.
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Background Garbage Collection (GC). Writing a page requires a clean
on-device target-page status. As a result, write-back operations of updated
pages are performed at a different storage location (out-of-place) and the
former page version becomes invalid. Erase operations are very expensive
but are required for space reclamation. A fundamental property in Flash
(NAND) is, that data can be read and written on page level, but require to be
deleted on superior block level. First, a victim block is determined. Second,
still valid pages in the block are written to an appropriate different block
location. Third, the victim block becomes erased. As a side effect, the write
amplification (WA) increases on device level (WA-D). [MFL14; MWKM15]
Access structures must consider GC to be valuable for larger regions. Tempo-

rary space amplification by obsolete data is negligible on secondary storage.

Limited durability and wear. Status of memory cells in pages and blocks
is switched by write and erase operations in a write-erase-cycle. Each write-
erase-cycle in a block wear out the transistor oxide layer of memory cells.
The approximate number of maximum write-erase-cycles depends on the
underlying technique, whereas 3000 cycles are common for consumer devices
and 10.000 for enterprise devices. SSDs track the number of erases for each
block. Wear-leveling methods equally distribute wear over all blocks and
consequently, unreliable blocks become discarded. [MFL14; MWKM15]
By knowledge of the maximum write-erase-cycles (Nw/e−c ycles) per block,

the absolute storage capacity of the SSD (Scapaci t y) in blocks, the modified
data by a workload (Smodi f ied) and the write amplification (WA of data
structure and on-device) the durability (D) is calculated as follows:

D =
Nw/e−c ycles × Scapaci t y

WA× Smodi f ied
(2.2)

In the denominator, the multiplication of WA and Smodi f ied defines the
wear in written blocks. Since wear is equally distributed over all blocks,
the absolute number of write-erase-cycles of the SSD is calculated by the
multiplication of Nw/e−c ycles and Scapaci t y in the numerator. Access structures
must minimize WA, since it negatively affects Flash’s durability.
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Figure 2.2.: IOPS and latency metrics of applied SSDs in the testbed for
different workload characteristics and block sizes.

I/O transfer time is majority. Accessing data on secondary storage re-
quires time for seek and transfer. Since SSDs have no electro-mechanic
components, seek time is very low, whereas, unlike to HDD, transfer time
becomes majority. Larger transfer / page sizes result in fewer I/O per second
(IOPS, compare Figure 2.2) for different access patterns.
Access structures must consider to optimize net transferred data by cheap

access structures and appropriate page sizes.
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2.1.3. Testbed Hardware Metrics and Operating System

Performance evaluation benchmarking is performed on a 64-Bit Ubuntu
16.04.7 LTS (xenial) server setup with Linux Kernel Version 4.4.0-210-generic.
Benchmarks and DBMS are compiled with GCC Version 9.4.0.
The CPU is a 4 core (8 thread hyper-threading) Intel(R) Xeon(R) CPU

E5-1620 v3 @ 3.50GHz with internal L1/L2/L3 256kB/1MB/10MB caches.
Memory is provided by 2×16GB DDR4 RAM devices (manageable up to
32GB by boot parameters). The server is equipped with a 400 GB Intel DC
P3600 PCIe enterprise SSD and a 500GB and 1TB SATA Samsung 850/860
Pro consumer SSD, whereas logging and payload perform without any inter-
ference and on different intensity-levels. Generally, write caches are disabled
for steady state, if possible. Read and write characteristics are depicted in
Figures 2.1 and 2.2 and are in accordance to outlined Flash characteristics
in Section 2.1.2.

2.2. Modern Workload Properties

In order to design, implement and evaluate a version-aware storage and
index management structure that leverages modern hardware characteristics,
several types of workloads are considered.

First, Online Transaction Processing (OLTP) represents traditional business
contextual data management use cases, executing small updates and inserts
alongside to multiple reads [TPC10].

The very opposite in characteristics of query execution is a decision support
Online Analytical Processing (OLAP) workload, whereby queries with high
degree of complexity and large volume of examined data are performed
[TPC21]. An upcoming type of workload is a mixture of OLTP and OLAP in
Hybrid Transactional and Analytical Processing (HTAP) on a huge shared
dataset instance [CFG+11; HG20; ÖTT17].
Cloud data serving workloads bring OLTP-like transaction processing

and massive amounts of data and high-rate continuous insertions together
[CST+10].

34 2 | Technical Background



Some general assumptions about modern workload properties are as
follows:

Exponential growth of data. Ongoing digital transformation and per-
sonalization of services incur rapidly growing dataset sizes [DB20; SG06].
Massive amounts of data require to be efficiently managed.

High-rate continuous insertion / modification. Evolving types of applica-
tions and data sources with varying lifespan incur frequent data modification.
Furthermore, availability and quality of services require stable steady state
throughput (elasticity) of high-rate continuous insertion and modification
workloads [CST+10].

Application of HTAP workloads. Integration of data relying on various
isolated solutions lead to inflexible and complex infrastructure landscapes.
Data-centric infrastructures, whereby applications and services are designed
and built upon a core of commonly applied and maintained dataset instance
[DB20; HG20; ÖTT17; RVGP20], enable cheap administration and flexible
evolvability.

2.2.1. Application of standardized Database Benchmarks

Introduced workload property assumptions include high-rate continuous
insertions and modifications with simultaneous analytical querying on mas-
sive amounts of data, which potentially are performed on a shared dataset
instance. Properties are well represented in HTAP as well as cloud serving
benchmarks.
It is common practice to apply a best concurring standardized database

benchmark. Popular benchmarks are designed by the Transaction Processing
Performance Council (TPC)1.

1’The TPC is a non-profit corporation focused on developing data-centric benchmark standards
and disseminating objective, verifiable data to the industry.’ [TPC22]
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The TPC-C OLTP benchmark is very common in database benchmarking.
OLTP mainly performs transactions of multiple reads as well as small updates
and inserts [TPC10] in a business contextual database schema with multiple
indexes (compare Figure 2.3 TPC-C). The open source DBT-2 [WW21]
implementation has been applied as business contextual OLTP benchmark
in this thesis.

Offside the commonness of TPC-C as OLTP benchmark, however, there is
a significant reason for its application. The authors of [CFG+11] recognized
the lack of meaningful HTAP workloads and developed the CH-Benchmark
upon TPC-C (TPC OLTP-workload) and TPC-H (TPC OLAP-workload). As
depicted in Figure 2.3, CH-Benchmark operates on a commonly shared
dataset instance, yielding special HTAP characteristics. This benchmark is
integrated in the OLTP-Bench framework [Pav+21].
As an alternative for high-rate continuous insertion workload on K/V-

Stores, the Yahoo! Cloud Serving Benchmark (YCSB) [CST+10] is applied in
[RKD21]. YCSB consist of different key-value style workloads for cloud-based
applications. In the core workload package, several mixtures of key-value
put-, get- and scan-operations for different data and request distributions as

Figure 2.3.: Schema of the CH-Benchmark [PWM+14] adopts TPC-C and
TPC-H as an HTAP workload representative.
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well as sizes are supported. Many parameters are adjustable for simulation
of arbitrary use-cases.

2.3. Fundamental Design Decisions in Multi-Version Database
Management Systems

Multi-Version Database Management Systems (in this thesis simply denoted
as DBMS) as well as K/V-Stores are the backbone of data-intensive appli-
cations. By this are meant all DBMS, which implement the Multi-Version
Concurrency Control (MVCC) protocol and apply Snapshot Isolation (SI).
Well-known MVCC is one of the most popular transaction management
schemes with many representatives: Oracle [Ora21a], Microsoft SQL Server
[Mic21b], HyPer [KN11], SAP HANA [FML+12], Google Cloud Spanner
[BBB+17], MongoDB WiredTiger [Mon21], NuoDB [Nuo21], PostgreSQL
[Pos21] or MySQL-InnoDB [Ora21c], just to name a few.

In Figure 2.4, modules of a DBMS are schematically depicted. Architectures
in K/V-Stores vary and potentially enable less features and modules. Users
interact with the DBMS by an user interface according to which the user
request is parsed in an execution plan. Thereupon, the query is executed by
accessing data with the best matching access method and perhaps performing
further operations. A required set of transaction properties is guaranteed by
the concurrency control module, namely MVCC. Accessible data in massively
data-intensive operations is likely to be located on secondary storage devices,
e.g. on Flash SSDs. Access methods request the byte-accessible data from a
RAM-located Buffer Manager. If the data is not represented in the Buffer
Manager, it is read from block-addressable secondary storage. In order to
guarantee maximum memory footprint, buffers require to be evicted from
cache by a replacement policy. Unchanged buffers can be discarded, modified
ones require to be written to secondary storage media by logic of the Storage
Manager. Data corruption is avoided by logging of critical operations.

Scope of this thesis is the storage and index management represented in
Access Methods and accompanying modules Buffer and Storage Manager
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Figure 2.4.: Regular DBMS Architecture (compare [RG03]). Scope of this
thesis is in dashed lines, whereby critical interfering modules
are shaded in darker and main contributions in brighter gray.

with focus on properties of interlinked MVCC and beneficial I/O to secondary
storage devices. Query Evaluation Engine as well as Logging and Recovery
modules are affected as well, though are not treated in detail. Therefore, a
detailed overview of MVCC designs is given.

2.3.1. Opportunities and Version Management in Multi-Version
Concurrency Control

Multi-Version Concurrency Control (MVCC) and Snapshot Isolation (SI) are
well-known mechanisms in DBMS. However, fundamentals of MVCC with
SI are essential prerequisites in this thesis, therefore some background is
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provided.
Parallel execution of transactions is a major scaling factor of DBMS,

whereas throughput and response times are improved, however, interleaving
concurrent transactions can cause non-tolerable data anomalies to an applica-
tion. Several well-known version-oblivious concurrency control mechanisms
enable integrity, nevertheless typically reading and writing transactions are
mutually blocking, i.e. readers require to wait for completion of a writer and
writers wait for lock releases of readers. In other words, this means in an
HTAP scenario that OLAP queries on update-intensive data never complete
and OLTP modifications are not able to proceed. MVCC with SI overcome
these issues.
MVCC creates a new version of a data tuple on each update. As a result,

readers do not block writers anymore, because read locks do not oblique
writers to wait for release. In MVCC, it is very common to leverage its
versioning behavior in Snapshot Isolation (SI). SI let transactions operate
on a consistent (logical) state (snapshot) of the database, e.g. the latest
committed change to a tuple at begin of the transaction, respectively its own
modification, is visible. Moreover, SI prevents concurrent transactions from
updating the same tuple. Due to the fact, that every transaction knows its
snapshot, writers do not block readers anymore. MVCC with SI enable high
concurrency and isolation level – even in HTAP workloads with long-lasting

Figure 2.5.: Logical View on Tuple Versions in MVCC with creation and
invalidation timestamps [RVGP20]. Physical order typically
differ.
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analytical queries and frequent updates. Therefore, it is a good choice to
leverage parallelism in processing units and Flash storage.

From a logical point of view, maintenance of tuple versions bases on some
prerequisites. Each tuple consists of at least one tuple version record. By this
means, several tuple version records of one logical tuple exist in a version
chain and each of them is valid for a different period in time. Validity of
a tuple version, strictly speaking its visibility to a specific transaction snap-
shot, is determined by timestamps for creation (tcreation) and invalidation
(t inval idation)1. A visibility check is responsible to return the valid tuple ver-
sion to a transaction snapshot, whereby the version chain is processed and
the timestamps are evaluated. In order to process the version chain, an
entry point to the chain must be known, i.e. a specific tuple version record,
and each tuple version requires to know its predecessor or successor. Ver-
sion chains preferably have the structure of a latch-free singly linked list
[WAL+17]. Tuple version records become obsolete, if it is no more visible to
any active transaction snapshot, and is removed by garbage collection (GC).
Figure 2.5 depicts a logical view on a tuple version chain. Tuple t was

changed by transactions (T Xu0, T Xu1, T Xu2, T Xu3 several times by modify-
ing the attribute a to 7, 3,1, 9. Each transaction maintains timestamps for
creation and appropriate invalidation of its predecessor at the logical tuple
version. Tuple y depicts a tuple version, which is not a member of the
mentioned tuple version chain of tuple t. The depicted creation of new tuple
version records is in accordance to out-of-place update characteristics of Flash
secondary storage devices.
Considering creation of a new version each time a tuple is updated in

MVCC, this might happen in different ways – detailedly outlined in the
following sections. Several DBMS implement variations of the version man-
agement scheme, whereby the design decisions specify its capabilities and
applicability. [WAL+17] evaluated different designs from a main-memory

1Transaction timestamps constitute a logical sequence of executed transactions. In addition,
DBMS possibly maintain further information, e.g. a sequence of command numbers per
transaction in PostgreSQL [Pos21], in order to avoid race conditions. In this thesis, transaction
timestamps are meant to consider command numbers in the logical sequence as well.
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point of view. Building up on these insights, different MVCC designs require
to be evaluated in this thesis with respect to characteristics of secondary
storage devices in a complex memory hierarchy [RVGP20].

2.3.1.1. Version Storage

A logical tuple corresponds to one or more tuple versions, which form a
singly linked list of records in a version chain (Figure 2.5). There are two
possible physical representations of a tuple version (Figure 2.6): physically
materialized or delta-record-based. The former implies that each tuple version
record is entirely stored physically materialized. By this means, each tuple
version record contains all valid information of a logical tuple in a specific
period of time. Whenever a version record is valid to a transaction snapshot,
further records are not required to restore the logical tuple. The latter
implies that each modification of a logical tuple results in a delta record,
which indicates the difference to another tuple version (e.g. applied in
BW-Tree [LLS13; WPL+18]). Delta records are linked and require to be
retrieved on demand by the DBMS storage manager for tuple reconstruction.
Delta-record-based system designs typically store a single version record
(oldest or newest – depends on version ordering, compare Section 2.3.1.2)
in the main store. Delta records are located in a separate storage location,
e.g. the undo log (applied in InnoDB [Ora21c]) or a temporary version
record store (applied as option in MS SQL Server [Mic21b]). By this means,
only the version record in the main store can be directly accessed, other

Tuple t 
version t.v3

t.v3 9 TXu3 -V3

Tuple t 
version t.v2

t.v2 1 TXu2 TXu3V2

y.vn

...

Physically Materialized Storage Delta-Record Storage
latest versiont.v3 9 TXu3 -V3

Delta storage

t.v2 TXu2V2

UNDO log

LogLSN TXU2

Version Pool/Temp Storage

t.v2 ... TXu2 TXu3

t.v0

...

...

Figure 2.6.: Version Storage Alternatives [RVGP20]
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version records require to retrieve the required information by processing
the main version record and all intermediate delta records up to the valid
tuple version is fully reconstructed.
Both physical representation models are capable to perform modifica-

tions in-place or out-of-place. The former creates a copy (or delta) of the
most recent valid tuple version representation at some other location and
maintains version chain linkage information, transaction timestamps and
desired modifications to the newer version in-place. The latter let the most
recent valid tuple version representation unchanged and creates a tuple
version record (or delta record) with desired modifications at some other
location and maintains version chain linkage information and transaction
timestamps.
Considering the characteristics of modern Flash storage (outlined in Sec-

tion 2.1.2), physically materialized version record storage and out-of-place
update scheme are preferable, due to lower RA, WA and tuple reconstruction
costs. Delta records tend to consume less space than materialized tuple
versions, especially in case of large tuple information sizes and small modifi-
cations, but require additional processing and all predecessors or successors
for tuple reconstruction.

2.3.1.2. Version Ordering

Tuple version records of a logical tuple form a tuple version chain. Its
organization of a singly linked list enables lock-free modifications. As a

Newer 
version t.v3 ... TXu3 -

Older 
Version t.v2 ... TXu2 TXu3

New-to-Old Ordering Old-to-New Ordering

New-to-old Reference

Newer 
versiont.v3 ... TXu3 -

Older 
Versiont.v2 ... TXu2 TXu3

Old-to-New Reference

Figure 2.7.: Version Ordering Alternatives [RVGP20]

42 2 | Technical Background



result, there is one entry point to the tuple version chain. Every tuple version
record is accessible by successively processing the tuple version chain –
beginning with the entry point. Internal ordering in this singly linked list
can be organized from old-to-new or new-to-old (depicted in Figure 2.7). The
former organization enable a static reference to its entry point. A predecessor
require to know its successor, wherefore references in the predecessor must
be modified. Adding a new tuple version record requires to process the
whole tuple version chain beginning from the entry point and append it
to the end of the list. The latter organization model, namely new-to-old,
prepends newly inserted tuple version records to the entry point of the tuple
version chain, whereas it becomes the new entry point. The new record
references the old entry point, which requires no modifications.

Treading mixed workload characteristics like HTAP, both version ordering
schemes favor different types of queries. Old-to-new ordering scheme tend
to favor long-lasting OLAP queries, precisely because visible tuple version
records to its transaction snapshot are located near the entry point. Con-
versely, recently inserted tuple version records are much faster accessible in
a new-to-old ordering scheme.
Considering the characteristics of modern Flash storage (outlined in Sec-

tion 2.1.2]), new-to-old ordering scheme makes a leading edge, due to its
version chain maintenance. Predecessor version records need not to update
linkage information, contributing to reduce WA. A desirable append-only
behavior is the case if combining out-of-place physically materialized tuple
version records (compare Section 2.3.1.1) and outlined new-to-old ordering.
Other combinations require in-place updates.

2.3.1.3. Version Invalidation Model

A tuple version is said to be invalidated whenever a successor version record
exists. Two different invalidation models are considered [Got16] (Figure
2.8). Two-point invalidation is a widespread model, where the creation
timestamp of the successor version is also placed as invalidation timestamp on
the predecessor. By evaluation of a single tuple version record, its visibility to
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Figure 2.8.: Version Invalidation Alternatives [RVGP20]

a transaction snapshot can be determined. On the other hand, the existence
of a successor version itself implicitly invalidates its predecessor. One-point
invalidation [GPHB17] leverages this point by maintaining only the creation
timestamp at each tuple version record and implicit invalidation. Major
benefit of this technique is the avoidance of in-place invalidation – what is
actually a modification – at predecessors of tuple version records. However,
evaluating the visibility of a tuple version record to a transaction snapshot
probably requires successor information. One-point invalidation matches
well previously outlined new-to-old ordering scheme, since all successors
and respective creation timestamps are processed as part of the tuple version
record discovery.

With regards to characteristics of modern Flash storage (outlined in Section
2.1.2), only one-point invalidation is capable to avoid in-place updates and
therefore enables beneficial append-only behavior with low WA. Anyways,
required successor versions are processed in case of new-to-old ordering
scheme (compare Section 2.3.1.2), and therefore it is not considered to be
any drawback.

2.3.1.4. Garbage Collection

Modifications to a tuple result in the creation of a new tuple versions. Tuple
version records become obsolete, if they are no longer visible to any of the
active transaction snapshots.
Obsolete tuple version records require to be garbage collected (GC) for
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space reclamation and probably performance gains. However, GC reduces
concurrency as some form of locking is required, causes performance spikes
as it interferes with foreground I/O and increases WA on secondary storage
devices. GC can be performed on transaction, tuple and index levels [LLS13;
LSP+16; WAL+17; WPL+18].
In order to keep GC costs low, operations require to be worth it and

should not break with append-only behavior and minimizing WA principles
(compare Section 2.1.2). Furthermore, independence of access structures
– i.e. base tables, additional access paths and potential helper structures –
reduces locking effort and bouncing across structures.

2.3.1.5. Discussion

Different possible design decisions in MVCC are introduced and theoreti-
cally evaluated on aspects of modern secondary storage characteristics. As
depicted in Table 2.1, MVCC designs can be combined to an optimal set for
base table storage on Flash. An append-only new-to-old ordered storage
manager with one-point invalidation for base tables is Snapshot Isolation
Append Storage (SIAS) [Got16; GPHB17] (outlined in Section 3.1.5.1). SIAS
exhibits in a write-heavy transactional workload 97% reduced write I/O and
an improved throughput of 30% compared to its baseline MVCC with SI
in PostgeSQL [GPHB17]. However, additional access paths become more
complex as outlined in Section 2.4.

Ideal MVCC Design for Storage, but appropriate for Additional Access Paths?

Version Storage

• Physically Materialized
Storage

• Out-of-Place insertion of
new Tuple Version Records

Version Ordering

• New-to-Old Version Chain 
Linkage

• Rolling Entry Point of 
Version Chain

Invalidation Model

• One-Point Invalidation

• Successor Version indicates
Invalidation (with
Timestamp)

Garbage Collection

• Space Reclaimation / 
Performance Improvement

• Large Segements
of obsolete Records

Table 2.1.: Optimal MVCC design for characteristics of Flash storage devices.
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2.3.2. Estimated Base Table Cost Model

In the previous section a strict append-only heap organization is outlined,
which leverages characteristics of Flash (compare Section 2.1.2). Major
benefits of this base table organization are the minimal insert, update as well
as delete costs (iSIAS) and yielding WASIAS per page of strict append-only
storage.

WASIAS = 1 (2.3)

Since records are invalidated out-of-place, all modifying operations have the
processing costs iSIAS = O ( 1 ) practically no read I/O (except for potential
entry point identification) and optimal write I/O costs (WI/O) per operation
(iI/OSIAS

)

iI/OSIAS
=WI/O ×

BN+R

N + R
(2.4)

whereby N comprise the set of logical tuples, R the totality of logical replace-
ments and BN+R the number of required pages (buffers) to store all version
records (N + R).

Search costs (sSIAS), however, in heaps are muchmore expensive. Generally,
search costs are declared in average as s = O ( N/2 ), since the required
record might be located anywhere in the dataset. However, version records
are invalidated out-of-place, whereas principally the entire dataset must be
scanned to identify the required tuple version record, hence sSIAS = O (N+R)
and yielding read I/O costs (RI/O) per search as well as scan (sI/OSIAS

) are
defined as follows:

sI/OSIAS
= RI/O × BN+R × (1− pBc) , pBc ≃ 0 (2.5)

Due to assumed data-intensive workloads and trends towards resource and
memory efficiency (compare Sections 2.1, 2.2), a cache probability is as-
sumed to be pBc ≃ 0, whereas each required page BN+R cause RI/O. By
this means, cache probability per iterated tuple version (including N + R) is
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probably better in sequential processing and depends on the version records
per page N+R

BN+R
.

2.4. Additional Access Paths in Multi-Version DBMS

DBMS objects organize data in tuple records and arrange them for optimal
support of one or a few operations [RG03]. Different organization models,
e.g. heap, sorted or hashed, are favorable for a set of operations, due to
different cost models. A preferable base table organization for Flash storage
characteristics might be a strict append-only heap. Thus, insertion operations
in the base table heap are very cheap – as tuple records are collected in
main-memory pages and get evicted once (as applied in SIAS [Got16]), how-
ever, equality and range search operations become very expensive (compare
Section 2.3.2). As a result, equality search costs increase to a scan of the whole
multi-versioned dataset, as its size grows by the number of version records and
the necessity of a visibility check.

A fully attribute-key-sorted organization model probably improve perfor-
mance of equality and range search operations, but could also break the
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Figure 2.9.: Version / Index Record Referencing [RVGP20]

2.4 | Additional Access Paths in Multi-Version DBMS 47



desired append-only behavior. Furthermore, any equality or range search
on a different attribute of the tuple result in a scan of the whole dataset.
DBMS provide the option to create additional access paths (alias indexes) to
base table primary data storage. Application of the auxiliary structures is
manyfold, e.g. support of uniqueness constraint checks, primary keys and
foreign keys or potentially fast look-ups on any indexed set of attributes
(secondary index). Index structures apply a search optimized hashed or
sorted organization model, however, modifications tend to become expen-
sive, due to maintenance costs and resulting unfavorable random write I/O
pattern to secondary storage devices. Sorted indexes allow equality and range
search with low RA1 and avoidance of expensive downstream sort operations –
unlike to hash indexes which allow only equality search, wherefore they are
not suitable for HTAP scans and not in scope of this thesis.
Index records regularly consist of a pair of search key value(s) and a

one data tuple reference2 [RG03], whereas they are version-oblivious, due
to missing transaction timestamp information (compare Figure 2.9). The
compact representation allows cheap search and maintenance costs, however,
there is no guarantee for improved throughput of the DBMS, as any applied
index requires maintenance. Administrators must evaluate the benefit of
an index. Based on query attributes and statistics like data selectivity, the
optimizer of the query evaluation engine (compare DBMS architecture in
Figure 2.4) can decide to use the additional access path via index.
Since the index record is located fast, its referenced data tuple location

in the base table is also known and can be accessed in a following step. A
very classical way of data tuple referencing in an index record is a physical
reference by record id. In the context of MVCC, several tuple version records
of one logical data tuple exist. Principally, each tuple version record is
required to be indexed, albeit it is sufficient for reliability to locate each
matching tuple version record via the version chain. A rolling entry point in
the new-to-old ordered version chain (as referred in Table 2.1) requires an

1Comparing linear heap table search costs of Equation 2.5 in Section 2.3.2 with exemplary
logarithmic B+-Tree costs of Equation 3.4 in Section 3.1.1.

2Reference organization variants, e.g. lists of data tuple references, are not considered.
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updated physical reference for each modification – i.e. respectively in case
of appended successor versions, physical record movement or performed
garbage collection. Modifications to indexed attribute values become much
more complex, as a new index record is inserted and the entry point reference
of the predecessor index record requires to be fixed.
In order to avoid expensive index maintenance operations, some DBMS

[DFI+13; Pos21] sacrifice base table characteristics from Table 2.1 and
employ an old-to-new version ordering with in-place updates, in which
case the entry point remains stable. A second way is to implement an
indirection layer between index and base table. Each data tuple record is
augmented with an unique tuple identifier (Virtual Tuple Identifier – VID),
which is stored in the index record reference pointer. An index operation
resolves the VID via usage of a mapping table in order to locate the physical
entry point of a data tuple (as depicted in Figure 2.9). An indirection
layer is able to reduce index maintenance costs, but requires additional
processing and recover-intensive main-memory data structures. With respect
to decentralized computing models in modern hardware, it is challenging
to maintain an indirection layer. Furthermore, in a key-sorted structure,
modifications to an indexed attribute are not treated by the indirection
layer and require an index update – resulting in expensive maintenance and
random write I/O patterns.
With current indexing techniques, there is no convenient way to simulta-

neously obtain a beneficial append-only sequential write pattern for index
structures and base table data (as listed in Table 2.1) on secondary storage
devices.

2.4.1. Version-oblivious Index Equality and Range Search

Indexes in modernmulti-version DBMS are version-oblivious by means of missing
transaction timestamp (depicted in Figure 2.9). This lack of information
results in serious consequences and can negate effectiveness of additional
access paths, due to lowered selectivity and read amplification (RA) for visibility
checking. With regards to Figure 2.10, a small scenario is given.
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Figure 2.10.: Index search in Multi-Version DBMS and resulting Read Am-
plification (RA) on Base Tables [RVGP20]

In Figure 2.10- A (settled up on example in Figure 2.5), a logical view
on a base table R is given. Attribute a of tuple t is modified several times
by different transactions (T Xu0 - T Xu3), resulting in physically materialized
version records t.v0 - t.v3 with attribute value 7,3, 1 and 9. An additional
tuple y is inserted for clarification of physically materialized storage. Figure
2.10- B depicts an unclustered tuple version storage on random base table
pages of a heap structure, since tuple versions are independent record entities.
Previously, a key-sorted B+-Tree [BM70] secondary index (outlined in Section
3.1.1) was built upon the attribute a (Figure 2.10- C ). Its index records
reference the tuple version records in the unclustered heap. Figure 2.10- D
depicts a long-lasting analytical HTAP transaction T XR, which started before
T Xu1, T Xu2 and T Xu3. The execution planner and optimizer of the DBMS
query evaluation engine decide to use the index from Figure 2.10- C . In
order to find all tuple version records, which are visible to T XR, the index
is traversed and the data tuple reference is gathered for each matching
index record. Referencing tuple version records are fetched from their
unclustered physical storage location (Figure 2.10- B ) and returned to the
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MVCC visibility check in Figure 2.10- E . A visibility check forces massive read
amplification (RA) in order to gather required tuple version record timestamps
for snapshot calculations.

2.5. Improving Index Search Operation in Multi-Version DBMS

Optimal MVCC designs for base tables (as listed in Table 2.1) efficiently
leverage characteristics of secondary storage devices, especially in case of
massive data amounts, which are generated by modern workloads, and
relatively sparse main-memory. DBMS apply several additional access paths
for various purposes. Indexes require frequent maintenance for correctness,
however, traditional approaches neglect ideal storage characteristics and
result in ineffectiveness. This behavior bases on following indications:

Expensive strictly Key-Sorted Organization. As this index record organi-
zation enable fast search operations, its maintenance result in random write
I/O patterns and high write amplification (WA).

Reference to Tuple Version Records. Rolling entry points to version chains
amplify maintenance costs.

Reduced Selectivity. Downstream visibility checks cascade in high read
amplification (RA) as tuple record versions are located along multiple base
table pages.
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Figure 2.11.: Correlation of Version Chain Length and Response Times.
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pally unnecessary base table page fetches B .

Additional access paths should allow a key-sorted structure to leverage
characteristics of modern storage devices whereby a sequential write pattern
with low WA must be enabled. Once an indexing structure facilitates these
requirement, it is powerful enough to maintain amplified emergence of
tuple version records without a need for layers of indirection, which break
optimal MVCC design characteristics or are not suitable for decentralized
computing models. Since every tuple version record is physically referenced
in the powerful index structure, the only need for processing version chains
in base tables is the visibility check – causing massive RA due to sequential
processing alongside large tuple record sizes and relative small required
timestamp information. Figure 2.11 depicts the linear complexity between
version chain length and response time when using a B+-Tree index in an
HTAP scenario. Contrarily, an increased RA in the indexing structure is
negligible as required information is space-efficiently packed and asymmetry
in storage devices allow fast and parallel read performance. As part of the
search operation, a version-aware index structure immediately determines
matching tuple versions, which are visible to a transaction snapshot, by a
highly selective index-only visibility check (as depicted in Figure 2.12).
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In Chapter 2, the relevance for high-performance storage and index manage-
ment structures is exposed. Workload characteristics of modern applications
lead to high transactional pressure and raising amounts in data volume
to DBMS. MVCC enables high data quality in in HTAP query processing.
Furthermore, MVCC designs (as listed in Table 2.1) leverage storage char-
acteristics of Flash-based devices. However, index structures for additional
access paths must resist amplified maintenance effort, as it is desirable to
index any potentially visible tuple version. In order to obtain a minimal
read amplification (RA) on largely sized and randomly spread records in
base tables, an ideal index structure cheaply determines the tuple version
record, which is visible to a transaction snapshot – i.e. RA on base tables
is potentially reduced up to a tuple’s version chain length by similar index
search effort.

In this chapter, a brief overview of the ubiquitous state-of-the-art B+-Tree
indexing structure is given. Furthermore, current approaches are introduced,
which partially tackle required capabilities. In addition, an overview of
the designated DBMS and K/V-Store storage structures Snapshot Isolation
Append Storage (SIAS) [Got16; GPHB17] and WiredTiger [Mon21] is given.
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It is shown, that the structure of Partitioned B-Trees exhibit potentially best
properties to fulfill all requirements in indexing massive amounts of tuple
version records on modern hardware.

3.1. Storage and auxiliary Index Management Structures

Storage and index management structures allocate information in records,
which are located in pages / buffers (compare [LHKN18]). These levels
of abstraction unify block-based access on secondary storage media via
buffer managers among other reasons. Levels of abstractions are equal for
storage as well as index management structures, contained information in
the records differ. Whereas storage management structures in this thesis
are meant for straight representation of tuple versions in records, index
management structures apply an efficient additional access path to desired
tuple version records in storage structures. Hence, major differentiation of
both structures is in their application.

Most key-sorted structures are based on the ubiquitous B+-Tree, which is
applied as state-of-the-art indexing structure in many DBMS. Hence, a brief
overview is given in the following.

3.1.1. Ubiquitous B+-Tree

B+-Trees are well-known and the most common indexing structure in DBMS.
Several structures involve aspects or are fully built upon them, including the
applied basic structure in this thesis (Partitioned BTrees [Gra03], compare
Section 3.1.4), whereas a brief overview is given. They enable several
modification operations on data; i.e. insert, update and delete; as well as
efficient data retrieval in equality and range search, due a preserved native
sort order in a balanced tree structure with costs, which are based on their
logarithmic height by high fan-out index nodes [BM70; Gra11].

B+-Trees represent a balanced tree structure, by means that each traversal
operation pass through an equal distance of nodes, i.e. they ensure a robust
performance by the maximum height h of a tree. The size of a node can
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Figure 3.1.: Schematic representation of a B+-Tree (compare [BM70;
Gra11]).

vary, generally it is a multiple of the applied transfer and storage size. The
structure consists of different types of nodes. With regards to Figure 3.1,
inner nodes C including the root A apply reference pointers B in order to
indicate several child nodes (e.g. C is the child of A and D is the child of
C ). The actual payload is located in leaf nodes D 1. Nodes possibly contain
sibling pointers, whereas each level in the tree is comparable to a doubly
linked list, however, it is not a requirement (e.g. leaves D maintain sibling
pointers, inner nodes C do not). The structure of each node is very similar
as depicted in Figure 3.1 E . Nodes probably maintain a set of meta data;
e.g. size, number of records, reference counters; perhaps sibling pointers
(left and right end of the node) and some kind of alpha-numeric sorted
records F . Nodes contain some blank space G , which is typically up to
half of its capacity. Since records are sorted within a node, binary search
enables efficient look-up. Records exhibit separator key characteristics in

1[BM70] considered the basic B-Tree to locate payload records also in inner nodes,
however, nowadays, it is common practice to locate all of them in leaf nodes [Com79]. B-Tree
and B+-Tree became synonymous terms.
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inner nodes. A child node of a separator key contains only records, with
keys similar or greater than itself, but smaller than the next separator key
in the node. Leaves contain tuple or index records of pattern {ke y, value}1,
based on their application. A key consist of one or a set of attributes (e.g.
key k = {at t r1, at t r2, . . . , at t rn}), which are alpha-numerically sorted with
successive relevance. Therefore, a B+-Tree is able to efficiently search for a
set of search key values of a pattern {at t r1, at t r2} or {at t r1}, though not
only for {at t r2}. If its application is data tuple storage, the value contains a
set of attributes, which are not part of the sort order, otherwise in case of
indexing, a value references the tuple record id (or other reference type via
indirection layer as outlined in Section 2.4) of the indexed base table tuple
record. In order to provide a cost model, following B+-Tree base operations
are considered:

Equality Search. The B+-Tree gets traversed from the only entry point
(root A ) to a leaf node D . Thereby, the path is followed alongside reference
pointers, level by level. Child nodes are selected by binary searching a
search key in a parent node. An exact match of an index record key in a leaf
node indicates a positive result of the equality search and the record value
is returned. There could be quite a few matching equal search key index
records.

Range Search. A search interval is defined by a lower and upper key bound.
The lower search key is processed as defined in the equality search operation.
Index records are processed inside the sorted set in a leaf node and alongside
several leaves by following the sibling pointers, while the index record keys
match the search interval. Values are processed and returned in the sort
order of the tree.

Sorted Insert. An equality search operation is performed with the insert
record key. Additional functionality like uniqueness constraints are cheaply

1Other record value organization variants, e.g. {ke y, value-l ist}, are not considered.
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examined as part of the equality search. The insert record is placed in the
designated sorted leaf node. Thereby, existing index records are relocated to
fulfill the sort order. Therefore, the blank space G is utilized. Overflowing
nodes require additional maintenance – i.e. the node gets split. Half of
the records is moved to the new node. The new node is propagated to the
parent node. Thereby, it is possible to cause an overflow in the parent node.
Modifications require to be protected from side effects, e.g. by applying page
locks.

Value Update. Updates to index records, which only affect the value are
performed in-place. Therefore, an equality search operation is performed.
The value of the equal match index record gets changed. Side effects require
to be considered and avoided by locking or indirection layers, as inconsis-
tencies require to be avoided. Updates to search key values result in a costly
multiphase deletion of the old record and an insertion of the updated index
record.

Record Delete. An equality search operation is performed with the dele-
tion record key. The equal matching index record gets removed from its
location in the leaf node. Existing index records become relocated in order
to fulfill the sort order. As the blank space G exceeds a certain threshold,
e.g. half of the node size, nodes underflow and become merged and rebal-
anced. Correctness of separator keys in parent nodes must be guaranteed.
Modifications require to be protected from side effects.

With focus on I/O latencies, costs of considered base operations are derived
from following model.

Cost Model. Basic operations in B+-Trees are subjecting a logarithmic
complexity as traversal operation costs depend on their maximum height
hBT . Height of the tree depends on the average fan-out F of inner nodes
and the number of required leaf nodes LN , which store a number of index
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records N . Required nodes are affected by the fill factor f ( fi fill factor of
inner nodes, fl fill factor of leaves), which is the ratio between used and
blank space. Hence, it is valid for B+-Trees exceeding capacity of one leaf
node, that (compare [Gra11]):

hBT = ⌈logF× fi

LN

fl
⌉ + 1 , F ̸= 1 , LN > 1 , fi , fl ∈ [0.5;1] (3.1)

A common cost model for equality search in B+-Trees is defined as follows:

sBT ≈ log2 N (3.2)

This cost model focus on processing costs, if binary search is assumed.
Considering hBT of Equation 3.1, this model is expanded to binary search
costs in inner nodes and one leaf node (compare [Gra11]):

sBT = ⌈logF× fi

LN

fl
⌉ × log2 (F × fi) + log2 (

N
LN × fl

) (3.3)

With reference to Equation 2.1, major costs stem from data access on sec-
ondary storage devices. Replacing negligible binary search costs log2 {records}
with the I/O costs for reading a node, the cost model is a function of read
I/O RI/O and the height hBT of a B+-Tree. Regarding the caching probability
for inner nodes pic and leaves plc , read I/O can be reduced:

sI/OBT
≈ RI/O × (⌈logF× fi

LN

fl
⌉ × (1 − pic) + (1 − plc)) , pic ≫ plc (3.4)

It is more likely for inner nodes to be located in main-memory cache, as buffer
managers would prefer more often used nodes. Inner nodes get frequently
accessed as part of the traversal operation. Blank space G effectively reduces
the tree fan-out, due to decreasing fill factor fi , as well as increases necessary
leaf nodes LN by an average fill factor – and effectively influences the space
amplification and search performance, since less data is cached per node and
pic shrinks. However, blank space is beneficial for inserts, since maintenance
operations such as node splits are reduced. Any modified node M Pmod is
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asynchronously evicted and written from main-memory to secondary storage
device at some point in time. Thereby, an insertion causes at least one write
I/O WI/O

1, however, due to escalating node splits up to 2×h+ 1 are possible,
but unlikely.

iI/OBT
≈ sI/OBT

+ WI/O ×M Pmod , M Pmod ∈ {1, 3, . . . , 2×h+ 1} (3.5)

Deletions behave comparable to insertions, as underflowing nodes cause
merges. In-place value updates do not cause maintenance operations, thus
M Pmod is equal to 1. Range search costs are equal to search costs, but require
successive reads of leaves alongside sibling pointers.
Assuming massive amounts of data and high rate continuous insertion

workloads, it is most likely that only one modification (’-1’ in Equation 3.6)
is buffered in main-memory until a leaf node is evicted. Vast majority of
a node’s comprised records ( N

LN× fl
) is unchanged, though gets rewritten.

Hence, average write amplification ’WA’ of a modified node is:

WA ≈
N

LN × fl
− 1 (3.6)

Suitability to Flash Characteristics. Basic B+-Trees are not capable of
leveraging modern storage hardware characteristics. First, in order to keep-
ing up a sorted dataset, B+-Trees perform updates in-place. Randomly
modified nodes become asynchronously evicted from buffer management,
whereby changes are persisted by rewriting the whole node. On Flash,
pages become randomly invalidated and rewritten out-of-place. Second,
modifications are manyfold, as reference and sibling pointers, node splits
and merges as well as the payload result in altered nodes. Third, marginal
modifications require to write one or several whole nodes – resulting in very
high WA. Fourth, general average fill factors of approximately 0.67 [RG03] to
0.7 [Gra11] are common, whereby WA is amplified. Last, even if successive
logarithmic search effort is very cheap, parallelism is not leveraged.

1The probability of multiple modifications per node is ignored, since low ratio in
main-memory buffer caches and massive amounts of data makes this case very unlikely –
except for serial insertions.
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Multi-Version Capabilities. Multi-Version capabilities require transaction
timestamps for performing visibility checks. Therefore, a basic B+-Tree needs
to maintain creation and invalidation timestamps for each index record –
ultimately resulting in amplified in-place updates, increased record sizes
and reduced fan-out. Moreover, current and obsolete data is intermingled,
wherefore search performance shrinks. A very common practice is to return
a set of candidates whereupon visibility is checked on tuple version records
in base tables.

3.1.2. Structures with Multi-Version Capabilities

Several searchable structures tackled the capability of multi-version stor-
age and index management [MTT00; ST99]. Applications might maintain
different tuple versions in order to perform MVCC or provide constant snap-
shots for time travel querying. Query predicates and snapshot information
constitute different dimensions in search key attribute values, transaction
timestamps as well as probably additional application defined temporal di-
mensions. Well-known representatives are Multi-Version B-Tree [BGO+96],
Time-Split B-Tree [LS90], MV-IDX [GGH+14] or Bi-Temporal Timeline Index
[KFM+15], just to name a few. These structures differ in maintenance
effort and characteristics, space amplification (SA), searchability of raised
dimensions, linkage of related version records as well as general applicability
[RVP17a].

Bi-Temporal Timeline Index [KFM+15] enables multi-version capabilities
very well in a linearly growing log-based append-only approach of events
(activation and invalidation) over transaction time, which are mapped to
versions. Checkpoints with visibility mapping information counteract linear
growth in effort. Similarly, several application defined temporal dimensions
are well covered, whereas its tasks are efficiently met. This approach par-
ticipates well in column oriented main-memory stores, but there is a lack
of cache efficient views on queried attributes in row oriented stores. More-
over, diversity of applied structures and linear reconstruction costs limit its
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applicability in a general case with complex memory hierarchies.

Multi-Version B-Tree [BGO+96] is an acyclic graph of nodes, comprising
tuple versions with validation and invalidation timestamps, hence, one-point
invalidation is not feasible. Mutable nodes contain the most recent versions
of tuples. Overflowing nodes become immutable but still indexed by search
key and temporal dimensions. Its still valid contents are copied in newly
created mutable sibling node, which is conditionally split (still overflow) or
merged (underflow) in search key dimension. Even if search key as well as
temporal dimension are searchable and nodes become immutable, a probably
significantly larger part of mutable nodes is randomly forced to secondary
storage devices, with the result of undesirable random write I/O, WA and
SA.

Time-Split B-Tree [LS90] also enable query in search key and temporal
dimensions, however, they form a regular tree structure. One-point invalida-
tion is applied, since successors replace predecessors for unique search key
attribute values. Overflowing nodes are either split in search key dimension
or in temporal dimension. Based on a timestamp, obsolete version records
are moved in – and still valid ones are copied in – an immutable historical
sibling node on temporal splits. Version records, which are still valid or get
subsequently valid, remain on the former node. Similar to Multi-Version
B-Tree, operations yield undesirable random write I/O, WA as well as SA.

MV-IDX [GGH+14] is a regular B+-Tree extended with in-memory data
nodes for every probably visible version record. Virtual identifier (VID) in
index records reference new-to-old ordered data nodes including timestamps
and physical references to base table tuple versions. This logical indirection
layer massively reduces maintenance effort on updates, nevertheless inser-
tions and modifications to search key attributes yield random modifications
and maintenance of nodes. Despite the significant memory footprint by
VID and timestamp, returned candidates are probably excluded from the
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result set by mismatching query predicates and search key attribute values.
Therefore, additional RA on base tables is required. Moreover, undesirable
typical SA and WA issues of B+-Tree incur, albeit limited by the indirection
layer.
None of the presented multi-version indexing approaches leverage the charac-

teristics of modern hardware in general.

3.1.3. Structures leveraging Modern Secondary Storage Hardware
Characteristics

Recent developments in storage and index management structures aim for
leveraging modern hardware platforms [KCS+10; LKN13; LLS13; MKM12;
Pug90; WPL+18; XCJ+17] as well as secondary storage technologies [Gra04;
QCZ+21; WLS21]. Log-Structured Merge Trees (LSM-Trees) [OCGO96] got
increased attention, since they are widely adopted as storage management
structure in persistent NoSQL K/V-Stores [GD22; Inc22; LC19]. LSM-Trees
are composed of several differently sized components (compare Figure 3.2)
– typically tiered or in levels arranged separate B+-Tree structures [LC19;
SSZA21] with a root as entry point, inner nodes and leaves. Modifications
are performed out-of-place in a mutable main-memory mapped component,
which is frequently switched and forced to secondary storage devices in a
single sequential write and minimized WA.
Increasing number of components need to be traversed on search opera-

Figure 3.2.: Several (K + 1) individual components form a basic LSM-Tree
[SR12].
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tions. Since components are separate B+-Trees with individually appropri-
ated nodes, LSM-Trees are not able to profit from logarithmic capacity per
height properties and common buffering on traversals. Fragmentation is sub-
sequently remedied by merge operations in leveled and/or tiered compaction
operations [Cal19; DI18; LC19; SSZA21], yielding frequent and increased
WA. Contrary, bLSM [SR12] limit the number of components and utilizes fre-
quent scheduled merging and protects components by bloom filters. REMIX
[ZCWJ21] introduces space efficient indexing by key-sorted views on data in
multiple fragmented components to deal with growing equality and range
search costs. Generally, LSM-Trees need to handle the interplay between
RA, WA, SA as well as memory footprint by merge operations to cope with
individual workload properties [DAI18a; LC19].
Nevertheless, LSM-Trees are most regarded storage structure in persistent

K/V-Stores. Multi-version capabilities are generally applicable to out-of-place re-
placements of K/V pairs, albeit it is not the focus of LSM. Finally, key uniqueness
is natively assumed, although secondary indexing with LSM-Trees is feasible
[KKCL17; LC19; ZZC+17].

3.1.4. Applied Basic Structure: Partitioned BTree

Partitioned B-Trees [Gra03] focus on rethinking intrinsic and matured struc-
tures in DBMS. The core concept is to introduce an artificial leading key
column to each index record in a B+-Tree. Inherited design and algorithms
allow application of most B+-Tree techniques and optimizations for many
purposes – e.g. leveraging modern hardware and workload characteristics.

Its underlying principle is ingeniously simple. Applying an artificial leading
key column to index records enables maintenance of partitions within a single
B+-Tree by leveraging its intrinsic sort order, as depicted in Figure 3.3. For
example, applying the value 4 in the artificial leading key column to any
insertion record forces an accompanying search operation in an interval
area – i.e. the defined partition – with the value 4 as leading key, whereby
partitions with values 0, 1, 2 or 3 remain unaffected. An artificial leading key
column is able to store the value of a partition number. A partition number
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can be of any comparable type, which capacity is sufficient to maintain
required distinct partitions. [Gra03] suggests an integer of 2 or 4 bytes.

Effectively, maintenance of an artificial leading key column correspond to
horizontal partitioning of index records within one single B+-Tree [Gra03].
Other structures, e.g. LSM-Trees [OCGO96; SR12], enable horizontal parti-
tioning as well, however, they rely on separate B+-Trees for each partition.
Hence, there are major differences in their applicability.
First, separate structures result in schema modifications. Lock-free parti-

tion creation is hard to implement this way. Furthermore, execution plans
and optimizer require adjustments. On the contrary, an artificial leading
key column allows horizontal partitioning as easily as inserting or deleting
records [Gra03]. Partition numbers are transparent to other DBMS modules
and are dynamically defined by the existence of index records with a spe-
cific leading key value. Probably cached bounding partition numbers allow
reduced operation effort by atomic operations without any locks.

Second, separate B+-Trees provide several entry points for traversal, which
require to be managed. Since each sub-tree builds a separate tree structure,
each component of a LSM-Tree could conversely be considered as a sub-
tree of one single tree structure. A very natural approach is to index all
components in one B+-Tree structure with one single root as entry point.

Last, handling all trees as sub-tree in one single B+-Tree allows commonly
used and cached nodes. The capacity is in a logarithmic relation to the
height of a tree (compare Equation 3.1). Therefore, space amplification in

Figure 3.3.: Partitioned BTree – B+-Tree with partitions [Gra03]
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main-memory is reduced by one single tree and cache efficiency is increased
(underpinned by example calculation in Appendix A.3).

One might think that maintenance of a partition number would incur
additional space and comparison costs. [Gra03] countered this argument
by prefix truncation techniques [BU77]. Regularly, just a few bytes on each
node is required. Furthermore, truncated prefixes are skipped in binary
search and do not increase comparison costs. However, search and sort
operations in a Partitioned B-Tree become more complex and expensive, as
each partition could contain a desired record. [Gra03] refers that multiple
partitions are not the final state of the tree and partition count remains low.
In the meantime, search operations require external merge sort and incur
multiple traversals.
With regard to Section 2.1, nowadays, secondary storage devices enable

high parallelism and exhibit asymmetric read and write latencies. Since
merge sort operations allow parallel traversals, an advanced level of data
partitioning becomes possible, whereas online merge operations and write
amplification (WA) are minimized.

Partitioned B-Trees enable a set of various functionalities. [Gra03] outlines
beneficial effort conserving sorting behavior on suspended operations, very
fast availability of indexes or cheap bulk load consumption. Furthermore,
the author offers an opportunity to consume also smaller insertions into one
partition in main-memory and rearrange partitions by online merge oper-
ations. Deletions could be handled by some kind of anti matter. Applying
transaction timestamps to index records would Partitioned B-Trees enable to
serve as multi-version store in MVCC. Partitioned BTrees could provide the key
features and structural patterns needed to design a storage and indexing struc-
ture for modern workloads and hardware technology characteristics. However,
the author does not become concrete in his remarks.

3.1.5. Prototypical Environments

(Multi-Version) Partitioned BTrees ((MV-)PBT) are practically applicable in
almost every B+-Tree based environment. In order to evaluate the full range
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of storage and index management with MV-PBT, prototypes are implemented
in PostgreSQL 9.0.4 with SIAS and WiredTiger 10.0.1. A short introduction is
given.

3.1.5.1. SIAS: Snapshot Isolation Append Storage

Snapshot Isolation Append Storage (SIAS) [Got16; GPHB17] is introduced
as an append-only new-to-old ordered storage manager with one-point inval-
idation and robust performance characteristics on Flash secondary storage
technologies.

Figure 3.4.: Snapshot Isolation Append Storage (SIAS) performs updates
depicted in A by B maintenance of tuple versions as C out-
of-place one-point invalidation (SIAS-Chains) in comparison to
traditional two-point invalidation. [Got16; GPHB17]

Contrary to traditional storage management approaches, tuple versions
are no longer considered to be individually addressable entities, which
require to be particularly invalidated on modification. By means of an unique
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virtual identifier (VID) for each logical data item, related tuple versions
form a new-to-old ordered singly linked list. Rolling entry points of logical
data items are known by a VID-mapping and each tuple version is aware
of its creation transaction timestamp and predecessors physical reference.
Considering tuple versions to be a chain of one logical data item enables
predecessors to be invalidated by the existence of a visible successor – i.e.
one-point invalidation is enabled. By this means, temporally evolving log-
based storage management is feasible, which enable minimized WA and a
beneficial sequential write pattern to secondary storage devices.

Compared to PostgreSQL’s Heap-Only Tuples (HOT) [Pos21], SIAS achieves
a robust up to 30% higher transactional throughput, 7 times lower response
times, up to 97% write reduction and optimized SA by densely filled pages
[GPHB17]. These results are direct effects of applying properties for base
table storage outlined in Section 2.3 (Table 2.1).

Index management is proposed to be performed by the logical indirection
layer of VIDs and VID-mapping instead of physical references [GGH+14].
This reduces the maintenance effort of indexing the rolling entry points,
nevertheless predecessor tuple versions are not immediately obtainable. For
instance long-lasting analytical queries in HTAP workloads require to process
version chain nodes from its entry point, which lead to successively executed
reads and high RA on base table nodes and high latencies.

Based on this prototype, concepts and application of index only visibility
checking in DBMS are well verifiable by integrating a prototypical imple-
mentation of MV-PBT in the existing B+-Tree indexing structure.

3.1.5.2. Multi-Core and Memory Optimized B+-Trees in WiredTiger

WiredTiger (WT) is an open source K/V-Store and the default persistent
storage engine in MongoDB [Mon21]. It provides storage and index man-
agement by B+-Trees, former one also for LSM-Trees with leveled data layout
[Mon21; SSZA21] which build up on components of B+-Tree. Moreover,
schema support in row and column oriented storage with MVCC and SI is
supported as well as time travel queries on named snapshots.
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A buffer cache is organized in the lock-free B+-Tree structure by hazard
pointers, whereof inner nodes reference cached in-memory nodes or disk lo-
cation. Inner nodes and leaves are organized in flexibly growing pages, which
are split and compressed in a reconciliation process on write to secondary
storage devices by a block manager in a configurable size. Moreover, this
technique facilitates searches and modifications to be performed lock-free by
in-memory insert skiplists and update arrays, whereas only fast latches are
required on modifications, with the result of beneficial multi-core scaling.
B+-Tree is able to exploit its entire potentials in processing and main-memory,
whereas pressure on secondary storage devices is massively increased for
large updatable datasets. For these reasons, WT is an appropriate fundament
to benchmark bare characteristics of MV-PBT as sole storage management
structure in K/V-Stores.

3.2. Summary and Conclusion

Outlined storage and index management structures vary in their capabilities
and features as additional access path in DBMS applying MVCC and SI on
modern hardware. As a result, they have shortcomings in multi-version
capabilities, complexity in search and maintenance, alignment to modern
computing and storage technologies, secondary indexing capabilities or in
their specialization for single areas of application. Partitioned B-Trees (PBT)
combine search and caching properties of B+-Trees, flexibility in the applica-
tion of partition management, for instance to perform out-of-place updates
by mentioned anti matter [Gra03]. Certain proximity to LSM-Trees, as well
as their fields of application, and the idea of PBT serving as multi-version
store [Gra03] facilitate the application as storage and index management
structure. Even though the conceivable proximity to LSM-Trees, PBT lever-
ages characteristics of a single tree structure rather than fragmenting related
data in several individually managed structures (compare calculations from
Section A.3). In the main contributing Chapter 4, characteristics of PBT are
leveraged to enable multi-version indexing on modern storage technologies.
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Multi-Version Partitioned
BTree

In this main chapter, the structure of Multi-Version Partitioned BTree (MV-
PBT) is outlined. MV-PBT – an enhanced version-aware index and storage
management structure based on the structuring pattern of Partitioned BTrees
[Gra03] – exposes near optimal key-sorted structural features for modern
workload and hardware characteristics. Whilst the author of [Gra03] argues
about individual areas of application for Partitioned BTrees, a holistic design
proposal, prototypical implementation and evaluation of potentially related
and raised concepts are not provided.
On this occasion, a holistic storage and index management structure is

concretely designed, following the claims of preceding chapters. Horizontal
partitioning is leveraged for version-aware and write-optimized indexing
(RQ1) as well as storage management (RQ2). Moreover, MV-PBT requires
elementary considerations about steady performance characteristics and
maintenance raised by RQ3, RQ4 and RQ5.
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4.1. Multi-Version Indexing Design Concepts

Auxiliary index structures offer an additional access path to queried data,
which is located in base tables. Maintenance of tuple version records in base
tables entail additional complexity and costs in maintenance or selectivity
in data access by index management structures (as outlined in Sections 2.4
to 2.5). In order to address RQ1, Multi-Version Partitioned BTree (MV-PBT,
Section 4.3) is designed as version-aware storage and index management
structure, which leverages characteristics of modern hardware technologies.
First, version-aware index management structures appreciate tuple ver-

sions as individually accessible entities and optimize selectivity by index-only
visibility checking (Section 4.3.6). Therefore, index records require extended
information, like a record’s transaction timestamp, tuple version ordering
and performed operation besides well-known search key attributes and logical
or physical references to tuple versions in base table as value. Second, this
extended information requires to be maintained by leveraging characteristics
of modern hardware technologies (introduced in Section 2.1) for a broad
range of applicability in modern workloads (introduced in Section 2.2).
MV-PBT leverages the structuring pattern of Partitioned BTrees [Gra03]

(compare Section 3.1.4) to maintain out-of-place index version records in
an appropriate succession of preferred version ordering (Section 2.3.1.2) by
adaption of their partition numbers (in partitioned keys as outlined in Section
4.2.1.2). Index version records are annotated with transaction timestamps of
the creating transaction, whereby a transaction snapshot’s related version
record is identified, if following the logically maintained new-to-old version
ordering (Section 4.3.3) of tuple versions by manipulating the index record’s

MV-PBT

1 Maya (Version 1) TXU1

A

2 Maya (Version 2) TXU2

B

3 Maya (Version 3) TXU3

C

Figure 4.1.: Concept of Multi-Version Partitioned BTree (MV-PBT).
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partition number. Beneficial append-only one-point invalidations (Section
2.3.1.3) are performed by applying some ’anti matter’ [Gra03] to specific in-
dex record types (Sections 4.2.1.3 and 4.3.1) for different operations (Section
4.2.3). In doing so, an index version record located in partition number 2

(compare Figure 4.1 B ) is invalidated and replaced by a more recent record
in partition number 3 ( C ), if reads are performed in reversed succession
(from 3 to 0 result in ordering C , B and A ). Detailed ordering conventions
are outlined in Section 4.3.4.

Maintenance of out-of-place index version records accompanies well with
characteristics of Flash secondary storage devices (Section 2.1.2). Structur-
ing pattern of Partitioned BTrees [Gra03] assumes responsibility for several
purposes as introduced in Section 3.1.4. MV-PBT appropriates this capability
on its own fashion. Whilst new index version records are maintained in
new partitions, elder ones natively become immutable. Updatable data is
preferably kept in fast main-memory, whereas immutable data is evicted
to secondary storage devices. Native key-sorted order enables a sequential
write pattern of immutable data in leaf nodes by singularly forcing partition
related nodes to secondary storage devices (Section 4.2.2). For instance,
while index version records are inserted with partition number 3 in Figure
4.1 in main-memory, preceding partitions 0, 1 and 2 are located on Flash
secondary storage devices.
Concepts of [Gra03] are combined in a consistent version-aware storage

and indexmanagement structure for modern transaction processing in DBMS,
which apply MVCC and SI, and considering modern hardware characteristics
in Multi-Version Partitioned BTree (MV-PBT). With regards to the hardware
characteristic-leveraging component of RQ1, first, a concrete proposal for
write-optimization with the concepts of Partitioned BTrees is given in Section
4.2. Leveraging horizontal partitioning for write-optimization on modern
Flash-based secondary storage devices significantly differs from proposed
applications in [Gra03] and constitutes an innovative application of the
matured structural properties of Partitioned BTrees, denoted as PBT.

Structural properties of the proposed write-optimized instance of PBT are
leveraged to introduce an index-only visibility check (second part of RQ1),
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whereas selectivity of result sets are optimized in MV-PBT. Moreover, MV-PBT
is considered as multi-version storage management structure (RQ2), since it
inherently addresses storage properties and visibility checking. Partitioning
in MV-PBT requires elementary considerations about steady performance
characteristics and maintenance, raised by RQ3, RQ4 and RQ5.

4.2. Write-Optimization with Partitioned BTrees

Alpha-numeric key-sorted data structures, like B+-Trees, are very common
in DBMS and K/V-Stores, since they enable fast equality as well as range
search in an modifiable dataset. However, in order to sustain alpha-numeric
sort order, B+-Trees require special considerations and additional work.
Consequent downsides of this structure emerge in persistent layers of the
memory hierarchy. Writing one node to secondary storage devices result in
high write amplification (WA), due to following essential facts:

• Modern workload characteristics lead to a low share of buffered data
in main-memory compared to massive amounts of data on secondary
storage media of conventional data nodes.

• Version records amplify index maintenance, due to MVCC storage
characteristics in Table 2.1.

• Mandatory blank space in inner nodes and leaves increase WA and SA.
• Modification and maintenance operations result in massive WA, since

most written data was already persistent.
• Random modifications lead to invalidation and write operations on

incidental pages on Flash secondary storage devices and effectively
increase latencies and internal WA (Section 2.1).

Based on ideas in Section 4.1, appropriate partition management with the
structuring pattern of Partitioned BTrees [Gra03] could solve these problems
by an innovative application of write-optimization with PBT. Estimated
characteristics are formulated in following hypotheses:
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Hypothesis 1 (H1)
PBT is able effectively reduce WA, since each modification is written once.

Hypothesis 2 (H2)
PBT achieves a beneficial sequential write pattern to secondary storage devices.

Hypothesis 3 (H3)
PBT minimizes blank space on leaf nodes and ultimately avoid massive SA.

In order to prove (H1), (H2) and (H3), PBT is introduced as write-
optimized version-oblivious index and storage management structure for
modern hardware technologies.

4.2.1. Data Structure and Components

According to [Gra03] (outlined in Section 3.1.4), PBT also maintains parti-
tions within a regular B+-Tree – i.e. its underlying structure is equal to the
characteristics outlined in Section 3.1.1, however partitioning within one
tree structure yield new opportunities and enables a directed determination
of structural effects.

PBT-Index

Partition no. 0 1     …  n-2 n-1

DB Buffer

PBT-Buffer

sequential write of Partition n-1

Figure 4.2.: Write-optimization with PBT – Updates are buffered in main-
memory PBT-Buffer and sequentially written to secondary stor-
age devices. [RVP17b; RVP19]
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Regular B+-Trees random write I/O pattern and WA are direct effects of
its strict preservation of alpha-numeric sort order on updatable data in a
tree structure that is much larger than available main-memory. With PBT
(depicted in Figure 4.2), every modification is directed to a partition, that
is small enough to be located in main-memory. A designated area in the
database Buffer Manager, i.e. PBT-Buffer, collects updates in leaf nodes.

Whilst introduced properties of PBT are in accordance with transaction pro-
cessing purposes in [Gra03], write-optimization by sequential writes is only
considered in PBT. Once a certain threshold is reached, the main-memory
partition becomes immutable to further modification and gets sequentially
written. However, continuous modifications are directed to an atomically
switched succeeding partition – leading to a native and transparent horizon-
tal partitioning behavior.
In the following, essential structural components and properties of PBT

are outlined in detail.

4.2.1.1. PBT Cached Meta Structures

According to [Gra03], PBT’s auxiliary meta information is entirely contained
in the B+-Tree structure. For instance, the most recent partition number
of a PBT could be identified by searching the rightmost index record in
the tree structure [Gra03]. Since this information is frequently required
and its memory footprint is very low, auxiliary meta data structures are

1 n
1 n

1n

Cached Meta Data

buffer_share : float
require_switch : bool

PBT Meta Data

relation_id : uint64
max_pnr : PKEY_TYPE
is_switching : bool

Partition

pnr : PKEY_TYPE
synced : bool
n_records : size
dirty_leaf : size
type : char≪interface≫

Auxiliary Filter

Figure 4.3.: Auxiliary recoverable PBT cached meta data structures.
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cached in main-memory (inspired by ’integrity constraints’ in [Gra03], an
excerpt of a specific proposal for PBT is depicted in Figure 4.3). Generally,
PBT cached meta data structures require neither locking for any atomic
operation nor additional logging of modifications, due to its straightforward
and fully recoverable design. Contrary, LSM-Trees require disadvantageous
lock-assuming schema modifications for horizontal partitioning and log-
based storage. The applied approach in PBT is completely transparent to
further DBMS modules, since the horizontal partitioning is anchored in a
B+-Tree structure.
A brief introduction in the cached meta structures is given (depicted in

Figure 4.3) and also repeatedly referenced in the following sections. In a
DBMS, multiple PBTs (which possess PBT Meta Data) are maintained and
commonly share Cached Meta Data and a fraction of buffer frames, which
are frequently synchronized on a partition switch, as outlined in Sections
4.2.1.4 and 4.2.2. Each PBT composes of Partitions, whereas the most recent
partition number (max_pnr) is manyfold appropriated. Partitions comprise
Auxiliary Filter structures for data skipping methods, as outlined in Section
4.4.3.

4.2.1.2. Artificial Leading Key Column and Partitioned Key Type

B+-Tree structures inherentlymaintain an alpha-numerical sort order. [Gra03]
introduces partition numbers in artificial leading key columns of records in
order to natively maintain horizontal partitions. Profound changes in search
key attribute values of every contained record require comprehensive consid-
erations in a specific implementation, like PBT, as outlined in the following.

0 Mati

PBT

0 Meggy 1 MayaMati

B⁺-Tree

Maya Meggy

Figure 4.4.: Horizontal Partitioning within a single B+-Tree.
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Partitions are principally defined by the existence of index records with
a specific artificial leading key value. Hence, partitions are natively main-
tained by manipulation of the index record’s leading key column with the
result of horizontal partitioning in one single B+-Tree (as depicted in Figure
4.4). Since multi column index records in a B+-Tree structure are generally
ascending or descending ordered column by column, [Gra03] suggests to
prepend an artificial leading key column to each index record, which is filled
with the partition number.

Adding columns equate to unintentional schema modifications, however,
horizontal partitioning in PBT is a desired structural behavior. An addi-
tional column adversely affects record layout descriptors and subordinated
characteristics of frequently performed algorithms, e.g. comparison and
compression.
Composite partitioned key attribute types are more favorable. In a PBT,

the first attribute is extended by a fixed size partition number (as depicted
in Figure 4.5). There are several possible implementation options. If an
attribute value is copied into a partitioned search key, it is possible to relocate
the value by an appropriate number of bytes – i.e. by the size of the partition
number type. This behavior is enabled by defining structures (similar to
Listing 4.1). Since the number of data types in a DBMS is manageable, this
is a sound solution. However, handling a reference type this way (as depicted
in Listing 4.1), this would cause pointer chasing and performance issues,
as comparisons are frequently performed. Therefore, the partition number
should be located at the beginning of the referenced area, whereas cache

Attribute 1PNr Attribute 2 Attribute n

Regular Key

Partitioned Key Additional Regular Keys (optional)

...

Figure 4.5.: PBTs convert the first attribute to a Partitioned Key – consisting
of a partition number (PNr) and the regular key.
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#define PKEY_TYPE uint16_t
typedef struct PKEY_4byte {

PKEY_TYPE partition_number;
uint32_t value;

} PKEY_4byte_t;
typedef struct PKEY_byRef {

void *value; // ptr to PKEY’d reference
size_t size; // increment by sizeof(PKEY_TYPE)

} PKEY_byRef_t;

Listing 4.1: Sample Partitioned Key

efficient comparisons as well as cheap raw storage and prefix truncation is
enabled.

Comparisons are frequently performed operations, e.g. if binary searching
an index node as part of an equality search. Search keys contain a set of
attribute value and operator qualifiers, which are successively compared to
index record key attributes. Based on record layout descriptors, raw keys
on index nodes require to be reconstructed. Partitioned key types simply
overlay the first attribute descriptor for record reconstruction in PBT. Since
data types do not follow equal comparison strategies, it is very common to
apply a strategy programming pattern (compare [GHJV95]) with comparator
functions. Partition numbers of partitioned keys require to be separately
compared from its regular key, as its strategy might differ. However, in
contrast to separate artificial leading key columns, successive comparison
effort is reduced, since the number of attributes remain equal and partition
number and the first attribute are co-located in cache (compare processing
costs in Figure 4.6).
Partition numbers require to be transparent to further DBMS modules,

hence the partition number requires to be hidden from a partitioned key
attribute. Since the regular key is entirely contained in the partitioned key, its
attribute value is cheaply returned as an offset without additional processing
costs.
Additional storage costs of partitioned keys depend on several factors.

Beside fan-out and fill factor, the partition number type (PKEY_TYPE in
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Listing 4.1 and Figure 4.3) is considered to be a factor, as it increases the
record size and consequently shrinks the tree fan-out. An appropriate type
seems to be an 2-byte unsigned short integer with a maximum of 65535

partitions, since it is a good trade-off between storage costs and flexibility
in partitioning.
In a regular B+-Tree structure, this might have following effects1. In a

read optimized B+-Tree, its node fan-out shrinks about 9%. However, whilst
its height is not affected, traversal costs remain equal but scan costs slightly
increase as cache efficiency shrinks. Considering continuous insertions, a
read optimized B+-Tree layout is inadequate, since modifications cause node
split operations, whereas the average fill factor per node shrinks by up to
50% in a regular B+-Tree. Contrary, partitioning enables desirable append
only behavior, whereby a read optimized layout is reconditioned within
each partition. As a result, more records are treated per node and the tree
fan-out is leveraged by a nearly optimal fill factor. Since the PBT structure
is equal to B+-Trees, techniques like prefix and suffix truncation [BU77;
Gra11] become applicable. Separator keys in inner nodes only purpose is
to ’separate’ sub-trees by discriminating keys. Suffix truncation allows to
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Figure 4.6.: Relative Comparison Costs for both approaches. Partitioned
Keys save an iteration and leverage cache efficient operations.

1Assuming 4 kB node size, 4 byte keys, 16 byte reference pointers and 2 byte partition
numbers in this calculations. Meta data is not considered.
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Figure 4.7.: Compression techniques become more valuable in PBT, since
partition numbers are part of common prefixes.

store just enough leading bytes of a key to separate sub-trees on traversal.
In PBT, these discriminating bytes could be partition numbers, since several
record keys begin with an equal prefix – at least in the root and some inner
nodes. The fan-out is massively increased, especially in case of large keys.
Prefix truncation contrary exhibit reduced storage cost in leaf nodes, since
partition numbers and perhaps succeeding common bytes of all record keys
on a node are practically always truncated and stored once. The alpha-
numeric sort order of a dataset within a node and inside the whole tree
intensify this truncation effect, as similar keys are co-located. Furthermore,
truncation effects become more valuable based on the enlarged common
prefix of the partition number (compare Figure 4.7, whereas B+-Tree relies
on node split for adequate prefixes). Considering the outlined truncation
and fill factor effects, additional storage costs are negligible, since index node
capacities are aligned to multiples of block-addressable storage sizes. Possible
effects are evaluated and depicted in Section 4.2.4 Figure 4.15.
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4.2.1.3. Index Record Types

PBT is an append-based storage and index management structure, which is
capable to handle high-rate continuous insertion workloads. The potential is
obtained through strict maintenance rules and immutable persistent parti-
tions. However, in a tuple life cycle, modifications are an elemental feature
in such structures. Besides search operations, tuples are created, updated or
deleted. In a regular B+-Tree with strict alpha-numeric sort order, modifying
operations are performed at a designated location, as outlined in Section
3.1.1. In combination with such behavior, Hypotheses (H1), (H2) and (H3)
are not attained.
[Gra03] introduced the term ’anti matter’ as some special kind of dele-

tion markers, which are inserted and processed similar to regular records,
but with contrary meaning. Deletion markers (alias tombstones) are fa-
miliar from append-based structures, such as LSM-Trees or SIAS (compare
[Got16; OCGO96]. Since version-oblivious LSM-Trees are considered to
simply replace data with more recent unique record key identifier, special
invalidation values are sufficient. Subsequent search operations treat these
equal key records as invalidated until equal key records get finally deleted
by merge operations at an appropriate point in time [OCGO96; SPSA20].
Contrary, a special type of tombstone records in SIAS define invalidation of
all predecessors in a version chain with equal virtual tuple identifier (VID)
[Got16].

PBT is designed as a full featuring storage and index management struc-
ture. Whereas simple invalidation is sufficient for unique identifiers in data
storage, native non-uniqueness and multi-attribute treatment is necessary for
indexing structures. Hence, PBT introduces several record types – featuring
the whole range of operations in a tuple life cycle (compare Figure 4.8):

Regular Records are inserted on creation of a new tuple. Hence, theremust
not be any preceding record in a tuple life cycle. Its behavior is comparable
to an inserted record in an regular B+-Tree. It consists of a partition number,
one or several key attribute values and a record value. The latter might refer

80 4 | Multi-Version Partitioned BTree



Tuple Deletion

Tombstone Record

Key Attribute Update

Anti Record & 

Replacement Record

Value Attribute 

Update

Replacement Record

Tuple Creation

Regular Record

Figure 4.8.: Various operations over tuple life cycle result in practicable
insertion of different index record types.

to a data tuple by logical or physical record identifier or contains the value
data itself – based on the application.

Replacement Records are inserted on modification of a value attribute,
which is not part of the record key, i.e. there is a preceding record that gets
replaced by a new value. In principle, its record layout is comparable to other
record types with a partition number, one or several key attribute values but
up to two record values, because its relation to a specific predecessor must be
clarified. Generally, one record value contains the new data associated with
the tuple and the other contains the association value of its preceding record.
Therefore, if the record key and the latter value are equal to its predecessor,
its association is ensured. However, an association is also ensured if, (a)
PBT is applied as storage management structure, (b) a primary key or
uniqueness constraint is defined, (c) logical reference pointer are applied
or (d) predecessors must be invalidated by Anti Records. In order to save
storage cost and reduce SA, the second (old) record value is probably hidden
in such situations.

Anti Records are pure anti matter and inserted on modification of key
attribute values in combination with Replacement Records. Since the key
attribute values changed, a Replacement Record is not sufficient to invalidate
its predecessor. Therefore, an Anti Record is inserted. Its record layout
consists of a partition number, one or several key attribute values and one
record value, which is equal to its predecessor record value. In contrast to
other append-based structures, thus PBT is able to feature whole tuple life
cycle, even on key modifications and is predestinated as index management
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structure. Nevertheless, Anti Records require special treatment in version-
oblivious PBT in combination with MVCC-SI base table design in Table 2.1.

Tombstone Records are pure anti matter and inserted on deletion of a
tuple. There is high correlation with the utilization of Anti Records, however,
there is a massive logical difference. Tombstone Records mark the end
of a tuple life cycle, i.e. no successor of a tuple is possible. Tombstone
Records consist of a partition number, one or several key attribute values
and a record value, which subjects equal constraints like association record
values of Replacement Records. Likewise, Tombstone Records require special
treatment in version-oblivious PBT in combination with MVCC-SI base table
design in Table 2.1.

Additional storage and processing costs require to be considered. First,
while LSM-Trees typically insert special deletion marker values to describe an
invalidation of records with a specific key, PBT aims to distinguish different
operations by record types, by means of enabling full append-based indexing
features. Ordinary B+-Tree records maintain meta data, which contain
several property information as bit flags. Usually, some padding bits are not
in use or special properties are not required in PBT, e.g. deletion flags. In
order to represent all record types in PBT, 2 bits are sufficient. The first
bit could indicate, if preceding record values are replaced by a new value,
a second bit denotes pure anti matter. In this manner, Regular Records
are denoted as ’00’, Replacement Records as ’10’, Anti Records as ’11’ and
Tombstone Records as ’01’. Record type flags in combination with further
property information of the tree derive consequent behavior of PBT, e.g.
the number of required record value fields in Replacement Records for
compression. Maintenance of record types is enabled by very cheap bitwise
operations and usually no additional storage costs.
Second, append-based value replacements yield additional storage costs.

However, this is not its final state. Temporally bounded persistent secondary
storage media is sufficiently available, due to cheap acquisition and operating
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costs. Furthermore, split policies in regular B+-Trees yield SA up to twice of
its actual dataset. Append-based storage enables near optimal fill factor on
nodes as well as WA. Moreover, replacements encode additional information,
i.e. the modified value, which can be leveraged for further purposes, like
versioning in MVCC. Anyways, a read optimized arrangement with near
optimal SA can be restored at an appropriate point in time.
Third, record values in Replacement, Anti and Tombstone Records ad-

ditionally increase SA, since they guarantee tuple association even in non-
unique index management. Generally, it is an intermediate circumstance.
Equal behavior in other append-based storage structures is not natively
enabled for non-uniqe index management, since search key uniqueness is
assumed, which could be achieved by additional virtual identifiers. PBT
natively supports non-uniqueness in index management. Tuple association
is probably enabled by further constraints and additional value fields are
not required at all. Furthermore, association record values can be stored
as delta or in compressed shape. Anyways, with equal feature support like
LSM-Trees, PBT record types take up comparable space.

Last, equality and range search operations require additional processing.
Obviously, increased number of records yield increased processing costs.
Since I/O costs are considered orders of magnitude higher than computing
costs (Equation 2.1), logarithmic I/O costs of B+-Tree search algorithm take
effect. Searches in partitions are perfectly parallelizable in merge sorted
operations and leverage multi core processing characteristics as well as
asymmetry and high internal parallelism in modern Flash storage (compare
Section 2.1). Furthermore, native partitioning order and data skipping meth-
ods reduce overhead in additional processing costs of maintained records.
Moreover, caching effects of partitioning speed up modifying operations
by orders of magnitude, whereas resources become available for search
operations and overall throughput is increased.

Additional costs of record types for different operations in a PBT are man-
ageable, since they enable modifications in beneficial append-based storage and
index management.
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4.2.1.4. PBT-Buffer Management

Out-of-place modifications to the dataset by different record types (Section
4.2.1.3) in PBT incur increasing space requirements. Limited main-memory
capacity is organized by a buffer manager and different replacement poli-
cies as introduced in Section 2.3. However, regular buffer managers and
replacement policies are not aware of PBT partitions. Traditional incidental
approaches are incompatible with intended write-optimization in PBT.

PBT rules out a very hot subset of buffer frames from regular replacement
policy. In the PBT-Buffer, leaf nodes of most recent mutable partitions of all
PBTs in a DBMS are commonly cached. Inner nodes and immutable leaf
nodes remain under control of the regular replacement policy. This design
decision has following effects (compare Figure 4.9):

Root and upper levels of inner nodes A are almost never modified, but
frequently required, since search operations in B+-Tree structures traverse
the tree from its entry point (the root node) via inner nodes towards the leaf
nodes. Assuming a fan-out of 100, a tree height of 4 and 1 million randomly
distributed equality searches, the probabilistic number of requests on a node

tiny amount

of very HOT rarely

modified inner nodes

massive amount of COLD 

immutable inner nodes and leaves

tiny fraction

of HOT occasionally

modified inner nodes

small partition of

HOT mutable leaf nodes

Partition Number 0 1 2 … n-2 mutable Partition n-1

A

B

C

D

Figure 4.9.: PBT-Buffer’s replacement policy yield hot/cold separation.
[RP22]
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per level is 1 million on the root, 10 thousand on each inner node in the
second level, 100 on each inner node in the third level and only one for
each leaf. Regular replacement policies honor this behavior by a high hit
rate on upper tree levels, as their usage count is very high and their memory
footprint is comparably low. In this case, therefore, half of the traversed path
is cached on each equality search.

Lower level inner nodes and leaves of immutable partitions B are never
modified by basic operations of a PBT, hence their contained data is already
persisted and it is not necessary to write their contents on replacement.
Moreover, it is very unlikely for these nodes to get immediately reused.
Since Flash based storage devices close the access gap in memory hierarchy,
buffering is not valuable. A regular replacement policy select them as victim
buffer frames for eviction.

Inner nodes guiding to mutable partition leaves C are frequently visited
and get occasionally modified, due to update intensity of referenced leaf
nodes. High usage count practically prevent them from frequent eviction,
however sporadic flushes might occur. Since these writes are limited to a
focused area of the tree (compare Section 2.1 Advantages in sequential write
I/O), random write I/O is bearable. Alternatively, these inner nodes could
be located in the PBT-Buffer, though a special treatment of commonly used
inner nodes by several partitions would require additional complexity.

Leaf nodes of mutable partitions D are treated by the PBT-Buffer re-
placement policy, which is a set of buffer frames that are not under control
of the regular replacement policy. This area is shared for every PBT in a
DBMS, hence partition sizes are self balancing. The PBT-Buffer prohibits
eviction of the most recent mutable partition of a PBT, whereas its leaf nodes
remain in main-memory buffer frames. Once a partition becomes immutable
by an partition switch, it is possible to evict its defragmented and cleaned
leaf nodes.
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Modifying as well as read only operations benefit from excellent buffering
of a whole traversal path to the most recent partition (alongside sections
A , C and D in Figure 4.9). Furthermore, PBT-Buffer replacement policy
effectively saves mutable leaf nodes in buffer frames from early eviction of
intermediate page states, whereas (H1) is facilitated. However, eviction of
leaf nodes in a PBT-Buffer require special treatment on partition switch in
order to guarantee (H2) and (H3). This process is outlined in Section 4.2.2.

4.2.2. Partition Switch & Sequential Write

Write-optimization with PBT is achieved by strict insertion of special in-
dex record types (Section 4.2.1.3) in a designated mutable main-memory
allocated partition on any modification. Since the main-memory share of
the PBT-Buffer frames is a finite factor in continuous modifying workloads,
partition leaf nodes getting frequently flushed and evicted to secondary
storage devices – i.e. mutable main-memory and persistent representations
are getting synchronized in order to reclaim space in the PBT-Buffer.
Objective of this operation is to efficiently write an information delta to

secondary storage devices whilst ensuring the aims in hypotheses (H1),
(H2) and (H3). Furthermore, an elementary requirement is to guarantee
continuing concurrent transaction processing with marginal interference.

Recognition of
Switch 

Requirement

Selection of
Victim Partition

Lock-free 
Partition Switch

Defragmentation
/ Dense Packing

Generation of
Auxiliary

Structures
Lazy Eviction

Sequential Write

Figure 4.10.: Partition Switching process is asynchronously performed by a
parallelizable background worker with marginal influence on
payload.
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PBT facilitates the requirements by atomically switching a partition number
and sequentially writing a read optimized serialization of leaf nodes. The
entire process is asynchronously performed in multiple steps whenever a
certain threshold of dirty buffers in the PBT-Buffer is reached:

• Recognition of switch requirement
• Selection of a victim partition
• Lock-free Partition Switch
• Defragmentation and Dense-Packing
• Generating auxiliary structures as a natural by-product
• Beneficial sequential write of leaf nodes
• Lazy Eviction and flexible assignment of PBT-Buffer Frames

The whole process facilitates asynchronous execution by a parallelizable
background worker (as depicted in Figure 4.10) and lock-free operations.
In the following, challenges and contributions of each step are outlined in
detail.

4.2.2.1. Switch Requirement Recognition

Recognition of switch requirement is a crucial prerequisite and its appropriate
conduct is a workload dependent factor. A lightweight approach is to define
a configurable threshold of dirty leaf nodes in the PBT-Buffer. Exceedance
of the threshold as a result of a modifying transaction triggers an ideally
asynchronously performed switching process in a background worker – i.e.
payload proceeds with marginal interference whilst the PBT-Buffer provides
enough space in main-memory.

4.2.2.2. Victim Partition Selection

Selection of a valuable victim partition likewise is a workload dependent
factor. Since all PBTs in a DBMS are under control of the PBT-Buffer re-
placement policy, they commonly share the main-memory buffer frames.

4.2 | Write-Optimization with Partitioned BTrees 87



While this property is very beneficial in administrative effort1, partition
selection requires to fulfill several aspects and provide an option for differ-
ent replacement strategies. Partitions strive for maximum size allocation
in main-memory, however, it is necessary to allow a parity growth as well
as maximum space reclamation in high data injection periods. Adaptive
approaches are still an open research area, however, an initial approach is a
round robin method of valuable partitions, beginning with the most space
occupying partition.

4.2.2.3. Lock-free Partition Switch

Lock-free partition switching is enabled, since the most recent partition
number is well-known in a PBT (as outlined in Section 4.2.1.1). In contrast
to LSM-Trees, this is a major benefit as component switches are typically
lock-assuming schema modifications. PBT atomically increments the most
recent partition number in main-memory meta structures without precau-
tions, since it could be simply recovered in case of failure. The required
B+-Tree structure is already existent and operations are logged anyways.
Modifications of downstream processes are treated by the newly generated
main-memory partition (as depicted in Figure 4.11a D ). Generally, concur-
rent transactions can proceed without any atypical interferences, with one
exception: modifying transactions could intend to insert an index record of
any type into an already defragmented and perhaps already cleaned leaf
node. Moreover, concurrent modifications could delay and interfere with
the background worker process.

A very straightforward approach to avoid interferences is to prohibit user
initiated modifications of the victim partition whenever the most recent par-
tition number has been switched. Since interferences could break conditions
of (H1), (H2) and / or (H3), such an operation would override its partition
number in the search key to the new most recent one and re-traverse the

1Comparing PBT with LSM-Trees, both structures facilitate to keep a fraction of data in
main-memory. In this context, whilst LSM component sizes require a fixed configured
threshold per tree structure, PBT allows a very straightforward self balancing shared approach.
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PBT from the root. This exception is opportunely triggered by a very cheap
memory compare instruction. Nevertheless, the whole switching procedure
does not require additional locks – i.e. in case of multiple background worker
processes, a fine grained latching and status modifications in its meta data
are sufficient for synchronization.

4.2.2.4. Defragmentation and Dense-Packing

Defragmentation and dense-packing of leaf nodes and immutable upper
levels facilitates (H1), (H2) and (H3) and is a performance critical operation
in the regular B+-Tree structure of a PBT. Since a partition match up a sub-
tree of a PBT, modifications in the most recent partition typically yield a fill
factor of 50% to 80% (as depicted in Figure 4.11a C1 ) due to random split
operations [Gra11]. Objective of defragmentation in PBT is to bring the
randomly created leaf nodes in a serializable sequence of optimal read and
write I/O aligned dense-packed nodes as necessary – i.e. fill factor of nodes
is optimized by blank space minimization, removal of obsolete records and
compression techniques; whereas SA is minimized.

Therefore, a naive approach could be to remove obsolete records (Garbage
Collection – as outlined in Section 4.4.2), move others across nodes as well
as moving nodes across buffer frames, whereas multiple latches are required
and node references are updated [Gra11]. Total costs of this procedure
depend on the underlying B+-Tree characteristics on structure modifications.
Since victim partitions are frequently queried by concurrent transactions,
this approach could downgrade overall performance in very traditional lock-
assuming B+-Tree implementations.
Assuming a very traditional B+-Tree structure in a PBT as depicted in

Figure 4.11a 1 . A1 depicts immutable persistent partition(s), B1 a con-
cealed partition number in the meta data, C1 a victim partition with random
workload arranged nodes and D1 (as well as D2 and D3 ) a modification-
bearing most recent partition, which was created by a lock-free partition
switch. A very straightforward approach is re-bulk loading required records
of the victim partition C1 , though into another dense partition B1 , which
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Figure 4.11.: Defragmentation and dense-packing approaches in (a) lock-
assuming and (b) memory-optimized B+-Tree structures.

is transparent for concurrent transactions. Due to the guaranteed alpha-
numeric sort order in the victim partition, the returned records of a partition
scan can be sequentially bulk inserted into the dense partition by simply
overwriting the partition number (depicted in Figure 4.11a 2 B2 ). Bulk
insertions are very beneficial in PBT [Gra03], as records can be successively
inserted into unspent leaf nodes of a sub-tree. Since an insert key is known
to alpha-numerically succeeding the previous one, a natural append-based
behavior is achieved. Consequently, blank space is neither required in nodes
nor created as result of random split operations, and records can be densely
arranged with an optimal fill factor. B+-Trees typically achieve this behavior
on bulk insertions by moving the split point to the end of a full node on inser-
tion. Major benefit of this approach is, that concurrent reading transactions
can proceed without interference, since the victim partition C2 remains
unaffected in main-memory until the procedure succeeds, but gets finally
erased by a beneficial bulk deletion [Gra11], as depicted in Figure 4.11a 3 ,
when the dense partition B3 gets visible to concurrent transactions. Since
every partition related node is likely to be kept in main-memory and it is an
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one-time occurring operation, the effort is manageable, however, temporary
a considerable memory overhead occurs.

An interesting approach is to leverage the native behavior of main-memory
optimized B+-Tree structures. For instance, a lock-free B+-Tree can apply
large flexible node sizes (as outlined in Section 3.1.5.2 and depicted in Figure
4.11b). Since binary search costs depend on the number of records (Equation
3.2) and nodes are optimized and considered for main-memory, maintenance
of a fixed block size for secondary storage devices is not required. Once a
node gets evicted, split operations are performed in order to restore a regular
on-disk layout with fixed node sizes in a reconciliation process [Mon21].
In Figure 4.11b, a victim partition Y1 in a PBT leverages this behavior by
allowing a node size as large as the partition itself. At a partition switch,
the main-memory mapped flexibly sized node gets reconciled (as outlined
in Section 3.1.5.2 and depicted in Figure 4.11b 2 Y2 ) with the result of
dense-packed sequentially arranged leaf nodes Y3 . Whenever the victim
partition becomes persistent and evicted, memory mapping of referencing
inner nodes is repealed as pointers refer to persistent storage locations, and
can be also sequentially written to secondary storage devices. Generally,
this approach is very beneficial – especially in case of storage management –
since sequentially replicating valid records in a dense partition could cause
overheads.
PBT is able to achieve a defragmented dense-packed layout within the struc-

ture of any B+-Tree implementation – with negligible effects on payload. The
costs of this operation depend on the appropriated features and structure char-
acteristics.

4.2.2.5. Generating Auxiliary Structures

Auxiliary structures, e.g. auxiliary filter structures for data skipping like
bloom filter [Blo70], are generated as a natural by-product of the defrag-
mentation process. Since every leaf node of a partition is accessed in the
defragmentation process, data-dependent auxiliary structures are inciden-
tally created with marginal costs. Once auxiliary filter structures are created,
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they can be utilized for data skipping methods (as outlined in Section 4.4.3)
– i.e. unnecessary traversal operations are effectively avoided on data, which
is located in partitions on secondary storage devices. These auxiliary struc-
tures are very cheap to generate and typically small enough to be located in
main-memory.

4.2.2.6. Beneficial Sequential Write Pattern

PBT achieves a beneficial sequential write pattern with low WA and SA to
secondary storage devices by collecting modifications in a main-memory
mapped set of leaves in the PBT-Buffer. A naive strategy to subsequently
write the leaves after a partition switch is to simply iterate every buffer
frame in the PBT-Buffer and subsequently write the parent inner nodes from
common buffer frames (depicted in Figure 4.12a A ). However, buffer frames
are commonly shared for all PBTs in a DBMS and are randomly assigned as
a result of the structural modifications within the B+-Tree structure. Hence,
a semi-sequential write pattern with weakly key sorted leaves occur, even if
defragmentation is applied (as depicted in Figure 4.12b with a sequence of
file extends).
Since leaves are known to be a sequence of key-sorted children of a

parent inner node and siblings are well-known in a B+-Tree, a tree walk
guided approach is considerable (as depicted in Figure 4.12a B ). The
PBT is traversed from its root to the leftmost leaf node (A) of the dense-
packed victim partition. Flushing leaves by principally following the sibling
pointers (from A to E and so on) enables a perfect sequential write pattern
(Figure 4.12c from time 0 to 80ms), while the leaves belong to the victim
partition. Siblings of leaves are also known in the parent inner node by child
reference pointers, whereas this operation is very cache efficient in practice.
Subsequently, the parent inner nodes are sequentially written at time 85 to
90ms followed by their parents at 90 to 92ms, respectively.
Comparing Figures 4.12b and 4.12c, the tree walk procedure finishes faster,

due to the perfect sequential write pattern. Furthermore, with strict correlation
in logical block addresses (LBA), everything feasible from DBMS perspective is
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Figure 4.12.: Sequential Write of Partition Leaves and Inner Nodes in PBT.
Logical Block Address (LBA) offsets and time (in ms) are mea-
sured with blktrace on a Samsung 850 Pro consumer SSD
(10MB partition size).

done to leverage Flash secondary storage characteristics – likewise for reading
and deleting downstream operations. Hypothesis (H2) is confirmed.

4.2.2.7. Lazy Eviction and flexible assignment of PBT-Buffer Frames

Regular replacement policies in DBMS clean pages by a flush in an eviction
operation and downstream replacement with an appropriate page. In case of
PBT-Buffer frames, an eviction on flush is utterly inadequate as the effective
DBMS buffer cache size would shrink by a significant degree. Moreover,
the evicted pages are leaf nodes of the most recent partition, which are
frequently queried, e.g. by parallel executing search operations like auxiliary
structure creation or time saving index scans.
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Figure 4.13.: Flexible PBT-Buffer Share allows cache preserving handover
of a clean Victim Partition from A the PBT-Buffer to B a
common database buffer replacement policy and C flexible
growth up to a maximum PBT-Buffer Share. [RP22]

Flexible PBT-Buffer share preserves the effective buffer cache size and
hot data of the victim partition (depicted in Figure 4.13). Whenever a
dense-packed victim partition becomes persistent by a sequential write of
the PBT-Buffer replacement policy A , its clean buffers are passed to the
regular replacement policy of the database buffer B . In order to sustain a
regular replacement policy, statistics of passed buffer frames are adjusted –
e.g. in case of most recently used replacement, the usage counter is set to a
low average level to avoid immediate eviction. Since the PBT-Buffer share is
lower than the allowed maximum threshold C , allocations of new leaf nodes
are provided by buffer frames of the regular replacement policy. Therefore,
the contained and ideally clean page is replaced by a new page and passed
under control of the PBT-Buffer, whereby early eviction of modifiable leaves
is avoided.
Contrary to other append-based structures, like LSM-Trees, PBT is able to

provide a stable main-memory usage with low administrative effort. PBT-Buffer
replacement policy with flexible share allows the desired sequential write pattern
of immutable partitions without omission of buffer cache efficiency.

4.2.3. Basic Operations

PBT allows functionalities and utilization of interfaces equal to any basic B+-
Tree, whereby an integration in many B+-Tree based approaches is feasible.
Horizontal partitioning of randomly inserted data enables an append-based
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typedef struct pbt_cursor {
void* search_conditions;
void* update_value;
uint16_t position;
ref_t* node;
void* record;
Partition* partitions;
void* anti_matter_map;

} pbt_cursor_t;

Listing 4.2: Sample PBT Cursor Type for Search Operations and
Modifications

sequential write pattern, but has also effects on basic operations. In the
following, the basic operations are outlined with reference to Listing 4.2
pbt_cursor_t* cur.

4.2.3.1. Setting Search Key

Search Keys are crucial for searching a tree structure. B+-Tree structures
allow equality as well as range searches. Therefore, search key attribute val-
ues are applied with search operators (cur->seach_conditions, lower,
lower_equal, equal, greater_equal, greater) in order to define
the search key or range. Its first key attribute value is transformed to
a partitioned key as outlined in Section 4.2.1.2. Partition numbers are
well cached in the Cached Meta Data (Section 4.2.1.1) and referenced in
cur->partitions, whereby the partitioned key is efficiently set to the most
recent partition number (max_pnr) or any possible valid partition number.

4.2.3.2. Getting Record Key

Index records are stored in alpha-numeric sort order in the tree structure.
Regular B+-Trees are able to simply return the uncompressed index record
key (cur->record.key) on current position as a result of a search operation.
PBT relies on partitioned keys (Section 4.2.1.2) for the first key attribute
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values, hence the partition number is part of the internal key. However, the
partition number requires to be transparent to further DBMS modules. Since
the regular key is entirely contained in the partitioned key, its attribute value
is cheaply returned as an offset without additional processing costs.

4.2.3.3. Getting Record Value

Record values are of various data types in storage and index management
– i.e. any value can be stored whereby PBT addresses versatile fields of
application. In case of PBT as index management structure, record values
are typically short logical or physical references to data tuples in a base table.
Since a search operation position the cursor only on ’matter’, i.e. records of
type regular record or replacement record, there is no difference in getting
values compared to regular B+-Trees (cur->record.value).

4.2.3.4. Equality Search

Equality search is a widely used operation in storage and index management
structures for many purposes – e.g. receiving values, checking primary key
violation or uniqueness constraints. Tree-based structures search a record
by a traversal operation from a root node to a leaf – leading to a logarithmic
complexity.

Algorithm 4.1 Interface – Equality Search
1: function Equality_Search(condi t ions{at t r, operator})
2: Output: record_value
3: Let cur ← init(. . . ) ▷ initialize cursor
4: setKey(cur, condi t ions) ▷ allocate internal partitioned key
5: if search(cur) then ▷ search in the PBT
6: asser t(getKey(cur) ∈ condi t ions) ▷ transparent pnr
7: return getValue(cur) ▷ return the value
8: end if
9: return ; ▷ no record with equal key

10: end function
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Partitioning in PBT is transparent to further DBMS modules, hence an
exemplary equality search interface (Algorithm 4.1) is not affected. Inter-
nally, PBT search operations pursue an advanced strategy. Partitions are
successively searched from the most recent one towards the eldest and low-
est numbered for several reasons. First, modifications are appended in the
main-memory partition by special record types, which invalidate their pre-
decessors. In order to identify the currently valid record, the invalidation
order scheme must be respected. Second, recent partitions are well-cached,
hence I/O costs are negligible. Third, equality searches require no special
sort order, whereas probably unnecessary pressure of several parallel traver-
sal operations is avoided. Last, additional functionalities, like primary key
or uniqueness constraints, imply the existence of only one valid equal key
record, whereas unnecessary search effort is saved.
Algorithm 4.2 PBT – Search
1: function search(PBT_Cursor cur, ...)
2: Output: valid_record
3: Let ske yspar t ← cur→search_condi t ions
4: Let par t ← cur→par t i t ions
5: do ▷ loop partitions from most recent to eldest one
6: setPartition(ske yspar t , par t.pnr) ▷ memset pnr in key
7: if partition_offset(ske yspar t) ∈ par t. f il ter then
8: traverse(ske yspar t) ▷ set cursor position
9: if cur→record→ t ype not ≡ Regular Record then

10: put(cur→anti_mat ter_map, cur→record) ▷ invalidation
11: end if
12: if cur→record ∈ cur→anti_mat ter_map then ▷ invalidated?
13: return next(cur) ▷ move to a valid record
14: else
15: return TRU E
16: end if
17: end if
18: ... ▷ probably special internal treatments
19: while par t ← precedingPartition(par t)
20: return FALSE
21: end function
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In doing so, effort of equality search operations increase by the number of
partitions, because in theory every partition has to be traversed – at least until
an equal key record was found and no further key is expected. Additional
read I/O is leveraged by Flash based secondary storage devices, due to high
parallelism and asymmetric read performance. Auxiliary filter structures
enable data skipping (as outlined in Section 4.4.3), therefore only a set of
necessary partitions is processed and comparably less cheap read I/O is
saved (Algorithm 4.2).
Searching and iterating data in partitions involves several records of

different types, which indicate an append-based possibility for out-of-place
modifications (as outlined in Section 4.2.1.3). Therefore, several records
potentially exist in different partitions for one logical data tuple, which form a
singly linked list of circumstances. Since partitions are successively processed
from the most recent one to the eldest, circumstances are processed in an
equal order. However, only one record contains a valid value for a logical tuple
– i.e. the most recent (committed) record of a logical tuple is valid1. Assuming
key uniqueness, an equality search operation can break on the first matching
record. Depending on the record type, this has different effects. Record types
with ’matter’ included (Regular and Replacement Record) define the current
value of a logical tuple. Pure ’anti matter’ (Tombstone Record) defines an
invalidation of all logical tuples with an equal key, whereby no matching
value is returned.

......

PBT

2 Maya (51,2)I2 Maya (22,5)T 2 Meggy (4,1)I1 Maya (22,5) (4,1)R0 Maya (3,12)I0 Maya (4,1)I0 Mati (19,2)

A

B C DEF G

Figure 4.14.: Example Search and Next iteration in PBT. Notation: Regular
Records (I), Replacement Records (R), Tombstone Records (T).
An Equality Search for ’Maya’ result in reference pointer values
C (51,2) and G (3,12).

1Race conditions require to be treated by the DBMS, e.g. SI in MVCC as outlined in Section
4.2.5.
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PBT is designed as a full featuring data and index management structure.
Therefore, non-uniqueness require to be covered by the search algorithm
and cursor iterator. Since record types identify a circumstance of a logi-
cal tuple, invalidation by visited Replacement, Anti or Tombstone Records
are collected in cur->anti_matter_map. Distinction of respective logical
tuples is application dependent, as outlined in Section 4.2.1.3 and 4.2.5.
Records are visited by search traversal operations and next calls on

cursor iterator as depicted in Figure 4.14. The search operation traverses
the tree in the most recent partition (2) for a search key ’Maya’ from root
A to leaf and positions the cursor on the Tombstone Record B . Its pure
’anti matter’ ’Maya (22,5)’ is remembered for later occurrence of ’matter’
and the cursor is moved to the next position C . As a result, the cursor is
positioned and the value (reference pointer) (51,2) can be returned. The
next operation positions the cursor on the next matching record. Iterating
the records in PBT by Algorithm 4.3 moves the position to record D , which
is not in the scan condition. The partition number is decremented to (1) and
the partition gets traversed by the search algorithm from A and positioned
at record E . Replacement Records contain ’matter’ (Maya (22,5)) as well
as ’anti matter’ (Maya (4,1)). Therefore, the latter is remembered for later
occurrence. However, the former is already invalidated by the Tombstone
Record B and gets skipped. Finally, partition (0) is traversed from root A to
leaf and the cursor is positioned at record F . Once again, the index record
was already invalidated by E and the cursor is moved to G , which can be
returned. As demonstrated, PBT features full storage and index management
functionalities for equality search.

4.2.3.5. Range Search

Range search is a very efficient operation in trees unlike to other structures.
With a marginal logarithmic overhead of a traversal operation, any required
range span of search keys is obtained by simply iterating records, since they
are already arranged in key sorted order. Therefore, inclusive or exclusive
range spans are defined by a left and a right search key as well as associated
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Algorithm 4.3 PBT – Next
1: function next(PBT_Cursor cur, ...)
2: Output: valid_record
3: Let ske yspar t ← cur→search_condi t ions
4: loop
5: iterate(cur) ▷ move to next position
6: if not getKey(cur) ∈ ske yspar t then
7: break
8: else if cur→record→ t ype not ≡ Regular Record then
9: put(cur→anti_mat ter_map, cur→record) ▷ invalidation

10: end if
11: if not cur→record ∈ cur→anti_mat ter_map then ▷ invalidated?
12: return TRU E
13: end if
14: end loop
15: cur→par t i t ions← precedingPartition(par t)
16: return search(cur)
17: end function

operators.
PBT introduces an advanced level arrangement of search keys, due to

its partitioned keys. Partitioning is transparent to further DBMS modules,
however, it might affect the arrangement of a result set. In keeping with the
example in Figure 4.14, lets take again ’Maya’ as left key and broaden the
query for a right key ’Meggy’ in an inclusive range. In performing similar to
the equality search, the range search first returns C ’Maya (51,2)’, contin-
uing with D ’Meggy (4,1)’ – since it is equal to the right key – and finally
return G ’Maya (3,12)’. Since ’Meggy’ lexicographically follows ’Maya’, the
arrangement in the result set is affected. There are three possibilities to deal
with it. First, the query does not require any sorting criteria at all. Indexes
are applied and utilized for many purposes, e.g. if joining data of different
tables by foreign keys. Assuming an equal development in location of data
over time (e.g. in append-based DBMS), a PBT index returns very fast a
subset of co-located record reference pointers of data tuples in base tables.
These are commonly batch-wise fetched from base table pages and added to
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the result set, while PBT traverses the preceding partition. A well paralleliz-
able query processing with batch-wise semi-sorted tuples is enabled. Second,
if an alpha-numerically sorted result set is required in the query predicates, a
downstream merge sort is applied. It mostly might be an appropriate method
in DBMS indexing, since indexes are version-oblivious and therefore sorting
is not guaranteed. Furthermore, the whole result set is required to enable
a downstream merge sort, wherefore it is rather a possibility for internal
operations. Last, for the presented cursor notation, an online merge sort is
applied. Auxiliary filter structures are tested in order to narrow the probable
number of partitions. For each remaining partition, a separate internally
managed cursor is enabled, and the partitions get traversed in parallel. High
parallelism in Flash based secondary storage devices is leveraged and also
appropriate, since definitively every remaining partition must be checked.
Record keys get compared from the most recent partition to the eldest. If a
record gets returned or a record is pure ’anti matter’, the internally managed
cursor is simply iterated to the next position. Thereby, ’anti matter’ in a more
recent partition causes a preceding partition cursor to iterate, too. In keep-
ing with the example in Figure 4.14, three internally managed cursors are
applied. The Tombstone Record B causes the cursor of Replacement Record
E also to increment. However, E also contains ’anti matter’ and therefore
the last internally managed cursor at Regular Record F is also incremented.
Within one comparison, the cursors are moved from ( B , E , F ) to ( C ,;, G )
and C gets returned. As a result, the internally managed cursor is moved
from C to D . Since the record key of G is lexicographically preceding D ,
it gets returned next and its internally managed cursor is set to ;. Finally,
D is returned and the internally managed cursor is set to ;. The query is
answered in the correct alpha-numeric sort order ( C Maya (51,2), G Maya
(3,12) and D Meggy (4,1)). PBT introduces a location and time preserving
partitioning pattern in append-based DBMS with (semi) sorted record keys.
Furthermore, an online merge sort enables strict alpha-numeric sorted iterable
result sets.
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4.2.3.6. Sorted Insert

Datasets are frequently maintained. Alpha-numerically key-sorted structures,
like B+-Trees, maintain a strict arrangement of records and therefore they
require to move records in nodes, split over nodes andmassively write already
persisted data to secondary storage – which adversely result in random write
patterns and massive WA.

PBT focus insertions in a main-memory mapped fraction of the tree struc-
ture – the most recent partition in the PBT-Buffer – in order to tackle these
issues. Since this area acts like a main-memory B+-Tree, many lock free main-
tenance optimizations become highly valuable, e.g. as outlined in Section
3.1.5.2.

Extension of a dataset is enabled by the insertion of Regular Records in the
most recent partition. Therefore, the partitioned key (first attribute value)
of the insert key is extended by the current most recent partition number
(max_pnr in PBTMeta Data) within the setKey function. A regular B+-Tree
insert operation with a root to leaf traversal is performed in order to find

Algorithm 4.4 PBT – Insert
1: function Insert(PBT_Cursor cur, ...)
2: Output: success
3: Let ske yspar t ← cur→search_condi t ions
4: Let success← FALSE
5: do
6: setPartition(ske yspar t , max_pnr) ▷ memset pnr in key
7: traverse(ske yspar t) ▷ set cursor position
8: acquireWriteAccess(cur)
9: if max_pnr = getPartition(ske yspar t) then

10: cur→record ← formRegularRecord(cur)
11: success← insertInLeaf(cur→record, cur→posi t ion)
12: end if
13: releaseWriteAccess(cur)
14: while not success
15: return success
16: end function
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the insert location and probably acquires write access. Before the record
gets inserted in a leaf node, the partition number in the partitioned key is
compared with the max_pnr in PBT Meta Data. If both are still equal, the
record is regularly inserted in the leaf node. Though, max_pnr might gets
incremented by a concurrent partition switch operation. In this case the
partitioned key of the insert record is modified to match the newly created
most recent partition number and the traversal operation is repeated, since
the formerly set partition became immutable. In principle, just an unchecked
’blind insertion’ is outlined, i.e. a record is sufficiently inserted without any
constraints. However, additional constraints are guaranteed by performing
regular preceding search operations as needed. Partitioning in PBT enables
highly concurrent insertions in main-memory and therefore it guarantees an
append-based sequential write pattern with low WA.

4.2.3.7. Value Update

Data tuples evolve over life time. B+-Trees modify records in place. If the
record search key is not affected by a modification, the value is simply
changed. However, if the record search key is modified, the current record
becomes invalidated (ghost record) and the new record is inserted at its des-
ignated location within the tree structure. Both cases result in modifications
allover the tree structure, yielding a random write pattern and high WA to
secondary storage devices.
PBT handles modifications to a logical tuple by insertions of different

record types – describing circumstances over life time. Insertions of Anti and
Replacement Records underlie an equal constraint to insertions of Regular
Records, i.e. they are directed to the most recent partition. Equal to regular
B+-Trees, modifications affect the value and / or record search keys. In the
former case, a Replacement Record with distinguishing values is sufficient.
Since the record search key is equal to its preceding circumstance (except the
partition number), a downstream search operation is able to assign its ’anti
matter’ to the invalidated circumstance record, as already known from the
equality search example in Figure 4.14. If applicable, still modifiable records
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in the most recent partition are updated in place, equal to regular B+-Trees,
however the invalidation scheme must be respected. In the latter case, a
combination of Anti Record and Replacement Record is applied. Generally,
Anti Records contain the record search key (with most recent partition
number) and value of their preceding circumstance record. Replacement
Records contain the new record search key and value. Therefore, PBT is able
to modify logical tuples over life time without violating the beneficial sequential
write pattern to secondary storage devices.

4.2.3.8. Record Delete

Deletions describe the end of tuple life cycles. Storage and index man-
agement structures adopt different approaches. Records of deleted tuples
get immediately removed or invalidated for later maintenance. PBT apply
Tombstone Records for out-of-place invalidation. Tombstones are pure ’anti
matter’ and contain the record search key of the latest circumstance record
with ’matter’ (except the partition number) as well as its record value. Tomb-
stone Records are inserted in the most recent partition in order to meet the
append-based nature of PBT. If applicable, still modifiable records in the most
recent partition are probably removed (Regular Records) or transformed to
Tombstones (Replacement Records), since preceding circumstances require
to remain invalidated. In keeping with the example in Figure 4.14, the search
algorithm is able to recognize an invalidation of Replacement Record E by
the Tombstone B . Since E still invalidates Regular Record F , all maintained
circumstances of the logical tuple remain invalidated without affecting further
logical tuples like G in indexing non-unique datasets.

4.2.4. Cost Model

PBTs are based on the structure of ubiquitous B+-Trees. Hence, operations in
PBT are subjecting a logarithmic complexity, too. Decisive factor is the height
h of a tree as defined in Equation 3.1. Familiar variables are the average
fan-out F of inner nodes, fill factors of inner fi and leaf nodes fl and the
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required number of leaves LN to store N records. However, there are major
influencing factors. First, size of record search keys in PBT is marginally
increased and therefore LN is adversely affected. If prefix truncation is
enabled (as outlined in Section 4.2.1.2), this factor is decoupled from the
number of records a leaf node potentially contains. As a result, slightly
increased LN is usually negligible (compare SA (100Mio SEQ Load) in Figure
4.15). Second, the number of records N is increased by the number of
modifications (replacements R) to logical tuples – at least temporary as an
intermediate state. Compression of large values might counteract, however
it is a native behavior of out-of-place updating structures and necessary to
achieve a beneficial sequential write pattern. Since it primarily affects LN+R,
which are probably rather located on cheap secondary storage devices, there
are practically no effects on the cache efficiency. Furthermore, the height h is
practically never increased, due to its logarithmic complexity. Last, average
fill factor of immutable inner nodes fi and leaves fl are guaranteed to be
optimal, due to defragmentation on partition switch (outlined in Section
4.2.2). Moreover, this is also valid for mutable leaves in the valuable PBT-
Buffer and referring inner nodes, if flexible page sizes are applied (as outlined
in Section 3.1.5.2). In both cases, fi and fl are approximately equal to

 2E+1
 8E+0
 4E+0
 2E+0
 1E+0
5E-1
3E-1
1E-1
6E-2
3E-2
2E-2
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Figure 4.15.: Comparison of B+-Tree, LSM-Tree and PBT in SA after bulk
load, SA after random insertion and resulting WA.1[RP22]

1Depicted SA factors are based on the actual dataset / update-set size, WA quantifies the
write I/O per operation. Amplification factors in brackets indicate PBT as baseline. All
structures enable prefix truncation and snappy compression. Merges are disabled for
comparability.
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1, due to the low fraction of mutable nodes. In a regular B+-Tree, the fill
factors are among 0.5 and 1, since insertions cause node splits – e.g. in the
experiment in Figure 4.15, five million random insertions in a defragmented
and read optimized B+-Tree cause the structure to excessively increase in
size by a factor of 15.7 to the actually inserted data, since nodes get split and
the average fill factor shrinks. Generally speaking, the height of a PBT hPBT

is under no circumstances larger than the height of a B+-Tree h for massive
amounts of data. However, Equation 3.1 is adapted to PBT by consideration
of modifying replacements (R) in the number of required leaf nodes (LN →
LN+R) and optimal fill factors of nodes ( fi , fl ∈ [0.5; 1]→ fi , fl ≃ 1):

hPBT = ⌈logF× fi

LN+R

fl
⌉ + 1 , F ̸= 1 , LN+R > 1 , fi , fl ≃ 1 (4.1)

Furthermore, search effort in PBT depends on the number of partitions
P – i.e. the number of relevant partitions for the search operation Ps ⊆ P.
Relevant partitions stem from many influencing factors:

• Uniqueness constraints in equality search operation enable PBT to break
partition processing on the first matching record.

• High selectivity of search predicates and datasets in partitions allow the
utilization of auxiliary filter structures.

• Accuracy of auxiliary filter structures (compare Section 4.4.3, Chapter
5).

• The applied search algorithm. Whereas equality search operations with
high selectivity rely on sequential processing and read I/O prevention,
low selectivity queries leverage high parallelism in Flash secondary
storage devices in multiple parallelized traversal operations.

Consequently, parallelizable processing effort is a function of the absolute
number of partitions P and the resulting relevant partitions Ps, denoted as
f(P). Moreover, auxiliary probe costs on up to P filter structures C f il ter_probe

are considered in Pf :
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sPBT ≈ Pf ×C f il ter_probe+ f(P)×log2 (N+R) , f(P) ∈ [1; Ps], Pf ∈ [0; P−1] (4.2)

Overall processing costs increase as a result of partition maintenance. As
outlined in Section 2.1.1, highly parallelized and decentralized processing
units are expected. Since traversal operations in PBT are parallelizable for
each partition, PBT profits from trends in processing units and additional
costs are expected to be manageable. With regards to Equation 2.1, read
I/O costs must be higher rated. Costs of Equation 3.4 are amplified by the
number of partitions P – i.e. f(P) to be precisely – for search operations in
PBT. Certainly, cache efficiency of inner nodes pic is increased in PBT (picPBT

)
compared to evolving structure of regular B+-Trees. Comparing fill factor
of inner nodes fi in Equations 3.1 and 4.1, contained data is reduced up to
50% in B+-Tree, whereas more inner nodes are required to cover underlying
data. This behavior is experimentally evaluated in Figure 4.16, where a
read-only workload is performed upon different number of modifications.
Throughput of PBT is higher in this read-only workload, since it is more
efficient to search several partitions with optimally filled inner nodes rather
than caching partially filled ones. A very similar effect can be observed
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Figure 4.16.: Read-only workloads on tree structures after increasing number
of randomly performed modifications.1

1Relative read-only throughputs are respectively normalized to structures’ initial
throughput (on Consumer SSD, 3 hours steady state random reads). PBT not only preserves
read-only throughput despite from increasing number of filter-protected partitions, but as well
improves due to increased picPBT

in more recent partitions and break conditions in the equality
search algorithm (compare Section 4.2.3.4). B+-Trees suffer from partially filled nodes as
result of random insertions and LSM-Trees suffer from fragmentation in separate components.
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for LSM-Trees (for comparability merge operations are disabled), whereas
an equal fragmentation exist as in PBT, however, root nodes are neither
commonly cached nor its logarithmic capacity is leveraged – i.e. several
root nodes exist with a very low fill factor. Generally, the increased cache
probability of inner nodes (picPBT

> pic) by commonly cached separator keys
allows at least comparable read throughput:

sI/OPBT
≈ f(P)×RI/O×(⌈logF× fi

LN+R

fl
⌉×(1−picPBT

) +(1−plc)) , picPBT
> pic ≫ plc

(4.3)

Since modern Flash based secondary storage devices provide high paral-
lelism for sequential and random read I/O (as outlined in Section 2.1.2) and
traversal operations are known to be parallelizable for each partition, PBT
leverages characteristics of Flash in the search algorithm. Resulting read I/O
could be increased, but well captured by characteristics of secondary storage
devices.

Write I/O is carrying much more weight (approx. RI/O × 10 and probably
resulting erases RI/O × 100), as outlined in Section 2.1.2. PBT treats mod-
ifications to the dataset as insertions of different record types in the most
recent partition. Equal to regular B+-Trees, the insert location is initially
determined by a search operation, however, only the most recent partition
is traversed ( f(P) = Ps = 1). Since leaves are memory mapped anyways as
well as inner nodes in this area have a very high cache probability (up to
100% due to techniques introduced in Section 4.2.2), following is valid for
this operation: picPBT

, plc = 1. Hence, no read I/O costs to secondary storage
devices occur for the insert operation, but related operations like uniqueness
constraint checks or evaluation of preceding circumstances can cause sI/OPBT

as previously described. Write I/O in PBT is caused on sequential write
step of a partition switch operation. Partitions P contain regular records
of newly inserted data (N ∗) and replacements to already existing records
(R) in several leaf nodes L(N ∗+R)P . Furthermore, a number of covering inner
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nodes are processed, which are a sum function of the leaf nodes g(L(N∗+R)P )

with an optimal fill factor fi and fan out F . Therefore, the issued background
WI/O per modifying operation iI/OPBT

is a fraction of the affected nodes of a
partition (as depicted in Figure 4.15 WA (in I/O per Operation)):

iI/OPBT
≈ WI/O ×

L(N ∗+R)P + g(L(N∗+R)P )

(N ∗ + R)P
(4.4)

Worst case modification costs in PBT are updates to the value of a key
attribute. In this case, a search operation with the read costs of sI/O is
required as well as the insertion costs of two records for invalidation of
the old key and validation of the new key. Since PBT leverages sI/OPBT

as
outlined above (compare Figure 4.16), and the much more expensive WI/O

costs are a much less factor in iI/OPBT
than in iI/O (regular B+-Tree cause at

least one WI/O in Equation 3.5), PBT outperforms its competitors B+-Tree
and LSM-Tree.

Even though massive amounts of data and high rate continuous insertion
workloads are assumed, each modification is only written once on a sequen-
tial persistence operation of all leaf nodes of a partition. Therefore, the WA
of every single uncompressed node is equal to 1. This circumstance is valid
whilst SA of invalidated records is manageable on cheap secondary storage
devices and sI/OPBT

is reasonably consistent:

WAPBT = 1 (4.5)

Compression techniques, like prefix truncation or snappy (as applied in
Figure 4.15), enable PBT to shrink WA and SA even further, so that factors
of less than 1 are achieved. B+-Trees exhibit expensive structural modifica-
tions in order to maintain the alpha-numerical sort-order, yielding massively
higher SA and expensive WA (compare Figure 4.15). Contrary, PBT applies
horizontal partitioning with few SA and WA and benefit from structural prop-
erties and modern hardware characteristics on search operations. Thereby
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PBT outperforms LSM-Trees, due to its caching behavior on traversal opera-
tions and slightly improved SA and WA. PBT exhibits beneficial structural
properties compared to its competitors.

4.2.5. Summary

A simple and broadly applicable horizontally partitioned write-optimized
storage and index management structure has been designed in PBT – on base
of the structuring pattern introduced by [Gra03]. Horizontal partitioning
allows to leverage structural properties and modern techniques in B+-Trees
in a very hot fraction of the tree and ultimately enable a beneficial sequential
write pattern with lowWA. (H1), (H2) and (H3) have been theoretically and
experimentally evaluated and have shown major benefits in WA, sequential
write pattern and SA – compared to its competitors B+-Tree and LSM-Tree.
Performance characteristics of fully integrated PBT implementations are
evaluated in benchmark workloads in Chapter 6.
However, PBT is version-oblivious – i.e. visibility check operations rely

on separate DBMS modules. Circumstances over tuple life cycle are well
represented by record types, however, since PBT is able to return probably
visible tuple candidates, anti matter is not able to invalidate preceding
circumstances for several possible transaction snapshots and additional work
is necessary. Therefore, probably memory-exhausting mapping structures
or additional reads to secondary storage devices is required, yielding cache
inefficiency and principally RA to the base table main data store, even though
PBT comes with good base capabilities to cope with amplified pressure of
rolling entry points (introduced in Section 2.4) in version record maintenance.

4.3. Version-Awareness with Multi-Version Partitioned BTree

Multi-Version Concurrency Control (MVCC) is a popular concurrency control
protocol in modern DBMS and K/V-Stores. In combination with Snapshot
Isolation SI, each transaction is able to operate in its individually calculated
snapshot of data. Therefore, several versions of one logical tuple exist – each
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Figure 4.17.: MV-PBT maintains several version records of modifying trans-
actions (T XU{1,2,3}) and returns only the respectively visible one
to each transaction snapshot (T XR and T XU{1,2,3}). [RVGP20]

valid for a different period in time. As outlined in Section 2.3 and listed in
Table 2.1, storage manager beneficially maintain physical representations
of timestamped tuple version records and new-to-old version ordering with
one-point invalidation, since this approach enables directly accessible version
records and a sequential write pattern.
However, since additional access paths are typically version-oblivious,

the version chain in the base table main store requires to be processed
for visibility checking anyways – yielding massive RA on base tables. For
instance, in Figure 4.17, a long-lasting transaction T XR performs a query QR.
In the meantime, tuple t is frequently modified by concurrent transactions
(T XU1, T XU2, T XU3) and successor versions t.v1, t.v2 and t.v3 are created
upon the base version t.v0, which is related T XR’s transaction snapshot. A
version-oblivious index cause 4 random read I/O in base tables in order to
identify the related version.
Especially in case of HTAP with long-lasting analytical processing and

frequent concurrent updates, such version management schemes yield ex-
cessive version chains and massive amounts of transient version records
[MBL17] (illustrated in Figure 4.17) – as high as several hundred millions
in real systems [LSP+16].
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PBT is already able to inexpensively maintain circumstances of logical tuple
life cycles by operation-dependent record types. This behavior correlates very
well with the maintenance of version records (with well known properties
from Table 2.1). Multi-Version Partitioned BTrees (MV-PBT illustrated in
Figure 4.17) fully enable multi-version storage and index management on
base of PBT within a single structure, by:

• strict out-of-place version record maintenance and arrangement
• annotation of validation and/or invalidation timestamp information
• prevention of massive RA by an Index-Only Visibility Check

The featuring objectives of MV-PBT are formulated in following hypothe-
ses:
Hypothesis 4 (H4)
MV-PBT is able to serve as multi-version store on modern hardware.

Hypothesis 5 (H5)
MV-PBT amplifies selectivity for version records and prevent from massive RA
on base tables by an Index-Only Visibility Check.

In doing so, MV-PBT still retain horizontal partitioning andwrite-optimization
characteristics of PBT, defined in (H1), (H2) and (H3) and features multi-
version capabilities in (H4) and (H5).

4.3.1. Applying Multi-Version Record Types

MV-PBT likewise features modifications to logical tuples over their life cycles
by inserting different index record types introduced in Section 4.2.1.3 in the
most recent partition. Thereby it is ensured, that MV-PBT is a fully featuring
multi-version storage as well as index management structure with native non-
uniqueness and multi-attribute treatment. In order to provide multi-version
capabilities, the record types are annotated with the transaction timestamp
of the inserting transaction, either for validation of the new version record
and/or invalidation of the predecessor version record (depicted in Figure
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4.18. F ). Thereby, an (index-only) visibility check is able to determine the
visibility of each version record to a transaction snapshot (described in
Section 4.3.6). Multi-version record types are generally declared by flags1
in the record header (Figure 4.18. A ) and are described as follows:

Regular Records describe the begin of a tuple life cycle, hence there is
no predecessor version record. It consists of a B partition number, one or
several C key attribute values, a D record value as well as a F transaction
timestamp for validation. The transaction timestamp is obtained by the
inserting transaction. Key attribute values and the record value are defined
by the schema, application and operation on data. For instance, the physical
reference to the version record in base table is stored in the D validation
record value.

Replacement Records describe the modification of a value attribute of a
predecessor version record, which is referencing a logical tuple. It consists
of a B partition number, one or several C key attribute values, one D or
two E record value(s) and a F transaction timestamp for its validation by
the modifying transaction as well as logical invalidation of its predecessor
version. Likewise, the partition number is the most recent partition number.
Since MV-PBT requires to conserve predecessor version for a period of time,

Attribute 1PNr Attribute n
...

Validation 

Record Value

Transaction 
Timestamp

Rec.

Type

Regular Search Key

Partitioned Key inclusive 
Partition Number (PNr)

Additional Regular Search 
Keys (optional)

Stored Record Value or
RecordID(s) depend on Record Type,

additional constraintsand application

MVCC Validation 
(compressible

and truncatable)

Invalidation
Record Value

Record
Header

A B C D E F

Figure 4.18.: Basic structure of a Multi-Version Record Type. Dashed ele-
ments are optional or truncatable.

1According to Section 4.2.1.3, 2 bits in the record header are sufficient, one as ’replacement
indicator’ and another as ’pure anti matter’ – i.e. Regular Records ’00’, Replacement Records
’10’, Anti Records ’11’ and Tombstone Records as ’01’.
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altering a principally modifiable existing predecessor in place is impossible,
therefore maintenance of several Replacement Records of a logical tuple within
a single partition requires special arrangement conventions, as outlined in
Section 4.3.5. Unlike to version-oblivious PBT, MV-PBT is able to perform
an (index-only) visibility check, hence it must be possible to retrace version
chains without indirection layers. A D validation record value stores the
modified value and the E (truncatable) invalidation record value stores the
predecessor value – e.g. in case of index management, the physical reference
of the new tuple record and the predecessor tuple record in base table are
stored.

Anti Records describe the invalidation of their predecessor version on
modification of key attribute values and are utilized in combination with
Replacement Records, since different record search key replacements are
not sufficient to invalidate predecessor versions. It consists of a B parti-
tion number, C one or several key attribute values, at most E one record
value and a F transaction timestamp for invalidation. Key attribute values
and (truncatable) invalidation record value are obtained by the invalidated
predecessor version.

Tombstone Records describe the end of a tuple life cycle on deletion,
hence no successor version is possible. It consists of a B partition number,
C one or several key attribute values, at most E one record value and
a F transaction timestamp for invalidation. Equal to Anti Records, key
attribute values and (truncatable) invalidation record value are obtained by
the invalidated predecessor version.

4.3.2. Version-Aware Record Sizes and Compression Techniques

Functionality in MV-PBT increase by the cost of larger record sizes. Conse-
quently, less records are potentially stored per leaf node. However, additional
storage costs are diminished, due to several compression and truncation
techniques.
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Apply Timestamp Offsets. Transaction timestamps are compressible. Par-
titions are frequently switched, which is why they are active for a limited
number of transactions. Applying a minimum transaction timestamp to each
partition in its meta data allows a compressed delta representation in each
record – e.g. an 8 byte transaction timestamp can be restored from singly
stored meta data and 2 byte delta per record for 216 transactions.

Invalidation Value Truncation. Invalidation record values are truncated,
if MV-PBT is applied as storage management structure or a primary key or
uniqueness constraint is defined, since the search key value is sufficient to
retrace version chains. Auxiliary secondary indexes without uniqueness con-
straints require invalidation records anyways, however, physical references
are relatively small.

B+-Tree Compression Techniques. Dense-packing techniques (outlined
in Section 4.2.2) are applied on partition switch – i.e. prefix truncation and
optimal fill factor with required records are guaranteed.

Transaction Timestamp Truncation. While dense-packing, transaction
timestamps, which are obsolete for visibility checking, i.e. visible to every
active transaction, are completely truncated.

As a result, space requirements in MV-PBT only slightly increase compared
to PBT, however, one-point invalidation by multi-version record types allow
(index-only) visibility checking in version-aware basic operations.

4.3.3. Logical Version Chain in evolving MV-PBT

In B+-Tree structures, records are not fixed to a determined physical refer-
ence, since an alpha-numeric sort order is maintained. Hence, in MV-PBT,
physical references to a predecessor version record in new-to-old ordered
version chains (as outlined in Section 2.3.1.2) are not an option.
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MV-PBT introduces a logical new-to-old version chain approach – i.e. ver-
sion records are rather logically built on query execution as part of the search
operation (outlined in Section 4.3.5) than maintaining physical references
to predecessor versions.

Physical references to predecessor versions are generally maintained by a
record id consisting of block and slot offsets, beginning with an entry point.
However, this presupposes that predecessor versions remain unchanged at
a specific location. In a B+-Tree structure, exact block and slot offsets are
unlikely to be stable, since they maintain a lexicographically sorted set of
records. Actually, it is sufficient to know predecessors record search key to
find them by a cheap traversal operation in the tree structure. Assuming the
transaction processing purpose of version record maintenance in MVCC with
SI applying DBMS, it is rather useful to identify snapshot related version
records (lateral entry) than identifying whole version chains of one logical
tuple, which is more relevant to administrative processes, like garbage
collection.

Logical referencing of version chains in MV-PBT offers several advantages.
First, even if evicted immutable partitions are persistent, modifications to a
logical tuple occur independent from partition switching, and indeed proba-
bly more frequent, wherefore predecessor versions are unlikely to be located
at their final block and slot offset, since records are sorted by their search key.
An indirection layer from logical tuple to volatile version record physical ref-
erences is neither desirable nor necessary. Second, logical tuples are searched
in a tree structure based on their search key attributes. Thereby the relation
to a transaction snapshot of a version record is relevant and not its entire
history or entry point (except for modifications). Version records relation
to transaction snapshots is cheaply calculated (outlined in Section 4.3.6) as
part of the search operation (outlined in Section 4.3.5) due to the ordering
properties of MV-PBT. Last, version chain information is logically comprised
and can be restored by scanning partitions – i.e. administrative operations
are incidentally able to interlink version chains on partition switching or
statistics generation.
Logical new-to-old version chains in MV-PBT are based on several infor-
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mation. Record types (i.e. the underlying operation), the search key attribute
values, validation and invalidation record values and the transaction times-
tamps. For linkage between version records, their relation to a logical tuple
must be identified by unique information, however, a separate virtual identi-
fier (VID [GPHB17]) is not required. Record types, which modify a logical
tuple, contain an invalidation record value, which is equal to their predeces-
sors validation record value. Moreover, either the search key attribute values
are equal to its predecessor or an Anti Record with an equal invalidation
record value as well as transaction timestamp exist. Ordering of committed
transaction timestamps is known, wherefore the most recent version record of
a logical tuple is identified as entry point and already accessed predecessors
can be appended. Additional primary key or uniqueness constraints simplify
the linkage process, since the search key attribute values already imply unique
logical tuple assignment and invalidation record values are truncated.

Example Logical Version Chain Reconstruction. For instance, in Figure
4.19 several operations on a logical tuple are performed as described in
Section 4.3.5. 1 Transaction T XU0 creates a logical tuple by inserting
a Regular Record with the search key 7 in MV-PBT as additional access
path with references to a base table R. An equal key Replacement Record is
modifying the tuple by generating a new version 1 in 2 transaction T XU1.
3 Transaction T XU2 performs a search key update by inserting an Anti
Record with for invalidation of 2 and a Replacement Record with the new
search key attribute value 1. Finally, the tuple gets deleted by the insertion
of a Tombstone Record in 4 .
In this example, transactions are known to have an ascending order, so

for new-to-old ordering, the most recent transaction number T XU3 describes
the invalidation of version record with the entry point to the logical tuple
on reference t.v2. It is found first by traversing and iterating from P1 to P0.
Proceeding the scan lead to its invalidated predecessor version with an equal
search key attribute value and validation of t.v2, but also an invalidation of
the version record reference t.v1. Since there is no further equal search key
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Transaction TXU0: insert

INSERT INTO r VALUES (7, 'V0'); 

Transaction TXU1: non-key update

UPDATE r SET z='V1' WHERE a=7;

Transaction TXU2: index key update

UPDATE r SET a=1 WHERE a=7;  

Transaction TXU3: delete

DELETE FROM r WHERE a=1; 
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Figure 4.19.: Logical Version Chain Maintenance in MV-PBT. [RVGP20]

record with this version record reference value, there must be one Anti Record
with a different search key. This Anti Record is identified by scanning P1

until the search key attribute value 7. The occurrence of this record implies
a modification of the search key attribute value from 7 to 1 between tuple
versions t.v1 and t.v2 by transaction T XU2. Continuing the iteration lead to
the Replacement Record inserted in 2 by means of validation of tuple version
t.v1 and invalidation of t.v0 in transaction T XU1. Finally, the Regular Record
is found in P0, which is describing the oldest version record. The new-to-old
ordered version chain can be reconstructed, based on information within the
MV-PBT, with an equal result to the physically maintained version chain in
Table R.1

1According to Section 2.3 and Table 2.1, the assumed version chain is maintained by
physically materialized and new-to-old ordered version records with one-point invalidation
model in the base table, however design and implementation details possibly differ but have no
impact on the comprised information. Hence, a general base table design is illustrated in
Figure 4.19. MV-PBT represents equal information in a logically maintained version chain.
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4.3.4. In-Partition Version Record Ordering Convention

Within search operations it is necessary to identify invalidation of a version
records before their validation, therefore MV-PBT applies version record
ordering conventions.

New-to-old version record ordering must be guaranteed by version-aware
basic operations. This behavior can be achieved in different ways (depicted
in Figure 4.20).

Leveraging Reversed Succession of Partitions. A naive approach could
be to simply continue the partitioning scheme by the maintenance of several
main-memory partitions – i.e. a separate partition for each new successor
version record of a logical tuple (depicted in Figure 4.20. 1 , partition num-
bers 1, 2 and 3). While searching all partitions from the most recent one to
the lowest numbered, the version records are processed in the desired new-
to-old ordering scheme and the version chain is natively reconstructible ( B ,
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Figure 4.20.: Version Record Ordering features correct representation of
Version Chain.
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C , D ). However, load imbalances yield massive occurrence of additional
sparsely filled main-memory partitions. Since main-memory partitions are
only protected by cheap partition fence keys (min/max key in each parti-
tion, outlined in Section 4.4.3) as well as minimum transaction timestamps
of comprised version records and no further more accurate auxiliary filter
structures, resulting fragmentation is fully sweeping on operation costs, due
to multiple traversal operations (respectively from A to B , C and D ). As
a worst case scenario, for instance, a tuple with a lower and an other with a
higher sorted key are modified X times whilst other tuples remain constant
yield up to X + 1 main-memory partition traversal operations for any oper-
ation on other tuples, since cheap partition fence keys become ineffective
– even if every version record is located on a single leaf node. In order to
avoid multiple traversal operations, excessive garbage collection of transient
version records and comprised reorganization would be necessary.

Alpha-Numeric In-Partition Ordering. A more intelligent way to arrange
successor version records in MV-PBT is an in-partition ordering conven-
tion of searching and inserting operations (depicted in Figure 4.20. 2 ).
Thereby, equal search key successor records are simply placed to be found
first on search operations. For instance, a MV-PBT inserts new records
leftmost to other equal search key records on modification, whereby an
equal ordered search criteria result in first accessing most recent version
records of any type (only one traversal from A to B and iterating to C
and D ) – contrary ordered search criteria need special treatment, whereby
a reverse iterator requires to access the leftmost equal search key record
first. Even if this approach is applicable in most B+-Tree variants with-
out precautions, it is not without disadvantages. Range search operations
need to process several version records which are not visible to its transac-
tion snapshot, since temporal evolution is intermingled with actual data.
For instance, if B Version 3 in Figure 4.20. 2 is visible to a range search
transaction snapshot (e.g. TXV3: SELECT (*) FROM ’table’ WHERE
’attribute’ BETWEEN ’Maya’ and ’Meggy’;), C Version 2 and D Ver-
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sion 1 are processed (but not returned) as part of the next operation (com-
pare Algorithm 4.3 and in addition Section 4.3.5), even though they are
already invalidated by B Version 3.

Leveraging In-Memory Update Lists. Separation of temporal evolutionary
version records and actual data can be achieved by leveraging modern B+-
Tree techniques [Gra11; Mon21]. Equal key version records of one logical
tuple build a update list, which is referenced in a main-memory leaf node
of the most recent partition (depicted in Figure 4.20. 3 ). These update
lists are purged as part of the reconciliation process in the partition switch
dense-packing phase (Section 4.2.2), whereas the regular disk layout of still
required version records is restored. For immutable persistent partitions the
version ordering conventions 1 and 2 are applied.

However, this approach brings major benefits. First, binary search costs
on traversal of the most recent partition are reduced to a function of the
actual dataset, since comparisons are reduced to one per logical tuple in this
partition. Obviously, modifications to a key attribute of a logical tuple require
separate update lists. Nevertheless, the number of comparisons in a binary
search are principally independent from the number of version records.
Second, iterators in range searches are able to skip new-to-old arranged
predecessor version records of a logical tuple in the most recent partition as
if the visibility check identified the visible version record to the transaction
snapshot. For instance, if B Version 3 (in Figure 4.20. 3 ) is visible to a
transaction snapshot, neither C Version 2 nor D Version 1 are processed
by the iterator. Therefore, processing effort of range search operations is
independent from the number of predecessor version records. Obviously,
successor version records require to be processed anyways in a new-to-
old version ordering as part of the visibility check. Third, in combination
with other modern B+-Tree techniques, like flexible page sizes (outlined in
Section 3.1.5.2), this approach massively reduces maintenance operational
effort, e.g. record movement, since it is delayed to a single reconciliation
process on partition switch in MV-PBT. Last, version records are co-located in
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update lists, whereby visibility checking is simplified and accelerated. Other
approaches might intermingle equal key records of different logical tuples.
Challenges in in-partition version ordering conventions are well covered by
modern B+-Tree techniques, which are leveraged by MV-PBT.

4.3.5. Version-Aware Basic Operations

MV-PBT combines basic PBT operations and desirable storage management
properties from Table 2.1 in Section 2.3 for storage as well as index man-
agement. This means for the former that MV-PBT adopts a new-to-old or-
dering approach (Section 2.3.1.2) of physically materialized version records
(Section 2.3.1.1) with logical out-of-place update scheme and one-point in-
validation model (Section 2.3.1.3). Similarly, MV-PBT as index management
structure applies physical references to version records in an equal arrangement
for additional access paths.
Subsequently, basic operation extensions are outlined on base of stan-

dard PBT. Therefore, the cursor based notation introduced in Section 4.2.3
can be applied without cautions. However, a pbt_cursor is extended by
snapshot_information of the DBMS for native visibility checking (out-
lined in Section 4.3.6) by equality and range search operations. The required
transaction timestamp information is provided by the utilized record types
(outlined in Section 4.3.1) by modifying operations.

4.3.5.1. Modifying Operations

In MV-PBT, every modifying basic operation is performed by an out-of-
place insertion of a new version record in the most recent partition with
in-partition ordering convention (outlined in Section 4.3.4), since preceding
version records are probably still required by concurrent transactions. Version
record types are formed by the basic operation, its transaction timestamp
and user or application defined search key and value attributes. Thereby it
is necessary, that logical version chains (Section 4.3.3) are unambiguously
interpretable by the search algorithm. Based on the equal preconditions of
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• Sorted Insert
• Value Update (to Search  Key Attributes)
• Record Deletion

Modifying Basic Operation

• Provided by User / Application / DBMS Modules
• Possibly  by prior Search/Scan  Operation

Gather required Information

• Most recent Partition Number
• (Search Key) Attribute Values (also for Invalidation of Predecessor)
• Transaction  Timestamp

Form Multi-Version Record

• Search for Insert Location by a regular Root to Leaf Traversal
• Position left to the leftmost equal key Record
• Regular Insertion of Version Record

Regular B⁺-Tree Insertion of the Record(s)

Table 4.1.: Modifying Operations likewise perform Insertions of different
timestamped Record Types and build a logical Version Chain.

modifying operations (sorted insert, value update, value update to search
key attributes and record deletion), their similarities, i.e. regular insertions
of individually generated records in the most recent partition, are concisely
listed in Table 4.1 and their particular characteristics are outlined in the
following.

Sorted Insert. This operation is performed on the beginning of a logical
tuple life cycle, wherefore a Regular Record type is applied. User or applica-
tion defined predicates are passed in the appropriate search key and value
fields. The most recent partition number is utilized in the partitioned key
and the current transaction timestamp is added to the version record. A root
to leaf traversal is performed and positioned left to the leftmost equal key
record in the most recent partition and the Regular Record is inserted by a
regular B+-Tree insert operation. For instance, a Regular Record is inserted
into partition P0 with the search key attribute value 7 and physical reference
to version record t.v0 as value by transaction T XU0 (compare Figure 4.19
1 ).
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Value Update. Updates define modifications to attribute values of logical
tuples. Replacement Records are possibly inserted without searching for
predecessor versions (blind insertion) or are generated on base of a result
set of a prior search operation. Both approaches are applied in modern K/V-
Stores. For instance, it could be designed for fast storage of modifications to
the dataset and allows to logically overwrite records by simply inserting a
new equal key record out-of-place (blind insertion), however, it also supports
to update a set of qualified logical tuples, whose information is gathered by
a prior scan of auxiliary access paths and complex predicates. Also, the most
recent partition number is utilized in the partitioned key, the appropriate
search key and value fields are filled by the gathered information and the
current transaction timestamp is added to the version record. Based on the
application, its Invalidation Record Value is filled or gets truncated. Finally,
the Replacement Record is inserted at its designated position (compare Figure
4.19 2 ).
Value Update to Search Key Attribute Values. In case of modifications to

the search key attribute values of a logical tuple, the predecessor version
additionally must be invalidated by an equal search key Anti Record in the
most recent partition. Validation Record Values are not applied in this record
type, since it is pure anti matter, however, the Invalidation Record Value
is filled with its predecessor record value or gets truncated. The current
transaction timestamp is added to the version record, which is inserted at
its designated position (compare Figure 4.19 3 ).

Record Deletion. Deletions describe the end of a logical tuple life cycle,
which is performed by the insertion of a Tombstone Record. It is formed by
the most recent partition number, its predecessor key attribute values, a
probably truncatable Invalidation Record Value and the current transaction
timestamp. Finally, it is inserted at its designated position (compare Figure
4.19 4 ).
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4.3.5.2. Query Operations

MV-PBT search operations are principally equal to its base PBT variant, but
with the addition of an included visibility check. Therefore, the result set of
MV-PBT equality and range search operations only include visible version
records of logical tuples instead of record candidates.

Partition Selection and Cursor Positioning. MV-PBT performs root to leaf
traversals on a (sub-)set of partitions by manipulating the partition number
in the partitioned key. The (sub-)set of partitions gets selected by probing
auxiliary filter structures (outlined in Section 4.4.3). Partitions are logically
processed from the most recent to the lowest numbered one, however, based
on the selectivity of query predicates, sequential or merge sort approaches
are performed (as outlined in Section 4.2.3).

Generating Snapshot Result Sets. Version ordering is crucial for multi-
version search operations in one-point invalidating new-to-old ordering
approaches. Accuracy is guaranteed by invalidation via Anti Records on
modifications to the search key attributes (Section 4.2.1.2), in-partition
ordering conventions (Section 4.3.4) and the logical sequence of searched
partitions from most recent to the lowest numbered one (Section 4.2.3).
Search operations iterate the version records of traversed (sub-)sets of parti-
tions and operate based on the visibility to its transaction snapshot. ’Invisible’
version records are simply skipped, ’visible’ invalidation is added to the
anti_matter_map introduced in Section 4.2.3 and ’visible’ and not invali-
dated version records are added to the result set.
For instance, an Anti Record is visible to a transaction snapshot in an

equality or range search, even if its predecessor’s search key attributes have
been modified and predecessor versions can be excluded on base of the
anti_matter_map. However, its successor version is not directly known by
the Anti Record (Section 4.3.3). Indeed, by altering the search predicates
it is still possible to find and return its successor version to the result set,
if its timestamp is within the transaction snapshot – independent from
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its predecessor’s invalidation by the Anti Record. On the other hand, an
Anti Record is not visible to a transaction snapshot of a prior started range
search and becomes simply skipped without adding its information to the
anti_matter_map. This concept of invalidation is valid within one as well as
across several partitions.

HTAP Query Processing Characteristics. HTAP workloads comprise of
short-running OLTP as well as long-lasting OLAP queries. In this context, the
presented search algorithm behaves different for both workload categories.

Version records near the version chain’s entry point are likely to be related
to OLTP transaction snapshots in a new-to-old version ordering. In MV-PBT,
partitions that comprise these version records are likely to be accessed first,
since partitions are processed from most recent to the lowest numbered one.

However, the outlined behavior would not be beneficial in case of concur-
rently executed long-lasting OLAP queries. Since OLTP transactions create
several successor versions and partitions as well, downstream commands
in OLAP could require to process several partitions without related version
records. Minimum transaction timestamp of comprised version records are a
lightweight auxiliary filter structure (compare Section 4.4.3), which is able
to skip partitions that are created after a transaction started – i.e. partitions
with higher minimal transaction timestamp than the executing transaction
are entirely skipped. A lateral entry to the related version record is achieved
with minimized search and traversal costs, hence MV-PBT optimally supports
both characteristics of HTAP queries.

In order to identify excluded and included version records to a transaction
snapshot, a visibility check is required. MV-PBT is able to natively perform
visibility checks as part of its search operation while iterating and probing
version records within the search criteria.
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4.3.6. Index-Only Visibility Check

MV-PBT facilitates amplified load of timestamped version records treatment
for storage as well as index management with the goal of native multi-version
visibility check support – i.e. the result set of equality and range search
operations in MV-PBT is natively reduced to the version records, which are
visible to a transaction snapshot.

4.3.6.1. Incidental Multi-Version Visibility Check in MV-PBT

Modifications in MV-PBT to a logical tuple are treated as insertion of a version
record of different types (outlined in Sections 4.3.1, 4.3.5) in the most recent
partition. Thereby it is ensured that version records of one logical tuple are
processed in a consistent succession, since a new-to-old version ordering
(Section 2.3.1.2) with one-point invalidation (Section 2.3.1.3) is applied.
However, within logically maintained (Section 4.3.3) and processed version
chains (Section 4.3.5) of logical tuples, search operations need to determine
the visibility of each version record to its transaction snapshot.

Visibility Checks fit in with MV-PBT Search Operations. MV-PBT natively
supports usual visibility checks within search operation iteration processes.
Similar to invalidated records by anti matter, transaction snapshot’s unre-
lated version records are skipped on iteration, wherefore the visibility check
operation (Algorithm 4.5) fit in with this process in search (Algorithm 4.2
lines 9 to 12) and next (Algorithm 4.3 lines 8 to 11) operations. In order to
identify relevant validating or invalidating version records, visible transaction
timestamps to a snapshot of transaction TXCurrentT x Id require to be known
by the DBMS. Generally, in MVCC with SI, already committed transactions
before transaction TXCurrentT x Id has started as well as TXCurrentT x Id ’s inherent
modifications belong to TXCurrentT x Id ’s transaction snapshot – i.e. version
records of concurrently executed or aborted1 transactions are unrelated

1Transactions are possibly aborted and rolled back by user request or the concurrency
control protocol, however, inserted version records remain existent until they are garbage
collected.
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Algorithm 4.5 MV-PBT Visibility Check
1: function VisibilityCheck( Cursor cur)
2: Input: Cursor position information
3: Output: visibil i t y to transaction snapshot
4: ▷ linkage information of version record (Section 4.3.3)
5: Let recI D← getVChainFields(cur→record)
6: if queuedForGC(cur→record) then ▷ (Section 4.4.2)
7: return INV ISIBLE
8: end if
9: if not precedes(cur→record→ ts, CurrentT x Id) or

isConcurrent(cur→record→ ts, CurrentT x Id) then
10: return INV ISIBLE
11: end if
12: if tsanti ← get(cur→anti_mat ter_map, recI D) then
13: asser t(precedes(cur→record→ ts, tsanti)) ▷ (Section 4.3.4)
14: checkForGC(cur→record) ▷ (Section 4.4.2)
15: return INV ISIBLE
16: end if
17: if containsAntiMatter(cur→record) then ▷ (Sec. 4.2.3, 4.3.5)
18: put(cur→anti_mat ter_map, recI D, cur→record→ ts)
19: end if
20: if containsMatter(cur→record) then
21: return V ISIBLE
22: end if
23: return INV ISIBLE
24: end function

TXCurrentT x Id ’s transaction snapshot.

Background: MVCC Transaction Snapshot. In order to calculate the snap-
shot state of transaction TXCurrentT x Id , its inherent timestamp (CurrentTxId in
Algorithm 4.5) and transaction numbers of concurrently executed transactions
are captured at the beginning of a transaction. Moreover, the DBMS keeps
track of aborted transactions. Possibly additional information is considered
for performance reasons, like the lowest numbered uncompleted concurrent
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transaction or conclusive record flags for invisibility1 (Algorithm 4.5 line
6). By this means, a consistent logical succession of transaction numbers is
provided and potentially related and visible version records are identified by
their creation timestamp.

Determine Version Record’s Visibility. Solely by the record information
(Cursor cur→record) and existent snapshot state information, an usual
visibility check is incidentally performed (compare Algorithm 4.5 line 9). Log-
ical succession of committed transactions, CurrentTxId as well as transaction
numbers of concurrently executed transactions are known by the snapshot state.
Version records with unrelated transaction timestamps are skipped by a nega-
tive visibility check (INVISIBLE), i.e. a record is unrelated to TXCurrentT x Id ’s
transaction snapshot, if cur→record→ts not precedes CurrentTxId or
cur→record→ts’s transaction concurrently committed after TXCurrentT x Id

started.
Nevertheless, one-point invalidation cause record invalidations to be per-

formed out-of-place, which are potentially related to a transaction’s snapshot.
MV-PBT’s version record ordering (Section 4.3.4) in the logically maintained
version chain (Section 4.3.3) facilitate a consistent collection of related in-
validations (anti_matter_map), whenever a record is accessed. Potentially
related ’anti matter’ is first iterated by the search algorithm (Section 4.3.5)
and added to anti_matter_map in Algorithm 4.5 lines 17 to 18 – i.e. its
unique record id is put as key and its transaction timestamp as value to the
anti_matter_map. Subsequently accessed ’matter’ is probed for invalidation
in the anti_matter_map in Algorithm 4.5 line 12. Unrelated ’anti matter’
to a transaction snapshot is already skipped by the incidentally performed
visibility check in Algorithm 4.5 line 9. By this means, only VISIBLE records
with ’matter’ are added to a transaction snapshot’s result set.

MV-PBT is natively able to incidentally perform visibility checks as part of

1Records can be queued for garbage collection, whenever an obsolete record (invisible to
any active transaction snapshot) is checked for visibility (compare Algorithm 4.5 line 14 and
Section 4.4.2)
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its search algorithm. Necessary information is entirely contained on access to
version records in order to compare their visibility to a transaction snapshot.
MV-PBT enables preferable append-based storage characteristics listed in Table
2.1 and Flash leveraging search operations, which yield an alpha-numerically
sorted result set of version records, hence (H4) is entirely confirmed.

4.3.6.2. Amplified Selectivity of Indexes in DBMS applying MVCC

Most popular traditional index structure in DBMS is the version-oblivious
ubiquitous B+-Tree of which records reference the entry point of a version
chain in base tables. It is only capable to return a set of tuple version can-
didates, wherefore the integrity of its result set is guaranteed, however,
visibility checks and potential sorting requirements require additional in-
formation spread along several base table blocks. As a result, its native
capabilities are limited and maintenance costs are amplified, due to multi-
version requirements.

MV-PBT is able to return an alpha-numerically sorted result set of qualified
version record attribute values and physical references to base table records
while leveraging characteristics of modern hardware technologies. These
capabilities yield optimal selectivity of queried result sets and minimized RA
on base tables, wherefore MV-PBT is highly qualified as indexing structure
in DBMS applying MVCC and SI. Benefits of version-aware indexing with
MV-PBT as additional access path to data in base tables are as follows.

Cache Efficiency in Index-Only Visibility Checks. Index records are
generally much smaller than version records in base tables, since only indexed
attribute values are stored. Furthermore, records that correlate in search key
attribute values and creation time are co-located and beneficially processed
for both types of HTAP workload characteristics (compare Section 4.3.5).
Hence, probing in a small set of searchable sorted index records for visibility
is more cache efficient than probing randomly spread large sized tuple
version records.
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Index-Only Scans. Version-aware indexes allow direct return of queried
attribute values without checking their visibility in base tables. Result sets
are created upon indexed attributes, whereby RA on base table can be
completely avoided.

Minimizing Successive Read I/O. Once the set of partitions is traversed,
relevant tuple version records are directly accessible without the need of an
indirection layer or processing randomly spread tuple version chains. The
number of successively read base table blocks is optimized.

Direct Access to Relevant Version Record. Update-intensive datasets
are saturated by tuple versions that are not related to current transaction
snapshot. Performance robustness for long version chains of MV-PBT is a
basic prerequisite for analytical processing in HTAP.

Experimental Evaluation. In order to proof outlined characteristics of
MV-PBT as additional access path, an experimental evaluation in an OLTP
scenario (depicted in Figure 4.21a) as well as in an HTAP-like micro scenario
(depicted in Figure 4.21b) is given.

In the first scenario, PostgreSQL 9.0.4 (baseline with an old-to-new or-
dering scheme and co-located version records in base table (HOT)) and
PostgreSQL with SIAS (new-to-old version ordering and one-point invalida-
tion model) and respectively applied B+-Trees, PBT orMV-PBT are configured
with a fair buffer size of 600MB (since cache hit rates are higher than 80%)
for a TPC-C-like benchmark loaded with a dataset of 1500 warehouses. Read
I/O and cache hits are measured for an equal number of transactions for
base table and index nodes. First observation is made by comparing the
baseline with SIAS (Figure 4.21a). Indexing effort in SIAS is amplified by the
new-to-old ordering scheme with a rolling entry point and yield a larger set of
index records, hence the number of accessed index nodes increase compared
to the baseline. Furthermore, the visibility check in the append-based base
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(a) Cache Hit and Block Read Statistics in an OLTP Workload.

(b) MV-PBT facilitates robust Search Performance Characteristics.

Figure 4.21.: Potentials in Version-Aware Indexing.

table storage require successive block accesses to solve the version chain
contrary to HOT, where version records are co-located by the cost of random
write I/O. Combined effects increase the block accesses on index nodes by
40% and on table nodes by 60%, thus additional accesses are well cached,
due to TPC-C’s skewed workload. However, potentials of SIAS are restricted
by index maintenance and successive reads of visibility checks.
PBT as version-oblivious write-optimized index yield doubled node ac-

cesses, due to unqualified partitions for data skipping. However, increased
index usage is intended and accesses are well cached by the PBT-Buffer,

132 4 | Multi-Version Partitioned BTree



wherefore additional read I/O indicates a slightly diminishing cache prob-
ability in immutable preceding partitions and base tables, due to lessened
common database buffer share. Reads on index nodes in version-aware
MV-PBT behave similar to PBT with slightly increased number of accesses,
due to larger uncompressed version record sizes. Likewise, block read I/O
on base tables is increased, due to the MV-PBT-Buffer, however, absolute
block accesses decrease to an equal amount as in the co-located HOT version
management scheme, which indicates direct access to the related tuple
version record and optimized selectivity of the result set. Even in case of
short version chain lengths in an OLTP workload, MV-PBT is able to massively
reduce accesses to base table, due to optimized selectivity. Accesses could be
further reduced by building projections based on indexed attributes what is not
depicted, due to limitations of the query processing engine.

Query execution characteristics of long-lasting analytical query processing
in HTAP are considered in Figure 4.21b. For simplicity, a YCSB workload
is configured to perform updates and scans on a user table to generate a
background load. Qualified measurements are frequently performed every
30 seconds by an equality search. The version chain length is concurrently
increased by creation of successor versions belonging to the designated tuple.

By means of new-to-old version ordering, the long-lasting equality search
needs to process the version chain from its entry point to the designated
version record for the introduced indexing structures. Measurements are
proportionally depicted to B+-Trees initial query performance. B+-Trees
initially perform well, however decrease rapidly as the version chain grows.
Successively accessing randomly spread base table pages lead to a massive
performance drop, even in case of short version chain lengths. PBT gener-
ally exhibit a similar trend, however, query performance benefit from reduced
occupancy of the secondary storage device, due to beneficial write patterns.

MV-PBT exhibit robust performance characteristics1 – independent from
the version chain length, since visibility checks on small sized, temporally

1Exceptional performance degeneration in case of 0 successor versions (Figure 4.21b)
indicate initial lower cache probability of inner nodes, due to 20% smaller common database
buffer / inclusive MV-PBT-Buffer.
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co-located, laterally entered and searched index version records avoid suc-
cessive access to randomly spread tuple version information in append-based
base table storage by cheaply amplified selectivity in MV-PBT.

MV-PBT natively optimize selectivity of result sets in additional access paths
by cost-efficient index-only visibility checks. This is accomplished in a structure,
which leverages characteristics of modern hardware technologies, wherefore
MV-PBT is highly qualified as additional access path in DBMS applying MVCC
with SI. (H5) is entirely confirmed.

4.3.7. Summary

MV-PBT natively leverages query features of PBT in order to perform (index-
only) visibility checks based on horizontally partitioned timestamped record
types. Append-based storage management coincide with multi-version
record maintenance, whereby MV-PBT features beneficial capabilities to
serve as multi-version store on modern hardware technologies and (H4) is
confirmed. Moreover, (H5) is confirmed, since native visibility checks enable
an optimized selectivity of accurately queried result sets, wherefore MV-PBT
is an appropriate indexing structure in DBMS applying MVCC and SI.

4.4. Workload Adaptiveness and Optimizations

PBT and MV-PBT are temporally evolving storage and index management
structures with horizontal partitioning and out-of-place modifications aiming
for a beneficial sequential write pattern as well as optimizedWA. Even though
this is a very desirable feature for load consumption of modifying operations,
queries suffer from immoderate fragmentation and SA. However, evolved
fragmentation is not necessarily the final horizontal partitioning.

Physical in-place modifications, movements or deletions of version records
are practically prohibited for basic operations, due to the concepts and
algorithms of PBT and MV-PBT – especially as if the comprising partition
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becomes immutable. Admittedly, insertions of Replacement Records are feasible
for reorganization. Hence, following Hypotheses are formed:

Hypothesis 6 (H6)
Reorganizations allow reduced search costs without violating basic concepts
and algorithms of (MV-)PBT.

Hypothesis 7 (H7)
Entirely replaced partitions by sparsely created and defragmented successor
partitions become obsolete and are opportunely truncatable.

Hypothesis 8 (H8)
Auxiliary filter structures cheaply enable data skipping methods and are appli-
cable in (MV-)PBT.

Subsequently, potentials of reorganizations are outlined in the contexts of
query optimization by adaptive data reorganization and indexing (H6) and
space reclamation (H7). Moreover, a detailed cost-benefit analysis of data
skipping methods (H8) is given.

4.4.1. Adaptive Data Reorganization and Indexing

Horizontal partitioning is a result of the workload dependent growing struc-
ture of a MV-PBT. Querying fragmented structures might suffer from in-
creased costs, especially in case of range searches. Moderate fragmentation
is well covered by auxiliary filter structures, cached upper levels and the
characteristics of secondary storage devices, e.g. asymmetric fast and paral-
lelizable random reads. However, excessive fragmentation adversely influ-
ence the performance of query operations whenever the limits of auxiliary
filter structure probes, caching or read I/O performance is exceeded.

State-of-the-Art. LSM-Trees overcome this issue by frequently performed
merge operations in order to reduce fragmentation. Unfortunately, this
approach massively increase WA, since already persisted and still valid data
records are written multiple times for frequent reallocation – different merge
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approaches might vary in their characteristics (outlined in Section 3.1.3).
Contrary, MV-PBT aims for minimized WA.

Applying Learned Approaches. A further approach is to reinsert neces-
sary version records as by-product of frequently executed queries – e.g. by
inserting a Replacement Record in a dedicated memory mapped caching
partition, which is (almost) never persisted but frequently evaluated and
reorganized for practical benefits like increased cache hit ratio. It can be
improved, since frequently accessed records are probably intermingled on
nodes with rarely accessed records. Even if this is a very workload adaptive
approach, several precautions have to be considered. First, version record
ordering must be ensured for still accessible version records by in-partition
ordering conventions and logical partition succession, even if successor ver-
sions are not visible to a maintaining transaction snapshot. Second, necessary
version records must be predictable with different forecasting techniques,
e.g. based on heuristics for a skewed workloads. Malfunctioning prediction
yield inefficient maintenance costs, cache inefficiencies and additional search
costs. Third, even if break conditions in equality search algorithms are met,
result sets of range search operations require to be entirely contained in
order to save additional traversals. Last, maintenance of memory mapped
caching partitions does rarely result in sustainable reorganization. Although
this technique requires additional research, it is an interesting approach for
adaptive reorganization, especially in case of larger main-memory volumes
and hot/cold separation of data. However, required learned and forecasting
techniques are not in scope of this thesis.

Applying Cached Partitions (CP). Based on the concept of caching fre-
quently accessed version records by the insertion of Replacement Records,
Cached Partitions (CP) are introduced. CP are a cyclically created persistent
comprehensive key-sorted view on the most recent version records of a subset
of immutable preceding partitions. CP are probably indicated by ’type’ in
PBT Cached Meta Data (Section 4.2.1.1) and comprise only records of type
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Figure 4.22.: Cached Partitions are space-efficient and sorted Internal Partial
Indexes to a Subset of preceding Partitions.

Cached Record. CP fit in the partition ordering scheme and can completely
organize the access to contained subset of partitions, due to the consistent
set of related version records, hence it is an appropriate approach for data
skipping mechanics in horizontally partitioned datasets.

Internal Partial Indexing with CP. Cached Partitions (CP) cover a subset of
randomly grown preceding immutable partitions, which are still relevant and
accessible for querying. In Figure 4.22, for instance, 20 partitions (0− 19)
are covered by a CP with the number 20. Comprised alpha-numerically
sorted records are related to most recent preceding version record of each
logical tuple within the covered subset of partitions. Referenced most recent
version records could be of any introduced record type. Records in CP enable
searchable and space-efficient referencing of one relevant version record –
i.e. CP feature internal partial indexing in (MV-)PBT.

Special Role: Cached Record Type. In CP, records are of type Cached
Record (denoted as type ’C’ in Figure 4.22). They are not intended to replace
predecessor version records, however, they underlie similar properties like
Replacement Records as outlined in Section 4.3.1. Nevertheless, introduced
’Validation Record Values’ feature the reference to the related record version
and Invalidation Record Values only indicate logical linkage information. If
possible, Invalidation Record Values are truncated, Transaction Timestamps
are truncated anyways, since this information is maintained at the referenced
version record. Cached Records in CPs constitute a space-efficient key-sorted
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view on existent and accessible version records.

Record Value Trade-Offs. Cached Records are not intended to replace
predecessor version records, however, they feature fast access to stored
information in horizontally partitioned datasets. This could be achieved by
simply storing the original record value in a Cached Record. CPs would
completely replace covered preceding partitions and control fragmentation,
however, it yields also massively increasedWA equal to LSMmerge operations
and entail no benefits in caching behavior. A second approach is to store the
physical reference of the referenced version record by a 16-byte record id
(leaf page and slot) or only an 8-byte page id and successive binary search.
Since covered partitions are already immutable and persistent, this might be
a sound solution. Referenced version records are directly accessible, however,
physical cross-references are neither desirable nor necessary in MV-PBT as
outlined in Section 4.3.3. Logically referencing the comprising partition
by a 2-byte partition number is more desirable. Thereby, it is possible to
restore the partitioned search key and the version record is accessible with
the complexity of a single cheap traversal operation. Combined effects of
prefix, Invalidation Record Value and Transaction Timestamp truncation and
very small values yield dense and cache-efficient key-sorted views on a subset
of fragmented version records.

Creation of CP. CP are cyclically created by background processes1. Fre-
quencies are possibly based on heuristics, for instance in Figure 4.22, a CP
is created when 20 small partitions with fragmented version records are
persisted. Furthermore, CPmight comprise a subset of contents of several pre-
ceding CP, whereby these are replaced and removed from the tree structure.
Whenever a CP is up to be created, the partition switch operation (outlined in
Section 4.2.2) increment the most recent partition number (max_pnr) in the
PBT cached meta data by 2 to leave space for the CP. For instance, in Figure

1MV-PBT applies the capability of DBMS (e.g. background writer processes [Pos21]) and
K/V-Stores (e.g. eviction worker processes [Mon21]) to perform time-consuming maintenance
operations in background processes and isolated by internal transactions.
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4.22, partition 19 is replaced as most recent partition by 21 on switching
process and 20 is able to consume the internal partial index for partitions
0−19. Ongoing modifications are absorbed by partition 21 (e.g. index record
B in Figure 4.22). The designated CP 20 is neither accessible by nor visible
to concurrent transaction snapshots, hence it is possible to pause and resume
CP creation based on workload properties. The background process features
an administrative snapshot, whereby every version record in the immutable
partitions becomes visible. It performs an online merge sort on the subset of
preceding partitions (0− 19) and extracts the partition number and search
key attribute values from the lexicographically sorted results of the online
merge sort in order to form a Cached Record, which is inserted in the CP. For
instance, in Figure 4.22, the online merge sort first returns the index record
C , extracts the search key attribute value ’Maya’ and the partition number

4 as reference to the related value and forms the Cached Record C’ with
the partition number of CP (20). Cached Records are specifically inserted in
the CP. Since result sets of online merge sort are processed record by record
in a lexicographical order, Cached Records are sequentially bulk inserted in
the dense-packed CP – similar to the dense-packing approach in traditional
B+-Tree structures in Section 4.2.2. The append-based behavior allows CP to
sequentially evict inherent immutable leaf nodes in order keep the memory
footprint and interferences with concurrent operations low. Auxiliary filter
structures are incidentally created. Finally, the comprehensive and reliable
CP becomes visible for querying transactions by atomically switching a flag
and committing the background process transaction.

Querying CP. When background processes finished the creation of a CP, it
is appropriated for querying. Covered preceding partitions are protected by
the Cached Partition – i.e. they are traversed as needed without generally
probing auxiliary filter structures. CP are included in the regular equality
or range search process, e.g. in the online merge sort approach. Thereby,
they control access to covered preceding partitions and related internally
managed cursors – i.e. when a Cached Record matches the query predicates,
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its stored record value (the partition number of the most recent version
record in the covered partitions) is used to form the search key for the
specific version record in the covered partition. An internally managed
cursor is applied to traverse and search for this specific version record, which
is checked for visibility to the transaction snapshot. ’Visible’ version records
are simply returned, however, ’invisible’ version records cause the regular
search succession in the covered partitions. The latter case is very uncommon
in transaction processing, since CP are created on already committed data,
before the querying transaction started.

Query Example. In the example in Figure 4.22, for instance a range
search operation with the online merge sort approach is performed (Section
4.2.3). The query predicates include ’Mati’, ’Maya’ and ’Meggy’. After probing
potentially available auxiliary filter structures, an online merge sort approach
creates two internally managed cursors for the most recent partition 21 and
the CP 20, since the other partitions are covered by CP. The first cursor (CM1)
traverses partition 21 from root A and is positioned at the Regular Record B .
The second one (CM2) traverses partition 20 from root A and is positioned
at Cached Record C’ . Since ’Mati’ lexicographically precedes ’Maya’, version
record B can be returned without further overhead. Subsequently, CM1

is moved and closed. In the online merge sort operation, C’ of cursor
CM2 should be returned next. However, CM2 operates on a CP, hence C’ ’s
referenced version record C is required. Partition number ’P4’ is gathered
from the Cached Record value of C’ and a search key ’4 Maya’ is formed.
An internally managed cursor CP4 is opened to exclusively traverse partiton
4 form root A and positioned at the referenced version record C by an
equality search. The value of C can be returned and CP4 is closed. CM2 is
moved to D’ , which is within the search predicates. Similarly, cursor CP9 is
opened to equality search for the reconstructed search key ’9 Meggy’ from
D’ . Partition 9 is traversed from root A to version record D , which can
be returned. CP9 is closed and CM2 is moved and closed, since no further
records are within the search predicates. Provided sorted view of CPs reduce
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online merge sort costs (auxiliary filter probes, cursor comparisons) with usual
result sets.

Experimental Evaluation. Effects on query performance of CP in frag-
mented structures are experimentally evaluated in multiple YCSB read only
workloads after inserting 500k records respectively. CP are cyclically created
every 20 partitions and yield an absolute number of approximately 80 parti-
tions after 10m insertions. Figure 4.23 depicts B+-Tree as non-fragmented as
well as MV-PBT (w/ and w/o CP) and LSM-Trees (w/ and w/o component
merges) as horizontally partitioned storage structures.
The aspired baseline is represented by non-fragmented B+-Trees (gray

line). They enable very stable read-only query performance, since inserted
records are accessible by one traversal operation. Contrary, LSM-Trees
without merging (orange line) become very fragmented by the increasing
dataset, whereas its read-only throughput rapidly decrease. MV-PBT without
CP (bright blue line) suffer from similar fragmentation, however, increased
cache probability of inner nodes (compare Figure 4.16) yield slightly decreasing
read-only throughput.
Approaches of regularly instructed LSM-Trees (red line) try to restore a

defragmented layout by merging components with the side effect of increased
WA, nevertheless, their read-only throughput is fluctuating along massively
fragmented MV-PBT (bright blue line), based on their actual number of
levels and components. Although LSM-Trees (red line) spend massive effort
and WA in preservation of search performance, MV-PBT (bright blue line) stay
competitive without any reorganization – solely by structural benefits of a single
B+-Tree structure.
Finally, MV-PBT CP (dark blue line) achieves very stable read-only per-

formance, similar to B+-Tree. Space-efficient key-sorted view of CP retain
constant performance by data skipping, when they are cyclically created at
3, 5.5 and 8 million insertions, yielding an overall read-only benefit of about
20% at 10 million insertions and a fragmented dataset of 80 partitions – with
massively reduced WA compared to LSM-like merge approaches.
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Figure 4.23.: MV-PBT with CP enable robust Query Performance in frag-
mented Datasets.

Cached Partitions (CP) as internal partial index are a space- and cache-
efficient approach in MV-PBT to provide a comprehensive defragmented and
reorganized view on data in a horizontally partitioned subset. With minimal
overhead in SA and WA, read performance is comparable to defragmented
layouts, whereas a robust query performance is enabled and (H6) is confirmed.
However, replaced and obsolete version records still increase SA, yield compelling
necessity of garbage collection for endurance, nevertheless, its frequency is
massively reduced by CP.

4.4.2. Garbage Collection

In MVCC with SI, frequent modifications of logical tuples yield the existence
of several tuple versions, which are forming a linked list of version records –
each is valid for a different period in time across a subset of logical transaction
snapshots. Whenever a version record is no more related to any active
transaction snapshot, it becomes obsolete and is no longer necessary to be
accessible or managed by storage and indexing structures. Version records
possibly become obsolete by creation of successor version records as well as
through aborts and rollbacks. Garbage Collection (GC) aims for removal of
obsolete version records.
Nevertheless, obsolete version records remain in their allocated storage
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area for several reasons. First, especially in case of new-to-old version
ordering, obsolete version records are hard to identify. Successors are neither
known nor accessible by predecessors, hence obsolescence is not pretty clear.
Moreover, it is not guaranteed that aborted transactions keep track about
their write sets so that version records remain on rollbacks. Obsolescence
must be identified by additional work and logical conclusion – e.g. by a
range search operation. Second, GC require write access to comprising nodes,
hence concurrency and actual payload are hampered. Third, removal of
version records can cause cascading maintenance operations in order to fulfill
structural constraints of storage structures. For instance, B+-Trees leave ’ghost
records’ with deletion markers behind in order to avoid node merges. Last,
GC on secondary storage resident data imply WA for persistence. Version
records probably relate to active transaction snapshots for long period of
time, until they are replaced. Especially in case of mixed HTAP workloads,
lengthy version chains to ’ancient’ version records are probably persisted
until a long-lasting analytical query terminates. MV-PBT follow a consistent
policy in order to remove obsolete intermediate version records, enabling
space-efficient discontinuance of logical version chains.

MV-PBT GC Version Chain Discontinuance. In MVCC and SI, version
records of one logical tuple form a version chain in order to provide a con-
sistent snapshot for each active transaction. In MV-PBT, this version chain
might be comprehensive, nevertheless discontinuance is permitted unless
validity of transaction snapshots is violated – i.e. obsolete intermediate
version records might become removed. Especially in case of long-lasting
analytical queries, massive amounts of intermediate version records might
are created [LSP+16]. In MV-PBT logical tuple version information is en-
tirely materialized in each version record – except its potential invalidation.
Whilst potentially succeeding invalidations of version records in the logically
maintained version chains (Section 4.3.3) are determinable by querying
operations, discontinuance is possible. Precautions to remove version records
are as follows:
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Figure 4.24.: Example MV-PBT Discontinuance of Logical Version Chain.

• creating transaction must have ended
• version record’s timestampmust not be related to any active transaction

snapshot
• invalidated predecessors must remain invisible; i.e. if its committed
anti matter is removed, the matter itself must be also removed or
invalidated otherwise (e.g. assignable successor replacement)

Within this precautions, version records belonging to aborted transactions
are very easily GC’d, since they indicate the entry point or an unrelated
fork. Likewise, (index-only) visibility checks (Section 4.3.6) allow to iden-
tify obsolete version records. Moreover, MV-PBT as storage management
structure or index with primary key or uniqueness constraint as well as in
case of logical reference indexing, every successor and predecessor version
is directly assignable to every version record within the logical version chain,
due to uniqueness of equal search key or virtual identifier. Thereby, sev-
eral obsolete version records are eliminable without precautions. Physical
reference indexing probably requires additional care and insertion of Anti
Records in order to eliminate intermediate version records, since physical
references vary for different tuple versions (compare Section 4.3.1).

For instance, imagine in Figure 4.24 1 , several version records (Replace-
ment Records) of a logical tuple are created as the result of modifications
and two transaction snapshots are active. An analytical query with the trans-
action timestamp ’TX1516’ is related to the latest committed version record
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before the transaction started – i.e. A of transaction ’TX1442’. Committed
version record D is related to the modifying transaction ’TX8031’, since
its transaction timestamp ’TX7662’ is smaller than its inherent one. Other
version records B , C and E are obsolete, since they are replaced or their
transaction did not succeed. However, ’TX8031’ is up to create a new version
record F with the value ’6’. In 2 , the forking entry point E and obsolete
intermediate version records B and C are removed, yielding a discontinu-
ously logical version chain of version records A , D and F .

Remarkable is the SA by obsolete version records, yielding cache-inefficiencies
and additional search effort. Treatment of resulting WA in update-intensive
workloads is challenging as well. LSM-Trees incidentally perform GC as part
of excessive merging processes for defragmentation, which yield consider-
able WA. MV-PBT introduce Cached Partition (CP) in order to avoid effects
of excessive merging. As outlined in Section 2.3.1.4, storage and index
management structures should preferably perform GC for space reclamation
in main-memory or at least on large segments of data, hence MV-PBT counts
on miscellaneous approaches:

• Dense-Packing Phase on Partition Switch
• Cooperative In-Memory Page Level GC
• Background Online Merge Sort and Bulk Insertion

Former two approaches focus on space reclamation before data is persisted –
in order to avoid WA; whereas the last approach focus on space reclamation
on secondary storage devices without violating basic concepts of MV-PBT.

Dense-Packing Phase on Partition Switch. MV-PBT form immutable de-
fragmented and dense-packed leaf nodes on partition switch (outlined in
Section 4.2.2). Since leaves are subsequently persisted, obviously it is a
beneficial point in time to scan the comprised dataset and finally remove
obsolete version records in order to minimize SA and WA.
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Cooperative In-Memory Page Level GC. Delaying GC of frequently up-
dated logical tuples to the dense-packing phase on partition switch might
incur massive interim SA and inefficient caching of version records, which
are no more visible to any active transaction snapshot, yielding decreased
equality and range search performance and unsaturated partitions on parti-
tion switch. Since the most recent partition is a very hot and update-intensive
fraction of the tree, identification and removal of obsolete version records
require special care to not impair actual payload. It must be taken into
account that most obsolete version records in MV-PBT’s new-to-old ordering
scheme must be identified by processing the logical version chain, i.e. by per-
forming range searches on a subset of the partition (leaves), and necessary
write access for modification are mostly set on page (node) level and prevent
from concurrent modification. This means that updating transactions do not
recognize garbage without additional effort and GC of large fractions by
range search operations or background processes shrink concurrent modifi-
cations by massive and escalating page level locking and tree maintenance
operations.

MV-PBT applies a cooperative in-memory page level GC approach, whereby
range scanning transactions or background processes identify and flag leaves
with obsolete version records as part of the visibility check (compare Al-
gorithm 4.5 line 14) without additional effort in the payload. Modifying
transactions acquire write access in order to insert version records anyways.
Moreover, they notice nodes, which are flagged for GC and initially search
for and remove obsolete version records in order to reclaim space. If a node
is not flagged for GC, this step is skipped for robust update performance.
Finally, the new version record is inserted. Space reclamation by updating
transactions leverage write accesses to nodes, reduce maintenance operation
effort and operate on a recent snapshot.
For instance, in the Example in Figure 4.24 1 , while searching for its

related version record A , the analytical query of transaction ’TX1516’ iden-
tifies the version record E of the aborted transaction ’TX7753’ and flags
the comprising node for GC. In this case, the obsolete version records B
and C are probably not identified by the analytical query, due to its ’ancient’
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Figure 4.25.: Effects of In-Memory GC Approaches in HTAP Workloads.

snapshot, however, they are often co-located, due to in-partition ordering
conventions and lexicographical sort order. A background process would be
able to operate on an administrative snapshot and identify each obsolete
version record. Nevertheless it is not necessary to identify every obsolete
version record by the range scanning transaction. The modifying transac-
tion’s snapshot ’TX8031’ knows recently finished transactions and recognizes
version records B and C also to be obsolete, when searching for garbage
on the write accessed node. However, version record D is visible to its trans-
action snapshot and remains on the node. Moreover, it provides necessary
invalidation of version record A . Obsolete version records E , C and B
are removed and a new version record F is inserted in the reclaimed space
within one write access to the memory mapped node.

Experimental Evaluation of In-Memory GC Approach. Effects of MV-PBT
with GC have been experimentally evaluated in an HTAP (CH-Benchmark
[CFG+11]) as well as in a OLTP scenario (TPC-C [TPC10]). Both experi-
ments are performed in PostgreSQL with SIAS configured with a buffer size
of 600MB. Former experiments operate on a dataset size of 200 warehouses
and are depicted in Figure 4.25. First, a single analytical query on ’district’
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is evaluated on the system under load in Figure 4.25a. A transaction has
been started and respectively idled by pg_sleep for 30, 60, 90 and 120

seconds in order to create several successor versions as part of the equal
background load. Whilst MV-PBT without GC performs well for iterating
and visibility checking short numbers of successor version records, its query
execution time rapidly increase when several successor versions are created
and amplify SA, WA as well as RA due to fragmentation by required parti-
tions to consume version records. In-memory GC allow MV-PBT to identify
and remove intermediate obsolete tuple versions, yielding an average of
3 accessed version records per query – i.e. a discontinuing version chain
consisting of the entry point, its replaced predecessor and the visible version
record. GC initially cause higher query execution time, due to increased
pressure and effort on removal, nevertheless, it enables more robust query
performance by lower SA, WA and RA. In Figure 4.25b, overall performance
gain of in-memory GC is evaluated for the transaction types OLTP and OLAP
in the HTAP scenario. OLTP throughput also increase, due to lower WA and
fragmentation by 37% from 3093 to 4232 transactions per minute, however,
benefits from discontinued version chains are low, since their related ver-
sion record are close to the entry point in a new-to-old version ordering.
OLAP operations profit from this technique and enable a 3.8 times increased
throughput from 0.16 to 0.61 transactions per minute.
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Figure 4.26.: In-Memory GC Approaches increase Throughput (depicted in
New-Order-tpmC / NO-tpmC of the TPC-C workload) in OLTP
Workloads. Improvements depend on the number of removable
obsolete records.
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In Figure 4.26, transactional throughput (in NO-tpmC [TPC10] is depicted
for different dataset sizes in an OLTP TPC-C workload. In-memory GC enable
robust throughput alongside all dataset sizes (warehouses), since obsolete
version records are removed, yielding up to 35% performance gain. Without
GC, MV-PBT gradually approach them for higher number of warehouses,
since modifications spread over a larger dataset, yielding fewer version
records per logical tuple – which could have been already persisted until
they become obsolete. Consequently, in-memory GC massively reduce SA, WA
and RA in high concurrency situations, nevertheless, immutable and persistent
partitions comprise increasing numbers of obsolete version records.

Background Online Creation of defragmented and consolidated GC Par-
titions. Horizontal partitioning with immutable persistent partitions yield
SA, cache inefficiency and additional processing costs, since subsequently
replaced predecessor version records saturate in immutable partitions and
require to be checked for visibility. Moreover, auxiliary filter structures claim
caching and processing costs in order to perform data skipping on horizon-
tally partitioned MV-PBT. In order to straighten out SA of obsolete version
records, auxiliary filter structures and fragmentation, GC is occasionally
performed on data in immutable persistent partitions instead of going ahead
with the creation of CP. This GC approach aims on leveraging properties
of MV-PBT as well as characteristics of modern storage technologies. Flash
performs GC by copying still valid pages in new blocks and erasing their
original blocks (compare Section 2.1). MV-PBT leverages this approach,
however, for different units – i.e. still valid version records are copied in
a not yet accessible partition by bulk insertion of the online merge sort re-
sult of a background process1. Since the consolidated GC partition is only
accessible for the background process’s internal transaction, this process
is throttling and continuing without wasting work, based on payload pres-
sure. Similar to CP, a fragmented consolidating subset of partitions facilitate

1MV-PBT applies the capability of DBMS (e.g. background writer processes [Pos21]) and
K/V-Stores (e.g. eviction worker processes [Mon21]) to perform time-consuming maintenance
operations in background processes and isolated by internal transactions.

4.4 | Workload Adaptiveness and Optimizations 149



0

50

100

150

1

3
8

1

7
6

1

1
1

4
1

1
5

2
1

1
9

0
1

2
2

8
1

2
6

6
1

3
0

4
1

3
4

2
1

3
8

0
1

4
1

8
1

4
5

6
1

4
9

4
1

5
3

2
1

5
7

0
1

6
0

8
1

6
4

6
1

6
8

4
1

7
2

2
1

7
6

0
1

7
9

8
1

8
3

6
1

8
7

4
1

9
1

2
1

9
5

0
1

9
8

8
1

1
0

2
6

1

1
0

6
4

1

c
u

m
. 
T

x
 (

in
 M

)

time (in sec)

MV-PBT GC MV-PBT CP MV-PBT (base)

Figure 4.27.: YCSB cumulated Throughput.

ongoing query processing. Background GC processes profit from presorted
views on fragmented data, i.e. the CP, since they improve online merge
sort properties. In the background transaction, matter and anti matter of
logical tuple versions mutually eliminate, based on the rules of MV-PBT GC
Version Chain Discontinuance. Certainly, consolidated GC partitions aim for
high proportion of matter – i.e. intermediate version records are removed if
possible and bulk inserted records mainly contain the validation value of the
most recent version record of a logical tuple in the consolidating partitions.
When the background transaction succeeds, the consolidated partition be-
comes accessible and replaces consolidating partitions for querying. Once
every active concurrent search operation terminates, the entirely replaced
and fragmented subset of partitions, as well as auxiliary filter structures
are allowed to be removed. Finally, apart from actual dataset and current
workload, the subset of replaced and fragmented partitions is simply cropped
from the tree structure by an efficient range truncation of nodes [Mon21].

Experimental Evaluation of GC Partitions. In Figure 4.27, an experimen-
tal evaluation is depicted in a write-heavy YCSB Workload A (respectively
50% update and read). Initially, the dataset size is approximately 50GB and
the buffer cache is set to 100MB with 20% MV-PBT-Buffer share. Queries are
executed for 3 hours and are cumulatively depicted in million transactions.
MV-PBT (base/CP/GC) are colored in (bright/medium/dark) blue. MV-PBT
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(base) without CP and GC achieves good throughput at the beginning of the
benchmark, however, it degenerates rapidly due to increasing fragmentation
up to 650 partitions by 44 million transactions in 3 hours, since read I/O
is dominating. MV-PBT CP achieves a much higher throughput with the
few effort of cyclical internal index partition creation. Nevertheless, trans-
actional throughput degenerates to an absolute of 94 million transactions
within 1340 partitions, due to following reasons. First, CPs begin to become
fragmented and would require consolidated CPs. Second, auxiliary filter
structures achieve a considerable memory footprint, whereas less inner nodes
in the MV-PBT are buffered in cache. Last, less caching probability of inner
nodes yield slower traversal operations, due to successive read I/O, whereas
beneficial effects of partial internal indexing decrease. Since updates yield
cache inefficiencies and SA by the creation of version records, GC instead
of consolidated CP is an appropriate approach. MV-PBT GC leverages CP to
enable massive fragmentation, whereas GC becomes more valuable for the
enlarged set of version records (20 CP comprising 400 regular partitions).
Approximately after 20 minutes (1200 seconds), 400 partitions are generated
and MV-PBT GC starts performing online merge sort and bulk insertion in a
consolidated GC partition, yielding slightly degenerated throughput (hidden
actual MV-PBT GC throughput is highlighted by the gray line). Nevertheless,
additional effort yield robust performance characteristics and an improved
cumulative throughput after 6250 seconds. Finally, MV-PBT GC processed
151 million transactions, since fragmentation is reduced from approximately
2250 to 4 completely consolidated GC partitions and residual 650 CP and
CP-covered regular partitions.

In-Memory GC can minimize obsolete version records and make write I/O
more valuable – i.e. SA and WA are reduced. Sparsely created consolidated
GC partitions enable GC with minimal impact on payload, whereas obsolete
partitions are beneficially truncated and cropped from the tree structure. (H7)
is confirmed. With CP and GC, MV-PBT provides robust performance without
violating its principles in the horizontally partitioned structure. Nevertheless,
these approaches require an order of fragmentation to take effect, whereas
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auxiliary filter structures (compare Section 4.4.3 and Chapter 5) reliably
exclude unrelated partitions, when they are created.

4.4.3. Application of Auxiliary Filter Structures and Data Skipping

(MV-)PBT is an evolving horizontally partitioned tree structure. Result sets
require to consider contents of each partition. In (MV-)PBT, this might
happen by root to leaf traversals in every partition. A moderate number
of required traversal operations is well covered by commonly cached and
utilized inner nodes as well as asymmetry and parallelism in modern storage
devices (Flash), however, processing and read I/O costs accumulate and
probably yield inadequate query performance, even if the result sets of most
partitions are empty.

Insufficient Cached Partitions. Data skipping approaches in (MV-)PBT
facilitate to avoid traversal of partitions without related records. Cached
Partitions (CP) are already introduced in Section 4.4.1 as very accurate and
incorporating data skipping method, nevertheless, they require an order of
fragmentation to take effect and build a lexicographically sorted view on a
subset of preceding partitions.

Characteristic Prerequisites. Auxiliary filter structures are already intro-
duced in Section 4.2.1.1. They constitute practicable approach for member-
ship testing on query predicates in each partition, before traversal opera-
tions are performed. Nevertheless, entire datasets are not fully represented,
whereas results are probably erroneous. Auxiliary filter structures are only
applicable for data skipping in (MV-)PBT, if errors probably yield additional
work, but ensure integrity. Hence, they must guarantee absence of version
records with the specific query predicates or lead to traversal operations. For
this reason, results of auxiliary filter structures are negative, true positive or
false positive. The ratio of false positives and absolute filter requests is the
false positive rate (FPR), which is intended to be optimized. Only in case
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of negatives traversal operations are saved, otherwise the effects are only
additional probing costs.

Cost Trade-Offs. Probing auxiliary filter structures accompany processing
and memory costs, which require to be taken into account [LNKB19]. Dif-
ferent approaches vary in computing complexity. Crucial factor in overall
performance and costs stem from additional memory costs, which are a kind
of SA. Considerable filter probing effort require to be significantly lower
than actual costs. In MV-PBT, for instance, commonly cached inner nodes
take high contribution in overall performance. Auxiliary filter structures
might cause inner nodes to be evicted from database buffer and yield worse
performance characteristics. Hence, auxiliary filter structures should have
well performing caching characteristics and a low memory footprint beside
manageable processing effort.

Auxiliary filter structures are classified in very lightweight online maintain-
able but inaccurate filter as well as very accurate structures for approximate
membership testing, which are asynchronously generated on partition switch
(Section 4.2.2), since online maintenance would adversely influence through-
put of payloads.

Lightweight Online Maintainable Filters. These auxiliary filter structures
are very cheap to probe and maintain, however, they are rather a rough
digest of protected dataset. In MV-PBT, exclusion by these structures hap-
pens by probing and logical conclusion on mutable as well as immutable
partitions. They are possibly disqualified by mismatching search key val-
ues or temporal dimension gathered from query predicates and transaction
snapshot. Partition Fence Keys are applied on search key query predicates.
They are a memory representation (Cached Meta Data in Section 4.2.1.1)
minimum and maximum search key value of comprised version records in
a partition. Probing and maintaining partition fence keys is very cheap,
however, facilitate data skipping only if probed search keys are not within
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a partition’s represented range, whereas its benefits are limited. Minimum
Transaction Timestamps reveal from specific partitioning characteristics of
MV-PBT and indicate the lowest transaction timestamp of comprised version
records within a partition. If it is larger than any concurrent transaction
timestamp of a snapshot, visibility checks would not identify any comprised
version record to be visible, hence traversal in its partition can be saved
(compare HTAP query characteristics in Section 4.3.5). Especially recently
created partitions can be skipped. Moreover, long-lasting analytical queries
probably are able to skip multiple recently created partitions. However, this
lightweight filtering technique is only applicable for succeeding partitions,
which follow the transaction snapshot.

Structures for Approximate Membership Testing. These kind of auxiliary
filter structures form a very accurate but more expensive group of data skip-
ping approaches. Appropriate operational purposes of commonly available
filters are probing query predicate search key attribute values for arbitrary
equality searches as well as specific range search operations. Well-known repre-
sentatives are (prefix) bloom filters and derivatives [AK21; BM03; LGM+18;
TRL12]. Calculations and space requirements for probing and maintenance
are manageable and significantly lower than actual costs of root to leaf traver-
sals to unrelated partition contents. Thereby, maintenance is beneficially
performed apart from payload as part of the partition switching operation
(outlined in Section 4.2.2), since its final immutable regular search key-set
is known and can be cache-efficiently bulk inserted in a well-sized filter
with low impact on payloads. When the asynchronously created filter(s) are
finalized, they become available for querying by atomically setting a flag
in the partition meta data (Section 4.2.1.1). Query predicates that do not
represent comprised version records’ search key attribute values within the
filter cause a search operation to skip the related partition.

Experimental Evaluation. Effects of data skipping by bloom filters for
equality searches as well as prefix bloom filters on a customized set of search
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Figure 4.28.: Dimensions of Approximate Membership Testing in MV-PBT.

key attributes for range searches are experimentally evaluated for (MV-)PBT
in PostgreSQL with SIAS. A TPC-C workload is instrumented to operate on a
large dataset (2000 warehouses) and a total database buffer size of 600MB
(inclusive 20% MV-PBT-Buffer). Reported results are averages across given
transaction processing and related objects in the database schema, except
where otherwise specified.

First, costs of (prefix) bloom filter maintenance are evaluated and de-
picted in Figure 4.28a. Approximately 20% of relative operational costs (in
clock cycles) of the entire partition switching operation (outlined in Section
4.2.2) arise on filter creation (brighter and darker blue). It is a significant
proportion of the total partition switching process, however, bloom filters
are asynchronously created in the background, hence operation costs have
low effect on processing of actual payload. In contrast to operational effort,
storage costs are relative low. Regarding the total size of partition leaf nodes,
(prefix) bloom filters occupy relative low memory (less than 4% in total),
since only search key attribute values are inserted in a lossy compressed filter
structure. This is possible, since knowledge of record values or reconstruction
of materialized search key attribute values is not facilitated in auxiliary filter
structures.
In Figure 4.28b, relative processing costs (in clock cycles) of traversal,
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Figure 4.29.: TPC-C Throughput (depicted in New-Order-tpmC / NO-tpmC)
for MV-PBT with unprotected, bloom filter-applied as well as
in addition prefix bloom filter-protected immutable Partitions.

filter probe and residual index operations as well as tuple retrieval costs
(others) for equality and range search are depicted. Traversal operations are
very processing-intensive with noteworthy memory footprint of cached inner
nodes (which are otherwise required to be fetched from secondary storage
devices) of the traversal path. Other major proportion includes visibility
checks and tuple reconstruction costs from base table, which require to
be performed anyways. Probing bloom filters incur less than 0.3% of total
operational costs with a comparably low memory footprint. In case of range
searches, proportion of other operations increase, since one traversal allow
to iterate several version records of different logical tuples. Nevertheless,
traversal operations are a major proportion of query operations, which need
to be avoided for unrelated partitions.

In Figure 4.28c it is shown that for this workload settings (prefix) bloom
filters are able to save about 81.6% of traversals for equality and 84.5% for
range search operations. Only 0.6% false positives cause traversals in unre-
lated partitions for equality search operations. Nevertheless, insufficiency of
highly customized prefix bloom filters yield 10.6% false positives.
Effects of approximate membership testing on throughput (TPC-C NO-

tpmC) for several dataset sizes are depicted in Figure 4.29. Bloom filters
enable the equality search to save traversals and accompanying database
buffer evictions as well as read I/O, at best yield an overall benefit of 5% in
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throughput. Additional customized prefix bloom filters have a similar effect
on very expensive range search operations and achieve an additional benefit
of approximately 12.5%.

Auxiliary filter structures in (MV-)PBT enable data skipping of unrelated
partitions. Processing costs, database buffer hit characteristics and accom-
panying read I/O are cheaply optimized in horizontally partitioned storage
and index management structures yield significantly improved performance
characteristics – hence (H8) is confirmed. Nevertheless, data skipping rely
on separately created and cached filter structures for equality and customized
range search operations, even though identical datasets are covered. Moreover,
prefix bloom filters are indeed capable to perform approximate membership
testing on specific range search predicates, but are impractical for arbitrary
search predicates in MV-PBT and result in high FPR (compare Figure 4.28c).

4.4.4. Summary

(MV-)PBT natively leverage their inherent structural properties in order
to adaptively reorganize horizontally partitioned view on comprised data
and retain beneficial search performance characteristics of defragmented
B+-Tree structures (compare Section 3.1.1). Thereby, SA as well as WA is
kept at a low level to minimize RA by append-based and sequential bulk
insertion (Sections 4.4.1 and 4.4.2) of version records (Section 4.3.1). A
discontinuously logically maintained version chain (Section 4.3.3) allow
(MV-)PBT to perform GC ((H7)) as well as data skipping and key-sorted
views by CP ((H6)). Moreover, auxiliary filter structures (Section 4.4.3) are
created upon record’s search key attribute values for each partition in order
to cheaply enable general data skipping ((H8)). (MV-)PBT facilitate robust
performance characteristics by inherent techniques (Figures 4.23, 4.25a and
4.26), however, respective filter structures incur redundancies (Figure 4.28a)
for equality and range search as well as increased FPR for arbitrary custom
query predicates in MV-PBT.
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4.5. Conclusion

In this chapter, PBT has been introduced as temporally evolving horizontally
partitioned storage and index management structure which is leveraging
characteristics of flash on secondary storage technologies. Fields of applica-
tion as well as maintenance and compression techniques (RQ3) are inherited
from the structure of a B+-Tree, nevertheless, (MV-)PBT achieves benefits in
SA and buffer efficiency. High performant maintenance of appended circum-
stances in PBT accompanying well with new-to-old ordering of physically
materialized version records with logical out-of-place update scheme and
one-point invalidation model. Annotation of transaction timestamps to each
version record enable MV-PBT to perform (index-only) visibility checks as
part of the regular search operation, whereas RQ1 is answered. Moreover,
RQ2 is addressed by appropriation of MV-PBT as multi-version storage man-
agement structure, which beneficially identifies rolling new-to-old version
chain entry points of logical tuples by searching their primary keys. Neverthe-
less, fields of application and integration are further elaborated in Chapter
6. GC is performed in main-memory or on asynchronous background bulk
merges of massive number of partitions (RQ5) yielding minimal WA and
sequential writes for space reclamation. This and adaptive reorganization of
read optimized views by CP (RQ4) is possible, due to the discontinuance of
logical version chain property, whereby reorganizations in dedicated parti-
tions are possible. Moreover, CP as well as auxiliary filter structures enable
data skipping (RQ3), whereas traversal operations and read I/O is saved.
It is shown that MV-PBT leverages secondary storage technology charac-

teristics in a tree-based structure and addresses rising challenges in the same
way coping with modern update-intensive mixed workloads. Hence, MV-PBT
is qualified for system integration in Chapter 6. Nevertheless, popular exist-
ing auxiliary filter structures for data skipping require high administrative
effort and redundancy for arbitrary querying. For this reason, an inclusive
and space efficient point-range filter approach for arbitrary approximate
membership testing is introduced in Chapter 5.
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Arbitrary Approximate
Membership Testing

Horizontally partitioned storage and index management structures, like LSM-
Trees or MV-PBT, maintain (at least temporarily) semi-sorted and fragmented
datasets. Equality and range searches potentially require to traverse every
fragment from its root to leaves in order to build reliable result sets. Based on
the selectivity of query predicates and fragmented contents, several relatively
expensive traversals yield empty result sets. Therefore, significant processing,
caching and read I/O costs occur.

Auxiliary filter structures enable approximatemembership testing, whereas
a negative result is guaranteed to be correct. A protected fragment by such
a filter structure can be readily skipped on negative filter probe when build-
ing result sets for equality or range search operations. However, existing
approaches are costly and inadequate for arbitrary membership testing.
Point-range filters (PRF) are cost-benefit-optimal auxiliary filter struc-

tures for arbitrary membership testing. They fully enable data skipping in
partitioned storage and index management structures raised by (RQ3).
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5.1. Problem Statement

MV-PBT is a horizontally partitioned storage and index management struc-
ture. Search operations principally require to consider each partition to
build reliable result sets. MV-PBT protects each immutable partition (Sec-
tion 4.2.2) by auxiliary filter structures (Section 4.4.3), which are probed
first before costly traversal operations are performed on search operations
(Sections 4.2.3 and 4.3.5).

Section 4.4.3 demonstrates the significance of auxiliary filter structures
in equality and range search operations in MV-PBT. For instance, under the
configured TPC-C workload characteristics, more than 80% of partitions are
potentially skipped as a result of a negative filter probe (compare Figure
4.28c), with the result of significant performance gains (compare Figure
4.29). Especially, costs of range searches in MV-PBT are reduced by appropri-
ate auxiliary filter structures, since there is no inherent breaking condition
in the range search algorithm.

Nevertheless there is a major problem with the applied approach. Whilst
point filter sufficiently enable arbitrary membership testing, benefits of
additionally maintained and highly customized prefix filters are limited at
high costs. Probing arbitrarily selectable range intervals in typical query
predicates causes amplified costs for individually maintained prefix filters
or reduces accuracy, due to inappropriate filter configurations. Either way,
it might be more profitable to save memory footprints of prefix filters and
increase cache efficiency of inner nodes in MV-PBT (compare Section 4.2.4,
especially picPBT

in Equation 4.3). Multiple prefix filters are unacceptable, due
to their adverse cost-benefit ratio. Especially, it should be noted that required
information is present in point filters – however, impracticable for probing.
The proposed approach, bloomRF, is designed as unified efficient point-range
filter (PRF) for arbitrary approximate membership testing and an appropriate
substitution of specialized bloom filter approaches (BF).
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5.2. Point Filter Techniques

Bloom filters (BF) are the most popular approach for approximate mem-
bership testing. A variety of derivatives [AK21; BM03; LGM+18; TRL12]
aim to cover different scopes like online maintainable entry sets by count-
ing [BMP+06; FCAB00; RKK12] or other partially deletable encodings
[RMVM10]; as well as cost performance trade-offs regarding hash efficiency
[DM04; KM06], compressibility [Mit02], data locality [CMB+10; DSL+11;
LDD11; LNKB19; PSS10] and vectorized processing [LNKB19; PR14] on
modern hardware. BF and other point filters, like Cuckoo filter [FAKM14],
with different properties have been proposed in numerous novel publications
[DAI18b; DT21; GYC+21; PCD+21; TC21] including learned approaches
[KBC+18; Mit18] for interesting applications [DHI20; LZSC20; VKKM20]
and are already state-of-the-art in high performance K/V-Stores [GD22;
Inc22; Mon21].

General View on Bloom Filters (BF) and Derivatives. Generally, BF store
a space efficient hash-generated encoding of k bit positions for each inserted
element in an initially zero allocated bit array of length m by flipping the bits
at calculated positions to 1. While inserting a set of n elements, several posi-
tions are affected one or multiple times, whereas others are never attained
and remain 0. A query operation utilizes equal hash functions to lookup
at k encoding bit positions of arbitrary elements. Results of approximate
membership testing in BF return a negative result for lookup of arbitrary
elements, if at least one of k calculated bit positions is not set to 1, since
every k bit positions of contained elements must be set. Hence, approximate
membership testing return a positive result if every k bit positions are set.
This could also be the case if all k bit positions of a probed element are
encoded by other elements of the comprised entry set, with the result of
a false positive. The ratio of false positives and absolute filter requests is
the false positive rate (F PR). By varying the filter size m for an entry set
of n elements and consequently altered number of encoded positions k on
creation, an acceptable probabilistic FPR for certain costs is configurable
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[Blo70].

Cuckoo Filter. Cuckoo Filters [FAKM14] are introduced as ’deletable’ and
’practically better’ BF alternative. Short hashed signature tags (fingerprints)
of an element are inserted in a hash table at one of several possible locations
in order to handle collisions, however, insertion errors might occur. Probing
an element requires to calculate its fingerprint and to lookup possible map
locations, what result in a constant number of cache misses and moderate
FPR. Nevertheless, BF overtake Cuckoo Filters with regards to cost-benefit
trade-offs [LNKB19] for different applications.

BF in Partitioned DBMS and K/V-Stores. In temporally evolving horizon-
tally partitioned structures, assigned point filters probably protect fragments
from being accessed, if probed elements (search key attribute values) are not
included. Assuming an equal hash function for each assigned filter, probing
an element entail equal positive integer hash values, which are aligned to ap-
propriate positions in different sized filters by a modulo m. Hence, processing
effort is nearly constant for several probed filters. Moreover, BF can reduce
processing costs by leveraging double hashing techniques, whereas positions
are not independently calculated with negligible impact on FPR [DM04;
Mon21]. Several BF approaches focus on restructuring access patterns in
order to achieve performance effects by data locality [CMB+10; DSL+11;
LDD11; LNKB19; PSS10]. Finally, overheads require to be considered in
two dimensions for different tasks in DBMS and K/V-Stores – i.e. additional
work on false positives as well as memory occupancy and processing costs
by the filter structure [LNKB19]. Hence, following observations are deduced
from recent BF approaches:

• reusability of hashes in multiple BF-instances per probed element
• relation in calculated positions is conceivable for independently gener-

ated hash values
• restructuring enables data locality for various objectives
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• considering cost per farther-reaching benefits in performance optimal
filtering

BFs are efficient and compact probabilistic structures for approximate
membership testing, which guarantee configurable cost-performance trade-
offs. Processing costs are nearly constant with a linearly growing memory
footprint per horizontally partitioned fragment of a dataset, whereas they are
suitable for a moderate number of probed partitions in MV-PBT. Nevertheless,
benefits per cost are limited for arbitrary membership testing, due to their
hash-dependent limitation in applicability, since every bit position considers
the entire element (search key attribute values) for exact match filtering.

5.3. Broadened Range Filter Techniques

Point filter techniques received high attention in the past, however, their
capabilities and application are limited to exact match filtering. Horizontally
partitioned storage and index management structures, like LSM-Trees or
MV-PBT, also support range search conditions, which are very likely in OLTP
or HTAP workloads. Hence, these requirements must be considered by
auxiliary filter structures for data skipping in MV-PBT in order to achieve
farther-reaching benefits per costs for performance optimal filtering.

Challenges in Range Filtering. BF encode elements by setting hash-
generated bit positions. Therefore, the entire element, e.g. search key
attribute values, are appropriated to generate a randomly spread encoding
in the BF. In order to probe an arbitrary range of elements, e.g. integers
between 45 and 60, 15 × k randomly spread cache-inefficient probes are
necessary to probably return a negative result. Cuckoo Filters are subjecting
similar complexity rules. Moreover, error rate (i.e. FPR) in filter structures
make a negative result with increasing range predicates unlikely. For in-
stance, already small range probes on floating points, like elements between
1.49d and 1.51d, incur millions of probed elements. Complexity also in-
creases by multiple search key attributes. Moreover, in non-scalar datatypes,
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the set of probing elements is infinite. Hence, a point-range filter requires to
support:

• arbitrary element distribution and range spans
• common scalar and non-scalar datatypes in DBMS
• multi attribute search key values

Prefix Bloom Filters (PBF). PBF encode positions and probe customized-
length prefixes of elements. Hereby, range probes in the exact dyadic interval
span of custom prefixes are enabled. Nevertheless, arbitrary membership
testing is not possible, since larger range spans incur multiple probes (like in
BF) and non-dyadic or smaller intervals as well as point probes suffer from
information loss by the prefix, with the result of increased FPR. Arbitrary
approximate membership testing would require several filter structures, with
the result of poor cost-benefit ratio.

Dyadic Intervals (DI) and Interval Decomposition. Prefixes in PBF are
represent to a specific DI in the domain of a datatype, e.g. a 2-byte unsigned
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Figure 5.1.: Decomposition in Dyadic Intervals (DI) in Levels for range query
I = [45, 60] in a 2-byte integer domain (d = 16). [MRBP23]
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integer as depicted in Figure 5.1. DIs are characterized by power of two
inclusive lower and exclusive upper boundaries, organized in an adequate
number of levels to represent the domain, e.g. 17 levels for unsigned 2-byte
integers (depicted as levels 0 to 16). Each level can be decomposed in two
subordinated levels which form a binary tree, e.g. the second DI on level
5 J5 = [32, 63] can be decomposed on level 4 in J l

4[32,47] and J r
4 [48,63].

Any randomly selected interval can be decomposed in a set of DIs, serving
as information in arbitrary approximate membership testing. Thereby, DIs
on different levels fully cover (denoted as J), partially cover (denoted as J l

or J r for left and right path) or are a full or partial decomposition (denoted
as I l , I∗ or I r for left, inset or right path) of a randomly selected interval
(denoted as I), compare Figure 5.1.

5.3.1. Related Work

Rosetta – Probabilistic Multi-Level PBF Approach. Based on the scheme
of DIs and implicit segment trees [BCKO08], Rosetta [LCK+20] encodes
elements and several variable length prefixes of DIs in a respective hier-
archical set of (prefix) BFs. In order to identify the necessary set of BFs
and their respective variables (m, n, k, respective FPR), the set of elements
as well as most frequently probed range interval span must be known at
construction time, whereas an offline creation process is required. Generally,
this restriction limits the applicability of Rosetta, nevertheless, its focus is on
protecting unrelated immutable LSM-Tree components in K/V-Stores from
being attained by equality and short range query predicates (21 − 26). A
covering common prefix of lower and upper bound interval keys and its
related DI with respective (prefix) BF are determined as root of the probing
process. For instance, in Figure 5.1, the covering interval of I = [45,60] is
J5 = [32,63], i.e. the second DI in level 5. On positive result, Rosetta begins
with ’doubting’ – i.e. decomposed DIs (J l , J r , I l and I r) in lower levels are
probed, whereas the recursive process of negative DIs breaks. Whenever a
hierarchically and recursively processed probe of related DIs return positive
results up to level 0, Rosetta indicates the probe on I positive, contrary, if
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every related DI can be excluded at a level, Rosetta returns a negative result.
Therefore, Rosetta’s probing costs per interval range span even out between
logarithmic and linear complexity, which probably exceeding saved I/O
costs. Moreover, amplified probing effort per interval range span increase
FPR [LCK+20], since each probed element is subjecting an accumulated
FPR calculation. This is aggravated by out of order probing interval range
spans, which a Rosetta instance is not configured for.

Considering recent trends in BFs, Rosetta impedes reusability of calculated
hashes for multiple BF-instances, due to the unpredictable process of doubting
and involve significant costs for a small range of inelastic applicability –
whereas probing costs are quite able to exceed benefits, since several probes
of course have positive results [ZCWJ21]. This might be practicable in some
LSM-based K/V-Stores, however, arbitrary element distribution and range
interval spans are not optimally handled in Rosetta.

Succinct Range Filter (SuRF) – Deterministic Trie Approach. A complete
different approach is adopted by SuRF [ZLL+18]. This filter stores an entirely
materialized element (-prefix) in fast succinct tries (FST) rather than relying
on DI and implicit segment trees. Based on the data distribution and length
of common prefixes, tries enable space efficient encoding schemes. SuRF
relies on this techniques and truncates expensive variable length suffixes,
which become replaced by a small lossy compressed representative (hash,
truncated suffix or both) in an offline creation process. Since the prefix
is entirely materialized, no errors occur in this range area, nevertheless,
SuRF suffixes are very erroneous, based on the assigned size. Hence large
range interval spans (237 − 238) are well covered by SuRF, however, smaller
intervals require to virtually materialize entire elements, amplifying the
filter’s memory footprint.
Applicability of SuRF in horizontally partitioned storage and index man-

agement structures is limited, due to significant memory costs per benefit for
arbitrary elements and range interval spans. Extended element sizes in non-
scalar datatypes and respectively acceptable memory footprints potentially
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improve benefits in SuRF, though very uncommon as search key attribute
values in key-sorted structures. Reusability of calculations is not met by trie
structures, nevertheless, processing costs are very cheap.

Adaptive Range Filter (ARF). An early filter structure coping with range
query predicates on a predefined dataset is ARF [AKL13]. It is also based on
a trie structure, however, its contents are learned during a training phase
– indicating the existence or non-existence of an element in the covered
dataset. Nevertheless, this filter aims for cold store protection and is not
suitable for arbitrary approximate membership testing in horizontally par-
titioned storage and index management structures, due to its cost-benefit
ratio and time consuming training phase.

Existing approaches for approximate membership testing are not able to
cover a significant fraction of the problem space for performance optimal
filtering of arbitrary range interval spans by constant costs. Hence, their
applicability in horizontally partitioned storage and index management
structures is limited.

5.4. bloomRF: Unified Point-Range Filter for Arbitrary
Approximate Membership Testing

bloomRF is designed to efficiently cover the entire problem space of arbitrary
approximate membership testing with focus on benefits by broadened area of
predictably valuable applicability with constant costs like BFs. In Figure 5.2a,
an excerpt of best FPR for bloomRF (blue), Rosetta (yellow) and SuRF (red)
is given for several range interval spans and filter sizes. Rosetta is able for
specific dataset and workload distributions to achieve slightly improved FPR
for very short ranges and high space requirements – e.g. 16 bits/key, what
actually is a quarter of the entire element size of 64 bits. Thereby, Rosetta is
not able to reach its competitor’s latencies in any case, as depicted in Figure
5.2b – i.e. benefits per costs are limited. SuRF, on the other hand, covers very
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Figure 5.2.: bloomRF (blue) predominates over competitors SuRF (red) and
Rosetta (yellow) in the problem space of arbitrary approximate
membership testing by area of applicability (range interval span
16 to 1E+10 – ordinate) and costs (filter size 8 to 22 bits per key
– abscissa). Colors indicate the approach with the best average
performance (FPR or Latencies) for various dataset sizes (1E+3
to 5E + 7) and normal distribution [MRBP23]

large range interval spans, whenever the dataset is sufficiently represented
in the trie structure. For instance, SuRF is not able to form a trie for every
dataset size and arbitrary filter sizes in bits/key, limiting its benefits per costs.
Probing latencies, however, are very comparable to bloomRF, whenever SuRF
becomes operable (compare Figure 5.2b, latencies are similar to the right
of 14 bits/key), though significance is limited in library evaluation, due
to caching effects. bloomRF exhibits constant performance in the entire
problem space, even in case of lower memory footprints. Moreover, occupied
areas of SuRF (red) and Rosetta (yellow) indicate by no means deficiencies
of bloomRF, rather than slight improvements by focused strengths of its
competitors. bloomRF takes most benefits from additional costs.
The central idea in bloomRF is to encode range information in the hash

code itself. Based on the properties of DIs a concept of implicit dyadic trace
trees (DTT) is introduced to encode range information by prefix hashing
and piecewise monotone hash functions (PMHF) in a bit array similar to
regular BFs. Principles are outlined in the following.
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5.4.1. Implicit Dyadic Trace Trees (DTT)

bloomRF conceptually encodes structured range information in traces. Each
element in a scalar datatype’s domain is placed at its designated position in
a trace, since it respectively has one directly associated smaller and larger
adjacent element. By this means, each element in a domain with the size 2b

is encoded by one respective position in an equally sized trace. For instance,
in a domain D3 of 23, elements [0,7] are encoded in a trace of size (s) 8. In
order to insert the element 5 in a trace, the sixth position is set (since it is
zero based) with the result ’0000 0100’ in bit representation. Existence of
an element is identified by probing whether its respective position in the
trace is set. In the example, element 5 is set to 1, but 4 is non-existent since
its position is not set.

Traces are collapsed Binary Trees. Considering DI’s binary tree nature,
by insertion of an element in level 0, intervals in its respective composing
levels {1, 2, . . . , levels+1} must also be set. Traces logically build an implicit
binary tree, named trace tree, of height h= b+ 1, including a virtual root
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(depicted in Figure 5.3). Following the binary tree path, every respective
element position forms a binary path encoding – partially sharing common
prefixes. These represent h levels of DIs. Hence, setting an element’s position
in a trace induces the existence of h related levels of composed intervals.

For instance, the existence of element 5 (p101) by setting the sixth position
in the trace (ts = 0000 0100) allows to identify also its composed dyadic
intervals [0, 7]; [4, 7]; [4,5]; [5,5] in levels 3;2; 1;0 respectively. Thereby,
any arbitrary (range) query interval composed of DIs across several levels
are testable by one interval trace t i . For instance, DI ID = [4,5] is translated
in the interval t i = ’0000 1100’ and probed by a bitwise ’ts AND t i NOT =
0’ in a single trace (word) access. In addition, several decomposition DIs are
composable in one t i, e.g. arbitrary range query interval IA = [3,5] can be
decomposed in IA1 = [3,3] and IA2 = [4, 5] but also translated in t i = ’0001
1100’. As a result, information of h DI levels are space efficiently represented
and cheaply probed by the logic of implicit trace trees.

Dearness in large Binary Trees. Trace trees probably vary their domain
size and increase the covered DI levels. By this means, the height of trace
trees is increased for each additionally comprised level, whereas necessary
trace size exponentially grows (compare Table 5.1). Encoding and probing
traces with exponentially growing sizes become cache and processing inten-
sive. Hypothetically, if assuming bit representation for element positions,
a continuous space of 2.3 exabyte is required to represent and probe the
domain of 8-byte integers.

Reduction of Complexity in directly accessible Sub-Trees. The idea
is to subdivide the entire domain in a novel structure of implicit dyadic

b correl. 1 2 3 4 5 6 7 8 . . . 64
h b+ 1 2 3 4 5 6 7 8 9 . . . 65
s b2 [bits] 1 4 8 16 32 64 128 256 . . . 2.3 EB

Table 5.1.: Correlation of Trace Tree Properties.
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Figure 5.4.: Layers of a Dyadic Trace Tree (DTT) (compare [RBMP20]).

trace tree (DTT) nodes, since sub-trees adopt the characteristic of a tree. A
balanced DTT represents the entire domain by a set of trace trees, which
are individually addressable nodes of a DTT. Trace trees are arranged in
hierarchical layers, which respectively cover a subset of the entire DTT height
|H|. By traversing the tree path, root and inner nodes build a cumulative
prefix of subordinated inner nodes and leaves (layer 1). Thereby, prefixes
themselves are addresses of subordinated nodes, wherefore it is possible to
encode levels of the binary tree as a virtual root of trace trees – i.e. each
trace position in non-leaf trace trees is split in two child nodes with high
density in information.
For instance, in Figure 5.4, the domain of 28 (1-byte character) is repre-

sented by a DTT. It consists of two layers of nodes formed by trace trees,
each of them is covering a domain of 23 at its respective level. A logical
root at dyadic level 8 is subdivided in trace trees A and B at layer 2 – rep-
resenting levels 7 to 4. Furthermore, a prefix of 5 bits is represented by
layer 2 and a logical root. Trace tree A represents elements [0,127] and B
[128, 255] as well as a set of 16 elements per trace position in level 4. Each
of the 8 element positions in trace trees A and B, two nodes of layer 1 are
assigned. For example, the first trace position of B covers the DI [128,143]
and is divided in B1 and B2, which comprise elements of DIs [128,135] and
[136, 143] respectively. Within their 8 trace positions, the actual element is
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deduced by the trace tree address, which comprises the entire prefix.

Deterministic Arbitrary Membership Testing in DTT. Probing arbitrary
points or ranges in DTT probably involves several trace trees of different
layers. Each is individually testable with positive or negative results. An ele-
ment is existent, if every probed position in respective traces is set, otherwise
its existence is impossible.

For instance, testing for element e {138} in the DTT of Figure 5.4, involves
trace trees B2 but also B, since the element is within B’s DI of [136,143]. A
trace at the address of B2 is compared with trace position, comprising the DI
of the element e, i.e. {138} at level 0 is transformed in the trace ’0010 0000’
with regards to its prefix. In B, the element 138 can be optionally verified by
additionally probing the trace position ’1000 0000’. By this means, elements
are deterministically verifiable by probing comprising DIs.

Covering Intervals and Decompositions. In DDTs, trace positions in
several layers represent DIs at specific levels. Hence, they allow probing
of fully and partially covering intervals or decompositions of range query
intervals. Thereby, hierarchical layers cover different prefixes and elements.
In Figure 5.4, considering a range query interval I [134,144], which

is decomposed in J5 = [128, 159], represented by tB = ’1100 0000’ and
probed in B. The left path is comprised in B1 ([128, 135]) which includes
covering intervals of levels 4, 3 and 2 as well as full decompositions in
level 1 and 0 denoted as I l

1 = [134, 135] (according to notation in Figure
5.1) as a composition of I l

0 = [134,134] and I l
0 = [135, 135]), which are

commonly represented in the trace tB1 =’0000 0011’. B2 comprises of full
decompositions in the range I∗4 = [136, 143], represented by tB2 = ’1111
1111’, however, this optional probe is a fully included decomposition of level
5. The right path comprises J r

4 = [144,159], whereas B4 ([151, 159]) is not
part of the decomposition and must not be probed. Decomposition interval
I r
0 = [144, 144] is represented by tB3 = ’1000 0000’ in B3.
A range query interval [134,144] in the domain 23 is tested in DDTs by
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probing 3 decomposed traces (tB, tB1, tB3) and can be optionally verified in
tB2.

Probabilistic Error Tolerance in DTT enables lossy Compression. Im-
plicit DDTs are not erroneous, however they enable significant error toler-
ances. Considering the previous membership testing example of element
e {138}. A probe might yield a positive or negative result. If both probes
in B as well as B2 are positive, the element e {138} is present. Accordingly,
in case of two negative results, the overall result is negative. Otherwise, if
only B is positive, an element with equal prefix might be present, but not
{138}. However, a positive result in B2 and a negative result in B indicates
erroneous inconsistencies, since an element cannot be existent without its
prefix. Hence, horizontal layers have a error correction characteristic and
facilitate a lossy compressed consideration of domains in DTTs.

DI’s balanced binary trees are logically transferred in an implicit structure
of DTT with individually – by their prefix – addressable trace trees as nodes,
which collapse in functionally comparable traces of size 2b to cover b+ 1 levels
of DIs. Its implicit structure is natively not erroneous, however enables error
tolerance by horizontal error correction.

5.4.2. Prefix Hashing and Piecewise-monotone Hash Functions

bloomRF leverages deterministic concepts of trace positions in implicit dyadic
trace trees (DTT) (Section 5.4.1) to probabilistically encode and compress
range information, which is based on the dyadic interval (DI) scheme (in-
troduced in Section 5.3), by setting appropriate bits in an overlapping bit
array – similar to BFs (introduced in Section 5.2), as illustrated in Figure 5.5.
Generally, standard BFs employ a set of independent hash functions in order
to uniformly distribute an element’s encoding in the bit array, nevertheless,
restructuring of encodings have already been applied for different purposes
[CMB+10; DSL+11; LDD11; LNKB19; PSS10]. bloomRF, however, facili-
tates a broadened predictably valuable applicability in arbitrary membership
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Figure 5.5.: bloomRF’s encoding of elements is based on concepts of implicit
Dyadic Interval (DI) scheme and Dyadic Trace Trees (DTT).

testing of intervals by restructured encoding techniques – i.e. Prefix Hashing
and Piecewise Monotone Hash Functions (PMHF), as outlined in the following.

Prefix Hashing and Trace Locations. Trace trees represented by a col-
lapsed trace in hierarchical layers of DTTs are individually and directly
accessible by a comprised element’s prefix. Hence, a set of an element’s
addressable traces are directly accessible. bloomRF uniformly distributes L
hierarchical layers of traces i by independent hash functions fi on basic trace
levels li in a bit array of length m. A bit array’s length is also expressible by
a number of trace locations of words, if m is a multiple of trace width s. As a
result, a hash code by fi for each layer i of an element x can be calculated
and referenced to a bit location loci in a bloomRF instance.

loci =
�

fi (x >> (li + hi − 1))mod m
2hi−1

�

<< (hi − 1) (5.1)

Figure 5.6b shows number of trace overlays per word, which exhibit a
normal distribution (with an expected peak at 5 to 6 overlays, depicted in
Figure 5.6a), and relative share per layer. A logical root is set and suppressed
at level 42, yielding 6 layers of height 7 and a trace width of 64. The
filter is sized for 10 bits/key and 2 million elements (312500 words) with
uniform, normal and unique zipfian1 distribution. Zipfian distributions have

1Zipfian distributions are considered to be accumulations of individual non-duplicated
elements.
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Figure 5.6.: Overlaid Words per Distribution and Layer in bloomRF.

a negligible increased relative share of overlays at layer 2 (orange), since
absolute counts are normally distributed. Generally, since relative share result
in steady proportions over all layers, traces are uniformly distributed over words
with sufficient randomization for all prefix hashes.

Piecewise Monotone Hash Functions (PMHF) and Element Position.
Prefix hashes uniformly distribute traces of DTT’s different layers in words
of bloomRF’s bit array by Equation 5.1. Nevertheless, traces are considered
to piecewisely exhibit a sequence of monotonically scattering distribution of
comprised elements within occupied words. Hence, respective trace positions
of elements must be considered in bloomRF’s encodings. By knowing the
basic trace level li of a layer i, the respective position offset ∆ of an element
x from loci is cheaply gathered by a bitwise AND (&) operation:

∆= (x >> li)&
�

2hi − 1
�

(5.2)

Hence, piecewise monotone hash functions PMHFi in bloomRF are ex-
pressible by a sum of the first bit location of a trace’s word in the bit array
loci and a offset of a specific element ∆:
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PMHFi =
��

fi (x >> (li + hi − 1))mod m
2hi−1

�

<< (hi − 1)
�

+
�

(x >> li)&
�

2hi − 1
��

(5.3)

Since a family of PMHF is restructuring the random scatter of set element
positions, its effects on the bit array also have to be considered. Unset bits
are an appropriate metric as they indicate areas, which have never been
attained. Significant differences to regular BFs in bloomRF would indicate
issues in random scattering properties. Both filters are equally instructed
for a number of 2 million elements, i.e. 10 bits/key and for BF optimal 6

hash functions and utilizing 6 PMHF (layers of bloomRF’s implicit DTT and
a cropped logical root). Different data distributions are tested. As shown
in Figure 5.7, the length (Figure 5.7a) as well as the distance (Figure 5.7b)
of significant 0-runs of bits behave pretty similar. Zipfian exhibits a slightly
differing behavior with an increased number of shorter runs of unset bits
but also an increased number of unattained bits, what is explained by the
hierarchical hashing of accumulated elements in specific intervals – i.e. lower
layers exhibit a continuous sequence of set elements for specific intervals
but are empty for others, indicated by overlaid element positions in higher
levels due to vertical error correction.
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Figure 5.7.: Scatter of Unset Areas in BF and bloomRF. [MRBP23]
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5.4.3. Error Correction Policies

Lossy compressed representation in overlaid traces of DDTs in bloomRF’s
words yield erroneous results, since word positions are not clearly associated
to single traces. bloomRF applies different native as well as extensible
deterministic and probabilistic error correction policies.

Vertical Error Correction by PMHF. A value of PMHFi represents a DTT’s
trace with the base level li on a hierarchical layer i. Hence, only one PMHFi

is responsible for an element’s representation on level li and others oper-
ate on prefixes or also on subsequent bits. Nevertheless, as outlined in
deterministic arbitrary membership testing of DTTs (Section 5.4.1), several
hierarchical layers are testable for deterministic verification, especially in
the lossy compressed representation of overlaid traces in bloomRF – i.e.
if an element e {138} in Figure 5.4’s trace tree B2 is present, but not in
B, its element position in the word location of B2 is not related to B2 and
erroneous, due to overlaid traces.

In order to measure the effects of vertical error correction (compare Figure
5.8), a bloomRF is instrumented to store elements in traces of size 64 per
layer. Words have a fill ratio of 50 to 60% with sporadic outliers of 100%. An
inserted element (green) is identified and the entire distance of the lower 3

related layers is tested element by element. Layer 4, 3 and 2 respectively

F
P
R

Distance

Figure 5.8.: Vertical Error Correction by Hierarchical PMHF.
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cover 221, 214 and 27 elements per trace position with a trace tree height of
7. Moreover, each position covers two trace trees in the subordinated layer,
whereas one trace in layer 3, 2 and 1 respectively cover a distance of 220,
213 and 26 with its respective word’s fill ratio in bloomRF. Hence, the FPR is
fluctuating in these frequencies for respective layers.
Whereas layer 1 (blue) generally exhibits an FPR similar to a word’s fill

factor, it is corrected by layer’s 2 (red) unset positions, wherefore its FPR is
frequently reduced to 0, yielding an average FPR by layer 2 of 15 to 30%.
An equal effect is observed by layer 3 (yellow) with an average of 8% and so
forth. Unset positions of upper layers increasingly correct erroneous areas of
overlaid subordinated layers by vertical error correction.

Flexible Distance of Layers. Effects of deterministic vertical error cor-
rection rely on the structure of an underlying implicit DTT. Exponentially
growing intervals per layer and reduced number of appropriate PMHF yield
diminishing accuracy of deterministic effects. Number of applicable upper
layers is increased by smaller trace tree sizes – i.e. less bits of an element
prefix are covered per PMHF . By this means, a trace tree of h = 7 (64 bit
trace) can be represented by two layers of ha = 3 (4 bit trace) and hb = 4 (8
bit trace). Thereby, base levels li are flexibly applicable for different layers.
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Figure 5.9 shows a DTT with equal distance PMHF A and a flexible rep-
resentative B . Hence, error potential in deterministic probes of elements is
flexibly distributable for different layers of an implicit DTT.

Horizontal Error Correction by Replicating Hash Functions. Errors in
upper layers are weighty and virtually impossible to correct by superior layers.
Vertical error correction’s deterministic effect is improved by probabilistically
increased accuracy of upper layers in bloomRF. BFs achieve a probabilistic
FPR by repeatedly setting k bits according to the result of independently
calculated hashes with the entire element as input. Similarly, bloomRF is
able to insert ki replicated traces for PMHFi for different layers i. Obviously,
a risk of increased fill ratios in words occur, however, every replicating hash
function as well as PMHFs must satisfy a positive result or the existence of
an element is impossible. By this means, there is a significant probabilistic
chance to additional exclude not comprised elements from being erroneous
positive. Thereby, upper layers are preferably replicated, since range probes
tend to utilize less PMHF . Furthermore, excluding large ranges by replicated
hash functions likewise improve point as well as range accuracy.

Memory Segmentation in bloomRF. High number of lower level’s set trace
positions overlay with upper layers in bloomRF’s words and cause weighty
errors. Continuous memory space of bit arrays in bloomRF is manageable
in order to leverage deterministic characteristics with probabilistic impacts.
Upper layers cover large intervals, whereas massive amounts of elements are
expressed by single positions. Short prefixes and accumulation of elements
yield different hashing behavior. Nevertheless, negative results in these
layers prevent large intervals of elements from being erroneous. Hence,
error prevention is very valuable in upper layers. As depicted in Figure 5.9
B , PMHF and replicating hash function of upper layers are delegated in
a separate area of bloomRF’s bit array. Thereby, overlays of traces in words
as well as the number of set bit positions per word become manageable as
depicted in Figure 5.10, with the result of improved probabilistic characteristics
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Figure 5.10.: Memory Management in bloomRF improves accuracy of spe-
cific Layers.

of deterministic approximate membership testing in bloomRF.

Decoupling Deterministic Error Correction from Probabilistic Error Rate.
In spite of mentioned error correction techniques, false positive results in
upper levels are potentially not tolerable – especially in case of large interval
span probes. A drastic approach is to avoid probabilistic errors on a specific
valuable layer of the DDT Lle

with the base level le as depicted in Figure 5.9.
However, upper layers near the logical root tend to saturate, whereas an
exact representation is not able to beneficially exclude intervals. On the other
hand, lower layers occupy too much space to be entirely stored. Based on few
factors, there is a set of probably valuable levels for exact storage. This area is
massively increased if considering probably applicable offline optimizations
in horizontally partitioned storage and index management structures. For
instance, only elements within MV-PBT’s partition fence keys require to be
represented instead of covering the entire domain. Nevertheless, bloomRF
is first of all reflected without application specific optimizations. Accurate
representation of a specific level enables reliable results for large interval spans
in bloomRF.
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5.4.4. Heuristical Tuning Advisor

Outlined error correction policies in Section 5.4.3 are very powerful, however,
their configuration is complex. bloomRF provides a tuning advisor, which is
based on heuristics. By this means, bloomRF is as simply applicable as BFs –
i.e. by setting basic configuration parameters like the number of elements n,
the size in bits/key m

n or absolute size m, but also an approximately estimated
maximum probing interval range size R.
bloomRF is designed to cover a broad area of applicability as real PRF,

whereas calculated FPRs of point F PRp and range F PRm are weighted (com-
pare Figure 5.11c), hence R indicate a rough area rather than a precise
focus like in Rosetta [LCK+20]. As a result, the structure of the DTT is
described in a vector of height hi up to |H| for each layer i and mapped to
bloomRF’s error correction mechanics of replicated hash functions ki and
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Figure 5.11.: bloomRF’s Tuning Advisor weights for broad Area of Applica-
bility with default Configuration Parameters.

5.4 | bloomRF: Unified Point-Range Filter for Arbitrary Approximate Membership Testing 181



memory segments mi ∈ {ms1, ms2, ms3}. As depicted in Figure 5.11, base
level le of exact layer Lle

(Figure 5.11a with a conclusive absolute size ms1)
and memory segment size of ms2 (Figure 5.11b) vary marginally for a given
memory budget m (described by n in the ordinate and bits/key in the ab-
scissa), thus a variety of range query interval sizes are applicable for an equal
configuration. Nevertheless, accuracy ( f prp) of short ranges might suffer
from largely configured R and resulting memory segment sizes as depicted
in Figure 5.11c.
The exact layer’s Lle

base level le depends on the memory budget and
should be smaller than 60% of the filter size, hence

le = min{l|l |H|−l < 0.6×m}, (5.4)

whereas different exact level candidates are examined, e.g. le, le + 1 . . . l|H|.
Thereof, hi, ki and mi configuration parameters are gathered. Based on
heuristics, lower layer’s height is configured to hi = 7, whereas a 64 bit trace
size is derived – i.e. the maximum word size. Furthermore, lower layers
are typically assigned to ms3 and do not have replicating hash functions
ki. Intermediate layers between lower and exact ones heuristically require
additional accuracy, hence hi is gradually reduced, ki is increased and the
layer is assigned to ms2.
The size of ms2 requires to be determined, since size of ms1 is deduced

from le and the size of ms3 = m−ms1 −ms2. With the scope on reducing
overall FPR up to R, maximum error rate

f prm = max ⌊log2(R)⌋
l=0 f prl (5.5)

is calculated for comprised DIs and point elements f prp. In order to retain
PRF characteristic, i.e. not over-optimizing on R, a squared norm with a
weighting constant C is build

f prw =
q

f pr2
m + C2 × f pr2

p (5.6)

and the configuration with the lowest f prw is selected.
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5.4.5. bloomRF’s False Positive Rate (FPR) Model

The false positive rate (FPR) in bloomRF must be predictable in order to
select beneficial configuration parameters. FPR in BF as well as bloomRF
strongly depends on the probability (p) whether an arbitrarily tested bit is
still 0 [MU05]. Hence,

p ≈ e−
kn
m

F PR= (1− p)k =
�

1− e−
kn
m

�k

is also applicable for F PRp in bloomRF, assuming k is the absolute number
of PMHF and replicating hash functions for all layers L. By this means, the
flexibility of k is limited in a basic configuration of equidistant hi and might
not be optimal as defined in [MU05].

kopt = ln(2)×
m
n

bloomRF exhibits a similar behavior for fully covering intervals in the dyadic
interval scheme (compare J in Figure 5.1). Moreover, partially covering
intervals (J l ,J r in Figure 5.1) are represented as up to two sequences of
element positions. In [MRBP23] it is shown, that

F PRm ≤ 2×
�

1− e−
kn
m

�k− log2(R)
h (5.7)

Theoretical lower bound F PRs are defined by [CFG+78] for point and
[GJLP14] for range. Comparing bloomRF’s lower boundwith Rosetta [LCK+20]
indicates slightly increased memory requirements to achieve similar F PR
as Rosetta (compare Figure 5.12a), due to probably suboptimal number of
k, however, both come close to the theoretical lower bound. With regards
to increasing R in Figure 5.12b, Rosetta is increasingly distancing from the
theoretical lower bound, whereas bloomRF converge. Major space benefits
are achieved by prefix hashing techniques and incorporation of PMHFi of
up to i layers. Thereby, bloomRF achieves a massive area of applicability

5.4 | bloomRF: Unified Point-Range Filter for Arbitrary Approximate Membership Testing 183



(a) Point Queries (b) Range Queries of Size R

Figure 5.12.: Theoretical lower bound FPR of PRF. [MRBP23]

and is predestined as PRF. Its basic operations are outlined in the following.

5.4.6. Basic Operations

bloomRF is designed to replace point filters and broaden its applicability
to arbitrary approximate membership testing in PRF. Facilitating straight-
forward integration in potential systems, bloomRF satisfies with common
configuration parameters n, m or bits/key but enables optimizations on
range interval spans up to R on creation of the filter. Moreover, the F PR
model enables configuration selection based on target F PR and n. Generally,
bloomRF achieves desired behavior by fast low level binary and arithmetic
operations.

Allocation and Creation. A bit array of size m is zero allocated and a
configuration is provided by the tuning advisor. Furthermore, based on the
configuration per layer, frequently required information is pre-calculated, e.g.
bit masks to parse an element’s position in a trace ((1<< hi,r)−1 in Algorithm
5.1 line 7). In order to represent the DTT and additional information, an
optional structure (260 bytes) is allocated in the configurable prototype,
though not required in the base configuration. Finally, the filter is ready to
get filled with a set of element keys. The dataset might be sorted or unsorted.
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Algorithm 5.1 bloomRF: Put
1: function put(ke y)
2: Let i← 0
3: while (i← i + 1)≤ L do
4: Let r ← 0
5: do
6: Let loci,r ← fi,r

�

ke y >>
�

li,r + bi,r

��

mod
�

m>> bi,r

�

7: Let mask← 1<<
��

ke y >> li,r

�

&
�

1<< hi,r

�

− 1
�

8: bi t_arra y[loci,r]← bi t_arra y[loci,r] | mask
9: while (r ← r + 1)< ki

10: end while
11: end function

Unsorted Continuous Insertion. An unsorted set of elements can be suc-
cessively inserted by a put operation as outlined in Algorithm 5.1. Generally,
calculated bits of a PMHFi or ki replicating hash function (loci,r and posi,r)
for an element are successively set like in BFs, however, bloomRF operates
on decreasing prefix lengths (bit shift of ke y by a layer’s base level lir

and
the handled bits bi,r in line 6) based on the configuration of the implicit
DTT. For each k PMHF and ki replicating hash functions the location (line
6 indicates the word location contrary to Equation’s 5.1 bit position) as well
as trace position (line 7) are calculated and the bits are set by a logical OR
(line 8). This operation might be protected by atomic compare and swap
operations, which enable high concurrency and multi-threaded approximate
membership testing and online maintenance for a variety of applications.
As depicted in Figure 5.13, by this means, bloomRF exhibits noteworthy

multi-threaded throughput per thread. Nevertheless, setting k bits in L layers
is more expensive than probing elements. Probes might break on a negative
result, as outlined later. Hence, atomic modifications in online operations
are very effective. Increasing concurrent modification shrink performance
per thread whenever atomic word modifications fail.
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Figure 5.13.: Online Characteristics of bloomRF. [MRBP23]

Bulk Creation. PRFs like Rosetta and SuRF rely on comprehensive sorted
sets on filter creation. This could probably be a legitimate assumption
in RocksDB’s [Inc22] LSM-Trees, however, this might be not guaranteed
in general and implies additional memory costs of an entirely sorted set
on creation as well as narrows its applicability. bloomRF generally relies
on single put operations, even though bulk creation improvements are
feasible. A straightforward memory-sparing optimization is to remember
previously inserted elements and skip common prefixes, whereas cache
misses and processing are reduced. Furthermore, multi threaded approaches
are feasible.

As depicted in Figure 5.14, bloomRF exhibits constant filter creation time
for 50 million unsorted integers over different memory budgets. Competitors
suffer from additional processing and memory costs to prepare presorted
immutable input. Moreover, Rosetta slack off on increasing memory budgets.
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Figure 5.14.: Filter Creation Times for unsorted Datasets. [MRBP23]
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Algorithm 5.2 bloomRF: Point Probe
1: function probe(ke y)
2: Let i← 0
3: while (i← i + 1)≤ L do
4: Let r ← 0
5: do
6: Let loci,r ← fi,r

�

ke y >>
�

li,r + bi,r

��

mod
�

m>> bi,r

�

7: Let mask← 1<<
��

ke y >> li,r

�

&
�

1<< hi,r

�

− 1
�

8: if bi t_arra y[loci,r]&mask = ; then
9: return ;

10: end if
11: while (r ← r + 1)< ki
12: end while
13: return 1;
14: end function

Point Probe of single Elements. bloomRF successively probes single posi-
tions within traces in specific bit array locations (as denoted in Algorithm
5.2). Considering error tolerance of the implicit DTT structure, one negative
probe (in line 8) disqualifies an element to be related to an entry set. This
holds true for PMHFs as well as replicating hash functions. Due to individ-
ually addressable locations of implicit trace trees by an elements prefix, a
deterministic succession of probing points is not necessary. Common prefixes
with comprised elements might cause low selectivity and require to probe k
probing points. Hence, bloomRF probes points from layer 1 up to L.

Probing Intervals of Arbitrary Range Spans. The reflection of a DTT
in bloomRF enables approximate membership testing of arbitrary range
interval spans. Contrary to point probes, ranges are successively probed
in a deterministic direction from layer L to 1, since selectivity of lowest
probed layers might shrink by broadened bit masks and intervals are priorly
excluded by upper fully covering layers, hence probing layers checks are
initialized with L in Algorithm 5.3 line 3.
Coverings are defined by a common prefix of left l_ke y and right key
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Algorithm 5.3 bloomRF: Range Probe
1: function probe(l_ke y, r_ke y)
2: Let i← L
3: Let checks← init_checks(l_ke y, r_ke y, i)
4: while checks ̸= ; do
5: Let new_checks← ;
6: for each check ∈ checks do
7: Let r ← 0
8: if isCovering(check) then ▷ Fully Covering Intervals
9: Let ke y ← leftKey(check)

10: Proceed similar to Point Probe . . .
11: if negative result then goto line 6
12: finally append determined check(s) in i-1 to new_checks
13: else ▷ Partially Covering Intervals
14: Let l_ke y ← leftKey(check)
15: Let r_ke y ← rightKey(check)
16: do
17: loci,r ← fi,r

�

l_ke y >>
�

li,r + bi,r

��

mod
�

m>> bi,r

�

18: Let mask← getMask(l_lke y, r_ke y)
19: if bi t_arra y[loci,r]&mask = ; then
20: goto line 6
21: end if
22: while (r ← r + 1)< ki
23: return 1
24: end if
25: end for
26: i← i − 1
27: checks← new_checks
28: end while
29: return ;
30: end function

r_ke y at the base level of a layer, i.e. only one position in the trace must
be set and only one trace is probed per layer. Therefore, l_ke y and r_ke y
prefixes are equal and it is sufficient to perform a point probe on one prefix.
A positive result yield probing in its subjacent layer of a longer common
prefix.
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Once prefixes differ on base level of a layer i, it belongs to a partially
covering interval. This involves up to two traces in a layer, which are ap-
pended to new_checks – i.e. left and right sibling of a positive position in the
upper layer are testable. Before traces are added, a dyadic decomposition is
performed on the top level of a layer, since traces are only partially covering
the interval. By this means probing intervals are decomposed by its word
location in bloomRF.
In a successive iteration, partially covering intervals are probed in their

respective location (line 17). Nevertheless, the mask for probing positions
is a set of continuous bit positions between a respective l_ke y and r_ke y.
Whenever a partially covering interval cannot be excluded, the filter returns
a positive result. Otherwise, further partially covering intervals in the layer
are probed until every check ∈ checks is tested and finally returned.
Major advantage of this approach for MV-PBT is that probes in equal

configurations are only calculated once and can be reused in every protected
partition. Based on this assumption, two corner cases of this approach are
feasible to improve F PR, which are not outlined in Algorithm 5.3. First, an
upper parent trace spans two positions but the covered interval affects only
inner two traces in the lower layer. By this means, the lower layer traces
build a continuous interval and can also be considered in checks. A second
case behaves similar, if inner traces in between left and right element key
are excluded by their parent.

Enabling Successive Process of Doubting. Built upon mentioned princi-
ples of excluded partially covering intervals it might be valuable to drill down
scattered positive positions in a trace similar to the process of doubting in
Rosetta [LCK+20]. Probes in deterministic direction are extended towards
layer 1 whilst a negative result is probabilistically feasible.
Obviously, successive deterministic exclusion of partially covering inter-

vals cannot rely on singly pre-calculated information, since possible trace
locations exponentially grow per layer. Hence, the algorithm starts ’doubting’
whenever a base level of an interval is partially covered by a trace position.
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By this means, bloomRF successively puts not yet excluded subordinated
intervals to new_checks and calculates word locations and bit masks on the
fly. Subordinated intervals are determined by the resulting word of a logical
AND between mask and the respective word in the bit array. Doubted and
not yet excluded intervals are calculated and added to new_checks.

In order to avoid excessive linear growing processing costs like in Rosetta
[LCK+20], bloomRF evaluates valuable probes. With regards to Figure 5.10,
empty words are unlikely, whereas it is not valuable to probe subordinated
layers of consecutive doubting positions. In this case, words are probed
against fully set bit masks, which yield a positive result anyways. Moreover,
it is feasible to stop doubting in case of excessive work – i.e. if too much
subordinated layers are added to new_checks. Hence, bloomRF enables a
configurable trade-off between cost and performance.

By this means, especially in case of skewed zipfian distributions, bloomRF
achieves an improved F PR up to 46% in the library experiments in Section
5.5. Nevertheless, the cheap covering approach is already competitive in
general.

5.4.7. Multi Attribute and Data Type Support

Approximate membership testing is probably performed on a variety of
datatypes and number of search key attributes in DBMS. Considering the tar-
get system MV-PBT of this research, comprised elements are common search
key attribute types in storage and index management structures. Therefore,
(un-)signed integer and floating point numbers as well as short character
strings are considered. Moreover, multi attribute filtering is mandatory in
secondary indexing.
bloomRF is based on a fixed sized 64-bit unsigned integer domain for

element keys. The principles of bloomRF are generally applicable to any
integer domain of iterable elements. Smaller as well as larger domains are
feasible, due to the flexible structure of DTT. However, effects on PMHFs
and number of replicating hash functions must be considered.

On the base of unsigned integer domains, element values of other datatypes
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are transformed in an equal arrangement of strictly ascending element posi-
tions in traces. bloomRF provides access methods for different datatypes.
Following challenges emerge.

Arrangement of Signed Datatypes. Implicit DTTs in bloomRF are repre-
senting positions in traces from a datatypes minimum value (first position)
to a maximum value (last position). In signed datatypes, typically a set
most significant bit represent negative values, however for conclusive or
declarative reasons.
For instance, a 16-bit signed integer maximum value of 215 − 1 (max =

0x7F F F) is followed by its negative minimum value min= 0x8000 and (−1)
(0x F F F F) is followed by zero (0x0000). Conclusively, every value with a
set most significant bit is negative. The domain is shifted to represent values
smaller than zero in case of integers.

Nevertheless, values of signed datatypes are mapped to its corresponding
trace positions by cheap bit operations. In case of integers, an exclusive OR
(XOR) on the most significant bit shifts values to its corresponding position –
i.e. a 16-bit signed integer’s value val is shifted to its respective position pos
in a unsigned domain by pos = val XOR 0x8000.

Floating Point Numbers. Floating point numbers are typically signed, too.
However, there are certain differences in their representation of decimal
numbers to integers. Actually, decimals do not build a sequence of explicit
succession, however, floating point numbers are approximately represented
by a fixed domain of bits with positive and negative values, declaratively
indicated by the most significant bit. Further bits indicate the distance by a
mantissa and exponent, whereas negative values are represented in inverted
arrangement for positioning in traces. Therefore, bits in negative floating
point numbers are inverted and positive are shifted by an exclusive OR similar
to integers (compare [MRBP23]).

Other approaches might apply this approach, however, already very short
probing intervals result in huge interval spans, which require the massive
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Figure 5.15.: bloomRF efficiently supports Datatypes with constant FPR.

application area of bloomRF. As depicted in Figure 5.15b, bloomRF exhibits
constant F PR and throughput in probing intervals of 10−3 on NASA’s Kepler
mission dataset [NAS16].

Fixed Size Strings. Strings subjecting different lexicographical ordering
conventions in their fixed sized domain of characters, which might result in
undesired behavior for binary treatment – e.g. upper and lower case charac-
ters are represented by successions of continuous 8-bit numbers. Avoiding
exceptional behavior is incumbent upon the user, since bloomRF operates
on bits. However, bitwise ordering in DTT is feasible for a fixed domain
size, preferably of a power of two, like 64-bit unsigned integers. In order to
map strings in an integer domain, several techniques are feasible, like prefix
encoding.

Variable Length Strings. Variable length strings are not limited to a fixed
domain, whereas adjacent elements are uncertain. Similar to mathematical
decimal numbers, new adjacent elements are identified by appending ad-
ditional digits – i.e. strings are infinitely extendable by adding characters.
In bloomRF, a fixed depth in the DTT is encoded by interval information in
traces, on which range probes are possible. Suffixes are hashed and encoded
in the bottom layer to enable enough randomization for point probing of the
entire string.
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As a worst case stress test for bloomRF, filters are created for 1 mil-
lion abstract portions of DBpedia’s Wikipedia Extraction dataset [DBp20]
and probed against range intervals of 27; results are presented in Fig-
ure 5.15a. Rosetta is not designed for this interval range and not tested.
SuRF’s deterministic approach in the trie representation starts working at
a size of 22 bits/key with an F PR of 40%. Even though this is a predesti-
nated area covered by SuRF, its performance is not convincing compared to
bloomRF, which achieves 60% F PR by much less bits/key, yielding better cost-
performance trade-offs. Offline optimizations might improve deterministic
F PR in bloomRF, however, are not yet considered.

Multi Attribute Elements. Secondary indexes probably apply multi at-
tribute search keys. Moreover, cross products of attributes enable further
linking applications in DBMS. Flexible numbers of attributes introduce addi-
tional ordering and probing complexity, which is covered by bloomRF.

Assuming an element with two attributes (a×b), possibly the combinations
’point × point’, ’point × range’, ’range × point’ or ’range × range’ are probed.
The latter is currently not in scope of bloomRF, even though short ranges
with low complexity are feasible by manipulating probing bit masks. Other
combinations are enabled by inserting concatenated attributes (a × b) as
well as (b× a) with different PMHFs and shifted levels in implicit DTT. By
this means, ’point × point’ as well as ’point × range’ are probed on (a × b)
and ’range × point’ is probed on (b × a). Since the inserted elements are
doubled, increased bits/key are necessary.
Actually, ’range × point’ is not a basic capability in secondary indexes of

type (a× b). Nevertheless, query optimizers probably decide to use indexes
for the range query on a and filter on b, based on selectivity. In horizontally
partitioned structures, bloomRF provides data skipping, whereas effort of
downstream selection is reduced. Moreover, applicability of bloomRF is not
limited to MV-PBT or LSM-Trees.

By all means, probes on multi attribute elements are only reliable in com-
bination, since individual treatment shrinks selectivity and accuracy. For

5.4 | bloomRF: Unified Point-Range Filter for Arbitrary Approximate Membership Testing 193



0.0

0.2

0.4

0.6

0.8

1.0

10 12 14 16 18 20 22 24
0

2

4

6

8

Bits/Key

F
P

R

M
ill

io
n

O
ps

/s

Multi-Attribute BloomRF(FPR)
Multi-Attribute BloomRF(Throughput)

Two Separate BloomRF(FPR)
Two Separate BloomRF(Throughput)

Figure 5.16.: bloomRF’s joint effect in Multi Attribute Treatment [MRBP23].

instance, inserting (a1 × b1) and (a2 × b2) would also include (a1 × b2) and
(a2 × b1) in individual treatment. This effect is evaluated in Figure 5.16.
A multi attribute bloomRF (blue) and two separate bloomRF (black) are
built upon (Ob ject I D × Run) of Sloan Digital Sky Survey DR16 [DR119].
Inserted values roughly follow a normal distribution. Probes have the pattern
’const × [0..300]’. Even with increasing memory budget, separate bloomRF’s
are not able to achieve reliable results. Moreover, separate treatment is
more expensive, with respect to lower throughput. Multi attribute bloomRF
achieves much better F PR, whereas selectivity can be improved.

Provided datatype and multi attribute support in bloomRF is an unique
technological edge in PRF, whereas its holistic applicability in DBMS and
K/V-Stores is feasible.

5.5. Experimental Evaluation of PRF

bloomRF is experimentally evaluated in standalone and system integrated
settings. Experiments are performed in the introduced testbed in Section
2.1.3. Several dimensions are considered in latencies and FPR performance

194 5 | Arbitrary Approximate Membership Testing



1E-05

1E-04

1E-03

1E-02

1E-01

10 12 14 16 18 20 22

Uniform Workload

Rosetta SuRF BloomRF Bloom Filter Cuckoo Filter

1E-05

1E-04

1E-03

1E-02

1E-01

10 12 14 16 18 20 22

Uniform Workload

10 12 14 16 18 20 22

Normal Workload

10 12 14 16 18 20 22

Zipfian Workload
F
P

R

Bits/Key

Figure 5.17.: Standalone Point Probe Performance [MRBP23].

of PRF approaches. Datasets and workloads are of non-overlapping uniform
distributions, if not defined otherwise. Generally, zipfian distributions are
considered to be accumulations of individual non-duplicating elements.

Standalone Point Probe. In Figure 5.17, point probe FPR performance
is evaluated for different workload distributions. Filters are created for a
dataset size of 2 million uniformly distributed elements and different memory
budgets. Cuckoo Filters are introduced as practically better BF alternative.
For lack of precise configurability in bits/key, a high occupancy of 95% is
selected in order to achieve best possible results. Stored fingerprints are
varied in size to keep bits/key equal or smaller than reported parameter
settings. SuRF exhibits similar challenges in configuration.

First, bloomRF’s competitors except SuRF are only capable or configured
for point probes. Cuckoo achieves best FPR at 17 bits/key, however, generally
remain below expected performance compared to BFs. Rosetta exhibits
similar characteristics to BFs, indicating the use of specialized single level
approach [LCK+20] for very short ranges. It is the optimal configuration
for the tested point probe case, a mixed point-range workload cause Rosetta
to perform worse (configuration for a range interval of 64, bits/key and
FPR: 10, 2.66E−02; 12, 1.64E−02; 14, 1.58E−02; 16, 1.16E−02; 18, 8.36E−03;
20, 6.13E−03; 22, 4.42E−03), what actually is not better than SuRF, whereas
unified PRF capabilities are limited. SuRF with mixed suffix [ZLL+18] starts
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working at 14 bits/key and describes the upper bound for point probes.
bloomRF achieves comparable FPR in the efficient area of low bits/key,

however, gains less profit from increasing memory budget. Depicted behavior
is as expected from the theoretical model in Section 5.4.3. Comparing
theoretical lower bound FPR in Figure 5.12, there is a memory budget area,
wherein bloomRF is pretty close to Rosetta, but benefit less from additional
bits/key. It is a desired behavior of bloomRF as PRF to provide elastic FPR
for different interval ranges. As depicted in Figure 5.11, bloomRF’s tuning
advisor weights configurations pretty similar for a broad area of application,
yielding less probabilistic randomization in point probes. Slight performance
degeneration in the zipfian workload distribution compared to uniform and
normal indicate thereupon. Special tuning configurations of bloomRF might
improve point probe performance, since BFs are specialized bloomRFs.
Nevertheless, bloomRF as PRF provides comparable performance characteris-

tics to the widely used competitors in point probes.

Broadened Range Interval Probes. Extensive experimental evaluation
in FPR of range interval probes is depicted in Figure 5.18. Due to mass
of dimensions and measuring points, a compressed visualization indicates
the best PRF by color with absolute distance in FPR to runner-up denoted
by symbols. Individual diagrams depict data and workload distribution
combinations of uniform, normal and zipfian. Respectively, besides the
grouped range interval spans in small (8−32) medium (104−106) and large
(108 − 1010) intervals on z-axis, abscissa and ordinate denote the memory
budget in bits/key and dataset size in number of elements.

bloomRF (blue) dominates the broaden area of application frequently with
massive absolute FPR improvement of more than 10% (denoted as pentagon).
Rosetta participate at small interval range spans and occasionally achieves
slightly better FPR (yellow, usually less than 0.1%, not more than 1% at
best) for uniform and normal data distributions and extremely large memory
budgets. Deterministic approach in SuRF is very accurate for range intervals
spans covered by exact representation in its trie encoding, whenever the
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memory budget is sufficient. For low memory budgets and smaller range
interval spans, SuRF does not play any role, since its is not possible to build
any trie or meaningful suffixes.
Only bloomRF is capable to efficiently cover the problem space of PRF.

System Integration Benchmarks. bloomRF is implemented in a stan-
dalone library, which is integrated besides other PRFs by a filter policy in
RocksDB v6.3.6. For persistence it implements its own (de-)serialization
mechanism and is placed as regular full filter block in each compaction-
disabled SST file of a block-based table format, whereas LSM-Trees are a suf-
ficient representative for horizontally partitioned storage structures. Range
information is provided by slices and passed to tested PRFs by an extended
interface in the filter policy. Probing points are individually calculated on
the fly for each filter instance. Benchmarks are configured to load 50 million
uniformly distributed records, yielding 25 components of approximately up
to 2.06 million records, if not defined otherwise.

On the left hand of Figure 5.19, absolute latencies and FPR performance
metrics are depicted on the ordinates for different memory budgets on
the abscissa. Diagrams are categorized in varying range interval spans
small (8, 16, 32), medium (104,105,106) and large (109,1010,1011). Rosetta
(yellow) is only present in small range intervals, since it is designed for short
ranges and already exceeds valuable FPR and latencies for small memory
budgets. Moreover, Rosetta is only competitive to bloomRF (blue) for the
smallest range on medium and large memory budgets – in FPR as well
as latencies. SuRF (red) starts operating for large memory budgets and
beats bloomRF only in case of very large range intervals spans. In the
horizontally partitioned storage management structure, bloomRF dominates
in FPR as well as resulting latencies. On the right hand, FPR of point probes
are reported for different workload distributions, similar to Figure 5.17.
However, dataset and resulting request distribution depend on the insertion
workload in 25 components (protected by fence pointers) and the BF is
parametrized by RocksDB, whereas SuRF and BF measurements vary, but
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Figure 5.20.: Integrated PRF’s FPR and absolute Latencies per Range Interval
Span [MRBP23]. According to [LCK+20], Rosetta’s results are
stated for its limited scope.

are similar to results reported in [LCK+20]. Based on these reported and
reconstructed workload properties, bloomRF beats also BFs like Rosetta,
though benefit less from increasing memory budgets as expected from the
theoretical lower bound FPR.
Spinning-off the configurations of point probes in RocksDB, range inter-

val accuracy and absolute latencies are depicted in Figure 5.20 for large
memory budgets of 22 bits/key, hence competitors get sufficient resources to
perform well. By these configurations, Rosetta is able to achieve good FPR
up to a range of 8 whereupon it generally starts fluctuating in FPR. This is
explainable by the inelastic configuration and necessary request distribution
in advance of the creation process. Interestingly, in the normal workload
distribution, Rosetta remains relatively stable up to range intervals of 64.
However, having a look on the latencies, probing costs rapidly increase, indi-
cating excessive effort in the process of doubting. Contrary, SuRF remains
stable for every range interval, though on a lower performance level.
Only bloomRF covers the entire range interval space with comparable perfor-

mance metrics in the prime discipline of competitors up to 1011. Considering
Figure 5.21, all PRFs are able to massively reduce request latencies compared
to state-of-the-art fence pointers and PBFs – at least in their scope as Rosetta
linearly grows by range intervals in request latencies.
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Figure 5.21.: PRFs outperform State-of-the-Art Approaches. [MRBP23]

System Performance Execution Time Breakdown. Negative probes of
PRFs in RocksDB prevent protected LSM components from being accessed,
whereas unnecessary read I/O and traversal costs are avoided. LSM Trees as
a representative of horizontally partitioned storage management structures
share this characteristic with MV-PBT (compare Section 4.4.3 Figure 4.28c).
Since every performed query on the created 25 components returns an empty
result set, a perfect PRF would avoid any read I/O. PRFs are configured for
equal memory budgets of 22 bits/key in a normally distributed workload
(since competitors perform best, compare Figure 5.20). Moreover, probing
points are calculated on the fly for all PRFs, hence cost breakdown and
benefits in Figure 5.22 are comparable.

PRFs are arranged across the abscissa with increasing range interval spans.
Below, measured FPR is denoted. Stacked bars indicate share on execution
time breakdown (ordinate) for different costs. Costs comprise the filter probe
(brighter blue) after former deserialization (darker blue) from contents in
full filter block. Better FPR yield lower read I/O as well as residual processing
costs. However, I/O latencies partially overlap with residual processing costs
(gray), e.g. by means of pre-fetching, whereas real I/O wait times (red) are
reported whenever the CPU idles for I/O. Following observations are made.

First, bloomRF dominates total execution time for every point query and
range interval span, except the very short interval of 2. bloomRF’s workloads
perform 3.4 to 23.7 times faster for point queries and up to 2 times faster
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Figure 5.22.: System Integrated PRF’s Breakdown. [MRBP23]

for range queries.
Second, bloomRF exhibits predictably constant total execution time for

range queries on a comparably best level. SuRF is also constant, though 2

times slower; Rosetta’s execution time linearly grows.
Third, CPU times (all except red bars), especially probing costs (brighter

blue), exhibit an equal behavior. bloomRF relies on a constant tuning con-
figuration (compare Figure 5.11) – i.e. one configuration handles several
range query intervals equally well. Moreover, effort in range probing is also
constant, since partially covering intervals only vary by one logical DTT
layer1 and most PMHFs are point probes (compare Algorithm 5.3). SuRF
only slightly profit from deterministic accurate trie and mainly operates
on suffixes, however in a similar fashion for each range interval. Rosetta
apparently operates on a special single level configuration for ranges up to 8

– i.e. each element is individually probed. Larger ranges 16 to 100 operate
on a variable level approach, since probing time slightly decreases from 8

to 16 (and FPR raises), though continuing with linear growth. Obviously,
1Assuming a basic bloomRF configuration with a trace width of 64 in lower DTT layers for

evaluated range intervals 1 to 1000.
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probing costs for 100 are higher than residual processing costs and almost as
high as bloomRF’s total execution time. 1000 is not reported, since Rosetta
is explicitly introduced as PRF for small ranges [LCK+20].

Fourth, although Rosetta exhibits very good FPR characteristics for range
intervals up to 8, it is only able to achieve faster total execution times than
bloomRF for an interval range of 2. Rosetta’s costs per FPR performance are
too high to take effect. Moreover, FPR raises for range intervals larger than 8,
although it is inelastically configured for fixed range intervals, yielding most
expensive probing as well as high I/O costs. SuRF exhibits constant probing
costs, however with too low accuracy to take effect. bloomRF’s low probing
costs and good FPR enable best absolute performance characteristics for a
broad range of addressed applicability.

Last, deserialization (darker blue) of contents in full filter blocks is required
to restore testable filter objects. bloomRF’s simple structure of a probably seg-
mented bit array, similar to regular BF, as well as a small DTT-representative
meta structure of fixed 260 bytes allow fast deserialization. Complexity in
SuRF’s as well as Rosetta’s structure cause much higher deserialization costs.
Admittedly, an additional filter cache might reduce these costs, even though
it implies additional complexity and memory costs.
bloomRF exhibits best cost-benefit trade-offs, yielding performance optimal

filtering for a broad area of elastic arbitrary applicability.

5.6. Conclusion

Point-range filters (PRF) are valuable auxiliary structures for data skipping
in horizontally partitioned storage and index management structures raised
by (RQ3). Expensive costs of practically inconclusive read I/O, amplified
by multiple individually processed traversals, are minimized by cheap and
efficient PRF structures.

Cost-benefit trade-offs must not be neglected. Extra costs of PRFs comprise
probing by means of processing as well as memory footprints by means
of caching. By all means, for positive as well as negative filter probes,
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these additional costs occur and might adversely affect system performance.
Therefore, additional costs of auxiliary filter structures are taken into account
by constant probing costs and low memory footprints.
Benefits are specified by the accuracy in false positive rate (FPR) in con-

siderably selective arbitrary query predicates on horizontally partitioned
storage and index management structures. In order to avoid redundancies,
ideally one related PRF per partition is adequately powerful to cover the
entire problem space. Hence, a distinguished cost-benefit ratio is achieved, if
arbitrary point and range interval probes on different datatypes and search
key attributes are equally considered in design by fixed memory budgets.
Outlined existing PRF approaches exhibit different characteristics with

focus on partial aspects in the problem space. Only bloomRF equally facili-
tates the entire scope of arbitrary approximate membership testing, yielding
best cost-benefit ratio. By the nature of horizontally partitioned storage and
index management structures, bloomRF exhibits best characteristics to be
applied as auxiliary filter structure in MV-PBT.
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Application and System
Integration

In this chapter, prototypical system integration details and performance
benchmarking evaluation of (MV-)PBT for the application as storage and
index management structure are given.
In the first section, OLTP and HTAP system integration benchmarks are

performed. It is shown that append-based storage management is beneficial
whenever workloads become write-intensive for traditional DBMS designs,
however, its performance is limited by traditional B+-Tree index characteris-
tics – even in case of maintenance cost saving indirection layers. MV-PBT
copes with increased indexing effort and enables index-only visibility checks.
Storage management with MV-PBT as a further application (RQ2) is

evaluated in WiredTiger (WT) [Mon21] – MongoDB’s storage engine as well
as standalone K/V-Store. WT provides contrastable B+-Tree and LSM-Tree
implementations with modern lock-free maintenance techniques (compare
Section 3.1.5.2), whereas a fair and unrestrained comparison of storage
management structures is ensured.

205



6.1. Indexing in Relational Database Management Systems

In this section, several index management aspects of MV-PBT are evalu-
ated in system integration performance benchmarks in a DBMS. Modern
workload characteristics are outlined in Section 2.2 and appropriate bench-
marks are stated in Section 2.2.1. MV-PBT is designed for a broad range
of version-aware applicability, including mixed HTAP workloads with high-
rate continuous insertions by OLTP while providing consistent snapshots for
OLAP.

In a first instance, a short overview of implementation details and the
experimental setup is given. Subsequently, TPC-C benchmarks (DBT-2
[WW21]) are performed for different dataset sizes (scaling factor ware-
houses). Moreover, effects of different approaches are evaluated in a modern
HTAP setting (CH-Benchmark [CFG+11]).

6.1.1. Implementation Details of MV-PBT in PostgreSQL with SIAS

MV-PBT is integrated as index management structure in the prototypical
append-based DBMS PostgreSQL 9.0.4 with SIAS [Got16] (Section 3.1.5.1)
– i.e. MV-PBT is based on a very traditional disk-optimized B+-Tree with 2-
byte unsigned integer partition numbers in partitioned keys (Section 4.2.1.2),
Cached Meta Structures (Section 4.2.1.1), physical tuple version reference
by record id, in-memory garbage collection (Section 4.4.2), partition switch
without 8-byte timestamp compression (according to Section 4.2.2) and
bloomRF (Chapter 5) as auxiliary filter structure.

6.1.2. Experimental Setup

PostgreSQL 9.0.4 (HOT) [Pos21] and the append-based DBMS PostgreSQL
with SIAS [Got16] are deployed on the Ubuntu 16.04.7 LTS server, which is
introduced in Section 2.1.3. main-memory is limited to 2 GB, including 600

MB database buffer cache, and the OS page cache is cleaned every second.
Base tables and indexes apply a standard page size of 8kB. They operate
on the Intel DC P3600 enterprise SSD, whereas logging is performed on the
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Samsung 860 Pro consumer SSD. Generally, workloads include 30 minutes
ramp-up time and 3 hours benchmark runtime, if not stated otherwise.

6.1.3. Evaluation and Selection of Baseline

DBMS spend massive effort to reduce index maintenance costs caused by
rolling entry points (Section 2.4) in MVCC and online transaction processing
(OLTP) by logical indirection with the goal of optimized throughput charac-
teristics in concurrently modifying workloads. However, logical indirection
incur accompanying costs, due to unfavorable base table write I/O charac-
teristics (Section 2.3.1), massive memory footprint in limitedly equipped
data nodes (Section 2.1) or access delay by indirection.

Traditional Storage and Indexing. For instance, PostgreSQL 9.0.4 (HOT)
[Pos21] applies heap-only tuples (HOT), which aims for co-location of related
tuple version records of a version chain in base tables. B+-Tree indexes refer-
ence co-located items on base table pages, which point to old-to-new ordered
version record chains. By this means, costly B+-Tree index maintenance is
avoided for HOT by sacrificing beneficial base table write I/O characteristics
(Section 2.3.1) – especially if workloads become write-intensive.

Traditional Indexing in SIAS. On the other hand, PostgreSQL with SIAS
[Got16] maintains an indirection layer via VID-mappings (compare Section
3.1.5.1). These potentially incur a massive memory footprint for cached
structures, e.g. for 100 warehouses in TPC-C 572 MB1 are initially necessary
to represent mappings for each tuple. If caching is not feasible, read I/O on
secondary storage occur to gather missing indirection information.

Non-Robust Performance by HOT. Transactional throughput in the TPC-
C-specific metric of new order transactions per minute (NO-tpmC) is depicted
for different indirection layer designs (dashed lines) in Figure 6.1 for various

1Memory footprint is calculated by the number of initial tuples in the TPC-C scheme
[TPC10] (50001100 tuples for 100 warehouses), and 12 bytes per (VID,record id) pair.
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Figure 6.1.: Different Indirection Layer Designs versus Physical Reference
[RVGP20]

dataset sizes (warehouses). B+-Tree (PG/HOT) (black dashed lines and cross
markers) represents PostgreSQL 9.0.4 (HOT). It performs well as long as
modified base table pages are mostly located in the sufficiently sized database
buffer cache (600 MB) and are rarely evicted to secondary storage. As
depicted in Figure 6.2a, PostgreSQL 9.0.4 (HOT) exhibits maximum combined
read and write I/O per second (IOPS) at a dataset size of 400 warehouses
and is entirely I/O bound at 1000 warehouses as IOPS remain stable. Hence,
transactional throughput of B+-Tree (PG/HOT) in Figure 6.1 rapidly falls
with increasing dataset size, since more randomly modified base table pages
are evicted (write I/O) by buffer replacements (read I/O) as a result of the
highly skewed workload. The access pattern exceeds the limits of the Intel DC
P3600 enterprise SSD and becomes I/O bound (compare lower mixed random
IOPS in Figure 2.2 and operation mix in Figure 6.2a).

Adverse Write Patterns in Indexes. Nevertheless, the sufficiently sized
database buffer cache enable PostgreSQL 9.0.4 (HOT) to proceed the skewed
workload of transactions on a good level, whereas in [GPHB17] reported
performance gains of 30% are not achieved by PostgreSQL with SIAS (denoted
as B+-Tree Indirection Layer and depicted with gray dashed lines in Figure
6.1). Nonetheless, SIAS exhibits well-nigh robust performance characteristics
in every dataset size. Both observations, i.e. robustness on a lower level is
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(b) PostgreSQL 9.0.4 with SIAS
Figure 6.2.: Disk Utilization in OLTP.

explicable by following facts. First, applied Enterprise SSD exhibits specific
and increased I/O performance characteristics (compare Figure 2.2) which
affect ratios in processing and access latencies (Equation 2.1). Second,
memory budgets for database buffer caches are increased and residual RAM is
limited, whereas effects of operation system caches and in-memory structures
are restricted. Third, visibility checks in SIAS cause successive read accesses
and increased RA (compare increased read I/O in Figure 6.2b and 6.2a)
due to VID-mapping and spread version records of one logical tuple in
base tables – even in typically very short new-to-old ordered version chains
in OLTP. Fourth, B+-Tree indexes still cause random write I/O patterns
and shrink overall IOPS performance of an SSD with increased latencies
(compare Figure 2.2). Creation of logical tuples and modifications to indexed
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search key attribute values cause index updates and maintenance as well as
yielding random write I/O. Last, average limits of disk I/O utilization are not
attained for various dataset sizes (compare Figure 6.2b), indicating excellent
characteristics for performance robustness. For these reasons, throughput is
limited by successively performed read latencies from secondary storage devices,
which depend on the access patterns.

In order to avoid indirection layers in OLTP workloads, a naive approach
might be to avoid largely sized indirection layers on secondary storage de-
vices. Therefore, physical references of rolling entry points (i.e. most recent
version records of a logical tuple in new-to-old ordering) are maintained
in B+-Tree indexes (denoted as B+-Tree Physical Reference and depicted as
continuous gray line in Figure 6.1). Predecessor version records remain ac-
cessible by successively processing the version chain. By this means, creation
of new version records in base tables cause value updates in related index
records or an insertion of new index records, if search key attribute values
are modified. Amplified modifications in B+-Tree indexes stress secondary
storage devices by increased random write I/O and WA, yielding an average
throughput degeneration of 15% (compare Figure 6.1). Hence, traditional
B+-Trees are not capable to maintain physical references to rolling entry
points in new-to-old ordered version chains.

Since only PostgreSQL with SIAS and logical indirection layers in indexes
enables robust performance characteristics and desirable write patterns of base
tables on secondary storage devices, it is selected as baseline. Nevertheless,
traditional B+-Tree indexes cause random write I/O, which reduces absolute
IOPS performance of SSDs by undesirable access patterns (compare Section
2.1.2) – even though maintenance effort is reduced by indirection layers. These
might cause increased memory footprints for VID-mappings and access latencies
to entry points of version chains.
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6.1.4. Write-optimized Indexing in OLTP

Since the baseline is declared in the previous section, performance effects
of write-optimized as well as version-aware indexing in OLTP are evaluated
and depicted in Figure 6.3.

PBT outperforms Baseline by 25%. First, a direct comparison of tradi-
tional B+-Trees (baseline is denoted as B+-Tree Indirection Layer and depicted
in gray dashed lines) and write-optimized indexing with PBT (denoted as
PBT Indirection Layer with green dashed lines) is considered. Both apply
VID-mappings as indirection layer, hence both approaches are comparably
integrated index structures. PBT Indirection Layer outperforms B+-Tree In-
direction Layer by up to 25% for each tested dataset size. Moreover, PBT
exhibits even more robustness alongside different dataset sizes. Increased
throughput as well as performance robustness is explicable by PBTs write
pattern to secondary storage devices with near-optimal WA. Sparsely re-
quired index modifications are well-cached in the PBT-Buffer with very low
maintenance costs, due to VID-mappings and beneficial sequential writes of
saturated partition leaves.

Figure 6.3.: Performance of Indexing Approaches in a TPC-C-like OLTP
benchmark [RVGP20]
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PBT Scales with Pressure of Rolling Entry Points – 47% increased Through-
put. In comparison to reduced index maintenance effort by indirection
layers, PBT Physical Reference (depicted as continuous green line in Figure
6.3) maintains every circumstance of tuple versions by record types (Section
4.2.1.3) according to Section 4.2.3 – i.e. rolling entry points are maintained
by out-of-place replacements in the PBT. Nevertheless, PBT Physical Reference
handles maintenance of additional index records very well, since throughput
is similar to PBT Indirection Layer – especially for dataset sizes larger than
1200 warehouses. Moreover, with respect to PBT Physical Reference’s tradi-
tional counterpart B+-Tree Physical Reference, a performance gain of 47% is
achieved.

Significant Gains in Robustness and IOPS. PBT Physical Reference’s per-
formance drops (compare Figure 6.3) for smaller datasets (100 to 1000)
are explainable by concurrency issues in the very hot fraction of the PBT,
due to the traditional B+-Tree techniques in PostgreSQL. This assumption
is sustained by PBT Physical References disk utilization depicted in Figure
6.4a. Combined near-optimal sequential writes as well as WA in SIAS and
PBT yield beneficial access patterns and improve performance characteristics
of Flash according to Section 2.1.2. SIAS with PBT Physical Reference never
exceed limits of the Enterprise SSD (maximum disk utilization is 97%) – hence
its performance is very robust on a high level even though significant read I/O
to secondary storage devices.

Beneficial Access Patterns optimize Throughput in IOPS. Whilst Post-
greSQL with SIAS (B+-Tree Indirection Layer) is able to reduce absolute write
IOPS by optimal base table characteristics (Section 2.3), B+-Trees still cause
amplified WA. On comparable transactional throughput (1000 to 2000 ware-
houses), B+-Tree Indirection Layer reduces write IOPS by only 42% to 52%

compared to B+-Tree (PG/HOT) (similar throughput between 1000 and 2000

warehouses, compare Figures 6.2a and 6.2b). PBT Physical Reference, how-
ever, reduces absolute write IOPS by 81% to 95% on a comparable and higher
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(b) SIAS with MV-PBT
Figure 6.4.: Disk Utilization in OLTP with (MV-)PBT indexes.

throughput (compare 600 to 2000 warehouses in Figures 6.2a and 6.4a) and
enables strict append-based sequential write patterns for base table as well
as indexes. By this means, Flash SSDs enable increased absolute throughput
by beneficial access patterns (compare Section 2.1.2) of approximately 17.5%.

Version-aware Indexing is Competitive in OLTP. New-to-old version or-
dering is beneficial in OLTP, since related versions are accessed first (compare
Section 2.3.1.2), independent from logical or physical referencing. Succes-
sive read accesses on visibility checking are limited (typically less than 3

version records). Hence, index-only visibility checking in MV-PBT aims for
competitive performance characteristics to PBT in OLTP (compare Section
4.3.6.2). Whilst successively performed read accesses to version records in
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base tables are minimized, e.g. non-indexed tuple attribute values could be
still required to materialize projections, more reads occur in index structures,
due to probably increased index record sizes (compare Section 4.3.6.2). OLTP
workload characteristics allow good compressibility of additional timestamps
in MV-PBT, though it is not implemented in this prototype (compare Section
6.1.1). MV-PBT applies physical references by nature, whereas performance
drops by highly concurrent updates in the very hot fraction of the traditional
B+-Tree implementation are expected for smaller dataset sizes, similar to
PBT Physical Reference. Actually, MV-PBT achieves almost equal throughput
at 600 warehouses. Generally, performance degeneration by index pressure,
due to increased record sizes, is at most 5%. According to Section 4.3.1, ob-
solete transaction timestamps of virtually any record in OLTP is truncatable
on partition switch, whereas slightly increased write IOPS (compare Figures
6.4a and 6.4b) are avoided. Hence, occurring performance drops in indexing
physical references and increased write effort by maintenance of timestamps in
MV-PBT are preventable by modern B+-Tree techniques (like in WiredTiger as
outlined in Section 3.1.5.2) in the very hot fraction of the most recent partition
and timestamp compression on partition switch. By this means, MV-PBT is at
least on a par with PBT Logical Reference in OLTP workloads.

6.1.5. Index-Only Visibility Checks dominate in HTAP

Modern mixed HTAP workloads comprise OLTP with small modifying transac-
tions and long-lasting OLAP queries on a commonly shared dataset instance
(compare Section 2.2). In MVCC with SI, logical tuples involve multiple ver-
sion records in order to calculate a consistent transaction snapshot (Section
2.3). Related version records require to be identified by visibility checks.
Therefore, B+-Tree as well as PBT (both with indirection layer) require to
process the version chain in base tables, whereas MV-PBT performs index-
only visibility checks (Section 4.3.6). Performance effects in CH-Benchmark
[CFG+11] (introduced in Section 2.2.1) are depicted in Figure 6.5. The
benchmark is configured with a moderate scale factor (dataset size) of 200,
12 OLTP and 4 OLAP worker threads.
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Insight in Competing Factors. Different workload characteristics take
effect on system performance. Whilst OLTP transactions might unaffectedly
append new version records (compared to basic TPC-C workloads), growing
version chains amplify efforts in visibility checks for long-lasting OLAP
queries. On the other hand, OLAP incur massive read I/O and increase
number of relevant version records, what interplays with available write I/O
bandwidth, caching and GC in OLTP. Different requirements are challenging
for index management structures in DBMS that apply MVCC and SI.

MV-PBT performs best in analytical part (2× throughput). While concur-
rent OLTP transactions perform updates, small reads and short scans, more
complex and long-lasting analytical (OLAP) queries are performed by several
worker threads. As time goes by, increasing numbers of successor version
records are created by concurrent transaction processing. Version-oblivious
index structures identify tuple candidates, i.e. their entry point references in
base tables, whereupon a downstream visibility check is performed. Reads
on base tables incur excessive RA for massive amounts of unrelated version
records, yielding poor OLAP characteristics in HTAP (compare B+-Tree and
PBT in Figure 6.5). Analytical scans in B+-Tree are frequently blocked by con-
currently modifying transactions (write locks) and intermingled with more
recent tuples, which are not related to analytical transaction’s snapshots at
all. PBT probably avoids these problems by data skipping of subsequently
created partitions, however, visibility checks in base tables incur massive
read I/O. MV-PBT is able to skip very hot update-intensive fractions of the
index structure by auxiliary filter structures. Moreover, index records of
obsolete versions are well removed by different independently performed
garbage collection approaches like Cooperative In-Memory Page Level GC, due
to Version Chain Discontinuance (Section 4.4.2), whereas operational costs,
SA and RA in MV-PBT are minimized. MV-PBT returns physical references
of version records, which are visible to a transaction’s snapshot. Its robust
search performance is independent from version chain lengths (compare
Section 4.3.6.2 Figure 4.21b) and increase throughput by a factor of 2.
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Figure 6.5.: MV-PBT exhibits best Throughput (transactions per minute /
tpm) in HTAP Workloads. [RVGP20]

MV-PBT performs best in transaction processing (+14% throughput).
OLTP transactions are performed similar to the TPC-C workload [TPC10].
One might think, performance characteristics could be similar to TPC-C
results depicted in Figure 6.3, however, OLAP queries in HTAP affect work-
load characteristics by means of impairing cache and GC efficiency. These
effects have different impacts on performance of applied index management
structures. Pure write-optimization in PBT with the PBT-Buffer loses im-
portance, due to reduced indexing effort by indirection layer, with lowered
common buffer and accompanying performance loss compared to B+-Tree.
Nevertheless, write-optimization is still relevant in MV-PBT, since every mod-
ification is maintained and represented by a version-aware index record for
index-only visibility checking. Hence, MV-PBT undertake tasks, which are
regularly performed by an intermediate indirection layer. MV-PBT is capable
to avoid these indirections and accompanying buffer / cache misses, i.e.
access latencies of successively performed read I/O, by inherent index-only
visibility checking. Moreover, independently performed GC approaches in-
crease cache efficiency and minimize WA, RA as well as SA, whereas overall
performance is increased. Combined effects in MV-PBT improve transaction
processing throughput by 14% in HTAP workloads.
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6.1.6. Summary

MV-PBT is integrated and evaluated as a version-aware as well as append-
based index management structure on top of very traditional and disk-
oriented B+-Trees in PostgreSQL with SIAS. Both approaches independently
facilitate beneficial append-only sequential writes to secondary storage de-
vices of version-aware data. Elimination of random write I/O increase avail-
able bandwidth (IOPS) of Flash, due to beneficial access patterns and im-
proved latencies to requested information, which is comprised in massive
amounts of persistent data on secondary storage.
Index-only visibility checks in MV-PBT avoid successive indirections to

related version records in base tables and enable robust query performance –
independent from version chain lengths. Principally, index management with
MV-PBT improves system performance in HTAP as well as simple OLTP work-
loads. However, applied techniques in very traditional disk-oriented B+-Trees
in PostgreSQL 9.0.4 – which MV-PBT is built upon – limit in-memory perfor-
mance in the very hot fraction of the most recent partition. Nevertheless,
improvements and robustness in transactional throughput by version-aware
and hardware-leveraging index management is evident for aspired workload
characteristics.
In order to evaluate its potentials with modern B+-Tree-techniques, MV-

PBT is integrated in WiredTiger 10.0.1 (WT) [Mon21] and evaluated with
cloud-serving YCSB benchmark [CST+10; RKD21] workloads in the next
section.

6.2. Storage Manager in Key/Value-Stores

In this section, MV-PBT’s storage management characteristics are evaluated
and compared tomemory-optimized B+-Trees and thewidely used LSM-Trees
(with leveled data layout) in WiredTiger 10.0.1 (WT) [Mon21] (introduced
in Section 3.1.5.2). The basic cloud-serving YCSB benchmark workloads
[CST+10; RKD21] (introduced in Section 2.2.1) are appropriated to evaluate
different performance aspects of MV-PBT in modern workloads with massive
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amounts of data on secondary storage devices (compare Section 2.2).
Research objectives are defined as follows. First, MV-PBT is evaluated on

top of a memory-optimized B+-Tree structure in order to derive potentials
in database index management with modern B+-Tree techniques. Major
performance gains are assumed by lock-free in-memory optimizations, due to
the very hot and update-intensive most recent partition of a MV-PBT. Second,
assumptions about related structures made in Chapter 3 are evaluated in a
consistent code base with equal techniques. Hence, an ideal environment is
given to evaluate bare characteristics of B+-Trees, LSM-Trees and MV-PBT.
Last, storage management is a further possible application of MV-PBT raised
by RQ2.

6.2.1. Implementation Details of MV-PBT in WT

WiredTiger (WT) [Mon21] is the default storage engine in MongoDB’s
document store and is applicable as standalone K/V-Store. WT is built upon
a lock-free and in-memory optimized B+-Tree implementation for storage
and index management as outlined in Section 3.1.5.2. Built upon B+-Trees,
leveled LSM-Trees are applicable as equivalent storagemanagement structure
in write-intensive workloads.
MV-PBT is integrated as storage management structure in WiredTiger

10.0.1 (WT) [Mon21] upon the existing in-memory optimized B+-Tree-
structure and applied Cached Meta Structures (Section 4.2.1.1). Partitioned
keys apply 2-byte unsigned integers in by reference strings as partition num-
bers (Section 4.2.1.2), which are usually compressed by provided prefix com-
pression techniques. Transaction timestamps are maintained in in-memory
representations of different record types (compare Section 4.3.1) and are
discarded on eviction. They are probably appended as additional column if
necessary, however, WT generally prevents eviction of active transaction’s
read- and write-set-related data. The MV-PBT-Buffer (Section 4.2.1.4) al-
lows flexible growth of hazard pointer referenced in-memory leaves of the
most recent mutable partition up to 20% of the buffer share. Partitions are
switched and flushed by a tree-walk-based reconciliation process (Section
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4.2.2). bloomRF (Chapter 5) is included as PRF for approximate membership
testing. Moreover, cached partitions (Section 4.4.1) with partition number
reference are applied every 20 partitions and consolidated GC partitions
(Section 4.4.2) are generated every 400 partitions by background worker
processes.

6.2.2. Implications on Secondary Indexing MV-PBT Stores

WiredTiger (WT) extends basic functionalities of traditional K/V-Stores by
several capabilities known from DBMS. For instance, WT natively implements
transaction management, schema support, secondary indexing or join oper-
ations, whereby it is an appropriate storage engine in MongoDB [Mon21].
Generally, in K/V-Stores key-searchable storage management structures are
very popular, e.g. by hashing or key-sorted LSM-Trees and B+-Trees. By this
means, search operations, which are favorably performed on primary keys,
and storage management are handled at once – without maintenance and
searches in auxiliary primary index structures, like in heap-based storage
management (e.g. SIAS or HOT in PostgreSQL).
MV-PBT as storage management structure contains every version record

of logical tuples, which are related to any active snapshot, nevertheless,
they are probably not located at their final location. B+-Tree maintenance
operations possibly move records across nodes to sustain sort orders – hence,
this characteristic is also valid for the most recent partition in MV-PBT. For
this reason, unlike to SIAS base table organization, physical referencing by
record id (page and slot numbers) in secondary indexing is challenging.
On the other hand, MV-PBT provides good search performance by known
search key attribute values (Equation 4.3 in Section 4.2.4). Version-aware
secondary indexes (e.g. MV-PBT) probably include the entire immutable
primary search key attribute values (including partition number) as logical
reference. Thereby is the number of searched partitions ( f(P) ) equal to 1

without filter probes. Primary search key lengths must be considered to be
as small as possible, since they are included in secondary indexes.

MV-PBT is capable to serve as sole storage and indexmanagement structure
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inWT – especially if most querying operations are performed on primary keys.
MV-PBT provides good inherent search and storage capabilities. Searches on
secondary indexes cause one additional root-to-leaf traversal in the primary
storage structure, whereas version records in SIAS are directly accessible by
record id. However, searches on primary key are preferably supported by
an additionally maintained primary index, due to its cost model (Section
2.3.2). MV-PBT provides challenging storage management capabilities to SIAS
by inherent search functionalities, however, secondary indexing requires special
care in costs of logical references.

6.2.3. Experimental Setup

WiredTiger 10.0.1 (WT) [Mon21] and the prototypical implementation of
MV-PBT in WT are deployed on the Ubuntu 16.04.7 LTS server, which is
introduced in Section 2.1.3. main-memory is limited to 2 GB, with 200 MB
buffer cache (including 20% MV-PBT-Buffer or LSM chunks, respectively).
The YCSB framework [CST+10; RKD21] is appropriated for experimental
evaluation. Initially, the WT K/V-Stores are loaded with approximately 50

GB with 1 kB value size, unless stated otherwise. Workloads are executed for
3 to 10 hours by up to 6 worker threads in order to keep enough resources
for background workers in WT. Prefix truncation and snappy compression
are enabled. Direct I/O is enabled and the OS page cache is cleaned every
second in order to ensure repeatable, reliable and even conservative results.
Experiments are performed on the Intel DC P3600 enterprise SSD as well as
on the Samsung 860 Pro consumer SSD (compare Section 2.1.3).

6.2.4. Experimental Evaluation

In this section, basic storage management structures in WT – i.e. in-memory
designed B+-Trees and write-optimized leveled LSM-Trees – as well as MV-
PBT are evaluated in standard YCSBworkloads. All structures apply equal B+-
Tree techniques and share a common code base, whereas an ideal opportunity
to compare structural effects is enabled.
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First, modifying standard YCSB workloads are performed for 3 hours and
configured as outlined in Section 6.2.3. Results are depicted in Figure 6.6. By
default, B+-Trees, LSM-Trees and MV-PBT are respectively denoted by gray,
red and blue lines. Figures depict the cumulatively executed transactions in
million per elapsed execution time in seconds. Following observations are
made:

MV-PBT exhibits best or at least competitive performance characteristics.
Update-intensive workloads (e.g. YCSB Workload A with 50% reads and
updates respectively) are the comfort zone of the widely used LSM-Tree.
MV-PBT outperforms LSM-Trees by factor 1.5 (Figure 6.6a) to 2 (Figure
6.6b) in the write-intensive setting. B+-Trees are outperformed by orders
of magnitude (up to 43×), due to maintenance operations, massive WA
and adversely performed random write patterns. MV-PBT is able to absorb
updates in its most recent partition and performs beneficial sequential writes
with a minimal WA. Cached Partitions (Section 4.4.1) as well as commonly
utilized and buffered inner nodes (compare costs statements in Section
4.2.4) enable robust search performance and minimize merge effort and
accompanying WA compared to LSM-Trees. These effects are also valid for
less update-intensive workloads (YCSB Workload B with 95% reads and 5%

updates), whereby MV-PBT outperforms LSM-Trees by a factor of up to 1.7×
and B+-Trees up to 3×.

YCSB Workload D (Figures 6.6e and 6.6f) differs from Workload B by the
request distribution (95% reads are mainly performed on recently inserted
5% records, comprising many empty result sets). Storage management
structures are affected by these variations in different ways. Since read
operations are preferably performed on recently inserted records, their
referencing as well as comprising nodes in all tree structures are very likely
to be cached. Nevertheless, several read operations cannot be immediately
answered by a valid tuple value, since recently inserted records are not
related to a query’s transaction snapshot or insertions are still pending by the
concurrent workload. B+-Trees perform best, since they identify nonexistence
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Figure 6.6.: Cumulated Transactions per Time in modifying YCSBWorkloads
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as well as definitively co-located predecessor version records within one root
to leaf traversal operation with excellent cache probability. However, in case
of horizontally partitioned storage structures, version records are probably
located at several storage locations. Search operations on nonexistent or
predecessor version records require other components / partitions as well as
their auxiliary filters to be probed. MV-PBT deals much better with partition
traversals than LSM-Trees (due to Cached Partitions and commonly cached
inner nodes), whereas they remain more competitive to B+-Trees and might
catch up with more aggressive defragmentation.

In scan operations (Workload E in Figures 6.6g and 6.6h), successively per-
formed read I/O on leaves dominate throughput characteristics. Additional
traversals by horizontally partitioned storage management structures have
low effects on overall scan performance and all structures exhibit compara-
ble throughput – however, this characteristic depends on the record value
size (compare Figure 6.9e). Considering modern workload characteristics
(Section 2.2), MV-PBT exhibits best structural properties for a broad range of
applicability and outperforms its competitors.
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Figure 6.7.: Performance Robustness in MV-PBT.
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MV-PBT exhibits robust steady performance characteristics. Modify-
ing operations in workloads, like YCSB Workloads in Figure 6.6, affect the
conditions of storage management structures and underlying secondary
storage devices. In B+-Trees, for instance, an insertion might cause node
splits and increase SA. On the other hand, LSM-Trees and MV-PBT generate
additional horizontal partitions. Moreover, modifications on secondary stor-
age devices entail inherent operations, which might affect available IOPS
(compare Section 2.1.2).

Generally, MV-PBT exhibits very robust performance characteristics (com-
pare steadily increasing cumulated transactions in Figure 6.6). Strictly
performed beneficial sequential write patterns (Section 4.2.2), Cached Parti-
tions (Section 4.4.1) as well as beneficial GC techniques (Section 4.4.2) allow
performant conditions in the storage management structure and leverage
secondary storage devices. Exemplary, average throughput per second of
applied storage management structures in YCSB Workload B are depicted in
Figure 6.7. Whilst the leveled LSM-Tree gradually varies in actual through-
put based on its merge status of leveled components, B+-Trees and MV-PBT
exhibit very robust throughput – however, MV-PBT performs at least 3 times
better. Commonly cached inner nodes enable fast traversal operations and
Cached Partitions efficiently locate related partitions with the result of robust
throughput characteristics. Nevertheless, performance slightly degenerates
until covering CP are created or evolving fragmentation is reduced by GC
processes. Even in steady workload conditions after hours of execution, MV-
PBT’s performance characteristics are very robust (compare YCSB Workload A
in Figure 6.8), indicating adequate structural properties, GC operations and
beneficial access patterns – leveraging secondary storage devices.

MV-PBT leverages available hardware resources. Datasets are assumed
to be update-intensive and large, exceeding the capacity of main-memory.
Whilst B+-Trees exhibit poor performance characteristics, if its working sets
massively exceed RAM, MV-PBT leverages available hardware resources and
turn additional bandwidth and buffer caches in performance. LSM-Trees are
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Figure 6.8.: Steady Throughput for Consumer and Enterprise SSD for different Buffer Sizes in YCSB Workload

A (after 60 / 200 million transactions in MV-PBT respectively).
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not able to gain performance, due to structural conditions.
YCSB Workload A is performed for several hours to attain steady per-

formance characteristics and is depicted in Figure 6.8. Available hardware
resources are varied between 100 (Figures 6.8a and 6.8b) and 200 MB buffer
cache (Figures 6.8c and 6.8d) and from Consumer (Figures 6.8a and 6.8c)
to much more performant Enterprise SSD (Figures 6.8b and 6.8d). Steady
throughput characteristics are assumed, if 60 million transactions in MV-PBT
on Consumer SSD and 200 million transactions in MV-PBT on Enterprise
SSD are performed.

Whilst MV-PBT turn doubled buffer cache as well as additional I/O band-
width in increased and more robust average throughput per second, LSM-
Trees as well as B+-Trees almost take no benefit from additional resources.
These observations indicate beneficial structural and hardware-leveraging prop-
erties in MV-PBT.

Application of Different Record Sizes. Record sizes affect the perfor-
mance characteristics of storage and index management structures. With
increasing record sizes, less records take place in one leaf node. Whilst index
record values contain small physical or logical references (e.g. record id),
storage management structures probably vary in comprised data lengths
from small to large record value sizes. Therefore, YCSB allows to vary the
comprised data value lengths. YCSB basic workloads (Figure 6.9) are per-
formed on small (16 bytes), medium (100 bytes) and large (1000 bytes)
record value lengths, the initial load is adjusted to match approximately 50

GB dataset sizes.
Extensive experimental evaluations are performed on introduced storage man-

agement structures. MV-PBT exhibits robust performance characteristics and a
broad range of applicability, whereas it generally outperforms its competitors
in their respective scope.
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Figure 6.9.: YCSB performance evaluation for different value sizes. [RP22]
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Experiments (depicted in Figure 6.9) show similar performance charac-
teristics for every dataset size – especially in updating workloads A (Figure
6.9a) and B (Figure 6.9b) MV-PBT dominates its competitors. This means
that determined advantages of MV-PBT (blue) for large record value sizes
are also valid for small record value sizes, i.e. likewise in update-intensive
multi-version index management with physical reference record ids values
MV-PBT outperforms LSM-Trees (red) by up to 2× and the baseline index
management structure B+-Trees (gray) by orders of magnitude.

For the sake of completeness, YCSB Workload C (depicted in Figure 6.9c)
comprise of 100% read operations on the initially loaded dataset of 50 GB,
hence every storage management structure is in a read-optimized layout.
Thereby, MV-PBT, LSM-Trees and B+-Trees exhibit comparable performance
characteristics. This observation confirms beneficial properties of dense-
packed and read-optimized layout (compare Sections 4.2.2) with diminishing
costs of additional partition numbers (compare Section 4.2.1.2). However,
as known from Section 4.4.1 Figure 4.23 as well as Figure 6.7, LSM-Trees
are not capable to keeping up throughput in case of fragmented components.
Even B+-Tree’s performance characteristics slightly degenerate by modifica-
tions and MV-PBT sustain competitive and robust read performance. As a
result, MV-PBT’s performance drops in the search-intensive YCSB Workload
D (Figure 6.9d) are much less incisive than in LSM-Trees.
Finally, MV-PBT achieves comparable performance to B+-Trees in YCSB

Workload E (5% insert and 95% scan) depicted in Figure 6.9e. Whereas all
storage management structures perform equal for large value sizes, LSM-
Trees fall behind for small and medium value sizes. Successively performed
read I/O on data access in leaves stop dominating costs and traversal op-
erations become more important. Cached Partitions and commonly cached
inner nodes enable cheap merge sort scan operations in MV-PBT, whereas
they remain competitive to the ubiquitous B+-Trees.
6.2.5. Summary

MV-PBT is integrated as append-based and version-aware storage manage-
ment structure in the K/V-Store WiredTiger 10.0.1 (WT) [Mon21]. WT
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implements LSM-Trees and B+-Trees as well on a shared code base with
commonly applied modern B+-Tree-techniques – an ideal opportunity for
structural comparison is given. B+-Trees hardly take profit from in-memory
optimizations in WT, since every update immediately result in write I/O to
secondary storage devices (compare Section 3.1.1 Equation 3.6). However,
B+-Trees are able to profit from cheap logarithmic complexity in search
and scan operations (compare Section 3.1.1 Equation 3.4), yielding good
performance properties in YCSB Workload C, D and E. LSM-Trees enable
beneficial sequential writes to secondary storage devices with a lowWA, how-
ever, search operations in the fragmented components operate on separately
managed inner nodes, yielding poor search operation performance (compare
Section 3.1.3). Frequent merge operations in the leveled LSM-structure are
counteracting growing search effort, whereas WA is increased and LSM-Trees
underperform in all tested settings.

MV-PBT as storage management structure combines beneficial sequential
write patterns and almost logarithmic search complexities (compare Section
4.2.4 Equation 4.3) by commonly cached and utilized inner nodes as well
as Cached Partitions, whereas the number of required merge operations
is optimally reduced to GC processes (compare Section 4.4.2). MV-PBT
dominates experimental evaluation of contrastable key-sorted structures. As
demonstrated by the last experiment in Figure 6.9, these properties are valid
for application of MV-PBT as storage as well as index management structure,
leveraging modern in-memory B+-Tree-techniques for the very hot most recent
partition.

6.3. Conclusion

In this chapter, MV-PBT integration details in the prototypical DBMS Post-
greSQL with SIAS and K/V-Store WiredTiger 10.0.1 are given and experimen-
tally evaluated by a broad range of modern workload properties. MV-PBT
as version-aware index management structure is efficiently able to provide
physical references to a snapshot’s related tuple versions in SIAS base tables
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by index-only visibility checks, yielding increased throughput of up to 47% in
OLTP workloads and a doubled throughput in analytical processing of HTAP
workloads. Nevertheless, in-memory operational maintenance costs might be-
come the bottleneck in very traditional underlying B+-Tree-implementations
in the hot fraction of the most recent partition in MV-PBT.

Modern B+-Tree-techniques and in-memory optimizations allow to absorb
high update-rates. WT includes very performant B+-Trees and LSM-Trees
for in-memory processing and write-intensive tasks respectively. MV-PBT
outperforms contrastable storage management structures by up to a factor
of 2 for LSM-Trees and orders of magnitude for B+-Trees, whilst sustaining
competitive search and scan performance characteristics to B+-Trees. Robust
and increased performance characteristics are evaluated for a broad range of
applicability, which have also impact on version-aware index management
with MV-PBT in DBMS.
MV-PBT exhibits beneficial performance characteristics for a broad range of

workload properties, especially in write-intensive workloads, with competitive
performance for general purpose. Hence, MV-PBT is qualified as storage and
index management structure on modern hardware technologies and recent
trends in workload properties.
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Summary and Research
Opportunities

This closing chapter briefly summarizes the contributions of this thesis and
gives an outlook in research opportunities. MV-PBT enables (index-only)
visibility checks in an alpha-numerically sorted structure whilst leveraging
modern storage technologies. Research opportunities are settled in the broad
range of applicability as well as hardware accelerator technologies, which are
probably involved in DBMS [BGHS19] and require to complementary operate
on a consistent dataset instance. MV-PBT brings beneficial characteristics
for these innovative research areas.
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7.1. Summary of Contributions

Multi-Version Partitioned BTrees (MV-PBT) as storage and index management
structure considers tuple versions as independently maintained and indexed
entities of one logical tuple – each valid for a different period in time. Individ-
ually accessible and by partitions locally and temporally separated version
records of different types are annotated with timestamp information, whereas
cheap and robust access latencies are enabled by (index-only) visibility checks
– independently from the actual version chain length, since successively
performed read I/O with high read amplification (RA) is avoided.

Beneficial strict out-of-place as well as append-only maintenance of version
records is firstly introduced in a searchable structure and backed by a com-
monly shared MV-PBT-Buffer, cheap partition management, record types that
indicate different operations and one-point invalidation by comprised ’anti
matter’. This native behavior in MV-PBT leverages modern Flash secondary
storage characteristics, since it massively reduces write amplification (WA)
and enables a beneficial sequential write pattern, whereby MV-PBT is able to
cope with amplified effort of version record maintenance.
MV-PBT facilitates recent trends in append-based storage management

approaches, e.g. SIAS with rolling entry points, by version-aware index man-
agement with low memory footprint. The potentials of cheaply maintain
physical references to massive amounts of individually located tuple version
records in base tables eliminates indirection layers in main memory and sec-
ondary storage, whereby successive operations are combined and resources
become available for various purposes.

MV-PBT facilitates a broad range of applicability – i.e. principally as a sub-
stitution of the ubiquitous B+-Tree, wherein Partitioned BTrees [Gra03] and
consequently MV-PBT have their origins. Several modern B+-Tree techniques
and optimizations, e.g. data skipping and reorganization methods, enable
MV-PBT to improve and completely replace B+-Trees as well as LSM-Trees
as storage and index management structure – for instance in K/V-Stores like
WiredTiger [Mon21] or RocksDB [Inc22].

Immutability of persistent partitions enables beneficial background online
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adaption and reorganization approaches, like Cached Partitions (CP). Thereby,
improved caching behavior of commonly used inner nodes facilitate robust
search performance at high fragmentation. Contrary to LSM-Trees, MV-PBT
is not forced to increase write amplification (WA) by necessary merge and
rewrite operations of still valid data, however, MV-PBT facilitates intended
garbage collection, reorganization and defragmentation processes.
Finally, bloomRF is introduced as general purpose point-range filter tech-

nique. The lack of flexible data skipping structures for approximate membership
testing necessitate the development of bloomRF in order to introduce MV-PBT
as storage and index management structure without constraints and low
administrative effort. Various data type and multi-attribute support with
constant low cost probes enable high benefits for arbitrary element and query
interval range span distributions, which actually covers the needs in MV-PBT
for data skipping, even if bloomRF’s applicability is not limited to.

7.2. Further Application Scenarios of MV-PBT

A broad range of applicability is necessary in widely used storage and index
management structures. Application needs vary and rapidly evolve. RQ2
raised the question for further applications and opportunities of storage and
index management with version-aware MV-PBT. A brief overview is given.

7.2.1. Time-Travel Query Processing

In business applications, time-travel queries are an useful capability of DBMS
and K/V-Stores [IC20]. Principally, a consistent view on the dataset instance
is provided at particular points in time. Implementation of this capability
is comparable to MVCC with SI transaction processing (compare Section
2.3), since snapshots provide individual consistent views to transactions.
However, the capability of processing time-travel queries massively increases
the version chain lengths of logical tuples, since snapshot-related predecessor
versions must not be removed. Relevant snapshots are probably defined by
named snapshots [Mon21], which remain active until they are explicitly
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dropped. By this means, time-travel queries are enabled for specific points
in time, e.g. once a day or month for analytical processing.
According to HTAP query processing in Section 4.3.5, MV-PBT exhibits

reasonable characteristics as storage and index management structure in
time-travel DBMS and K/V-Stores. First, version-aware MV-PBT is able to
perform (index-only) visibility checks (Section 4.3.6). Second, lightweight
minimum transaction timestamps (Section 4.4.3) allow lateral entries to re-
lated partition on search operations (Section 4.3.5) and result in robust
response times (compare Section 4.3.6.2 Figure 4.21b). Third, discontinu-
ance of logical version chains (Section 4.4.2) allows cheap GC of obsolete
version records, which are not related to named snapshots. Last, partitions
are optionally customized to named snapshots by specific GC approaches or
creation of sorted views in CP as needed.

7.2.2. Blockchain Storage Structure in Enterprise Systems

Blockchains [Nak09] are a distributed ledger technology, which allows par-
ticipants to share and maintain data in decentralized networks. Several
opportunities rise, for instance in the area of supply chain management
[CIS19]. Enterprises are thus able to include the commonly shared and
maintained in data in their existing enterprise system landscape [RVP18a]
(compare Figure 7.1).

In order to make the shared information valuable in the enterprise sys-
tem, it is probably necessary to transform blockchain data in a processable
format with logical schema and common data types (compare Figure 7.1).
This representation enables data integration without affecting the general
blockchain load properties. Interestingly, MV-PBT exhibits very beneficial
storage and index management characteristics for these properties as well
as needs in enterprise systems. The log-based nature of blockchains typically
result in append-based storage of immutable information, which is identified
by uniformly distributed cryptographic keys. Unspent transactions are rarely
formed to an invalid fork of blocks. Nevertheless, off-chain operations and
information must be consistently represented and shared in the blockchain
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network. MV-PBT leverages append-based storage of new-to-old ordered
and processed version tuples, without the need of reorganization for perfor-
mance reasons (compare Sections 4.2.4 and 4.4.1), similar to information
in blockchains. Thereby, MV-PBT enables performant storage and index
management characteristics for for high-rate continuous insertion of records
with uniformly distributed randomized search keys (compare Section 6.2).
Independent partition management of MV-PBTs in a database schema en-
ables separate treatment in storage and index management of off-chain
information and operations with a commonly shared MV-PBT-Buffer for very
hot and update-intensive partitions (compare Section 4.2). Moreover, data of
blockchain forks is cheaply removable by cropping entire partitions (Section
4.4.2). MV-PBT is an appropriate storage and index management structure for
these upcoming kind of workloads.

7.2.3. Accelerators and Complex Memory Hierarchies

MV-PBT is designed to leverage modern hardware technologies, including
highly parallelized and decentralized processing units and accelerators as
well as members of the complex memory hierarchy (Sections 2.1.1, 2.1.2,
A.1 and A.2). Nevertheless, in implementation and benchmarking (Section
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6), only CPU as processing unit as well as RAM primary storage and SSD
secondary storage devices are considered.

Partition management yield immutable subsets of data in MV-PBT, which
enable several operations, e.g. online merge sort (Section 4.3.5), to be
commonly processed by individually operating CPUs and accelerators on
partitioned data in complex memory hierarchies. Thereby, intelligent cost
models probably enable beneficial cooperative execution plans (Section
2.3) for MV-PBT and massively reduce data transfer latencies by smart
result set handling for consistent snapshots – e.g. for MVCC with SI, HTAP
workloads or time-travel queries – on heterogeneous hardware [KVB+21;
VKB+22; VKS+22]. By this means, asynchronous background maintenance
operations, e.g. creation of defragmented and consolidated CPs (Section
4.4.1) and GC partitions (Sections 4.4.2), are pushed down to free capacities
in accelerators with marginal data movement in the memory hierarchy and
effects on payloads.
Besides the capability of native (index-only) visibility checks, MV-PBT

benefits from B+-Tree’s increased cache probabilities of sparsely modified
inner nodes (compared to horizontally partitioned LSM-Trees, compare
Section 4.2.4 and A.3) as well as fully comprised and recoverable meta data in
the basic structure. By this means, even search operations in partitions, which
comprise filter probes (Sections 4.4.3 and Chapter 5), traversal operations
(compare logarithmic costs in Section 4.2.4) as well as (index-only) visibility
checks (Section 4.3.6), are commonly processable, based on data locality and
available computing power. Especially, lightweight PBT Cached Meta Data
(Section 4.2.1.1) and pbt_cursor information, e.g. anti_matter_map (Section
4.2.3), are capable to accelerate and synchronize distributed operations
with tiny updates by low latency (near RAM) interfaces for accelerators, as
exemplary demonstrated in [BTS+22; TSK+22] for cache-coherent shared
lock tables.
MV-PBT is capable to leverage recent developments in hardware technologies,

due to applied design decisions, whereby recent trends in workload properties,
e.g. HTAP or time-travel queries, are well covered.
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Appendix

A.1. Complex Memory Hierarchies

Inside data nodes, data provisioning is performed alongside members of
the memory hierarchy. Traditionally, they are differentiated in fast volatile
byte-addressable primary, e.g. RAM, and slow persistent block-addressable
secondary storage, like disk. These are characterized by symmetric access la-
tencies – i.e. reads and writes perform equally well. Processing units operate
on caches and synchronize with working copies in primary storage, which
are probably persisted in write I/Os to secondary storage. Non-represent
data in primary storage cause read I/O to secondary storage. However, a
huge access gap to secondary storage exist.
Semi-conductor storage technologies close this access gap in ’Complex

Memory Hierarchies’, however, exhibit special characteristics, like asymmetry,
inherent parallelism and out-of-place modifications (compare SSD as an
representative in Section A.2).

Based on the underlying technology in NVM, characteristics are varying in
between fast byte-addressable RAM-like and asymmetric block-addressable
SSD-like behavior [DRZ+16; EGA+18; ZXCX15]. An extensive analysis
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Figure A.1.: Complex Memory Hierarchy in modern Hardware [Got16]

of NVM is out-of-scope in this thesis – generally, characteristics of NVM
technologies are settled between RAM and SSD.

A.2. Technical Background: Flash in SSD

In contrast to HDDs, SSDs do not rely on any moving electro-mechanical
parts. Data is located in immediate-accessible storage locations without
electro-mechanic delay. These fundamental difference is covered by the
Flash Translation Layer (FTL) for block-addressable device compatibility, by
means that the host system do not take notice of underlying differences,
whereas functionality becomes hidden in a black box.

Central task of an FTL is the address translation of logical block addresses
(LBA) requested by host to black-boxed physical block addresses (PBA)
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Figure A.2.: Flash package organization. [MFL14]

on device, what is not a static mapping, due to specific behavior of Flash.
Several non-volatile Flash memory packages are accessed by Flash Memory
Controllers in the FTL. According to [MFL14] and Figure A.2, NAND-based
Flash memory packages downward subdivide in several mostly independent
dies, planes, blocks, pages and memory cells. NOR-organized Flash memory
provide different characteristics and is not in scope in this thesis.

Based on the applied technology, memory cells store one (SLC) or multiple
bits (MLC/TLC/QLC for 2/3/4 bits per cell) by distinction of load conditions.
MLC technology achieves a higher density and therefore larger volume for
the sake of performance and endurance. Flash supports read/write operations
on page granularity but erases only on block-level. Based on this structure
and material properties, characteristics of Flash are defined as follows:

• High level of inherent parallelism
• Asymmetric read and write performance
• Out-of-place update operation
• Advantages in sequential write I/O pattern
• Background Garbage Collection
• Limited durability and wear
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• I/O transfer time is majority

Details and their relevance to DBMS access structures are outlined in
Section 2.1.2.

A.3. Example calculation of single B+-Tree Cache Efficiency

Let a LSM-Tree with 3 components, storing 100, 10 and 1 million leaf nodes
in component C2, C1 and C0. Assuming a high fan-out of 200 and a fill
factor of 100% – with regards to Equation 3.1, the height of the components
is 5, 5 and 4 resulting in 14 individual nodes to search in. Excluding leaf
nodes from calculation will result in 11 individual inner nodes.

h= ⌈logF× fi

LN

fl
⌉ + 1 , F ̸= 1 , LN > 1 , fi , fl ∈ [0.5; 1]

hC2 = ⌈log200×1.0
100E6

1.0
⌉ + 1= 5

hC1 = ⌈log200×1.0
10E6

1.0
⌉ + 1= 5

hC0 = ⌈log200×1.0
1E6

1.0
⌉ + 1= 4

Maintaining all 111 million leaf nodes in one tree also result in a height
of 5, even if the fill factor could be slightly lower than 100%, e.g. 80% in
average might be a good assumption in regular redistributed B+-Trees after
load [RG03] – a PBT could perform much better as outlined in Section 4.2.4.
Searching all partitions requires 15 nodes, however, in this case the root
is affected by all three partitions and one more inner node is commonly
traversed by the searches of its two smaller partitions1. The absolute number
of accessed nodes is 12, i.e. 9 individual inner nodes.

1Comparing calculations of LSM-components, root nodes of C1 and C0 are very sparely
filled, therefore it is very likely that one B+-Tree would combine separator keys in one inner
node.
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hone_t ree = ⌈log200×0.8
111E6

0.8
⌉ + 1= 5

Barely 20% less inner nodes are required in this calculation (individual inner
nodes of a B+-Tree 9 divided by 11 of LSM components). Assuming a pic of 0.5

and plc of 0 in Equation 3.4, LSM requires 8.5 read I/Os.

sI/O ≈ RI/O × (⌈logF× fi

LN

fl
⌉ × (1 − pic) + (1 − plc)) , pic ≫ plc

sC2 ≈ RI/O × (⌈log200×1.0
100E6

1.0
⌉ × (1 − 0.5) + (1 − 0)) ≈ 3.0RI/O

sC1 ≈ RI/O × (⌈log200×1.0
10E6

1.0
⌉ × (1 − 0.5) + (1 − 0)) ≈ 3.0RI/O

sC0 ≈ RI/O × (⌈log200×1.0
1E6

1.0
⌉ × (1 − 0.5) + (1 − 0)) ≈ 2.5RI/O

sLSM ≈ sC2 + sC1 + sC0 ≈ 8.5RI/O

With 20% increased cache efficiency (pic = 0.6) of inner nodes and three
partitions (P), a single tree requires only 7.8 random read I/Os. Compared to
8.5 read I/O of LSM-Trees, searching in the horizontally partitioned B+-Tree
requires about 8% less read I/Os from significantly slower secondary storage.

In this calculations, fixed assignment of C0 to main memory is not consid-
ered, since this functionality shrinks cache efficiency of further components.
Furthermore, this behavior should also be applied in Partitioned B-Trees for
comparability.

sone_t ree ≈ RI/O × P × ((⌈logF× fi

LN

fl
⌉)× (1 − pic) + (1 − plc))

≈ RI/O × 3× ((4)× (1− 0.6) + (1))

≈ 7.8RI/O
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