
Institute for Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Change tracking and observability
for complex software development

Nistha Bhawsinka

Course of Study: Computer Science

Examiner: Jun.-Prof. Dr. Benjamin Uekermann

Supervisor: Ishaan Desai,
Christoph Schlameuß (IBM)

Commenced: June 1, 2023

Completed: September 25, 2023

Abstract

The complexity involved in the wide range of software products that are developed around the globe
varies in many aspects. It is often easier to manage small projects because of less development tools
involved, but for larger projects it can get overwhelming fairly quickly. Having an option to view all
the important parts of a development process at one place can help in such complex scenarios. The
objective of this study is to make this process simpler by introducing an observability solution for
the development teams. The work revolves around two use cases, one from IBM having more than
250 repositories managed by a small group of developers. And the other one is preCICE, which is
an open-source project with around 50 repositories. Both the use cases have their respective needs
which are recorded by surveying the developers. The solution developed is intended to be generic
so that it can be used in other projects in the future. This accounts to the pressing need of creating a
reusable solution.

Major components of the proposed solution include a Grafana dashboard with custom scripts written
in Python. It is a client server architecture, shipped as docker images for portability purposes.
One of the key aspects of this study was to keep the developers informed and understand their
needs. This helped while designing questions for all the surveys that were conducted with them
as subjects. Results of those surveys acted as a knowledge base while planning the solution. The
work also contributes in streamlining the software development process in complex projects by
reducing the mental effort and development time of the developers. There is an added advantage
of better collaboration with such an overview of the project. It will allow the new developers
to get familiarized with the organizational pulse and make contributions to the source code in a
more informed manner. The results showcase how projects with different level of complexity and
perspectives can benefit from such a solution.

iii

Kurzfassung

Die Komplexität der zahlreichen Softwareprodukte, die weltweit entwickelt werden, ist in vielerlei
Hinsicht unterschiedlich. Kleine Projekte sind oft einfacher zu verwalten, weil weniger Entwick-
lungswerkzeuge beteiligt sind, aber bei größeren Projekten kann es schnell unübersichtlich werden.
Eine Möglichkeit, alle wichtigen Teile eines Entwicklungsprozesses an einem Ort abzubilden, kann
in solchen komplexen Szenarien helfen. Das Ziel dieser Studie ist es, diesen Prozess durch die
Einführung einer Beobachtungslösung für die Entwicklungsteams zu vereinfachen. Die Arbeit
dreht sich um zwei Anwendungsfälle, einen von IBM mit mehr als 250 Repositories, die von einer
kleinen Gruppe von Entwicklern verwaltet werden.Der andere ist preCICE, ein Open-Source-Projekt
mit etwa 50 Repositories. Beide Anwendungsfälle haben ihre jeweiligen Bedürfnisse, die durch
Befragung der Entwickler erfasst werden. Die entwickelte Lösung soll generisch sein, so dass
sie in Zukunft auch in anderen Projekten eingesetzt werden kann. Dies trägt der dringenden
Notwendigkeit Rechnung, eine wiederverwendbare Lösung zu schaffen.

Zu den Hauptkomponenten der vorgeschlagenen Lösung gehört ein Grafana-Dashboard mit
benutzerdefinierten, in Python geschriebenen Skripten. Es handelt sich um eine Client-Server-
Architektur, die aus Gründen der Portabilität als Docker-Images ausgeliefert wird. Einer der
wichtigsten Aspekte dieser Studie war es, die Entwickler zu informieren und ihre Bedürfnisse
zu verstehen. Dies half bei der Gestaltung der Fragen für alle Umfragen, die mit ihnen als
Probanden durchgeführt wurden. Die Ergebnisse dieser Umfragen dienten als Wissensgrundlage
für die Planung der Lösung. Die Arbeit trägt auch dazu bei, den Softwareentwicklungsprozess in
komplexen Projekten zu rationalisieren, indem der mentale Aufwand und die Entwicklungszeit der
Entwickler reduziert werden. Ein zusätzlicher Vorteil ist die bessere Zusammenarbeit mit einem
solchen Überblick über das Projekt. Neue Entwickler können sich so mit dem organisatorischen
Pulsschlag vertraut machen und fundiertere Beiträge zum Quellcode leisten. Die Ergebnisse zeigen,
wie Projekte mit unterschiedlichem Komplexitätsgrad und unterschiedlichen Perspektiven von einer
solchen Lösung profitieren können.

v

Contents

1 Introduction 1

2 Background of Tools and Technologies 3
2.1 Version Control in Software Development Life Cycle 3
2.2 Source Code Management . 5
2.3 Code Repository . 5
2.4 Modular Repositories . 6
2.5 Software Composition Analysis . 7
2.6 Automation Server . 8
2.7 Observability . 9
2.8 Dashboards . 10

3 Use Cases 11
3.1 IBM HPVS on VPC . 11
3.2 preCICE . 13

4 Results of the Initial Survey 15
4.1 Survey Design . 15
4.2 Initial Survey: IBM . 16
4.3 Initial Survey: preCICE . 19

5 Initial Solution Design 23

6 Solution 27
6.1 IBM . 28
6.2 preCICE . 33

7 Results of the Final Survey 39
7.1 Final Survey: preCICE . 39
7.2 Final Survey: IBM . 41
7.3 Challenges . 44

8 Conclusion and Outlook 47

Bibliography 49

vii

List of Figures

2.1 Sample Development Pipeline . 4

3.1 The Software Stack of Hyper Protect Platform 12
3.2 preCICE Overview . 14

5.1 Initial Design of the Solution . 23

6.1 Solution for Use Case 1: HPVS on VPC (IBM) 28
6.2 Dependency Graph Script Flow for Use Case 1: HPVS on VPC (IBM) 30
6.3 GitHub Dashboard: HPVS on VPC (IBM) . 31
6.4 Dependency Dashboard: HPVS on VPC (IBM) 32
6.5 Solution for Use Case 2: preCICE . 34
6.6 Dependency Graph Script Flow for Use Case 2: preCICE 34
6.7 Dependency Dashboard: preCICE . 36
6.8 Evolution of the Dependency Graph . 37
6.9 Filter Capability of the Dependency Graph . 37

ix

Acronyms

API Application Programming Interface. 25

APM Application Performance Monitoring. 24

HPVS Hyper Protect Virtual Server. 11

JSON JavaScript Object Notation. 25

REST Representational State Transfer. 25

SCA Souftware Composition Analysis. 2

SCM Source Code Management. 1

SSH Secure Shell. 45

URL Uniform Resource Locator. 29

VCS Version Control System. 3

VPC Virtual Private Cloud. 11

YAML YAML ain’t markup language. 30

xi

1 Introduction

Software development is one of the core sectors responsible for the growth and development of the
era. There are many sectors inside of software development which can be of interest for different
minds. This field of study is evolving at a fast pace and has a steep learning curve for new-comers.
Because of the increased demand and reliance in everyday lives, it is important that the developed
systems meet the requirements and are efficient in their operation. Efficiency should be ensured
not only during the performance stage but also during the development phase of the solution.
Traditional methodologies of software development were time consuming and error-prone due
to more repetitions and manual touch points. Such approaches are no longer feasible in modern
distributed architectures with faster release cycles [7]. Hence, tools like source code managements
systems and automatic build and test systems are in place, to support developers plan their work
and even collaborate with other developers for better synchronization of work.

With great tools comes great responsibilities, which means that even though the tools ease up
the development efforts, they have some overheads of their own. Developers need to be careful
about following guidelines while using Source Code Management (SCM)s to avoid over-writing
modifications or breaking some other functionality while repairing their bugs. While viewing the
repositories of a small application, it may be legible to make sense about their current state. But
as the size of the organization grows, it becomes more and more complex to get an idea about
what is going on in the application as a whole. Such a bird-eye view will help the developers to
quickly overview the activities which might need their attention or inform the concerned peer to
take action. In a longer run, it will result in reducing the downtime of the application and decreased
stress for developers which was earlier caused by multiple navigational challenges between various
development tools such as Jenkins, GitHub etc. This bird-eye view including various aspects of
software development to understand the state of the system is called observability.

This work revolves around the concept of observability and explores various observability solutions
present in the market. There are two use cases (softwares) under consideration, one hosted on an
enterprise infrastructure and another on an open-source infrastructure. The goal is to investigate
suitable tools for both the use cases and try out the selected tools for getting feedback from the
development team about their experience. With projects which are bigger in size, oftentimes there
are a lot of inter-dependencies. Even for code repositories, there is a graph connecting the dependant
repositories with one another. Due to the size and complexity factor, it is not possible for the
developer to back-track and find root causes of failures in such a scenario. This is where change
tracking becomes crucial.

Change tracking in distributed systems is called distributed tracing. An effort was made to find
existing tools for making the dependency graph available to the developers for their GitHub
repositories. If such a tool already exists, then its benefits were evaluated using feedback from the
users. Otherwise, a custom solution was proposed to be used by the developers. With the size of
the project, such a solution should be open for enhancements in the future. To make the study more

1

1 Introduction

realistic and closer to the expectations of the users, there were surveys circulated to the development
for their inputs. Starting from an initial survey to understand the problem statement to a final survey
for recording the feedback on this study’s results.

In the first chapter, there is a detailed explanation about the state of the arts related to the central
topic of this research. Since version control systems are the base of modern software development
cycle, there is a brief introduction about the three types of VCs present around us. The most popular
one being Git, also used in both the use cases of this study1. Moving on to a brief introduction about
Source Code Management systems and some of the features offered by them. Code repositories are
an integral part of any SCM, they are the logical locations where developers save their code base for
easy collaboration.

Furthermore, there is an explanation about how the concept of repositories are extended to create
modular repositories. There are two major kinds of repositories mentioned, monolithic and multiple
repositories. Along with the overview about both the variants of repositories, the pros and cons are
also discussed in this chapter. Additionally, there are many other tools and processes which are
used to develop, test, deploy and manage a software application. One such process is Souftware
Composition Analysis (SCA), it introduces automation in dependency management of the software.
An application can have many external and internal dependencies which have to be up to date in
order to keep the application free from vulnerabilities and security risks. SCAs are responsible
for taking care of these aspects. The next section explains the role of automation tools during the
software development life cycle. Jenkins is such an automation tool used for continuous integration
and delivery. There is also a detailed explanation of terms like observability and dashboards since
the results of this study revolve around them.

The two use cases are explained in Chapter 3. It is highlighting the current software development
process along with the tools used within the development teams. Both the use cases differ in a lot
many ways which poses an interesting angle to this research. There is a comparison in the end
describing the usability aspects of the proposed solution. After being familiar with the two use cases,
it will be natural to set a baseline for the research. This baseline is achieved by circulating surveys
with the prospective users of the system and the survey results are also presented in Chapter 4.
After establishing the baseline, Chapter 5 outlines the approach taken by keeping in mind various
available solutions in the software market. After studying about these solutions, a comparison
is made to check the feasibility on the lines of requirements gathered during the initial survey.
Furthermore, this approach is then concretized in Chapter 6 for both the use cases. This chapter
focuses on detailed explanation of every module that is a part of the solution along with a few
figures supporting it visually. In every research it is particularly important to get feedback from the
users. Chapter 7 presents the feedback which was collected via surveys after the developers were
made aware of the proposed solutions. Chapter 8 then concludes along with some final remarks and
outlook which can be useful in continuing the research.

1Jason-Pat. Top 10 Best Version Control Systems for 2023. [Online; accessed 3 September 2023]. url: https:

//www.accuwebhosting.com/blog/best-version-control-systems/.

2

https://www.accuwebhosting.com/blog/best-version-control-systems/
https://www.accuwebhosting.com/blog/best-version-control-systems/

2 Background of Tools and Technologies

2.1 Version Control in Software Development Life Cycle

Software development is a vigorous field in today’s marketplace, almost everything around us has a
software component involved whether it is in the production stage or in the procuring stage. But in
the bigger picture, behind every successful software product lies a huge set of processes such as
test, maintenance, migration, evaluation, refactor etc. This brings along the necessity of employing
multiple developers, devOps engineers, software architects, testers, security developers and many
more. It is highly likely that this group of individuals do not dwell in a single geographic location
because of the cost factor. Since they all are working on the same product, there is some level of
coordination or synchronization needed between them. For instance, in order to avoid repeated
effort, the tester needs to have the latest version of code developed by the developer. Same goes for
devOps engineers and even for developers who need to keep the codebase synchronized with each
other, to avoid overwriting or deletion of someone else’s work. Because of such use cases, the idea
of version control evolved greatly over time. There are majorly three variants of version control
systems that were used to manage the code repositories or files in general [3]:

1. Local Version Control System: In the olden days, the people involved in a project would
copy files around directories for tracking different versions. Often the naming of such
directories is given such that they indicate timestamp in a readable fashion. However, it is
very evident that one wrong copy paste command can lead to a huge mistake and there is
a lot of manual effort needed which further increases the chances of human error. Hence,
local version control systems came into existence. They are like a local database which keeps
track of files that undergoes any change. They would do so by storing the patch files which
indicate only the changes that have happened since the last version. Software such as Quilt
is used to combine multiple patches into one patch, making it easier for developers to test
and evaluate the performance of the modified piece of code. Local Version Control System
(VCS) comes with a major drawback of non-collaborative environment. Developers need
to manually share the code base with fellow developers or choose not to share at all as it is
meant for the local file system.

2. Centralized Version Control System: Since, the above approach lacks the feature where
multiple developers could contribute to a single project or even a single file sometimes. This
gap was filled by the concept of centralized version control systems where developers could
check out projects from a single server to their local repositories and work independent of the
other developers involved in the project. The major bottleneck of such a solution is that, if the
central server fails for some reason there is no backup server to continue serving the users.
This may even cause data loss if there was some uncoordinated work going on the server. In
bigger projects, such a single point of failure would not be acceptable. Furthermore, if two
developers want to work on the same piece of code or in similar scope, file locking allows

3

2 Background of Tools and Technologies

them to lock the file while they are modifying it and release the lock once they are done. This
way, they can avoid over-writing each other’s piece of work and hence reduce development
effort. However, waiting for someone to release the lock may lead to increased development
time.

3. Distributed Version Control System: The issue of single point of failure in centralized VCS
was solved by the introduction of distributed VCS. In here, the entire working repositories
are mirrored when a client checks out the file. Except for pushing the changes, all the other
activities with the repository can be performed offline which offers the benefit of working
independently from the network. In case of a server failure, any of the clients can be available
to copy the checked-out files onto the server. Git is one of such VCS widely accepted in the
industry1. There are also some downsides of using a distributed VCS, such as it is not always
legible to find out who made the most recent change because of a long trail of commits.
Furthermore, care has to be taken while setting up repositories so that the security rules are
up to date, and all the branches are protected from vulnerabilities.

Software Development process is often carried out using a life cycle approach with some predefined
stages of development [6]. These stages include requirement gathering and analysis, planning,
development, testing, evaluation, deployment etc. like in Figure 2.1. It is a common practice to
use distributed version control system in all the stages of a software life cycle and not just the
development part. There are several other software tools that help the development team to create an
ecosystem wherein they can code, test, package and deploy efficiently. Throughout the development
process the roles played by an individual can also change over time. For instance, a developer can
test their code and take the role of a tester or even deploy the software to act as a devOps engineer.
All this is a part of the software development life cycle2.

Figure 2.1: Sample Development Pipeline

1Jason-Pat. Top 10 Best Version Control Systems for 2023. [Online; accessed 3 September 2023]. url: https:

//www.accuwebhosting.com/blog/best-version-control-systems/.
2Mabl. Development Pipeline. [Online; accessed 3 September 2023]. url: https://www.mabl.com/hubfs/CICDBlog.png.

4

https://www.accuwebhosting.com/blog/best-version-control-systems/
https://www.accuwebhosting.com/blog/best-version-control-systems/
https://www.mabl.com/hubfs/CICDBlog.png

2.2 Source Code Management

2.2 Source Code Management

Source code management is a practice useful in tracking modifications within a repository. For
instance, if developer A is working on a functionality and they edit a configuration file which may be
common to certain modules of the project and developer B is also working on another functionality
with same configuration file. If the first developer checks in their code first, there is a high chance
that developer B will overwrite the changes made by developer A. This problem was addressed by
the centralized VCS through file locking mechanism but with distributed VCS, there is a need to
track conflicts while merging the edits made by multiple users of the repository. Furthermore, as
the complexity of any software increases, the necessity of such a mechanism also increases by many
folds. SCM provides this functionality and hence reduces the development effort and delivery time
of a project. One could only imagine how it was able to be managed during the local version control
era. SCM provides a safety mechanism against accidental overwrites or loss of data by informing
the involved people about the conflicts and giving them a chance to resolve such conflicts with full
visibility of current change logs.

SCM also facilitates the project with bookkeeping functionality. It can be used to take a look back
and gather insights based on the growth of the project or milestones which can be beneficial for
future planning and optimizations. Compared to the previous approaches, SCM has also increased
the speed with which releases are being performed. The reason being, decreased overhead of
communication needed between individual developers. Due to its numerous advantages source
code management has become an indispensable part of any software development project3. On
major component of any SCM is code repository, the next sub-section describes the importance
of a code repository which will be helpful to further understand the best practices of source code
management systems.

2.3 Code Repository

A repository is nothing but a storage location for software components, often referred to as
repo. These components are the development assets of a project, it can be code, configurations,
documentations, artifacts etc. Repositories are used to structure a project’s codebase along with its
documentation and help developers in collaborations. And version control systems are used to track
the changes within a repository made by the collaborators. It allows developers to create branches
and work independent of the other developers. While VCS is not a mandatory part of a repository, it
is an essential one for ensuring maintainability and reliability of the repository. Although repository
and VCS are an integral part of any SCM, VCS and SCM are often used interchangeably. Branching
is an especially important aspect of VCS which allows contributors to start their own stream of
work based out of their desired state of repository. They can develop, test and document their code
independent of the main line of development and they have an option to merge their work to the
part branch once their peers or the maintainers review and approve their request. There are several
best practices or guidelines which should be followed for efficient collaboration without messing up
with the main line of development.

3Atlassian. Source Code Management. [Online; accessed 14 August 2023]. url: https://www.atlassian.com/git/

tutorials/source-code-management.

5

https://www.atlassian.com/git/tutorials/source-code-management
https://www.atlassian.com/git/tutorials/source-code-management

2 Background of Tools and Technologies

Git is the most widely accepted industry standard for managing code infrastructure. It is a distributed
version control system originally developed around 2005 by Linux Torvalds for managing the Linux
kernel project. It was inspired by BitKeeper, a versioning tool used by the Linux kernel project
before the birth of Git [3]. Git organizes its repositories in the form of a huge tree with several
branches and it can also be visualized using git command line. And to use git in a more convenient
way, there are cloud-based hosting services such as GitHub, GitLab, BitBucket etc. which provide
an endpoint for using git as a VCS. The focus of this work is on GitHub as a VCS from here onward.
GitHub allows users to have three types of accounts namely: personal, organization and enterprise
accounts. The enterprise accounts can be either hosted on GitHub servers or they can also be
self-hosted. The difference between all these account types lies in the complexity of projects ranging
from personal projects to huge company software products. For security, there are possibilities to
assign roles to the participants of any project. These access roles describe the level of authority one
has while making changes to the repository, there are restrictions for the roles with less privileges.
These roles are read, triage, write, maintain and admin. Admin is usually the owner of the repository
who has the right to add other contributors and decide upon their privileges. Each developer can
create a replica of the main repository by using the feature called branches. There is a main or
master branch which is used for synchronizing the work of all the developers and releasing the
final software to the users. One common problem while using branches is merge conflict. Multiple
developers can work on the same file or sometimes even the same lines and suppose one of them
merges their work with the main branch. Now when the second developer tries to merge their
work to the main, they will first have to resolve the conflicts which may have occurred to avoid
overwriting other developer’s work. Also, it is a good practice to follow naming conventions while
working with branches so that the purpose of every branch is clear from its name.

GitHub is not limited to be used by only developers, even project managers (PMs) can use it for
planning the stages of development. It offers a section called ’Projects’ wherein PMs can organize
the tasks for developers and label them to categories such as in-progress, to-do, backlog, completed
etc. There is automation available to first create an issue and the link it with a task on the project
board (Kanban-like board) for better bookkeeping. One can also assign milestones to include
timeliness in the planning phase of the project. Issues can be part of an ’epic’ which is the central
topic around which the issues revolve. In an agile software development process, such tools come
in particularly useful to the team and helps them to stay flexible with the development methods.

2.4 Modular Repositories

Modular programming is a design technique which helps teams modularize their code repositories4.
It not only gives a cleaner structure to the code but also helps the developers to keep track of
features individually, reuse, and debug them. The piece of code which may be used by multiple
other features is extracted and kept as an independent module. It can either be in the form of a
sub-module within an existing repository or kept outside as an independent repository of its own.

4K. Chandrashekar. Modular Repositories. [Online; accessed 2 May 2023]. url: https://www.boulderes.com/

resource-library/modular-repositories-with-git.

6

https://www.boulderes.com/resource-library/modular-repositories-with-git
https://www.boulderes.com/resource-library/modular-repositories-with-git

2.5 Software Composition Analysis

The complexity of modular code repositories increases if there are multiple programming languages
used within a project. There are two broad categories in which repositories can be organized namely,
monolithic repositories and multiple repositories.

Mono Repo stores all the code from a business at one location. They can grow exceptionally
with the size of the business or projects using such a technique. It offers much visibility to the
contributors in terms of viewing the hierarchy of dependencies between them. This can also
help the collaborators to better support each other and create a more standardized code culture.
However, there are some disadvantages of following this approach. Without proper documentation,
monolithic code repositories can easily overwhelm the new developers with their enormous size.
They also introduce lags in integrated development environment (IDE) resulting in longer build
time. Monolithic repositories have risks, if there is one wrong commit it can affect the main body
of the software due to the tight coupling. Such a scenario will be hard to trace back which can also
cause monetary loss to the profitable applications. To make the modules more loosely coupled,
multi repos can be used.

Multi Repo store the code across various locations, it can be split between different repositories or
projects as per the team organization. Such repos are easier to manage because they are smaller. It
has been a regular practice to adapt to the multi-repo approach as the project grows over time. Multi
repos have clear boundary of ownership and lets the developers focus on their individual goals.
Unlike monolithic repo, if there is a wrong commit which can potentially break the code, it is easier
to detect in multi repo approach. Also, the damage caused by the commit will be contained only in
the repository where the commit was made. This also means that the versioning of components
becomes easier. With small repositories it is easier to onboard new developers and safer to let
them carry on development without breaking the main body of the code. Yet as the software
product grows bigger, multi repos may get complicated and introduce tremendous repetition in
the boilerplate code. The overhead of making minor changes across multiple repositories can
be very high. Standardization is often tough for such projects because different developers may
practice different coding guidelines resulting in varied non-standard development standards across
repositories. However, the most difficult problem is to manage dependencies between the repos, as
there can be multiple levels of repositories linked with one another and yet kept isolated.

It can be concluded that creating modules is a good practice, but it is often a hassle to organize them
efficiently. The decision of whether to use a mono repo or multi repo approach is taken based on the
size of the project and potentially many other factors involved in a complex software development
process. The important thing is to have the ability to scale up as per the demand of the software
and realize when it is time to adapt to a different approach. Hybrid approaches are also becoming
popular because they provide a good trade-off between the pros and cons of both the techniques.
Although it is good to make the decision based on the current project status with future projections
instead of simply following some hard guidelines from the books.

2.5 Software Composition Analysis

There are often many libraries and packages involved as imports while working with multiple code
repositories. Many of such imports are subject to a license, and developers must be mindful to
comply with their usage permissions. Software composition analysis (SCA) is an automated process

7

2 Background of Tools and Technologies

which identifies open-source software in a codebase5. It ensures that the code follows license
compliance and if not, it will identify it as a vulnerability which the development team can take
under consideration [9]. SCA tools looks inside the source code, artifacts, images etc. and identifies
open-source packages. These packages are then compiled into a file called BOM (Bill of materials)
which in simple terms is a file with a list of packages with their licensing information. BOM files
are checked against a database to identify if there are any deprecated packages or vulnerabilities
that need addressing.

SCA also analyzes overall code quality of the repository to ensure quality and reliability in the
development process. If this is done manually, it will be much less efficient and may also result in
errors which can cause vulnerable packages to go undetected within a project. One such widely
accepted SCA is Mend, it also offers static application security testing (SAST) to further tighten the
security of any proprietary or open-source code6. It can also be integrated with IDEs to enable
immediate detection of vulnerabilities while the code is being created. This can reduce the release
time significantly and allow development of more secure applications. Mend also has a feature
called Renovate, which is a dependency management tool. It scans through the code repository
to identify dependencies that can be updated with newer versions and automatically creates pull
requests with the updated dependency. This is not only applicable to open-source packages but also
to packages within the project.

2.6 Automation Server

For complex software development processes, automation can prove to be beneficial as it can be
inferred from the previous section. In developing a software there is much more to it than just
writing a piece of code. It is also important to make sure that the code is executable, distributable,
and reliable for the users. Jenkins is such an automation tool which helps the development team to
build, test and deploy their code systematically7. It supports the concept of continuous integration
and delivery, which in turn allows faster release cycles. There can be trigger mechanisms setup
which tells Jenkins when to start its course of action. For instance, when a developer pushes their
changes, there will be a web-hook that will trigger build command on the latest change made by
the developer. It allows the developer to monitor the status of their change, if anything is broken it
can be caught at an early stage with such build pipelines. Similarly, test cases can also be made to
run by setting up rules in Jenkins. Once all the test cases pass and the build is successful, it can
be deployed at the target location. The set of rules and configurations are often passed on as a
deployment descriptor file to Jenkins.

There are a few other tools similar to Jenkins, such as Travis, Tekton, GitHub Actions etc. All of
them provide almost the same feature set but with slight differences. For instance, Travis is not an
open-source tool, but it has an integration with GitHub which means less hassle. GitHub Actions is
also growing rapidly because of its advantages such as asynchronous pipelines, compatibility with

5I. Synopsys. SCA. [Online; accessed 2 May 2023]. url: https://www.synopsys.com/glossary/what-is-software-

composition-analysis.html.
6Atlassian. Mend. [Online; accessed 2 May 2023]. url: https://whitesource.atlassian.net/wiki/spaces/WD/

overview?homepageId=32342093.
7Wikipedia. Jenkins. [Online; accessed 3 September 2023]. url: https://en.wikipedia.org/wiki/Jenkins_

(software).

8

https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://whitesource.atlassian.net/wiki/spaces/WD/overview?homepageId=32342093
https://whitesource.atlassian.net/wiki/spaces/WD/overview?homepageId=32342093
https://en.wikipedia.org/wiki/Jenkins_(software)
https://en.wikipedia.org/wiki/Jenkins_(software)

2.7 Observability

any environment, no installation needed etc. However, Jenkins offers plugins and APIs to integrate
with other SCMs as well. Now even though these tools are automated, they need some level of
monitoring overhead. As the size of the project grows, the complexity behind tracking changes
across multiple systems is a major challenge. An overall bird-eye view of what is happening, what
is stuck, what needs attention and what can be kept on the back stove should be available easily to
decrease the development time.

2.7 Observability

Every software generates some outputs, these can be in different formats but there is always some
meaning associated with them. Observability is the extent to which the information from these
outputs can be used for knowing the internal state of the software. A system can be referred to as
observable when the outputs generated from the system can be used for determining the state of the
system8. There is a slight difference between monitoring and observability in general. Monitoring
means watching the system, it can be for any purpose or sometimes with no purpose at all. It is
like a meter recording the consumption of resources for billing purposes, while on the other hand,
observability is about actually understanding the state of the system. There are three main pillars of
observability: metrics, logs, and traces.

Metrics is often used in combination with time-series data. It is a numerical form of data that is
collected over a time duration. Any information related to the state of the software system can be
derived by applying predictions mechanisms on such metrics. Developers can also decide on a
threshold and set up alert notifications if the metric of choice crosses the desired threshold. For
instance, if the number of build failures per day crosses over 50 (threshold) then it can be inferred
that something definitely is wrong with the code and the concerned administrator must be alerted
about this incident. Metrics are preferred to be stored for longer duration of time in order to use
historic data as a learning input to the prediction algorithms. Viewing metrics on a dashboard
provides quick and more intuitive information as compared to reading the entire output log.

Logs are long textual pieces of data recording during the execution of processes within a system. It
is considered a good development practice to create log statements after every milestone within a
process and categorize them as per their criticality. These categorizations can either be custom
or can be derived from a standard library, for example: info, error, debug etc. Although logs are
simple to store and aggregate, they are difficult when it comes to extracting valuable information
out of them. Because of their huge size, logs are usually not stored for a long duration of time and
there are purging schemes to ensure they are cleaned up at a fixed duration. In order to make sense
out of the logs, it is important that the logs are categorized and then depending on the criticality,
they can even be showed on an observability dashboard to the developers.

Traces are the most important and the most complicated pillar of observability in complex
software development. They contain information about which resources are being consumed by the
application and how this interaction takes place. Because of the modular approach followed in the
industries, it is often the case that there is a long chain of dependencies between the services. And
if there is a failure within this chain of dependencies, traces are helpful in back tracking the root

8Wikipedia. observability. [Online; accessed 9 May 2023]. url: https://en.wikipedia.org/wiki/Observability.

9

https://en.wikipedia.org/wiki/Observability

2 Background of Tools and Technologies

cause for such a failure. Without traces, it may get difficult to solve any errors as it will be more
complicated to perform root cause analysis manually. Furthermore, in big projects such delays will
result in increased downtime which can impact the reputation and cost of the service under failure9.
For such deeply nested projects, distributed tracing comes into play for understanding performance
issues and failures of any kind. To implement distributed tracing, developers have to perform code
instrumentation and hence, it is often recommended to perform this step during the initialization of
any project. This instrumentation can include trace IDs to identify when the execution leaves one
service and enters another service with a different trace ID.

2.8 Dashboards

Dashboards are typical Graphical User Interfaces which are used to provide a quick overview over
the chosen topic. They are designed to serve specific business purposes or a particular objective
by providing visual representation of the collected information. They can be used for displaying
key performance indices (KPIs), server downtimes, build states etc. Dashboards save time and
improve decision making capabilities within an organization. They are mostly accessed as web
applications with a data source linked to them, these data sources can either be real-time or buffered
over a period of time. Earlier people used to read through logs to gain information about various
aspects of the application but clearly it was not the optimal solution. Later Executive Information
Systems (EISs) were used but they were unreliable because the data was not refreshed so frequently
and hence, cannot be trusted10. In today’s era, dashboards are a frequent practice for increasing
observability scope of a system using metrics, logs, and traces.

Dashboards can be classified into various categories depending on their usage and the mode of usage.
Based on their purpose, they can be analytical, strategic, informative, or operational. Furthermore,
based on their mode of usage, dashboards can be web-based applications, desktop software or
widgets. It is very important that the objective of dashboard is clear beforehand to have a useful
result. There are a few design practices for designing an insightful dashboard that are listed below:

• The mode of usage: desktop, mobile, tablet, kiosks, or video walls etc.

• Proper visualization technique for every data type, such as line chart for time-series data.

• Counters or scores for strictly numerical data such as number of pull requests.

• Legends to make the visuals more comprehensive.

• Arrangement of various visual elements to facilitate easy extraction of information in a glance.
For instance, placing counters on top can be useful if the user wants to keep track of them on
a regular basis. ’Z’ pattern is a method to arrange the elements according to their priorities
from top to bottom and then from left to right.

• Usage of colors and font sizes which are also suitable for users with visual impairments.

9S. Lima. observability. [Online; accessed 9 May 2023]. url: https://www.chaossearch.io/blog/three-pillars-of-

observability-logs-metrics-traces#:~:text=DevOps%20teams%20leverage%20observability%20to,%3A%20Logs%

2C%20metrics%20and%20traces.
10Wikipedia. Dashboard. [Online; accessed 9 May 2023]. url: https://en.wikipedia.org/wiki/Dashboard_

(business).

10

https://www.chaossearch.io/blog/three-pillars-of-observability-logs-metrics-traces#:~:text=DevOps%20teams%20leverage%20observability%20to,%3A%20Logs%2C%20metrics%20and%20traces
https://www.chaossearch.io/blog/three-pillars-of-observability-logs-metrics-traces#:~:text=DevOps%20teams%20leverage%20observability%20to,%3A%20Logs%2C%20metrics%20and%20traces
https://www.chaossearch.io/blog/three-pillars-of-observability-logs-metrics-traces#:~:text=DevOps%20teams%20leverage%20observability%20to,%3A%20Logs%2C%20metrics%20and%20traces
https://en.wikipedia.org/wiki/Dashboard_(business)
https://en.wikipedia.org/wiki/Dashboard_(business)

3 Use Cases

This Thesis revolves majorly around two use cases with an aim to compare the approaches and
study the differences in different software development infrastructures. These use cases not only
differ in software infrastructure but also in their team size, scope of the product, and project size.
The use cases are described in a more detailed fashion in the next few sections. The first use
case is Hyper Protect Virtual Server (HPVS) on Virtual Private Cloud (VPC) carried out at IBM
Research and Development, Deutschland and the second one is an open-source project called
preCICE developed by a group of developers from Technical University of Munich and University
of Stuttgart, Germany [1]. Before going into the detailed explanation of both the use cases, there is
a brief comparison between open-source and proprietary software in the below table1 [8]:

Open Source Proprietary
The source code is public The source code is protected
Support is offered via documentations, source
code inspections and GitHub issues

Support is offered by documentations and a
dedicated support team

Users can use this software free of charge Users may have to pay for using the services
Bugs are fixed either by the original develop-
ers or new collaborators

Bugs are fixed by the closed team of devel-
opers

Source code can be modified by the user for
personal use

Users cannot modify the source code and
have to rely on the development team

Defect detection is performed by the commu-
nity of contributors

Defect detection is performed by the in-house
project members

Example: Linux, preCICE etc. Example: Windows, HPVS on VPC etc.

Table 3.1: Open Source vs Proprietary

3.1 IBM HPVS on VPC

HPVS is a feature which provides hardware-level security to an application on VPC. It ensures
workload and application protection throughout the software life cycle from both internal and
external potential threats. This feature is available for LinuxONE and IBM Z systems2. The goal

1S. Jena. Difference between Open-source Software and Proprietary Software. [Online; accessed 7 August 2023]. url:
https://www.geeksforgeeks.org/difference-between-open-source-software-and-proprietary-software/.

2IBM. Hyper Protect Virtual Server. [Online; accessed 7 August 2023]. url: https://www.ibm.com/products/hyper-

protect-virtual-servers.

11

https://www.geeksforgeeks.org/difference-between-open-source-software-and-proprietary-software/
https://www.ibm.com/products/hyper-protect-virtual-servers
https://www.ibm.com/products/hyper-protect-virtual-servers

3 Use Cases

of HPVS on VPC is to protect the cloud native applications utilizing confidential computing3. It
ensures the end-to-end safety of data, which is stationary, in motion or when it is being used [5]. A
brief overview can also be obtained from the Figure 3.14.

Figure 3.1: The Software Stack of Hyper Protect Platform

The team which is involved as participants or users of this study develop Virtual Server Images
for HPVS on VPC. There are around 20 team members with a mixture of developers, architects,
project managers, testers etc. The project itself is a moving project, meaning it is possible that it is
transferable to a new team at some point in time. This transition phase is one important aspect in a
software development life cycle and has to be dealt with using the proposed outcome of this study.

There are a set of standard tools used during the development of this project namely, Jenkins, GitHub
and Renovate along with some tools as per an individual developer’s preference such as Visual
Studio Code. There are more than 250 code repositories used by the development team to deliver
the final software product. These repositories have relations between them, so far discoverable up to
a depth of 6. However, these dependencies are not centrally visible to the developers. Renovate is an
SCA used to timely upgrade and manage the dependencies for around 170 repositories. It browses
through the source code to find file formats such as go.mod, requirements.txt, package.json etc. to
create a list of dependencies and use that list to further manage them. This list of dependencies
are stored with Renovate and is not available to the developers as a visual aid. There are various
scenarios where this has proven to be a bottleneck in the development cycles. Few of those use
cases are listed below:

3IBM. Hyper Protect Virtual Server on VPC. [Online; accessed 7 August 2023]. url: https://www.ibm.com/blog/

announcement/ibm-hyper-protect-virtual-servers-for-virtual-private-cloud/.
4IBM. The Second Generation of IBM Hyper Protect Platform. url: https://www.ibm.com/downloads/cas/GPVMWPM3#:

~:text=In%20its%20second%20generation%2C%20the,systems%20for%20Kernel%20Virtual%20Machines..

12

https://www.ibm.com/blog/announcement/ibm-hyper-protect-virtual-servers-for-virtual-private-cloud/
https://www.ibm.com/blog/announcement/ibm-hyper-protect-virtual-servers-for-virtual-private-cloud/
https://www.ibm.com/downloads/cas/GPVMWPM3#:~:text=In%20its%20second%20generation%2C%20the,systems%20for%20Kernel%20Virtual%20Machines.
https://www.ibm.com/downloads/cas/GPVMWPM3#:~:text=In%20its%20second%20generation%2C%20the,systems%20for%20Kernel%20Virtual%20Machines.

3.2 preCICE

• On-boarding: When a new developer joins the team, it is difficult to express the relations
between the repositories to them and one has to rely on manual knowledge transfer sessions.
The root cause being the repositories are inter-linked, but this linkage is not perceivable from
an outside perspective. Also, there is no organizational pulse for the changes happening
across various parts of the project.

• Project Transition: While transitioning a project from an existing team to a new team, there
is again a similar problem as on-boarding new developer. However, with a more complex
scenario that now the knowledge has to be transferred to more than one person, in most cases
to around 10 to 15 developers. This makes it a very special and error prone case because one
wrong understanding can lead to wrong changes and thus an avalanche of broken pipelines of
dependent repositories.

• DevOps configuration changes: This is a very common and yet one of the most important
issues. In a software development process, it is not uncommon to encounter situations where
there has to be configuration changes in the pipeline files. If the developer responsible
for making that change is not aware about the dependent repositories or if they miss a few
dependent repositories, it may happen that the configuration change is responsible for their
build failures (breaking changes). If this goes unnoticed it takes up a lot of debugging time
to back-trace the changes and find the root cause. And for projects that have a tight release
schedule, this may cause delays and possible need for pushing the release date.

These are just a few of the observed bottlenecks based on previous experience, there is a possibility
that there are more. It is expected that having a central observability solution can decrease the
shortcomings of having a modular repository structure i.e., increased complexity with number of
repositories.

3.2 preCICE

preCICE is an open-source coupling library for partitioned multi-physics simulations, including,
but not restricted to fluid-structure interaction and conjugate heat transfer simulations. The core
library is written in C++, with adapters and bindings written in other languages such as Python,
Fortran, C++ etc. [1]. The project itself is divided into different components, namely: Core Library,
Language Bindings, Adapters, Utilities, Tutorials, Website and Documentation. There are around
eight developers in the team, however, being an open-source project, it is possible that there are new
collaborators every now and then. The majority of the development work revolves around GitHub,
ranging from development to CI/CD activities.

The project itself has nearly 50 code repositories following a modular repository structure. So, the
problems that were discussed in the previous section are to some extent true for this project as well.
The complexity of this project is however less as compared to the previous use case. Hence, it is
possible that the problems faced by the overall software life cycle are also fewer. Furthermore,
the release cycle of this project is not so frequent which means if there are any failures due to
dependency management, the team is to be able to afford some time in fixing them before the next
release. The overview of the preCICE project can be inferred from the Figure 3.2 [1]. Some of the
scenarios which act as probable use cases for this problem statements are:

13

3 Use Cases

• Overwhelming Notifications: Developers have expressed that in order to know what is going
on in the project, they have to subscribe to a repository’s activities. These subscriptions often
result in email notifications to the subscribers. And it is possible that there are a lot of emails
for an active repository even if the changes are not so significant. There should be a way to
get information on demand and not overwhelm the subscribers.

• Organizational Pulse: While working with multiple repositories it is difficult to get an
overview of the project as a whole. Even GitHub insights are specific to a single repository.
Hence, there is a need to consolidate information at a single location and give insights about
the organization as a single entity.

• Dependency or Relations between Repositories: As the number of repositories increases,
their relations with other repositories also grow. This growth is not easy to perceive from an
outside perspective. Furthermore, it may very well be the case where, after a few months, the
author of the repository himself/herself forgot what other repositories are dependent on it. A
visualization showing these relations will help resolve dependency upgrade failures more
effectively and also present a clearer picture about the organizational dependency graph.

Figure 3.2: preCICE Overview

14

4 Results of the Initial Survey

At the beginning, it was necessary to first understand the existing system and then navigate around
it like any new developer may do. Although, it was helpful in getting an idea about the complexity
of the project infrastructure, it did not expose the bottlenecks which were expected by default.
To better understand the system and create a baseline before starting with the research, surveys
were conducted with the development teams. The motivation was to get to know the projects
from developer’s point of view and to gather information about their difficulties with the project.
Changing the perspective and thinking from their point of view really helped in shaping the survey
questions. These difficulties focused on issues related to the development effort in the respective
teams. Since the use cases are different in nature, the survey was tweaked in several iterations to fit
best with the team dynamics. Otherwise, it may have resulted in redundancy or rather unfruitful
attempt of information gathering. In this section, the survey design is explained along with the
learnings that helped in creating a baseline for this Thesis.

4.1 Survey Design

Before circulating the survey, there was an attempt made to choose a survey tool which is familiar
to the developers and is not overly complicated. Few of the available options were Google Forms,
Slido, IBM internal survey tool etc. The tool that was eventually selected to conduct the surveys
is Slido. It is an easy to use tool which allows users to collaborate while creating a survey and to
gather real-time analytics from the survey responses. It offers an easy sharing capability and also,
no tutorial was needed before providing the participants with the actual survey.

The survey itself was divided into two parts namely initial and final survey for both the use cases.
For the preCICE use case, the sample set contained eight developers out of which six participants
took part in the initial survey. For the IBM use case, the sample set contained around twenty
participants out of which twelve participants filled out the initial survey. Both the surveys consisted
of roughly ten to eleven questions of various categories such as, MCQs, ratings, open text etc. The
survey was carried out over a duration of about 1 week for each of the two set of participants along
with in between reminders.

To improve the quality of the survey, questions were finalized after going through a few rounds of
iterations. Some of the questions such as How many repositories do you monitor on a daily basis
were used to get a quantitative measure of the vastness of the project. Many of the questions also
aimed at bringing out the efforts that the developers are putting in. One of such question being On
an average how many links or relations per repository do you click/follow to discover repository
activities such as pull requests, issues, commits etc.. Answers of those questions made it clear that
the problem was real and an improvement could really benefit them in many aspects. Furthermore,
there were a few free text questions to understand the situation with more sincerity and think in the

15

4 Results of the Initial Survey

direction of their requirements. One such example would be Please describe few pain points that
you face in day to day development process related to the observability of code repositories. The
answer to that question helped in designing the elements of the solution for both the use cases.

The results presented in the following section have been interpreted manually after reading through
all the results and statistics on Slido application.

4.2 Initial Survey: IBM

Participants: 12

Q1: How many repositories do you monitor on a daily basis?

Less than 10

58%

20 to 50

17%

10 to 15
25%

Average: 14 repositories per person.

Q2: In how many repositories do you make changes or edit on a daily basis?

Less than 10 67% 10 to 2033%

Average: 8 repositories per person.

Q3: Which of the given terms most closely relates to your work in the team?

16

4.2 Initial Survey: IBM

9Developer

4Architect

3Project Management/Planning

1Product Owner

0 1 2 3 4 5 6 7 8
number of participants

Q4: On an average how many links or relations "per repository"do you click/follow to discover
repository activities such as pull requests, issues, commits etc.

Less than 5

17%5 to 10
58%

10 to 20

25%

Average: 9 links per repository

Q5: Do you switch between different pages to get build state information about a repository?

Yes

75%

No

25%

Q6: On what scale does it cause mental stress or increased mental effort to discover changes
within a repository using the current arrangement?

17

4 Results of the Initial Survey

0Very Happy

2Happy

5No Difference

3Sad

2Very Sad

0 1 2 3 4 5 6 7 8
number of participants

Average Score: 2.6

Q7: On what scale will some level of centralized observability help to ease the development effort
and reduce mental stress?

5Very Happy

6Happy

1No Difference

0Sad

0Very Sad

0 1 2 3 4 5 6 7 8
number of participants

Average Score: 4.3

Q8: What kind of elements would you like to see on a dashboard for code repositories (like PRs,
commits, build states etc.)?

5Pull Requests

5Build States or branch checks

2Test Results

7Repository Dependencies

4Latest Commits

0 1 2 3 4 5 6 7 8
number of participants

18

4.3 Initial Survey: preCICE

Q9: Is there any tool that you’re currently using to keep track of repository activities such as
GitHub insights etc?

2Jenkins Views

1GitHub commits

1ZenHub

2GitHub Insights

1Travis

7None

0 1 2 3 4 5 6 7 8
number of participants

Q10: Please describe few pain points that you face in day to day development process related to
the observability of code repositories.

• Nontransparent Dependencies between repositories.

• Status of repositories are not easily visible.

• Hard to track if build failure is due to a dependent repository or not.

• Missing an overview about the organization of repositories which makes debugging
very difficult.

• Management of numerous tabs to back-trace the dependent repositories.

4.3 Initial Survey: preCICE

Participants: 6

Q1: How many repositories do you observe on a weekly basis?

Less than 5

17%

5 to 10 67%

10 to 15
17%

Average: 9 repositories per person.

19

4 Results of the Initial Survey

Q2: On an average how many links or relations "per repository"do you click/follow to discover
repository changes such as pull requests, issues, commits etc.

Less than 5

83%

More than 10

17%

Average: 4 links per repository

Q3: In how many repositories do you make changes or edit on a weekly basis?
Unanimous response: Less than 5 repositories.

Q4: What kind of operation do you perform most of the time?

4Development

4Code Review

6Issues/Pull Requests

3Documentation

1Release Management

0 1 2 3 4 5 6 7 8
number of participants

Q5: Is there some sort of categorization between the preCICE repositories, for example: core
repo/ sub-repo, solvers/utilities or adapters etc.
Unanimous response: Core Library, Language Bindings, Adapters, Utilities, Tutorials,
Website and Documentation

Q6: For instance, if we categorize the repositories of preCICE as core repo and child repos, which
category of repositories do you work with more often?

Core Repository

50%

Child Repositories

33%

Both
17%

20

4.3 Initial Survey: preCICE

Q7: Do you get overview of build states of all the repositories in precice in a single view
Unanimous response: The Build State is not present in a single view for this project.

Q8: On what scale will some level of centralized observability help to ease the development effort
and reduce mental stress?

2Very Happy

2Happy

1No Difference

1Sad

0Very Sad

0 1 2 3 4 5 6 7 8
number of participants

Average Score: 3.8

Q9: What kind of elements would you like to see on a dashboard for all the code repositories of
preCICE project(like PRs, commits, build states, open issues etc.)?

3Pull Requests

3Issues

4Build States

1Milestones

1Weekly overview

1Personalizing all of the above

0 1 2 3 4 5 6 7 8
number of participants

Q10: Is there any tool that you’re currently using to keep track of repository activities across
preCICE such as GitHub insights etc?

5GitHub Notifications

1GitHub Projects

1GitHub Insights

0 1 2 3 4 5 6 7 8
number of participants

Q11: Please describe few pain points that you face in day to day development process related to
the observability of code repositories.

• Less Overview available with notifications.

• Quick summary not available unless the user ’watches’ the repository proactively.

21

4 Results of the Initial Survey

• GitHub notifications get crowded very easily hence, making it easy to lose track of
repositories.

• No organizational pulse for the projects makes it hard to consolidate information from
each repository individually.

The above survey gave clarity about the problems with the current setup and how it can be improved
in terms of observability. The major issue that can be realised is that GitHub notifications is a
subscription model, wherein developers get notified about activities they are subscribed to such
as: watching repositories, related PRs and Issues, discussions etc. However, as the number of
repositories increase this can quickly overwhelm the developer with a lot of information piling up on
one another. This situation can be improved by a ’deliver on demand’ approach, wherein developers
are shown the information only when they proactively ask for it such as by opening a dashboard.
There should be a consolidated view about status of PRs and issues rather than a detailed list of
updates on those matters. This detailed list can sill be obtained by specifically opening GitHub
through the consolidated overview but not unless it is interesting to the developer.

22

5 Initial Solution Design

After analyzing the requirements from both the use cases, there was an understanding that the
solution should not be something that adds to a lot of maintenance overhead. Hence, there is no
need to reinvent the wheel and something that is available in the open-source market must be used.
There can be situations where all the requirements are not solved by the available solutions, in that
case, there can be custom scripts to fill the gaps and serve the purpose to the users. There are
several solutions that have been explored during this phase, however, none of them solves all the
requirements on their own. In order to fulfill those requirements, there will be a couple of back-end
scripts to support the existing application.

Figure 5.1: Initial Design of the Solution

The numbered arrows represent the sequence of request and response.

It can be inferred from Figure 5.1 that the user is interacting with an existing open-source software
(visualization tool). This visualization tool gathers data related to the repositories from GitHub.
If there is still some information not available to the tool directly from GitHub, it can use custom
scripts to collect the missing data. All these elements are described as black boxes in this section,
but they can be further refined based on the open-source software which was selected out of the
available options in the software market. The focus while researching the available solutions was to
find something which can gather data from the software development tools such as GitHub and
visualize them in a legible manner for the users. The choice of the final software was made based
on the feasibility aspects of that solution with the existing software development setup. Four such
available options are described below:

23

5 Initial Solution Design

1. Kibana is one of the important parts of the ELK (Elasticsearch, Logstash and Kibana) stack.
It is a visualization tool which displays data from elastic store and lets its users navigate
through this data at a very fast rate. Three major categories of features offered by Kibana are:
Explore and Visualize, Management and Monitoring, Solutions. These categories further
have a lot of features offered by them such as dashboards, charts, data tables, data visualizer,
full stack monitoring, metric dashboards etc.1. All these features run in combination with the
elastic search database. The overall or core feature is data querying and analysis. The users
can query the data stored in Elasticsearch which is indexed for faster performance and this
queried data can then be visualized on a dashboard using various visualizations such as bar
charts, pie charts, tables, heat maps etc. The main usage of Kibana is to trace or diagnose
applications by analyzing their log messages. There are a few advantages and disadvantages
of Kibana which played a key role in deciding if it will be the chosen solution2.

Advantages:

• Kibana is preferred for analyzing large amounts of log or textual data as it has stronger
filtering ability for extracting more insightful data.

• Provides some ready to use dashboards for visualizations of a few use cases.

• Works in close association with Elasticsearch.

• Easier to learn and intuitive.

• It is an open-source visualization tool.

Disadvantages:

• Less customization options available and hence less flexibility in visual design.

• Not a suitable choice for time-series data analysis or even for structured data.

• Needs extra configuration for larger or more complex datasets.

• Does not support any other data source except Elasticsearch.

• Subscription to Elasticsearch is needed which may not be feasible for all the projects.

2. Instana was one of the obvious tools under consideration because it is a software tool from
IBM and the primary use case of this study is also IBM. It is an observability tool majorly
used for Application Performance Monitoring (APM). The goal of Instana is to provide APM
with much improved performance and ease of use. Traditionally, before using any APM
developers had to go through some weeks of training however, with Instana they can pick
it up on the go hence eliminating the need to have a handful of trained or expert users. It
also facilitates prediction and resolution of issues by utilizing AI powered capabilities. Few
of the major features of Instana include full-stack observability, remediation, automation
and intelligence and support for more than three hundred technologies3. There are a few
advantages and disadvantages of Instana which are listed below, and they helped in deciding
if it can be used for the final solution:

1ElasticSearch. Kibana Features. [Online; accessed 14 August 2023]. url: https://www.elastic.co/kibana/features.
2A. Yigal. Grafana vs Kibana. [Online; accessed 14 August 2023]. url: https://logz.io/blog/grafana-vs-kibana/.
3IBM. IBM Instana Observability. [Online; accessed 14 August 2023]. url: https://www.ibm.com/products/instana.

24

https://www.elastic.co/kibana/features
https://logz.io/blog/grafana-vs-kibana/
https://www.ibm.com/products/instana

Advantages:

• It is a powerful tool for monitoring the performance of applications.

• Offers dynamic querying for application parameters.

• Has AI enabled features for faster and accurate issue resolution.

Disadvantages:

• Not an open-source software and hence, may not be feasible for small scale or open-
source projects.

• Needs integration with Grafana for observability of GitHub repositories.

3. Datadog is another major visualization software which provides observability with good
performance and security. Some of the key features of datadog are APM, automatic support
for infrastructure issues, log analysis, full stack dashboards and alerts for early detection of
issues. It offers a SaaS (Software as a Service) based approach, which makes it easy for
on-boarding purposes however, there are times where users might want to use the services
on their own infrastructure (on-premises) and that cannot be achieved while using Datadog.
It also offers a watchdog feature to enable machine learning based alerts for identifying
anomalies or defects in the applications under consideration. Unlike traditional systems
datadog does not generate reports as PDFs it exposes Representational State Transfer (REST)
Application Programming Interface (API)s which can be used to get the desired data on
demand in JavaScript Object Notation (JSON) format4. Below are some of the advantages
and disadvantages mentioned about datadog5:

Advantages:

• Provides good set of features for analyzing the infrastructure of applications.

• Machine Learning based alert capabilities are also present.

• Various data sources can be connected with several integration opportunities.

Disadvantages:

• Proprietary and hence expensive as compared to open-source solutions.

• Needs to be learnt, ergo not simple to implement.

• Allows less customization possibilities which provides less flexibility.

4Datadog. Datadog Unified Observability and Security. [Online; accessed 14 August 2023]. url: https :

//www.datadoghq.com/lpg/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-brand-

ww&utm_keyword=%2Bdatadog&utm_matchtype=b&utm_campaignid=9551169254&utm_adgroupid=95325237782&gad=1&

gclid=EAIaIQobChMI94HNl4fcgAMVsRtlCh2HaAm8EAAYAiAAEgL_0fD_BwE.
5A. WELEKWE. Datadog vs Instana. [Online; accessed 14 August 2023]. url: https://www.comparitech.com/net-

admin/datadog-vs-instana/.

25

https://www.datadoghq.com/lpg/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-brand-ww&utm_keyword=%2Bdatadog&utm_matchtype=b&utm_campaignid=9551169254&utm_adgroupid=95325237782&gad=1&gclid=EAIaIQobChMI94HNl4fcgAMVsRtlCh2HaAm8EAAYAiAAEgL_0fD_BwE
https://www.datadoghq.com/lpg/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-brand-ww&utm_keyword=%2Bdatadog&utm_matchtype=b&utm_campaignid=9551169254&utm_adgroupid=95325237782&gad=1&gclid=EAIaIQobChMI94HNl4fcgAMVsRtlCh2HaAm8EAAYAiAAEgL_0fD_BwE
https://www.datadoghq.com/lpg/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-brand-ww&utm_keyword=%2Bdatadog&utm_matchtype=b&utm_campaignid=9551169254&utm_adgroupid=95325237782&gad=1&gclid=EAIaIQobChMI94HNl4fcgAMVsRtlCh2HaAm8EAAYAiAAEgL_0fD_BwE
https://www.datadoghq.com/lpg/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-brand-ww&utm_keyword=%2Bdatadog&utm_matchtype=b&utm_campaignid=9551169254&utm_adgroupid=95325237782&gad=1&gclid=EAIaIQobChMI94HNl4fcgAMVsRtlCh2HaAm8EAAYAiAAEgL_0fD_BwE
https://www.comparitech.com/net-admin/datadog-vs-instana/
https://www.comparitech.com/net-admin/datadog-vs-instana/

5 Initial Solution Design

4. Grafana is an open-source software with a free tier service available. It allows users to
connect with different kinds of data sources and visualize the data using time-series, bar
charts, pie charts, tables etc. [2]. There are two major flavors of Grafana, one for the cloud
version and the self-managed version. In both these versions, one could opt for open-source
or enterprise level functionalities. It also offers a forever free plan for the Grafana cloud
flavors which comes with some data limits but is still suitable for small scale projects. A
major advantage of using a cloud version is that the users do not need to maintain the versions
or updates or scaling like they will have to in case of an on-premise setup. Some of the key
features of Grafana include querying, visualizing, and alerting6. There is also an option to
create a dashboard just by configuring a JSON file. These configurations can be done as per
the extensive guide provided by the Grafana team on their official website7. Just like other
available solutions above, there is a list of advantages and disadvantages mentioned below:
Advantages:

• It is a free and open-source framework with an active community of developers.

• Customization opportunity is high and has a wide range of visualization options for
more informative and interactive dashboards.

• It supports various data sources and is often preferred for monitoring and analyzing
time-series data.

• Users can define thresholds on certain metrics to receive notifications or alerts.

• There are a lot of plugins available for easy integration including CI/CD data source
plugins like GitHub.

Disadvantages:

• Because of many possible customizations, there is a lot of opportunity to explore, and
hence more time needed for learning and implementation.

• Can consume more resources if the data-stream is of high frequency.

• Generally not the preferred method for analyzing textual data or log-based data source.

6G. Labs. Grafana Introduction. [Online; accessed 14 August 2023]. url: https://grafana.com/docs/grafana/

latest/introduction/.
7G. Labs. Grafana Provisioning. [Online; accessed 28 August 2023]. url: https://grafana.com/docs/grafana/

latest/administration/provisioning/.

26

https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/administration/provisioning/
https://grafana.com/docs/grafana/latest/administration/provisioning/

6 Solution

The solution was designed based on the pros and cons of every software explained in the previous
chapter. There was more inclination towards Kibana and Grafana because of their open-source
nature and hence Instana and Datadog were no longer considered [4]. Out of Kibana and Grafana
the differentiating factor is that, to use Kibana there is an increased overhead of performing the
data extraction step. Furthermore, all the gathered data has to be kept in elastic storage which will
add up to the infrastructure and maintainability aspects of the overall solution. On the other hand,
Grafana has the capability to collect data on its own from GitHub using a GitHub data source plugin.
And if there is any gap in the collected data then it can be compensated by using REST APIs as an
endpoint to feed data to the Grafana dashboard. This reduces the need to maintain an elastic storage
and provides the flexibility to use manageable scripts in any programming language of choice. Out
of all the other advantages, the one that stands out and coincides well with the use cases is the
ability to use a GitHub data source plugin. Since it is an open-source project, these plugins can also
be attempted to be modified in future if needed. Naturally, Grafana was the choice made at the end
of this analysis.

In the initial surveys, it can be observed that the developers would very much like to have an
overview of dependencies and current state of their repositories along with other metrics such as pull
requests, issues etc. However, the GitHub data source plugin does not provide functionality to view
such a dependency graph or the current state of any repository. This is the gap that will be filled by
using custom scripts which will feed data to the Grafana dashboard using REST APIs. Now, to keep
these scripts small and maintainable it is important to choose a programming language which needs
no special training and is light weight. Hence, Python was considered to be the best fit as it is easier
to understand, maintain and provides the ability to develop REST APIs at very minimal effort using
its Flask library. There was also a slight difference in the design and implementation of both the
solutions because of their underlying difference in data source. For the IBM project, the data source
for creating a dependency graph was Jenkins as their dependency management tool i.e., Renovate
has a periodic job on Jenkins and that job identifies the dependency between repositories. This
information was found in GitHub for the preCICE project via the GitHub dependency graphs.

Grafana allows the users to be able to create roles and accordingly grant permissions for example,
only admin can edit the dashboard. These permissions can be changed by configuration files
hosted on the grafana server. The admin can also create teams and control the visibility of various
dashboard elements. A dashboard consists of a set of variables and visualization panels that contain
the data retrieved from the data sources. Detailed explanation about both the solutions have been
made in the following subsections.

27

6 Solution

6.1 IBM

In this section, the main focus will be on the solution design for the HPVS project. The solution
starts with analysis of what all information is already provided by the grafana GitHub data source.
This data source is a plugin which makes calls to the GitHub GraphQL APIs and returns the result
to Grafana visualization panels1. During this analysis it was found that pull requests, issues etc. are
all part of this plugin and hence there is no need to extract them externally. Dependency graph and
status of the repositories were two major things to be considered while implementing the custom
scripts. The idea was to keep these two aspects separate from the beginning so that there is better
modularity in the design. If there is any need to change something in the Python scripts, the GitHub
dashboard will remain untouched and vise versa. The structure of the application can be inferred
from Figure 6.1.

Figure 6.1: Solution for Use Case 1: HPVS on VPC (IBM)

1G. Labs. Grafana GitHub datasource. [Online; accessed 15 September 2023]. url: https://grafana.com/grafana/

plugins/grafana-github-datasource/.

28

https://grafana.com/grafana/plugins/grafana-github-datasource/
https://grafana.com/grafana/plugins/grafana-github-datasource/

6.1 IBM

6.1.1 Development Process

The solution is developed by following an agile approach with the help of GitHub Project Board
(Kanban-like board). GitHub Enterprise is used for source code management along with a monolithic
repository structure. The branch strategy is fairly simple, the new changes are a part of the test
branch and once they are verified, they can be merged to the main branch. The development
tools involved in the solution are Visual Studio Code and podman (docker and docker-compose
alternative). The planning of the project was done using milestones and issues on GitHub which
then gets pulled into the project board columns (to-do, review, done). The goal of using the project
board is to make sure all the tasks from the ’to-do’ column are moved to the ’done’ column by the
end of this study. Special attention is given to tag all the commits with proper issue numbers to
maintain traceability if needed. Following some of the mentioned software development practice
helped in creating a more maintainable software with the agility to incorporate changes when
needed.

6.1.2 Backend

The initial approach to get the repository status was to use Jenkins REST APIs and present the status
of pipeline in a table on the dashboard. But the response time of Jenkins API was not acceptable
since it made the request call to often timeout. Hence, a new data source was needed to replace
Jenkins. After consulting with a few developers, it was realized that the checks that run over a
branch during any commit will be more useful since it is a list of checks and not just a check on the
build state. Following that suggestion, the Jenkins API was then replaced with the GitHub REST
API which was performing better and was even more improved with the multiprocessing pool used
in the Python script. Furthermore, to get the dependency information about the repositories, there
is a tool called Renovate which identifies dependencies and manages them. But it does not provide
any visualization for the developers. Also, there are no APIs offered by Renovate to extract the
dependency information. This barrier was overcome by creating a parser in Python which scrapes
the logs from the renovate job and creates a JSON file representing a uniform tree structure for the
repositories. This JSON file also has supporting informations such as source Uniform Resource
Locator (URL)s, updates, artifactory URL etc. This rich set of information can prove to be handy
and hence was not discarded during the parsing process. This JSON file then acts as an input to
another Python script which converts it to a set of nodes and edges and then feeds this information
to the grafana dashboard. The dashboard uses the Infinity data source plugin2 to communicate with
the Python server. This JSON data is then read by the Apache Echarts plugin3 and converted to
a network graph using a small code snippet written in typescript. This script is embedded in the
dashboard configuration itself. The flow of operations from parsing the logs to generating the graph
is shown by Figure 6.2.

2Sriram. Grafana Infinity Datasource. [Online; accessed 10 September 2023]. url: https://sriramajeyam.com/

grafana-infinity-datasource/docs/installation.
3V. Labs. Apache ECharts Panel. [Online; accessed 10 September 2023]. url: https://volkovlabs.io/plugins/

volkovlabs-echarts-panel/.

29

https://sriramajeyam.com/grafana-infinity-datasource/docs/installation
https://sriramajeyam.com/grafana-infinity-datasource/docs/installation
https://volkovlabs.io/plugins/volkovlabs-echarts-panel/
https://volkovlabs.io/plugins/volkovlabs-echarts-panel/

6 Solution

Figure 6.2: Dependency Graph Script Flow for Use Case 1: HPVS on VPC (IBM)

The main motivation of creating a JSON file was to provide a generic structure to the data collected
from renovate. So that, if this data source changes in the future only the first step needs to be
modified and once it matches with the JSON structure, no change is needed in the further steps. Also,
the data stored in the JSON file acts as a local database to get information for all the information on
the dashboard, unless refreshed. This not only promotes re-usability but also makes the code more
maintainable in terms of separation of concerns and root cause analysis.

6.1.3 Frontend

Now that a basic understanding of the backend process is established, the frontend side can be
looked at with more details. While using grafana as a visualization tool, one can provision the
entire dashboard by using a few configuration files and embedding it into the grafana docker
image. These configuration files are either written in JSON or in YAML ain’t markup language
(YAML) which facilitates the user to make changes quickly and keep the code base light weight.
The data sources used in this project were infinity (yesoreyeram-infinity-datasource) and GitHub
(grafana-GitHub-datasource), these data sources have to be configured in a YAML file and
placed in a specific location so that grafana server could find it on startup. Similarly, dashboard
configurations also have to be configured in a similar YAML file. All these files are present in
/etc/grafana/provisioning/ directory, which is a generic path of all systems. When the grafana
server starts, it scans through these provisioning folders to check any custom implementations
otherwise it continues with its default values. This folder has sub-folders pointing to a specific
purpose like dashboards for dashboard configurations, data sources, plugins etc. Once the dashboard
was created through the grafana user interface, it was exported as a JSON file and placed inside
the /etc/grafana/provisioning/dashboards so that it can be automatically recognised on the next
startup.

The snapshot of the GitHub Dashboard is shown in Figure 6.3. The fields chosen for the dashboard
are based on the survey inputs received in the initial stage. The top bar has a time picker which lets
the user select time based on which, rest of the dashboard elements are loaded. Dashboard can also

30

6.1 IBM

be manually refreshed using the refresh button on the top right. The variables that Grafana uses to
query the data are placed at the top of the visual elements. In this particular dashboard, the list of
repository is one such variable. Furthermore, there is a button in-line with the variable labeled
as ’Dependency Dashboard’, it is a toggle switch to transfer the user to the connected dashboard.
Major components of this dashboard include statistics for active PRs, open issues, total PRs and
issues, commit and average PR open time. These statistics display the gist of activities happening
in a repository. They are followed by four tables giving some details about the statistics shown
above. These tables have information regarding author, state, issue number, URL of pull request,
description etc. The user also has the option to navigate to GitHub using the URLs given in these
tables. This dashboard has more fields which can be added as per the use case such as milestone,
tags, release, commits etc.

Figure 6.3: GitHub Dashboard: HPVS on VPC (IBM)

The Dependency Dashboard has some similar elements such as a refresh button, variable list, and
a dashboard toggle button. However, the main components differ a lot compared to the GitHub
Dashboard. It contains two visualizations, one being the dependency graph and the other being
a table showing status of all the repositories. The IBM use case has one extra table showing the
information captured by renovate for the dependencies. The information includes the current version,
updates, artifactory URL, dependency name etc. The snapshot of the dependency dashboard for
IBM use case is shown in Figure 6.4.

6.1.4 Authentication

Other than the dashboard and data source properties, there are also some application-level properties
that need to be defined. These properties are mentioned in an initialization file that is read during
the initialization of the grafana server. The file is called grafana.ini and is placed in /etc/grafana/

31

6 Solution

Figure 6.4: Dependency Dashboard: HPVS on VPC (IBM)

The dependency graph has not been shown fully as it is already shown in Figure 6.8

folder. This file contains information related to security aspects such as login, oauth, proxy, analytics
and many more. For the IBM use case, it was used to configure the authentication via GitHub
OAuth application. This enables the users to simply use their existing GitHub accounts as a sign in
option and eliminated the need to remember new credentials. It can be further restricted to users
of a particular GitHub organization etc. It is important to keep the file structure as it is, to avoid
exceptions such as dashboard not found when user logs in to the grafana interface. All the possible
configuration options can further be explored at Grafana’s official provisioning documentation4.
For enabling the GitHub OAuth functionality, one needs to create a GitHub OAuth application by
following a few simple steps given on the official GitHub documentation5:

This will generate a Client ID and Secret which can be used in the grafana.ini file to enable the
GitHub authentication system. There are also options to map roles as per the login usernames to
enable the authorization functionality. Currently, there are two roles in the solution namely, admin
and viewer wherein admin can also edit the dashboard and create or delete users. However, the
viewers can only view the dashboard to which they have been granted access. This layer of security
was critical in this use case because unlike an open-source project, all the details displayed on the
grafana dashboard are confidential and it has to go through proper channels before accessing that
information. Although, this may not be so critical for any open-source project as all the dashboard
information is anyway present on GitHub but in a rather scattered way.

4G. Labs. Grafana Provisioning. [Online; accessed 28 August 2023]. url: https://grafana.com/docs/grafana/

latest/administration/provisioning/.
5GitHub. Creating an OAuth app. [Online; accessed 10 September 2023]. url: https://docs.github.com/en/apps/

oauth-apps/building-oauth-apps/creating-an-oauth-app.

32

https://grafana.com/docs/grafana/latest/administration/provisioning/
https://grafana.com/docs/grafana/latest/administration/provisioning/
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app

6.2 preCICE

6.1.5 Infrastructure

Once the backend and frontend are working as individual applications, it is important to make them
as services to follow with the micro-service architecture approach. For ease of deployment, both
the applications have been containerized using Dockerfiles. This file contains simple instructions
which tell the system what all steps are needed to run the service on a specified port number. For the
development environment, it is sufficient to use a docker compose file and run both the applications
as services using a common network connection. This network allows the frontend to communicate
with the backend by using just the service name in the URL instead of the entire IP address of
the server. For deploying this application and making it available to its users, Code Engine was
chosen as the preferred cloud platform. It being an IBM product, was easily accessible and the
configurations are also very intuitive. The major benefit of using Code Engine is that it is serverless,
which means the container instances are up only when someone is accessing the application. It
is the ultimate pay per use model, and it comes with inbuilt environment variable management
where secrets can be stored as variables and injected to the containers at run-time. In this project,
GitHub access token, jenkins access token, jenkins username and a few more environment variables
are of major concern for running the application successfully. Both the frontend and backend
communicate with each other user the exposed ports in the private network. Only the grafana
interface is exposed on the public network but since it is protected by the GitHub OAuth and an
ingress proxy by Code Engine it is still considered to be safe. While this infrastructure was used
for the mentioned reasons, it is totally possible to use a completely different cloud provider or
technology if preferred. This is a huge advantage obtained by containerizing the application, it
becomes portable and any environment supporting docker images can host it seamlessly.

6.2 preCICE

A major aspect of the solution is to be reusable for other complex software development projects.
Since most of the components of the solution are true for preCICE also, in this section more focus
is given on the differences in the implementation. The solution is tweaked at a few places and is
displayed in Figure 6.5.

One major difference between both the use cases is the change of data source. It can be observed
from the above figure that Jenkins is no longer a part of the system, which means the dependency
graph is now inferred using GitHub itself. When a user wants to see the dependencies in their project,
they can navigate to the insights section of every repository and view this information through the
GitHub interface. However, this information is present only inside each of the repositories and there
is no organizational level graph showing this information as a bigger picture. This is achieved by
combining all these dependencies into a single graph where nodes represent repository and edges
represent the relation. This information is obtained using the custom Python script which makes
graphQL API calls to the GitHub end point and converts the collected data into a tree data structure.
The flow of this script is similar to Figure 6.2 with a minor difference in stage 1. The modified flow
of script can be observed in Figure 6.6

The first stage collects dependency information for each repository and combines this information
into a generic JSON file. The logic from there on-wards is same for both the solutions, this is a key
benefit one can utilize while using the solution for another software development project in the

33

6 Solution

Figure 6.5: Solution for Use Case 2: preCICE

Figure 6.6: Dependency Graph Script Flow for Use Case 2: preCICE

future. Moving on to more differences for preCICE, the status of repositories is also obtained by
using GitHub REST APIs. But these APIs are not returning proper response and seem to have a bug

34

6.2 preCICE

which was properly reported during the process6. Since there was no resolution provided during the
course of this research, this API currently is under consideration for alternative options. Another
significant difference is the infrastructure used for deploying the applications. For the preCICE use
case, Baden-Württemberg Cloud is preferred as hosting infrastructure for this solution due to its ease
of availability and tie-ups with the University student accounts. Towards the end, this infrastructure
had some challenges which are explained in Section 7.3. Due to these challenges, IBM Code Engine
was used as a temporary (until the end of this research) deployment environment. Even though the
cloud provider initially was different but the concept of containerizing the components remained
in place. It is simply because containerization provides easy maintainability options and can be
considered as portable if it needs to be shifted to a different cloud provider in future. The images
for these docker containers are published on GitHub container registry which works similar to as
of Docker Hub and provides automation options while making any new changes in the repository.
Furthermore, the GitHub APIs used during the entire process have some usage limits which have to
be taken into consideration. Since the GitHub instance being used at IBM is GitHub Enterprise,
their limit is up to 15000 API calls per hour7. This is considerably higher as compared to the public
GitHub instance which offers only 5000 requests per hour.

On the frontend side, there are two major differences. First one being, the dependency graph for
IBM shows only internal dependencies as they are large in number but for preCICE, even external
dependencies are shown in the graph. The second major difference is that there is one extra table on
the dependency dashboard of IBM as their renovate tool provides additional information about each
dependency and that could be of interest for the developers. However, GitHub dependency graph
does not provide such surplus information such as updates, artifactory url, warnings etc. In future,
if such details are available, it is fairly easy to add a visualization to the grafana dashboard similar
to the other tables already provided in the current solution. Since, the dependency dashboard for
both the solutions differ in design, a snapshot of it is provided in Figure 6.7.

A summary of differences between the two solutions is outlined in the table below:

Criteria IBM: HPVS on VPC preCICE
Data source for dependency graph Renovate and Jenkins Github Dependency Graph
Dependency Graph Only internal dependen-

cies
Internal plus external de-
pendencies

API Limit (per hour) of the data
source

15000 (GitHub Enterprise) 5000 (Public GitHub)

Docker Image Registry IBM cloud registry GitHub container registry
Cloud Infrastructure IBM Code Engine Baden-Württemberg

Cloud Virtual Machine
Size of the project (repositories) more than 250 more than 45

Table 6.1: Differences in the proposed solution

6supercobra. GitHub API "combined statusïs always Pending. [Online; accessed 7 September 2023]. url: https:

//github.com/orgs/community/discussions/58407#discussioncomment-6679878.
7GitHub. Rate Limit. [Online; accessed 31 August 2023]. url: https://docs.github.com/en/rest/overview/

resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting.

35

https://github.com/orgs/community/discussions/58407#discussioncomment-6679878
https://github.com/orgs/community/discussions/58407#discussioncomment-6679878
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting

6 Solution

Figure 6.7: Dependency Dashboard: preCICE

During the course of planning and development, there have been several improvements made in
the process to make sure it is an incremental solution. Some of those improvements have been
highlighted in this section.

1. Authentication: The authentication earlier was based on default grafana admin and user
credentials. In the later stages, GitHub OAuth was integrated to make the application more
secure.

2. API Response Time and Limit: The APIs being used are cached to provide faster responses
when the same query is made multiple times. This not only takes care of response time but
also keeps a check on number of requests that are sent to GitHub as there is an upper limit of
15000 and 5000 calls per hour (mentioned in Section 6.2). Furthermore, caching has also
been implemented for Python functions which always return the same result. It reduced the
response time for the Flask API calls made from the Grafana server.

3. Reusability: The software development was improved to make it reusable for other projects as
well. All the configurations were pulled into separate configuration and environment variable
files. This gives a very good scope to make the solution as reusable as possible. While
on-boarding this solution for another project, one needs to simply change the configuration
parameters and use proper environment variables while running the docker container. The
solution which took around 2-3 months of development time initially can be configured for a
new project in just 2-3 days.

4. Dependency Graph: The dependency graph started with a very basic look, few nodes
and edges with no customization. In the later stages it got colored nodes with their size
representing the degree of connections from each node. It not only made it to look more
intuitive but also made it possible to interpret things more clearly. The stages of dependency
graph was recorded at random intervals during the development process (The graph nodes
originally have repository names as label but that is kept hidden due to confidentiality
purposes):

36

6.2 preCICE

Figure 6.8: Evolution of the Dependency Graph

The evolution in the graph is in the form of node properties such as colour, shape, size, and connectivity.
From the top left to the bottom right, the graph evolved to be more connected and intuitive for the users.

Figure 6.9: Filter Capability of the Dependency Graph

Graph can also be filtered over a repository to view only the associated connections.

37

6 Solution

5. Repository Status: Initially, the status of repositories was corresponding to their build states.
However, this was later changed to their default branch status as it was more useful to the
developers according to their feedback which was recorded during various demo sessions
during the development process.

6. Generalization: The URLs used for making the API calls were embedded in the grafana
dashboard configurations. Which means, if the backend URL changes then there is a need to
modify the dashboard configuration also. This was later replaced as a variable which can be
resolved during the start of application. For the IBM use case, it is stored as a environment
variable and gets replaced with its value when the grafana server starts. For the preCICE
use case, it is simply the name of the service mentioned in the docker-compose file. Docker
can resolve the server using the common network properties that both the services share.
This gives the possibility to migrate between environments more easily than with earlier
arrangement.

38

7 Results of the Final Survey

The outcome of this research was also recorded using surveys. These surveys follow similar design
and rules as described in Chapter 4. Furthermore, there are a couple of challenges which were
faced during the implementation part of the solution and some of them are also explained in this
chapter.

7.1 Final Survey: preCICE

Participants: 5

Q1: Do think the provided solution solves the proposed problem to some extent?
All the participants think that the provided solution will help them solving the problem at
hand to some extent.

Q2: Did you know of any similar (existing) solution which includes all the elements shown in the
demo?
All 5 participants answered as ’No’.

Q3: On what scale will it reduce the mental stress or effort to discover changes within/across
repositories using the proposed solution?

0Very Happy

1Happy

3No Difference

1Sad

0Very Sad

0 1 2 3 4 5 6 7 8
number of participants

Average Score: 3

39

7 Results of the Final Survey

Q4: On what scale will this centralized observability help to ease the development effort

0Very Happy

3Happy

1No Difference

1Sad

0Very Sad

0 1 2 3 4 5 6 7 8
number of participants

Average Score: 3.4

Q5: What kind of elements do you still miss having on that dashboard?

• More relevant dependencies

• Select ’All’ option for GitHub dashboard

• Additional field to display involved people and discussions

• Information about build status of PRs.

• Relation between issues and PRs.

• Links to associated projects and milestones

Q6: Is this solution better than any previous tool you were using to keep track of repository
activities such as github insights, travis view etc?

Yes

40%

No

60%

Q7: If you answered the previous question as ’no’ please express in what way was the other tool
better else enter ’NA’.

• GitHub Insights: Less cognitive load.

• The overview of active PRs is a good for catching up with ongoing work.

• Great improvement over manual documentation.

• State of non-preCICE is not available.

40

7.2 Final Survey: IBM

Q8: Do you see yourself using this solution(if made available) over traditional systems like GitHub
insights for change tracking and observability purpose?

Yes

80%

No
20%

Q9: Any other remarks which could help in improving this solution or anything you found most
useful in this dashboard?

• Option to select ’All’ repositories on GitHub Dashboard

• Having C++ dependencies

• More relevant columns for GitHub dashboard to reduce cognitive load.

• Clear classification of ’Active’ and ’All’ fields on the user interface.

• More relevant connections for the dependency graph.

• Advanced filtering options for the dependency graph based on state, activities, scope
(internal or external) etc.

• Contributors dashboard to track their activities or identify fading contributions.

7.2 Final Survey: IBM

Participants: 11

Q1: Do think the provided solution solves the proposed problem to some extent?
All 11 participants think that the provided solution will help them solving the problem at
hand to some extent.

Q2: Did you know of any similar (existing) solution which includes all the elements shown in the
demo?
All 11 participants answered as ’No’.

41

7 Results of the Final Survey

Q3: On what scale will it reduce the mental stress or effort to discover changes within/across
repositories using the proposed solution?

6Very Happy

5Happy

0No Difference

0Sad

0Very Sad

0 1 2 3 4 5 6 7 8
number of participants

Average Score: 4.5

Q4: On what scale will this centralized observability help to ease the development effort

6Very Happy

4Happy

1No Difference

0Sad

0Very Sad

0 1 2 3 4 5 6 7 8
number of participants

Average Score: 4.5

Q5: What kind of elements do you still miss having on that dashboard?

• Tags/Versions of selected branch.

• Differentiate dependencies by their order.

• Some dependencies are still missing.

• Information about build status of PRs.

• Legend for the dependency graph.

42

7.2 Final Survey: IBM

Q6: Is this solution better than any previous tool you were using to keep track of repository
activities such as GitHub insights, jenkins view etc?
Yes

73%

No

27%

Q7: If you answered the previous question as ’no’ please express in what way was the other tool
better else enter ’NA’.

• The dependency graph is extremely helpful to grasp what all is pulled in.

• The overview of active PRs is a good for catching up with ongoing work.

• Great improvement over manual documentation.

Q8: Do you see yourself using this solution(if made available) over traditional sys-
tems like jenkins/GitHub insights for change tracking and observability purpose?

Yes

91%

No
9%

Q9: Any other remarks which could help in improving this solution or anything you found most
useful in this dashboard?

• Some information about the build versioning.

• Build State of PRs and indication if the same PR failed multiple number of times.

• Some dependencies are still missing.

• This tool is quite good as it is.

• Good observability tool along with other existing SCMs.

• Automatic refresh of dashboard instead of a manual trigger.

43

7 Results of the Final Survey

7.3 Challenges

The challenges are divided into two parts corresponding to the two use cases of this research topic.

HPVS on VPC

1. Build state data source: The data source for gathering the build state in the first iteration
was Jenkins REST API. However, they were often slow resulting in timeouts since the
query involved more than 250 repositories. This was overcome by implementing two things,
changing the data source from Jenkins to GitHub and by using multi-processing to process
the requests in parallel.

2. Missing dependencies: After the first round of development, it was observed in the feedback
that some of the dependencies are still missing from the graph. With some analysis it was
clear that some of the dependencies which did not have any proper source URL in their data
structure were discarded while creating the tree. It was then fixed using more accurate logic in
the Python backend. This logic involved better interpretation of the JSON file while iterating
through the dependencies.

3. Color of legend in graph: Legends are the meta-data reflecting the data shown in any
graph. For creating the dependency graph, Apache ECharts plugin was used in the solution
Figure 6.1. This graph had a color mismatch with the associated legend when the theme of
the interface is changed from light to dark. This error was reported on the GitHub repository
of Apache ECharts and a workaround was then implemented as suggested by the maintainers
of this repository1.

preCICE

1. Build state data source: The data source for the build states of preCICE repositories was
always GitHub but the APIs on the public GitHub instance was not behaving as expected. It
was not returning the proper state of the repository and due to the same there is an ongoing
discussion about it on their official community platform2. To circumvent this issue, another
API was used which also belongs to GitHub. Many repositories have a GitHub action file
associated with them, which is referred to as workflow and they also have a status associated
with it. These statuses are often used by developers to show as a badge in their README.md
files. The status of such workflows are currently being used to indicate the state of a repository.

2. Grafana Variables: Grafana variables were used to present a list of repositories on the
user interface. Initially, these variables were planned to be multi-select so that the users can
pick multiple repositories. This feature is provided through a macro implementation on the
GitHub data source plugin. But for the GitHub Dashboard, the multi-select list did not work.

1N. Bhawsinka. Legend doesn’t work in dark Mode. [Online; accessed 7 September 2023]. url: https://github.com/

VolkovLabs/volkovlabs-echarts-panel/issues/203.
2supercobra. GitHub API "combined statusïs always Pending. [Online; accessed 7 September 2023]. url: https:

//github.com/orgs/community/discussions/58407#discussioncomment-6679878.

44

https://github.com/VolkovLabs/volkovlabs-echarts-panel/issues/203
https://github.com/VolkovLabs/volkovlabs-echarts-panel/issues/203
https://github.com/orgs/community/discussions/58407#discussioncomment-6679878
https://github.com/orgs/community/discussions/58407#discussioncomment-6679878

7.3 Challenges

It queries for incorrect values and hence no data is returned on the interface. Later on, only
a single select variable list was used. This issue was also reported on the official GitHub
account of GitHub data source plugin3.

3. Dependency Graph: For preCICE, GitHub dependency graph was used as a knowledge
base for visualization. GitHub supports certain package ecosystems4 for identifying the
dependencies within a project. This ecosystem also supports C++ but only with NuGet
package manager which is a conflict with the C++ repositories in preCICE. Hence, an issue
was created on the core library of preCICE to experiment with the configurations of NuGet
ecosystem5.

4. Deployment Infrastructure: There were a couple of challenges while dealing with bwCloud.
First, the instances were not accessible via Secure Shell (SSH), and it was then observed
that it could only be used through the IPV6 address of the instance. Secondly, it was also a
challenge to connect the instance with internet. There was some DNS(Domain Name System)
lookup configuration which was preventing the instance to ping the IPV6 addresses instead
of the IPV4 ones. The learning from that challenge was that the instance supports only IPV6
look-ups for both incoming and outgoing requests6. To overcome this issue, there was a
modification made in the /etc/resolv.conf file7. This modification tells the instance to use
the given IPV6 address as the nameserver. Lastly, due to the restriction on IPV6 look-ups,
once the application was deployed on the instance it could not query the GitHub APIs8.

3yesoreyeram. Support for multi value variable queries. [Online; accessed 7 September 2023]. url: https:

//github.com/grafana/github-datasource/pull/162#issuecomment-1612999519.
4GitHub. supported package ecosystems. [Online; accessed 7 September 2023]. url: https://docs.github.com/en/

code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-

graph#supported-package-ecosystems.
5N. Bhawsinka. Dependency Resolution for c++ projects (NuGet). [Online; accessed 7 September 2023]. url:

https://github.com/precice/precice/issues/1793.
6L. P. (Matthias Leander-Knoll (KIT). INFO: Situation mit Versorgung von IPv4-Adressen. [Online; accessed 10

September 2023]. url: https://www.bw-cloud.org/de/news/2023/11-03-info_ipv4_ka.
7AskUbuntu. systemd-resolved not resolving any domains. [Online; accessed 1 September 2023]. url: https:

//askubuntu.com/questions/1370794/systemd-resolved-not-resolving-any-domains.
8P. Spooren. IPv6 support for cloning Git repositories. [Online; accessed 10 September 2023]. url: https:

//github.com/orgs/community/discussions/10539.

45

https://github.com/grafana/github-datasource/pull/162#issuecomment-1612999519
https://github.com/grafana/github-datasource/pull/162#issuecomment-1612999519
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph#supported-package-ecosystems
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph#supported-package-ecosystems
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph#supported-package-ecosystems
https://github.com/precice/precice/issues/1793
https://www.bw-cloud.org/de/news/2023/11-03-info_ipv4_ka
https://askubuntu.com/questions/1370794/systemd-resolved-not-resolving-any-domains
https://askubuntu.com/questions/1370794/systemd-resolved-not-resolving-any-domains
https://github.com/orgs/community/discussions/10539
https://github.com/orgs/community/discussions/10539

8 Conclusion and Outlook

Multiple versions of a change tracking and observability dashboard has been implemented to
ease the development effort in a complex software project. It consists of a Grafana observability
dashboard supported by additional information from a Python backend. The final solution was
implemented for two use cases which were different in many aspects but united by similar problems.
Right from the design process to the solution, there were slight modifications made to adapt the
software as per the differences in the use cases. Initially, the solution was designed, implemented,
and circulated for the IBM use case and was later tweaked to fit with the preCICE project. These
tweaks were minor in comparison to the initial effort which was spent in designing the solution.
Throughout the development process, there were many instances where developers of both the
teams expressed similar concerns or appreciated similar elements of the dashboard. For instance,
they both believed that dependency graph will be extremely useful in analyzing the components of
a complex software project. Since the overall solution is open-source, there is an opportunity to
enhance it in future with the new features of Grafana dashboard.

To keep the work close to the expectations, surveys were conducted with the developers of the
involved projects. The results of these surveys express how different set of developers working for
different projects can utilize the solution and even improvise it if needed. Participants of both the
surveys were very proactive in trying out the solution and communicating their point of views clearly.
The main intention behind keeping some of the survey questions as free text was to let the developers
present their ideas. For the first use case of HPVS on VPC (IBM), the developers particularly
expressed enthusiasm for the dependency dashboard. They believed that the dependency graph is
extremely helpful for them in given scenarios and that it is a huge improvement over traditional
approaches such as manual documentation. More than 90 percent of the developers prefer to use
this solution over the existing tools as it decreases their development and mental effort. On the
other side, for the second use case of preCICE, most of the developers believe that it could be useful
to them provided more relevant dependencies are available in the dependency graph. Since a lot of
important work in preCICE is close to C++, it will be a good improvement to have them discovered
by the GitHub dependency graph1. Some further filtering on the GitHub dashboard could possibly
reduce the cognitive load and make the content more to the point for the developers. Overall, more
than 70 percent of the developers see themselves using this solution.

The slight differences in the opinion of both the use cases may have been due to the difference in the
complexity of projects. Furthermore, the dependency management tool used by them makes a huge
difference in the final solution because it was the primary data source for the dependency graph. The
more accurate the tool is, the more accurate the visualization would be on the dashboard. According
to all the developers surveyed, this is a unique tool, and no similar tool is readily available having all

1N. Bhawsinka. Dependency Resolution for c++ projects (NuGet). [Online; accessed 15 September 2023]. url:
https://github.com/precice/precice/issues/1793.

47

https://github.com/precice/precice/issues/1793

8 Conclusion and Outlook

the elements included in the solution. And they also agree that the solution will help them in solving
their problems to some extent. Grafana also provides an option to further improve the GitHub
dashboard just by using the user interface (no coding involved). However, for the dependency
dashboard developers might have to make minor changes in the Python script depending on their
requirements. In terms of functional requirements, one major observation was that for the preCICE
project, a certain type of dependency (C++) was more important than others such as GitHub Actions.
Whereas for the other use case, most of the dependencies detected by Renovate are considered
equally important.

Finally, the solution aims at re-usability and hence it has been implemented in a modular fashion.
To use it for a completely new project, one needs to modify a few configuration files which contain
project specific elements such as GitHub URL, organization name etc. The re-usability aspect
was once tested while using the same codebase as the IBM use case for preCICE. To make it
more resilient, it will further be tested on another IBM project in the future. The end product is
distributed in the form of docker images. This facilitates portability and ease of deployment to the
maintainers of the solution. From the final survey results in Chapter 7 it can be observed that the
implemented solution is useful for the developers and has some scope for improvements. Many of
these improvements were already implemented, but a few of them were library bugs and they were
reported via GitHub issues to their respective projects. These bugs will be followed-up in future
and incorporated in the solution.

The solution has immense potential to adapt to different needs and incorporate new elements in the
form of visualizations. Some of the areas of exploration may include incorporating intelligence in
the graph based on repository states or addition of alerts based on thresholds defined on the GitHub
dashboard. There also have been suggestions to improve the filtering capability of the dependency
graph and to incorporate change roll out analysis. This could enhance the overall experience for the
developers and allow them to derive relevant information while preparing for a release. Furthermore,
the colors of nodes in the dependency graph can be programmed to reflect the age of last change.
This was a common suggestion received in both the use cases and will be helpful to determine
active or stale repositories. Having the dependency graph on the dashboard opened doors to a lot of
innovative ideas which could help teams in managing their software life cycle with more efficiency.
The implemented solution offers flexibility, re-usability, and portability along with the functional
requirements to the developers working in a complex software development process.

48

Bibliography

[1] G. Chourdakis, K. Davis, B. Rodenberg, M. Schulte, F. Simonis, B. Uekermann, G. Abrams,
H. Bungartz, L. Cheung Yau, I. Desai, K. Eder, R. Hertrich, F. Lindner, A. Rusch, D. Sashko,
D. Schneider, A. Totounferoush, D. Volland, P. Vollmer, O. Koseomur. “preCICE v2: A
sustainable and user-friendly coupling library [version 2; peer review: 2 approved]”. In:
Open Research Europe 2.51 (2022). doi: 10.12688/openreseurope.14445.2. url: https:
//doi.org/10.12688/openreseurope.14445.2 (cit. on pp. 11, 13).

[2] E. González. Data visualization with Grafana. Version 1.0. Oct. 2020. doi: 10.5281/zenodo.
4068095. url: https://doi.org/10.5281/zenodo.4068095 (cit. on p. 26).

[3] R. Majumdar, R. Jain, S. Barthwal, C. Choudhary. “Source code management using version
control system”. In: 2017 6th International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions) (ICRITO). 2017, pp. 278–281. doi: 10.1109/
ICRITO.2017.8342438. url: https://doi.org/10.1109/ICRITO.2017.8342438 (cit. on pp. 3, 6).

[4] I. Nurgaliev, E. Karavakis, A. Aimar. Kibana, Grafana and Zeppelin on Monitoring data.
Aug. 2016. doi: 10.5281/zenodo.61079. url: https://doi.org/10.5281/zenodo.61079 (cit. on
p. 27).

[5] L. Parziale, C. A. D. Leon, J. Y. Girard, C. G. Gomes, F. Schwanzara. Securing Your Critical
Workloads with IBM Hyper Protect Services. IBM Redbooks, 2022. isbn: 9780738460338.
url: https://www.redbooks.ibm.com/abstracts/sg248469.html (cit. on p. 12).

[6] T. Saravanan, S. Jha, G. Sabharwal, S. Narayan. “Comparative Analysis of Software Life Cycle
Models”. In: 2020 2nd International Conference on Advances in Computing, Communication
Control and Networking (ICACCCN). 2020, pp. 906–909. doi: 10.1109/ICACCCN51052.2020.
9362931. url: https://doi.org/10.1109/ICACCCN51052.2020.9362931 (cit. on p. 4).

[7] M. Stoica, M. Mircea, B. Ghilic-Micu. “Software Development: Agile vs. Traditional”. In:
Informatica Economica 17 (Dec. 2013), pp. 64–76. doi: 10.12948/issn14531305/17.4.2013.06.
url: https://doi.org/10.12948/issn14531305/17.4.2013.06 (cit. on p. 1).

[8] S. M. Syed-Mohamad, T. McBride. “A Comparison of the Reliability Growth of Open Source
and In-House Software”. In: 2008 15th Asia-Pacific Software Engineering Conference. 2008,
pp. 229–236. doi: 10.1109/APSEC.2008.20. url: https://doi.org/10.1109/APSEC.2008.20
(cit. on p. 11).

[9] E. Yang. “Fuzz testing and software composition analysis in software engineering”. In: 2018
International Symposium on VLSI Design, Automation and Test (VLSI-DAT). 2018, pp. 1–3. doi:
10.1109/VLSI-DAT.2018.8373240. url: https://doi.org/10.1109/VLSI-DAT.2018.8373240
(cit. on p. 8).

https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.5281/zenodo.4068095
https://doi.org/10.5281/zenodo.4068095
https://doi.org/10.5281/zenodo.4068095
https://doi.org/10.1109/ICRITO.2017.8342438
https://doi.org/10.1109/ICRITO.2017.8342438
https://doi.org/10.1109/ICRITO.2017.8342438
https://doi.org/10.5281/zenodo.61079
https://doi.org/10.5281/zenodo.61079
https://www.redbooks.ibm.com/abstracts/sg248469.html
https://doi.org/10.1109/ICACCCN51052.2020.9362931
https://doi.org/10.1109/ICACCCN51052.2020.9362931
https://doi.org/10.1109/ICACCCN51052.2020.9362931
https://doi.org/10.12948/issn14531305/17.4.2013.06
https://doi.org/10.12948/issn14531305/17.4.2013.06
https://doi.org/10.1109/APSEC.2008.20
https://doi.org/10.1109/APSEC.2008.20
https://doi.org/10.1109/VLSI-DAT.2018.8373240
https://doi.org/10.1109/VLSI-DAT.2018.8373240

Declaration

I hereby declare that the work presented in this thesis is entirely my
own. I did not use any other sources and references than the listed
ones. I have marked all direct or indirect statements from other
sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before. The
electronic copy is consistent with all submitted hard copies.

place, date, signature

	1 Introduction
	2 Background of Tools and Technologies
	2.1 Version Control in Software Development Life Cycle
	2.2 Source Code Management
	2.3 Code Repository
	2.4 Modular Repositories
	2.5 Software Composition Analysis
	2.6 Automation Server
	2.7 Observability
	2.8 Dashboards

	3 Use Cases
	3.1 IBM HPVS on VPC
	3.2 preCICE

	4 Results of the Initial Survey
	4.1 Survey Design
	4.2 Initial Survey: IBM
	4.3 Initial Survey: preCICE

	5 Initial Solution Design
	6 Solution
	6.1 IBM
	6.2 preCICE

	7 Results of the Final Survey
	7.1 Final Survey: preCICE
	7.2 Final Survey: IBM
	7.3 Challenges

	8 Conclusion and Outlook
	Bibliography

