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Abstract
In the context of solving inverse problems, such as in statistical inference, an efficient repeated evaluability of
a system can be achieved through methods of model order reduction. However, quantifying and adequately
representing the emerging reduction error requires special techniques for combining different sources of
uncertainty. In this paper, parametric finite element models are reduced through parametric model order re-
duction. The induced approximation error, an epistemic uncertainty, is reasonably estimated with the help of
modern estimators for formulating statistical statements about the parameters to be identified. Measurement
noise is also taken into account as a source of aleatory uncertainty. As a novel extension to analyzing a single
source of uncertainty, the construction of a basic workflow for parameter identification in the face of both
epistemic and aleatory uncertainties is presented, combining efficient error estimation techniques and possi-
bilistic inference. The general applicability of this procedure is highlighted by two illustrative applications.

1 Introduction

A classical topic from the field of modeling and simulation is the inverse problem of determining input pa-
rameters of a model of interest based on measured output data through statistical inference. Of particular
interest here is a realistic assessment of the influences of different types of uncertainties that need to be taken
into account in the modeling process. As such, there are aleatory, i.e. random and unavoidable, uncertainties,
since noisy measurements only allow statistical statements about the true parameter values. Furthermore, as
uncertainty analysis typically requires a large number of model evaluations and the complexity of industri-
ally used simulation models is increasing, it is often necessary to fall back on so-called surrogate models, to
allow for an efficient evaluation. However, this model reduction itself is also a source of error, which addi-
tionally harbors uncertainties, so-called epistemic uncertainties, i.e. uncertainty due to a lack of knowledge.
The challenge of dealing with the presence of uncertainties of different types and sources in reduced-order
surrogate models motivates this paper.

While traditional approaches often work with probabilistic descriptions of uncertainties, newer approaches
are increasingly based on alternative representations of uncertainty, being better suited for quantifying the
imprecise probabilites induced by heterogeneous sources of uncertainty. In particular, possibility theory, akin
to fuzzy set theory as a coarsening of classical probability theory, offers a suitable mathematical framework
for making robust statements about confidence intervals of parameters, to be determined even in the case of
polymorphic uncertainties of epistemic and aleatory type.

The theoretical background of the paper is given in [1], picking up some preliminary work done by [2] and
[3]. Its novelty is the employment of a parametrically formulated reduced-order surrogate model to speed
up the process of back propagation and then quantifying the severity of the inevitably created error by using
error estimation techniques from [4] and [5], while simultaneously considering an aleatory uncertainty source
in the form of noise.



The structure of the paper is laid out as follows. First, the theory behind the use of error estimators to
quantify deviations stemming from model order reduction is outlined in both the time and frequency domain.
Then the concepts of uncertainty quantification with imprecise probabilites and possibilistic inference for
parameter identification in the presence of polymorphic uncertainty are presented. And finally, the developed
methodology of parameter identification is presented along two examples, one concerning the time domain
and the other concerning the frequency domain.

2 Error estimation in model order reduction

A mechanical system described by a linear finite element model with state vector q(t) ∈ RN , excitation
function u(t) ∈ Rp, and output behavior y(t) ∈ Rq can be formulated using the ordinary linear differential
equations

Mq̈(t) +Dq̇(t) +Kq(t) = Bu(t),
y(t) = Cq(t),

(1)

where M ,D,K ∈ RN×N are the mass, damping, and stiffness matrices, B ∈ RN×p the input matrix,
and C ∈ Rq×N the output matrix.

In order to determine the output behavior y(t) of such a system, Eq. (1) must be integrated over time t ∈
[0, tmax]. The computation time required depends not only on the length of the time interval, but also on
the size of the system to be simulated. One possibility to reduce the number of equations to be solved and
thus the required computing capacity is projection-based model order reduction (MOR). Its basic idea lies
in the representation of the time-dependent state of a (mechanical) system q(t) ∈ RN by the reduced state
vector q̄(t) ∈ Rn in a subspace. The projection of the state vector is given by

q(t) ≈ V q̄(t), (2)

where V ∈ RN×n, n � N is called the projection matrix. With this, the reduced system matrices are
determined as follows

M̄ = V T ·M · V ,
K̄ = V T ·K · V ,
D̄ = V T ·D · V ,
B̄ = V T ·B,
C̄ = C · V .

(3)

Building on this, parametric MOR (PMOR) allows the reduced system matrices to be expressed as a function
of some parameters, which is a critical prerequisite for rapid model evaluation for parameter identification, as
evaluations at a wide variety of different parameter points are necessary. Through this method it is possible
to find a reduction matrix that is not only valid for a system at an individual parameter point, but provides
a sufficiently accurate approximation across parameter ranges. In this case, one speaks of a global PMOR
approach [6]. In this contribution, the process of creating a parametrized reduced-order system will not be
discussed further, please refer to [6], [7] and [8]. Instead, it will be assumed that the models are present in a
parametrically reduced form.

The advantages of a faster evaluability of reduced systems are offset by an inevitable approximation error. In
addition to efforts in keeping this error as low as possible, it is also important for robust MOR-based findings
to be able to quantify this error. For this purpose, error estimators are used.



2.1 Error estimation in the time domain

In this contribution, the error estimation for simulations in the time domain is performed by a method for
determining robust and guaranteed error bounds of reduced second-order systems, which has first been pre-
sented in [4]. The merits of the developed approach lie in its independence from both the integration proce-
dure used for the numerical solution and the technique used to determine the reduction matrix V . It returns
a bound

∆q(t) ≥ |e(t)|, (4)

which limits the state error e(t), introduced by

q(t) = Vglobal · q̄(t) + e(t). (5)

Whenever an error estimator can warrent the validity of Eq. (4) for all points in time, its error bounds are
called guaranteed. In addition to bounding the state error, a bound

∆y(t) ≥ |y(t)− ȳ(t)| (6)

to the output error is of interest. This makes the error estimator usable for parameter identification based on
output quantities that are measurable in experiments, as it provides bounds quantifying the output deviation
between full and reduced-order systems. According to [4],

∆y(t) = ‖C‖G,2 ∆q(t) (7)

applies, where ‖C‖G,2 is the matrix norm of the output matrix with a weighting matrixG which in turn can
be given in the form of the mass matrixM .

A property of this error estimator is the split of computation time into an initial offline-phase for ‖C‖G,2
and an online-phase for ∆q(t) which returns an error bound after the solution of every timestep.

2.2 Error estimation in the frequency domain

A method for finding an error metric in the frequency domain is presented in [5], the results of which do not
represent mathematically guaranteed limits, but are widely used in practice and are often sufficiently good.
The error

ε(s) = h(s)− ĥ(s) (8)

is the difference between the transmission behavior h(s) of the full-order system and the transmission be-
havior ĥ(s) of a derived reduced-order system.

In order to quantify this error with an upper bound, in [5] it is proposed to calculate the frequency response
of a second reduced system ĥC(s), thus enabling the calculation of an approximative, heuristic error measure

∆h(s) = ĥ(s)− ĥC(s) ' ε(s). (9)

The second reduced-order system is referred to as the complementary system and should differ in its view-
point. It is argued that in the case of a large deviation at some frequency between the two systems, which
not necessarily have to be reduced with the same method, at least one of the two systems is inaccurate at
this point and thus the error ε(s) has the potential to also be large. On the other hand, for frequencies
where both viewpoints yield a similar response, an adequate reduction quality can be assumed. The author
in [5] further argues that the creation of a complementary system when using Krylov subspace methods is



best accomplished by defining two complementary, interlocking sets of interpolation or expansion points.
Since it can be assumed that the complexity of the time simulation of the reduced-order and complementary
reduced-order system is approximately equivalent, a doubling of the time required for the calculation of the
reduced-order system can be assumed for the determination of this error bound.

Whenever an error estimator only gives bounds, it can be assumed that no information is available about the
actual realization of the error within these bounds, thus motivating the view as imprecise probabilities and
possibility theory as an adequate quantification.

3 Uncertainty quantification and inference

The objective of the presented work is the inference of parameter distributions in a system subject to multiple
sources of variously classified uncertainty. Uncertainty of polymorphic nature, reflecting both randomness
and imprecision, can be quantified by imprecise probabilities. A framework for the quantification and prop-
agation of imprecise probabiliies is given by possibility theory with its measures possibility and necessity.
A major advantage of possibility theory is that it allows for convenient computation by the use of possibilis-
tic calculus, which can be implemented on a computer by using fuzzy arithmetic [9] with some additional
considerations [10].

3.1 Imprecise probabilities and possibility theory

The classical, frequentist theory of probability represents a precise description of the frequency of certain
events, i.e. it describes the frequency of occurrence of precisely specified events. In contrast, the quantifi-
cation of imprecise knowledge requires tools for dealing with imprecise probabilities, such as p-box theory,
Dempster-Shafer theory of evidence or possibility theory, first formalized by Dubois and Prade [11]. Possi-
bility theory describes the fundamental possibility that a specific event will occur, rather than its often poorly
quantifiable frequency. Its core element is the elementary possibility function µ, often also referred to as π,
equal to a fuzzy membership function, which induces a measure of possibility

Π(x) = sup
ξ≤x

µ(ξ) (10)

and one of necessity by

N(x) = inf
ξ>x

(1− µ(ξ)). (11)

These measures exhibit the property of bounding from above and below the so-called credal set of all (con-
sistent) probability distributions that can be assigned to such an uncertain event. Because of this property,
a description of uncertainties by the use of possibilities is suitable for modeling knowledge that is based on
very few observations or is characterized by fuzziness in quantification or inherent imprecision, e.g. due to
measurement errors.

Figure 1 illustrates and explains this property by an example. It shows a triangular-shaped elementary pos-
sibility distribution µ

X̃
(x) (top left, orange line), used to quantify an uncertain variable X̃ , as well as its

derived possibility and necessity functions Π
X̃

(x) and N
X̃

(x) (top right, blue and red lines). One can see
that the cumulative distribution functions (CDF) (top right, dashed green lines) for two exemplarily chosen
probability density functions p(x) (bottom), here describing a uniform and a Gaussian distribution contained
in the credal set belonging to µ

X̃
(x), are indeed bounded from above and below, respectively. This highlights

the extremely advantageous property of possibility theory that one can use only one elementary possibility
function µ together with possibilistic calculus, i.e. with a special form of fuzzy arithmetic, to describe the un-
certainty of an event and to quantify the propagation of uncertainty, and that one thereby, in fact, performs at
one go a calculation with a whole set of probability density functions, i.e. with all the imprecise probabilities
that represent the uncertain event.
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Figure 1: Implications of a fuzzy membership function in possibility theory

In order to combine and propagate possibilistically formulated uncertain variables, they have to be encoded
in an elementary possibility function. For values bounded by intervals, the possibility function can be defined
as a {0, 1}-valued (quasi-vacuous) function, assuming a possibility value of 1 within the interval and 0 other-
wise. Exactly known probabilistic distributions need to be transformed through a probability-to-possibility-
transform (P -Π-Transform) [1]. The most obvious choice for describing such values is the cumulative
P -Π-Transform, in which the value’s cumulative probability function serves as its possibility function, as
this automatically guarantees its inclusion in the credal set. Alternatively, the complementary function of the
cumulative function can serve as possibility function [1].

Once the possibility distributions µ
X̃i

(xi) for all uncertain variables of concern are defined, the propaga-

tion µ
Ỹ

of the uncertain variables for a mapping Ỹ = φ(X̃ ) is obtained by

µ
Ỹ

(y) = sup
x∈X̃ :y=φ(x)

µ
X̃

(x), (12)

akin to the extension principle of fuzzy arithmetic.

In the case of propagating multiple uncertain variables, each of them characterized by a marginal possibility
distribution, the joint distribution µ

X̃
(x) in Eq. (12) has to be found first. The construction of the joint possi-

bility relies on different degrees of knowledge about the dependency between the individual variables. In [1]
it is differentiated between the cases of unknown interaction and strong independence and computational
rules of combination are provided for both cases.

3.2 Possibilistic Inference

Similar to statistical inference of classical, probabilistic type, possibilistic inference aims to infer a distribu-
tion of unknown parameters on the basis of noisy observations. In [1], the concept of possibilistic inference
to derive confidence distributions γ is introduced. More precisely, given uncertain input variables X̃i with



corresponding realizations xi, their joint possibility distribution µ
X̃

(x) and an observation q of a statistical
model Ψ, return a confidence distribution γ for uncertain model parameters θ̃ from parameter space Θ by

γ
θ̃ |Q̃=q

(θ) = sup
x∈X̃ : q=Ψ(θ,x)

µ
X̃

(x) ∀ θ ∈ Θ. (13)

The confidence distribution can be considered as again a membership function that encodes confidence in-
tervals via its superlevel sets. Formally, Eq. (13) corresponds to the fuzzy extension principle, so it can be
handled by the same tools. Due to this formal equality, in the following, only the symbol µ for the classical
membership function of a fuzzy set will be used for all distributions, regardless of whether it is a possibility
or confidence distribution. A detailed discussion of this convention can be found in [12].

The presented method deduces a joint confidence distribution γθi(θi) for the parameters of interest. Through
projection by

γθi(θi) = sup
θ1,...,θi−1,θi+1,...,θn

γθ(θ), (14)

the marginal distributions for each uncertain parameter can be obtained.

4 Application in the time domain

As the experiment for the time domain, a cantilever beam, as visualized in Fig. 2, is set up. It is subjected to
a sinusoidally alternating force F normal to the beam axis at the free tip. The deflection y of the beam tip is
measured and the task is to identify model parameters so that they mimic the behavior of the beam as well
as possible. In this first, academic example, the model parameters are the stiffness and density of the beam,
which is modeled on the basis of the theory of Euler and Bernoulli. Essential assumptions include its slender
dimensions, i.e. 5a ≤ l, and its constant cross-section as well as a load along the principal inertial axis that
results in small deformations relative to the beam geometry.

Here, the observation data do not stem from a physical experiment but are the result of a high-resolution
numerical simulation of a beam model. The beam is discretized with 40 elements of equal size, which are
connected in pairs at nodes. The parameter vector

θref =
[
Eref ρref

]
=
[
70× 109 N

m2 , 2750 kg
m3

]
(15)

is set to reference values that are considered unknown in practice and thus not available for further evaluation.

The system matrices are determined for this parameter set using the Matlab toolbox MatMorembs [13].
The system is simulated for the duration of tmax = 1 s with a temporal resolution of ∆t = 1 ms, which
corresponds toK = 1000 time steps. The vertical movement of the outermost node is measured over time. A

F (t)

a

al

E, ρ

t

y(t)

Figure 2: Cantilever beam with unknown stiffnessE and density ρ, subject to a sinusoidal bending load F (t)
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Figure 3: Observation data from the time simulation of the beam experiment

normally distributed noise with zero mean and an assumed standard deviation σ of 0.012 m is superimposed
on the measurement signal. Figure 3 shows the measurement points of the observation Q̃ = q generated by
these means.

It is assumed that the measurement inaccuracy occurs in the form of a normally distributed noise with zero
mean and a specific standard deviation. Since the noise is independently and identically normally distributed
for each time step, this error quantity can be modeled via the cumulative χ2-distribution

µ
W̃

(w) = 1− Fχ2
K

(
K∑
i

(wi
σ

)2
)
, (16)

where K is the number of degrees of freedom, i.e. the number of summed random variables, which is the
number of time steps in this case. The variable wi is the i-th element of a time-discrete realization of the
measurement noise w ∈ RT and σ is the assumed standard deviation of the measurement noise.

The epistemic uncertainty, to be quantified through the error estimator, can be modeled possibilistically by
the quasi-vacuous distribution

µ
Ṽ

(v) =

{
1 |v| ≤∆y, v ∈ RT ,
0 else.

(17)

This means that the occurrence of reduction errors within the error bounds ∆y is possible, i.e. µ
Ṽ

(v) = 1,
under the assumption that an error estimator returns guaranteed bounds, and outside, it is impossible, i.e.
µ
Ṽ

(v) = 0. Additional information about the distribution of the error within the bounds is not available.

The membership functions of the two distributions considered as inputs for the parameter identification
procedure are qualitatively shown in Figs. 4a and 4b.

Both uncertain variables W̃ and Ṽ are modeled as additions to the model output y(θ), i.e. the statistical
model is composed by

Q̃ = y(θ) +W̃ + Ṽ . (18)

In a first step, only the aleatory source of uncertainty shall be considered. For this, the full beam model is
used for parameter identification and the epistemic error of the MOR is omitted. This option is only available
if the size of the model allows for an often repeated evaluation of the system equations, which applies to the
present case of a low-dimensional model. As an uncertain input quantity, only the aleatory uncertainty of the
measurement noise is to be considered. Thus
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Figure 4: Membership functions of the considered uncertainties

X̃ = W̃ , (19)

wherewith Eq. (13) becomes

µ
θ̂ |Q̃=q

(θ) = sup
w :w=q−y(θ)

µ
W̃

(w) = µ
W̃

(q − y(θ)). (20)

For each point of a set of parameters, randomly generated using Latin hypercube sampling from the pa-
rameter space, a numerical time simulation of the full beam model is carried out using the parametrically
formulated system matrices. The difference between the experimental observation q and the output vec-
tor y(θ) of the numerical time simulation, calculated for this parameter, is inserted into the membership
function of the measurement noise in Eq. (20). The resulting membership value µ is stored together with θ
in a tuple (θ, µ), a so-called µ-cluster. The values determined with the full model are shown in blue in Fig. 5.

As discussed, evaluating the full system for every parameter point is not feasible for more complex models.
Thus, as a next step, a model order reduction is applied, introducing another uncertain value, namely the
discrepancy between the time domain simulations of the full and the reduced-order system.

The membership function µ
X̃

(x) for the uncertain variables X̃ is replaced by the joint membership func-
tion µ

W̃ ,Ṽ
(w,v) of the two uncertain inputs W̃ and Ṽ , allowing Eq. (13) to be rewritten as

µθ̂(θ) = sup
w,v : q=Ψ(θ,(w,v))

µ
W̃ ,Ṽ

(w,v). (21)

According to [12], the joint distribution function µ
W̃ ,Ṽ

(w,v) can be calculated by using the minimum
operatur through

µ
W̃ ,Ṽ

(w,v) = min
w,v

{
µ
W̃

(w), µ
Ṽ

(v)
}

(22)

due to the property of µ
Ṽ

being quasi-vacuous. Therefore, Eq. (21) extends to

µθ̂(θ) = sup
w,v : q=Ψ(θ,(w,v))

min
w,v

{
µ
W̃

(w), µ
Ṽ

(v)
}
. (23)
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Figure 5: Joint and marginal parameter confidence distributions of the parameters E and ρ

The membership function µ
Ṽ

(v) can only take on two values. For v ∈ V it is 1. Clearly, V corresponds to
the space of exactly all those vectors v that lie within the interval of the error bounds [−∆y,∆y]. In this
case, due to the minimum operator, only the membership function µ

W̃
(w) is relevant for the output value.

For all other v the minimum takes the value µ
Ṽ

(v) = 0. Accordingly, Eq. (23) can be simplified to

µθ̂(θ) = sup
v∈V : q=Ψ(θ,(w,v))

µ
W̃

(w). (24)

The additive relation from Eq. (18) is used to write

w(v) = q − ȳ(θ)− v (25)

as a function of v, where the vector ȳ(θ) ∈ RK is the output vector of the reduced deterministic model.
Consequently, one obtains

µθ̂(θ) = sup
v∈V : q=Ψ(θ,(w,v))

µ
W̃

(q − ȳ(θ)− v). (26)

Finally, since the cumulative χ2-distribution function underlying the function µ
W̃

(w) is monotonically de-
creasing, minimizing the argument

∑
w2
i consequently maximizes the distribution function. Thus,

µθ̂(θ) = µ
W̃

(
inf

v∈V : q=Ψ(θ,(w,v))

K∑
i

(qi − ȳi(θ)− vi)2

)
(27)

proves equivalent to Eq. (26), where the inner expression can be efficiently solved numerically as a quadratic
optimization problem.

Again, a random set of points is generated from the parameter space Θ and the system equations are set
up for each point using the parametrically formulated system matrices. In addition, a reduced system for
each parameter point is calculated using a parameter-independent global reduction matrix, obtained through
Krylov reduction. Then, the error estimator from [4] is initialized with the system matrices of the full system,
the reduction matrix and the excitation function. The time simulation of the reduced system is performed



over a duration of tmax = 1 s with a temporal resolution of ∆t = 1 ms. The error estimator calculates a
bound ∆y for each time step, which bounds the deviation of the reduced solution to the full solution at that
point. To evaluate the inner term of Eq. (27), the function quadprog implemented in Matlab is used to
find a vector v within the error bound ∆y that minimizes the term. Finally, the resulting vector v is used
to compute the infimum, which is substituted into the distribution function µ

W̃
(w). Due to the significant

computational overhead in the initialization phase of the error estimator, a reduction of the calculation time
by the applied model order reduction only occurs upwards of some reduction magnitude. The resulting
confidence distribution for the parameter vector θ, identified using the reduced model, is illustrated in orange
in Fig. 5. At first sight, the confidence distributions stemming from the full- and reduced-order model appear
to be similar. Taking a comparative look at the marginal distributions for the stiffness parameter E, however,
reveals a significant difference in the accuracy of the identification. The marginal distributions differ in their
width and maximum. A trade-off between the speed of parameter identification and its accuracy can be
observed.

5 Application in the frequency domain

As an example for an application in the frequency domain, a model of a disc brake is investigated next. In
[8], a model of a disc brake for the analysis of brake squeal is presented, which is used in this investigation.
The parameter selected for identification is, in this example, the disc speed Ω. A visualization of the brake
model is provided in Fig. 6.

There are several nonlinear effects to be considered in the brake model due to contact and rotational in-
fluences. For a detailed explanation, please refer to [8]. The linearized parametrized system can then be
modeled by

Mq̈ + D̂(Ω)q̇ + K̂(Ω)q = Bu,
y = Cq

(28)

with the matrices D̂(Ω) and K̂(Ω) being parameter-dependent. The corresponding transfer function is
given by

H(ω,Ω) = C
(
−ω2M + iωD̂(Ω) + K̂(Ω)

)−1
B. (29)

In addition to a full model withN = 4669 degrees of freedom, a parametrically reduced model with n = 100
degrees of freedom is derived using Krylov reduction.

The displacement of the excitation point and the measurement point shall serve as the input and output
values for the transfer behavior of the system. In contrast to the previous section, the system response in
the frequency domain is now object of the parameter identification. The frequency response is determined
numerically for the range from 0 to 500 Hz. Again, first, only an aleatory source of uncertainty in the form
of noise on the measured data in the experiment is introduced. It is assumed to behave in the same way as
in the time-domain case, i.e. following a normal distribution with zero mean and an assumed variance. The
result of the experiment can be seen in Fig. 7.

Based on this data, the full model of the brake system is used to generate predictions and evaluate them
with Eq. (27) according to the proposed method. The resulting parameter distribution is shown in Fig. 8.
Subsequently, two reduced-order models are derived with global reduction matrices stemming from Krylov
reduction with interlacing expansion points. The possibilistic inference is carried out again using the afore-
mentioned error heuristic from [5], providing the bounds. This parameter distribution is also shown in Fig. 8.

Again, a deterioration in identification accuracy is observed at the benefit of a significant speedup in compu-
tation time.



Figure 6: Visualization of the disc brake system from [8]. Excitation and measurement points are marked in
red.
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Figure 7: Noisy observation data q from the frequency response of the disc brake system experiment
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6 Conclusion

In this paper, a possibilistically formulated inference method for parameter identification under uncertainty is
presented and applied to two different problems: one considered in the time-domain and one in the frequency
domain. The method involves the comparison of an experimental observation with the results of an evaluation
of a numerical model carried out under different model parameters. In this context, tools for uncertainty
quantification by possibility theory and existing error estimation techniques are used. It can be shown that
the quantitative inclusion of both aleatory and epistemic uncertainties is feasible.

An important property of the developed inference method is its independence of the underlying experimental
data source and especially to the error estimator used. Due to the modular implementation of the method,
any algorithm capable of calculating error bounds in both the time or frequency domain can be used by
modifying only a few lines of code. This modular applicability is highlighted by an exemplary application to
the time simulation of an oscillating beam as well as to the frequency analysis of an automotive disc brake.
A trade-off can be observed, where the appropriate consideration of model order reduction error degrades
the identification quality at the benefit of faster computation times.

A major contribution of this work consists not only of applying methods of uncertainty analysis to poly-
morphic uncertainties and using an error estimator to quantify epistemic uncertainty, but also by creating a
structured procedure for the practical application of possibilistic inference methods for parameter identifica-
tion, illustrated by examples.

Points of contact lie in the extension of the developed method to other problem areas in which the param-
eter identification subject to uncertainties could provide added value. These could also include problems
outside the numerical simulation of mechanical systems, such as in the field of machine learning, in which
the detection of complex relationships on the basis of large amounts of data is ultimately also based on the
identification of suitable model parameters. In addition, the emergence of better methods for the robust esti-
mation of model order reduction errors, such as indicated in [14], will rapidly lead to a higher effectiveness
of the developed method.
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