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Abstract

In the current computing continuum, edge computing is an important field of research. Edge comput-
ing is a paradigm that revolutionizes traditional cloud-centric computing models by decentralizing
data processing and analysis closer to the data source, often at or near the network’s edge. This
approach aims to alleviate the latency and bandwidth constraints associated with transmitting large
volumes of data to distant cloud servers. By leveraging local computational resources, such as edge
devices or servers, edge computing empowers real-time decision-making, enhances privacy, and
enables applications in environments with limited or intermittent connectivity. Currently, there
exist many different platforms for edge computing exist. However, these platforms often form a
relatively encapsulated system, requiring a specific implementation or abstraction. Within this
thesis, a proposal of an interoperable protocol for the integration of different edge platforms and
devices is created. Different entities can use the protocol to provide or require computational power
and resources, which allows efficient offloading in a heterogeneous environment. No homogenous
platform is necessary, but heterogeneous devices can communicate via this protocol. Additionally,
context is used to allow for specific optimization methods, e. g., to improve the connectivity or
decrease the computation delay. Based on this protocol, a framework is implemented, called
MetaEdge. This prototype is used to validate the suitability of the protocol and to show its
effectiveness. The concept is proofed by creating multiple worker nodes which implement different
edge platforms and runtimes. MetaEdge is able to orchestrate and coordinate these different tasks,
and also use context of the worker and the network for different optimization strategies.
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Kurzfassung

Im aktuellen computing continuum ist Edge Computing ein wichtiges Forschungsgebiet. Edge
Computing ist ein Paradigma, das die traditionellen Cloud-zentrierten Computermodelle verändert,
indem es die Datenverarbeitung und -analyse dezentralisiert. Diese Aufgaben werden näher an
der Datenquelle, oft direkt am Netzwerkrand, ausgeführt. Dieser Ansatz zielt darauf ab, die mit
der Übertragung großer Datenmengen an weit entfernte Cloud-Server verbundenen Latenzzeiten
und Bandbreitenbeschränkungen zu verringern. Durch die Nutzung lokaler Rechenressourcen,
z. B. Edge-Geräte oder -Server, ermöglicht Edge Computing Echtzeit-Berechnungen, verbessert
den Datenschutz und ermöglicht es, Anwendungen in Umgebungen mit eingeschränkter oder
unterbrochener Konnektivität auszuführen. Derzeit gibt es viele verschiedene Plattformen für
Edge Computing. Diese Plattformen bilden jedoch häufig ein relativ gekapseltes System, das eine
spezifische Implementierung oder Abstraktion erfordert. In dieser Arbeit wird ein Prototyp für
ein interoperables Protokoll zur Integration verschiedener Edge-Plattformen und -Geräte erstellt.
Verschiedene Einheiten können darüber Rechenleistung und Ressourcen bereitstellen oder nutzen,
was ein effizientes Offloading in einer heterogenen Umgebung ermöglicht. Es ist keine homogene
Plattform erforderlich, sondern heterogene Geräte können über dieses Protokoll kommunizieren.
Darüber hinaus wird Kontext genutzt, um spezifische Optimierungsmethoden zu ermöglichen, z. B.
um die Konnektivität zu verbessern oder die Rechenzeit zu verringern. Auf Grundlage dieses
Protokolls wird ein Framework, MetaEdge, implementiert. Dieser Prototyp wird verwendet, um
die Interaktion des Protokolls zu validieren und seine Wirksamkeit zu zeigen. Mehrere Edge-
Plattformen und Laufzeiten werden in dem Konzept integriert und auf verschiedenen Instanzen
gestartet. Dabei kann gezeigt werden, dass MetaEdge in der Lage ist, die verschiedenen Aufgaben
zu orchestrieren und zu koordinieren sowie den Kontext der Teilnehmer und des Netzwerks für
verschiedene Optimierungsstrategien zu nutzen.
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1 Introduction

Mark Weiser’s Vision of ubiquitous computing has become reality to a large extend [Wei91]. People
interact with many different devices intuitively, which often are connected all together via the
Internet. Today, this is also referred to the computing continuum, which spans from large datacenters
in the cloud, to smaller devices at the fog and edge in the network, towards the end device of the
user [RSS+20]. Additionally, the user has the more capable devices than ever before, for example in
terms of storage or computing power, but also the used sensors (e. g., camera) are more sophisticated.
However, at the same time, applications are becoming more complex and therefore require more
resources, resulting in longer waiting times and higher power consumption of the local device.
By using computation offloading, many of these issues seem to get fixed [KLLB13]. In this idea,
so-called consumers offload some parts of their application to remote devices, so-called providers,
which perform the computation and return the result back to the consumer. This leverages the
combined power of different machines from which less capable devices can profit. In case the
remote device has more computational power than the user, the execution of the application is
faster. Additionally, the local device has the potential to consume less battery, since it does not
have to perform complex computations. This is especially an advantage for mobile devices, which
have limited battery capacity. However, the devices have to be connected to send data between
them. For computation offloading, different models were developed. One of the first ideas was
volunteer computing [KWA+01], where different computers provide their resources to form a
virtual supercomputer. Later, cloud computing transformed the interaction model of businesses and
private users [FZRL08]. However, such resources in the cloud are located relatively far away and
therefore the latency is very high. To overcome the issue of latency, edge computing has emerged
as a complement to cloud computing [GME+15]. Here, less powerful devices are positioned near
the user and thus the latency is reduced.

1.1 Problem Statement

The devices in an edge computing environment are highly heterogeneous, because of the decentral-
ization and different providers [HYW19; SEV+16]. They differ in various aspects, such as hardware,
Operating System (OS), architecture, and more. Additionally, different architectural models and
supporting system software were developed across different paradigms. Therefore, they do not
share a common communication model, but each application model requires specific support. To
increase the advantages of edge computing, context-aware algorithms are used [BSEB19]. Different
platforms exist, which solve these problems. However, they often require custom implementations
and are not interoperable with other systems.
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1 Introduction

1.2 Research Question

From the above description of the current problem, some research questions are derived to find
a solution. The goal is to propose a coordination framework between edge devices, which offers
high interoperability via a suitable protocol. It shall be possible for multiple various providers
and platforms to interact with this framework in order to support the wide heterogeneity that such
systems inherently exhibit. This leads to the first research question:

Research Question 1: How to design an interoperable framework which coordinates between
heterogeneous consumers and providers?

The consumers in this system may have different use cases and preferences for their required task.
They could select the target provider based on multiple different factors, such as computational
power, but also the supported runtime or the latency to the provider can impact the decision. The
protocol shall support to find a suitable edge node for the current task which the consumer can use.
This is reflected in the following research question:

Research Question 2: How can an interoperable protocol help edge clients to find a suitable edge
node?

As in previous points already mentioned, the devices are highly heterogeneous and may support
different runtimes. As different runtimes are developed over time, they may not be known in advance
when designing the system. Therefore, the protocol has to be extensible. The protocol should keep
track of available runtimes and provide interoperability between the consumers and providers. This
leads to the following research question:

Research Question 3: How can different types of runtimes get integrated in Edge Computing to
support heterogeneity and interoperability?

1.3 Contribution

In this thesis, MetaEdge, a framework for the coordination and interoperability between entities in
the edge is proposed. This includes design, implementation, and evaluation. MetaEdge provides a
protocol specifically designed for interoperability and easy integration of different platforms and
providers in the edge. It uses the properties and context of available entities for the coordination of
different tasks.

A structured literature review for current edge environments is performed to find best practices for
the system model. Additionally, one aspect is focused on interoperability between the devices at the
edge.

During the development, support for different runtimes are integrated in the protocol. This allows
devices to dynamically join the system with no pre-configuration of the whole system.

Finally, the system is tested in a heterogeneous edge computing environment, which is set up
specifically for evaluation. It demonstrates the usefulness of the protocol and the framework in
edge environments. By providing a protocol specifically designed for easy integration of different
platforms into the edge could facilitate the development of new applications. They can use a
common framework for the interoperability of consumers and providers.
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1.4 Structure

1.4 Structure

This thesis is structured into seven chapters. Following this introduction, an overview and background
information about distributed computing, computation offloading and interoperability is given
in Chapter 2. The related work is presented in Chapter 3. It presents existing frameworks for
orchestrating applications in the edge. In Chapter 4, a requirements analysis is performed to identify
functional and non-functional requirements of the system. It also clearly defines the problem
statement. The MetaEdge system is presented in Chapter 5, by firstly describing the system model
and introducing the protocols. Then the architecture and the design is created and finally some
insights in the implementation are highlighted. The evaluation of the system is elaborated in
Chapter 6. It describes the experimental setup and presents the results, which are also discussed
there. Finally, this thesis is concluded in Chapter 7 by summarizing the findings and pointing out
potential future work.
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2 Background

Within this thesis, a novel approach is provided which focuses on the interoperability for computation
offloading in distributed systems, with a special focus on edge computing environments. This
chapter presents some background information and provides insights into each topic, following
the current literature. It summarizes different computing paradigms, according to their historical
evolution. This starts at the presentation of cloud computing and moves on to the more current edge
and fog computing.

Additionally, computation offloading is presented in more detail. It lists the need and advantage for
offloading specific parts of the application and important mechanisms are presented. A good and
comprehensive summary is can be found in Breitbach’s dissertation [Bre22], which this section is
based on.

Eventually, several popular protocols, which are also used in edge computing or similar environments,
are introduced.

2.1 Distributed Computing

Distributed computing is a powerful paradigm which revolutionized the way of large-scale data
processing and resource management. The underlying concept is relatively simple: A large task
is broken down into independent computational tasks which are then distributed across multiple
interconnected devices or nodes. This ensures an efficient and collaborative way of processing.

According to [vT16], a distributed system has some typical characteristics. First, it consists of a
collection of computing elements, which are called nodes. The essence of a node is not further
specified, meaning such a node can be a hardware device or a software process. They can also be
high-performance mainframe computers or small devices in sensor networks. However, each node
is able to behave independently of each other. Second, while there are multiple nodes in the system,
from a user’s perspective only the complete system as a whole is visible. In order to achieve this,
the autonomous nodes need to collaborate. This means that in establishing this collaboration lies
the heart of developing distributed systems.

In a distributed system, the participants can be consumers, producers, or both [BM02]. A consumer
is defined as it runs a computationally intensive application and needs to harvest computing
power. Therefore, it has to ship some of its computational tasks to other devices which support in
computation. A provider can perform this computation on behalf of the consumer and returns the
result. The consumer can profit of the shipped computation in several ways: It has not to do the
computations itself, which can reduce the power consumption. Additionally, if the provider is more
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powerful, this can speed up the computation as a whole. In some cases, a broker is necessary which
acts as a central node with special responsibilities. It can focus on resource management and task
placement which can help organize the consumers and producers.

Some of the first paradigms for distributed computing was cluster computing [BB99]. In cluster
computing, rather homogenous nodes are used which are connected via a high-speed network. They
are dedicated resources, which only purpose is to be a provider in a cluster. In contrast to grid
or edge computing (see later), they are usually managed in a large data center. Depending on the
capabilities and requirements, the cluster size can be adjusted. The main target of cluster computing
is to reduce the response times and provide load balancing, while energy consumption is only a side
factor [VLK+11]. A famous representative is the MapReduce algorithm [DG08]. Other examples
of cluster schedulers are systems like Spark [ZCF+10], Borg [VPK+15], and Dryad [IBY+07].

In the 1990s, the term grid computing was invented to highlight the new features of this paradigm
[FKT01]. It’s an analogy to the electrical power grid, meaning it is always available when required
and provides computing power. In grid computing, the devices are heterogeneous, loosely coupled
computers. In contrast to cluster computing, they are not from the same organization, but from
different organizations. When participating together in a grid, the devices form a virtual organization
for resource sharing. Also, there is no clear distinction between consumers and providers, since the
idea is that consumers will eventually also serve as provider. Therefore, they use other resources
for some time but also provide their own resources for different participants. The providers expect
to be consumers at some point in future and can therefore profit themselves, since the resources
belong to the virtual organization.

Another form of distributed computing is volunteer computing [And04] which shares the same
concept with grid computing: Providers across different organizations contributed to a powerful
pool of resources. To the consumers, the providers appear as a transparent unit. In contrast to grid
computing, the providers do not expect some kind of compensation of the consumers (e. g., by using
their resources when needed). Also, the group of consumers is clearly defined from the start and the
providers are often private end-users. A special focus in volunteer computing is placed on security,
fault-tolerance, usability and incentive mechanisms.

2.1.1 Cloud Computing

Cloud computing is the dominating paradigm in current commercial products. A cloud consists of
huge data centers distributed all around the globe which hosts many resources in a scalable manner.
It provides transparent access to scalable computing power, thus allowing arbitrary use cases. One
is not limited to specific applications, in contrast to grid computing, which was often bound to
scientific use cases. This disruptive technology has got a huge push in 2006, when Amazon released
their Elastic Compute Cloud. The key factors were the use of virtualization, which made it also
possible for separating the resources for the users, and providing fast scaling. This allows to adjust
the computing power based on the current required workload. Since then, it has experienced high
market penetration, due to these factors.

The key aspects of cloud computing is to provide storage, processing power and services via
virtualized resources [DLNW13]. It is physically distributed across many servers in different data
centers. The data centers and servers are connected using distributed systems technologies. With
the emerging of smartphones, which provide powerful portable resources, packed in a mobile
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device, Mobile Cloud Computing (MCC) has been further developed. The mobile application is
not fully computed on the mobile device, but also outside the smartphone. It is best suited for
resource-restricted devices which can migrate part of the computation to available servers in the
cloud. Since smartphones typically have a Wi-Fi connection, they are perfectly equipped for this
use case.

However, the infrastructure itself is separated from the client and the distribution is done internally.
This makes it still a relatively static approach of code offloading, where the architects have to
define a static or dynamic system landscape. The closer this landscape is to the user, the more the
performance is increased. However, due to the globally distributed resources, the latencies can
often reach 100 ms [LYKZ10].

Differentiating the grid and the cloud, the cloud consists of scalable, almost unlimited resources on
demand, where no prior commitment of the consumer is necessary [AFG+10]. This means, that no
reservation of resources is required and the payment model for the services and resources is defined
as a pay-as-you-go principle. For users, deploying in the cloud is easier than in grid computing
[Gro09]. From an architectural point of view, cloud computing is a rather centralized distributed
computing paradigm, where commercial data centers provide cloud resources [MOC+14]. Since
the data centers are driven by companies, the resources are provided for profit, in contrast to grid
where the providers also will be consumer at some point.

Different service models are developed in cloud computing, which consist of three main services
[MG11]. With each service model, the underlying abstraction is increased and the user control is
decreased. On the other side, the user profits from lower management effort, since he only can focus
on his specific needs. Infrastructure-as-a-Service (IaaS) only provides the virtualized resources,
with full control of the user. Platform-as-a-Service (PaaS) provides a managed platform, where
the user can install and develop custom applications, but does not have to manage the underlying
infrastructure. Software-as-a-Service (SaaS) abstracts the resources even more. Here, software is
ready to use for the user, which typically scales automatically. The user does not have to worry about
deployment, management, and other configuration, but also cannot change the underlying platform
and infrastructure. Additionally, there consist other services, which can be seen as a specialization
of one of the above services. For example Function-as-a-Service (FaaS), AI-as-a-Service (AIaaS),
and Everything-as-a-Service (XaaS), to name a few [DFZ+15]. Common to all services is that the
underlying hardware, and network are always fully transparent to the user.

2.1.2 Fog Computing

The fog computing paradigm has split from cloud computing and is closely related to edge computing.
The main idea is to bring the resources closer to the end user and thus, reducing the latency and
the overall network usage [BMZA12]. Many kinds of applications can profit from this strategy,
especially real-time applications (e. g., real-time simulation) or Internet of Things (IoT) applications,
where the sensor data can get aggregated earlier before sending it through the whole network. While
the differentiation between the edge and fog is not clearly defined, it seems that fog computing
has his focus on the infrastructure, while on edge computing the devices are in the focus. Initially,
fog computing built a layer between the cloud and the edge of the network and was introduced by
Cisco in 2012. The resources are less centrally clustered and distributed closer to the edge [JS16].
However, with this decentralization, different challenges did arise, like increased heterogeneity
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because of the higher amount of decentralization and also the complexity did increase. For the
offloading decision, the location context should be used to find a suitable fog node. Generally, fog
computing can be seen as an extension to cloud computing, where computational resources are
ubiquitous and distributed geographically at the edge by nature [HESB18].

2.1.3 Edge Computing

Finally, with the edge computing paradigm, one want to execute the computations at the edge of the
network to keep the latency as low as possible and to keep the data close to the device [GME+15].
This can be achieved by integrating edge resources, the cloud, and devices which are topologically
located between the edge and cloud. A general architecture can be described as follows: The edge
devices produce the data at the edge. Fog nodes, which are between the edge and the cloud, offer
computing power and act as a bridge to the cloud. In the cloud itself, some higher-level data analysis
is performed on a global scale. Here are the most performant devices located. However, many data
can already be processed without the need of a central entity [DB17].

As a nature of edge computing, the resources are distributed across several edge nodes. Through
their decentralization and proximity to end-user devices, they provide ultra-low latency and a
high bandwidth computing environment for connected devices. This is a key aspect for modern,
latency-sensitive applications, e. g., real-time simulation, video processing, Augmented Reality
(AR), or cloud gaming. Since the data is already processed at the edge, the data traffic to the core
network is reduced.

Edge computing was further developed to Mobile Edge Computing, or Multi-Access Computing
(MEC), nowadays. Here, dedicated servers are deployed at cellular base stations. The clients access
the computational resources over the radio access network in a single-hop distance. Because the
devices are inherently mobile (they are connected wirelessly and are often wearable) [CLWG15],
special focus on mobility management has to be lied on and also disconnections must be handled.

2.2 Computation Offloading

The origin of computation offloading was introduced with cyber foraging [Sat01]. As seen in
the previous paradigms, some resources located at different places can overtake the computation
for a local device, which is generally described as computation offloading. While the mentioned
paradigms do not limit to computation offloading, but can offer multiple services such as remote
data storage, this thesis mainly focuses on computation offloading. The fundamental task is to
transfer some kind of computation to a remote provider.

Computation offloading is prominent in resource-intensive domains, where relatively weak devices,
like smartphones or wearables cannot handle the computations on their own, for example in Artificial
Intelligence (AI), AR or Virtual Reality (VR), or computer vision [SBCD09]. The advantage
when offloading some computation is reducing the execution delay and the response time, but also
improving the energy consumption of the consumer, especially in edge computing systems. An
important factor here is the context, since dependent on different attributes, offloading may be
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beneficial or not. According to Flores et al. [FHT+15], the decision about offloading depends on
different factors, which are categorizable into four different categories: what, when, where, and
how.

What: This describes the partitioning or granularity of the offloaded application. Depending on
the structure, either the whole application can get offloaded, only some parts or components, or
even just single methods or threads [LLJL19]. It has to identify the tasks and split the application
into offloadable and non-offloadable code. Different approaches exist, which do this manually
[CBC+10] or automated [CIMN10].

When: The decision, when a task should be offloaded, is influenced by multiple factors. Generally,
the time which is needed for offloading should be smaller that a local computation would take, to
improve the performance [CIMN10]. However, other strategies exist, which can use other context
to find a different optimization. For example, another goal is to minimize the energy consumption
of the device [CBC+10]. This is influenced by the data size, which is shipped over the network, the
bandwidth, and the amount of instructions, or task complexity. Additionally, the computational
power of the remote device and the local device are important to consider. A dynamic decision does
consider these factors, but also static approaches exist. A static approach does not use the context,
but may be sufficient if a task is always computationally expensive and therefore, offloading would
be most of the time beneficial.

Where: Another important aspect is to decide where the tasks should be placed. This can be done
on a single or multiple providers and depends on the amount of parallelism and desired redundancy.
If the application is offloaded to multiple different providers, the redundancy is increased and a
failure of one provider can be corrected [OWZS13].

How: Additionally, different techniques for the offloading exist. Different systems use Remote
Procedure Calls (RPCs), shipping Virtual Machines (VMs) or containers, or relying on a serverless
architecture, which exploits stateless functions, following the FaaS pattern.

2.3 Protocols for Edge Computing

Several protocols in the edge computing environment exist. Some were developed with focus of
edge computing, while others were adopted from existing platforms but suit well for edge computing.
Most of the protocols have a focus on data transfer or reliable messaging between devices and
applications.

One of the widest used protocol is Hypertext Transfer Protocol (HTTP), which was established for
the Internet and is commonly used for cloud services. Architectural patterns and techniques, like
Representational State Transfer (REST) and RPC, are often based on HTTP.

MQTT1 was developed as a lightweight publish-subscribe messaging protocol for resource con-
strained devices in low-bandwidth networks. It has his main focus on IoT scenarios, where it provides
efficient communication between edge devices and cloud services, and is used in edge environments
[RND18]. Beside MQTT, other protocols like Advanced Message Queuing Protocol (AMQP) and
Extensible Messaging and Presence Protocol (XMPP) also have their focus on messaging.

1https://mqtt.org
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A specialized web transfer protocol is CoAP, which transmits the data in a binary format, but is able
to translate to HTTP via a proxy [XJK22]. Its targets resource constrained devices in low-power
networks and can be used for a binary REST representation with a small header.

Another protocol in the edge environment is Lightweight Machine to Machine (LwM2M) [PVM22].
It was originally built on top of Constrained Application Protocol (CoAP) and allows managing and
communication with constrained devices in IoT and edge environments. It has built-in features for
efficient device management capabilities, like firmware updates, configuration, and data reporting.

EdgeX foundry is a flexible and scalable edge platform with focus on interoperability between
devices and applications in the IoT edge. It does not use custom protocols itself, but promotes the
use of standardized protocols, like HTTP and MQTT.

Summing up, many protocols in the edge environment focus on data exchange with an already
established architecture or structure of the available devices. No protocol directly enables or
facilitates for building such structure dynamically.
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In this section, a structured literature review is performed to assess the related work in terms of
computation offloading and edge computing frameworks. The current state of research is elaborated
during the analysis, as well as research gaps are identified which are a basis for the requirements
analysis. The current state is presented and an overview of current challenges and problems is
given.

The focus of this research is on computing frameworks which allow offloading computation,
especially at the edge. Systems which have their main focus on different problems, like application
partitioning or are limited to a specific use case, are excluded.

One goal of this section is to analyze different frameworks, some coming from IoT while others
have their focus on mobile computing, and try to find similarities.

In the following, an overview of different edge computing frameworks is given. The frameworks
are evaluated for their fit of interoperability with other systems.

3.1 Edge Computing Frameworks

As already explained, edge computing itself, especially computation offloading, is not a new idea.
There exists a vast amount of edge computing frameworks, each having a slightly different focus
to improve the performance, ease of use, or provide another advantage. By spanning over the
edge-cloud continuum, they can be divided into two categories. The first category contains the
frameworks, which try to solve the problem “bottom-up”, with their general focus on IoT. Here,
most often sensor data have to be pushed from small devices to the edge of the network where they
can be further processed. The second category spans across the frameworks which try to bring
cloud services closer to the end user by placing them in the edge. Instead of relying on a central
cloud, they make use of edge nodes placed across the globe, making this a “top-down” approach.

3.1.1 Internet of Things

In this section, different frameworks which have their primary focus on IoT environments are
explored and analyzed.
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One prominent open source edge platform is EdgeX Foundry1. It describes itself as a middleware
which connects things to the IT environment. The focus of EdgeX Foundry is on IoT, by
connecting sensors and analyzing data. This is accomplished with a loosely coupled microservices
architecture.

A blueprint of a data flow is the following: A sensor, attached to a so-called thing, collects data
with a Device Service. The data is passed to the Core Data for local persistence. After, the data is
passed to the Application Services where it gets transformed, formatted, or filtered. Lastly, Edge
Analytics can trigger device actuation through a Core Command Service.

The key service within an EdgeX Foundry architecture are the Device Services, Application Services,
Core Metadata, Core Data, and Core Command. The Device Services talk directly to the dedicated
things via the used protocol of this thing. Application Services build a functions pipeline and
ship the data to the enterprise applications, data lakes, cloud systems, and more. Core Metadata
is a service which has the knowledge about all connected sensors and devices. It also has the
information, which device manages which sensor and how one can communicate with the device.
Core Data is responsible for persisting the sensor data at the edge, if it is desired. Core Command
is a proxy service for sending an actuation request to a device or Device Service.

The architecture of EdgeX Foundry allows to build a tiered fog deployment. However, EdgeX
Foundry promotes the usage of standardized protocols, and often the communication is done via a
REST-API. Additionally, the devices and services have to be added at a central service before the
deployment. It does not provide a possibility to self-register such a device.

In [LPP+22], the authors have pointed out that EdgeX Foundry lacks of container orchestration
abilities. Thus, it is missing features such as dynamic deployment of microservices or dynamic
resource management. This limits EdgeX Foundry fundamentally in terms of an edge computing
platform, beside of its IoT gateway platform. In their work, they add Kubernetes support to EdgeX
Foundry to improve the manageability, autoscaling capabilities and real-time monitoring.

In [SASK19, p. 115 ff.], the authors build an edge computing infrastructure for a face recognition
application. They distribute the execution of the application stages among the available devices and
gateways, in order to get the highest accuracy while keeping the device and gateways constraints.
They construct a Multi-Choice Multi-Constraint Knapsack Problem to distribute the load based on
the given constraints. This work is also based on [YTC17], where the authors proposed a framework
which targets visual processing closer at the edge and utilizing heterogeneous types of devices.
They also consider different hardware to potentially accelerate the computation by incorporating
dynamic platform independence.

In [LCJZ18], the authors propose an edge computing framework to prove the correctness for
cooperative processing. However, the system is very limited to their specific use case.

Another approach is done in [BS20], where the authors create a mobility-oriented retrieval protocol
for computation offloading. They design a model for computation offloading in vehicular edge
computing. With the proposed protocol, they can efficiently retrieve the output of processed data by
using vehicles and road side units as communication nodes. The protocol itself is influenced by
geographic routing and uses geolocation information of the network infrastructure and user.

1https://www.edgexfoundry.org
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3.1.2 Mobile Computing

As in the previous section, different systems for edge computing were introduced, which had their
focus coming from a IoT perspective. In the following, different frameworks are introduced that
have their focus more on a mobile computing perspective, trying to integrate patterns from cloud
computing at the edge.

One of the main dominant systems used for orchestrating cloud services is Kubernetes2. Kubernetes
provides a rich ecosystem for deployment of orchestrating across different devices. It is based on
containers, or pods, which get deployed on nodes belonging to the same cluster. If one node dies,
the application can automatically get brought up on other nodes. Each service is duplicated across a
specified amount of devices which allows load balancing between the nodes. If the load increases,
an autoscaler can automatically add necessary resources and increase the amount of deployed pods.
Additionally, through its virtualized solution, it allows isolation and rolling deployments. This
containerized virtualization via the pods makes it possible to not only run a specific application on
the nodes, but each node is able to run everything. Generally, it provides High Availability (HA)
within multiple clusters.

Some of the commercially used systems which are based on Kubernetes are Nokia Edge Network
Controller3 and OpenShift4. OpenShift, for example, adds additional features for usability and
security to the system and does not use Docker5, but the Open Container Initiative (OCI) Image
format and Open Container Initiative-based implementation of Kubernetes Container Runtime
Interface (CRI-O) as runtime, which are both open source projects and specifications. Incoming
traffic is handled similar to Kubernetes, by distributing it across the routes within the cluster. It
combines the flexibility of cloud-services, virtualization, microservices and containerization with
the speed and efficiency of edge computing to increase the functionality, reduce the latency and
improve the bandwidth.

One academic project on top of Kubernetes is KubeEdge6, which connects and coordinates between
the edge and cloud environment[XSXH18]. It has reached quite some population and is an
incubating project of the Cloud Native Computing Foundation (CNCF). KubeEdge uses the same
network protocol infrastructure and same runtime environment on the edge and in the cloud,
to enable a seamless communication between edge nodes and cloud servers. The architecture
consists of four main components, namely the KubeBus, EdgeCore, MetadataSyncService, and
the EdgeController. The KubeBus contains the network protocol stack, EdgeCore is a lightweight
edge agent and the EdgeController is a controller plugin for Kubernetes. Additionally, it has a
distributed metadata store and synchronization service. When deploying an KubeEdge system,
the CloudCore component runs in the cloud and manages the edge devices. CloudCore consists
of the EdgeController and DeviceController. Edge devices register themselves and join a cluster.
The application and services will then be distributed from CloudCore to the edge devices. This
is achieved with the help of YAML files which contain the description and details of the service.
Edge devices receive and serve the application, which is accessible via HTTP and MQTT [KVM20].

2https://kubernetes.io
3https://www.nokia.com/networks/products/edge-network-controller/
4https://www.redhat.com/en/technologies/cloud-computing/openshift
5https://www.docker.com/
6https://kubeedge.io
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One additional project, which sits on top of KubeEdge and other edge platforms, is FabEdge7.
In [YNL+22], the authors introduce a KubeEdge Wireless platform for building an Edge-Mesh
architecture. Their focus is on resource allocation and service scheduling problems, and they want
to enable an easy migration of services within the network. They extend each node with monitoring
capabilities of their node status and generate a computing and communication topology according
to the regional network characteristics. In the end, they optimize the network strategy using AI. In
[KK23], the authors enhance the scheduling approach in KubeEdge. They argue that the initial
scheduling approach, using EdgeMesh allows service discovery and load-balancing by distributed
user traffic to each pod in the cluster. However, in an edge environment, the load-balancing function
has some drawbacks, because the pods are distributed over the edge nodes and latency is introduced
when a request is forwarded between these nodes. Their proposed solution is a local scheduling
scheme, which processes the traffic at the local edge node without forwarding it to a remote node.
This way, they want to provide low latency, which improves the throughput of the cluster. Other
projects building on top of Kubernetes are K3s8 and K0s9. Both aim to reduce the footprint and
simplify the configuration of Kubernetes, but still provide a CNCF certified Kubernetes distribution.
Similar to KubeEdge, K3s has reach the status of a sandbox project at CNCF.

In [BYB+23], the authors argue that existing solutions based on Kubernetes perform poorly at the
edge, because Kubernetes is designed for reliable, low latency, high bandwidth cloud environments.
They propose Oakestra to overcome those limitations. Their solutions is a hierarchical, lighweight,
flexible and scalable orchestration framework. Different edge infrastructure providers can integrate
and constraints are used to describe the capabilities of worker nodes.

In [BHQT22], the authors built a serverless-based framework for managing complex MEC solutions,
NEPTUNE. They want to place the functions on the edge nodes, according to the user locations and
avoid the saturation of single nodes. Additionally, they exploit Graphics Processing Unit (GPU)
resources, when available. The resources are allocated dynamically to meet foreseen execution
times. Their solution uses K3s as the underlying system. To allocate the functions on the nodes, they
create a mixed integer programming problem which minimizes the network delays. The user can set
response time requirements which are taken into account during the optimization. This work extend
[BMQ19], where the authors designed a decentralized self-management and serverless computing
platform: PAPS. Here, a large-scale edge topology is partitioned into delay-aware communities,
each having an own leader which provides a reference allocation of resources and places containers
inside the community. Additionally, the system contains a supervisor which has a global view
of the topology, and is using a Monitoring, Analysis, Planning, and Execution (MAPE)-loop to
continuously update the state. This work itself is based on [BMG+19], in which the authors exploit
a FaaS model to the edge to bring computation to the continuum in the form of microservices.
They consider specific context and user requirements to select the computation location. Their
proposed system is A3-E, which allows stateless and lightweight functions to be autonomously
fetched, deployed, and exposed by heterogeneous providers. They can reduce the latency by 90 %
using the edge instead of cloud and decrease the battery consumption by 74 % when the application
is offloaded. Additionally, the deployment time is reduced by 70 %. However, their solution is based

7https://github.com/FabEdge/fabedge
8https://k3s.io
9https://k0sproject.io
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on OpenWhisk10, which uses virtualization to provide containerized functions. For communication,
they use a HTTP RESTful Application Programming Interface (API). Other popular platforms to
provide FaaS models at the edge, beside OpenWhisk, are OpenFaaS11 and Knative12.

In [GFD22], the authors complain that a big problem of traditional FaaS models is the so-called
cold-start of the functions. This describes the necessary time, when a function is initially deployed
and loaded into memory. This happens, because of the serverless nature: If a function is not used for
some time, it is shut down to save resources. The solution of the authors is to replace the containers
with a more lightweight WebAssembly runtime, to overcome the issues of a cold-start. Another
solution is presented in [PB20], which argues that existing FaaS solutions are not specifically
designed for the edge but generally built for powerful hardware. The authors design a novel FaaS
platform, specifically designed for the edge, to get the advantages of fewer data transfer to the cloud
and reduced latency. They face the challenges of constrained and dynamically shared resources.
According to their perspective, FaaS applications in the edge will not span across multiple locations,
since this would increase the latency, and the applications are generally monolithic, which simplifies
node management and removed the need for a load balancer. In their design, they use HTTP for the
communication protocol to deploy the functions and use a reverse proxy to map the requests to the
functions.

A similar approach as [PB20] is done by the authors in [SP18]. They also see the issues of FaaS
platforms in the edge and implement a more lightweight solution, Faasm [SP20]. According to
their results, virtualization provides several advantages. This has multiple stages: First, “pure”
virtualization enables sharing a physical machine, then containers enable sharing an operating
system. Third, serverless aims to share a runtime. The problem of containers however is still
undesirable overhead and an obstruction of sharing features. As a solution, they also propose using
WebAssembly to isolate different tasks and to reduce the footprint and cold-start initialization time.
The same idea is followed in [HR19] and [HRS+17].

Another solution is proposed with ENORM [WVMN20]. This is a fog computing framework
which also uses containerized virtualization of applications. Additionally, a priority is given to
the applications to prioritize or delay the execution of the applications. Instead of the other FaaS
solutions, this is a full framework which provides auto-scaling mechanisms, too. Additionally, it
provides a custom protocol for the handshake, deployment, and termination of edge nodes. However,
the control and management is centralized in the cloud server, which starts and terminates the edge
nodes. They are not able to join the system themselves. Additionally, this only takes the CPU
resources into account and does neglect other resources, like GPU.

3.2 Discussion

During the analyzation of the presented solutions, it gets clear that Kubernetes is one of the dominant
systems. While this allows to have standardized platforms, the interoperability is not fully given,
since they do not provide a protocol to communicate with different systems. Some exceptions exist,

10https://openwhisk.apache.org
11https://www.openfaas.com
12https://knative.dev/
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for example [WVMN20]. However, they often lack of other features, e. g., only a centralized node
acts as communication server or that a cluster has to be defined on startup which decreases the
dynamism of the platform. The interoperability between different platforms seems to be not focused
by any system.
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In this section, a problem statement is defined which the proposed system aims to solve. The goal
of this thesis is to design a framework for the integration of different edge computing platforms.
A special focus is given the interoperability protocol between the entities in the system. Then, a
usage scenario is created to better visualize what the problems of current systems are, helping to
understand what can be expected of the new framework. After, a requirements analysis is performed,
split into functional and non-functional requirements. The functional requirements define, which
major functions the system will have, while the non-functional requirements describe specific
quality goals of the system.

First, the problem statement is defined in Section 4.1. In Section 4.2, a usage scenario is proposed
which describes in detail how the interaction of the entities with MetaEdge will optimally look
like. Then, the functional requirements are broken down from the problem statement in Section 4.3.
These are used to develop the core components of the system and are driven by the research question
from Section 1.2. In Section 4.4, the non-functional requirements are defined which describe what
constraints and goals the system must meet.

4.1 Problem Statement

As presented in Section 3.1, the current edge computing landscape is very heterogeneous and different
solutions exist. One dominant factor is the use of virtualized resources and containers, however
also some other ideas emerge, which try to overcome some the issues by using more lightweight
solutions. Additionally, many solutions leverage the FaaS paradigm to provide specific functions
via the network. However, these do not share a common model and the implementation is limited
to specific abstractions. Therefore, the problem is stated as follows: The current edge computing
landscape is heterogeneous, and the approaches differ in abstractions and implementations, meaning
they support different programming languages or require specific application models. Additionally,
the computing nodes can consist of many different devices which differ in their hardware, OS or
their location in the network. In this thesis, a framework is proposed which allows heterogeneous
hardware to register as edge nodes. Additionally, it does not require the services to be written in one
specific programming language, but the framework supports heterogeneous platforms. These nodes
provide specific services to be directly computed at the edge of the network. As they are based on
different hardware, they require different amounts of time to compute the tasks. Some may even
provide hardware acceleration. Beside the latency in the network, these are interesting information
for a client to make a decision where a task should be computed. Therefore, the framework shall
list the services, which are available at the nodes, in addition to their metadata like CPU power or
hardware acceleration. Some nodes may already run a service while others first need to deploy and
start the service. The client shall be able to select a specific node based on his needs and use this
service to offload the computation.
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4.2 Usage scenario

This section presents a fictional usage scenario which helps to understand why an interoperable
framework between different edge platforms is necessary. Max in an enthusiastic cyclist who often
travels long distances in training. Therefore, he is very mobile and often switches his current
network. However, he has some advanced training simulation and analysis devices which he uses to
optimize his training effects. This covers the navigation, analysis of his vitality functions (such as
heart beat or muscle regeneration), and others. Because this is a very sophisticated system, he has
not the ability to do all the computations on a local board computer. Additionally, the computations
should be very fast, to provide fast feedback. Since the latency to some cloud resources is too high,
an edge computing approach is necessary. However, this cannot be a static provider, since he covers
different areas during his training, as already mentioned. As a solution, the system uses MetaEdge,
to be able to interoperate with different providers.

When he starts his training, the application connects with the MetaEdge system and registers as
user. Additionally, other clients and providers join the network which want to offload other tasks or
provide their computational power. The system has different tasks, which need to be offloaded, and
analyzes the available providers. Since the tasks have different requirements, it selects a suitable
provider for each task. This may be the fastest provider for navigation, but a specific provider which
has some hardware acceleration for the vitality functions. As his training progresses, he switches
into other networks, resulting in different latencies and available providers. The system detects
these changes and because it is interoperable, it can offload the tasks new providers, which support
the platform for his specific tasks.

4.3 Functional Requirements

For the MetaEdge system, following functional requirements are formulated. These requirements
are directly derived from the problem statement and usage scenario, as well as from the research
questions.

RF1 – Computational Offloading: The main function of MetaEdge is to offload arbitrary tasks
to other edge computing platforms. This includes the fundamental tasks of deploying and
executing code on another machine, called worker, which join the MetaEdge system. In
general, MetaEdge should provide the protocol and infrastructure to send the messages needed
for deploying and executing. Developing applications for this system should be simple and
require little custom programming.

It shall be possible to offload arbitrary applications, therefore it is necessary to define a suitable
protocol and messages which allow the description of such tasks. Additionally, some sort
of abstraction shall be included to divide the protocol and the actual client implementation.
Furthermore, the system shall be modular to allow extensibility and adding new functions.

RF2 – Platform independence: As already seen, different edge computing systems have emerged
during the time. To allow the integration and interoperability of different systems, MetaEdge
should be platform independent and runtime agnostic. It should not restrict the applications
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to specific platforms, but allow a wide range, usable via a common protocol. In fact, it should
not make any assumptions about the underlying platform. The details need to be handled by
the underlying system itself, while the protocol only enables the interoperability.

The shipped tasks can be very different by nature, e. g., already compiled executables, packed
in containers, or depending on another runtime, like Python or WebAssembly. All of these
options should be covered in the MetaEdge system.

The negotiation about the actual used task shall be done via the protocol. To allow
adaptability, the network infrastructure and communication should provide the features
necessary to exchange the necessary data.

RF3 – Heterogeneity support: As in the nature of edge computing, the devices are potentially
very different. It ranges from laptops, desktop PCs, smartphones to edge servers or even
cloud servers which could be users or workers. Therefore, the offloading system shall be
executable on all these devices. Specifically, this means that the framework is independent
of hardware, OS, supported runtimes and platforms, or network connection. Additionally,
the offloaded applications are heterogeneous theirself and are written in different languages,
could be packed in a container or are directly compiled into an executable. The offloading
system shall therefore provide a uniform abstraction of these tasks. Even if the tasks and
participants are heterogeneous, it shall mediate the data exchange and enable compatible
participants to work together.

RF4 – On-demand computation: The MetaEdge system shall not only enable computation of-
floading, but also provide a means to execute a specific task on demand at a specific worker
node. To decrease the execution delay, a task shall be able to get deployed at suitable worker
nodes. From these nodes, a user can select the worker matching his requirements the best,
and request the execution at this node. This enables the system to proactively deploy and
cache applications, and execute them when needed.

RF5 – Dynamic registration of users and workers: In order to keep the system versatile, the
users and workers should be able to dynamically join and leave the system. This represents
very well an edge environment, where the devices are very fluctuant. Since the structure
is not known beforehand, no fixed setup can be chosen. Additionally, the participants can
change in a dynamic network.

RF6 – Context-awareness: The system shall use different context dimensions to select the best
worker node matching the task description. This means that context about the device, the
task, and the network has to be measured. The protocol shall reflect the context via suitable
messages, to provide the knowledge also to the clients.

RF7 – Service discovery: Due to the dynamic nature of the edge environment, the tasks are not
deployed to fixed locations. Therefore, users have to find suitable workers for their offloading
tasks. To provide an effective offloading mechanism, a service discovery is necessary to
inform the users, where different applications are deployed. The protocol shall directly
integrate such feature to not have the need for an additional protocol.
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4.4 Non-Functional Requirements

Complementary to the functional requirements, the following non-functional requirements are
identified.

RNF1 – Usability: The MetaEdge system should be easily usable, to motivate other developers to
use the system. For this, the framework should provide access to an API which can be used
by the stakeholders. Three different stakeholders are connected with the system: Application
users, workers, and application programmers. For each stakeholder, the system shall be
conveniently usable. For users, MetaEdge shall be seamlessly integrated into the application.
Application programmers shall be able to use the API of the framework to integrate MetaEdge
into their system. The interfaces have to be clearly defined to reduce potential ambiguities of
the system. On the other side, providers or the worker nodes shall be able to easily integrate
MetaEdge into their system, too. The interoperability between the participants shall then be
coordinated via the underlying protocol.

RNF2 – Performance: As the need for edge computing environments is often a reduced latency
and increased bandwidth, this cannot be neglected in MetaEdge. The main advantage of
computation offloading is, in this case, reduced execution times. In order to keep this as low
as possible, the system shall be able to quickly identify possible worker nodes for the given
task and ship the task to the identified node. If this process takes too long, the benefits of
edge computing are lost.

The proposed protocol for MetaEdge shall only have low overhead, to reduce the requirements
for the protocol and support other requirements, such as performance. If the protocol is
heavy-weight, this could again introduce bigger latencies, because more data has to be shipped.
Therefore, the protocol shall only send as much data as necessary.

RNF3 – Scalability: Scalability is the ability to handle increased system load. Since edge computing
is very dynamic, MetaEdge also expects to handle increased load. It does not only have to
handle one user and one worker, but their may be several hundreds or thousands of user,
workers, and tasks, which have to be scheduled, shipped, and executed. All of these factors
influence the load of the system. Therefore, it shall be able to handle high load of the system
and still satisfy the necessary performance.

RNF4 – Robustness: As nodes in the edge environment often have an increased fluctuation,
increased number of communication link failures, or other malicious behavior, the system
shall be able to cope with such errors and provide a suitable solution to continue the normal
workflow. For the user, the errors shall be handled transparently and reduce the noticeable
interruptions.

RNF5 – Extensibility: Furthermore, extensibility is a very important aspect in the area of edge
computing. It constantly evolves and introduces new technologies or architectures. For
example, other edge systems may integrate new devices, support different OS, or use different
runtimes. To easily add such features to the MetaEdge system, its design shall be modular,
which improves the integration of such new features. Especially, the protocol shall be able to
work with other platforms and runtimes, not described so far, or allow an easy change in the
scheduling technique.
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The main artifact of this thesis is MetaEdge. Its design answers research question 1. Additionally,
the proposed protocol for MetaEdge will help to answer research questions 2 and 3. The protocol
acts as a basic assurance that the systems, which implement this protocol support the required
messages and functions. Overall, MetaEdge enables different kind of entities to interoperate in an
edge environment, by providing computational resources and offloading tasks. The heterogeneity is
resolved via the protocol, making them interoperable.

In this chapter, the system model is introduced first in Section 5.1. This provides an overview
and insights into the components and the structure of the system. Then, in Section 5.2, the used
protocols are presented. Third, the architecture and design of the software components is explained
in Section 5.3. The different kind of interactions are described and explained, here. A special focus
is given to allow interoperability. Finally, the implementation of the prototype is introduced in
Section 5.4.

5.1 System Model

The vision of MetaEdge is to provide a framework, which can integrate different edge computing
platforms. Therefore, it uses a custom protocol for distributed computation offloading at edge
environments. It integrates different kind of participants, or entities, namely users, workers, and a
broker. Users want to offload computation, while workers can provide their computing capabilities
and execute tasks on behalf of the user, described in RF1. The system is illustrated in Figure 5.1. It
visualizes two users and two workers which are registered at the broker. One user deployed a task at
a worker and both users use this worker to offload a process.

The protocol is intended for general use in an edge computing environment to offload computation.
The primary goal is to enable interoperability between different devices, regardless of the actual
hardware or platforms of the participants, according to RF2. The interaction between the devices
is based on the protocol, which defines the possible actions and operates as a standard. By
implementing this protocol, the devices can be sure that the specific actions are supported.

To orchestrate the devices, a central broker is part of the protocol, too. This broker mediates between
the users and workers. It is a central connection point, used for service and device discovery. In
general, his job is to orchestrate the devices, who want to register, deploy tasks or execute processes.
The broker will help to especially fulfill the requirements RF5 and RF7.

The framework provides a custom protocol, which each participant has to implement. This protocol
enables to register at the broker, create a peer-to-peer connection link to the target machine, and
to deploy different tasks and execute processes. The task can be any arbitrary kind of executable.
The protocol does not make any further assumptions, to support as many platforms as possible
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Figure 5.1: The MetaEdge System

for execution. The compatibility between the user and worker node is negotiated via the protocol
and integrates the possibility for different context to fulfill requirement RF6. If the worker node
accepts the user node’s task, he can deploy and handle it. The actual implementation, how the task
gets deployed and executed, is outside the protocol. The worker node can use an abstraction for
deployment, e. g., use a VM or a containerized solution, or directly run the task on bare metal. An
execution is triggered as a process from a task. When a worker finishes the process, he returns
the result via the protocol. If he encounters an error, he sends and error message back to the user
to inform the user that something went wrong at this worker node, so the user can reschedule
the offloaded computation. Each worker node informs the broker about his system information,
currently deployed tasks, and current workload.

Each participant (beside the broker), can either be user or worker. Both types have to register at the
broker, but the workers additionally have to provide their system configuration. This includes their
available hardware, supported runtimes, or other factors working as constraints of the computation.
When the user wants to offload a task, he sends a request to the broker to ask for available workers.
This request has to contain different constraints, which are necessary to execute the task. For
example, this could contain the underlying hardware architecture, a necessary runtime, or other
installed libraries which are necessary during execution. The broker will provide a list of potential
workers, from which the user can select the one which suits the best. Alternatively, the broker can
directly deploy or execute the task at a suitable worker, in the style of a proxy for the user. When the
broker returns the list of available workers, the user can schedule the deployment and execution
itself. This selection can be based on different properties of the connection, e. g., hop distance or
latency, to the actual worker. The broker does not have this knowledge, since the connection can
be different between the devices. Therefore, the user is able to find a specific optimization which
is not possible at the broker side. After establishing a peer-to-peer connection between the user
and worker, the task can get deployed. For each new task deployed, the worker sends an update to
the broker to inform about the additional task. This information is helpful for future users, since
they do not have to deploy the task again, but can use the worker who already has deployed the
task. To prevent overload of a worker, a monitoring approach is added to the protocol. The workers
continuously send updates of their workload to the broker, in order to avoid overload. When the
worker detects an error during execution or gets an execution request with a task he has not deployed,
he sends an error message, informing about the problem.
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All-in-all, the users and workers are not bound to a specific runtime or hardware. Via the protocol,
the supported platforms are listed, to negotiate between the users and workers. To show the
suitability of this framework, a one-broker-approach is used during implementation. This could be
extended to multiple brokers across different regions for large-scale deployments. However, this
requires interaction between the different brokers, extending the custom protocol, which is not the
focus of this thesis.

5.2 Protocols

As described in Section 5.1, MetaEdge consists of three different components, implemented
in software. First, the broker which acts as a central registration service and manages all the
connections and provides potential workers to the users. Second, the user which want to offload
some computation. For this, he has to register, request a list of potential workers, and finally
connect to a worker to deploy and execute his task. Third, a worker which receives the computation
requests. In order to make these devices interoperable, a suitable protocol is defined in this section.
The protocol must ensure that the data sent between devices is interoperable and that proper
communication occurs between the devices. For a computation request of a user, suitable workers
shall be selected.

To summarize, the protocol has to enable the following actions:

Registration Users and workers register at the broker to join the system.

Task deployment Users who want to offload computation first have to deploy the specific task
at a suitable worker. To get the target task on the worker, the protocol provides a defined
workflow.

Process execution After a task is deployed at a worker, an execution of a process has to be triggered
to actually run the task. This enables to run a task multiple times with different input, as well
as different users can use the task.

Context updates In order to find an optimal scheduling, the workers have to send updates of their
workload. If they have to do too much work, the execution could be delayed.

Service and Device discovery In order to find a suitable worker for a user, the list of available
workers has to be transmitted to the users, so they can find suitable workers themselves.

The protocol is using Transmission Control Protocol (TCP), to provide reliable connection between
two entities. The following sections propose a general message layout, as well as present the
different sequences of the protocol workflow. Each sequence describes a custom command in the
MetaEdge protocol.

5.2.1 General Message Layout

An important aspect of the protocol is to identify corresponding messages. For this, the general
message layout of the protocol is designed as followed. It consists of a fixed size header and a
variable length of data, or payload. The header contains four different entries, namely an identifier,
the version of the protocol, the command, and the length of the payload. This layout has several
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Figure 5.2: MetaEdge message header

features: The identifier marks this message as a MetaEdge message type. If a message does not
contain this identifier, the client knows that it does not communicate with another participant in
MetaEdge, and he can drop the connection. The version field specifies the actual version of the
MetaEdge protocol. This enables to add additional features, which can be added in later versions.
Furthermore, it tells the peer, which version the sender supports and understands, thus this is useful
for negotiating the correct protocol version. The third entry, command, specifies the message type
request. By having this type in the header, the different command options can easily get handled.
The payload itself is dependent of this type. Therefore, no general layout can be specified for the
payload. However, for each message, the payload has to be defined. This imposes no problem, since
the length is known in advance (due to the length field in the header), and the message can get
parsed. The header also contains a message Identifier (ID) and a correlation ID. The message ID is
a unique identifier of the current message, while the correlation ID is used if the message contains
a reply to a previous message, and contains the message ID of the initial request. The last entry,
length, is used to separate different messages, e. g., when two consecutive messages are sent. The
receiver only has to read the message until the specified length, knowing that it has the complete
content of the message, including its payload.

Figure 5.2 visualizes the header. The identifier, version, and command are each one byte in size.
Since the payload could get very long if big tasks are sent, this has to handle large numbers.
Therefore, the field describing the length of the message has eight bytes in size to describe 64-bit
integers, using big-endian.

5.2.2 Error Messages

Since several errors can occur during the communication, a dedicated error message is used to reply
to failed requests and indicate the reason, why it failed. This message contains the error code and a
correlation ID for the initial request. Following error codes are defined:
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Figure 5.3: Message sequence for the worker registration

Version not supported This code indicates that the used version is not supported by the other
participant.

Unknown command This code indicates that the command or message type is not known by the
receiver.

Failed to parse message This code indicates that the receiver had an error parsing the message.

Registration error This code indicates that the registration was not successful, for example when
already too many participants are using the system.

Deployment error This code indicates that a worker could not deploy a task, for example because
it does not support the runtime or has not enough disk space left.

Task not deployed This code is used to indicate that the requested task is not deployed, e. g., a
worker cannot execute a process, because it has not deployed the required task.

Execution error This code indicates that the execution failed, for example when the parameters
were malformed or another error occurred during the execution.

Unknown process This code indicates that the requested process does not exist on the worker
side. For example, the user wants to terminate a specific process, but the worker has not
started this process.

43



5 MetaEdge

5.2.3 Worker Registration

The first important step for computation offloading in MetaEdge is to register the worker. The
registration is necessary, in order to enter the network, as well as enabling a peer-to-peer connection
from the users to the worker, later. The protocol for registration is defined in the following way:
First, the worker sends a registration message to the broker. The broker parses the message to get
the static properties of the worker and creates a unique ID for the worker. Additionally, he sends a
Ping request to the worker, which this one has to immediately answer with a Pong reply. Both of
these messages do not contain further data, but are only used as markers. When the broker then
receives the Pong message, he knows the Round-Trip Time (RTT) to this worker. Additionally,
the broker uses Internet Control Message Protocol (ICMP) messages to get the number of hops
to this worker. Both information, latency and hop count, are used as dynamic properties of this
worker. Dynamic properties complement the static properties. Both information are used as worker
context. When these requests are finished, the broker sends an acknowledgment to the worker. The
acknowledgment contains the assigned worker ID and a list of user tokens. These tokens identify
registered users which can communicate with the worker, using this token. Each user token is
unique for each user-worker-pair. If the broker encounters an error, he sends an error message to the
worker instead of an acknowledgment. An error can occur if the broker does not understand the
request, e. g., it does not support the used version, or if some data is missing. When the broker
receives the acknowledgment, he knows the registration was successful. The message flow for this
registration process is illustrated in Figure 5.3

In the following, the content of the messages are elaborated.

Ping Contains no further data as payload

Pong Contains no further data as payload

Register Contains the information of the worker. This includes the following data:

Connection How the user can connect to the worker. Especially which port the worker
listens to

Static Properties Contains the static properties which can be used for context when schedul-
ing the tasks. To provide some minimal information about the capabilities of the worker,
the following data is contained in this section:

– CPU

– GPU

– OS

– architecture

– supported platforms

– available libraries

Ack Describes a general acknowledgment of the received message. Contains no further data

44



5.2 Protocols

BrokerUser

Register

Ack

Worker

Add User

Ack

Figure 5.4: Message sequence for the user registration

Generally, the registration message contains the port on which the worker listens to new connections.
Additionally, it contains the properties and constraints of the worker, namely the operating system
(OS), the architecture, information about the CPU and GPU, supported platforms and runtimes, as
well as installed libraries, which can be used when offloading a task.

After registration, the worker has to send state updates in a certain interval to the broker. These
state updates accomplish several things. First, the broker still knows that the worker is running, as
the status updates work as heartbeat messages. Therefore, no dedicated heartbeat messages are
necessary, which reduce the overall load and network usage of the system. Second, the current
workload of the worker is contained in these messages. By sending these values, the broker does
know how much the worker is used and if he has free resources.

Additionally, the broker starts to send ping messages to the worker. With these ping messages, the
latency to the worker is monitored, and the broker can select the workers based on their round trip
time (RTT).

5.2.4 User Registration

Similar to the worker, the user has to register, too, to participate in the system. However, the user
registration is simpler than the worker registration, because the broker does not have to check the
network connectivity to the user. Here, the user has to send a register message, but no more data is
necessary. The broker does not have to check the network connectivity to the user, but has to inform
each registered worker about this new user. This achieves that only registered users can use the
system. Additionally, it prevents misuse, as each request can get tracked back to the user. When the
broker receives the Registration message from the user, he creates a unique ID for this user. Then,
he sends a token to each worker, identifying this unique user-worker-pair. If a worker registers
after a user, the broker can use this user ID to create the token. After each worker is informed, the
broker sends an acknowledgment to the user, containing the created user ID. Similar to the worker
registration, the broker can reply with an error message if he does not understand the request. The
process is illustrated in Figure 5.4.
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Figure 5.5: Message sequence for the worker deregistration

The message types defined in the process are summarized here:

Register User Informs the broker that the user wants to register. Has no additional payload.

Add User Informs the worker about a new user in the system. Contains the user token as payload.

After a successful registration, the user start to send ping messages to the broker to monitor the
latency. No dedicated leave message is necessary for the user. He just stops participating in the
system. As he only uses other resources, but does not provide own resources, the other participants
are not affected.

5.2.5 Worker Leave

When a worker wants to leave the system, he has to send a Leave message, indicating that he will
become unavailable. This ensures, that the broker can unregister the worker and that no further
tasks are deployed, and no processes executed on this worker. In Figure 5.5, the message sequences
are presented.

The worker sends the leave request to the broker. This request has to contain the ID of the worker,
in order to properly identify the worker and unregister the correct one. When everything was
successful, the broker replies with an Ack message. When the worker receives this message, he
knows that he was successfully unregistered. Otherwise, he could retry the deregistration. No new
error messages are defined in this process, beside the already known ones.

The message types are summarized here:

Leave The leave request of the worker. Contains the worker ID as payload.

5.2.6 User Leave

Since the user does not provide any services but only uses them, there is no dedicated deregistration
protocol defined. He can just disconnect and later reconnect. If he reuses his assigned ID, he even
can skip the second registration process.
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Figure 5.6: Message sequence to get a list of current workers

5.2.7 Fetch Workers

Before the user can directly connect with a worker, he needs a list of the available workers which
are registered at the broker. He can request this list with a Fetch Workers message, which is sent
to the broker. This message contains constraints, which describe specific requirements which the
workers have to fulfill. The broker responds with a Worker List message, containing all matching
workers. Figure 5.6 illustrates the sequence.

The message types contain the following details:

Fetch Workers This message is sent to the broker. It contains the following data:

User ID Used to identify the user

Constraints List of constraints for the workers. This can contain any static (Section 5.2.3)
or dynamic properties (Section 5.2.8) of the worker.

Worker List This contains a list of all matching worker to the request. This message contains the
following information for each worker:

Connection The connection information to this worker

Static Properties Static properties of the worker, as defined in Section 5.2.3

Dynamic Properties Contains the workload and other dynamic properties of the worker, for
example:

– CPU usage

– GPU usage

– free memory

– free storage

Deployed Tasks This list contains the tasks which the worker currently has deployed and
read to run

Worker ID Describes the worker ID used for identification
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Figure 5.7: Sequences for retrieving a state update of a worker

5.2.8 State Update

To integrate a monitoring functionality into the protocol, it defines a State Update sequence. This
sequence is defined in two ways, illustrated in Figure 5.7a and Figure 5.7b. With this protocol, the
current state information of a worker can be obtained.

First, the worker can send self-initiated state updates, in this case to the broker. When the broker
receives this message, he can update the worker state in his local memory. To acknowledge the
message, he sends an Ack. Second, a client, in this case a user, can request the current state of the
worker. Here, the worker responds to this request with his State Update.

The content of the defined messages types uses following information:

State Update This contains the information of the internal dynamic state of the worker. For
example, this contains the current workload, free memory, and free storage.

State Update Request This message contains no further data in his payload.

5.2.9 Task deployment

To provide an offloading functionality, the protocol has to support a way of deploying the tasks at
the worker. To consider different needs, this will be possible in two different ways, presented in
Figure 5.8. Either the user instructs the broker to do the deployment as a proxy of the user, or the
user deploys the task directly at the worker himself.

Both workflows will be described below. The first option for the user is to deploy a task via the
broker (see Figure 5.8a). Here, he has to send a deployment message to the broker which contains
the task and the task description. Additionally, the message contains constraints which the workers
have to meet in order to select a suitable worker. These constraints can be hardware constraints, like
the architecture of the worker, software constrains, like supported runtimes, or dynamic properties,
for example the current workload of the worker. The broker receives the message and has to filter the
registered workers to find workers which meet the requirements. From this filtered list, he selects
one of the worker to which the task will be deployed. The broker then forwards the deployment
request to this broker. When the worker receives the deployment request, he sends a notification to
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(a) Message sequence to deploy a task via the broker
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(b) Message sequence to deploy a task directly from the user to the worker

Figure 5.8: Sequences for deploying a task

the broker to inform him that he will deploy this task. Based on this notification, the broker can
then finally decide if this deployment is valid. This notification would not be absolutely necessary
here, since the broker already knows that the worker should deploy this task. However, this message
is included to keep the process at the worker the same, when the user directly deploys a task. After
the broker has acknowledged the notification, the worker can eventually perform the necessary steps
to deploy the task locally. When the deployment is finished, he sends an Ack message back to the
broker. This indicates a successful deployment and the broker can inform the user which worker
has deployed the task. With this information, the user could establish a peer-to-peer connection
with the worker directly when he wants to execute a process based on this task. If the task is already
deployed at the selected worker, the broker directly returns an acknowledgment, containing the
worker with the deployed task.

The second option for deployment is that the user decides itself where it would like to deploy
the task, presented in Figure 5.8b. This involves slightly more work on user side, however the
user has more control about the actual task placement and can find an optimization for his needs.
First, the user has to have a list of registered workers. He can get this list via the protocol from
Section 5.2.7. The user can then use the list to find the best suitable worker itself. For example, he
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can ping the workers to get the latency and select the worker with the lowest one. Since the network
connection between the different participants may be different, the latency between the broker and
the worker and the latency between the user and the worker may also be different. When the user
has identified the best worker for his use case, he can send a deployment message directly to the
worker. Additionally, he can select multiple workers to distribute the task on multiple workers.
When the worker receives the deployment request, he sends a notification to the broker to inform
him, that this worker wants to deploy the given task. This notification contains an identifier of the
task, the worker, and the user. The broker is then able to decide if the task should be deployed at
this worker. For example, if the user has already deployed too many tasks or if the task is deployed
at multiple different workers already, the broker can intervene and reject the deployment. When the
broker accepts the deployment, he replies with an Ack message. Additionally, the broker knows that
the worker has now deployed this specific task. After the acknowledgment of the broker, the worker
finishes the local deployment and sends an acknowledgment to the user. This approach has several
advantages: The user can deploy the task on the worker with the lowest latency (or other properties)
to the user. Additionally, the broker still has the option to cancel the deployment, for example if
the user has not enough permissions, or if he has already used his contingent for task deployments.
Besides that, the task only needs to be sent in one message, whereas in the approach where the
broker acts as a proxy, it has to be sent first to the broker and then to the worker. This saves some
network usage and makes the protocol more efficient.

The following message types and payload are defined in this sequence:

Broker Deploy This message is sent from the user to the broker to initiate a task deployment. It
contains the following data:

User ID Identifies the user which sent the request.

Task ID specifies the ID of the task

Platform Describes which platform the task is using and needs to run.

Constraints Specifies constraints to select a suitable worker

Data Contains the data of the task, which is needed for deployment. This is just an array of
bytes, since arbitrary tasks can be sent with this protocol. To reduce the transmitted
data, the task is generally transmitted as a compressed archive. For example, this can
be an executable. The protocol does not make any assumptions about the task layout.
Both, the user and worker, must be able to convert the task for deployment.

Custom data This describes custom data, which is necessary to successfully deploy the task
on the target platform. This data is not generalizable for all tasks, but may necessary for
specific tasks and platforms. For easy extensibility, the YAML format is used, here,
which allows the tasks and clients to define their required data.

Worker Deploy This message is directly sent to the worker. It contains the same data as the
message sent to the broker, but the constraints are removed since the worker is already
selected. Additionally, the user ID is switched with an identifier of the user-worker pair.

Add Task Notification This message is sent from the worker to the broker. It contains the following
data:

User Token the user-worker pair for the request.
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(a) Message sequence to remove a task via the broker
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(b) Message sequence to remove a task directly from the worker

Figure 5.9: Sequences for removing a task

Task ID The task ID which will be deployed.

Worker ID The worker ID which wants to deploy the task.

Deployment Response This message is specifically sent from the broker to the user to inform that
the task has been deployed. As payload, it contains the data of the worker who has deployed
the task. This includes static properties, dynamic properties and connection information.
With the connection information, the user is able to connect directly with the worker by using
the given IP address and port.

5.2.10 Remove Task

Beside deployment, there should also exist the possibility to remove old tasks, for example when
the user does not need it anymore. Removing the task will free some resources, such as disk usage.
Similar to the deployment, the protocol provides two different sequences, one which uses the broker
as a proxy and one which uses a direct connection between the user and the worker (Figure 5.9).
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In Figure 5.9a, the removal process which uses the broker as a proxy is illustrated. The workflow is
similar to the task deployment sequence. The user sends a message to the broker to specify which
task should be removed from which worker. However, this message already contains the ID of target
worker, therefore the broker does not have to identify the worker first. The broker forwards this
message to the actual worker. Before the worker removes the task locally, he sends a notification to
the broker, which again indicates that the worker will remove this task. After the broker accepts this
notification, the worker can remove the task and sends a confirmation to the broker. The request
could fail if the worker detects that other users are currently using this task, and therefore he cannot
remove this one. The broker in turn sends the confirmation, in form of an Ack message, to the
user.

Additionally, the user can send the removal request directly to the worker (Figure 5.9b). This request
has to contain the task ID, as well as the identifier of the user. The worker then verifies if the task is
not used by other users and sends a message to the broker, indicating that the task will be removed.
This way, the broker knows that the worker has the task not deployed, anymore and can update his
worker cache. He sends an acknowledgment to the worker, to notify that he can now safely remove
the task. Eventually, the worker sends an acknowledgment to the user, indicating that the task is
now removed.

While the initial trigger in the previous case is necessary, when a user explicitly wants to remove a
task, this is not necessary in all cases. If the worker detects, that a task is not used for long time, he
can decide to initiate the removal process on its own. In this case, he sends the removal request
directly to the broker, which does the same acknowledgment as above, and removes the task. Only
the interaction between the worker and user does not happen.

To summarize, the following messages types are defined, here:

Broker Remove This message is sent from the user to the broker. The payload has to contain
following information:

User ID Specifies, which user has sent the request

Worker ID Specifies the target worker, where the task should get removed

Task ID Specifies the task, which should get removed

Worker Remove This message is sent to the worker, either from the broker or user. It has to
contain the following information:

Task ID Specifies the task, which should get removed

User Token The user-worker pair

Remove Task Notification This message is sent from the worker to the broker. It contains the
following data:

Worker ID The worker who sends the notification

Task ID The task which the worker will remove locally
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Figure 5.10: Sequences for executing a process

5.2.11 Execute Process

Finally, the users have to be able to execute the deployed tasks. Similar to the deployment process,
two different possibilities exist here, too (see Figure 5.10). The first one is the execution via the
broker (Figure 5.10a). Here, the user sends an execution request to the broker, containing the
target task ID, parameters and constraints. Additionally, the request contains the user ID to identify
the user and a process ID. This process ID can then be used to identify the process. By directly
including this ID in this request, there is no second message necessary which informs about the
created process. This reduces the number of messages and therefore simplifies the protocol and
increases the speed. The broker then selects an appropriate worker, based on the task and the given
constraints, and forwards the execution request to this worker. The worker receives the request,
performs the computation and returns the result, if successful. If he cannot execute the task, he
returns an error message. The broker then forwards either the result or error message to the user.

The other option corresponds to the direct deployment process and is illustrated in Figure 5.10b.
After the user has a list of the available workers, as explained in Section 5.2.7, he can decide on his
own which worker should perform the process. After he has selected a suitable worker, he sends the
message, which contains the task for this process, the parameters, the identifier for the user as well
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as the process ID. As before, the worker executes the task and performs the computation. After
execution, he returns the result or, in case something went wrong, sends an error message. When
the user receives the result or error message, he knows that the task has completed.

The following messages are used in this sequence:

Broker Execute This message is sent from the user to the broker. It contains the following
information:

Task ID describes the ID of the task

Process ID specifies the target ID of the process, under which the user want to start the task

User ID the ID of the user

Parameters Parameters which are necessary to start the task. Sine the type depends on the
task, arbitrary data has to be able to be sent. Therefore, this contains just an array of
bytes and the applications are responsible to decode the data

Constraints Specifies the constraints to find a suitable worker.

Worker Execute This message is sent to the worker to initiate a process execution. The content is
similar to the message, sent to the broker, but does not contain any constraints. Additionally,
the user ID is switched with a token, identifying the user-worker-pair.

Result This message transports the result of an execution. Since the results are dependent of the
tasks, this also contains arbitrary data. Hence, the data is encoded as an array of bytes and
the receiver’s application is responsible to decode the data.

5.2.12 Abort Process

Eventually, the protocol provides a means to abort a running process. This can be useful, if the
user does not need the execution result anymore, for example because another worker which started
the same process has already finished the computation. The general sequences can be seen in
Figure 5.11. Figure 5.11a describes the abortion of a process via the broker. Here, the user sends
a Abort Process message to the broker which contains the process ID. Now it gets clear why this
ID was created for the process beforehand. The broker forwards this request to the worker which
executes the given process. The worker will then stop the process and return an Ack Message to
the broker. Again, the broker will just forward this message to the user. The sequence for a direct
abortion of a process, between the user and a worker, is even simpler (Figure 5.11b). Instead of
sending the message to the broker, the abortion message is sent to the worker. The worker stops the
process and informs the user. In both cases, the user knows that the process is no longer executed.
However, this interferes with the process execution protocol. Therefore, instead of sending the result
of the execution, the worker has to send a message which indicates that the process was aborted.
The sequence of the execution protocol does not change in this case, but another reply is received.

If the execution cannot be stopped, e. g., because the user has not started it before, the worker returns
an error message.

The following messages are defined in this sequence:

Broker Abort This message is sent from the user to the broker. It contains the following data:
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BrokerUser

Broker Abort

Ack

Worker

Worker Abort

Ack

abort
process

(a) Message sequence send a process abort request via the broker

WorkerUser

Worker Abort

Ack

abort
process

(b) Message sequence to abort a process directly between the user and the worker

Figure 5.11: Sequences for aborting a process

User ID Identifies the user of this request

Process ID Specifies the process which should get stopped. Only the user who started the
process knows this ID.

Worker Abort This message is sent to the worker, either from the user or the broker. It contains
the following data:

User Token The identifier of this user-worker pair. When the broker acts for the user as a
proxy, the broker also uses the user ID.

Process ID The process which should get stopped.

5.2.13 Ping

Additionally, the protocol provides a message sequence to check the latency with a worker. This is
necessary, to measure the connection quality of a worker. If the latency is too high, a user may want
to select a different worker for offloading. The ICMP already defines a message which achieves
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WorkerUser / Boker

Ping

Pong

Figure 5.12: Message sequence for the custom ping

this behavior, however these packets may get less prioritized from routers. By providing a custom
message, the actual latency inside the protocol can be measured. However, it’s not possible to get
the hop-count with this custom message, too. In this case, ICMP must be used as a fallback.

The message flow is visualized in Figure 5.12. Both, the user and broker, can send a ping message to
the worker. The worker immediately responds with an Ack message. After the sender has received
the Ack, he can easily compute the RTT and define the latency to this worker.

In this sequence, the following messages are used:

Ping This message indicates a Ping request. It contains no further data.

Pong This message confirms the request.

5.3 Architecture & Design

This section provides a deeper insight into the architecture of the individual components. It
reveals the responsibilities of the components to enable what is needed in detail to achieve their
goals. Additionally, to provide an easy-to-use framework, a public API has to be usable by other
components.

As previously described, the main software artifacts are the broker, the user, and the worker. The
broker is a central connection point for the users and workers and keeps a cache of the workers
and their deployed tasks. The user registers at the broker to deploy and execute tasks at the worker,
which can be done with peer-to-peer connections or using the broker as proxy. Both, the user and
the broker, have a task scheduler to select the best worker for the current task. Finally, the worker
registers at the broker to provide its computing resources. It receives the tasks and has to deploy
and execute them. The actual implementation of the task handler is up to the worker, therefore
the framework provides an API to communicate via standardized API calls. The task handler can
deploy and execute the tasks, depending on the workers capabilities. The software components of
the broker are described in Section 5.3.1, the user is described in Section 5.3.2, and the components
for the worker are described in Section 5.3.3.

56



5.3 Architecture & Design

Protocol Adapter

Handler

Leave Monitor

Connectivity Checker

Repository

Users

Tasks

Workers

Scheduler

Process
Scheduler

Task
Scheduler

Connections

Figure 5.13: MetaEdge Broker Architecture

5.3.1 Broker

The architecture of the broker is presented in Figure 5.13. It uses a layered architecture, to abstract
the different components. The lower layer is an adapter for the protocol. It handles all incoming and
outgoing connections and parses the messages of the clients (users and workers). It’s responsible to
communicate with the other participants, using the MetaEdge protocol. On top of this layer is the
Handler, which receives the parsed messages from the connection layer and can itself pass messages
to the underlying layer which are then sent to other participants. This Handler does the actual
implementation of the protocol and has to forward the messages or provide the correct answers.
To keep track of all registered user, workers, and deployed tasks, the Handler manages multiple
repositories which contain this information. Additionally, the Handler contains a scheduler, to be
able to select suitable workers, based on the request. It also contains a connectivity checker, which
is able to validate the connection to the workers. Eventually, a Leave Monitor is also part of the
Handler, which helps to fulfill RNF4. This monitor verifies if the worker is still active. If no update
is received from a worker for a specific amount of time, the worker is considered dead and removed
from the system.

5.3.2 User

The proposed framework introduces a layered architecture for the user, similar to the broker. It
is presented in Figure 5.14. The different layers are used to abstract and hide different details of
the system. The lowest layer is a protocol adapter, responsible for the actual communication and
transporting the messages. It sends the messages to the other entities in the system and parses the
received messages for the upper layers of the user. On top of the adapter is the Handler component,
which contains the system logic. This component implements the workflow of the protocol on the
user side. It provides an API to send (and receive) different messages and acts as a bridge between
the client application on top and the lower layer which actually sends the messages. Therefore, it
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Figure 5.14: MetaEdge User Architecture

adds some necessary data to the different commands before forwarding the request to the adapter.
The client application can use the handler via an API. The application can then implement their use
case and use the MetaEdge system to do the offloading.

Similar to the broker, it contains a scheduler to select a worker for offloading. The information of
available workers and tasks is stored in dedicated repositories. The handler additionally contains a
Worker Monitor, to monitor the given workers. The worker monitor is responsible to update any
changes of the worker, for example if the connectivity changes (e. g., increased hop count), or if
the workload increases. With this monitor, the effort on the broker is reduced, because the users
can update suitable workers and remove a worker from the list if the workload exceeds a specific
threshold, in a self-organized way.

5.3.3 Worker

The third software artifact is the worker. The architecture of the worker component is illustrated in
Figure 5.15. As the previous components, this is organized in a layered architecture, too, to abstract
the different responsibilities of the layers. Again, the lowest layer is an adapter layer for the protocol
messages. It transforms the outgoing messages for the underlying communication protocol and
parses the incoming messages for the upper layers. Additionally, this layer connects to the broker
and accepts connections from the users.

On top of this adapter is the layer for the Worker Handler. This component uses the interface to the
adapter to send the messages and provides and interface for the actual Task Handler. It manages the
deployed tasks and processes of the user. Therefore, it has to use different repositories, containing
the deployed tasks and current processes of the users at the current worker, which also help to fulfill
RF4. These caches are used to maintain the privileges for the specific task or process. A user which
deploys a task at a worker becomes the owner of this task. Only the owner is allowed to remove the
task from the worker. Other users can only use the task, but do not have the privileges to remove this
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Figure 5.15: MetaEdge Worker Architecture

task. A similar approach is used for the processes. Since the actual execution time of an offloaded
process is not beforehand for sure, a user may start the same process at different workers. However,
he only needs the result of the fastest worker. Therefore, he cancels all further executions. To avoid
that users cancel a process of another user, only the user who created the process is allowed to abort
the execution.

One exception for the removal of a task is given to the worker. If a task is not used for a long time,
he can remove the specific task by himself. Therefore, the Worker Handler contains an Expiration
Monitor component, which monitors the tasks and their processes. Additionally, the Worker Handler
component contains a State Updater, which monitors the current state of the worker and sends
updates to the broker. These updates contain information about the workload, like used CPU, but
can also contain some task-specific information.

When a worker registers at a broker, he has to provide a list, defined by the protocol, which contains
system information of this worker, like supported runtimes, platforms, architecture, and other data.
This information is then used by the broker and users to find suitable workers for a specific task.

The third layer is the Task Handler, which contains the actual implementation of the specific
platform to handle the tasks. This component is only responsible to actually deploy the task and
execute the processes. Since the deployment varies across different platforms, this component
contains platform-specific code. When a new runtime or platform is added to the system, this is
the only component which has to be modified for implementation. During the registration process,
the information which platform the Task Handler implements has to get published. To keep this
component simple, the interface only contains the functions to deploy and remove a task, as well as
start and abort a process. Since this interface is very slim, it’s easier to integrate different platforms
and increases the usability, which contributes to the requirements RNF1 and RNF4.
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5.4 Implementation

This section describes the implementation of the protocol and the core components of the system,
according to their architecture. In Section 5.4.1, the details for the implementation of the protocol
are presented. The implementation of the scheduler and connectivity checker are presented in
Section 5.4.2 and 5.4.3, respectively. The framework for custom task handlers is explained in
Section 5.4.5 in more details.

According to requirements RF2 and RF3, MetaEdge should be platform independent and be able
to run on any device. Additionally, it has to provide fast performance according to RNF2 and
be easily usable (RNF1). Furthermore, the overhead of the system and protocol should be low,
in order to not restrict low-power devices. Many programming languages provide solutions to
the mentioned requirements. For example, C and C++ are popular representatives for compiled
languages. Compilers exist for various amount of platforms. Since they run on bare metal, no
additional runtime is required on top. On the other side, programming languages like Java provide
platform independent solutions, but require additional runtimes, for example the Java Virtual
Machine (JVM). The JVM interprets the platform independent byte code for the specific machine.
This still provides fast performance, but requires more resources. The execution performance is
often only reduced slightly, but advantages such as faster prototyping or increased security often
predominate. A relatively new language is Golang (Go), which is a compiled language and therefore
provides the advantages of C/C++. However, it also promises faster prototyping and is a type safe
language for increased security. In the environment of network and cloud services, Go is very
well established. For example, Docker1 and containerd2, the predominant container virtualization
solutions, are written in Golang. To profit of these advantages, Go was chosen as programming
language. The platform independence is still given, since the code can get compiled for the different
platforms.

5.4.1 Protocol

The protocol is implemented using gRPC Remote Procedure Calls (gRPC). gRPC is a framework
for RPC which can run in any environment. This simplifies the prototype a lot, since the parsing of
the messages does not have to be implemented. Additionally, it is based on HTTP/2 and protocol
buffers. This provides an easy request-response communication and automatic serialization of
messages. Therefore, a dedicated message ID to correlate messages is not necessary, because this is
handled by the underlying architecture. The serialization provides an efficient binary data format,
which improves the performance in comparison to a text-based format, for example XML.

In the prototype, gRPC is used as the adapter interface. As seen in Section 5.3, this is the lowest
layer for the different components. This adapter could easily get exchanged to use another data
format or implement a custom protocol definition.

For both, the worker and broker, an own service is defined which describes the incoming interaction
possibilities with this entity. The user does not have an own service, since this entity initiates the
interactions and only creates requests, but does not have to answer to incoming requests. Aside

1https://www.docker.com/
2https://containerd.io/
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Listing 5.1 Excerpt of the task deployment definition on worker side

message DeployRequest {

string userToken = 1;

string taskId = 2;

string platform = 3;

bytes chunk = 4;

string custom = 5;

}

message DeployResponse {

string custom = 1;

}

service Worker {

rpc Deploy(stream DeployRequest) returns (DeployResponse);

}

Listing 5.2 Custom data for a docker task handler

platform: docker

id: docker-image-id

custom:

remote: docker-image-id

from that, the gRPC framework directly allows sending errors, without the need to define custom
error messages. In Go, these errors can get handled after a function call instead of processing the
result. For each other described message in Section 5.2, the according protobuf3 messages get
defined, which is the data format used in the framework.

For example, the deployment of a task to the worker is implemented as shown in Listing 5.1. Since
the data of a task can have a huge size, a stream is used to keep the single messages small. The
task itself is divided into multiple chunks, and sent as an array of bytes inside the chunk field. The
message definition includes all necessary information defined by the protocol. Via the platform
attribute, the workers for a task are matched. The additional task and platform specific information
are provided via a custom field, which contains the data as a YAML encoded string, and can contain
arbitrary data. As already mentioned, this message allows a user to deploy a task which he has
locally on his side. However, this is not the only solution, where a task could be stored. Depending
on the provider or task type, a task can be stored on a third party registry, e. g., the public Docker
registry. In this case, not the actual task is sent with the message, but the information, how the
worker can deploy the task and where he gets the task. For example, a task handler for the Docker
platform has to check if the custom data contains a remote field (Listing 5.2). If this field is present,
he has to pull the given image from the docker registry. This way, various amount of possible
deployment techniques are allowed to be used with the protocol.

3https://protobuf.dev/
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Algorithm 5.1 Basic scheduling algorithm
procedure Schedule(𝑊 ,𝐶)

𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠← {}
for all 𝑤 ∈ 𝑊 do

𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 ← VerifyConstraints(𝑤.𝐶𝑤 , 𝐶)
if 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 then

𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠← 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠 ∨ 𝑤

end if
end for
𝑡𝑎𝑟𝑔𝑒𝑡 ← SelectOne(𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑊𝑜𝑟𝑘𝑒𝑟𝑠)
return 𝑡𝑎𝑟𝑔𝑒𝑡

end procedure

5.4.2 Scheduler

Both, the user and the broker have to implement a scheduler to select matching workers for the
specific tasks. Basically, any kind of scheduler can be used in this case, since the scheduler itself is
not tightly coupled to the protocol. In fact, since they are only responsible for selecting a suitable
worker, a user application can use a custom scheduler, which is optimized for his exact use case.
For example, the scientific community has already developed multiple different schedulers for
edge computing, focusing on different aspects. In the dissertation of Breitbach [Bre22], different
scheduling approaches are developed to enhance decentralized scheduling, do a proactive task
placement, or focusing on energy consumption. While the user can highly benefit of the internal
knowledge and optimization of the application, and therefore use a very specifically tailored
scheduling approach, the broker does not have this specific knowledge and also can be used by
several different users as proxy. Therefore, he has to select a suitable worker based on the given
constraints in the Deployment or Execution message. As already presented, the user provides
information about a suitable worker within these constraints.

A basic scheduling algorithm is developed in this case, outlined in Algorithm 5.1. The idea is to
find a suitable worker, without any more knowledge of the system. With this scheduler, the broker
is then able to ship the deployment or execution to a dedicated worker. In case of deployment,
the broker returns the information about the worker to the user, so that the user could be able to
establish a connection with the worker directly. In case of an execution request, the broker selects a
matching worker, then ships the execution to the worker and waits for completion. After completion,
he sends the result back to the user. The algorithm is explained below:

Let 𝑊 be the set of registered workers at the broker, and 𝐶𝑤 the constraints for a specific worker.
Let 𝐶 be the set of given constraints.

Inside the SelectOne function, again an arbitrary method could be used. In a simple case, this just
uses the first available worker, a more sophisticated approach could select the fastest worker or
another worker which matches with some previous context.
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5.4.3 Connectivity Checker

The connectivity checker has to rely partly on the MetaEdge protocol, but also has to use a different
technique to get the desired data. The connectivity checker has to monitor two aspects:

• latency to other participants

• hop count to other participants

Both could be realized using the ICMP protocol and sending ping messages to the target. But
ICMP messages have no special priority and if the router is under high load, he could delay the
processing of ICMP messages (or even drop them), resulting in a wrong RTT. However, it’s not
possible from a higher (layered) protocol to get the hop count to another participant. As a solution,
the ICMP messages are used to determine the hop count by limiting the time-to-live and verifying if
the message still receives the target. To get the RTT to the specific worker, a custom Ping message
is sent via the MetaEdge protocol. The worker implementation immediately has to answer the
message. If the worker is under high load and cannot immediately answer the ping request, but has
to delay the response, the client will recognize this with a higher RTT than in reality. Fortunately,
this does not impose significant bad effects, since a scheduler who optimizes the workload will
select this worker less often in that case, therefore potentially reducing its load and normalizing his
ping responses.

5.4.4 User authentication

Within this protocol, users and workers take distinct roles. However, this enables various attack
points. In the following, one possible attack point is targeted and presented, how a minimal line of
defense is implemented.

To request offloading, the user has to provide his ID, which can then get checked from the broker.
A worker does not own a user ID, however when he receives a request, this user ID is contained
in the message. At this point, a malicious worker can pretend that he is the same user and start
offloading other processes with the user’s identity. To mitigate this problem, the user ID will not get
sent to the worker, but unique user-worker tokens are generated. These tokens are only valid for
one user-worker connection. When both participants register, the broker creates an ID for them.
The user knows his ID, but can fetch a list of the workers, which contains the IDs of available
workers. However, the user will not know other user IDs. At the same time, the worker gets sent a
hashed token, whenever a user registers. This way, the worker never knows other user IDs directly.
In this scenario, the broker is used as a central trust instance, because he knows all user IDs and
worker IDs. Therefore, this does not protect against a malicious broker. The pseudocode is shown
in Algorithm 5.2.

5.4.5 Task Handler

Each worker, who joins the system, has to provide a task handler for his supported platform. The
worker communicates via an interface with the task handler, which is shown in Listing 5.3. The
interface itself is very small. It only provides methods for the deployment and execution of a task
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Algorithm 5.2 Minimal user authentication
procedure WorkerRegistration

𝑖𝑑 ← createId()
𝑡𝑜𝑘𝑒𝑛𝑠← ∅
for all 𝑢 ∈ 𝑢𝑠𝑒𝑟𝑠 do

𝑡𝑜𝑘𝑒𝑛𝑠← hash(id, u.id)
end for
return 𝑡𝑜𝑘𝑒𝑛𝑠

end procedure
procedure UserRegistration

𝑖𝑑 ← createId()
for all 𝑤 ∈ 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do

𝑡𝑜𝑘𝑒𝑛← hash(w.id, id)
w.SendUserToken(token)

end for
return 𝑖𝑑

end procedure
procedure Deployment(𝑤𝑜𝑟𝑘𝑒𝑟, 𝑢𝑠𝑒𝑟 𝐼𝑑)

𝑡𝑜𝑘𝑒𝑛← hash(w.Id, userId)
worker.Offload(token)

end procedure

Listing 5.3 Interface for the Task Handler

type TaskHandler interface {

Deploy(Task) error

Remove(taskId) error

Execute(Process) error

Abort(processId) error

}

and process. The details about the implementation depend on the underlying platform of the task.
Various task handler were implemented in this thesis to prove the functionality. In the following
sections, some of them are presented.

Python

This task handler is able to execute simple python scripts. Here, the task data is an archive with the
python file. Additionally, it needs an entry point into the task, which is given via the custom data of
the protocol. When the task handler deploys the task, it unwraps the archive and stores the content
on disk. To execute a process, it loads the file given as entry point. Additionally, each request
contains an array of strings as parameters. These parameters are used to start the underlying process.
The given task itself is responsible to correctly parse the parameters, as the other components do
not have these details.
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Listing 5.4 Export a Docker image

docker save image:latest | gzip > image_latest.tar.gz

Listing 5.5 Task description of an OpenFaaS function

version: 1.0

provider:

name: openfaas

gateway: http://127.0.0.1:8080

functions:

hello-world:

lang: golang-middleware

handler: ./hello-world

image: hello-world:latest

Docker

The implementation of this task handler is able to run simple docker containers. It uses the Docker
Engine, which has a Go SDK available, to deploy and execute the containers. When a user wants to
deploy a Docker image, the image has to be sent as the task data via the protocol. Therefore, the
image first has to be exported into an archive, which can be done with a command as shown in
Listing 5.4. The Dockerfile of the image already specifies the entry point, hence no custom entry
point has to be sent with the protocol. However, such an image can get very big, which delays
the deployment because many data has to be sent, especially if the deployment is done via the
broker. Alternatively, a Docker image can get loaded via a central registry, e. g., the Docker Hub4.
In this case, the image is not transferred via the protocol, but the task contains a custom field, which
specifies which image should get pulled. The task handler has to parse the custom field to get this
information. When a process should get executed, the task handler creates a container of the image.
Again, the parameters are added, but the actual implementation of the task is responsible to correctly
parse the parameters, since they are only given as strings.

OpenFaaS

Another platform which was integrated in the scope of this thesis was OpenFaaS. As mentioned in
Section 3.1.2, OpenFaaS is a popular platform for serverless functions. In this case, it is implemented
using faasd5, which enables to run OpenFaaS functions without Kubernetes. To describe functions,
OpenFaaS uses YAML Ain’t Markup Language (YAML). Functions are deployed with a YAML
file, which contains the details of the function. Therefore, this file is used as the task data and sent
via the protocol. The task handler reads the file and uses faasd to deploy the function. An exemplary
description is show in Listing 5.5 In order to be able to deploy this function with faasd, the user or

4https://hub.docker.com/
5https://github.com/openfaas/faasd
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Figure 5.16: The Tasklet system with consumers, producers, and brokers.

another third party first has to publish the function, which uploads the resulting image to the docker
registry.

Tasklet

The Tasklet system is another computation offloading system, introduced in [SEP+16]. It defines
producers and consumers, which connect to a broker, illustrated in Figure 5.16. Consumers want to
offload code and producers perform the computation. However, in this system, consumers can also
be producers. The orchestration is done via the broker, which tells a consumer which producers
have available resources. In order to integrate the Tasklet system into MetaEdge, the architecture
had to get adapted. The end user cannot connect directly with a broker from the Tasklet system,
but has to connect with the MetaEdge broker. On the other hand, the task handler of the worker
has to integrate a complete Tasklet system and connect to the middleware. When a user deploys
a Tasklet, the task handler receives the data of the Tasklet. But the execution of a Tasklet is only
started, when an execution request is received. Then the task handler forwards the Tasklet to a
producer and receives the result. The result is just a byte array, which is then returned to the end
user. The end user’s application is responsible for parsing the result, since the MetaEdge protocol
has no knowledge about the Tasklet implementation itself.
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In this chapter, the proposed MetaEdge framework and protocol will be evaluated, using the imple-
mented prototype. During the evaluation, the goal is to achieve the required interoperability from
requirement RF2 and show the interoperability between different users and workers. Additionally,
the overhead of the protocol is measured to evalute the goal of requirement RNF2. For the evaluation,
two test beds were set up that are described in Section 6.1. Multiple workers supporting different
platforms and implementations were set up and joined the network, creating a heterogeneous
environment. This environment was used to simulate the different kind of providers in an edge
computing scenario. In Section 6.2, the results of the evaluation are shown. Finally, the results
from the evaluation are discussed in Section 6.3.

6.1 Experimental Setup

This evaluation is done with a virtual test bed. Within this test bed, the goal is to create a
heterogeneous edge environment with several different devices. The devices support different
runtimes and platforms used in edge computing for academic research as well as in industry. The
virtual setup is done with Vagrant1, a ruby-based application for the creation and configuration of
lightweight, reproducible, and portable development environments. This allows for a controlled
environment with no side effects. The reproducibility is given via the Vagrantfile, as it follows the
Infrastructure as code (IaC) paradigm. In Listing 6.1 is shown, how an exemplary device is created.
It gets 2 GB of memory and 1 CPU core to use. Additionally, a static IP address is created to
communicate in the private network, as well as port forwarding is enabled to also forward requests
from the host system to the guest. The end-device, a powerful Debian server, creates several VMs
based on the given configuration. While the setup is reproducible in this way and different devices
can get simulated, the network itself is homogenous since all virtualized resources are located on
the same physical server. Each device is reachable within one hop, shown in Figure 6.1, and the
latency is below 0.5 ms, which does not represent a real-world scenario. However, for the first
evaluation of the protocol and framework, this is acceptable. In Table 6.1, the system specification
of the host system, the Debian server, are listed.

Processor 12 core 3.60GHz Intel Xeon CPU E5-1650 v4
RAM 32 GB
Storage 450 GB

Table 6.1: Specifications of the host system used for virtual setup

1https://www.vagrantup.com/
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Listing 6.1 Exemplary deployment description of the broker in the virtual setup

Vagrant.configure("2") do |config|

config.vm.define "broker" do |broker|

broker.vm.box = "debian/buster64"

broker.vm.hostname = "broker"

broker.vm.network "private_network", ip: "192.168.33.10"

broker.vm.network "forwarded_port", guest: "9000", host: "9000"

broker.vm.provider :libvirt do |libvirt|

libvirt.memory = 2048

libvirt.cpus = 1

end

broker.vm.provision :shell, path: "./hack/vagrant/provision_broker.sh", env: {"PORT" => "

9000"}

end

Name Short Description Platform

WP1 Worker which implements the python runtime Python
WP2 Worker which implements the python runtime
WD Worker which has Docker installed Docker
WF Worker which uses faasd to deploy OpenFaaS functions OpenFaaS
WT Worker which can run the Tasklet system Tasklet
U1 User of the MetaEdge system
U2 User of the MetaEdge system
B Broker of the MetaEdge system

Table 6.2: Virtual test bed of integrated platforms and devices into MetaEdge

For evaluation, several different edge environments are investigated, listed in Table 6.2. For each
edge environment, an own worker is created which runs in its own VM. Each VM can use one
CPU core, has 20 GB storage and 2 GB RAM. Each worker uses one task handler, implemented in
Section 5.4.5, simulating an edge platform.

To counteract the issues of the virtual test bed, a second setup is created, which specifically adds
some heterogeneity to the network. In this setup, only two different workers which support the
Python runtime and OpenFaaS are added. The deployment is done on three instances in the Google
Cloud Platform (GCP), see Table 6.3. On one instance, a broker, user, and worker are hosted, which
have low latency. This instance is called “machine-A” is placed in the region “us-west”. On two
distant instances, called “machine-B” and “machine-C” only a worker is hosted which connects to
the system. This instance is placed in the region “us-central”. The latency between these instances
is 40 ms, which may not perfectly represent an edge infrastructure but provides suitable insights to
a scenario, where a distance server connects to the system.
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Figure 6.1: Connectivity of the deployed devices in the virtualized setup

Device name machine-A machine-B machine-C

Processor 2 vCPU 2 vCPU 2 vCPU
RAM 1 GB 1 GB 1 GB
Storage 10 GB 10 GB 10 GB
Location us-central us-west us-west
Type Broker, User, Worker Worker Worker

Table 6.3: Specifications of the machines in the cloud setup

6.2 Results

In this section, the results of the different experiments are presented. First, the framework is used
to ship the complete offloading process to the broker, which is then responsible to distribute and
manage the different offloading requests (Section 6.2.1). Then, in Section 6.2.2, the users use their
own scheduler to distribute their tasks to specific workers. Both experiments show the feasibility
of the proposed protocol while the second process highlights the self-organizing features of the
protocol. To also highlight that the system is able to handle centralized and decentralized offloading
concurrently, both methods get combined in Section 6.2.3. In Section 6.2.4 and Section 6.2.5, the
decision process is extended to multiple constraints. This does not only consider the supported

Broker

User
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(Python)

Worker
(Python)

16 hops
40 ms latency

us-central1-a us-west1-b

Worker
(OpenFaaS)

Figure 6.2: Connectivity of the deployed devices in the Google Cloud setup

69



6 Evaluation

Task No. Platform Deployed by

1 Python3 user 1
2 Docker user 2
3 OpenFaaS user 2
4 Tasklet user 2

Table 6.4: Task deployments used for evaluation

runtime, but many different features. Here, dynamic properties such as available CPU resources
or the hop distance are considered. To allow for network heterogeneity, this experiment is not
conducted in a virtualized environment, but on the setup made with GCP.

6.2.1 Centralized Offloading

The first experiment validates the broker of the protocol, in particular the suitability of a centralized
deployment and execution process via the broker. The basic setup is used as described above. One
broker is started, together with different workers, which all provide a different configuration to
execute offloaded processes. Additionally, two users are started, which will deploy and execute
tasks. The users are instructed to only communicate with the broker, but not with the workers
directly. After each participant has registered at the broker, the first user deploys a task via the
broker. The different tasks are listed in Table 6.4.

After the deployment, both users start offloading processes and sending requests to the broker. Even
though the broker does not know the details of the task itself, he is able to forward the requests to
the respective workers, since the required platform for the task is provided via the protocol. With
his built-in scheduler, he selects a worker with a suitable runtime to deploy the task and then selects
the worker with the deployed task to execute the processes.

Figure 6.3 visualizes the offloading path for both users with an exemplary python task. Only the
first user deploys the task, while both users are able to offload a process. The broker selects the
worker and orchestrates the distribution of tasks and processes.

In Figure 6.4, a screenshot of the logs of the broker and the affected worker, which offloads the
python task, is shown. The logs list that multiple workers register at the broker. The broker
(Figure 6.4a) receives a request for a task deployment and selects a worker. After, he receives two
requests to execute processes for the given task, which he further forwards to the selected worker.
The logs of the worker (Figure 6.4b) record that a task was received and deployed, and then two
processes were started.

6.2.2 Decentralized Offloading

To further emphasize the self-organizing capabilities of the protocol, the users do now schedule the
offloading and processing themselves, without the broker, presented in Figure 6.5. The users and
workers both register at the broker, but then start to mainly communicate directly to each other. This
reduces the amount of messages and increases the performance, since the messages are directly sent
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Figure 6.3: Illustration of the centralized offloading capabilities

(a) Screenshot of the logs from the broker orchestrating the offloading

(b) Screenshot of the logs from the affected worker during the offloading

Figure 6.4: Screenshots of the broker and affected worker during an exemplary offloading workflow
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Figure 6.5: Illustration of the decentralized offloading capabilities

to the ultimate receiver. Additionally, the users have more control about which worker performs the
computation. To further evaluate the robustness of the protocol, one user is instructed to select an
unsuitable worker for offloading. Here, the worker should respond with an error message, indicating
that he cannot offload the task because of missing runtimes.

A screenshot of the logs is again shown in Figure 6.6. Figure 6.6a presents that the broker just
registers that the worker wants to deploy a task and can update his internal cache. The logs of the
affected worker are shown in Figure 6.6b. As before, this worker deploys the task and performs the
computations. An example of a failed deployment is shown in Figure 6.6c, where an unsuitable
worker was selected. However, this did not crash the system, but the worker was able to respond
with the corresponding error message.

6.2.3 Mixed Offloading

In this test, the user instructs the broker to offload a task, but then uses the direct communication
link to the respective worker to improve the performance by eliminating the additional hop via the
broker when executing a task. Again, the python task is selected as test case in this illustration
(Figure 6.7a). The message flow is shown in Figure 6.7b.

A screenshot of the logs is shown if Figure 6.8. As can be seen, the broker forwards an execution
request and selects a suitable worker (Figure 6.8a). The execution request is then sent directly to the
worker, therefore the broker has no log entry to forward the execution request. The worker receives
the deployment and execution request (Figure 6.8b).
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(a) Screenshot of the logs from the broker during orchestration

(b) Screenshot of the logs from the affected worker during the offloading

(c) Screenshot of the logs from the worker of a failed deployment

Figure 6.6: Screenshots of the broker and affected worker during an exemplary offloading workflow

6.2.4 Network Context

This test verifies the ability to select different workers based on the network context, meaning hop
distance or latency. To achieve a better real-world scenario with different latencies, the test bed from
Figure 6.2 is used. In order to select workers based on the network context, two specific schedulers
are implemented: The first scheduler selects the worker with minimal hop distance while the second
scheduler selects the worker with lower latency. In a first run, only the broker and user are started
on “machine-A”, but not the local worker. This ensures that the distant worker on “machine-B”
is at least selected once. Then, the worker on “machine-A” joins the system and a second run is
started. Since the network connectivity should be checked during registration, the broker should
know that the new worker is closer in terms of latency and hop distance and hence select this worker.
In Figure 6.9, the setup is shown. The offloading to the distant worker is illustrated in 1 . Here,
the local server has not joined the system, yet. In 2 , the local worker participates in the system.
Therefore, this worker can be used for offloading.

The logs are presented in Figure 6.10. The broker forwards the previously used python-task for
offloading. Since no other worker is available, in both cases the schedulers select the remote worker.
Then, the worker on “machine-A” joins the system. Since the network connectivity is evaluated
during the registration proces, the broker now knows that this worker is very close and has little
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(b) Illustration of the mixed offloading message flow

Figure 6.7: Illustration of the mixed offloading test case

latency. The second deployment and offloading process is started now and with this information,
the schedulers select in both cases the local worker, proving that the network information are
considered.

6.2.5 Workload context

Eventually, the following test uses the workload context of the workers to select the worker with
the lowest CPU usage. This setup is again based on the virtual test bed, presented in Figure 6.1 to
exclude other heterogeneities in the system, however only two identical workers join the system.
Both workers implement a python runtime, since a python task will be offloaded again. The first
worker, called “worker-A”, has no additional configuration. The second worker, “worker-B”, will
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(a) Screenshot of the logs from the broker during orchestration

(b) Screenshot of the logs from the affected worker during the offloading

Figure 6.8: Screenshots of the broker and affected worker during an exemplary offloading workflow
where the user sends a deployment request to the broker but does the execution with a
direct connection to the worker
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Figure 6.9: Illustration of the setup when using the network context
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(a) Screenshot of the logs of the broker who schedules the offloading to the workers

(b) Screenshot of the logs of the remote worker

(c) Screenshot of the logs of the local worker

Figure 6.10: Screenshots of the logs of the broker and the local and remote worker
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Figure 6.11: Illustration of the setup when using the workload context

be set under high stress to utilize roughly 50 % of his CPU resources. Similar to Section 6.2.4,
two runs are started. In the first run, only “worker-B” join the system to be used as offloading
instance. In the second run, “worker-A” participates, too. The worker is selected at the broker,
whose scheduler uses the worker with the lowest CPU usage. Since “worker-A” does not process
any other tasks, his workload should be lower and hence get selected as offloading instance. The
setup is also shown in Figure 6.11.
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(a) Screenshot of the logs of the broker who schedules the offloading to the workers

(b) Screenshot of the logs of the worker under stress

(c) Screenshot of the logs of the worker with no further stress

Figure 6.12: Screenshots of the logs of the broker and the workers when using minimal CPU usage

As can be seen in Figure 6.12, the broker selects the stressed worker, when this is the only one
available (Figure 6.12a and Figure 6.12b). As soon as the other worker joins, the new one is selected
since his workload is lower (Figure 6.12c).

6.2.6 Offloading Performance

Finally, the duration time for offloading processes is investigated. In this test, the delay at the
user between sending the request and receiving the result is measured, as well as the time the
process actually takes at the worker. To also show the influence of network latencies, the cloud
setup with GCP (Figure 6.2) is used, and the processes are offloaded to the distant worker. To not
show only the performance of one specific task type, two different platforms are presented, namely
the integration with Python and OpenFaaS. Both tasks implement a simple algorithm to compute
Fibonacci numbers. An example is shown in Listing 6.2, which contains the essentials for the task,
implemented in Python. The execution request is sent with the parameter “1”, to immediately have
the result available. First, a baseline of the execution durations is shown in Figure 6.13. On average,
11.19 ms are needed to compute the result with the plain Python task and 58.18 ms are necessary to
get the result with the OpenFaaS solution.

In Figure 6.14, the different delays are shown when the python task is offloaded, as well as the
latency between the devices. The performance is evaluated with a direct connection link between
the user and the worker (Figure 6.14a, 1 ), as well as using the broker as proxy (Figure 6.14b,
2 ). In 1 , the worker needs on average 12.17 ms to compute the result. The user receives the
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Figure 6.13: Duration of the local executions

(a) Computation delay with a direct connection

(b) Computation delay with broker

Figure 6.14: Computation delay when offloading the Python task
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Listing 6.2 Exemplary task to compute Fibonacci numbers, implemented in Python

import sys

def fibonacci(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

if __name__ == "__main__":

n = int(sys.argv[1])

result = fibonacci(n)

print(f"{result}")

computed result after 51.92 ms. Most of the delay happens due to the latency, which is 39.38 ms on
average. After excluding the RTT, the difference between the duration of the worker’s computation
and receiving the result is 0.36 ms. With the given latency, the overhead of the MetaEdge protocol
and framework is only 0.92 %, compared to the execution time on worker side. Assuming a delay
of 10 ms, the overhead is still only 3.62 %. In 2 , the worker computes the result on average
on 12.31 ms. However, the result is received by the user only after 92.22 ms. This big latency is
introduced, because the broker has to forward the result, which basically doubles the latency. The
RTT between the broker and the worker is 36.37 ms and the RTT from the user to the broker is
39.16 ms. Excluding the latency from the delays, the broker adds a delay of 3.73 ms and the delay
at the user is in total 4.37 ms. The overhead in this case is 10.26 % at the broker and 11.16 % at the
user. This high number probably results from the scheduling algorithm at the broker, because for
each request, the broker has to find a suitable worker. If the RTT is set to 10 ms, the overhead at the
broker is 37.31 % and at the user 43.72 % in total.

In Figure 6.15, the different delays for the OpenFaaS task are shown, together with the latencies
between the participants. A direct connection link between the user and the worker is used in
Figure 6.15a ( 3 ), and the broker proxies the offloading requests in Figure 6.15b ( 4 ). In 3 , the
worker computes the result on average in 37.40 ms, which is received from the user after a total
delay of 74.36 ms. The RTT of the messages is 36.45 ms. Again, after excluding the latency, the
delay introduced due to MetaEdge is 0.51 ms, which is an overhead of 1.40 %. Reducing the latency
to 10 ms, the overhead increases to 5.10 %. In the test case 4 , the worker computes the result in
36.60 ms, but the result is only received after 116.36 ms. As above, the latency is doubled because
the broker proxies the request to another destination. The RTT from the broker to the worker is
36.93 ms, and the latency from the user to the broker is 36.12 ms. Hence, the broker adds a delay of
3.17 ms and the total delay due to MetaEdge on user side is 6.70 ms. Here, the overhead because
of the broker is 8.58 % and the total overhead after the user receives the result is 18.56 %. These
results match well with the previous test, which suggest that using the broker as proxy harm the
performance.
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(a) Computation delay with a direct connection

(b) Computation delay with broker

Figure 6.15: Computation delay when offloading the OpenFaaS task

6.3 Discussion

As shown in the evaluation, MetaEdge allows the integration of different platforms and runtimes
into an edge environment and to offload a various amount of different tasks. The protocol is able
to provide the worker capabilities and consider specific needs of the users, in order to choose a
valid offloading target. Since the protocol allows for custom task data, it is easily extendable and
additional providers can get integrated. Additionally, this framework allows very slim devices to
participate in an edge environment, since it is not backed on a whole system, but basically relies on
the protocol, which can get integrated by different endpoints.

By using different schedulers, it is possible to optimize for specific needs. Since the users are free
to use their own scheduler, they have more control where their data actually gets shipped.
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6.3 Discussion

The best performance is achieved when a user directly connects to a worker, to avoid any additional
delays introduced by the broker. This also allows the user to find the best worker for his optimization
approach. Using the broker as a proxy simplifies the implementation of the user, however this
introduces large latencies, which may be undesirable in an edge scenario.
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The edge computing environment is developing in a very fast way. As shown in this thesis, current
frameworks often rely on virtualized environments, backed by Kubernetes for orchestrating and
exploiting the FaaS pattern. In this work, the focus was targeted towards an interoperability protocol,
which can be used by different systems and does not need virtualized environments. Each participant
in this system communicates his features or needs. This enables also very resource-limited devices
to participate, even without virtualization.

With the proposed framework, MetaEdge, it was shown that different platforms can be integrated,
allowing for heterogeneous implementations. Users in the system can detect suitable workers with
the help of a central broker. Additionally, arbitrary tasks can get offloaded via the protocol, where
users can use independent optimizations strategies, based on the context. The execution of a task
is decoupled from the deployment, to increase the performance of an offloaded process. This is
achieved in two ways: First, the user can directly establish a connection to the targeted worker.
Second, to offload a process, only one message has to get sent from the user to the worker, to keep
the delay as small as possible. The protocol is not limited for a specific use case, but targeted for
different applications in edge computing environments.

The framework was evaluated in different test beds, using virtualized and real-world environments.
The evaluation verified the functionality of the protocol, as well as indicated that the protocol is
very lightweight and does not introduce a big overhead.

Future Work

While this work introduced a novel protocol for edge computing, there exist multiple opportunities
for future improvements. First, the design was implemented using a single broker. To increase
the scalability, a multi-broker approach could get implemented, allowing more participants to join.
This requires a synchronization mechanism between the brokers. Additionally, this can increase the
availability of the system, since the failure of a broker can get covered by another broker. This is
already one popular feature of current edge computing platforms.

Second, more different workers could be integrated in the system, increasing the heterogeneity even
more. They can also provide some hardware features, which could increase the execution of specific
tasks. Custom schedulers will be necessary in this case to find an optimization.

Additionally, the schedulers can get equipped with predictive algorithms, for example to decrease
the energy consumption or estimated execution time. Therefore, the energy consumption of the
users when they try to offload their tasks should get measured, too. Furthermore, MetaEdge focuses

83



7 Conclusion and Outlook

only on offloading, but this depends on local and remote resources as well as connectivity between
the devices. Using this information can help to decide when offloading is useful and when a local
computation is preferable.

Another important aspect is the mobility of the devices, which may be increased in edge computing
scenarios. To support such mobile devices, specific handover algorithms should be integrated. This
can affect the selection of other workers or switching to another broker, if available.
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