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Abstract

Over the past two decades, the subsequent advancements in Superconducting Gravimeters
(SGs) have ushered in a level of precision that enables the measurement of the impact of
ground water and soil water on gravity. Because of the challenging nature of monitoring
the total water volume and the relatively subtle amplitude of the hydrological signal, a
comprehensive understanding of the precise hydrological signature in continuous gravity
data remains elusive.
In this study, I use SG data in conjunction with hydrological measurements from a geosci-
entific observatory in Germany to find the signature of hydrological signals in gravity data.
I scrutinize the various steps involved in extracting this signal, presenting new method-
ologies, including a technique to eliminate oscillations in gravity residuals that are likely
attributed to remaining tidal signals due to an imperfect tidal model. A major contribu-
tion of this work involves constructing a data-driven model that incorporates precipitation
and soil moisture measurements to elucidate gravity variations. I address critical questions
such as the impact of utilizing soil moisture data on the model’s performance, determining
the optimal model for achieving the closest fit with gravity measurements, and assessing
the applicability of computed model parameters to new epochs. Furthermore, I provide
recommendations for refining the model-building process in future investigations.
Results show that a convolution of the different hydrological timeseries with one half of
a Gaussian bell curve leads to a strong agreement with the gravity measurements. The
use of soil moisture data significantly improves the fit, especially when the measurement
stations are spatially well distributed. This fit becomes less strong when the computed
parameters are applied to new events, but the approach showed promise for some of the
events.
Enhancing our comprehension of the hydrological influence on gravity measurements holds
promising implications, potentially positioning SGs as instruments for monitoring soil and
ground water in the future. Moreover, this improved understanding could elevate the pre-
cision of analyzing other subtle signals, such as the effects of Polar Motion.
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Summary in German

Eine zentrale Aufgabe der Geodäsie ist die Bestimmung der physikalischen Form der
Erde. Diese wird realisiert durch die Messung ihres zeitvariablen Gravitationsfeldes. Die
gegenwärtig genauesten Instrumente zur Bestimmung der Schwereänderungen an einem
festen Ort sind Supraleitende Gravimeter (SG). In ihrer Messeinheit wird eine Niob-
Kugel von einigen Zentimetern Durchmesser mit einem sehr stabilen Magnetfeld zum
Schweben gebracht. Bei einer Positionsänderung der Kugel wird die Stärke des Magnet-
feldes nachgesteuert und diese Steuerung wird auf eine Änderung der Schwere zurück-
geführt.

Die gemessenen Schwereänderungen werden allerdings nicht nur durch Veränderungen der
gravitationellen Anziehung der Erde ausgelöst, sondern weitere Vorgänge wie Gezeiten
oder Variationen des Zentrifugalvektors an der Messposition, welche z.B. durch Polwan-
derung verursacht werden, beeinflussen die Messungen. Ein eher kleiner Teil der Messun-
gen sind die Auswirkungen der Hydrologie.
Der Einfluss der Hydrologie ist aufgrund der relativ kleinen Amplitude schwierig zu
bestimmen. Außerdem können die hydrologischen Vorgänge selbst nur unvollständig
überwacht werden. Während bei Gezeiten die Position der verursachenden Himmelskör-
per aus astronomischen Katalogen genau bekannt ist, kann man das Volumen des gefal-
lenen Regens nicht überall, sondern nur an wenigen Punkten, bestimmen. Das Ziel
dieser Arbeit ist ein besseres Verständnis, wie sich Hydrologie auf die Schweremessungen
auswirkt. Es soll ein daten-getriebenes Modell erstellt werden, welches mittels Boden-
feuchte- und Niederschlagsmessungen die Schwere modelliert. Um die Signatur der Hy-
drologie zu finden, müssen zunächst die größeren Effekte auf die Schwere so gut wie
möglich aus der Zeitreihe entfernt werden.
Ein besseres Verständnis der Hydrologie in SG-Messungen könnte zu neuen Einsichten in
die kleineren Signale im Schweresignal führen, wie Oszillationen des Erdkerns, Beobach-
tungen von vulkanischen Gefahren und, vielleicht am wichtigsten in einer Zeit, in der
Trinkwasser eine kostbare Ressource wird, Rückschlüsse auf Grundwasser-Höhen.

Für die Untersuchungen stehen Messungen des Geowissenschaftlichen Gemeinschaftsob-
servatoriums (BFO) in Schiltach zur Verfügung. Dort steht in einer ehemaligen Silber-
mine, gut abgeschirmt von menschlichen Störquellen, das Supraleitende Gravimeter SG-
056. Das Instrument besitzt zwei Schweresensoren, die einen vertikalen Abstand von
etwa 20 cm haben, und erreicht eine Genauigkeit von etwa 0.01 µGal bei einer Rausch-
periode von 1 Minute. Es stehen Beobachtungen mit einer Messrate von 60 Sekunden
über das gesamte Jahr 2022 zur Verfügung. Darüber hinaus verwende ich die Daten eines
Niederschlags-Sensors am Eingang der Mine sowie von vier Bodenfeuchte-Stationen (mit
insgesamt sieben Sensoren), die im Laufe des Jahres 2022 im Waldboden oberhalb des SG
installiert worden sind.

Im ersten Schritt müssen die weiteren Schweresignale verstanden und abgezogen werden.
Die Gezeiten werden mit einer synthetischen Zeitreihe, welche auf einer Gezeitenanalyse
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von Eva Schroth basiert, subtrahiert. Der Atmosphärendruck hat einen Einfluss auf die
gemessene Schwere, unter anderem durch die gravitative Wirkung der zusätzlichen Masse
über dem Gravimeter. Für die Korrektur werden die Messungen eines Luftdruck-Sensors
des BFO mit einem festen Faktor multipliziert und von den Messungen abgezogen. Eine
Kleinste-Quadrate-Ausgleichung ermittelt einen besten Wert von −0.246 µGal/hPa. Da
die Auswirkungen der Atmosphäre aber deutlich komplizierter sind, dürfte ein einzelner
Korrekturfaktor nicht ausreichen. Vor allem für schnelle Druckänderungen mit einer Pe-
riode von einigen Tagen oder weniger ist dieser Wert nicht ideal.
Nach dieser Korrektur sind in den Schwereresiduen noch übrige Oszillationen zu sehen, die
nicht durch die Hydrologie zu erklären sind. Ich komme zu dem Schluss, dass diese durch
Imperfektionen der Gezeiten-Korrektur verursacht werden. Die Schwereresiduen zeigen
eine Korrelation mit den synthetischen Gezeiten, besonders nach einer Verzögerung von
etwa eineinhalb Stunden. Mit einer Kreuzkorrelation wird der Wert dieser Verzögerung
bestimmt und mit einer Kleinste-Quadrate-Ausgleichung eine Amplitude zwischen den
beiden Zeitreihen berechnet. Die synthetischen Gezeiten werden dann – mit der bes-
timmten Verzögerung verschoben und der Amplitude multipliziert – von der Schwerereihe
abgezogen. Das resultierende Signal zeigt sowohl visuell als auch in einer Frequenzanal-
yse deutlich weniger Oszillationen. Als letzte Korrekturen des Signals werden ein linearer
Trend aus den Messungen beider Sensoren entfernt sowie eine Ausreißer-Eliminierung
durchgeführt.

Auf Grundlage der Regenmessungen bestimme ich im Jahr 2022 elf bedeutende Re-
genereignisse, auf denen ich die Modellierung durchführe. Ich beschränke mich auf solche
Ereignisse, da in diesen Zeitabschnitten ein deutlicheres hydrologisches Signal vorhanden
sein dürfte, als wenn es über lange Phasen fast gar nicht regnet. Zu jedem Regen-Event
werden drei Tage von Schwere-Beobachtungen zur Modellierung verwendet.
Beim Design des Modells gehe ich davon aus, dass die Eingangsgrößen – Niederschlag und
Bodenfeuchte – für unterschiedliche Ereignisse die gleiche Signatur in den Schweredaten
hinterlassen. Das heißt, dass z.B. ein Regenpaket sich zunächst stark auf die Schwere
auswirkt, nachdem es gefallen ist, und danach die Auswirkungen kleiner werden, weil das
Wasser mit der Zeit abfließt. Das bedeutet mathematisch, dass die Bodenfeuchte- und
Niederschlagsmessungen mit einem Kern gefaltet werden. Die Parameter dieser Kerne, die
Amplituden und die Verfallszeiten werden zunächst mit einer Gittersuche näherungsweise
bestimmt und danach mit einer nicht-linearen Ausgleichung genauer. Sowohl für Re-
gen als auch für Bodenfeuchte werden verschiedene Arten von Kernen getestet. Mit der
hinteren Hälfte einer Gauß-Kurve zeigt sich jeweils die beste Übereinstimmung mit den
Messungen hinsichtlich des RMSE. Für den Niederschlag werden aber sehr viel längere
Verfallszeiten, teilweise über einen Monat, gefunden, als für die Bodenfeuchte.
Bei Hinzunahme von mehr Bodenfeuchte-Sensoren zum Modell wird der RMSE-Abstand
zu den Messungen stetig kleiner. Die Verbesserungen lassen allerdings nach dem dritten
Sensor nach und die Korrelation mit den Messungen wird nicht mehr besser. Es zeigt
sich, dass ein Modell mit Sensoren, die räumlich näher zusammen liegen, eine schlechtere
Übereinstimmung bringt. Die beiden Hauptmodelle sind aus diesem Grund P3S, welches
Regen und drei gut verteilte Bodenfeuchte-Sensoren nutzt, sowie P7S welches alle sieben
Sensoren verwendet. Die besten Modelle erreichen eine Korrelation mit den Messungen
über die 33 Beobachtungstage von etwa 0.86. Diese Ergebnisse sind jeweils deutlich besser
als das bisher verwendete Bouguer-basierte Modell, das nicht an die Daten angepasst wird,
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Summary in German

sondern feste Zeitkonstanten und Amplituden besitzt. Das Bouguer-Modell erreicht über
die 33 Tage nur eine Korrelation von 0.76 mit den Messungen.
Es kann keine gute physikalische Interpretation der ermittelten Parameter gefunden wer-
den. Die Amplituden für die Bodenfeuchte haben häufig ein positives Vorzeichen, während
physikalisch gesehen nur ein Negatives Sinn ergeben würde, da sich die zusätzliche Wasser-
masse im Boden oberhalb des Gravimeters in der Mine befindet.
In einem letzten Versuch wird ein Modell mit variablen Parametern angesetzt. Wenn
der Boden feucht ist, kann er mehr von dem gefallenen Regen speichern, was sich zum
Beispiel in einer höheren Amplitude für den Niederschlags-Kern ausdrücken könnte. Da-
her wird für die Amplitude und die Verfallszeit des Regen-Kerns eine lineare Abhängigkeit
von der Bodenfeuchte vor Beginn des Regens eingeführt. Das resultierende Modell P3SV
bringt aber keine wesentliche Verbesserung gegenüber den anderen beiden Bodenfeuchte-
Modellen.

Schließlich teste ich die Übertragbarkeit der Modelle P3S, P3SV und P7S sowie des OnlyP-
Modells, welches nur den Regen verwendet. Dazu führe ich eine Auslassungsvalidierung
durch. Dabei führe ich die Bestimmung der Parameter nur auf acht der elf Ereignisse durch
und beobachte die Ergebnisse dieser Modelle auf den drei übrigen Events. Die Vorteile der
datengetriebenen Modelle gegenüber dem Bouguer-Modell sind nun verschwunden. Alle
neu berechneten Modelle schneiden ähnlich oder schlechter ab als der Bouguer-Ansatz. In
einem zweiten Schritt wende ich die Modelle auf neue Regenereignisse im Jahr 2023 an.
Auch hier zeigt meist das Bouguer-Modell die besten Ergebnisse. Lediglich OnlyP kann
ähnlich gute Ergebnisse wie die Baseline erzielen.

Eine Übertragung der Modelle ist also eher nicht möglich. Verschiedene Gründe dürften
für dieses Resultat verantwortlich sein: Der von mir bestimmte atmosphärische Faktor
ist suboptimal für schnelle Luftdruckänderung und verfälscht damit die Schwereresiduen.
Aus diesem Grund sind die Ergebnisse für einige Perioden, speziell die Regenereignisse in
2023, sehr schlecht. In Zukunft sollte ein frequenzabhängiger Faktor verwendet werden.
Die Beobachtungsgleichung ist nicht ideal. Dass alle unterschiedlichen Sensoren mit ver-
schiedenen Kernen gefaltet werden, ist physikalisch schwer zu begründen. Man könnte
zum Beispiel die verschiedenen Bodenfeuchtemessungen zusammenrechnen und dann erst
auf die Schwere übertragen. Das könnte auch zu Modellen mit weniger Parametern führen.
In der Übertragung auf die Ereignisse in 2022 und 2023 zeigte sich, dass P7S, welches die
meisten Parameter verwendet, am schlechtesten übertragbar ist.
Zudem wären mehr als 33 Tage für die Berechnung der Parameter erstrebenswert, um eine
bessere Chance auf eine allgemeinere Gültigkeit der resultierenden Modelle zu erhalten.
Bei der Vorgehensweise wäre es in Zukunft außerdem gut, wenn die berechneten Modelle
häufig auf unabhängigen Epochen validiert werden, damit man direkt beurteilen kann, ob
man das Modell in die richtige Richtung entwickelt oder nicht.
Eine perfekte Übertragbarkeit eines datengetriebenen Modells ist aber ohnehin ein sehr
hoch gestecktes Ziel. Die Modelle funktionieren gut auf den Epochen, wo sie modelliert
wurden. Durch Hinzunahme von Bodenfeuchtedaten wird eine deutliche Verbesserung
der Übereinstimmung erreicht. Die verwendete iterative nicht-lineare Kleinste-Quadrate-
Ausgleichung scheint zur Bestimmung solcher Modelle gut geeignet zu sein. Mit einigen
der vorgeschlagenen Verbesserungen wie einem physikalisch realistischeren Modell sollten
dann auch Einsichten in Bereiche wie Geologie oder Grundwasserbeobachtung möglich
sein.
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1. Introduction

One of the main tasks of geodesy is determining the physical shape of the Earth, which
is realized by the measurement of its time-variable gravity field (Van Camp et al., 2017).
Gravity mainly consists of the gravitation of the Earth and the centrifugal acceleration
caused by its rotation (Van Camp et al., 2017). You can measure gravity by dropping a
mass in a vacuum and observing the time it takes to travel a determined distance; that is
the principle of a free-fall gravimeter (Van Camp et al., 2017). Other forms of gravimeters
are pendulum and spring gravimeters (Faller, 1967; Lacoste, 1934). For the latter one,
the basic principle is to measure the extension of a spring with a mass attached to its
end (Van Camp et al., 2017). A variation of this type is the superconducting gravimeter
(SG) (Van Camp et al., 2017). Instead of a mechanical spring as suspension, it uses a
very stable magnetic field (Goodkind, 1999). In this way, the SG reaches a precision that
is about two orders of magnitude better than that of a free-fall gravimeter (Van Camp
et al., 2017).

A relative gravimeter like the SG does not measure the absolute value of gravity but
rather its time differences (Van Camp et al., 2017). The recorded timeseries is the sum of
different gravitational signals. The largest are caused by the gravitational attraction of
the sun and the moon; these are the tides. Smaller effects arise because of highly variable
masses on the Earth or close to its surface, like ocean tides, the atmosphere, or soil water
(Van Camp et al., 2017). Another aspect is the change in position of the gravimeter in
response to tides (Earth tide) or atmospheric pressure. The centrifugal vector can change
due to Polar Motion or changes in Earth’s rotation speed (length of day tides) (Van Camp
et al., 2017). There are instrumental effects such as drift, outliers, or periods of lower-
quality data. These can be caused, for example, by problems with the cooling. Finally,
gravitational sources in Earth’s interior, like differences in groundwater or mass transport
in Earth’s mantle, can influence the gravity readings. The following equation summarizes
the signals that compose the observations (Hinderer et al., 2007):

g(obs.) = g(disturb.)+g(tides)+g(atm.)+g(Polar Mot.)+g(LOD Tide)+g(drift)+g(hydro)+g(other). (1.1)
g(obs.) is the signal that is observed by the SG. g(disturb.) are disturbances in the data that
have instrumental or environmental causes, like earthquakes. g(tides) includes the gravita-
tional attractions of the different celestial bodies and the gravity effect of the Earth tides.
g(atm.) are the effects of mass changes in the atmosphere. An increased mass above the
gravimeter reduces the measured gravity because of its gravitational attraction. On the
other hand, it forces the ground down, which increases the experienced gravity at the SG.
A change in the rotation axis of the Earth relative to its surface causes a difference in the
angular distance between the position vector of the measurement site and the rotation
axis (Van Camp et al., 2017). This means the centrifugal acceleration due to the Earth’s
rotation is altered. These changes are captured in the term g(Polar Mot.). g(LOD Tide) is the
signal that is caused by changes in the centrifugal vector because of the changing rota-
tion speed of the Earth. Figure 1.1 shows how these signals may look. Superconducting
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1. Introduction

gravimeters have instrumental drifts of a few µGal/yr. g(drift) contains this drift. g(hydro)
is the main interest of this work. Water on top of and in the soil, as well as ground water,
has a gravitational effect on the gravimeter. g(other) comprises different phenomena like
glacial isostatic adjustment (GIA), slow earthquakes, or tectonics. In order to analyze the
timeseries for a smaller term like g(hydro), the larger signals first have to be understood
and precisely subtracted.

Figure 1.1.: The timeseries of tides, Pole tides, and LOD tides from a Synthetic Tides
timeseries over 2022. The computation of this timeseries will be explained in
detail in Section 4.2.

As the hydrological effect will only cause a very small part of the whole signal, it is difficult
to identify. An approximation with a Bouguer plate and rain measurements concludes
that the maximum amplitude of the signal will only be a few µGal (see Section 5.1) while
the observed gravity changes reach about 250 µGal. An additional difficulty is the hydro-
logical measurement itself. For other signals, the observation of the causative processes
is easier. For example, for the tides, the positions of the celestial bodies are well known
from astronomical catalogs, and the Earth tides can be surveyed by fixed GPS stations.
For hydrology, the exact water masses inside the soil are very complicated. A rain gauge
only measures precipitation at a single point and not throughout the region. These mea-
surements also cannot capture the speed of dissipation or the water running away. You
cannot know the water mass at more than a few metres of depth without a lot of effort in
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Introduction

installing the sensors and significantly altering the system. Because of these challenges,
the hydrological signal in gravity measurements is not well determined. In this work, I
will use hydrological and gravity measurements of the Black Forest Observatory (BFO) to
estimate this signal for that location. The hydrological measurements not only comprise
recordings of a rain gauge but also of six soil moisture stations that were newly deployed
in 2022. I will try to find a mathematical model for gravity that uses the hydrological
data and fits the SG data. This model will be called hydrological model during this thesis.
A good understanding of the hydrological signal in SG gravity series around the world
can lead to new insights into smaller parts of the measurements like geological processes,
oscillations of the Earth’s core (Rosat and Hinderer, 2011), observation of volcanic haz-
ards, and, perhaps most importantly, in an age where drinking water is becoming a sparse
resource, groundwater levels (Van Camp et al., 2017).

The first goal of this master thesis is to investigate the different steps of the gravity cor-
rections and find a good solution for them. These corrections are trying to accurately
subtract the other signals in (1.1) of the observed signal. The final gravity series should,
in the best possible way, reflect how gravity is hydrologically influenced. Then this time-
series of gravity residuals will be analysed in relation to the precipitation and soil moisture
measurements to build a mathematical model that explains the biggest part of the signal.
So far, BFO only uses the precipitation data in a rough model that is based on the phys-
ical view of a Bouguer plate and a fixed slow disappearance of the rain influence due to
dissipation (Schroth, 2013). In this thesis, I will develop a new approach that is mostly
data-driven and takes physical constraints less into account. Which kind of function can
best describe the gravity series? How well can the model explain the gravity measure-
ments? Is the usage of soil moisture data beneficial for the model, or is precipitation
sufficient? Which sensors should be used in the model? Is it always suitable to use as
many probes as possible? Do the adjusted parameters have any physical significance?
Can a model with parameters that change with soil moisture explain gravity better than
one with constant parameters? These are the questions that I will try to answer.
Chapter 2 gives a detailed description of the measurement principle of superconducting
gravimeters and of the SG at the BFO. Chapter 3 presents all the used data and the first
pre-processing steps for them. Chapter 4 details the different corrections that have to be
applied to the gravity series before any hydrological analysis can be done. For some steps,
like the subtraction of atmospheric influence and the elimination of unwanted oscillations,
different methods are compared. Chapter 5 first explains and evaluates the hydrological
model that was established by Schroth (2013). After that, I will try to improve the re-
sults of that baseline by building my own model. This is done by successively adding
soil moisture data to the adjustment while comparing different convolution kernels and
combinations of sensors. In the last section of that chapter, I will develop a model that
uses soil moisture-dependent parameters. Chapter 6 will compare different models that I
have built in the previous chapter over the 2022 data but also apply the models to new
data from 2023. I will try to quantify the improvement of my models over the baseline of
Schroth (2013) and decide which model is the best to use in the future. Chapter 7 will dis-
cuss the results that I have found and give an outlook on which parts of the pre-processing
and model development can be improved in the future.
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2. Superconducting Gravimeter

2.1. Physical principle

The SG is the instrument of choice for long-term continuous gravity measurements (Krause
et al., 2009). It is a spring-type gravimeter but without the actual spring (Goodkind,
1999). Therefore, it does not suffer from the wear of the spring and remains stable over
a long time (Hinderer et al., 2007).
Instead, the connection to the test mass is realised by a magnetic field (Hinderer et al.,
2007). The test mass is a hollow niobium sphere with a diameter of a few centimeters
(Hinderer et al., 2007). Niobium is, like most metals, a superconducting material (Peiniger
and Piel, 1985). That means at a certain critical temperature Tc, 9.2K in this case
(Peiniger and Piel, 1985), its electrical resistance suddenly drops to zero and its interior
becomes free of magnetic and electrical fields (Tinkham and Emery, 1996). If an exterior
magnetic field is applied to the superconductor below its critical temperature, as stated in
Faraday’s law, currents are induced on the surface of the sphere that compensate magnetic
flux in the interior of it (Hinderer et al., 2007). The two magnetic fields repel each other,
and therefore the superconducting sphere is forced upwards (Hinderer et al., 2007).

Figure 2.1.: Presentation of an SG sensor; the niobium sphere is in the middle; the three
coils are shown as well as the plates that measure the position of the sphere
(see Section 2.2); the magnetic field (red lines) is expelled from the interior
of the sphere (Hinderer et al., 2007)

This is exactly what happens in an SG: currents in two coils produce the magnetic field;
the niobium sphere, which is cooled to about 4K by liquid helium, is forced upwards
and starts to levitate (Van Camp et al., 2017). This upward force is the analogue of the
restoring force of the spring in a spring gravimeter (Schroth, 2013). As gravity changes,
the sphere will be forced up or down. The sphere will be kept in a stable position by
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2.2. Different parts in detail

changing the current in a third coil in response to the movement of the sphere (Goodkind,
1999). This needed current will be recorded as the observation quantity, and its changes
are related back to gravity changes (Forbriger and Heck, 2018). This calibration can be
done, for example, with measurements of absolute gravimeters at the same time (Forbriger
and Heck, 2018). Figure 2.1 depicts the layout of such a sensor with the niobium sphere
and the three coils.

2.2. Different parts in detail

The sphere is not the only part of the SG that is superconducting. Similarly, the coils that
are producing the main magnetic field for levitation are, so no continuous power is needed
for the production of the field (Goodkind, 1999). First, a heater raises the temperature
above the critical temperature of the coils (Goodkind, 1999). A current is applied to the
coils, and the heater is turned off (Goodkind, 1999). Once the temperature is below Tc

the current is trapped inside the coils (Hinderer et al., 2007).
That means the magnetic field from the levitating coils stays extremely stable over a long
time (Westerhaus et al., 2018). The control of the vertical position of the sphere therefore
requires an additional feedback coil (Goodkind, 1999).
By adjusting the ratio of the currents in the upper and lower coils, the restoring force
can be arbitrarily close to zero (Goodkind, 1999). That means that a very small change
in current causes a big displacement (Hinderer et al., 2007). That is one of the big
strengths of the SG, as tiny differences in gravity cause measurable displacements and
can be accurately corrected (Hinderer et al., 2007). A schematic depiction of the gravity
sensing unit can be seen in Figure 2.2.
The niobium sphere and the coils are cooled to a temperature of 4.2K with liquid helium
(Westerhaus et al., 2018). This is done with a Dewar, which is a multi-walled container,
for example, made of steel (Hinderer et al., 2007). Between the walls is a vacuum to
prevent heat exchange, and the inside is filled with liquid helium around the sensing unit
(Hinderer et al., 2007). There will still be some heat leak from the outside, and the helium
slowly evaporates (Goodkind, 1999). A refill of helium would interrupt the measurements,
so modern SGs are equipped with a cold head which condensates the helium again.
The position of the sphere is measured with a capacitance bridge (Goodkind, 1999).
There is about 1mm space between the sphere and the sphere-shaped plates of the bridge
(Hinderer et al., 2007). By the measurements of the bridge, the current of the feedback
coil will be adjusted so the sphere stays near the zero position (Goodkind, 1999). The
measured quantity is the voltage, which is proportional to the current in the feedback
coil (Forbriger and Heck, 2018). The data is acquired by high-quality digital voltmeters
that reach 7.5 decimal digits of resolution (Hinderer et al., 2007). The data is sampled at
higher frequencies, than which will later be analysed (Goodkind, 1999). At the BFO, this
is done at 20 kHz and then low-pass filtering and anti-aliasing are carried out to get rid of
instrumental events and, most importantly, marine microseism (personal communication
fromWalter Zürn). In the case of this work, the final product is recordings with a sampling
rate of 60 s.
A number of possible disturbances need to be controlled. The whole assembly of coils and
the sphere is placed inside a superconducting cylinder so that no external magnetic fields
influence the sphere (Hinderer et al., 2007). A mu-metal shielding outside of the vacuum
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2. Superconducting Gravimeter

Figure 2.2.: Layout of the gravity sensing unit of an SG; the additional feedback coil is
visible (Goodkind, 1999)

can further reduce the influence of Earth’s magnetic field (Goodkind, 1999). Temperature
is kept very stable at the mK level by the liquid helium, as small differences influence the
superconducting penetration depth (Goodkind, 1999). That is the thickness of the layer
where the currents in the sphere appear that compensate the magnetic field.
A tilt of the instrument would cause a movement of the levitation coils relative to the
sphere; therefore, the location of the sphere in the magnetic field changes, and this can
lead to a change in the levitating force (Hinderer et al., 2007). Tilt is usually controlled by
two tiltmeters in orthogonal axes that are situated on the vacuum can (Goodkind, 1999).
The readings of the tiltmeters are used to keep the instrument tilt stable by adjustment
of micrometer screws (Goodkind, 1999). The electronics of the SG can be influenced by
radio waves, so the whole assembly is placed inside a radio frequency shielding (Goodkind,
1999).

2.3. The SG-056 at the BFO

The Black Forest Observatory was founded in 1971 and since then is run by the Geophys-
ical Institute (GPI) of the Karlsruhe Institute of Technology and the Geodetic Institute
(GIS) of the University of Stuttgart (Zürn, 2014). It is located in the Heubach valley near
the village of Schiltach in the Middle Black Forest in Baden-Württemberg. The location
can be seen in Figure 2.3. The bedrock at Schiltach is made up of granite, and then closer
to the surface, the softer

”
Buntsandstein“ (Zürn, 2014).

The site was chosen in the 1960s because of its remoteness and stable ground (Zürn,
2014): In contrast to the much softer and wetter ground of the Rhine valley, the granite
bedrock of the Middle Black Forest ensures that the location of the instruments does not
move much in response to changing atmospheric pressure (personal communication from
Rudolf Widmer-Schnidrig). Such movement would not only disturb the precise magnetic
and seismic measurements that are carried out, but also the gravimetric measurements.
Vertical ground movement causes a gravity change of about 2 µGal/cm (Van Camp et al.,
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2.3. The SG-056 at the BFO

Figure 2.3.: The location of the BFO in western Baden-Württemberg (by Google Maps)

2017). The second big advantage is the surroundings. Being at the edge of a quiet valley,
there are few sources of human noise, like roads or construction sites (Westerhaus et al.,
2018).
Most of the instruments are set up in an old silver and cobalt mine, called the mine

”
An-

ton“ . The main tunnel is 700m long and has many side tunnels and vaults. It contains
the SG that is located about 500m inside the mountain and 100m below the surface
(Zürn, 2014). The gravimeter sits between two airlocks that are closed most of the time.
They provide a thermally extremely stable environment at close to 10 °C and prevent any
rapid pressure changes in the SG vault.
Other locations of the observatory include the laboratory hut. The outside pressure sen-
sor is on top of the lab, and the precipitation gauge is a few metres away from it in an
area clear of any trees or other obstructions. There is also the

”
amagnetic hut“ that is

about 200 metres up the mountain with an additional pressure sensor and a precise GNSS
antenna. Finally, six soil moisture stations were installed in the forest above the SG over
the year 2022.
The first gravimetric measurements were performed in 1973, and since 2009, the BFO
has owned a state-of-the-art dual-sphere superconducting gravimeter by GWR from San
Diego, California (Zürn, 2014). It is surrounded by a container that keeps the SG dry.
Two sensors have the advantage that instrumental issues can be identified more easily
and can give insights into the uncertainties of the measurements (Kroner et al., 2005).
The SG-056 is a special version as it not only has two spheres (niobium spheres of 2.54 cm
diameter, with a vertical offset of about 20 cm, both placed in the same Dewar) but these
have different masses at 17.7 g (G1, lower, about 32 cm above the ground) and the stan-
dard 4.34 g (G2, higher) (Forbriger and Heck, 2018; Zürn and Duffner, 2018). This was
done to see whether the sphere with the higher mass suffers from less noise due to Brow-
nian motion (Westerhaus et al., 2018). The Dewar is filled with liquid helium that keeps
the sensor temperature at 4.5K. A cold head reliquefies the evaporated helium. Another
special feature of the SG is that because of the stable ground, tilt correction is turned off
(Zürn, 2014).
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2. Superconducting Gravimeter

Figure 2.4.: The layout of the BFO (BFO, 2023); the important locations for this work are
highlighted in red. The soil moisture stations are marked by red rectangles.

Figure 2.5.: The superconducting gravimeter of the BFO. The blue container on the left
side is the Dewar. The silver cube on top is the cold head (Duffner et al.,
2018)
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2.3. The SG-056 at the BFO

An SG can reach an accuracy of 0.1 nm/s2 for noise at a 1min period (Van Camp et al.,
2017). The noise is believed to be mostly produced by Brownian motion and was observed
to be lower for the heavier sphere (Westerhaus et al., 2018). The sensors also experience
drifts of around 1-5 µGal/yr (Hinderer et al., 2007). They are different for the two sensors
and are believed to be caused by the ageing of the getters that are delivering the liquid
helium. This ageing causes a slow change in pressure inside the Dewar, and this might
be responsible for the observed drifts (personal communication from Walter Zürn).
Rosat and Hinderer (2011) compared thirty superconducting gravimeters over the world
and concluded that the heavier sphere of SG-056 showed the best noise levels over fre-
quencies larger than 0.1mHz; that equals a period of just under three hours. This speaks
for the favourable surroundings of the BFO location and also for the fact that raising the
mass of the sphere is beneficial to noise levels.

17



3. Data and case studies

Table 3.1 gives an overview of the data that were used in this study. All measurements
are from 2022. The main timeseries are the measurements of the two sensors of SG056,
G1-F60 and G2-F60 with a sampling rate of 60 s. The other important ones are tunnel
pressure (p) and outside pressure that are used for atmospheric correction; the precipita-
tion (prec) gauge and the six soil moisture (sm) stations are used for the main model to
study the hydrological influence on the gravity readings. The stations record soil moisture
with one or two probes, as well as temperature at each probe. Additionally, a timeseries of
synthetic tides with a sampling rate of 60 s is available for this most important correction
(see Chapter 4). The acquisition and provision of the gravimeter and the precipitation
gauge were done by the staff of the BFO (Black Forest Observatory (BFO), 1971).

Table 3.1.: Available data recorded at the BFO

quantity name time window sampling rate remarks; height [m]

gravity SG056 01.01.-20.12. 1min 2 sensors; 589
p tunnel Br1-F60 01.01.-20.12. 1min 590
p outside Br2-F60 01.01.-20.12. 1min data outage; 591
precipitation DL1 01.01.-20.12. 1min 590
soil moisture Solidus 1 24.01.-31.12. ca. 10min 2 probes, SMT100; 710
soil moisture Solidus 2 30.04.-31.12. ca. 10min 2 probes, SMT100; 705
soil moisture Solidus 3 30.04.-31.12. ca. 10min 2 probes, SMT100; 660
soil moisture Solidus 5 26.07.-31.12. ca. 10min 2 probes, IMKO; 760
soil moisture Solidus 6 ... ca. 10min unusable; 660
soil moisture TTGOPICO4 14.03.-31.12. ca. 6min 1 probe, IMKO

In this chapter, the data that are used for the hydrological model are presented in more
detail, namely precipitation, soil moisture, and gravity. The first pre-processing steps
with these timeseries will be explained as well.

3.1. Precipitation

The precipitation gauge is a few metres west of the laboratory hut (see Figure 2.4). Figure
3.1 shows a photo of the gauge. The horizontal distance to the SG is about 400m. It is
a gauge of the tipping bucket style. A small bucket is emptied after 0.1mm of rain has
fallen, and a logger records how often emptying happens. This yields a count of tippings
for every minute over the 365 days. There are no data gaps in the 365 × 1440 epochs, but
it is possible that the logger has not picked up tippings at times and just wrote 0 there.
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3.1. Precipitation

Because there are a lot of epochs with a count of 0 when there was no significant rain, it
is almost impossible to find out whether such data outages occurred.

Figure 3.1.: BFO rain gauge, from the direction of the laboratory hut, looking west; own
picture, taken in January 2023

Looking at the counts for every minute (Figure 3.2) shows how much the precipitation
rate varies. The rain events are difficult to distinguish, except for some heavy rains. In
summer, there are a few strong maximums, while in winter, periods of constant light rain
can be seen.

Figure 3.2.: The minute data of precipitation
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3. Data and case studies

A better picture of the volume of fallen rain can be seen when the counts are summed
over a period of time, for example, an hour, which gives hourly precipitation (Figure 3.3).
This summing shows that significant rain events or periods occur quite frequently over
the whole year, although there are also some dry periods, like in July and, surprisingly,
in March and December.

Figure 3.3.: Hourly precipitation in 2022 over BFO

The most rain recorded in one hour was 19.7mm on the 31st of August, between 0 a.m.
and 1 a.m. This corresponds to the lowest warning of heavy rain by the Deutsche Wet-
terdienst (15-25 L/m2), so none of the 60-minute sums are implausible (Deutscher Wet-
terdienst, 2023).

Figure 3.4.: Daily precipitation in 2022 over BFO
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3.2. Soil moisture

Summing over a whole day (Figure 3.4) shows that the rain volumes in winter and autumn
can be even higher than in summer, despite the lower rain intensity. The day with the
biggest amount of precipitation is January 4th with 44.5mm. At that early stage of
the year, there were no soil moisture sensors in operation (see Section 3.2). The highest
precipitation volume when soil moisture data is available is the 2nd of October with
38.4mm. This graphic will be the basis for choosing the rain events that will be analysed
later in this work (see 3.3).

3.2. Soil moisture

Over the year 2022, a total of six soil moisture stations were installed at the forest surface.
Good coverage was reached from May onwards. Their positions can be seen in Figure
3.5. The gravimeter lies between the stations Solidus #1 and #2 in the west and Solidus
#5 in the east; there is no sensor directly above it. In late 2023, the additional station
Solidus #8 was installed near the position of the SG. Its data will be beneficial for future
analyses.

Figure 3.5.: Map of the different soil moisture stations relative to the main tunnel of the
mine and the SG; Map by OpenStreetMap (SMBFO, 2023)

The Solidus stations consist of two probes, each at depths of 30 and 50 cm. They are
connected by cable to a transmitter that sends the measurements back to the laboratory
hut. The undulating terrain and obstructions from trees might explain some of the data
outages that occur frequently (see Figure 3.6). The TTGO PICO stations have a different
data acquisition system that allows only one sensor. That sensor is located 50 cm deep.
The soil moisture measurements (Figure 3.6) cannot be used directly because, apart from
data gaps, there are a lot of epochs with values at zero percent and others with impossible
high values. Therefore, a detailed outlier filtering had to be carried out first.
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3. Data and case studies

Figure 3.6.: Soil moisture readings of Solidus #1, probe 0 before any outlier filtering

The outlier filtering is done with an own function that flags outliers by finding values that
are unreasonably high or low or that have too large a derivative since the last non-outlier.
The derivative is considered too large if it exceeds 0.3%⋅number of epochs since last non-outlier.
The interval of acceptable values was manually chosen for each sensor. For example, for
the sensors of Solidus #1 only values between 2% and 20% will be used. After this
flagging, the outlier epochs are interpolated linearly unless the gap without good data is
more than 24 hours. In this case, a data gap is left. Figure 3.7 shows the soil moisture
timeseries for the two sensors of Solidus #1 after filtering.

Figure 3.7.: Soil moisture readings of Solidus #1, both probes after outlier filtering

The same outlier filtering function, with different values that are considered reasonable,
can be used to filter the temperature timeseries that suffer from similar problems, like
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3.2. Soil moisture

the moisture data. Figure 3.8 shows the filtered temperature timeseries of the sensors of
Solidus #1. In this case, all points outside of a 0.8 °C - 21 °C interval are discarded, while
the limit for the maximum slope remains unchanged. The resulting series (e.g., Figure
3.8) can give a strong clue as to which probe of the two is higher by looking at the daily
temperature interval.

Figure 3.8.: Section of temperature timeseries of both probes of Solidus #1

Probe 0 shows a clearly larger daily variation and therefore must be closer to the surface.
I assigned the depths in Figures 3.7 and 3.8 by these considerations and the information
in SMBFO (2023). The same comparison can be done for the other stations that have
two probes (see Table 3.2).

Station probes time window number of epochs sampling rate

Solidus #1 2, probe 0 higher 24.01.–31.12. 56316 (∼54200 valid) 9.0min
Solidus #2 2, probe 1 higher 30.04.–31.12. 31118 (∼29000 valid) 12.2min
Solidus #3 2, probe 1 higher 30.04.–31.12. 32181 (∼30300 valid) 11.7min
Solidus #5 2 (mostly only 1) 26.07.–31.12. 14862 (∼14000 valid) 16.3min

not above each other

Solidus #6 2 (one not working) 28.07.–31.12. 603 (∼200 valid) 1211min
TTGOP.4 1 14.03.–31.12. 50055 (∼49800 valid) 8.5min

Table 3.2.: Overview of the soil moisture stations, data from 2022

A few of the stations are not used for further analyses. Solidus #6 has very few usable
epochs. The epochs are too infrequent for any meaningful hydrological insights. Solidus
#5 only has one probe for the biggest part of the year. Also, the data is more infrequent
than for the other stations, and there is a big data gap in November. The seven timeseries
of the probes of Solidus 1-3 and TTGOPICO4 will therefore be part of the hydrological
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3. Data and case studies

Figure 3.9.: Soil moisture data from all used stations after outlier filtering

analysis.
Figure 3.9 provides an overview of all the soil moisture timeseries that are used. As
expected, the curves show similar trends, with simultaneous peaks after a rain and then
a slow drop. The seasonal trend of drier soil in summer is also visible in all timeseries.
All the probes have quite different levels of soil moisture; at Solidus 3, there is even a
significant gap between the two probes, even though they are directly above each other.
The magnitude of the peaks also varies. While Solidus 3, 45 cm shows strong variations,
they are much smaller for TTGOPICO4.
Figure 3.10 gives a different overview of the measurements. It plots the measurements of
the higher probe of Solidus 1 against the recordings of the other sensors that are captured
simultaneously. For this, the seven timeseries were interpolated on the same time grid
with a 60 s sampling rate. You can see that TTGOPICO 4 has the highest values but
the lowest amplitude in the recordings. The other probes are all of the SMT100 type and
seem to have similar amplitudes in their data. I use a probe of 25 cm as a reference on
the x-axis, and it can be seen that the other two higher probes of Solidus 2 and 3 both
show a stronger correlation with the reference timeseries. This means these point clouds
are closer to a straight line and do not have a big spread in the y-direction. The lower
probe of Solidus 1 is also strongly correlated, which is what you expect as the sensors are
only 25 cm apart. The two lower probes of Solidus 2 and 3 are not so close to a straight
line, so the correlation is lower. This is probably because the lower probes have a delayed
reaction to rain. The lower probe of Solidus 3 has the lowest correlation with the reference
timeseries. That makes sense, as it is both deeper in the soil and horizontally far away
from the sensor.
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3.2. Soil moisture

Figure 3.10.: Soil moisture data from the higher probe of Solidus 1 plotted against the
measurements of the other six probes
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3.3. Gravity

Figure 3.11.: Gravity readings of SG056 before any corrections

The gravity data are two timeseries for the two sensors at a sampling rate of 60 seconds.
Because the instrument is a superconducting gravimeter, the readings are relative values
and mean nothing by themselves. Rather, the course of the measurements of one sensor
can be analysed.
Figure 3.11 shows the gravity series after multiplication with the given calibration factors
for both sensors.
The gap between both sensors stays very constant. Only one big outlier in G1-F60 is
visible in September. The pattern is a typical tide signal. Before any hydrological analysis
can be done, the tide subtraction is the first of a number of corrections that have to be
carried out. These corrections are detailed in Chapter 4.

3.4. Selected events for analysis

Between May 30th and November 29th, there are no longer data gaps for any of the seven
probes that were chosen for the analyses (see Figure 3.9). In this portion of the year, I
searched the precipitation timeseries for days with significant amounts of rain. I identified
eleven rain days or rain events. During these events, you can be more confident that a
large part of the gravity signal after the described corrections of Chapter 4 will be caused
by soil water. Therefore, these eleven events, each with a window of three days, will be
used for the later adjustments. Table 3.3 summarizes the eleven events.
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3.4. Selected events for analysis

Table 3.3.: Rain events in 2022 with soil moisture data from Solidus #1, probe 1. The
soil moisture value before the event is an average value in the last hour before
the rain starts.

date sm before [%] sm max [%] prec [mm/d]
June 23rd 5.33 5.39 15.9
August 1st 3.54 3.55 4.4
August 26th 2.31 2.31 13.8
August 31st 2.3 3.31 36.6

September 14th 3.91 4.62 19.3
September 27th 4.87 6.7 28.9
October 2nd 6.32 9.82 38.4
October 14th 5.29 12.27 32.9
October 21st 5.89 9.12 30.1
November 9th 6.6 11.74 14.4
November 18th 6.31 13.41 17.1

October 2nd has the highest amount of precipitation. This event will be mostly used as a
visual demonstration of the different correction models (see top left of Figure 3.13). The
adjustments and the compared metrics, like the mean correlation coefficient, use the data
from all eleven events, though.
The following two graphics show the gravity residuals and the precipitation and soil
moisture measurements over these events. For two of the events, namely the August 1st
and 26th rains, there is no increase in the soil moisture measurement of the depicted
probe of Solidus 1. This is similar to the recordings of the other sensors. The two events
have a relatively low amount of water, and as it is falling in a short period of time on
the dry soil of late summer, the soil moisture shows no reaction. This observation means
that you cannot expect too much from a gravity model for these events, as the model can
only use information from the precipitation gauge. This will also negatively influence the
overall result of the eleven events.
The gravity residual is my estimation of g(hydro). When it rains, you expect the value to
decrease, and after the rain has stopped, it should slowly rebound. This is mostly what
can be seen in the gravity series, although there are sections like the fast gravity increase
on June 23rd that do not seem to be related to rain. In the next chapter, it will be
discussed how to calculate these residuals from the gravity measurements. The presented
timeseries of gravity residuals in the two graphics are the final results of this chapter.
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Figure 3.12.: Gravity residuals, soil moisture readings, and precipitation measurements
over the first six events. The gravity residuals were calculated with the
corrections of Chapter 4. For clarity, only one of the gravity sensors (the
lower one) and one soil moisture probe (Solidus 1, 25 cm) are depicted.
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3.4. Selected events for analysis

Figure 3.13.: Gravity residuals, soil moisture readings, and precipitation measurements
over the final five events. The gravity residuals were calculated with the
corrections of Chapter 4. Only one of the gravity sensors (the lower one)
and one soil moisture probe (Solidus 1, 25 cm) are depicted.
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4. Calculating the gravity residuals

This chapter describes how I get from the raw SG measurements (Figure 3.11) to a signal
that can be further used for hydrological analysis. There are much larger mass transports
in the environment of the gravimeter than water on top of or in the soil, which can be
sensed by the gravimeter. These signals first need to be accurately subtracted. Section
4.1 deals with getting rid of large outliers. In Section 4.2 the tidal impact is corrected,
which is followed by the atmospheric influence (4.3), a subtraction of residual oscillations
(4.4), the removal of drift (4.5) and a final outlier filtering in both timeseries (4.6).

4.1. Outliers

The first step in processing the gravity data is to identify outliers and eliminate them.
In this work, an outlier is a gravity measurement that has a sudden jump from previ-
ous measurements. The magnitude of this jump can range from about 1 µGal to over
100µGal. Such a fast change will have no hydrological cause and therefore needs to be
removed before a hydrological analysis. The most likely cause of big jumps in the data are
earthquakes. The vibrations in the ground transfer to the gravimeter, and in the worst-
case scenario, the niobium sphere touches one of the plates of the capacitance bridge,
rendering a few epochs completely useless (personal communication from Walter Zürn).
Even if that is not the case, it is easy to imagine that the feedback coil tries to hold the
sphere in the center while the ground vibrates, and so the vibrations will be interpreted
as gravity changes.
An outlier elimination can be done after the correction of tides (see for that correction
Section 4.2) as that step will reveal outliers more clearly, but with a different approach
that I am using, outliers can be detected immediately.
The method takes advantage of the fact that there are two sensors, which, apart from
an offset and a small drift, should have almost identical timeseries. So if the difference
between the sensors changes suddenly, there is an outlier in at least one of the sensors.
The written function flags certain epochs as outliers when the difference between the two
sensors is more than three standard deviations different from the median in a sliding
two-hour window around the epoch. Afterwards, for all these epochs, both timeseries are
linearly interpolated between the non-outliers, as the method does not determine which
sensor has the outlier.
Figure 4.1 shows the results of the removal. As intended, the sudden big or small values
in the difference disappear. What remains is almost a straight line that represents the dif-
ferent drift rates of both sensors. There are two notable departures from this in May and
August. Both are instrumental issues that were registered at BFO. In May, a lightning
strike caused the failure of different components. This also affected the connection to the
outside pressure sensor (see Section 4.3). In August, there was an issue with the power
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4.1. Outliers

Figure 4.1.: Difference between timeseries of both sensors before and after outlier removal

supply of the cryogenic cooling system (personal communication from Thomas Forbriger).
So the readings in these two sections have to be analysed with caution.

Figure 4.2.: Gravity measurements of both sensors on the afternoon of September 19th
when a magnitude 7.7 MW struck Mexico

The biggest jump in Figure 4.1 before the outlier removal is one at the end of September
with an amplitude of nearly −200 µGal. This is the same outlier that was visible in the
gravity timeseries over the year (see Figure 3.11) in G1-F60. Contrary to what it looked
like so far, this is not one single outlier but an episode of about one hour. The episode
happened on September 19th. Figure 4.2 shows the measurements of the two sensors.
The first epoch that is flagged as an outlier is at 18:42, although the first signs of unrest
start at 18:17. On that afternoon at 18:05 UTC the 2022 Michoacán earthquake with a
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4. Calculating the gravity residuals

magnitude of 7.7 MW happened. The epicenter was in Mexico (GEOFON GFZ Potsdam,
2023a). This explains the large jumps in both sensors that evening.

4.2. Tides

The first component that has to be subtracted is the tidal signal. The masses of the
sun, the moon, and other celestial bodies exert a strong gravitational pull on the spheres.
Additionally, there is a solid Earth component that is caused by the change in the position
of the gravimeter in the Earth-fixed system because the ground reacts to the gravitational
pulls and so moves up or down (Van Camp et al., 2017). While the direct gravitational
influence can be computed very precisely from the positions of the bodies at a given time,
the solid Earth part is not so straightforward; the response of the Earth is a complex
process and cannot be completely predicted. Rather, from previous gravity timeseries
gravimetric factors and phase lags for different wave groups are estimated. They represent
the movement of the Earth in response to the tidal forcing and secondary effects like ocean
load (Hinderer et al., 2007). These estimations may not be perfect for a given day in 2022,
though.

Figure 4.3.: Gravity timeseries of both sensors before and after the correction of tides; the
synthetic tides that were used for correction are in the middle

As the tides are not the central interest of this work, I use a timeseries with parameters
from a tidal analysis that was done by Eva Schroth. She used data from the SG056 and
the program ETERNA 3.4 analyze for this analysis (Wenzel, 1998). This synthetic tides
series also includes components for the influence of Pole tides and Length of Day tides
(see Section 1). The gravity timeseries before and after tide correction can be seen in
Figure 4.3.
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4.3. Atmosphere

The resulting timeseries has a smaller magnitude by a factor of more than 10 and shows
no obvious oscillations like the raw signal.

4.3. Atmosphere

The second important correction is the atmospheric pressure. A higher pressure means
there is an air column with more mass above the gravimeter. This mass has a gravitational
effect on the gravimeter, and this effect needs to be subtracted from the signal. There is
also a secondary effect: the higher pressure pushes down the ground and therefore changes
the position of the gravimeter and so the measured gravity. While added gravitational
pull decreases the gravity value, a lower position of the gravimeter causes an increase. The
former effect will be stronger though, so higher pressure reduces the experienced gravity
(Van Camp et al., 2017).
The model to correct the atmospheric influence will be a simple factor by which the
pressure, which was measured by the pressure sensor on top of the laboratory hut, is
multiplied. This product is then subtracted from the gravity timeseries. This model only
roughly corrects the influence of the pressure as it ignores the frequency of the change.
This does play an important role though, as the Earth does not respond as strongly to
fast pressure oscillations, so the position-induced gravity change is reduced (see (Hinderer
et al., 2007)). There are also inertial forces in the sphere to mind. Nonetheless, a factor
of −0.34 µGal/hPa has previously shown to be a decent value for correcting most of the
pressure influence and will be used in the beginning (Zürn, 2014).
The pressure data from the outside sensor has some major data gaps in May (Figure 4.4)
which were caused by a storm that cut the connection between the sensor and the SG,
which usually records both inside (tunnel) and outside pressure. These measurements are
therefore lost and cannot be used for corrections.

Figure 4.4.: The atmospheric pressure, recorded outside, on top of the laboratory hut; the
data outages in May are visible
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4. Calculating the gravity residuals

Figure 4.5.: Comparison between inside and outside pressure for the epochs where the
outside pressure is valid; color is the point density; the bright yellow areas
have the highest density

Figure 4.6.: Gravity timeseries of both sensors before and after the correction of atmo-
spheric pressure with the factor of −0.34 µGal/hPa; in the middle is the time-
series of the tunnel pressure

The main analysis will be done with rain events between June and December (see Chapter
5) as this is when the soil moisture data were available. These gaps are therefore not a
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problem when building the hydrological model. Still, I searched for an alternative way to
fill them. I use the inside pressure recordings as they have a correlation of 0.993 with the
outside pressure for the epochs with usable outside measurements (Figure 4.5). Whenever
outside pressure is available, it is used for the correction.
Figure 4.6 compares the gravity series before this correction with the pressure measure-
ments over the year. The rough anti-proportional connection between them, at least on
a short (a few days to weeks) period is visible and the resulting gravity timeseries has
greatly reduced variations.
But is −0.34 µGal/hPa a proper factor for our purposes? The factor f can be determined
by a linear adjustment of the following equation:

fδp = δg. (4.1)

Here, δp are the reduced pressure measurements, which means the mean is subtracted,
and δg are the reduced gravity measurements after the correction of tides. Both are
vectors with a length equal to the number of epochs. The estimation is then done in the
usual manner by the formula

f̂ = (δpT δp)−1δpT δg. (4.2)

This can either be done with the whole timeseries or with shorter windows that are moved
through the year and then averaging of the found results for f̂ . The result of the latter
method will represent the short-term response of gravity, depending on the length of the
window. It is not influenced by any low-frequency changes in pressure. The downside
is that fewer data points have the danger of producing unrealistic results if only a few
points are unexpectedly high or low, for example, in a rain event. This can be mitigated,
though, by the averaging at the end.
An example of how the estimation for f can be thrown off is given in Figure 4.7. There
are a number of points with a δp of just over 0 and a δg quite significantly below 0. The
adjustment searches for a straight line through the origin that has a minimal distance
from all the points in the window. These low data points will skew the slope of the
straight line to a very big negative value.

Figure 4.7.: One section of pressure and gravity data; these will produce an unrealistic
value for f
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Figure 4.8.: Probability density function (left) and cumulative density function (right) of

the adjusted values f̂ . A window of six hours length was moved over the year.
It was repeatedly pushed one minute further. The results of the data from
G2-F60 are depicted.

A window length of 6 hours produces reasonable results in terms of outliers and still cap-
tures the short-period response of the gravity signal. The described adjustment is carried
out with 6 ⋅ 60 epochs, and then the window is pushed one minute further. To reduce
the problem of outliers, the points are given a weight. This weight is the absolute value
of δp. It was seen in the last paragraph that points with a small δp can be problematic.
That is why they get a smaller weight. This weighting mitigates the described problem
but does not solve it. In the end, the average as well as the median of f̂ are computed.
The latter is less influenced by outliers.
Figure 4.8 shows the distribution of results for f in this series of adjustments. The
large number of unrealistic values can be seen. The majority of values are around
−0.3 µGal/hPa, but around 18% of values end up over 0µGal/hPa or below
−0.7 µGal/hPa. For sensor 1 of the SG, the mean value for f is −0.3363 µGal/hPa
with the median at −0.3310µGal/hPa; when carrying out the same adjustments with
the gravity measurements of sensor 2, the results are very similar at −0.3364 µGal/hPa
and −0.3319µGal/hPa respectively. These results suggest that the provided value of
−0.34 µGal/hPa is reasonable. When choosing shorter time windows, the results tend to
be even closer to −0.34 µGal/hPa or below it.
There are different ways to look at it, though. Running the adjustment in (4.1) for the
whole year leads to very different values. For sensor 1, the adjustment finds a value of
−0.2460µGal/hPa (see Figure 4.9) and −0.2468µGal/hPa for sensor 2. Further analy-
ses also yield arguments for these values: I am doing a one-dimensional grid search by
carrying out the correction of atmospheric influence with different values of f between
0 µGal/hPa and −0.35 µGal/hPa with steps of 0.01 µGal/hPa between them. The atmo-
spheric correction should reduce the variations in the timeseries. The standard deviation
of the different timeseries over the whole year is analysed, and a minimum shows at
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Figure 4.9.: The reduced pressure readings and gravity values of G1-F60, after the correc-
tion of tides and a removal of drift, over the year, plotted against each other.
The colour is the point density, with yellow areas having the highest density.

−0.25 µGal/hPa (Figure 4.10). The standard deviation was a full 10% better than the
value with −0.34 µGal/hPa. Another metric that can be looked at is the correlation with
the pressure timeseries. After the correction, the gravity timeseries should not have any
remaining connection with the pressure, so the correlation should be close to 0. Com-
puting this correlation over the year, I find the zero point between −0.24 µGal/hPa and
−0.25 µGal/hPa (Figure 4.11). The timeseries with −0.34 µGal/hPa shows a correlation
with the pressure of nearly 40%.

Figure 4.10.: Standard deviation over the whole year of the resulting gravity timeseries
that were corrected with different values of f
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Figure 4.11.: Correlation over the whole year with outside pressure of the gravity time-
series that were corrected with different values of f

Figure 4.12 shows the disadvantages of a correction with f = −0.34µGal/hPa. It shows the
resulting gravity series after pressure correction with −0.34 µGal/hPa and −0.25 µGal/hPa
in January alongside the measured outside pressure. The upper graph clearly shows a
correlation with pressure. In fact, it is as high as 0.84. The gravity series with the
modified factor has a negligibly small correlation of −0.12.

Figure 4.12.: The gravity timeseries over January after correction with two different val-
ues of f , with the pressure timeseries in between them; linear trends were
subtracted from all gravity series to show the correlations more clearly
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When analysing a longer timeseries of one or more months, the −0.34 µGal/hPa correction
is not ideal. The short-term analysis does show the merits of that factor, though. Some
fast pressure peaks, like the negative one on January 9th (Figure 4.12) translate as an
inverse peak in the −0.25 µGal/hPa corrected gravity series.
One common method when analysing the gravity series of a time window of a few days is
to carry out a least squares adjustment to estimate f for just the few days of the analysis.
I would advise against this approach based on our data. Figure 4.13 compares the gravity
residuals and the atmospheric pressure over the October 2nd event. It illustrates the
problem of adjusting an atmospheric factor for such a time window: There is a natural
anti-correlation between gravity and pressure. Before a rain happens, gravity is higher as
the soil is still dry. Leading up to a rain, the pressure also decreases due to meteorological
reasons. As the rain has passed and the weather gets friendlier, the pressure also climbs
while the gravity takes a minimum at the end of the rain because of the wetter soil.
Figure 4.14 shows another example of the falling pressure ahead of a rain. This common
pattern has also been described by Krause et al. (2009). For the three depicted days, an
adjustment would lead to a value of nearly −0.48 µGal/hPa which is unreasonable and
makes the gravity series really flat. Therefore, it is better to use longer data series of at
least a month to estimate f so that this anti-correlation does not create a bias in f .
Figure 4.13 also illustrates the uncertainty in this atmospheric correction. As the rain
and the pressure changes generally occur together, you cannot be sure how much of the
gravity signal is caused by the atmosphere and how much by soil moisture. Using a
different factor in the pre-processing will also lead to vastly different hydrological models
that are computed.

Figure 4.13.: The gravity residuals after correcting the atmospheric pressure with f =
−0.34µGal/hPa and the outside pressure over the October 2nd event

Because of the high uncertainty in the short-period adjustments of f (Figure 4.8) and
because the −0.25 µGal/hPa correction produces visually quite reasonable results (see end
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4. Calculating the gravity residuals

Figure 4.14.: The gravity residuals with f = −0.34µGal/hPa and the outside pressure over
the June 23rd event. The rain happens on the evening of the 23rd

of chapter), I decide to use the result of the full-year adjustment of −0.246 µGal/hPa
(Figure 4.9). Some of the high-frequency pressure will not be perfectly corrected by this,
though. Hinderer et al. (2007) has a detailed analysis of the higher atmospheric factor for
higher frequency changes. So really, a frequency-dependent factor, as suggested by them,
needs to be aimed for in the future.

4.4. Remaining tidal signals

After correcting the atmospheric influence on the gravity series with the value of
−0.246µGal/hPa, even smaller signals become visible. Looking at the timeseries over
a smaller time scalem like a month, shows clear, small oscillations with periods of about
half a day. The oscillations look very similar to tides. When laying the synthetic tides
over the timeseries (Figure 4.15) you can see that the timings of the maxima and minima
of both timeseries are almost matched. It seems that the gravity signal sometimes has
a small delay of about one or two hours, as was highlighted in Figure 4.15. This could
suggest that there are some errors in the phase lags of the response of the solid Earth to
tides. Because of the binding forces in the Earth and inertia, the Earth does not respond
instantly to tidal forcing but has different delays depending on the frequency of the forc-
ing. These phase lags have been estimated for the synthetic tides, but these estimations
used data from previous years and not 2022. These phase lags change over time because
of loading tides (Schroth, 2013). These are load changes of the ocean or the atmosphere
that are caused by tidal forcing.
These imperfect gravimetric factors and phase delays are probably the cause of the ob-
served oscillations.
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4.4. Remaining tidal signals

Figure 4.15.: The gravity timeseries of sensor 1 after correction of atmospheric pressure,
with the synthetic tides plotted above it

As a first possible strategy to get rid of these unwanted oscillations, I take the main tidal
frequencies, fit a wave with these frequencies to the timeseries, and subtract them. If
only a handful of frequencies are fitted, than it is likely that only the unwanted tidal
remains are eliminated and not any hydrological signal is destroyed. The four main tidal
components, namely the periods of 1 solar day, 1 lunar day (24 hours and 50 minutes),
half a solar day, and half a lunar day, are chosen for elimination.
The problem can be adjusted linearly, despite the fact that intuitively, an amplitude and
a phase need to be adjusted for every frequency. The oscillation equation can be rewritten
in this way:

g(t) =
4

∑
i=1

(ai sin(fit + ϕi)) + c0 + e(t) =
4

∑
i=1

(si sin(fit) + ci cos(fit)) + c0 + e(t). (4.3)

e are again the residuals or inconsistencies. This e is the signal that remains after the
subtraction of these oscillations. c0 is an offset that is generally the mean value of g.
fi are the four subtracted frequencies; ai, si and ci are real-valued amplitudes; and ϕi is
a phase shift between 0 and 2π. This phase shift is the reason why the left side of the
equation cannot be adjusted with linear least-squares; but because of this identity, you
can just estimate si and ci, and so the adjustment can be done linearly after all. The
parametric model for the adjustment is thus:

g(t) = (sin(f1t) cos(f1t) sin(f2t) ⋯)
⎛
⎜⎜⎜
⎝

s1
c1
s2
⋯

⎞
⎟⎟⎟
⎠
+ e(t). (4.4)

This equation has m rows as it includes all the observation epochs. The adjustment is
carried out as described in Section A.2. All the epochs are assumed to have the same
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precision, so no weighting matrix P is needed. This general concept is called Least-Squares
Spectral Analysis (LSSA) (Craymer, 1998).

Figure 4.16.: Comparison of the gravity residuals and the fitted oscillations over 10 days
in January; the estimation of the amplitudes was done for the whole year,
not just these 10 days

Figure 4.16 shows that the adjustment finds a reasonable fit, and in Figure 4.17 it can be
seen that the oscillations in the signal significantly decrease. The standard deviation of the
signal over the month of January slightly decreases with this correction, from 0.5165 µGal
to 0.5153µGal.

Figure 4.17.: Comparison of the gravity residuals before and after subtracting the oscilla-
tions over a few days in January

A few oscillations, for example, between January 11th and January 15th, remain though,
and I found no explanation in the soil moisture data for them. A frequency analysis of
the corrected signal (Figure 4.18) shows that only a small part of the frequencies have
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been removed. For example, the power for the frequency of 1 cpd is exactly 0 after LSSA.
But there was an even higher peak at 1.003 cpd that is not altered by LSSA at all. To
get rid of all these peaks with an LSSA would require the elimination of at least 20-
30 frequencies. Removing so many frequencies would entail the risk of destroying some
hydrological signal. Therefore, I will explore an entirely different approach and compare
its results with the previously presented LSSA.

Figure 4.18.: Lomb-scargle periodograms of the signal with and without LSSA for the
whole year

For the second approach to eliminating the oscillations, I return to the original observa-
tion: the oscillations are slightly delayed from the tides. How large is this delay?
This can be computed by doing a cross-correlation between the gravity signal and the
synthetic tides. That is done by shifting the gravity series forward and backward by
different amounts and computing the correlation coefficient with the tides. Figure 4.19
shows the results of this cross-correlation over January. The correlation for the unshifted
signal is about 0.15. It takes a maximum at a positive shift of 87 minutes at a little over
0.17. A correlation of under 0.2 might not seem significant, but it is a correlation over a
long time period, and the tides are very periodic. It is not expected that g(hydro) should
have such a periodic character. So it is desired that the correlation between tides and
gravity residuals be a lot closer to zero.
The cross-correlation has shown that the observed oscillations have a delay from the tide
signal of just under one and a half hours. This delay is not constant, which is not sur-
prising as it was said that the phase lags of the wave groups are time-dependent. For
February, the delay increases to 93 minutes, and if the cross-correlation is carried out for
the full year (Figure 4.20) the result is 113 minutes.
If there is a strong correlation between the gravity signal and the tides at a certain delay,
then the tide signal, delayed by the found amount of time, could be subtracted from the
gravity series after estimating an amplitude by a least-squares adjustment. The adjust-
ment is:

g(t) = gst(t +∆t) ⋅ at + e(t). (4.5)

gst is the timeseries of the synthetic tides, ∆t is the found delay of the gravity residuals
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relative to the tides, and at is the amplitude that is estimated. I will call this method
Delayed Tides Adjustment (DTA).

Figure 4.19.: Cross correlation between the synthetic tides and the gravity residuals after
atmospheric correction; a positive value corresponds to a positive delay of
gravity to the tides; the highest correlation value was highlighted

Figure 4.20.: Cross correlation between the synthetic tides and the gravity residuals after
atmospheric correction for the full year

As was seen, the exact value of the delay is not clear; there are many choices. If the delay
that was found for January (87 minutes) is used and the adjustment of (4.5) is carried out
with just the epochs of January, there are some promising results: The standard deviation
of the resulting signal has a much stronger reduction than with the method of frequency
fitting; the value falls to 0.5083µGal. If the timeseries is corrected over the whole year
with this delay and amplitude, the std actually shows a significant worsening relative to
before the correction (see Table 4.1). So the results of January cannot just be applied to

44



4.4. Remaining tidal signals

the full year.
Rather, a full adjustment with the data and the found delay (113 minutes) of the whole
year is necessary. Carrying this out shows the desired results. The std for January is, as
expected, not quite as good as when only the data from January was used, but the value
of 0.5094µGal is at least not too far off the January result. The std over the whole year
shows at least some improvement over LSSA. The full results are listed in Table 4.1.
Figure 4.21 shows the fitted signal over 10 days in January. The resulting gravity series
can be seen in Figure 4.22 next to the LSSA corrected timeseries. The correction is not
perfect, but some oscillations of the LSSA approach, like on January 28th, are eliminated
or reduced.

Figure 4.21.: Gravity residuals and fitted delayed tides over a few days in January; the
tides were fitted with data from the whole year

Figure 4.22.: Comparison between the results of the LSSA and delayed tides fitting to
eliminate the observed oscillations

As the approach was conceived by looking at the cross-correlation between the gravity
residual and the synthetic tides, it is not surprising that a repeated analysis with this
metric shows a big improvement. The cross-correlation over the whole year now has a

45



4. Calculating the gravity residuals

maximum of just 0.017 (Figure 4.23), down from 0.063 before the correction (Figure 4.20),
while the LSSA only improved the maximum cross-correlation to 0.049.

Figure 4.23.: Cross-correlation between the synthetic tides and the gravity residuals after
subtracting the delayed tides for the whole year

Table 4.1.: Comparison of different methods for eliminating the remaining oscillations

method std over Jan. [µGal] std over year [µGal] max. cross-corr.

no correction 0.5165 1.6264 0.0627
LSSA 0.5153 1.6254 0.0487
DTA with Jan. 0.5083 1.6551 0.0265
DTA with full year 0.5094 1.6233 0.0173

Figure 4.24.: Lomb-scargle periodogram of the gravity residuals of G1-F60 over the whole
year after the atmosphere correction. The area where the DTA shows the
clearest improvement is highlighted with a red ellipse.
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Figure 4.25.: Comparison of the frequencies in the gravity signal after subtraction of the
fitted sines and the delayed tide signal. The area where the DTA shows the
clearest improvement is highlighted with a red ellipse.

The spectral analysis confirms that the DTA approach achieves better results. Figure 4.24
shows the Lomb-Scargle periodogram of the gravity series without any corrections of the
oscillations. Figure 4.25 shows the same analysis for the gravity series after subtracting
the oscillations of the four frequencies and after subtracting the delayed tide signal. For
the latter method, the peaks at 1 cpd are almost completely gone. There are some peaks
in the half-daily area, but they are much fewer and lower than for LSSA. The LSSA
only specifically changes the amplitudes of the four frequencies that are eliminated. The
periodogram looks similar to the analysis without any correction, apart from the biggest
one or two peaks.
Based on these metrics, I conclude that the fitting of the delayed tide signal leads to
better results, so the resulting timeseries will be used in all further steps.

4.5. Removal of drift

Like all other relative gravimeters, the SG suffers from an instrumental drift that cannot
be accurately predicted (Hinderer et al., 2007). Any changes in the gravity series in a
time frame of a year or longer are meaningless because of that, and a removal of drift over
the whole year is needed. This needs to be done for both sensors separately because, as
was seen earlier in Figure 4.1, the drift rates of both sensors are quite different. The same
figure also shows that the difference between the two sensors is almost exactly a straight
line, so a linear trend for both sensors will be subtracted. This is done by fitting and
subtracting a polynomial of degree 1 for both series separately. Figure 4.26 depicts both
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timeseries with the adjusted linear trends. Figure 4.27 shows the resulting timeseries of
the sensors.

Figure 4.26.: The gravity residuals of both sensors after DTA and the fitted linear trends

Figure 4.27.: Gravity timeseries after removal of drifts
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4.6. Final outlier removal

After performing all the above corrections, it is evident that a few outliers are still in the
data. The rough outlier filtering in Section 4.1 was not able to correct all of them. The
most likely cause of the peaks is earthquakes.
How exactly does the signature of an earthquake look in the gravity series? The earth-
quake that was felt strongest by humans in south-western Germany in the year 2022
happened on September 10th at 15:58 UTC (Landesamt für Geologie, Rohstoffe und
Bergbau, 2022); it had a magnitude of 4.8 and its epicenter was near Mulhouse, France,
about 100 km southwest of the observatory. The earthquake can be seen in the gravity
residuals as a short peak (Figure 4.28). Within 10 minutes, the gravity value climbs by
over 0.5 µGal. The maximum value of the peak happens at 16:04.

Figure 4.28.: Gravity residuals of G1-F60 over September 10th, where an earthquake hap-
pened at 15:58 UTC

Different from such short peaks, there are frequently periods of high noise in the timeseries.
If you move only a little bit further from the September 10th event, this peak is absolutely
dwarfed by the signal that appears at the beginning of September 11th (see Figure 4.29).
It is a day-long period of unrest. At that time, the second-strongest earthquake of 2022
occurred, a magnitude 7.5 earthquake in Papua New Guinea (GEOFON GFZ Potsdam,
2023b). It happened at 23:47 UTC on the 10th, while the period of unrest in the SG
started at almost exactly 00:00, showing how quickly the fastest seismic waves travel
around the globe. This unrest continued for over one day. Because of this length, the
data of this day is nearly unusable for hydrological analysis. At least for the weaker
events, a final outlier filtering can lead to cleaner data.
As the other distracting signals are gone, both timeseries can now be filtered individually,
and the outliers are eliminated. I use a moving window that flags every epoch with a
value that is more than three standard deviations away from the median in this window.
These epochs are then discarded, and they are linearly interpolated.
It is a sliding window, so it is repeatedly pushed one epoch further. A window length of 5
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Figure 4.29.: Gravity residuals of G1-F60 over September 10th to 12th; the Mulhouse
earthquake can be seen on the left

hours is found to produce satisfactory results. The limit of three standard deviations was
also found by experimenting with different values. An elimination with this limit will not
remove every epoch that is influenced by something other than hydrology. For example,
in Figure 4.29 only the biggest peaks will be flagged. You could also use two standard
deviations as the criterion for an outlier, but discarding too many epochs will also not
improve the final result as you would just linearly interpolate over a long period of time.
Figure 4.30 shows which outliers are found for sensor 1 in January, and Figure 4.31 shows
the final result after the outliers are discarded.

Figure 4.30.: Gravity in January for G1-F60, outliers are highlighted with red stars

50



4.6. Final outlier removal

Figure 4.31.: Gravity series of G1-F60 in January after the final outlier removal

In conclusion, three steps in the gravity processing were newly introduced in this chapter:
the atmospheric factor was reduced to −0.246 µGal/hPa. The disposal of unwanted oscil-
lations was done, instead of fitting sine and cosine curves of four frequencies, by fitting
delayed synthetic tides to the timeseries and subtracting them. Finally, an outlier filtering
after the step of drift removal was done for both timeseries.
Figure 4.32 shows the different gravity timeseries with the original processing, referred
to as baseline, and the refinements of this chapter, referred to as refined processing, over
the course of the October 2nd rain event. The lower diagrams contain the course of air
pressure and precipitation to give a better understanding of the event. There are two
separate rains, one in the afternoon and one in the evening of October 2nd. After that,
there is almost no precipitation. The original gravity series showed a notable decrease at
the end of October 3rd, which cannot be explained by rain. In the new gravity series,
this minimum is gone, and there is a more regular recovery of gravity, as one expects with
the drying of the soil after a rain. Such unreasonable minima occurred frequently in the
earlier signal. They are partly due to the tidal remains, but Figure 4.32 shows that the
pressure also plays a role. It takes a maximum around noon on October 3rd. When one
uses an atmospheric factor that is too big, this maximum shows up in the gravity series.
Both changes on their own, the different atmospheric factor and the tidal adjustment,
cannot produce a curve with such a smooth gravity recovery. This only works with both
processing changes. There are other events, like the one on August 2nd, where a different
atmospheric factor seems to be better suited though (see Section 5.2.4).
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Figure 4.32.: Comparisons of the final gravity results of G1-F60 over the October
2nd event. The differences are different atmospheric factors (baseline:
−0.34 µGal/hPa, refined: −0.246µGal/hPa), a different removal of unwanted
oscillations (baseline: LSSA, refined: DTA) and a final outlier filtering in
the refined gravity series. The lower diagrams show air pressure and precip-
itation over the same period of time.
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As discussed in Section 3.2, the soil moisture stations at the BFO have just been added in
2022. In the past, the modeling of the hydrological influence on the gravity measurements
was done by using only the data from the precipitation gauge. The aim of this chapter
is to build a model that uses the information from the soil moisture stations and that
reaches a better fit with the measurements than the Bouguer approach that has been
used so far. The model parameters will be adjusted over the eleven selected rain events
(see Table 3.3), each with a time window of three days to understand the gravity rebound
after the rain. The main goal in this chapter is that the model reaches a small RMSE
with regard to the gravity residuals that I computed in Chapter 4, for these 33 days of
observation. As I am using a data-driven approach, one cannot expect that the adjusted
parameters are going to be ideal for new observation epochs that were not part of the
adjustment. I will check in Section 6.3 whether an application of the parameters for new
events is possible.

5.1. Modeling through Bouguer approach

The previous correction model that only uses precipitation is based on the work of Schroth
(2013). The used observation equation was introduced by Harnisch and Harnisch (2006)
and uses the assumption of a Bouguer plate. The impact of a package of rain is not
assumed to be immediate, rather there is a gradual increase that is being justified with
the infiltration of the water in the ground:

∆gi = 2πGρ
i−1

∑
j=1

rj(1 − exp(−
i − j
τ1
)) exp(−i − j

τ2
). (5.1)

G is the gravitation constant, and ρ is the density of water. rj is the precipitation height
over a certain sampling rate. Schroth (2013) did her analysis based on hourly precipita-
tion and gravity data, but I am using minutely data as most of the observations have that
sampling rate. τ1 is a time constant describing the infiltration speed of the water, while
τ2 describes the water running away. The result ∆gi is the impact on gravity at epoch i.
Harnisch and Harnisch (2006) used τ1 = 1h and τ2 = 720h. Schroth (2013) carried out a
grid search with about two years of gravity and precipitation data, trying values between
0.2 h and 10.2 h for τ1 and 20 h and 720 h for τ2. She compared the values of RMSE for
the resulting timeseries and found τ1 = 4.2h and τ2 = 400h to show the best results. This
is the baseline correction model with which I will compare my results.
As the water height for the Bouguer approximation, it uses a convolution of the precip-
itation measurements and a kernel that describes the infiltration and disappearance of
water. The kernel can be seen in Figure 5.1.
It shows a rise from no impact to a water height of more than 0.9mm at around 19 hours.
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Afterwards, the influence slowly fades away in an exponential decline. After two months,
there is still nearly 3% of the original water quantity left.

Figure 5.1.: The signature of a rain package of 1mm height on gravity according to the
Bouguer approach

Figure 5.2.: Result of the Bouguer approach for the October 2nd event; the Bouguer graph
was shifted in y-direction, so that both timeseries start at the same value

Figure 5.2 shows the result of the Bouguer approach for the October 2nd event. In this
case, the correction recreates the overall trend of gravity well, although details like the
small jump in gravity between the two rains are not visible and the overall amplitude of
gravity decrease is slightly underestimated. For these three days, this correction reaches
a strong correlation to the gravity signal of 0.975.
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Figure 5.3.: Result of the Bouguer approach for the August 1st event

Figure 5.4.: Correlation coefficients and RMSEs of the Bouguer approach over the eleven
rain events

There are other events where this approach struggles, though. For example, for the
August 1st event, the magnitude of gravity change is overestimated, and the resulting
correlation between the two timeseries is only about 0.015 (Figure 5.3). It makes sense
that a model that always assumes the same impact of a water package over the whole year
will overestimate the gravity decrease in summer and underestimate it in winter. A rain
of the same intensity in summer has a lesser influence on gravity as the water is draining
off quickly because the soil cannot take up that much water when it is dry. Especially
for these summer events, it could be beneficial to use soil moisture measurements, as
these do capture the different responses of the soil in summer and winter, in contrast to
the precipitation recordings. A smaller change in soil moisture for a summer rain could
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translate into a smaller gravity change in the model. The building of a model with soil
moisture readings is done over Section 5.2.
The average correlation of the Bouguer approach over the eleven events is 0.761 and the
RMSE of the resulting timeseries over the 33 days is 0.186µGal. Figure 5.4 shows the
different correlations and RMSEs over the different events. It is clear that the approach
has more problems in describing the gravity variation for the summer events.

5.2. Data-driven models

This section describes the newly introduced building of data-driven models that use pre-
cipitation and soil moisture. I will start by using only precipitation, like the Bouguer
approach. Then soil moisture sensors are successively added to the model. The deter-
mination of the parameters is done with grid searches and linearized least-squares (LLS)
adjustments over the 3 ⋅ 11 days of observation that were described in Section 3.4. The
early models that use only a few soil moisture sensors are used for comparison and as
starting values for the later grid searches and LLS iterations.

5.2.1. Data-driven model with just precipitation

How can this model be improved? As this work aims at a data-driven model, first the
main rain event of October 2nd is studied alongside the precipitation data (Figure 5.5).

Figure 5.5.: Gravity residual of G1-F60 and precipitation rate for the October 2nd event

For both rain events, the maximum negative derivative of gravity occurs when the precip-
itation rate is at its maximum. Therefore, it does not seem logical to use a convolution
kernel that starts at impact 0. Rather, a simple exponential decay is taken into consider-
ation:

∆gi = P0

i

∑
j=i−N

rj exp(−
i − j
τ
) . (5.2)
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Figure 5.6.: Result of the grid search for the decay time, only using precipitation data
with an exponential decay; the best time for RMSE is highlighted

The differences from the formula of the Bouguer approach (5.1) are that the summation
is now over a limited amount of epochs to restrict computation time; for precipitation,
N = 60d is chosen so that decay times of up to 800 h, about 33 days, are possible without
the kernel suddenly dropping to zero from a relatively high point. The infiltration part
is gone. The decay time τ will not be fixed but adjusted to the data, and the amplitude
P0 will also be adjusted because it was seen in Section 5.1 that the Bouguer plate value
does not explain the data ideally.
To get a first idea of possible results, a grid search is carried out using the data from the
eleven events together. Three days of gravity data are used for each event. The list of
events can be seen in Table 3.3. Values for τ between 2 and 2002 hours with a step size
of 20 h are tested. The different decay times are tried successively, and a best-fitting P0 is
adjusted by a least-squares adjustment. The observation model is that of Equation (5.2)
only with an added offset ck for the different events, as the observation epochs are not
continuous. Figure 5.6 shows the RMSE over the eleven events for the different choices
of τ .
The search finds better results for long decay times. The RMSE takes a minimum at
1162 h. Both the RMSE value and the mean correlation coefficient of the model with this
decay time are better than the result that the Bouguer approach reached. The maximum
value for the mean correlation coefficient (cc) appears earlier, at around 900 h.
I repeat the grid search with different kernels. One other possibility is the latter half of
a Gaussian kernel. It has a derivative of zero at the start. A higher falling rate appears
later, in contrast to the exponential decay. The computation of the kernel is done by

kG(d) = exp(−
d2

2σ2
) . (5.3)

The usual factor of 1
√

2πτ
is omitted. If you inserted kG with the prefactor into Equation

(5.2) you would create a direct correlation between P0 and τ . This is undesirable when
analysing the results of the parameters.
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Figure 5.7.: Result of the grid search for the decay time, only using precipitation data
with a Gaussian decay, the best time for RMSE is highlighted

The grid search for an optimal decay time with this kernel shows some mean correlation
coefficients that are higher than with the exponential decay. But the RMSE values are
higher than with the exponential kernel. Figure 5.7 shows the results of this grid search.
You could also increase the exponent of d in Equation (5.3) further to three or four, but
no good results for the RMSE were found.
The grid search only finds an approximate solution for the parameters, depending on the
step size. These results can be used as starting values for an LLS adjustment, though.
The iteration is done as described in Section A.3 and uses the gravity measurements of
the same 3 ⋅ 11 days. The exponential decay kernel is used along with the starting values
of τ = 1162h, the amplitude −0.034µGal/mm and the computed offsets. They were all
found in the grid search. The results of the search can be seen in Figure 5.6.
Figure 5.8 shows the response over the October 2nd event of the model that results from
the LLS adjustment. In comparison to the Bouguer approach (Figure 5.2) the shape of
the second maximum is now better recreated, but the gravity recovery of the final two
days fits less well. The amplitudes of the gravity decrease are still too low. Figure 5.9
shows how the RMSE and the changes in the parameter vector between the iteration
steps change. As the results of the grid search are used, the iteration already starts from
a very good point, and the parameters are only changed slightly. The iteration behaves as
intended. The RMSE gets consistently lower and arrives at a similar point as the results
of the grid search. It starts from a slightly higher point than the grid search result, as
some starting values are only taken approximately. The final mean correlation coefficient
value of 0.7933 is also essentially the same as from the grid search. The iteration finds
a value for the decay time of about 1170 h. In this case, the LLS adjustment has little
benefit as the results from the grid search are equally good. With more parameters that
are going to be adjusted later, this refining might become more important.
Figure 5.10 compares the correlation coefficients between the LLS-adjusted precipitation
model with the exponential kernel on the one hand and the Bouguer baseline on the other
hand. The newly adjusted model performs equally or better on all events except 7 and
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10.

Figure 5.8.: The resulting model response over the October 2nd event of the LLS adjust-
ment that uses precipitation with the exponential kernel

Figure 5.9.: The course of the overall RMSE and the magnitude of improvements between
the iterations of the LLS adjustment that uses precipitation with the expo-
nential kernel. The improvement is not a physical quantity, as parameters
with different units are added. It is rather a quantity to monitor the iteration.
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Figure 5.10.: Comparison of the correlation coefficients and RMSE over the eleven events
of the Bouguer approach and the new precipitation-based model (with ex-
ponential kernel) resulting from the LLS-adjustment

To improve on this, in the next section, the soil moisture data will be used.

5.2.2. Data-driven model with one soil moisture sensor

If soil moisture data are added to the model, at least two non-linear parameters have to be
adjusted. From a physical point of view, the probes represent a more long-term memory
of the fallen rain, but they still cannot be taken directly into an adjustment and also need
a kernel with which they are convoluted. The reason for this is that the gravimeter is
influenced by the water mass in the full 100 metres of soil above the gravimeter, while the
probes are only at the surface. That means that the water might have drained away from
the soil near the probe but is still in the region and only slowly disappears. One possible
choice for such a behaviour is the latter half of a Gaussian kernel, as its derivative at time
0 is 0 and it only becomes gradually higher (negatively). The new observation equation
for a correction with one soil moisture probe therefore reads:

∆gi = P0

i

∑
j=i−N1

rj exp(−
i − j
τp
) + P1

i

∑
j=i−N2

sj exp(−
(i − j)2
2τ 2

) + ck. (5.4)

sj is the soil moisture reading at time j. I use probe 0 of Solidus #1 as the first soil mois-
ture timeseries. The readings need to be interpolated to the times of the precipitation
measurements so that the same kind of convolution can be done. This is done linearly
with the existing Matlab function interp1. There are two different integration times: N1

and N2. As the soil moisture in itself has a longer memory span of previous rain, it is not
necessary to integrate it over a period of months. For N2, I choose a period of 72 h, but
I have to be careful that τ does not become bigger than about 24 h. Otherwise, artificial
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Figure 5.11.: RMSE results of the grid search with the exponential kernel for precipitation
and the Gaussian kernel for one soil moisture probe (Solidus #1, probe 0)

jumps, due to the kernel ending, will appear in the simulated time series. ck is once again
the offset for every different event.
Just like in the last section, I am doing a grid search to get an idea of what kind of τ
produces good results. This time τp = 200,240, . . . ,960,1000h and τ = 5,6, . . . ,26,27h are
tried, and P0, P1, and ck are adjusted with a least-squares adjustment.
Figure 5.11 shows the results of the search with the exponential kernel for precipitation.
The best RMSE result is the 0.1554µGal down from the about 0.1618 µGal without soil
moisture.
Figure 5.12 shows how this result compares with the found result of the grid search with-
out soil moisture. You can see that the model does not improve for every event. For three
of the events, there is a visible worsening in the RMSE and correlation coefficient. Only
the overall RMSE is guaranteed to be the same or better than without soil moisture. It
seems like with the inclusion of soil moisture, the results become slightly more consistent.
Some events, like event 4, that were extremely well described by the precipitation-only
model have suffered slight setbacks, while the worst results of the previous model, like
events 7 or 10, have clearly improved.
As the goal is to explain the gravity measurements as closely as possible, I repeat the
grid search with different kernels for precipitation and soil moisture. It will show that
convoluting precipitation with the Gaussian kernel has some advantages over the expo-
nential kernel for the resulting correlation (Table 5.1). The Gaussian decay has a degree
two for the time difference between the gravity measurement epoch and the time of fallen
rain (see (5.3)). That is why I test some higher degrees as well, like the following Degree
Three kernel:

kT (d) = exp(−
d3

3σ3
) . (5.5)

The exponential and Gaussian kernels are tried for soil moisture. For each combination,
the best values for RMSE are chosen, and the RMSE and mean correlation coefficient
values are shown in Table 5.1.
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Figure 5.12.: Comparison of the RMSEs and cc for the eleven events for the precipitation-
only model, with the exponential kernel; and the model using precipitation
and one soil moisture probe, with the exponential kernel for prec and the
Gaussian kernel for sm, the results are from the grid searches.

Table 5.1.: Comparison of different kernels with precipitation and one soil moisture sensor;
these are the best found results of the grid searches

kernels RMSE [µGal] mean cc

only precipitation, exp 0.1618 0.7933
prec, exp; sm, Gaussian 0.1554 0.8313
prec, Gaussian; sm, Gaussian 0.1549 0.8542
prec, Degree Three; sm, Gaussian 0.1551 0.8628
prec, exp; sm, exp 0.1561 0.8318
prec, Gaussian; sm, exp 0.1558 0.8536
prec, Degree Three; sm, exp 0.1561 0.8629

The results look similar for the different kernel combinations. For soil moisture, the
exponential kernel performs slightly worse in terms of the RMSE. I will use the Gaussian
kernel for all future soil moisture series. For precipitation, the kernels show different
strengths. The mean correlation coefficients strongly improve with the higher degree
kernels. Some even higher degrees were also tested, and the tendency is that the mean
correlation coefficient improves while the RMSE worsens (results not shown). Because
of these ambiguous results, I leave the question open about whether the exponential, the
Gaussian, or the Degree Three kernel is best suited until more tests are carried out with
an increased number of soil moisture sensors. For the exponential kernel, the grid search
found the best result for the highest tried value of τp, so the ideal value is likely to be
above that. That is why I also need to compare the results for these kernels after an LLS
adjustment. The results are presented in the remainder of this section.

62



5.2. Data-driven models

The LLS adjustment with the exponential kernel finds a precipitation decay time of 1154 h,
and the final RMSE is at 0.1551µGal, which is about how the other kernels performed
in the grid search. Figure 5.13 shows the response of the model over the October 2nd
event after the adjustment alongside two models without soil moisture. Compared to the
data-driven precipitation-only model, this looks smoother, and the gravity minimum after
the rain has passed on October 3rd is better matched to the measurements.
After the LLS adjustment, there is nothing to choose between the three kernels in terms of
RMSE (Table 5.2). The exponential kernel cannot reach the levels of the mean correlation
coefficient of the other two models.
Table 5.2 shows the full results of the LLS adjustments, including the adjusted amplitudes.
For reference, the Bouguer approach has an amplitude of −0.042 µGal/mm.

Table 5.2.: Comparison of different kernels with precipitation and one soil moisture sensor
after LLS adjustment

kernels τp [h] τ [h] RMSE [µGal] mean cc
P0 [µGal/mm] P1 [µGal/%]

only precipitation, exp 1170 - 0.1618 0.7933
−0.034 -

prec, exp; sm, Gaussian 1154 12.9 0.1551 0.8342
−0.030 −5.96 ⋅ 10−5

prec, Gaussian; sm, Gaussian 867 12.1 0.1549 0.8538
−0.028 −7.25 ⋅ 10−5

Degree Three; sm, Gaussian 880 11.9 0.1551 0.8628
−0.027 −7.84 ⋅ 10−5

Figure 5.13.: The resulting model of the LLS adjustment using precipitation with the
exponential kernel and data from Solidus #1, probe 0 with the Gaussian
kernel. It is compared with the Bouguer baseline and the model that used
only precipitation with an exponential kernel.
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5.2.3. Data-driven model with two soil moisture sensors

Using two soil moisture probes gives a better picture of the overall soil situation around
the gravimeter if they are not close to each other. In this section, the data from the first
probe of Solidus #2 will be used in addition to the previously used probe 0 of Solidus #1.
The observation equation becomes:

∆gi = P0

i

∑
j=i−N1

rj exp(−
i − j
τp
) +

2

∑
h=1

Ph

i

∑
j=i−N2

sj,h exp(−
(i − j)2
2τ 2h

) + ck. (5.6)

Here sj,h is the soil moisture reading of the h-th timeseries (Solidus #1, 0 or Solidus #2,
0) at epoch j.
There are now three different decay times that need to be established, which makes a grid
search more difficult. As a first step, I vary τp and τ1, while τ2 has a fixed ratio to τ1. Like
in the last section, τp values between 280 h and 1000 h are tried with 40 h steps between
them. τ1 runs from 5h to 20 h with a step size of one hour.
For example, Figure 5.14 shows the result when τ2 is half as big as τ1. The best RMSE
in this case is the 0.1516µGal that is highlighted.

Figure 5.14.: The RMSE values of the grid search with two soil moisture probes. Precipi-
tation is convoluted with the exponential kernel; τ2 is fixed to be half as big
as τ1

When precipitation is convoluted with the exponential kernel, the best RMSE results
always occur with τp = 1000h (e.g., Figure 5.14). This remains true for different ratios
between τ1 and τ2. Because of this, the grid search is repeated with τp fixed at 1000 h and
τ1 and τ2 varying independently between 5 h and 20 h. Figure 5.15 shows the results of
this grid search. The best RMSE this time reaches 0.1508 µGal. These are good starting
values for an LLS iteration. The grid search already showed the tendency of τ2 to become
very low. This is also showing in the iteration. To avoid τ2 trending towards a value of
only a few minutes, I am increasing the weight of the starting observation τ2 = 5h. A
result with such a small τ2 has a slightly lower overall RMSE, but the resulting model
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Figure 5.15.: The RMSE values of the grid search with two soil moisture probes. Precip-
itation is convoluted with the exponential kernel; τp is fixed while τ1 and τ2
are varied

visually does not fit the data well (Figure 5.17), and it produces much worse mean corre-
lation coefficient results. To determine exactly how big the weight has to be, an L-Curve
analysis can be carried out (Hansen, 2000). In this case, I choose a weight of 5 ⋅ 10−4.
With the LLS adjustment, the RMSE improves to 0.1497 µGal. The short increase in
gravity between the two rains is now better captured, as well as the timing of the mini-
mum after the end of the rain (see Figure 5.16).
The misfortune of this result is the fact that it comes with amplitudes that go against the
physical expectation. It is expected that higher soil moisture always decreases gravity,
and therefore all the amplitudes have to be negative. As the least-squares adjustment only
adjusts the timeseries so that it fits best, it does not consider this restriction. The esti-
mated amplitudes with these found decay times are −0.033 µGal/mm, −9.45 ⋅10−5 µGal/%
for Solidus #1 and +3.59 ⋅ 10−4 µGal/% for Solidus #2, so one amplitude is positive. This
underlines that this work does not build a full-fledged physical correction model but a
data-driven model in which the parameters are not necessarily physically representative.
As the fit of the resulting model is quite strong (see Figure 5.16) and it is not straightfor-
ward to design an adjustment that only finds negative amplitudes, I will use these results
for the further analyses.
The same sequence of analyses — grid search for τp and τ1 with τ2 fixed to it, choosing a
value for τp and searching for the best τ1 and τ2 values, and finally the LLS adjustment
— is repeated for the Gaussian kernel and Degree Three kernel for precipitation. Table
5.3 shows the results of the iterations. Compared with the results with one sm probe, the
mean cc have not improved while the RMSE value has decreased by about 0.05 µGal.

5.2.4. Data-driven model with three soil moisture sensors

With three soil moisture probes, it is more difficult to find the best decay times by a grid
search and to present the results in a clear way to understand the patterns.
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Figure 5.16.: The resulting model of the LLS adjustment using precipitation with the
exponential kernel and data from two sm probes with the Gaussian kernel

Figure 5.17.: The response of the model with an exponential kernel with precipitation and
with two sm probes after the LLS adjustment with a smaller weight for τ2

Table 5.3.: Comparison of different kernels with precipitation and two soil moisture sen-
sors after LLS adjustment; the units of the amplitudes are omitted for space
reason; it is P0 [µGal/mm], P1, P2 [µGal/%]

kernels τp [h] τ1 [h] τ2 [h] RMSE [µGal]
P0 P1 P2 mean cc

prec, exp; sm, Gaussian 1047 12.5 3.0 0.1497
−0.033 −9.45 ⋅ 10−5 3.59 ⋅ 10−4 0.8324

prec, Gaussian; sm, Gaussian 802 12.2 3.4 0.1490
−0.031 −1.1 ⋅ 10−4 3.33 ⋅ 10−4 0.8524

prec, Degree Three; sm, Gaussian 820 12.2 3.6 0.1492
−0.030 −1.16 ⋅ 10−4 3.13 ⋅ 10−4 0.8633
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I carry out a grid search with τp fixed at 1000 h and τ1, τ2 and τ3 being tried between 4 and
12 h with 90min steps in between. That makes a total of 93 = 729 combinations of decay
times. In the first search, precipitation is convoluted with the exponential kernel, while
probe 1 of Solidus #1 is added to the two previous sensors. The resulting RMSEs are
depicted successively (Figure 5.18), as a plot of all four dimensions is impossible without
any simplifications.

Figure 5.18.: RMSE results of the grid search with three sm sensors (both probes of Solidus
#1, p0 of Solidus #2) and precipitation with the exponential kernel

The best found result shows an RMSE of 0.1491 µGal, which is only slightly better than
the 0.1508 µGal that was found in the grid search without Solidus #1,1. This is not a
strong improvement, although it has to be noted that the grid search with three decay
times is coarser so better solutions might be possible with an LLS adjustment. Meanwhile,
the mean correlation coefficient degrades from 0.8317 to 0.8159.
Now I do the same grid search with a different set of soil moisture sensors. Instead of using
another Solidus #1 probe, the first of Solidus #3 is used. This station is further away
from the SG and about 250m southwest from Solidus #1. It might provide a different
picture of the soil moisture in the vicinity, as the probes that have been used so far are
all quite close to each other.
The results of this grid search are much improved. The best found RMSE improves to
0.138µGal (Figure 5.19). The improvement from using two sensors is 7.5 times as big as
when adding the second probe of Solidus #1 to the data. The mean cc of this result is
with 0.8406 also slightly higher than the one the two-sensor grid search found.
As a refinement, I carry out a second grid search around the best results of the first one
(results not shown). This is followed by the usual LLS adjustment, which finds an RMSE
of 0.1377 µGal. Figure 5.20 shows the response of the resulting model over the October
2nd event.
The same searches and adjustments are repeated with the other two precipitation kernels.
Table 5.3 shows the results.
Just like in the earlier comparisons, the three kernels perform extremely similarly but are
different in the mean cc value. So where exactly are the differences between them? Figure
5.21 shows the RMSE and correlation values of the three models over the eleven events.
The biggest difference is that the Gaussian and Degree Three models have much better
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Figure 5.19.: RMSE results of the grid search with three sm sensors (first probes of Solidus
#1-3) and precipitation with the exponential kernel

Figure 5.20.: Response of the resulting model of the LLS adjustment; the first probes of
Solidus #1-3 are used and prec is convoluted with the exponential kernel;
the units of the amplitudes are the same as usual

Table 5.4.: Comparison of different kernels with precipitation and three soil moisture sen-
sors (probes 0 of Solidus #1-3) after LLS adjustment

prec kernel τp [h] τ1 [h] τ2 [h] τ3 [h] RMSE [µGal]
P0 P1 P2 P3 mean cc

exp 1049 9.7 2.1 12.5 0.1377
−0.027 −6.43 ⋅ 10−5 7.32 ⋅ 10−4 −7.58 ⋅ 10−5 0.8422

Gaussian 824 10.9 3.0 11.9 0.1375
−0.025 −6.99 ⋅ 10−5 5.13 ⋅ 10−5 −7.98 ⋅ 10−5 0.8663

Degree Three 851 11.8 3.8 11.9 0.1378
−0.025 −7.03 ⋅ 10−5 4.07 ⋅ 10−5 −8.16 ⋅ 10−5 0.8803
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Figure 5.21.: The RMSE and cc values of the LLS-adjusted models with the three different
precipitation kernels

results for the August 1st event. For all other events, the three models are very similar.
On some of them, the exponential model is the best fit, while, for example, the November
18th also shows a significant separation in favor of the other two kernels.
What is the problem with the August 1st event? It is a summer rain with the least amount
of precipitation of all eleven events, so it is clear that this event will be more difficult for
fitting a model. Figure 5.22 shows the gravity residuals for the event, along with the three
model responses and the pressure. The gravity residuals do not show a course like the
October 2nd event, where there is a clear decrease. After a small fall, the gravity quickly
rises to a higher value than at the start. It is influenced by other factors, most likely the
atmospheric pressure. There is an anti-correlation between the gravity residuals and the
pressure. The pressure at the end of this timeseries is lower than at the beginning, so
an imperfect correction of the atmosphere can explain why gravity rises to such a high
value. If you want to model such an event in the correct way, more attention needs to be
spent on the atmospheric correction. Neither of the three models can explain the gravity
timeseries properly, even though the Degree Three model shows a higher correlation with
the measurements.
As this event shows the biggest differences in the correlation coefficients of the models, it
has a big influence on the mean cc values. It is unwise to choose a model based mainly
on an event that is influenced only by a small part of soil water. Therefore, I will carry
on with the Gaussian kernel, as this looks like a good compromise in Figure 5.21 and the
overall RMSE is the lowest of the models (Table 5.4). The resulting model will be called
P3S, and its observation equation is

∆gi = P0

i

∑
j=i−N1

rj exp(−
(i − j)2
2τ 2p

) +
3

∑
h=1

Ph

i

∑
j=i−N2

sj,h exp(−
(i − j)2
2τ 2h

) + ck. (5.7)

During many points of the model building process, one may ask oneself why to choose the
best results with regard to RMSE as opposed to the correlation. At this point, I could
choose a Degree Three or Four kernel and reach much higher correlations. The answer
is given in Figure 5.23. It shows the result of a model that goes along the lines of the
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Figure 5.22.: The first graph shows the gravity residuals together with the responses of the
three models over the August 1st event. The models use the three described
prec kernels. The lower plot depicts the outside pressure measurements
during that event.

best correlation values. One ends up with a model that does have a high correlation with
the measurements but does not recreate the correct amplitudes in the gravity changes.
The RMSE-optimized model delivers a more convincing timeseries. The building of this
model is briefly described in Appendix C.

Figure 5.23.: Best result found in the grid search with regard to mean cc over the October
2nd event; it uses the Degree Three kernel for precipitation and the Gaussian
kernel with three sm probes

5.2.5. Data-driven model with four soil moisture sensors

To do a grid search with four soil moisture sensors, my approach is to fix the decay time
of the first sensor to a previously found value. τp is also fixed, like in the last section. The
remaining decay times are determined by a three-dimensional grid search.
It was seen in the last section that adding data from a new station can be beneficial
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to the results. That is why I first try to add the final remaining soil moisture station,
TTGOPICO 4. This station only has one sensor and is located near Solidus #3. For the
grid search, τp and τ1 are fixed to 832 h and 11 h, respectively, which were the results for
these parameters of the LLS adjustment with three soil moisture sensors. Values between
4 and 16 hours are tried for τ2, τ3, and τ4. Figure 5.24 shows the resulting RMSE values
of the search. The best RMSE value is 0.1372 µGal, which is only a mini improvement
over the results of the three-sensor adjustment (see Table 5.5).
This search and the subsequent refinement by LLS adjustment are repeated for the other
three available sensors. For some choices, the RMSE does improve more significantly, for
example, with probe 1 of Solidus #2. The full results are shown in Table 5.5. Figure 5.25
shows the model response over the October 2nd event with Solidus 2,1. The model is now
closer to the measurements in the morning of October 2nd, but the shape of the smaller
maximum is less accurate than with the three-sensor model. This reflects the results of
the metrics. Using a fourth probe can improve the RMSE, but the mean correlation is
not improved and sometimes even decreases.

Figure 5.24.: RMSE values of the grid search with four soil moisture sensors. τ1 is kept
at a fixed value. The fourth sensor is TTGOPICO 4.

Figure 5.25.: Response for the October 2nd event of the LLS adjusted model that uses
probe 1 of Solidus #2 as the fourth sensor
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In an additional experiment, I add a soil moisture timeseries to the data that was already
used before. So Solidus 1,0 is now convoluted with two different Gaussian kernels, and
there are only three different soil moisture timeseries used in the adjustment. The resulting
model (see last row of Table 5.5) has an RMSE that is among the best of the real 4-sensor
models, and the mean correlation is also similar. So the addition of the fourth sensor has
not brought a strong improvement in our case. To judge whether the usage of three soil
moisture sensors is generally sufficient, you need more data, maybe also a wider variety of
the locations of the soil moisture stations. The magnitude of the improvements certainly
becomes smaller after the first few probes.

Table 5.5.: Comparison of the 4-sensor LLS adjustments with different choices of the
added fourth sensor; the units of the amplitudes are as normal; the last line
describes a model that re-uses an sm series that was already part of the model

fourth τp [h] τ1 [h] τ2 [h] τ3 [h] τ4 [h] RMSE [µGal]
sensor P0 P1 P2 P3 P4 mean cc [%]

none 824 10.9 3.0 11.9 - 0.1375
−0.025 −6.99 ⋅ 10−5 5.13 ⋅ 10−5 −7.98 ⋅ 10−5 - 0.8663

TTGO- 868 10.5 2.1 12.6 3.2 0.1369
PICO4 −0.024 −7.83 ⋅ 10−5 6.96 ⋅ 10−4 −7.02 ⋅ 10−5 −9.30 ⋅ 10−5 0.8639
Solidus 3 878 10.4 1.7 12.5 3.6 0.1367
p1 −0.024 −6.25 ⋅ 10−5 9.18 ⋅ 10−4 −7.63 ⋅ 10−5 −9.76 ⋅ 10−5 0.8672
Solidus 1 829 16.3 7.3 13.0 17.2 0.1348
p1 −0.023 −1.24 ⋅ 10−4 1.97 ⋅ 10−4 −8.87 ⋅ 10−5 1.11 ⋅ 10−4 0.8475
Solidus 2 866 15.5 6.2 12.9 19.6 0.1341
p1 −0.025 −8.87 ⋅ 10−5 2.27 ⋅ 10−4 −9.36 ⋅ 10−5 5.99 ⋅ 10−5 0.8627
Solidus 1 824 5.8 4.6 12.9 2.4 0.1346
p0 −0.027 −3.68 ⋅ 10−4 3.88 ⋅ 10−4 −7.22 ⋅ 10−5 6.15 ⋅ 10−4 0.8649

5.2.6. Data-driven model with seven soil moisture sensors

As a final comparison, I am doing the adjustment with all seven available sensors. The
grid search is done by taking the results with four sensors, which used Solidus 3,1 as the
final probe, and fixing these five decay times. The remaining three times are determined
with a grid search between 4 and 16 h. The best combination of times reaches an RMSE
of 0.1337µGal, which is a small improvement over the adjusted results with four sensors.
The LLS adjustment this time does make a difference. It finds a set of parameters with a
resulting RMSE of 0.1305µGal. Figure 5.26 shows the model response for the main event.
I will call the resulting model P7S.
The found RMSE is, as expected, the best of all the models that were tried. The im-
provement over the model that used just three sensors is only 5% though. The mean
correlation coefficient value is with 0.8579 slightly lower than most of the results that
were found for the models with three or four sensors (Table 5.5). In Figure 5.26, you can
see that details like the gravity increase between the rains are captured less well than in
some previous models. In my case, with the locations of the stations and the available
data, using more than three soil moisture sensors has a slight benefit.
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Figure 5.26.: Response for the October 2nd event of the LLS adjusted model that uses all
seven sm probes

5.3. Model with soil moisture-dependant parameters

Using the same set of parameters for every event might not be ideal. It is expected that
the soil reacts differently to a rain event when it is dry than when it is more moist. In
the former case, the ground cannot take as much water. The rain water should drain off
faster, which would translate into a shorter decay time τp and a lower amplitude P0.
I first take a step back to get an idea of what the relationship with soil moisture might
look like. So far, the adjustment has always used the data from all eleven events together
to estimate the parameters plus the offsets. You can also apply the algorithm to the events
on their own. The resulting parameters might represent the soil moisture dependency of
the response of gravity to rain.
An adjustment for one single event will fit the measurements much closer than the model
of the eleven events together. Figure 5.27 shows the modeled gravity for the August 1st
event of the model that only uses the data of this event. Previously, the modeled gravity
did not follow the measurements very closely, and I concluded that most of the signal,
especially the gravity increase on August 2nd, is not hydrologically caused. With no dif-
ferent data to mind, this model now closely complies with the trend of the gravity series.
To achieve the substantial gravity increase, the model chooses an amplitude P2 for the
second soil moisture probe that has the biggest positive value of all amplitudes of the
eleven events at 0.022µGal/%. This observation already makes it questionable whether
any parameters of the single event adjustments can be meaningfully analysed.
Figure 5.28 shows the estimated precipitation decay times for the eleven events plotted
against the soil moisture values before the events. The results seem to be random. There
is no trend or clear relationship visible. The picture for other parameters, like the precip-
itation amplitude, is similar.
It seems that the moisture-dependent reaction of the soil is more complicated than I imag-
ined. There are other factors, like air temperature, the duration, and the intensity of the
rain, that could have an impact on the water storage properties of an event. As the single
event adjustment wants to explain some parts of the gravity signal that are unrelated to
soil water, the resulting parameters are also disturbed.
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5. Hydrological analysis of gravity data

Figure 5.27.: Response of the single event model with three sm sensors for August 1st.

Figure 5.28.: Resulting precipitation decay times for the different events plotted against
the soil moisture before the start of the rain; the sm values are from Sol1,1

I add a linear relationship between the soil moisture at the start of the event, which I
will call sk, and the precipitation amplitudes and decay times to the model. sk is the
average soil moisture in the last hour before the rain. For this, a minimum measurement
of probe 1 of Solidus #1 is chosen. The exact values can be seen in Table 3.3. The new
observation equation is:

∆gi = (o1 + l1sk)
i

∑
j=i−N1

rj exp(−
(i − j)2

2(o2 + l2sk)2
)+

3

∑
h=1

Ph

i

∑
j=i−N2

sj,h exp(−
(i − j)2
2τ 2h

)+ ck. (5.8)

o1 and o2 are the offsets for the precipitation amplitude and decay time. l1 and l2 are the
soil moisture slopes of these quantities.
For the LLS adjustment to find a good solution, again, starting values for the two offsets
and slopes are needed. Two separate grid searches are used for this.
The first search focuses on the decay time. I need to find an offset and a slope:

τp(k) = o2 + l2sk. (5.9)
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5.3. Model with soil moisture-dependant parameters

For o2 times between 600 h and 1200 h are tried. The slope is varied between −1000min/%
and 1000min/% with a step size of 50min/%. For the three soil moisture probes, the de-
cay times of the previous P3S model are fixed, and only the offset and slope of τp are
varied. The grid search iterates through the combinations and computes the RMSEs.
Figure 5.29 shows the result of the search. The best RMSE is reached with o2 = 900h and
sl = −700min/%, with a value of 0.1375µGal that is an improvement over the P3S model
only in the fifth digit.

Figure 5.29.: The RMSE values of the grid search that compares different offsets and soil
moisture slopes for the precipitation decay time

The second grid search investigates the soil moisture dependence of P0. The variability
of the decay time is left out. τp is fixed at 832 h. I add this dependence to the search

by multiplying the kernel exp (− (i−j)
2

2τ2p
) with the factor õ1 + l̃1sk. The least-squares ad-

justment of a single step of the grid search will determine an amplitude P̃0 for (õ1 +
l̃1sk)∑i

j=i−N1
rj exp (− (i−j)2

2(o2+l2sk)2
). The product P̃0 ⋅ (õ1 + l̃1sk) then equals P0(k).

I try values for õ1 between 0.5 and 1.5 with a step size of 1.5 and for l̃1 between −0.02/%
and 0.02/% with 0.002/% steps. As (õ1+ l̃1sk) is afterwards multiplied with the computed
amplitude of the least-squares adjustment, õ1 and l̃1 are relative values. Some combina-
tions of values are almost equivalent. What really matters is the quotient between õ1 and
l̃1. This can be seen in the results of the search (Figure 5.30), where the grid search finds
multiple best solutions. I choose õ1 = 0.5 and l̃1 = −0.006/% as the starting points for the
iteration. The improvement of the best RMSE is slightly higher than when the τp was sm
varied.
These are again the starting values of the LLS adjustment. The adjustment uses (5.8),
so a soil moisture dependence of the amplitude and decay time of precipitation. That
means there are two additional parameters to the P3S model which might lead to an
improvement in RMSE. The adjustment with four soil moisture sensors also had eight
adjusted parameters apart from the event offsets. The best sensor choices there reached
RMSEs of around 0.134 µGal (see Table 5.5), so that is the benchmark for this model.
The results fall short of these expectations. The final RMSE is at 0.1374µGal, so the
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5. Hydrological analysis of gravity data

Figure 5.30.: The RMSE values of the grid search that compares different offsets and soil
moisture slopes for the precipitation amplitude

improvement over the constant parameter model P3S is barely noticeable. Figure 5.31
shows the response of the model for the October 2nd event.
The adjustment finds a solution of 920 h for o2 and −687min/% for l2, which agrees with
the findings of the grid search. The results for offset and slope of the amplitude cannot be
directly compared with the grid search as the P̃0 is between them. l1 has a positive value,
though. As the precipitation amplitude is negative, this means that the absolute value
of it decreases with higher soil moisture. The negative l2 means that the decay is lower
for wetter soil. From the physical standpoint, both slopes should have had the opposite
sign. This confirms that for the data and the pre-processing that I used, the soil moisture
dependence of the precipitation parameters has no significant benefits. I will compare
this model again in Section 6, where the model will be called P3SV for its soil moisture
variability.

Figure 5.31.: Response for the October 2nd event of the LLS-adjusted model that uses
three sm probes and two soil moisture-dependent parameters (P3SV)
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6. Evaluation and discussion

I have built mainly three different soil moisture models: P3S uses the data from three soil
moisture sensors as well as precipitation. P3SV uses the same data, but the precipitation
parameters are linearly dependent on soil moisture values before the rain. P7S uses
data from all seven useful soil moisture sensors that were available, but with constant
parameters. In this chapter, I will compare the performance of these models in terms of
RMSE and correlation coefficient, for data from the rain events that have fed the models
as well as for new data from 2023. I will also compare them with two baselines that use
only precipitation data: the Bouguer approach that was introduced by Schroth (2013)
and the OnlyP model that I developed in Section 5.2.1. Table 6.1 repeats the findings for
these different models for the 2022 events.

Table 6.1.: Comparison of the two baselines and the three major gravity models, the
number of parameters does not include offsets of the different events

model parameters mean cc RMSE [µGal]

Bouguer 2 0.761 0.186
OnlyP 2 0.8064 0.1642
P3S 8 0.8663 0.1375
P7S 16 0.8579 0.1305
P3SV 10 0.8684 0.1374

6.1. Number of sensors

6.1.1. Comparison of models with and without soil moisture

The results of Chapter 5 already suggest that adding soil moisture observations to the
gravity model improves the results. The OnlyP model cannot reach the levels in RMSE
and correlation that the models with soil moisture can. Table 6.1 also points out that
the soil moisture models have used more parameters than OnlyP. It is possible that these
improvements are only due to the increased degrees of freedom of the models. That is
why I am also trying a model that uses the precipitation data repeatedly with different
Gaussian kernels so that the number of parameters is the same as in P3S.
I call this model P4, as it uses precipitation convoluted with four different Gaussian
kernels. In a grid search, I find that, in contrast with the earlier precipitation decay times
of around 800 - 1000 h, these times are now lower. They do not get as low as with the
soil moisture data.
Figure 6.1 shows a visual comparison between the results after an LLS adjustment, the
basic model with only one precipitation timeseries and the model with soil moisture. P4
is only slightly different from OnlyP, while with soil moisture, the details like the location
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6. Evaluation and discussion

of the minimum on October 3rd are much better explained. In Figure 6.2, the RMSEs and
correlations for the eleven events are compared. It confirms that the P3S is the superior
model for almost all winter events. The first three events are in summer and late summer,
and they show less variation in the sm probes. For these events, the models without soil
moisture are sometimes better. In the overall RMSE and mean correlation coefficient,
P4 cannot reach the same values as the model with soil moisture. The improvement in
RMSE over OnlyP is only about 33% compared with P3S.

Figure 6.1.: Responses for the October 2nd event of the LLS adjusted models that use
precipitation with one Gaussian kernel (OnlyP), precipitation with four Gaus-
sian kernels (P4), or precipitation plus three soil moisture stations

Figure 6.2.: Comparison of the RMSE and cc values for the eleven events of P4 with two
other models

The results of this study suggest that using soil moisture as additional information is
beneficial. The improvements in results are far greater than have to be attributed to the
increase in degrees of freedom.
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6.1.2. Comparison of models with three and less soil moisture
sensors

The next question is whether one soil moisture sensor is enough or whether it is advan-
tageous to use more than one. To check this, I adjust a model with precipitation and
one soil moisture probe that is used three times by convoluting it with different Gaussian
kernels. It uses the sm data from Solidus 3,0, and I call it PS3. This model again has eight
parameters, so it can be easily compared with P4 and P3S. The overall RMSE improves
over the model that only uses precipitation but is also far away from P3S in terms of
RMSE. Interestingly, the mean correlation coefficient is very close to P3S. The full results
can be seen in Table 6.2.
I am doing the same comparison with a model that uses two soil moisture sensors but
also has eight parameters. It uses Solidus 1,0 with one Gaussian kernel, while Solidus
3,0 is convoluted with two different kernels. This model is called P2S3. For this choice
of sensors, the adjustment finds quite large decay times for all three sm sensors. There
is no obvious physical explanation for that. The RMSE only marginally improves and
remains far behind the value of the model that uses three different sm series. From this,
I conclude that the model with three sm probes is better than the ones with one or two
probes. This is only true with regards to the RMSE, as the mean correlation coefficient
value is similar across all three models. Figure 6.4 compares the model responses over
the October 2nd event. With more available information, the models are able to explain
more details of the gravity timeseries. Figure 6.3 shows the correlation coefficients and
RMSEs of the three models over all the events. P3S has the best RMSE over five out of
the eleven events, including most of the winter rains. In Section 5.2.5, I have seen that
using a fourth sm probe does not produce significantly better results than just adding a
second Solidus 1,0 series to the data. So it seems that three soil moisture probes is a good
choice for the model, and additional series mostly lead to a risk of overfitting. It has to be
noted, though, that this result likely depends on the selection of epochs. If I had chosen
the days for the adjustment differently, the best number of sensors might be another one.

Figure 6.3.: Comparison of the RMSE and cc values for the models using one, two, or
three sm probes. All models have eight adjusted parameters.
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Figure 6.4.: Responses for the October 2nd event of the LLS adjusted models that use
precipitation and one sm sensor (PS3), precipitation and two sm sensors
(P2S3), or precipitation plus three soil moisture stations (P3S). All models
have eight adjusted parameters.

Table 6.2.: Comparison of the P3S model with different approaches that use the same
data repeatedly, for example, four times the precipitation data. The τi of the
models are not necessarily related to the same observation data.

model τp [h] τ1 [h] τ2 [h] τ3 [h] RMSE [µGal] mean cc

OnlyP 884 - - - 0.1642 0.8064
P4 618 82 298 299 0.1555 0.8112
PS3 879 3.9 4.0 12.6 0.1495 0.8648
P2S3 997 28.4 21.7 22.1 0.1476 0.8674
P3S 832 11.0 3.0 11.9 0.1375 0.8663

One reason why adding soil moisture series to the data does not lead to big improvements
is the correlation between the sensors. Figure 3.10 depicts how different soil moisture
series are strongly or more weakly correlated. I concluded that probes that are closer to
each other are more strongly correlated. Probes that are positioned at a similar height
also have a higher correlation. The P3S model uses the probes 0 of Solidus 1-3. It includes
both probes at a higher (30 cm) and lower (50 cm) depth. It also uses information from
the northern cluster of sm stations (Solidus 1 and 2) and the southern region (Solidus 3
and TTGOPICO 4, see Figure 3.5). That is why additional probes only lead to a small
improvement of the model. One could achieve this by using one higher probe in the
northern region and a lower one in the south. This is exactly what P2S3 does, but as was
seen in Table 6.2, the model with the additional Solidus 2,0 is better. So the information
of a lower probe close to the higher probe, Solidus 1,0, seems to have helped the model.
But every other of the four probes is either from a station that is already used or it is
from a station close to and at the same height as a used sensor. That is why the P3S
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model is a good compromise between a limited number of parameters and using most of
the available information.

6.1.3. Investigating the benefits of using all soil moisture data

The final question I want to address is what the benefits of using the soil moisture measure-
ments from all seven sensors are. For that purpose, I adjust a model with 16 parameters
that uses the same three sm sensors of P3S as input. Solidus 1,0 and Solidus 2,0 are each
convoluted twice with Gaussian kernels, while Solidus 3,0 is convoluted three times. I call
this model P3S7.
Figure 6.5 shows the responses of P3S, P7S, and P3S7 over the October 2nd event. P3S7
describes the intermediate maximum better than P7S. The latter model has a course that
is closer to the data in the morning of October 2nd, and in general, it shows a compromise
where the difference to the measurements is never too big but the small details are not
really recreated. This explains the decrease in the mean correlation coefficient (see Table
6.3). Figure 6.6 compares the RMSE and correlation values of the three models over the
events. While P7S has a lower RMSE than P3S on almost every event, the comparison
with P3S7 is much closer. Both models show a better result for about an equal number
of events.
The overall RMSE of P3S7 is 0.1337 µGal. This is not quite as good as the P7S model.
The improvement over P3S is about 54% of when using the new four probes (see Table
6.3). So in this case, there is value in adding sm data, but it seems that the benefits of
adding become smaller. I will see in Section 6.3 whether this model is only better for the
data that it was fed with or whether it also produces better results on new data.

Figure 6.5.: Responses for the October 2nd event of the LLS adjusted models that use
precipitation and three sm sensors (PS3), precipitation and three sm sensors
with repeated convolutions (P3S7), or precipitation plus seven soil moisture
stations (P7S).

The model responses like those in Figure 6.5 and mean correlations of around 0.85 show
that finding the hydrological signature by using precipitation and soil moisture data is
possible. Most of the details in the variations in Figure 6.5 are recreated by the models,
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even though the model was adjusted with ten more events. The exact modeling of the
amplitude of the gravity decrease and the rate of recovery after the rain cannot quite be
achieved, and the fit is not as strong for all the events.
You can never be certain how much of a gravity signal is hydrologically caused. Especially
the atmosphere always has to be taken into account as a possible signal source. But
especially the gravity variations in the afternoon of October 2nd show strong signs of the
hydrological influence. The stopping of the gravity drop and then a second drop is very
closely explained by PS3, so it is likely that this gravity change mainly has hydrological
causes.

Figure 6.6.: Comparison of the RMSE and cc values for the models using three or all seven
sm probes. The latter two models both have sixteen adjusted parameters.

Table 6.3.: Comparison of the models using three and all seven sm probes. P3S7 has the
three probes multiply convoluted so that the model has the same number of
parameters as P7S

model mean cc RMSE [µGal]

P3S 0.8663 0.1375
P3S7 0.8645 0.1337
P7S 0.8579 0.1305

6.2. Leave-out validation

One important question in the evaluation of the models is how well they can be applied
to time windows that were not part of the modeling. Because very little physical consid-
eration has gone into the building of the models, their applicability is very uncertain. If
they show a good performance in predicting the gravity variations of such events, that
means that the found parameters hold information about the general trends of gravity
variations following a rain.
In this section, such an analysis is done by leaving out three of the eleven events in the
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modeling and assessing the performance of these variations of the models on the three
events that were left out. This is called leave-out validation. The models will be compared
amongst themselves and with the Bouguer approach.
For the analysis, the three final rains, which happen in October and November, are omit-
ted from the modeling. Starting values are determined for the different models by carrying
out grid searches on the eight modeling events. Just using the starting values from Chap-
ter 5, which resulted from grid searches with all eleven events, would induct information
from the final events into the models and thus falsify the results. The non-linear least-
squares adjustment is then done as described in Section A.3. Figure 6.7 compares the
results of this validation for the two models that use only precipitation, the Bouguer ap-
proach and the data-driven model OnlyP, over the first left-out events. It is clear that
the advantage of the data-driven model in Section 6.1 has disappeared. The Bouguer
approach follows the overall variations of the gravity measurements better. Over these
three days, the correlation coefficient of the Bouguer approach with the measurements is
0.86 while OnlyP is at 0.81.
Figure 6.8 shows the correlation coefficients and RMSE of the Bouguer and the OnlyP
models over the three events that were left out of the modeling. The OnlyP model is
much more inconsistent over these three events than the Bouguer model. It has a very
bad result for the second event. The overall result of the Bouguer model is better (see
also Table 6.4).

Figure 6.7.: Comparison of the gravity response of the Bouguer approach and the OnlyP
model over the October 21st event during the leave-out validation. This is
one of three events that are left out of the modeling of OnlyP.

A comparison of the Bouguer-based model with the three models that use soil moisture
shows similar results. The data-driven models do not show significant improvements over
the Bouguer approach and even perform worse on many occasions. Figure 6.9 shows the
gravity responses of these models over the October 21st model, and Figure 6.10 compares
the overall results of all three events. The P3S and P3SV models have comparable results
to the Bouguer one, while the P7S model is the worst of the four models on two of the
three events.
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Figure 6.8.: Comparison of the performance of the Bouguer approach and the OnlyP
model over three events. The latter model was determined without these
three events.

Figure 6.9.: Comparison of the gravity response of the Bouguer approach and three mod-
els that use soil moisture over the October 21st event during the leave-out
validation. This is one of three events that are left out of the modeling.

Table 6.4 summarizes the results of the different models over the three left-out events and
compares them with the full models that included all eleven events. None of the models
represents a significant improvement over the Bouguer approach. P3S and P3SV are at
least very close to the Bouguer model, and P3S is slightly better in the overall RMSE.
As expected, the results are far behind the models that included these three events. The
gap is particularly strong for the OnlyP and P7S models.
So these results suggest that the application of models to new events is difficult. The
Bouguer baseline performs at least as well as the new models. To assess whether this is
true for the full models that include all 33 days for the modeling, I will also apply these
models to completely new rain events.
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Figure 6.10.: Comparison of the performance of the Bouguer approach and three models
that use soil moisture over three events. These models were determined
without these three events.

Table 6.4.: Comparison of the two baselines and the three soil moisture-included gravity
models being applied to the three 2022 rain events that were left out of the
modeling. The final two columns show the results of the full models over these
three events.

leave-out validation full model
model mean cc RMSE [µGal] mean cc RMSE [µGal]

Bouguer 0.8831 0.1509
OnlyP 0.5522 0.1988 0.7032 0.1665
P3S 0.8761 0.1427 0.9187 0.1182
P7S 0.6985 0.2127 0.9063 0.1169
P3SV 0.8748 0.1583 0.9171 0.1194

6.3. Application to new data

To obtain new rain events, data at the beginning of 2023 is used. The challenge of finding
a period to compare the models is that all the input data, the different soil moisture
sensors, precipitation, and gravity, need to be available without interruptions or high noise
levels. Figure 6.11 shows the soil moisture measurements of Solidus #1 from the end of
my previous analyses (2022, December 20th) until the point up to which the data are
available at the time of this evaluation (May 2023). The station had already experienced
some data gaps in the end of 2022. There is a big gap between 2022, December 24th, and
2023, January 27th. In this period, both probes only reported values of 0% soil moisture.
As Solidus #1 is part of all of my gravity models that use soil moisture, I am using rain
events from February and March of 2023. One long event is visible on February 3rd and
4th. In March, there are at least three more peaks in soil moisture.
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Figure 6.11.: Outlier filtered soil moisture measurements of both probes of Solidus #1 in
2023 and the end of 2022. You see the long data gap during most of January.

I am choosing the rain events by the daily amounts of precipitation (Figure 6.12). Four
events are chosen (Table 6.5). The pre-processing of gravity is done as described in
Chapter 4. The atmospheric factor of the previous adjustment of f = −0.246µGal/hPa
is kept. The removal of oscillations is done with the Delayed Tide Adjustment, where
the delay and amplitude of the correction are adjusted with the data from the whole
time period between January 2022 and March 2023. The timeseries of gravity residuals
(Figure 6.13) shows another restriction in choosing the period of comparison: There are
big outliers in gravity at the beginning of February. The cause is the 7.8MW earthquake
on February 6th that occurred near the border between Turkey and Syria (GEOFON GFZ
Potsdam, 2023c). The spikes in the measurements are so big that even after the outlier
filtering, strong peaks remain. This supports the understanding that earthquakes that
are closer to the SG cause bigger and longer disturbances compared to earthquakes of the
same magnitude that are further away. Because of this, the rain event at the beginning
of February can only be analysed until February 5th.

Figure 6.12.: Daily precipitation during the first three months of 2023
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Figure 6.13.: Gravity residuals of G1-F60 over the first three months of 2023 after all the
corrections, including a removal of linear trend and a final outlier filtering,
have been carried out

Table 6.5.: Rain events in 2023 with soil moisture data from Solidus #1, probe 1

day sm before [%] sm max [%] prec [mm/d]
February 3rd 6.53 13.54 9.4
March 9th 6.12 10.81 17.4
March 13th 8.68 14.7 22.5
March 24th 6.45 10.62 14.5

First, I am comparing the two baselines that only use precipitation as input. The first
model is the Bouguer approach that was established by Schroth (2013). The second
one is the OnlyP model that I have developed in Section 5.2.1. Figure 6.14 shows the
responses of the two models for the February 3rd event. Both models have a much too
small decrease in gravity when the rain happens. The fast rebound after the rain is only
somewhat captured. The models have very similar results for the four events (Figure
6.15). The mean correlation coefficient for both is around 62% (see Table 6.6). Even for
the Bouguer approach, that is lower than the results of the eleven events of 2022, where
they were in the high 70s. The reason for this is the bad results for event 4. That event
includes a fast gravity increase of about 1µGal during the third day (Figure 6.16). None
of the available models are able to recreate this increase. It is most likely caused by a
decrease in pressure ahead of a second rain on the afternoon of March 26th.
The problem of the modeled gravity decrease being too small remains for the three models
that use soil moisture. None of them are able to recreate the course of gravity any better
than the baseline model (Figure 6.17). This supports the notion of Section 6.2 that these
data-driven models cannot really be applied to new events. Apart from event 2, the
Bouguer baseline has better fits with the measurements (Figure 6.18). The results of
the P3S model and the model with soil moisture-dependent precipitation parameters are
almost the same. P7S performs slightly better than the other two models but still cannot
reach the same accuracy as the baselines (see Table 6.6).
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Figure 6.14.: Gravity responses of the two baseline models over the February 3rd event

Figure 6.15.: The correlation coefficients and RMSE for the two baseline models over the
four 2023 rain events

Figure 6.16.: Gravity responses of the two baseline models over the problematic March
24th event
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Figure 6.17.: Gravity responses of the three models that use soil moisture and the Bouguer
baseline over the February 3rd event

Figure 6.18.: Correlation coefficients and RMSE for the three models that are using soil
moisture and the Bouguer baseline over the four 2023 rain events

Table 6.6.: Comparison of the two baselines and the three soil moisture included gravity
models being applied to the four 2023 rain events

model mean cc RMSE [µGal]

Bouguer 0.6188 0.1834
OnlyP 0.6208 0.1805
P3S 0.5154 0.2217
P7S 0.5146 0.2231
P3SV 0.5161 0.2195
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7. Conclusion

I have built three main data-driven gravity models that use the data from the precipita-
tion gauge and different soil moisture sensors. The linearized least-squares algorithm is
well suited for solving this non-linear problem. The model responses describe the gravity
well for the epochs of the adjustment. The mean correlation coefficients over eleven rain
events reach about 0.86 while the RMSE of P3S is about 26% lower than that of the
Bouguer baseline. Using a convolution with the latter half of a Gaussian kernel for both
the precipitation measurements and the soil moisture data produces a good match with
the measurements. Different kernels, especially for precipitation, are almost equally good,
though.
Using the soil moisture data strongly improves the fit to the gravity series. These results
cannot be recreated by reusing precipitation measurements. More soil moisture sensors
improve the RMSE values, but these improvements become smaller and smaller. Espe-
cially after the third sensor, the results of adding a new sensor can almost be achieved
by using another sensor for a second time. The correlation is also not improved after the
third probe. Using data from soil moisture stations in a different location showed a strong
benefit. This suggests that it could be advantageous to deploy the soil moisture stations
more evenly in the forest as opposed to the more cluster-like layout of 2022. Using the
new station, Solidus #8, which is almost directly above the SG, will probably yield a
significant improvement.
Despite a good modeling performance, I did not find physical significance in the param-
eters. Some of the amplitudes always have a not-expected sign, and there is no trend
in the parameters over the year when they are adjusted for each rain event individually.
That is why the modeling with variable parameters is not able to significantly improve
the results. It is likely that with different pre-processing and perhaps a different gravity
model, one could come to a different conclusion.
Using the adjusted models on new events in 2023 without changing any parameters does
not yield good results. The RMSE and correlation values of the models that use soil
moisture lag significantly behind the Bouguer baseline. A sample size of four events is
not large, but the trend is clear. These models are able to explain the events for which
they were adjusted, but they do not fit these new events well. I hoped that by using so
many events, the resulting models would hold general trends of the gravity response to a
rain, but the analysis of the 2023 events did not confirm these hopes.
The leave-out validation confirmed that the data-driven models are usually slightly worse
than the Bouguer baseline in application to new data. The correlation was higher than
in the 2023 events, which is probably due to the nature of the rain events. The 2023
events have lower amounts of rain and are therefore more difficult to model. In both the
leave-out validation and application to the 2023 data, the P7S performed the worst of all
the models, so just adding more soil moisture data does not result in a more universally
applicable model.
A number of steps in my procedure have probably contributed to the failure of the trans-

90



Conclusion

mission of the models. The choice of the atmospheric factor of −0.246 µGal/hPa is un-
fortunate for this work as I am always analysing 72 hours of gravity data. For such a
time window, higher frequencies are more important, and they need a factor closer to
−0.3 µGal/hPa. Ideally, a frequency-dependent atmospheric factor should be used (Hin-
derer et al., 2007). Because of this, pressure changes with periods of hours to a few days
leave big disturbing signals in the gravity residuals, and some events, like the one on
March 24th, 2023, become completely unusable.
The choice of the observation equation is probably not ideal. The different timeseries
were convoluted with different kernels and added together. What physically happens is
that there is a certain overall moisture of the soil, which has a gravimetric impact. The
precipitation and soil moisture measurements are all direct or indirect observations of this
quantity. One could first compute these observations together, for example, by averaging
the soil moisture values and then correcting gravity according to this average. A model
that uses less adjusted parameters would probably be better applicable. For a smaller
number of parameters, it is also more likely that these are physically meaningful, or you
could force them to have the sign that you would expect.
I recommend that in a future development of such a model, one should also always check
the interim models with outside epochs to make sure that one does not develop a model
that is overfitted for the adjustment period.
The size of the adjustment epochs is probably also not sufficient. I applied the models to
rain events in spring, while the models were adjusted for rain events mostly in autumn.
If there are more events throughout the year, an adjustment is more likely to pick up on
overall behaviour in the gravity response and does not just fit for a few events. If the
pre-processing is done more cleanly, it is also imaginable to use continuous time periods
for the adjustment.
Some results, like the mean correlation of more than 0.85 of the P3S model in the leave-
out validation, show that the approach has promise. This gives hope that when the
mentioned improvements are carried out and the data are of high enough quality, it is
possible that the gravity residuals can lead to new insights into uplift or subsidence of the
ground, into geological processes, or into ground water levels. As I have only analysed
short time windows of gravity and have always adjusted an offset for these events, there
are no insights possible into ground water level. With a continuous investigation period,
this could be possible and could become one of the most important applications of an SG.
An instrument, for example, in southern Europe or California, could find many insights
into an issue that is rapidly becoming a central one of the modern world.
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A. Used methods of adjustment theory

The central goals of this work are all connected to estimating numeric parameters, e.g.,
what is the best value for the atmospheric factor in the correction of this influence?
What is the amplitude and decay time of a best-fit between a precipitation and gravity
timeseries? Sometimes a lot of parameters that are connected have to be estimated
simultaneously; sometimes it is only one parameter. Three different approaches will be
used for this estimation.

A.1. Grid search

The easiest way to search for parameters in a parametric optimization problem with no
more than a handful of parameters is the grid search. You try different values of a set
of parameters and choose the best values of the parameters by comparison of a certain
metric (Wikipedia contributors, 2023a).
This method only works when the range of values for the parameters is roughly known
and when there are only one or two parameters to be estimated simultaneously. With
more dimensions, grid search quickly becomes very slow. The task is usually to estimate
a float number and not a number from a discrete set of possibilities (except for the delay
in Section 4.4). This is, in principle, an issue for grid search, as it always tries out a
finite number of solutions. A solution for this is an iterative approach; for example, if one
parameter is searched between 0 and 10, then first of all every integer (0, 1, 2, . . ., 10) is
checked. If the two best results were 5 and 6, then the next iteration checks 5.0, 5.1, . . .,
6, and so on.
The advantages of grid search are that it is easy to understand, and (unlike the iterative
least-squares adjustment), it is very unlikely that within an adjustment procedure one
finds a local minimum that is not the global minimum, as basically all possibilities are
tried. Grid searches will be applied in most situations when no more than two parameters
are searched.

There are a wide range of metrics that are used to determine the best values of the
parameters. Of course, they will also be used in the other methods to assess the quality
of the results that were found.
The most obvious metric is the RMSE (root-mean-square-error). For two timeseries
(ai)ni=1, (bi)ni=1 the RMSE is (Willmott et al., 1985)

RMSE(a, b) =
√
∑n

i=1(ai − bi)2
n

. (A.1)

This is the difference between the timeseries and, for example, gives an idea of the mag-
nitude of how far the fitted model is away from the data. Sometimes one sets b as the
mean value of a. In this case, RMSE(a,ā) is equivalent to the standard deviation of a,
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which in some situations is desirable to minimise. One disadvantage of the RMSE is that
it can sometimes be misleading. For example, if one timeseries shows the same trends as
the other but is consistently higher, this will result in a big RMSE despite both variables
being very similar. That is why it is very important to also look at the correlation.
The correlation tells about the statistical dependence of two timeseries (Senthilnathan,
2019). It answers the questions of how much information a holds about b. In this work,
the quantity that will be analysed is the correlation coefficient, as it is not dependent on
the magnitudes of the timeseries. It is calculated by (Pearson, 1896)

ρ(a, b) = cov(a, b)
σ(a)σ(b) =

1

n − 1
∑n

i=1(ai − ā)(bi − b̄)
σ(a)σ(b) , (A.2)

where cov(a, b) is the covariance between a and b, σ(a) is the standard deviation of a,
and ā is its mean value. This always gives a value between -1 and 1, where 0 means that
both timeseries are statistically independent and 1 means they are completely linearly
dependent. A negative value means there is an anticorrelation, meaning a higher value
in a more often than not coincides with a lower value in b. The correlation coefficient is
therefore very straightforward to interpret. Together with the RMSE, these two metrics
usually give a very good idea of which timeseries is a good fit and which ones are not.
One analysis that can be a good supplementary assessment is the spectral analysis.
A signal can be decomposed into an infinite series of sinusoid oscillations with different
frequencies. A spectral analysis finds the amplitudes of the different frequencies and
therefore allows a conclusion about which periods mainly make up the signal. The usual
method of choice here is the Fourier transform, but this requires equally spaced points.
As this is not always guaranteed in the available data, for example, in the soil moisture
measurements, the Lomb-Scargle periodogram is used instead. As this will be used for all
spectral analysis, the comparability of the different analyses is ensured. The Lomb-Scargle
periodogram is defined as (Lomb, 1976)

PLS(f) =
1

2σ2

⎛
⎝
[∑N

k=1(ak − ā) cos(2πf(tk − τ))]
2

∑N
k=1 cos

2(2πf(tk − τ))
+
[∑N

k=1(ak − ā) sin(2πf(tk − τ))]
2

∑N
k=1 sin

2(2πf(tk − τ))
⎞
⎠
.

(A.3)
The time tk is the observation time of ak, σ is the standard deviation, and the delay τ
has to satisfy

tan(2(2πf)τ) = ∑
N
k=1 sin(2(2πf)tk)
∑N

k=1 cos(2(2πf)tk)
. (A.4)

The Lomb-Scargle periodogram can be used to compare whether two timeseries show
similar peaks. Sometimes it is also desired that certain peaks disappear or become lower,
so one might use the periodogram and choose the value that has the lowest or fewest
peaks visible in a certain section.

A.2. Least-squares adjustment

The following section is based on Großmann (1969).
The most important tool of geodesists when estimating parameters is, of course, the least-
squares adjustment. It is used when the unknown parameters x are believed to have a
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linear relationship with the data y:

y = Ax + e, (A.5)

where y, x, and e are vectors, while A can be a matrix. The vector e holds the incon-
sistencies. Usually (and reasonably) there are more measurements (let the number of
measurements be called m) than unknown parameters (let the number of parameters be
called n), and therefore the linear equation system Ax = y cannot be solved without the
inconsistencies e. The aim is to find a set of parameters that minimizes ∥e∥ or equiv-
alently eT e = ∑n

i=1 e
2
i , hence the name

”
least-squares“. In a more general approach, the

observations can be weighted with a quadratic matrix P , then the weighted least-squares
eTPe is minimised. If the weight matrix P is diagonal, that means that the values on
the diagonal represent a level of confidence in their respective observation (the value pii
corresponds to the weight of the observation yi). If there are also non-zero values away
from the diagonal, this models correlations between the observations. For example, if y
is a vector of gravity measurements, one might assume that a too high value in the first
epoch can mean that the second measurement will be too high as well, maybe due to
drift. However, such modeling is beyond the scope of this work, and drifts are usually
eliminated before any parameter estimation, so P will always remain a diagonal matrix.
The estimation is done by the formula

x̂ = (ATPA)−1ATPy. (A.6)

This estimation ensures that eTPe becomes minimal. It is also an unbiased estimator
of x, meaning the expected value of x̂ is x. If one assumes that the inconsistencies e
are random mistakes in the observations that are distributed with a normal distribution
around 0 (values closer to zero have a higher probability) and P −1 as covariance matrix,
the estimator actually finds the parameters that maximise the probability density func-
tion.
The result will satisfy the orthogonality condition ATP ê = 0, where ê = y − ŷ = y − Ax̂.
This condition can be used to make sure that the computations were done correctly.
The matrix ATPA is a quadratic matrix with n rows, and as in this work, only a handful
of parameters are estimated at the same time, the inversion and so the adjustment can
be carried out very quickly.
This method basically always finds the globally best set of parameters. Unfortunately, it
cannot be used most of the time, as real-world problems very rarely show a linear relation-
ship between the parameters and the data. Usually this relationship is more complicated;
for example, an exponential decay will be assumed between the measurements of the rain
gauge and the gravity data. This cannot be written in the form of A.5, and therefore a
different approach is needed. This is the iterative least-squares adjustment.

A.3. Non-linear least-squares adjustment

The following section is based on Marquardt (1963).
For this method, a non-linear relationship between the parameters and the observations
is assumed:

y = f(x). (A.7)
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If a good approximate value x0 is available, the difference between the function values at
x0 and x almost solely depends on the linear part of f and so on the partial derivatives
of f :

f(x) − f(x0) ≈ ( ∂f
∂x1
(x) ⋯ ∂f

∂xn
)
x=x0

⎛
⎜
⎝

∆x1

⋯
∆xn

⎞
⎟
⎠
, (A.8)

where ∆x ∶= x − x0. The error of the mistake in the aprroximation is of the magnitude
O(∆x2), which underlines the importance of good approximate values.
The equation of A.8 is now very similar to the case of the linear relationship. The
unknowns are now ∆x, which are the improvements of the approximate value x0. The
measurements are now the reduced observations: ∆y ∶= f(x)− f(x0) = y − f(x0). Finally,
the design matrix A is now the partial derivatives of f :

A ∶= ( ∂f
∂x1
(x) ⋯ ∂f

∂xn
)
x=x0

. (A.9)

With these designations, (A.8) can be written as

∆y = A∆x. (A.10)

So, ∆x can be estimated with a normal least-squares adjustment: ∆̂x = (ATPA)−1ATP∆y.
The resulting ∆x is, as mentioned, the improvement of the approximate values x0:
x̂ = x0 + ∆̂x. As the relationship f between parameters and observation was linearized,
one such adjustment is usually not enough to find a good estimation of x. Rather, the
found x̂ is believed or hoped to be a better approximation of x than x0. So x̂ can be
used as the new approximate value for another adjustment. This therefore becomes an
iterative approach that continues until the improvements ∆̂x become smaller than some
small value, at which point the iteration is stopped and one hopes that one has arrived
at a good result for x̂. To try to verify this, the main check ATP ê = 0 ? (see Figure A.1)
is carried out. Figure A.1 shows a flowchart that summarizes the iterative computations.

Figure A.1.: The sequence of computations for the non-linear least-squares adjustment
(own diagram)

98



A.3. Non-linear least-squares adjustment

There is one important addition to this algorithm that is often used in this thesis: the
iterative least-squares adjustment is not a very stable procedure, meaning it is not unlikely
that the iteration heads off in a completely wrong direction and gets stuck there with
unreasonable results. This is especially the case because, in most situations, it is difficult
to find good approximate values for all parameters. One also does not want to try and
execute the iteration many times in the hope that, at some point, good results are found.
Instead, the adjustment is given some a priori information. So far, y was always a vector
that just included all the measurements. Now there will be additional rows that include
the starting values. For example, the m + 1st row of the observation equation A.7 might
read:

a1,0 = a1. (A.11)

Here, a1 is an amplitude, one of the parameters that is estimated, and a1,0 is its approx-
imate value right at the beginning of the iteration. This value represents a somewhat
reasonable result, and the line prevents the iteration from going completely off with a
value for a1 that is far too high or too low. This artificial observation also needs a weight
in P so that the strain is neither too strong so that the iteration never moves away from
a1,0 nor too weak, so there is the danger that the iteration goes off to an unrealistic result
for a1. This is a common method, for example, in the adjustments of photogrammetry
when the attitudes of a camera are estimated alongside the measured points from a mea-
surement campaign.
This method can also be found in adjustment theory, though. The usual approach for reg-
ularisation, which means stabilising a badly conditioned system of equations, i.e., ATPA
is close to being singular, is the Tikhonov regularisation. In its generalized form, where
one wants to minimise the distance between the x and x0, weighted by the matrix Q,
in addition to solving the linear system of equation Ax = b in a least-squares sense with
weights P , the Tikhonov regularisation reads as follows (Wikipedia contributors, 2023b):

x∗ = (ATPA +Q)−1(ATPb +Qx0). (A.12)

This is the case of a linear adjustment, so for a comparison, the corresponding values have
to be exchanged: x∗ is now ∆x∗ = x∗−xk (in this work the estimation is indicated by a hat
instead of a star); here, xk means the estimated parameters after k iterations, to be able to
distinguish this from the start values x0 at the very beginning of the iteration. b becomes
∆b (it was so far called ∆y), and A now includes the partial derivatives of the observation
equation. In the linear case, ∥x − x0∥Q was intended to be minimised. In the non-linear
case, the update ∆x is the unknown, and therefore ∥x − x0∥Q = ∥(x − xk) − (x0 − xk)∥Q is
now the minimised quantity. This means that the a-priori information is x0 − xk. The
formula (A.12) in a non-linear approach thus reads:

∆x∗ = (ATPA +Q)−1(ATP∆b +Q(x0 − xk)). (A.13)

Why is this equivalent to the formulas that were presented earlier? The goal is now to
rewrite the update step of the algorithm in Figure A.1 to (A.13). In the remainder of the
chapter, all the variables from the notation of the Wikipedia article will be underlined,
while the previous designations will not be.
The observation equation (A.7) in this work consists of two parts. First, there are the
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observations ỹ. The final few lines of the equations are the parameters with their respective
starting values:

ym+1 ∶ p1,0 = p1, (A.14)

. . .

ym+n ∶ pn,0 = pn.

p1 describes the first unknown parameter, p1,0 is its starting value, and so on. These
equations have to be partially derived after the parameters, which is trivial: the m + 1st
line of A has a 1 in the first column and zeros everywhere else, the m + 2nd line has the
one in the second column, etc. That means A will have the partial derivatives of the
observations in the first m lines, as if there were no stabilisation. This matrix will now
be called Ã. The final n rows of A are simply a unit matrix:

A = (Ã
In
) . (A.15)

The weight matrix P includes the normal weights of the observations in the matrix P̃ and
then the weights for the stabilisation, which I call Q:

P = ( P̃ 0m×n
0n×m Q

) . (A.16)

The zeros away from the diagonal appear because, as mentioned earlier, the weight ma-
trices are always diagonal.
Finally, the reduced observation ∆y = y − f(xk) needs to be described. The first m lines
are the usual difference between the observations (designated ỹ) and the model of the so
far estimated parameters (f̃(xk)). The final n lines are because of Equation (A.14) the
differences between the starting values x0 and momentary parameters xk. This means:

∆y = (ỹ − f̃(xk)
x0 − xk

) . (A.17)

With these designations, the update step (see Figure A.1) reads as

∆̂x = (ATPA)−1ATP∆y

= ((ÃT In)(
P̃ 0m×n

0n×m Q
)(Ã

In
))
−1

(ÃT In)(
P̃ 0m×n

0n×m Q
)(ỹ − f̃(xk)

x0 − xk
)

= (ÃT P̃ Ã +Q)−1(ÃT P̃ (ỹ − f̃(xk)) +Q(x0 − xk)).

Now this just needs to be brought into the same designation as Equation (A.13). Ã is
just the normal design matrix, so it is A. P̃ is the same as P because it is the weights
of the observations; ỹ − f̃(xk) is the reduced observation without the stabilisation, so it
is ∆b. So the final result is:

∆x∗ = (ATPA +Q)−1(AP∆b +Q(x0 − xk)). (A.18)

This is exactly what was to be shown (Equation (A.13)). So the approach used is equiv-
alent to a generalized Tikhonov regularization in the linearised case.
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B. Proof of Equation 4.3

In this section, it will be proven that you can always find real-valued parameters si and
ci so that

4

∑
i=1

(ai sin(fit + ϕi)) + c0 + e(t) =
4

∑
i=1

(si sin(fit) + ci cos(fit)) + c0 + e(t). (B.1)

holds. This equation was used in Section 4.4 for the Least-Squares Spectral Analysis to
eliminate residual oscillations in the gravity data.
First of all, I will deduce what the new amplitudes si and ci must be, and then I will show
why this choice indeed satisfies (B.1):
I will show that for an arbitrary index i, with given values of ai, ϕi, and fi, there exist
real-valued amplitudes si and ci such that

ai sin(fit + ϕi) = si sin(fit) + ci cos(fit) (B.2)

holds. First, certain values for t are tried so that some components of this equation
disappear. For t = 0, this yields:

ai sin(ϕi)
(B.2)= si sin(0) + ci cos(0) = ci.

This is the constraint for ci. The second constraint is found by choosing t = π/(2fi):

ai sin(π/2 + ϕi) = ai cos(ϕi)
(B.2)= si sin(π/2) + ci cos(π/2) = si.

These are the searched-for choices for the new amplitudes. They will now be inserted into
the right side of (B.2), and the identity will be shown:

r.s. = si sin(fit) + ci cos(fit)
= ai cos(ϕi) sin(fit) + ai sin(ϕi) cos(fit)
= ai(cos(ϕi) sin(fit) + sin(ϕi) cos(fit))
= ai sin(fit + ϕi) = l.s.

The penultimate equality results from the first addition theorem (Forster, 2016). So the
equality was shown, and the adjustment can be done linearly.
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C. Model based on the correlation
coefficient

A model can also be developed with a focus on correlation. In this section, I will briefly
present the analyses that I did with this goal. The steps are analogous to the model
building in Chapter 5.

C.1. Data-driven model with just precipitation

A simple exponential decay will be taken into consideration:

∆gi = P0

i

∑
j=i−N

rj exp(−
i − j
τ
) . (C.1)

To get a first idea of possible results, a grid search is carried out, testing values for τ
between 2 and 2002 hours. The different values are tested successively, and a best-fitting
P0 is adjusted by a least-squares adjustment. The observation epochs are the eleven events
with three days of gravity data each. The observation model is that of (C.1) only with
an added offset ck for the different events, as the observation epochs are not continuous.
Figure C.1 shows the mean RMSE over the eleven events for the different choices of τ .

Figure C.1.: Result of the grid search for the decay time, only using precipitation data,
the best time for correlation coefficient is highlighted

The RMSE and the mean correlation coefficient (cc) show the best values for very high
decay times, around 800 to 1200 h. The best mean correlation coefficient reaches about
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C.1. Data-driven model with just precipitation

0.7947.
A latter half of a Gaussian kernel is also tried. It is computed by

kG(d) =
1√
2πσ

exp(− d2

2σ2
) . (C.2)

A grid search with this kernel finds a slightly higher maximum correlation of 0.8082 at a
similar decay time. Going further in this direction, the exponent of d could be increased
further. Another grid search is done with the following Degree-Three kernel:

kT (d) = exp(−
d3

3σ3
) . (C.3)

The prefactor is left out as it would only influence the value of the found amplitudes, so it
is irrelevant. Figure C.2 shows the results with a slightly improved maximum correlation
at 0.8156.

Figure C.2.: Result of the grid search for the decay time, only using precipitation data,
with the Degree-Three kernel

Any further increase of the exponent of d only marginally improves the correlation coef-
ficient, while the mean RMSE gets slightly worse. So after these tests, it remains to be
seen whether the exponential decay, the Gaussian kernel, or the Degree-Three kernel is
ideal for precipitation. For the rest of the section, the exponential kernel is used.
An LLS adjustment is carried out with the results of the grid search as starting values.
The iteration is done as described in Section A.3.
In the iteration, τ rises further until it converges at 926 h. The iteration finds a similar
value for the amplitude in â = −0.032µGal/mm. Figure C.3 shows the course of the it-
eration over the October 2nd event; every twentieth iteration is displayed. At the end
of the iteration, after 70 loops, the RMSE stands at 0.16185 µGal. The magnitude of
improvements also constantly decreases, as intended. It is simply the case that, with only
precipitation data, the iteration cannot find any better results.
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C. Model based on the correlation coefficient

Figure C.3.: The resulting timeseries of the LLS adjustment with only precipitation used
with the Degree-Three kernel

The mean correlation coefficient of the events has very slightly decreased to 0.7938 from
the 0.7947 of the grid search. The reason for this is that least-squares adjustment always
means optimizing parameters with regard to the RMSE. That is not equivalent to the
correlation coefficient, and in this case, the grid search also found lower RMSE values for
decay times around 1000 h (see Figure C.1). Still, the mean correlation is higher than in
the Bouguer approach. Figure C.4 compares the correlation coefficients between these two
corrections. The newly adjusted model performs equally or better on all events except 7
and 10.

Figure C.4.: Comparison of the correlation coefficients and RMSE over the events of the
Bouguer approach and the new precipitation correction resulting from the
LLS-adjustment

To improve on this, in the next chapter, the soil moisture data will be used.
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C.2. Data-driven model with one soil moisture sensor

C.2. Data-driven model with one soil moisture sensor

The new observation equation for a correction with one soil moisture probe reads:

∆gi = P0

i

∑
j=i−N1

rj exp(−
i − j
τp
) + P1

i

∑
j=i−N2

sj exp(−
(i − j)2
2τ 2

) + ck. (C.4)

Now sj is the soil moisture reading at time j.
Just like in the last section, I will do a grid search to get an idea of what kind of τ
produces good results. This time, τp = 200,240, . . . ,1000h and τ = 6,7, . . . ,27h are tried,
and P0, P1, and ck are adjusted with a least-squares adjustment.
The results of this grid search again heavily favour long decay periods for τp, where the
best results all occurred at 1000 hours. For the soil moisture, the best values for RMSE
and mean correlation coefficient appear for periods between 10 and 16 hours, with the
highest mean correlation coefficient reaching 0.8316. Figure C.5 shows all the computed
values of the mean correlation coefficient. With longer times for τp, the mean correlation
coefficient rises up to about 0.84 at 2000 h, but the RMSE value worsens, so only the best
result until 1000 h is used.

Figure C.5.: CC values of the grid search using precipitation and one soil moisture probe

Another comparison of the kernels again shows slight advantages for the other presented
alternatives. Using the Gaussian kernel for precipitation in the same analysis yields a
maximum correlation coefficient of 0.8569 while the Degree Three kernel reaches 0.8664.
The full results of the latter grid search are shown in Figure C.6. Figure C.7 shows a
comparison of the RMSE values and the correlation coefficients of the best results of the
three grid searches. You can see that there is no clear best solution, but the results vary
for the different events. The Degree Three kernel has its advantages in the two summer
events but does not perform so well for the events 10 and 11.
Because of the higher mean value of the correlation, I choose the last kernel to use for
precipitation in the further analyses. So the new observation equation is:

∆gi = P0

i

∑
j=i−N1

rj exp(−
(i − j)3
3τ 3p

) + P1

i

∑
j=i−N2

sj exp(−
(i − j)2
2τ 2

) + ck. (C.5)
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C. Model based on the correlation coefficient

Figure C.6.: CC values of the grid search using precipitation with the Degree Three kernel
and one soil moisture probe

Figure C.7.: RMSE and cc values over the eleven events of the models with one soil
moisture probe and precipitation with different kernels

Figure C.8.: Modeled gravity with the result of the LLS-Adjustment with precipitation
with the Degree Three kernel, one soil moisture probe
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C.3. Data-driven model with two soil moisture sensors

In the LLS adjustment, the decay times both become slightly lower, with τ at 11.8 h and τp
at 888 h. The mean correlation coefficient again slightly decreases over the starting values
to 0.8631. The resulting model over October 2nd (Figure C.8) looks slightly smoother
than with only precipitation (Figure C.3) and resembles the true signal more closely.

C.3. Data-driven model with two soil moisture sensors

In this section the data from the first probe of Solidus #2 will be used in addition to the
previously used probe 0 of Solidus #1. The observation equation becomes:

∆gi = P0

i

∑
j=i−N1

rj exp(−
(i − j)3
3τ 3p

) +
2

∑
h=1

Ph

i

∑
j=i−N2

sj,h exp(−
(i − j)2
2τ 2h

) + ck. (C.6)

Here sj,h is the soil moisture reading of the h-th timeseries (Solidus #1, 0 or Solidus #2,
0) at epoch j.
There are now three different decay times that need to be established, which makes a grid
search much more difficult. As a first step, I vary τp and τ1, while τ2 has a fixed ratio to
τ1. For example, Figure C.9 shows the result when τ2 is half as big as τ1. The best mean
correlation coefficient in this case is the 0.8707 that is highlighted.

Figure C.9.: The mean correlation coefficient between gravity signal and modeled signal
with different values of τp and τ1 with τ2 being fixed at half as long as τ1

In general, the longest precipitation decay times at or around 1000 h show the best results,
even when the ratio between τ1 and τ2 is changed. Because of that, I decide to do another
grid search with τp fixed at 1000 h and τ1 and τ2 variable. The best correlation coefficient
is reached with τ1 = 13h and τ2 = 5h, with a result of 0.8711, which is a slight improvement
over the value of the fixed ratio search.
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C. Model based on the correlation coefficient

Figure C.10.: The mean correlation coefficient of the grid search with τp fixed at 1000 h
and τ1 and τ2 variable

Using the found decay times and amplitudes as starting values for another LLS-Iteration
gives a result with an average correlation coefficient of 0.8626. Figure C.11 shows the
resulting model for the October 2nd event.

Figure C.11.: The modeled gravity series over the October 2nd event with the result from
the LLS-Iteration with precipitation and two soil moisture probes

C.4. Data-driven model with three soil moisture sensors

I carry out a grid search with τp fixed at 1000 h and τ1, τ2 and τ3 being tried between 4
and 12 h with 90min steps in between. The resulting mean correlation coefficients are
depicted successively in Figure C.12.
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C.4. Data-driven model with three soil moisture sensors

Figure C.12.: The resulting mean correlation coefficients for different soil moisture de-
cay times with precipitation (Degree Three kernel) and three soil moisture
probes

The best combination is number 37 with a mean correlation coefficient of 0.8796, which is
an improvement over the best value of 0.8711 with only two SM probes. A more detailed
search around the first best result yield shorter times for τ1 and τ3 with a correlation of
0.8810.
Figure C.13 shows the best result of this search for the October 2nd event.

Figure C.13.: Best result found in the grid search with regard to mean cc over the October
2nd event

As the response of the model over the October 2nd event simulates a smaller and smaller
gravity decrease, as the correlation values improve, this building was dropped in favor of
an RMSE-based search.
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