
Studiengang:

Prüfer:

Betreuer:

begonnen am:
beendet am:

Institut für Parallele und Verteilte Systeme

Universitätsstraße 32
70569 Stuttgart

Masterarbeit
Development of an

Euler-Lagrangian framework for
point-particle tracking to enable

efficient multiscale simulations of
complex flows
Helena Kschidock

M.Sc. Simulation Technology

Jun.-Prof. Dr. rer. nat. Benjamin Uekermann

Dr. Andrea Pasquali

02.05.2023

02.11.2023

Prof. Dr. rer. nat. Miriam Schulte

Abstract

In this work, we implement, test, and validate an Euler-Lagrangian point-particle tracking
framework for the commercial aerodynamics and aeroacoustics simulation tool ultraFluidX®,
which is based on the Lattice Boltzmann Method and optimized for GPUs. Our framework
successfully simulates one-way and two-way coupled particle-laden flows based on drag
forces and gravitation. Trilinear interpolation is used for determining the fluid’s macroscopic
properties at the particle position. Object and domain boundary conditions are implemented
using a planar surface approximation. The whole particle framework is run within three dedi-
cated GPU kernels, and data is only copied back to the CPU upon output. We show validation
for the velocity interpolation, gravitational acceleration, back-coupling forces and boundary
conditions, and test runtimes and memory requirements. We also propose the next steps
required to make the particle framework ready for use in engineering applications.

Abstrakt

In dieser Arbeit implementieren, testen und validieren wir Euler-Langrangsches Punkt-Teilchen
Framework für das kommerzielle Aerodynamik- und Aeroakustik-Simulationsprogramm
ultraFluidX®, das auf der Lattice-Boltzmann-Methode basiert und GPUs optimiert ist. Unser
System simuliert erfolgreich ein- und zweiseitig gekoppelte partikelbeladene Strömungen
auf der Grundlage von Widerstandkräften und Gravitation. Zur Bestimmung der makroskopis-
chen Eigenschafter der Flüssigkeit an der Partikelposition wird eine trilineare Interpolation
verwendet. Die Randbedingungen des Objekts und des Bereichs werden durch eine planare
Oberflächenapproximation implementiert. Das gesamte Partikelframework wird in drei dedi-
zierten GPU-Kernels asgefährt, und die Daten werden nur bei Ausgabe zurück auf die CPU
kopiert. Wir zeigen die Validierung der Geschwindigkeitsinterpolation, der Gravitationsbeschle-
unigung und der Rückkopplungskräfte und testen Laufzeiten und Speicherbedarf. Wir schla-
gen auch die nächsten Schritte vor, die erforderlich sind, um das Partikelframework für den
Einsatz in technischen Anwendungen bereit zu machen.

1

1 Introduction

Particle tracking is central to many applications in the world of Computational Fluid Dynam-
ics (CFD), especially for the simulation of vehicles. Impact and deposition of snow, dust, fluid
droplets or soil particles, as well as changes in the flow behavior can be of great relevance to
automobile and agricultural engineers.

In CFD, particle tracking is performed using so-called particle-laden flow simulations. The
term describes a two-phase flow combining a continuously connected fluid phase with a par-
ticle phase consisting of small immiscible entities [1]. There exists a large body of work on the
modelling of particle-laden flows, with several different approaches. Eulerian methods treat
particles as a second continuous phase described by transport equations, see e.g. [2], whereas
Lagrangian methods model particles as discrete units with individual equations of motion,
see e.g. [3]. For simulations based on the Lattice Boltzmann Method (LBM), Euler-Euler ap-
proaches are more efficient, especially for simulations with large numbers of light particles,
while Euler-Lagrangian approaches are considered to provide the more accurate results [4].
Several established Euler-Lagrangian methods for particle-laden flows exist. The discrete el-
ement method is centered heavily around the accurate simulation of particle-particle inter-
actions [5, 6], while particle-resolved direct numerical simulations use fine grids to capture
the interactions between large particles and the fluid, see e.g. [7]. Both methods are compu-
tationally expensive, and are therefore used mostly for particle simulations with large volume
fractions. For smaller or fewer particles, the point-particle approach, see e.g. [8], can be ap-
plied at far lower cost: Here, the actual shape and volume of the particle are disregarded and
the particle itself is not resolved by the fluid. Instead, the interactions between fluid and par-
ticle phase are captured through additional force terms which attempt to model the relevant
behaviors in a simplified way – from drag forces to temperature exchange.

Altair®ultraFluidX®1 is a commercial simulation tool for external aerodynamics and aeroa-
coustics. With a GPU-based architecture and an implementation based on the Lattice Boltz-
mann method (LBM), it was developed to deliver over-night simulation results even for com-
plex aerodynamic simulations. However, it does not have any capabilities for simulating
particle-laden flows. The goal of this thesis is therefore to develop and implement a frame-
work for particle tracking into ultraFluidX®. Based on the considerations above, we use an
Euler-Lagrangian point-particle approach for our implementation. The work of this project
is integrated directly into the ultraFluidX®code, and orients itself on the GPU-based archi-
tecture. The focus lies in developing a solid framework - from general data structures to algo-
rithms. We also show extensive validation of the code, to ensure the fidelity of our framework
and ease future use, maintenance and development of the software.

In order to define a sufficiently tight scope for this thesis, we limit our framework to one-

1������������	
��
������	
����������	�	�	������.

3

1 Introduction

and two-way coupled simulations. This means that we only consider interactions between
particles and fluid; particle-particle interactions (four-way coupling) are disregarded. In the
future, accessibility to four-way coupled particle simulations will be achieved by coupling
ultraFluidX®with Altair®’s direct element particle simulation software EDEMTM 2. We further
limit ourselves to single-GPU simulations on uniform grids for this thesis. In the future, this
will be extended to enable multi-GPU simulations on refined grids.

This thesis is organized as follows: In Chapter 2, we relay the necessary theory behind our
framework. We summarize the LBM as used in the code before setting out the equations
used for one-way and two-way coupled particle simulations. Chapter 3 then goes into detail
about our implementation of particle-laden flows in ultraFluidX®, describing all relevant al-
gorithms and methods used for the general framework, fluid-particle coupling, particle mo-
tion, and boundary conditions. This is the core of the thesis. Additionally, we validate each
part of the code that we have implemented. The results of such testing are shown in Chap-
ter 4, alongside runtime and grid studies for performance evaluation. An outlook is provided
in Chapter 5, which also includes a guideline for the next steps required to fully integrate
particle-laden flows into the existing software.

2������������	
��
������.

4

2 Theory

In this chapter, we introduce all the physics and theory that is either directly used in our
implementation or is relevant to a general understanding of the code and approach. Sec-
tion 2.1 introduces the LBM used for the fluid simulation. It draws heavily on Krüger et al.’s
2017 book [9] as a standard reference in the field. Section 2.2 introduces the theory behind
one-way and two-way coupled particle-laden flows and contains most of the equations im-
plemented in our particle framework. It orients itself on the 2015 paper by Banari et al. [10],
who also used a point-particle method coupled with an LBM simulation and serves as a core
reference for this thesis.

2.1 The Lattice Boltzmann Method

2.1.1 Introduction to the Lattice Boltzmann Method

The central equations of fluid dynamics are the Navier-Stokes equations, which describe
the macroscopic behavior of a viscous fluid by means of a momentum balance [11]. The
fluid is treated as a a continuum, with the base assumption that its macroscopic physical
properties, such as density, velocity, and pressure, can be represented by continuous func-
tions in time and space. The conventional CFD approach to simulating a fluid is then to
discretize these macroscopic properties on a grid of choice before numerically solving the
Navier-Stokes PDEs in whatever form is appropriate to the selected use case. A variety of
methods exists, amongst which there are three main types that are currently dominating the
field: finite difference methods, which approximate derivatives using values stored at the
nodes of a regular grid; finite element methods, which approximate a global solution from
values stored at the nodes of arbitrarily shaped elements via local interpolation functions;
and finite volume methods, which are based on the conversion of divergence terms into sur-
face integrals, with node values representing the average over a small surrounding control
volume.

Over the last few decades, an alternative approach has emerged, and has by now estab-
lished itself as a core CFD tool, specifically for solving the weakly compressible Navier-Stokes
equation: the Lattice Boltzmann method (LBM) [12]. Instead of approaching the problem
from the side of the macroscopic fluid properties, the LBM instead models the bulk behavior
of the fluid particles (not to be confused with the particles in particle-laden flows) through
discrete particle distribution functions fi (�x, t). These distribution functions, also referred to
as particle populations, contain both density and velocity information for position�x and time
t [9, p. 63]. The domain is discretized using a square grid (in 2D) or cubic grid (in 3D). Each
grid cell (which we will refer to as a voxel in the context of our framework) is assigned a fixed
number of distribution functions based on a set of discrete velocities {�ci }. Standard velocity

5

2 Theory

Figure 2.1: The D3Q27 pattern, with vectors representing the discrete velocity set used to de-
fine the density-velocity distributions. A�0-velocity rest is situated at the origin,
the others are directed towards the corners (8, blue), the centers of the faces (6,
orange) and the centers of the edges (12, green).

sets used for solving the Navier-Stokes equations include D2Q9, D3Q19 and D3Q27, where in
the DdQq notation, d denotes the number of spatial dimensions and q refers to the number
of discrete velocities. A visualization of D3Q27, which is used in ultraFluidX®, is shown in
Figure 2.1. The choice of set depends on the application and computational capacities, as a
higher number of distributions does increase accuracy, but also requires more memory and
computations.

2.1.2 The Lattice Boltzmann equation

Before introducing the LB equation, we take a look at some of the physics that it is built
on. Additional details can be found in [9]. In kinetic theory, particle distribution functions
f (�x,�ξ, t) can be understood as the density of particles with velocity�ξ at position�x and time t ,
which can be imagined as an extension of the ’classic’ spatial particle density function with
additional velocity information.

For large enough times, the distribution of identical non-interacting particles in thermal
equilibrium will tend towards an equilibrium distribution

f eq(�x, |�v |, t) = ρ

(
1

2πRT

)3/2

e−|�v |
2/(2RT) , (2.1)

the so-called Maxwell-Boltzmann distribution, with density ρ, temperature T and the uni-
versal gas constant R.

The Boltzmann equation describes the evolution of the density function in time. With
f ≡ f (�x,�ξ, t) and using the Einstein convention for the summation index β, it can be written
as (

∂

∂t
+ξβ

∂

∂xβ
+Bβ

∂

∂ξβ

)
f = d f

dt
≡Ω(f) , (2.2)

6

2.1 The Lattice Boltzmann Method

Figure 2.2: Visualization of the LB algorithm with streaming (I) and collision (II) steps.

where the second term represents the advection, �B represents any external body forces acting
on the fluid, and Ω(f) is the nonlinear source term caused by collisions amongst the fluid
particles.

Discretizing the Boltzmann equation leads to the central equation of the LBM: the Lattice
Boltzmann equation:

fi (�x +�ciΔt , t +Δt) = fi (�x, t)+Ωi (�x, t) . (2.3)

i here refers to the index of particle velocity within the set of discrete velocities {�ci } that we
have already introduced in the context of the DdQq notation in Section 2.1.1. The equation
expresses that particle distribution functions move from one spacetime position to the next
via their corresponding discrete velocity �ci and timestep Δt , while being modified via the
collision operator Ωi . This form of the LB equation is reflected directly in the LB algorithm.

2.1.3 The Lattice Boltzmann algorithm

There are two steps to the general LB algorithm, which are repeated in every timestep - col-
lision and streaming. Distributions are defined on grid cells. During collision, particles are
redistributed amongst the distributions within a grid cell, modelling the energy exchange be-
tween particles due to particle-particle interactions. In the second step, the streaming step,
distributions are exchanged between grid cells following the directions of their discrete ve-
locity vectors. This simulates the advection process. A visualization of the two steps can be
found in Figure 2.2.

The collision operator used for this is central to the implementation of any LB simulation,
and various options exist. The standard one, the Bhatnagar-Gross-Krook (BGK) operator [13],

Ωi =− fi − f eq
i

τ
Δt , (2.4)

simply relaxes each distribution towards the equilibrium distribution f eq
i . τ is the relaxation

time, and represents the rate of the equilibration. However, this extremely simple approach is
insufficient for many applications, lacking stability and coming with other deficiencies, such

7

2 Theory

as requiring a fixed ratio between kinematic and bulk viscosities. As an improvement, the
generalized lattice Boltzmann equation (GLBE), also called multiple-relaxation-time (MRT)
LBE was proposed [14]. As the name suggests, MRT methods allow the relaxation at differ-
ent rates for distribution moments of different order. ultraFluidX®uses a cumulant collision
operator with 4th order accuracy in diffusion [15].

2.1.4 Macroscopic fluid properties

The distributions themselves are generally of little interest to the user. By integrating them
over the entire velocity space we can calculate the moments of the distribution, which corre-
spond to macroscopic properties such as the mass density

ρ(�x, t) =
∫

f (�x,�ξ, t)d3ξ, (2.5)

or the local mean velocity

�u(�x, t) = 1

ρ(�x, t)

∫
�ξ f (�x,�ξ, t)d3ξ . (2.6)

The discrete equivalents of the above equations are then written as sums

ρ(�x, t) =∑
i

fi (�x, t) and �u(�x, t) = 1

ρ(�x, t)

∑
i
�ci fi (�x, t). (2.7)

2.1.5 Lattice Boltzmann units

As we have already noted, an LB simulation is always based on square or cubic lattices. Ad-
ditionally, the two steps above - streaming and collision - occur over a fixed timestep. This
means that it would be beneficial to set our time step and mesh length to 1, and adapt all units
accordingly. The new system of units is called LB units or lattice units. To convert between SI
and LB units, we introduce the following conversion factors:

• The coarsest mesh size in SI units L0 is used for converting between spatial units,

LLB = LSI

Lref
with Lref = L0 . (2.8)

• For the density, we simply normalize by the mean fluid density ρ0,

ρLB = ρSI

ρref
with ρref = ρ0 . (2.9)

• We set the conversion factor for the velocity by keeping the relationship between Mach
numbers in LB and SI units constant. The Mach number is defined as the ratio between
the flow velocity u and the speed of sound cs . Therefore

MaLB

MaSI
= const ⇒ uref ≡

uSI

uLB
= cSI

s ·MaSI

cLB
s ·MaLB

. (2.10)

8

2.2 Particle-laden flows

The speed of sound in LB units is fixed to cLB
s = 1�

3
[9, p.272]. Knowing that cSI

s =√
γR∗T , with specific heat ratio γ, specific gas constant R∗, and mean temperature

T , we then arrive at our velocity conversion factor uref and

uLB = uSI

uref
with uref =

√
3γR∗T · MaSI

MaLB
. (2.11)

• The conversion factor of the timestep can simply be derived from the three conversion
factors above,

tLB = tSI

tref
with tref =

Lref

uref
. (2.12)

Due to ΔtLB = 1, the physical time step is then ΔtSI = tref.

For other units, we proceed in the same fashion.

2.2 Particle-laden flows

2.2.1 Dispersed point-particle

We model the discrete particle phase using spherical Lagrangian point-particles. Each parti-

cle is given a density ρp and diameter dp , and ergo a volume Vp = πd 3
p

6 and mass mp = ρpVp ,
as well as a position �xp and velocity �v . Particle volume is only used to approximate the drag
and gravitational force, but does not displace the surrounding fluid. Particles are assumed
to be rigid. Anisotropies and changes in the particle shape, as well as any form of particle
rotation are neglected. In order to resolve turbulent phenomena and receive physically ac-
curate results despite the point-particle approximation, particles should be smaller than the

Kolmogorov length scale dp � ηK =
(
ν3

ε

)1/4
[16], where ν is the kinematic viscosity of the fluid

and η is the dissipation rate of turbulence kinetic energy per unit mass. However, for certain
validation cases, this assumption can be irrelevant.

2.2.2 The particle force balance equation

The movement of point-particles can be described in a simple Newtonian equation of mo-
tion. Depending on the simulated system’s physical properties, scale, and the desired accu-
racy, there are various external force terms that can be included and added to the right-hand
side of the equation, such as viscous drag, gravity, virtual mass (based on the fluid accelerat-
ing to fill the space left behind by the particle), and pressure gradient [17]. We limit ourselves
to gravitational forces (weight and buoyancy) and the viscous drag force, which are the two
most dominant terms for heavy particles with density ratios

ρp

ρ f
� 1 [10]. Electromagnetic,

thermal or acoustic forces are also not considered. This leads to the following equation, the
particle force balance equation [10]:

mp
d�v

dt
= �Fp

drag force

+ (ρp −ρ f)Vp�g
gravitational force

, (2.13)

9

2 Theory

where ρp an ρ f are the particle and fluid density, mp and Vp are the particle mass and vol-
ume, �v is the particle velocity and �g is the gravitational acceleration. In its general form, the
drag force can be written as follows [10],

�Fp = 1

2
CD Apρ f (�u −�v)|�u −�v | (2.14)

= �u −�v

τp
mp , (2.15)

where CD is the drag coefficient, Ap = πd 2
p

4 is the particle cross section, and �u is the fluid
velocity. The particle response time

τp = 24

CD Rep︸ ︷︷ ︸
fD

ρp d 2
p

18ρ f ν
, (2.16)

is a measure for the time it takes a particle to accelerate to the fluid velocity or adapt to
changes in the fluid velocity, with fD being the drag correlation and ν the kinematic viscosity.
For very large τp , the drag force becomes negligible and particles retain their initial veloc-
ity. On the other hand, for small τp ≈ 1, the particle assumes the fluid velocity within one
timestep Δt . For the drag coefficient CD , different forms exist, depending on the shape and
size of the particles and the particle Reynolds number

Rep = dp |�u −�v |
ν

. (2.17)

The latter describes how laminar or turbulent the flow immediately surrounding the particle
is. Because of the assumption that our particles are spherical, and for Rep < 1, we can model
the drag force using Stokes law, with the Stokes drag coefficient

CD = 24

Rep
, (2.18)

which simplifies the particle response time to

τp =
ρp d 2

p

18ρ f ν
. (2.19)

Alternative drag coefficients for higher Rep exist (see e.g. [18]) and will be considered in the
future.

2.2.3 Particle-fluid coupling

Particle-laden flows are affected by the interactions between fluid and particles – fluids im-
pacting particles and particles impacting the fluid –, as well as by particle-particle interac-
tions. To reduce the computational cost, we want to model and simulate only those interac-
tions that are relevant to the problem at hand, which depends on how much of the dispersed

10

2.2 Particle-laden flows

Discrete velocities�ci Weight ωi

(0,0,0) 8/27
(±1,0,0), (0,±1,0), (0,0,±1) 2/27
(±1,±1,0), (0,±1,±1), (±1,0,±1) 1/54
(±1,±1,±1) 1/216

Table 2.1: Lattice weight factors ωi for the discrete lattice velocities of the D3Q27 velocity set,
taken from [9, p.88].

phase is present in the flow. For a simuation with Np particles being carried by a fluid of
volume Vf , this can be determined through the particle volume fraction [10]

Φpv =
Npπd 3

p /6

Vf +Npπd 3
p /6

, (2.20)

which describes the volume occupied by the particles relative to the total volume available
to the flow. For Φpv < 10−6, only the impact of the fluid on the particles is relevant (one-way
coupling). For 10−6 ≤Φpv ≤ 10−3, the disperse phase is present enough in the flow to have a
relevant impact on the flow, and reactive forces of the particles on the fluid need to be taken
into account (two-way coupling). For Φpv < 10−3, particle-particle interactions need to be
considered as well (four-way coupling) [10]. For our work, only one-way and two-way cou-
pling is relevant, and we will stick to the corresponding particle volume fractions for our sim-
ulations. Four-way coupling can be achieved through coupling to a separate particle solver,
and therefore is not included here.

One-way coupling is already achieved through the inclusion of the drag force in (2.13). Par-
ticles and fluid could also couple through other external force terms, as well as through mass
or temperature exchange, but this is not included here. To model two-way coupling, we sim-
ply use Newton’s third law, and apply the same but opposite drag force back to the fluid. In
our LB equation, this is reflected in the body force �B , which is added as an additional term
ΔtFi to the right-hand side of (2.3), with

Fi = wiρ f ξi j
B j

c2
s

, (2.21)

[19, 10], where wi are the lattice weight factors (see Table 2.1), ρ f is the fluid density and B j

is the discretized body force. Fi is applied to the fluid via the exact difference method [20, 9].

11

3 Numerical methods and implementation

This chapter gives a detailed overview over our implementation of a framework for one-way
and two-way coupled particles in ultraFluidX®.

3.1 General setup and data structure of the particle simulation

Particle simulations lend themselves very well to parallelization and in alignment with the
ultraFluidX®code, most of our particle code is run on GPUs – a single GPU for the scope of
this work –, and is implemented in Nvidia®CUDA® kernels, which are launched from a CPU.
A CUDA kernel is simply a function of a specific syntax and structure that will be run on mul-
tiple threads by a CUDA-enabled GPU. There are three particle kernels: The ParticleCollision
kernel, which handles the general fluid-particle coupling, the ParticleMove kernel responsi-
ble for particle motion and boundary conditions, and the ParticleBackCoupling kernel ded-
icated solely to the redistribution of the back coupling body force onto the fluid voxels. The
former two are parallelized by particles, i.e. each thread calculates the forces on and motion
of a single particle. Only the back coupling kernel is parallelized by fluid voxels to avoid race
conditions when distributing the back-coupling force onto the fluid voxels. Particle data is
handled in simple arrays. Except for initialization, these live almost exclusively on the GPU.
Data is copied back to the CPU only for the purpose of writing output, which is done in .csv
format. The number of particles within the simulation is fixed. This is handled via a parti-
cle ’status’ array, which allows particles to be activated upon spawning and deactivated upon
leaving the simulation domain. Particles stuck to a wall obtain a third distinct status, see
Section 3.5.2.

The general workflow of the particle-laden simulation is shown in Figure 3.1.

3.2 Initialization and user interface

We initialize our particles in particle zones. For all particle zones, there are two options for
initial position, velocity and release period each, which all can be combined with each other
arbitrarily. A simulation can contain several particle zones with different initialization set-
tings. Particles within a particle zone all share the same density ρp and diameter dp .

For the position, particles are initialized uniformly either within a box or at the inlet (see
3.5.2). Initial velocities can either be chosen by the user or interpolated from the fluid ve-
locity. Particles within a zone can either be released simultaneously or over a chosen release
period. In order to enable this last option, we build a list containing a random float rp ∈ [0,1]
per particle. A particle spawns once its spawn probability p reaches this random number.

13

3 Numerical methods and implementation

Figure 3.1: The general workflow of the coupled fluid-particle simulation. The three particle
kernels are executed after the LB collision step but before streaming.

The spawn probability is calculated based on the start and end iterations itstart and itend of
the release period of its designated zone,

p(itcurrent) = (itcurrent − itstart +1)

(itend − itstart +1)
. (3.1)

3.3 Time stepping

The LBM uses a constant timestep, which is set to Δt = 1 in LB units (see Section 2.1.5). We
keep this same fixed timestep for the particle simulation and use an explicit Euler scheme for
discrete integration of the acceleration. Sub-timestepping is used in the ParticleMove kernel
to check for objects and boundaries, which will be explained in more detail in Section 3.5.2,
but it is purely spatial in nature, and particle-fluid coupling is only carried out once, in the
ParticleCollision kernel. This could lead to stability issues, as high-velocity particles could
move across many voxels within one timestep, applying a high back-coupling force on only a
few voxels along its trajectory. Apart from velocity limits, alternative timestepping and time
integration schemes could therefore be considered in the future.

3.4 Fluid-particle coupling

Looking back at the drag force in Equation 2.15 as well as Section 2.2.3, the two-way cou-
pling between fluid and particles requires three distinct steps: Locating the particles within

14

3.4 Fluid-particle coupling

the fluid grid, which is done by a simple snapping algorithm, interpolating the fluid veloc-
ity to calculate the drag force, and redistributing the reactive drag force back onto the fluid
voxels. Snapping to fluid nodes based on the particle position is very simple given that we
are working on a uniform cubic grid. We will describe the other two steps in the following
sections.

3.4.1 Interpolation of the fluid velocity

For interpolating the fluid velocity, many different schemes exist [21]. We use the standard
trilinear interpolation method [22], visualized in Figure 3.2. A particle is situated within a
cube made up of the 8 surrounding nodes (voxel centers), with lower corner (x0, y0, z0) and
upper corner (x1, y1, z1). The particle’s relative position within the cube is then defined as

xd = x −x0

x1 −x0
, yd , zd analogously. (3.2)

From the node values ci j k = v(xi , y j , zk) with i , j ,k ∈ {0,1}, shown in blue, we do simple lin-
ear interpolations with inverse distance weighting, one dimension after the other, first in x-
direction to calculate the edge values (in green)

c j k = c0 j k (1−xd)+ c1 j k xd ∀ j ,k ∈ 0,1, (3.3)

then in y-direction to calculate the top and bottom face values (orange)

ck = c0k (1− yd)+ c1k yd ∀k ∈ 0,1, (3.4)

and finally in z-direction to calculate the final interpolated value at the particle position
(black)

c = c0(1− zd)+ c1zd . (3.5)

This corresponds a sum over all the corner node values ci j k , each weighted by the volume of
the diagonally opposing corner of the cube (shown in gray in Figure 3.2), i.e.

c = ∑
i j k

ci j k

∏
d=x,y,z

(d1 −d0)−|d −di | . (3.6)

If no eight fluid nodes can be found, we use the nearest neighbor interpolation and the ve-
locity of the fluid voxel in which the particle is currently situated as a fallback.

3.4.2 Back-coupling

For the back-coupling, we need to calculate the body force acting on a voxel due to nearby
particles and apply it to the populations, which is visualized in Figure 3.3. We do this in
several steps.

In the first step, each particle calculates the total drag force it exerts upon the surrounding
fluid, which is simply the inverse of the drag force it itself experiences,

�F p
D =−mp

�u −�v

τp
. (3.7)

15

3 Numerical methods and implementation

Figure 3.2: Visualization of the trilinear interpolation. In gray, the total weight of c000 is
shown, which is equivalent to the volume of the cuboid at the diagonally oppo-
site corner.

Figure 3.3: 2D visualization of the distribution of the back coupling force from particles onto
the fluid nodes. One voxel can be affected by several particles. In our 3D simula-
tion, 8 nodes are affected instead of the 4 shown here.

16

3.4 Fluid-particle coupling

In the second step, the particle redistributes this total drag force onto the surrounding fluid
nodes. Many different possible methods exist for this. In our implementation, we always
distribute onto the nodes that contributed to the interpolated fluid velocity (i.e. one or eight),
either uniformly as done in [10] with weights w p

n = 1
8 for the eight-node and w p

n = 1 for the
one-node case, or using inverse-distance scaling, with weights

w p
n = 1∑

n w p
n

1∥∥�xp −�x f
∥∥ , (3.8)

where�xp is the particle position position and�x f is the position of the fluid node. Weights are
normalized over the total sum of weights

∑
n w p

n for the affected nodes n for each particle. To
avoid zero-division,

∥∥�xp −�x f
∥∥ is given a minimum cutoff value.

Consequently, the particles then write the weighted force components

�F p
n = �F p

D ·w p
n (3.9)

to dedicated lists of length 8·Np , where Np is the total number of particles. There are five lists
containing the three force components, as well as two values to identify the voxels. We use
this to avoid race conditions, as one fluid node could be affected by several particles.

In the third step, in a dedicated back-coupling CUDA kernel, each fluid node iterates over
these lists of force components and sums up all the force components that affect it,

�Fn =∑
p

�F p
n . (3.10)

It then converts the result into a velocity difference

Δ�u =
�Fn

m f
Δt , with m f = ρ f L3

0 . (3.11)

In the fourth step, theΔ�u are applied to the fluid distributions via the exact difference method,
by modifying the equilibrium distribution: First, the current equilibrium distribution distri-
butions are calculated from the fluid velocity �u and fluid density ρ f ,

f eq
i =ωiρ f

[
1+�ci ·�u

2c2
s

+�ci ·�u2

2c4
s

]
, (3.12)

which is the discretization of (2.1) derived in [23]. The equilibrium distributions are then
subtracted from the current LB distributions f̃i = fi − f eq

i , leaving only the non-equilibrium
part which we want to conserve. We then recalculate the equilibrium distributions f̃ eq

i while
adding our velocity differences that have been calculated based on the body force to the cur-
rent fluid velocity �̃u = �u +Δ�u. These new equilibrium distributions are then added back to
the non-equilibrium part, fi = f̃i + f̃ eq

i .

17

3 Numerical methods and implementation

3.5 Particle motion

3.5.1 Discrete equations of motion

The implementation of the particle motion follows the equations from Section 2.2.2. The
acceleration for each individual particle can be directly adopted as

�a = �u −�vold

τp
+ (ρp −ρ f)

ρp
�g , (3.13)

with τ according to (2.19). Fluid density ρ f , velocity �u, and kinematic viscosity ν are all inter-
polated via trilinear interpolation as described in Section 3.4.1.

For the particle velocity, we use an explicit Euler scheme

�vnew =�vold +�a ·Δt , (3.14)

and for the particle position, a second order Taylor approximation

�xnew =�xold +�v ·Δt + �a

2
Δt 2 , (3.15)

corresponding to the methods used in [10].

3.5.2 Boundary conditions

Particle motion algorithm

Our implementation includes periodic, inflow, outflow, and collision boundary conditions.
The particle boundary condition algorithm as implemented in the ParticleMove CUDA kernel
is shown in Figure 3.4. Because there is no general limit to particle velocity, sub-timestepping
is used to ensure wall detection. The new particle velocity �v is calculated once, based on
Equation (3.14), and is only ever modified in the case of collision, no additional coupling to
the fluid occurs during the sub-timesteps.

Based on the individual maximum possible velocity �vmax for each particle within a certain
timestep as calculated via its velocity, acceleration, and the grid size L0, we determine a safe
sub-timestep size

Δtsub = min

(
Δt ,

L0

vmax
, t +Δt − tsub

)
, (3.16)

which will be used as a sub-timestep unless it is reset due to a particle arriving at an object or
wall. The sum of sub-timesteps always eventually reaches the fluid timestep Δt , which ends
the current particle motion cycle.

In each sub-timestep, we calculate the new theoretical particle position x(t new) via (3.15)
and identify the nearest node around the old particle position x(t old) by snapping to it. Nodes
can be fluid, boundary or solid nodes, as visualized in Figure 3.5. In the two latter cases,
we check for domain and object boundary conditions according to the Algorithm shown in
Figure 3.4.

18

3.5 Particle motion

Figure 3.4: General algorithm for the particle boundary conditions.

For domain boundary conditions, we simply check whether x(t new) lies outside of one of
the domain boundaries, which are known. If this is the case, we calculate the intersection
between the parabolic particle trajectory and the corresponding domain wall using basic ge-
ometry: A plane with normal �n containing a random point �m can be defined via

〈(�x − �m),�n〉 = 0 (3.17)

for all points�x on the plane. By substituting�x via (3.15), we receive a quadratic equation for
the time of intersection twall,

t 2
wall + twall ·2

〈�v ,�n〉
〈�a,�n〉 +2

〈�xold − �m,�n〉
〈�a,�n〉 = 0, twall ∈ [0,Δt] (3.18)

of which we use the lowest positive solution as our result. In case the acceleration �a falls
below a certain threshold, we simply do a linear approximation instead, with

twall =
〈�m −�xold,�n〉

〈�v ,�n〉 . (3.19)

We currently neglect cases in which, due to normal acceleration and velocity having opposite
signs, the patricle leaves and reenters the simulation domain within one sub-timestep. In-
serting the solution back into (3.15) returns the point of intersection, i.e. the point where the

19

3 Numerical methods and implementation

Figure 3.5: Schematic visualization of object boundary conditions. Surface normals for each
boundary node are shown by black arrows, particle trajectories are represented by
the yellow line. Particles couple to the fluid only once per fluid timestep (at the
red dots), but move in subtimesteps (yellow dots) along the trajectory to check for
wall intersections. If an intersection is found, the subtimestep is shortened and
the next subtimestep starts from the surface.

particle impacts the wall. If there are several such intersections with different walls (e.g. in a
domain corner), the earliest interaction is the relevant one.

For object boundaries, the process is similar, but with some significant differences. Upon
calculating the new particle position in a sub-timestep, we do not inherently know whether
or not we have entered or even traversed an object in the process. However, because of our
sub-timestepping, we can be sure to always enter a boundary node before hitting any object.
Additionally, each boundary node carries its distance vector from the surface, providing us
with both a local surface normal�n and an achor point on the surface �m =�xnode−�n. By locally
approximating the surface as a plane, we can thus follow the same steps as above to calculate
the intersection time and position between the particle trajectory and the object.

To reduce the computational effort, we only check for object intersection in case

�n ·�v < 0, (3.20)

i.e. we only check surfaces that we are not moving away from. This increases efficiency, but
neglects the possibility of particles ’turning around’ during one sub-timestep due to strong
acceleration.

Particles may also find themselves within solid nodes, which do not have normal informa-
tion available. In this case, we choose the nearest normal (if any) amongst the adjacent nodes
which fulfills (3.20). Note that particles within a solid node do not couple to the fluid. Their
acceleration is zero and they do not apply any back-coupling force to the fluid. Of course,
particles within a solid node may also have simply glitched into the object due to the imper-
fect surface approximation. They are therefore deactivated once they are no longer adjacent
to any boundary nodes.

20

3.5 Particle motion

Figure 3.6: Visualization of the collision boundary condition for different tangential and nor-
mal coefficients of restitution (e∥,e⊥).

After domain and object intersections have been calculated as necessary, we verify whether
both occur in the same subtimestep, in which only the earlier impact actually occurs. We
then apply the actual corresponding boundary condition, place our particle onto the point of
intersection and restart the sub-timestep loop from the moment of intersection.

The only exception to this are periodic boundary conditions: Here, xold is set to the oppos-
ing side of the domain, from where the particle will begin its next sub-timestep.

Collision boundary conditions

Collision boundary conditions, which are available for objects and domain walls, follow a
simple principle: If a particle collides with a surface, the velocity component normal to the
surface changes sign. Beyond that, we control our collision behavior via two parameters, the
tangential and normal coefficients of restitution e∥ and e⊥, see e.g. [24, 25]. With values rang-
ing between 0 and 1, the coefficients of resitution represent the fractions of the tangential or
normal velocity that are retained by the particle upon collision with the surface. The missing
fraction models dissipation losses upon impact.

This simple model captures two important edge cases: For e⊥ = 0, particles stick to the
surface upon impact. In our implementation, this corresponds to a special particle status in
which particles remain stationary and no longer undergo the particle motion algorithm, but
still affect the fluid through back-coupling. For (e⊥,e∥) = (1,1), on the other hand, the particle
undergoes elastic collision. There exists a wide range of literature on the measurement and
estimation of COR values for a different materials, particles and surfaces, see e.g. [26, 27, 25].
Amongst other factors, they are dependent on the dynamic yield strength, elastic modulus
and density of the materials involved, as well as the impact velocity [26]. Generally, e∥ ≥ e⊥.

This surface model remains, of course, quite simplistic. The actual volume and center po-
sition of the particles is not considered. No rotational effects are considered, and no sliding
on the surface is allowed. Surface roughness, as well as deformation and thermal effects are
also disregarded. Some of these approximations, such as surface roughness or wall distance
upon impact could be improved by model extensions, whereas others might require larger
changes to the framework.

21

3 Numerical methods and implementation

Inflow boundary conditions

In addition to the particles spawning at a random iteration during their zone-specific release
interval (see Section 3.2), we also randomize the starting position by already advancing t old of
the sub-timestep loop to a random point t0+Δtfluid ·r , where r ∈ [0,1] is a uniformly sampled
float. To reduce the memory requirements, we reuse the same list of random floats per par-
ticle used in Section 3.2, and simply shift the particle index to avoid correlations. In case of
velocity interpolation initialization, particles perform a nearest neighbour interpolation on
the first layer of boundary nodes.

22

4 Results and validation

In this chapter, we test the different components of our implementation with a variety of test
cases. We validate the velocity interpolation, gravitational acceleration, back-coupling and
boundary conditions, and test the computation time and performance.

4.1 Poiseuille flow case - Interpolation error

0.0 0.2 0.4 0.6 0.8 1.0

u/umax

−6

−4

−2

0

2

4

6

z
[m

]

×10−3

R

Velocity profile

Figure 4.1: Velocity profile of a planar Poiseuille flow as a line plot and x-z - colormap.

To measure the error of the fluid velocity interpolation, we use a one-way coupled sim-
ulation. By using a fixed τp = 1 and turning off the gravity, particles always move with the
interpolated fluid velocity. In order to validate the interpolation algorithm, we perform a
Poiseuille flow simulation where the analytical profile is known. The velocity profile of a lam-
inar flow between two infinite planes is parabolic can be described as

u(r) = umax

(
1−

(r

R

)2
)

, (4.1)

where in this case, the radial coordinate r = |z|, R is half the channel height and umax is the
maximum velocity, which is found at the center of the channel. The flow profile of such a
planar Poiseuille flow is visualized in Figure 4.1. For the derivation from the Navier-Stokes
equations, see e.g. [28, p.34].

23

4 Results and validation

−5.0 −2.5 0.0 2.5 5.0

z [mm]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(v
−
u
th

e
o
)/
u
th

e
o

×10−2 Particle vs Theory

−6 −4 −2 0 2 4 6

z [mm]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(u
−
u
th

e
o
)/
u
th

e
o

×10−2 Fluid vs Theory
(v

−
u
)/
u

−6 −4 −2 0 2 4 6

z [mm]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

×10−2 Particle vs Fluid

Nz = 32

Nz = 64

Nz = 128

Figure 4.2: The relative interpolation error for the converged flow for different mesh sizes,
comparing (upper left) particle velocities and theoretical Poiseuille profile, (up-
per right) fluid velocity and theoretical Poiseuille profile, and (lower center) par-
ticle and interpolated fluid velocities. Nz represents the number of voxels in z-
direction.

24

4.1 Poiseuille flow case - Interpolation error

1022× 101 3× 101 4× 101 6× 101

Number of voxels Nz

10−4

10−3

M
A
E

[m
/s

2
]

0.748 · (1/N)2.029

Nz = 32

Nz = 64

Nz = 128

Figure 4.3: The mean absolute error of the particle velocity for different mesh sizes with the fit
function f (Nz) in gray. Error bars indicate the standard deviation of the absolute
error from the MAE.

For the case setup, we use periodic boundary conditions in x and y direction with no-slip
boundary conditions for the z walls. The flow is accelerated by a volume acceleration per area
in x of 0.738m/s2. The periodic boundary conditions allow for a setup with a relatively small
domain size while the no-slip boundary conditions are necessary to develop the Poiseuille
profile. 1000 particles are used, positioned randomly within a y-z plane. To reduce the nec-
essary number of iterations, we seed our flow with a hard-coded Poiseuille profile before let-
ting it converge. The flow profile produced differs very slightly from the theoretical Poiseuille
profile, as can be seen in Figure 4.2. To be able to measure the actual interpolation error of
the particles, we require a parabolic profile that accounts for the fluid error - the actual fluid
profile is not sufficient as it is only available at the nodes, where particle velocities converge
towards the fluid velocity. We achieve this, by using a quadratic interpolation between the
fluid nodes, thus obtaining pseudo-fluid velocities at the particle positions. Alternatively,
one could also compare the particle velocities to the theoretical Poiseuille profile immedi-
ately upon initialization (when the fluid flow has just been seeded with the exact Poiseuille
profile). Both approaches lead to the same results.

The relative interpolation error for different mesh sizes is shown in Figure 4.2. Due to the
concave nature of the Poiseuille profile, the trilinear interpolation, being linear, always un-
derestimates the velocity, meaning that the signed error is always ≤ 0. At lower velocities, the
relative error erel becomes larger, and tends towards infinity at the edges: The absolute er-
ror eabs = |v −u| is capped at the velocity value of the boundary voxel u(|R − L0

2 |) > 0, whereas
utheo(R) = 0. erel oscillates due between high error between nodes and erel → 0 when particles
get very close to fluid nodes.

The trilinear interpolation scheme has second-order accuracy due to being based on first-

25

4 Results and validation

order polynomials. We confirm this in Figure 4.3, by fitting the mean absolute error

MAE = 1

Np

Np∑
i=0

|v −u| , (4.2)

over all particles Np within [−R +L0/2,R −L0/2] with a function

f (Nz) = a +bN−c
z (4.3)

= 0.748N−2.029
z . (4.4)

Particles within L0/2 of the domain boundaries, where trilinear interpolation is replaced by a
nearest-neighbor interpolation, are not included in this calculation.

4.2 Terminal velocity case - Gravity

To test our implementation of drag force and gravity, we let a single particle accelerate in a
stationary fluid with periodic boundary conditions until its velocity converges and compare
with the analytical solution for the terminal velocity. The balance between gravitational and
drag forces

�FG +�FD = 0 (4.5)

for spherical particles leads to a terminal velocity

vt =±
√

4g dp

3Cd

|ρp −ρ f |
ρ f

, (4.6)

with vt > 0 for ρp < ρ f and vt < 0 for ρp > ρ f , where we assume �g ∥�ez , and standard gravity
g ≡ gz =−9.80665 m

s2 . For Stokes drag, we can insert (2.18) and (2.17) with fluid velocity u = 0,
and get

vt =
g d 2

p

18μ
(ρp −ρ f) . (4.7)

Using the parameters from Table 4.1, the resulting theoretical terminal velocity for Stokes
drag is vt = −0.0090141. In Figure 4.4, we can see that our simulated particle converges
towards this value within about 25 milliseconds.

L0 [m] (Nx , Ny , Nz) ρ f

[
kg
m3

]
μ

[
kg

m·s
]

dp [m] ρp

[
kg
m3

]
CD

0.005 (8,8,8) 1.2041 1.8194e−5 2.4082 0.0005 Stokes

Table 4.1: Selected parameters for the terminal velocity validation case.
.

26

4.3 Sphere case - Back-coupling

0 5 10 15 20 25 30

t [ms]

0.0

0.2

0.4

0.6

0.8

1.0

(v
p
−
v t

h
e
o
)/
v t

h
e
o

17.5 20.0 22.5 25.0
−0.0001

0.0000

0.0001

0.0002

Figure 4.4: Particle velocity relative to the theoretical terminal velocity.

4.3 Sphere case - Back-coupling

In order to validate the back-coupling force, we compare the effects of the particle drag on the
fluid to the drag force of an actual solid sphere modeled as a surface and simulated via bound-
ary conditions within the flow. For a sphere and particle of fixed diameter dp = ds = 0.016m,
we compare the flow behavior and drag force for different mesh sizes, as well as comparing
to simulations where multiple smaller particles approximate the sphere. For the purpose of
this validation case, we go beyond the usual physical modeling limit for point particles, i.e.,
particles are no longer smaller than the mesh size, as otherwise, the solid sphere could no
longer be effectively modeled. The test cases have been chosen based on the current imple-
mentation of the back-coupling force, which always acts on either one or eight surrounding
voxels.

We compare five particle test cases, all of which are visualized in Figure 4.5, with param-
eters listed in Table 4.2, and three sphere cases with fixed diameter and varying mesh sizes.
Based on the mesh sizes, it makes sense to compare Sphere Case I to Particle Case A), Sphere
Case II to Particle Case B), and Sphere Case III to Particle Cases C), D), and E). We use laminar
flow with Re = 10, inlet and outlet boundary conditions in x direction, with an inlet velocity
uinlet = 1.0m/s, as well as periodic boundary conditions in y and z. All parameters beyond
particle/sphere radius and mesh size are kept constant, the exception being that the parti-
cle/sphere position is shifted slightly for Case A)/I to place it at the voxel center. We consider
two different types of results: flow behaviour and total drag force.

Flow behaviour is shown in Figure 4.6 by visualizing the fluid velocity. Comparing cases
I and A), II and B), and III and C) with single particles, we see that generally, particles show
a similar behavior to the spheres in that they decelerate the flow in the center, leading to
slower fluid tail and an acceleration of the flow at the sides. However, we also see that single
point-particles cannot adequately imitate the same wake effect that a solid sphere creates.

27

4 Results and validation

Figure 4.5: 2D-visualization of the five particle test cases A)-E) and three sphere test cases I-
III. Black dots represent the center of the particle, voxels shaded in blue are subject
to a back-coupling force. Blue circles represent the particle surface, orange circles
the sphere’s surface.28

4.3 Sphere case - Back-coupling

Figure 4.6: Velocity magnitude for particle and sphere cases.

29

4 Results and validation

L0 [m] dp [m] Np Np ·dp
0.016
Np ·dp

A) 0.016 0.016 1 0.016 1
B) 0.008 0.016 1 0.016 1
C) 0.004 0.016 1 0.016 1
D) 0.004 0.008 6 0.048 1

3
E) 0.004 0.004 32 0.128 1

8
I) 0.016
II) 0.008
III) 0.004

Table 4.2: Parameters for the different particle cases. The sphere diameter is fixed at ds =
0.016m. The velocity of the inlet is ux = 1.0m/s. The scaling factor 0.016

Np ·dp
is used

to ensure that Np ·dp = const, in which case drag forces should theoretically also
remain constant.

.

I, A) II, B) III, C) III, D) III, E)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
ra
g
fo
rc
e
[N

]

×10−4

Experimental drag force

Theoretical Stokes drag

Sphere

Particle(s)

Particle(s) scaled with Np · dp

Figure 4.7: Drag forces for sphere and particle cases, as well as theoretical drag forces for the
experimental drag coefficient and the Stokes drag coefficient at Re = 10.

30

4.4 Boundary conditions

This is expected: As particles do not block the flow, the drag force acts at completely different
positions - at the center instead of the surface. By effectively discretizing the particle into
6 or 32 smaller point-particle spheres in cases D) and E) respectively, we show that a more
spread-out application of the back-coupling force does indeed lead to very similar profile to
the Sphere III case, and we can approximate the behavior very effectively.

In Figure 4.7, we compare the drag forces. For the single-particle cases A), B) and C), we see
that the particle drag force approaches the sphere’s drag force with better discretization. For
the smallest mesh size in Case C)/III, the drag forces are very close. For cases D) and E) with
6 and 32 particles, the drag forces are far larger than the sphere’s drag forces; however, this is
to be expected, as �Fp ∝ Np ·dp , which is not constant among cases C), D), and E). By scaling
the drag forces in cases D) and E) with 1/3 and 1/8 to maintain Np ·dp = const., we see that
the effective drag force is getting closer to the sphere’s drag force, and is actually smaller than
for the single-particle case. This is due to particles being clustered up instead of individually
interacting with the flow, meaning that the particles interact with flow that has already been
decelerated by other particles, which reduces the velocity difference and thus also the drag
force.

Comparing with experimental data for the drag coefficients of smooths spheres [29] for
Re = 10, as well as the theoretical Stokes drag force, see Figure 4.7, we can also confirm that
we are in the correct order of magnitude. Notably, Case A) corresponds very well to the Stokes
drag, as is to be expected for the 1-voxel case. Better discretization and alternative drag coef-
ficients could improve results even further.

4.4 Boundary conditions

For testing boundary conditions, we use particle simulations that have effectively been de-
coupled from the fluid simulation by setting a very large fixed τp and initializing with a fixed
initial velocity, so that particles retain their initial velocity throughout the simulation unless
collision occurs. This makes the flow field irrelevant, and we focus solely on the particle tra-
jectories.

For object boundary conditions, we use two different test cases, with either a cube turned
at a 45◦ angle with respect to the domain walls and initial particle trajectories, or a sphere.
Both serve to test the general object collision boundaries. The results for both cases with dif-
ferent coefficients of restitution e = (e⊥,e∥) are shown in Figure 4.8, confirming the desired
behavior for elastic (e = (1,1)), stick (e = (0,0)), and mixed (here e = (0.5,0.7)) collision bound-
ary conditions: For elastic boundary conditions, incoming and outgoing angles are the same.
This can be observed most distinctly in the cubic case, where particle trajectories show a right
angle due to impacting the surface at 45◦. For mixed boundary conditions, the velocity of the
particle decreases (shown in the shortened trajectory in Figure 3.6), and the angle of reflec-
tion changes due to the changing ratio of the velocity components. In stick cases, particles
stop at the object surface. Note that especially for non-planar surfaces, it can still occur that
particles glitch through walls due to the inaccuracy of the surface approximation, in which
case, they are deactivated.

For domain boundary conditions, we do a simple check for all cases: A) inflow and outflow

31

4 Results and validation

Figure 4.8: Pathlines of particles undergoing collision boundary conditions with various co-
efficients of restitution e for a cube and sphere. The surface of the object is shown
by a thin white line, fully solid voxels are shown in white, fluid voxels in blue. Par-
ticles may be reflected at an angle outside of the shown x-y plane, which can lead
to graying pathline colors due to the opacity of the plane.

32

4.5 Runtimes

Figure 4.9: Testing of the domain wall boundary conditions visualized on a 2D view of the
domain. Pathlines of the particles are shown in white, gray boxes show a 2D view
of the domain.

boundary conditions, B) collision boundary conditions (here for e = (1,1)) and C) periodic
boundary conditions. The results are shown in Figure 4.9. Inflow and outflow boundary con-
ditions behave as expected, specifically also with particles being deactivated directly on the
domain boundary.

For correct implementations of (elastic) collision and periodic boundary conditions, we
can expect particles to continuously loop along the same pathlines. This is clearly the case.
The only lines that are not perfectly overlapping are the corners of the trajectory in case B)
(where collision occurs) and the "periodic jump lines" in case C) (where periodic boundary
conditions occur), where several lines become visible. These lines are not a real part of the
trajectory: The postprocessing tool draws straight lines between the timestep data, which
are not necessarily in exactly the same position due to timestepping, even with the actual
trajectory always following the same path.

4.5 Runtimes

As a part of our tests, we do a runtime analysis. We consider only the total computation time
without pre-processing or initialization, and with only a single (final) output of data. We use
a Poiseuille case similar to Section 4.1 with a fixed physical simulation time tsim ≈ 1s and
Stokes drag, and compare one-way and two-way coupled simulations for varying mesh sizes
and numbers of particles.

The results relative to the same simulation without particles are shown in Figure 4.10. We
consider between 10 and 10,000 particles. One-way coupled simulations show a small in-
crease in runtime of around 10%, which remains relatively stable and increases only slightly
with the number of particles.

In comparison, two-way coupled simulations show large runtimes that are very dependent
on the number of particles. At higher Np , the complexity approaches O (Np). Luckily, this is
due to a very distinct bottleneck in the code: As described in Section 3.4.2, our current imple-

33

4 Results and validation

mentation of the back-coupling includes a loop where every voxels iterates over the particle
force arrays to sum up the particle forces while avoiding race conditions. By avoiding this,
the runtime complexity could be reduced far below O (Np). Possible solutions are discussed
in Section 5.4.

101 102 103 104

Np

10−2

10−1

100

101

102
(t
−

t 0
)/
t 0

L0[mm]

one-way

two-way

0.4 0.2 0.1

Figure 4.10: Computation times t for one-way and two-way coupled flow simulations relative
to the computation time without particles t0.

4.6 Memory requirements

For Np ≤ 10,000, the range in which we have worked so far, the memory requirements of our
particles on both CPU and GPU are negligible. We therefore test memory requirements for
simulations with one million particles by looking at the difference in peak allocated memory
between simulations with or without particles for one-way and two-way coupled simulations
with different mesh sizes.

The results are shown in Figure 4.11. As we can see, CPU memory requirements are in-
dependent of the coupling mode. For the GPU, particle memory requirements are shown
to be independent of mesh size, as they depend mostly on the number of particles. In both
one-way and two-way coupled simulations, there are 10 basic Np -length particle arrays (po-
sitions, velocities, accelerations, status). With floats and integers taking up 4 bytes each, this
accounts for 0.04GB of additional memory, which corresponds very well to our test results.

Two-way coupled simulations have five additional particle force arrays of size Np ·8, imply-
ing an increase in required GPU memory by 400%, or, in our case, 0.16GB. This also corre-
sponds to the values displayed in Figure 4.11.

34

4.6 Memory requirements

0.1 0.2 0.4

L0[mm]

0.00

0.05

0.10

0.15

0.20

M
−

M
0
[G

B
]

CPU

one-way coupled

two-way coupled

0.1 0.2 0.4

L0[mm]

GPU

Figure 4.11: The difference in peak allocated CPU and GPU memory between simulations
with (M) and without (M0) particles for different grid sizes and one million par-
ticles.

35

5 Conclusion and Outlook

In this work, we have implemented, tested, and validated a framework for point-particle
tracking in ultraFluidX® for one-way and two-way coupled simulations. Particle properties
and release parameters can be chosen separately by user input for an arbitrary number of
particle zones. The three main steps of the particle simulation - coupling from fluid to par-
ticle, back-coupling from particle to fluid, and particle movement - have been implemented
in three separate GPU kernels. Several options for domain and object boundary conditions
are included in the code, based on local planar approximations of the surface using the sur-
face normals. We have tested all parts of our implementation and shown that they work as
expected, which now provides us with most of the basic components necessary for using
point-particle tracking. To make our work fully functional and utilize the full capabilities of
ultraFluidX®, we consider four main extensions and improvements to be required:

• Currently, we only support uniform grids. A strategy for coupling to fluid simulations
run on multi-resolution grids has to be chosen and implemented.

• Similarly, particle tracking simulations can currently only be run on a single GPU. Sup-
port for multi-GPU particle simulations needs to be implemented.

• The current code approximates surfaces locally as planes. A more sophisticated method
for surface reconstruction is required to be able to handle complex geometries.

• Our testing revealed that the runtimes of two-way coupled flow simulations scale lin-
early with the number of particles due to voxels looping over particle arrays to sum up
the particle forces pertaining to them. Here, a change in the implementation is required
to allow fast simulation even for large numbers of particles.

We will go into detail on these four points, propose additional extensions and improvements
to implementation and modeling, and give a general outlook into future applications of the
framework.

5.1 Multi-resolution grids

Grid refinement for LBM with Cartesian grids is easily done by dividing mesh sizes in each
dimension by a factor 2n , where n is the refinement level. Time steps also follow this rule.
At interfaces between areas of different refinement levels, the fluid information exists at both
levels.

To couple this with the particle simulation, three options exist:

37

5 Conclusion and Outlook

• Particles could couple to a uniform grid corresponding to a refinement level of choice.
This might be very inaccurate or computationally expensive depending on the chosen
refinement level.

• Particles could also couple directly to the fully refined grid using either the coarsest
timestep or the local timestep. In the latter case, it would become essential to introduce
a cutoff velocity based on the grid size instead of the current sub-timestepping method.
Otherwise, particles would be free to jump between several refinement levels in one
timestep.

• As the third option, a mix of the two might be possible, i.e. adapting to the fluid refine-
ment levels up to a chosen ’cutoff’ refinement level.

It should be kept in mind that there are three important points of contact between the parti-
cle and the fluid simulations: The velocity interpolation, the application of the back coupling
force and, notably, the access to the normal information for boundary conditions. No matter
which case is chosen, all the necessary information needs to be made available in the appro-
priate timesteps or even subtimesteps.

For the multi-grid particle data structure, it is likely best to keep only a single set of particle
arrays, and (de-)activate particle threads based on the current refinement level they are in
instead of moving particles between dedicated refinement level arrays. This would require
an additional array containing the refinement level information for each particle.

5.2 Multi-GPU simulations

Multi-GPU simulations will likely require moving particles between GPUs. For such low num-
bers of particles as we are currently dealing with (up to 10,000), the easiest solution would
likely be to reserve the necessary memory for all particles on each GPU, and activate/deactivate
particles on the GPUs based on their location. The more difficult question is, again, the treat-
ment of interfaces. Here too, a cutoff velocity will be required to ensure that particles do not
move too far beyond a GPU boundary within one timestep.

5.3 Surface reconstruction

For surface reconstruction (or approximation), several methods exist, as this is a common
problem across many domains, from mathematics to computer graphics. As input data, we
essentially have a point cloud of surface points with normal information. Considerations
need to be made as to whether surfaces are to be approximated locally in the proximity of
each particle for each timestep or even subtimestep (which could lead to large runtimes),
or whether a global surface approximation is performed once (which might be memory-
intensive). Some first ideas on methods that could be considered include B-splines [30]
and Moving Least Squares [31]. Special consideration needs to be given to very thin objects

38

5.4 Back-coupling computation time

(baffles) to avoid particles glitching through walls due to a lack in accuracy of the approxi-
mated surface. Likely, a trade-off will also have to be made between accurately approximat-
ing smooth surfaces and sharp edges.

5.4 Back-coupling computation time

In order to reduce the runtime, we need to replace the loop over which each voxel iterates
to sum up the particle forces pertaining to itself with a different method. The priority here
is to avoid race conditions, as several different particles might be found close enough to a
voxel to contribute to its drag body force. A first idea on how to accomplish this would be to
use atomics1, which are operations that cannot be interrupted by another process, meaning
that several particle threads would be able to write to the same voxel without it leading to
undefined behavior.

5.5 Additional extensions and improvements

There are many additional improvements and extensions that could improve the perfor-
mance, accuracy and scope of this work in the future. We are listing some of these below
for future consideration:

• Implementation

– Make use of shared memory to improve performance of particle kernels.

– Consider alternative time-stepping schemes.

• Initialization and user interface

– Allow velocity initialization from Boltzmann distribution.

– Allow random particle sizes.

• Modeling improvements

– Introduce alternative interpolation methods for the velocity.

– Introduce alternative methods for distributing back-coupling force to fluid.

– Validate alternative drag coefficients.

– Consider alternative time integration methods.

– Introduce a model for surface roughness.

– Introduce coupling for different physics beyond drag, such as virtual mass or
pressure gradient forces, thermal coupling, or turbulence modulation.

– Consider the interaction of particles with moving walls.

1See e.g. ����������	
���������
�	

����
�����
��
���
��
����
�����.

39

5 Conclusion and Outlook

5.6 Application outlook

As a more general outlook, this work provides a good basis for simulating many different
particle-laden flow problems for real-world applications. At its current status, the framework
could already be used for simulating changed flow behavior due to the presence of particles
or impact modeling for abrasion studies. For more complex problems, such as snow deposi-
tion or clogging, four-way coupled simulations are required, which can be achieved through
coupling the existing code with a separate particle simulation software. Although this would
require many fundamental changes to the existing code, it might also simplify some aspects
of the implementation, such as particle boundary conditions, which the dedicated particle
solver would likely take care of.

40

Bibliography

[1] Sergio R. Idelsohn et al. “A multiscale approach for the study of particle-laden flows
using a continuous model”. In: Computer Methods in Applied Mechanics and Engineer-
ing 401 (Nov. 2022), p. 115174. DOI: ������������	�
�

������
. URL: ������
����������������������	�
�

������
.

[2] Robin Trunk et al. “Inertial dilute particulate fluid flow simulations with an Euler–Euler
lattice Boltzmann method”. In: Journal of Computational Science 17 (Nov. 2016), pp. 438–
445. DOI: ���������������
����������. URL: ��������������������������
�����
����������.

[3] Thomas Henn et al. “Parallel dilute particulate flow simulations in the human nasal
cavity”. In: Computers & Fluids 124 (Jan. 2016), pp. 197–207. DOI: ��������������������

���������
. URL: ������������������������������������
���������
.

[4] Václav Heidler et al. “Eulerian–Lagrangian and Eulerian–Eulerian approaches for the
simulation of particle-laden free surface flows using the lattice Boltzmann method”.
In: Journal of Computational and Applied Mathematics 398 (Dec. 2021), p. 113672. DOI:
�����������	��
�
�������
. URL: ���������������������������	��
�
��
�����
.

[5] Chun Liu. “Principles and Implementation of DEM”. In: Matrix Discrete Element Anal-
ysis of Geological and Geotechnical Engineering. Singapore: Springer Singapore, 2021,
pp. 1–26. ISBN: 978-981-33-4524-9. DOI: ������������ ���� ���
�

� ���. URL:
�����������������������������������
�

����.

[6] Peter A. Cundall and Otto D. L. Strack. “A discrete numerical model for granular assem-
blies”. In: Geotechnique 29 (1979), pp. 47–65. URL: ��������	���� �	!��������	��
����"�����#$��
�
�
���.

[7] B. Kravets et al. “Comparison of particle-resolved DNS (PR-DNS) and non-resolved
DEM/CFD simulations of flow through homogenous ensembles of fixed spherical and
non-spherical particles”. In: Advanced Powder Technology 32.4 (Apr. 2021), pp. 1170–
1195. DOI: ����������	���
�
���
����. URL: ��������������������������	���

�
���
����.

[8] M. Dietzel, M. Ernst, and M. Sommerfeld. “Application of the Lattice-Boltzmann Method
for Particle-laden Flows: Point-particles and Fully Resolved Particles”. In: Flow, Turbu-
lence and Combustion 97.2 (Jan. 2016), pp. 539–570. DOI: �����������
�
����������
%. URL: ���������������������������
�
����������%.

41

Bibliography

[9] Timm Krüger et al. The Lattice Boltzmann Method. Springer International Publishing,
2017. DOI: ������������	�	���

�
��	. URL: �

�������������������������	�
	���

�
��	.

[10] Amir Banari et al. “The simulation of turbulent particle-laden channel flow by the Lat-
tice Boltzmann method”. In: International Journal for Numerical Methods in Fluids
79.10 (June 2015), pp. 491–513. DOI: ������������
���. URL: �

�������������
������������
���.

[11] L. D. Landau and E. M. Lifshitz. Fluid Mechanics, Second Edition: Volume 6 (Course
of Theoretical Physics). 2nd ed. Course of theoretical physics / by L. D. Landau and E.
M. Lifshitz, Vol. 6. Butterworth-Heinemann, Jan. 1987. ISBN: 0750627670. URL: �

��
�������������
��������������������.

[12] D. Arumuga Perumal and Anoop K. Dass. “A Review on the development of lattice
Boltzmann computation of macro fluid flows and heat transfer”. In: Alexandria En-
gineering Journal 54.4 (2015), pp. 955–971. ISSN: 1110-0168. DOI: �

�������������
����������� �������������. URL: �

������������ �� ��� �
���!���� �� �
��
��� �����"�������������	��.

[13] P. L. Bhatnagar, E. P. Gross, and M. Krook. “A Model for Collision Processes in Gases.
I. Small Amplitude Processes in Charged and Neutral One-Component Systems”. In:
Physical Review 94.3 (May 1954), pp. 511–525. DOI: ������	���#�� $��
����. URL:
�

�������������������	���#�� $��
����.

[14] Dominique d’Humières et al. “Multiple-Relaxation-Time Lattice Boltzmann Models in
Three Dimensions”. In: Philosophical Transactions: Mathematical, Physical and En-
gineering Sciences 360.1792 (2002), pp. 437–451. ISSN: 1364503X. URL: �

��������
��
��������
��� �	���	�	 (visited on 09/13/2023).

[15] Martin Geier, Andrea Pasquali, and Martin Schönherr. “Parametrization of the cumu-
lant lattice Boltzmann method for fourth order accurate diffusion part I: Derivation
and validation”. In: Journal of Computational Physics 348 (Nov. 2017), pp. 862–888. DOI:
�����������������������
�. URL: �

�����������������������������������
�
�.

[16] A. N. Kolmogorov. “A refinement of previous hypotheses concerning the local structure
of turbulence in a viscous incompressible fluid at high Reynolds number”. In: Journal
of Fluid Mechanics 13.1 (May 1962), pp. 82–85. DOI: �������������������������.
URL: �

��������������������������������������.

[17] Martin R. Maxey and James J. Riley. “Equation of motion for a small rigid sphere in
a nonuniform flow”. In: The Physics of Fluids 26.4 (Apr. 1983), pp. 883–889. DOI: ���
���	�����
�	�. URL: �

�������������������	�����
�	�.

[18] Sumudu S. Karunarathne and Lars-André Tokheim. “Comparison of the influence of
drag models in CFD simulation of particle mixing and segregation in a rotating cylin-
der”. In: Linköping Electronic Conference Proceedings. Linköping University Electronic
Press, Sept. 2017. DOI: ���		�
� �����	����. URL: �

����������������		�
�
 �����	����.

42

Bibliography

[19] J. M. Buick and C. A. Greated. “Gravity in a lattice Boltzmann model”. In: Physical
Review E 61.5 (May 2000), pp. 5307–5320. DOI: �����������	
����
������. URL:
����	��������
�������������	
����
������.

[20] ALEXANDER L Kupershtokh. “New method of incorporating a body force term into the
lattice Boltzmann equation”. In: Proceeding of the 5th International EHD Workshop.
2004, pp. 241–246.

[21] Nathan A. Keane et al. “Effect of interpolation kernels and grid refinement on two way-
coupled point-particle simulations”. In: International Journal of Multiphase Flow 166
(2023), p. 104517. ISSN: 0301-9322. DOI: ����	��������
��������
�������������	������
�����������. URL: ����	�������	��� ����
��������	��� ����
����������
!����"���������#
.

[22] Alan Weiser and Sergio E. Zarantonello. “A note on piecewise linear and multilinear ta-
ble interpolation in many dimensions”. In: Mathematics of Computation 50.181 (1988),
pp. 189–196. DOI: �����"��	����$���#$�"##$�"��#�
$�. URL: ����	��������
��
�����"��	����$���#$�"##$�"��#�
$�.

[23] Xiaoyi He and Li-Shi Luo. “Theory of the lattice Boltzmann method: From the Boltz-
mann equation to the lattice Boltzmann equation”. In: Physical Review E 56.6 (Dec.
1997), pp. 6811–6817. DOI: �����������	
�����
�
#��. URL: ����	��������
��
�����������	
�����
�
#��.

[24] T. Schwager, V. Becker, and T. Pöschel. “Coefficient of tangential restitution for vis-
coelastic spheres”. In: The European Physical Journal E 27.1 (Aug. 2008), pp. 107–114.
DOI: ������������������$����
$�. URL: ����	��������
���������������
�����$����
$�.

[25] Xinchen Zhang et al. “The influence of the coefficient of restitution on flow regimes
within horizontal particle-laden pipe flows”. In: Physics of Fluids 33.12 (Dec. 2021). DOI:
�����
�����������. URL: ����	��������
�������
�����������.

[26] Robert L. Jackson, Itzhak Green, and Dan B. Marghitu. “Predicting the coefficient of
restitution of impacting elastic-perfectly plastic spheres”. In: Nonlinear Dynamics 60.3
(Sept. 2009), pp. 217–229. DOI: ��������	�����$��"$"�"�$%. URL: ����	�������
�
����������	�����$��"$"�"�$%.

[27] Emanuel Willert. Stoßprobleme in Physik, Technik und Medizin. Springer Berlin Heidel-
berg, 2020. DOI: ��������"�#$�$

�$
��"
$
. URL: ����	��������
����������
"�#$�$

�$
��"
$
.

[28] John Happel and Howard Brenner. Low Reynolds number hydrodynamics. Springer Nether-
lands, 1983. DOI: ��������"�#$"�$��"$#���$
. URL: ����	��������
����������
"�#$"�$��"$#���$
.

[29] Jaber Almedeij. “Drag coefficient of flow around a sphere: Matching asymptotically the
wide trend”. In: Powder Technology 186.3 (Sept. 2008), pp. 218–223. DOI: ������
���
�����������������
. URL: ����	��������
��������
��������������������
.

43

Bibliography

[30] H. Pottmann, S. Leopoldseder, and M. Hofer. “Approximation with active B-spline curves
and surfaces”. In: 10th Pacific Conference on Computer Graphics and Applications, 2002.
Proceedings. IEEE Comput. Soc. DOI: ������������	�
��
�����
��. URL: ������
����������������������	�
��
�����
��.

[31] Z.-Q. Cheng et al. A Survey of Methods for Moving Least Squares Surfaces. en. 2008. DOI:
���
��
�����������
������
�. URL: ����������������������	 �������
��
�
����������
������
�.

44

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Druck-Exemplaren überein.

Datum und Unterschrift:

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not use any
other sources and references that the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure. I have not published this
work in whole or in part before. The electronic copy is consistent with all submitted hard
copies.

Date and Signature:

