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Abstract

This dissertation is concerned with mechanisms to protect the privacy of individuals in

special types of data that are sequential or directional in nature. Importantly, sequential

data includes human language which is commonly conveyed as text or speech (i.e., a

sequence of words, symbols, or speech sounds), whereas directional data includes natural

examples such as geographic locations and periodic time specifications. In many cases,

such data may expose sensitive information that violate the privacy of individuals or

even reveal their identity. Differential privacy (DP) is a formal notion of privacy based on

randomness that allows quantifying and limiting information disclosure about individuals.

While many DP mechanisms exist for structured data such as scalars or numerical vectors,

we found a lack of suitable mechanisms for sequential and directional data: For instance,

at the time of starting this dissertation, we found no existing DP mechanisms for textual

data, and existing mechanisms for geolocations assumed only planar coordinates.

To fill these gaps, we aim at constructing novel privacy mechanisms for sequential and

directional data and assessing their DP properties. Specifically, we develop methods

to obfuscate text as an example of sequential data which either produce differentially

private text representations or human-readable texts. Moreover, we introduce directional

privacy, a special variant of DP for directional data along with two suitable directional

privacy mechanisms that intrinsically respect the directional nature of the data to be

obfuscated. We evaluate our proposed methods in realistic use cases to assess their

performance regarding protection of privacy and preservation of utility in the obfuscated

data. The results show that our methods for text effectively reduce re-identification risks of

authorship attribution attacks while maintaining high utility for topic or sentiment analysis

tasks. Furthermore, our directional mechanisms typically require fewer data to achieve a

certain level of utility than standard privacy mechanisms adapted to directional data.

To our best knowledge, our work contributes the first DP mechanism for text and also has

inspired other mechanisms that work on a word-level. Moreover, we are the first to exploit

synergies between variational autoencoders and the Gaussian mechanism to achieve DP for

human-readable text—an approach that is likely extensible to other domains of sequential

data. Lastly, our work on directional privacy further provides theoretical contributions to

directional statistics including a novel sampling algorithm for the Purkayastha distribution.

xix
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Kurzzusammenfassung

Diese Dissertation beschäftigt sich mit Mechanismen zum Schutz der Privatsphäre von

Personen in speziellen Arten von Daten, welche sequenzielle oder richtungsbezogene

Eigenschaften haben. Ein bedeutsames Beispiel für sequenzielle Daten ist die menschliche

Sprache, die üblicherweise als Text oder gesprochene Sprache (d.h., als Folge von Wörtern,

Symbolen oder Sprachlauten) übermittelt wird, während zu den gerichteten Daten natürli-

che Beispiele wie geografische Orts- und periodische Zeitangaben gehören. In vielen Fällen

können solche Daten sensible Informationen enthalten, die die Privatsphäre von Personen

verletzen oder sogar ihre Identität preisgeben. Differential Privacy (DP) ist ein formaler

Ansatz zum Schutz der Privatsphäre, der auf Zufälligkeit basiert und es ermöglicht, die

Offenlegung von Informationen über Einzelpersonen zu quantifizieren und zu begrenzen.

Während es für strukturierte Daten wie Skalare oder numerische Vektoren viele geeignete

DP-Mechanismen gibt, haben wir festgestellt, dass es an geeigneten Mechanismen für se-

quenzielle und richtungsbezogene Daten mangelt: Zu Beginn dieser Dissertation konnten

wir beispielsweise keine bestehenden DP-Mechanismen für Textdaten finden, während

DP-Mechanismen für geografische Daten ein flaches Koordinatensystem voraussetzten.

Um diese Lücken zu schließen, setzen wir uns zum Ziel, neuartige Datenschutzme-

chanismen für sequenzielle und richtungsbezogene Daten zu entwickeln sowie deren

DP-Eigenschaften zu bestimmen. Insbesondere entwickeln wir Methoden zur Verschleie-

rung von Text als Spezialfall von sequenziellen Daten, die entweder kodierte Textre-

präsentationen oder lesbare Fließtexte erzeugen. Darüber hinaus führen wir Directional
Privacy als Spezialfall von DP für richtungsbezogene Daten ein, und präsentieren zwei

geeignete Mechanismen, die den richtungsbezogenen Charakter der zu verschleiernden

Daten berücksichtigen. Wir evaluieren unsere vorgeschlagenen Methoden in realistischen

Anwendungsfällen, um ihre Eignung zum Schutz der Privatsphäre und des Erhalts des

Nutzwerts der verschleierten Daten zu bewerten. Die Ergebnisse zeigen, dass unsere

Mechanismen für Text die Risiken von Reidentifizierungs-Angriffen auf die Autoren der

Texte effektiv reduzieren und gleichzeitig einen hohen Nutzenwert für Themen- oder

Sentimentanalyse beibehalten. Darüber hinaus benötigen unsere richtungsbezogenen

Mechanismen in der Regel weniger Daten, um eine bestimmte Güte an Genauigkeit zu

erreichen, als normale, einfach an richtungsweisende Daten angepasste DP-Mechanismen.
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Kurzzusammenfassung

Nach unserem besten Wissen stellt diese Arbeit den ersten DP-Mechanismus für

Textdaten überhaupt vor und hat auch andere Mechanismen, die auf Wort-Ebene arbeiten,

inspiriert. Weiterhin nutzen wir als erste Synergien zwischen Variational Autoencoder und

dem Gauß-Mechanismus, um DP für lesbaren Text zu erreichen – ein Ansatz, der potenziell

auch auf andere sequenzielle Datentypen erweiterbar ist. Schließlich liefert unsere Arbeit

zu Directional Privacy weitere theoretische Beiträge zur gerichteten Statistik, einschließlich

eines neuartigen Sampling-Algorithmus für die Purkayastha-Verteilung.
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Chapter 1

Introduction

In recent years, large-scale collection and processing of data have become important

drivers for the digital economy: For instance, users can share reviews of businesses and

services through various online platforms, and location-based services (LBS) collect and

analyze the geographic location of the users or their mobile devices. In these examples,

and in many other cases, the data involved have a special structure: Reviews consist of

texts, i.e., sequences of words or characters representing human language, and geolocations

are directional in nature. However, text and location data are often privacy-sensitive, so

adequate methods to protect the privacy of the users are required to encourage them to

actually share their data.

Unfortunately, at the time of beginning this dissertation, there were no or only inadequate

methods that offer formal privacy guarantees, more specifically differential privacy (DP),

to protect text and geolocation data. Therefore, the goal of this work is to develop novel

obfuscation methods with formal privacy guarantees, namely DP, for sequential and

directional types of data, such as text and geolocations, respectively.

In this chapter, we first motivate our research from an application, user, and legal

perspective. Next, we define the research problem and objectives, summarize our main

contributions, and give an overview of related publications. Lastly, we outline the structure

of the dissertation.

1.1 Motivation

The Internet has paved the way for many online platforms and services that allow

individuals to interact in various ways, e.g., by checking in at venues such as bars and

restaurants, and by sharing their opinions about various products and services. In many

scenarios, this involves certain types of data that are sequential or directional in nature:

For instance, human language, our primary means of communication, makes up a major

proportion of online communication and digital media, including instant messages, online
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reviews, tweets and comments, etc. Human language is typically conveyed as text or

speech, i.e., a sequence of either written symbols (e.g., words or characters) or spoken

sounds constituting phonemes and words. Furthermore, crowd-sourced data from mobile

or wearable devices often includes the geographic location where and the time when the

data was recorded; such types of spatial and (periodic) temporal data can be regarded as

instances of directional data. Some social media platforms like Twitter allow users to post

comments in form of short texts (e.g., so-called tweets) that include the time and optionally

also their location [443], thus representing a combining sequential and directional data.

The resulting collection and processing of massive amounts of user data have become

important drivers for the digital economy: The availability of crowd-sourced feedback on

review platforms (e.g., Google Maps, Yelp, Glassdoor, IMDb) and shops (e.g., Amazon,

eBay) not only helps prospective customers, patients, or employees to make informed

decisions about their next buys, visits, or to evaluate their next potential employers, but

also allows the business owners to analyze the provided feedback to gain insights into

how their products, services, or brand image can be improved. Moreover, crowd-sourced

location data drive location-based marketing and analytics platforms such as Foursquare, and

allow mapping services such as Google Maps to estimate traffic and navigate users to their

destinations on efficient routes, and to create daily “busyness” histograms that indicate

popular visit times at places like stores or restaurants [170, 283], from which users can

estimate how busy a location is during different times of the day. Lastly, the platforms

and service providers themselves benefit from the collected data, e.g., by enabling them to

provide (or rather harass) users with targeted advertising.

1.1.1 Privacy Matters

While the large-scale collection and processing of data from online platforms and services

drives innovation and provides substantial value for both businesses and users, the data

collected in such scenarios is often privacy-sensitive, which we discuss in the following.

Threats and Risks. Sequential data like text and speech often include personally iden-

tifiable information (PII) as described in Section 1.1.2, such as full names or addresses.

Traditional sanitization approaches often work by removing those parts, or replacing them

with pseudonyms (cf. the de-identification approaches we discuss as part of Section 3.3.4).

Also, many online platforms allow users to post their reviews “anonymously”, i.e., under

a pseudonym without directly revealing their identity. However, the absence of explicitly

identifying information is generally not enough to provide true anonymity: In many

scenarios, users can be re-identified based on metadata or the data itself, e.g., by linkage
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attacks [92, 93, 207, 318, 364] or through various identifiers contained in sequential data

(cf. Section 3.2).

This is particularly critical for textual data which makes up a major proportion of online

content posted by users and which represents a rich source of information: For instance,

users can be identified based on their pseudonymized search logs [34], and even their

writing style alone may be sufficient to de-anonymize them through modern authorship

attribution techniques [127, 364, 376, 409, 422]. This may entail undesirable risks and

consequences, ranging from, e.g., retaliatory actions and legal disputes for publicly

criticizing businesses on Yelp or Google Maps [195], disclosure of patient identities and

their sensitive personal information [57], over sanctions from the employer to potential

lawsuits in the millions for critical reviews on sites like Glassdoor [323]. Users may hence

feel reluctant to provide their honest feedback for fear of retaliation [371, 398], which also

concerns internal surveys [414].

Also, in many cases, directional data conveys particularly sensitive information, as

illustrated by recent news about location tracking on smartphones or fitness trackers

[187, 437]. Personal locations are suspect to various attacks, cf. the survey by Krumm [243],

in particular when combined with temporal information as shown by Primault et al. [353]

or Pyrgelis et al. [356]. In fact, sufficiently accurate location information such as addresses

are classified as protected health information (PHI) according to the Health Insurance

Portability and Accountability Act (HIPAA) [327, 435] as described in the subsequent

Section 1.1.2.1.

Consequences. As a result, users may be reluctant to share their opinions, comments,

and feedback in surveys and online platforms, or their whereabouts during the course of

the day to LBS. To convince them otherwise, it is thus necessary to develop methods that

protect the anonymity of the users while preserving the quality and content of the original

data, and ideally meet formal privacy guarantees in the form of DP [117], which is widely

regarded as the gold standard of privacy protection.

1.1.2 Legal Aspects

Privacy laws that govern the collection and handling of personal data have been enacted

in various legislations. In the following, we briefly discuss some relevant ones which also

motivate the need for data anonymization methods as presented in this dissertation.
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1.1.2.1 Health Insurance Portability and Accountability Act (HIPAA)

The Health Insurance Portability and Accountability Act (HIPAA) is a US law passed in

1996 governing the protection and handling of sensitive patient data [435, 447]. Specifically,

in the context of health care, health records and medical documents containing PII that

can identify an individual (e.g., a patient or their relatives) are referred to as PHI whose

use is strictly limited by the HIPAA Privacy Rule [327]. However, the HIPAA Privacy Rule

does not restrict the use or disclosure of de-identified health data which is considered as not

individually identifiable and hence no longer regarded as PHI.

De-Identified Data. De-identification according to HIPAA may be achieved following

“Expert Determination” or the “Safe Harbor” method: “Safe Harbor” defines a set of 18

identifiers that are considered PII pertaining to the individual, their relatives, employer,

and household members, which must be removed from a de-identified document. These

identifiers include, for instance, names, addresses/locations (“geographic subdivisions

smaller than state”), phone and fax numbers, email and IP addresses, photos, biometric

identifiers, etc. Since health records often consist of unstructured text, the “Safe Harbor”

method inspired several software solutions to detect and mask (i.e., redact or replace) the

18 HIPAA identifiers in unstructured text. We discuss such de-identification methods that

only change parts of a text in more detail in Section 3.3.4.1.

In contrast to existing de-identification methods, the obfuscation approaches presented

in Chapters 5 and 6 of this dissertation not only change individual terms but transform

entire texts to provide formal (differential) privacy guarantees and also defend against

authorship attribution attacks. We discuss related defense techniques for text as well as

audio and visual data in Section 3.3. Lastly, our work on directional privacy in Chapter 7

specifically addresses geographic locations as one type of HIPAA identifier. Therefore, the

methods proposed in this dissertation could also be applied to medical use cases.

1.1.2.2 General Data Protection Regulation (GDPR)

The General Data Protection Regulation (GDPR) is a privacy and security law passed by

the European Union (EU) in 2016 and put into effect on May 25, 2018 [125]. It covers the

collection and processing of personal data related to people in the EU by organizations

anywhere, even outside the EU. More concretely, the GDPR specifies (emphasis ours) that

‘personal data’ means any information relating to an identified or identifiable

natural person (‘data subject’); an identifiable natural person is one who can

be identified, directly or indirectly, in particular by reference to an identifier
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such as a name, an identification number, location data, an online identifier or

to one or more factors specific to the physical, physiological, genetic, mental,

economic, cultural or social identity of that natural person [125, Article 4].

Collection and processing of personal data are limited to “specified, explicit and legitimate

purposes” [125, Article 5]. Moreover, it requires a legal basis according to Article 6; for

instance, this is provided if “the data subject has given consent to the processing of his or

her personal data for one or more specific purposes” [125, Article 6].

Pseudonymous Data. The GDPR encourages pseudonymization of personal data to reduce

privacy risks to the data subject [277], which in turn may allow processing of personal

data beyond the original purposes and facilitate its use, e.g., for scientific, historical, or

statistical purposes [125, Article 89]. In terms of the Regulation,

‘pseudonymisation’ means the processing of personal data in such a manner that

the personal data can no longer be attributed to a specific data subject without

the use of additional information, provided that such additional information

is kept separately and is subject to technical and organisational measures to

ensure that the personal data are not attributed to an identified or identifiable

natural person [125, Article 4].

Pseudonymization thus “reduces (but does not eliminate) compliance obligations”, po-

tentially “enabling a wider range of lawful productive uses of data” [49]. However, note

that in general, pseudonymized data still is considered personal data and hence subject to the

Regulation: “Personal data which have undergone pseudonymisation, which could be

attributed to a natural person by the use of additional information should be considered

to be information on an identifiable natural person” [125, Recital 26].

Differences to HIPAA. While the HIPAA and GDPR both share similar concepts and

goals about secure and private handling of personal data, in general the GDPR goes

beyond HIPAA in several aspects: First, the GDPR covers not only health data, but any

kind of personally sensitive information. Second, the GDPR is stricter regarding the use of

pseudonymized data: Both de-identification according to HIPAA and pseudonymization

under the GDPR do not rule out re-identification of the data subject. However, while de-

identified health data is no longer restricted under the HIPAA Privacy Rule, pseudonymized

data is generally still subject to the GDPR [125, Recital 26] as discussed in the preceding

paragraph.
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Re-Identification. The main risk is that it may still be possible to re-identify the data subject

of pseudonymized data, even after direct and indirect identifiers have been removed:

To determine whether a natural person is identifiable, account should be taken

of all the means reasonably likely to be used, such as singling out, either by

the controller or by another person to identify the natural person directly or

indirectly. To ascertain whether means are reasonably likely to be used to

identify the natural person, account should be taken of all objective factors,

such as the costs of and the amount of time required for identification, taking

into consideration the available technology at the time of the processing and

technological developments [125, Recital 26].

How to re-identify data is often not immediately obvious, but it could be possible, for

instance, by linking it to external data (cf., e.g., [34, 317, 430]). In Section 3.2, we discuss

specific examples of re-identification methods for sequential data, including authorship
attribution for text.

Anonymous Data. Unlike with pseudonymous data, re-identification of the data subject

pertaining to anonymous data must not be (reasonably) possible, so data anonymization of

personal data is an irreversible process. In that context, the GDPR states the following:

The principles of data protection should therefore not apply to anonymous
information, namely information which does not relate to an identified or

identifiable natural person or to personal data rendered anonymous in such a

manner that the data subject is not or no longer identifiable. This Regulation

does not therefore concern the processing of such anonymous information,

including for statistical or research purposes [125, Recital 26].

The benefit of truly anonymized data therefore is that it is no longer subject to the GDPR,

thus unlocking its potential for other uses. To this end, the goal of this dissertation

is to develop methods for sequential and directional data that achieve proper data

anonymization with formal privacy guarantees and prevent re-identification methods

such as authorship attribution while maintaining good utility for legitimate purposes.

1.2 Research Problem

To protect the privacy of individuals while maintaining data-driven business models, the

concept of differential privacy (DP) by Dwork et al. [117] presents the current state-of-the-art

for quantifying and limiting information disclosure about individuals. DP mechanisms
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have been proposed for various settings and data types, e.g., the standard Laplace [117]

and Gaussian mechanisms [116], as well as the Planar Laplace (PL) mechanism [24], which

are defined in Euclidean spaces. As such, they are readily applicable to structured data

such as numbers or vectors, including, for instance, planar locations.

However, it is challenging to apply DP to sequential data such as text or speech, which

comes in varying lengths and with different ways to express the same idea. Similarly,

while post-processing, such as clipping or wrapping, can be applied to adapt common

Euclidean-space DP mechanisms to spherical domains, none of them intrinsically respects

the directional nature of the underlying data such as geolocations. In fact, at the time

of starting the research for this dissertation, to the best of our knowledge, there were no

DP mechanisms for text, and geo-indistinguishability by Andrés et al. [24] considered

geolocations only as planar coordinates. Consequently, existing approaches are insufficient

or inadequate to provide formal privacy guarantees for special data types, such as text and

speech or geolocations and periodic time specifications, that are sequential or directional

in nature.

1.3 Research Objectives

Given the lack of suitable DP mechanisms for text as an important example of sequential

data, and the lack of suitable DP mechanisms for directional data that respect the underlying

directional structure, the overall objective in this dissertation is to devise methods that

provide provable privacy guarantees (e.g., DP) for these special types of data. More

specifically, we aim at achieving the following research objectives:

RO1 Design novel DP mechanisms to obfuscate text as an illustrative example of sequential

data.

RO2 Evaluate the performance of the proposed DP mechanisms for text in realistic

scenarios, in particular how well they protect against authorship attribution attacks.

RO3 Design specialized DP mechanisms for directional data that intrinsically respect the

directional nature of the data.

RO4 Evaluate the performance of the proposed DP mechanisms for directional data in

realistic scenarios.
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1.3.1 Limitations

Narrowed Focus on Specific Domains. Due to the vast number of sequential and

directional data types, we need to narrow down the scope of this dissertation to specific,

illustrative examples:

• For sequential data, we focus our research on textual data. Text is an important

example that represents human language, our primary means of communication,

and is used to send messages, share opinions, or post comments on social media

sites and many other online platforms. However, to provide a sense of connection

among other types of sequential data, we also review related work on attacks and

defenses for audio and visual data along with text in Chapter 3.

• For directional data, we focus on geolocations and periodic time specifications. These

are natural examples of directional data that frequently occur in our daily lives and

are typically used in LBS and online mapping platforms.

While we are aware of many other interesting instances of sequential data (e.g., sensor

readings or time series in general) and high-dimensional examples of directional data (e.g.,

gene expression vectors [103]), we regard other types of sequential and directional data as

out of scope for this dissertation and leave them for future research (see Section 8.4).

Focus on Identifying Information (Identifiers). Apart from the identity of the originator

of the data, other privacy-sensitive information could be inferred from sequential data: For

instance, the writing style of a text or characteristic movement patterns in motion sensor

data may also reveal the age or gender of an individual. However, since the identity of an

individual is the most specific inference an attacker could make about the individual, and

since legal regulations specifically protect PII (cf. Section 1.1.2), we also decided to focus

on identifying information (identifiers) in our research in this dissertation.

1.4 Contributions

This section provides an overview of our contributions to knowledge in the field of DP for

sequential and directional data, and, in particular, towards the research objectives stated

in Section 1.3.

1.4.1 The First Differentially Private Mechanism for Text

In Chapter 5, we present SynTF, a novel DP method to compute private Bag-of-Words

(BoW) representations (cf. Sections 3.3.2 and 3.3.3) for textual data. It works by randomly
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replacing words from an input text with similar words using the Exponential mechanism

by McSherry and Talwar [294] (cf. Section 2.3.4) and counting the resulting terms in a

term frequency (tf) vector, which can be used as a feature vector for common information

retrieval and text mining tasks such as text classification. To the best of our knowledge,

SynTF represents the first published DP mechanism for textual data, as confirmed in the

survey by Zhao and Chen [494]. Moreover, we argue that it also pioneered the line of

research we call word-level DP, whose methods have in common that they replace words or

tokens in a text independently in a differentially private manner. Such methods may be

readily extended to mechanisms for entire texts by iterating over the texts word-by-word (cf.

Section 3.3.3.1), however, they do have some limitations which we discuss in Section 3.3.5.1.

On the theoretical side, in Section 5.2.4, we prove the 𝜖-DP properties of SynTF.

Furthermore, we derive a heuristic argument that the privacy loss 𝜖 of the Exponential

mechanism grows logarithmically in the size of the (discrete) output space if the result

should provide a minimum level of utility. We experimentally verify our method on a

corpus of newsgroups postings in a scenario where a benign analyst wants to infer the

topic from the texts, whereas a malicious attacker tries to identify their author (Section 5.3).

To better prevent authorship attribution, we introduce the bigram overlap as an additional

technique that influences the choice of substituted words. The results indicate that our

method has a much stronger impact on authorship attribution than on the topic inference

task, whereas scrubbing methods (cf. Section 3.3.4.1) that only mask privacy-sensitive terms

provide only insufficient protection.

1.4.2 Differential Privacy Mechanisms for Coherent, Human-Readable Text
Obfuscation

In Chapter 6, we approach major limitations of word-level DP methods (cf. Section 3.3.5.1),

with a novel text obfuscation approach that applies DP to full sentences instead of

individual words: The fundamental method, DP-VAE, consists of a variational autoencoder

(VAE) architecture that first encodes the input sentences to continuous, probabilistic latent

representations following a Gaussian distribution. By imposing two constraints on the

parametrization of the Gaussian distributions, we are able to exploit synergies with the

Gaussian mechanism, resulting in differentially private latent samples which the decoder

finally transforms into diverse and coherent, human-readable output texts. Furthermore,

we propose an extension of DP-VAE to a differentially private adversarial autoencoder

(DP-AAE) by integrating adversarial learning to disentangle the latent representations

into a privacy-sensitive author/style vector and a privacy-insensitive content vector. This

separation enables further improvements of the privacy-utility trade-off in a favorable
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direction by applying stronger noise to the author vector.

We perform an extensive evaluation involving hyperparameter optimization to compare

our DP-VAE and DP-AAE models against two non-DP baselines in a scenario with online

reviews whose authors wish to remain anonymous (Section 6.5). The results indicate that

DP-AAE outperformed all other methods and effectively reduces re-identification risks

against authorship attribution attacks while producing readable sentences and preserving

the content of the texts.

1.4.3 Novel Differential Privacy Definition and Mechanisms for Directional
Data

In Chapter 7, we address the lack of suitable DP methods for the important class of

directional data: First, we introduce a new notion of directional privacy based on the

surface distance on the sphere. We then devise two conforming mechanisms based on

the spherical von Mises–Fisher (VMF) and Purkayastha distributions that intrinsically

suit directional data and prove that they fulfill directional as well as pure differential

privacy. Furthermore, as a theoretical contribution, we derive various statistical properties

such as expected distances, related densities and cumulative distribution functions for

the underlying distributions. These results allow us to (i) show that adopted standard

mechanisms based on wrapping can behave worse than the uniform distribution, and (ii)

develop a novel sampling algorithm for the Purkayastha distribution for which to our best

knowledge, no designated sampling method had been published before.

Moreover, we perform several analyses and experiments on real data to evaluate

our directional privacy mechanisms: Specifically, we demonstrate their applicability to

important applications, such as privately collecting mobility data in the local model, where

the data collector cannot or may not be trusted by the users. Importantly, our results show

an advantage of our directional privacy mechanisms over standard privacy mechanisms

adapted to directional data, since our directional mechanisms typically required fewer

data to achieve a certain level of utility (i.e., they have a lower sample complexity, cf.

Section 8.3). We also demonstrate that for some directional statistics such as the circular

mean, the local model can achieve a sample complexity as low as in the central model,

making it preferable since it also does not require a trusted aggregator.

1.5 Integral and Related Publications

Integral Publications Contributing to this Dissertation. The main contributions pre-

sented in Chapters 5 to 7 of this dissertation are based on the following key publications:
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Chapter 5 Benjamin Weggenmann and Florian Kerschbaum [465, 466]: “SynTF: Synthetic

and Differentially Private Term Frequency Vectors for Privacy-Preserving Text

Mining”. In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR ’18).

Florian Kerschbaum suggested the topic of text anonymization with DP guarantees.

The author developed the core idea of randomly replacing words using the Exponen-

tial mechanism and enhanced its rating function with the bigram overlap to further

protect against authorship attribution attacks. Moreover, he implemented the code

and conducted the experiments.

Chapter 6 Benjamin Weggenmann, Valentin Rublack, Michael Andrejczuk, Justus Mattern,

and Florian Kerschbaum [468]: “DP-VAE: Human-Readable Text Anonymization for

Online Reviews with Differentially Private Variational Autoencoders”. In Proceedings
of the ACM Web Conference 2022 (WWW ’22).

The author of this dissertation developed the basic idea of utilizing a VAE for text

obfuscation by exploiting synergies with the Gaussian mechanism to achieve DP, as

well as the theory behind the necessary DP constraints. The project was realized

with the invaluable support and commitment of three students who were supervised

by the author: Valentin Rublack suggested using the adversarial autoencoder (AAE)

framework with disentangled representations [213] as code base and started with the

implementation. Michael Andrejczuk and Justus Mattern subsequently improved the

implementation. Justus Mattern started the evaluation, which was further enhanced

and finalized by the author.

Chapter 7 Benjamin Weggenmann and Florian Kerschbaum [467]: “Differential Privacy

for Directional Data”. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21).

The author observed the limitation of geo-indistinguishability to planar locations

[24], and devised the idea of utilizing tools from directional statistics as a basis for

directional privacy. Specifically, the author investigated the VMF and Purkayastha

(hyper)spherical distributions to create corresponding directional privacy mecha-

nisms and proved their DP properties. For the Purkayastha distribution, the author

developed a novel approximate inversion sampling algorithm based on a similar

algorithm for the VMF distribution [249]. Lastly, the author implemented the code

and performed the experiments.

For all these publications, Florian Kerschbaum contributed with his expertise in fruitful
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discussions and by providing guidance for the experiments and for structuring the

respective papers for submission.

Other Publications Related to this Dissertation. In the course of his dissertation, the

author was also involved in co-authoring the following two publications, which are related

but do not constitute major contributions to this dissertation:

• Justus Mattern, Benjamin Weggenmann, and Florian Kerschbaum [285, 286]: “The

Limits of Word Level Differential Privacy”. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022 (Findings 2022).

The author observed theoretical limitations of word-level DP in the course of his

dissertation (i.e., during the work on SynTF and DP-VAE); we discuss them briefly

in Section 3.3.5.1. Justus Mattern suggested expanding on these observations by

verifying them with additional experiments and proposed an alternative obfuscation

method that works by fine-tuning a large language model (LLM) for paraphrasing.

We achieve DP by sampling from the softmax layer with temperature, which can be

interpreted as an instance of the Exponential mechanism (similar to Bo et al. [46]).

• Justus Mattern, Zhĳing Jin, Benjamin Weggenmann, Bernhard Schölkopf, and

Mrinmaya Sachan [284]: “Differentially Private Language Models for Secure Data

Sharing”. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2022).

The main idea, fine-tuning a LLM with differentially private stochastic gradient

descent (DP-SGD) as to be able to generate synthetic texts by prompting, as well as

its implementation and evaluation are due to Justus Mattern. The author supported

the theoretical foundation of the paper regarding DP and accounting methods for

DP-SGD which was used to fine-tune the pre-trained LLM.

1.6 Structure of this Dissertation

In Chapter 1 (this chapter), we motivated the overall topic and state the research problem

of why protecting privacy is important for sequential and directional data. Based on this,

we formulated the research objectives and discussed limitations to important instances of

sequential and directional data. Lastly, we provided an overview of our key contributions

and listed related publications that were completed in the course of this dissertation.

In Chapter 2, we introduce necessary preliminaries on differential privacy. They provide

an overarching theoretical foundation for the approaches proposed in this dissertation.
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In Chapter 3, we discuss related work. While our focus will be on text as an example for

sequential data, we also consider other types of sequential data, namely audio and visual

data, and discuss various attacks on identifying information contained therein, justifying

why sequential data often represents PII that needs protection.

In Chapter 4, we describe the overall methodology by which we approach the goals

of this dissertation, i.e., the development of new DP mechanisms for sequential and

directional data, proving their DP properties, and evaluating their performance.

In Chapter 5, we present SynTF, which to our best knowledge is the first method to

anonymize textual data with DP guarantees. It works by randomly substituting individual

words using the Exponential mechanism, thus producing a differentially private BoW

representation.

In Chapter 6, we shift our focus to human-readable text obfuscation with DP guarantees.

In short, we achieve this goal using a novel differentially private variational autoencoder
(DP-VAE) architecture that we apply to entire sentences instead of individual words. We

extend our method with adversarial training to disentangle the latent representations,

which allows us to further improve the privacy-utility trade-off.

In Chapter 7, we address directional data, for which we propose a new notion of

directional privacy. Based on the VMF and Purkayastha distributions, we design two

novel DP mechanisms for directional data that intrinsically respect the spherical nature of

directional data.

Lastly, we conclude this dissertation in Chapter 8. In particular, we summarize our main

contributions as well as their impact and point out challenges we faced regarding the local

model as well as potential directions for future research.
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Chapter 2

A Primer on Differential Privacy

In this chapter, we provide an introduction to differential privacy (DP), a formal notion of

privacy which is currently considered the state of the art for quantifying and limiting

information disclosure about individuals. It has first been introduced by Dwork et al. [117]

in 2006 and forms a core element that is fundamental to all concepts proposed throughout

this dissertation (i.e., in Chapters 5 to 7).

As a statistical concept, DP heavily relies on randomness. Therefore, we first revisit

some definitions and notation from probability theory in Section 2.1 before we formally

introduce DP and its privacy models in Section 2.2. For a broader introduction and further

details on DP, we refer the reader to the books by Dwork and Roth [116] or Li et al. [259].

2.1 Probability Distributions

Given a measurable space (Ω,𝒜)with an event set Ω and a 𝜎-algebra𝒜 on Ω, a probability
distribution (or measure) on (Ω,𝒜) is a normed and 𝜎-additive function P : 𝒜 → [0, 1].
We denote by 𝒫Ω the set of all probability distributions (or measures) on Ω. Unless stated

otherwise, we commonly employ the Borel 𝜎-algebra 𝒜 = 𝜎(Ω) on Ω. Together, a

measurable space (Ω,𝒜) with a corresponding probability distribution P : 𝒜 → [0, 1]
forms a probability space (Ω,𝒜 ,P).

A measurable map X : (Ω,𝒜 ,P) → (Ω′,𝒜′) from a probability space to a measurable

space (Ω′,𝒜′) is called a random variable on (Ω′,𝒜′). The probability of an event 𝑆 ∈ 𝒜′

(i.e., a measurable subset 𝑆 ⊂ Ω′) is denoted by Pr[X ∈ 𝑆]. We write X ∼ PX to indicate

that the random variable X follows a certain distribution PX on (Ω′,𝒜′), in which case it

holds that Pr[X ∈ 𝑆] = PX[𝑆] = P
[︁
X−1(𝑆)

]︁
for any event 𝑆 ∈ 𝒜′. We denote by ℛΩ′ the set

of all random variables on Ω′.

When working with a random variable X : (Ω,𝒜 ,P) → (Ω′,𝒜′) with associated

probability distribution PX on the image (Ω′,𝒜′) of X, we can often avoid specifying the

underlying probability space (Ω,𝒜 ,P). Moreover, if there is no ambiguity, we may omit
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the name of the random variable X in the subscript and directly talk about the probability

distribution P on the image (Ω′,𝒜′) of X ∼ P. When talking about probability distributions

or random variables on sets 𝒳 or𝒵, we implicitly assume that the Borel 𝜎-algebra is used

to form the corresponding measure space, unless stated otherwise.

A distribution P on (Ω,𝒜) is typically specified by its probability density function (PDF),
which we denote by P[𝜔] for 𝜔 ∈ Ω by slight reuse of notation. For univariate distributions

on Ω ⊆ R, we also denote the cumulative distribution function (CDF) at 𝑍 ∈ R by P[𝜔 ≤ 𝑍],
shorthand for P[{𝜔 ∈ Ω : 𝜔 ≤ 𝑍}].

Definition 2.1. The support of a probability distribution P with values in 𝒳 and probability

density function (PDF) P[𝒙] is

supp P := {𝒙 ∈ 𝒳 : P[𝒙] > 0}.

The support of a random variable X induced by a probability distribution PX is defined

accordingly as supp X = supp PX.

We often consider families of distributions parametrized by one or more parameters,

such as 𝝁 or 𝜖, which we append in parentheses as in P(𝝁, 𝜖)[·], or simply P(𝝁, 𝜖).

Definition 2.2 (Randomized mechanism). Let 𝒳 and 𝒵 be two sets, and let ℛ𝒵 be the

set of random variables on 𝒵. A randomized mechanism from 𝒳 to 𝒵 is a probabilistic

functionℳ : 𝒳 →ℛ𝒵 that assigns a random variable on𝒵 to each input 𝒙 ∈ 𝒳. ℳ can be

specified through a parametrized family of distributions M(𝒙) on𝒵 so thatℳ(𝒙) ∼ M(𝒙)
for any 𝒙 ∈ 𝒳; we then sayℳ is the mechanism induced by M and writeℳ ∼ M in short.

From an algorithmic point of view, we run an instance of a randomized mechanismℳ on

a given input 𝒙 by sampling a realization 𝒛 of the random variableℳ(𝒙). We write this as

𝒛 〜ℳ(𝒙).

Interpreting the output of a randomized mechanismℳ as (unnamed) random variable

allows us to reason about its probabilities using common notation, e.g., by writing

Pr[ℳ(𝒙) ∈ 𝑆] to denote the probability that the mechanismℳ produces a result in the

set 𝑆 ⊂ 𝒵. Moreover, we can extend Definition 2.1 and define the support of a randomized
mechanismℳ : 𝒳 →ℛ𝒵 as the union

suppℳ :=
⋃︂
𝒙∈𝒳

suppℳ(𝒙).

In some situations, it may be convenient to employ an alternative notation that puts more

emphasis on the underlying probability distributions as used by Chatzikokolakis et al.
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[65] and Andrés et al. [24]: For a mechanismℳ ∼ M that is induced by a parametrized

distribution M(𝒙), we can thus express the probability Pr[ℳ(𝒙) ∈ 𝑆] directly as M(𝒙)[𝑆].

2.2 Differential Privacy

Differential privacy (DP) is a formal notion of privacy that is currently considered the state

of the art for quantifying and limiting information disclosure about individuals. It has

been introduced by Dwork et al. [117] in 2006 under the name 𝜖-indistinguishability with

the goal of giving semantic privacy by quantifying the risk of an individual that results

from participation in data collection. To that end, it uses randomized mechanisms as

introduced in Definition 2.2 that incorporate carefully calibrated noise in order to obtain

probabilistic outputs that hide the impact of individuals in the mechanism result. Notably,

DP is a property of the randomized mechanism itself and not of the released data.

In the following two Sections 2.2.1 and 2.2.2, we provide the necessary preliminaries on

DP together with its common privacy models as required in the dissertation. Furthermore,

we also discuss an important generalization based on metrics in Section 2.2.3. For a broader

introduction and details, we refer the reader to the books by Dwork and Roth [116] or Li

et al. [259].

2.2.1 The Central Model

In the original, central or global model of DP, we assume the original data is collected by a

trusted curator and stored in a central database, usually with one record per individual. If

we consider adjacent databases that differ by at most one record (i.e., one individual’s data),

a differentially private query on both databases should yield matching results with similar

probabilities, i.e., answers that are probabilistically indistinguishable. This is achieved via

random mechanisms on the universe of datasets 𝒳 = 𝒟 that return noisy query results,

thus masking the impact of each individual.

Definition 2.3 (Differential privacy). Let 𝜖 > 0 be a privacy parameter, and 0 ≤ 𝛿 ≤ 1. A

randomized mechanismℳ : 𝒳 → ℛ𝒵 fulfills (𝜖, 𝛿)-differential privacy if for any pair of

adjacent inputs 𝒙 , 𝒙′ ∈ 𝒳, and all sets of possible outputs 𝑍 ⊂ suppℳ,

Pr[ℳ(𝒙) ∈ 𝑍] ≤ 𝑒𝜖 · Pr[ℳ(𝒙′) ∈ 𝑍] + 𝛿.

Specifically, we distinguish pure 𝜖-DP with 𝛿 = 0 as special case from the general case

𝛿 > 0 which is also referred to as approximate DP.
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The parameter 𝜖 is also called the privacy budget and provides a worst-case measure

for the “amount of privacy” that is spent or lost when running a mechanism once and

publishing the result. The second parameter 𝛿 in approximate (𝜖, 𝛿)-DP can be understood

as a residual probability in the sense thatℳ may violate 𝜖-DP “with probability up to 𝛿”

[309]. As a rule of thumb, 𝛿 should hence be negligible in the size of the input dataset; note,

however, that this creates an implicit dependency on the anticipated size of the inputs that

will be fed into the mechanism, which may pose an unknown risk that is not assessable in

advance (cf. the discussion by McSherry [293]).

Such violations in (𝜖, 𝛿)-DP may come in various manifestations: In the worst case,

sometimes referred to as “catastrophic failure”, the secret, i.e., whether a record is

included in the dataset or not, is revealed completely. However, it may also be possible

that the privacy guarantee degrades “gracefully” so that weaker 𝜖𝑖-DP is fulfilled with

probability 1 − 𝛿𝑖 for gradually increasing privacy budgets 𝜖𝑖 > 𝜖𝑖−1 and decreasing

residual probabilities 𝛿𝑖 < 𝛿𝑖−1 (that sum up to 1) for 𝑖 = 1, 2, . . ., where 𝜖0 = 𝜖 and 𝛿0 = 𝛿.

Definition 2.4 (Privacy loss). The privacy loss of a pure 𝜖-DP mechanismℳ is the quantity

ℓ (ℳ) := sup

𝒙 ∼ 𝒙′
sup

𝑍⊂suppℳ
ln

Pr[ℳ(𝒙) ∈ 𝑍]
Pr[ℳ(𝒙′) ∈ 𝑍]

where we interpret 0/0 = 0.

Note that by definition, the privacy budget 𝜖 is an upper bound for the privacy loss

ℓ (ℳ) of an 𝜖-differentially private mechanismℳ; therefore, any random mechanismℳ
with finite privacy loss ℓ (ℳ) also fulfills ℓ (ℳ)-DP, i.e., we can prove that a randomized

mechanism fulfills pure DP by bounding its privacy loss.

Examples of Use. Some prime examples for central DP include counting and histogram

queries, where calibrated Laplace noise is added to the counts or histogram bins [116].

We discuss the corresponding Laplace mechanism in Section 2.3.1. Another prominent

application is the training of neural networks which typically requires training data sourced

from many users. To this end, an approach commonly referred to as DP-SGD has been

proposed [5, 37, 417] which perturbs the gradient updates to protect the training data of

the resulting machine learning (ML) models. More examples of DP mechanisms in the

context of ML can be found in the surveys by Ha et al. [173] and Ouadrhiri and Abdelhadi

[335]. For a recent overview of various real-world deployments of DP mechanisms in both

the central and the local model, we refer to Desfontaines [100].
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2.2.2 The Local Model

The central model’s need for a trusted curator who has access to all the collected, original

data can constitute a severe limitation in some scenarios, e.g., if the curator in fact cannot

be or simply is not trusted by the users. To solve this, we can use DP in the local model,
which has first been introduced by Evfimievski et al. [126] under the name “amplification”,

and then more formally in the context of DP by Kasiviswanathan et al. [227] and Duchi

et al. [114]: In the local model, the data is obfuscated locally at the data source, before it

is collected for further processing or storage in a central database. In this way, the local

model does not require a trusted third party and hence provides a stronger privacy model

than central DP.

While the fundamental Definition 2.3 of DP remains still valid in the local model, the

change from central DP is formally expressed in the definition of adjacency: The local

model makes the strong assumption that any two inputs are adjacent, which often makes

it difficult to achieve a satisfying privacy-utility trade-off. This often results in the need for

larger collections of data [227, 472] or larger privacy budgets 𝜖 than in the central model

as countermeasures to achieve satisfying utility [111].

Examples of Use. An early example of a DP mechanism that works in the local model

is randomized response proposed by Warner [464] in 1965 to conduct privacy-preserving

surveys, where each survey participant either provides a truthful or a random answer

depending on the flip of an (unbiased) coin. Meanwhile, local DP has been prominently

deployed in the industry by several large corporations, including, for instance,

• Google’s RAPPOR to collect statistics in their Chrome browser [123, 134],

• Apple, who privately learn unknown words to improve word suggestions when

typing [108],

• Microsoft, who privately collect telemetry data in Windows [109],

• and SAP, who support perturbation of numerical data in their database solution [23].

For more on the local model, we recommend the tutorial by Bebensee [38] or the survey by

Yang et al. [485].

2.2.3 Generalization with Metrics

A limitation with central and local DP is that the indistinguishability is achieved between

two adjacent inputs regardless of their actual values. This can be particularly problematic
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in the local model, where each user might just submit one single record, in which case a

DP mechanism with small privacy parameter 𝜖 would enforce all submitted records to be

indistinguishable, thus rendering the collected data essentially useless. To the same end,

Chatzikokolakis et al. [65] argue that in some scenarios, the level of (in)distinguishability

between two inputs or databases as enforced by a privacy mechanism should depend on

the values themselves instead of the number of differing records as in the central model.

They hence propose a generalized notion of privacy on metric spaces, which extends to input

domains beyond databases, where a conforming mechanism run on nearby inputs 𝒙 , 𝒙′

still has similar output probabilities:

Definition 2.5 (Metric privacy). Let 𝜖 > 0 be a privacy parameter. On a metric space (𝒳 , 𝑑),
a mechanismℳ satisfies 𝜖𝑑-privacy if for all 𝒙 , 𝒙′ ∈ 𝒳 and all Z ⊂ suppℳ,

ℳ(𝒙)[Z] ≤ exp(𝜖 · 𝑑(𝒙 , 𝒙′)) · ℳ(𝒙′)[Z].

In other words, the level of indistinguishability of any two points 𝒙 , 𝒙′ is bounded by

𝜖 times their distance. Andrés et al. [24] provide another interpretation: If we consider

an arbitrary but fixed distance 𝑟 > 0, any two points with 𝑑(𝒙 , 𝒙′) ≤ 𝑟 achieve a level of

indistinguishability at most 𝜖𝑟; hence, an 𝜖𝑑-private mechanismℳ achieves a privacy level
ℓ = 𝜖𝑟 within a protection radius 𝑟.

2.2.3.1 Adjacency and Connection with Central and Local Differential Privacy

Note that we recover the original notion of central 𝜖-DP (cf. Definition 2.3) on the space

of databases 𝒳 = 𝒟 if we use the record-level edit distance 𝑑±1, since datasets 𝒙 , 𝒙′ ∈ 𝒟 are

adjacent (i.e., they differ by at most one record) if and only if 𝑑±1(𝒙 , 𝒙′) ≤ 1. Similarly, we

recover local 𝜖-DP as extreme case of metric privacy with

𝑑(𝒙 , 𝒙′) :=

{︄
0 if 𝒙 = 𝒙′,

1 if 𝒙 ≠ 𝒙′.

This motivates the following formal and broader definition of adjacency:

Definition 2.6 (Adjacency). In a metric space (𝒳 , 𝑑), we say that two inputs 𝒙 , 𝒙′ ∈ 𝒳 are

adjacent (with respect to the metric 𝑑) if 𝑑(𝒙 , 𝒙′) ≤ 1. We write this as 𝒙 ∼𝑑 𝒙′ (or 𝒙 ∼ 𝒙′ if 𝑑
is understood from the context).

2.2.4 Rényi Differential Privacy

Mironov [309] has proposed Rényi differential privacy (RDP) as a generalization of DP
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that allows more accurate tracking of the privacy loss. It is based on the Rényi divergence,

which is defined as follows:

Definition 2.7 (Rényi divergence). For probability distributions P and Q both defined over

some set𝒵, the Rényi divergence of order 𝛼 > 1 is

𝐷𝛼(P ∥ Q) :=
1

𝛼 − 1

log Ez∼Q

(︃
P[z]
Q[z]

)︃𝛼
.

By continuity, we can extend the Rényi divergence to 𝛼 ∈ {1,∞}: For 𝛼 = 1, we have

𝐷1(P ∥ Q) := lim

𝛼→1

𝐷𝛼(P ∥ Q) = 𝐷KL(P ∥ Q),

which corresponds to the Kullback–Leibler (KL) divergence. Similarly, for 𝛼 → ∞, we

obtain

𝐷∞(P ∥ Q) ≔ lim

𝛼→∞
𝐷𝛼(P ∥ Q) = sup

z∈supp Q
log

P[z]
Q[z] = sup

𝑍⊂supp Q
log

P[𝑍]
Q[𝑍] (2.1)

The Rényi divergence can be extended to randomized mechanisms by means of their

inducing distributions:

Definition 2.8 (Rényi divergence of a randomized mechanism). Let ℳ : 𝒟 → ℛ𝒵
be a randomized mechanism that is induced by a parametrized distribution M, i.e.,

ℳ(𝐷) ∼ M(𝐷) for all 𝐷 ∈ 𝒟. We define the Rényi divergence of ℳ between inputs

𝐷, 𝐷′ ∈ 𝒟 as

𝐷𝛼(ℳ(𝐷) ∥ ℳ(𝐷′)) := 𝐷𝛼(M(𝐷) ∥ M(𝐷′)).

Definition 2.9 ((𝛼, 𝜖)-Rényi differential privacy). A randomized mechanismℳ : 𝒟 → ℛ
provides 𝜖-RDP of order 𝛼, or (𝛼, 𝜖)-RDP for short, if for any adjacent 𝐷, 𝐷′ it holds that

𝐷𝛼(ℳ(𝐷) ∥ ℳ(𝐷′)) ≤ 𝜖.

2.2.4.1 Relation to Pure and Approximate Differential Privacy

The original variants of DP can be reobtained from Rényi differential privacy (RDP) as

special cases. The first case relates RDP of order ∞ to pure 𝜖-DP, which according to

Mironov [309, page 3] are equivalent:

Proposition 2.10 (Equivalence of (∞, 𝜖)-RDP and pure 𝜖-DP). A randomized mechanismℳ
fulfills 𝜖-DP if and only if 𝐷∞(ℳ(𝐷) ∥ ℳ(𝐷′)) ≤ 𝜖.
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Proof of the “if” part. First, note that for 𝛼 → ∞, the Rényi divergence of a randomized

mechanismℳ between two adjacent inputs 𝐷, 𝐷′ can be rewritten in terms of Eq. (2.1) as

𝐷∞(ℳ(𝐷) ∥ ℳ(𝐷′)) = sup

z∈suppℳ
log

M(𝐷)[z]
M(𝐷′)[z] .

If the supremum exists with value 𝜖, we can rearrange the right-hand side to M(𝐷)[z] ≤
𝑒𝜖M(𝐷′)[z] for any z ∈ 𝒵. By integrating z over a given set 𝑍 ⊂ 𝒵, this is just another way

to express 𝜖-DP (Definition 2.3 with 𝛿 = 0), so a randomized mechanismℳ is 𝜖-DP if

𝐷∞(ℳ(𝐷) ∥ ℳ(𝐷′)) ≤ 𝜖. □

The second and more general case allows us to translate RDP of finite order 𝛼 < ∞ to

approximate (𝜖′, 𝛿)-DP using the following result [309, Proposition 3]:

Proposition 2.11 (From (𝛼, 𝜖)-RDP to approximate DP). Ifℳ is an (𝛼, 𝜖)-RDP mechanism,
it also satisfies (𝜖′, 𝛿)-DP for any 0 < 𝛿 < 1, where

𝜖′ = 𝜖 +
log 1/𝛿
𝛼 − 1

.

2.3 Some Fundamental Differential Privacy Mechanisms

After having introduced the formal concepts of DP, we finally introduce some fundamental

mechanisms that actually realize DP in its various variants.

Additive Noise Mechanisms. A major class of DP mechanisms are additive noise mecha-
nisms which add random noise to the result 𝑓 (𝒙) of a (typically numerical, i.e.,𝒵 = R𝑛)

query 𝑓 : 𝒳 → R𝑛 in the central model. Note that we can straightforwardly employ those

mechanisms as local DP mechanisms by choosing the query to be the identity function,

𝑓 ≡ id.

Tightly coupled with additive noise mechanisms is the sensitivity of the underlying query:

For an additive noise mechanism that answers a numerical query 𝑓 to be differentially

private, the idea is that the introduced noise should cover any difference of 𝑓 between any

pair of adjacent inputs. This intuition is covered in the following definition:

Definition 2.12 (Sensitivity of query functions). Let 𝑓 : 𝒳 → R𝑛 be a query function. The

(global) sensitivity of 𝑓 is the largest possible distance of 𝑓 on two adjacent inputs,

Δ 𝑓 := max

𝒙 ∼ 𝒙′
∥ 𝑓 (𝒙) − 𝑓 (𝒙′)∥.
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The exact norm used normally depends on the actual mechanism: More precisely, in case

of

• ∥·∥1, we write Δ1 𝑓 for the 𝐿1
or Manhattan sensitivity,

• ∥·∥2, we write Δ2 𝑓 for the 𝐿2
or Euclidean sensitivity,

etc. If the query function 𝑓 is understood from the context, we may shorten the notation

to Δ1, Δ2, etc., and in case the norm is understood as well even shorter to Δ. Note that

we assume that the maximum is well-defined and finite for the query functions 𝑓 that we

consider.

2.3.1 The Laplace Mechanism

The Laplace mechanism is the first pure 𝜖-differentially private mechanism that was

proposed by Dwork et al. [117]. As hinted at by its name, it is based on the Laplace

distribution:

Definition 2.13 (Laplace distribution). The Laplace distribution Lap(�, 𝑏) with mean � ∈ R
and scale 𝑏 > 0 is given by its PDF

Lap(�, 𝑏)[𝑥] = 1

2𝑏
exp

(︃
− |𝑥 − �|

𝑏

)︃
.

To declare a Laplace random variable 𝐿, we write 𝐿 ∼ Lap(�, 𝑏). If � = 0, we may omit �

and simply write Lap(𝑏).

As an additive noise mechanism, the Laplace mechanism applies noise from a Laplace

distribution to the output of a given query function:

Example 2.14 (Laplace mechanism). Let 𝑓 : 𝒳 → R𝑛 be a query function with 𝐿1
sensitivity

Δ1 = Δ1 𝑓 , and let 𝜖 > 0 be a privacy parameter. For an input 𝒙 ∈ 𝒳, we define the Laplace
mechanism of 𝑓 at 𝒙 as

ℒ𝜖, 𝑓 (𝒙) := 𝑓 (𝒙) + (𝐿1 , . . . , 𝐿𝑛),

where 𝐿𝑖 ∼ Lap(0,Δ1/𝜖) are independent and identically distributed (i.i.d.) Laplace

random variables centered at � = 0 with scale parameter 𝑏 = Δ1/𝜖 for all 𝑖 = 1, . . . , 𝑛. With

this parameterization, the Laplace mechanism ℒ𝜖, 𝑓 fulfills 𝜖-DP, as shown by Dwork et al.

[117, Proposition 1].

Note that despite being an additive noise mechanism, we could entirely skip the

additions and describe the Laplace mechanism directly in terms of random variables

ℒ𝜖, 𝑓 (𝒙) = (𝐿′
1
, . . . , 𝐿′𝑛),
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where 𝐿′
𝑖
∼ Lap(�𝑖 ,Δ1 𝑓 /𝜖) are i.i.d. Laplace random variables whose location parameters

equal the coordinates of the query result 𝝁 = (�1 , . . . , �𝑛) := 𝑓 (𝒙).
The tuple (𝐿′

1
, . . . , 𝐿′𝑛) can be interpreted as multivariate generalization of the Laplace

distribution: Since it consists of 𝑛 i.i.d. Laplace variables, its joint PDF amounts to

Lap
(︃
𝝁,

Δ1 𝑓

𝜖

)︃
[𝒙] =

𝑛∏︂
𝑖=1

𝜖
2Δ1 𝑓

exp

(︃
−
𝜖 |𝑥𝑖 − �𝑖 |

Δ1 𝑓

)︃
(2.2)

=

(︃
𝜖

2Δ1 𝑓

)︃𝑛
exp

(︃
−𝜖
∥𝒙 − 𝝁∥1
Δ1 𝑓

)︃
.

As we can see, the exponent fits Definition 2.3 of 𝜖-DP quite nicely, which is used in the

proof to show it fulfills 𝜖-DP; furthermore, the 𝐿1
norm ∥𝒙 − 𝝁∥1 motivates the use of the

𝐿1
sensitivity for the Laplace mechanism.

2.3.2 The Gaussian Mechanism

Another important additive noise mechanism is the Gaussian mechanism [116] which is

based on the normal (Gaussian) distribution:

Definition 2.15 (Univariate normal distribution). The univariate normal (or Gaussian)

distribution 𝒩(�, 𝜎2) with mean location � and variance 𝜎2
(or standard deviation 𝜎) is

given by its PDF

𝒩(�, 𝜎2)[𝑥] = 1√
2𝜋𝜎

exp

(︃
−1

2

(︂ 𝑥 − �
𝜎

)︂
2

)︃
.

As an additive noise mechanism, the Gaussian mechanism works analogously to the

Laplace mechanism and applies Gaussian noise to each coordinate of a query result:

Definition 2.16 ((Isotropic) Gaussian mechanism). Let 𝑓 : 𝒳 → R𝑛 be a query function

with finite 𝐿2
sensitivity Δ2 𝑓 . The (isotropic) Gaussian mechanism 𝒢𝜎, 𝑓 with standard

deviation 𝜎 > 0 is a randomized function

𝒢𝜎, 𝑓 (𝒙) := 𝑓 (𝒙) + (𝑁1 , . . . , 𝑁𝑛)

where 𝑁𝑖 ∼ 𝒩(0, 𝜎2).

As with the Laplace mechanism, we can skip the additions and describe the Gaussian

mechanism directly in terms of Gaussians 𝑁𝑖 ∼ 𝒩(�𝑖 , 𝜎2)whose mean values �𝑖 := 𝑓 (𝒙)𝑖
are defined by the query result, so

𝒢𝜎, 𝑓 (𝒙) = (𝑁′
1
, . . . , 𝑁′𝑛).
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The tuple (𝑁′
1
, . . . , 𝑁′𝑛) is the Cartesian product of 𝑛 i.i.d. univariate Gaussians that share

the same variance 𝜎2
, which is also called an isotropic multivariate Gaussian:

Definition 2.17 (Isotropic normal distribution). The 𝑛-dimensional isotropic (or spherical)
normal distribution with mean location 𝝁 ∈ R𝑛 and covariance matrix 𝜎2I is defined by the

PDF

𝒩(𝝁, 𝜎2I)[𝒙] =
(︂√

2𝜋𝜎
)︂−𝑛

exp

(︄
−1

2

∥𝒙 − 𝝁∥2
2

𝜎2

)︄
.

Therefore, the Gaussian mechanism can be described more succinctly by an isotropic

Gaussian whose mean is defined by the query result 𝝁 := 𝑓 (𝒙):

𝒢𝜎, 𝑓 (𝒙) = (𝑁′
1
, . . . , 𝑁′𝑛) ∼ 𝒩( 𝑓 (𝒙), 𝜎2I)

We still need to explain the choice of 𝜎, the standard deviation parameter of the Gaussian

mechanism, which is determined subject to achieving a certain level of privacy. While the

Laplace mechanism provides pure 𝜖-DP, the Gaussian mechanism provides approximate

(𝜖, 𝛿)-DP:

Theorem 2.18 (Classical Gaussian mechanism [116, Theorem A.1]). Let 𝑓 : 𝒳 → R𝑛 be a
query function whose 𝐿2 sensitivity is Δ2 = Δ2 𝑓 , and let 𝜖 ∈ (0, 1). For 𝑐2 > 2 ln(1.25/𝛿), the
Gaussian mechanism 𝒢𝜎, 𝑓 with 𝜎 ≥ 𝑐Δ2/𝜖 is (𝜖, 𝛿)-differentially private.

Note that this “classical” theorem for the isotropic Gaussian mechanism requires 𝜖 < 1

to determine values of the standard deviation 𝜎 that guarantee that (𝜖, 𝛿)-DP is fulfilled.

However, it may be possible to find (i) even tighter and (ii) more general bounds that

extend to 𝜖 ≥ 1 because the estimation for 𝜎 in Theorem 2.18 is not optimal: In fact, it is
possible to achieve (𝜖, 𝛿)-DP for arbitrary 𝜖 > 0 using the Analytical Gaussian mechanism by

Balle and Wang [32] which employs a more optimal method to find suitable values for

𝜎, even if 𝜖 ≥ 1. Moreover, it is possible to analyze the Gaussian mechanism in terms of

Rényi DP [309] which also does not have this limitation, and then convert (𝛼, 𝜖)-RDP back

to (𝜖, 𝛿)-DP via Proposition 2.11 ([309, Proposition 3]):

2.3.2.1 Rényi Differential Privacy of the Gaussian Mechanism

In the following, we consider the general form of the Gaussian mechanism based on a

multivariate Gaussian distribution with a positive definite, but otherwise unconstrained,

covariance matrix:

Definition 2.19 (Multivariate normal distribution). The multivariate normal (or Gaussian)

distribution 𝒩(𝝁,𝜮) with mean vector 𝝁 ∈ R𝑛 and positive definite covariance matrix
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𝜮 ∈ R𝑛×𝑥 is given by its PDF

𝒩(𝝁,𝜮)[𝒙] = det(2𝜋𝜮)−
1

2 exp

(︃
−1

2

(𝒙 − 𝝁)ᵀ𝜮−1(𝒙 − 𝝁)
)︃
.

The multivariate Gaussian mechanism uses a slightly more complex sensitivity which is

based on the Mahalanobis norm:

Definition 2.20 (Mahalanobis norm). Let 𝜮 ∈ R𝑛×𝑥 be a positive definite covariance matrix.

The Mahalanobis norm corresponding to 𝜮 is

∥𝒛∥𝜮 :=
√
𝒛ᵀ𝜮−1𝒛.

Accordingly, the multivariate Gaussian mechanism is defined as follows:

Theorem 2.21 (RDP of multivariate Gaussian mechanism). Given a positive definite covariance
matrix 𝜮 ∈ R𝑛×𝑛 and a query function 𝑓 : 𝒳 → R𝑛 with Mahalanobis sensitivity

Δ𝜮 = Δ𝜮 𝑓 := max

𝒙∼𝒙′
∥ 𝑓 (𝒙) − 𝑓 (𝒙′)∥𝜮 ,

the multivariate Gaussian mechanism is given by

𝒢𝜮, 𝑓 (𝒙) ∼ 𝒩( 𝑓 (𝒙),𝜮)

and satisfies (︂
𝛼,

𝛼
2

Δ2

𝜮

)︂
-RDP.

Proof. According to Gil et al. [159, Table 2], the Rényi divergence of two Gaussians with

means 𝝁 = 𝑓 (𝒙), 𝝁′ = 𝑓 (𝒙′) and same covariance simplifies to

𝐷𝛼
(︁
𝒩(𝝁,𝜮)

∥︁∥︁ 𝒩(𝝁′,𝜮))︁ = 𝛼
2

∥︁∥︁𝝁 − 𝝁′∥︁∥︁2

𝜮
,

where ∥·∥𝜮 is the Mahalanobis norm corresponding to 𝜮, cf. Definition 2.20. The result

follows, since

∥︁∥︁𝝁 − 𝝁′∥︁∥︁
𝜮
≤ Δ𝜮 by definition of the Mahalanobis sensitivity. □

In practice, we often only use the isotropic Gaussian mechanism whose covariance

matrices 𝜮 = 𝜎2I are isotropic. In this case, the Mahalanobis norm reduces to a scaled 𝐿2

norm

∥·∥𝜎2I =
1

𝜎
∥·∥2 ,

and we obtain
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Corollary 2.22 (RDP of the isotropic Gaussian mechanism). Given a query function 𝑓 : 𝒳 →
R𝑛 with 𝐿2 sensitivity Δ2, the isotropic Gaussian mechanism 𝒢𝜎, 𝑓 ≡ 𝒢𝜎2I, 𝑓 satisfies(︄

𝛼,
𝛼Δ2

2

2𝜎2

)︄
-RDP.

Notably, this coincides with the RDP curve of the univariate Gaussian mechanism that is

commonly treated in the literature [309, Section VI.C].

2.3.3 The Planar Laplace Mechanism

An example of a mechanism for metric privacy (Definition 2.5) is the Planar Laplace (PL)

mechanism. It was first introduced by Chatzikokolakis et al. [65] to achieve 𝑑2-privacy on

the two-dimensional Euclidean plane 𝒳 = R2
, and subsequently used by Andrés et al. [24]

to achieve geo-indistinguishability, a specialization of 𝑑2-privacy for location data. We use

the following generalization to an arbitrary number of dimensions by Koufogiannis et al.

[240], which was employed, e.g., to obfuscate high-dimensional gene expression vectors

[29].

Definition 2.23 (Planar Laplace mechanism). The 𝑛-dimensional PL mechanism is defined

by the density

PL(𝝁, 𝜖)[x] =
𝜖𝑛𝛤( 𝑛

2
+ 1)

𝜋
𝑛
2 𝛤(𝑛 + 1)

exp(−𝜖∥x − 𝝁∥).

While the PL mechanism is a generalization of the univariate Laplace mechanism

(Example 2.14 with 𝑛 = 1), it is worth mentioning that it is different from the multivariate

distribution obtained by drawing 𝑛 > 1 independent Laplace samples as in Eq. (2.2).

Planar Laplace Sampling Procedure. Since the PL distribution is a location-scale distri-

bution, we can draw a noise vector v 〜PL(0, 𝜖) from the centered distribution and then

translate 𝒙 by v instead of sampling from PL(𝒙 , 𝜖) directly. Note that this implies that the

PL mechanism, too, can be regarded as an additive noise mechanism. Moreover, if we

factor v = 𝑟 · u with 𝑟 > 0 and a unit vector u, it can be shown that the noise magnitude

𝑟 follows a gamma distribution Gamma(𝑛, 1/𝜖) with shape 𝑛 and scale 1/𝜖, whereas u
follows the uniform distribution Uni(S𝑛−1) on the unit sphere S𝑛−1

. Algorithm 1 illustrates

the resulting sampling procedure.
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Algorithm 1: Planar Laplace sampling procedure.

Input: 𝒙 ∈ R𝑛 , privacy parameter 𝜖 > 0

Output: 𝒛 ∈ R𝑛 with 𝒛 ∼ PL(𝒙 , 𝜖)
1 𝑟 〜Gamma(𝑛, 1/𝜖); // noise magnitude

2 𝒖 〜Uni(S𝑛−1); // noise direction
3 𝒛← 𝒙 + 𝑟𝒖; // translate input vector

2.3.4 The Exponential Mechanism

An important and versatile example of a DP mechanism that does not belong to the additive

noise family is the Exponential mechanism by McSherry and Talwar [294]. It applies

to both numerical and categorical data and requires a “measure of suitability” for each

possible pair of inputs and outputs:

Definition 2.24 (Rating/quality function). A rating or quality function from 𝒳 to 𝒵 is a

function 𝜌 : 𝒳 ×𝒵 → R, where the value 𝜌(𝑥, 𝑧) is the rating or quality for an output 𝑧

given input 𝑥.

In case of the Exponential mechanism, the sensitivity is defined as the largest possible

difference of the rating function 𝜌 given two adjacent inputs, over all possible output

values:

Δ𝜌 := max

𝑧∈𝒵
max

𝑥1 ∼ 𝑥2

(︁
𝜌(𝑥1 , 𝑧) − 𝜌(𝑥2 , 𝑧)

)︁
For a given input, the Exponential mechanism randomly yields an output value with

probability proportional to the exponentiated rating function (times the privacy parameter

𝜖):

Definition 2.25 (Exponential mechanism). Let 𝜖 > 0 be a privacy parameter, and let

𝜌 : 𝒳 × 𝒵 → R be a rating function with sensitivity Δ = Δ𝜌. Then the Exponential

mechanism is defined as family of random variables ℰ𝜖,𝜌(𝑥) for each 𝑥 ∈ 𝒳 whose PDF is

given by

Pr

[︁
ℰ𝜖,𝜌(𝑥) = 𝑧

]︁
=

exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧)

)︂
∫
𝑧′

exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧′)

)︂
d𝑧′

.

Note that a discrete version of the Exponential mechanism for countable𝒵 is obtained by

replacing the integral with a sum:

Pr

[︁
ℰ𝜖,𝜌(𝑥) = 𝑧

]︁
=

exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧)

)︂
∑︁
𝑧′ exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧′)

)︂ .

28



2.3 Some Fundamental Differential Privacy Mechanisms

The Exponential mechanism with privacy parameter 𝜖 fulfills 𝜖-DP as shown by McSherry

and Talwar [294, Theorem 6],
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Chapter 3

Related Work

In this chapter, we discuss related work pertaining to protecting privacy-sensitive infor-

mation in sequential and directional data. Our main focus is on existing approaches that

provide differential privacy, however, we also consider “classical” solutions without such

formal privacy guarantees. Besides text as an important instance of sequential data, we

also include audio (speech) and visual data as further sequential domains. Moreover, we

discuss relevant identification attacks that explain why sequential data often represents

PII that needs protection and that motivated the development of both existing and our

own defense techniques in the first place.

3.1 Concepts

In this section, we present some concepts that are useful to categorize attacks and defenses

on sequential data, as well as sensitive, identifying information contained therein.

Types of Sequential Data. Sequential data occurs in various domains or formats. Our

main focus will be on textual data since it provided the use cases for the defensive

approaches presented in this dissertation. However, for illustrative purposes, we also

consider audio and visual data as related types of sequential data where our approaches

may also be applicable.

Textual Data. Text is an abstract representation of written language. Various writing

systems have been developed to record and exchange human or natural language, which

is used as means of communication between humans to express and convey thoughts

and ideas. Moreover and more recently, computer languages have been formally defined as

means to program computers and thus control their operation, where the corresponding

source code is typically written as human-readable text.

31



Chapter 3 Related Work

Note that in this section, we consider raw plain text as stored on a computer (e.g., encoded

as a sequence of ASCII or UTF-8 characters) for both human and computer languages. On

a higher level, plain texts may be interpreted as a sequence of syllables or words instead of

characters. Apart from plain text, natural languages can be expressed in various other

modalities including auditory sounds, i.e., speech or spoken language, visual symbols

and gestures such as handwriting and sign language, as well as tactile writing systems

such as Braille.

Audio Data. We consider audio recordings as a temporal sequence of samples. In

particular, audio recordings may represent spoken language (or speech) which naturally is a

means of human communication.

Visual Data. Digital photos and images can be regarded as a spatial sequence of pixels

in two dimensions, and videos in turn as a temporal sequence of individual images (called

frames in this context). Images potentially contain written language, e.g., handwriting,

printed text, or in the form of license plates (stamped and printed). They can also show

persons, their faces, fingerprints, and many other potentially privacy-sensitive depictions.

Types of Identifiers. Privacy-sensitive information can come in many flavors. To limit

the scope of this section, we primarily focus on the identity of an individual as the type

of sensitive information that is most specific and hence most worthy of protection, since

other sensitive attributes, such as gender or ethnicity, are linked to their identity.

Named Identifiers. Named identifiers are PII terms such as a person’s name, their

addresses, phone or credit card number, etc. from which a person could be identified

directly or indirectly. Vehicle identifiers such as a car’s license plate numbers may indirectly

identify its owner. Other examples are given by the 18 HIPAA identifiers [327]. Named

identifiers are typically stated explicitly as part in a piece of text or speech, or depicted

visually in an image or video.

Biometric Identifiers. Biometric identifiers are derived from features that are intrinsi-

cally determined by human characteristics of an individual. We commonly distinguish

physiological characteristics which are related to the composition of an individual’s body,

such as fingerprints, facial images, or the appearance of the iris, and behavioral charac-

teristics which are related to the behavior of a person, including their movement (gait,

signature, etc.), sound of their voice, among others. For a recent overview of biometric

recognition techniques, we refer to the survey by Minaee et al. [307]. Some biometric
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identifiers, including finger- and voiceprints, are also specifically included in the list of 18

HIPAA identifiers [327].

“Technometric” Identifiers. In a way analogous to biometric identifiers, we may think

of particular technical characteristics of a device that uniquely identify that device, e.g.,

quirks in digital camera sensors, as “technometric” identifiers. Indirectly, such identifiers

may also lead to the identification of the owner of the device, e.g., through device serial

numbers recorded by the device vendor or manufacturer. In fact, device identifiers and

serial numbers are also listed as one of the 18 HIPAA identifiers [327]. To stay within the

scope of this dissertation, we do not explore specific attacks or defenses for this kind of

identification in this chapter.

Locality of Identifiers. Sensitive information that represents identifiers or allows inferring

sensitive attributes may be contained in sequential data in different levels of pervasiveness:

• At one end of the spectrum, the sensitive information is confined locally to one or few

segments (e.g., terms, utterances, or pixels for text, speech, or image, respectively) of

the sequence. For instance, named identifiers like names or addresses are typically

represented by one or few terms in a text, which would correspond to a few utterances

in spoken language.

• At the other end of the spectrum, the sensitive information is pervasive, i.e., distributed

across many or even all segments of the sequence. For instance, voice characteristics

of the speaker in a speech recording cover virtually all parts of the recording, apart

maybe from short speech pauses.

The pervasiveness of sensitive information is an important consideration for the defensive

measures aimed at protecting that information: On the one hand, if the sensitive information

is confined locally and has little overlap with utility-critical information, then simple

approaches that mask or redact the few relevant segments in the sequence may be suitable

to protect the sensitive information, provided that the remaining parts convey enough

information to maintain utility. On the other hand, if the sensitive information pervades

large parts of the sequence that possibly also contain utility-critical information, then the

defensive methods must modify all affected parts to hide the sensitive information, all

while preserving enough of the utility-critical information.
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3.2 Attacks

In this section, we will review several types of attacks aiming at detecting, extracting, and

inferring sensitive information from sequential types of data, namely, text, audio, and

visual data.

3.2.1 Attacks on Textual Data

Text can contain several forms of sensitive information that may be of interest to attackers:

On the one hand, sensitive information can be explicitly stated in a text in the form of

named identifiers, such as names, addresses, or phone numbers. On the other hand,

the style of the text itself may reveal sensitive information about its author or even their

identity. This section thus reviews attacks aiming at both types of sensitive information.

3.2.1.1 Named Identifiers

Identifiers and Secrets in Human Language. Due to its abstracted nature, written

language is a prominent instance of sequential data where sensitive information is typically

represented in a very explicit and “pure” form that can be easily detected and extracted.

For instance, full names, physical and email addresses, phone and credit card numbers of

individuals all are examples of explicit sensitive or personally identifiable information

(PII), where the need to protect such identifiers is also reflected in legal standards (cf.

Section 1.1.2.1, the 18 HIPAA identifiers).

While this information is plainly readable in plain text, automated methods to find and

extract sensitive information have been investigated based on information theory [393]

or more recently based on ML techniques [171, 270, 477]. Typically, the task of detecting

privacy-sensitive terms in a text can be regarded as a form of named entity recognition (NER)
(cf., e.g., [257, 312]), whose techniques often form the foundation of adapted methods

that additionally or specifically recognize sensitive data [337]. A simpler task that is

sometimes studied is detecting whether entire sentences or documents contain privacy-

sensitive information [299, 322]. Such detection methods are often used in specialized

de-identification (or “scrubbing”) tools (cf. Section 3.3.4.1) that aim at removing sensitive

identifiers that are protected under specific legal requirements, such as the 18 HIPAA

identifiers in the medical and health sector.

Identifiers and Secrets in Computer Language. Apart from human language, text is

also used as means to represent computer language, for instance, in the form of source

code, configuration files, and even compiled binaries which may contain secrets such as
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API keys or user credentials [300]. This can be especially problematic if the source code

is publicly accessible, for instance, when hosted on open source repositories like GitHub

where a simple search with the correct pattern or regular expression would yield results

with cryptographic secrets, e.g., SSH keys or credentials for Amazon Web Services (AWS)

[162, 239, 245, 365].

As with human language, work has been conducted to automatically detect such secrets

with ML and related techniques [105, 267, 387] in addition to rule- and pattern-based

approaches. While such detection techniques can be exploited by a malicious attacker to

find and then extract secrets [106, 107], they also have legitimate uses, for instance, in data

leakage prevention (DLP) solutions as discussed in Section 3.3.1.

3.2.1.2 Linguistic Writing Style

Authorship Attribution for Written Language. Authorship attribution is a set of methods

concerned with attributing authorship of anonymous or disputed documents to their

respective authors. Such methods usually make use of stylistic features to identify or

discriminate authors, which is why those methods are also referred to as stylometry.

A classic example is given by the Federalist Papers [179], a collection of 77 essays

published between 1787 and 1788 by three authors—Hamilton, Jay, and Madison—under

the pseudonym “Publius”. Until the last century, 12 of the papers had disputed authorship

between Madison and Hamilton. In 1964, Mosteller and Wallace [315] identified certain

stylistic keywords which they could use to discriminate the writing styles of Madison and

Hamilton. Based on the frequency of these keywords and Bayesian statistics, they could

correctly attribute the authorship of the disputed papers, confirming earlier work of Adair

[9].

Significance in the Digital Age. The significance of the problem in the context of

information technology was pointed out by Rao and Rohatgi [364] already in the year

2000: They take a computer science based approach at the example of newsgroup postings

and are able to cluster and link their authors based on the usage of function words
1
.

Importantly, they observe that there is “a significant amount of identifying information

about the source that leaks from the contents of web traffic itself”, and hence argue that

“hiding explicit identity information is not sufficient to guarantee privacy.”

Meanwhile, more sophisticated methods have evolved that utilize the power of com-

puters: Earlier methods relied on statistics, rule-based algorithms, and classical ML with

1
Function words typically have little lexical meaning and express grammatical relationships. Examples

include articles (a, the), pronouns (I, you, . . . ), prepositions (and, or, . . . ), etc.; cf. https://en.wikipedia.
org/wiki/Function_word.
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engineered features such as the frequency of characters and certain words, 𝑛-gram overlap

[78] and word sequence similarity [86], which are used, e.g., in the JGAAP [217] and JStylo

[290] frameworks. For an overview of such early methods, we refer to the surveys by

Stamatatos [422] and Jockers and Witten [211].

Particular sets of features that work well in uniquely characterizing individual authors

have been proposed, e.g., by Abbasi and Chen [6] and Li et al. [256]. Such feature sets

are sometimes referred to as writeprints, inspired by the use of fingerprints in forensics:

Extracted feature values from texts with known authors form their writeprints, which

then may be compared against features extracted from texts with unknown authorship.

Modern methods also employ deep learning techniques such as word- and character-level

CNNs [376, 386, 409] or the attention mechanism that is prominently used in Transformer-

based models [36, 128]. More recent techniques and developments are discussed in the

surveys by Neal et al. [320], Swain et al. [428], and Tyo et al. [444]. Another extensive

source of publications, events, and datasets related to authorship attribution and related

problems is PAN, which is described as “a series of scientific events and shared tasks

on digital text forensics and stylometry” (according to their website
2
). PAN stands for

Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection and has its origins

in a workshop held at the ACM SIGIR 2007 conference [423, 424].

Short Texts. The increasing popularity of instant messaging services as well as social

media and microblogging sites in turn also spurred interest to research authorship

attribution for short texts such as instant messages or short social media postings. An

early study on authorship attribution for short texts was conducted by Sanderson and

Guenter [394], and later studies by Bhargava et al. [44], Schwartz et al. [403] investigated

authorship attribution on tweets, which are short messages limited to 140 characters that

are posted on the social media site Twitter.

Eder [118] investigate the minimal length of texts that is required for reliable authorship

attribution results. Moreover, short tweets and instant messages not only differ in length

but also in language and style from longer documents: They may be less formal, less

grammatically correct, and involve special “online” slang or text-based symbols such as

emojis, whose frequency can be used as an additional stylistic feature [44]. As with other

authorship attribution methods for longer texts, most early methods for short texts relied

on handcrafted features such as character and word frequencies, 𝑛-grams, function word

usage, etc. Recent works, however, also employ deep learning without manual feature

engineering [436].

2https://pan.webis.de/
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Use in Forensics. As a form of biometric identification, authorship attribution plays

an important role in cyber forensics: Bhargava et al. [44] and Rocha et al. [379] consider

authorship attribution for short texts since criminals may rely on online networks as

convenient means of (presumedly) anonymous communication. Early works by de Vel

et al. [94, 95] and later Iqbal et al. [202] investigate authorship attribution for emails. For a

more extensive discussion of authorship attribution in the forensic setting, we refer to the

book by Iqbal et al. [203].

Authorship Attribution for Computer Languages. Authorship attribution techniques

have been successfully applied to source code [20, 55, 147, 148] as well as compiled binaries

[59, 384]. Legitimate applications include, for instance, identification of malware authors

[19] in the context of digital forensics.

Authorship Attribution through Linkage Attacks. Individuals can also be identified

from their writings through linkage attacks [317, 318]: A famous example is the case of

Thelma Arnold [34], an AOL user, whose history of search queries was released together

with those of over 650,000 other users in 2006. The search logs were pseudonymized by

associating the queries with their users through a unique numerical user identifier instead

of their actual username. After some investigation into the search queries, the New York
Times eventually learned enough information about user 4417749, so they could re-identify

her as Thelma Arnold, a 62-year-old widow from Lilburn, a city in Georgia, USA.

Authorship Segmentation. For compilations of text, such as books, magazines, or

newspapers, we could ask if there are different parts or segments of the text that vary in

style due to having been written by different authors. Authorship segmentation accordingly

aims at the detection of such style changes and has been investigated by Graham et al.

[167] and more specifically for source code by Dauber et al. [91].

3.2.2 Attacks on Audio Data

As medium for spoken language, audio can convey named identifiers like text as medium

for written language. Moreover, the characteristics of the human voice are a biometric

identifier that can be used to identify the speaker. In this section, we hence consider attacks

on audio data aiming at those kinds of sensitive information.
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3.2.2.1 Named Identifiers

Identifiers and Secrets in Spoken Language. Spoken language, or speech, may also

convey sensitive information: For instance, in the medical sector audio recordings such as

physician-patient conversations, medical dictations, or patient phone calls may be subject

to legal regulations [135]. Moreover, Quiroz et al. [361] remarked that “obtaining and

sharing medical data presents a major obstacle due to privacy issues and the sensitive

nature of the data”. In a more general context, this also applies to call center recordings

which may contain privacy-sensitive information [223] as well.

As with text, privacy-sensitive information in audio recordings may be detected via

NER. In fact, NER for audio is traditionally performed in a two-stage process which

first transcribes the audio to text through automated speech recognition (ASR) and then

extracts the entities using text-based NER on the transcriptions [39, 61, 136], thus reducing

the problem to detecting identifiers in textual data (cf. Section 3.2.1.1).

Recently, more direct end-to-end (E2E) approaches to NER have been proposed with

experimental results indicating a similar or better performance than their two-staged

counterparts. They work by integrating the two stages into one, for instance through a single

ML model taking speech as input and directly producing entity labels with their associated

values [248] or entity tags along with the transcribed characters [71, 157, 158, 482].

3.2.2.2 Voice

Audio recordings of human speech may not only contain explicitly named identifiers:

Individual characteristics of the recorded voices allows recognition of the speakers; as

such, the recorded voice acts as a behavioral biometric identifier. Moreover, many other

privacy-sensitive attributes can be inferred from the speaker’s voice, for instance, gender

or ethnic origin, cf. the survey by Kröger et al. [242].

Speaker Recognition. As is common with biometric recognition approaches, speaker

recognition can be classified into speaker identification whose aim is to identify a speaker

among a set of candidates, or speaker verification whose aim is to validate whether a given

voice sample originates from a specific speaker.

Typically, vocal features are extracted from utterances of a known speaker during a

learning or enrollment stage and later compared to the vocal features of the speaker to be

identified or verified. We also distinguish text-dependent and -independent methods: The

former require the spoken utterances to be the same during the learning and recognition

phases; the latter allow recognition of the speaker based on arbitrary utterances. Prominent

vocal feature representations include d-vectors by Variani et al. [449] for text-dependent
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methods, as well as i-vectors by Dehak et al. [96] and x-vectors by Snyder et al. [415, 416] for

text-independent methods. In particular, x-vectors have also become popular as means to

speaker obfuscation, as we discuss in Section 3.3.4.4.

Early speaker recognition methods were typically based on spectral properties of the

voice and signal processing techniques such as filtering or vector quantization (VQ), cf.

the surveys by Furui [153], Reynolds [374]. For instance, Kersta [228] describes an early

automated speaker recognition system based on the spectrograms from recordings of

certain cue words. The method was called “voiceprint identification” due to its similarity

to identification based on fingerprints. Therefore, voice recognition also plays an important

role in forensics [60].

Later methods also relied on probabilistic modeling; for instance, hidden Markov models

(HMMs) in Zheng and Yuan [495], or Gaussian mixture models (GMMs) in Reynolds and

Rose [372] as well as Reynolds [373]. Also, neural networks were used early on, e.g., by

Oglesby and Mason [328] as well as Venayagamoorthy et al. [451]. More recently, also deep

neural networks have been used, cf. the surveys by Irum and Salman [204] as well as Bai

and Zhang [31]. For a broad overview of various methods and recent progress, we refer to

the surveys by Ahmed and Hassan [13], Mohd Hanifa et al. [311], and Kabir et al. [218].

3.2.3 Attacks on Visual Data

Images and videos may also contain privacy-sensitive information such as identifiable

faces of individuals or legible license plates on vehicles. This affects services such as

Google Street View [164] and various recordings, e.g., of video conferences [220] or surgical

procedures [411] where the identity of the participants or medical staff members should be

protected, respectively. Moreover, Kosinski [238] showed that facial images of individuals

can expose their political orientation.

3.2.3.1 Named Identifiers

Identifiers and Secrets in Written Language. Still and moving images may contain

various forms of written language: They may show handwritten or printed texts in books,

letters, and other documents, as well as public advertisements on billboards, street signs,

and license plates on cars, among many others. Generally, we may assume that optical

character recognition (OCR) techniques (see, e.g., [72, 301, 425]) can be applied to such

depictions to extract the corresponding plain text; in those cases, we can utilize the methods

described in Section 3.2.1 to detect and extract named identifiers (cf. Section 3.2.1.1) or to

identify authors from their writing style (cf. Section 3.2.1.2).
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Automated License Plate Recognition. An illustrative example of written identifiers

is license plates which are used for the unique identification of vehicles, and indirectly,

their owners. Automated license plate recognition (ALPR) systems typically work by

first detecting the license plates in an image, followed by OCR to extract the license plate

numbers from the identified image region depicting the license plate. For an overview

of methods, we refer to the surveys by Anagnostopoulos et al. [22], Du et al. [113], and

Shashirangana et al. [407].

3.2.3.2 Handwriting Style

Handwriting constitutes a behavioral biometric identifier by which its writers can be

recognized. Strictly speaking, we must distinguish between an author who conceives and

formulates a text and a writer who notes down the text in (hand-)written form: In most

cases, they may be one and the same person, but the former (e.g., a doctor who dictates a

text) and the latter (e.g., an assistant taking notes) could very well be different individuals.

Therefore, the linguistic style actually stems from the creative thought process of the

author who puts his thoughts into linguistic expressions, whereas the characteristics of a

piece of (hand)writing, as opposed to its wording, arise from the inherent patterns in the

movements of the writer’s hand.

Handwriting Identification and Verification. Formally, we can distinguish verification
and identification of handwriting: The former validates that a piece of handwriting originates

from a specific writer, whereas the latter singles out one specific writer from a larger set

of candidates that is the most likely one to have written the sample. In the following,

we treat both handwriting verification and identification together for simplicity. Also,

note that handwriting recognition typically refers to the extraction of text that was written,

independently of its writer.

While plain text authorship attribution methods such as those described in Section 3.2.1.2

solely rely on stylistic characteristics of the text to identify its author, handwritten text

offers additional clues to identify its writer. Based on the available kinds of additional

features, handwriting identification (and verification) methods commonly follow one of

the following two major approaches [201]:

• Static or offline methods rely on a static depiction of the finalized handwriting, from

which visual features can be extracted (optionally in addition to the plain text, using

OCR or related technologies).

• Dynamic or online methods also observe the writing process (e.g., when someone
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is signing a document) from which even more biometric features such as pressure,

speed, acceleration, etc. can be recorded over time.

Note that the extra features from dynamic approaches usually result in time series, i.e.,

another form of sequential data. However, since this section is concerned with visual data,

we focus on the static approaches.

Early methods for handwriting identification and verification are discussed in the

surveys by Plamondon and Lorette [347] and later by Leclerc and Plamondon [253];

notably, some of these methods already employed various kinds of simple neural networks

[253, Table 2]. Other methods also utilize statistical models such as HMMs or GMMs

[400, 401], as well as various dissimilarity measures and distance statistics [222, 489].

With technological progress, deep learning became more and more feasible and hence

was also applied to the identification of handwriting: Convolutional neural networks

(CNNs) were used first [143, 426, 476, 486] and were quickly followed by recurrent neural

networks (RNNs) [185, 492]. Another approach by Wang and Jia [460] utilized generative

adversarial networks (GANs). Recently, Koepf et al. [235] and Zhang [491] have proposed

models based on Transformer networks [450]. A hybrid model that incorporates both

visual features and stylistic features as utilized by plain text authorship attribution methods

(cf. Section 3.2.1.2) has been investigated by Slaughter [413], where the combination of

features implies the assumption that writer and author are the same person. For a recent

overview, we refer to the surveys by Diaz et al. [104] and Hafemann et al. [176].

3.2.3.3 Facial Images

Face Detection (and Extraction). Automated methods to detect faces in images and

videos have been studied extensively and a wide range of approaches has been proposed.

Due to the vast amount of publications, we refer to the surveys by Hjelmås and Low

[190], Zafeiriou et al. [488], Zhang and Zhang [490] as well as Kumar et al. [244] for an

overview of past and recent methods. Detecting faces (and potentially other objects) in

videos is often reduced to detecting faces in the individual frames of the video; additionally,

face tracking techniques may be used as the position of a face will typically not move

much between subsequent frames. Face detection typically also localizes faces within a

larger image, i.e., it also yields the locations of any detected face instead of only indicating

whether some face has been detected. Therefore, once the boundaries of a face have been

determined, it can easily be extracted.

Face Recognition. Face recognition covers face identification (“Whose face is it?”) and

verification (“Does the face really look like yours?”), which are popularly used for biometric
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authentication. Detection also forms the foundation of many face recognition methods,

where the detected face is extracted based on its bounding box and then the actual

recognition algorithm only considers the extracted facial image. Again due to the vast

amount of works in this area, we refer to the surveys by Zhao et al. [493] and Jafri and

Arabnia [205] for earlier methods, by Kasar et al. [225] for works based on machine learning,

and by Masi et al. [281] as well as Wang and Deng [459] who give an overview of more

recent methods based on deep learning techniques.

3.3 Defenses

In this section, we look at various defense techniques that prevent or mitigate attacks

such as those discussed in Section 3.2. We roughly distinguish three types of defenses,

namely data leakage prevention (DLP), private representations, as well as de-identification

including masking and obfuscation techniques. Equally important, we also discuss

approaches that provide differential privacy guarantees where applicable.

3.3.1 Data Leakage Prevention

Detection methods for privacy-sensitive data such as those discussed in Section 3.2 are

often used by attackers to extract private and/or sensitive information. However, the

same detection methods can also be utilized as a preventive measure to protect sensitive

data: Data leakage prevention (DLP)
3

solutions detect unauthorized attempts to copy

or transfer sensitive data, and thus prevent intentional or unintentional data breaches

and data ex-filtration attempts (cf. Ullah et al. [445]), for instance, by raising alerts or

blocking access to the data. Prominent examples of DLP solutions include Google Cloud
DLP [77, 163] and Nightfall AI [3, 333].

Domain-Specific Solutions. Some DLP solutions such as TruffleHog [440, 441] or Credential
Digger [267, 395] specialize on source code. They can help mitigate the attack by preventing

unintentional leakage of secrets, for instance, by warning software developers and open-

source contributors about potential secrets in their source code and in commits to code

repositories [412].

3
DLP is sometimes also infelicitously called data loss prevention, although we normally understand by

data loss data becoming inadvertently destroyed or inaccessible in one way or another, where mitigation

strategies typically involve backups or other forms of redundancy. These are, however, not in the scope of

this dissertation.
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DLP and Sanitization. Some advanced DLP solutions not only offer detection, but

also sanitization of sensitive information by redacting, masking or replacing it to obtain

sanitized or de-identified data, for instance, using obfuscation methods such as those

discussed in Section 3.3.4. This may be useful when warning and blocking are inadequate

or insufficient, for instance, when sharing or further processing of the (then sanitized)

data is desired. Solutions focusing on obfuscation of explicit sensitive information include

Microsoft’s Presidio [2, 304], Private AI [434], and Gretel.ai [1].

For a broader overview of DLP and related approaches, we refer to the surveys by

Alneyadi et al. [16], Shabtai et al. [404], and Kužina et al. [250].

3.3.2 Private Representations

Private representations of sequential data are often used with the intent of data sharing:

Sharing the original data could leak privacy-sensitive information, whether explicitly in

the form of named identifiers or implicitly, e.g., through some form of biometric attribute

(cf. Section 3.2). Instead, if we encoded the original data into private representation vectors

so that they contain only insensitive information, we could pass those instead without

the privacy implications. A benign analyst then could use the private representations for

further analysis tasks or to train machine learning models.

Representations can be obtained in various ways:

• The output of suitable intermediate layers in a (deep) neural network; we often refer

to such outputs as embedding vectors (e.g., word embeddings).

• A BoW or term-frequency vector representation of text.

• The output of algorithmic transformations such as signal-processing techniques (e.g.,

the frequency spectrum of audio signals obtained via fast Fourier transform).

• The bitstream of data compression algorithms could also be seen as a form of

representation (although again of sequential nature).

The remaining question is how to make these representations private so that they do not

leak the same sensitive information as in the original data that we want to protect. In this

section, we will look into several approaches to achieve this goal.

3.3.2.1 Private Text Representations

Various methods have been proposed to obtain private representations for textual data.

Most methods directly obtain private text representations, e.g., by learning and sanitizing
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the representations simultaneously, whereas other methods rely on existing, non-private

representations and then sanitize them to make them private.

Learning Representations via Adversarial Learning. Coavoux et al. [80] consider a

scenario for topic and sentiment classification of texts. Their classifiers consist of a text-

to-vector encoder followed by a feed forward network for the actual classification into

the utility (i.e., topic or sentiment) labels. Assuming an attacker who has access to the

latent representations in the encoder output, they find that the representation vectors

still leak private information about sensitive attributes such as age and gender of the

authors of the texts, despite the classifier being only trained to predict the sentiment or

topic. Moreover, they note that correlations between sensitive information and utility

labels leads to a trade-off between privacy and utility, since one needs to sacrifice utility for

privacy. To mitigate leakage of sensitive information from learned representations, they

propose adversarial learning [155, 156] to suppress such sensitive information in the latent

representations: An adversarial classifier that aims at predicting sensitive information

from the latent vectors is added to the network, while the encoder network is optimized to

fool the adversarial classifier and only encode information relevant for the utility task.

Elazar and Goldberg [119] confirm that adversarial learning reduces leakage of protected

information from private text representations; however, they point out that a fair amount

of sensitive information still remains and can be extracted from the private representations.

Moreover, their experiments show that in order to estimate the attack performance

accurately, the attack classifier must be retrained again after training the encoder that

produces the private representations. Therefore, an adaptive adversary model is preferable

over a static one as it provides more meaningful results.

Adversarial representation learning has also been employed by Li et al. [263] to protect

more than one sensitive attribute. Friedrich et al. [151] train an automated de-identification

system that removes PHI from medical records based on shared private representations.

Learning Representations via Reinforcement Learning. As an alternative to adversarial

learning, Mosallanezhad et al. [314] investigate reinforcement learning using a reward

function that includes attack and utility scores as feedback. They argue that their

reinforcement approach allows better control of the trade-off between privacy and utility.

Sanitizing Representations via Linear Projections. Projection methods provide a way

to obtain private representations from existing (potentially non-private) representations.

A key advantage of such post hoc methods is that they work without retraining the

embedding models.
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In the privacy-related context of fairness and bias in pre-trained word embeddings,

Bolukbasi et al. [47] analyze the geometry of the biased terms (here: gender) in the

embedding space and are able to identify a low-dimensional subspace that captures this

bias to a large extent. Accordingly, they propose a linear projection on the orthogonal

subspace as a means to de-bias the embeddings. Subsequently, Ravfogel et al. [367]

propose an automated approach called Iterative Nullspace Projection: It works by iteratively

re-training linear classifiers for the protected attributes and projecting the data onto the

nullspace (kernel) of each classifier’s weight matrix, thus rendering the classifiers’ decision

boundaries ineffective. Haghighatkhah et al. [177] in turn propose two automated methods,

Mean Projection and Tukey Median Projection, that work with a single projection only. Their

experiments indicate that single projection methods can offer comparable protection but

with fewer side effects on the overall space compared to Iterative Nullspace Projection.

A major limitation of methods based on linear projection is that they only protect the

linear separability of the sensitive attributes; that is, other, non-linear classifiers may still

be able to discriminate those attributes from the projected data successfully.

3.3.2.2 Private Audio Representations

Learning Representations via Adversarial Learning. To the best of our knowledge,

Srivastava et al. [418] were the first to propose adversarial training as means to protect

the identity of speakers in learned speech representations—although, as remarked by the

authors, adversarial training had already found its way to automated speech recognition

systems in previous works (see also Wali et al. [455]), e.g., to improve recognition perfor-

mance. They demonstrated that adversarial training works well to protect the speakers’

identity in a closed-set experiment where the speakers are known at training time. However,

they found that the protection does not generalize well to open-set scenarios where the

identity of a suspected speaker has to be protected in a larger crowd that includes speakers

potentially unknown at training time.

Aloufi et al. [18] and Noé et al. [325] later independently proposed frameworks for

learning privacy-preserving, disentangled latent representations that allow users to specify

preferences as to what tasks may be performed and what attributes should be protected in

the obtained representations.

3.3.2.3 Private Visual Representations

Learning Representations via Adversarial Learning. Feutry et al. [139] apply adversarial

training [156, 161] to learn private representations from images. They demonstrate their

approach in two scenarios with images of handwritten digits and facial expressions,
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where the representations are learned in such a way as to allow classification of the digits

or facial expressions, while hiding the identity of the writer or person whose face is

shown, respectively. Pittaluga et al. [346] also learn private image representations using

adversarial training, using various combinations of sensitive and desired utility attributes

to be inhibited and sustained, respectively. As additional means to sustain utility, their

approach also pursues a generic objective to maintain variance in the encoder output.

Li et al. [255] observed that non-private representations (e.g., extracted from a neural

network layer) still may contain enough information that allows an attacker to apply

representation inversion methods [274] to restore the original image. The attacker could

thus learn sensitive information such as the identity of a depicted person. The authors

hence propose an adversarial training framework called DeepObfuscator consisting of a

classifier for the intended classification task, an adversary classifier simulating an attacker

who aims to infer sensitive attributes, as well as an adversary “reconstructor” that simulates

such an inversion attack by aiming to recover the original image. In their experiments, they

compare their DeepObfuscator method against a baseline which simply adds Gaussian

noise to each representation (corresponding to the Gaussian mechanism from DP). They

find that simply adding Gaussian noise to the representations (or raw image) is less

effective in protecting sensitive attributes or preventing reconstruction than the adversarial

DeepObfuscator method while having a stronger impact on the intended classification

tasks. A similar approach with adversarial representation learning is presented by Xiao

et al. [475]: They also reconstruct the input image as in Li et al. [255], but the adversary

attempts a model inversion attack following Fredrikson et al. [149, 150] to reconstruct the

input.

Martinsson et al. [280] propose PCGAN, a two-step GAN architecture consisting of a

filter and generator component, each with its own discriminator. Their model not only

learns to suppress sensitive information in the representations (as often done when using

GANs for privacy protection) through the filter component, but also to replace sensitive

attributes by randomly chosen synthetic attributes in the generator component. They

employ a maximum entropy strategy to optimize the filter as to maximize the uncertainty of

the filter discriminator, which has been proposed by Roy and Boddeti [385] and shown to

outperform the more traditional minimal log-likelihood strategy which would mislead the

discriminator to consistently guess wrong values
4
.

Learning Representations via Contrastive Learning. Osia et al. [334] modify existing

neural networks by embedding an autoencoder between two intermediate layers, whose

4
This leaves some information: E.g., if a binary classifier always guesses wrong, the adversary can easily get

the correct answer by negating its output.
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latent variable is then used as private representation. To hide sensitive attributes, they

introduce an additional contrastive loss in the training objective that is based on the

latent representations. Its goal is to reduce the distance between representations that

correspond to inputs with different sensitive labels. They also propose adding noise as

an extra measure for further privacy gains, however, no formal DP guarantees are given

in the paper. Importantly, they observe that noise is more detrimental to fine-grained

information and thus suggest to only inject noise when the granularity of the sensitive

information (e.g., identity) is finer than the granularity of the target variable (e.g., facial

expression) that is intended to be predicted.

Sanitizing Representations via Linear Projections. Xu et al. [479] use linear projections

to remove feature components that lie in the nullspace of linear predictors of desired

information (utility). Their approach is thus complementary to the projection-based

methods for fairness in text embeddings discussed in Section 3.3.2.1 which determines the

directions to remove based on the sensitive information that shall be suppressed. They

evaluate their methods on various datasets, including datasets from the image and music

domain, and could likely be adapted to various other domains, including text or audio.

Sanitizing Representations via Adversarial Learning. Morales et al. [313] assume a

pre-trained embedding network and propose to append a multilayer projection network

(SensitiveNets) that is trained to sanitize the representations and hide sensitive attributes

while still allowing desired utility tasks (here: face verification). The network is adver-

sarially trained layer-by-layer with a triplet loss so the layers in the projection network

suppress the sensitive information.

3.3.3 Differentially Private Representations

Most fundamental DP mechanisms are only directly applicable to numerical data such as

scalars or vectors, which is one reason why applying DP mechanisms to unstructured data

is difficult. A possible solution that avoids devising complex mechanisms for complex,

unstructured data is encoding it into vector representations, which are amenable to the

many existing numerical DP mechanisms.

3.3.3.1 Differentially Private Text Representations

To the best of our knowledge, the first approach that produces purely differentially private

text representations is our own, SynTF [465, 466], which we describe in detail in Chapter 5.

It transforms texts into a term-frequency or Bag-of-Words (BoW) representation, using
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the Exponential mechanism by McSherry and Talwar [294] to randomly substitute words

with similar words, e.g., as determined by the cosine similarity of their word embeddings.

Following our approach with BoW representations, Fernandes et al. [137, 138] propose a

novel variant of metric privacy [65] (cf. Section 2.2.3) called Earth Mover’s Privacy, which is

based on a special case of the Earth Mover’s Distance applied to “bags” (i.e., sets) of word

embedding vectors. They also substitute each word, but by perturbing the original word

embedding vector with a multivariate variant of the Planar Laplace (PL) mechanism (also

see Section 2.3.3) and replacing it with the word pertaining to the nearest neighbor.

Xu et al. [480] propose a novel perturbation mechanism for (word) embeddings based on

the Mahalanobis norm which better respects the distribution of words in the embedding

space: Their Mahalanobis mechanism applies elliptical noise instead of isotropic noise that is

produced by the usual Laplace or Gaussian mechanisms.

Lyu et al. [269] propose a locally differentially private protocol based on differentially

private representations for learning from crowd-sourced textual content: Each user

maps their texts to a sequence of (word or token) embeddings, encodes the sequence of

embeddings to a fixed-length binary vector, where each bit is perturbed. The randomized

vectors of all users are then transferred to a potentially untrusted server, who can then

train a ML model (e.g., a classifier) based on the collected vectors.

Feyisetan and Kasiviswanathan [140] take existing embedding vectors and project them

to a lower-dimensional space using a random projection. They then apply the Planar

Laplace mechanism (Definition 2.23) to the projected vectors to achieve metric privacy
5

[65] (see Section 2.2.3), an extension of DP.

From Private Representations to Entire Texts. This line of research also inspired various

differentially private obfuscation methods for entire texts (e.g., [141, 142]): Any DP

mechanism for individual tokens (e.g., words as in SynTF) or their embeddings naturally

extends to a DP mechanism for texts (regarded as sequences of tokens) by iteratively

applying the DP mechanism to each token in the sequence and replacing it with the

mechanism result. (In case of embeddings, we find the word whose embedding is the

nearest neighbor of the perturbed embedding.) We discuss those methods and their

limitations in more detail in Section 3.3.5.1.

In the context of pre-trained language models such as BERT [101], Qu et al. [360]

investigate the effects of DP obfuscation of the model’s input texts (viewed as a sequence

of tokens or embeddings) at various stages of the model on the model’s performance for

various tasks: DP is achieved for a model input by applying the PL mechanism either to the

5
The authors of the paper refer to metric privacy as Lipschitz privacy.
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global sequence embedding (i.e., BERT’s [CLS] token), individually to all the sequence’s

token embeddings, or at the text level following Feyisetan et al. [142] by replacing each

token with the token closest to the perturbed token embedding via nearest neighbor search.

The authors further analyze how well the model can adapt to each type of privatized

input, and how they can improve the model’s ability to handle privatized inputs by

privacy-adaptive pre-training.

Faulty Approaches. Beigi et al. [40, 41] and Alnasser et al. [15] propose an approach

based on a (non-variational) autoencoder that is trained to reconstruct the input texts:

They perturb the latent vectors using the Laplace mechanism, but instead of releasing the

reconstructed texts based on the noisy latent vectors, they release the noisy latent vectors

directly as obfuscated text representations. Unfortunately, Habernal [175] identified a

faulty Laplace inversion sampling procedure in their method, which therefore violates

DP. Moreover, they implicitly use 𝐿∞ clipping (due to element-wise tanh being used

as activation function in the encoder output) whereas the Laplace mechanism is based

on the 𝐿1
sensitivity; this is suboptimal as the 𝐿1

sensitivity will then grow with the

dimensionality 𝑑 of the latent space instead of being constant.

Another issue was found by Maheshwari et al. [275] in the differentially private repre-

sentations of Plant et al. [348] and Lyu et al. [268]: Their approach adds Laplace noise to

each entry of the encoded representations; however, they incorrectly assume a sensitivity

𝛥 = 1 by normalizing the encoded vectors entry-wise to the range [0, 1], which in fact yields

a much larger sensitivity of 𝛥 = 𝐷, where 𝐷 is the dimension of the vector. The reported

privacy losses 𝜖 are therefore substantially larger by a factor of 𝐷. Maheshwari et al. [275]

in turn propose a corrected version by normalizing with the 𝐿1
norm of the representation

vector and also incorporate adversarial learning to improve fairness and protect other

sensitive attributes.

3.3.3.2 Differentially Private Audio and Visual Representations

We are currently not aware of published methods that aim at producing differentially

private audio or image representations as their final result. However, differentially private

representations certainly are used as means to the end of obfuscating audio and visual

content, as we discuss in Sections 3.3.4.4 and 3.3.4.5.

3.3.4 Data Obfuscation

In this section, we discuss data obfuscation methods that protect sensitive information

and preserve the format of the data, i.e., an obfuscated text, audio recording, or image, is
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again represented as text, audio recording, or image respectively.

Differentiation from Private Representations. Private representations are encoded rep-

resentations of the original data, e.g., as numerical vector, but where sensitive information

is obfuscated and hard to (ideally) impossible to extract (cf. Section 3.3.2). They are

suitable in scenarios where the representation vectors are processed automatically, e.g., by

a computer. However, in case the sanitized data should still be interpretable by humans,

it is preferable that the sanitized result remains in the same format as the original data:

For instance, when sanitizing a piece of text, we would expect the output to be again

human-readable text instead of some form of vector representation.

Obfuscation through Private Representations. Data obfuscation methods for sequential

data that preserve the original format of the data often rely on an encoder-decoder (or, in

terms of signal processing: analysis-synthesis) architecture to transform the data so that

(privacy)-sensitive information is suppressed while other (insensitive) content is preserved.

On a high level, autoencoders consist of an encoder component that encodes the input to

some intermediate, latent representation as well as a decoder (or generator) component that

aims at reconstructing the original input from the encoded representation. Consequently,

a natural approach for obfuscating sequential data is to apply the techniques for private

representations, such as those presented in Section 3.3.2, to the latent representations

in the autoencoder model so that the decoder produces sanitized output again in a

human-interpretable format.

3.3.4.1 De-Identification of Textual Data

De-identification, masking, or scrubbing methods provide a way to remove or mask privacy-

sensitive or personally identifiable information (PII) from (typically unstructured) doc-

uments. They are often motivated by the healthcare and medical sectors and focus on

identifying and removing particular types of personal information such as protected health

information (PHI), a list of 18 identifiers as specified in the US Health Insurance Portability

and Accountability Act (HIPAA) [435, 447]. As such, they can generally be considered as

specialized variants of named entity recognition (NER) focusing on privacy-sensitive data.

Earlier methods include the “Scrub System” [429], the PhysioNet “deid” software

package [321], or the “MITRE Identification Scrubber Toolkit” (MIST) [7]. They typically

work with lists of names and identifiers, regular expressions, and simple heuristics to

identify and remove pieces of text that constitute PII.
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More recent methods also employ modern ML and natural language processing (NLP)

techniques to find (and replace) PII in unstructured data, such as, for instance, conditional

random fields (CRFs) [25, 184], support vector machines (SVMs) [410], decision trees [432],

RNNs [98, 230], or deep neural networks including Transformers [214, 316, 471]. Many

solutions are in fact hybrid systems that use combinations of various techniques [265, 266];

for instance, Microsoft’s “Presidio” [304] is a customizable framework that incorporates,

among others, pattern-based rules such as regular expressions, NER based on various

libraries such as spaCy [193], and other deep learning methods.

3.3.4.2 Authorship Obfuscation

Manual Methods and Machine Translation. Rao and Rohatgi [364] examine newsgroups

postings and identify the authors from the body of the text by analyzing the frequency

of function words, i.e., words such as articles or pronouns with little or no lexical, but

grammatical meaning that expresses relationships between parts of a sentence. They

suggest to either use automated “round-trip” machine translation to a foreign language and

back, or to educate authors who want to write anonymous documents about authorship

attribution attacks, so they can intentionally hide their writing style.

Brennan and Greenstadt [52] and Brennan et al. [51] consider adversarial writing by

authors to intentionally hide their writing style or imitate other authors, and automated

“round-trip” machine translation [51], both in line with the countermeasures proposed by

Rao and Rohatgi [364]. Their evaluation indicates that machine translation is insufficient

to protect against authorship attribution. This has been confirmed by Caliskan and

Greenstadt [58] who observed that even multiple rounds of machine translations do not

prevent authorship attribution. Furthermore, Afroz et al. [11] show that deceptive writing
by an author trying to imitate another or to obfuscate his own writing style can still be

detected with high accuracy.

Kacmarcik and Gamon [219] present an automated approach based on decision trees

that informs authors about the most revealing terms regarding their identities so that they

can manually revise the document. In their evaluation, the manual edits are simulated

by adjusting the tf vector of a document by moving its feature values closer to those of

other writers, as to prevent the classifier from identifying the correct author. While the

countermeasure is effective against the evaluated SVMs with up to 70 features, the more

sophisticated unmasking approach by Koppel and Schler [236] and Koppel et al. [237] is

still able to distinguish the actual author from others. Kacmarcik and Gamon [219] in turn

propose a “deep obfuscation” variant of their method which uses more iterations to make

unmasking harder; however, this quickly becomes cumbersome as it requires the users to
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make more and more manual changes to their documents. Their results suggest that it is

insufficient to change only small parts of a text to successfully mitigate authorship attribution

attacks.

“Anonymouth” by McDonald et al. [290] is based on JStylo and uses clustering of two

reference sets with the author’s and foreign sample texts to propose manual changes

that have to be made to the document to prevent authorship attribution. The process

must be repeated until the attack is mitigated sufficiently. The results indicate that both

methods are successful in preventing authorship attribution attacks in theory. However,

the authors of Anonymouth [290] observed that while users were able to implement the

suggested changes for very small feature sets with only 9 features, they felt overstrained

by the amount of changes needed for the more advanced “WritePrints (Limited)” feature

set (which we also used in our experiments in Chapter 5). This is in line with the earlier

observation by Kacmarcik and Gamon [219] that for a deep level of obfuscation, one

would have to consider more and more features and make corresponding changes to the

document, thus increasing the complexity for the user. In practice, such manual methods

seem cumbersome for the user if a deep level of obfuscation shall be reached.

Deep Learning. Motivated by recent improvements in machine translation, Keswani et al.

[229] re-evaluated back-translation based on state-of-the-art machine translation services

(Google Translate, Bing Translate, Yandex). The authors conclude that translation “seems

a worthy attempt”; however, as noted by Potthast et al. [350], the authorship verification

was evaluated only in an obfuscation-unaware manner, i.e., in a static attacker model.

Shetty et al. [408] propose a cyclic GAN network [161] with long short-term memory

(LSTM) encoder-decoder blocks [191] that learns to imitate the style of a target class while

preserving the semantic content of the input. Similarly, Emmery et al. [121] propose an

encoder-decoder architecture with LSTM cells in combination with a gradient reversal

layer (GRL) [155] on the latent context vector to obtain style-invariant sentence embeddings,

which are thus decoded into neutral rewrites of the input texts.

Feature-Engineering. Karadzhov et al. [224] propose an automated approach that

modifies a text to appear “mediocre” subject to certain text metrics that are commonly

used as significant features for authorship attribution. The modifications are taken from

a set of transformation rules with the additional goal of preserving the meaning of the

text. Similarly, Romanov et al. [381] develop a system for Russian text that smoothens out

certain features that are significant for authorship attribution towards average values. The

output text is generated by a Transformer-based model from the modified features.
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Bevendorff et al. [43] propose using the Jensen-Shannon distance between the character

trigram distributions as a metric to measure stylistic distance between texts. Based on this

metric, they use a heuristic search to find a series of paraphrase operations that obfuscate

a given text and reach a desired obfuscation distance.

Genetic Algorithms. Mahmood et al. [276] propose MUTANT-X, a genetic algorithm

that anonymizes text by making word replacements aiming at lowering the attribution

probability but preserving the text’s semantics. The evaluation is performed with a fixed

authorship attribution classifier, corresponding only to a static attacker model.

3.3.4.3 De-Identification of Audio Data

Cohn et al. [82] and Baril et al. [35] consider the de-identification of audio recordings.

They reduce the core problem to textual data by breaking it down to automated speech

recognition (ASR) followed by NER on the transcribed text, and aligning the text with the

original audio recording. The segments tagged as sensitive entities are then redacted in

the recording.

A slightly different scenario is addressed by Cohen-Hadria et al. [81] who consider the

obfuscation of voices of people in urban sound recordings. This approach can be regarded

as analogous to the blurring of license plates and faces for privacy reasons in photographs

of urban surroundings as, for example, in Google Street View [164] (see Section 3.3.4.5).

3.3.4.4 Voice Sanitization

Voice Conversion. Early works by Pellom and Hansen [341] and later by Matrouf et al.

[282] as well as Bonastre et al. [48] investigate automated voice transformation based on

spectral properties of the voice signals (cut into smaller frames) to modify the voice of an

imposter to be falsely recognized as a specific target speaker by the speaker recognition

system. With the designated goal of de-identifying speech recordings, Jin et al. [209, 210]

conducted benchmarks of various voice transformation methods. Their results show that

the methods were successful in fooling two tested speaker identification systems into

accepting the de-identified recordings, where the best method also prevented human

listeners from recognizing the transformed voices of people well-known to the listeners.

Bahmaninezhad et al. [30] employ a CNN encoder-decoder architecture to map the

intermediate, spectral and excitation features from the source speaker to an average of

known target speakers. Another approach by Prajapati et al. [351] utilize a CycleGAN

architecture as well as timescale modification to convert the voice characteristics from the

source speaker to a pseudo target speaker.
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Qian et al. [357] developed a mobile app called VoiceMask that protects both speaker

identity using voice conversion technology and sensitive content (named identifiers) by

replacing selected, sensitive keywords with safe surrogate terms using a differentially

private substitution mechanism. In another study, Qian et al. [359] study various ways

to sanitize speech that modify both voice and content, involving voice conversion and

synthesis (from transcripts) as means for voice obfuscation, as well as content sanitization

that substitutes sensitive key terms.

Adversarial Learning to Suppress Sensitive Information. Ericsson et al. [122] propose

a model to protect sensitive attributes (gender) of the speakers from speech recordings. It

first encodes the speech input to a spectrogram as an intermediate representation from

which they filter out sensitive information by adapting a two-step GAN architecture [280]

to the spectrogram domain and then transforms the sanitized spectrogram back into

speech.

Aloufi et al. [17] employ a CycleGAN architecture [497] to suppress sensitive information

that reflects emotions of the speech signal in the extracted features, and then re-synthesize

a neutral speech signal that is free of emotion.

Voice Distortion. Patino et al. [338, 339] propose a simple voice anonymization approach

relying on basic signal processing techniques using the McAdams coefficient [289]. It

is also used as one of two baselines at the VoicePrivacy challenge [439]. Kai et al. [221]

propose a lightweight pseudonymization (reversible) and anonymization (irreversible)

framework for speech. Their method is based on signal processing techniques with few

parameters that allow efficient processing, where they use data-driven hyperparameter

optimization to optimize the signal processing parameters.

Methods Based on x-vectors. In the context of speaker recognition, Snyder et al. [416]

proposed x-vectors, which are fixed-dimensional embeddings that can serve as robust

speaker representations. They are extracted from a deep neural network trained to

discriminate speakers and have since gained popularity as speaker representation and

also as a means to speaker obfuscation as we will see in the following.

Fang et al. [133] propose an x-vector based speaker anonymization system. It utilizes

a speaker-independent automated speech recognition system to extract content features

representing the spoken words, as well as a pre-trained x-vector model to encode the speaker

identity. To obfuscate the speaker identity, they change the x-vector to a combination

of external speakers’ x-vectors and re-synthesize the speech signal from the obfuscated
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x-vector and unmodified content features. Their method also serves as one of two baselines

in the VoicePrivacy challenge [439].

Champion et al. [64] build on the VoicePrivacy baseline based on x-vectors by Fang et al.

[133]. They propose better content features by training a deep encoder-decoder network for

automatic speech recognition. Moreover, to prevent speaker information leaking into the

content features, they apply adversarial training to the feature representations to suppress

the undesired information leakage. They substitute the speaker’s x-vector with a random

target speaker’s x-vector to obfuscate the speaker identity.

A similar approach is presented by Perero-Codosero et al. [343] who also follow the

x-vector baseline [133], but they use an AAE to transform the original x-vector into a

sanitized x-vector, removing sensitive information such as the speaker’s identity, gender,

and/or accent from the autoencoder’s latent vector through adversarial training.

Turner et al. [442] observe that the VoicePrivacy baseline [133] produces pseudo speaker

voices that sound much more similar to each other than real speakers. They argue that

this is due to the averaging of multiple x-vectors from the pool of x-vectors to define the

target x-vector, which smoothens out details and individual voice characteristics that are

present in unmodified x-vectors. They hence propose a GMM to generate target x-vectors

that better capture the diversity of voice characteristics of real speakers.

The method by Mawalim et al. [288] is also based on x-vectors as well as clustering and

singular value decomposition (SVD): They first apply gender-dependent clustering to the

pool of x-vectors and choose the centroid of the furthest cluster as target x-vectors. Next,

they decompose the target x-vector using SVD and truncate the number of singular values

to obtain a more general speaker representation. As further measures for obfuscation, they

modify the fundamental frequency (𝐹0) and stretch the speech duration.

Miao et al. [302, 303] investigate language-independent speaker anonymization. They

rely on the Transformer-based HuBERT model [194] which they fine-tune to learn content

representations in a self-supervised manner. They also propose an updated model to derive

speaker representations similar to x- or d-vectors [349, 416, 449] which they substitute to

that of another speaker to achieve voice anonymization.

Benchmark Studies. Srivastava et al. [420] evaluate the effectiveness of voice conversion

methods to protect the identities of the speakers. They raise concerns that previous studies

often assume a weak attacker who does not take into account that the speech data has been

obfuscated. Therefore, they consider informed attackers (corresponding to an adaptive

attacker model) who aim at identifying the speaker through various linkage attacks that

are aware of the inner workings of the conversion methods. They conclude that depending

on the attacker’s level of knowledge, the evaluated methods were unable to sufficiently

55



Chapter 3 Related Work

hide the speaker identities from the obfuscated data.

In two later studies, Srivastava et al. [419, 421] analyze the impact of different pseudo-

speaker selection strategies on the x-vector VoicePrivacy baseline [133]. Again, they

consider different attacker models in their evaluation, showing that an ignorant (i.e., static)

attacker model overestimates privacy and that an informed (adaptive) attacker model

provides a more substantial privacy assessment. Those observations agree with our own

findings that it is important to rely on an adaptive attacker model to properly assess the

effectiveness of the protection mechanism.

3.3.4.5 De-Identification and Obfuscation of Visual Data

In this section, we look at methods to de-identify or obfuscate visual data. While we

treat de-identification and obfuscation separately for text and speech, we merge both

approaches for visual data since both approaches may be applicable to the same kind of

visual identifiers.

Visual identifiers such as depicted faces or license plates may be confined locally to a

region of interest (ROI) that is small relative to the entire picture, e.g., in street-level imagery

where a person is shown getting out of their car. For this reason, many approaches for

protecting visual identifiers first apply methods as discussed in Section 3.2.3 to detect the

sensitive areas or ROIs in a larger image, before feeding this region to the actual protection

mechanism. In this case, simple methods such as masking or blurring of the sensitive

regions may be sufficient to de-identify the image, if the remaining parts that are left

unchanged still convey enough useful information (utility). However, if we zoom in, say on

the person’s face, we gradually transition from a street photo towards an image that is filled

out entirely by the face. In that case, masking or blurring the entire sensitive area would

destroy most or all information in the image; therefore, more sophisticated obfuscation

techniques are preferable that only change the privacy-sensitive, identifying characteristics,

while leaving non-sensitive attributes of the face (e.g., expression or viewing direction)

unchanged. In summary, depending on the context, for visual data we may find that either

simple masking techniques or more sophisticated obfuscation techniques are better suited

to protect the same kind of visual identifier, hence we discuss both approaches jointly in

this section.

For comparison, recall that in text and speech, named identifiers, like names and

addresses, typically are locally confined to a few words only, whereas biometric identifiers,

like writing style and voice characteristics, typically pervade long parts of the sequence.

Therefore, for those linguistic types of data, it makes sense to distinguish between de-

identification for locally confined, named identifiers which can be achieved with simple
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techniques such as masking, and more sophisticated obfuscation techniques for pervasive,

biometric identifiers.

Redaction (Masking, Black Bars). Redaction may be useful in scenarios where sensitive

information is locally confined to one or few smaller areas that can be masked completely

without affecting the utility of the image: For instance, Orekondy et al. [332] propose an

automated, segmentation-based framework for detecting and redacting various kinds of

sensitive information in images, e.g., as posted on social media platforms: These may, for

instance, depict persons, their faces, ID cards, or named identifiers in depicted written

texts (cf. Section 3.2.1.1) such as license plates, phone numbers, etc.

Issues with Redaction of Facial Images. In their evaluation, Newton et al. [324] examined

how face recognition is affected by masking the eyes or eyes and nose with rectangular

or T-shaped black bars, respectively. While those classical methods may suffice to

prevent humans from identifying the masked faces, the results indicate that the used

face recognition system was able to successfully recognize all masked images with 100%

accuracy by simply retraining on faces that were masked in the same manner. Similarly,

pixelization barely had any impact on face recognition performance.

Preston et al. [352] study the effectiveness of covering various parts of the face to a

varying degree in a medical context. They conclude that covering facial features with

black bars or boxes does not prevent re-identification by human viewers and note that

covering large parts of a face comes with a reduction in utility. As an alternative, they

recommend seeking patients’ consent for the publication/sharing of patient images if

anonymity cannot be guaranteed. Similar findings were obtained in an earlier study by

Clover et al. [79]. Overall, simply covering faces with black bars has been discouraged in

the medical sector [21]: For instance, the Uniform requirements for manuscripts submitted
to biomedical journals states specifically that “masking the eye region in photographs of

patients is inadequate protection of anonymity” [4, Section II. E.]. Unfortunately, a recent

survey by Roguljić et al. [380] has found that some medical journals still publish identifiable

patient images where only the eye regions are covered or blurred, and sometimes even no

de-identification is used at all. Moreover, they found that the call for obtaining consent (cf.

[42]) is not always followed.

Blurring and Pixelization. Martínez-Ponte et al. [279] propose to protect faces in videos

by detecting facial features and encoding the identified regions in a low quality, resulting

in a blurry appearance that disguises the facial features. Frome et al. [152] present a system

that automatically detects and blurs faces and license plates in street-level photography on
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Google Street View in particular. Similarly, YouTube has introduced a feature to automatically

detect and blur faces as well as other potentially privacy-sensitive objects in videos [83, 84].

Ilia et al. [200] propose face blurring as means to mitigate privacy leakage by preventing

unauthorized users from recognizing peoples’ faces on social media images.

Issues with Blurring and Pixelization of Depicted Persons. In their study, Lander et al.

[252] found that while pixelization and blurring can lower the chance or confidence of

recognition, pixelized and blurred faces often remain recognizable, particularly if they are

familiar to the human viewer. More drastically, Demanet et al. [97] conclude that “masking

just the face leads to an unacceptably high degree of recognition, independent of which

level of pixel[iz]ation was used”. They also demonstrate that non-facial cues, such as

clothing, body, and hair in particular also facilitate identification, and hence should also be

masked for proper de-identification. Their findings are supported by Oh et al. [329], who

build a Faceless Recognition System based on CRFs which demonstrates that it is possible to

recognize persons even if their faces have been blurred or masked entirely. Moreover, Li

et al. [262] demonstrate that blurring and pixelizing are ineffective even when applied to

the entire body of a person. They further conclude that removing a person or object and

masking or replacing it entirely, e.g., with an avatar or an in-painted background, are much

more effective than obscuring just the face, and preferable from a viewer’s perspective.

Another automated approach by McPherson et al. [291] demonstrates that CNNs are

able to accurately recognize faces, objects, as well as handwritten digits that have been

obfuscated by pixelization or blurring. Yang et al. [484] conduct a benchmark study

covering several deep neural face recognition networks and observe only slight accuracy

drops when faces are blurred or masked.

Issues with Blurring and Pixelization of Depicted Text. Hill et al. [188] demonstrate that

the original text can be recovered with high accuracy from blurred or pixelized text using

HMMs. Hence, they conclude that blurring and pixelization are, in general, ineffective

to protect sensitive information in depicted text. Meanwhile, several tools have become

publicly available that help to automatically recover the plaintext: The approach based on

HMMs [188] has been implemented by Schatz [397] and builds on an “unredaction” tool

called Depix by Schipper [399]. Another tool, Unredacter by Petro [344, 345], uses a simple

brute-force approach that enumerates through all letters, pixelizes them, and matches

them with the pixelized text.

Approaches Based on 𝑘-Anonymity: The 𝑘-Same Family. Newton et al. [324] propose

a new approach to de-identify facial images, 𝑘-Same, which is based on 𝑘-anonymity
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[392, 431]. It works by finding the closest 𝑘 faces (e.g., from a dataset or extracted from

a video stream), computing their average, and replacing each of the 𝑘 faces with their

averaged version, thus making them indistinguishable. The authors propose two variations,

𝑘-Same-Pixel and 𝑘-Same-Eigen, where the average is computed based on pixels and

eigenfaces, respectively. Subsequently, Gross et al. [168] proposed an improvement called

𝑘-Same-select that better respects certain facial attributes. It works by partitioning the

reference images into sets according to the attributes (e.g., facial expression), and averaging

only within the cluster corresponding to the attributes of the input image to be obfuscated.

𝑘-Same with Generative Models. Generative models such as active appearance models

(AAMs) [85] allow modeling faces based on a set of model parameters. Such generative

models can also be used in the context of 𝑘-Same, by doing the averaging in the space of

model parameters (i.e., a form of latent representation of the image) instead of averaging

existing reference images. A first approach employing AAMs is 𝑘-Same-M by Gross et al.

[169]: For each input image, the parameters of a pre-trained generative model are adjusted,

so the generated image looks similar to the input image. Then 𝑘-Same averaging is applied

to the model parameters before a face is regenerated from the averaged parameters.

In order to better preserve the individual look of faces as determined by certain utility

attributes (e.g., gender, age, race), Du et al. [112] train attribute-specific generative models

on an external dataset, and for each model, determine 𝑛 superfaces by clustering the training

images’ representations into 𝑛 clusters. To obfuscate a facial image, they first determine its

utility attributes through pre-trained classifiers and find the image’s closest representation

according to the corresponding attribute-specific generative model. The input face is

then substituted with the superface whose representation is nearest to the input image’s

representation. Similarly, Jourabloo et al. [216] also find the nearest 𝑘 images that share

the same utility attributes with the input, but instead of a constant average, they use a

weighted average. The weights are determined using gradient descent where the objective

is to preserve the attributes of the original facial image via attribute classifiers, but to

obtain a different appearance as estimated through a face verification classifier.

Meden et al. [296] find the 𝑘 closest faces according to representation extracted by a

deep face recognition network. Combinations of the 𝑘 feature representations are fed

into a generative neural network to create a synthetic face with the possibility to preserve

non-identity-related attributes. Expanding on that idea, Meden et al. [295, 297] later

proposed a method called 𝑘-Same-Net with an additional clustering step on an additional

(proxy) image dataset that is used to train the generative network.

Autoencoders. Nousi et al. [326] employ a deep autoencoder model which is trained to
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de-identify facial images in its latent representation. In a supervised setting, they fine-tune

the encoder to produce defined target latent representations based on desired attributes to

be preserved, as well as undesirable or sensitive attributes to be suppressed. They also

propose a method for unsupervised scenarios where no attribute labels are available, and

where target latent representations are defined based on clustering.

Gong et al. [160] propose a twofold chained VAE architecture with shared weights

that learns disentangled representations for identity-related and identity-independent

information by first replacing and then restoring the original identity. The disentanglement

allows the face identity to be obfuscated while the non-identity information is preserved

from the input image.

Adversarial Examples. Szegedy et al. [433] observed that it is possible to fool classifiers

by incorporating small, intentional perturbations in the input image that are (almost)

imperceptible to the human eye. The perturbed images are called adversarial examples
and have also been used to fool automated face recognition systems: For instance,

Chatzikyriakidis et al. [69], Oh et al. [330], Sharif et al. [406], and Yang et al. [483]

generate adversarial examples that preserve the perceived facial appearance but which

are misclassified by the face recognition system, thus providing some form of anonymity

against computerized identification. Oh et al. [330] further compare the effectiveness

of various adversarial perturbation techniques to evade recognition, as well as possible

countermeasures, such as blurring or translating the perturbed image by a random offset,

to mitigate the attack.

Adversarial examples come with several limitations, particularly when it comes to

proper anonymization (also) against human observers:

1. First and foremost, they can still be recognized by humans. This may, however, be

intended or acceptable.

2. They usually only fool one or few specific targeted classifiers.

3. In general, they assume a white-box model (inner workings of the targeted classifier

are known), but possible extensions to a black-box model may be possible [406].

4. Simple countermeasures, such as slightly blurring the image before feeding it into

the targeted classifier may already mitigate the attack [330].

Adversarial Learning. Raval et al. [366] train a GAN [161] with a denoising autoencoder

as generator to hide secrets (e.g., QR codes) in the input images. In their experiments,

they verify the effectiveness against both a weak and a strong adversary who have either
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no access or black box access to the obfuscation mechanism, i.e., the strong adversary

can create its own perturbed instances of the original training images to adapt to the

obfuscation. The results indicate that the method protects well against the weak adversary,

but the strong adversary is still able to correctly identify images with secrets with a

75% accuracy, thus highlighting the need to consider an adaptive attacker model for a

meaningful evaluation.

Motivated by the fact that people can also be identified based on, e.g., hair and clothing

(cf. Issues with Blurring and Pixelization and, e.g., [97, 329]), Brkic et al. [53] replace the

entire silhouette of a person with a synthetic full-body image generated using a GAN

architecture [161]. Sun et al. [427] propose a head inpainting method for face obfuscation

based on GANs which completes head regions depending on the context and therefore also

works for people whose heads appear in various poses and against diverse backgrounds.

Similarly, Hukkelås et al. [197] propose DeepPrivacy, a conditional GAN model [161, 310]

with a U-net architecture [383] that is able to generate realistic facial images that seamlessly

fit into the existing background. A successor, DeepPrivacy2 [196], has been extended to a

full-body anonymization framework.

The approach by Wu et al. [474] also utilizes GANs but applies adversarial training only

to a discriminator to generate sharp and realistic faces. It employs a “face verificator”

module that is pre-trained but frozen during training of the obfuscation network to guide

the network to generate a face with a different appearance; additionally, they add a loss

term to preserve the structural similarity index (SSIM) between the input and output faces.

AnonymousNet by Li and Lin [261] is able to de-identify facial images while preserving a

range of facial attributes. It is based on a combination of several approaches including

𝑡-closeness [258], adversarial perturbations [433], as well as adversarial learning [161].

Videos. Videos are temporal sequences of individual images (so-called frames). Hence,

we can apply obfuscation methods for images, often in conjunction with some form

of tracking across subsequent frames of the regions/segments containing the sensitive

information (e.g., faces or entire persons) to be obfuscated. For specific approaches

to de-identification in videos, we refer to the works, e.g., by Agrawal and Narayanan

[12], Gafni et al. [154], Letournel et al. [254], Ren et al. [370], Silas et al. [411], Wang et al.

[457, 458], and Zhu et al. [496].

Surveys. A comprehensive study of anti-facial recognition techniques was conducted

by Wenger et al. [470]. They break down facial recognition systems into several stages

from image collection and processing over feature extraction to the creation and querying

of a reference database, and consider possible countermeasures at each stage. Another
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recent survey focusing on face biometrics has been compiled by Meden et al. [298]. Earlier

surveys are provided by Padilla-López et al. [336], Ribaric and Pavesic [377], as well as

Ribaric et al. [378].

3.3.4.6 Obfuscation for Directional Data

Directional data is often privacy-sensitive: For instance, a geolocation referring to a

specific address can represent privacy-sensitive information. This is also reflected in legal

frameworks such as the HIPAA [447], which classifies “geographic subdivisions smaller

than a state, including street address, city, county, precinct, ZIP code, and their equivalent

geocodes” [327] as PHI.

Many obfuscation techniques have been proposed to provide privacy for location-based

services (LBS) and enable privacy-preserving data publishing (PPDP) for location data and

trajectories. Due to the vast amount of literature, we refer to the surveys by Chatzikokolakis

et al. [68], Primault et al. [354], and Jiang et al. [208], as well as by Fiore et al. [145] who

focus on trajectory data.

3.3.5 Differentially Private Obfuscation

In this section, we consider obfuscation methods for sequential and directional data that

additionally provide DP guarantees.

3.3.5.1 Differentially Private Mechanisms for Text

Word-Level Differential Privacy. In some cases, it is possible to interpret obfuscation

schemes that redact or replace only individual parts of a text as word-level DP, where

two texts are neighboring if they differ in a single word or term only [10]. The idea of

word-level DP can be generalized to token-level DP for (discrete) sequences other than

text, where two sequences are neighboring if they differ in a single token. As noted in

Section 3.3.3.1, methods such as SynTF (Chapter 5) [465, 466] and related approaches

[137, 138] that perturb words or tokens, or their embeddings, can be extended to entire

texts by iterating over the entire sequence. In the following, we discuss such works that

explicitly process entire sequences in order.

Feyisetan et al. [142] perturb word embeddings (GloVe [342]) directly using the PL

mechanism, and find the word pertaining to the nearest neighbor as a substitute. Their

approach fulfills metric privacy [65], where the underlying distance metric is defined

between adjacent texts based on the sum of Euclidean distances between the word

embeddings of both texts, and where two texts are adjacent if they contain the same
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number of words. In a subsequent paper, Feyisetan et al. [141] employ hierarchical Poincaré

embeddings in Hyperbolic space instead of embeddings in Euclidean space, which have

been shown to better capture hierarchical relationships between words.

Yue et al. [487] propose SanText, which employs the Exponential mechanism similarly

to our own SynTF method (cf. Chapter 5) to sample substitute tokens based on the token

embedding distance. Its extension SanText
+

additionally makes a distinction between

sensitive and insensitive vocabulary, and applies the Exponential mechanism only to

sensitive words.

Limitations of Word-Level Differential Privacy. Word- or token-level DP has some

limitations, and it is challenging to extend it to entire sequences or phrases: For instance,

the privacy guarantees only hold for sequences of the same length, and in case a masking

strategy is used following Adelani et al. [10], the guarantee is even further restricted to cover

only sequences sharing the same structure anywhere but at the position of tokens deemed

privacy-sensitive and considered to be obfuscated by the masking strategy. Moreover, due

to the group privacy property of DP, when multiple tokens are replaced, the total privacy

loss typically grows linearly in the number of replacements. From a linguistic perspective,

the individual replacements often lead to texts that are incoherent and ungrammatical

with a lack of fluency and variety.

For a more detailed discussion of the implications and limitations of word-level DP, we

refer to the related work by the author and his co-authors [285].

Methods Based on Autoencoders. Bo et al. [46] propose an autoencoder architecture

with gated recurrent unit (GRU) cells [75] and an autoregressive decoder which generates

subsequent tokens conditioned on the encoded input and the previously generated tokens,

thus making their model able to generate coherent, human-friendly text. At each step, the

decoder models a score for each possible candidate token; however, instead of greedily

choosing the token with the highest score, they sample the next output token using a

two-set variant of the Exponential mechanism to achieve DP. Moreover, the model is

trained using reinforcement learning with a reward function that encourages sampling of

under-rated tokens to increase the variety of the generated text.

Faulty Differential Privacy Approaches. Krishna et al. [241] propose an autoencoder

based differentially private text transformation method, short ADePT, where the Laplace

or Gaussian mechanism is applied to the 𝐿2
-normalized latent representation vectors

produced by the encoder. The problem with their implementation is that they calibrate
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the noise according to the 𝐿2
sensitivity, but use the Laplace mechanism which actually

requires the 𝐿1
sensitivity as pointed out by Habernal [174].

An issue with many methods that perturb the original word embeddings is that their

nearest neighbor has a high chance to correspond again to the original word. Xu et al. [481]

hence apply Vickrey auction [452] by also considering the second-nearest neighbor to the

perturbed word embedding as to reduce the risk that sensitive words remain unchanged.

However, note that the proposed Vickrey mechanisms [481, Algorithm 1 and 3] ensure

that a word will never be replaced by itself, as the input word 𝑤𝑖 is always excluded in the

arg min operator that represents the nearest neighbor search. Since DP requires that any

mechanism output that does occur for some input also occurs with non-zero probability

for any input, we are not sure how the DP guarantee holds in this case.

3.3.5.2 Differentially Private Obfuscation for Audio Data

Qian et al. [358] propose a modified variant of their earlier VoiceMask framework [357]

which applies DP to the reconstructed voice signal in a straightforward way by directly

perturbing the samples in each frame using the Laplace mechanism. The authors then

apply parallel composition [292, Theorem 4] across the frames in a recording to compute

the overall privacy loss. Unfortunately, we cannot follow the argument why the frames

would be uncorrelated and allow parallel composition, since speaker-dependent voice

characteristics are consistent over time and manifest themselves in virtually every frame

containing utterances.

Han et al. [180] adapt metric privacy [65] (see Section 2.2.3) to voice representations of

speech data: For a given utterance, they extract a separate content representation and

the x-vector [416] as voice representation. They then randomly choose an x-vector to

substitute the extracted one using a variant of the Exponential mechanism. The speech

signal is then synthesized from the unmodified content representation and the substituted

x-vector. Note that this approach only applies DP to the x-vector that encodes the voice

characteristics, but not to the content representation; therefore, this approach does not

provide end-to-end DP guarantees that cover the whole speech obfuscation pipeline.

Shamsabadi et al. [405] also rely on x-vector substitution to obfuscate the speaker

identity representations. However, they observe that speaker information may leak into

content representations and hence propose to make the entire speech obfuscation pipeline

differentially private by applying DP to content features as well: They use the Laplace

mechanism in specially designed pitch and so-called bottleneck feature extractors, and

randomly substitute x-vectors independently of the source utterance.
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3.3.5.3 Differentially Private Obfuscation for Visual Data

Pixel-Based Mechanisms. A straightforward approach to differentially private image

obfuscation works in pixel-space by perturbing the pixel values directly.

Fan [130] propose DP-Pix, a method which directly applies the Laplace mechanism

(Example 2.14) to pixelized images. The pixelization is used to reduce the dimension of the

image and works by grouping blocks of 𝑏 × 𝑏 pixels together, replacing each block with a

pixel whose value is the average of the block’s original pixels. Their DP guarantee holds for

neighboring images that differ in up to 𝑚 pixels. Subsequently, Fan [131] propose DP-Blur
which extends on DP-Pix by applying a Gaussian blur filter to smoothen the pixelized

image obtained by running DP-Pix on the input image.

Croft et al. [88] propose an alternative approach to DP-Pix [130] that directly obfuscates

the raw image using the Exponential mechanism instead of the Laplace mechanism. As

quality function, they use the structural similarity index measure (SSIM) [463] which

estimates the perceived image similarity. However, this would involve enumerating all

possible images in the entire output space; therefore, they reduce the complexity with a

sliding window approach by moving over the image in strides of 𝑝 pixels and applying

the Exponential mechanism to the smaller 𝑝 × 𝑝 blocks individually, as well as quantizing

the pixel intensities.

Mechanisms Based on Algorithmic Transformations. In an early work, Raafat et al.

[362] apply DP to (facial) images by adding Laplace noise to the frequency components

obtained by a fast Fourier transform (FFT) of the input images. They define a relaxed notion

of adjacency for pairs of images if they differ in a block of 𝑏 × 𝑏 frequency components.

Another work by Fan [132] proposes DP-SVD which utilizes singular value decomposition

(SVD) and achieves metric privacy [65] for images (or more precisely, for certain privacy-

sensitive regions of interest) by applying the PL mechanism to the 𝑘 largest singular

values. It then reconstructs an obfuscated image based on the perturbed singular values.

Both methods, DP-Pix and DP-SVD, are compared in a study by Reilly and Fan [368]

together with two other differentially private methods, and demonstrated in an interactive

framework (DP-Shield) by Saleem et al. [390].

Chamikara et al. [63] consider the problem of privacy-preserving face recognition, with

the goal to “prevent leakage of the biometric features while identifying a person”. Note

that this objective appears to us as somewhat difficult to achieve in practice, since face

recognition is based on biometric features. Their approach works by perturbing eigenfaces,
i.e., eigenvectors of facial images that are used in the context of face recognition, using

the differentially private Laplace mechanism. The eigenface perturbation mechanism is
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applied both to the training data when learning a face recognition model and to the testing

data when querying the trained model.

Mechanisms Based on Learned Representations. Croft et al. [87] synthesize obfuscated

facial images from a generative neural network conditioned on several attributes such as

identity, gender, and facial expression. They apply the Laplace mechanism to the identity

representation at an intermediate layer of the network. Note that the model does not
directly obfuscate existing images, but generates new synthetic facial images for identities

that are known at training time, based on the attribute representations and the learned

concepts from the training data.

Li and Clifton [260] obfuscate facial images by perturbing their representation in the

latent space of a GAN model that produces synthetic images: For an input image, they find

its latent vector representation in the latent space of a GAN model, i.e., a corresponding

seed from which the GAN synthesizes an image close enough to the input. They then

clip the representation to obtain a finite sensitivity and perturb the clipped representation

using the Laplace mechanism. The perturbed vector is then fed as a seed into the GAN to

re-synthesize an obfuscated version of the original input image.

In a later work, Croft et al. [89] employ a GAN encoder-decoder architecture to obfuscate

the identity in facial images while preserving desired attributes such as pose or gender.

They apply Laplace noise to the encoded image representations to achieve metric privacy

[65]. Before the perturbation, an additional principal component analysis (PCA) step

is applied to the encoded vectors to further reduce the dimensionality of the image

representations, which leads to a lower sensitivity and hence a more favorable privacy-

utility trade-off.

Tölle et al. [438] rely on conditional invertible neural networks (INNs) (see, e.g., [26, 27]).

Obfuscation of an image works by forwarding it through the trained INN to obtain its latent

representation, which is then clipped and perturbed using the Laplace mechanism. The

obfuscated image is recovered by feeding the perturbed latent vector backward through the

INN, optionally conditioned on desired attributes to change or preserve their manifestation

in the reconstructed image.

Mechanisms Based on Disentangled Representations. Wen et al. [469] employ an

autoencoder architecture with separate encoder networks to encode attribute and identity

representations, respectively, together with a fusion network decoder that aims at recon-

structing the input image from the representations. In the training phase, the model is

trained to reconstruct the input image as well as to preserve its (disentangled) attribute

and identity representations for the reconstructed image. Images are obfuscated by
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feeding them through the trained network, where Laplace noise is added to the identity

representations; the obfuscated image is then reconstructed from the unmodified attribute

and the perturbed identity representations.

3.3.5.4 Differentially Private Obfuscation for Directional Data

DP has also been used for the obfuscation of individual locations as well as location

traces. A main challenge with location traces is correlations, both spatial (e.g., between

subsequent points) and temporal in nature (e.g., due to repeated daily commutes of a

user). Due to the vast amount of works in this area, we refer to the surveys by Errounda

and Liu [124] for a general overview of DP research for location and trajectory data, and

by Miranda-Pascual et al. [308] for a more specific focus on trajectories. In the following,

we discuss one particular set of methods that inspired our work on directional privacy in

Chapter 7.

Geo-Indistinguishability. A popular line of research to obfuscate individual locations

with DP guarantees is geo-indistinguishability by Andrés et al. [24]. More specifically, it

fulfills a form of metric privacy [65] (cf. Section 2.2.3) adapted to planar location data. A

related approach called (𝐷, 𝜖)-DP that protects locations within a protection radius 𝐷 has

been proposed by ElSalamouny and Gambs [120]. Common to these approaches is that

they assume a flat coordinate system that corresponds to the two-dimensional Euclidean

space, whose points could be specified by, e.g., Cartesian or polar coordinates. A popular

mechanism to achieve geo-indistinguishability or (𝐷, 𝜖)-DP in Euclidean spaces is the PL

mechanism [24, 65] which we discuss in Section 2.3.3.

Assuming a flat coordinate system may be sufficient in scenarios where locations are

confined to smaller regions, such as cities. However, on a larger scale, approximating the

curved surface of the globe through planar coordinates quickly becomes inaccurate. An

example application that provides geo-indistinguishability to the web users is Location
Guard by Chatzikokolakis et al. [66], a browser extension that obfuscates the users’ locations.

Since web users could be located anywhere on the globe, their implementation wraps the

PL distribution around the sphere to respect the rather (approximately) spherical surface

of the Earth. Our work on directional privacy [467] presented in Chapter 7 explores DP

for spherical or directional data in more detail; in particular, we show that the wrapping

technique is not optimal either.

Similar to word-level DP mechanisms for text (cf. Section 3.3.5.1), methods for individual

locations, such as geo-indistinguishability, can be generalized to location traces in a straight-

forward manner by obfuscating each location in the sequence individually. A critical
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review of geo-indistinguishability for location traces has been conducted by Primault et al.

[353]: They found that obfuscated location data still comes with a high re-identification risk

for points of interest that users have visited. Moreover, while a strong level of obfuscation

provides better protection, it also degrades utility, so a good privacy-utility trade-off

seems hard to achieve. Furthermore, they point out that most DP approaches for location

traces only obfuscate locations, but not the corresponding timestamps; obfuscation of

both locations and (periodic) time specifications is possible with our directional privacy

mechanisms presented in Chapter 7.

3.4 Chapter Summary

Our review of related work showed some significant findings, which we summarize in the

following.

Similarities Among Sequential Types of Data. Similar techniques are used in protection

methods for text as well as audio and visual data: For de-identification of locally confined

identifiers, a common approach is detection followed by masking or replacement of

the sensitive segments. For obfuscation of pervasive identifiers, a common approach is

to rely on private representations by first transforming (encoding) the data to a latent

representation, then sanitizing this representation, and finally (approximately) inverse-

transforming (decoding) the sanitized representation back to the original domain. In

many cases, this is achieved by an encoder-decoder neural network architecture or signal

processing together with adversarial learning, projections, or filtering to sanitize the

representations.

Scope of the Defense Must Match the Identifier. When dealing with identifiers that

are locally confined (e.g., named identifiers such as names or addresses in a longer piece

of text), we can typically protect the identifier with local obfuscation methods such as

simple masking approaches that preserve the remaining sections of the data and thus

maintain utility. In the case of pervasive identifiers, however, local defenses would be

insufficient to protect privacy, and masking the entire identifier would destroy utility; in

this case, we hence require more sophisticated obfuscation methods that hide the sensitive

information but preserves privacy-insensitive information for utility across the entire

pervasive identifier.

Use Adaptive Attacker Model for Meaningful Results. While it is easy to fool a static

(uninformed) adversary, in a realistic scenario, we should assume that the obfuscation
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method is public (i.e., avoiding the security/privacy through obscurity anti-pattern), so the

attacker can calibrate their attack to the obfuscation method, e.g., by creating their own

instance of obfuscated training data. While we observed this in our own approaches

proposed in this dissertation, this was also observed in related works on audio [419, 420,

421], image [366], and textual data [119].

Challenges of the Local Model. Noise in perturbed data affects both adverse and benign

downstream tasks, hence it is often challenging to achieve a good privacy-utility trade-off.

We made the same observation in our work in Chapters 5 and 6, where we proposed

additional measures to push the privacy-utility trade-off in a favorable direction: For SynTF

(Chapter 5), we introduce the bigram overlap in Section 5.3.1.2 which manipulates the scores

of the Exponential mechanism’s rating function to prefer differently spelled substitutions of

terms. For DP-AAE (Chapter 6), we employ adversarial training to disentangle author- and

content-specific information of the input sentences into separate representation vectors.

Some differentially private defenses discussed in this chapter also take additional

measures, similar to our own approaches: SanText
+

[487] only applies the Exponential

mechanism to a subset of sensitive tokens to mitigate utility loss. ER-AE [46] uses

reinforcement learning to encourage sampling of under-rated but semantically similar

tokens as a substitute for the original tokens. Adversarial training has been used to protect

(i.e., suppress) sensitive information in differentially private representations for text [275],

as well as in obfuscation mechanisms for images based on latent [89] or disentangled

representations [469]. Many DP mechanisms for speech rely on separate content and

speaker representations, such as speaker x-vectors [416], and obfuscate only the speaker

representations while applying little to no obfuscation to the content representations

[180, 405]. However, while methods with separate levels of obfuscation for privacy-

sensitive and -insensitive components may achieve improved privacy-utility trade-offs in

practice, this usually comes at the cost of degraded theoretical privacy guarantees.

69





Chapter 4

Methodology

As motivated in Section 1.1, our aim in this dissertation is to research and develop novel

differential privacy mechanisms that are suitable for sequential and directional data, such

as text and geolocations, respectively. We found that existing DP mechanisms typically

work only with structured data such as numbers or numerical vectors and hence no or only

few existing mechanisms were readily available for the specific data types we intend to

handle; more specifically, no differentially private methods had been published for textual

data, and popular approaches for geolocations assumed a flat coordinate system.

Therefore, in each of our studies presented in the following Chapters 5 to 7, we set

our primary goal to construct new privacy mechanisms for sequential or directional data

that provide DP guarantees, and our secondary goal to experimentally evaluate the new

mechanisms’ privacy-utility trade-offs in a realistic usage scenario.

Construction of New Privacy Mechanisms. On an abstract level, our primary goal

consists of the following steps:

1. either adapt existing DP mechanisms or devise fundamentally new DP mechanisms

for the specific use case or data type to be processed, and

2. formally prove the DP properties of the new mechanisms.

Note that for fundamentally new mechanisms, such as the directional privacy mechanisms

presented in Chapter 7, we also need to provide a corresponding implementation to

perform the experimental evaluation for our secondary goal.

Experimental Evaluation. Once a new mechanism has been devised, we proceed with

our secondary goal which consists of evaluating its privacy-utility trade-off in a realistic

usage scenario.

1. We define one or more utility tasks relating to a relevant use case that uses the

targeted data type.
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2. We establish the reference performance of the utility tasks based on the unobfuscated

data.

3. We experimentally assess the performance of the proposed mechanism over a range

of DP or RDP parameters (e.g., the privacy loss 𝜖) based on the utility task on

obfuscated data.

Where available, we consider existing DP obfuscation mechanisms that are suitable for the

use case as baseline mechanisms and also assess their performance based on the utility

tasks for further comparison.

Since sequential data covers a wide variety of domains, we chose to perform our

experiments on textual data as an important and representative example domain. For

directional data, we focus on spatio-temporal data (geolocations and periodic time

specifications).

As we have described in Chapter 3, for sequential data, identifying information such as

certain biometric identifiers can pervade large parts or the entire sequence. Therefore, in

our experiments on textual data we also evaluate authorship attribution as an additional

attack task on a biometric identifier to measure the performance of the proposed DP

mechanisms as protective authorship obfuscation methods.

In case the attack and utility tasks require some form of training (e.g., since they are

based on machine learning), we evaluate their success at achieving their designated goals

on unseen test data. Additionally, we consider two levels of adaptability or informedness
for the downstream tasks where applicable. We explain them first from the attacker’s

perspective:

The static (also: non-adaptive or uninformed) attacker may be given other original (i.e.,

unobfuscated) data samples in advance (“training data”) to calibrate his attack,

where we assume that the obfuscation method is unknown to the attacker.

The adaptive (also: informed) attacker may be given other data samples in advance

(“training data”) to calibrate his attack, where we assume that the obfuscation

method is public.

Given some original data samples, an adaptive attacker hence is able to create his own

instances of obfuscated samples by transforming the original samples using the public

obfuscation method. This often results in a stronger attacker model, since the attack

can be better calibrated to the characteristics of the obfuscated target data which might

have easily fooled a static attacker. Therefore, an obfuscation mechanism that aims at

providing reliable privacy guarantees in practice must not rely on the “security (privacy)
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through obscurity” anti-pattern which assumes that the mechanism is unknown to the

attacker. Similarly, we also evaluate a static and an adaptive setting for the utility task

where the imaginary analyst who conducts the utility task is given only unchanged or

already obfuscated training samples, respectively.
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SynTF: Synthetic and Differentially Private
Term Frequency Vectors

One of the most prominent models to represent documents in many common text mining

and information retrieval tasks is the Bag-of-Words (BoW) or vector space model where each

document is represented as a vector, typically containing its term frequencies or related

quantities. In this chapter, we therefore propose an automated text anonymization method

called SynTF that produces synthetic term frequency (tf) vectors for the input documents

that can be used in lieu of the original vectors. We evaluate our method on an exemplary

text classification task and demonstrate that it only has a low impact on its accuracy. In

contrast, we show that our method strongly affects authorship attribution techniques to

the level that they become infeasible with a much stronger decline in accuracy. Other than

previous authorship obfuscation methods, our approach is the first that fulfills DP and

hence comes with formal privacy guarantees.

This chapter is based on the following publication [465] and its extended version [466]:

Benjamin Weggenmann and Florian Kerschbaum: “SynTF: Synthetic and Dif-

ferentially Private Term Frequency Vectors for Privacy-Preserving Text Mining”.

In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR ’18).

5.1 Introduction

For centuries, text has been used to convey information between human beings through

books, letters, newspapers, and magazines. With the advent of the digital age, more and

more textual data is being processed and analyzed by machines. Typical tasks include text

classification, which is used in particular for spam filtering [388] and automated email

routing [56], document retrieval [391], where indexed documents are retrieved and ranked

75



Chapter 5 SynTF: Synthetic and Differentially Private Term Frequency Vectors

according to search queries, sentiment analysis [264], and a wide variety of other tasks in

the information retrieval (IR) and text mining domains.

In many cases, it is desirable for an author that his writings stay anonymous. This

could be the case if the textual data contains sensitive information about the author, for

instance in search queries. Negative feedback from customer surveys might negatively

impact business relations if the author or his company is known, and critical news or blog

articles about a company (or government) might have severe (or fatal) consequences for

the author of the article. In other areas, anonymity is required for compliance or legal

reasons, e.g., in the selection of job candidates to eliminate discrimination. Furthermore,

without anonymity people and data owners might feel reluctant to participate in surveys

or to release their data. Offering anonymity might be a means to convince them to share

their data in an anonymized form, which could then be used to perform evaluations and

as training data for machine learning models.

Traditional sanitization approaches for free text include removing parts containing

PII such as the author’s name, or replacing it with a pseudonym (cf. Section 3.3.4.1).

However, these methods are insufficient to protect the author’s identity: As the famous

Netflix de-anonymization attack [318] and other studies [92, 207, 364, 430] have shown,

the originator of data can be re-identified from the data itself. We illustrate this in the case

of the AOL search data release [34], where search queries of over 650,000 users were

released for research purposes in 2006. The search logs were “anonymized” (in fact, only

pseudonymized) by linking the queries to a numerical identifier instead of the actual

username. After some investigation in the data, the New York Times eventually learned

enough information about user 4417749, so they could re-identify her as Thelma Arnold, a

62-year-old widow from Lilburn, a city in Georgia.

Moreover, special authorship attribution methods allow attributing authorship of an

anonymous or disputed document to its respective author. Such methods usually make

use of stylistic features to identify or discriminate authors, as has been done with the

statistic techniques in [315] to resolve the dispute of the Federalist Papers. Recently, more

sophisticated methods have evolved that use statistical analysis and machine learning to

tackle the problem; we refer to our discussion in Section 3.2.1.2 for an overview of methods.

While these powerful methods are useful in the literary world and in forensics, they can

often pose a threat to the privacy and integrity of authors of documents with potentially

sensitive content.

Solution Approach. For many IR and text mining tasks including text classification,

documents can be represented as Bags-of-Words (BoWs) or vectors in the vector space

model [391]: To obtain a representation corresponding to the vector space and BoW
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models, documents are transformed into feature vectors where each entry corresponds

to a certain word in an underlying vocabulary. The process of this transformation is also

called vectorization. Two common representations are term frequency (tf) vectors where each

entry equals the number of occurrences of the corresponding term in the document, and

term frequency–inverse document frequency (tf–idf) vectors which are derived from tf vectors

by also taking the number of documents into account that contain the corresponding term.

For more information, we refer to the IR book by Schütze et al. [402].

Since many IR and text mining algorithms rely on the vector space model, we propose

a solution that targets this representation by producing synthetic tf vectors with DP

guarantees which can be used as a substitute for the original tf vectors.

Contributions. More specifically, we make the following contributions:

• In Section 5.2, we propose SynTF, a differentially private method to compute

anonymized, synthetic tf vectors for textual data that can be used as feature vectors for

common IR and text mining tasks such as text classification.

• In Section 5.2.4, we give theoretical results on the DP properties of our method. We

derive improved bounds for the privacy loss of our method and give a heuristic

argument that DP on large (discrete) output spaces demands a large privacy loss if

the result should fulfill a minimum usefulness requirement.

• In Section 5.3, we experimentally verify our method on a corpus of newsgroups

postings: A benign, well-intended analyst wants to classify the documents into

certain topics, whereas a malicious attacker tries to re-identify the author of these

documents using authorship attribution techniques. The results show that our

method has a much stronger impact on the attacker’s than on the analyst’s task.

Based on our motivation and results, we presume that the synthetic tf vectors (SynTF

vectors) can be used in a multitude of text mining and IR tasks where the semantic

similarity of documents is decisive. On the other hand, our method obliterates stylistic

features that could otherwise reveal the identity and other privacy-sensitive information

about the writer such as age or gender.

5.2 Synthetic Term Frequency Vectors

In this section, we first describe the intended usage scenario. We then take a closer look

under the hood of authorship attribution techniques and derive the basic motivation
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behind our SynTF method. Finally, we describe our method in detail and present its DP

properties.

5.2.1 Usage Scenario

Consider a data processor that wishes to share sensitive training data for machine learning

with a third-party analyst. Feature vectors are sufficient for most machine learning tasks

since they are produced by the analyst in a preprocessing step anyway. Our method

automatically creates anonymized feature vectors that can be shared with the analyst and

that he can use in lieu of his own vectors.

In our present scenario, we are given a set of text documents such as email messages, job

applications or survey results. The documents shall be analyzed by a (benign) third-party

analyst, who wants to perform a typical text mining task such as text classification. Our

aim is to prevent authorship attribution attacks as described above. Therefore, to protect

the identity of the authors and prevent re-identification, we only provide the analyst with

synthetic BoW feature vectors instead of the original documents. Email providers and

search engines could share anonymized feature vectors of emails or (aggregated) search

queries with advertising networks to provide personalized ads while protecting their

users.

Attacker Model. The attacker is presented with a document of unknown authorship

which has been written by one of several suspected authors. Her goal is to identify the

document’s actual author from the group of suspects. We assume that she has a set of

similar reference documents from each suspect that she can use to help decide which

suspect to assign the unknown document to.

We compare the attacker’s capability to re-identify the authors on the original plaintexts

as well as the anonymized feature vectors. We assume the attacker knows the dictionary, so

she can convert the numbers in the feature vectors to a textual representation by repeating

each word accordingly. This allows her to (partially) deduce more complex features beyond

BoW, such as the WritePrints feature set which is often used in authorship attribution

[6, 290]. As explained in the next Section 5.2.2, most of these features cannot be correctly

inferred anymore, which is beneficial for our method as these are precisely the stylistic

features (beyond BoW) that are exclusively exploited by our attacker.

5.2.2 Preventing Authorship Attribution

A popular feature set for authorship attribution has been described in the WritePrints

method [6]. It includes the following types of stylistic features:
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Lexical Counts of letters, digits, special characters, number of characters and words, etc.

Syntactic Frequency of function words, punctuation, parts of speech (POS) tags.

Structural Number and length of paragraphs and sentences, URLs or quoted content, etc.

Content Frequencies of words (BoW model).

Idiosyncratic Misspelled words.

For some features such as letters, words, digits, and POS tags, it also considers their bi-

and trigrams, thus taking order information into account. These features have a strong

capability to capture individual stylistic characteristics expressed by the writer of a text.

For instance, one author might subconsciously prefer using the passive voice or past tense,

so many verbs will end in an “ed” bigram, whereas another author might tend to use the

present continuous or gerund which causes many “ing” trigrams.

Ordinary text mining and IR tasks such as classification typically only use content-level

features which are often modeled and represented as tf vectors in the BoW model. Most of

the stylistic features used for authorship attribution thus get lost in vectorization: In fact,

the tf vectors by their very nature do not capture any structural information, and most

syntactic features will be destroyed as well. Apart from the content (and idiosyncratic)

features, however, we can still derive lexical features if the BoW vocabulary is known.

Since the attacker can still exploit the derived lexical features, we aim at disturbing them

in a way that keeps the meaning or theme of a document intact, thus further allowing the

classification task but impairing authorship attribution. Lexical features are mostly related

to the spelling, therefore, our idea is to replace words in the input with words with similar

meaning (synonyms) but different spelling to make the lexical features meaningless for

the attacker. On the other hand, this will preserve the general theme of the text, so we

hope that the impact is little on the classification task.

5.2.3 The SynTF Mechanism

Our goal is a differentially private anonymization method to derive synthetic feature

vectors that keeps the theme of the represented document intact and at the same time

prevents authorship attribution attacks. For performance and memory efficiency reasons,

we require our method to preserve the sparseness in the tf vectors. Simply applying

Laplace noise [117] or differentially private histogram publication methods [478] will fail

this requirement, since they produce dense vectors. Our core idea is to take a word count

entry for one term in the tf vector and probabilistically distribute it across all terms in the

pre-defined vocabulary, using the Exponential mechanism (Definition 2.25) to achieve DP.
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The probability of each term is determined according to its similarity with the original

word. Word similarity can be expressed in various ways, which we will discuss later in

Section 5.3.1.2 where we make concrete suggestions for suitable rating functions 𝜌.

DP presents a strong requirement for the method: Namely, every possible output must

occur with non-zero possibility for any other input. This means that a statement on

food preference can be processed to the same output as a conversation on politics, with

non-zero probability. This has two implications: First, we must ensure that the probability

of picking a term is always greater than zero, even for totally unrelated words. Second, it

must be possible that two input texts of different lengths produce the same number of

words in their resulting tf vectors. Therefore, we must also specify the output length. Note

that this approach limits the number of entries that are changed from the original to the

anonymized tf vector, so it keeps the sparseness of the resulting vector intact.

Algorithm Description. Since we work with textual documents, we adopt the vector

space/BoW model where each document 𝑇 is represented as feature vector t ∈ R𝐿≥0
over

some vocabulary𝒱 of size |𝒱| = 𝐿. The vocabulary could be derived, for instance, from

a reference corpus of documents from a similar context as the target documents which

shall be anonymized. We work in the local model (cf. Section 2.2.2) where each document

is obfuscated independently, and hence assume 𝒳 = 𝒵 = R𝐿≥0
for the input and output

domains of our algorithm. This also implies that any two texts are considered as adjacent,

which is the most strict and conservative way to define adjacency.

We will describe the SynTF approach for a single document 𝑇, but it is possible to

anonymize an entire corpus simultaneously. The anonymization for a document 𝑇 consists

of two main phases:

Analysis We vectorize the document 𝑇 to its feature vector t = (𝑡1 , . . . , 𝑡𝐿) ∈ R𝐿≥0
. Typically,

t will be a tf or tf–idf vector over the underlying vocabulary𝒱. Next, we normalize
t with respect to the 𝐿1

-norm to transform it into a composition vector 𝛉t := t/∥t∥1
whose entries can be interpreted as a probability distribution over𝒱.

Synthesis We repeatedly sample terms 𝑣1 , . . . , 𝑣𝑛 from the distribution 𝛉t on 𝒱. We

run the Exponential mechanism on𝒱 ×𝒱 for each 𝑣𝑖 to pick a substitute output

term 𝑤𝑖 ∈ 𝒱 with probability proportional to a similarity rating 𝜌(𝑣𝑖 , 𝑤𝑖). Finally, we

construct a synthetic tf vector s ∈ N𝐿≥0
of length 𝑛 by counting all the terms 𝑤𝑖 .

Algorithm 2 illustrates the synthesis phase of our SynTF mechanism in pseudocode. For

a discussion of suitable rating functions 𝜌, see Section 5.3.1.2. In our experiments, 𝜌 will

be bounded to [0, 1], which implies that its sensitivity is Δ𝜌 ≤ 1.
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Algorithm 2: SynTF term-frequency vector synthesis.

Input: Document composition vector 𝛉t, desired output length 𝑛,

privacy parameter 𝜖 > 0, rating function 𝜌 :𝒱 ×𝒱 → [0, 1].
Result: Synthetic tf vector s ∈ N|𝒱| with |s| = 𝑛.

1 for 𝑖 ← 1 to 𝑛 do // produce output term-by-term
2 𝑣𝑖 〜Cat(𝛉t); // sample word 𝑣𝑖
3 𝑤𝑖 〜ℰ𝜖,𝜌(𝑣𝑖); // choose synonym for 𝑣𝑖
4 end
5 s←

(︁
|{𝑖 ∈ [1, 𝑛] : 𝑤𝑖 = 𝑤}|

)︁
𝑤∈𝒱 ; // count synonyms

For completeness, we also state the following definition which is used in the code:

Definition 5.1 (Categorical distribution). For an enumerable set 𝑉 = {𝑣1 , . . . , 𝑣𝑘} and

associated probability vector p = (𝑝𝑣)𝑣∈𝑉 with

∑︁
𝑣∈𝑉 𝑝𝑣 = 1, the categorical distribution,

denoted Cat(p), is defined on 𝑉 through Pr[Cat(p) = 𝑣𝑖] = 𝑝𝑖 .

5.2.4 Differential Privacy Results

In this section, we will prove that our SynTF mechanism fulfills DP (Definition 2.3), which

amounts to deriving an upper bound 𝜖 on its privacy loss.

We keep the previous notation where 𝒱 is the vocabulary of size 𝐿, t = (𝑡1 , . . . , 𝑡𝐾)
is the tf or tf–idf vector of the target document to be anonymized, and 𝛉t := t/∥t∥1 is

the corresponding vector of probabilities. For each pair of words 𝑣, 𝑤 ∈ 𝒱, we have a

similarity score 𝜌(𝑣, 𝑤) ∈ [0, 1]. This score will be used in the Exponential mechanism,

which outputs 𝑤 on input 𝑣 with probability

𝜋𝑣,𝑤 := Pr[ℰ𝜖,𝜌(𝑣) = 𝑤] =
exp

(︂
𝜖

2Δ
𝜌(𝑣, 𝑤)

)︂
∑︁
𝑤′ exp

(︂
𝜖

2Δ
𝜌(𝑣, 𝑤′)

)︂ .
Note that in the local model, we assume that all potential inputs are adjacent which

is a very conservative interpretation of DP. This is used in the following lemma, which

presents a (niched) counterpart to the known post-processing property [116, Proposition

2.1], to show that a convex combination of an 𝜖-differentially private algorithm is again 𝜖-

differentially private.

Lemma 5.2 (Randomized Preprocessing). Given two independent randomized mechanisms
𝒜 : 𝒳 →ℛ(𝒴) andℬ : 𝒴 →ℛ(𝒵), we define their functional compositionℬ◦𝒜 : 𝒳 →ℛ(𝒵)
as first sampling from𝒜 and using the resulting sample as input for ℬ. The composition ℬ ◦𝒜 is
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𝜖-differentially private provided that ℬ is 𝜖-differentially private where all inputs 𝑦, 𝑦′ ∈ 𝒴 to ℬ
are considered adjacent (that is, 𝑑𝒴(𝑦, 𝑦′) ≤ 1).

Proof. Define 𝛼𝑥,𝑦 := Pr[𝒜(𝑥) = 𝑦] and 𝛽𝑦,𝑧 := Pr[ℬ(𝑦) = 𝑧] for all 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 , 𝑧 ∈ 𝒵.

Then

Pr[(ℬ ◦ 𝒜)(𝑥) = 𝑧] = Pr

⎛⎜⎝
⨆︂
𝑦∈𝒴
[𝒜(𝑥) = 𝑦] ∧ [ℬ(𝑦) = 𝑧]⎞⎟⎠

=
∑︂
𝑦∈𝒴

Pr[𝒜(𝑥) = 𝑦] · Pr[ℬ(𝑦) = 𝑧]

=
∑︂
𝑦∈𝒴

𝛼𝑥,𝑦 · 𝛽𝑦,𝑧 .

The first equality stems from enumerating, over 𝑦 ∈ 𝒴, all possible ways to get output 𝑧

on input 𝑥. The second equality is due to the fact that these possibilities are disjoint, and

uses the independence between the two randomized mechanisms.

Fix any adjacent 𝑥1 , 𝑥2 ∈ 𝒳 and 𝑧 ∈ 𝒵 and define the quantities �̂�𝑧 := max𝑦∈𝒴 𝛽𝑦,𝑧 and

�̌�𝑧 := min𝑦∈𝒴 𝛽𝑦,𝑧 . Now

Pr[(ℬ ◦ 𝒜)(𝑥1) = 𝑧]
Pr[(ℬ ◦ 𝒜)(𝑥2) = 𝑧] =

∑︁
𝑦 𝛼𝑥1 ,𝑦𝛽𝑦,𝑧∑︁
𝑦 𝛼𝑥2 ,𝑦𝛽𝑦,𝑧

≤
∑︁
𝑦 𝛼𝑥1 ,𝑦 �̂�𝑧∑︁
𝑦 𝛼𝑥2 ,𝑦 �̌�𝑧

=
�̂�𝑧
�̌�𝑧
≤ 𝑒𝜖 ,

since the sums are convex combinations of 𝛽𝑦,𝑧 and since both values of 𝑦 ∈ 𝒴 that

maximize/minimize 𝛽𝑦,𝑧 are adjacent. □

Our main result is that Algorithm 2 is differentially private:

Theorem 5.3 (Differential Privacy of SynTF). Given a privacy parameter 𝜖 > 0 and an output
length 𝑛 ∈ N, our SynTF mechanism (Algorithm 2) fulfills 𝜖𝑛-differential privacy.

Proof. Each iteration (the body of the for-loop) consists of two steps: First, our algorithm

samples one word 𝑣 according to the probabilities in𝛉t, which can be thought of as running

a randomized mechanism 𝒜 with the underlying categorical distribution. Second, it

substitutes 𝑣 with another word 𝑤 ∈ 𝒱 according to their similarity using the Exponential

mechanism ℰ𝜖,𝜌, which provides 𝜖-DP. By the preceding Lemma 5.2, both steps combined

are 𝜖-differentially private. Since we iterate 𝑛 times, the sequential composition theorem

[116, theorem 3.16] yields 𝜖𝑛-DP for the entire for-loop. Aggregating the synonym counts
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is a simple post-processing step which keeps the privacy loss unchanged [116, Proposition

2.1], and we hence achieve 𝜖𝑛-DP for Algorithm 2. □

5.2.4.1 Alternative Bound for the Exponential Mechanism

We can derive an alternative bound for the privacy loss of the Exponential mechanism by

also considering the maximum change across all outputs for fixed inputs (in contrast to the

sensitivity which tracks the maximum change across adjacent inputs for fixed outputs):

Theorem 5.4 (Alternative bound). Let 𝜖 > 0 be a privacy parameter and 𝜌 : 𝒳 ×𝒵 → R be a
rating function with sensitivity 𝛥 where |𝒵| = 𝐿. Let

�̄� := max

𝑥∈𝒳
max

𝑧,𝑧′∈𝒵
|𝜌(𝑥, 𝑧) − 𝜌(𝑥, 𝑧′)|.

Then the privacy loss ℓ (ℰ𝜖,𝜌) is bounded by (�̄� + ln�), where

�̄� = 𝜖
�̄�
𝛥

and

� = �(�̄�, 𝐿) = 𝑒−�̄�/2 + 𝐿 − 1

𝑒 �̄�/2 + 𝐿 − 1

< 1.

Proof. For any 𝑥 ∈ 𝒳 and 𝑧 ∈ 𝒵, denote by

𝜋𝑥,𝑧 := Pr[ℰ𝜖,𝜌(𝑥) = 𝑧] =
exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧)

)︂
∑︁
𝑧′ exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧′)

)︂
the probabilities that ℰ𝜖,𝜌 outputs 𝑧 on input 𝑥. Then for adjacent 𝑥1 , 𝑥2 ∈ 𝒳 and any fixed

𝑧 ∈ 𝒵, we bound

𝜋𝑥1 ,𝑧

𝜋𝑥2 ,𝑧
=

exp

(︂
𝜖

2Δ
𝜌(𝑥1 , 𝑧)

)︂
∑︁
𝑧′ exp

(︂
𝜖

2Δ
𝜌(𝑥1 , 𝑧′)

)︂ · ⎛⎜⎜⎝
exp

(︂
𝜖

2Δ
𝜌(𝑥2 , 𝑧)

)︂
∑︁
𝑧′ exp

(︂
𝜖

2Δ
𝜌(𝑥2 , 𝑧′)

)︂ ⎞⎟⎟⎠
−1

=

∑︁
𝑧′ exp

(︁ 𝜖
2𝛥 [𝜌(𝑥2 , 𝑧

′) − 𝜌(𝑥2 , 𝑧)]
)︁∑︁

𝑧′ exp

(︁ 𝜖
2𝛥 [𝜌(𝑥1 , 𝑧′) − 𝜌(𝑥1 , 𝑧)]

)︁
≤

1 +∑︁
𝑧′≠𝑧 exp

(︁ 𝜖
2𝛥 [

≤�̄�

𝜌(𝑥2 , 𝑧
′) − 𝜌(𝑥2 , 𝑧)]

)︁
1 +∑︁

𝑧′≠𝑧 exp

(︁ 𝜖
2𝛥 [𝜌(𝑥1 , 𝑧

′) − 𝜌(𝑥1 , 𝑧)
≥−�̄�

]
)︁
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Figure 5.1: Standard and alternative upper bound 𝜖+ ln� for the privacy loss ℓ (ℰ𝜖,𝜌) given different

output space sizes 𝐿.

≤
1 + (𝐿 − 1) exp

(︁ �̄�
2

)︁
1 + (𝐿 − 1) exp

(︁
− �̄�

2

)︁ = 𝑒 �̄� · 𝑒
−�̄�/2 + 𝐿 − 1

𝑒 �̄�/2 + 𝐿 − 1

=:�<1

.

The result follows by taking logarithms and observing that the numerator for � is strictly

smaller than its denominator. □

Note that normally, we have �̄� > 𝛥 since the sensitivity 𝛥 is restricted to adjacent inputs.

The growth due to the factor �̄�/𝛥 in �̄� = 𝜖�̄�/𝛥 therefore typically exceeds the savings

due to ln� < 0, so the alternate bound �̄� + ln� would be worse than the original bound 𝜖

as derived in the standard DP proof for the Exponential mechanism [294]. However, if

we consider all inputs as adjacent, and if 𝜌 is symmetric in its arguments, then we will

have �̄� = 𝛥 and �̄� = 𝜖, and thus the factor � < 1 will provide a real improvement over the

original bound. This is the case in our algorithm:

Corollary 5.5 (Improved DP bound). Given a privacy parameter 𝜖 > 0 and an output length
𝑛 ∈ N, our SynTF mechanism fulfills

(︁
(𝜖 + ln�(𝜖, 𝐿)) · 𝑛

)︁
-DP. □

Proof. The proof is identical to that of Theorem 5.3 with the improvement that the

Exponential mechanism provides (𝜖 + ln�(𝜖, 𝐿))-DP. □

We illustrate the effects of the factor �(𝜖, 𝐿) in Fig. 5.1: The original upper bound 𝜖 is

the black-dotted line on top, the other lines show the improved upper bound 𝜖 + ln� for

different values of 𝐿 ∈ {2, 100, 30 000}. 30 000 is approximately the size of the vocabulary

in some of our experiments. The effect of the improved bound increases with the privacy

parameter 𝜖, whereas large output spaces have a smoothing effect that dampens the

improvement.
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5.2.4.2 Tight Worst-Case Bounds

A major factor in the DP proof of Theorem 5.4 and Corollary 5.5 consists of bounding the

privacy loss ℓ (ℰ𝜖,𝜌) for the Exponential mechanism used in Algorithm 2. This privacy loss

is defined as the smallest upper bound for the logarithm of the fractions 𝜋𝑣1 ,𝑤/𝜋𝑣2 ,𝑤 , where

𝜋𝑣,𝑤 ∝ exp

(︂
𝜖

2Δ
𝜌(𝑣, 𝑤)

)︂
are the associated probabilities. The probabilities 𝜋𝑣,𝑤 depend on

the underlying vocabulary𝒱, the rating function 𝜌, and the privacy parameter 𝜖, but do

not take the documents t and t′ into account. Therefore, we can compute the privacy loss

ℓ (ℰ𝜖,𝜌) = max

𝑤∈𝒱
ln

max𝑣∈𝒱 𝜋𝑣,𝑤
min𝑣∈𝒱 𝜋𝑣,𝑤

(5.1)

in advance and independently of any documents to be anonymized once the parameters𝒱,

𝜌, and 𝜖 have been determined. Our SynTF method with privacy parameter 𝜖 and output

length 𝑛 thus in fact fulfills ℓ𝑛- instead of 𝜖𝑛-DP where ℓ = ℓ (ℰ𝜖,𝜌) is the privacy loss of

the Exponential mechanism. This turns out to lead to huge gains in practice, reducing the

privacy loss upper bound by almost 50% in our experiments (cf. Section 5.3.2).

To see that these bounds are tight, note that we can craft two input documents 𝑡1 and

𝑡2 that each consists of only a single word 𝑣1 and 𝑣2, respectively, where 𝑣1 and 𝑣2 are

precisely those that maximize the fraction

𝜋𝑣
1
,𝑤

𝜋𝑣
2
,𝑤

in Eq. (5.1) for the optimal 𝑤 ∈ 𝒱.

5.2.4.3 Relationship between Utility and Privacy Loss

We present the following theoretical results for the Exponential mechanism which suggest

that in order to get “useful” outputs with a large output space, we need to choose a large

privacy parameter 𝜖 in the order of ln|𝒵|, under the assumption that there are only few

good outputs for each input.

Theorem 5.6 (Upper and Lower Bounds for Utility). Let 𝜌 : 𝒳 ×𝒵 → R be a rating function
with |𝒵| ∈ N, and let 𝛥 be the corresponding sensitivity. Take any fixed 𝑥 ∈ 𝒳 and denote by �̂�𝑥
and �̌�𝑥 the maximum and minimum rating scores of any output for 𝑥, respectively. For a desired
minimum rating 𝜏 ∈ [�̌�𝑥 , �̂�𝑥], split𝒵 into 𝒯 := {𝑧 ∈ 𝒵 : 𝜌(𝑥, 𝑧) ≥ 𝜏} and 𝒯 := 𝒵 \ 𝒯 . Then
the probability Pr

[︁
ℰ𝜖,𝜌(𝑥) ∈ 𝒯

]︁
that the Exponential mechanism yields an element with score at

least 𝜏 has lower and upper bounds

|𝒯 |
|𝒯 | + |𝒯 | exp

(︁
− 𝜖𝑐

2𝛥

)︁ ≤ Pr

[︁
ℰ𝜖,𝜌(𝑥) ∈ 𝒯

]︁
≤ |𝒯 |
|𝒯 | + |𝒯 | exp

(︁
− 𝜖�̄�

2𝛥

)︁ ,
where 𝑐 := 𝜏 −max

𝑧∈𝒯 𝜌(𝑥, 𝑧) is the difference between 𝜏 and the next lower rating score, and
�̄� := �̂�𝑥 − �̌�𝑥 .
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Proof. For the lower bound, consider the inverse probability

Pr

[︁
ℰ𝜖,𝜌(𝑥) ∈ 𝒯

]︁−1

=

∑︁
𝑧∈𝒵 exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧)

)︂
∑︁
𝑧∈𝒯 exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧)

)︂
= 1 +

∑︁
𝑧∈𝒯 exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧)

)︂
∑︁
𝑧∈𝒯 exp

(︂
𝜖

2Δ
𝜌(𝑥, 𝑧)

)︂
≤ 1 +

|𝒯 | exp

(︁ 𝜖
2𝛥 (𝜏 − 𝑐)

)︁
|𝒯 | exp

(︁ 𝜖
2𝛥𝜏

)︁
≤ 1 + |𝒯 ||𝒯 | exp

(︂
− 𝜖𝑐

2𝛥

)︂
.

The upper bound is derived similarly. □

Solving for 𝜖, these bounds lead to the following corollary:

Corollary 5.7 (Necessary and Sufficient Conditions on 𝜖). Given a probability 𝑝 ∈ [0, 1], with
the notation from Theorem 5.6, we have the following necessary and sufficient conditions on 𝜖 for
Pr[ℰ𝜖,𝜌(𝑥) ∈ 𝒯 ] ≥ 𝑝:

𝜖 ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2𝛥

�̄�
ln

(︂ 𝑝

1 − 𝑝 ·
|𝒯 |
|𝒯 |

)︂
(necessary condition)

2𝛥
𝑐

ln

(︂ 𝑝

1 − 𝑝 ·
|𝒯 |
|𝒯 |

)︂
(sufficient condition)

Note that for our SynTF algorithm, we have �̄� = �̂�𝑥 − �̌�𝑥 ≤ 𝛥. Hence for 𝑝 = 1/2, the

necessary condition becomes

𝜖 ≥ 2 ln

(︃
𝑝

1 − 𝑝 ·
|𝒯 |
|𝒯 |

)︃
= 2 ln

(︃ |𝒯 |
|𝒯 |

)︃
= 2 ln

(︃ |𝒵| − |𝒯 |
|𝒯 |

)︃
.

Given a reasonable choice for the desired rating lower bound 𝜏, the number |𝒯 | of “useful”

outputs whose score is at least 𝜏 will be small. In the case of our SynTF mechanism, we

can think of 𝜏 as a threshold for the rating function that distinguishes good alternatives

for a given word from poor ones, and |𝒯 | would reflect the number of suitable substitutes

(synonyms). If we assume |𝒯 | to be bounded by some constant, then 𝜖 ∈ 𝛺(ln|𝒵|), that

is, 𝜖 needs to grow logarithmically in the size of the output space |𝒵| in order to allow

meaningful results.
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5.3 Evaluation

In this section, we first describe our implementation of the SynTF mechanism along with

associated parameters and our implementation choices. We then describe our experiment

setup and report the evaluation results. Finally, we compare SynTF with a traditional

information removal approach in the same experiment setup.

5.3.1 Algorithm Implementation and Parameters

We implemented a prototype of our SynTF algorithm in Python using the SpaCy package

(http://spacy.io/) for text parsing functionality as well as the numpy and SciPy packages

[215, 456] for (vector) computations. Besides the explicit parameters mentioned in

Algorithm 2, there are various implementation-dependent parameters that influence

SynTF in its different stages. We now describe these parameters and corresponding

implementation choices.

5.3.1.1 Vocabulary and Vectorization

We build a custom vectorizer to extract the vocabulary from the training or a given reference

corpus, and to subsequently transform documents to their BoW tf vectors. We can specify

several special options: Firstly, we can choose, for each extracted word, to keep its spelling

as-is, to change its morphology through lemmatization, or to convert it to lower case.

Secondly, we can instruct the vectorizer to include additional terms that are similar or

synonymous to the actually extracted words, as to provide a greater choice of candidates

for replacing a word with a suitable synonym but hopefully with different spelling to

disturb lexical authorship attribution features. Our implementation uses the synonyms

provided by WordNet’s synsets. We remove stop words and numbers by default.

5.3.1.2 Similarity Rating Function

We now describe the rating function 𝜌(𝑣, 𝑤) that expresses the suitability of a substitute

term 𝑤 for an input term 𝑣. One fundamental technique are word vectors or embeddings
which are dense vector representations of words in a real vector space. They are commonly

derived with the intention that similar words have embeddings in the vector space that are

nearby. We can therefore compute the similarity between two words simply and efficiently

as cosine similarity between their corresponding word vectors. Two recent models to derive

word vectors that achieve high accuracy in word similarity and analogy benchmarks are

“word2vec” [305, 306] and “GloVe” [342].
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Eroding Stylistic Features with the Bigram Overlap. As we saw in Section 5.2.2, features

such as the frequency of certain words and character 𝑛-grams often make an essential

and decisive contribution to authorship attribution methods. Suppose we can choose

a substitute for a given input term from a set of candidates with comparable similarity

ratings. Then to best prevent the attack, it is beneficial to pick the candidate that differs

most in spelling from the input in order to obscure our word and 𝑛-gram frequencies.

We can achieve this by including the (normalized) Levenshtein or 𝑛-gram distance in the

rating function for the terms. Note that care must be taken to weigh this appropriately – a

too strong preference for differently-spelled substitutes will often pick completely different

words that also have a different meaning from the original word, thus also negatively

affecting the utility.

We have implemented the word similarity rating function as

𝜌(𝑣, 𝑤) := cos(𝑣, 𝑤) − 𝑠𝐵(𝑣, 𝑤),

where cos(𝑣, 𝑤) is the cosine similarity between the corresponding GloVe [342] word

vectors, and 𝐵(𝑣, 𝑤) ∈ [0, 1] is the bigram overlap, i.e., the proportion of matching letter

bigrams in 𝑣 and 𝑤. The scaling factor 𝑠 determines if and how strongly the bigram

overlap affects the rating. As an optimization, we precompute the word similarity ratings

and probabilities for the Exponential mechanism for the entire vocabulary, which yields a

significant performance boost.

5.3.2 Experiment Description

In this section, we describe the context and setup of our evaluation.

Dataset. We perform a series of experiments with our algorithm on the “20 newsgroups”

dataset
1
. It comprises almost 19,000 postings from 20 different newsgroups, and comes with

predefined train (60%) and test (40%) sets which we use throughout our experiments. For

the text classification task, a label is provided for each message indicating the corresponding

newsgroup. For the authorship attribution task, we extracted the “From“ field in the

header of each message and use it as the author identifier. Note that we strip header and

footer data before performing the actual classification and identification tasks as to make

them more realistic.

1http://qwone.com/~jason/20Newsgroups/
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Table 5.1: Attack scenarios with minimum per author numbers for active groups and train/test

messages in the dataset.

Scenario Suspects #Groups #Train #Test

Top 5/Any Top 5 ≥ 1 ≥ 35 ≥ 17

Top 10/Any Top 10 ≥ 1 ≥ 28 ≥ 9

Top 5/Multi Top 5 ≥ 2 ≥ 29 ≥ 9

Top 10/Multi Top 10 ≥ 2 ≥ 21 ≥ 8

Attack Scenarios. After filtering out missing and ambiguous identifiers, we count 5735

authors, but the majority provides insufficient training samples (below 20 for 5711 authors)

for properly fitting a model. We therefore evaluate the attack only for the “top” authors

with the largest number of messages in the dataset. Since the number of candidate suspects

from which the correct author has to be determined also can influence the authorship

attribution performance, we evaluate the attack for the top 5 and top 10 authors. Table 5.1

provides the number of train and test messages per author.

Another issue with the dataset is that some users are active in only a single newsgroup, in

which case knowledge of authorship (attack) implies knowledge of the targeted newsgroup

(utility). We therefore devise two subsets of authors:

Any Each suspect author can have postings in any number (one or more) of newsgroups.

Multi Each author must be active in at least two different newsgroups.

The idea of the “Multi” group is to reduce the similarity between the attacker’s and analyst’s

tasks to allow a clearer distinction when evaluating the impact of our anonymization

technique.

Processing Pipeline. All documents traverse a processing pipeline that can be broken

down into three parts: For each document, the main SynTF pipeline (Fig. 5.2a) first

produces a synthetic tf vector (cf. Section 5.2.3). It can be influenced by a number of

parameters as described in Section 5.3.1. Next, the synthetic tf vectors traverse the analyst’s

text classification pipeline (Fig. 5.2b) and the attacker’s authorship attribution pipeline

(Fig. 5.2c) to measure the prediction performance for each task. In both cases, we evaluate

a multinomial naïve Bayes classifier and a linear SVM. We perform 10 runs of the entire

pipeline (anonymization + evaluation) for each combination of parameters to reduce

fluctuations and get stable results.

The analyst (cf. Fig. 5.2b) first transforms the tf vectors to tf–idf vectors which are

commonly used in classification tasks. He then trains a classifier with the training
subset of the dataset, and subsequently uses it to predict the newsgroups for the test
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(a) The main SynTF processing pipeline, including parameters.

(b) Subsequent text classification pipeline.

(c) Subsequent authorship attribution pipeline.

Figure 5.2: Processing pipelines for the main SynTF mechanism and subsequent analyst and

attacker tasks.

subset. We implement the classification in Python based on scikit-learn [340], using

its MultinomialNB classifier with smoothing (𝛼 = 0.01), and its LinearSVC classifier with

default parameters (𝐶 = 1).

For the attack as depicted in Fig. 5.2c, we make use of the JStylo authorship attribu-

tion framework [290]. It supports several extended feature sets such as WritePrints [6].

WritePrints includes additional stylistic features (cf. Section 5.2.2) on top of the usual BoW

that have to be extracted from full texts. However, since the attacker only gets synthetic

tf vectors and not full texts, she first converts the numbers in the tf vectors to text by

repeating each word accordingly, which allows at least partial deduction of WritePrints

features (“reverse vectorization” in Fig. 5.2c).

Note that the full WritePrints feature set contains a virtually endless number of features

and severely degrades performance (speed). Furthermore, the authors of [290] have shown

that despite its title, a limited version of WritePrints even outperforms the full version

in terms of accuracy, which we could confirm in own experiments. Therefore, we keep

the default JStylo configuration with the WritePrints (Limited) feature set. JStylo builds on

the Weka machine learning library. We use its NaiveBayesMultinomial classifier with

Laplace smoothing and its SMO SVM classifier with linear kernel and 𝐶 = 1 by default.
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Table 5.2: Evaluated and optimal SynTF parameters.

Parameter Values Description

morphology lemma Lemmatize words.

lower Convert words to lower case.

orth Leave spelling unchanged.

synsets true/false Extend vocabulary with additional syn-

onyms from WordNet.

𝑠 0, 0.1, 0.2, Impact factor of letter bigram

0.3, 0.4 overlap on rating function 𝜌.

𝑛 100, 150, 200 Length of output vector (words).

𝜖 35–55 (47.5), Privacy parameter (step size 2.5).

effectively 25.4 Effective loss ℓ , cf. sec. 5.2.4.2.

Finding Optimal Parameters. We perform a grid search over the SynTF parameters listed

in Table 5.2 to find “optimal” parameters in the sense that they should simultaneously

strongly affect authorship attribution but mostly leave classification into newsgroups

unaffected. As a metric to find these optimal settings we use the difference between

the relative performance impacts on utility and attack: Given parameters p, denote by

𝛽𝑈 (p) the relative performance of the analyst’s classification task (measured as 𝐹1 score),

and similarly denote by 𝛽𝐴(p) the relative performance of the attacker’s task. Then the

optimal parameters are p = argmaxp(𝛽𝑈 (p) − 𝛽𝐴(p)). Since we want them to equally

cover all four attack scenarios, we find optimal parameters that maximize the minimum
difference 𝛽𝑈 (p) − 𝛽𝐴(p) over all attack scenarios. Furthermore, we perform 10 runs of

the anonymization–evaluation process for each combination of parameters to reduce

fluctuations and get stable results.

5.3.3 Discussion of Results

After running the evaluation, we found the optimal parameters highlighted in Table 5.2

with privacy parameter 𝜖 = 47.5. However, our tight bounds analysis (cf. Section 5.2.4.2)

shows that the effective privacy loss ℓ (ℰ𝜖,𝜌) ≈ 25.4 is only about half as large. Table 5.3

provides exemplary performance figures in the “Top 10/Any” scenario for both topic

classification and authorship attribution.

Figure 5.3 depicts the relative performance between utility (green lines, left y-axis) and

attack (red lines, right y-axis) in the different stages of SynTF. The bottom x-axis indicates

the privacy parameter 𝜖, with the corresponding effective privacy loss values ℓ (ℰ𝜖,𝜌) on

the top. The dotted, dashed, and solid lines mark the utility and attack performances with

the original (plaintext), vectorized, and synthetic data, respectively, where we used the
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Table 5.3: Evaluation results (Top 10/Any).

Utility Attack Gain

Method 𝐹1 P R 𝐹1 P R 𝛥𝐹1

none (original) 0.69 0.71 0.70 0.64 0.71 0.63 0.06

SynTF abs. 0.60 0.61 0.61 0.42 0.44 0.43 0.18

scrubadub abs. 0.64 0.65 0.65 0.57 0.63 0.57 0.06

SynTF rel. 87% 86% 87% 66% 61% 69% 20%

scrubadub rel. 92% 92% 92% 90% 88% 91% 02%

optimal parameters for vectorization and synthesis as mentioned above. A positive gap

with the green above the red line shows how much the attack is more affected than utility.

We observe that the vectorization already affects the attack more due to the loss of

structural and syntactic features, except in one case (Top 5/Multi). Note that the size of the

(positive) gap between the green and red lines indicate the analyst’s gain over the attacker

in terms of the relative performance of the corresponding stage of the anonymization.

Obviously, both utility and attack suffer with a decreasing privacy parameter 𝜖. However,

in most cases, the gap between analyst and attacker is even higher than after vectorization,

which indicates a growing advantage for the analyst. Furthermore, it shows that our SynTF

mechanism successfully impairs authorship attribution while having only a mild effect on

the classification task.

Impact of Attack Scenarios. Comparing the four scenarios with respect to the gap size,

we make the following deductions: As expected, authorship attribution quickly becomes

harder with an increasing number of suspect authors. Similarly, excluding authors who

are active in only one newsgroup widens the gap, as we can see when going from the

“Any” to the “Multi” scenarios. This indicates that our method is even more effective when

the benign and malicious tasks are actually based on distinct problems.

Impact of Parameters from Table 5.2. A key factor in the success of our method is the

letter bigram overlap 𝐵 in the rating function 𝜌. Its effect of preferring synonyms with

different spelling improves the capability of our method to prevent authorship attribution

attacks. We illustrate this effect depending on the bigram overlap factor 𝑠 in Fig. 5.4:

Without bigram overlap (𝑠 = 0), the attacker has an advantage in all “Top 5” scenarios (red

bars). Only when 𝑠 ≥ 0.3, we see a shift of power in favor of the analyst (green bars). In

the “Top 10” scenarios, the analyst enjoys an advantage even without the bigram overlap,

but we can roughly double his advantage if we choose the optimal value 𝑠 = 0.3.
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(a) Multinomial naïve Bayes.

(b) Linear SVM.

Figure 5.3: Relative performance of analyst (green) and attacker (red) in different attack scenarios

and stages of the SynTF process (org: original data, vec: tf vectors, syn: SynTF vectors).

93



Chapter 5 SynTF: Synthetic and Differentially Private Term Frequency Vectors

Figure 5.4: Impact of letter bigram overlap factor 𝑠.

Regarding morphology, observe that the use of upper and lower case letters is a stylistic

feature that can pose a clue for authorship attribution but barely has any relevance for

topic inference. Therefore, transforming all words to lowercase affects the attacker more

than the analyst. Lemmatization strips off word endings and hence reduces the attacker’s

information on writing style further, but it also has an impact on classification since the

meaning can change between a word and its lemma. Still, in terms of our definition of

“optimal” parameters, using lemmatized words gave the best relative performance gain for

the analyst, indicating that the lost word endings are more severe for the attack.

Other parameters are less insightful: Increasing the output length will help increase both

tasks’ performance, however, the gain becomes less for larger output lengths. Moreover,

the inclusion of additional synonyms in the vocabulary did not provide any benefit.

SVM Anomaly. We observe one anomaly in the “Top 5/Any” scenario for the SVM.

Apparently, vectorization already causes a drastic reduction of the attack performance.

However, for 𝜖 ≥ 45, going from vectorized to synthetic vectors increases the attack

performance. This is unexpected since the information lost in vectorization will not be

restored by the synthesis process. Our current hypothesis is that the SVM might overfit on

the vectorized training data, causing poor predictions on the vectorized test data, and the

randomness in the synthesis step in turn acts as regularization.

5.3.4 Comparison with Scrubbing Methods

We run the open source scrubadub (http://scrubadub.readthedocs.org/) tool on the

20 newsgroups dataset to remove PII and evaluate the utility and attack performance in

our scenarios. Figure 5.5 shows a comparison of the results with our SynTF method and

optimal parameters. The results indicate that our method outperforms the scrubbing
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Figure 5.5: Comparing SynTF and traditional data removal.

technique in preventing the attack in all four attack scenarios, at a comparable level of

utility. For instance, in the “Top 10/Any” scenario listed in Table 5.3, SynTF achieves an 𝐹1

score of 0.60 for classification, where scrubadub is slightly better with 0.64, down from

0.69. For the attack, however, scrubadub drops from 0.64 to 0.57, whereas SynTF manages

to more than triple the reduction and push the attacker’s performance down to 0.42.

5.4 Comparison with Related Work

Authorship Obfuscation. To the best of our knowledge, most works on authorship

obfuscation that appeared before SynTF proposed manual methods or machine translation

as discussed in Section 3.3.4.2, also without providing any DP guarantees. On the face of it,

such methods initially appeared to provide some protection against authorship attribution;

however, manual methods are cumbersome to implement by the users [219, 290] and can

still be detected with high accuracy [11], whereas machine translation has been shown to

be ineffective [51, 58]. Furthermore, both approaches only prevent authorship attribution

with respect to a specific reference corpus with other authors. While our SynTF method

does not produce human-readable texts, it requires no manual changes to the documents,

and its protection is independent of a reference corpus.

Moreover, we also evaluate our method in an adaptive adversary model where the attacker

is able to recalibrate his authorship attribution attack to the obfuscation method, instead of

the weaker static adversary model. While simple obfuscation methods may be sufficient to

fool a static adversary, e.g., by always changing documents from one author to the style

of another, this could be detected by an adversary that is able to adapt his attack to the

deterministic changes made by the simple obfuscation technique.
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De-Identification. De-identification (also called masking or scrubbing) methods as dis-

cussed in Section 3.3.4.1 aim at removing sensitive or personally identifiable information

(PII) that is stated explicitly from textual documents. Prominent examples are provided by

the 18 HIPAA identifiers [327] (cf. Section 1.1.2.1) and include, e.g., the name, address, or

phone number of an individual.

While it is clear that this kind of information must be removed to protect the privacy

of the subjects mentioned in the document, our experiments in Section 5.3.4 show that

de-identification based on scrubbing provides no adequate protection for the document’s

author, although this is often critical, as in the case of complaint letters or patient records

to protect the privacy of the treating physician. Moreover, we found that publications

on these methods typically only evaluate their methods’ ability to identify and remove

all pieces of PII in the text (cf. the survey by Uzuner et al. [448]). We have not seen any

evaluation on the impact of scrubbing on further processing with text mining techniques

such as document classification, and more importantly, we have not found an evaluation

of whether and to what extent these methods prevent authorship attribution techniques.

Differential Privacy. DP has been successfully applied to a wide range of problems from

simple statistical functions to machine learning. The survey by Dwork [115] provides a

good overview of some earlier results. It is commonly used to provide aggregate statistics,

that is, multiple records are combined into one result. A good example is RAPPOR [123],

which allows the collection of anonymized user statistics even over time.

However, releasing aggregate information only allows inferences on an entire population,

whereas we want to classify each document individually. Releasing individual data with

an 𝜖 comparable to aggregating mechanisms causes too much noise for individual records

as it masks any difference (topic, sentiment, etc.) between two inputs and hence prevents

any utility. The issue is well-known in the literature and has been observed, e.g., in the

context of locations [24, 273], graphs [389], and recommender systems [272].

Approaches to mitigate this issue typically involve relaxing the privacy- or adjacency-

definition [24, 65, 186]. Andrés et al. [24] circumvent the issue for location data by

generalizing DP to metrics [65]. For graphs, Hay et al. [181] define two variants of DP,

namely node and edge privacy, where two graphs are considered adjacent if they differ either

in an entire node (including its edges) or in just a single edge, respectively. According to

Kasiviswanathan et al. [226], most works focus on the strictly weaker edge privacy since

it is harder to create node private algorithms providing good utility with a comparable

privacy loss. For instance, Sala et al. [389] revert to edge privacy for sharing graphs and

obtain usable results with 𝜖 = 100 per edge (instead of per node). In comparison, our SynTF

mechanism achieves a privacy loss of only 25.4 per word in the output (instead of per

96



5.5 Chapter Summary

document).

5.5 Chapter Summary

In this chapter, we have presented SynTF, a novel approach to produce anonymized,

synthetic tf vectors which can be used in lieu of the original tf vectors in typical applications

based on the vector space model. Our method produces sparse vectors which are favorable

regarding performance and memory efficiency. We have proved that our method fulfills

DP which currently serves as a “gold standard” for privacy definitions. Since our method

anonymizes each text individually, it can be used locally at the data source to anonymize

documents on-premise before collection, e.g., to obtain anonymized training data for

machine learning or provide personalized ads based on anonymized emails or search

queries.

Although our method requires a large 𝜖 to get reasonable utility, we provide evidence

that this is necessary: First, we want to be able to analyze records independently of each

other, thus the anonymization must not hide the influence of individual records in the

result. Second, we have derived a necessary condition on the privacy parameter 𝜖 for the

Exponential mechanism indicating that it must grow logarithmically in the size of the

output space when high utility is required but only a limited number of “good” outputs are

available. To further address the issue, we have derived alternative bounds on the privacy

loss of the Exponential mechanism, which in our case provide a substantial reduction of

almost 50%.

We have performed an extensive evaluation of SynTF on the 20 newsgroups dataset

and analyzed the influence of different parameters. Our results indicate that it effectively

prevents authorship attribution while facilitating tasks such as classification (utility). In

contrast, our experiments show that traditional scrubbing methods are insufficient at

preventing authorship attribution attacks.
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Chapter 6

Differentially Private Variational
Autoencoders

In this chapter, we tackle anonymization of textual data and propose an end-to-end

differentially private variational autoencoder architecture. Unlike previous approaches

that achieve DP on a per-word level through individual perturbations, our solution works

at an abstract level by perturbing the latent vectors that provide a global summary of

the input texts. Decoding an obfuscated latent vector thus not only allows our model to

produce coherent, high-quality output text that is human-readable, but also results in

strong anonymization due to the diversity of the produced data. We evaluate our approach

on IMDb movie and Yelp business reviews, confirming its anonymization capabilities and

preservation of the semantics and utility of the original sentences.

This chapter is based on the following publication [468]:

Benjamin Weggenmann, Valentin Rublack, Michael Andrejczuk, Justus Mattern,

and Florian Kerschbaum: “DP-VAE: Human-Readable Text Anonymization

for Online Reviews with Differentially Private Variational Autoencoders”. In

Proceedings of the ACM Web Conference 2022 (WWW ’22).

6.1 Introduction

The Internet has paved the way for many online platforms allowing individuals to share

their opinions about various products and services. The availability of such reviews not

only helps prospective customers, patients, or employees to make informed decisions

about their next buys, visits, or to evaluate their next potential employers, but also allows

the business owners to analyze the provided feedback to gain insights into how their

products, services, or brand image can be improved. To a large degree, such analyses

can be automated, e.g., using sentiment analysis, text mining, and other text-based data

science or machine learning techniques.
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While many such platforms allow users to post their reviews “anonymously”, i.e., under

a pseudonym without directly revealing their identity, the absence of explicit identifiers is

often not enough to provide true anonymity: In many scenarios, users can be re-identified

based on metadata or the data itself, e.g., through linkage attacks [92, 93, 207, 318, 364].

This is particularly critical for textual data which represents a rich source of information:

Users can be identified based on their pseudonymized search logs [34], and even their

writing style alone may be sufficient to de-anonymize them through modern authorship

attribution techniques [127, 364, 376, 409, 422] (cf. Section 3.2.1.2).

This may entail undesirable risks and consequences, ranging from, e.g., retaliatory

actions and legal disputes for publicly criticizing businesses on Yelp or Google Maps

[195], disclosure of patient identities and their sensitive personal information [57], over

sanctions from the employer to potential lawsuits in the millions for critical reviews on

sites like Glassdoor [323]. Users may hence feel reluctant to provide their honest feedback

for fear of retaliation [371, 398], which also concerns internal surveys [414]. To convince

them otherwise, it is thus necessary to develop methods that protect the anonymity of the

reviewers while preserving the quality and content of the original data, and ideally meet

formal privacy guarantees such as DP [117] which is widely regarded as the gold standard

of privacy protection.

Problem. While many DP mechanisms are readily available for structured data such as

numbers or vectors, it is not always easy to apply DP to unstructured data such as text,

which comes in varying lengths and with different ways to express the same idea. Existing

DP approaches for text work on a per-word level (cf. Section 3.3.5.1) [46, 138, 141, 142, 465, 466],

thus obfuscating the original input while keeping it statistically relevant overall. However,

each of these approaches has one or more undesired drawbacks: the output is a vector or

BoW representation and thus not human-readable, the produced text is incoherent due to

the words being perturbed individually, the DP guarantees only apply to texts of the same

length, and/or the privacy loss 𝜖 grows linearly with the length of the output.

Proposed Solution. We propose a radical approach to completely rewrite a given

sentence instead of randomizing words individually. Our approach relies on a VAE

network [233, 375] where we constrain its probabilistic encoder to facilitate differentially
private latent sampling. The noisy latent representations serve as a global blueprint for

the decoder and thus allow our resulting DP-VAE architecture to reconstruct coherent

outputs. Besides text, it can handle a variety of data formats, thus providing an end-to-end

differentially private obfuscation mechanism for generating private synthetic data. In

Section 6.3, we describe our core DP-VAE architecture and derive its privacy properties in
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terms of local RDP [309].

To further push the privacy-utility trade-off in our favor, we augment our core method

with adversarial training to disentangle the latent representations into separate content and

style vectors [213], representing the semantics and author-specific attributes, respectively.

We thus obtain a differentially private adversarial autoencoder (DP-AAE) which allows us to

approach text anonymization as a style transfer task where we change the specific style of an

author by applying DP selectively to the latent author representation while preserving the

content representation. We describe a scenario about online reviews in Section 6.4, where

we introduce two novel anonymization architectures based on our DP-VAE architecture

and its adversarial extension with disentangled latent representations.

In Section 6.5, we conduct experiments on the IMDb movie and Yelp business reviews

datasets, measuring the anonymization performance, the preservation of sentiment and

semantics, as well as the language quality of the transformed texts. Our results demonstrate

the effectiveness of our methods, which substantially mitigate the risks of reviewers being

re-identified through authorship attribution attacks, while the sentiments of the reviews

are preserved.

6.2 A Primer on Variational Autoencoders

In this section, we give a brief introduction to variational autoencoders (VAEs) as presented

by Kingma and Welling [233]. For a more detailed explanation, we refer to the tutorials by

Doersch [110] or Kingma and Welling [234].

VAEs model the actual data distribution 𝑝(x) as a generative random process through a

parametrized family of distributions 𝑝�(x),

𝑝(x) ≈ 𝑝�(x) =
∫
z

𝑝�(x|z)𝑝�(z)dz, (6.1)

i.e., x is generated conditionally with likelihood 𝑝�(x|z) based on a latent variable z, which

in turn follows a prior distribution 𝑝�(z).
The goal of a VAE is to learn the parameters � from the training data. To make

training feasible, we need a recognition model 𝑞𝜙(z|x) to approximate the true but generally

intractable posterior 𝑝�(z|x). The training objective then is to jointly optimize both � and

𝜙 to simultaneously maximize the log-likelihood of the data log(𝑝�(x)) and minimize the

KL divergence to 𝑞𝜙(z|x) from 𝑝�(z|x), which is achieved by maximizing the evidence lower
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bound (ELBO)

𝐿(x) = log(𝑝�(x)) − 𝐷KL(𝑞𝜙(z|x) ∥ 𝑝�(z|x))
= E𝑞𝜙(z|x)

[︁
log(𝑝�(x|z))

]︁
− 𝐷KL(𝑞𝜙(z|x) ∥ 𝑝�(z)).

(6.2)

6.2.1 Realization with Neural Networks

In an actual implementation of a VAE, the recognition and generative models are im-

plemented through neural networks which derive the immediate parameters for the

conditional distributions: Concretely, we use an encoder network 𝐸𝜙(x) to parametrize the

approximate posterior 𝑞𝜙(z|x), and a decoder or generator network 𝐺�(z) for the parameters

of the likelihood 𝑝�(x|z). To know what immediate parameters are required, we must

specify the used families of distributions.

In the following, we consider a common Gaussian VAE. We assume that the true

(but generally intractable) posterior 𝑝�(z|x) roughly follows a Gaussian with diagonal

covariance. Accordingly, in the recognition model, we model the approximate posterior as

𝑞𝜙(z|x) = 𝒩
(︁
z;𝝁, diag

(︁
𝝈2

)︁ )︁
, (6.3)

where the encoder determines the distribution parameters

𝝁, 𝝈 = 𝐸𝜙(x) :=
(︁
𝝁(x), 𝝈(x)

)︁
(6.4)

from the input x. All in all, we obtain z ∼ 𝒩
(︁
𝝁(x), diag

(︁
𝝈2(x)

)︁ )︁
.

In the generative model, the prior of the latent variable is a standard Gaussian that

needs no further parametrization,

𝑝�(z) = 𝒩(z; 0, I). (6.5)

In contrast, we parametrize the conditional likelihood 𝑝�(x|z)which models the probability

of the data x based on the latent variable z by a decoder network 𝐺�. Since we work with

textual data, x is a sequence x = (x1 , . . . , x𝑛) of discrete tokens (e.g., words, syllables, or

characters) over some predefined vocabulary (or alphabet)𝒱. The chain rule allows us to

factor the likelihood into conditional probabilities of the next word given the previous

words,

𝑝�(x|z) =
𝑛∏︂
𝑡=1

𝑝�(x𝑡 | z, x<𝑡), (6.6)
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where the conditionals are modeled as categorical distributions

𝑝�(x𝑡 | z, x<𝑡) = Cat(x𝑡 ;𝒱 , p𝑡). (6.7)

The probability vectors p𝑡 over the vocabulary𝒱 are determined by the stateful decoder

at each position 𝑡 = 1, . . . , 𝑛 as

p𝑡 = 𝐺�(z, x<𝑡). (6.8)

6.2.1.1 Training

To achieve the training objective, we use stochastic gradient descent (SGD) or a derived

method with backpropagation to compute the gradients and minimize the negative ELBO

from Eq. (6.2),

ℒVAE(x) = − 𝐿(x)
=E𝑞𝜙(z|x)

[︁
− log(𝑝�(x|z))

]︁
(6.9)

+ 𝐷KL(𝑞𝜙(z|x) ∥ 𝑝�(z)). (6.10)

The second term (6.10) with the KL divergence is called the KL loss, which in our case of a

Gaussian prior and an approximate posterior as in Eqs. (6.3) and (6.5) can be computed

analytically as

ℒKL(x) = 𝐷KL(𝑞𝜙(z|x) ∥ 𝑝�(z))

=
1

2

𝐿∑︂
𝑖=1

(︂
𝜎2

𝑖 + �
2

𝑖 − log(𝜎2

𝑖 ) − 1

)︂
.

(6.11)

The first term (6.9) constitutes the reconstruction loss

ℒrec(x) = E𝑞𝜙(z|x)
[︁
− log(𝑝�(x|z))

]︁
≃ − log(𝑝�(x|z)) (6.12)

whose expectation is typically approximated with a simple Monte Carlo estimator using

just a single latent sample z ∼ 𝑞𝜙(z|x). It hence corresponds to the negative log likelihood
(NLL), which in case of a sequence x = (x1 , . . . , x𝑛) can be expanded as per Eq. (6.6) to

− log 𝑝�(x|z) = −
𝑛∑︂
𝑡=1

log 𝑝�(x𝑡 | z, x<𝑡), (6.13)

which coincides with the categorical cross-entropy loss aggregated over the entire sequence.

One remaining problem with the sampling step in Eq. (6.12) is that it is non-differentiable,
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but we need gradients for backpropagation. A way to obtain them is the popular

reparameterization trick [233, 375] or implicit reparameterization [144] as more general

alternative.

6.2.1.2 Inference

For inference, we run an input x though the encoder network 𝐸𝜙 to obtain parameters

for 𝑞𝜙(z|x), from which we draw a sample z ∼ 𝑞𝜙(z|x). This latent representation z we

then pass to the decoder network 𝐺� to reconstruct an output x̂ ∼ 𝑝�(x|z). In the case of

sequential data such as text, a full output sequence x̂ = (x̂1 , . . . , x̂𝑚) can be constructed

iteratively by sampling subsequent tokens x̂𝑡 ∼ Cat(𝒱 ,G�(z, x<𝑡)), cf. Eqs. (6.7) and (6.8),

until a designated end-of-sequence token or maximum length is reached.

In practice, other decoding strategies may be used: For instance, greedy search simply

takes the next token with the highest probability x̂𝑡 = arg max
x

Cat(x;𝒱 , p𝑡) (and thus

degenerates into a deterministic algorithm), and beam search decodes multiple sequences

simultaneously, keeping track of the most likely ones.

6.3 Differentially Private Inference through Variational
Autoencoders

DP (cf. Section 2.2) is a notion of privacy based on randomness, i.e., any non-trivial

DP mechanism must be non-deterministic. In the context of textual data, existing DP

mechanisms typically operate on a word-by-word basis [46, 138, 141, 142, 465] by randomly

determining each word in the output sequence. The common ground of these methods

is to impose a probability distribution, locally at each position, over the words in the

output space (or similarly, over the embedding space) and draw a word (or corresponding

embedding) from that distribution. This has one or more drawbacks, for instance,

• the output is not in a human-readable form, e.g., a vector or BoW representation,

• the produced text is incoherent due to the words being perturbed independently,

• the DP guarantees only cover texts of equal length, and/or

• the required privacy budget in terms of 𝜖 grows linearly with the length of the output

sequence.

Bowman et al. [50] explored VAEs (see Section 6.2) as means to map texts to distributed
latent representations, providing global summaries of the input texts. The idea is that
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“reasonable” sentences are encoded to representations that are close to the origin in the

latent space (due to prior regularization), ensuring that nearby representations can also

be decoded to coherent outputs. VAEs are non-deterministic by design, as they produce

each latent representation by sampling from a posterior distribution based on the input.

Remarkably, the posteriors commonly are Gaussian distributions, which are at the heart of

the Gaussian mechanism [116] (cf. Definition 2.16 and Theorem 2.21) that is frequently

used in the context of DP.

Unfortunately, despite its inherent randomness, a vanilla Gaussian VAE architecture is

not sufficient to guarantee DP: On one hand, without additional restrictions, the latent

space is unbounded, which prevents a finite sensitivity (cf. Definition 2.12) as required for

DP. On the other hand, the variance of the posterior distribution is determined by the

encoder from the input; therefore, the latent representation of an input with a tiny variance

could degenerate to a tiny disc around its mean covering most of the probability mass,

where another input with a large variance would have a distinctively smaller probability,

which may again violate given DP guarantees.

6.3.1 Differentially Private Latent Sampling

In the following, we modify a vanilla VAE to exploit its random latent variable in a way to

achieve (Rényi) DP in the latent representations.

Mean Bound. In a Gaussian VAE, the parameter 𝝁 = 𝝁(x) determines the mean lo-

cation of the latent representations sampled from the approximate posterior 𝑞𝜙(z|x) =
𝒩

(︁
z;𝝁, diag

(︁
𝝈2

)︁ )︁
. Since we work in the local model (Section 2.2), any two input texts

are considered adjacent. To obtain differentially private latent representations, we hence

need a finite sensitivity 𝛥 = maxx,x′
(︁
∥𝝁(x) − 𝝁(x′)∥

)︁
. Normally, the mean locations are

unbounded, so arbitrary inputs x, x′ could cause ∥𝝁(x) − 𝝁(x′)∥ to become arbitrarily large.

We hence propose a continuous mean bound in the latent space, namely, a vector-valued

radial hyperbolic tangent map

tanh
∗(𝝁) ≔ tanh

(︁
∥𝝁∥

)︁ 𝝁

∥𝝁∥ (6.14)

that contracts the vector 𝝁 to lie inside a unit ball about the origin.

If necessary, we can resize the co-domain of tanh
∗

to a ball of radius 𝑅 > 0 using

𝑅 tanh
∗(𝝁); this is useful as the prior 𝑝�(z) regulates the latent representations to follow a

standard Gaussian distribution, and by choosing, e.g., 𝑅 = 3, the shrunk latent space would

still cover over 99.7% of its probability mass (3𝜎 rule). We thus obtain an approximate
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𝑅

×
𝝁(x1)

𝑍
×

𝝁(x2)

×
𝝁(x3)

(a) Gaussian VAE: unbounded 𝝁 and 𝝈 de-

pendent on x.

𝑅

×
𝝁∗(x1)

×
𝝁∗(x2)

×
𝝁∗(x3)

(b) DP-VAE: contracted mean 𝝁∗ and con-

stant, isotropic 𝝈 ≡ 𝝈
fix

.

Figure 6.1: Sketch of latent space with posteriors 𝑞𝜙(z | x𝑖) = 𝒩
(︁
z;𝝁(x𝑖), diag

(︁
𝝈2(x𝑖)

)︁ )︁
without and

with DP constraints.

posterior 𝒩
(︁
𝝁∗ , diag

(︁
𝝈2

)︁ )︁
with ∥𝝁∗∥2 ≤ 𝑅 by replacing the original mean 𝝁 = 𝝁(x) as

determined by the encoder with the contracted mean

𝝁∗ = 𝝁∗(x) := 𝑅 tanh
∗ (︁𝝁(x))︁ . (6.15)

The effect of contracting the mean is shown in Fig. 6.1: In the original VAE, 𝝁(x) is only

regulated by the KL loss to be close to the origin, but there is no hard limit for that distance.

This is illustrated by 𝝁(x3) in Fig. 6.1a, which is outside the dashed disc. On the other

hand, the contracted mean values 𝝁∗(x𝑖) in Fig. 6.1b all lie within a ball of radius 𝑅 about

the origin. Note though, that samples from the approximate posteriors may still end up

further away.

Global Variance. A similar issue as with the mean arises if the standard deviations 𝝈(x)
are determined by the encoder: While 𝝈(x1) could be relatively large for one input x1, we

may bring 𝝈(x2) arbitrarily close to 0 for another input x2. Now if we consider the ratio of

probabilities 𝑝(𝑍 | x2)/𝑝(𝑍 | x1) for some small event set of representations 𝑍 enclosing

𝝁(x2) as illustrated in Fig. 6.1a by the yellow area, the numerator will be large, but the

denominator very small. Due to the continuity of the encoder network, we may be able

to change x1 and x2 as to increase the difference between 𝝈(x1) and 𝝈(x2) even further;

therefore, the ratio cannot be bounded in general, violating the core idea of DP. To solve

this, we no longer determine the standard deviation by the encoder as a function 𝝈(x), but

specify a global 𝝈 := 𝝈
fix

that is independent of the input x.
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Figure 6.2: Privacy guarantee of isotropic Gaussian

(︂
𝛼,

𝛼𝛥2

2

2𝜎2

)︂
-RDP mechanisms with sensitivity

𝛥2 = 6 in terms of (𝜖, 𝛿)-DP, over a range of 𝜎 ∈ [0.01, 100].

6.3.2 Differential Privacy Properties of the Constrained VAE

The modified VAE with mean bound and global variance as described in Section 6.3.1 ends

up with a new probabilistic encoder that approximates the posterior distribution as

𝑞𝜙(z|x) = 𝒩
(︁
z;𝝁∗ , diag

(︁
𝝈2

fix

)︁ )︁
, (6.16)

where 𝝁∗ = 𝑅 tanh
∗ (︁𝝁(x))︁ as in Eq. (6.15) and 𝝈

fix
is a hyperparameter that is independent

of the input x. For simplicity, we assume an isotropic Gaussian with variances 𝝈2

fix
=

(𝜎2 , . . . , 𝜎2). According to Theorem 2.21, the modified probabilistic encoder achieves(︂
𝛼,

𝛼𝛥2

2

2𝜎2

)︂
-RDP (6.17)

with sensitivity 𝛥2 = 2𝑅. By Proposition 2.11, we can translate this RDP curve to (𝜖, 𝛿)-DP,

with exemplary values using 𝑅 = 3 shown in Fig. 6.2.

Another benefit of our differentially private latent sampling mechanism is that decoding

acts as post-processing, which is known to preserve DP [116, Proposition 2.1] and RDP

[309, p. 4] properties. Therefore, we can use any desired decoding strategy that improves

the quality of the output data. For instance, in the case of text, this could be beam search,

Top-𝐾 or Top-𝑝 sampling [129, 192], etc.

6.4 Anonymizing Online Reviews

We apply the proposed DP-VAE architecture from Section 6.3 to the task of anonymizing

online reviews. Specifically, we consider the following scenario: An online platform wants

to publish its users’ anonymous reviews for interested readers as well as for businesses
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and researchers to build sentiment analysis models. However, an attacker attempts to

identify the authors of given reviews, for example, when these are critical of their business

or product. The attacker suspects a limited pool of candidates to have written negative

reviews and is thus able to train an authorship attribution model given a set of similar

documents written by the candidates.

Our goal is to obfuscate the reviews to prevent the attacker from identifying the

authors while preserving their utility for a sentiment classification model, keeping them

semantically as close to the original as possible and of high quality in terms of language.

To that end, we test variations of two different architectures, which we describe in detail in

the following sections.

6.4.1 End-to-End Differentially Private VAE

Our first approach applies our DP constraints from Section 6.3.1 to the overall latent

variable z in a Gaussian VAE model for text (e.g., as in [50]) to achieve differentially private

latent sampling of z.

The encoder 𝐸𝜙 predicts the parameters of the Gaussian posterior 𝑞𝜙(z|x) from which the

sentence representation z is sampled. Specifically, it consists of a bidirectional multi-layer

RNN with GRUs [76] that encodes a sequence of word embeddings x = (𝒙1 , . . . , 𝒙𝑛). The

concatenated hidden states from both directions of the last layer are passed to a modified

feed-forward network that infers the contracted mean 𝝁∗ = 𝑅 tanh
∗ (︁𝝁(x))︁ as in Eq. (6.15),

while 𝝈 := 𝝈
fix

is fixed (cf. Section 6.3.1). The generator 𝐺� also consists of a RNN with

GRUs. It iteratively decodes the latent vector z to a sentence x̂ = (x̂1 , . . . , x̂𝑚) by mapping

the output of its final layer to a word from the vocabulary through a softmax function.

The overall loss ℒVAE(x) then is the sum of the reconstruction loss and the KL loss.

6.4.2 Disentangled Latent Representations

Our second approach follows John et al. [213] and incorporates auxiliary losses to disen-

tangle the latent representation into two variables, z𝑐 and z𝑎 , representing content- and

author-specific information of the input text, respectively. Our idea with this adversarial
autoencoder (AAE) is to leave the content embedding z𝑐 unchanged, but obfuscate the

author embedding z𝑎 so that the decoder produces an output that preserves the semantics

of the input while protecting the author information: To that end, we either stick to [213]

and set z𝑎 to its average encoding, or we perturb the author embedding z𝑎 using DP latent

sampling (Section 6.3.1). As we cannot prove that there is no leakage of author-related

information into z𝑐 , this approach does not provably fulfill end-to-end DP; however, we

hypothesize that it may lead to better privacy-utility trade-offs.
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𝒩
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Figure 6.3: Sketch of our disentangled latent space approach.

Like our first approach in Section 6.4.1, the architecture consists of a GRU-RNN

based encoder and generator. A feed-forward network predicts the parameters 𝝁𝑐 , 𝝈𝑐
characterizing the Gaussian posterior 𝑞𝜙(z𝑐 |x) from which the content embedding z𝑐 is

sampled, whereas 𝝁∗𝑎 , 𝝈𝑎,fix
characterizing the Gaussian posterior 𝑞𝜙(z𝑎 |x) for the author

embedding z𝑎 obey the privacy constraints described in Section 6.3. Alternatively [213],

during inference, we can set z𝑎 to the average of all author representations generated

within one batch to let the generator decode an obfuscated author representation.

6.4.2.1 Motivating Losses

To ensure that only z𝑐 contains semantic information and only z𝑎 contains author-specific

information, we apply auxiliary losses in addition toℒVAE. Following Romanov et al. [382],

we differentiate between losses motivating z𝑐 and z𝑎 to store content- and author-related

information, respectively, and discriminating losses penalizing z𝑐 and z𝑎 for storing author-

and content-related information, respectively (cf. Fig. 6.3).

Content Motivator. To preserve semantics in the content embedding, we define a

vocabulary𝒱 of content words and train a content motivating network 𝑀𝑐 to predict the

Bag-of-Words (BoW) distribution 𝑝𝑏 of the input sentence as proposed by John et al. [213],

�̂�𝑏 = 𝑀𝑐(z𝑐) = softmax(𝑊𝑀𝑐 ∗ z𝑐 + 𝑏𝑀𝑐 ).

The content motivating loss ℒ𝑀𝑐 then is the cross-entropy loss

ℒ𝑀𝑐 = −
∑︂
𝑤∈𝒱

𝑝𝑏(𝑤) · log

(︁
�̂�𝑏(𝑤)

)︁
.
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Author Motivator. The author motivating network 𝑀𝑎 aims to predict the one-hot

encoded author 𝑝𝑎 from the author vector z𝑎 ,

�̂�𝑎 = 𝑀𝑎(z𝑎) = softmax(𝑊𝑀𝑎 ∗ z𝑎 + 𝑏𝑀𝑎 ).

We again employ the cross-entropy loss as author motivating loss

ℒ𝑀𝑎 = −
∑︂
𝑢∈𝒜

𝑝𝑎(𝑢) · log

(︁
�̂�𝑎(𝑢)

)︁
,

where𝒜 denotes the set of authors in our dataset.

6.4.2.2 Discriminating Losses

Our content and author discriminating losses ℒ𝐷𝑐 and ℒ𝐷𝑎 work analogous to the

motivating losses: The content discriminator 𝐷𝑐 is trained to predict the BoW distribution

from the latent author representation z𝑎 and our author discriminator 𝐷𝑎 is trained to

predict the author of a given sentence from z𝑐 . Other than the motivating networks 𝑀𝑐

and 𝑀𝑎 , 𝐷𝑐 and 𝐷𝑎 are two-layer networks, as we hypothesize that the prediction tasks

are harder for the discriminators than for the motivators.

6.4.2.3 Training Objective

Our overall training objective is a min-max objective. For each batch in our training dataset,

we first minimize the discriminators’ losses with respect to their weights and consequently

minimize the autoencoder’s overall loss ℒovr while keeping the discriminators’ weights

fixed. ℒovr is defined as

ℒovr = ℒVAE + �𝑀𝑐ℒ𝑀𝑐 + �𝑀𝑎ℒ𝑀𝑎 − �𝐷𝑐ℒ𝐷𝑐 − �𝐷𝑎ℒ𝐷𝑎 (6.18)

where the weights �𝑀𝑐 ,�𝑀𝑎 ,�𝐷𝑐 , �𝐷𝑎 are hyperparameters.

6.5 Evaluation

We conduct several experiments to test our proposed architectures. In this section, we

describe the experiments’ setup and conduction including the used datasets, evaluation

metrics, and their results.
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6.5.1 Datasets

We use two publicly available datasets in our evaluation:

IMDb Movie Reviews. The IMDb movie review dataset [271] contains 100,000 movie

reviews from 62 users with a rating label on a scale of one to ten. We reduce the size of the

dataset to 10,000 by only keeping reviews from ten authors, and simplify the sentiment

label by treating every rating below 5 as “negative” and every rating of 5 or higher as

“positive”, resulting in a binary classification task.

Yelp Product Reviews. The Yelp dataset
1

consists of over 6 million user reviews of

businesses such as bars and restaurants with ratings on a scale of one to five as well as

pseudonymous author labels. We only keep data from the ten users with the most reviews,

hereby reducing the dataset to the size of 15,729 reviews. We simplify the rating labels by

treating every rating of one to three as “negative” and the rest as “positive”, thus creating

a binary classification task.

6.5.2 Evaluation Metrics

We evaluate the proposed architectures in terms of four aspects: First, we investigate

how well the transformed texts are anonymized, as measured by the effectiveness of

mitigating authorship attribution. Second, we evaluate the utility of the produced texts

from the perspective of a third party wanting to analyze the sentiment of customer

reviews, measuring how well the outputs reflect the sentiment of the original reviews

using sentiment classifiers. Third, we assess the semantic similarity between the output

texts and their originals. Lastly, we also evaluate the readability of the texts.

6.5.2.1 Privacy (Authorship Obfuscation)

We evaluate our models’ anonymization effectiveness through authorship attribution

classifiers predicting the writers from the transformed texts. We employ two models, a

shallow SVM classifier predicting the author from a word uni- and bigram frequency

vector, as well as a classifier based on the BERT [101] language model which has been

shown to perform well for authorship attribution [128]. Specifically, we fine-tune BERT’s

last three layers with two additional dense layers to predict an author label given BERT’s

classification token [CLS].

1https://www.yelp.com/dataset/
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Attacker Models. Assuming that an attacker only has access to labeled original reviews

as training data, we train static models on the original texts and compare their authorship

attribution performance on both the original and the transferred texts. However, in

a realistic scenario, the obfuscation method may be public (no “security/privacy by

obscurity”), so the attacker could simply produce labeled obfuscated training data himself.

Therefore, we also train and evaluate adaptive models on the transformed sentences.

Classification Metrics. Besides measuring the accuracy of our attribution models, we

compute the Matthews correlation coefficient (MCC) [165, 287] to account for any imbalances

in the datasets (cf. Chicco and Jurman [73]). MCC scores range from -1 to 1, with 0

indicating uninformed or random guesses, -1 indicating intentionally avoiding correct

choices, and +1 indicating correct choices only. Notably, always predicting the majority

label in an imbalanced dataset may result in misleadingly high accuracy scores whereas

the MCC would stay around 0.

6.5.2.2 Utility (Sentiment Preservation)

We measure utility from the perspective of a company/researcher aiming to analyze the

sentiment of user reviews while protecting the privacy of the consumer. Thus, similar to

the evaluation of privacy, we train a BoW based SVM classifier and a BERT based classifier.

Besides accuracy, we also measure the MCC of both static and adaptive models.

6.5.2.3 Semantic Similarity (Content Preservation)

As we want our transformed sentences to preserve the semantics of the original ones, we

compute three metrics measuring the semantic similarity of these.

METEOR (ME). For comparison with other works, we include the established METEOR

score [33]. Note that its scoring method relies on aligning (stemmed) word unigrams in

the input and output sentences, but usage of 𝑛-grams also constitutes a stylometric feature

that may be distinctive to certain writers. Therefore, METEOR may be misleading, since

high stylometric similarity may also indicate a high chance of success for the authorship

attribution attack.

Sentence-BERT (SB) and Universal Sentence Encoder (USE). We employ modern

sentence embeddings based on Sentence-BERT [369] and the Universal Sentence Encoder

[62] and compute the cosine similarity of the input and output sentences. Importantly,

unlike metrics such as METEOR or word overlap, they do not focus on the exact wording
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and spelling that is used, and thus provide a more abstract and robust measure of semantic

similarity without the strong connection to stylometric similarity.

6.5.2.4 Readability / Language Quality

We measure the readability of our generated sentences by computing the perplexity (PPL)

based on the log-likelihood of a GPT-2 language model [363].

6.5.3 Experiment Conduction

We train and evaluate four different architectures:

V-VAE: A vanilla Gaussian VAE architecture for text (similar to Bowman et al. [50]) as a

baseline without DP constraints or auxiliary losses.

DP-VAE: Our DP-VAE architecture with DP constraints and formal privacy guarantees as

explained in Section 6.4.1.

AVG-AAE: The adversarial autoencoder from Section 6.4.2 with disentangled representa-

tions, where the author representations in an inference batch are set to their average

across the batch.

DP-AAE: The adversarial autoencoder from Section 6.4.2 with disentangled representa-

tions, where the author representations are obtained through differentially private

sampling.

We implement all architectures in TensorFlow and use Optuna [14] to individually tune

their hyperparameters, such as the weights of the loss functions or the hidden layer sizes of

the encoder and decoder, over 40 trials before comparing them on a final unseen test set. In

each trial, we train three models for 30 epochs on randomized shuffle splits of the training

data, and for each trained model we transform three sets of validation data. Thus, we

obtain a total of 9 sets of obfuscated reviews per trial, based on which we choose the best

trial in terms of privacy as specified in Section 6.5.2.1, utility as specified in Section 6.5.2.2,

and semantic similarity according to Sentence-BERT as specified in Section 6.5.2.3. The

discriminator networks are optimized using RMSprop [189], while we use Adam [232]

for the overall model. For both DP-constrained models DP-VAE and DP-AAE, we report

results with mean bound 𝑅 := 3 and the best found value for 𝝈
fix

. Moreover, we assess the

impact of 𝝈
fix

on the privacy-utility trade-off by re-evaluating the best DP models with

varying 𝝈
fix
∈ [0.01, 100].

113



Chapter 6 Differentially Private Variational Autoencoders

Table
6.1:

E
v
a
l
u

a
t
i
o
n

r
e
s
u

l
t
s

o
f

a
u

t
h

o
r

(
A

)
a
n

d
s
e
n

t
i
m

e
n

t
(
S
)

c
l
a
s
s
i
fi

e
r
s

b
a
s
e
d

o
n

a
s
t
a
t
i
c

/
a
d

a
p

t
i
v
e

S
V

M
o
r

B
E

R
T

m
o
d

e
l
.

(
T
e
x
t

m
e
t
r
i
c
s
:

S
B

=
S
e
n

t
e
n

c
e
-
B

E
R

T
,
U

S
E

=
U

n
i
v
e
r
s
a
l
S
e
n

t
e
n

c
e

E
n

c
o
d

e
r
,
M

E
=

M
E

T
E

O
R

,
P

P
L

=
G

P
T
-
2

p
e
r
p

l
e
x
i
t
y
.

B
e
s
t

t
r
a
d

e
-
o
ff

i
n

italics
.
)

A
c
c
u

r
a
c
y

M
C

C

S
V

M
s
t
a

S
V

M
a
d

a
B

E
R

T
s
t
a

B
E

R
T

a
d

a
S
V

M
s
t
a

S
V

M
a
d

a
B

E
R

T
s
t
a

B
E

R
T

a
d

a
T
e
x
t

m
e
t
r
i
c
s

M
o
d

e
l

A
↓

S
↑

A
↓

S
↑

A
↓

S
↑

A
↓

S
↑

A
↓

S
↑

A
↓

S
↑

A
↓

S
↑

A
↓

S
↑

S
B
↑

U
S
E
↑

M
E
↑

P
P

L
↓

IM
D

b:
O

r
i
g
i
n

a
l

0
.
9
0

0
.
8
9

0
.
9
0

0
.
8
9

0
.
8
7

0
.
8
6

0
.
8
7

0
.
8
6

0
.
8
9

0
.
4
7

0
.
8
9

0
.
4
7

0
.
8
5

0
.
5
8

0
.
8
5

0
.
5
8

1
.
0

1
.
0

1
.
0

1
5
7
.
9

V
-
V

A
E

0
.
7
7

0
.
8
7

0
.
7
7

0
.
8
7

0
.
5
9

0
.
7
9

0
.
7
3

0
.
8
7

0
.
7
5

0
.
3
7

0
.
7
4

0
.
3
4

0
.
5
6

0
.
4
1

0
.
7
1

0
.
4
5

0.59
0.62

0.24
2
1
3
.
3

D
P
-
V

A
E

0.14
0.86

0.24
0.86

0.13
0.80

0.28
0.86

0
.
0
7

0
.
0
0

0
.
1
6

0
.
0
0

0
.
0
4

0
.
0
1

0
.
2
0

0
.
0
0

0
.
3
3

0
.
3
5

0
.
0
9

7
3
.
4

A
V

G
-
A

A
E

0
.
2
4

0
.
8
6

0
.
3
1

0
.
8
7

0
.
2
3

0
.
8
4

0
.
3
0

0
.
8
6

0
.
1
6

0
.
2
2

0
.
2
4

0
.
3
4

0
.
1
5

0
.
2
6

0
.
2
2

0
.
3
5

0
.
4
7

0
.
5
0

0
.
1
5

7
2
.
6

D
P
-
A

A
E

0
.
1
7

0
.
8
6

0
.
2
9

0
.
8
8

0
.
1
8

0
.
7
7

0
.
2
9

0
.
8
6

0.09
0.25

0.21
0.38

0.09
0.27

0.22
0.39

0
.
4
4

0
.
4
4

0
.
1
4

58.3

Yelp:
O

r
i
g
i
n

a
l

0
.
8
5

0
.
7
2

0
.
8
5

0
.
7
2

0
.
8
5

0
.
7
7

0
.
8
5

0
.
7
7

0
.
8
3

0
.
4
3

0
.
8
3

0
.
4
3

0
.
8
3

0
.
5
5

0
.
8
3

0
.
5
5

1
.
0

1
.
0

1
.
0

1
9
9
.
4

V
-
V

A
E

0
.
6
9

0
.
6
9

0
.
7
1

0
.
6
9

0
.
6
6

0
.
7
0

0
.
7
0

0
.
7
0

0
.
6
5

0
.
3
9

0
.
6
6

0
.
3
7

0
.
6
1

0
.
4
1

0
.
6
5

0
.
4
1

0.59
0.57

0.22
2
3
3
.
1

D
P
-
V

A
E

0
.
2
0

0
.
5
2

0
.
3
0

0
.
5
4

0
.
1
6

0
.
5
2

0
.
3
3

0
.
5
1

0
.
0
8

0
.
0
2

0
.
1
5

0
.
0
7

0
.
0
5

0
.
0
3

0
.
2
1

0
.
0
2

0
.
1
2

0
.
1
2

0
.
0
5

53.2
A

V
G

-
A

A
E

0.28
0.67

0
.
4
1

0
.
6
8

0.25
0.67

0
.
4
0

0
.
6
7

0.18
0.34

0
.
3
1

0
.
3
5

0.17
0.34

0
.
3
1

0
.
3
4

0
.
5
2

0
.
5
0

0
.
1
5

1
5
2
.
1

D
P
-
A

A
E

0
.
3
3

0
.
6
8

0.42
0.70

0
.
2
8

0
.
6
7

0.41
0.69

0
.
2
5

0
.
3
6

0.32
0.39

0
.
2
0

0
.
3
3

0.31
0.38

0
.
5
0

0
.
4
8

0
.
1
4

1
7
5
.
0

114



6.5 Evaluation

10
−2

10
−1

10
0

10
1

10
2

𝜎

0.2

0.4

0.6

0.8

Au
th

or
sh

ip
M

C
C

IMDb

10
−2

10
−1

10
0

10
1

10
2

𝜎

0.0

0.2

0.4

0.6

0.8

Au
th

or
sh

ip
M

C
C

Yelp

0.0

0.1

0.2

0.3

0.4

Se
nt

im
en

tM
C

C
0.0

0.1

0.2

0.3

0.4

Se
nt

im
en

tM
C

C

Task Authorship Sentiment Model DP-AAE DP-VAE original

Figure 6.4: Privacy-utility trade-off for DP-VAE and DP-AAE over 𝝈
fix
∈ [10

−2 , 10
2], measured as

MCC of the adaptive SVM authorship (inverted y-axis left) and sentiment classifiers.

6.5.4 Results

In Table 6.1, we report our full results with the best privacy-utility trade-off scores (relative

“author minus rating” classifier performance) highlighted in italics. Tables 6.2 and 6.3

show examples of generated sentences from the IMDb and Yelp datasets, respectively.

First off, the accuracy scores are typically much higher than their MCC counterparts,

particularly for the sentiment classifiers. However, note that the final test split for IMDb is

strongly imbalanced with over 80% “positive” sentiment labels, so even a classifier that

always predicts “positive” would achieve accuracies over 0.8. We henceforth rely on MCC

to discuss our results, as it provides a much more sound and meaningful metric even with

imbalanced datasets. We also observe that an adaptive strategy is generally more powerful:

While it appears relatively easy to fool a static author classifier trained on unobfuscated

data, an attacker with an adaptive strategy has a much better chance of re-identifying the

authors. Similar gains can be seen for the sentiment analysis task.

As expected, models relying on disentangled representations achieve better privacy–

utility trade-offs than vanilla or DP-VAE. The latter two baselines present two opposing

ends of a spectrum with V-VAE providing the best content preservation and the highest

attack and utility scores at the same time, whereas DP-VAE with DP constraints on the

entire latent space strongly affects both tasks with poor content preservation. Remarkably,

perturbing the author representations through DP latent sampling in DP-AAE leads to

slightly better results than averaging with AVG-AAE.

Fig. 6.4 visualizes the effect of varying the standard deviation parameter 𝜎
fix

and thus
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the privacy loss 𝜖 due to its inverse correlation with the privacy loss 𝜖 as explained in

Proposition 2.11. As expected, a higher 𝜎
fix

leads to higher privacy and lower utility scores.

Since DP-VAE applies private sampling to the entire latent variable, the effect of varying

𝝈
fix

is stronger than for DP-AAE, which can be seen in the early drop of the sentiment

scores in Fig. 6.4. The disentangling DP-AAE can maintain a good utility even with larger

variances 𝝈2

fix
while at the same time preventing the authorship attribution attack. Our

DP models listed in Table 6.1 use a 𝝈
fix

of 1.0 for DP-VAE, 14.2 (IMDb) or 38.8 (Yelp) for

DP-AAE, respectively. In terms of (𝜖, 𝛿)-DP with, e.g., 𝛿 = 10
−6

, this corresponds to a

privacy loss in the range 34.539 ≳ 𝜖 ≳ 0.815, respectively (cf. Fig. 6.2). The corresponding

𝛼 values for translating the RDP curve to (𝜖, 𝛿)-DP (cf. Proposition 2.11) are 1.876, 13.398,

and 34.996, respectively.

6.6 Comparison with Related Work

Authorship Obfuscation. Countering authorship attribution has been of great interest

within the research community, resulting in a wide range of different authorship obfuscation

approaches as discussed in Section 3.3.4.2. Bo et al. [46] propose a combination of an

autoencoder with DP where they sample subsequent words of the output using a variant of

the Exponential mechanism. While their approach still samples the output word-by-word

and hence is subject to some limitations of word-level DP (cf. Section 3.3.5.1), it does

achieve some level of coherence by conditioning the next word on the latent representation

of the input and the previous words.

The work in this chapter merges the concept of DP with generative models and adversarial

training to propose a novel approach for text anonymization: To the best of our knowledge,

we are the first who exploit the Gaussian noise in the latent space of a VAE and interpret

it as Gaussian mechanism to achieve DP for full sentences instead of individual words,

and are thus able to produce diverse and coherent, human-readable outputs. Optionally,

we can augment our model with an AAE architecture to obtain disentangled author and

content representations which can be obfuscated individually to improve the privacy-utility

trade-off.

Besides text [46, 241], autoencoders and disentangled representations have been used

to obfuscate different kinds of sequential data, such as facial images [160, 326, 469] or

audio in several methods based on x-vectors [416] (cf. our discussion of related work in

Section 3.3.4). Therefore, we argue that our DP-VAE and DP-AAE approaches are also

applicable to other types of sequential data.
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6.7 Chapter Summary

Differentially Private Optimization. DP-SGD [5, 37, 417] and derived methods [172], or

objective perturbation [70], have become popular techniques to protect the training data of

ML models by making the gradient updates or evaluation of the loss function differentially

private. Our approach with DP-VAEs and -AAEs can be regarded as complementary since

it protects the data during inference. In fact, both approaches could be used together to

protect both training data and then use the final model to obfuscate other sensitive data.

6.7 Chapter Summary

In this chapter, we have proposed a novel approach for authorship obfuscation that

rewrites full sentences with DP guarantees, obfuscating both the authors’ style and

sensitive identifiers while maintaining the meaning of the texts. At the heart of our

approach called DP-VAE lies a VAE architecture which has been shown to learn continuous

representations of sentences in its latent space, which we modify to provide DP. To our

best knowledge, we are the first to exploit synergies between probabilistic (Gaussian) latent

representations of a VAE and randomness of DP mechanisms to achieve differentially

private obfuscation for full sentences instead of only individual words, thus able to produce

diverse and coherent, human-readable outputs.

Moreover, we extend our approach to a differentially private adversarial autoencoder

(DP-AAE) by integrating adversarial learning to disentangle the latent representations

into a privacy-sensitive author/style vector and a privacy-insensitive content vector. This

separation enables us to further improve the trade-off between privacy and utility in a

favorable direction, here, by applying stronger noise to the privacy-sensitive style vector.

Further extensions are possible, e.g., to protect other sensitive attributes.

We evaluate our methods in a scenario with online reviews whose authors wish to

remain anonymous. The results show that our DP-AAE approach effectively reduces

re-identification risks against authorship attribution attacks while preserving the content

of the texts. Lastly, due to the wide applicability of VAEs to many types of data besides text

(i.e., sequences of discrete tokens), such as images or time series (sequences of numerical

data), we argue that our approach is likely adaptable to other privacy-sensitive scenarios

whose evaluation we leave as future work.
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Chapter 7

Differential Privacy for Directional Data

Directional data is an important class of data where the magnitudes of the data points

are negligible. It naturally occurs in many real-world scenarios: For instance, geographic
locations (approximately) lie on a sphere, and periodic data such as time of day, or day of
week can be interpreted as points on a circle. Massive amounts of directional data are

collected by location-based service platforms such as Google Maps or Foursquare, which

depend on mobility data from users’ smartphones or wearable devices to enable their

analytics and marketing businesses. However, such data is often highly privacy-sensitive

and hence demands measures to protect the privacy of the individuals whose data is

collected and processed. In this chapter, we develop tailored DP solutions for directional

data by combining directional statistics with DP: First, we introduce a novel variant of

metric privacy [65] (cf. Section 2.2.3) for directional data called directional privacy. Next,

we construct and analyze two suitable directional privacy mechanisms starting with the

spherical von Mises–Fisher (VMF) distribution. As we verify experimentally, our novel

privacy mechanisms achieve better privacy-utility trade-offs than adoptions of established

DP mechanisms to directional data, especially in the medium to high privacy regime.

This chapter is based on the following publication [467]:

Benjamin Weggenmann and Florian Kerschbaum: “Differential Privacy for

Directional Data”. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21).

7.1 Introduction

In recent years, large-scale collection and processing of directional data have become

important drivers for the digital economy: For instance, crowd-sourced data from mobile

or wearable devices often includes the geographic location where and the time when the

data was recorded. Prominent applications include location-based marketing and analytics,
as provided by platforms such as Foursquare, and the collection of check-in data by online

121



Chapter 7 Differential Privacy for Directional Data

mapping services such as Google Maps which provide, e.g., daily “busyness” histograms of

visit times at places like stores or restaurants, from which users can estimate how busy a

location is during different times of the day.

While such techniques provide substantial value for businesses and drive innovation,

the data collected in such scenarios is often privacy-sensitive, and users may be reluctant

to share their whereabouts during the course of the day. In many cases, directional data

conveys particularly sensitive information, as illustrated by recent news about location

tracking on smartphones or fitness trackers [187, 437]. Personal locations are suspect

to various attacks, cf. the survey by Krumm [243], in particular when combined with

temporal information as shown by Primault et al. [353] or Pyrgelis et al. [356].

Problem. To protect the privacy of individuals while maintaining data-driven business

models, the concept of DP by Dwork et al. [117] presents the current state-of-the-art for

quantifying and limiting information disclosure about individuals. DP mechanisms have

been proposed for various settings and data types, e.g., the standard Laplace mechanism

[117] which extends infinitely on the real line, or the Planar Laplace mechanism by Andrés

et al. [24] which is defined for planar locations. While post-processing, such as clipping or

wrapping, can be applied to adapt these mechanisms to periodic domains, none of them

intrinsically considers the potentially directional nature of the underlying data. In fact,

adapted standard mechanisms based on wrapping can behave even worse than uniform

noise, as we show in Section 7.4.3.1. We hence argue that specialized, directional privacy

mechanisms are needed to provide superior privacy–utility trade-offs and investigate

proper ways to provide DP intrinsically for directional data (cf. Section 7.3).

Inspired by the notion of geo-indistinguishability [24], a variant of metric privacy [65]

for planar location data, we propose directional privacy as an adaptation to directional data.

As a benefit, this notion allows relaxing the guarantees of pure DP to protect data within

a given protection radius (i.e., surface distance or angle) 𝑟 > 0 with a specified privacy

level ℓ . By setting the protection radius 𝑟 = 𝛥 to the sensitivity, this also covers pure 𝜖-DP.

Relaxing the privacy guarantees to a smaller radius is very useful when working in the

local model, e.g., when we want to protect spatial or temporal data that are close to each

other, such as restaurants or other venues in densely populated areas, where pure DP

would inject too much noise. We demonstrate this in our experiments in Section 7.4.4.2.

As we observe in Section 7.4.3, several directional statistics such as the circular mean

benefit from our specialized mechanisms: At 𝜖 = 1.0, we achieve a more than 4.8-fold

reduction in the number of required survey responses over adapted baselines to reach

an error below 0.1, so that the service provider needs to collect only ≈ 750 responses

instead of over 3600. Conversely, given the same number of responses, our proposed
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mechanisms achieve MAEs of only 0.407 and 0.321, which is less than half of 0.695 as for

the Wrapped Laplace baseline. Strikingly, for such directional statistics, local DP can be

as accurate as central DP and hence is the method of choice, since it does not require a

trusted aggregator. Moreover, in Section 7.4.4, we observe that a wrapped Planar Laplace

variant for geolocations yields larger errors for histograms than our proposed mechanisms

in the critical range 10
−1 ≲ 𝜖 ≲ 10.

Contributions. Our results concern theoretical aspects (Section 7.3) in the areas of privacy

and directional statistics, as well as experiments (Section 7.4) to substantiate the theory

and its applicability:

• As for privacy, in Section 7.3, we propose the notion of directional privacy, an adaptation

of metric privacy [24, 65] for directional data based on the surface distance on the

sphere. To realize this notion, we form the novel von Mises–Fisher and Purkayastha
privacy mechanisms from the eponymous distributions and prove their (differential)

privacy properties.

• We derive analytical formula in terms of confluent hypergeometric series for the

expected Euclidean distance and the cumulative distribution function (CDF) of the mixture
density of the Von Mises–Fisher distribution in Section 7.3.2, as well as closed-form
solutions in terms of elementary functions for the expected surface distance and the

CDF of the angular density of the Purkayastha distribution in Section 7.3.3. We use

those formulas to compare our directional with traditional baseline mechanisms in

Section 7.3.6 and assess their error.

• In Section 7.3.5, we make use of our closed-form solution for the angular CDF to

build an approximate inversion sampling method for the Purkayastha distribution. To

our best knowledge, this is the first published method for this distribution which

has been deemed numerically hard to sample from in dimensions over 150 [90]. Our

benchmarks show that it is applicable in up to tens of thousands of dimensions.

• We apply our proposed mechanisms in several real-world settings and compare

their privacy–utility trade-offs: We consider the periodic mean in the central and local

privacy models for time-of-day data in Section 7.4.3, as well as histograms of location

and time-of-day data in the local model in Section 7.4.4. We also illustrate privately

collecting check-in time and location data to create “busyness” histograms of popular

visit times even if the data curator is untrusted.

• Finally, we perform supplementary simulation experiments in Section 7.4.2 to support

the correctness of our derived formula for the expected distances and CDFs. Based
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on the empirical expected distances, we also compare the privacy-utility trade-off for

both mechanisms at a given privacy level.

7.2 Directional Statistics

This section introduces key concepts and results of directional statistics as required in this

dissertation. For further information on the subject, we recommend the book by Mardia

and Jupp [278].

To deal with directional distributions and describe their mathematical properties, we

sometimes need special mathematical functions. Since not all readers may be familiar

with them, we provide supplementary information about these special functions and their

notation in Section 7.2.5. Readers familiar with the matter may skip that part or refer to it

as needed.

7.2.1 The Unit Sphere

Directional statistics is an area of statistics that is concerned with directions, i.e., data points

whose magnitudes can be neglected. Since directions are independent of magnitude, they

can be identified by unit vectors, i.e., points on a unit sphere:

Definition 7.1. For 𝑛 ∈ N, the unit (𝑛 − 1)-sphere

S𝑛−1

:= {𝑥 ∈ R𝑛 : ∥𝑥∥2 = 1}

is the set of unit vectors in 𝑛-dimensional Euclidean space. We write 𝑟S𝑛−1
for the

(𝑛 − 1)-sphere of radius 𝑟 > 0.

Fact 7.2. The surface area of the unit sphere S𝑛−1 is given by its (𝑛 − 1)-dimensional volume

𝑆𝑛−1 := vol

(︁
S𝑛−1

)︁
= 2 · 𝜋 𝑛

2 · 𝛤−1

(︂𝑛
2

)︂
.

For a sphere of radius 𝑟, we have vol(𝑟S𝑛−1) = 𝑆𝑛−1𝑟
𝑛−1.

Example 7.3. The uniform distribution Uni(S𝑛−1) on S𝑛−1
has a constant PDF

Uni(S𝑛−1)[x] ≡ 𝑆−1

𝑛−1
=

1

2

𝛤
(︁𝑛
2

)︁
𝜋−

𝑛
2 .

7.2.2 Rotationally Symmetric Distributions

We consider unimodal distributions on S𝑛−1
that are rotationally symmetric about the

mode 𝝁 ∈ S𝑛−1
. The corresponding densities P[x] depend on x only through the projection
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7.2 Directional Statistics

𝑡 = 𝝁Tx of x on the modal axis through 𝝁, so all points x with 𝝁Tx = 𝑡 have constant density

P[x] = P̄[𝝁Tx] = P̄[𝑡] for a corresponding kernel function P̄ : [−1, 1] → R≥0.

To sample from such distributions, it is helpful to consider marginal distributions that are

easier to handle. A way to obtain them is through the so-called tangent-normal decomposition
(cf. Fig. 7.1): A random vector x ∈ S𝑛−1

can be decomposed into two components along the

mode 𝝁 and along a tangential unit vector 𝝃 ⊥ 𝝁 as

x = 𝑡𝝁 +
√

1 − 𝑡2𝝃, (7.1)

where 𝑡 = 𝝁Tx is the length along 𝝁 (marked in blue).

Mixture Density. Due to the rotational symmetry, 𝝃 ∈ S𝑛−2 ⊥ 𝝁 is distributed uniformly

on the subsphere orthogonal to 𝝁 (green circle in Fig. 7.1). Following Ulrich [446], the

length 𝑡 = 𝝁Tx along 𝝁 (marked in blue) is called the mixture variable. Its associated mixture
density

PMix[𝑡] =
∫

x:𝝁Tx=𝑡

P[x]dx, 𝑡 ∈ [−1, 1],

can be evaluated as follows:

Lemma 7.4 (Mixture density). Given a rotationally symmetric distribution P with kernel function
P̄[𝑡], we can express its mixture density PMix[𝑡] in terms of the kernel function as

PMix[𝑡] = 𝑆𝑛−2 ·
(︁
1 − 𝑡2

)︁ 𝑛−3

2 · P̄[𝑡], 𝑡 ∈ [−1, 1]. (7.2)

Proof. Since P[x] = P̄[𝑡] for 𝑡 = 𝝁Tx and 𝑡 is fixed in the integral, we can pull out the kernel

function and obtain

PMix[𝑡] =
∫

x:𝝁Tx=𝑡

P[x]dx = P̄[𝑡]
∫

x:𝝁Tx=𝑡

1 dx.

To evaluate the remaining integral, first note that the points x ∈ S𝑛−1
with 𝝁Tx = 𝑡 form an

(𝑛 − 2)-dimensional subsphere centered at 𝑡𝝁 with radius

√
1 − 𝑡2 that is orthogonal to 𝝁.

By Fact 7.2, its (𝑛 − 2)-dimensional surface area is

vol

(︂√
1 − 𝑡2S𝑛−2

)︂
= 𝑆𝑛−2 ·

(︁
1 − 𝑡2

)︁ 𝑛−2

2 .

The angle between the modal axis and the subsphere in terms of 𝑡 is arccos(𝑡); with

respect to the differential d𝑡, the subsphere’s width on the surface along 𝝁 hence is
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S𝑛−1

𝝃 ∼ Uni(S𝑛−2 ⊥ 𝝁)

� 𝝁

ℎ =
√

1 − 𝑡2
= sin(�)

𝑡 = 𝝁Tx
= cos�

x

Figure 7.1: Tangent-normal decomposition of a random unit vector x into orthogonal components

along the mode 𝝁 and a tangential vector 𝝃 ⊥ 𝝁 of lengths 𝑡 and ℎ, respectively.

|d/d𝑡 arccos(𝑡)| = 1/√1−𝑡2. Overall, the surface element amounts to 𝑆𝑛−2 ·
(︁
1 − 𝑡2

)︁ (𝑛−3)/2
, so

we can express the mixture density in terms of the kernel function P̄ as

PMix[𝑡] = 𝑆𝑛−2 ·
(︁
1 − 𝑡2

)︁ 𝑛−3

2 · P̄[𝑡]. □

Angular Density. We obtain an alternative representation of the tangent-normal decom-

position of x ∈ S𝑛−1
by substituting 𝑡 = cos(�) in Eq. (7.1),

x = cos(�)𝝁 + sin(�)𝝃, (7.3)

where � = arccos(𝝁Tx) is the angle or arc length between x and the mode 𝝁 (marked in

red). The angular density of � is as follows:

Corollary 7.5 (Angular density). Given a rotationally symmetric distribution P with kernel
function P̄[𝑡], we can express its angular density PArc[�] for an angle � ∈ [0,𝜋] as

PArc[�] = 𝑆𝑛−2 sin
𝑛−2(�) · P̄[cos(�)].

Proof. This follows from Lemma 7.4 by a change of variables � = arccos(𝝁Tx) = arccos(𝑡).
□

Importantly, the tangent-normal decomposition thus reduces the multivariate sampling

problem x ∼ P to a univariate one, namely 𝑡 ∼ PMix or � ∼ PArc, plus a uniform one,

𝝃 ∼ Uni(S𝑛−2 ⊥ 𝝁). This avoids the curse of dimensionality since the mixture or angular

densities are one-dimensional, and uniform samples from a hypersphere are easily created

by normalizing samples from a (multivariate) standard normal distribution.
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7.2 Directional Statistics

7.2.3 The Von Mises–Fisher Distribution

The (𝑛 − 1)-dimensional VMF distribution, named after von Mises [454] and Fisher [146],

is a probability distribution on the unit hypersphere S𝑛−1
. Due to its popularity, it has

been studied thoroughly, and proven sampling methods have been published previously

[249, 446, 473] (see Section 7.3.4.1). Therefore, we use it as a starting point to construct a

first novel privacy mechanism for directional data in Section 7.3.2.

Definition 7.6. The VMF distribution on S𝑛−1
with mean direction 𝝁 ∈ S𝑛−1

and concentration
parameter � ≥ 0 is given by the density

VMF(𝝁, �)[x] = 𝐶VMF(𝑛, 𝜖) · exp

(︂
� · 𝝁Tx

)︂
.

If we set � ≔ 𝑛
2
− 1, the normalization factor amounts to

𝐶VMF(𝑛, �) =
��

(2𝜋)�+1𝐼�(�)
=

𝛤(� + 1)𝑒�

2 · 𝜋�+1𝑀
(︁
� + 1

2
, 2� + 1, 2�

)︁ .
The parameter � characterizes how strongly the random vectors x ∼ VMF(𝝁, �) are

concentrated about the mean 𝝁. If � > 0, the distribution is unimodal and the mode

matches 𝝁. A VMF distribution with � = 0 degenerates to the uniform distribution

Uni(S𝑛−1).

7.2.4 The Purkayastha Distribution

Purkayastha [355] studied rotationally symmetric distributions on S𝑛−1
for which the

median direction is a maximum likelihood estimate of the location parameter. He

proposed the following distribution that meets this criterion; in Section 7.3.3, we use it for

a second mechanism for directional data.

Definition 7.7. The Purkayastha distribution on S𝑛−1
with mean direction 𝝁 ∈ S𝑛−1

and

concentration parameter � ≥ 0 has density

Pur(𝝁, �)[x] = 𝐶Pur(𝑛, �) · exp

(︂
−� · arccos(𝝁Tx)

)︂
.

Its normalization factor is 𝐶Pur(𝑛, �) = 𝑆−1

𝑛−2
𝐹−1

𝑛−2,−�(𝜋), where

𝐹−1

𝑛−2,−�(𝜋) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�(�2 + 2

2)(�2 + 4
2) · · ·

(︁
�2 + (𝑛 − 2)2

)︁
(𝑛 − 2)!(1 − 𝑒−�𝜋) for even 𝑛,

(�2 + 1
2)(�2 + 3

2) · · · (�2 + (𝑛 − 2)2)
(𝑛 − 2)!(1 + 𝑒−�𝜋) for odd 𝑛
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(cf. Lemma 7.23). Note that 𝐹 also appears in the normalization constant of the angular

and mixture densities in Section 7.3.3.1.

7.2.5 Special Functions and Notation

Directional distributions (as considered in Sections 7.2 and 7.3) often depend on certain

special functions and their properties. We hereafter provide an overview of those functions

used in this dissertation, and briefly summarize their key properties and relations. Further

details can be found, for example, in Abramowitz and Stegun [8] or Gradshteyn and

Ryzhik [166].

7.2.5.1 Gamma and Beta Functions

Definition 7.8. The gamma function (or Euler integral of the second kind) is defined for 𝑧 ∈ C
with real partℜ(𝑧) > 0 as

𝛤(𝑧) =
∞∫

0

𝑡𝑧−1𝑒−𝑡 d𝑡. (7.4)

Important special values are 𝛤(1) = 1 and 𝛤(1
2
) =
√
𝜋. It has a functional relation

𝛤(𝑧 + 1) = 𝑧𝛤(𝑧), so 𝛤(𝑛 + 1) = 𝑛! for 𝑛 ∈ N. Therefore, 𝛤 provides an extension of the

factorial to complex numbers.

Definition 7.9. The Pochhammer symbol (or rising factorial) with 𝑘 factors is defined as

(𝑎)𝑘 ≔
𝛤(𝑎 + 𝑘)
𝛤(𝑎) = 𝑎(𝑎 + 1) · · · (𝑎 + 𝑘 − 1) (7.5)

with the convention that (𝑎)0 = 1.

Definition 7.10. The Beta function (or Euler integral of the first kind) is defined for 𝑥, 𝑦 ∈ C
with real partsℜ(𝑥),ℜ(𝑦) > 0 as

B(𝑥, 𝑦) =
1∫

0

𝑡𝑥−1(1 − 𝑡)𝑦−1

d𝑡. (7.6)

It is symmetric in its arguments. Particular relations are:

B(𝑥, 𝑦) = 𝛤(𝑥)𝛤(𝑦)
𝛤(𝑥 + 𝑦) (7.7)

B

(︁
1

2
, 𝑥

)︁
= 2

2𝑥−1

B(𝑥, 𝑥) (7.8)
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7.2.5.2 Confluent Hypergeometric Series

Definition 7.11. Kummer’s (confluent hypergeometric) function, denoted by 𝑀(𝛼; 𝛾; 𝑧) or

1𝐹1(𝛼; 𝛾; 𝑧), is a confluent hypergeometric series given by Kummer [246, 247] as

𝑀(𝛼; 𝛾; 𝑧) = 1𝐹1(𝛼; 𝛾; 𝑧) =
∞∑︂
𝑘=0

(𝛼)𝑘
(𝛾)𝑘

𝑧𝑘

𝑘!
. (7.9)

Forℜ𝛾 > ℜ𝛼 > 0, it has an integral representation

𝑀(𝛼; 𝛾; 𝑧) = 𝛤(𝛾)
𝛤(𝛼)𝛤(𝛾 − 𝛼)

1∫
0

𝑡𝛼−1(1 − 𝑡)𝛾−𝛼−1𝑒𝑧𝑡 d𝑡. (7.10)

Definition 7.12. The modified Bessel function of the first kind of order � ∈ R is given by the

series

𝐼�(𝑧) =
∞∑︂
𝑘=0

1

𝑘!𝛤(𝑘 + � + 1)
(︂ 𝑥
2

)︂
2𝑘+�

. (7.11)

Forℜ(�) > − 1

2
, it can be represented as integral, e.g.

𝐼�(𝑧) =
(︁
𝑧
2

)︁�
𝛤
(︁
� + 1

2

)︁
𝛤
(︁

1

2

)︁ 1∫
−1

(︁
1 − 𝑡2

)︁�− 1

2 𝑒±𝑧𝑡 d𝑡. (7.12)

We can express 𝐼�(𝑧) in terms of Kummer’s function:

𝐼�(𝑧) =
𝑒−𝑧

𝛤(� + 1)
(︂ 𝑧
2

)︂�
𝑀

(︁
� + 1

2
, 2� + 1; 2𝑧

)︁
(7.13)

Humbert Series. Humbert [198, 199] introduced a set of seven hypergeometric double

series that generalize Kummer’s confluent hypergeometric series to two variables. One

example we use is

Definition 7.13. The Humbert series 𝛷1 is defined for |𝑥 | < 1 by a confluent hypergeometric

series of two variables

𝛷1(𝛼, 𝛽, 𝛾; 𝑥, 𝑦) =
∞∑︂

𝑚,𝑛=0

(𝛼)𝑚+𝑛(𝛽)𝑚
(𝛾)𝑚+𝑛

𝑥𝑚𝑦𝑛

𝑚!𝑛!

. (7.14)
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Forℜ(𝛾) > ℜ(𝛼) > 0, it has an integral representation

𝛤(𝛾)
𝛤(𝛼)𝛤(𝛾 − 𝛼)

1∫
0

𝑡𝛼−1(1 − 𝑡)𝛾−𝛼−1(1 − 𝑥𝑡)−𝛽𝑒𝑦𝑡 d𝑡. (7.15)

7.3 Directional Privacy Mechanisms

This section presents our main results. This comprises a novel notion of privacy for

directional data as well as the conforming von Mises–Fisher and Purkayastha mechanisms.

We derive certain marginal densities, expected values, and CDFs of the underlying

distributions. These are important for assessing the average error, or sampling, as we show

by constructing a novel Purkayastha sampling method. Moreover, we explain how the

mechanism parameters depend on the desired privacy guarantees. Lastly, we describe

adaptions of common privacy mechanisms to directional data as baselines.

7.3.1 Directional Privacy

Our goal is to define a variant of metric privacy [65] (Definition 2.5) for directions. To this

end, we first need a suitable metric to measure distances between directions, i.e., angles on

the sphere:

Definition 7.14. The surface distance between two points 𝒙 , 𝒚 ∈ 𝑟S𝑛−1
is given by the arc

length

𝑑∡(𝒙 , 𝒚) ≔ 𝑟 arccos(𝒙T𝒚).

On the unit sphere (𝑟 = 1), the surface distance 𝑑∡ between two points is the enclosed

angle (in radians) between them—together, S𝑛−1
with 𝑑∡ becomes a metric space for angles.

We thus obtain

Definition 7.15 (Directional privacy). Let 𝜖 > 0. A mechanismℳ onS𝑛−1
fulfills 𝜖𝑑∡-privacy

if for all 𝒙 , 𝒙′ ∈ S𝑛−1
and all Z ⊂ suppℳ,

ℳ(𝒙)[Z] ≤ exp(𝜖 · 𝑑∡(𝒙 , 𝒙′)) · ℳ(𝒙′)[Z].

Interpretation as Pure Differential Privacy. Following Chatzikokolakis et al. [65, Fact 5],

𝜖𝑑-privacy on a space𝒴 implies 𝜖𝛥-DP for a query function 𝑓 : 𝒟 → 𝒴 with 𝑑-sensitivity

𝛥 on the universe of databases𝒟. We apply this fact specifically to sphere-valued functions

with range𝒴 ⊆ S𝑛−1
to obtain 𝜖-DP:
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7.3 Directional Privacy Mechanisms

Fact 7.16 (𝜖𝑑-privacy implies 𝜖-DP). Let 𝑓 : 𝒟 → S𝑛−1 be a query function, and let ℳ𝜖

be an 𝜖𝑑-private mechanism on S𝑛−1 with metric 𝑑. Then its 𝑑-sensitivity is 𝛥 = 𝛥𝑑 𝑓 :=

max𝑥 ∼𝒟 𝑦 𝑑( 𝑓 (𝑥), 𝑓 (𝑦)), and the compositionℳ𝜖/𝛥 ◦ 𝑓 is 𝜖-differentially private.

7.3.2 Von Mises–Fisher Privacy Mechanism

The Laplace and Gaussian distributions are often used in Euclidean space, particularly as

mechanisms to provide DP. Since the VMF distribution can be seen as a natural counterpart

on the sphere, we propose it as a promising candidate to achieve DP for directional data:

Theorem 7.17 (𝜖𝑑2-privacy of VMF mechanism). Let 𝜖 > 0 be a privacy parameter. The VMF

mechanism on S𝑛−1 induced by 𝒙 ↦→ VMF(𝒙 , 𝜖) for 𝒙 ∈ S𝑛−1 fulfills 𝜖𝑑2-privacy.

Proof. Let 𝒙 , 𝒚 ∈ S𝑛−1
be any fixed unit vectors, and take any fixed set Z ⊆ S𝑛−1

. For any

z ∈ Z, we have

VMF(𝒙 , 𝜖)[z]
VMF(𝒚, 𝜖)[z] =

𝐶VMF · exp

(︁
𝜖 · 𝒙Tz

)︁
𝐶VMF · exp

(︁
𝜖 · 𝒚Tz

)︁
= exp

(︂
𝜖 · (𝒙 − 𝒚)Tz

)︂
≤ exp(𝜖 · ∥𝒙 − 𝒚∥2 · ∥z∥2)
= exp(𝜖 · 𝑑2(𝒙 , 𝒚)).

First, the normalization constants cancel out, and we can combine the exponents; the

inequality is the Cauchy–Schwarz inequality; finally, note that ∥z∥2 = 1. By integrating

over z ∈ Z, we achieve 𝜖𝑑2-privacy. □

From there, we easily achieve directional privacy:

Corollary 7.18 (𝜖𝑑∡-privacy of VMF mechanism). For any 𝒙 , 𝒚 ∈ S𝑛−1, it holds that 𝑑2(𝒙 , 𝒚) ≤
𝑑∡(𝒙 , 𝒚), so the VMF mechanism fulfills 𝜖𝑑∡-privacy.

By Fact 7.16, the VMF mechanism VMF(𝒙 , 𝜖/𝛥) also provides 𝜖-DP for sphere-valued

functions 𝑓 : 𝒟 → S𝑛−1
on the space of databases 𝒟. Note that in this case, we can use

the sensitivity 𝛥 of 𝑓 with respect to either 𝑑∡ (by Corollary 7.18) or 𝑑2 (by Theorem 7.17).

131



Chapter 7 Differential Privacy for Directional Data

7.3.2.1 Von Mises–Fisher Marginal Densities

By Lemma 7.4 and Corollary 7.5, the mixture and angular densities of a VMF distribution

are

VMFMix[𝑡] = 𝐶′VMF ·
(︁
1 − 𝑡2

)︁ 𝑛−3

2 𝑒�𝑡 , (7.16)

VMFArc[�] = 𝐶′VMF · sin
𝑛−2(�) 𝑒� cos(�) , (7.17)

where the normalization factor amounts to

𝐶′VMF = 𝐶VMF · 𝑆𝑛−2

=

(︂�
2

)︂� (︁
𝛤
(︁

1

2

)︁
𝛤
(︁
𝑛−1

2

)︁
𝐼�(�)

)︁−1

= 𝑒� · B−1
(︁

1

2
, 𝑛−1

2

)︁
·𝑀−1

(︁
𝑛−1

2
; 𝑛 − 1; 2�

)︁
. (7.18)

The mixture density is used in the rejection sampling scheme for the VMF distribution

by Ulrich [446] and Wood [473], and is based on earlier work by Saw [396]. We use it next

for the expected distance.

7.3.2.2 Expected Euclidean Distance

To assess the error induced by a mechanism, we can use statistical tools such as the

expected value of an error measure based on the underlying distribution. Concretely, for

a random vector x ∼ VMF(𝝁, �), we provide an analytical expression for the expected 𝐿2

distance to the mode 𝝁:

Theorem 7.19. The expected Euclidean distance between a random vector x ∼ VMF(𝝁, �) and the
mode 𝝁 can be expressed as expected value over the mixture density. It evaluates to

Ex∼VMF[𝑑2(x, 𝝁)] = E𝑡∼VMFMix[
√

2

√
1 − 𝑡]

=
B

(︁
1

2
, 𝑛

2

)︁
B

(︁
1

2
, 𝑛 − 1

2

)︁ 𝑀 (︁
𝑛−1

2
; 𝑛 − 1

2
; 2�

)︁
𝑀

(︁
𝑛−1

2
; 𝑛 − 1; 2�

)︁ . (7.19)

Proof. Because of the rotational symmetry, we can write 𝑑2(𝒙 , 𝝁) =
√

2

√
1 − 𝑡 in terms of

the mixture variable 𝑡. Therefore,

Ex∼VMF[𝑑2(x, 𝝁)] = E𝑡∼VMFMix[
√

2

√
1 − 𝑡]

=

1∫
−1

√
2

√
1 − 𝑡 · VMFMix[𝑡]d𝑡
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= 𝐶′VMF

√
2

1∫
−1

𝑒�𝑡
√

1 − 𝑡(1 − 𝑡2) 𝑛−3

2 d𝑡

= 𝐶′VMF

√
2

1∫
−1

𝑒�𝑡(1 − 𝑡) 𝑛−2

2 (1 + 𝑡) 𝑛−3

2 d𝑡.

Changing variables 𝑡 ↦→ 𝑡+1

2
results in

= 𝐶′VMF2
𝑛−1𝑒−�

1∫
0

𝑒2�𝑡(1 − 𝑡) 𝑛−2

2 𝑡
𝑛−3

2 d𝑡 ,

where we can express the integral as a Kummer function by Eq. (7.10), and then simplify

with the normalization constant:

= 𝐶′VMF2
𝑛−1𝑒−�B

(︁
𝑛−1

2
, 𝑛

2

)︁
𝑀

(︁
𝑛−1

2
; 𝑛 − 1

2
; 2�

)︁
= 2

𝑛−1
B

(︁
𝑛−1

2
, 𝑛

2

)︁
B

(︁
1

2
, 𝑛−1

2

)︁ 𝑀 (︁
𝑛−1

2
; 𝑛 − 1

2
; 2�

)︁
𝑀

(︁
𝑛−1

2
; 𝑛 − 1; 2�

)︁
=

B

(︁
1

2
, 𝑛

2

)︁
B

(︁
1

2
, 𝑛 − 1

2

)︁ 𝑀 (︁
𝑛−1

2
; 𝑛 − 1

2
; 2�

)︁
𝑀

(︁
𝑛−1

2
; 𝑛 − 1; 2�

)︁ .
The last step follows by rewriting the fraction of Beta functions where we apply Eq. (7.8) to

expand the numerator to 2
1−𝑛 · B

(︁
1

2
, 𝑛

2

)︁
. □

7.3.2.3 Mixture CDF

Kurz and Hanebeck [249] provide analytical solutions for the CDF of the VMF angular
distribution in the context of sampling. While their solution is an analytical, closed-form

expression of elementary functions when 𝑛 is odd, it involves an infinite series in terms of

special functions for even 𝑛.

In the following, we present a concise, analytic solution for the CDF of the VMF mixture

distribution in terms of confluent hypergeometric series covering both odd and even

dimensions:

Theorem 7.20. Setting 𝛼 ≔ 𝑛−1

2
and 𝑥 ≔ 𝑇+1

2
, the CDF of the VMF mixture distribution

VMFMix(𝑛, �) at 𝑇 ∈ [−1, 1] can be written as

VMFMix(𝑛, �)[𝑡 ≤ 𝑇] = 𝑥𝛼

𝛼
𝛷1(𝛼, 1 − 𝛼, 1 + 𝛼; 𝑥, 2�𝑥)

B(𝛼, 𝛼)𝑀(𝛼, 2𝛼, 2�) . (7.20)

133



Chapter 7 Differential Privacy for Directional Data

Proof. With 𝛼 ≔ 𝑛−1

2
and 𝑥 ≔ 𝑇+1

2
, we obtain

VMFMix(𝑛, �)[𝑡 ≤ 𝑇] =
𝑇∫

−1

VMFMix(𝑛, �)[𝑡]d𝑡

= 𝐶′VMF

𝑇∫
−1

(︁
1 − 𝑡2

)︁𝑛−3

2 𝑒�𝑡 d𝑡.

Changing variables 𝑡 ↦→ 𝑡+1

𝑇+1
yields an integral that we can express as Humbert series

according to Eq. (7.15), so we get

= 𝐶′VMF2
𝑛−2𝑥

𝑛−1

2 𝑒−� ·
𝑥∫

0

𝑒2�𝑥𝑡𝑡
𝑛−3

2 (1 − 𝑥𝑡) 𝑛−3

2 d𝑡

=
𝑥𝛼

𝛼
𝛷1(𝛼, 1 − 𝛼, 1 + 𝛼; 𝑥, 2�𝑥)

B(𝛼, 𝛼)𝑀(𝛼, 2𝛼, 2�) . □

7.3.3 Purkayastha Privacy Mechanism

The VMF distribution enjoys wide popularity among spherical distributions, and provides

differential as well as 𝑑2- and 𝑑∡-privacy as shown in the previous section. However, we

also observe potential shortcomings, namely the probability decreases exponentially with

the squared 𝐿2
distance from the mode, i.e., the distance is measured on a straight line

through the sphere. Instead, we would rather have it decrease exponentially with the

surface distance on the sphere, i.e., with arccos(𝝁T𝒙). It turns out that this is precisely the

distribution in Definition 7.7 studied by Purkayastha [355]. We immediately obtain a

corresponding Purkayastha privacy mechanism as follows:

Theorem 7.21 (𝜖𝑑∡-privacy of Purkayastha mechanism). Let 𝜖 > 0 be a privacy parameter. The
Purkayastha mechanism on S𝑛−1 induced by 𝒙 ↦→ Pur(𝒙 , 𝜖) for 𝒙 ∈ S𝑛−1 fulfills 𝜖𝑑∡-privacy.

Proof. Let 𝒙 , 𝒚 ∈ S𝑛−1
be any fixed unit vectors, and take any fixed set Z ⊆ S𝑛−1

. For any

z ∈ Z, we have

Pur(𝒙 , 𝜖)[z]
Pur(𝒚, 𝜖)[z] =

𝐶Pur · exp

(︁
−𝜖 · arccos(𝒙Tz)

)︁
𝐶Pur · exp

(︁
−𝜖 · arccos(𝒚Tz)

)︁
= exp

(︂
𝜖 · arccos(𝒚Tz) − arccos(𝒙Tz)

)︂
≤ exp

(︂
𝜖 · arccos(𝒙T𝒚)

)︂
= exp (𝜖 · 𝑑∡(𝒙 , 𝒚)).
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First, the normalization constants cancel out, and we can combine the exponents; next, we

apply the triangle inequality for the angular (arccos) distance. By integrating over z ∈ Z,

we obtain 𝜖𝑑∡-privacy. □

By Fact 7.16, the Purkayastha mechanism Pur(𝒙 , 𝜖/𝛥) also provides 𝜖-DP for sphere-

valued functions 𝑓 : 𝒟 → S𝑛−1
with 𝑑∡-sensitivity 𝛥 on the space of databases𝒟.

7.3.3.1 Purkayastha Marginal Densities

By Lemma 7.4 and Corollary 7.5, we obtain the Purkayastha mixture and angular densities

as

PurMix[𝑡] = 𝐶′Pur ·
(︁
1 − 𝑡2

)︁𝑛−3

2 𝑒−� arccos(𝑡) , (7.21)

PurArc[�] = 𝐶′Pur · sin
𝑛−2(�) 𝑒−�� , (7.22)

with normalization factor 𝐶′Pur = 𝐶Pur · 𝑆𝑛−2 = 𝐹−1

𝑛−2,−�(𝜋).

Integrating the Angular Density. Having derived an expression for the angular density

PurArc[�], we are interested in statistical properties such as its expected value to assess the

average error, or the angular CDF PurArc[� ≤ 𝜗]which is fundamental for the sampling

algorithm we propose in Section 7.3.4.2.

The angular density is specified through a function 𝑒 𝑎𝑥 sin
𝑛 𝑥, where 𝑛 ∈ N and 𝑎 ∈ R.

Gradshteyn and Ryzhik [166, 2.662] provide separate closed-form expressions for its

antiderivative for even and odd 𝑛. We rewrite these expressions and provide the following

unified solution which allows to efficiently evaluate such integrals:

Fact 7.22. An antiderivative of 𝑒 𝑎𝑥 sin
𝑛 𝑥 with 𝑛 ∈ N and 𝑎 ∈ R is

𝐸𝑛,𝑎(𝑥) ≔ 𝑒 𝑎𝑥
𝑚∑︂
𝑘=0

𝒞𝑘𝒯𝑘(𝑥), (7.23)

where 𝑚 = ⌊𝑛/2⌋,

𝒞𝑘 =
𝑛!

(𝑛 − 2𝑘)!

𝑘∏︂
ℓ=0

1(︁
𝑎2 + (𝑛 − 2ℓ )2

)︁ , and

𝒯𝑘(𝑥) = sin
𝑛−2𝑘−1(𝑥)[𝑎 sin(𝑥) − (𝑛 − 2𝑘) cos(𝑥)].
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In particular, the definite integral over [0, 𝑟] is given by

𝐹𝑛,𝑎(𝑟) ≔
𝑟∫

0

𝑒 𝑎𝑥 sin
𝑛 𝑥 d𝑥 = 𝐸𝑛,𝑎(𝑟) − 𝐸𝑛,𝑎(0). (7.24)

A special case is the normalization factor 𝐶′Pur = 𝐹−1

𝑛−2,−�(𝜋):

Lemma 7.23. The integral 𝐹𝑛,𝑎(𝜋) =
∫ 𝜋

0

𝑒 𝑎𝑥 sin
𝑛 𝑥 d𝑥 evaluates to

𝐹𝑛,𝑎(𝜋) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑛!(𝑒 𝑎𝜋 − 1)

𝑎(𝑎2 + 2
2)(𝑎2 + 4

2) · · · (𝑎2 + 𝑛2) for even 𝑛,

𝑛!(𝑒 𝑎𝜋 + 1)
(𝑎2 + 1

2)(𝑎2 + 3
2) · · · (𝑎2 + 𝑛2) for odd 𝑛.

(7.25)

Proof. Note that for any ℓ ∈ Z,

𝒯𝑘(ℓ𝜋) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for 𝑘 < 𝑚,

𝑎 for 𝑘 = 𝑚 and even 𝑛,

(−1)ℓ+1
for 𝑘 = 𝑚 and odd 𝑛.

Therefore,

𝐸𝑛,𝑎(ℓ𝜋) = 𝑒 𝑎ℓ𝜋𝒞𝑚𝒯𝑚(ℓ𝜋)

= 𝑒 𝑎ℓ𝜋𝒞𝑚

{︄
𝑎 if 𝑛 is even,

(−1)ℓ+1
if 𝑛 is odd,

and we obtain as special case the normalization constant

𝐹𝑛,𝑎(𝜋) = 𝒞𝑚

{︄
𝑎(𝑒 𝑎𝜋 − 1) if 𝑛 is even,

(𝑒 𝑎𝜋 + 1) if 𝑛 is odd. □

7.3.3.2 Expected Surface Distance

We provide a closed-form solution for the expected angle of a Purkayastha random vector

as follows:

Theorem 7.24. The expected surface distance (or angle) between a random point x ∼ Pur(𝝁, �)
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and the mode 𝝁 ∈ S𝑛−1 can be expressed as expected angular density. It evaluates to

Ex∼Pur[𝑑∡(x, 𝝁)] = E�∼PurArc[�]

= 2�
𝑚∑︂
ℓ=1

𝐴ℓ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋

1 − 𝑒�𝜋 −
1

�
if 𝑛 is even,

𝜋
1 + 𝑒�𝜋 if 𝑛 is odd,

(7.26)

where 𝐴ℓ ≔
(︁
�2 + (𝑛 − 2ℓ )2

)︁−1 for 1 ≤ ℓ ≤ 𝑚 ≔
⌊︁
𝑛
2

⌋︁
.

Proof. The surface distance � = 𝑑∡(x, 𝝁) follows the angular distribution � ∼ PurArc(𝑛, �).
Therefore, we have

Ex∼Pur[𝑑∡(x, 𝝁)] = E�∼PurArc[�]

= 𝐶′Pur

𝜋∫
0

�𝑒−�� sin
𝑛−2(�)d�.

Since �𝑒−�� = − 𝜕
𝜕� 𝑒
−��

, we can apply Leibniz’ rule and Lemma 7.23:

= −𝐶′Pur

𝜋∫
0

𝜕

𝜕�
𝑒−�� sin

𝑛−2(�)d�

= −𝐶′Pur
𝜕

𝜕�

𝜋∫
0

𝑒−�� sin
𝑛−2(�)d�

=

𝜕
𝜕�𝐹𝑛−2,−�(𝜋)
−𝐹𝑛−2,−�(𝜋)

. (7.27)

The result follows from applying the generalized product rule. □

7.3.3.3 Angular CDF

We provide the following expression for the CDF of the angular distribution PurArc in

terms of Eqs. (7.24) and (7.25):

Corollary 7.25. The CDF of the Purkayastha angular distribution PurArc(𝑛, �) is

PurArc[� ≤ 𝜗] = 𝐶′Pur

𝜗∫
0

𝑒−�� sin
𝑛−2(�)d� =

𝐹𝑛−2,−�(𝜗)
𝐹𝑛−2,−�(𝜋)

. (7.28)
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Note that this is a closed-form solution that can be efficiently evaluated in terms of finite

sums 𝐸𝑛,𝑎(𝑥) (Fact 7.22) and the formula for 𝐹𝑛,𝑎(𝜋) (Lemma 7.23) for both odd and even 𝑛.

This is crucial for the Purkayastha sampling method we develop in the next section.

7.3.4 Sampling Algorithms

In this section, we discuss concrete algorithms for our directional privacy mechanisms,

i.e., to generate samples from the underlying distributions. For some general intuition

on sampling rotationally symmetric distributions, we refer the reader to Section 7.2.2.

Due to its popularity, the VMF distribution has been studied extensively, and proven

sampling methods already have been published; two of them we describe in Section 7.3.4.1.

In contrast, no methods have been published so far for the Purkayastha distribution.

Therefore, in Section 7.3.4.2, we contribute the first sampling algorithm for the Purkayastha

distribution.

7.3.4.1 Von Mises–Fisher Sampling Methods

To generate a point x ∼ VMF(𝝁, �), we can employ the existing rejection scheme by Ulrich

[446] and Wood [473]: Pursuant to Section 7.2.2, it involves two crucial steps: First, the

tangent-normal decomposition x = 𝑡𝝁 +
√

1 − 𝑡2𝝃 in Eq. (7.1) reduces the multivariate
sampling problem to a univariate one, namely sampling 𝑡 〜VMFMix(𝑛, �) from the mixture

distribution, as well as a direction vector 𝝃 〜Uni(S𝑛−2⊥ 𝝁). This avoids the curse of

dimensionality since the mixture density is one-dimensional, and uniform samples from

a hypersphere are easily created by normalizing samples from a (multivariate) standard

normal distribution. Second, we need an efficient sampling algorithm for the reduced

problem. A clever way to solve this is the rejection method [473, Algorithm VM*] for

VMFMix(𝑛, �). Ulrich [446] showed that the acceptance ratio is at least ≈ 66% for any

parameters 𝑛 and �, resulting in a very efficient method even in high dimensions.

More recently, Kurz and Hanebeck [249] proposed another sampling algorithm for the

VMF distribution that is best described as approximate inversion method. It works by substitut-

ing 𝑡 = cos(𝜗) in the tangent-normal decomposition as in Eq. (7.3) and constructing a sample

x = cos(𝜗)𝝁+ sin(𝜗)𝝃. This reduces the problem to generating 𝜗 〜VMFArc(𝑛, �) from the

univariate angular distribution. If the corresponding angular CDF VMFArc(𝑛, �)[� ≤ 𝜗]
was invertible analytically, a textbook version of the inversion method (see, e.g., [102])

could be used to sample 𝜗. Kurz and Hanebeck solve this by approximately inverting the

CDF: If we can efficiently compute the CDF 𝑢 = VMFArc(𝑛, �)[� ≤ 𝜗], we can approxi-

mate its inverse 𝜗 = VMFArc(𝑛, �)−1[𝑢] numerically, e.g., by interval bisection, which is

“guaranteed to converge up to machine precision” in a reasonable number of steps [249].
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Unfortunately, their solution for VMFArc(𝑛, �)[� ≤ 𝜗] is analytical only for odd 𝑛, while it

contains an infinite series in terms of special functions for even 𝑛 which we cannot evaluate

efficiently. Therefore, this approach is only viable for VMF when 𝑛 is odd, which is why

we prefer the rejection scheme from the previous paragraph as it is fast and simple to use

in general. However, we show next that this idea is useful for sampling the Purkayastha

distribution.

7.3.4.2 Purkayastha Sampling Method

To our best knowledge, there is no published sampling method for the Purkayastha

distribution. Cutting et al. [90] state that they generated samples for lower dimensions

up to 𝑛 = 100, but without specifying the exact method they used. Rather, they give the

following explanation (emphasis ours):

The Purkayastha distribution is numerically hard to generate for dimensions larger
than 150, which is the only reason why the dimensions considered in this

second simulation are smaller than in the first one.

Here, the “first” and “second simulation” refer to sampling from the VMF and Purkayastha

distribution, respectively.

Algorithm 3: Approximate inversion method for the Purkayastha distribution.

Input: Dimension 𝑛, concentration parameter �, max. no. of iterations 𝑀 ≥ 1,

(optional: absolute tolerance 𝛿abs)

Output: A sample 𝜗 ∈ [0,𝜋] of PurArc(𝑛, �)
1 𝑎 ← 0; 𝑏 ← 𝜋; // initial interval bounds
2 𝑢 〜Uni(0, 1); // uniform sample
3 for 𝑖 ← 1 to 𝑀 do
4 𝜗← (𝑎 + 𝑏)/2;

5 𝑦 ← 𝐹𝑛−2,−�(𝜗)
𝐹𝑛−2,−�(𝜋) ; // evaluate PurArc[� ≤ 𝜗]

6 if |𝑦 − 𝑢 | < 𝛿abs then break; // (optional)
7 if 𝑦 < 𝑢 then 𝑎 ← 𝜗; // adjust lower,
8 else if 𝑦 > 𝑢 then 𝑏 ← 𝜗; // or upper bound

9 end
10 return 𝜗
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Approximate Inversion Purkayastha Sampling Algorithm. Recall that in Corollary 7.25,

we have derived a solution for the angular CDF of the Purkayastha distribution,

PurArc(𝑛, �)[� ≤ 𝜗] = 𝐹𝑛−2,−�(𝜗)
𝐹𝑛−2,−�(𝜋)

.

While we are not aware of a way to directly compute its inverse to apply the inversion method

[102] for 𝑛 > 2, the solution itself is a finite closed-form expression that can be computed

analytically. We hence propose an approximate inversion method, similar to the approach by

Kurz and Hanebeck [249] for VMF in Section 7.3.4.1, to obtain a new Purkayastha sampling

algorithm: Since we can efficiently compute the angular CDF 𝑢 = PurArc(𝑛, �)[� ≤ 𝜗] (cf.

Corollary 7.25), we can approximate its inverse 𝜗 = PurArc(𝑛, �)−1[𝑢] numerically.

We describe the core method to sample 𝜗 〜PurArc(𝑛, �) in Algorithm 3. Once we have a

sample 𝜗, we draw 𝝃 〜Uni(S𝑛−2 ⊥ 𝝁) and as above use the tangent-normal decomposition

Eq. (7.3) to construct

x = cos(𝜗)𝝁 + sin(𝜗)𝝃 ∼ Pur(𝝁, �).

Since our solution for the angular CDF is a closed-form expression with finitely many

terms in any number of dimensions 𝑛, we argue that our approximate inversion method

for the Purkayastha distribution is practical regardless of the parity of 𝑛.

Algorithm 3 can easily be vectorized to generate multiple samples at once, or parallelized

to utilize multiple CPU cores. In fact, we benchmark our method in up to tens of thousands

of dimensions (see Section 7.4.1), pushing beyond the status quo [90] by providing an

efficient sampling algorithm in dimensions much larger than 150.

7.3.5 Choice of Parameters Based on Privacy Level

To actually run the proposed directional privacy mechanisms on a given input vector

𝒙 ∈ S𝑛−1
, we need to generate samples from Pur(𝒙 , �) or VMF(𝒙 , �)where the mode is given

by the input 𝒙 and the concentration parameter � is defined through the privacy parameter

𝜖. Having described sampling methods for both the VMF mechanism (cf. Section 7.3.4.1)

and a novel sampling scheme for the Purkayastha mechanism (cf. Section 7.3.4.2), it remains

to explain the exact choice of � based on 𝜖 and the desired notion of privacy:

• Given a unit vector 𝒙 ∈ S𝑛−1
, in order to achieve directional privacy with privacy

parameter 𝜖, i.e. 𝜖𝑑∡-privacy (Definition 7.15), we simply need to set � = 𝜖 and draw a

sample z 〜Pur(𝒙 , 𝜖) or z 〜VMF(𝒙 , 𝜖) as shown in Corollary 7.18 and Theorem 7.21,

respectively.

• Metric privacy (Definition 2.5) [65] and its variants can also be interpreted as providing
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a privacy (or indistinguishability) level ℓ = 𝜖𝑟 to any two points 𝒙 , 𝒙′within a protection
radius (or angle) 𝑟 > 0, cf. [24]. In the case of directional privacy (Definition 7.15), this

is achieved by sampling with � = ℓ/𝑟. In other words, an (ℓ/𝑟)-private mechanism

achieves a privacy level ℓ within a protection radius 𝑟.

• As special case, when 𝒙 = 𝑓 (𝐷) is the result of a (query) function 𝑓 : 𝒟 → S𝑛−1
, we

achieve pure 𝜖-DP by setting the protection radius 𝑟 := 𝛥 to the (worst-case) sensitivity

of 𝑓 , i.e., by sampling with a concentration parameter � = 𝜖/𝛥 as per Fact 7.16.

Thus, directional privacy allows relaxing pure DP by specifying a protection radius

𝑟 smaller than the sensitivity 𝛥.

7.3.6 Circular and Spherical Baselines

For comparison, we consider the following adaptions of established standard privacy

mechanisms to directional data. The first and second mechanisms, Clipped and Wrapped

Laplace, are suitable for circular data (𝑛 = 2), whereas the third one, Polar Laplace, can be

regarded as a variant of Wrapped Laplace for spherical data (𝑛 = 3).

7.3.6.1 Clipped Laplace

A straightforward application of the usual Laplace mechanism [117] with post-processing

achieves DP on the circle by adding Laplace noise to a given angle, followed by clipping

the result to an interval covering one full circle, say [0, 2𝜋) or [−𝜋,𝜋). This method is

simple, but clearly has drawbacks: For small 𝜖, the major part of the probability mass

will be outside the clipping range, creating a bias towards the angle at its boundaries. We

therefore use it only in selected experiments.

7.3.6.2 Wrapped Laplace

Instead of clipping, we can add Laplace noise to the original angle 𝛼 and wrap it around

the circle by reducing the result modulo 2𝜋. This results in a so-called (symmetric) Wrapped
Laplace (WL) distribution with mean 𝛼. With the usual parametrization on the unit circle,

the density of a WL distribution with zero mean and concentration parameter � ≥ 0 is (cf.

[206])

WL(�)[�] = �
2

(︃
𝑒−��

1 − 𝑒−�2𝜋
+ 𝑒��

𝑒�2𝜋 − 1

)︃
, � ∈ [0, 2𝜋). (7.29)

Angular Density. In accordance with Corollary 7.5, the corresponding angular density

WLArc is the density of points with the same angle from the mean, in any direction. That
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Figure 7.2: Comparison of angular densities of the Purkayastha distribution with (a) Wrapped

Laplace and (b) Polar Laplace baselines (solid vs. dashed lines), respectively.

is, it identifies an angle � ∈ [0,𝜋) with its mirror image 2𝜋 − �. By symmetry, it is just

twice the density on the full circle:

WLArc(�)[�] = �

(︃
𝑒−��

1 − 𝑒−2�𝜋
+ 𝑒��

𝑒2�𝜋 − 1

)︃
, � ∈ [0,𝜋). (7.30)

While the Purkayastha angular density PurArc(2, �)[�] ∝ 𝑒−�� on S1
only has a single term

𝑒−��, cf. Eq. (7.22), WLArc(�) has an additional second term 𝑒+�� that increases with the

angle �. The wrapping hence smoothens the distribution by moving probability mass away

from the mode as illustrated in Fig. 7.2a. It hence provides less accuracy than Purkayastha

at the same privacy level, thus motivating the need for specialized directional mechanisms.

Expected Angular Distance. Similarly to the derivation of the expected surface distance

for the Purkayastha distribution from PurArc[�], we can derive the expected angular

distance for the WL distribution from WLArc[�]. The result is

E�∼WLArc(�)[�] =
1

�

(︃
1

1 + 𝑒−�𝜋 −
1

1 + 𝑒�𝜋

)︃
=

1

�
1 − 𝑒−�𝜋
1 + 𝑒−�𝜋 . (7.31)

For comparison, the expected angular distance of the circular Purkayastha distribution

from Lemma 7.23 simplifies to

E�∼PurArc(2,�)[�] =
1

�
− 𝜋
𝑒�𝜋 − 1

=
1

�
− 𝜋𝑒−�𝜋

1 − 𝑒−�𝜋 . (7.32)

The formula for the expected angular distances allows us to analytically compare the

average (angular) error induced by the distributions based on the concentration parameter
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Figure 7.3: Comparison of expected angles between Purkayastha and Wrapped/Polar Laplace

baselines (solid vs. dashed lines): The baselines show larger errors.

�, which in turn depends on the privacy parameter 𝜖 (cf. Section 7.3.5):

Theorem 7.26. For any value � > 0, the WL distribution has a strictly larger expected angular
distance than Purkayastha:

E�∼WLArc[�] > E�∼PurArc[�] +
�𝜋2

𝑒2�𝜋 − 1

> E�∼PurArc[�]

However, the expected angular distances of both distributions converge to the same limits as
�→ 0,∞:

lim

�→0

E�∼WLArc[�] = lim

�→0

E�∼PurArc[�] =
𝜋
2

lim

�→∞
E�∼WLArc[�] = lim

�→∞
E�∼PurArc[�] = 0

Proof. We compute the exact difference between the expected values and apply the

inequality 𝑒𝑥 ≥ 1 + 𝑥:

E�∼WLArc[�] − E�∼PurArc[�] =
𝜋

𝑒�𝜋 − 1

− 2

�(𝑒�𝜋 + 1)

=
𝑒�𝜋(�𝜋 − 2) + �𝜋 + 2

�(𝑒2�𝜋 − 1)

≥ (1 + �𝜋)(�𝜋 − 2) + �𝜋 + 2

�(𝑒2�𝜋 − 1)

=
�𝜋2

𝑒2�𝜋 − 1

> 0. □

The limits are trivial for �→∞. For �→ 0, they follow from l’Hôpital’s rule.

Figure 7.3 shows expected angles of PurArc(2, �) and WLArc(�) (blue lines) for a range
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of � ∈ [10
−2 , 10]. As we can see, the baseline has larger expected errors, which is in line

with Theorem 7.26.

7.3.6.3 Polar Laplace

The Planar Laplace (PL) mechanism [24, 65] was originally invented in the context of

protecting geolocation data. It can be considered as a two-dimensional variant of the

standard Laplace mechanism that works in Cartesian coordinates by translating the initial

starting point 𝒙 ∈ R2
by a certain distance 𝑟 along a certain direction 𝛼. The distance 𝑟 and

direction 𝛼 are polar coordinates obtained by sampling a random direction 𝛼 ∼ Uni(0, 2𝜋)
and a displacement radius 𝑟 ∼ 𝛤(2, 1/𝜖) from a gamma distribution.

When applying the PL mechanism to spherical instead of Cartesian coordinates, we obtain

the Polar Laplace mechanism
1

[66] that respects the curvature of the (roughly) spherical Earth:

The initial point 𝒙 is represented in spherical coordinates (e.g., latitude and longitude).

We then draw a random sample of polar coordinates (𝑟, 𝛼) ∼ 𝛤(2, 1/𝜖) × Uni(0, 2𝜋) as with

PL, and, as a post-processing step, solve the direct geodesic problem2
to find the destination

point z that is reached after traveling for a distance of 𝑟 units in the direction specified

by 𝛼. As with WL, we pass the starting point again every time a distance equal to the

circumference of the sphere has been traversed; therefore, Polar Laplace can be regarded

as a two-dimensional variant of the WL mechanism (cf. Section 7.3.6.2).

Angular Density and Expected Distance. In order to compare the Polar Laplace and

Purkayastha mechanisms on the sphere S2
, we again use their angular densities as

auxiliary. We simulated 64M samples to approximate the angular density PolArc(�)[�] and

its expected value for �. We compare it with the (exact) solutions for the three-dimensional

Purkayastha angular density PurArc(3, �)[�] and its expected value, as provided in Eq. (7.22)

and Theorem 7.24.

Figure 7.2b shows the angular densities of the Purkayastha and Polar distributions. For

all values of �, PurArc(3, �)[�] is higher near � = 0 and approaches 0 as �→ 𝜋, whereas

PolArc(�)[𝜋] is strictly above 0. The expected angles of both spherical distributions are

shown in Fig. 7.3 (orange lines) and approach 0 for � → 𝜋. As � decreases from 𝜋 to

0, E�∼PurArc[�] steadily rises to
𝜋
2

and approaches the uniform distribution. In contrast,

E�∼PolArc[�] goes up to over 1.7 at � ≈ 0.6 (i.e., worse than the uniform distribution), and

only then falls back to
𝜋
2
, which is quite remarkable.

To explain this phenomenon, consider the expected displacement radius which amounts

1
Implementation in laplace.js at https://github.com/chatziko/location-guard.

2
Solution formula from https://www.movable-type.co.uk/scripts/latlong.html.
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Figure 7.4: Sampling rates (×10
3
) of the Purkayastha approximate inversion method (Algorithm 3,

vectorized implementation) with various parameters.
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to E𝑟∼𝛤(2,1/�)[𝑟] = 2

� . For � ≈ 2

𝜋 ≈ 0.637, it is close to 𝜋, which is the farthest distance we

can go from 𝒙 to its antipodal point −𝒙 on S2
; consequently, most random points will end

up on the “wrong” hemisphere. This raises the expected angle E�∼PolArc[�] ≈ 1.733 to over

𝜋
2

for such �, indicating a point of no return where the distribution’s mode reverses from 𝒙

to −𝒙. Overall, these results indicate an advantage for Purkayastha over Polar Laplace,

particularly for � ≈ 2

𝜋 .

7.4 Experiments

In this section, we experimentally verify the proposed methods. We start by testing

the efficiency of our novel Purkayastha sampling algorithm, which is crucial for the

Purkayastha mechanism. We then apply our methods to real-world data: First, we analyze

the impact of the privacy mechanisms on the circular mean and ranking statistics. Next,

we consider temporal and spatial histograms from periodic times-of-day and geolocations

on a spherical coordinate system. Finally, we compute “busyness” histograms indicating

the activity or popularity of certain locations, such as stores or restaurants, over the course

of a day, through a combined application of directional privacy mechanisms to both spatial

and temporal check-in data.

Implementation. We use Python 3 for our experiments. Arithmetic and computations

are based on numpy [331, 456] and scipy [453]. For confluent hypergeometric and special

functions, we rely on the mpmath multi-precision library [212]. We implemented both

sampling algorithms, Algorithm 3 for Purkayastha and the VMF rejection method by Ulrich

[446] and Wood [473], with basic optimizations such as vectorization and JIT compilation

via Numba [251].

7.4.1 Sampling Efficiency

To measure the efficiency of our proposed Purkayastha approximate inversion method,

we run our implementation of Algorithm 3 with varying 𝑛 and � for at least 60 seconds

and count the number of generated samples. Based on the counts and elapsed times,

we compute the individual rate of samples per second. While single-threaded, our

implementation uses vectorization to work on multiple samples simultaneously. The

experiments were run in parallel on a 48-core Xeon Platinum 8259CL system with each

instance corresponding to one parametrization (𝑛, �) of the PurArc distribution.
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Results. Figure 7.4 shows the achieved sampling rate of our Purkayastha approximate

inversion method in thousands of samples per second. We push beyond the status quo

[90] by generating samples even in thousands of dimensions. Clearly, the rate decreases

with the dimensionality 𝑛 due to the increasing number of terms in Eq. (7.23) that is

used to compute PurArc(𝑛, �)[� ≤ 𝜗] (Corollary 7.25). Another factor is the concentration

parameter �: Larger values decrease the sampling rate first slightly, and then more

pronounced for � ≳ 100. However, with DP, we typically prefer low privacy losses 𝜖 that

correspond to small values of � (cf. Section 7.3.5)—and thus yield higher speeds.

Sampling rates of tens to over hundreds of thousands of samples per second clearly

show that the Purkayastha approximate inversion method is practical in the low- to

medium-dimensional setting. As the dimensionality 𝑛 gets larger, however, the sampling

rate decreases steadily until it will eventually become too low for the method to be practical.

As this is an intrinsic issue with the method being based on a formula whose complexity

increases with 𝑛, it leaves room for further research. Still, practical improvements to the

current approach are possible, for instance by porting the Python code to a native language

like C or parallelization on multiple cores. Lastly, we note that even fewer than hundreds

of samples per second may be sufficient for many real-world applications, particularly in

the local model where each participant perturbs just their own data (i.e., only few samples)

prior to submitting it to a central server.

7.4.2 Empirical Verification through Simulation

The following experiments aim at verifying the analytic formula for the expected distances

and CDFs of the VMF and Purkayastha distribution we derived in Section 7.3. We

furthermore use them to compare the corresponding mechanisms’ utility at a given privacy

level.

7.4.2.1 Expected Distances

First, we want to check the correctness of the derived analytical formula Eq. (7.19) for

the expected Euclidean distance E𝑡∼VMFMix
[︁√

2

√
1 − 𝑡

]︁
of the VMF distribution as well as

Eq. (7.26) for the surface distance E�∼PurArc[�] of the Purkayastha distribution. To that

end, we draw 1 million samples from each distribution VMFMix(𝑛, �) and PurMix(𝑛, �),
and compute the empirical means of the corresponding Euclidean and angular distances.

We chose 𝑛 ∈ {2, 3, 25, 50, 100, 500} and � ∈ {10
𝑘 | −3 ≤ 𝑘 ≤ 3}. We compare the

thusly obtained empirical distances against the results given by the analytical formula we

implemented in Python.
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Figure 7.5: Expected 𝑑2 and 𝑑∡ distances for VMF and Purkayastha distributions in various settings.

We obtained empirical averages (dotted lines) from 1M samples of each distribution

and analytic solutions (X’s) from Eqs. (7.19) and (7.26).

148



7.4 Experiments

0.0

0.5

1.0

Pu
rA

rc
[�
≤
𝛩
]

Dist. = Pur(𝑛, �)

0.0

0.5

1.0

VM
FA

rc
[�
≤
𝛩
]

D
im

.
𝑛

=
2

Dist. = VMF(𝑛, �)

0.0

0.5

1.0

Pu
rA

rc
[�
≤
𝛩
]

0.0

0.5

1.0

VM
FA

rc
[�
≤
𝛩
]

D
im

.
𝑛

=
3

0.0

0.5

1.0

Pu
rA

rc
[�
≤
𝛩
]

0.0

0.5

1.0

VM
FA

rc
[�
≤
𝛩
] D

im
.
𝑛

=
10

0.0

0.5

1.0

Pu
rA

rc
[�
≤
𝛩
]

0.0

0.5

1.0

VM
FA

rc
[�
≤
𝛩
] D
im

.
𝑛

=
25

0.0

0.5

1.0

Pu
rA

rc
[�
≤
𝛩
]

0.0

0.5

1.0

VM
FA

rc
[�
≤
𝛩
] D

im
.
𝑛

=
100

0 1 2 3
Angle upper bound 𝛩

0.0

0.5

1.0

Pu
rA

rc
[�
≤
𝛩
]

0 1 2 3
Angle upper bound 𝛩

0.0

0.5

1.0

VM
FA

rc
[�
≤
𝛩
] D

im
.
𝑛

=
500

Param. �
0.001
0.01
0.1
1.0
10.0
100.0
1000.0

Method
analytic
numeric

Figure 7.6: Angular CDFs of the VMF and Purkayastha distributions, obtained via numerical

integration (dotted) of the PDFs and analytically (X’s) via Eqs. (7.20) and (7.28).
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Figure 7.7: Mixture CDFs of the VMF and Purkayastha distributions, obtained via numerical

integration (dotted) of the PDFs and analytically (X’s) via Eqs. (7.20) and (7.28).
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Results. As we can observe in Fig. 7.5, our analytical solution (marked by X’s) precisely

predicts the empirical distances, even in higher dimensions such as 𝑛 = 500. Moreover,

given the same concentration parameter �, the Purkayastha distribution consistently has a

lower expected distance (or error) which indicates that it has a generally more favorable

privacy-utility trade-off.

7.4.2.2 Cumulative Distribution Functions

Second, we want to verify our formula for the CDFs VMFMix[𝑡 ≤ 𝑇] given in Eq. (7.20) as

well as PurArc[� ≤ 𝜗] given in Eq. (7.28). As reference values, we numerically approximate

the integrals over the probability density functions using the quadrature routines provided

by scipy. We vary � and 𝑛 as in the previous experiment on expected distances.

Results. Note that we only derived analytical solutions for the mixture CDF for the VMF

distribution and for the angular CDF for the Purkayastha distribution. Therefore, to give a

complete picture, we show both the mixture and angular CDFs for both distributions by

means of the transformations

VMFArc[� ≤ 𝜗] = 1 − VMFMix[𝑡 ≤ cos(𝜗)], and

PurMix[𝑡 ≤ 𝑇] = 1 − PurArc[� ≤ arccos(𝑇)]

for better comparability. The results are presented in Fig. 7.6 for the angular CDFs and in

Fig. 7.7 for the mixture CDFs. Again, we can observe that our analytical solutions (marked

by X’s) accurately predict the numerical approximations (dotted lines). While the CDFs

of both distributions look similar for small �, PurArc[� ≤ 𝜗] grows more rapidly than

VMFArc[� ≤ 𝜗] as 𝜗→ 𝜋 for larger �. Similar observations can be made for the mixture

CDFs. Overall, this indicates a higher concentration near the mode and hence a better

privacy-utility trade-off for the Purkayastha distribution.

7.4.3 Circular Mean on Periodic Data

The National Sleep Foundation (NSF) regularly conducts surveys of US citizens on their

sleep habits including questions on their bed and wake times. Among the key reported

figures in the surveys’ findings are the average wake and bed times; these times-of-day are

periodic on a 24-hour scale and hence provide a natural example of directional data that is

suitable for directional privacy.
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Scenario and Privacy Models. Suppose we work for a polling agency that wants to

conduct a similar survey of sleeping habits, but with formal privacy guarantees as offered

by differential privacy. The survey results with statistics such as average bed and wake

times shall be made public or shared with another third party. We can distinguish two

major approaches corresponding to the central and local privacy models introduced in

Sections 2.2.1 and 2.2.2, respectively:

• In the central model, the survey participants trust the polling agency to handle their

sensitive data confidentially. Hence, they faithfully report their unaltered answers

to the agency. After the collection of all survey responses, the agency prepares the

statistics from the original data and applies appropriate privacy mechanisms to

sanitize the results, which can then be shared or made public.

• The local model can provide a suitable alternative if the survey participants do not

trust the polling agency: Instead of providing faithful answers, the respondents first

sanitize their answers themselves before reporting the altered responses back to the

agency. From the collected obfuscated responses, the agency computes the desired

statistics that can be publicized afterwards.

Circular Statistics. When taking the average or difference of periodic data, it is not

sufficient to simply take the arithmetic mean or absolute distances. Instead, we must

use periodic variants such as the circular mean which works by averaging the direction

vectors, or the circular distance which takes the shortest path in any direction, clock- or

counterclockwise, so two times differ by at most 12 hours.

Let 𝒕 = (𝑡1 . . . , 𝑡𝑁 ) be a sequence of real numbers. We write the usual arithmetic mean
of 𝒕 as ∅(𝒕) = ∅(𝑡1 , . . . , 𝑡𝑁 ) ≔ 1

𝑁

∑︁
𝑖 𝑡𝑖 . Now let us assume 𝒕 is periodic with period

(circumference of the circle) 𝑝 > 0, i.e., each 𝑡𝑖 ∈ [0, 𝑝). Then the circular mean of 𝒕 is

∅𝑝(𝒕) = ∅𝑝(𝑡1 , . . . , 𝑡𝑁 ) ≔
𝑝

2𝜋
arctan2

(︃
∅

(︂
sin

2𝜋𝒕
𝑝

)︂
,∅

(︂
cos

2𝜋𝒕
𝑝

)︂)︃
.

The circular difference between 𝑝-periodic values 𝑠 and 𝑡 is

𝛿𝑝(𝑠, 𝑡) ≔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑝 − (𝑠 − 𝑡) if 𝑠 − 𝑡 > 𝑝/2,

𝑝 + (𝑠 − 𝑡) if 𝑠 − 𝑡 < −𝑝/2,

𝑠 − 𝑡 otherwise,

i.e., the signed difference equal to the positive clock- or negative counterclockwise arc

length from 𝑡 to 𝑠 taking values in [−𝑝, 𝑝]. The circular distance between 𝑠 and 𝑡 with values
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in [0, 𝑝] is
𝑑𝑝(𝑠, 𝑡) ≔ |𝛿𝑝(𝑠, 𝑡)|.

Note that the circular mean is highly sensitive to a change in the input: We can

always construct a sequence 𝑡1 . . . , 𝑡𝑁 so that changing a single 𝑡𝑖 will also cause the

mean to point in the opposite direction. For instance, given a circle with period 2𝜋, let

(𝑡1 , 𝑡2 , 𝑡3) = (𝛼,𝜋 − 𝛼,±𝜋
2
) for some small 𝛼 > 0. Therefore, we obtain the same sensitivity

𝛥∡ = 𝜋 in the central and local model.

7.4.3.1 Local Model Advantage and Sample Complexity

Note that the central model normally has a lower sensitivity, so it injects less noise and

hence is more accurate than the local model. However, in the case of the circular mean, we

anticipate an advantage for the local model: Given a sufficient amount of noisy responses, the

locally injected noise will gradually cancel out, resulting in more accurate statistics than in

the central model. This is similar to the mean of i.i.d. Gaussians which has a lower variance

than each Gaussian on its own. Moreover, the local model can be used in scenarios where

the data curator cannot be or is not trusted by the participants.

To examine this effect in the case of the circular (and spherical) mean, we perform the

following simulation experiment to determine the number of samples required to reach a

certain accuracy: Let 𝑡𝑖 , 𝑗 〜P denote i.i.d. samples from a circular distribution P with mean

� = 0 (1 ≤ 𝑖 ≤ 𝑁 , 1 ≤ 𝑗 ≤ 𝑅). The number of samples required to maintain an average

error below a given threshold 𝜏 ∈ [0,𝜋] is

𝑁P(𝜏) ≔ min

{︄
𝑘 ∈ N :

1

𝑅

𝑅∑︂
𝑗=1

∅2𝜋(𝑡1, 𝑗 , . . . , 𝑡𝑖 , 𝑗) ≤ 𝜏 ∀𝑖 ≥ 𝑘
}︄
,

which we call the average sample complexity of P at 𝜏 over 𝑅 runs.

Results. Figure 7.8 shows the sample complexity for the circular (𝑛 = 2, left) and spherical

(𝑛 = 3, right) VMF, Purkayastha, as well as the Clipped and Wrapped (𝑛 = 2) or Polar

(𝑛 = 3) Laplace mechanisms with sensitivity 𝛥 = 𝜋 over 𝑅 = 1000 runs with 𝑁 = 10
8

samples each. For large 𝜖, Purkayastha and the Laplace baselines approximately require

the same number of samples to reach a given threshold 𝜏. For small 𝜖, VMF has a slight

advantage over Purkayastha since it can be used with the smaller 𝑑2-sensitivity under

pure DP. In this case, all directional mechanisms show a similar, gentle slope and clearly

outperform the Laplace baselines, where CL performs worst. In fact, even 10
8

samples

quickly become insufficient to reach the given thresholds for Polar Laplace in 𝑛 = 3
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Figure 7.8: Sample complexity (mean over 𝑅 = 1000 runs).
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dimensions (thin vertical lines). This relates to Section 7.3.6.3, where we observe that Polar

Laplace reaches an expected angle 1.733 > 𝜋
2

for � ≈ 2

𝜋 (i.e., 𝜖 = �𝛥∡ ≈ 2). The behavior of

wrapped distributions thus causes utility worse than a uniform distribution.

For polls like the NSF survey, the impact is significant: To reach an error below 0.1 with

𝜖 = 1.0, the service provider only needs to collect about 750 responses with Purkayastha

instead of over 3600 with Wrapped Laplace, which represents an over 4.8-fold reduction.

Conversely, given the same number of responses, our mechanisms achieve lower errors

and higher accuracy as we see in the next Section 7.4.3.2. This makes the use of local DP

practical under stricter conditions even with small privacy parameters 𝜖 ≤ 10.

7.4.3.2 Average Wake Times and Ranking Statistics: Sleep Study

In the following experiments, we simulate a privacy-preserving survey in a real-world

setting, in both the central and local privacy models. Note that in the central model, a savvy

aggregator could choose to emulate the local model by first perturbing each collected value

before aggregating them, thus reaching the same level of accuracy as the local model. However,

to better illustrate the noise-cancelling effect in these experiments (i.e., throughout this

very Section 7.4.3.2), we assume the central aggregator follows an ordinary (but naïve)

approach that first aggregates the collected values and then applies noise only once.

Dataset Description. We rely on the NSF’s 2011 dataset [319], which includes a total of

1,508 survey responses. The questions include their bed and wake times, both on workdays

and weekends. The respondents are divided into four age groups: Baby Boomers (46-64),

Generation X (30-45), Y (19-29), and Z (13-18 years).

Sanitization Procedure and Parameters. To sanitize the times-of-day reported in the

survey on a 24-hour scale, we need to express them as 2-dimensional unit vectors that

we can use as mode of the VMF or Purkayastha distribution. This is easily achieved by

assigning to each hour the corresponding angle (in radians) on a 24-hour clock, and then

transforming these angles to coordinates via sine and cosine. Conversely, after perturbing

the points with one of our new mechanisms, we transform the points back to the 24-hour

scale using the inverse trigonometric arc tangent function.

For comparison, we also perturb the scalar data directly on the 24-hour scale by means

of the standard Laplace mechanism [117]. Since Laplace noise can be arbitrarily positive

or negative, we reduce the perturbed values modulo 24 to map the values back into

the domain [0, 24). In fact, this corresponds to a WL distribution on a 24-hour scale, as

discussed in Section 7.3.6.1.
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(b) Exemplary MAE values for various settings of the mechanisms (directional privacy; central and

local model in cols. 1–3 and 4–6).

Figure 7.9: Comparison of the mean absolute error (MAE) between original and perturbed average

wake times.

Let 𝒕 = (𝑡1 , . . . , 𝑡𝑁 ) be the true times-of-day from the 𝑁 participants. Depending on the

privacy model, we proceed as follows: In the central model, we take the average 𝑡 = ∅24(𝒕)
of all truly reported times, and then perturb 𝑡 using one of the privacy mechanisms. In the

local model, we first perturb each participant’s value 𝑡𝑖 individually. Then, we compute

the average from the perturbed values. The 𝑑∡-sensitivity of the circular mean is 𝛥∡ = 𝜋

radians, corresponding to 12 hours, even in the central model as changing a single input can

cause the mean to flip to the opposite direction in the worst case. For VMF, we can also

use the smaller 𝑑2-sensitivity 𝛥2 = 2 corresponding to the diameter of the unit circle.

For each mechanism, VMF, Purkayastha, and Laplace, we vary the privacy parameter

𝜖 ∈ {10
𝑘 | −4 ≤ 𝑘 ≤ 3} with step size 𝛥𝑘 = 0.2. To stabilize the results, we repeat this

procedure in each setting (privacy model, mechanism, and parameters) for 𝑅 = 10000

runs, so we obtain a sequence 𝒕 = (𝑡1 , . . . , 𝑡𝑅) of anonymized average times.
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Figure 7.10: Comparison of Spearman’s 𝜌 across the four age groups, over 𝜖 under directional and

pure differential privacy (indicated by the top and bottom axis, respectively).

Error Evaluation for Circular Mean. We take each anonymized time 𝑡 𝑖 , whose mean we

denote by 𝑡 = ∅24(𝒕), as an estimate for the true average time 𝑡. We want to estimate the

error induced by the various privacy mechanisms on the average wake time compared to

the original, unperturbed data. To this end, we chose the mean absolute error (MAE), which

is normally defined as
1

𝑅

∑︁𝑁
𝑖=1
|𝑡 𝑖 − 𝑡 |. However, as noted earlier, we work with periodic

data, so we must adapt the usual expression to its circular variant ∅
(︁
𝑑𝑝(𝒕 , 𝑡)

)︁
.

Figure 7.9a shows the MAE of the average wake time based on the original and perturbed

values. In the local model (dashed lines), both directional privacy mechanisms clearly

outperform WL across the entire range of privacy parameters 𝜖. For directional privacy (top

scale), Purkayastha shows the lowest errors due to its higher concentration at the mode.

However, for pure DP (bottom scale), VMF can be employed with smaller 𝑑2-sensitivity

𝛥2 = 2 < 𝜋 = 𝛥∡ (orange line), which even outperforms Purkayastha in that case. In

the central model (solid lines), WL and Purkayastha perform similarly well for large 𝜖

where VMF performs worst. However, in the strong privacy domain with small 𝜖, WL is

worst, with Purkayastha providing the best directional privacy guarantees and VMF with

the reduced 𝑑2-sensitivity yielding the best differential privacy guarantees for 𝜖 ≲ 10
0.25

.

Figure 7.9b lists exemplary MAE values specifically for directional privacy to support these

observations with concrete numbers.

Strikingly, the local model outperforms the (naïve) central one in this experiment, which

confirms what we anticipated in Section 7.4.3.1: The sensitivity of the circular mean is the

same in both privacy models, where the locally injected noise gradually cancels out when

many responses are averaged together, yielding lower errors. In both models, Purkayastha

and VMF reach the lowest errors for a given directional and differential privacy parameter

𝜖, respectively.
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Ranking Statistics. In the context of the NSF’s sleep study, one aspect is to compare

the wake (or bed) times among different groups, and determine, e.g., who gets up first or

goes to bed latest. Concretely, let us suppose we want to infer the order of wake-up times

among the four age groups (Generation-X, -Y, -Z, and Baby Boomers) from the survey

data. As a non-private baseline, we compute the average wake-up time for each group

on the original dataset, and from there determine the ranking of the groups. We then

simulate the survey being conducted in both the central and local privacy models as before,

and determine the ranking of the age groups from the sanitized average wake-up times. To

measure the impact of the privacy mechanisms on such statistics, we compute Spearman’s
rank correlation coefficient (also called Spearman’s 𝜌) between the perturbed and original

ranking of the four age groups.

Figure 7.10 shows Spearman’s rank correlation coefficient 𝜌 (averaged over all runs) for

the different mechanisms over the parameter range of 𝜖 and both privacy models. As we

can see, the observations on the rank correlation are in line with the observations on the

mean absolute errors reported in the previous experiment.

In the central model, Purkayastha and Wrapped Laplace (WL) (overlapping green and red

lines) achieve similar 𝜌 values and both outperform VMF at virtually any given privacy

level 𝜖 under both directional and differential privacy. However, in a small range of 𝜖 just

below 1, Purkayastha shows a higher correlation than WL, and VMF with the 𝑑2-sensitivity

also overtakes WL under pure DP.

The local model generally shows a better privacy–utility trade-off than in the previous

results. Notably, Purkayastha appears to reach the highest correlation values among

the three mechanisms under directional privacy, at virtually any given privacy level,

which is well observable for 10
−3 ≲ 𝜖 ≲ 1. Under pure DP, the VMF mechanism with

the 𝑑2-sensitivity stands out again and achieves even higher correlation scores than

Purkayastha.

7.4.4 Private Histograms for Spatio-Temporal Data

Histograms and heatmaps are practical tools to visualize and interpret empirical data,

particularly in one or two dimensions.

Scenarios. Suppose a LBS, such as Google Maps or Foursquare, wants to use check-in

data (e.g., from users’ smartphones) to create daily histograms of popular visit times of

businesses, such as stores or restaurants. This could allow other users to estimate how

busy a location or area is during different times of the day, or provide store owners with

insights on customer activity. The desired data is often privacy-sensitive, so users may
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Figure 7.11: Comparison of Earth Mover’s Distance (EMD) and mean absolute error (MAE) between

histograms of original and perturbed check-in times from all check-ins at the top 100

locations.

distrust the data collector and be reluctant to share their whereabouts during the course of

the day. To enable such use cases in a privacy-preserving way, we follow the local model

and sanitize each user’s data before it is collected and aggregated into histograms.

Dataset Description. We use the publicly available Gowalla dataset from [74]. Gowalla

was a location-based social networking website where users could share their locations by

checking in. It contains a total of 6,442,890 check-ins with their location and time recorded

between Feb. 2009 and Oct. 2010.

7.4.4.1 Independent Analysis of Temporal and Spatial Data

We simulate data collection in the local model by perturbing the time-of-day and location

of each check-in independently.

For the periodic times-of-day, we consider all check-ins at the top 100 locations. We

follow a sanitization procedure as with the sleep data in Section 7.4.3.2 and use the VMF

and Purkayastha mechanisms on S1
, with Clipped (CL) and Wrapped Laplace (WL) as

baselines (cf. Sections 7.3.2, 7.3.3 and 7.3.6). Similarly, to sanitize the locations, we take all

check-ins from the top 100 users and represent them as unit vectors on S2
. We then apply

the appropriate VMF and Purkayastha mechanisms, with Polar Laplace (cf. Section 7.3.6.3)

as baseline.

After gathering the perturbed data, we compute the following histograms: a check-in
time histogram for each of the 100 locations with one bin for each hour of the day, and a

check-in location histogram for each of the top 100 users with 90 × 180 bins, one for each pair
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Figure 7.12: Comparison of Earth Mover’s Distance (EMD) and mean absolute error (MAE) between

histograms of original and perturbed check-in locations from all check-ins of the top

100 users.

of subsequent degrees of latitude and longitude. To stabilize the results, we repeat this

procedure in every setting for 100 runs.

Error Metrics. As measures of error between the sanitized and original histograms, we

again use the mean absolute error (MAE), as well as the Earth Mover’s Distance (EMD)

with a suitable distance matrix: For the distance between two check-in time histogram bins,

we use their circular distance in hours. For 2D location histograms with latitude–longitude

bins, we use the great-circle distance, i.e. the actual surface distance, between the geographic

positions on the sphere corresponding to the bin centers. Unlike the MAE or MSE which

look at the error of each histogram bin individually, the EMD so provides a measure of

error that is aware of the semantics of the underlying data by considering how far off the

target bin is from the original bin when counting a perturbed check-in location.

Results. Figure 7.11 shows the errors for the check-in time histograms. For large 𝜖, both

Wrapped and Clipped Laplace as well as Purkayastha show similar errors that are lower

than VMF. For medium to small 𝜖, our directional mechanisms gain an advantage over WL

and CL with Purkayastha generally achieving the lowest errors under directional privacy,

whereas VMF wins under pure DP when using the smaller 𝑑2-sensitivity. In this case, CL

performs worst with generally large MAE and EMD since virtually all counts will be in

the first or last histogram bin.

Figure 7.12 shows the errors for the check-in location histograms. In terms of the MAE,

VMF is worst while Purkayastha and Polar Laplace are almost indistinguishable. However,

if we consider the EMD as a metric with spatial awareness, we recognize that the Polar
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mechanism has a region with increased error for 10
−1 ≲ 𝜖 ≲ 10, corresponding to the

“bump” we describe in Section 7.3.6.3. Thus, in conclusion, the Purkayastha distribution

shows the lowest errors for directional privacy, whereas VMF benefits from the reduced

𝑑2-sensitivity under pure DP.

7.4.4.2 Combined Analysis of Spatio-Temporal Data: Location Busyness

The following experiment constitutes the combined application of directional privacy

mechanisms to both spatial and temporal data. Our goal is to derive histograms of check-ins

at the top 1000 locations from the Gowalla dataset over different times of day, where we

perturb both the check-in times and locations using the Purkayastha mechanism, as well

as Wrapped and Polar Laplace as baselines, respectively.

Using differential privacy in the local model is often challenging, since it injects too much

noise and hence would make virtually all check-ins probabilistically indistinguishable

in our scenario. This is especially problematic for locations, since some areas may be

very densely populated with many bars and restaurants—so ideally, we would like to

reduce the protection guarantees to reasonably smaller distances. This is an advantage of

metric privacy and its variants such as directional privacy, as it allows relaxing the privacy

guarantees to a defined protection radius.

Concretely, we sanitize all check-ins at the top 1000 locations by perturbing check-

in times on a periodic 24h scale with a 𝛥t ≡ 3 hour protection radius, using the 2-

dimensional Purkayastha and Wrapped Laplace mechanisms with temporal privacy levels

ℓt ∈
[︁
10
−3 , 10

2

]︁
, and corresponding check-in locations with a 𝛥s ≡ 10 meter protection

radius, using the 3-dimensional Purkayastha and Polar Laplace mechanisms with spatial

privacy levels ℓs ∈
[︁
10
−2 , 10

2

]︁
. We perform 25 repetitions in each setting to obtain stabilized

results. For each check-in, we use nearest neighbor search to assign the perturbed check-in

coordinates to the nearest location, and aggregate all thusly obtained check-in times at

each location into a 24-hour busyness histogram. Similarly, we obtain one daily histogram

for each location based on the original, unperturbed data, which we use as a reference to

compute error metrics for each anonymization run. As in previous experiments, we use

the Earth Mover’s Distance (EMD) as a metric to compare the mechanisms.

Results. Figure 7.13 shows the EMD over varying temporal and spatial privacy levels

ℓt and ℓs. We clearly see an advantage for the Purkayastha mechanism over the baseline

combination of Wrapped and Polar Laplace, which is largest for privacy levels 10
−1 ≲ ℓt ≲ 1.

We also observe that ℓs has a less pronounced discriminating effect, as an increase in

ℓs generally reduces the error for both mechanisms, but slightly faster for Purkayastha
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Figure 7.13: Earth Mover’s Distance (EMD) between sanitized and original daily check-in activity

histograms over temporal and spatial privacy levels ℓt (abscissa) and ℓs (columns) with

protection radii 𝑟t ≡ 3 h and 𝑟s ≡ 10 m, respectively.

than Laplace For a different perspective, see also Fig. 7.14 which shows the averaged

EMD between daily busyness histograms with selected temporal privacy levels ℓt in

the columns and continuous spatial privacy level ℓs in the abscissa. Figure 7.15 shows

exemplary busyness histograms for four selected locations, where the check-in data have

been sanitized with privacy levels ℓs = ℓt ≈ 0.316. As we can see, Purkayastha is able to

better preserve utility than the baseline mechanisms.

7.5 Comparison with Related Work

Various DP mechanisms have been proposed for particular types of data: In the context

of location data, Andrés et al. [24] introduce the notion of geo-indistinguishability together

with the suitable PL mechanism. However, their approach assumes a flat surface instead

of a curved one, which restricts its usage to smaller areas where a planar approximation

is acceptable. While it is possible to wrap the PL mechanism around the sphere, our

experiments in Section 7.4.4 show that directional mechanisms provide superior utility at

the same privacy level when considering global locations.

Data collection in the local model can be dated back to Warner [464], who proposed a
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Figure 7.14: Earth Movers Distance (EMD) over spatial and temporal privacy levels ℓs (abscissa)

and ℓt (columns) with protection radii 𝑟t ≡ 3 h and 𝑟s ≡ 10 m, respectively.

method to conduct surveys that allows the respondents to maintain privacy by randomizing

their response. The goal is to eliminate evasive answer bias in cases where the individuals

may prefer not to reply at all or to reply with incorrect answers to certain sensitive questions.

Erlingsson et al. [123] present a modern variant called RAPPOR that privately collects

statistics by hashing each user’s sensitive value to a Bloom filter [45] and then applying

randomized response to each bit in the filter array. Their method applies to discrete values,

since hashing only slightly differing floating point values would drastically change their

hashes. Kim et al. [231] employ RAPPOR to collect indoor positioning data based on a

finite set of preinstalled indoor beacons.

Hay et al. [182, 183] evaluate existing DP histogram mechanisms in the central model.

Compared to our approach with local sanitization, central DP mechanisms typically offer

higher utility, but come at the expense of requiring a trusted data aggregator.

Wang et al. [462] propose a matrix-valued variant of the VMF distribution to achieve

DP in the context of spectral graph analysis, i.e., computing eigenvalues and -vectors

from graph adjacency matrices. While our proof for the VMF mechanism directly works

with its probability density, they consider the matrix Bingham-VMF distribution with the

Exponential Mechanism [294] as auxiliary, which penalizes the privacy guarantee by a

factor of 2.
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Figure 7.15: Daily check-in activity for a single sanitization run at exemplary locations, with

directional privacy levels ℓs = ℓt = 10
−0.5 ≈ 0.316 as well as protection radii 𝑟s ≡ 10 m

and 𝑟t ≡ 3 h.

Kurz and Hanebeck [249] proposed an approximate inversion method for the VMF distri-

bution as alternative to rejection sampling [446, 473], which also inspired our Purkayastha

sampling scheme. The method relies on the angular CDF VMFArc[� ≤ 𝜗], for which they

provide an analytical solution for odd 𝑛. Unfortunately, for even 𝑛 the solution contains

an infinite series with special functions which we cannot evaluate efficiently. Moreover,

as the number of terms grows with 𝑛, we suspect that the method may only be practical

for VMF when the number of dimensions 𝑛 is both odd and small. On the other hand,

we argue that the method is still valuable and practical for the Purkayastha distribution,

where our solution for PurArc[� ≤ 𝜗] in Eq. (7.28) provides a closed-form expression with

only finitely many terms, regardless of the parity of 𝑛. Our experiments in Section 7.4.1

confirm that our approach provides an effective sampling method that works in up to tens

of thousands of dimensions, pushing beyond the status quo of 150 dimensions [90].

7.6 Chapter Summary

In this chapter, we have introduced a novel notion of directional privacy for the important

class of directional data. To realize this notion, we have suggested the VMF and Purkayastha
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mechanisms which are based on spherical distributions and intrinsically suit directional

data. We have proved that they also conform to the notion of differential privacy, and

derived other statistical properties such as expected distances, related densities and

cumulative distribution functions. For the Purkayastha distribution, we have proposed a

novel sampling algorithm where previously no method was published.

Moreover, we have performed several analyses and experiments on real data to show the

applicability of our mechanisms and demonstrate their advantage over standard privacy

mechanisms adapted to directional data: Importantly, we observed that the new directional

mechanisms typically require fewer data to achieve a certain accuracy. For directional

statistics such as the circular mean, we have demonstrated that the local model can achieve

utility on par with the central model and hence is preferable since it also does not require

a trusted aggregator. The facilitated use cases include important applications such as

privately collecting mobility data in the local model, where the data collector cannot or

may not be trusted by the users.

Further work could include finding other applications or domains for which specialized

mechanisms yield improved privacy-utility trade-offs, as well as devising more efficient

sampling routines for the underlying spherical distributions especially in high dimensions.
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Conclusion

In this chapter, we conclude this dissertation. First, we discuss the contributions and

impact of our work and address the formulated research objectives. Moreover, we discuss

additional challenges related to the local model. Lastly, we point out directions for future

research that arise from the work in this dissertation.

8.1 Contributions and Impact

First Differential Privacy Mechanism for Text. In Chapter 5 we presented SynTF, a novel

DP mechanism that produces differentially private BoW representations for texts. It works

by randomly replacing words from an input text with similar words using the Exponential

mechanism and counting the resulting terms in a tf vector. We introduced the bigram
overlap as an additional technique that influences the choice of substituted words to further

prevent authorship attribution. To the best of our knowledge, SynTF represents the first DP

mechanism for text as confirmed in the survey by Zhao and Chen [494]; moreover, it also

spurred a line of research we refer to as word-level DP, which works by replacing words in

a text on a word-by-word basis in a differentially private manner (cf. Section 3.3.5.1). Note

that most word-level methods provide DP guarantees only for texts of the same length,

whereas SynTF provides DP to texts of varying lengths by fixing the number of terms in

the resulting tf vector.

On the theoretical side, we proved the 𝜖-DP properties of our method, and furthermore

derived a heuristic argument that the privacy loss 𝜖 of the Exponential mechanism grows

logarithmically in the size of the (discrete) output space if the result should provide a

minimum level of utility. We experimentally verified our method on a corpus of newsgroup

postings in a scenario where a benign analyst wants to infer the topic from the texts,

whereas a malicious attacker tries to identify their author. The results showed that our

method has a much stronger impact on authorship attribution than on the topic inference

task, against which scrubbing methods that only mask sensitive named identifiers provide
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only insufficient protection.

Human-Readable Text Obfuscation with Differential Privacy. In Chapter 6, we tackled

major limitations of word-level DP methods (cf. Section 3.3.5.1), with a novel text obfuscation

approach, DP-VAE, that applies DP to full sentences instead of individual words. DP-VAE

employs a VAE architecture which encodes the input sentences to continuous, probabilistic

latent representations following a Gaussian distribution. By imposing two constraints on

the parametrization of the Gaussian distributions, we were able to exploit synergies with

the Gaussian mechanism and achieve differentially private obfuscation that transforms full

sentences into diverse and coherent, human-readable outputs. Furthermore, we extended

our approach to a differentially private adversarial autoencoder (DP-AAE) by integrating

adversarial learning to disentangle the latent representations into a privacy-sensitive

author/style vector and a privacy-insensitive content vector. This separation allowed us to

further improve the privacy-utility trade-off in a favorable direction by applying stronger

noise to the author vector.

In Section 6.5, we performed an extensive evaluation involving hyperparameter opti-

mization and compared our DP-VAE and DP-AAE models against two non-DP baselines

in a scenario with online reviews whose authors wish to remain anonymous. The re-

sults showed that DP-AAE outperformed all other methods and effectively reduced

re-identification risks of authorship attribution attacks while producing readable sentences

and preserving the content of the texts. In addition, we observed that an adaptive attacker

who could calibrate their authorship attribution attack to the obfuscation method showed

much better chances of re-identifying the authors than a static attacker who trained author

classifiers on unobfuscated data. Similarly, an adaptive strategy also indicated significant

improvements for utility (here: sentiment analysis). In line with those results, several

related works also found that an adaptive attacker model provides a more meaningful and

realistic assessment of the protective performance of obfuscation methods, cf. our findings

in Section 3.4. It is worth mentioning that we also used an adaptive attacker model in our

SynTF experiments in Section 5.3.

Differential Privacy for Directional Data. In Chapter 7, we introduced the new notion of

directional privacy for the important class of directional data based on the surface distance

on the sphere. We devised two conforming mechanisms based on the spherical VMF and

Purkayastha distributions that intrinsically suit directional data, for which we proved that

they fulfill directional privacy and also differential privacy. Furthermore, as a theoretical

contribution, we derived various statistical properties such as expected distances, related

densities and cumulative distribution functions for the underlying distributions. Based
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on these results, we (i) showed that adopted standard mechanisms based on wrapping

can behave even worse than the uniform distribution, and (ii) described a novel sampling

algorithm for the Purkayastha distribution where to our best knowledge, no designated

sampling method had been published before.

Moreover, we performed several analyses and experiments on real data to show the

advantage of our directional privacy mechanisms over standard privacy mechanisms

adapted to directional data and to demonstrate their applicability to important applications,

such as privately collecting mobility data in the local model, where the data collector

cannot or may not be trusted by the users. Notably, we observed that our directional

mechanisms typically required fewer data to achieve a certain level of utility (i.e., they have

a lower sample complexity, cf. Section 8.3) than standard privacy mechanisms adapted

to directional data. We also demonstrated that for some directional statistics such as the

circular mean, the local model can achieve a sample complexity as low as in the central

one, making it preferable since it also does not require a trusted aggregator.

Reassessment of Related Work. Lastly, in Chapter 3 we summarized related work on

traditional and differentially private defenses for sequential and directional data, including

more recent works that were developed in the meantime over the course of this dissertation,

and also covering other types of sequential data besides text. Comparison with these

works shows that the approaches we presented in this dissertation may be suitable for

other types of sequential data, such as audio data, visual data, or trajectory data as a

combination of the sequential and directional domains, as we outline in Section 8.4. It also

supports the challenges and limitations we faced with our methods regarding the local

model, for which we refer to Section 8.3.

8.2 Research Objectives

Having described our contributions in this dissertation, we can now address the research

objectives that we formulated in Section 1.3, which we repeat here for convenience:

RO1 Design novel DP mechanisms to obfuscate text as an illustrative example of sequential

data.

RO2 Evaluate the performance of the proposed DP mechanisms for text in realistic

scenarios, in particular how well they protect against authorship attribution attacks.

RO3 Design specialized DP mechanisms for directional data that intrinsically respect the

directional nature of the data.
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RO4 Evaluate the performance of the proposed DP mechanisms for directional data in

realistic scenarios.

Our work in Chapters 5 and 6 proposed and evaluated novel DP mechanisms for textual

data that produce BoW representation vectors (SynTF) as well as readable text (DP-VAE

and DP-AAE), respectively. Therefore, we achieved objectives RO1 and RO2.

Similarly, our work in Chapter 7 introduced a new variant of metric privacy called

directional privacy along with two novel DP mechanisms for directional data which we

also evaluated in several scenarios involving spatial location and periodic temporal data.

Therefore, we achieved RO3 and RO4.

8.3 Challenges of the Local Model

Our directional privacy mechanisms from Chapter 7 can be used in both the central and

the local model as demonstrated in Section 7.4 (e.g., for circular statistics). Moreover, in

theory, it could make sense to deploy our DP mechanisms for text from Chapters 5 and 6

in the central model, for instance, to obfuscate text summaries generated from inputs

sourced from multiple users. However, as we have demonstrated in our experiments,

all DP mechanisms proposed in this dissertation can be deployed in realistic use cases

conforming to the local model where the data is obfuscated individually, i.e., locally at

the source. While the local model does have advantages, such as not requiring a trusted

curator, it also comes with its challenges that we (and others) have faced, which we hence

want to discuss in the following.

Noise Agnostic to Downstream Tasks. In the local model, the randomness applied to

individual data values affects any downstream task, irrespective of whether the task is

an attack that violates privacy or some benign analysis. Therefore, DP mechanisms to be

deployed in the local model benefit from additional techniques that discriminate against

malicious tasks (e.g., by suppressing privacy-sensitive information) and/or support benign

tasks (e.g., by preserving privacy-insensitive, but utility-relevant information) to achieve

good privacy-utility trade-offs.

To this end, for SynTF (Chapter 5), we proposed the bigram overlap in Section 5.3.1.2. It

manipulates the scores of the Exponential mechanism’s rating function to prefer surrogate

words with spelling different to the original words, thus degrading important features

for authorship attribution. For our best-performing model from Chapter 6, DP-AAE,

we used adversarial learning to disentangle author- and content-specific information of

the input sentences into separate representation vectors. This allowed us to improve
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the privacy-utility trade-off over DP-VAE by applying different levels of obfuscation to

the author and content representations independently of each other, so we could apply

stronger obfuscation to the author information than to the content information.

Some related works (cf. Sections 3.3.3 and 3.3.5) take similar approaches: SanText
+

[487]

only applies the Exponential mechanism to a subset of sensitive tokens to mitigate utility

loss. ER-AE [46] uses reinforcement learning to encourage sampling of under-rated but

semantically similar tokens as a substitute for the original tokens. Adversarial training

has been used to protect (i.e., suppress) sensitive information in differentially private

representations for text [275], as well as in obfuscation mechanisms for images based

on latent [89] or disentangled representations [469]. Many DP mechanisms for speech

rely on separate content and speaker representations, such as speaker x-vectors [416],

and obfuscate only the speaker representations while applying little to no obfuscation

to the content representations [180, 405]. However, while methods with separate levels

of obfuscation for privacy-sensitive and -insensitive components may achieve improved

privacy-utility trade-offs in practice, this usually comes at the cost of degraded theoretical

privacy guarantees.

Lastly, we acknowledge the remaining challenge to incorporate such discrimination

between “good” and “bad” tasks into our directional privacy mechanisms (Chapter 7) that

obfuscate individual unit vectors (e.g, representing a GPS coordinate), since it is unclear

how isotropic noise that treats each direction equally could achieve such discrimination.

Some related works (cf. Section 3.3.5) point out potential approaches that could be adapted

to directional privacy mechanisms: For the PL mechanism on the Euclidean plane,

Chatzikokolakis et al. [67] propose a Bayesian remapping strategy that provides improved

utility. In the context of text embeddings, Xu et al. [480] propose elliptical noise instead of

isotropic noise that respects the geometry of the Euclidean embedding space, which they

claim improves privacy at the same level of utility. We leave the task of exploring such

approaches for directional data as an open challenge for future work.

High Error and Sample Complexity. A major issue with local DP mechanisms is that

they perturb every data record of each user individually, thus injecting more noise than in

the central model, leading to larger errors and therefore lower utility [485, Section 6.1]. To

reduce the errors, applications that rely on local DP typically require more samples (i.e.,

they come with a high sample complexity; cf., e.g., [38, Section 2.1] and [461, Section 7])

and/or use a larger privacy loss parameter 𝜖 than in the central model [99] which increases

the accuracy of each obfuscated sample but weakens the theoretical privacy guarantee.

We have obtained a similar result in the context of SynTF (Chapter 5): In Section 5.2.4.3,

we have derived necessary conditions on the privacy parameter 𝜖 for the Exponential
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mechanism, stating that 𝜖 needs to grow logarithmically in the size of the output space in

order to allow meaningful results with high utility.

Yang et al. [485, Section 6.1] provide a glimmer of hope and remark that one “principle

of [local DP] getting accurate statistics is that the added positive and negative noises can be

canceled out”. In line with their remark, our directional privacy experiments on circular

statistics in Section 7.4.3 show that the local model may reach the same level of accuracy

as the central model for some DP mechanisms: When we average enough noisy samples

for the circular mean, noise from directional privacy mechanisms cancels out in the local

model, thus leading to improved accuracy.

8.4 Directions for Future Research

Utilize Transformers for Differentially Private Text Anonymization. We have already

employed Transformer-based BERT [101] and Sentence-BERT [369] encoders to evaluate

privacy as well as utility and content-preservation of the obfuscated texts in our DP-VAE

and DP-AAE experiments in Section 6.5. However, the obfuscation models themselves still

consist of “conventional” RNNs with GRUs [75]. While RNNs with GRU or LSTM cells

[191] are well-suited for textual data, by now, they have been outperformed in many tasks

by more recent architectures based on Transformers [450]. Therefore, we hypothesize that

upgrading the encoder and decoder in our models to more recent architectures, such as

BERT [101] for the encoder and GPT-2 [363] or GPT-3 [54] for the decoder, could further

improve the quality of the obfuscated texts.

Evaluate Generalizability and Applicability to Other Domains. Our work on sequential

data presented in Chapters 5 and 6 focuses on text as an example of a ubiquitous domain

that often contains PII which may lead to the identification of individuals. For named

identifiers, this information is typically confined locally, whereas biometric identifiers such

as the writing style often pervade large parts of the sequence, and adequate protection

mechanisms must be applied. In our survey of related work in Section 3.2, we found that

PII may also be present in other types of sequential data, e.g., voice characteristics in speech

or various visual identifiers in images and videos. Since similar defensive techniques

have been used across these domains (cf. Section 3.3), it might be interesting to adapt and

evaluate our proposed differentially private mechanisms in other domains besides text,

such as speech or time series in general.

Similarly, there are other examples of directional data that may be worth investigating,

particularly in higher dimensions: For instance, Dhillon and Sra [103] observed that gene
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expression data also has directional characteristics; therefore, directional privacy and its

mechanisms may also prove beneficial when the privacy of such data shall be protected.

Combine Approaches for Sequential and Directional Data. A particularly intriguing

domain presents itself at the intersection of sequential and directional data, i.e., the focus

areas of this dissertation: Trajectory data, such as location traces, are recorded as a series

of individual directional data points at subsequent points in time, thus forming a temporal

sequence of spatial data. Since spatio-temporal data occurs in a wide range of applications,

techniques to analyze such data have evolved into their own field of spatio-temporal data
mining [28, 178]. In some cases, such as the analysis of reoccurring patterns (e.g., daily

or weekly commutes, sleeping habits as in Section 7.4.3.2, etc.), this may even involve

periodic time specifications (time-of-day, day-of-week, etc.), which are another form of

directional data. Likewise, also attackers can exploit spatio-temporal correlations as found

in trajectory data: For instance, a study by de Montjoye et al. [92] revealed that “four

spatio-temporal points are enough to uniquely identify 95% of the individuals” for location

traces with spatial and temporal resolutions corresponding to the cellular network and

one hour, respectively. Therefore, exploring ways to combine the individual approaches

for sequential and directional data proposed in this dissertation (in particular, Chapters 6

and 7) into DP mechanisms to obfuscate spatio-temporal data, such as location traces,

would provide an interesting extension of this work.
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