

Contents

1 Introduction 5

2 Abstractness vs. Concreteness 8

2.1 General Distinction . 8

2.2 Theory of Cognition . 11

2.3 Concreteness Ratings . 13

2.4 Text-Based Computational Approaches 14

2.5 Multi-Modal Computational Approaches 15

3 Object Detection 16

3.1 One-Stage vs. Two-Stage vs. Multi-Stage Detectors 18

3.2 Applicability of CNNs for Object Detection 19

3.3 Technical Background of CNNs . 20

3.4 Object Detection Model Architecture 22

3.5 Comparison of Toolboxes . 24

3.6 MMDetection . 25

3.7 Tools . 27

3.7.1 SSD . 29

3.7.2 YOLOX . 30

3.7.3 Faster R-CNN . 31

3.7.4 RetinaNet . 32

3.7.5 Double-Head R-CNN . 34

3.7.6 Deformable DETR . 35

3.7.7 Cascade R-CNN . 36

1

4 Experiments 37

4.1 Dataset . 37

4.2 Model Set-up . 39

4.3 Image Inference . 41

4.4 Results (Experiments) . 42

5 Evaluation and Interpretation of Results 49

5.1 Evaluation Set-up . 49

5.2 Results (Evaluation) . 54

5.2.1 Subtask A . 55

5.2.2 Subtask B . 62

5.3 Discussion . 69

5.3.1 Abstractness vs. Concreteness 70

5.3.2 Model Comparison . 73

5.3.3 Top rated labels . 75

6 Conclusion 75

Appendix 78

References 83

2

Erklärung (Statement of Authorship)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und

dabei keine andere als die angegebene Literatur verwendet habe. Alle Zitate und

sinngemäßen Entlehnungen sind als solche unter genauer Angabe der Quelle gekenn-

zeichnet. Die eingereichte Arbeit ist weder vollständig noch in wesentlichen Teilen

Gegenstand eines anderen Prüfungsverfahrens gewesen. Sie ist weder vollständig

noch in Teilen bereits verö↵entlicht. Die beigefügte elektronische Version stimmt

mit dem Druckexemplar überein.1

(Katrin Schmidt)

1Non-binding translation for convenience: This thesis is the result of my own independent work,

and any material from work of others which is used either verbatim or indirectly in the text is

credited to the author including details about the exact source in the text. This work has not been

part of any other previous examination, neither completely nor in parts. It has neither completely

nor partially been published before. The submitted electronic version is identical to this print

version.

Abstract

In human communication, there are concrete concepts which are perceivable with

one of the human senses (e.g. table or apple) and abstract concepts (e.g. freedom or

love). The latter can not be perceived with the senses and relies more on subjective

concepts. It is a challenging task to translate abstract concepts to automatic systems

in computer-human interaction. This study examines characteristics of the visual

representation of abstractness and concreteness by applying seven di↵erent object

detection tools on images depicting abstract and concrete concepts. Further, the

seven tools are compared with respect to model performance and their relation

to abstractness and concreteness. In order to achieve this, image inference with a

toolbox named MMDetection is performed on an image dataset with 500/500 of the

most extreme abstract/concrete concepts. Further, the counts of detected objects

and their distribution across abstractness, concreteness and models are analysed.

Following, the model results are evaluated with the help of human annotators.

The study finds that significantly more objects are detected for concreteness. Fur-

ther, abstractness yields better results if only those cases are included that have

a high prediction confidence. While RetinaNet performs well overall, Deformable

DETR is particularly suitable for abstract data. On concrete data, both RetinaNet

and Cascade R-CNN perform well. Overall, these findings are a step towards the

characteristics of abstract and concrete concepts, suggesting that concrete concepts

tend to occur with more objects per image than abstract ones. When considering the

number of object counts per image as context, this argues that abstractness tends

to occur with less context than concreteness and vice versa.

4

1 Introduction

In the course of the evolution of deep learning methods, convolutional neural net-

works (CNNs) have raised great interest for both computer vision tasks as well

as natural language processing (NLP) tasks. As a consequence of the attention on

both areas, a new research branch evolved that involves the interaction between

computer vision and NLP. However, when it comes to computer-human interactions

there are also limitations, especially for communication. One of these limitations

is the di↵erentiation between abstract concepts and concrete concepts. The latter

can be perceived with at least one of the human senses (see, hear, touch, smell, or

taste) like table, banana or cat, whereas abstract concepts rely more on subjective

experiences and are not perceivable, like trust, love or freedom (Brysbaert et al.,

2014). Technology in general has shown the trend of trying to approximate human-

like behavior. Yet, it is an open question how to translate subjective, abstract values

and concepts to an automatic system that has no relation to human feelings and

experiences.

In the long term it is an aim to translate these aspects to a computer, either

in form of some inherently abstract features or some external features such as con-

text. One use case for the translation of abstractness to an automatic system is

automatic caption generation, a process where objects in an image are identified

in order to further process the output linguistically. This involves both the task of

object detection as well as the task of generating grammatically meaningful words,

phrases or sentences. Object detection is a subdomain of computer vision and refers

to the task of identifying entities of objects within images (Zou et al., 2023). An au-

tomatic human-like approach for caption generation can support visually impaired

people in understanding images, automatically label a large image dataset, serve as

a pre-selection for editorial work or improve sentiment analysis tasks. In this the-

sis, various state-of-the-art tools from the field of object detection are applied to

a dataset consisting of images, each denoting an abstract or concrete concept. The

5

purpose of the study can be divided in three parts.

(1) Abstractness/concreteness. One aim is to address the question about the

characteristics of abstractness and concreteness. In order to describe the properties of

these two concepts, following questions are asked: 1a) Is there a di↵erence between

the number of detected objects for abstractness and concreteness? 1b) Does the

performance of the object detection tools vary for abstract and concrete concepts?

1c) What is the distribution of confidence scores per abstractness and concreteness?

(2) Model performance. Further, the performance of the individual models

is compared in general and in relation to abstractness and concreteness. For this

purpose, the following questions are examined: 2a) Which model detects the most

and the fewest objects? 2b) Which tool performs best on abstract data, which on

concrete data and which performs best overall? 2c) How does the model performance

change across di↵erent confidence score settings?

(3) Top rated labels. Finally, the top rated labels and their counts are ex-

amined considering di↵erent settings. 3a) Which labels are associated with an an-

notators agreement of 50/50? 3b) Which labels are associated with an annotators

agreement 100%? 3c) Which labels are associated with majority vote?

By answering these questions, this work aims to learn more about characteristics

of concrete and abstract concepts, provide a comparison of the performance of object

detection methods and show reproducibility of the tools. Apart from that, an image

dataset with more in-depth labels is generated. These goals are accomplished as

follows.

First of all, section 2 provides foundational aspects for the di↵erentiation of

abstractness and concreteness, such as an introduction into basic terms, followed

by a general distinction and the development of theories from the perspective of

cognitive science. Further, existing computational approaches towards abstractness

and concreteness are summarized.

Section 3 focuses on object detection and begins with an introduction into the

6

three di↵erent types of detectors as well as an overview of convolutional neural

networks (CNNs). The section explains the importance of CNNs for object detection

and provides technical background. Also, the typical structure of object detection

tools is described. The subsequent comparison of toolboxes results in the decision

to use MMDetection for this study. Finally, the seven tools that are used in the

experiments and their functionality are explained.

The next section presents the experiments that are conducted in this work. After

the pre-processing and construction of the dataset are described, the section elabo-

rates on the model set-up and presents the di↵erent weights and parameter settings

of the seven tools that are used. Furthermore, code-specific adjustments and the

handling of the output are explained. The section concludes with an overview of the

results of the experiment, considering the object count for both abstractness and

concreteness, as well as per model, per image, and per concept. The distribution of

the occurrences of confidence scores is also shown.

This is followed by section 5, which deals with the evaluation and interpretation

of the results. With the help of human annotators via Amazon Mechanical Turk

(AMT), the object labels are judged with a binary label (yes or no) and the re-

finement of the bounding boxes is rated on a scale between 1 and 4. Precision is

computed from the binary judgement and a comparison is made between abstract-

ness and concreteness on the one hand and between the seven models on the other

hand. The ratings on the scale between 1 and 4 are also analysed and sorted by per-

formance for abstractness, concreteness and model. The discussion concludes that

abstractness yields better results under certain settings and that significantly more

objects are detected for concreteness. Further, RetinaNet shows good performance

and while Deformable DETR performs well on abstract data, both RetinaNet and

Cascade R-CNN perform well on concrete data. Also, object labels with the highest

ratings are analysed.

Finally, the conclusion summarizes these findings and suggests explanations for

7

the described results. By doing so, the characteristics of the visual representation of

abstractness and concreteness are addressed. With reference to the model compari-

son, these suggestions are further justified.

2 Abstractness vs. Concreteness

In this section, essential terms from cognitive linguistics are explained in order to

enable the discussion about the di↵erences between abstractness and concreteness.

Subsequently, a general di↵erentiation between abstractness and concreteness is ap-

proached, followed by an overview of cognition theory and related work of compu-

tational approaches.

2.1 General Distinction

For this discussion, the term concept is very central. A concept in cognitive science is

considered to represent a certain category, having prototypical properties (Goguen,

2005). Furthermore, a hierarchy of concepts is assumed, where basic level concepts

occur in the middle of this hierarchy and are short, easy to learn and share the most

associated information (Goguen, 2005). Interestingly, from the perspective of cogni-

tive science, metaphors often appear as families that share sensory-motor patterns

(Goguen, 2005). These patterns can be broken down to the words sensory, which

refers to the five human senses and motor, referring to the motor system, which

is responsible for physical movement (Fischer and Zwaan, 2008). Psycholinguistics

assumes that language processing involves the simulation of actions and experiences

which is associated with the sensory-motor system (Fischer and Zwaan, 2008). A

related concept is the term imageability. It refers to a measure for the degree of dif-

ficulty with that sensory-motor experiences are aroused (Dellantonio et al., 2014).

When it comes to the di↵erentiation between abstractness and concreteness, also

the term mental representation is important. In order to approach this term from

8

a cognitive psychology’s view it is helpful to look at the triangle of reference. In

Figure 1, the mental representation is represented by the capitalized word CAT.

Figure 1: Triangle of reference, inspired by Meibauer et al. (2015; p. 172).

The triangle, inspired by Meibauer et al. (2015; p. 172), shows the linguistic

expression at the bottom left, referring to the object in the real world mediated

through the mental representation which represents the conceptual knowledge of

the object. This includes stored conceptual information like a cat meows, a cat has

four legs or a cat is a pet. In other words, a mental representation can be thought of

“[...] as an encoding of some information, which an individual can construct, retain

in memory, access, and use in various ways” (Smith, 1998; p. 391).

In the following, an approach to di↵erentiate between abstractness and concrete-

ness will be presented. A general approach towards the distinction of concreteness

and abstractness is to define concreteness with regards to the degree of perceptive-

ness of the referent that a concept refers to (Brysbaert et al., 2014). Put another

way, it can be seen as a measure of how easily an expression can be mentally repre-

sented via imageability. Building on this, extreme abstract expression can be placed

on the non-perceptual end of the scale, whereas concrete expression are located on

the perceptual side (Brysbaert et al., 2014). Please note that such an expression

can be a word, a phrase or a sentence. However, this thesis focuses on single-word

expressions, also referred to as concepts. In the following, examples for concrete

concepts are presented: banana, cup, drawer, pencil (Pecher et al., 2011; p. 7) and

9

bucket (Wiemer-Hastings and Xu, 2005; p. 720). Examples for abstract concepts are

democracy, power, freedom, majority, republic (Pecher et al., 2011; p. 4), emotion,

personality traits, actions (Pecher, 2018; p. 502) and di↵erence (Wiemer-Hastings

and Xu, 2005; p. 720). It is intuitive that a concrete concept like banana refers to an

object that can be perceived with at least one of the human senses (see, hear, touch,

smell, or taste) (Brysbaert et al., 2014). Therefore, it seems reasonable to assume

that the mental representation of concrete concepts bases on sensory-motor experi-

ences of the percipient. Contrary to that, an abstract concept like democracy is not

perceivable by one of these senses. Here, no senses and therefore less sensory-motor

experiences seem to be involved.

Wiemer-Hastings and Xu (2005) argue that a definition of abstractness which

bases only on the absence of perceptive attributes is not very expressive. Even if

studies suggest a correlation between imageability and concreteness, this seems to

be mostly the case for extremely abstract vs. extremely concrete concepts. A fur-

ther measure for characterization is the availability of linguistic context proposed by

Schwanenflugel and Shoben (1983), suggesting that the comprehension of abstract

concepts is more dependent on context than it is for concrete concepts. Apart from

that, Wiemer-Hastings and Xu (2005) state that the context of abstract concepts

varies more and tends to be more complex than the context of concrete concepts. In

Wiemer-Hastings and Xu (2005) they find that abstract concepts are characterized

by attributes related to subjective perception but have less attributes that are inher-

ent to the concepts. Overall, there is no clear di↵erentiation between abstractness

and concreteness but an approximation based on the assumption that the di↵erences

in cognitive processes and imageability exist on a scale. Paivio (1971) highlights the

assumption that there is no absolute absence or presence of perceptual attributes in

mental representations of abstract or concrete concepts, suggesting them to gradu-

ally vary between the two extremes.

10

2.2 Theory of Cognition

Within this section, established theories from the field of cognitive science regarding

abstractness and concreteness are described. In cognition theory one of the most in-

fluential works regarding the di↵erentiation between abstractness and concreteness

is Imagery and Language from Paivio (1971). According to Paivio (1971), the main

di↵erence can be pinpointed to the reference of the concept: while concrete concepts

refer to events or objects that are more likely to evoke an image, the referents of ab-

stract concepts trigger these mental images less. The performance in tasks involving

learning and memory is shown to be superior when concrete concepts are used com-

pared to abstract concepts. Paivio (1971) attempts to explain this phenomena with

the dual-coding theory which states that cognitive processes involves two di↵erent

systems, a verbal system and an imagery system: while concrete concepts can be

stored in memory both verbally and nonverbally (via the imagery system), abstract

concepts are rather stored only in the verbal system of the memory. The dual-code

theory is also applicable on sentences or phrases, not only words. In the examples

(1) The boy hit the girl.

(2) The theory has predictive value. (Paivio, 1971; p. 21)

the first, rather concrete sentence involves human senses and is therefore con-

sidered to be both stored in the verbal and non-verbal system. The second, more

abstract sentence does not really involve any senses and is therefore considered to

be stored soley in its verbal form. As a result, the concrete sentence, which is asso-

ciated with a higher degree of imagery, is assumed to be better stored in memory.

The Symbol Grounding Problem proposed by Harnad (1990) discusses the question

of how meaning can be obtained by symbols which have no inherent meaning. In

other words, how does the linking from arbitrary symbols (words, phrases or sen-

tences) to real life events or objects work. Based on the assumption that meaning

is not intrinsic to symbols, Harnad (1990) proposes a bottom-up rather than a top-

11

down approach which states that symbols obtain their meaning from the ground-up,

that is, through the linking of sensory-motor experiences to symbols. In order to ac-

quire the understanding of a symbol, a human needs to be able to perceive real-life

events and objects. This approach was further developed by Barsalou (1999), among

others, and has become established in cognitive science as the Grounded Cognition

Framework (Pecher et al., 2011), also known as Sensory-Motor Grounding (Pecher

et al., 2011) or Embodied Cognition (George and Johnson, 1980). In this theory,

the ability of perceptual simulation plays an important role in processing mental

representations. Concepts are considered as ”[...] simulations of sensory-motor ex-

periences which share processing mechanism with perception and action” (Pecher,

2018; p. 501). In terms of concrete concepts, there are many studies nowadays that

support this theory (Pecher, 2018).

Even though Harnad (1990) already provides an intuition on abstract concepts,

stating that they seem to be rather symbolic instead of being grounded in sensory-

motor experiences, most of the literature only considers concrete concepts for the

grounded cognition framework (Pecher et al., 2011). The Conceptual Metaphor The-

ory, first introduced by George and Johnson (1980), is an attempt to address the

sensory-motor grounding of abstract concepts. Since many abstract concepts have

a link to concrete concepts, the theory claims that concrete concepts are partially

used in order the mentally represent the abstract concept (Pecher et al., 2011).

Considering the concrete concept high in the example

(3) Susan has a high position in the department, (Pecher, 2018; p. 502 f.)

the concrete concept acts as a metaphor and the abstract concept power refers

to the vertical position high, meaning that Susan has a powerful position in the

department. The theory suggests that the structure of the mentally represented

concrete concept specifies the structure of the abstract concept and therefore par-

tially grounds in the mental representation of the concrete meaning. However, Pecher

(2018) mentions some points that challenge the grounded cognition framework. First

12

of all, both the concrete as well as the abstract concept needs to have some structure

since the methaphorical meaning is produced by mapping concrete structure to ab-

stract structure. Assuming the abstract concept has no structure at all, a mapping

is not possible. Apart from that, Pecher (2018) argues that many of the abstract

concepts have a structure (e.g. vertical position) but due to its simplicity it seems

to lack providing a good explanation for the high semantic variety of abstract con-

cepts with the same structure. Furthermore, there is literature that challenges the

grounded cognition theory even for concrete concepts. Among this literature Tucker

and Ellis (1998) present the handling alignment e↵ect which suggests that additional

visual input such as the alignment of an object’s handle can influence the perception

of participants. When participants perceive an object, motor actions to grasp the

objects are not automatically activated, furthermore, an overload of stimuli of the

motor system does not a↵ect the memory for these objects (Pecher, 2018). In con-

clusion, it can be said that many findings support the grounded cognition theory,

suggesting at least some involvement of the sensory-motor system in the understand-

ing of concepts, even if some other findings point out that there might be also other

factors involved. However, the cognitive mechanisms behind abstract concepts still

are not su�ciently examined.

2.3 Concreteness Ratings

A well-known corpus that provides concrete and abstract concepts along with ratings

on a scale between 1 and 5 can be found in the study of Brysbaert et al. (2014).

The concreteness ratings which are publicly available are widely used in studies

that investigate the properties of concreteness and abstractness as well as their

relationship with various aspects of psychology and language processing, such as

memory, reading, and language acquisition (Brysbaert et al., 2014).

In order to estimate the degree of concreteness of a concept, Brysbaert et al.

(2014) set up a study to determine the concreteness of circa 40,000 English ex-

13

Figure 2: Concreteness rating on a scale between 1 and 5 (Brysbaert et al., 2014; p. 906).

pressions (37,058 one-word and 2,896 two-word expressions). They used data from

multiple sources such as the SUBTLEX-US corpus, English Lexicon Project, and

the British Lexicon Project. For the experiment, they made use of internet crowd-

sourcing and asked the participants to rate each expression on a scale from 1 (ab-

stract) to 5 (concrete), which means the ratings are based on subjective judgment

(see Figure 2). In the instructions they asked the participants to consider the con-

creteness ratings with regard to the five human senses – while concrete words are

perceptual by one of these senses, the degree of sense-based experience decreases

with increasing abstractness (Brysbaert et al., 2014).

2.4 Text-Based Computational Approaches

There are several approaches using computational models when it comes to the

text-based examination of abstract and concrete concepts. A lot of work is done

on the automatic corpus-based analysis of context and co-occurrences. It was shown

that the presence of context a↵ects the automatic prediction of abstract vs. concrete

concepts (Köper and imWalde, 2017). In order to provide a more detailed description

of the context of abstract/concrete target words in terms of distributional patterns,

semantics and entropy, Naumann et al. (2018) investigate 16,620 nouns, verbs and

adjectives, labeled with a concreteness rating according to Brysbaert et al. (2014).

Regarding the distributional pattern they find that the context of concrete target

words are mostly concrete nouns, abstract verbs and abstract adjectives, whereas

the context of abstract target words always are abstract. The investigation of the

semantic variety shows a broader context of abstract verbs and adjectives compared

14

to the concrete ones, while both abstract as well as concrete nouns are more alike.

Finally, both for abstract and concrete target words, concrete context shows lower

entropy than abstract context.

Tater et al. (2022) takes a step further towards a fine-grained analysis of con-

text, that is, the selectional preference of abstract/concrete target words. Selectional

preference refers to the semantic requirements of a target word or phrase on its ar-

guments. Based on some semantic features, Tater et al. (2022) conduct a study to

predict the concreteness of target nouns and verbs – looking at several di↵erent ex-

periment settings, the performance on target nouns is better than for verbs. Even

though co-occurrence features show a better performance than the semantic fine-

grained features for binary classification, regression has an improved performance

of the selectional preferences for direct objects, suggesting some influence on the

prediction of the degree of concreteness.

In general, established methods for the analysis of semantic, syntactic or the

distributional relationship between context and target words are Latent Seman-

tic Analysis (LSA), Hyperspace Analogue to Language (HAL) and Distributional

Semantic Models (DSMs) (Schulte im Walde and Frassinelli, 2022). Common mea-

sures include distributional similarity and clustering methods (Schulte im Walde

and Frassinelli, 2022). In summary, studies on the context of abstract and concrete

targets have in common that their results show a higher variety in context for ab-

stract than for concrete targets, whereas the context of concrete targets is rather

compact and shows higher associations (Schulte im Walde and Frassinelli, 2022).

2.5 Multi-Modal Computational Approaches

Furthermore, there exist multi-modal computational approaches towards the inves-

tigation of abstractness. Bhaskar et al. (2017) investigate the prediction of con-

crete/abstract nouns with the use of multi-modal models, involving a combination

of textual and visual information vs. solely textual or solely visual information. They

15

refer to the grounding theory which assumes some involvement of perceivable stimuli

(e.g. visual input) in cognition during the process of language understanding. This

suggests that providing additional input such as images results in increased predic-

tion performance. Although all three variants perform well, up to 96.45% accuracy,

they find no significant di↵erences among the model settings. An interesting take-

away from this is that models are able to perform on purely visual input information

with an accuracy of 92.79%. Apart from text-based or multi-modal approaches there

is no approach that focuses only on image-based methods for the automatic analysis

of abstract vs. concrete concepts yet.

3 Object Detection

This section elaborates on object detection and provides an overview of the develop-

ment from traditional detectors to current state-of-the-art methods, alongside the

technical background of the network architecture. Object detection is the task of

identifying all instances of objects belonging to a certain class within images (Zou

et al., 2023; Amit et al., 2020). An example for this can be found in Figure 3 where

several classes are outlined by bounding boxes which are used to mark the location

of an object instance by framing the borders of the instance (Goodfellow et al.,

2016). The objects detected in the example include the classes person, skis, dog, fire

hydrant, orange, laptop, chair, keyboard and mouse.

The information about the location of an object is only one type of the so-called

pose information which is used to give a spatial estimation of the object within the

image – other possible poses could be a segmentation mask, where a value is assigned

to each pixel, or a scale information, depicting the object’s scale (Amit et al., 2020).

Object detection models are typically trained on large image datasets in order to

build a model for certain object classes (Amit et al., 2020).

16

(a) (b)

(c) (d)

Figure 3: Examples for object detection on the MS-COCO dataset (Zhou et al., 2018; p.

535).

There are two core epochs when it comes to object detection methods: before

2014 they mostly rely on handcrafted features of predefined classes which have to be

searched for in images (Zou et al., 2023). According to Zou et al. (2023), the deep

learning methods dominate the era of object detection after 2014. The revolution

of techniques is mostly associated with AlexNet, a convolutional neural network

for computer vision tasks. Since then, there are significant improvements achieved

in terms of computational speed, detection accuracy and model architecture (Zou

et al., 2023; Gu et al., 2018). For this reason, this thesis focuses on deep learning

methods.

Apart from that, it is important to mention that the common measure for the

performance of object detection tools is Average Precision (AP), which can be un-

derstood as “[...] the average detection precision under di↵erent recalls” (Zou et al.,

17

2023; p. 6). However, this study compares model performance in the experiments

section with precision, since the set-up does not allow for counting False Negatives,

which are necessary for the computation of recall.

3.1 One-Stage vs. Two-Stage vs. Multi-Stage Detectors

When it comes to modern methods, there are single-stage detectors (e.g. YOLO and

SSD), two-stage detectors (e.g. R-CNN and Fast R-CNN) and multi-stage detec-

tors (e.g. Cascade R-CNN) (Zou et al., 2023). The di↵erent types of detectors are

presented in the following.

The common architecture of a two-stage detector uses two stages, where in the

first stage proposals for regions in the image are generated that are likely to contain

an object, also called Regions of Interest (RoI) and the second stage, where each

proposed region is classified and the bounding boxes are adapted to fit the object

more accurately (Carranza-Garćıa et al., 2020). As opposed to this, the classifier in

single-stage detectors performs both the prediction of the bounding boxes as well

as the classification of the objects within one single pass (Carranza-Garćıa et al.,

2020).

Carranza-Garćıa et al. (2020) highlight the fact that while one-stage methods

have a higher speed and lower computational costs compared to two-stage ap-

proaches, they su↵er from lower accuracy. Two-stage detectors on the other hand

have higher accuracy but they are not as fast as one-stage methods due to the

additional processing step. Apart from that, Cai and Vasconcelos (2018) present a

multi-stage detection framework, where each stage performs a specific task in the

object detection process. The processing of the input is organized in a sequential

manner such that the output of each stage is the input for the following stage.

This sequential processing results into improved accuracy compared to single- and

two-staged methods and higher flexibility when it comes to tasks other than object

detection. However, the downside is that the computational cost is higher and the

18

speed is lower.

In general, it can be said that the focus in object detection has shifted from

two stage detectors to single stage detectors due to its applicability to real-time

tasks (Cai and Vasconcelos, 2018). However, multi-stage detectors like Cascade R-

CNN are still of interest, especially for domains where accuracy and robustness are

prioritized over speed.

3.2 Applicability of CNNs for Object Detection

The neural network that is most often used for object detection is the Convolutional

Neural Network (CNN). This deep learning architecture is particularly suitable for

this task since it is able to hierarchically learn feature representations such that

both local and global features can be learned (Farabet et al., 2012). As LeCun

et al. (2010; p. 253) argue, a network for computer vision tasks “[...] should have

multiple trainable stages stacked on top of each other, one for each level in the feature

hierarchy”. By doing so, the lower layers can learn simpler structures and with

each layer the complexity of the learned structure increases. With this hierarchical

feature learning method, a CNN is able to detect objects at di↵erent scales and

positions in the image (Gu et al., 2018; Farabet et al., 2012; Amit et al., 2020).

A further advantage of CNN’s are the sparse interactions due to the convolution –

given an image that consists of millions of pixels, a CNN can learn sparse features

that consist of only hundreds of pixels (Goodfellow et al., 2016). As Goodfellow et al.

(2016) argue, this also results in a lower number of overall operations. Further, the

parameter sharing reduces the need of parameter storage and enables the model to

be shift-invariant, meaning that if an image is shifted by one pixel to the right, the

output still is the same. This is especially important for images where objects can

occur only slightly di↵erent from each other.

19

3.3 Technical Background of CNNs

In the subsequent part, technical background of CNNs is provided. CNN’s can be

implemented in a variety of ways but should always consist of three basic compo-

nents: the convolutional layer, the pooling layer and the fully-connected layers (Gu

et al., 2018). The convolutional layer has the task of learning input feature represen-

tations, the pooling layer aims to achieve shift-invariance such that small di↵erences

in the input data do not a↵ect the output and the fully-connected layers use the

prior learned representations and make informed, global decisions about the objects

in the image, also taking into account the relationships between the learned repre-

sentations (Gu et al., 2018). The latter is di↵erent from the local decisions in the

convolutional layer. In general, the functionality of a CNN can be summarized as a

hierarchical stacking of several layers where the input layer is the real-valued tensor

of the image (Amit et al., 2020).

Convolution refers to the mathematical operation that maps two functions onto

a third function (Goodfellow et al., 2016). The convolution in image processing is

typically referred to as 2D-convolution and is formulated as

(1) S(i, j) = (I ⇤K)(i, j) =
X

m

X

n

I(m,n)K(i�m, j � n) ,

where K is a function, also referred to as kernel or filter, I is the input image

tensor together with its indices m,n and S is the output of the convolution at the

according indices i, j (Goodfellow et al., 2016). The asterisk refers to the element-

wise functioning convolution operator. A visual representation of the operation is

shown in Figure 4. Here the kernel is represented as a 2⇥2 matrix which moves over

the 3⇥ 4 input with a stride of 1. This means that the kernel slides by exactly one

input value from one grid of input values (a, b, c, d) to the next grid of input values

(b, c, f, g). This representation of the convolution shows that the dimension of the

output matrix is reduced to 2 ⇥ 3 compared to the 3 ⇥ 4 input matrix. For each

20

Figure 4: Visual representation of a 2D-convolution (Goodfellow et al., 2016; p. 334).

convolutional layer, di↵erent kernels can be used in order to extract several features

(Gu et al., 2018). Note that both the kernel as well as the parameter of the fully

connected layers are trainable parameters (Amit et al., 2020). After an element-wise

non-linear operation is applied to the output of the linear convolution, the result

is often referred to as feature map (Gu et al., 2018). One single feature z at the

position i, j in the l-th layer belonging to the k-th feature map can be considered as

the following linear operation:

(2) zli,j,k = wl
k
T
xl
i,j + blk .

After applying the non-linear activation function to the single feature value zli,j,k,

the output is

(3) ali,j,k = a(zli,j,k) ,

where a(·) represents an appropriate activation function such as sigmoid, tanh or

21

ReLU (Gu et al., 2018). The stage where non-linear activation is performed is some-

times referred to as the detector stage (Goodfellow et al., 2016). Next, the pooling

function is applied to each feature map in order to reduce its the dimension, result-

ing in a trade-o↵ between a less detailed spatial resolution and shift-invariance (Gu

et al., 2018). The aim is to only keep the most important information in order to

have a feature representation which is sparse but adequate enough. The function-

ality of the pooling layer involves replacing the output at a specific location by a

summarized value (Goodfellow et al., 2016). An established pooling function is max

pooling, where the maximal value per grid of outputs is used for further computations

(Goodfellow et al., 2016).

When it comes to deep neural networks, it is important to note that while many

networks tend to get deeper, there is still a trade-o↵ between increasing depth re-

sulting in more accurate feature representations on the one hand and increasing

complexity possibly resulting in overfitting and a higher computational cost on the

other hand (Gu et al., 2018).

3.4 Object Detection Model Architecture

Just like CNNs, object detection models can be implemented in several ways, how-

ever, they share a common structure which is presented below. An object detection

network typically consists of a three-parted architecture including a backbone, a

neck and a head (Kateb et al., 2021). As illustrated in Figure 5, the input image is

fed to the backbone which extracts features from the image at multiple scales. These

di↵erent features are aggregated and fused by the neck and subsequently conveyed

to the head. Here, the classification of the objects at di↵erent levels of abstraction

is performed. The single components will be now considered in more detail.

More precisely, the backbone is not only responsible to extract the features but

also to keep additional information about the localization and structure of the ob-

jects (Kateb et al., 2021). It can be considered as a robust model (e.g. ResNet,

22

Figure 5: General concept of an object detection model (Kateb et al., 2021; p. 4).

ResNeXt, VGG, etc) where the classification layers are removed, basically being

responsible for the generation of the feature maps (Kateb et al., 2021; Chen et al.,

2019a).

The neck has the task to refine and fuse the feature maps from di↵erent resolu-

tions and functions as an intermediary between backbone and head (Kateb et al.,

2021). Kateb et al. (2021) state that usually, the neck is implemented as a Feature

Pyramid Network (FPN) since FPN’s perform well on multi-scale feature fusion

tasks. Their functionality is able to both capture fine-grained as well as coarse-

grained information of varying sizes and fuses them to meaningful feature maps. For

further details on the functionality of an FPN, please refer to section 3.7.

Based on the fused feature maps from the neck, the head finally predicts the

confidence scores of the classes and bounding box information. Since several tasks are

involved, like performing regression for bounding box refinements and classification

of objects, many object detection models make use of several heads.

23

3.5 Comparison of Toolboxes

The upcoming section gives an overview of existing toolboxes for object detection

tools and compares them in terms of their performance, the number of tools they

o↵er and other aspects like speed and size. It is convenient to make use of a toolbox

where existing models are already implemented when several models are needed.

Common frameworks in the area of object detection methods are MMDetection

(Chen et al., 2019a), Detectron2 built by Facebook AI Research (FAIR) (Wu et al.,

2019), SimpleDet (Chen et al., 2019b) and maskrcnn-benchmark (Massa and Gir-

shick, 2018).

They all di↵er in terms of quantity and quality of provided tools. While maskrcnn-

benchmark provides only very few tools, their performance set the benchmark for

competing frameworks in 2018 (Chen et al., 2019a). SimpleDet already o↵ers more

models but can not compete with other frameworks when it comes to performance.

A comparison between Detectron2 and MMDetection suggests that even if Detec-

tron2 o↵ers more models than SimpleDet, it still can not keep up with the number

of tools implemented in MMDetection. Furthermore, there are no regular updates

for Detectron2, which means that it is not state-of-the-art anymore. The last update

in the model zoo is from July 20211. Since then, there was much progress in com-

puter vision and object detection. In contrast to that, MMDetection is consistently

receiving updates.

A comparison of speed, memory and performance of the di↵erent frameworks on

Mask R-CNN and RetinaNet can be found in Table 1. Overall it becomes clear that

MMDetection and maskrcnn-benchmark are similar in terms of training speed, in-

ference time, memory and performance and that both perform better than the other

frameworks. Given the above argumentation, this thesis makes use of MMDetection.

1https://github.com/facebookresearch/detectron2/blob/main/MODEL ZOO.md, Detectron2

model zoo on github (last access: July 05, 2023)

24

https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md

Toolbox model Train Inf Mem APbox APmask

MMDetection Mask RCNN 0.430 10.8 3.8 37.4 34.3

maskrcnn-b. Mask RCNN 0.436 12.1 3.3 37.8 34.2

Detectron Mask RCNN 0.744 8.1 8.8 37.8 34.1

SimpleDet Mask RCNN 0.646 8.8 6.7 37.1 33.7

MMDetection RetinaNet 0.285 13.1 3.4 35.8 -

maskrcnn-b. RetinaNet 0.275 11.1 2.7 36.0 -

Detectron RetinaNet 0.552 8.3 6.9 35.4 -

SimpleDet RetinaNet 0.565 11.6 5.1 35.6 -

Table 1: Comparison of toolboxes in 2018, inspired by Chen et al. (2019a; p. 6). Training

speed (Train) is given in iter/s, inference (Inf) in fps (frames per scond) and memory

(Mem) in GB.

3.6 MMDetection

Since the last section argues for the use of MMDetection in this study, this toolbox

is now presented according to Chen et al. (2019a). MMDetection is an open-source

project contributed by researchers and engineers from various colleges and compa-

nies. Originally, the framework began 2018 with the implementation of a team that

won the COCO challenge. The codebase is continually being updated since then.

The toolbox currently o↵ers besides from algorithms for instance segmentation also

more than 43 tools for object detection. Overall, they provide 53 algorithms, 450+

pre-trained models and 6 di↵erent datasets2.

2https://github.com/open-mmlab/mmdetection/blob/main/docs/en/model zoo.md, MMDetec-

tion model zoo on github (last access: July 05, 2023)

25

https://github.com/open-mmlab/mmdetection/blob/main/docs/en/model_zoo.md
https://github.com/open-mmlab/mmdetection/blob/main/docs/en/model_zoo.md

Figure 6: Model architecture of single-stage and two-stage detectors in MMDetection

(Chen et al., 2019a; p. 4).

The codebase is characterized by modular design, e�cient training and a high

variety of provided tools, including state-of-the art tools. As part of the OpenMM-

Lab, a computer vision algorithm system implemented with PyTorch, MMDetection

also uses PyTorch. The OpenMMLab is maintained by the Multimedia Laboratory

of the Department of Information Engineering (MMLab) at The Chinese University

of Hong Kong and is considered as one of the most sophisticated and influential

institutions in the field of AI with a focus on computer vision and deep learning3.

As illustrated in Figure 6, the implementation of the single- and two-stage detec-

tors in MMDetection is based on the common architecture containing a backbone,

neck and head. One specificity of the architecture is that the head is implemented as

a DenseHead which can be considered as an extension of the standard head (Chen

et al., 2019a). The DenseHead enables dense connections between feature maps

across di↵erent scales such that multi-scale feature fusion tasks can be performed

(Lin et al., 2017b). The two-stage detectors in MMDetection contain additional head

3https://mmlab.ie.cuhk.edu.hk, Multimedia Laboratory, The Chinese University of Hong Kong

(last access: July 05, 2023)

26

https://mmlab.ie.cuhk.edu.hk
https://mmlab.ie.cuhk.edu.hk

components, the RoIExtractor and the RoIHead. The RoIExtractor is responsible

for the extraction of features from feature maps on the RoI-level, meaning that it

aligns extracted features with RoIs (Chen et al., 2019a). Furthermore, the RoIHead

processes the RoI features and performs classification, regression or segmentation.

In summary, it can be said that two-stage detectors divide the task of RoI-proposal

generation from the classification task, while single-stage detectors predict bounding

boxes and class probabilities directly from the feature maps.

3.7 Tools

This section first provides a general overview of the evolution of object detection

tools and then elaborates on the tools that are used in the experiments. As already

mentioned in the beginning of section 3, the early object detection methods are char-

acterized by handcrafted features. After the breakthrough of AlexNet, the detectors

diverged into single-stage and two-stage detectors. The following provides a general

overview of the evolution of the tools according to Zou et al. (2023).

In 2014, the first two-stage detector R-CNN (Region-Based Convolutional Neural

Network) was published (Girshick et al., 2014). The main steps of the functionality

of R-CNNs can be summarized by three steps. First, RoI proposals are extracted.

Following, the proposals are rescaled such that all proposals share a fixed size and can

be fed into a CNN model for feature extraction. Finally, classification is performed

for each RoI which results in the prediction of a class label as well as the absence or

presence of an object per RoI. While the accuracy is good, R-CNN su↵ers from high

computational costs and high training and inference time. Especially the redundancy

due to the high overlap of RoI proposals and the rescaling of each RoI proposal are

responsible for the slow speed.

Over the time, new models evolved based on R-CNN with the attempt to solve

the speed issue. After R-CNN was published, SPPNet (Spatial Pyramid Pooling

Network) was proposed by He et al. (2014). In SPPNet, the need for rescaling the

27

size of RoI proposals is abolished, resulting in a much faster detection speed while

maintaining the same accuracy. The downside of SPPNet is that only the top layers

are considered for fine-tuning and all other layers are ignored.

After that, Girshick (2015) were responsible for another detection speed-up by

introducing Fast R-CNN. This is followed by Faster R-CNN (Ren et al., 2015) which

introduced the Region Proposal Network (RPN), enabling the generation of RoI

proposals with a CNN model. However, the redundancy arising from the overlapping

RoI proposals was still not solved.

In 2017, Lin et al. (2017a) came up with the idea of an FPN in order to address

the issue of detecting di↵erent objects at various scales or sizes within an image.

Previous methods used single-scale feature representations. As opposed to this, the

FPN provides a set of multi-scale feature maps (Lin et al., 2017b): it extends a

regular network by a top-down approach with lateral connections such that on each

level of the pyramid, objects of varying scales can be detected. The feature pyramid

that is generated from the input image consists of feature maps from various resolu-

tions, where higher-level feature maps contain more coarse-grained information and

lower-level feature maps capture rather fine-grained information.

During this time there was also a great development in single-stage detectors. The

first one was YOLO (You Only Look Once), proposed by Redmon et al. (2016). This

method finally tackled the problem of redundancy by performing both classification

of the object label and bounding box regression within one single pass through the

CNN. The authors move away from the two-parted view of having a separate stage

of the generation of RoI proposals and another stage for classification and regression.

In contrast to that, they implement the idea that the image is processed only once

by the network. This results in a significantly higher detection speed compared to

two-stage detectors but also worse performance in accuracy. Based on YOLO, R.

Joseph developed further variants (YOLOv2 and YOLOv3) which led to further

advancements. The second single-stage tool, SSD (Single-Shot Detector) (Liu et al.,

28

2016), introduced the ability to detect objects of multiple sizes and at multiple scales.

Detection is not only performed on top layers of the network – di↵erent layers of

the network process objects of di↵erent scales. Liu et al. (2016) achieved higher

accuracy with SSD than YOLO was able to perform. While YOLO struggles with

the detection of small objects, SSD performs better on them. However, accuracy still

was not able to beat those of the two-stage detectors.

This accuracy issue was addressed by Lin et al. (2017b) with RetinaNet. They

found that the class imbalance between foreground and background is a problem

for former detectors, in other words, the number of positive object examples (in

the foreground) are overbalanced by negative object examples (in the background).

Their approach included the introduction of a novel loss function, the focal loss

which redistributes the weights towards complex examples. This leads to a shift in

focus towards di�cult objects (in the foreground) and away from easy objects (in

the background).

In summary, it can be said that R-CNN and its variants, YOLO, SSD and Reti-

naNet became established models in object detection and formed the basis for many

advancements and developments of variants. Since then, also attempts in the devel-

opment of multi-stage detectors have been made. The following is a more detailed

overview of the functionality of the tools that are examined in this thesis. These tools

are particularly interesting since they are state-of-the-art methods and contributed

to the development of the model architecture in object detection.

3.7.1 SSD

SSD, a single-stage detector, is known for its simple architecture which enables fast

and e�cient detection of multi-scale objects (Chen et al., 2019a). The following

summarizes the model architecture of an SSD according to Liu et al. (2016). First,

the input image is fed to a basic CNN (in this example a VGG-16 network, function-

ing as the model’s backbone) which extracts bounding boxes and class probabilities

29

from it. As illustrated in Figure 7, there are additional feature layers stacked on the

base network, aiming for an extraction of features at multiple scales. For each fea-

ture map, default boxes with varying aspect ratios are defined. These aim to achieve

scalability and are comparable to the anchor boxes in Faster R-CNN. The model

is trained by predicting and adjusting the class labels and bounding boxes. The

loss function bases both on the confidence loss as well as the localization loss. Non-

maximum suppression as a last step discards irrelevant features and keeps relevant

ones.

Figure 7: Model architecture of SSD (Liu et al., 2016; p. 4).

3.7.2 YOLOX

The single-stage detection tool YOLOX is a further development of the YOLO se-

ries. Ge et al. (2021) use YOLOv3-SPP as backbone, which is a combination of an

SPP layer and DarkNet53. The authors attempt to solve the issue of the simulta-

neous performance of classification and regression by applying a decoupled head.

While YOLOv3-v5 still use a coupled head, as displayed in Figure 8, YOLOX sep-

arates the regression and classification tasks. Another specificity of YOLOX is that

no anchors are used. An anchor-free approach reduces the number of parameters and

simplifies the detection process. Overall it can be said that YOLOX is a modern im-

plementation of the YOLO versions with a high detection speed, while maintaining

e�ciency.

30

Figure 8: Model architecture of YOLOX (Ge et al., 2021; p. 3).

3.7.3 Faster R-CNN

The main contribution of the two-stage detector Faster R-CNN is the introduction

of an RPN. Ren et al. (2015) significantly improve the speed of the detection process

by implementing the RPN into the algorithm. Figure 9 shows the functionality of an

RPN. The input image is fed to the network which processes it and outputs regions

together with object proposals and an objectness score. This score measures the

likelihood that a region proposal contains a certain object from the foreground rather

than the background. The region proposals are generated by sliding a network over

the feature map which is the output of the last shared layer between the RPN and

the object detection network. Like SSD and RetinaNet, this approach also makes

use of a set of anchor-boxes of various scales and aspect ratios. For each sliding

location, a set of nine di↵erent anchor-boxes is used with three di↵erent scales and

three di↵erent aspect ratios. Finally, the output of the RPN is used by the detection

network in order to perform classification and box regression. Ren et al. (2015) use

the implementation of a basic Fast R-CNN as detection network.

In summary, the RPN enables a significant detection speed-up compared to Fast-

RCNN, SPPNet and R-CNN.

31

Figure 9: Visualization of a Region Proposal Network (RPN) (Ren et al., 2015; p. 3).

3.7.4 RetinaNet

RetinaNet, a single-stage detector from Lin et al. (2017b) is especially known for in-

troducing a new loss function in order to address the extreme foreground-background

class imbalance. The backbone of RetinaNet is an FPN built on top of ResNet

(Residual Network). The layers of ResNet are considered as residual functions which

have reference to the input layers (He et al., 2016). They address the question if in-

creasing depth of a network per definition results in a better network. He et al.

(2016) suggest that this is not the case and construct a deep network not only by

simply increasing the number of layers but also letting the layers fit a mapping. For

more information on the functionality of ResNet, refer to He et al. (2016).

As indicated in Figure 10, the FPN extends a CNN by a top-down approach on

each level of the pyramid, producing multi-scale feature maps. Like in SSD, there

are anchor boxes in RetinaNet. They are implemented at di↵erent locations and

levels in the feature pyramid at three aspect ratios: {1:2, 1:1, 2:1}. In addition to

the backbone, Lin et al. (2017b) make use of two subnetworks, with each performing

a specific task. On the one hand, the classification subnet predicts the class prob-

abilities of object candidates at each level of the feature pyramid for each anchor

box. On the other hand, the box regression subnet aims to refine the anchor boxes

32

which potentially contain objects. Note that the subnets are small Fully Convolu-

tional Networks (FCNs) at each pyramid level, which divide an image into regions

and assigns a class to each pixel.

Figure 10: Model architecture of RetinaNet (Lin et al., 2017b; p. 2984).

For training, the focal loss is computed in order to put less focus on the training

of objects that are easily predictable but more focus on hard examples. The focal

loss is built on the cross entropy (CE) loss which is defined for a binary classification

scenario as

(4) CE (p, y) =

8
<

:
�log(p) if y = 1

�log(1� p) otherwise ,

where y 2 �1, 1 denotes the ground truth label and p 2 [0, 1] describes the class

probability of the model for y = 1. For better readability, Lin et al. (2017b) define

(5) pt =

8
<

:
p if y = 1

1� p otherwise

and achieve the binary cross-entropy in the form of CE(pt) = �log(pt). Now, a

modulating factor (1�pt)� is incorporated into the equation together with a focusing

parameter � � 0 which is tunable. Furthermore, the focal loss is ↵-balanced, meaning

that it balances the influence of easy/hard cases. With these modifications, the focal

loss in RetinaNet is defined as

33

(6) FL(pt) = �↵t(1� pt)
� · log(pt) .

Depending on the prediction of the model, the modulating factor reduces or

increases the focus on the training of a given example. In cases where pt is small on

a misclassified data point, the modulating factor is close to 1 and does not impact

the loss. If pt approaches 1, meaning the example was classified well, the modulating

factor is near 0 and the loss has a low weight. In essence, the design of RetinaNet

balances the high detection speed characteristic of single-stage detectors with the

strong accuracy performance often associated with two-stage detectors.

3.7.5 Double-Head R-CNN

Wu et al. (2020) implemented an extension of the two-stage detector Faster-RCNN,

called Double-Head R-CNN. They make use of the FPN as a backbone which outputs

region propsals and object features at di↵erent levels in the feature pyramid (see

Figure 11). The features are extracted using RoIAlign, a feature extraction method

that is more precise than other methods like max pooling which su↵er from the map-

ping of real-valued coordinates to integers (He et al., 2017). Following, the resulting

feature maps are transformed by the heads for further processing. As the name in-

dicates, the architecture involves two heads: the fully connected head (fc-head) and

the convolution head (conv-head). The former consists of two fully connected layers

which are responsible for the prediction of the class probabilities. The latter consists

of three di↵erent components and aims to refine the bounding box coordinates. Both

heads are trained jointly using an RPN. The double-head approach separates the

tasks of classification and localization by using specific heads that perform well on

the according tasks. Therefore, Double-Head R-CNN gains accuracy compared to

other baselines with a single head.

34

Figure 11: Model architecture of Double-Head R-CNN (Wu et al., 2020; p. 10186).

3.7.6 Deformable DETR

In 2020, Carion et al. (2020) introduced the first transformer based object detection

tool named DETR (DEtection TRansformer). The architecture is a combination

of a CNN and encoder-decoders from transformers. They aimed for an end-to-end

object detection algorithm where no need for anchors, rules or NMS is. However,

DETR su↵ers from a low detection speed and low accuracy. This is why Zhu et al.

(2020) implemented an extension of DETR, Deformable DETR. First of all, an input

image is fed to the backbone in order to extract feature maps, as displayed in Figure

12. Following, the encoder processes the extracted feature maps and outputs object

specific keys and queries which again are processed by the decoder. The decoder

uses cross-attention and self-attention modules in order to perform prediction.

Especially the slow detection speed issue in DETR can be ascribed to the trans-

former attention module which includes every possible location in its attention com-

putation. This is achieved by introducing a more flexible attention computation

method, the deformable attention module. Here, the module only considers a limited

number of locations around a certain point. Further, Zhu et al. (2020) extend the

module to a multi-scale deformable attention module and apply it to the encoder

and decoder. The modifications lead to a higher e�ciency and a speed-up in the

detection process compared to DETR.

35

Figure 12: Model architecture of Deformable DETR (Zhu et al., 2020; p. 2).

3.7.7 Cascade R-CNN

Cai and Vasconcelos (2018) developed the multi-stage detector Cascade R-CNN

based on the idea of Faster R-CNN. Figure 13 (b) shows the network architecture

of Cascade R-CNN. It aims to tackle the regression issue of Faster R-CNN, as dis-

played in Figure 13 (a). Here, a single regressor is responsible for the bounding box

regression at all levels of quality. H0 refers to a proposal sub-network that generates

object proposals C (classification score) and B (bounding box) from image I. These

proposals are further processed by a second sub-network H1 which outputs the final

C and B. In contrast to that, Cascade R-CNN introduces a cascade of task-specific

regressors. The cascaded regression approach involves a resampling mechanism. In-

stead of relying on the low-quality output of the RPN, which makes it di�cult to

post-process proposals for high-quality predictions, Cascade R-CNN resamples the

example distribution in order to successively keep positive examples and filter out

negative examples. In other words, resampling enables to train the model on increas-

ingly di�cult examples and to keep its performance constant even with increasing

detection quality. While in the first detection stage all examples are considered in

training, the subsequent stages are left with increasingly hard examples. The cas-

caded architecture makes the algorithm especially suitable for tasks that require

36

high-performance object detection.

Figure 13: Model architecture of (a) Faster R-CNN and (b) Cascade R-CNN. Faster R-

CNN makes use of only one regressor, while Cascade R-CNN uses a cascade of task-specific

regressors (Cai and Vasconcelos, 2018; p. 6157).

Overall it can be said that each tool has its strength and weaknesses and are

applicable for di↵erent tasks. It seems like there is not the perfect tool for each

application, rather it is important to keep specific design-choices in mind when

choosing a tool for a particular task.

4 Experiments

The previous sections present a detailed background on object detection and the

distinction between abstractness and concreteness. The following presents the ex-

periments that are conducted.

4.1 Dataset

In order to construct an appropriate image dataset for the experiment, additional

information on the abstractness and concreteness of images is needed. Therefore,

the 1000 concepts from Schulte im Walde and Frassinelli (2022) are used, of which

37

500 are associated with concreteness and 500 with abstractness. The concepts are all

nouns and are rated by human annotators as being very concrete or very abstract,

at the extremes of the concreteness scale according to Brysbaert et al. (2014).

The images are downloaded automatically using the Bing API from Frassinelli

(2023). The download process included a similarity check to avoid obvious duplicates

using a cosine similarity measure for every pair of images per concept. Images with

a similarity above a threshold of 0.95 are discarded.

The images come with labels on the image-level, denoting the concept that was

searched for with Bing. There is no further information on the object labels, number

of objects per image or position of the objects. For each image-level label there exist

25 images. After the concepts from Schulte im Walde and Frassinelli (2022) are

assigned to the labels of the images, this results in an intersection of 500 (abstract)

and 498 (concrete) nouns/labels. The two missing concrete concepts are removed

from the image dataset due to explicit content. Further, another automatic check

for duplicates is executed, based on the comparison of pixels. For the abstract images,

4 duplicates are found and replaced by additional images with the same label that

are provided by Diego (2023).

Finally, the dataset consists of 500 ⇥ 25 = 12, 500 abstract labeled images and

498 ⇥ 25 = 12, 450 concrete labeled images, resulting in 24, 950 labeled images in

total. Additional to the image-level label, the images also have a binary label de-

noting the abstractness or concreteness {1,0}. Even if there is a small di↵erence

between the numbers of abstract and concrete data points, no images or concepts

are removed from the abstract data. This decision bases on the aim of the thesis to

construct a reusable dataset and to not loose information for further applications.

However, since the dataset is applied to pre-trained models, the dataset is not con-

sidered as being unbalanced. For the evaluation part, the same number of abstract

and concrete data-points is used in order to ensure balanced ratings.

38

4.2 Model Set-up

For this thesis, seven object detection tools are compared using the MMDetection

framework. As single-stage detectors SSD (2016), RetinaNet (2017) and YOLOX

(2021) are chosen. The two-stage detectors used for comparison are Faster R-CNN

(2015), Double-Head R-CNN (2020) and a two-stage variant of Deformable DETR

(2020). Cascade R-CNN (2018) is the only multi-stage detector considered in this

thesis.

MMDetection provides models trained and tested on the MS-COCO 2017 dataset

which is known to be challenging and popular in the field of object detection (Chen

et al., 2019a). These results are made publicly available. For most of the models,

they provide several weight files with di↵erent parameter settings to choose from.

The weight files which achieved the highest AP on object detection tasks are chosen.

Please note that the criterion of choosing those weights with the highest scores is

time-dependent and may lead to deviations from the scores which are the highest

in the period from March to June 2023. This is due to the fact that the models are

constantly being updated and newer, faster and more accurate versions of weight

files are provided. An overview of all seven tools and their parameters such as AP,

backbone, dataset on which the model was trained on, epochs and the size of the

weight files are presented in Table 2.

From the data in Table 2, it is apparent that the lowest performing tool is the

single-stage detector SSD while the highest is the single-stage detector YOLOX.

The weights of all tools are trained on the COCO dataset. While Cascade R-CNN is

trained with the lowest number of epochs (20), YOLOX is trained with the highest

number of epochs (300). The size of the weight files range from 138 MB (SSD) to

487 MB (Cascade R-CNN).

Looking at the backbones, it becomes clear that three tools make use of the

4https://github.com/open-mmlab/mmdetection/blob/main/docs/en/model zoo.md, MMDetec-

tion model zoo on github (last access: July 05, 2023)

39

https://github.com/open-mmlab/mmdetection/blob/main/docs/en/model_zoo.md
https://github.com/open-mmlab/mmdetection/blob/main/docs/en/model_zoo.md

Model APbox Backbone Dataset Epochs Weights

SSD 29.5 VVG16 COCO 120 138

RetinaNet 41.6 X-101-64×4d-FPN COCO 36 367

YOLOX 50.9 YOLOX-x COCO 300 379

Faster R-CNN 43.1 X-101-64x4d-FPN COCO 36 381

D-H R-CNN 40.0 R-50-FPN COCO 12 181

Deform. DETR 46.8 R-50 COCO 50 158

Cascade R-CNN 44.5 X-101-64x4d-FPN COCO 20 487

Table 2: Overview of the tools and their performance on MS-COCO according to the

model zoo4 of MMDetection. Also, parameters of the training that are used for inference

are specified. Note that weight-file size (Weights) is given in MB.

same backbone, X-101-64x4d-FPN. This refers to the backbone ResNeXt, which is

an extension of ResNet used in RetinaNet (Xie et al., 2017).

The name of the backbone consists of an X, indicating that it is a variant of

ResNeXt as well as the number 101, referring to the number of layers in the network

and 64x4d-FPN. Xie et al. (2017) introduce the concept of cardinality which can be

considered as a measure of the size of the set of transformations. This dimension

exists in addition to factors like depth and width. The 64 refers to a design choice

regarding the cardinality and 4d indicates that they consist of 4 channels. For more

information, refer to Xie et al. (2017).

The backbone VGG16 relies on the architecturs of VGG (Visual Geometry

Group), proposed by Simonyan and Zisserman (2015). It is a simple and classic

CNN with a uniform design. In this case, it consists of 16 layers. Apart from that,

the backbone YOLOX-x bases on the CSPDarknet backbone with some modifica-

tions like a higher factor for the depth and the width of the network.

Both R-50-FPN as well as R-50 base on the backbone ResNet. However, they are

di↵erent variants of ResNet. While R-50 refers to the ResNet model consisting of

40

50 layers, R-50-FPN has an FPN built on top of the 50-layers-deep ResNet model.

This ensures that multi-scale features can be found.

4.3 Image Inference

This study compares the seven tools with respect to model performance and analyses

quantitative and qualitative properties of detected objects in relation to abstractness

and concreteness. In order to achieve this, image inference with MMDetection is

performed.

Function Arguments

MMDetection takes three arguments for building a model: a configuration file of the

specific tool, an according checkpoint file containing the pre-trained weights and the

specification of device (cpu or cuda). The latter is set to cpu. The config file contains

various settings and hyperparameters that additionally define design choices of the

model. There is one metafile.yml for each tool which provides information on test

results of these settings.

Code Adjustments

The implementation for this experiment includes several adjustments. When iterat-

ing over the images, a threshold for the confidence score can be entered. That means

that during the object detection process for one image, only objects are kept that

are above a certain threshold of confidence. Across all images and tools, a threshold

of 0.1 is chosen in order to keep every possibly interesting object but keep the size

of the output feasible at the same time. Furthermore, the choice of class labels for

image inference is part of the self-implemented image-iterator. Considering the fact

that the tools are trained on the MS-COCO 2017 dataset, the same classes are also

used for the inference task. They are from Lin et al. (2014) and include 80 labels. A

list of all class labels can be found in the appendix (see Table 16). The implemen-

tation specifies one more time that it only allows for images that end with jpg in

order to standardize the image quality and therefore the quality of image inference.

41

Output

Apart from that, the model output is handled in two separate ways: on the one

hand, a txt file is generated keeping all inferred information and on the other hand,

the coordinates of the bounding boxes are used together with the original image to

draw the bounding boxes on a copy of the image and store it. In the txt file, the

following tab-separated information is kept:

1. concept

2. image name

3. label

4. bounding box coordinate x1

5. bounding box coordinate y1

6. bounding box coordinate x2

7. bounding box coordinate y2

8. confidence score

9. concreteness (0 or 1)

4.4 Results (Experiments)

When it comes to the comparison of model performance for abstract and concrete

concepts, there are several aspects to analyse. These aspects are elaborated in the

following.

I. Objects per abstractness/concreteness. First of all, the analysis is ap-

proached from a very general point of view. A general approach is to check how

many objects are found in total per abstractness/concreteness. There are 852,858

objects found for abstract images and 963,581 objects for concrete images, result-

ing in a total number of 1,816,439 objects. Accordingly, 110,723 more objects are

detected for concrete concepts which are 12.983% more than for abstract concepts.

II. Objects per abstractness/concreteness and image. A more detailed ap-

proach is the analysis of the number of objects found per image, both for abstract

42

and concrete concepts. The large-scale distribution ranging from 0 to 1000 (detected

objects) can be found in Figure 14 where both the abstract (pink) and concrete (blue)

observations are recorded. It is clear from the Figure that the most interesting dif-

ferences are at the extremes of the distribution, especially between 0 and 50. A more

fine-grained analysis can be found in Figure 15. While abstract concepts show a high

peak for low numbers of detected objects, having their maximum between 0 and 50,

the opposite is the case for concrete concepts, starting with their local minimum of

occurrences. The values of the extreme occurrences are summarized in Table 3 and

the values for mean, median and standard deviation are illustrated in Table 4.

Concrete Abstract

Max 953 887

Min 1 1

Table 3: Maximal and minimal

number of objects found per image

for abstractness and concreteness.

Mean Median SD

Concrete 334.5 309.0 216.9

Abstract 306.2 288.0 195.7

Table 4: Statistical analysis on the dis-

tribution of detected objects per image

for abstractness and concreteness.

Figure 14: Number of objects found per image for abstractness (pink) and concreteness

(blue), ranging from 0 to 1000 objects per image (large scale).

43

Figure 15: Number of objects found per image for abstractness (pink) and concreteness

(blue), ranging from 0 to 50 objects per image (small scale). Please note that the points

indicate that the distribution is discrete and not continuous.

III. Objects per abstractness/concreteness and concept. In addition to the

distribution of objects per image, the distribution of objects per concept is examined.

Since there are 1000 concepts in total, it is particularly interesting to elaborate on

the top 20 concepts in terms of highest and lowest object counts. A comparison

for abstract and concrete concepts are displayed in Figure 16 for the highest 20

object counts per concept and Figure 17 for the 20 lowest object counts. Please

refer to Tables 18 and 17 in the appendix for a list of the according 40/40 concepts.

Moreover, the maximum and minimum object counts per concept are summarized

in Table 5. Further, the mean, median and standard deviation are measured to gain

insight into the overall distribution, which is too large to plot meaningfully. They

are summarized in Table 6.

44

Concrete Abstract

Max 17297 7284

Min 176 356

Table 5: Maximal and minimal

number of objects found per concept

for abstractness and concreteness.

Mean Median SD

Concrete 1935.0 1413.5 1825.0

Abstract 1705.7 1387.0 1069.7

Table 6: Statistical analysis on the dis-

tribution of detected objects per concept

for abstractness and concreteness.

Figure 16: Ranking of the 20 concepts with the highest number of detected objects for

abstractness (orange) and concreteness (blue).

IV. Confidence scores. When it comes to object detection, the distribution

of the confidence scores is an important aspect. The Figures 18 and 19 give an

overview of how the confidence score of detected objects is spread across abstract

and concrete concepts. The highest number of occurrences can be observed for the

confidence score of 0.1, both for abstract (81,221 occurrences) and concrete (90,553

occurrences). The minimum number of occurrences for abstract concepts is 0.72

with 2,218 occurrences and for concrete 0.74 with 2,560. Generally, a trend for both

categories can be observed, that is, the accumulation of high occurrences in the range

45

of [0.1, 0.3] and for a score of 0.99. In the range of 0.3 < x < 0.99, the occurrences

are similarly low for both distributions with a tendency to decrease until a minimum

point of approximately 0.7 and slightly increase from there again.

Figure 17: Ranking of the 20 concepts with lowest number of detected objects for ab-

stractness (orange) and concreteness (blue).

Figure 18: Distribution of confidence scores (abstract).

46

Figure 19: Distribution of confidence scores (concrete).

V. Objects per abstractness/concreteness and model. Furthermore, it is

interesting to additionally consider the distribution of detected objects per model.

The question of how many objects are found per model is answered in Table 7,

which summarizes the numbers and Figure 20, a visualization of the Table. For all

factors, that is, i) the number of objects found for abstract concepts, ii) the number

of objects found for concrete concepts and iii) the total number of objects found,

RetinaNet produces the highest numbers. For the same factors, YOLOX reports the

lowest numbers. From this follows that both extreme variants belong to the category

of single-stage detectors. While for almost all models the object counts associated

with abstractness are lower than for concreteness, this is di↵erent for Deformable

DETR. Here, the counts for abstract concepts are higher than for concrete ones.

The order of overall counts is in descending order: RetinaNet, Deformable DETR,

Double-Head R-CNN, SSD, Faster R-CNN, Cascade R-CNN and YOLOX.

47

Model Abstract Concrete Total %

SSD 108,863 145,507 254,370 14.03

RetinaNet 219,135 248,533 467,668 25.76

YOLOX 55,687 63,151 118,838 6.55

Faster R-CNN 82,476 96,231 178,707 9.84

D-H R-CNN 118,093 137,851 255,944 14.10

Deform. DETR 199,819 190,898 390,717 21.48

Cascade R-CNN 68,785 81,410 150,195 8.25

Table 7: Overview of the number of objects found per tool for abstract and concrete

concepts as well as the total count. The %-column assigns the relative proportion of the

object counts with respect to the total of 1,816,439 detected objects.

Figure 20: Comparison of the models and their object counts for abstractness and con-

creteness as well as the total value. The number of objects is given in thousands (1e3).

48

5 Evaluation and Interpretation of Results

Within this section, the set-up of the evaluation of the experiments is presented

and the results are discussed. As evaluation method for the output of the di↵erent

models, manual evaluation through Amazon Mechanical Turk (AMT) is chosen.

AMT is a crowd-sourcing platform operated by Amazon which allows requesters to

outsource tasks like data annotation and the participation in surveys5. A requester

can upload one batch or several batches which means the collection of multiple single

tasks of the same type. In the context of AMT, these single tasks are called HITs

(Human Intelligence Task). The HITs for this thesis consist of two subtasks. The

first task is to decide if the provided label depicts the object surrounded by the

bounding box. In the second task, the workers are asked to judge on a scale between

1 (Good) and 4 (Bad) how well the object is surrounded by the bounding box.

5.1 Evaluation Set-up

There are several aspects to consider for the evaluation of the data, especially when

only a subset can be evaluated. The following elaborates on the selection of a rep-

resentative subset from the entire dataset and other settings like the number of

annotators, concluding with the batch layout used in AMT.

Number of concepts, images, annotators. In order to obtain a representative

evaluation of the tools and keep it feasible at the same time, it is important to choose

a representative and reasonable subset of the model output. Therefore, 20 abstract

and 20 concrete concepts are used per tool. Since the total number of detected

objects per image varies between 1 and 953/887 (concrete/abstract), we decide to

include three di↵erent objects per image to increase variety.

5https://www.mturk.com, AMT (last access: August 1, 2023)

49

https://www.mturk.com

The number of annotators per image is set to nine6. These set-up choices result in

a number of 7,560 images being annotated. The 840 images are split into 56 batches

consisting of 15 images from the dataset and one additional image functioning as

a randomized check for annotation quality. The goal was to have a total of 7,560

judgements for the model output and 8,064 judgements including the check in the

end. Please find the summary of the calculations in equations (7)-(10):

40 unique concepts⇥ 7 tools = 280 concepts in total,(7)

280 concepts⇥ 3 objects per image = 840 images in total,(8)

9 judgements⇥ 840 images = 7, 560 original data-points,(9)

9 judgements⇥ 56 batches⇥ 16images = 8, 064 AMT data-points.(10)

Criteria for choice of images. The next step is the choice of the images for

evaluation according to some criteria. Due to the variation in the distribution of

detected objects per image and confidence scores, there are two options for the

choice of data. Option 1 is to use the same images across tools but a varying set-

up for the parameters number of objects per image and confidence scores of the

according objects. This option ensures that the same images are compared, however,

the option is unbalanced in terms of data-points (e.g. resulting in 2 objects for one

image but 3 objects for another image) and less comparable regarding the confidence

scores. In contrast to that, option 2 is to use di↵erent images for evaluation but to

keep the same set-up for objects per image and confidence scores. In the end, option

2 is selected for the following reasons. First of all, keeping the set-up the same for

the number of objects per image results in a more balanced dataset. Furthermore,

the variability of the two parameters would need to be controlled in some way which

probably results in a skewed and uninformative dataset.

6Please note that the number of annotators was also set to 10, 11 and 12 for test-cases, but never

less than 9. However, the actual number of approved data-points per batch was always around

144 (9⇥ 16).

50

Condition for confidence scores. The choice of the confidence score for each

object is based on the distribution of the confidence scores in Figures 18 and 19.

As already mentioned, scores in the range [0.1, 0.3] and 0.3 < x < 0.99 occur most

often. Based on this, we decide to choose one object with a score between [0.1, 0.2],

one object with a score between [0.2, 0.3] and one object with a score >= 0.9, which

we choose instead of >= 0.99 since it is more comparable to the range of the other

conditions and even 0.9 still is a very high number. Please note that in the following,

the notation for the ranges is [0.1, 0.2] and [0.2, 0.3] for simplicity, but actually refers

to the ranges 0.1 <= x <= 0.2 and 0.2 < x <= 0.3.

Generation of the evaluation dataset. The subset of the original dataset for

the evaluation includes only those images where the conditions regarding the confi-

dence scores meet. Those instances are extracted by a script and the original images

without bounding boxes are stored. Second, the coordinates of the bounding boxes

are used to automatically draw bounding boxes on the according images. For each

bounding box a new image is used, resulting in 3 images per concept. Following this,

a csv file is generated containing the image names, the respective labels and a mark

on whether it is abstract or concrete. Note that the image naming follows a pattern

which can be interesting for further analysis of the data, where h (high) denotes

that the detected object has a confidence score >= 0.9, m (middle) between [0.2,

0.3] and l (low) [0.1, 0.2]: tool concept label h/m/l image name.jpg. Since concepts

and labels are not unique, this ensures that the images can be tracked back to their

confidence scores. As a result, each concept is represented by three image name

entries in the csv following this example for the concept supremacy :

- fasterRCNN supremacy person h Image 22.jpg

- fasterRCNN supremacy bed m Image 22.jpg

- fasterRCNN supremacy book l Image 22.jpg

After the generation of the csv, the file is shu✏ed in order to ensure the random-

ization of the distribution of concepts per tool. Subsequently, the large file with 840

51

lines is split into 56 csv files containing 15 lines. In addition to that, we choose 10

images from the original BING2023 dataset, where one object clearly can be deter-

mined and draw one bounding box in the same color as the automatically produced

bounding boxes, but outside of the object (refer to Figure 21 for an example). For

each of the 56 batches, one of these images is included and shu✏ed again. The 10

created random images function as a random check to ensure annotators quality.

Finally, a header with variables from the AMT evaluation file is added to each of

the batches.

Figure 21: Example for a random image check with an obviously wrong bounding box.

Batch layout. As mentioned before, one batch in AMT contains 16 HITs. For each

HIT there is a reward of 0.06$. The layout for one batch consists of some instructions

as displayed in Figure 22, followed by the object label in the caption together with

the according image and the two subtasks (see Figure 23). The instructions highlight

the fact that the images are clickable and zoomable. First, workers are asked in

subtask A to look at the image and to decide if the word presented in the caption

depicts the object in the green box. Further, they are asked to provide a better

word in case they choose option 2 (No). In Subtask B, a scale between 1 (Good)

and 4 (Bad) is provided. Here, the workers are asked to rate how well the green box

captures the according object in the image. The scale is between 1 and 4 to enforce

a decision and avoid an uninformative accumulation of choices in the middle.

52

Figure 22: Instructions that are given in AMT.

Figure 23: Example for the batch layout in AMT with the label bus.

53

Approval and rejection of workers. The purpose of rejecting some workers

is to ensure high annotation quality. The rejection primarily relies on a worker’s

answer for the random check. If a worker chooses option 1 (Yes), the workerID is

removed for every HIT in the batch. Furthermore, some image are manually checked

and obviously wrong cases are removed. Some workers are removed also if they never

enter anything in the text field where they are asked to provide a better label (only if

2 (No) is chosen). However, for every batch there are approximately 144 judgements

in the end, resulting in a total of 7,756 approved judgements. The manually created

random image checks account for 621 approved judgements. This results in a total

of 7,135 judgements for 810 images which are used for the analysis of the results.

5.2 Results (Evaluation)

In the succeeding section, detailed insight is provided into the results of the eval-

uation via AMT, starting with a general overview, followed by an investigation of

the results from subtask A and B. The judgements of the random checks are not

included in the analysis of the annotations. This guarantees that only model output

is evaluated. Also note that in subtask A some judgements have the same count for

1 (Yes) and 2 (No), resulting in indecisive data points. These cases are not included

in the calculation of Precision. However, to gain some information out of these judg-

ments, they are considered separately. Besides, there are many judgements with an

agreement of 100% which are also examined in isolation. While there are 22 images

with indecisive agreement and 432 images with 100% agreement, 356 images are

judged based on their majority vote. The data used for the calculation of precision

involved 788 images which are composed by the 432 100%-agreement-images and

the 356 majority-vote-images.

Furthermore, careful consideration should be given to the fact that the data-

points are associated with di↵erent confidence scores. It is questionable to which

degree data-points with a probability between 0.1 and 0.3 can be seen as True

54

Positives, especially for the lower bound. However, it is also to be discussed if only

data-points containing an object with a score of >= 0.9 count as True Positives,

since scores around 0.2 and 0.3 also depend on an informed decision of the model.

In order to account for this consideration, the data-points with di↵ering scores are

observed both mutually and separately from each other in the analysis. Figure 24

illustrates the distribution of abstract and concrete precision scores for every of the

three probability ranges. From Figure 24 it becomes apparent that precision for high

confidence scores is significantly higher than for the lower scores.

Figure 24: Comparison of precision for abstractness and concreteness across three settings

of confidence scores (high, middle and low).

5.2.1 Subtask A

Precision across all confidence scores. Various aspects are investigated for

subtask A. In Tables 8 and 9, precision across all confidence scores is provided, with

Table 9 making an additional distinction for abstract and concrete data points. Also

refer to Figure 25 for a visualization of the latter. For the cases where all scores are in-

55

cluded, YOLOX achieves the highest performance across all models with a precision

of 0.604, followed by RetinaNet, Double Head R-CNN and Cascade R-CNN, SSD

and Deformable DETR with precision values between 0.577 and 0.473. The lowest

precision score is found for Faster R-CNN with 0.439. When additionally consider-

ing the factor abstractness/concreteness, Double Head R-CNN notably outperforms

the other models with a precision of 0.661 for abstract concepts, while RetinaNet

achieves the highest score for concrete concepts with 0.658. Both for abstract and

concrete concepts Faster R-CNN has the lowest scores with 0.400 (abstract) and

0.473 (concrete).

Model Precision

YOLOX 0.604

RetinaNet 0.577

D-H R-CNN 0.569

Cascade R-CNN 0.557

SSD 0.542

Deformable DETR 0.473

Faster R-CNN 0.439

Table 8: Precision per model across

all three confidence score settings, in

descending order.

Model Abstract Concrete

SSD 0.578 0.512

RetinaNet 0.522 0.658

YOLOX 0.602 0.530

Faster R-CNN 0.400 0.473

D-H R-CNN 0.661 0.481

Deformable DETR 0.453 0.571

Cascade R-CNN 0.564 0.565

Table 9: Precision per model for ab-

stractness and concreteness across all

three confidence score settings.

56

Figure 25: Comparison of precision per model for abstractness and concreteness across

all three confidence score settings.

Precision for high confidence scores. As mentioned before, it is to be discussed

if objects with a probability between 0.1 and 0.3 can really be considered as True

Positives. Therefore, a separate analysis for reliable cases is shown in Table 10 with

precision scores across all concepts and Table 11, taking the distinction of abstract-

ness/concreteness into account. Also refer to the bar plot of the data in Figure 26.

For the high confidence objects, RetinaNet achieves the best model performance

with a precision of 0.900, this time followed by Deformable DETR, Cascade R-

CNN, SSD, Double Head R-CNN, YOLOX and again Faster R-CNN with the worst

performance (0.729). In addition, the analysis of the performance on abstract and

concrete concepts reveals that Deformable DETR demonstrates the best precision

with 0.951 for abstract concepts and Cascade R-CNN outperforms the other models

for concrete concepts with a score of 0.885. Again, Faster R-CNN performs worst

on both abstract (0.760) and concrete concepts (0.697).

57

Model Precision

RetinaNet 0.900

Deformable DETR 0.892

Cascade R-CNN 0.873

SSD 0.841

D-H R-CNN 0.840

YOLOX 0.793

Faster R-CNN 0.729

Table 10: Precision per model

for high confidence scores, in de-

scending order.

Model Abstract Concrete

SSD 0.924 0.755

RetinaNet 0.930 0.872

YOLOX 0.899 0.703

Faster R-CNN 0.760 0.697

D-H R-CNN 0.933 0.747

Deformable DETR 0.951 0.827

Cascade R-CNN 0.860 0.885

Table 11: Precision per model for ab-

stractness and concreteness for high con-

fidence scores.

Figure 26: Comparison of precision per model for abstractness and concreteness consid-

ering only high confidence scores.

In summary, these findings indicate that model performance is higher for abstract

58

rather than concrete concepts, when the setting excludes low confidence scores. In

contrast to that, it is apparent from Figure 24 that the precision for concrete concepts

is higher than for abstract concepts in the [0.1,0.2] setting (0.379 concrete vs. 0.310

abstract) and the [0.2,0.3] setting (0.425 concrete vs. 0.352 abstract). However, this

di↵erence almost dissolves when all three ranges of confidence scores are considered

(0.542 concrete vs. 0.532 abstract). Please be aware that these numbers don’t have

to add up to 1 since they are no opponents.

50/50 agreement. The analysis of the subset with an indecisive agreement gives

some interesting insights into the distribution of the labels. Apparently, workers find

it rather di�cult to choose an option when it comes to the labels presented in Table

12. Workers reach an agreement of 50/50 for the label person six times. Furthermore,

this happened two times for the labels book, bear and tie. The workers also achieve

a balanced number of judgements once for car, frisbee, cup and seven more labels

which can be found in the Table 12. Out of 22 cases, 13 cases are associated with

concreteness and 9 cases are abstract. Please find the distribution of indecisive cases

for abstractness and concreteness across models in Table 19 in the appendix.

Count Label

6 person

2 book, bear, tie

1
car, frisbee, cup, bird, pizza, couch,

tv, broccoli, donut, dining table

Table 12: Labels and their counts for cases with a 50/50 agreement.

100% agreement. Considering only the cases where workers achieve an agreement

of 100% leads to an overview of the cases that seem to be very easy and clear for the

workers. There is a total of 432 cases. All cases that receive a 100% for the 1 (Yes)

rating add up to 258 and are summarized in Table 13. From this Table it is evident

59

that the label person is judged most often as suitable for the according object with

an agreement of 100% (152 counts). The subsequent labels are bird (11 counts),

tie (10 counts), book (9 counts), cake, car (6 counts) and more. As the rows in the

Table approach lower counts, the number of labels increases. A comparison of the

distribution of counts across abstractness/concreteness shows that 136 cases which

are judged true with an agreement of 100% are associated with abstractness and 122

with concreteness. The model counts per abstractness/concreteness are illustrated

in the appendix in Table 20 and are across all categories, also including the 100%

annotations for (2) No. All model counts are between 62 and 68 except from YOLOX

with only 44 counts.

Count Label

152 person

11 bird

10 tie

9 book

6 cake, car

5 motorcycle

3
orange, refrigerator, pizza,

toothbrush, airplane, bottle

2

cell phone, bus, chair, oven,

spoon, knife, horse, cup, broccoli,

handbag, truck, cat, toilet

1

train, donut, backpack, laptop,

dining table, boat, bowl, bench,

umbrella, clock, sink, bicycle,

sheep, sandwich, couch

Table 13: Labels and their counts for cases with a 100% agreement on category 1.

60

Majority agreement (without 100). Finally, the cases are analysed that are

evaluated with the category 1 (Yes) according to majority vote. These are 165 cases

out of 356 majority ratings, where 91 are associated with concreteness and 74 with

abstractness. Again, the label person is the one with the highest occurrences (68

counts), followed by tie, potted plant, dining table (8 counts), boat (7 counts), chair

(6 counts) and more. Please see Table 14 for the numbers of all 1 (Yes) counts and

their corresponding label. Among the distribution of majority votes across models,

YOLOX has the highest counts with 67, while Cascade R-CNN has the lowest counts

with 42. Additional information on the model counts per abstractness/concreteness

can be found in Table 21 in the appendix.

Count Label

68 person

8 tie, potted plant, dining table

7 boat

6 chair

5 bird, sports ball, book

4 truck

3 handbag, bed, car, cup

2
donut, tv, couch, airplane, carrot,

bench, horse, vase

1

apple, orange, fork, sandwich,

keyboard, wine glass, umbrella,

broccoli, bowl, sheep, pizza, clock, suitcase

Table 14: Labels and their counts for cases with a majority vote for category 1.

61

5.2.2 Subtask B

In Subtask B, workers are asked to rate on a scale between 1 (Good) and 4 (Bad)

how well the bounding box captures the described object.

Overall scale across all confidence scores. For a more comprehensive view of

the distribution of ratings, the data is analysed separately with respect to confidence

scores, like in subtask A. On the one hand, Figure 27 displays the rating distribution

across all confidence scores. While the ratings for 1 (Good) have the highest counts

with 2,964, the values for 2 (Rather Good) and 3 (Rather Bad) decrease by more

than half compared to the highest category (1,179 and 1,001 counts). For 4 (Bad),

the counts increase again up to 2,212. Thus, the most counts are spread across the

extremes with a tendency towards 1 (Good).

Overall scale for high confidence scores. On the other hand, ratings only for

high confidence scores are depicted in Figure 28. This distribution looks di↵erent

from the one in Figure 27. Again, category 1 (Good) receives the most counts with

a value of 1,690. However, all other counts are significantly lower. 2 (Rather Good)

is the second highest rating category with 387 counts, followed by 4 (Bad) with

244 counts. The lowest counts are recorded for 3 (Rather Bad) (191 counts). In

contrast to the distribution including all three ranges of confidence scores, where the

highest counts are distributed across both extreme categories, for the distribution

considering only the high scores, a clear tendency towards the first category can be

observed.

62

Figure 27: Distribution of the ratings on a scale between 1 and 4 for the accuracy of the

bounding boxes (across all three confidence score settings).

Figure 28: Distribution of the ratings on a scale between 1 and 4 for the accuracy of the

bounding boxes considering only high confidence scores.

63

Scale per abstractness/concreteness. By adding the variables abstractness/

concreteness per rating category, Figures 29 and 30 are obtained. A similar trend like

in the plots for the overall scale can be observed. While for all confidence scores the

counts are distributed across categories 1 and 4, the most counts for high confidence

scores are clearly found for category 1. Splitting the counts for abstract and concrete

concepts reveals that both variables generally follow this trend. Considering more

fine-grained variations, it becomes apparent that small di↵erences arise. While for

category 1 in Figure 29 concrete concepts receive 62 more counts than abstract ones,

in Figure 30, the same category receives 68 more counts for abstract concepts than

for concrete concepts. When including only high confidence scores in the analysis,

there are overall stronger di↵erences between abstract and concrete than for the

other setting. The di↵erences between abstract and concrete counts on the scale

from 1 to 4 for the setting in Figure 29 are 62, 17, 3, 8 in that order. The di↵erences

between abstract and concrete counts for the setting in Figure 30 are 68, 21, 35, 80.

Particularly the last di↵erence is interesting, since it is the highest. While bounding

boxes for objects for abstract concepts only receive 82 ratings for category 4 (Bad),

those for concrete ones receive 162. When the setting includes all three ranges of

confidence scores, there are 1,451 counts for 1 (Good) associated with abstractness

and 1,513 counts associated with concreteness. For the setting that excludes lower

scores, this is the other way around: abstract concepts perform better (879 counts)

compared to concrete concepts (811 counts). Overall, concrete concepts perform

worse than abstract concepts in the setting for high scores, whereas abstract concepts

perform worse than concrete ones in the other setting.

64

Figure 29: Ratings between 1 and 4 per abstractness and concreteness across all three

confidence score settings.

Figure 30: Ratings between 1 and 4 per abstractness and concreteness considering only

high confidence scores.

65

Scale per model. An overview of model performance for high confidence scores

is provided in Figure 31. As evident from the previous analysis, the inclusion of all

confidence scores in the analysis leads to a blurry distribution such that di↵erences

converge. The di↵erences become more apparent when considering only performance

on high confidence scores. Therefore, this section which is already comparing seven

tools, focuses on the exclusive setting. Refer to Figure 34 in the appendix for further

details on the rating counts per model across all confidence scores. In Figure 31,

almost all tools follow the trend of having category 1 (Good) with the highest

counts, followed by category 2 at a large distance, some further small decrease for

category 3 and finally a small increase for category 4 (Bad). Only SSD and Cascade

R-CNN di↵er with regards to the order of category 3 and 4. While those categories

are equal to each other for SSD, category 4 further decreases compared to category

3. To summarize, category 1 is the highest rated category across all models and

category 3 the lowest, except for SSD, since category 3 and 4 share the lowest rank

and Cascade R-CNN. In addition to that, the highest score for category 1 is achieved

by RetinaNet with 271 counts, followed by Deformable DETR with 269 counts and

SSD with 252 counts. In decreasing order the models Double-Head R-CNN (246),

Cascade R-CNN (240), YOLOX (226) and Faster R-CNN (186) follow.

Extremes per model and abstractness/concreteness. Examining the di↵er-

entiation of abstractness/concreteness in detail for the extreme categories, it stands

out that for category 1, abstractness counts are almost always higher, except for

Faster R-CNN and Cascade R-CNN. This phenomenon is visually represented in

Figure 32). In contrast to that, counts for category 4 are always higher for concrete-

ness, as depicted in Figure 33.

66

Figure 31: Comparison of ratings per model considering only high confidence scores.

Figure 32: Distribution of ratings for category 1 per model for high confidence scores.

67

Figure 33: Distribution of ratings for category 4 per model for high confidence scores.

Top 15 labels. It is particularly interesting to sort the ratings for category 1 which

displays the ideal position of a bounding box. Table 15 provides an overview of the

top 15 rated labels. The highest rated label by far is person with 1,425 counts for

category 1. Top 2 is tie with 113 counts. The ranking of these two labels are exactly

in line with the first two labels out of the 1 (Yes) label counts for majority agreement

in subtask A, depicted in Table 14 and the 50/50 agreement in Table 12. Apart from

the ranking, the following overlap between the labels with the top 15 ratings for the

bounding boxes and the label counts for subtask A is found:

• 50/50 agreement: person, tie, bird, book, car, dining table (see Table 12)

• 100% agreement: person, tie, bird, book, car, dining table, chair, cake, truck,

cell phone, motorcycle, handbag, clock (see Table 13)

• Majority agreement: person, tie, bird, book, car, dining table, chair, cake,

truck, potted plant, handbag, clock, sports ball (see Table 14)

68

The unique set of overlaps is composed of the following 15 labels: person, tie,

bird, book, car, dining table, chair, cake, truck, cell phone, motorcycle, handbag,

clock, potted plant, sports ball.

Label 1 (Good) 2 3 4 (Bad)

person 1425 448 268 263

tie 113 80 71 136

bird 112 52 45 111

book 93 41 32 36

car 64 20 15 30

dining table 53 34 50 76

chair 49 37 39 100

cake 46 21 13 33

truck 45 5 9 10

cell phone 44 20 26 138

potted plant 41 20 13 10

motorcycle 39 8 8 11

handbag 38 23 22 66

clock 38 15 32 104

sports ball 36 18 20 48

Table 15: Top 15 labels and their counts for the categories 1, 2, 3 and 4.

5.3 Discussion

In the upcoming section, the results from section 4.4 and section 5.2 are discussed in

relation to various aspects. First, characteristics of abstractness and concreteness are

derived from the tendencies they show in the results. Following this, the performance

of the models is compared in general and in relation to abstractness/concreteness.

Finally, the top rated labels are addressed.

69

5.3.1 Abstractness vs. Concreteness

Object counts. Examining the distribution of objects based on their abstractness

and concreteness revealed that while 852,858 objects are found in abstract images,

963,581 objects are detected in concrete images which are 110,723 more objects. Ac-

cordingly, 12.983% more objects are found for concrete images compared to abstract

images. This finding suggests that images of concrete concepts contain notably more

objects. Suggestion 1: A possible explanation for this could be that existing the-

ories about the linguistic context of abstract/concrete concepts are applicable to

their visual representation: Wiemer-Hastings and Xu (2005) stated that the context

of abstract concepts tends to be more complex. Considering that the COCO classes

involve only 80 categories, it seems reasonable that less complex objects, which are

easier to recognize and distinguish, are more e↵ectively detected by an algorithm.

In contrast to that, abstract concepts might tend to be presented in a more visu-

ally challenging way. Following this logic, the number of objects per image could be

understood as context. As Figure 15 illustrates, abstract concepts show a high peak

for low numbers of detected objects per image compared to concrete ones. This goes

along with the hypothesis that visual complexity in a 80 class setting leads to many

occurrences of images with a low object count. Suggestion 2: Another possible ex-

planation is that abstract concepts simply tend to have less visual context, regardless

of their complexity, while concrete concepts rather appear with more context.

Statistical analysis. Interestingly, the statistical analysis of the object counts

per image and the object counts per concepts assigns a higher mean, median and

standard deviation for concrete concepts compared to abstract one (see Tables 4 and

6). This pattern is also reflected in the top 20 maximum and minimum values of

detected objects which are both allocated to concrete concepts (see Figures 17 and

16). These observations indicate a higher variance for the object counts in case of

concreteness. The reason for this might be that the 25 images per concept are not of

the same quality and that the selection of images requires a more controlled setting.

70

However, this could also suggest that some concrete concepts can vary more in how

they are visually represented. If the variety of object counts per concept or image is

understood as the variety of context, this is not equivalent to the finding of Schulte im

Walde and Frassinelli (2022), that abstract concepts occur with a higher contextual

variety. In this case, the properties of visually represented abstract concepts and

linguistic abstract concepts would di↵er.

Precision and bounding boxes. From the comparison of precision for abstract-

ness vs. concreteness, no significant di↵erences emerge for the setting that includes

all confidence scores: model performance has a precision of 0.532 on abstract concepts

and 0.542 on concrete concepts. If only high confidence scores are considered, a more

obvious di↵erence arises: while model performance on abstract concepts achieves a

precision of 0.925, it yields on concrete concepts a precision of 0.807. Further, sub-

task B records lower values for category 1 for abstract data (1,451) across all three

ranges of confidence scores compared to concrete data (1,513). In contrast to that,

the high confidence score setting is the other way around: bounding boxes associ-

ated with abstractness have a higher rating for 1 (Good) (879) than for concrete

(811). In this set-up, also the lowest counts for 4 (Bad) are assigned to abstract

images. Considering that high confidence scores represent the actual meaning of

True Positives, it can be argued that models perform overall better on abstract con-

cepts than on concrete ones. These findings challenge suggestion 1, the hypothesis

that abstractness raises a higher complexity of context, at least if one assumes that

complex objects rather have worse precision than simple ones. However, the lower

precision related to concreteness can also be due to the higher amount of context,

as suggested in suggestion 2. Assuming that a higher accumulation of objects on

an image leads to a harder di↵erentiation between the background and the object

which is to be predicted, slightly worse performance on highly contextual concepts

can be expected. This goes along with suggestion 2.

Confidence scores. Across all models, most of the detected objects have a con-

fidence score in the range [0.1, 0.3] and 0.99 (Figures 18 and 19). This seems to be

71

reasonable and demonstrates high accuracy of the models. The models assign several

potential labels to many object candidates and therefore predict many objects with

a low probability. Only few objects are found in the middle which is an advantageous

way to exclude candidates that are indecisive and thus do not provide informative

content. The prediction of an object with a confidence of 50% represents a rather un-

informed decision. Considering that the classes include 80 di↵erent labels, it is not as

uninformed as for a binary scenario, however, it is preferred to have a clear decision.

The high peak at 0.99 indicates that the models aim to avoid False Positives and

favor informed decisions. Overall, this behavior can be well explained. It is especially

striking that the abstract distribution has a count of 22,474 for a confidence score of

0.99 whereas the concrete distribution shows a count of 17,644. Together with the

overall lower object counts for abstractness it seems that the model performance on

abstract concepts is better than on concrete concepts. These findings are consistent

with the distribution of precision across confidence scores in Figure 24. Abstract

objects with a confidence of >= 0.9 have a precision of 0.925, whereas concrete

objects have a precision of 0.807. At the same time, abstract precision values for

middle and low confidence scores are worse. In conclusion, this means that models

show an overall better performance for abstractness when the confidence scores are

high, but worse performance for low to middle scores. In contrast to that, prediction

on concrete data shows a more consistent performance.

Agreement. In section 5.2.1, several variants of annotator agreement are consid-

ered. For indecisive agreement (50/50), 13 cases are associated with concreteness

and 9 cases with abstractness. On the basis of the limited data available, no reli-

able statement can be made about a tendency towards abstractness or concreteness.

Moreover, the 100% agreement cases contain 224 abstract cases and 208 concrete

cases. Among these, 136 abstract and 122 concrete cases are annotated with category

1 (Yes). The number of data-points is still small, however, a more obvious di↵erence

arises. Apparently, abstract cases lead to a higher agreement among annotators.

This is consistent with the findings that the overall performance on concrete images

72

is worse. Besides, majority agreement for 1 (Yes) is higher for concrete cases. This

leads to the assumption that there is a higher disagreement among annotators for

concreteness and that these cases tend to be less clear than for abstractness.

5.3.2 Model Comparison

RetinaNet and Deformable DETR: best overall. When comparing model

performance, it is interesting to take the distribution of object counts per model into

account. Most objects are found from RetinaNet, followed by Deformable DETR,

Double-Head R-CNN, SSD, Faster R-CNN, Cascade R-CNN and YOLOX. There

is an overlap between the two models with the highest precision and the object

count: for the high confidence score setting, RetinaNet gains best precision with

0.900, followed by Deformable DETR with 0.892. For the rating of the bounding

boxes in subtask B, RetinaNet achieves the most counts for category 1 (Good),

closely followed by Deformable DETR. Accordingly, tasks that do not involve the

separation of abstractness/concreteness are well accomplished by these two models.

Deformable DETR: best for abstract. If additionally the variable of abstract-

ness is taken into account, it is notable that Deformable DETR performs best for

abstract concepts. Again, an overlap can be found: Deformable DETR is the only

model with a higher object count for abstractness than for concreteness. Further-

more, Deformable DETR records both the highest counts for category 1 (Good) for

abstract concepts and the lowest counts for category 4 (Bad) for abstract concepts.

This indicates that Deformable DETR does not only perform overall well on images,

but is particularly suitable for tasks involving abstract concept images. However, it

is not clear why especially Deformable DETR is the tool performing well on ab-

stractness. One possible explanation is that this is related to the encoder/decoder

architecture.

Cascade R-CNN or RetinaNet: which is best for concrete? The highest

precision on concrete concepts is recorded for Cascade R-CNN with 0.885, closely

73

followed by RetinaNet with 0.872. It should be noted that Cascade R-CNN shows

the second lowest objects counts compared to other tools. Of course, the number of

predictions and precision values are not directly proportional and a high prediction

number does not necessarily influence a model’s performance. However, if the task

is to examine the context of objects in images or quantify features of objects, it is

preferable to have a higher number of detected objects available. When it comes

to bounding box judgements for concrete concepts, RetinaNet and Cascade R-CNN

perform nearly similarly: RetinaNet has 131 ratings for 1 (Good), whereas Cascade

R-CNN has 130 ratings. If suggestion 2 is followed, it is reasonable that both tools

perform well on concrete concepts which occur with a higher number of objects per

image. On the one hand, RetinaNet is known to address the extreme foreground-

background class imbalance by introducing a new loss function (Lin et al., 2017b).

On the other hand, Cascade R-CNN is able to perform well even in challenging

situations: the resampling mechanism enables high quality detection by keeping

increasingly hard examples in the training progress (Cai and Vasconcelos, 2018).

YOLOX: robust but with flaws. Moving forward to the precision values across

overall confidence scores, YOLOX performs best when abstractness and concreteness

are not considered. This suggests that YOLOX has the most consistent performance

across the low, middle and high confidence scores. It can be argued that this is

an indication of robustness, since it performs satisfying across di↵erent scenarios.

Nevertheless, YOLOX has the second lowest counts for category 1 (Good) but the

highest counts for 4 (Bad) in subtask B. From this follows, that the performance on

the bounding boxes of YOLOX is not as good as its performance for classification.

Also, YOLOX achieves the lowest object counts out of the seven tools.

Faster R-CNN: worst performance. Finally, it is conspicuous that Faster R-

CNN performs worst in terms of precision across all settings. When it comes to

the judgment of the bounding boxes, Faster R-CNN also has the lowest count for

category 1. For the number of objects that are detected in total, Faster R-CNN is

in fifth place.

74

SSD and Double-Head R-CNN: satisfying performance. SSD and Double-

Head R-CNN do not show any major abnormalities and seem to perform satisfying.

Double-Head R-CNN only stands out for precision for abstractness in the setting

where all confidence scores are included (Table 9). However, this setting is rather

too detailed and specific for an overall examination of abstractness and concreteness

and can be interesting for further examinations on overall model performance or

robustness of models.

5.3.3 Top rated labels

The main focus of this thesis is not on an in-depth analysis of the labels, however,

there are some interesting results that are worth looking at. The label associated

with the highest ratings for category 1 (Yes) in subtask A and for category 1 (Good)

in subtask B is person. The gap to the second best rated label is especially remark-

able for the refinement of bounding boxes: person with a count of 1425 ratings for

category 1 is followed by tie with a count of 113 ratings. Further, person is also by

far the highest counted label in subtask A for category 1 (Yes) with an agreement

of 100% (152 vs. 11 for the second place) as well as with majority vote (68 vs. 8 for

the second place). This suggests that models perform particularly well on people.

For the indecisive cases, person is also the top count, however, a count of six is not

really expressive. Please also be aware that the data used for evaluation is only a

subset of the original dataset and some labels/concepts might not even occur in the

evaluation.

6 Conclusion

In summary, this thesis compares seven di↵erent object detection tools and examines

their performance on abstract and concrete concepts, depicted as images. Further,

the goal was to gain insights into characteristics of abstract and concrete concepts

75

and their visual representation. In order to do so, an experiment is conducted on

a dataset consisting of 24,950 images using the toolbox MMDetection. The data

is evaluated both automatically in terms of object counts, as well as manually by

human annotators from AMT. It is found that for concrete concepts 110,723 more

objects are detected than for abstract concepts. Two potential explanations are

suggested for this disparity. Suggestion 1 assumes that higher complexity of con-

text in abstract images leads to less model predictions, where context is understood

as number of objects per image. On the other hand, suggestion 2 proposes that

abstract concepts simply occur with less context than concrete concepts. Taking

additionally into account that precision values and bounding box judgements are

better for abstract concepts in the high confidence score setting, suggestion 1 is

challenged. Moreover, these findings support the second hypothesis that concrete-

ness is associated with more context than abstractness. However, this is based on

the assumption that crowded context leads to worse performance due to a di�cult

background/foreground distinction.

A comparison of the tools reveals that it is more recommendable to use Reti-

naNet, Deformable DETR or Cascade R-CNN when high accuracy is chosen over

robustness. For tasks that involve low probability predictions, a rather robust tool

like YOLOX or Double-Head R-CNN can be useful. It is also remarkable that both

RetinaNet and Cascade R-CNN achieve the best results on concrete data, especially

since RetinaNet is well-known for its ability to address foreground/background im-

balances. This supports suggestion 2. On abstract data, Deformable DETR performs

best. It remains unclear, why Deformable DETR is especially suitable for abstract-

ness, however, this can be related to the transformer based architecture.

Further, the distribution of cases with 100% agreement and majority vote agree-

ment across abstractness and concreteness suggests that disagreement among anno-

tators is more prevalent in concrete cases, whereas abstract cases seem to be more

clear for the workers.

76

Finally, it is still to be discussed which confidence scores are considered as True

Positives and if it is useful to stick to a specific setting which includes or excludes

certain scores. On the one hand, factors like robustness and distributional patterns

can be observed, when several scores are included. However, this also skews the

dataset regarding actual True Positives and leads to the need of isolated analyses.

The results of this study extend to the domain of computer vision by providing

information on the performance of object detection tools, as well as to psycholin-

guistics and natural language processing with regards to insights into characteris-

tics of abstract and concrete concepts. Also, this thesis raises the question what

the visual context of abstract and concrete concepts looks like. Looking ahead, it

would be interesting to have a more in-depth analysis of the definition of context in

images and to examine the question if the linguistic context theories for abstract-

ness/concreteness can be applied to the visual representation of the concepts. One

approach might be to not only count the number of objects per image but also

to measure the average distance between objects per image (or per concept). Fur-

ther, entropy is an interesting measure for the degree of variety and can be used

to investigate the questions of how strongly the context labels di↵er per abstract-

ness/concreteness. This again can be compared with linguistic studies about entropy

of context. Future investigations might also include more than the 80 classes from

COCO. Regarding the labels, a more detailed analysis of the synsets from Word-

Net for each label per abstractness/concreteness sounds promising. By doing so,

the characteristics of abstract and concrete image data can be estimated better in

order to yield further improvement of the model performance. Finally it would be

interesting to have a study that examines the performance of di↵erent transformers

vs. a baseline on abstract concepts.

77

Appendix

airplane cat kite snowboard

apple cell phone knife spoon

backpack chair laptop sports ball

banana clock microwave stop sign

baseball bat couch motorcycle suitcase

baseball glove cow mouse surfboard

bear cup orange teddy bear

bed dining table oven tennis racket

bench dog parking meter tie

bicycle donut person toaster

bird elephant pizza toilet

boat fire hydrant potted plant toothbrush

book fork refrigerator tra�c light

bottle frisbee remote train

bowl gira↵e sandwich truck

broccoli hair drier scissors tv

bus handbag sheep umbrella

cake horse sink vase

car hot dog skateboard wine glass

carrot keyboard skis zebra

Table 16: List of all 80 COCO classes (Lin et al., 2014).

78

Concept Concrete Abstract

1 grass significance

2 tree validity

3 ocean certainty

4 iceberg characterization

5 eagle possibility

6 forehead eligibility

7 rhino severity

8 hemp aptitude

9 keyboard mindset

10 owl coe�cient

11 horse competence

12 bird likelihood

13 nostril tendency

14 gorilla pragmatism

15 nun perseverance

16 portrait standardization

17 scissors ambiguity

18 zebra discernment

19 diploma competency

20 hummingbird adversity

Table 17: Ranking of the 20 concepts with the lowest number of detected objects for

abstractness (orange) and concreteness (blue).

79

Concept Concrete Abstract

1 bookstore colonialism

2 restaurant austerity

3 canteen tradition

4 motorway extremism

5 nightclub conformity

6 rooftop enlightenment

7 theater assumption

8 cafe martyrdom

9 airport activism

10 kitchen appropriation

11 hotel nationalism

12 patio dominion

13 platter accountancy

14 volleyball succession

15 o�ce independence

16 vegetable anarchism

17 sushi epitome

18 salad fruition

19 cathedral socialization

20 desk credence

Table 18: Ranking of the 20 concepts with the highest number of detected objects for

abstractness (orange) and concreteness (blue).

80

Model Abstract Concrete

SSD 0 2

RetinaNet 1 2

YOLOX 3 3

Faster R-CNN 1 1

D-H R-CNN 1 0

Deform. DETR 0 3

Cascade R-CNN 3 2

Table 19: Counts per model and abstractness/concreteness for cases with a 50/50 agree-

ment.

Model Abstract Concrete

SSD 34 28

RetinaNet 35 33

YOLOX 25 19

Faster R-CNN 32 31

D-H R-CNN 32 32

Deform. DETR 37 30

Cascade R-CNN 29 35

Table 20: Counts per model and abstractness/concreteness for cases with a 100% agree-

ment.

81

Model Abstract Concrete

SSD 26 30

RetinaNet 21 22

YOLOX 30 37

Faster R-CNN 24 27

D-H R-CNN 26 26

Deform. DETR 22 23

Cascade R-CNN 22 20

Table 21: Counts per model and abstractness/concreteness for cases with majority vote

agreement.

Figure 34: Comparison of ratings per model across all three confidence score settings.

82

References

Yali Amit, Pedro Felzenszwalb, and Ross Girshick. 2020. Object detection. Com-

puter Vision: A Reference Guide.

Lawrence Barsalou. 1999. Perceptual symbol systems. Behavioral and brain sciences.

Sai Abishek Bhaskar, Maximilian Köper, Sabine Schulte Im Walde, and Diego

Frassinelli. 2017. Exploring multi-modal text+image models to distinguish be-

tween abstract and concrete nouns. In Proceedings of the IWCS workshop on

Foundations of Situated and Multimodal Communication.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman. 2014. Concreteness

ratings for 40 thousand generally known English word lemmas. Behavior research

methods.

Zhaowei Cai and Nuno Vasconcelos. 2018. Cascade R-CNN: Delving into high quality

object detection. In Proceedings of the IEEE conference on computer vision and

pattern recognition.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kir-

illov, and Sergey Zagoruyko. 2020. End-to-end object detection with transformers.

In European conference on computer vision. Springer.

Manuel Carranza-Garćıa, Jesús Torres-Mateo, Pedro Lara-Beńıtez, and Jorge

Garćıa-Gutiérrez. 2020. On the performance of one-stage and two-stage object

detectors in autonomous vehicles using camera data. Remote Sensing.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,

Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,

Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,

Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and

Dahua Lin. 2019a. MMDetection: Open MMLab Detection Toolbox and Bench-

mark. arXiv preprint arXiv:1906.07155.

83

Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Yi Jiang, Naiyan Wang, and

Zhaoxiang Zhang. 2019b. Simpledet: A simple and versatile distributed framework

for object detection and instance recognition. Journal of Machine Learning Re-

search.

Sara Dellantonio, Remo Job, and Claudio Mulatti. 2014. Imageability: now you see

it again (albeit in a di↵erent form). Frontiers in psychology.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. 2012. Learn-

ing hierarchical features for scene labeling. IEEE transactions on pattern analysis

and machine intelligence.

Martin Fischer and Rolf Zwaan. 2008. Embodied language: A review of the role of

the motor system in language comprehension. Quarterly journal of experimental

psychology.

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. 2021. YOLOX:

Exceeding YOLO series in 2021. arXiv preprint arXiv:2107.08430.

Lako↵ George and Mark Johnson. 1980. Metaphors we live by.

Ross Girshick. 2015. Fast R-CNN. In Proceedings of the IEEE international confer-

ence on computer vision.

Ross Girshick, Je↵ Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition.

Joseph Goguen. 2005. What is a concept? In International Conference on Conceptual

Structures. Springer.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

press.

84

http://jmlr.org/papers/v20/19-205.html
http://jmlr.org/papers/v20/19-205.html

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing

Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. 2018. Recent

advances in convolutional neural networks. Pattern recognition.

Stevan Harnad. 1990. The symbol grounding problem. Physica D: Nonlinear Phe-

nomena.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2014. Spatial pyra-

mid pooling in deep convolutional networks for visual recognition. In European

Conference on Computer Vision. Springer.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Faris Kateb, Muhammad Mostafa Monowar, Abdul Hamid, Abu Quwsar Ohi, and

Muhammad Firoz Mridha. 2021. Fruitdet: Attentive feature aggregation for real-

time fruit detection in orchards. Agronomy.

Maximilian Köper and Sabine Schulte im Walde. 2017. Improving verb metaphor

detection by propagating abstractness to words, phrases and individual senses. In

Proceedings of the 1st Workshop on Sense, Concept and Entity Representations

and their Applications.

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. 2010. Convolutional net-

works and applications in vision. In Proceedings of 2010 IEEE international sym-

posium on circuits and systems. IEEE.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. 2017a. Feature pyramid networks for object detection. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

85

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017b.

Focal loss for dense object detection. IEEE International Conference on Computer

Vision ICCV.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common

objects in context. In Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander Berg. 2016. SSD: Single shot multibox detec-

tor. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,

The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer.

Francisco Massa and Ross Girshick. 2018. maskrcnn-benchmark: Fast, modular

reference implementation of Instance Segmentation and Object Detection algo-

rithms in PyTorch. https://github.com/facebookresearch/maskrcnn-benchmark.

Last access: July 09, 2023.

Jörg Meibauer, Ulrike Demske, Jochen Geilfuß-Wolfgang, Jürgen Pafel, Karl Heinz

Ramers, Monika Rothweiler, and Markus Steinbach. 2015. Einführung in die

germanistische Linguistik. Springer-Verlag.

Daniela Naumann, Diego Frassinelli, and Sabine Schulte im Walde. 2018. Quantita-

tive semantic variation in the contexts of concrete and abstract words. In Seventh

Joint Conference on Lexical and Computational Semantics (SEM 2018).

Allan Paivio. 1971. Imagery and language. In Imagery. Elsevier.

Diane Pecher. 2018. Curb your embodiment. Topics in Cognitive Science.

Diane Pecher, Inge Boot, and Saskia Van Dantzig. 2011. Abstract concepts: Sensory-

motor grounding, metaphors, and beyond. In Psychology of learning and motiva-

tion, volume 54. Elsevier.

86

https://github.com/facebookresearch/maskrcnn-benchmark

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only

look once: Unified, real-time object detection. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:

Towards real-time object detection with region proposal networks. Advances in

neural information processing systems.

Sabine Schulte im Walde and Diego Frassinelli. 2022. Distributional measures of

semantic abstraction. Frontiers in artificial intelligence.

Paula J Schwanenflugel and Edward J Shoben. 1983. Di↵erential context e↵ects in

the comprehension of abstract and concrete verbal materials. Journal of Experi-

mental Psychology: Learning, Memory, and Cognition.

K Simonyan and A Zisserman. 2015. Very deep convolutional networks for large-scale

image recognition. In 3rd International Conference on Learning Representations

(ICLR 2015). Computational and Biological Learning Society.

Eliot R Smith. 1998. Mental representation. The handbook of social psychology.

Tarun Tater, Diego Frassinelli, and Sabine Schulte im Walde. 2022. Concreteness

vs. Abstractness: A Selectional Preference Perspective. In Proceedings of the 2nd

Conference of the Asia-Pacific Chapter of the Association for Computational Lin-

guistics and the 12th International Joint Conference on Natural Language Pro-

cessing: Student Research Workshop.

Mike Tucker and Rob Ellis. 1998. On the relations between seen objects and compo-

nents of potential actions. Journal of Experimental Psychology: Human perception

and performance.

Katja Wiemer-Hastings and Xu Xu. 2005. Content di↵erences for abstract and

concrete concepts. Cognitive science.

87

Yue Wu, Yinpeng Chen, Lu Yuan, Zicheng Liu, Lijuan Wang, Hongzhi Li, and Yun

Fu. 2020. Rethinking classification and localization for object detection. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.

2019. Detectron2. https://github.com/facebookresearch/detectron2. Last access:

July 09, 2023.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Ag-

gregated residual transformations for deep neural networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition.

Peng Zhou, Bingbing Ni, Cong Geng, Jianguo Hu, and Yi Xu. 2018. Scale-

transferrable object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. 2020.

Deformable detr: Deformable transformers for end-to-end object detection. arXiv

e-prints.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. 2023. Object

detection in 20 years: A survey. Proceedings of the IEEE.

88

https://github.com/facebookresearch/detectron2

	1 Introduction
	2 Abstractness vs. Concreteness
	2.1 General Distinction
	2.2 Theory of Cognition
	2.3 Concreteness Ratings
	2.4 Text-Based Computational Approaches
	2.5 Multi-Modal Computational Approaches

	3 Object Detection
	3.1 One-Stage vs. Two-Stage vs. Multi-Stage Detectors
	3.2 Applicability of CNNs for Object Detection
	3.3 Technical Background of CNNs
	3.4 Object Detection Model Architecture
	3.5 Comparison of Toolboxes
	3.6 MMDetection
	3.7 Tools
	3.7.1 SSD
	3.7.2 YOLOX
	3.7.3 Faster R-CNN
	3.7.4 RetinaNet
	3.7.5 Double-Head R-CNN
	3.7.6 Deformable DETR
	3.7.7 Cascade R-CNN

	4 Experiments
	4.1 Dataset
	4.2 Model Set-up
	4.3 Image Inference
	4.4 Results (Experiments)

	5 Evaluation and Interpretation of Results
	5.1 Evaluation Set-up
	5.2 Results (Evaluation)
	5.2.1 Subtask A
	5.2.2 Subtask B

	5.3 Discussion
	5.3.1 Abstractness vs. Concreteness
	5.3.2 Model Comparison
	5.3.3 Top rated labels

	6 Conclusion
	Appendix

