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Abstract
Laminar-to-turbulent transition in boundary-layer flows on natural laminar flow
(NLF) airfoils under oscillating inflow conditions is numerically investigated. In the
cases studied, large-scale fluctuations in the form of periodic vertical gusts with the
reduced frequency κ and amplitude v′gust generate an oscillating pressure gradient
which results in a complex transient behavior of the boundary layer. Under these
conditions, two scenarios are investigated: an attached flow with natural Tollmien–
Schlichting (TS) wave transition and a boundary-layer flow featuring a laminar
separation bubble (LSB). The study aims to provide an in-depth understanding of
the transient mechanisms as well as the basis for new transition prediction methods
at unsteady conditions.

Direct numerical simulations (DNS) are performed where the gust disturbance
is imposed on the fully-resolved transitional boundary layers via unsteady bound-
ary conditions. In this novel (hybrid) approach, transient base flows are generated
in advance with unsteady Reynolds-averaged Navier–Stokes (URANS) simulations
of entire unsteady airfoil flows in conjunction with the so-called disturbance ve-
locity approach (DVA) to introduce sinusoidal gusts. The spatio-temporal evolu-
tion of the modal disturbances is analyzed using the continuous wavelet transform
(CWT), which is then compared with linear stability theory (LST) by employing a
trajectory-following method developed for transient flows. The numerical methods
are validated with experimental results.

In the attached-flow scenario with a chord-based Reynolds number Re = 3.4 ·106,
the unsteady boundary layer on the pressure side of an airfoil with an (oscillating
but continuous) adverse pressure gradient is investigated for gusts with 0 ≤ κ ≤ 8

and 0.01 ≤ v′gust/u∞ ≤ 0.06. The physical effects involved are identified and the
observations from previous experimental studies are classified. First, the unsteady
response of the pressure gradient to the gust and the resulting behavior of the lagging
velocity profiles of the viscous boundary layer from URANS are characterized. Due
to the corresponding delay of the amplification rates as well as the slow phase veloc-
ities of the TS-waves, a strongly time-dependent behavior of the transition location
appears according to the LST. In agreement with the experimental investigations, a
temporal hysteresis of the transition front is revealed, moving faster in the upstream
direction and slower in the downstream direction. This behavior is most pronounced
when the gust period roughly corresponds to the lifetime of the TS-waves. A new
non-dimensional number to quantify the degree of unsteadiness is proposed, which
proves to characterize the transition-front velocities according to linear theory for
all investigated cases.
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Transient non-linear effects are studied with DNS, where fundamental resonance
is chosen as the secondary mechanism for breakdown to turbulence. The so-called
convective-transition mode with a subsequent calmed region is found for cases with
a high degree of unsteadiness. This phenomenon refers to a periodic termination
of the natural transition and is well known in the literature. This study is the
first to provide a physical explanation for this mechanism, identifying a delay of
the transient mean flow distortion as the primary cause. This delay causes an
attenuation of the amplification rates (transient branch II) which can initialize the
self-perpetuating convective-transition mode. A tipping-point for the emergence
of this phenomenon depending on gust amplitude and frequency can be clearly
identified and physically justified by employing the new non-dimensional quantity.
Further considerations of non-linear effects are suggested with an analogy to the
Doppler effect regarding the arrival of wave crests at the transition front.

In the separated-flow scenario with a chord-based Reynolds number Re = 8.8·105,
the unsteady boundary layer on the suction side of an airfoil is examined for gusts
with 0 ≤ κ ≤ 8 at v′gust/u∞ = 0.04. The behavior of the LSB with respect to
the separation point, the shear-layer transition, and the turbulent reattachment
is investigated using DNS with the initiated oblique-resonance scenario as well as
DNS without additionally introduced perturbations. Several transient effects of the
separated flow are identified. As in the attached-flow scenario, the spatio-temporal
amplitude evolution of the convective modes follows linear theory. This determines
the motion of the transition location—which oscillates less drastically due to the
higher amplification rates in the separated shear-layer—and consequently also the
motion of the subsequent turbulent reattachment. The separation point responds
much faster to the oscillating pressure gradient than the transition and reattachment,
which lag behind due to the low phase velocity of the modes. As the frequency
increases, this leads to a “breathing” LSB, which grows or shrinks simultaneously in
both the upstream and downstream directions. In addition to the presence of the
convective instability, an increase in the influence of the absolute instability inherent
to the LSB is observed toward higher gust frequencies. At the highest frequency
studied, a clear lock-in or resonance of the laminar separation bubble to the gust is
identified.
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Zusammenfassung
Die laminar-turbulente Transition in Grenzschichtströmungen von Laminarprofilen
unter oszillierenden Anströmbedingungen wird numerisch untersucht. In den behan-
delten Fällen erzeugen großskalige Störungen in Form periodischer vertikaler Böen
mit reduzierter Frequenz κ sowie Amplitude v′gust einen oszillierenden Druckgradi-
enten, was zu einem komplexen transienten Verhalten der Grenzschicht führt. Unter
diesen Bedingungen werden zwei Szenarien untersucht: eine anliegende Strömung
mit natürlicher Transition durch Tollmien–Schlichting (TS) Wellen und eine Grenz-
schichtströmung mit einer laminaren Ablöseblase (LSB). Die Studie zielt darauf ab,
ein tieferes Verständnis der transienten Mechanismen sowie die Grundlage für neue
Methoden zur Transitionsvorhersage unter instationären Bedingungen zu schaffen.

Es werden direkte numerische Simulationen (DNS) durchgeführt, bei denen der
Böeneinfluss über instationäre Randbedingungen den vollständig aufgelösten tran-
sitionellen Grenzschichten aufgeprägt wird. In diesem neuartigen (hybriden) Ansatz
werden transiente Grundströmungen vorab mit Reynolds-gemittelte Navier–Stokes
(URANS) Simulationen der gesamten instationären Umströmung von Flügelprofilen
erzeugt, wobei mit dem so genannten Störgeschwindigkeitsansatz (DVA) sinusförmi-
ge Böen eingeführt werden. Die räumlich-zeitliche Entwicklung der modalen Störun-
gen wird mit Hilfe der kontinuierlichen Wavelet-Transformation (CWT) analysiert,
welche dann Dank einer eigens entwickelten Methode zur Trajektorienverfolgung mit
den Ergebnissen der linearen Stabilitätstheorie (LST) verglichen werden kann. Die
numerischen Methoden sind mit experimentellen Ergebnissen validiert.

Im Fall der anliegenden Strömung mit einer Reynoldszahl Re = 3.4 ·106 (bezogen
auf die Sehnenlänge) wird die instationäre Grenzschicht auf der Druckseite eines
Profils mit einem (oszillierenden aber durchgängig) positiven Druckgradienten bei
Böen mit 0 ≤ κ ≤ 8 und 0.01 ≤ v′gust/u∞ ≤ 0.06 untersucht. Dabei werden die
involvierten physikalischen Effekte identifiziert sowie die Beobachtungen von vorhe-
rigen experimentellen Untersuchungen eingeordnet. Zunächst wird die instationäre
Reaktion des Druckgradienten auf die Böe und das resultierende nacheilende Verhal-
ten der Geschwindigkeitsprofile der viskosen Grenzschicht mit URANS Ergebnisse
charakterisiert. Aufgrund der entsprechenden Verzögerung der Anfachungsraten so-
wie der langsamen Phasengeschwindigkeiten der TS-Wellen ergibt sich nach der LST
ein stark zeitabhängiges Verhalten der Transitionslage. In Übereinstimmung mit den
experimentellen Untersuchungen zeigt sich eine zeitliche Hysterese der Transitions-
front, welche sich schneller stromauf und langsamer stromab bewegt. Dieses Verhal-
ten ist am stärksten ausgeprägt, wenn die Böenperiode etwa der Lebensdauer der
TS-Wellen entspricht. Es wird eine neue dimensionslose Zahl zur Quantifizierung der
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Instationarität vorgeschlagen, welche die Geschwindigkeiten der Transitionsfronten
nach der linearen Theorie für alle untersuchten Fälle charakterisieren kann.

Transiente nicht-lineare Effekte werden mit DNS untersucht, wobei die funda-
mentale Resonanz als sekundärer Mechanismus für den Übergang zur Turbulenz
gewählt wird. Der so genannte konvektive Transitionsmodus mit einer beruhigten
Region wird bei den Fällen mit hoher Instationarität beobachtet. Bei diesem Phä-
nomen, welches aus der Literatur bekannt ist, wird die natürliche Transition peri-
odisch unterbrochen. Diese Studie liefert eine erstmalige physikalische Erklärung für
diesen Mechanismus wobei die Verzögerung der transienten mittleren Grundströ-
mungsverzerrung als primäre Ursache identifiziert wird. Diese Verzögerung führt zu
einer Verminderung der Anfachungsraten (transienter branch II), die den sich selbst
erhaltenden konvektiven Transitionsmodus einleiten kann. Ein Kipppunkt für das
Auftreten dieses Phänomens in Abhängigkeit der Böenamplitude sowie Frequenz
kann eindeutig identifiziert und mit Hilfe der neuen dimensionslosen Kennzahl phy-
sikalisch begründet werden. Weitere Überlegungen zu nicht-linearen Effekten werden
mit einer Analogie zum Doppler-Effekt hinsichtlich der Ankunft von Wellenbergen
an der Transitionssfront angestellt.

Im Fall der abgelösten Strömung mit einer Reynoldszahl Re = 8.8 · 105 (bezo-
gen auf die Sehnenlänge) wird die instationäre Grenzschicht auf der Saugseite eines
Profils bei Böen mit 0 ≤ κ ≤ 8 und v′gust/u∞ = 0.04 untersucht. Das Verhalten der
LSB in Bezug auf den Ablösungspunkt, der Transition in der Scherschicht sowie der
turbulenten Wiederanlagerung wird durch DNS mit eingeleiteter Resonanz durch
schräglaufende Moden sowie durch DNS ohne zusätzlich eingeführte Störungen un-
tersucht. Es werden mehrere transiente Effekte der abgelösten Strömung identifiziert.
Wie beim Fall mit der anliegenden Strömung entspricht die räumlich-zeitliche Am-
plitudenentwicklung der konvektiven Moden der linearen Theorie. Dies bestimmt die
Bewegung der Transitionslage welche aufgrund der hohen Anfachungsraten in der ab-
gelösten Scherschicht weniger stark oszilliert sowie entsprechend auch die Bewegung
der darauf folgenden turbulenten Wiederanlegung. Der Ablösungspunkt reagiert we-
sentlich schneller auf den oszillierenden Druckgradienten im Vergleich zur Transition
und Wiederanlagerung, die wegen der niedrigen Phasengeschwindigkeit der Moden
hinterherhinken. Mit zunehmender Frequenz führt dies zu einer “atmenden” LSB, die
gleichzeitig in stromauf als auch in stromab Richtung wächst bzw. schrumpft. Neben
dem Vorhandensein der konvektiven Instabilität wird eine Zunahme des Einflusses
der absoluten Instabilität, die der LSB inherent ist, bei höheren Böenfrequenzen
beobachtet. Bei der höchsten untersuchten Frequenz ist ein deutliches Einklinken
bzw. eine Resonanz der laminaren Ablöseblase auf die Böe festzustellen.
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Notation

Latin letters

A disturbance amplitude
AoA angle of attack or inflow angle
AoA−, AoA+ minimum and maximum angle of attack or inflow angle
a speed of sound
C Theodorsen function
C3 M-TERA intermittency method parameter
c phase velocity
c1 ... c5 characteristic variables
cf skin-friction coefficient
cl lift coefficient
cp pressure coefficient
cp, cv heat capacity at constant pressure and volume, respectively
D polynomial ramp function
Dtr transitional density
d dilation of wavelet
E total energy
F , G, H flux vectors of Navier–Stokes equations
f frequency
fc center frequency of wavelet
fb time-decay parameter of wavelet
fs sampling frequency
G spatial distribution of sponge/forcing terms strength
g, gm, gd function for spatial modulation; monopole; dipole
h temporal harmonic
H

(2)
0 , H

(2)
1 Hankel functions of second kind

H12 shape factor
i =

√
−1 imaginary unit

J0, J1 Bessel functions of the first kind
K turbulent kinetic energy
k spanwise harmonic
L length
Lc chord length
Lk Lagrange polynomial of order k
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Ma Mach number
N compressible Navier–Stokes operator
N envelope of all n-factors
N(d) normalization of wavelet
n n-factor
Pr Prandtl number
p pressure
Q state vector of conservative variables
Q Q-criterion for vortex visualization
q state vector of primitive pariables
qx, qy, qz heat-flux density in x, y and z direction, respectively
Re Reynolds number
ReNS non-steady Reynolds number
Rex streamwise Reynolds number
S Sears function
St Strouhal number
T temperature
T gust period
t time
u = (u, v, w)T chordwise, vertical (w.r.t. chord) and spanwise velocity comp.
ug = (ug, vg, w)

T streamwise, vertical and spanwise velocity components
us = (us, vs, w)

T tangential, wall-normal and spanwise velocity components
Ŵ complex wavelet coefficient
x = (x, y, z)T chordwise, vertical (w.r.t. chord) and spanwise coordinates
xg = (xg, yg, z)

T streamwise, vertical and spanwise coordinates (geodesic system)
xs = (xs, ys, z)

T arc length and coordinates in wall-normal and spanwise direction

Greek letters

α = αr + iαi streamwise wavenumber
β spanwise wavenumber
γ ratio of specific heats
γz spatial intermittency in spanwise direction
γtr fraction of convective-mode phase
∆x, ∆y, ∆z step sizes of the computational grid
∆t time step
δ1 displacement thickness
δ2 momentum thickness
η dimensionless self-similar wall-normal coordinate
θ phase, temporal shift
ϑ thermal conductivity
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κ reduced frequency of oscillation/gust
κtr dimensionless number for unsteady, transitional flow
λ wavelength
λδ2 Pohlhausen pressure-gradient parameter
µ dynamic viscosity
µt eddy viscosity
ν kinematic viscosity
ξ angle of wave propagation
ρ density
τ strain-rate tensor
τt turbulent shear-stress tensor
ϕ primitive variable, boundary-layer property
φ phase
χ gird stretching factor
Ψ complex wavelet function
ω angular frequency
ωz spanwise vorticity

Subscripts

0 fundamental or initial quantity
∞ free-stream quantity
bI branch I/point of neutral stability
bf base-flow quantity
cr quantity of calmed region
crit critical quantity
cwt quantity of continuous wavelet transform
d quantity of downstream motion
DVA disturbance velocity approach
DS quantity of actuation with disturbance strip
front quantity of transition front
g quantity in geodesic coordinate system
gust quantity of gust disturbance
in quantity of inflow boundary condition
LSB quantity of the laminar separation bubble
le quantity of leading-edge motion
max maximum value
min minimum value
mode quantity of linear mode
NSE Navier–Stokes equations
out quantity of outflow boundary condition
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pressure quantity on the pressure side of airfoil
qs quantity w.r.t. to quasi-steady consideration
ref reference quantity
rms root mean square
s quantity in streamline-oriented/wall-normal coordinate system
sears quantity w.r.t. Sears function
sec quantity of secondary mode
sep quantity of separation point
sim quantity based on fundamental period of simulation
sp quantity of sponge/forcing terms
suction quantity on the suction side of airfoil
t quantity of turbulent spot/strip
tbf transient base flow
te quantity of trailing-edge motion
top quantity of free-stream boundary condition
tr quantity of laminar-to-turbulent transition
TS quantity of Tollmien–Schlichting mode
u quantity of upstream motion
w quantity at the wall

Superscripts

′ disturbance quantity (zero-to-peak value)
† complex conjugate
∗ normalization of coordinate to interval; scaled value
+ wall units
T vector transpose

Symbols

∆ difference operator (peak-to-peak value)
∆r difference to reference case
∆l difference to transient laminar flow
¯ time-averaged quantity
˜ dimensional quantity
˙ temporal derivative
| | absolute value (modulus)
ˆ complex amplitude function
⟨ ⟩ω moving average based on period w.r.t. to frequency ω
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Abbreviations

1D, 2D, 3D one-, two- and three-dimensional
APG adverse pressure gradient
COI cone of influence
CWT continuous wavelet transform
DNS direct numerical simulation
DLR Deutsches Zentrum für Luft- und Raumfahrt

(German Aerospace Center)
DS disturbance strip
FFT fast Fourier transform
FPG favorable pressure gradient
IAG Institute of Aerodynamics and Gas Dynamics
LAINA Untersuchung laminarer Ablöseblasen unter instationären

Anströmbedingungen zur Verbesserung von Profilentwurfs-
verfahren (Investigation of laminar separation bubbles under
unsteady inflow conditions for the improvement of airfoil
design methods)

LSB laminar separation bubble
LST linear stability theory
LTT Laminar-turbulente Transition unter instationären

Anströmbedingungen (Laminar-to-turbulent transition
under unsteady inflow conditions)

MFD mean flow distortion
NS3D in-house Fortran code for direct numerical simulation
NSE Navier–Stokes equations
Q-S quasi-steady
RANS Reynolds-averaged Navier–Stokes equations
RMS root mean square
TS Tollmien–Schlichting
URANS unsteady Reynolds-averaged Navier–Stokes equations
ZPG zero pressure gradient
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1 Introduction
Despite the questioning of habits in the face of the challenges that lie ahead for
humanity, air travel appears to be an indispensable part of the modern globalized
world. One approach for the reduction of greenhouse gas emissions is to develop
efficient aircraft designs that aim to minimize the viscous friction drag. Natural
laminar flow (NLF) airfoils, well-established in gliders, have the potential to play an
important role in eco-efficient concepts for future aircraft. These airfoils feature an
extended laminar flow resulting from geometry that places the point of maximum
thickness relatively far downstream. This significantly decreases the friction drag
due to the shorter stretch of the turbulent boundary layer. Examples for NLF airfoils
used for smaller business aircraft include the Piaggio P.180 Avanti, see de’Pompeis
et al. (1991), or the recently developed Otto Celera 500L, see McKenzie (2022).
As part of the Clean Sky Program, the application on large commercial aircraft
has also recently been investigated with flight tests of the “BLADE” demonstrator.
The experimental aircraft used in this project is based on an A340 with the outer
wing sections replaced by NLF panels of lower sweep, see Williams (2017). Another
example for large aircraft is the work on the NLF variant of NASA’s Common
Research Model, see e.g. Helm et al. (2023).

Most of the mechanisms of the natural transition from laminar to turbulent flow as
present in airfoil boundary-layer flows, are already well understood for steady-state
conditions. These fundamentals have been instrumental in developing transition
prediction methods, which are still essential for designing airfoils. However, atmo-
spheric turbulence causing unsteady inflow to the airfoil may occur under realistic
flight conditions. In the case of large-scale fluctuations, the pressure gradient is
particularly affected, and its variation can have a significant influence on the prop-
erties of the boundary-layer flow including the transition. A general formulation
of a transition prediction method for unsteady flows is not available at this time.
Therefore, it is of great interest to fundamentally understand and characterize the
behavior and mechanisms of the transition under unsteady flow conditions. Lami-
nar separation bubbles—which cause a drag penalty and are highly susceptible to
external disturbances—are also of interest in this context.

For fundamental research on transient flow, the use of a periodic definition for
large-scale gusts is an obvious choice to start with. Therefore, a study of the natural
transition in an oscillating boundary layer can also contribute to the understanding
of effects in other flow scenarios, especially in the presence of rotating elements in
engineering applications. These include wind turbines (where NLF airfoils are also
used), turbine blades, or aircraft surfaces affected by the wake of propellers.
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CHAPTER 1. INTRODUCTION

First, this chapter provides a brief historical overview of research on transition
and separation as it relates to the investigations of the present thesis. This is followed
by a review of previous (state-of-the-art) studies on transition and separation under
unsteady inflow conditions. At last, the objectives of this work are briefly outlined.

1.1 Boundary-layer transition and separation

The phenomenon of laminar-to-turbulent transition was first described for a pipe
flow by Reynolds (1883). Following the boundary-layer theory of Prandtl (1904)
and the assumption of very small perturbations, Orr (1907) and Sommerfeld (1908)
independently developed an equation that provided the first insights into the tran-
sition process in flows on airplane wings. The so-called Orr–Sommerfeld equation is
derived from the linearized Navier–Stokes equations and can be used to analyze the
properties of the primary instability in boundary-layer flows. Tollmien (1929) was
the first to solve the equation, after Heisenberg (1924), among others, had worked
on the subject. Shortly after, Schlichting (1933) successfully applied the equation
for a flow over a flat plate. The eigenfunctions found for the exponentially grow-
ing perturbations with the linear stability theory (LST) were appropriately named
“Tollmien–Schlichting” (TS) waves. The experimental verification of the theory was
carried out by Schubauer & Skramstad (1947) during the Second World War and
was published afterwards due to censorship. Since then, the LST has been the foun-
dation of transition research. Subsequent theoretical studies, see e.g. Gaster (1965),
have led to a deeper understanding of the spatio-temporal evolution of the modes.
The first direct numerical simulations (DNS) of TS-waves in a flow over a flat plate
were carried out by Fasel (1976).

Based on linear stability analysis, van Ingen (1956) and Smith & Gamberoni
(1956) independently developed the en-method, which is still state of the art for
transition prediction. In this semi-empirical method, n-factors representing the
modal amplitudes are determined by the downstream integration of the amplification
rates from the LST. Consequently, the transition location can be determined with an
empirical threshold value ncrit based on flow properties such as varying turbulence
intensity, see Mack (1977), or surface roughness, see Crouch & Ng (2000).

The three-dimensional breakdown to turbulence is preceded by a (weakly) non-
linear stage in which secondary mechanisms are active. One scenario is the so-called
fundamental resonance which results to aligned Λ-vortices and was first described
by Klebanoff et al. (1962). The traits shown in that study would later be known
as the K-type regime which is driven by a primary 2D mode and a pair of oblique
secondary modes at the same frequency. The subharmonic resonance (H-type) with
the oblique modes at half the frequency and resulting staggered Λ-vortices was in-
tensively studied by Herbert (1983). A mathematical description of the secondary

2



1.2. IMPACT OF OSCILLATING INFLOW CONDITIONS

stability analysis is given by Herbert (1988) using Floquet theory. Oblique resonance
(O-type) with two waves running in opposite spanwise direction was first investi-
gated by Thumm (1991) and Schmid & Henningson (1992). A detailed summary of
different resonance scenarios is given in Kachanov (1994). DNS of those breakdown
scenarios have been performed e.g. by Rist & Fasel (1995) or Sayadi et al. (2013).

Under certain conditions (e.g. high adverse pressure gradient), laminar separa-
tion of the boundary-layer flow may occur, usually followed by a rapid laminar-to-
turbulent transition due to the shear-layer instability. The turbulent fluctuations
cause the flow to reattach, which closes the so-called laminar separation bubble
(LSB). The topology of an LSB including the separation point, a dead-air region,
the transition, the reverse-flow vortex, and the turbulent reattachment has been
studied e.g. by Tani (1964) and Gaster (1967) and will be discussed later in this
thesis in chapter 4. In general, the transition process in a separated shear-layer can
also be dominated by an absolute or global instability rather than by convective
modes, see Huerre & Monkewitz (1985, 1990) for theoretical background. This was
investigated e.g. by Rist et al. (1996) and Alam & Sandham (2000) using DNS.

1.2 Impact of oscillating inflow conditions

Under realistic flight conditions, the boundary layer of an airfoil is subjected to
perturbations over a wide range of length scales. With respect to transition and
separation, two scales of perturbation from atmospheric turbulence are particularly
relevant: Small-scale disturbances, which mostly provide the initial amplitudes of
modal disturbances in the boundary layer, and large-scale disturbances, which can
be considered as gusts or unsteady inflow-angle variations. Considering the model
for isotropic free-stream turbulence of Pope (2000) based on the Kolmogorov (1941)
hypothesis, the former case can be placed within the dissipation range and the latter
case at the edge of the eddy-containing range, see Reeh (2014). The present work
focuses on the impact of large-scale disturbances, which mainly affect the boundary-
layer flow due to the resulting unsteady pressure gradient.

First investigations on transition in oscillating boundary-layer flows were made
by Miller & Fejer (1964) for flow over a flat plate. In these measurements, turbu-
lent bursts or strips were identified which formed periodically at the frequency of
the oscillating free stream. These experimental investigations were followed up by
Obremski & Fejer (1967), where the unsteady behavior of the transition was studied
for several cases including favorable and adverse pressure gradients. In this detailed
study, the evolution of the turbulent spots that appear in some of the oscillating
cases was characterized by two phases: A “creative phase”, in which a natural tran-
sition occurs due to a preceding high-amplitude “wave packet”, and a “convective
phase”, in which the turbulent flow migrates downstream with constant leading-
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and trailing-edge velocities. Furthermore, a non-steady Reynolds number was pro-
posed, which seemed to be able to describe the unsteady transition behavior to some
extent, see also White (2006). Later, using stability analysis with a quasi-steady ap-
proach for periodic flows, Obremski & Morkovin (1969) confirmed that the creative
phase found in the measurements of Obremski & Fejer (1967) can be attributed to a
natural transition with TS-waves. A critical review of these pioneering studies with
some identified shortcomings has been given by Loehrke et al. (1975).

The “convective-transition mode” was also observed by Studer et al. (2006) in the
boundary layer of a NACA0015 airfoil subjected to inflow-angle variations. However,
this study did not show temporarily spatially closed turbulent spots, but a contin-
uous laminar-turbulent interface with an upstream moving creative phase followed
by a downstream moving convective phase. Direct comparison with the amplitudes
from the continuous wavelet transform (CWT) confirmed the quasi-steady stabil-
ity behavior of the amplified modes of the creative phase. Romblad et al. (2020)
performed further wind-tunnel measurements with a NLF airfoil utilizing a gust
generator to simulate realistic large-scale disturbances. Despite the absence of a
convective-transition mode in these investigations, the transition front moved sig-
nificantly faster in upstream direction than in downstream direction during the oscil-
lation. This temporal “asymmetric” or “skewed” behavior became more pronounced
at higher gust frequencies. Applying a quasi-steady approach with an unsteady
extension of the en-method, Ohno et al. (2022) attributed the unsteady transition
movement observed in Romblad et al. (2020) entirely to effects covered by linear
theory.

Other examples of the application of LST at unsteady conditions are Radespiel
et al. (2007) for URANS simulations of laminar separation bubbles or Reeh (2014)
with a formulation of an unsteady boundary layer on an NLF airfoil. A more
sophisticated approach using complex-ray theory for linear stability analysis has
been shown by Citro & Luchini (2013, 2015). Studies employing DNS of natural
transition under unsteady conditions that preceded this work are not known.

The potential importance of the so-called calmed region which occurs with the
convective-transition phase was emphasized by Obremski & Fejer (1967). Previously,
Schubauer & Klebanoff (1955) observed this quiescent region of non-turbulent flow
in the wake of a turbulent spot during downstream convection. This transient zone
can be interpreted as a phase where the characteristics of the flow recovers from the
turbulent state back to the laminar state. Since the velocity profiles are accordingly
very full, this region exhibits a significantly increased stability to external distur-
bances. For this reason, Obremski & Fejer (1967) suggested that the calmed region
might be involved in the termination of the creative-transition phase. The calmed
region was also observed in later studies on turbulent spots, including Wygnanski
et al. (1976) for a Blasius flow, Zilberman et al. (1977) for a transitional flow, or
Katz et al. (1990) for a flow with a favorable pressure gradient.
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The (periodic) occurrence of the calmed region during wake-induced transition
also gained interest in the fundamental research motivated by turbomachinery, see
e.g. Pfeil et al. (1983), Walker (1989) or Mayle & Dullenkopf (1991). Authors such
as Walker (1993) and Orth (1993) assumed that the calmed region is inaccessible to
TS-waves because the trailing-edge velocity of the region is considerably faster then
the phase speed of the modes. However, the investigations of Seifert & Wygnanski
(1995) on a turbulent spot under an adverse pressure gradient showed a stronger
and “decelerated” calmed region which can be penetrated by TS-waves. This was
also pointed out by Gostelow et al. (1997), who provided a detailed analysis of the
calmed region. Previously, Gostelow et al. (1996) characterized turbulent spots for
different self-similar pressure gradients with respect to the leading-edge and trailing-
edge velocities. A theoretical mathematical model of the calmed region was derived
by Brown & Smith (2005). In addition, there are various studies on turbulent spots
with DNS, see e.g. Jocksch & Kleiser (2008).

In general, the transitional flows in turbomachinery are characterized by lower
Reynolds numbers and higher turbulence intensities compared to the boundary lay-
ers on the NLF airfoils of aircraft in free flight. However, phenomena such as TS-
wave transition, laminar separation, and the calmed region can also occur here,
see the detailed overview of different scenarios on turbine blades by Halstead et al.
(1997). An empirical unsteady transition prediction method based on the measure-
ments of Walker et al. (1999) is given by Solomon et al. (1999). Hughes & Walker
(2001) used the CWT to analyze the TS-wave transition in a compressor flow.

In recent years, several numerical and experimental investigations of laminar sep-
aration bubbles at relatively low Reynolds numbers for pitching or plunging airfoils
have been carried out, for example by Lee & Gerontakos (2004), Radespiel et al.
(2007), Nati et al. (2015) or Guerra et al. (2021). The first DNS of a laminar separa-
tion bubble in the presence of an external oscillating flow was performed by Wissink
& Rodi (2003) on a flat plate. In that study, the variation of the inflow velocity
combined with a certain shape of the upper (slip) boundary condition generates a
pressure gradient in the streamwise direction, oscillating in time. The formation
of a new separation bubble in each period was observed, in that setup, which is
characterized by a low Reynolds number and a relatively high oscillation amplitude.
Recently, Yarusevych & Kotsonis (2017) studied the transient response of a laminar
separation bubble to a harmonic, time-modulated excitation.

1.3 Objectives and thesis outline

The objective of the present work is to improve the understanding of laminar-to-
turbulent transition under unsteady conditions with an oscillating inflow. Under-
standing the basic physical effects should aid in the design of transition models, e.g.
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for URANS simulations. The findings and resulting models can serve in the design
of future eco-efficient aviation concepts featuring reduced pollutant emissions. For
the numerical investigations, the (U)RANS code TAU and the in-house DNS code
NS3D for compressible flows were used. The periodic gusts were generated with
URANS simulations employing the disturbance velocity approach (DVA). A tran-
sient extension of the linear stability analysis also proved to be an important part
of the theoretical considerations. Chapter 2 provides a detailed introduction to the
numerical methods. The studies include two cases of unswept 2D boundary-layer
flows with different geometries of NLF airfoils. Both airfoil flows are subjected to
periodic vertical gusts using the same numerical formulation which corresponds to
realistic flight conditions.

In the first case, the unsteady laminar-to-turbulent transition due to convective
TS-waves in an attached flow is investigated. The purpose of this research is to
better understand and classify the observations of previous work by Obremski &
Fejer (1967), Studer et al. (2006) and Romblad et al. (2020). Special attention is
given to the distinction between linear and non-linear effects, which will help to un-
derstand the mechanism of the so-called convective-transition mode. The work was
carried out within the project “Laminar-turbulente Transition unter instationären
Anströmbedingungen zur Verbesserung von Profilentwurfsverfahren” (LTT), which
was accompanied by experimental studies, see Romblad et al. (2020); Romblad
(2023); Guissart et al. (2021). This attached-flow scenario is discussed in chapter 3
and will be referred to as “LTT case” in the following.

In the second case, the influence of periodic gusts on a laminar separation bub-
ble is investigated. The study aims to characterize the unsteady behavior of the
separation point, the laminar-to-turbulent transition of the shear-layer, and the tur-
bulent reattachment. In addition, the influence of an absolute instability as well
as possible lock-in effects of the bubble on the gust are investigated. Experimental
studies accompanied the project titled “Untersuchung laminarer Ablöseblasen unter
instationären Anströmbedingungen zur Verbesserung von Profilentwurfsverfahren”
(LAINA), see Greiner & Würz (2021); Greiner (2024). This separated-flow scenario
is presented in chapter 4 and will be referred to as “LAINA case” in the following.

Parts of the introduction to numerical methods in chapter 2 and most of the
results and discussion of the LAINA case in chapter 4 are also published in Ohno
et al. (2023a). The relevant figures were adapted for this thesis and the original text
was prepared exclusively by the author of this work. The results of the LTT case in
chapter 3 have not been published elsewhere at the time of publication of this thesis.
However, a preliminary study on unsteady stability analysis (in which URANS with
DVA have not yet been used) has been published in Ohno et al. (2022).
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2 Numerical methods
The simulation results of fully resolved transitional boundary layers presented in
this work are obtained with the compressible, high-order, in-house DNS code NS3D.
Fundamentals of the code can be found in Babucke (2009) and Keller (2016). The
preceding computation of the entire unsteady airfoil flow is performed with the
unsteady Reynolds-Averaged Navier–Stokes (URANS) solver TAU, which was de-
veloped by the German Aerospace Center (DLR), see Schwamborn et al. (2006).
In these simulations, large-scale periodic gusts are introduced into the simulation
domain using the so-called disturbance velocity approach (DVA), see Heinrich &
Reimer (2013). A novel (hybrid) approach is used in this work where the oscillat-
ing URANS flow fields are employed as transient base flows in DNS via unsteady
boundary conditions.

The governing equations and general notations are introduced in the following
section, whereas definitions including coordinate systems relevant for the unsteady
airfoil flow are provided in section 2.2. Fundamentals of the conducted (U)RANS
simulations are given in section 2.3, while the unsteady extension of linear stability
analysis for periodic flows is discussed in section 2.5. A review of the DNS with
emphasis on the modification of boundary conditions and forcing zones for transient
flows is presented in section 2.6. Finally, the continuous wavelet transform (CWT)
for spectral analysis for transient DNS results is presented in section 2.7.

2.1 Governing equations

The three-dimensional, time-dependent, compressible Navier–Stokes equations (NSE)
describe the viscous fluid flow in a continuum. In general, this term refers to the
set of partial differential equations consisting of the continuity equation, the mo-
mentum equation and the energy equation. However, in a stricter sense, the NSE
only refers to the momentum conservation. In the DNS code NS3D, this unaltered
system of equations is solved. The (U)RANS solver TAU, however, solves the NSE
in Reynolds averaged form with additional turbulence models. Furthermore, the un-
derlying equations of the linear stability analysis are derived from the linearization
of the NSE.

Throughout this work, non-dimensional quantities are generally used. However,
some dimensional values are given which are denoted by •̃. The vector u = (u, v, w)T

represents the velocities in the chordwise, vertical (with respect to chord) and span-
wise directions x, y, z, respectively. Additional primitive variables of the compress-
ible flow are density ρ, temperature T and pressure p. Velocity and length scales
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are normalized by the free-stream velocity ũ∞ and the reference length L̃ref , respec-
tively. Consequently, the non-dimensional time is defined t = t̃(ũ∞/L̃ref ). Density
and temperature are normalized by their respective free-stream values ρ̃∞ and T̃∞,
whereas the pressure is normalized with the double dynamic pressure ρ̃∞ũ2

∞.

The NSE in non-dimensional conservative formulation are

∂ρ

∂t
+∇ · (ρu) = 0 , (2.1a)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+

1

Re
∇ · τ , (2.1b)

∂E

∂t
+∇ · (Eu) =

1

(γ − 1)RePrMa2∇ · (ϑ∇T )

−∇ · (pu) + 1

Re
∇ · (τu) ,

(2.1c)

with the Cartesian coordinates x = (x, y, z), the total energy E, thermal conduc-
tivity ϑ and the ratio of specific heats γ = cp/cv = 1.4. Including Stokes’ hypothesis
for the relation of bulk viscosity and dynamic viscosity µ, the viscous-stress tensor
for a Newtonian fluid is given by

τ = µ

(
∇u+ (∇u)T − 2

3
(∇ · u)I

)
, (2.2)

with I as the identity matrix. The temperature dependence of the dynamic viscosity
µ(T ) is modeled by Sutherland’s law. Note: The dynamic viscosity is related with
the kinematic viscosity by ν = µ/ρ. Closure of the system is achieved with the
equation of state in non-dimensional form

p =
ρT

γMa2 . (2.3)

With the assumption of a calorically perfect gas, the temperature can be calculated
with

T = γ(γ − 1)Ma2

(
E

ρ
− 1

2
(u · u)

)
. (2.4)

The equations (2.1) are formulated with the dimensionless quantities

Re =
ũ∞L̃ref

ν̃∞
, Pr =

c̃pµ̃∞

ϑ̃∞
, Ma =

ũ∞

ã∞
, (2.5)

where ã∞ denotes the speed of sound in free stream. The Reynolds number Re

describes the ratio of inertial forces to viscous forces, the Prandtl number Pr the
ratio of momentum to thermal diffusivity and the Mach number Ma the impact of
compressibility. Pr = 0.72 is selected in both flow scenarios simulated in this work.
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2.2 Definitions for unsteady airfoil flow

To numerically investigate the oscillating airfoil boundary layer including periodic
gusts, different coordinate systems have to be defined, cf. figure 2.1. In the illustra-
tion, the airfoil with its coordinate systems is mirrored vertically, since the boundary
layer under investigation is located on the pressure side. For both (U)RANS and
DNS simulations, the Cartesian coordinates x = (x, y, z)T are generally used, with
the origin placed at the leading edge and x representing the chordwise direction.
However, to describe gusts in the URANS simulations with the DVA, a geodesic
coordinate system xg = (xg, yg, z)

T based on free-flow direction is introduced, thus
taking into account the angle of attack AoAref . Furthermore, a wall-normal coordi-
nate system xs = (xs, ys, z)

T is defined, combining arc length and the wall-normal
and spanwise directions, respectively. This coordinate system with its velocity vec-
tor us—see tangential velocity us and wall-normal velocity vs in figure 2.1—is used
to analyze the simulation results in terms of boundary-layer properties and to per-
form linear stability calculations. In this work, however, the results are always
plotted versus x. It should be noted, that the base flows and gust disturbances in
the investigated flow scenarios are purely two-dimensional, hence w∞ = w′

gust = 0.

AoAref

u∞

x
y

xs
us

vs
ys

Lc

xg

λx,gust

v′gust

DNS domain

Figure 2.1: Schematic illustration of an airfoil (LTT case, mirrored vertically) with
a gust moving with u∞ in xg direction. The chord-oriented coordinates are denoted
with x, the coordinates of the wall-normal system are denoted with xs where us and
vs represent the tangential and wall-normal velocities, respectively.

Following the notation introduced in the previous section, normalized angular
frequencies, wavenumbers and wavelengths can be calculated with ω = ω̃(L̃ref /ũ∞),
α = α̃L̃ref and λ = λ̃/L̃ref , respectively. The respective chord lengths in the two
flow scenarios are chosen as the reference length L̃ref = L̃c in this work. Therefore,
the dimensionless coordinate x equals the standard normalization x̃/L̃c for airfoil
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investigations. The reduced frequency

κ =
πf̃gust L̃c

ũ∞
=

ωgust

2
, (2.6)

based on the semi-chord length with the dimensional frequency f̃gust is commonly
used to characterize unsteady airfoil behavior, see Leishman (2006). Here, the di-
mensionless quantity is applied to specify the investigated unsteady cases containing
gusts. Other authors, e.g. Studer et al. (2006), use the Strouhal number St = κ/π

for gust characterization. To relate the gust oscillation to the frequencies of all other
disturbances occurring in the flow, ωgust is defined in equation (2.6). In figure 2.1 a
downstream traveling gust with u∞ in xg direction is depicted. With the Taylor’s
hypothesis of frozen turbulence, the streamwise wavelength of the gust

λx,gust =
π

κ
=

2π

ωgust

, (2.7)

can be obtained. Using the DVA in the URANS simulations, continuous sinusoidal
gusts are defined, which are convecting with free-stream velocity u∞ in xg direc-
tion. The gust is described spatially and temporally (κ > 0) by a vertical velocity
disturbance

v′g(xg, t) = v′gust · sin
(

2πxg

λx,gust

− ωgustt

)
(2.8)

in the geodesic system with the gust amplitude v′gust . Therefore, the gust corresponds
to a traveling wave and its influence on the lift can be estimated by the formulation
of Sears (1941). Standing-wave gusts—in some sense corresponding to the formu-
lation of Theodorsen (1935) for pitching airfoils, see Turhan et al. (2022)—are not
considered in this work.

For fundamental characterization of the flow scenario, the theoretical case κ → 0

with an “infinitely large” gust λx,gust → ∞ or λx,gust ≫ Lc, can be investigated.
This is realized by analyzing the steady-state flow at different inflow angles, which
correspond to the phases of the gusts with respect to the gust amplitude v′gust . The
zero-to-peak fluctuation of the inflow angle induced by the gust is

AoA′ = arctan

(
v′gust
u∞

)
. (2.9)

The resulting angle of attack for a steady-state phase-sweep with φ ∈ [0, 1) can be
calculated with

AoA(φ) = AoAref + AoA′ sin (2πφ) , (2.10)

where AoAref represents the reference angle of attack of the respective scenario.
Here, this is referred to as the quasi-steady consideration (Q-S) and the cases with
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minimum and maximum inflow angle AoA according to equation (2.10) are denoted
AoA− and AoA+, respectively. In the case κ → 0, the formulations of Sears (1941)
and Theodorsen (1935) for the estimation of the lift coincide, see Leishman (2006).

2.3 (Unsteady) RANS simulation

On currently available HPC systems, DNS of the entire flow field around an airfoil
at very high Reynolds numbers are still very expensive. Therefore, only the relevant
areas of boundary-layer flow past the leading edge of the airfoil are computed with
highly-resolved DNS in the scenarios investigated here. In order to generate the
correct physical representation of flow properties at the boundaries of the DNS
domain, two-dimensional (U)RANS simulations of the entire flow field are performed
beforehand. Steady or unsteady flow solutions from RANS or URANS, respectively,
are interpolated to the grid of the subsequent DNS, serving as an initial solution
and as (unsteady) boundary conditions. In figure 2.2(b), the full extent of the DNS
domain (LTT case) on top of the (U)RANS flow field can be seen on the pressure side
of the airfoil. Furthermore, this hybrid approach allows to focus on the flow physics
of interest while disregarding secondary effects such as leading-edge receptivity or
trailing-edge noise.

The fundamental equations for the computation of the airfoil flow are based
on Reynolds averaging of the unsteady NSE, which are introduced in section 2.1.
Thereby, all flow quantities are decomposed to a mean part (•) and fluctuating (•′)
part, e.g.

u(t) = u+ u′(t) (2.11)

for the streamwise velocity component. The resulting time-averaged system of equa-
tions contains a non-linear term known as the Reynolds stresses. With the Boussi-
nesq hypothesis, the term can be related to the mean flow by introducing the con-
cept of eddy viscosity. For compressible flows, the modeled tensor of turbulent
shear/Reynolds stresses reads

τt = µt

(
∇u+ (∇u)T − 2

3
(∇ · u)I

)
− 2

3
ρKI (2.12)

with the eddy viscosity µt and the turbulent kinetic energy K. In the system of
differential equations, this term can now be combined with the tensor of molecular
stresses from equation (2.2), yielding

τ = τmol + τt = (µ+ µt)

(
∇u+ (∇u)T − 2

3
(∇ · u)I

)
− 1

3
ρKI . (2.13)

For closure of the problem, several turbulence models considering K and µt are
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available, usually adding further transport equations to the system of Reynolds-
averaged NSE.

NLF airfoils usually feature extended laminar boundary layers downstream of the
leading edge where no turbulent fluctuations are present. Turbulence models can
naturally only consider turbulent regions of the boundary layer and are not able to
predict the laminar-to-turbulent transition. However, stretches of laminar flow can
be included in (U)RANS simulations by suppressing the production of eddy viscosity
upstream of the transition location. The length of laminar boundary layers can be
determined either by a transition model or by prescribing a fixed transition location.
In this work, the latter method is chosen, where the transition position is mainly
determined based on prior linear stability calculations. This is illustrated in figure
2.2(b), where the transition location xtr is predefined in the (U)RANS simulations.
Turbulent boundary layers are thicker, feature higher values of skin friction and
their velocity profiles are less prone to separation in regions with adverse pressure
gradients. Consequently, the turbulent regions in the rear section have an effect
on the macroscopic airfoil flow which includes the overall circulation. Although
the region of laminar flow is primarily relevant for the subsequent DNS and linear
stability analysis, the turbulent boundary layers therefore have to be included for
correct physical representation of the flow.

2.3.1 Finite volume solver and numerical grid

The DLR code TAU solves the above described compressible Reynolds-averaged
Navier–Stokes equations with a finite volume method. Computations of complex
flows can be performed on hybrid and unstructured grids, whereby several differ-
ent turbulence models are available. An overview including a summary of recent
applications of the solver is given in Schwamborn et al. (2006).

In this work, the turbulence model of Spalart & Allmaras (1991) is exclusively
applied, in which the eddy-viscosity factor is solved by an additional transport equa-
tion. This turbulence model is well established for aerospace applications and is con-
sidered very robust for wall-bounded flows with adverse pressure gradients (APG).
Moreover, it was used exclusively in the previous studies on the disturbance velocity
approach (see next section) and exhibited good performance. For the time stepping,
the implicit backward Euler method is selected with the lower-upper symmetric
Gauss-Seidel (LU-SGS) algorithm for the inner iterations. Furthermore, multigrid
methods for better convergence are applied and a preconditioner is used in order
to allow low Mach number simulations. While the transient cases with DVA gusts
are necessarily simulated with URANS, the steady-state cases can be simulated
with simple RANS. However, unlike the attached-flow scenario (LTT case), URANS
also had to be utilized for the steady-state flow of the laminar separation scenario
(LAINA case) due to its inherent flow instability. A residual of 10−8 is chosen as the
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Figure 2.2: Configuration of (U)RANS simulations. (a) Structured far-field C-grid
of airfoil, resolution reduced by factor ≈ 5 for clarity. (b) Close-up of the 2D airfoil
flow (LTT case) with streamlines and pressure distribution cp = (p−p∞)/(0.5ρ∞u2

∞).

criterion for final convergence in the RANS simulations. In both scenarios, no-slip,
adiabatic boundary conditions are prescribed on the airfoil surface. The free-flow
properties as well as the corresponding dimensionless quantities are given in the
respective sections of both flow scenarios.

To ensure consistency between the (U)RANS grids and the grids of the subsequent
DNS and LST, a curve fit of the airfoil surface with NURBS (Non-uniform rational
basis spline) of the order of 10 is employed. This method produces a unique analyt-
ical expression for the slightly smoothed contour of the airfoil. Numerical problems
such as inconsistencies on the wall during interpolation or undesired fluctuations in
the DNS can thus be avoided. Based on the work of Kurz (2016), MATLAB® is used
to generate the required NURBS. Furthermore, this tool is used in post-processing
to convert the arc length xs to the chord-based position x, and vice versa.

For the (U)RANS simulations of both flow scenarios, a structured C-mesh around
the airfoil with 7.0 × 105 grid points (resulting to 3.5 × 105 gird cells) is generated
with the meshing software Gridgen®. According to the base flows of the investigated
scenarios with the assumption of an infinite span, the (U)RANS simulations are
performed purely two-dimensional. Hence, only one cell in spanwise direction is
necessary. The grid for the RANS simulations, including the entire far-field, is
depicted in figure 2.2(a) with a reduced resolution. On both sides of the airfoil, 400
surface points are placed with a hyperbolic tangent distribution between the leading
edge and the trailing edge. The wall-normal distribution is chosen to resolve the
boundary layer with at least 30 grid points and to ensure ∆y+s |w < 1 for the grid
cells on the wall in the turbulent region. The boundaries of the far-field are chosen
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to provide a distance of at least Lc×100 from the airfoil. In the steady-state RANS
simulations, the angle of attack AoA is determined via the velocities at the far-field
boundary conditions. However, in the case of URANS simulations employing DVA,
the Chimera method is necessary to consider different (static) AoA via rotation due
to numerical reasons, see Müller et al. (2021b).

2.3.2 Disturbance velocity approach

URANS simulations with gusts (κ > 0) are performed using the so-called disturbance
velocity approach (DVA) by Heinrich & Reimer (2013). Instead of fully resolving
gusts, this simplified approach adds the velocity vector of the gust disturbance −u′

g

to the flux balance via superposition. Consequently, the velocity vectors in all
equations of the system are manipulated with

ug,DVA = ug − u′
g , (2.14)

for each physical time step. The spatial and temporal description of the gust dis-
turbance

u′
g(xg, t) = (0, v′g , 0)

T , (2.15)

consists solely of a vertical velocity component representing the sinusoidal gust, see
equation (2.8). Consequently, the periodic gust affects the entire URANS airfoil flow
including its circulation. This disturbance leads to a change of all other primitive
variables of the flow, with the tangential velocity component us in the boundary layer
and the streamwise pressure gradient dp/dx being most relevant for the subsequent
DNS and the flow physics studied here. However, this method only covers the
influence of the gust on the airfoil, but neglects the change in velocity and shape of
the gust induced by the airfoil. Nevertheless, Müller et al. (2020, 2021a,b) showed
that the method provides satisfactory results at wavelengths larger than the chord
length. In the present work, using wavelengths smaller than the chord length can still
be considered valid, since the region of interest is the resulting oscillating boundary
layer and less the accuracy of global aerodynamic coefficients.

At least 150 physical time steps per propagation of one gust wavelength past
the airfoil with 250 inner iterations are applied. The subsequent unsteady LST as
well as the DNS with unsteady boundary conditions is implemented such that an
equidistant temporal resolution of the flow field over one or multiple gust periods
is assumed, see figure 2.5. Therefore, the physical time step ∆t of the URANS
simulation is chosen to be a common factor of the gust period. Thus, a clean period
can be recorded and temporal interpolation can be avoided. In most cases, the
flow field is extracted over one period in time, once no significant changes in the
periodicity of the aerodynamic coefficients are observed. However, in some cases
at very high gust amplitudes, temporary flow separation on the opposing side of
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interest of the airfoil can occur and introduce frequencies which are not multiples of
the fundamental gust frequency. In these cases, multiple gust periods are recorded
in order to avoid temporal discontinuities in the unsteady boundary condition of the
subsequent DNS.

2.4 (Transient) base flows

Structured curvilinear grids are created for the DNS and LST, which are oriented
along the airfoil surface at a constant domain height. As an example, the domain
margins for the DNS on the airfoil pressure side is illustrated in figure 2.2(b) for the
LTT case. The wall-normal extrusion in ys direction of the body-fitted coordinate
system is determined by a mathematical series enforcing a constant stretching factor
χy for a desired number of grid points with the initial step size ∆yw at the wall
for a given overall height of the domain. Here, by manual iteration, it is ensured
that χy < 1.025 applies for the corresponding grid configuration. In streamwise
direction, an equidistant step size with respect to the arc length xs is defined, with
the exception of the outflow in the DNS grid, where stretching is applied, see section
2.6.2. The NURB-spline described above can provide both a normal vector and
an integrated arc length along the curvature with high accuracy for wall-normal
extrusion and discretization in the flow direction, respectively. No smoothing or grid
relaxation is applied, making the almost perfectly streamline-oriented grid suitable
for post-processing without further interpolation. The exact properties of the grids
are explained in the respective sections of the simulated scenarios.

Finally, the converged RANS solutions of the steady-state flows as well as the
individual instantaneous URANS flow fields—representing the cases with periodic
gusts—are interpolated to the two-dimensional grids for the subsequent LST and
DNS. This is performed with the means of a sixth order Lagrangian interpolation
scheme outlined by Sherer & Scott (2005). In this work, the procedure implemented
in MATLAB® by Kurz (2016) is applied. It should be noted that the interpola-
tion of URANS results with gusts is performed purely spatially, with each snapshot
treated individually. Since the TAU code operates with dimensional quantities, the
normalization introduced in section 2.1 must be applied for further processing in
DNS and LST. Moreover, for URANS simulations with DVA, the time-dependent
sinusoidal gust must be added to the resulting unsteady flow field, since it is sub-
tracted again in the standard output of TAU. Thereby, the transformation from the
geodesic coordinate system to the airfoil coordinate system has to be considered.

In the following, the generated time-dependent URANS flow fields on the curvi-
linear grids are referred to as transient base flows for the LST and DNS. This
designation refers to the unsteady behavior of disturbances in the flow which can be
described by linear theory. In some sense—when considering linear modes ϕ′

mode—,
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a triple decomposition of the primitive variables

ϕ = ϕref + ϕ′
∆gust︸ ︷︷ ︸

ϕtbf

+ϕ′
mode , (2.16)

can be introduced where ϕref denotes the steady-state base flow without gusts and
ϕ′
∆gust the periodic deviation of the flow field induced by the gusts. ϕ′

∆gust is not to
be confused with v′gust from equation (2.8), which represents the gust disturbance
absent/well ahead of the airfoil. In this work, the resulting component of the gust
perturbation lies in the order of magnitude of ϕ′

∆gust = O(10−2) to O(10−1), while
the linear behavior of the modes ranges from ϕ′

mode = O(10−6) to O(10−2). Further-
more, the gust frequency is one to two orders of magnitude smaller than that of the
amplified modes. Consequently, the transient base flow ϕtbf (t) which determines the
unsteady behavior of the linear modes is composed with the first two components
in equation (2.16). The results of this work in chapters 3 & 4 verify the validity of
this separation-of-scales approach since it is shown that the unsteady linear ampli-
fication of modes can be described with a quasi-steady approach using steady-state
LST on ϕtbf (t).

It should be mentioned, that in the LAINA case of chapter 4, the transient base
flow of the URANS simulation can only be used for the DNS, since the length of the
separation bubble is underestimated. Therefore, the resulting unsteady (spanwise
averaged) flow field of the DNS with a prolonged separated region is used later as a
transient base for the unsteady LST.

2.5 (Unsteady) linear stability analysis

The behavior of flow instabilities such as Tollmien–Schlichting (TS) waves can be
characterized in terms of frequency range and growth rate using LST. In this work,
the stability properties of given base flows are computed using an in-house LST
code, see Schmidt & Rist (2014), which employs a compressible formulation given
by Mack (1984). The laminar flow region of both the URANS solutions as well as the
spanwise averaged DNS flow can be used as a base flow for linear stability analysis.
In this section, the basics of classical LST are briefly discussed, and an unsteady
extension of the en-method for time-dependent transition prediction is presented.

2.5.1 Linear-stability-theory fundamentals

Based on the assumption of very small perturbations, the flow field expressed in
primitive variables q = (ρ, u, v, w, T )T is decomposed into a steady base flow and
a disturbance flow, i.e. q = q + q′. By applying this approach to the NSE intro-
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duced in section (2.1) and neglecting the resulting non-linear terms, the so-called
linearized Navier–Stokes equations can be derived. The equations are further sim-
plified with the parallel-flow assumption, thus leading to the classical local stability
analysis. For the cases investigated here, this also entails neglecting the surface
curvature. Since the base flow is two-dimensional and therefore uniform in spanwise
direction, only 1D-eigenfunctions in the wall-normal direction ys need to be solved.
The disturbances are described as Fourier modes in xs and z directions employing
the traveling-wave ansatz

q′(xs, ys, z, t) = q̂(ys) e
i(αxs+βz−ωt) , (2.17)

with the eigenfunction q̂ ∈ C, the streamwise wavenumber α ∈ C and ω, β ∈ R
as the angular frequency and spanwise wavenumber, respectively. In this work, the
so-called spatial theory with the complex wavenumber α = αr+ iαi is considered, in
which it is assumed that the disturbances grow spatially with the amplification rate
αi (amplification for αi < 0) as they travel downstream. In this case, ω and β can be
considered as variables of the stability problem while α corresponds to the complex
eigenvalue of a respective amplified mode with the complex eigenfunction q̂. The
quadratic eigenvalue problem is computed with a matrix solver while employing a
Chebyshev collocation method, see Schmidt & Rist (2014).

2.5.2 en-method for steady conditions

The most commonly known prediction method for natural transition is the so-called
en-method, which was independently developed by van Ingen (1956, 2008) and Smith
& Gamberoni (1956). This approach, which is derived only for steady-state prob-
lems, is based on the stability behavior of the amplified modes (e.g. TS-waves)
calculated with LST with the steady base flow q. The fundamental idea of this
method is that the amplitude A of a mode equals en times its initial amplitude A0

in downstream direction. The exponent, also widely known as the n-factor, however,
depends on the streamwise location xs and can be calculated based on a preceding
linear stability calculation for a mode with a constant frequency ω. This is done by
the integration of αi

n(xs) = −
∫ xs

xs,0

αi(xs) dxs = ln

(
A(xs)

A0

)
, (2.18)

starting from the location xs,0 where the corresponding initial amplitude A0 is as-
sumed. Usually, the point of first neutral stability xs,bI with αi = 0 is selected for
xs,0 , since it represents the streamwise location where a mode enters the amplified
region. This point is also commonly referred to as branch I and its location also
depends on the frequency ω. For flows in natural conditions without additional
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actuation, this location is assumed to be most critical for incoming disturbances—
such as free-stream turbulence—that may enter the boundary layer via receptivity
and ultimately lead to transition. In this work, however, disturbances can also be
introduced to the boundary layer with a disturbance strip in the already amplified
region. Since the amplitude A0 of the introduced modes is chosen to exceed the
amplitudes of natural perturbations which started further upstream, the position of
the disturbance strip xs,DS can be selected as the initial point xs,0 for integration of
the n-factor. An observed amplitude A, e.g. in the DNS, can therefore be compared
with the resulting n-factor, which allows to evaluate the extent of linear effects in
the modal downstream development.

As described above, the frequency-specific n-factor represents the amplification
of a single mode. In natural flows as e.g. also in the wind tunnel, however, a broad
spectrum covering all frequencies of the amplified range is usually present. Therefore,
the envelope N(xs) of all n-factors for all relevant frequencies ω is considered for
transition prediction. With this analytical foundation, a critical N -factor can be
identified as a threshold value for a measured transition position xtr of a given
flow, making the en-method a semi-empirical approach. Values for Ncrit in quiet
wind tunnels or free flight are usually found between 9 and 12. There are several
variable N -factor methods for the prediction of xtr via a threshold value, which
take into account the flow conditions including the free-stream turbulence level, see
Mack (1977), or receptivity due to surface roughness, see Crouch & Ng (2000). In
case of only one introduced frequency with a disturbance strip, a threshold value
ncrit—mostly depending on the initial actuation amplitude A0—can just as well be
determined.

2.5.3 Modification for unsteady conditions

For unsteady flows as in this work, the linear stability analysis including the en-
method needs to be modified. For that reason, the amplification rates—which are
solved with the classical LST based on the velocity profiles of the above-mentioned
transient base flows utbf , see equation (2.16),—are integrated along the spatio-
temporal trajectories. Thus, time-dependent n-factors can be obtained for the pe-
riodically oscillating boundary-layer flow. This general concept has already been
applied in different variations by Obremski & Morkovin (1969), Studer et al. (2006)
and Reeh (2014) for interpretation of experimental results. In the present work,
however, a general formulation of the en-method modified for unsteady flows is pro-
vided. The corresponding results of the wind-tunnel measurements and the DNS
demonstrate the validity of the approach presented here, see chapter 3.

In figure 2.3, the trajectory-following method is illustrated in the xs/t plane for
two oscillation periods T with the trajectories (dotted) of two exemplary modes
with the frequency ω1 and ω2 > ω1, respectively. Since the analysis for unsteady
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Figure 2.3: Schematic depiction of the spatio-temporal trajectory-following method
for the unsteady linear stability analysis with the n-factors of two amplified modes
(ω1 < ω2). N represents the resulting time-dependent envelope.

transition prediction should be kept as close as possible to the assumptions of the
classical steady-state method, the starting point of integration with n = 0 is set
to be at branch I. This implies that branch I—which now oscillates upstream and
downstream over time—is still assumed to be the most critical point for incoming
disturbances. As in the steady-state conditions, the position of the branch I also
depends on the frequency ω of the amplified mode, cf. black and red dashed lines
in figure 2.3. The phase θ represents the time relative to the oscillation period T at
which the wave is numerically “spawned” at xs,bI .

Here, each steady-state linear stability analysis is performed based on the tran-
sient base flow qtbf (t) = qref + q′

∆gust(t) introduced in section 2.4, for the respective
time t. The complex eigenvalue α of the spatial approach yields the streamwise
wavenumber αr and the spatial amplification rate αi. Both parts are crucial for the
presented method, whereas the first is used to calculate the local phase speed of a
mode cmode = ω/αr. The local gradient of the trajectories in the xs/t plane therefore
corresponds to the reciprocal of the local phase velocity of the corresponding wave
cmode , see labeling of the dotted lines in figure 2.3. In order to numerically follow
the modes with the equidistant time discretization ∆t of the transient base flows,
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their change in position in the space-time diagram is determined with

∆xs = cmode ·∆t =
ω

αr

·∆t . (2.19)

The phase speed of a downstream traveling mode might increase strongly depending
on the solution of the LST, therefore locally changing the inclination of a trajec-
tory. Thus, a position xs for a time t can be perpetually calculated, at which the
local linear stability analysis of the instantaneous velocity field is performed. The
amplification rates for all modes are integrated along the resulting trajectories with

nθ(xs) = −
∫ xs

xs,0

αi(xs, θ + t) dxs , (2.20)

where the frequency- and phase-dependent position of branch I is chosen as the
respective starting point xs,0 = xs,bI(θ, ω). In this work, the periodically treated
problem with 0 ≤ θ/T < 1 is computed by integrating 100 trajectories spawned
at individual phases θ. Beforehand, the generated transient base flows explained
in section 2.4 are therefore temporally interpolated to 100 snapshots with ∆t for
one period T using Lagrangian polynomials, see appendix B. The resulting values
of nθ for a respective modal frequency ω are scattered in space and time along the
trajectories. Using Kriging interpolation on a 2D mesh in spatial and temporal
directions, a time-dependent n(xs, t) can be computed, yielding continuous isolines
for the n-factors, as illustrated in figure 2.3.

In contrast to the steady-state flow, every mode experiences an individual history
of amplification while traveling downstream in the oscillating flow. This leads to a
characteristic (unsteady) motion of the n-factors in the xs/t plane, see n = 5 and
10 for both modes with the frequencies ω1 and ω2 in figure 2.3. Analogous to the
classical steady-state method, an envelope N(xs, t) can also be built here, which in
addition to the spatial dependency also features a periodic time-dependency. This is
shown schematically for the two example frequencies in figure 2.3, see gray thick line
representing the resulting unsteady N -factor. Depending on the case, integration
along the trajectories is done for 50 to 100 different frequencies ω, which lie in
the relevant range of amplified modes. Unsteady transition prediction can now be
carried out with the above-mentioned threshold value for N , which may be acquired
from a corresponding steady-state case of the flow. This method has already been
employed as a simplified version in a previous study, see Ohno et al. (2022) and
Khaled (2019), where the transient base flows are built with steady flow fields at
different AoA instead of time-resolved flow fields containing physical gusts.

The procedure described above is very well suited for the unsteady prediction
of the natural transition under realistic conditions as present in the wind tunnel.
However, in the DNS performed for this work, only discrete modes are introduced
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to the boundary layer via a disturbance strip (see section 2.6.4) in the already
amplified region. In this case, the n-factor for the fundamental (primary) mode
with the frequency ωDS is integrated starting from the location of the disturbance
strip xs,0 = xs,DS .

It should be pointed out that the classical framework of local stability theory as
explained in section 2.5.1 is used here, hence making this a quasi-steady approach
where ∂u/∂t-terms are neglected. The assumption of the validity of this separation-
of-scales approach for the presented cases is based on the fact that the frequencies
of the fundamental oscillation (gusts) are one to two orders of magnitude lower than
those of the amplified modes. Furthermore, when considering the trajectory of the
followed mode, the changes of the velocity profiles in the spatial direction for ∆xs are
significantly stronger than their variation in time for ∆t = ∆xs/cmode . Effectively,
this approach extends the parallel-flow assumption of the local stability analysis—
which usually applies only to the spatial direction xs—to the spatial direction xs and
the temporal direction t. However, for unsteady flows with oscillation frequencies
near the modal frequency, the method may be extended with Floquet analysis,
analogous to secondary stability theory (Herbert (1988)), cf. Luo & Wu (2010).

A potential time-variation of the receptivity leading to a variation of the initial
amplitudes A0 at branch I (or at the disturbance strip in the DNS) due to oscillation
of the boundary-layer thickness is neglected here. Moreover, the local linear theory
does not necessarily predict the amplitudes of convective disturbances correctly,
especially for the case of strongly non-parallel or unsteady flows. However, the n-
factors can be compared with the amplitudes of the actual perturbations in the
simulations, which allows an evaluation of the validity of the presented transient
analysis and reveals the contribution of linear effects.

2.6 Direct numerical simulations

DNS of the fully-resolved boundary-layer flows are carried out with the steady
and unsteady base flows obtained beforehand with URANS simulations, see sec-
tion 2.3. For the simulations, the compressible NSE (2.1) are rearranged to a
formulation involving flux vectors, see equation (A.1), with the solution vector
Q = (ρ, ρu, ρv, ρw,E)T consisting of conservative variables. The resulting system of
equations as implemented in NS3D, which includes flux vectors, stresses, heat fluxes
and total energy, can be found in appendix A. With the differential equation

∂Q

∂t

∣∣∣∣
NSE

= N (Q) (2.21)

where N represents the compressible Navier–Stokes operator, see equation (A.1),
the vector Q is solved numerically. Despite the recasting of the equations, the
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fundamentals in section 2.1 concerning notation and the description of gas proper-
ties are still valid here. This section briefly describes the numerical scheme of the
DNS code, the implemented (unsteady) boundary conditions as well as the modal
actuation with a disturbance strip.

2.6.1 Spatial discretization and time integration

A revised version of the in-house DNS code NS3D developed by Babucke (2009)
is used. For the spatial discretization, explicit 8th-order finite differences are cho-
sen for all three directions here, which are well suited for subsonic flows, see Keller
(2016); Wenzel (2019). To allow curvilinear meshes including grid stretching as
used in this work, a grid transformation is implemented, see Babucke (2009); Keller
(2016). For time integration, the classical explicit 4th-order, four-step Runge-Kutta
method is applied. Furthermore, to numerically stabilize the computations, alternat-
ing forward- and backward-biased finite differences for the convective first derivatives
are employed, see Kloker (1997); Babucke (2009) for details.

For additional stabilization of the numerical scheme, a spatial 10th-order implicit
filter implemented by Selent & Rist (2010) is invoked at every completed time step
for all three directions. For details, see Colonius et al. (1993); Visbal & Gaitonde
(2002). The effectiveness of the filter is even increased when employing grid stretch-
ing towards the domain boundaries, which may prevent reflections, see next section.

The basics for generating the (two-dimensional) DNS grids have already been
explained in section 2.4, whereby the specific properties of the grids are given in
the two chapters of the respective flow scenarios. The 2D grids of the base flows
are extruded uniformly in spanwise direction z up to a domain extent equal to
the fundamental wavelength of the introduced spanwise traveling modes λz,0, see
section 2.6.4 for more details. In order to sufficiently resolve the turbulent parts of
the boundary layer, the number of grid points in all spatial directions is generally
chosen based on the resulting values of the inner units ∆x+

s , ∆y+s |w, and ∆z+.

2.6.2 Boundary conditions and sponge zones

In all simulations, adiabatic no-slip boundary conditions are chosen for the wall,
which is consistent with the base flows of the preceding (U)RANS computations. In
spanwise direction z, cyclic boundary conditions are used.

For the simulation of subsonic flows in a compressible framework as in this work,
the use of characteristic boundary conditions are advantageous in order to pre-
vent acoustic reflections, see Poinsot & Lele (1992). A formulation of characteristic
boundary conditions by Giles (1990) is therefore employed at the inflow, outflow,
and free stream, see blue lines at the edges of the DNS domain (LTT case) in figure
2.4. These boundary conditions are effective in normal direction as well as in time
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to allow harmonic perturbations to leave the domain while still maintaining the base
flow. In the proximity of the boundary, the disturbance flow field

ϕ′ = ϕ− ϕref (2.22)

is transformed to characteristic variables based on a one-dimensional decomposition
of the Euler equations into upstream and downstream traveling waves. For an inflow
boundary on the left side of the domain, the characteristic variables can be calculated
with 

c1
c2
c3
c4
c5

 =


−a2ref 0 0 0 1

0 0 ρref aref 0 0

0 0 0 ρref aref 0

0 ρref aref 0 0 1

0 −ρref aref 0 0 1

 ·


ρ′

u′

v′

w′

p′

 (2.23)

where a represents the local speed of sound. In case of steady-state boundary condi-
tions, all variables with the subscript ref are set to base-flow values ϕref = ϕbf . The
characteristic variables represent entropy perturbations (c1), vorticity perturbations
in the spanwise and streamwise directions (c2, c3), as well as downstream and up-
stream traveling sound waves (c4, c5). The boundary condition sets the incoming
disturbances (c1 ... c4) to zero and extrapolates the characteristic variable c5 of the
upstream traveling acoustic wave with a 2nd-order stencil, see Babucke (2009). In a
final step, the primitive variables are computed by an inversion of equation (2.23)
and added to the current flow field. Analogously, this boundary condition is also
applied at the free stream and the outflow. Due to the curvature of the airfoil surface
oriented grids, a transformation of the velocities at the edges must be performed.
However, it should be noted that this method only works for waves moving per-
pendicular to the domain boundaries and oblique waves may be reflected, see Kurz
(2016).
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Figure 2.4: DNS domain on airfoil with streamlines of the outer (U)RANS base flow
(LTT case). The blue shading illustrates the spatial distribution of the sponge gain
(uniform in spanwise direction), whereas the white area means that no forcing terms
are active. The disturbance strip is indicated with the actuation function v′s,DS .

An additional measure to improve numerical stability and reduce reflections is

23



CHAPTER 2. NUMERICAL METHODS

to apply sponge zones in front of the boundary conditions, realized through forcing
terms, see Kurz & Kloker (2014); Kurz (2016); Dörr (2018). Using equation

∂Q

∂t
=

∂Q

∂t

∣∣∣∣
NSE

−G(x) · (Q−Qref ) , (2.24)

the time derivative of the conservative numerical fluxes Q of the unsteady solution
is forced to the reference state (i.e. the base flow from (U)RANS), with a gain field
G(x). Typically, this field specifies the magnitude and spatial distribution of the
gain G from a maximum value at (or close to) the boundaries to the null parameter
G = 0 in the inner computational domain which can be used for analysis. As a
fading function in wall-normal and streamwise direction, the 5th-order polynomial

D(x∗) = 6x∗5 − 15x∗4 + 10x∗3 , x∗ ∈ [0, 1] , (2.25)

is chosen. Therefore, the normalized coordinate x∗ is projected on the fading area in
the corresponding direction where G(x∗) ∼ D(x∗) holds. The two-dimensional distri-
bution of G(x)—which in principle determines the strength of the forcing terms—is
shown exemplarily in figure 2.4 for the LTT case. For simulations as conducted for
this work, it is essential to use such damping zones, especially at the free stream and
the outflow to avoid distortions due to the above-mentioned oblique portions at the
boundary conditions. In a simulation at steady-state conditions, the conservative
reference field Qref is calculated with all primitive variables ϕbf of the steady base
flow.

In a sense, grid stretching towards the domain boundary while using the spatial
filter explained in section 2.6.1 acts as an additional component of the boundary con-
dition, see Wenzel (2019). Due to the standard refinement in wall-normal direction,
this applies in any case to the upper free-stream boundary. To suppress numeri-
cal perturbations, an additional grid stretching is applied at the outflow, starting
shortly after the beginning of the sponge zone. The stretching factor in streamwise
direction is consequently ramped-up with equation (2.25) over a few grid points
starting from the equidistant portion with χx = 1 to the final value χx ≤ 1.015.

In previous work with NS3D, where the boundary conditions also originate from
RANS simulations, 2D simulations were carried out with the DNS code beforehand
in order to obtain converged base flows, see Kurz (2016). Less prescriptive boundary
conditions (e.g. ∂2/∂x2 = 0 with p = const.) were used at the outlet and an inner
spatial section of the converged base flow was used for the further 3D simulations.
This approach—which is in general applied to account for the minor deviations
between the RANS and steady DNS flow—is not used in this work, since convergence
is not feasible in the unsteady simulations with transient base flows. For consistency,
this also applies for the steady-state cases. Therefore, the interpolated solutions from
the (U)RANS flow fields always represent the respective (transient) base flows here,
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which e.g. also includes the calculation of the mean flow distortion.

2.6.3 Modification for unsteady conditions

In order to carry out transient simulations with gusts, the boundary conditions
including the forcing zones need to be modulated in time. In setups with a domain
extent as in figure 2.4, the physics of the unsteady flow is mostly determined by the
fluctuating velocity profile at the inflow and the oscillating pressure gradient at the
free stream. However, since a complex airfoil flow including curvature is simulated
here, all primitive variables oscillating in time are consistently prescribed with the
means of the boundary conditions introduced in section 2.6.2.

t0 T

ϕref

t0 t1 t2 t3

ϕ0

ϕ1
ϕ2

ϕ3

∆t ∆t ∆t

ϕ(ref )

Figure 2.5: Representation of the data points of a primitive variable ϕ over one
oscillation period with exemplary supporting points for a temporal interpolation
with 3rd-order Lagrange polynomials. Gray dots represent temporal “ghost points”.

Consequently, a reference field for all primitive variables ϕref (t) is required for the
boundary conditions and sponge zones at each (sub)iteration of the Runge-Kutta
time-integration. This is achieved during the DNS by temporal interpolation of
the (original) transient base flow from URANS simulations, see section 2.4. The
Lagrangian interpolation of the order k is given as a linear combination

ϕref (t) =
k∑

j=0

ϕjL
k
j (t) , (2.26)

with the discrete values ϕj of the original transient base flow at the time steps j and
the Lagrange basis polynomial

Lk
j (t) =

k∏
j=0
i ̸=j

t− ti
tj − ti

. (2.27)

In this work, a 3rd-order Lagrangian interpolation is applied, see illustration in
figure 2.5. Therefore, ϕref (red) in a simulation interval between two temporal data
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points is always calculated with four data points over an interval of 3∆t. To save
computational resources, the resulting equation of (2.26) and (2.27) for k = 3 is
rearranged such that (auxiliary) coefficients need to be computed only once per
interval. For a detailed description of the implementation, see appendix B. Lower-
order interpolation is not suitable for laminar flows because large discontinuities in
the values or their derivatives may occur from one interval to the next, leading to
unwanted artificial disturbances. Depending on the case, the original transient base
flows are resolved with 150 to 350 time steps per gust period T . At the interval
boundaries of T , temporal “ghost points” are used to maintain temporal periodicity,
thus allowing for simulations of an arbitrary number of periods with a prescribed
transient base flow, cf. figure 2.5. As described in section 2.3.2, however, in some
extreme cases the URANS flows are not perfectly periodic. A small discontinuity at
the periodic seam of the original flow may lead to fluctuations related to the Gibbs
phenomenon, introducing an unwanted pulse at t = T in the DNS. In these cases,
multiple gust periods are simulated and recorded with URANS, corresponding to
the entire simulation time of the subsequent DNS.

The resulting flow field with primitive variables ϕref (t) is applied to the equations
(2.22) and (2.23) for the unsteady characteristic boundary conditions at each (sub)
iteration. These boundary conditions were also successfully used and validated for
an inflow with isotropic free-stream turbulence modeled with a superposition of
small-scale perturbations, see Ohno et al. (2020, 2023b). Furthermore, the forcing
terms of equation (2.24) can be manipulated in time by converting the interpolated
values of ϕref (t) to the conservative vector Qref (t) at every (sub)iteration. With this
method, the sponge acts simultaneously as an unsteady forcing region containing
the gusts from URANS as well as a dampening zone for outgoing disturbances. This
approach has also been applied successfully for an unsteady inflow in a non-periodic
simulation of a turbulent boundary layer, see Appelbaum et al. (2021).

2.6.4 Disturbance strip

As in well-known fundamental studies, see Rist & Fasel (1995), amplified modes
(e.g. TS-waves) are generated with time-dependent blowing and suction at the wall
through a narrow strip, here referred to as “disturbance strip” (DS). This strip,
which spans the entire length z and is placed just downstream of the inflow, can be
used to introduce discrete perturbations into the boundary layer, allowing various
transition scenarios to be simulated. The location of the disturbance strip, denoted
with its central position xDS , is depicted in figure 2.4 for the LTT case, see v′s,DS

(green). As in other studies, e.g., Thumm (1991); Dörr (2018), the generated modes
are labeled with (h, k), which corresponds to a notation for the double Fourier
spectrum where h is the multiple of the fundamental frequency ω0 and k is the
multiple of the fundamental spanwise wavenumber β0. Hence, the function of the
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velocity disturbance in wall-normal direction for each mode reads

v′s,DS = Av g(x
∗) cos (hω0t+ kβ0z) , (2.28)

with the streamwise disturbance distribution g(x∗). The disturbance amplitude Av is
normalized with the free-stream velocity u∞. A desired property of the disturbance
input is a zero-net mass flow at any time instance. For quasi-incompressible flows
with ρ ≈ const., this can be ensured by choosing an appropriate streamwise mod-
ulation function g(x∗) for the respective velocity disturbance. In case of actuation
with β = 0, i.e. two-dimensional modes (h, 0), a dipole function

gd(x
∗) =

{
81
16
(2x∗)3 (3 (2x∗)2 − 7 (2x∗) + 4) for 0 ≤ x∗ ≤ 0.5

−81
16
(2− 2x∗)3 (3 (2− 2x∗)2 − 7 (2− 2x∗) + 4) for 0.5 < x∗ ≤ 1 ,

(2.29)
is applied. The normalized coordinate x∗ is projected to the area of the slit of the
disturbance strip ∆xs,DS . For three-dimensional (oblique) modes with β ̸= 0, the
monopole function

gm(x
∗) =

{
−3 (2x∗)4 + 4 (2x∗)3 for 0 ≤ x∗ ≤ 0.5

−3 (2− 2x∗)4 + 4 (2− 2x∗)3 for 0.5 < x∗ ≤ 1 ,
(2.30)

can be used, since zero-net flux is already provided through oscillation in spanwise
direction. Here, the spanwise wavenumber β0 also determines the domain size in z

direction, which is identical to the fundamental wavelength λz,0 = 2π/β0.
In this work, fundamental resonance with the primary mode (1, 0) and the sec-

ondary modes (1,±1), see Rist & Fasel (1995), is applied for the LTT case. In the
LAINA case, oblique resonance with a pair of primary modes (1,±1), see Thumm
(1991), is employed. More details are given in the respective sections. In the follow-
ing, the frequency for all introduced modes (1, k) is denoted by ωDS .

Finally, it should be noted that the selected actuation frequency ωDS is re-
quired to correspond to a multiple of the fundamental frequency of the simulation
ωsim = 2π/Tsim , which in turn depends on the gust frequency and number of simu-
lated/recorded gust periods. In other words, the fundamental frequency ωsim must
represent a common denominator of ωgust as well as ωDS in order to obtain a per-
fectly time-periodic simulation with respect to the introduced disturbances. This
allows a fairly clean spectral analysis with FFT or CWT, see next section.

2.7 Continuous wavelet transform

To study the mechanism of natural transition (e.g. with TS-waves) of a flow, a
spectral analysis is usually performed. For DNS at steady-state conditions, the fast
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Fourier transform (FFT) is very well suited, which allows a double-spectral analysis
in both time and spanwise direction. Therefore, the downstream development of
primary, secondary and additional modes—possibly introduced via actuation at the
disturbance strip, see notation in section 2.6.4—can be precisely computed. Since
the Fourier analysis is completely delocalized in time, only the “averaged spectrum”
over the oscillation cycle can be calculated when applied on periodic transient flows
(e.g. with gusts). This is also carried out for one scenario in this work in order to
obtain an overview of all relevant modes. However, to study the transient process
including the time-dependent behavior of unstable modes, wavelet analysis can be
employed, which works in some sense like a windowed Fourier transform in time.

Inspired by the experimental work of Studer et al. (2006), Reeh & Tropea (2015)
and Romblad et al. (2020), the continuous wavelet transform (CWT) is used to
calculate the time-dependent frequency spectrum. Only the most important aspects
of CWT and its application to simulation results are briefly discussed here. Reviews
as well as further theoretical background on wavelets can be found in detail in Farge
(1992) and Mallat (1999). In this work, the MATLAB® Wavelet Toolbox is applied.

With a given mother wavelet function Ψ(t), the continuous wavelet transform
converts the time-dependent signal of e.g. the tangential velocity us(t) into the
complex function

Ŵ (d, θ) =
1

N(d)

∫ ∞

−∞
us(t) Ψ

†
(
t− θ

d

)
dt , (2.31)

where θ corresponds to the time shift and d to the time dilation, see Mallat (1999)
and Reeh (2014). The expression Ψ† denotes the complex conjugate of Ψ. The
wavelet function—which is localized in time t and must fluctuate around the mean
value of zero—can be compressed, stretched, or shifted. Thus, fluctuations in us(t)

can be approximated locally, i.e. in the frequency and time domain. The coefficient
N(d) depends on the choice of normalization, hence the L1 or L2 norm, which cor-
respond to the amplitude or energy spectrum, respectively, see Farge (1992). Since
this work focuses on the evolution of amplitudes of discrete modes and comparison
with LST, the L1 norm is used here, thus making N(d) equal to d.

Depending on the investigated signal, various suitable wavelet mother functions
are available for analysis. Due to the Heisenberg uncertainty bound, it is impossible
to create a wavelet function that can perfectly localize both time and frequency,
see Mallat (1999). However, for the investigation of modes which are exhibiting
sinusoidal signals like in this study, the Morlet wavelet provides a particularly good
representation, see Studer et al. (2006). The complex Morlet wavelet function

Ψ(t) =
1√
πfb

ei2πfct e
− t2

fb , (2.32)
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Figure 2.6: Example for the scaling of the complex Morlet wavelet function with
three values for the dilatation coefficient d.

is constituted by a wave formulation with an amplitude modulation of a Gaussian
envelope, wherein fc corresponds to the central frequency and fb to the time-decay
parameter. The shape of the real and imaginary part of the complex Morlet wavelet
function is exemplarily depicted in figure 2.6 for three different values of the di-
latation coefficient d. The actual physical frequency can be calculated with the
time dilation d and the frequency fc by using the relation f = fcfs/d, where fs
corresponds to the sampling frequency of the input signal. Finally, the amplitude
spectrum according to the L1 norm, e.g. of the velocity fluctuations u′

s in flow
direction, can be calculated with

u′
s,cwt(ω, t) = |Ŵ | . (2.33)

Besides the tangential velocity us(t)—which is very well suited since it is directly
associated with the growth of unsteady modes in the boundary layer—other prim-
itive variables such as the pressure at the wall can be used as an input signal for
analysis.

The result of u′
s,cwt(ω, t) at a fixed position in flow direction x and wall-normal

direction ys can already deliver deep insights into the properties of unsteady transi-
tion, see Studer et al. (2006) and Romblad et al. (2020). However, for comparison of
the transient development of modal amplitudes with the prediction of the unsteady
linear stability analysis—cf. depiction in figure 2.3—, further steps are necessary.
First, the CWT is performed for all points in the x and ys directions within the
boundary layer, expanding the result to u′

s,cwt(x, ys, ω, t). Now, to further illumi-
nate the unsteady behavior of the flow, different frequencies of the spectrum can
be chosen for analysis, such as the gust frequency ωgust , the frequency of the intro-
duced modes via disturbance strip ωDS , or the respective harmonics. In this work,
the most interesting aspect is the behavior of the fundamental modes of the actua-
tion (e.g. (1, 0) for fundamental resonance) which are subject to the cyclic variation
imposed by the gust. Therefore, to determine the spatio-temporal development of
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the convective modes, the maximum amplitude in wall-normal direction ys within
the boundary layer is calculated for the frequency ωDS for all locations in x direction
and all times t. In order to directly compare the transient amplitude development
with the n-factors from the LST in the x/t plane, the exponent

ncwt(x, t) = ln(maxys{u′
s,cwt(x, ys, ωDS , t)}/Au) , (2.34)

is introduced. Hence, the resulting maximum amplitude in wall-normal direction yn
of the CWT is normalized by a determined initial amplitude Au and converted to
the natural logarithm. The initial amplitude Au should ideally be chosen such that
ncwt = 0 applies at the location of the disturbance strip xDS . Thus Au corresponds
to the hypothetical initial perturbation A0 of the en-method of van Ingen (1956).
It depends to some extent on the boundary-layer receptivity to the actuation with
wall-normal blowing and suction with the amplitude Av, see section 2.6.4. However,
both initial amplitudes are expected to be in the same order of magnitude Au =

O(Av). Furthermore, by applying a consistant Au in the steady-state and transient
cases of the respective scenarios, a time-independent receptivity of the introduced
disturbances is assumed. The validity of this assumption can be checked by looking
at the temporal behavior of ncwt = 0. In the presented results of this work, the n-
factors of the linear theory and the amplitudes of the continuous wavelet transform
ncwt will be collectively denoted n(cwt) in case they show a good agreement.

In contrast to the above-mentioned experimental studies on unsteady transition,
no flow data over a longer period of time (or over a high number of gust periods)
is available for the wavelet analysis in this numerical study. Due to the high com-
putational costs at high Reynolds numbers as in this case, only a single or a few
gust oscillations can be simulated and recorded. The analysis of very short time
signals may lead to boundary effects, especially in the regions of low frequencies,
towards the beginning and end of the time domain. The cone of influence (COI)
of the wavelet—often depicted in scalograms—refers to the edges of those regions,
see Torrence & Compo (1998) or Nobach et al. (2007). The remedy for the present
investigations, however, is to treat the problem as periodic. In a simple approach,
the wavelet transform can therefore be fed with an input signal based on an original
signal concatenated in time over multiple periods. Only one of the “inner” periods in
the temporal direction of the transformation is then used for evaluation. However,
this requires that the flow actually behaves approximately periodically. The peri-
odicity of the externally introduced disturbances, i.e. the gusts at the free stream
as well as the introduced modes at the disturbance strip, can be ensured in relation
to the physical time of the recorded flow by selecting the frequencies accordingly.
However, intrinsic disturbances and other effects in the flow are not necessarily pe-
riodic with respect to the artificially introduced frequencies. Therefore, the results
in the area of the cone of influence must be regarded with caution.
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3 Attached-flow scenario
In this chapter, the effect of periodic gusts on laminar-to-turbulent transition in
an airfoil boundary layer is investigated. Large-scale disturbances impose a vary-
ing pressure gradient that leads to an oscillating boundary layer with potentially
strong transient behavior of the transition location. As introduced in section 1.2,
several experimental studies have investigated this phenomenon in detail. This work
aims to understand and break down the individual physical effects influencing the
natural transition in an attached flow by numerical means. These effects include
the response of the base flow to the gust, the transient amplification of (convec-
tive) TS-modes described by linear theory, and non-linear effects due to the tran-
sitional part of the flow. Therefore, the numerical methods introduced in chapter
2, including URANS simulations with DVA gusts, unsteady linear stability analysis
and DNS employing transient base flows, can shed light on the interlinked physical
effects. Furthermore, this work aims to classify the observations of previous investi-
gations on unsteady transition by Obremski & Fejer (1967), Studer et al. (2006) and
Romblad et al. (2018) with a detailed parameter study considering gust amplitude
v′gust and frequency κ. The results of Romblad et al. (2018)—which were conducted
at a comparatively low degree of flow unsteadiness—could be attributed mainly to
linear effects. With a newly introduced definition of a dimensionless quantity κtr

(see equation (3.7)), the transient behavior of the transition can be classified and
partly predicted. The “convective-transition mode” observed by Obremski & Fejer
(1967) and Studer et al. (2006) was found at a high degree of flow unsteadiness in
terms of gust amplitude and gust frequency. In this case, the laminar-turbulent
interface alternates between two phases: the “creative phase”, in which the normal
breakdown occurs due to amplified modes, and the “convective phase”, where the
turbulent flow migrates downstream similar to a turbulent spot or strip. The so-
called calmed region (also “becalmed region”), which is mainly known from work
on turbulent spots and wake-induced transition in turbomachinery, see e.g. Orth
(1993), Gostelow et al. (1997) or Hughes & Walker (2001), is a consequence of the
convective transition and was also observed in the present work. It is shown that
the transient mean flow distortion precedes the calmed region and is responsible
for the occurrence of the convective transition in the case of the natural transition
with TS-waves. A tipping-point dependent on gust frequency, amplitude, and initial
disturbance level—and thus κtr—is identified for the occurrence of this phenomenon.

The present studies were accompanied by experimental investigations with two
measurement campaigns in the wind tunnel, see Romblad et al. (2020) and Romblad
(2023). The experimental wind-tunnel results shown in this chapter are kindly pro-
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vided by Jonas Romblad. Preliminary results on unsteady transition prediction with
linear theory (without using DVA in the URANS simulations) have been published
as well, see Ohno et al. (2022).

The chapter is structured as follows: fundamental characterization of the flow
scenario including boundary-layer properties and stability analysis of the steady-
state reference case in section 3.1, results and discussion of the unsteady airfoil flow
from URANS simulations in section 3.2, unsteady linear stability analysis including
validation with wind-tunnel measurements and a discussion based on an extensive
parameter study in section 3.3, discussion of the DNS results covering the impact
of transient non-linear effects on unsteady transition in section 3.4, and finally a
summary of the findings in section 3.5.

3.1 Characterization of the flow scenario

The laminar-flow airfoil “MW-166-39-44-43” depicted in figure 3.1 (mirrored verti-
cally) was used for the investigated flow scenario. The pressure (lower) side of the
airfoil was of interest for the investigations were a long laminar stretch of attached
boundary layer with natural transition is expected. The airfoil was designed by Weis-
müller (2012) based on the “DU84-158” airfoil for flight measurements using a wing
glove, see also Reeh & Tropea (2015); Guissart et al. (2021). Furthermore, the airfoil
has been extensively studied for incoming small-scale disturbances in the wind tun-
nel and DNS, see Romblad et al. (2018, 2022) and Ohno et al. (2020), respectively.
The original coordinates used to determine the airfoil surface via NURB-splines for
the numerical simulations can be found in Romblad (2023), cf. also section 2.3.1.

For the numerical and experimental wind-tunnel investigations, a Reynolds num-
ber of Re = 3.4 · 106 with respect to the chord length was chosen in order to match
full-scale free-flight conditions. The wind-tunnel experiments were carried out at a
chord length of L̃c = 1.35m and a velocity of ũ∞ = 38m/s which corresponds to a
Mach number of Ma ≈ 0.11. For the steady-state reference case, an angle of attack
of AoAref = −1.4◦ at the lower corner of the laminar bucket is chosen. At this angle
of attack, the position of the transition on the pressure (lower) side of the airfoil is
particularly sensitive to changes in the inflow angle. Considering quasi-steady gusts,
see definition in section 2.2, the scenario was first characterized with XFoil of Drela
(1989) and later computed with RANS and LST, see section 3.3. For details on the
experimental setup see Romblad et al. (2020); Romblad (2023).

3.1.1 Reference case

The setup of the (U)RANS simulations is explained in detail in section 2.3.1. Here,
the transition locations in the (U)RANS simulations are set to xtr ,suction = 0.681 on
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Figure 3.1: Depiction of the laminar-flow airfoil “MW-166-39-44-43” (mirrored ver-
tically) with DNS domain and distribution of gain function G(x) (blue); boundary-
layer thickness δ is strongly exaggerated in wall-normal direction.

the suction (upper) side and xtr ,pressure = 0.657 at the pressure (lower) side based on
a transition prediction with XFoil for Ncrit = 12. This applies for the steady-state
simulations as well as for unsteady simulations with DVA gusts.

Figure 3.2 features the boundary-layer properties of the steady state reference case
at AoAref from RANS simulations versus streamwise direction x including the skin
friction cf , the pressure coefficient cp, the displacement thickness δ1, the momentum
thickness δ2, the Reynolds number Reδ1 and the shape factor H12. Furthermore, the
Pohlhausen pressure-gradient parameter λδ2 = (δ̃22/ν̃)(dũs/dx̃s) = Re δ22 (dus/dxs) is
given which is relevant for the approximation of leading- and trailing-edge velocities
of convecting turbulent spots in sections 3.3.3 & 3.4.

A continuous adverse pressure gradient (APG) starting from the leading edge
is clearly indicated by the course of cp. The shape factor H12 slightly increases
downstream from ≈ 2.7 at the front to ≈ 2.9 shortly before the transition. The
prescribed transition location in the RANS simulation impacts almost all parameters
at x ≈ 0.66. In addition, H12 is plotted for a simulation with the transition criterion
Ncrit = 9 (corresponding to xtr ,pressure = 0.484 according to XFoil), see dashed line.
The shape factor upstream of the transition position agrees almost perfectly with
the calculation at Ncrit = 12, which demonstrates that the prescribed transition
point has a negligible effect on the upstream flow. Consequently, it is justified
to apply a static transition location also for simulations with gusts. This has the
great advantage that a (transient) laminar reference solution of the base flow is
always available for the unsteady linear stability analysis as well as for the DNS, see
explanation of transient base flow in section 2.4.

The stability diagram (“banana”) for TS-modes for the steady-state reference case
with AoAref is shown in figure 3.3(a). Modes with frequency ω are amplified with
αi from the point of neutral stability at branch I (n = 0) and are damped again
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Figure 3.2: Boundary-layer properties of steady-state reference case at AoAref from
RANS base flow (pressure side) with Ncrit = 12; shape factor H12 for Ncrit = 9
(dotted) for comparison.

when reaching branch II. The lines of the integrated n-factors, see equation (2.18),
represent the envelope N and show that the transition location can be expected
between x ≈ 0.31 to ≈ 0.42 at realistic conditions with Ncrit ≈ 9 to 12. Note that
the main focus of this study is on Ncrit ≈ 10. Furthermore, the lines indicate that the
modes responsible for transition lie in the frequency range around ω ≈ 200. In the
range of 50 < ω < 350, the modes exhibit streamwise wavenumbers of approximately
200 < αr < 800 and phase velocities of 0.3 < cTS < 0.4.

At different angles of attack, the amplified zone αi < 0 moves its position in the
x/ω plane which changes the predicted transition location was well as the frequency
range critical for transition. For varying angles of attack or gusts, however, the
position of the stability banana in the x/ω plane moves, which alters the predicted
transition location as well as the frequency range of modes relevant for breakdown to
turbulence. Therefore, the entire frequency range of amplified modes is considered
in the investigations with unsteady linear stability analysis in section 3.3. Thus,
a spatio-temporal development of the envelope N can be obtained, which can be
directly compared with the transition location measured in the wind-tunnel experi-
ments. In the DNS, however, only discrete modes are introduced via a disturbance
strip. The position where the 2D modes (TS-waves) are introduced is indicated
with “DS” in the stability diagram in figure 3.3(a) at xDS = 0.15 with ωDS = 201.
The amplification of oblique 3D modes with the spanwise wavenumber β at xDS is
shown in figure 3.3(b) along with the primary and secondary modes for fundamental
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Figure 3.3: (a) Stability diagram with spatial amplification rate αi (colors) and
n-factor (lines) for steady-state reference case at AoAref for TS-modes (β = 0).
(b) Spatial amplification of 3D modes over β at x = xDS with direction of wave
propagation ξ = arctan(β/αr). (c) Eigenfunctions corresponding to the primary and
secondary modes introduced at x = xDS in the DNS; normalized with maxys{|ûs|}.

resonance in the DNS. Note: Due to the 2D base flow, the plane can be mirrored for
negative spanwise wavenumbers at β = 0. A detailed description of the disturbance
input for the transition scenario in the DNS is provided in section 3.4.

In the range of 50 < ω < 350, the modes exhibit streamwise wavenumbers of ap-
proximately 200 < αr < 800 and phase velocities of 0.3 < cTS < 0.4. In this chapter,
however, the visualized trajectories of TS-waves in the x/t plane are simplified with
the approximate average phase velocity cTS = 0.35.

3.1.2 Investigated unsteady cases with gusts

The parameter space with respect to the reduced frequency κ and the gust amplitude
v′gust of the investigated cases for the present flow scenario is depicted in figure 3.4.
In all cases, the reference angle of attack remains AoAref = −1.4◦.

The cases with κ → 0 refer to the quasi-steady (Q-S) consideration of infinitely
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Figure 3.4: Depiction of simulated cases as well as wind-tunnel experiments within
the parameter space of reduced frequency κ and gust amplitude v′gust ; top: illus-
tration of ratio of gust wavelength to chord length (λx,gust/Lc = π/κ). •↑ denotes
additional DNS at increased disturbance amplitude of modes A↑

v.

large gusts (λx,gust → ∞), see section 2.2. This results in a variation of the inflow
angle of AoA′ = arctan (v′gust/u∞) ≈ 0.57◦ and ≈ 1.15◦ for the two gust amplitudes
v′gust = 0.01 and 0.02, respectively. The flow fields were therefore generated with
steady-state RANS simulations at different angles of attack according to equation
(2.10). For cases with κ > 0, however, time-resolved gusts are simulated using
URANS with the disturbance velocity approach, see section 2.3.2.

The black crosses in figure 3.4 represent the performed (U)RANS simulations
with the subsequent (unsteady) linear stability analysis. The conducted DNS are
represented by circles, with colors matching the gusts illustrated above with wave-
lengths λx ,gust in relation to the chord length Lc. DNS for the quasi-steady cases
(dashed circles) are represented only by the steady-state reference case AoAref
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and the two steady-state cases of the extremes max{AoA} and min{AoA}. The
transient cases in the DNS are conducted with the reduced frequencies of κ ∈
{1.005; 2.01; 3.015; 4.02; 8.04}. However, for simplicity, they are denoted with the
rounded values of κ ∈ {1; 2; 3; 4; 8} throughout this work. The ratio of the modal fre-
quency of the introduced TS-wave (ωDS = 201) to the gust frequency is ωDS/ωgust ∈
{100; 50; 33.3̄; 25; 12.5}, respectively. Hence, the time scales/frequencies are one to
two orders of magnitude apart in this study. DNS, conducted with an elevated level
of initial disturbances in the boundary layer A↑

v are denoted with •↑.
A gust generator was used in the corresponding wind-tunnel measurements to

create an unsteady inflow to the airfoil with reduced frequencies up to κ = 1.67,
see Romblad et al. (2020); Romblad (2023). Therefore, additional cases with the
frequencies κ ∈ {0.34; 0.67; 1.34; 1.67} for the aimed amplitude v′gust = 0.02 are
investigated with the means of URANS and unsteady LST. As depicted in figure 3.4
with gray crosses and a gray dashed line, the effective amplitude of the gust generator
shows a considerable dependency on κ. For a discussion of possible reasons, see
Romblad (2023). Due to the deviation, the experimental results at κ → 0 are
compared with the numerical case of v′gust = 0.01, whereas the measurements at
κ = 1.34 and 1.67 are compared with v′gust = 0.02, see section 3.3.1.

3.2 Characteristics of the unsteady airfoil flow

In general, the amplification rates αi of modes which are leading to laminar-to-
turbulent transition are determined by the velocity profiles u of the boundary layer.
The global Reynolds number is assumed to be constant in the present investigations.
The velocity profiles are in turn governed by the streamwise pressure gradient dp/dx.
Therefore, for a fundamental understanding of the unsteady transition, it is of in-
terest to characterize the unsteady behavior of the pressure gradient as well as the
resulting unsteady velocity profiles. In this section, the results of URANS simula-
tions are used to examine the behavior of the airfoil response to unsteady conditions
with periodic gusts. Due to the complexity of the problem, the results presented
focus on the qualitative behavior of the unsteady airfoil flow for the gust ampli-
tude v′gust and frequency κ. This offers a foundation of understanding the resulting
unsteady laminar-to-turbulent transition. A summary of theoretical considerations
concerning the airfoil response on unsteady flow fields can be found in Reeh (2014).

3.2.1 Unsteady pressure gradient

In steady and unsteady conditions for airfoils with attached flows, the pressure dis-
tribution and hence the pressure gradient dp/dx is mostly determined by inviscid
effects and can be modeled with potential flow theory, see Reeh (2014). In practice,
the pressure distribution determines the circulation, which can be used to calculate
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the lift coefficient cl. In this work, the (unsteady) pressure gradients from URANS
simulations are analyzed, which also takes the viscous laminar and turbulent bound-
ary layers into account. For the investigations of unsteady transition, it is of interest
how the amplitude of the pressure-gradient fluctuation behaves in the case of gusts
compared to the corresponding quasi-steady case. The second interesting aspect
examined here is the spatio-temporal evolution (or “convection” in some sense) of
the pressure gradient over the airfoil surface.
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Figure 3.5: Unsteady airfoil-flow characteristics from (unsteady) RANS simulations.
(a) Pressure-coefficient distribution cp = (p− p∞)/(0.5ρ∞u2

∞) on pressure side. (b)
Amplitude of lift-coefficient oscillation c′l with Sears (1941) function approximation.

The oscillation of the pressure-coefficient distribution cp (pressure side) for two
quasi-steady cases (dashed lines) and one unsteady case (solid lines) around the
steady-state reference case are demonstrated in figure 3.5(a). All cases clearly ex-
hibit an adverse pressure gradient at every instant for x > 0.13. (The small hump
at x ≈ 0.67 arises from the fixed transition in the URANS simulations.) For the
quasi-stationary gusts with κ → 0 (dashed lines), the pressure distribution for the
minimum and maximum AoA corresponds to the strongest and weakest APG oc-
curring over one period, respectively. The pressure distributions shown in figure
3.5(a) for the unsteady case with a DVA gust with κ = 1 at v′gust = 0.02 (red solid
lines) correspond to instants of maximum and minimum pressure gradients over
time. Here, the gust in the inviscid outer flow convects with the free-stream veloc-
ity u∞ (Taylor’s hypothesis) over the airfoil. Therefore, the pressure distribution
and the boundary layer are not (periodically) time-invariant as in the quasi-steady
case. However, the fluctuation of cp, thus here also dp/dx, is significantly attenuated
compared to the quasi-steady counterpart at the same gust amplitude. This general
behavior can be interpreted as a mechanical impedance, which is also observed in
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the (inviscid) unsteady thin-airfoil model, see e.g. Reeh (2014) for the same airfoil.
The attenuation with increasing reduced frequency can also be observed in the fluc-
tuation of the integral value of the lift coefficient c′l in figure 3.5(b). For all simulated
gust amplitudes the same trend over κ can be seen. Furthermore, the values of c′l
coincide perfectly if the result is linearly scaled with respect to the gust amplitude.

The above described impedance of the unsteady airfoil flow can be approximated
with the Sears (1941) function. The function originates from the theory of 2D thin
airfoils and was derived to calculate unsteady effects on airfoil loads in the case of
flight through a pattern of periodic sinusoidal vertical gusts. The complex Sears
function

S(κ) =
H

(2)
1 (κ)(J0(κ)− iJ1(κ))

H
(2)
1 (κ) + iH

(2)
0 (κ)

+ iJ1(κ) , (3.1)

only depends on the reduced frequency κ and is expressed in terms of Bessel (first
kind) and Hankel (second kind) functions. The amplitude |S(κ)| of the function
represents the amplitude ratio of the unsteady solution to the quasi-steady solution.
Therefore, the attenuation is described with increasing κ starting from S(κ → 0) =

1. The oscillation of the lift coefficient can therefore be calculated with

c′l,sears = 2π v′gust |S(κ)| . (3.2)

Figure 3.5(b) shows the curves of c′l,sears for comparison with the simulation results.
Taking into account that the Sears function is derived for thin airfoils, the general
trend is well represented here. The Theodorsen (1935) function C(κ) describes the
related problem of a pitching airfoil, which coincides with the Sears function only
for κ → 0. For more details on both functions the reader is referred to Leishman
(2006).

In general, a pressure-gradient deviation from the steady-state reference also in-
dicates a deviation in the transition position compared to the steady-state reference.
For analysis, the deviation from the steady-state reference case

∆rϕ(x, t) = ϕ(x, t)− ϕref (x) , (3.3)

for different relevant boundary-layer parameters ϕ is introduced in this work. In
some sense, ∆rϕ(x, t) accounts for the contribution of the second component ϕ′

∆gust of
the triple decomposition in equation (2.16) which represents the fluctuation induced
by the gust. For the URANS base flow, ϕ′

mode = 0 applies.
In order to obtain an overview of the transient behavior of the base flow, the

deviation ∆rϕ can be plotted in the x/t plane, similar to the illustration of the
unsteady transition prediction in figure 2.3. Besides the spatio-temporal develop-
ment of boundary layer flow properties, x/t plots can also illustrate the relevant
time scales, length scales, and velocities. In the sections 3.2 & 3.3, the x/t plots are
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3.2. CHARACTERISTICS OF THE UNSTEADY AIRFOIL FLOW

consistently shown for two gust periods with 0 ≤ x ≤ 0.55, covering the relevant
region for the unsteady transition at realistic conditions.

Figure 3.6 shows the x/t plots for the pressure-gradient deviation ∆rdpw/dxs at
the wall of all URANS simulations. For each plot, its position corresponds to the
parameter space matrix in figure 3.4. The convection velocity of the gust with u∞

is indicated with green dashed lines while the phase velocity of TS-waves cTS = 0.35

is indicated with black dashed lines. First of all, in the quasi-steady cases κ → 0

it can be seen that the pressure-gradient deviation is time invariant and increases
from the lower to the higher gust amplitude, cf. figure 3.5. At the frequencies
κ = 1 and κ = 2 a weak delay can already be seen, since the areas with stronger and
weaker pressure gradients show a spatio-temporal evolution. These zones (separated
with solid black lines ∆rdpw/dxs = 0) propagate roughly at the free-stream velocity
u∞ and can be understood as the “footprint” of the gust. For κ ≥ 3, a more
complex pattern downstream of x ≥ 0.3 due to higher harmonics of the gust is
apparent. Consequently, this pattern intensifies with increasing gust amplitude. For
κ = 8, the character of a footprint is even more evident, since the gust wavelength
λx,gust ≈ 0.39 is smaller than the depicted airfoil surface. As for the quasi-steady
cases, the amplitudes of the deviation ∆rdpw/dxs increase for higher gust amplitudes
v′gust . With the exception of the higher harmonics, however, the general pattern
of deviation is independent of amplitude. In accordance with the Sears function
described above, the amplitudes of the pressure-gradient deviation attenuate with
increasing κ. Finally, it should be noted that the TS-waves are convecting more
slowly, which is why they may be exposed to different zones of stronger and weaker
pressure gradients during their lifetime (especially at higher κ).

3.2.2 Viscous response of the boundary layer

The instantaneous amplification rates of the TS-waves are determined by the in-
stantaneous boundary layer velocity profiles. Due to a viscous delay of the laminar
boundary layer, the velocity profiles are not immediately adapting to the change
in the pressure gradient. This delay can be exemplified by the first Stokes prob-
lem, in which a flat plate is suddenly set in motion. The resulting boundary-layer
thickness δ ∼

√
ν t of the self-similar solution depends only on the square root of

the product of the viscosity with the time passed, see Schlichting & Gersten (2016).
Consequently, the qualitative response in time only depends on the viscosity of the
fluid.

For an oscillating horizontal free stream above a fixed plate (transformed second
Stokes problem, see White (2006)), the so-called Stokes layer is formed. In general,
this layer also occurs in oscillating boundary-layer flows in the form of shear waves,
see Ackerberg & Phillips (1972). However, its thickness is significantly smaller than
that of the Prandtl (velocity) boundary layer, which is why it has only a marginal
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Figure 3.7: Spatio-temporal development of boundary-layer properties from URANS
simulation for κ = 1, v′gust = 0.02; velocity/exemplary trajectories: TS-waves
with c−1

TS , free stream/gust with u−1
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for positive or negative pressure-gradient deviation. (a) Displacement thickness δ1
(colors) and momentum thickness δ2 (white lines). (b) Shape factor (deviation to
steady-state reference case) ∆rH12 = H12 −H12,ref .

relevance for the amplification of TS-waves. The case of convective gusts is very
complex as the spatially developed boundary-layer flow responds “as a whole” to the
oscillations, see Reeh (2014). Unsteady laminar boundary layers have already been
characterized by various experimental (see e.g. Lighthill (1954); Hancock (1984)) as
well as numerical studies with analytical solutions (see e.g. Hill & Stenning (1960);
Patel (1975)). However, it should be mentioned that even for simple unsteady
boundary-layer flows, there are no self-similar solutions for the instantaneous veloc-
ity profiles available. The unsteady base flows can be used to validate the numerical
method as well as the experimental setup by comparing its amplitude and phase
profiles of the streamwise velocity in the wall-normal direction. However, unsteady
hot-wire measurements of the boundary layer were not performed for the present
scenario but only for the LAINA case in the next chapter. The general characteris-
tics of the amplitude profiles known from the literature are well reflected, see figure
4.5 in section 4.2.2.

For the characterization of unsteady transition, however, the periodic spatio-
temporal behavior of the boundary-layer profiles is of interest. In figure 3.7(a), the
general evolution of the displacement thickness δ1 and the momentum thickness δ2
is plotted in the x/t plane for the case κ = 1 at v′gust = 0.02. Furthermore, the
velocity of the free stream, exemplary trajectories of TS-waves and the pressure-
gradient deviation (solid lines with ∆rdpw/dxs = 0; positive + and negative −
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phases, cf. figure 3.6) is depicted. It can be seen that the boundary-layer thicknesses
oscillate periodically and are almost in phase with each other. In addition, the
viscous lag is clearly visible, since the minima and maxima of the boundary-layer
thicknesses in the rear region are delayed with respect to the minima and maxima of
the pressure-gradient deviation (− / + ). It can also be seen that the change in the
boundary-layer properties along the TS-wave trajectories is significantly stronger
in the spatial direction than in the temporal direction. As explained in section
2.5.3, this further justifies the utilization of the quasi-steady approach where the
parallel-flow assumption of the local LST is also extended to the temporal direction.

The shape factor H12 = δ1/δ2 is one of the boundary-layer properties which can
be used to approximate the resulting amplification of TS-waves in the varying flow
field. Higher values of H12 generally imply a stronger amplification of disturbances
in an attached laminar flow, while lower values imply a weaker amplification, cf. the
transition prediction method of Wazzan et al. (1981). Analogous to the character-
ization of the unsteady pressure gradient, the deviation of the shape factor ∆rH12

is plotted in figure 3.7(b) for the same case. Modes traveling downstream with the
phase velocity cTS are expected to be more amplified in the area ∆rH12 > 0 (red)
and less amplified in the area ∆rH12 < 0 (blue) compared to the steady-state case.
These areas are phase-locked with the pressure-gradient deviation ∆rdpw/dxs = 0

(solid black lines) at the leading edge/stagnation point. However, the time lag of
the deviation ∆rH12 compared to the deviation ∆rdpw/dxs increases significantly in
downstream direction. As with the pressure-gradient deviation, a “convection veloc-
ity” of the regions with positive and negative deviation of H12 changes slightly over
x. For the case in figure 3.7(b), however, the velocity of ≈ 0.6 for these characteristic
regions can be identified, which lies between the free-stream velocity u∞ = 1 and
the phase speed of the modes cTS = 0.35. The unsteadiness of the transition can
be expected to be stronger for cases where the change of the base flow (convection
velocity) is almost synchronized with the phase speed of the TS-waves.

In figure 3.8, the matrix with the x/t diagrams of the examined cases with the
shape-factor deviation ∆rH12 is shown. For reference, the isolines of ∆rdpw/dxs = 0

(see figure 3.6) are also given. As in the pressure-gradient deviation, two features
can be observed: the increase of the amplitude of ∆rH12 for increased v′gust and the
attenuation of the amplitude of ∆rH12 for increased κ due to the above-described
impedance described by the Sears function. However, the higher harmonics of the
pressure gradient are not reflected in the change of the shape factor.

The steady-state reference case can be used to approximate the (average) region
in x direction which is relevant for the TS-waves leading to transition. According
to the stability diagram in figure 3.3(a) considering Ncrit = 10, the most critical
frequency is ω ≈ 200 with the first point of neutral instability at xbI ≈ 0.08 and
the expected transition at xtr ≈ 0.35. This stretch, with the characteristic length
∆xTS = xbI−xtr ≈ 0.27, can be considered in the x/t planes in figure 3.8 with regard
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to the above-mentioned regions with more or less amplification. For κ ≥ 4, most
of the trajectories are either located in the purely more amplified or in the purely
less amplified regions. As will be shown in the unsteady linear stability analysis in
section 3.3, this intensifies the unsteadiness of the transition considerably. At κ = 8,
virtually all TS-waves travel through both the more amplified and less amplified
regions during their lifetime. Therefore, an attenuation of the unsteadiness of the
transition behavior can be expected here.

3.3 Unsteady linear stability analysis

The unsteady linear stability analysis using the trajectory-following method intro-
duced in section 2.5.3 can be performed on the transient base flows from URANS
simulations presented in the previous section. The transient behavior of the ampli-
fication rates αi and the integrated n-factors subjected to gusts is demonstrated for
a single mode with the frequency ω = 201 in figure 3.9. Here, the quasi-steady case
(κ → 0) with the amplitude of v′gust = 0.01 in figure 3.9(a) is compared with the
transient case κ = 1 with v′gust = 0.02 in figure 3.9(b). The different gust amplitudes
were chosen to roughly compensate for the attenuation of the effective amplitude
for κ ↑ (Sears function), cf. figure 3.11. In the quasi-steady case, branch I and the
spatial amplification rates αi oscillate symmetrically over time. Consequently, the
n-factors—which are calculated along the horizontal trajectories—as well as the re-
sulting transition position xtr also behave symmetrically over the oscillation period.
However, for the unsteady case with κ = 1, it can be seen that the development
of the amplification rates is not time-invariant over the period but “smeared” in
space and time. This behavior is caused by the unsteady evolution of the base-flow
velocity profiles due to viscous delay, cf. figure 3.7(b). Moreover, in this case the
n-factors are calculated by integration along the trajectories with the phase veloc-
ity cTS in the x/t diagram. This results in an asymmetric (or skewed) behavior of
the n-factors which consequently determines the transition location over time. It is
important to emphasize that this behavior is due both to the response of the airfoil
boundary layer and the delay caused by the slow phase velocities of the TS-waves.

In the previous work of Ohno et al. (2022), the unsteady transition for the same
flow scenario was studied in a simplified form. Here, the quasi-steady base flow with
oscillating AoA (hence without DVA gusts) was used to calculate the n-factors with
the trajectory-following approach by using an artificial time scale with respect to
the investigated reduced frequency κ. Therefore, the influences of impedance (Sears
function) and viscous delay described above were not accounted for in this numerical
framework. The present section can therefore be considered to be a significantly
revised and extended version of the previous publication by Ohno et al. (2022).
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3.3.1 Validation with wind-tunnel measurements

The transient envelope N(x, t) ∈ {1 ... 12} considering all relevant modal frequencies
ω is shown in figure 3.10 for four cases. In order to compare the results with the
experimental investigations, the gust amplitude of v′gust = 0.01 is shown for the
quasi-steady case κ → 0 while the gust amplitude of v′gust = 0.02 is shown for
the unsteady cases κ = 1, 1.34 and 1.67. Comparing figure 3.10(a) & (b) with
their counterparts at only one TS-wave frequency ω = 201 in figure 3.9, it can be
seen that the N -factors, and hence also the predicted transition location xtr(Ncrit),
oscillate less drastically in upstream and downstream direction. (Note: This effect
of the resulting envelope is shown schematically for two frequencies ω in figure 2.3.)
For the quasi-steady case κ → 0, a sine-like oscillation of the transition location is
exhibited, e.g. for Ncrit = 10 between x = 0.25 and 0.46. Due to this behavior, the
setup/flow scenario can be considered generic (to a certain degree) for investigations
on unsteady laminar-to-turbulent transition. For the cases with κ > 0, the skewed
or asymmetric behavior of the N -factors over time is clearly observable. In addition,
an attenuation of the up- and downstream movement of N is observed as κ increases.

The numerical results in figure 3.10 can be compared with wind-tunnel mea-
surements from two campaigns: results from Romblad et al. (2020) corresponding
to Ncrit = 10 and from Romblad (2023) corresponding to Ncrit = 12. In both
studies, a slightly modified version of the M-TERA intermittency method of Zhang
et al. (1996) with a suitable threshold for the C3-parameter (periodic ensemble-
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Figure 3.10: Spatio-temporal transition behavior; simulations: N = 0 (branch
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κ = 1.67, v′gust = 0.02.

average) was used to detect the unsteady transition location. In the wind-tunnel
investigations for the quasi-steady case κ → 0, a slightly lower gust amplitude
of v′gust ≈ 0.0087 (AoA′ = 0.5◦) is present compared to the numerical investiga-
tion with v′gust = 0.01 (AoA′ ≈ 0.57◦). Nevertheless, a qualitatively very similar
behavior is clearly visible, where the N -factors and the transition position move up-
stream and downstream “symmetrically” in time. The discrepancy of the transition
downstream-extreme maxx,t{xtr} at max{AoA} (hence t/T = 0.25) can be explained
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by the non-linear translation of the gust-generator impact in the experiments1. For
the frequencies κ > 0, a very good agreement with the results of the measurement
campaign with Ncrit = 10 can be seen. It should also be pointed out that the agree-
ment of the LST at κ = 1.34 with the case Ncrit = 10 is considerably better than
in the result of Ohno et al. (2022), where quasi-steady base flows were employed.
This confirms the necessity of using URANS simulations with time-resolved DVA
gusts to generate transient base flows. The results of the measurement campaign
with Ncrit = 12 for the cases κ > 0 also show good qualitative agreement. However,
some deviation in the area around maxx,t{xtr} is visible, which is most likely due to
the above-mentioned gust-generator behavior. In summary, the unsteady transition
in the experimental campaign with κ ≤ 1.67 and v′gust ≤ 0.02 can be described by
linear effects for the most part.
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−ẋtr ,
u

q.-s. behavior ẋtr ,qs
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with transition prediction of simulations for Ncrit = 12 (a) Extremes of transition
location xtr versus κ (b) Upstream and downstream velocities of transition front
versus κ with v′gust = 0.02 in simulations.

The results of the simulations and the experiments can also be compared quanti-
tatively with the upstream and downstream extremes of the (predicted) transition
location xtr , see figure 3.11(a). For κ > 0.7, the trend of both extremes versus
κ is well captured. The offset of maxx,t{xtr} is explained by the above-mentioned
non-linear translation of the gust generator for Ncrit = 12. For κ < 0.7, a strong
deviation of the experimental results from the LST for v′gust = 0.02 is apparent. This
results from the frequency dependence of the amplitude of the gust generator, see

1This can be explained by two separate effects: first, the transition location in the experiment
is less sensitive to AoA variations close to max{AoA}; second, the efficiency of the gust generator
decreases in the same region; see Romblad (2023) for discussion.
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depiction in figure 3.4 and Romblad (2023) for a detailed discussion. The maximum
oscillation-length of the transition ∆xtr(κ, v

′
gust , Ncrit) = maxx,t{xtr} − minx,t{xtr}

is attenuated for increasing κ and will be relevant for further characterization, see
below.

The differences in the velocities of the transition front in upstream direction ẋtr ,u

and downstream direction ẋtr ,d reflect the skewness or asymmetry of the transition
motion over time. Both velocities from the wind-tunnel measurements and the
LST (v′gust = 0.02) are plotted in figure 3.11(b) versus κ, with their trajectories
exemplified in the inset figure. In order to approximate the velocities ẋtr ,u/d , a linear-
fit method by Romblad (2023) was used here. In addition, for the hypothetical case
of a symmetric upstream and downstream motion of the transition fronts in time
(i.e. quasi-steady behavior), the theoretical non-dimensional velocity

ẋtr ,qs = ∆xtr ·
2κ

π
· 1.47 (3.4)

can be calculated for the respective reduced frequency κ. The reciprocal of the
second part π/(2κ) of the equation corresponds to half the period of the oscillation
T/2. Consequently, the product of ∆xtr · 2/T represents a transition-front veloc-
ity approximated as a straight line between both spatial extremes. This leads to a
simplification of the transition motion to a zigzag pattern, which is therefore cor-
rected by the factor ≈ 1.47 in equation (3.4) to account for the sine-like oscillation
expected in the quasi-steady case. The factor was calculated based on the result
in figure 3.10(a) using the linear-fit of Romblad (2023). Since the attenuation of
the transition motion with increasing frequency is accounted for in equation (3.4)
via ∆xtr(κ), the velocity ẋtr ,qs exhibits a sublinear progression versus κ in figure
3.11(a). The velocities of the transition fronts of the numerical results deviate from
the theoretical quasi-steady behavior as κ increases, with the upstream velocity
ẋtr ,u becoming significantly larger and the downstream velocity ẋtr ,d becoming sig-
nificantly smaller. This reflects and quantifies the degree of temporal skewness of the
transition motion. Seemingly, the absolute velocity of the upstream movement in-
creases approximately linearly with the frequency κ in the LST results. The trend of
the transition front velocities measured in the wind tunnel shows a good qualitative
agreement with the numerical results, despite slightly higher values. Based on the
comparisons presented here, the simulation chain consisting of URANS with DVA
gusts and the unsteady linear stability analysis including all assumptions can be
considered validated for the investigated flow scenario at κ ≤ 1.67 and v′gust ≤ 0.02.

3.3.2 Parameter study

The results of the unsteady linear stability analysis for all other investigated cases
κ ∈ {0; 1; 2; 3; 4; 8} at v′gust ∈ {0.01; 0.02; 0.04; 0.06} (cf. matrix in figure 3.1.2)
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can be found in figure 3.12. Again, all N ∈ {0 ... 12} are shown with exemplary
trajectories (cTS = 0.35) of TS-waves. Here, N = 10 is highlighted (red line),
since this threshold is used in following analyses and corresponds to the transition
with n ≈ 10 investigated in the subsequent DNS. To gain an understanding of the
resulting prediction of the unsteady transition, the effect of the transient base flows
can be accounted for by a direct comparison of the figure 3.12 with the shape-factor
deviation in figure 3.8.

First, the results of all cases at the lower amplitudes v′gust = 0.01 and 0.02 are
discussed. While the N -factors in the quasi-steady cases (κ → 0) show a symmetric
response in time, the motion in the transient cases (κ > 0) can again be seen
to be asymmetrically or skewed over time. For e.g. Ncrit = 10 at v′gust = 0.02,
the ratio of the upstream velocity |ẋtr ,u | to the downstream velocity |ẋtr ,d | of the
transition front increases as the reduced frequency increases up to κ ≤ 4. Moreover,
it can be observed that the increase of the amplitude from v′gust = 0.01 to v′gust =

0.02 intensifies the asymmetry of the transition movement in time. Evidently, the
distance of the oscillating transition position ∆xtr attenuates for both amplitudes
with increasing κ, which can be attributed to the impedance (Sears function) of
the airfoil flow described in section 3.2.1. At κ = 8, Ncrit = 10 hardly oscillates
and corresponds approximately to the transition of the steady-state reference case.
The considerably higher attenuation from κ = 4 to κ = 8 can be attributed to the
fact that TS-waves are traveling through more amplified and less amplified regions
during their lifetime, as pointed out in section 3.2.2. Finally, it should be noted that
the phase lag of the spatial extremes of the transition location (e.g. Ncrit = 10) to
the spatial extremes of branch I (N = 0) can be approximated via the phase speed,
see trajectories in figure 3.12. The oscillation of branch I correlates with the signal
of the gust at the leading edge. However, as in the experimental counterparts, the
phase to the convecting gust is generally disregarded in this work.

The observations described above generally also apply to the results when in-
creasing the amplitude to v′gust = 0.04, see figure 3.12. However, for Ncrit = 10 at
κ = 3 and 4 for example, a very interesting phenomenon can be observed: the course
of Ncrit not only behaves asymmetrically over time but also shows an overturned2

pattern over time. Hence, the overturned pattern of Ncrit suggest that a spot3 of
transitional/turbulent flow periodically appears within the laminar flow (upstream
of the “final” point of transition) for a short time during the oscillation cycle. This
feature is most pronounced for κ = 4, which can be explained using the character-
istic time scale tTS of TS-waves with respect to their spatio-temporal behavior. As
already mentioned in section 3.2.2, the characteristic length scale of the TS-wave

2The term “overturned” is borrowed from structural geology, where the folding of sediments is
categorized as symmetrical, asymmetrical, overturned, etc.

3Note that the turbulent spot is strictly speaking a turbulent strip periodically/uniform in
spanwise direction in this work.

51



CHAPTER 3. ATTACHED-FLOW SCENARIO

trajectories ∆xTS ≈ 0.27 can be approximated with the path where modes grow ac-
cording to linear theory (from branch I to Ncrit = 10) for the steady-state reference
case. Consequently, the characteristic time scale tTS = ∆xTS/cTS ≈ 0.77 corre-
sponds to the approximate average “life expectancy” of the TS-waves progressing in
the x/t plane. Thus, if this time scale equals approximately to the period of the
gust, the TS-waves experience the maximum impact of the transient base flow. This
is also due to the fact that the unsteady properties of the base flow regarding the
amplification are approximately velocity-congruent with the course of the TS-waves,
cf. form-factor deviation in figure 3.8. This can explain the strong asymmetry as
well as the overturned N -factors for the case κ = 4, since the period T ≈ 0.78 is
indeed almost identical to the time scale tTS . At an increased amplitude v′gust = 0.06

for κ = 4, this behavior is significantly enhanced. For κ = 1 at v′gust = 0.04, the
TS-waves are passing the flow much faster in relation to the gust period (4tTS ≈ T ).
Accordingly, the asymmetric behavior is much less pronounced here and an over-
turned pattern of the N -factors is not present. For κ = 8 at v′gust = 0.04, however,
the TS-waves pass through about two gust periods during their lifetime (tTS ≈ 2T ),
leading to a further weakening of the oscillation as well as a disappearance of the
overturned pattern for Ncrit = 10. Based on the above considerations, the critical
reduced frequency for the case of “maximum transient behavior” (i.e. asymmetric
and potentially overturned pattern) expected at T ≈ tTS can be estimated with

κcrit ≈ π · c̃TS

ũ∞
· L̃c

∆x̃TS

=
π cTS

∆xTS

, (3.5)

in a dimensional and non-dimensional formulation, respectively. The crucial pa-
rameter is obviously ∆xTS , which depends mainly on the threshold Ncrit and the
average/steady-state pressure gradient, i.e. AoAref in the present flow scenario.

3.3.3 Discussion

The results of the parameter study discussed above consider only effects described
by linear theory based on transient laminar flow. Therefore, the question arises to
what extent non-linear effects as well as turbulent sections of the flow can have an
influence on the N -factors and the transition location, especially for the cases with
overturned patterns. Before discussing the results of the DNS in the next section,
first considerations for that regard can be made here. Therefore, the most extreme
example at κ = 4 with v′gust = 0.06 is magnified in figure 3.13(a) for a detailed
discussion of multiple aspects. Here, the transition motion for Ncrit = 10 shows
an overturned pattern where a transitional/turbulent spot is predicted to occur for
about a quarter of the period in the interval 0.3 ≤ t/T ≤ 0.56. Thus, as shown
in figure 3.13(a), there are instants in the oscillation cycle (see t = const .) where
the boundary layer exhibits a pattern of laminar-turbulent-laminar-turbulent flow
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( L / T ) in downstream direction x. With the exception of very short moments
at the peaks minx,t{xtr} and maxx,t{xtr}, the transition fronts move exclusively
downstream (ẋtr > 0) in this case. Therefore, the two branches of the transition
motion can no longer be referred to as the upstream (xtr ,u) and downstream-moving
fronts (xtr ,d), but as the leading (xtr ,le) and trailing edges (xtr ,te) of a (temporarily
isolated) transitional/turbulent section. This is illustrated in the inset figures in
figure 3.14(b) where the transition fronts of the asymmetric behavior A is contrasted
with the overturned behavior O .
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Figure 3.13: (a) Simulation for κ = 4 and v′gust = 0.06: spatio-temporal development
of N = 0 (branch I); N ∈ {1 ... 12} with ∆N = 1 in downstream direc-
tion and N = 10; exemplary trajectories of TS-waves with cTS = 0.35;
hypothetical turbulent strip (gray) with leading-edge ẋt ,le = 0.9 and leading-edge
velocity ẋt ,te = 0.4. (b) Extremes of transition location xtr versus κ for all simula-
tion results with the approximation xtr ,sears based on the Sears (1941) function.

The transition pattern in figure 3.13(a) visually resembles the results of the zero-
pressure gradient case 15 and adverse-pressure gradient case D-5 of Obremski &
Fejer (1967) with unsteady natural transition. For both cases, however, the behav-
ior is explained by the identified “convective-transition mode”, which is not captured
by linear theory. Hence, the overturned pattern results rather from the periodic
occurrence of a “creative transition” phase due to strongly amplified TS-waves and a
subsequent downstream traveling turbulent spot corresponding to the phase of the
so-called convective transition. In case 15 of Obremski & Fejer (1967), however, the
shape of the tip of the creative transition front along with the preceding identified
wave packet4 in the x/t plane suggest an overturned N -factor behavior of the in-
coming TS-waves. As will be seen in the investigations with the DNS in the next

4Note that the term “wave packet” in Obremski & Fejer (1967) is misleading, see discussion.

53



CHAPTER 3. ATTACHED-FLOW SCENARIO

section, this may reflect the contribution of linear effects to some extent. However,
it should be emphasized that an overturned N -factor behavior in the theoretical
laminar and linear consideration is not a necessary condition for the occurrence of
the convective-transition mode in the actual flow. Studer et al. (2006) presented
results with an asymmetric transition behavior where the upstream-moving front
is identified as creative transition and the downstream-moving front as convective
transition. Final conclusions and classifications of these scenarios are outlined in
the summary in section 3.5.

At this point, it can be assessed whether the predicted transition pattern for
Ncrit = 10 in figure 3.13(a) is manipulated or even intercepted by non-linear ef-
fects and transitional/turbulent sections. A hypothetical turbulent spot convecting
downstream from the apex minx,t{xtr} (creative transition) is represented by the
gray zone in the x/t plane. The limits imposed by the trajectories of the lead-
ing edge xt ,le and trailing edge xt ,te of the spot are based on several assumptions.
Obremski & Fejer (1967) observed a leading-edge velocity at free-stream velocity
ẋt ,le = 1 and a trailing-edge velocity of ẋt ,te = 0.55 for the ZPG case 15. However,
since a different behavior is expected for an APG as present in this scenario, the
results of Gostelow et al. (1996) on the development of triggered turbulent spots at
several streamwise pressure gradients can be used here5. In that study, a dependency
of the spot velocities on the Pohlhausen pressure-gradient parameter λδ2 is shown.
Hence, with λδ2 ≈ −0.1 found for the steady-state reference case in the relevant
downstream stretch of the flow, see figure 3.2, the leading edge and trailing edge ve-
locities are estimated with ẋt ,le ≈ 0.9 and ẋt ,te ≈ 0.4, respectively. The trajectory of
ẋt ,le is consequently set tangent to the trajectory of the predicted transition ẋtr ,le for
Ncrit = 10 in figure 3.13(a). It can be seen that from x > 0.3 the hypothetical tur-
bulent spot only slightly precedes or “overtakes” the predicted transition location.
Therefore—while additional influences are ignored for the time being—it can be
assumed that the qualitative behavior of the overturned transition pattern accord-
ing to linear theory is generally possible with respect to the transitional/turbulent
leading edge.

The potential non-linear influence on the trailing edge (or the downstream-moving
front for an asymmetric behavior) of the transition, on the other hand, is more
difficult to ascertain. The trajectory of the trailing edge of the hypothetical spot is
significantly faster than the predicted trajectory of the transition front with ẋtr ,te ≈
0.27. The point at which the sketched trajectory xt ,te departs from the predicted
transition was arbitrarily chosen in figure 3.13(a) to resemble case 15 of Obremski
& Fejer (1967). In general, the downstream traveling turbulent region could be
expected to have no effect on the upstream flow, thus the transition front could
emerge according to the linear theory. However, it is known that the so-called calmed

5It is assumed here that a 2D turbulent strip behaves almost identically to 3D turbulent spots,
cf. Mayle & Dullenkopf (1991); Seifert & Hodson (1999).

54



3.3. UNSTEADY LINEAR STABILITY ANALYSIS

region occurs immediately behind a turbulent spot, which temporarily imposes a
strong attenuation of disturbances, see e.g. Orth (1993); Halstead et al. (1997);
Hughes & Walker (2001). Since the trailing edge of a potential calmed region can
be as slow as ẋcr ,te ≈ 0.2, see Gostelow et al. (1997), the incoming TS-waves with
cTS ≈ 0.35 can be strongly attenuated causing the predicted natural transition not
to occur here. In general, the calmed region is associated with the termination of
the creative transition and thus with the initiation of the convective transition, see
Walker (1993). Nevertheless, the question remains as to why a convective transition
with a subsequent calmed region occurs at all, since linear theory always predicts a
continuous transition location upstream under the assumption of continuous initial
perturbations A0. However, what at first glance appears to be a chicken-or-the-
egg problem (calmed region vs. absent natural transition) can be settled with the
subsequent DNS presented in the next section. It will be shown that the transient
(viscous) delay of the mean flow distortion is the driving force for the occurrence of
the convective-transition mode in case of natural transition with TS-waves.

3.3.4 Dimensional analysis and characterization

Nevertheless, the results of the linear stability analysis of the transient laminar
flow are essential for the comprehension of the respective transitional flow with its
complex non-linear effects. Furthermore, the results of the parameter study in figure
3.12 are used to venture a general description of the unsteady natural transition with
the means of dimensional analysis and other considerations. An obvious start for this
characterization is the assessment of the spatial extent of the oscillating transition
location ∆xtr versus gust amplitude and reduced frequency. Figure 3.13(b) depicts
the spatial extremes of the transition location at Ncrit = 10 versus κ for all numerical
results. As discussed above, the frequency-dependency of the gust impact due to the
impedance is clearly reflected in the attenuation of the extremes and therefore ∆xtr .
Hence, it is suggested that the Sears (1941) function from equation (3.1) can be
employed to account for this effect by scaling the length of the oscillating transition
from the respective quasi-steady case:

∆xtr ,sears = |S| ·∆xtr ,κ→0 . (3.6)

Thus, the dependency of the effective amplitude on the frequency κ (or λx ,gust/Lc)
is considered with |S|, while the gust amplitude v′gust and the threshold Ncrit is
accounted for with ∆xtr ,κ→0. The course of the extremes can therefore be approx-
imated with xtr ,sears = xtr ,ref ± ∆xtr ,sears/2, see lines in figure 3.13(b). Note that
linear scaling with respect to the gust amplitude is applied to calculate ∆xtr ,κ→0 for
the cases without a quasi-steady reference, cf. linear relationship of c′l ,sears ∼ v′gust in
equation (3.2). For κ ≤ 4, a remarkably good agreement of the Sears approximation

55



CHAPTER 3. ATTACHED-FLOW SCENARIO

with the extremes of the simulations can be observed. Not surprisingly, the attenu-
ation from κ = 4 to κ = 8 is considerably stronger than the approximated effect of
the impedance described by the Sears function for all amplitudes. This is in agree-
ment with the qualitative analysis described above that the TS-waves travel several
times through stronger and weaker amplified spatio-temporal regions, since their
lifetime greatly exceeds the period of the oscillation at high κ. Accordingly, when
estimating ∆xtr ,sears with equation (3.6), additional attenuation beyond the critical
reduced frequency κcrit (here ≈ 4) given in equation (3.5) should be considered.

To assess the degree of unsteadiness with regard to the temporal asymmetry of
the transition fronts, a dimensionless number can be derived. The reduced frequency
κ, cf. equation (2.6), is not a suitable characterization measure since it considers the
chord L̃c as the characteristic length which has no direct relation to the local physics
of the transient boundary-layer transition. Hence, a new dimensionless quantity

κtr =
2π f̃gust ∆x̃tr

ũ∞
= 2κ ∆xtr , (3.7)

is suggested, taking maximum length of the spatial oscillation ∆xtr into account
in a dimensional and non-dimensional formulation, respectively.6 This definition
implicitly takes into account the effective amplitude of the gust, i.e. the absolute
amplitude v′gust as well as subsequent attenuation-effects described above. Therefore,
by effectively multiplying the gust frequency with the amplitude effect, a suitable
measure of the general unsteadiness concerning transition is derived. This contrasts
with the “non-steady Reynolds number” ReNS = (ũ′

gust ũ∞)/(ω̃gust ν̃) = Re ·u′
gust/(2κ)

suggested by Obremski & Fejer (1967), where the amplitude is in the numerator and
the frequency is in the denominator, see also reviews Loehrke et al. (1975); Walker
(1993). Since the numerator of equation (3.7) is proportional to the theoretical
velocity of the transition front with a quasi-steady behavior ẋtr ,qs , cf. equation (3.4),
and the phase speeds of the TS-waves are always coupled to u∞, κtr ∼ ẋtr ,qs/cTS

applies. Hence, this quantity can also be interpreted as a ratio of two velocities
or gradients in the x/t plane. The velocities cTS and ẋtr ,qs are about the same for
κtr ≈ 1 in case of a zigzag motion or κtr ≈ 1/1.47, respectively, in case of a sine-like
motion, cf. section 3.3.1.

An earlier version of this definition was already introduced by Ohno et al. (2022)
and also taken up by Romblad (2023), in which ∆xtr ,κ→0 of the respective quasi-
steady case was used as the characteristic length. In contrast to the previous defini-
tion, the revised formulation in equation (3.7) introduces an implicit character, since
κtr can also decrease for an increasing κ in case of a strong attenuation of ∆xtr(κ).
This proves to be advantageous for the following characterizations of the results
from linear theory. However, a non-implicit variant κtr

sears of the quantity in equation

6Note that 2π is used in the definition of κtr , whereas only π was used for κ in this work.
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(3.7) is introduced here where the amplitude ∆xtr ,sears of the Sears-approximation,
cf. equation (3.6), is employed as the characteristic length. Consequently this def-
inition only accounts for the effective amplitude of the gust while neglecting the
above-described additional attenuation of the n-factors, especially for κ > κcrit . In
the discussion of the DNS results in section 3.4.8, it is shown that this quantity is
suitable for characterizing the occurrence of non-linear effects.
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ẋ
tr
,d
/
te

0 0.5 1 1.5 2
κtr

phase velocities cTS

qu
as

i-s
te

ad
y

be
ha

vi
or
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In figure 3.14, the velocities of the transition fronts versus κtr are shown for all
numerical results with Ncrit = 10 and 12. The theoretical velocity of the transition
fronts for a quasi-steady behavior from equation (3.4)—which can now be simplified
to ẋtr ,qs = κtr/π · 1.47—is employed again. In contrast to the course of ẋtr ,qs(κ)

in figure 3.11(b), ẋtr ,qs(κ
tr) represents all gust amplitudes v′gust and shows a linear

trend in figure 3.14(a) since the attenuation for increasing frequencies is eliminated
when using κtr . Likewise, the downstream/trailing edge velocities ẋtr ,d/te for all
cases coincide to a clear trend for increasing κtr , see figure 3.11(a). In this course it
can be seen that the velocities initially correspond to the quasi-steady behavior for
very small κtr ⪅ 0.2. However, for increasing unsteadiness κtr , they continuously
deviate from the quasi-steady behavior reflecting the asymmetry of the transition
with respect to ẋtr ,d/te . Apart from the apparent constraint ẋtr ,d/te < ẋtr ,qs , the
velocities can obviously never exceed the phase velocities of the TS-waves cTS , at
least in the purely linear consideration presented here. Looking closely at, e.g., the
amplitude v′gust = 0.04, it can be seen that the velocity increases steadily along with
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κtr from κ = 1 to κ = 4. The case with the highest frequency κ = 8 exhibits a
slower velocity but still agrees with the general course due to its characterization
with κtr which decreases as well.

A very clear trend can be also found for the upstream/leading edge velocities
ẋtr ,u/le of all cases in figure 3.14(b). The reciprocal formulation is used here to
overcome the “jump” from ẋtr ,u → −∞ to ẋtr ,le → +∞ in the change from the
asymmetric transition pattern A to the overturned transition pattern O , cf. inset
figures. Consequently, 1/ẋtr ,u/le = 0 also determines the boundary of the asymmetric
and overturned behavior, with which a critical value for the unsteadiness parameter
based on the trend of the results with κtr ≈ 0.9 is found. Note: The red line in
figure 3.29 qualitatively corresponds to this value and therefore represents the limit
for the occurrence of the overturned pattern. The upstream velocity is always faster
than the theoretical quasi-steady velocity |ẋtr ,u | > ẋtr ,qs . In this concept with the
linear theory, the leading-edge velocity for the case of the overturned pattern cannot
be slower than the phase velocity of the TS-waves (ẋtr ,le > cTS ), see trajectories in
inset figure.

The experimental results of Romblad et al. (2020); Romblad (2023) used for vali-
dation in section 3.3.1 were attributed to purely linear effects and consequently show
a good agreement with the numerical results using the dimensionless characterization
(not depicted in figure) with κtr ≤ 0.39. Another example from the literature with
apparent linear behavior is Case1 by Studer et al. (2006) with κ ≈ 0.44 (St = 0.14).
Here, the level of unsteadiness is κtr ≈ 0.11 with the transition front velocities
ẋtr ,d ≈ 0.048 and ẋtr ,u ≈ −0.06, see gray stars in figure 3.14. For Case2 of the
same work with κ ≈ 1.35 (St = 0.43) and a higher amplitude, however, κtr ≈ 1.49

with ẋtr ,d ≈ 0.348 and ẋtr ,u ≈ −1.51 can be determined which does not agree with
the trend in figure 3.14. This is not surprising since a convective transition was
identified for the downstream-moving transition front which is not covered by the
purely linear considerations here. The same applies to the cases 15, D-5 and D-6 of
Obremski & Fejer (1967) where κtr ≈ 5.53, 3.77 and 2.06 with ẋtr ,d/te ≈ 0.55, 0.53
and 0.5 is found, respectively. Hence, also in agreement with the DNS results of the
next section, non-linear effects are to be expected for κtr ⪆ 0.5.

Based on the analyses described above, a general scheme for predicting the oscil-
lating transition location can be outlined as follows:

a Linear stability analysis of quasi-steady case κ → 0 for base flows AoA′(v′gust)

(acquired e.g. with XFoil or RANS) to determine ∆xtr ,κ→0 and the character-
istic length scale of the trajectories ∆xTS for a given Ncrit .

b Approximation of the effective transition amplitude ∆xtr(κ) with the Sears
function, cf. equation (3.1), while modeling additional attenuation for κ >

κcrit(∆xTS ), see equation (3.5).
c Estimation of transition front velocities ẋtr according to the trend in figure
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3.14 by employing the unsteadiness quantity κtr , cf. equation (3.7).
d Consideration of additional non-linear effects for κtr ⪆ 0.5 based on DNS/WT

results, potentially with a semi-empirical approach.

Furthermore, the unsteady stability analysis could be employed as a transition
model for URANS simulations of flows with natural transition at unsteady condi-
tions, requiring only point d to be additionally considered.

3.4 Direct numerical simulations

In the DNS of the present flow scenario, transient base flows from (U)RANS sim-
ulations are prescribed as unsteady boundary conditions. The numerical setup of
the underlying (U)RANS simulations is consistent with the investigations discussed
above. At the comparatively high Reynolds number of Re = 3.4 · 106, compressible
DNS at lower Mach numbers are almost impossible due to limited computational re-
sources. Consequently, the DNS are performed with Ma = 0.3 to allow calculations
with a non-prohibitive time step. Even though this Mach number is considerably
larger than in the wind-tunnel investigations (Ma ≈ 0.11), the flow can still be
considered as quasi-incompressible.

3.4.1 Numerical setup and processing

Figure 3.1 depicts the location and extent of the curvilinear DNS domain. The
position of the wall-normal inflow boundary xin = 0.13 is selected with regard to
the modal disturbance input just downstream at xDS = 0.15. In contrast to the
investigations with unsteady linear stability analysis, it is not possible to spawn TS-
waves at the upstream and downstream oscillating branch I. Actuation upstream of
branch I would lead to a rapid vanishing of the modes. Accordingly, the TS-waves
have to be introduced downstream of branch I where amplification αi < 0 is present
over the whole gust period, see location in the stability diagram in figure 3.3(a)
for the steady-state reference case at AoAref . The outflow boundary is located
at xout ≈ 0.704, whereby the flow is only analyzed up to x = 0.67 due to the
adjacent sponge zones and grid stretching (see section 2.6.2) at the outflow. As
can be seen in figure 3.5(a), the flow in the selected streamwise domain extent is
exposed to an APG at every instant. The constant wall-normal height of the DNS
domain is set to ys,top = 0.05, whereby the grid stretching is defined according to
the description in section 2.4. The spanwise extent of the domain ∆z0 = 0.0134 is
determined on the selection of the disturbance input, see below. A grid resolution of
5120×200×256 ≈ 262.2M points is chosen along the airfoil contour, the wall-normal
direction and the spanwise direction, respectively.
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With this grid, the modes introduced at the disturbance strip (see below) are
resolved with ≈ 105 points in xs direction and 256 points in z direction. The
boundary layer is resolved with > 40 points in ys direction. Given the utilization of
a high-order code, this is a very high resolution for the laminar flow region containing
linear modes. However, this ensures that potential non-linear transient effects (such
as the motion of the transition location) are also resolved when gusts are applied.
Furthermore, this high resolution allows the generation of a sufficient number of
higher harmonics to simulate the (weakly) non-linear transitional part of the flow.
In general, the resolution of the transition process is validated with results from
LST, see below. The flow downstream of the transition is sufficiently resolved with
the inner units of ∆x+

s < 16, ∆y+s,w < 1.4 and ∆z+ < 8 (see Poggie et al. (2015)) to
describe the qualitative behavior of the turbulent boundary layer. The simulations
are performed with a time step of ∆tsim = 1.56 · 10−6.

The boundaries at the inflow, free stream, and outflow are treated with charac-
teristic unsteady boundary conditions including forcing terms, see section 2.6.2 &
2.6.3 for fundamentals. The corresponding sponge zones are applied at the inflow,
outflow and the free stream, cf. distribution of G(x) in figure 3.1. In streamwise
direction, the sponge at the inflow ends at xsp,in = 0.148 while the sponge at the
outflow starts at xsp,out = 0.671 with the maximum values of the gain distribution
for equation (2.24) set to Gmax ,in = 250 and Gmax ,out = 500, respectively. In wall-
normal direction, the sponge for the free-stream boundary starts at ys,sp,top = 0.031

with Gmax ,top = 250. The wall boundary condition is chosen to be adiabatic, while
periodic boundary conditions are used for the spanwise direction.

In this flow scenario, the so-called fundamental resonance is employed to simulate
a controlled transition to turbulence. This secondary instability with its consequent
breakdown scenario with aligned Λ-vortices was first observed by Klebanoff et al.
(1962) and later applied in several investigations with DNS, see e.g. Rist & Fasel
(1995). Thereby, three modes with the same frequency are introduced: a 2D TS-
wave as the primary mode and a pair of oblique waves as secondary modes running
in opposite spanwise direction z with lower initial amplitudes. These modes are
denoted here as (1, 0) and (1,±1), respectively, according to the definition in the
double Fourier spectrum (h, k) described in section 2.6.4. Here, the disturbance
strip is located at xDS = 0.15 with a slit size of ∆xs,DS = 2.5 · 10−3. A summary of
disturbance-input parameters for the definition of the disturbance function v′s,DS in
equation (2.28) is given in table 3.1.

As can be seen in the stability diagram in figure 3.3(a), the primary mode (see
“DS”) with ωDS = 201 is chosen to be in the center of the range of amplified TS-waves.
Selecting lower frequencies might be problematic, since branch I can potentially be
temporarily further downstream than the disturbance strip during the oscillation.
At higher frequencies, however, there is a risk of “dropping” behind branch II in
case of strong gusts. For a clean spectral analysis of the laminar stretch of the flow
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(1, 0) (1,±1)
Case ωDS βDS Av ωDS ,sec βDS ,sec Av ,sec ncrit

• 201 0 5 · 10−6 201 ±450 2.5 · 10−7 ≈ 10
•↑ 201 0 1 · 10−4 201 ±450 5 · 10−6 ≈ 7

Table 3.1: Overview of disturbance-input parameters for fundamental resonance for
the default case as well the case with increased initial amplitudes •↑.

field with FFT and CWT, the precise value of ωDS = 201 was chosen because it
always corresponds to a multiple of the fundamental frequency of the simulation
ωsim , which depends on the gust frequency and number of simulated gusts. Figure
3.3(b) shows the amplification rate at xDS versus the spanwise wavenumber βDS ,sec

with the position of the secondary mode (1, 1) with β = 450. Despite the wave-
propagation angle of ξ = arctan(βDS ,sec/αr) ≈ 41◦ typical for oblique modes for
fundamental resonance, the amplification is still high. Due to the 2D base flow,
the mode traveling in negative z direction for β = −450 exhibits the same stability
properties. The spanwise wavenumber also determines the size of the domain in the
z direction, which is identical to the fundamental wavelength λz,0 = 2π/βDS ,sec =

0.0134. The characteristic eigenfunctions of a 2D TS-wave as well as an oblique 3D
mode with the corresponding base-flow velocity profile are shown in figure 3.3(c).
In the default case of this flow scenario, the initial amplitude of the primary mode
is set to Av = 5 · 10−6, with the amplitude of the superimposed secondary modes
being one-tenth of this. As demonstrated in the following results, this actuation
scenario leads to a transition point at ncrit ≈ 10. Simulations with gusts at a higher
ncrit are not possible due to the spatial limitation of the transient base flow in
streamwise direction. However, three additional simulations are performed with an
initial perturbation amplitude of A↑

v = 1 · 10−4 (20 times higher than the default
case), corresponding to a transition location at ncrit ≈ 7. These cases are indicated
with •↑ in the parameter space in figure 3.4.

At least one gust period and at least three characteristic time units (number
of runs through domain with u∞) are simulated for all cases before recording the
time-dependent flow fields for analysis. One gust period is recorded for the cases
with κ = 1, two periods for κ = 2 and 4, three periods for κ = 3 and four periods
for κ = 8. The sampling rate for the recorded flow fields is chosen to continuously
capture the period of the TS-waves at ωDS with 8 time steps.

The results of the URANS simulations and the LST in the previous sections are
discussed for 0 ≤ x ≤ 0.55 while considering the oscillating natural branch I. In
the DNS, however, the analyzed region 0.13 ≤ x ≤ 0.67 is located further down-
stream. With the exception of the double-spectral analysis and flow visualizations,
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only spanwise averaged flow fields are used for analysis. This leads to the neglect of
the secondary (oblique) modes which have significantly lower amplitudes compared
to the analyzed 2D TS-wave. For post-processing, the discrete TS-wave in the in-
stantaneous flow field can be canceled out by applying a temporal running-average
with respect to the period of the harmonic mode. This results to a flow field which
contains the transient DNS solution of the gust impact without the TS-wave in
the laminar stretch. The running-average of primitive variables and boundary-layer
parameters based on the respective flow fields are denoted here with ⟨ϕ⟩ω. Conse-
quently, ⟨ϕ⟩ω should be equal to the transient base flow ϕtbf of equation (2.16) in
the pristine laminar flow were linear theory applies. Furthermore, when subtracting
the running-averaged flow field from the instantaneous flow field,

ϕ′
ω(t) = ϕ(t)− ⟨ϕ⟩ω(t) , (3.8)

the transient modal disturbance—representing ϕ′
mode in equation (2.16)—can be cal-

culated7. This method is used for visualization of the modes in this section. How-
ever, the continuous wavelet transform, see section 2.7, is employed for the transient
spectral analysis of the primary mode (1, 0) with the amplitude ncwt .

The deviation of the DNS solution from the laminar base flow acquired with
(U)RANS simulations generally indicates non-linear effects including sections of
turbulent boundary-layer flow. In unsteady flows, the transient base flow ϕtbf can
therefore be subtracted from the instantaneous running-averaged DNS flow field
⟨ϕ⟩ω, allowing a spatio-temporal characterization of these effects. Here, the devia-
tion from the time-dependent laminar solution is denoted with

∆l⟨ϕ⟩ω(x, t) = ⟨ϕ⟩ω(x, t)− ϕtbf (x, t) , (3.9)

where ϕ represents a primitive variable or a boundary-layer parameter. Furthermore,
a definition of the transient mean flow distortion (MFD) can be introduced based
on the deviation of the tangential velocity profile ∆l⟨us⟩ω. The MFD can be viewed
as the action of the Reynolds stresses and represents (0, 0) in the double-spectral
notation. For consistency, the transient MFD is formulated in this work with

ln(MFD(x, t)) = ln(maxys{∆l⟨us⟩ω(x, ys, t)}/Au) , (3.10)

which corresponds to the definition of the modal amplitude ncwt of the primary
mode (1, 0), see equation (2.34).

7Note that the URANS field ϕtbf is not suitable for subtraction here, since the actual mean flow
in the DNS shows a slight drift which needs to be considered for filtering low-amplitude modes.
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3.4.2 Steady-state baseline case

Before discussing the results of the transient cases with gusts, the setup for the
steady-state reference case at AoAref is evaluated here. A snapshot of the three-
dimensional instantaneous flow using the Q-criterion for vortex visualization (col-
ored with streamwise velocity u) is shown in figure 3.15. As expected, a clear
Λ-vortex including an emerging Ω-vortex at its tip can be seen at x ≈ 0.45 where
the breakdown to turbulence occurs. By employing the filtering method of equation
(3.8), the characteristic eigenfunction of the 2D TS-wave can be clearly seen in u′

s,ω.
Downstream of the transition, however, u′

s,ω reflects spanwise 2D structures in the
turbulent boundary layer at the frequency ωDS . The isolines represent the pressure
distribution of the steady-state 2D base flow from RANS.
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Figure 3.15: Visualization of DNS for steady-state reference case at AoAref .

Figure 3.16 depicts the downstream development of the introduced modes from
double-spectral analysis. The FFT of the amplitudes of the primary mode (1, 0) and
the secondary modes (1,±1) show a generally good agreement with the LST. The
occurrence of the secondary instability can be clearly recognized by the strong in-
crease (hence deviation from the LST) of the modes (1,±1) starting at x ≈ 0.34. At
this location, the amplitude of the 2D mode with maxys{u′

s,(1,0)} > 0.01 is reached,
which is consistent with the threshold value for the onset of fundamental resonance,
see Kachanov (1994). Accordingly, the (weakly) non-linear stage can be found be-
tween this point and the final breakdown to turbulence further downstream. The
transition location can be identified by the peak at xtr ≈ 0.46 before the final
non-linear saturation. The DNS of the steady-state case is validated with hot-wire
measurements by Romblad (2023), see symbols in figure 3.16 representing the pri-
mary mode. Furthermore, the applicability of the continuous wavelet transform (see
section 2.7) for this flow scenario can be verified here. The time-averaged result of
the CWT shows an excellent agreement with the FFT for mode (1, 0) in the laminar
and non-linear transitional part of the flow. The slight discrepancy in the turbulent
boundary layer is irrelevant for the investigations here. The introduced normaliza-
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tion for the transient amplitude ncwt is plotted on the right ordinate in figure 3.16.
For its definition in equation (2.34), the initial amplitude of the modal disturbance
must be determined, which is found here to be Au = 2.3 · 10−6 and A↑

u = 4.5 · 10−5

for the default case and the case with an increased disturbance level, respectively.
Accordingly, the effective initial amplitude has a ratio of Au/Av ≈ 0.5 to the ampli-
tude of the wall-normal blowing and suction. These values are also consistently used
for the transient cases. Consequently, the mode (1, 0) starts with ncwt = 0 at the
location of the disturbance strip xDS . Furthermore, a threshold value of ncrit ≈ 10

can be determined for the above-mentioned transition location, see dashed black
line. This value is found slightly downstream compared to the prediction by linear
theory due to the attenuation in the (weakly) non-linear transitional region.
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Figure 3.16: Downstream development of modal disturbance amplitude u′
s,(h,k) (max-

imum over ys) from FFT, CWT (ωDS = 201) and wind tunnel (ω ≈ 203) of steady-
state reference case at AoAref .

The mean flow distortion (0, 0) in figure 3.16 is comparatively high over the entire
flow, since the RANS solution is used as a reference here, see equation (3.10), and
not a converged steady-state DNS base flow. This is consistent with the following
transient solutions of the MFD for cases with gusts. The MFD shows a strong
increase starting at x ≈ 0.4 before reaching the plateau with ln(MFD) ≈ 12 in the
turbulent flow. However, the value relating to the onset of the (weakly) non-linear
stage is roughly ln(MFD) = 7.5, see dashed blue line. This value is represented by
the second contour line in the following x/t diagrams for the characterization of the
transient MFD for cases with gusts.
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Figure 3.17: Spatio-temporal development of steady-state reference case at AoAref

(a) Skin friction cf (b) Amplitudes of continuous wavelet transform ncwt ; solid white
lines: LST with n ∈ {0 ... 11} with ∆n = 1 in downstream direction, ∆l⟨cf⟩ω =
0.001, maxys{u′

s,cwt} = 0.01, dashed white lines: exemplary trajectories of TS-
waves c−1

TS , free-stream velocity u−1
∞ .

The quality of the simulation in terms of the temporal steadiness/regularity of
the transition as well as the methods for transient analysis can be evaluated for
the steady-state case in x/t diagrams. Figure 3.17(a) shows the spatio-temporal
evolution of the skin friction cf with a continuous, non-intermittent transition front,
indicated by a sudden jump at x ≈ 0.46. In addition, clear traces of the TS-waves are
imprinted in the laminar part of the flow, which are congruent with the theoretical
average phase velocity of cTS = 0.35 of the linear theory represented by dashed
white lines. Traces in the turbulent flow are found to be close to u∞, which is
represented by the dashed black lines. As a tentative criterion for the instantaneous
unsteady transition location, the threshold value ∆l⟨cf⟩ω = 0.001 (hence a value
for the deviation of cf of the running-averaged flow from the instantaneous laminar
reference) is used in this work8. The skin friction cf is a local quantity at the
wall which—in contrast to e.g. H12—is not an integral boundary-layer parameter.
Furthermore, the quantity is directly related to the turbulent fluctuations in the flow,
which is why it is assumed to be a suitable criterion for the unsteady transition here.
In the steady-state case, this threshold exhibits a relatively constant position in the
x/t diagram, see red line in figure 3.17.

Figure 3.17(b) shows the spatio-temporal behavior of the modal amplitudes ncwt

(colors) captured by the continuous wavelet transform. A remarkable good agree-
ment with the linear theory (white lines) up to n(cwt) = 9 can be observed. In addi-
tion, it is also clearly visible here that the amplification in the linear stage as well as
the transition front behave approximately stationary with no significant fluctuations
to be seen. Since no temporal boundary effects are visible here, the time-periodic

8Note that a phase/periodic-ensemble average is not applicable here due to the limited number
of simulated gust periods.
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treatment of the DNS results as introduced in section 2.7 can be considered to be
valid in this scenario with attached flow. The above-mentioned threshold value for
the onset of non-linear effects maxys{u′

s,cwt} = 0.01 equals ncwt ≈ 8.35 and is rep-
resented by the black line. The criterion for the final transition ∆l⟨cf⟩ω = 0.001 is
in perfect agreement with the peak around ncwt ≈ 10 at xtr ≈ 0.46. Consequently,
these two thresholds can be used to separate the linear, the (weakly) non-linear,
and the fully non-linear stage in space and time. The latter region is shaded in the
CWT results and represents the turbulent region of the flow.

3.4.3 Low degrees of unsteadiness

In this section, the results of two cases with relatively low degrees of unsteadiness
are selected for discussion. The unsteady behavior of the transition can be mostly
attributed to linear effects here.

Case: κ = 1, v′gust = 0.01

Figure 3.18 gives the main aspects of the results for the case with κ = 1 and
v′gust = 0.01, which corresponds to the DNS at the lowest degree of unsteadiness
with κtr = 0.15. The instantaneous skin friction in figure 3.18(a) shows that the
transition location oscillates with the gust frequency in upstream and downstream
direction. The transition front shows a very orderly and continuous behavior over
the whole period, which generally resembles the transition in the steady-state case.

The modal amplitude ncwt from the CWT in figure 3.18(b) shows a remarkably
good agreement with the time-dependent prediction of the LST for n ≤ 8 in terms of
levels and phase9. First of all, it can be observed that the “receptivity” of the distur-
bance strip is completely steady over the oscillation period, since the value ncwt = 0

is practically steady and the following levels do not show any deviation from the
LST. The level ncwt = 9 behind the threshold for the (weakly) non-linear stage
shows a minor deviation at the downstream extreme. The phase of the upstream
extreme exhibits a good agreement with the LST, while the peak with ncwt > 10

is more pronounced compared to the steady-state case. Moreover, it can be seen
that the spatial extent of the (weakly) non-linear stage remains almost constant
during the gust period while moving upstream and downstream. As a consequence,
the range ∆xtr of the oscillation of the transition (red line) is smaller compared
to n = 10 of the unsteady linear stability analysis. This is not surprising even in
a purely quasi-steady consideration, since the secondary mechanism of fundamen-
tal resonance is not accounted for by the (primary) LST. In general, the transition
prediction downstream the threshold maxys{u′

s,cwt} = 0.01 must be viewed with cau-

9Note that the phase between URANS simulations, DNS and LST is always consistent and is
not retroactively adjusted.
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Figure 3.18: Spatio-temporal development for κ = 1 at v′gust = 0.01 (a) Skin friction
cf (b) Amplitudes of continuous wavelet transform ncwt (c) Shape-factor deviation
∆l⟨H12⟩ω (d) Mean flow distortion ln(MFD); solid white/gray lines: LST with n ∈
{0 ... 10} with ∆n = 1 in downstream direction, ∆l⟨cf⟩ω = 0.001,
maxys{u′

s,cwt} = 0.01, dashed white/gray lines: exemplary trajectories of TS-waves
c−1
TS , free-stream velocity u−1

∞ .

tion, since transient, non-linear effects may occur here, see below. The transition
location shows only a slight asymmetric behavior in time, with the upstream and
downstream velocities being ẋtr ,u = −0.098 and ẋtr ,d = 0.075, respectively. There-
fore, this case is qualitatively comparable with Case1 of Studer et al. (2006) or the
measurements of Romblad (2023) for κ < 0.5.

The time-dependent shape-factor deviation ∆l⟨H12⟩ω given in figure 3.18(c) can
be regarded as the imprint of the turbulent flow into the theoretical unsteady laminar
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flow. The location of the relatively acute jump from ≈ 0 to ≈ −1.5 of this integral
value is in perfect agreement with the location of the threshold value ∆l⟨cf⟩ω = 0.001

for the transition in the x/t diagram. This behavior contrasts the strongly unsteady
cases shown later and implies a continuous creative-transition mode.

Finally, the transient behavior of the mean flow distortion can be seen in figure
3.18(d) with values for ln(MFD) < 7.25 blanked out. In contrast to ∆l⟨H12⟩ω, a clear
increase of ln(MFD) can be seen well ahead of the transition front continuously over
the oscillation. Since the MFD is defined analogously to the exponentially growing
modes (h, k) and is plotted in a logarithmic scale, the sensitivity for detecting a
change in the base flow is significantly higher here. The growth of the MFD is
mainly related to the primary 2D mode in the (weakly) non-linear region. First of
all, a phase lag of the MFD with respect to the onset of that region (black line) can
be observed. The MFD shows a hysteresis or asymmetric behavior over time with
the contour levels moving slower in downstream direction compared to the upstream
direction. Physically, this can be interpreted as a temporal “recovery” of the base
flow back to the fully linear state. Comparable to the viscous response of the base
flow (see section 3.2.2), this delay has its own time scale which is independent from
the gust period. Literature on the transient behavior of the MFD is not known. In
Wassermann & Kloker (2002), however, a delay of the MFD can be observed.

A closer look at the instantaneous skin friction in figure 3.18(a) reveals that the
downstream-moving transition front shows a somewhat “trembling” behavior, while
the upstream-moving front seems to be even more determinate than the transition in
the steady-state case in figure 3.17(a). In general, the MFD-delay can be suspected
to be responsible for this behavior, as it is also identified as the driving force for
the occurrence of the convective-transition mode at the downstream-moving front,
see below. However, a more self-evident explanation in which the Doppler effect is
used as an analogy is suggested here: The frequency of arriving crests of TS-modes
is generally higher at the upstream-moving front (ωfront > ωDS ) and lower at the
downstream-moving front (ωfront < ωDS ). In other words, more discrete crests of
TS-waves arrive at the upstream transition front than at the downstream transition
front for the same time span, leading to a more or less determinate breakdown to
turbulence, respectively. With the formulation of the Doppler effect with a station-
ary source (disturbance strip) and an unsteady receiver (transition front), a new
dimensionless quantity for the temporal density of transitional modes

Dtr =
ωfront

ωDS

= 1− ẋtr

cTS

, (3.11)

can be introduced10. Therefore, this number always gives the “transitional density”
10For natural initial disturbances, the relative motion of branch I needs to be included in ẋtr .

For the consideration of a broad spectrum of disturbances, Dtr is independent of ωDS in case a
constant phase speed cTS for all frequencies is assumed.
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Figure 3.19: Spatio-temporal development for κ = 2 at v′gust = 0.02 (a) Skin friction
cf (b) Amplitudes of continuous wavelet transform ncwt (c) Shape-factor deviation
∆l⟨H12⟩ω (d) Mean flow distortion ln(MFD); solid white/gray lines: LST with n ∈
{0 ... 11} with ∆n = 1 in downstream direction, ∆l⟨cf⟩ω = 0.001,
maxys{u′

s,cwt} = 0.01, dashed white/gray lines: exemplary trajectories of TS-waves
c−1
TS , free-stream velocity u−1

∞ .

in relation to the steady-state reference with Dtr ,s = 1. It is important to emphasize
that the frequency ωfront is only experienced at the traveling transition front—the
modal frequency ωDS remains the same throughout the flow. In general, this inherent
effect can also occur for a quasi-steady/symmetric temporal behavior of ncrit for the
transition in case cTS ̸≫ |ẋtr ,qs | applies. However, with the asymmetric temporal
behavior of the transition location observed in this work, this effect is intensified for
the upstream-moving front and attenuated for the downstream-moving front.
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With the mentioned transition-front velocities of the case above, the values Dtr ,u =

1.28 and Dtr ,d = 0.79 are obtained for the upstream and downstream direction,
respectively. Consequently, the upstream-moving front has a higher transitional
density by a factor of ≈ 1.62 compared to the downstream-moving front, which is
already a considerable strong deviation given the generally low degree of unsteadi-
ness of this case. In addition, it can be argued that more kinetic energy per time
can be expected when integrating along the upstream-moving transition compared
to integrating along the downstream-moving transition. Therefore—besides the ob-
servations for the instantaneous cf—the slightly more pronounced peak of ncwt at
the upstream-moving front may also be attributed to the Doppler-like effect.

Case: κ = 2, v′gust = 0.02

The results for the case with κ = 2 at v′gust = 0.02 which corresponds to an unsteadi-
ness parameter of κtr = 0.42 are depicted in figure 3.19. The transition location
exhibits a very strong asymmetric behavior in time and approximately coincides
with n = 10 of the LST. The velocities of the transition front are ẋtr ,u = −0.598

and ẋtr ,d = 0.147 with the transitional densities of Dtr ,u = 2.7 and Dtr ,d = 0.58,
respectively. As in the first case, a full-scale convective-transition mode at the oscil-
lation frequency is not visible. The case qualitatively resembles the measurements
of Romblad (2023) for κ > 1.

Again, the CWT in figure 3.19(b) shows a remarkably good agreement with the
unsteady transition prediction for n(cwt) ≤ 8 representing the fully-linear stage of
the pristine laminar flow. In addition, the phase at the spatial minimum agrees well
for n(cwt) = 9. However, in the proximity of the spatial maximum extreme, a sudden
drop in amplitude ncwt is evident at x = 0.5 and t/T = 0.85, which is followed
by a short interruption of the transition front downstream. A preceding “plunge”
of the amplitude can be already seen upstream/earlier at x = 0.4 and t/T = 0.8

indicated by the black line which represents ncwt ≈ 8.35. This divergence from
the transition prediction based on the pristine laminar (but unsteady) flow can be
explained with the impact of the MFD-delay, which is depicted in figure 3.19(d).
In comparison to the first case above, the higher gust amplitude v′gust increases
the spatial extent of the lagging MFD. In addition, the doubled gust frequency κ

shortens the time (relative to the gust period T ) in which the base flow can recover to
the original, undistorted laminar flow. Since the MFD generally represents a change
in the mean velocity profiles, it also implies an alteration of the stability properties
and hence the amplification rates αi. For example, a study by Dörr & Kloker (2018)
with a scenario at steady-state conditions showed that the amplification of TS-
waves can be suppressed by manipulating the mean flow using plasma actuators. In
the case discussed here, the transient MFD appears to momentarily attenuate the
amplification rates of the incoming modes in the “wake” of the downstream-moving
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transition front/non-linear stage. Therefore, the modal amplitude ncwt can decrease
along the wave trajectories cTS which may have consequences for the subsequent
transition front. However, in this case, this weakening is not yet sufficient for the
occurrence of a full, self-perpetuating convective-transition mode.

3.4.4 Comparison to wind-tunnel measurements

In this section, one simulated case is directly compared to the corresponding wind-
tunnel measurements of Romblad (2023). Furthermore, additional experimental
results of this study will be briefly discussed in order to support the reasoning of
the Doppler analogy suggested above.
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Figure 3.20: Spatio-temporal development of wall-pressure amplitudes ncwt ,pw for
κ = 1 at v′gust = 0.02 (a) DNS, solid white lines: LST with n ∈ {0 ... 10} with
∆n = 1 in downstream direction, ∆l⟨cf⟩ω = 0.001 (b) Wind tunnel, solid
white lines: LST with n ∈ {0 ... 11} with ∆n = 1 in downstream direction,
M-TERA transition criterion; dashed white lines: exemplary trajectories of TS-
waves c−1

TS , free-stream velocity u−1
∞ .

Case: κ = 1, v′gust = 0.02

A comparison of DNS results with wind-tunnel measurements for the case κ = 1 at
v′gust = 0.02 with the unsteadiness quantity κtr = 0.32 can be found in figure 3.20.
Since the physical effects resemble qualitatively the last case discussed, only aspects
regarding the validation with the experiments are reviewed here. For detailed plots
of the numerical results, see figure C.1 in appendix C. The experimental results
correspond to the campaign in Romblad (2023) with Ncrit = 12 and have already
been compared with the transient envelope N from the unsteady linear stability
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analysis in figure 3.10(b). Since the measurements are conducted with pressure
taps, the formulation of the modal amplitude ncwt ,pw of equation (2.34) is based on
the wall pressure with the initial amplitudes Ap = 7 · 10−7 and 8 · 10−8 for the DNS
and the wind tunnel, respectively.

The DNS results in figure 3.20(a) show a good agreement with the linear theory,
especially around the spatial minimum of the transition. At lower levels, however,
the modal growth is not detected in the pressure-fluctuation p′w in contrast to the
velocity disturbance u′

s in figure C.1(b). Figure 3.20(b) shows the spatio-temporal
amplitude development from CWT of the wind-tunnel measurements for ω = 201.
This frequency corresponds to the discrete mode introduced in the DNS which al-
lows a direct comparison of the linear stage. Four levels ncwt ,pw ∈ {8, 9, 10, 11} are
available which relate to the unsteady transition prediction. The smoothness of the
experimental results compared to the DNS results is due to the periodic ensemble
mean. Two conceptual differences need to be considered when comparing both re-
sults. First, the LST shows that the spatial oscillation of ncrit is slightly increased
in the wind-tunnel studies due to the naturally oscillating branch I compared to the
DNS with a fixed primary instability point. This explains the difference in shapes
of the spatial minimum of ncrit , which is pointy in the measurements and rather
blunt in the simulations. Nevertheless, the LST can serve as a bridge for valida-
tion between the numerical and experimental results here. Second, a broadband
spectrum of TS-waves is present in the wind tunnel, which is why the transition
can also be triggered by other frequencies. Therefore, in order to narrow down the
valid area of exponential amplification according to the linear theory for ω = 201,
the turbulent flow (downstream of the M-TERA transition criterion) is grayed out
in the result of the CWT. The spatio-temporal evolution of the first contour line
with ncwt ,pw = 8 shows a remarkable good agreement with the linear theory. This
explicitly validates the assumption of a “mobile” branch I at unsteady conditions as
well as a quasi-steady receptivity behavior. The spatial minimum of the oscillating
transition exhibits a good qualitative agreement. However, the spatial maximum of
the transition location is caused by TS-waves at different modal frequencies reaching
critical amplitudes earlier, cf. envelope N in figure 3.10(b).

In addition, it can be seen in figure 3.20(b) that the amplitude maximum in the
non-linear region is considerably higher for the upstream-moving transition front
than for the downstream-moving transition front. This behavior is even more pro-
nounced in the transient RMS-values of the wall pressure (running window) pre-
sented in Romblad (2023). An intuitive explanation for this observation is the
transitional density from the Doppler analogy discussed in section 3.4.3. This effect
could be even more dramatic here, since the wide spectral range of disturbances as
present in the wind tunnel might lead to increased non-linear interactions. With the
transition-front velocities ẋtr ,u = −0.340, ẋtr ,d = 0.152 and the consideration of the
motion of branch I, the transitional densities are Dtr ,u = 1.9 and Dtr ,d = 0.66. Con-
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sequently, a ratio of ≈ 2.9 for the arrival of TS-wave crests between the upstream
and downstream-moving transition is present in the experimental setup.

Further cases of experimental study

To support the argumentation for the origin of this phenomenon, the measurement
results of Romblad (2023) are briefly assessed here with theoretical considerations.
In this work, the more pronounced RMS-peaks at the upstream-moving transition
front compared to the downstream-moving transition front can be even observed
at extremely low gust frequencies. This is surprising at first, since the transition
location is explained for all cases with the (unsteady) primary mechanism of linear
theory without the occurrence of a (non-linear) convective-transition mode. One
explanation would be an unknown effect of the secondary mechanism at unsteady
conditions. However, since the (weakly) non-linear stage approximately keeps the
same length for the case κ = 1 at v′gust = 0.01 (cf. figure 3.18), a quasi-steady
behavior is assumed here for low degrees of unsteady conditions. The probability
of the Doppler analogy to be responsible for the pronounced upstream RMS-peak
is demonstrated with the two cases of Romblad (2023) corresponding to the lowest
frequencies κ. For κ = 0.06, a perfectly symmetric temporal movement of the
transition with |ẋtr ,u/d | = 0.01 can be observed. The transitional densities Dtr ,u =

1.03 and Dtr ,d = 0.97 results in a deviation of only ≈ 1.06, which corresponds to
the negligible difference in upstream and downstream RMS-peaks. For κ = 0.3, the
very light asymmetric motion over time with ẋtr ,u = −0.1 and ẋtr ,d = 0.07 is still
barely visible. Due to the higher absolute velocity of the transition fronts, however,
the transitional densities Dtr ,u = 1.29 and Dtr ,d = 0.8 result in a considerably
high deviation of ≈ 1.61 for arriving TS-wave crests. At the upstream traveling
transition front, more non-linear interactions in a very dense spatial and temporal
domain are expected. Therefore, this concept serves a plausible explanation for the
clearly pronounced RMS-peak which is observable in this case. Moreover, it can
be assumed that the fully non-linear stage also features a transient behavior—e.g.,
temporarily increased entrainment—which may also have a (reinforcing) impact.

3.4.5 High degrees of unsteadiness with convective transition

In this section, the results of two cases with a high degree of unsteadiness, in which
the convective-transition mode appears, have been selected for discussion.

Case: κ = 4, v′gust = 0.02

For case κ = 4 at v′gust = 0.02 (κtr = 0.64) depicted in figure 3.21, a clear convective-
transition mode is evident. The instantaneous skin friction cf in figure 3.21(a) in-
dicates a phase of natural transition that periodically coincides with the upstream
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extreme value of ncrit ≈ 10 from linear theory. During downstream motion, how-
ever, the creative transition appears to “stall” and the laminar-turbulent interface no
longer matches with the LST. The subsequent downstream movement of the turbu-
lent flow is referred to as the convective-transition phase. The trailing-edge velocity
with ẋt ,te = 0.4 is faster than the average phase speed cTS = 0.35 of the TS-modes.
In addition, the spatio-temporal evolution of the turbulent part of the flow exhibits
an overturned pattern with a spatially enclosed spot for 0.7 ≤ t/T ≤ 0.9. However,
this observation is explained with non-linear effects and is therefore different from
the overturned n-factor scenario discussed in sections 3.3.2 to 3.3.4. Responsible for
this behavior is the so-called calmed region, which arises as a consequence of the con-
vective transition in the wake of the downstream-traveling turbulent flow (ẋt ,te). It
is known that this area has velocity profiles with extremely stable properties (hence
high positive αi) regarding disturbances, see e.g. Gostelow et al. (1997). This can
already be observed in the instantaneous skin friction where the traces of the incom-
ing TS-waves disappear when they arrive in the wake of the turbulent spot. The
calmed region persists for a considerable amount of time and is only interrupted by
the turbulent flow which is spawned by the next creative-transition phase. Con-
sequently, the resulting turbulent-laminar interface with a leading-edge velocity of
ẋt ,le = 0.95 can be also attributed to the convective-transition phase. The threshold
value ∆l⟨cf⟩ω = 0.001 neatly separates the (fully non-linear) turbulent flow with
increased cf from the laminar flow and therefore proofs to be also suitable as a
tentative “transition” criterion involving alternating creative/convective phases.

The calmed region as a result of the convective transition is also reflected in the
unsteady shape-factor deviation ∆l⟨H12⟩ω in figure 3.21(c). While an uninterrupted
sudden drop of ∆l⟨H12⟩ω coincides with the criterion for the oscillating transition
(red line) in the cases under low degrees of unsteadiness presented in section 3.4.3, a
smooth progression can be seen here in the wake behind the downstream convecting
turbulent flow. The physics behind this lagging behavior of the integral quantity
H12 can be explained in short by the following: Turbulent fluctuations migrate
downstream (at about ẋ ≈ 0.5) without new disturbances being supplied upstream
due to the absent creative transition. This leads to the collapse of the characteristic
velocity profile of the turbulent boundary layer, which is immediately reflected in
the decrease of the skin friction cf . However, the entire velocity distribution in wall-
normal direction still needs to undergo a relaxation back to the (unsteady) laminar
solution. Like the viscous base-flow response to the gust or the MFD-delay described
above, this happens at its own pace, which is evident in the gradual recovery of the
shape factor in the x/t diagram. The short-time non-turbulent flow of the calmed
region is generally characterized by a relatively full profile at low boundary-layer
thickness, see also Wygnanski et al. (1976); Gostelow et al. (1997).

The CWT in figure 3.21(b) shows the transient modal behavior including its non-
linear implications and provides a profound analysis with respect to cause-and-effect
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Figure 3.21: Spatio-temporal development for κ = 4 at v′gust = 0.02 (a) Skin friction
cf (b) Amplitudes of continuous wavelet transform ncwt (c) Shape-factor deviation
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of the convective-transition mode. The perfect spatio-temporal agreement between
DNS and LST for n(cwt) ≤ 7 indicates the pristine (unsteady) laminar flow which is
unaffected by non-linear effects. It should be noted here that the performance of the
quasi-steady stability analysis with the trajectory-following method is very impres-
sive given the already high frequency with ωDS/ωgust = 25. For n(cwt) = 8, 9 and 10,
a good agreement is only visible for the spatial minimum of the oscillating predic-
tion by linear theory. This area refers only to the (weakly) non-linear stage which
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evidently precedes the final creative transition. In contrast to the cases discussed
above, this stage is clearly confined in the x/t diagram with maxys{u′

s,cwt} = 0.01

(black line) and is periodically interrupted by the phase of the convective transition.
This spatio-temporal domain with high-amplitude TS-waves resembles the identified
“wave packet” by Obremski & Fejer (1967) before the creative-transition mode.

The calmed region in the wake of the turbulent flow is clearly reflected by the
amplitudes from CWT with values as low as ncwt ≈ 3.5. The “origin” of this re-
gion can be approximately identified at the point X where the (weakly) non-linear
stage vanishes and the non-transitional convection begins. Based on this point,
the trailing-edge velocity ẋcr ,te = 0.2 of the calmed region can be approximated,
which corresponds to ∆l⟨H12⟩ω = −0.2 (third contour line). The leading edge of the
turbulent flow features a peak which might be a spectral remnant of the creative
transition at ωDS . This suggestion is supported by the fact that the limit of the
(weakly) non-linear region maxys{u′

s,cwt} = 0.01 is pushed forward at a constant
distance ∆x ≈ 0.028 from the turbulent region.

The most striking observation in figure 3.21(b) is the attenuation of the ampli-
tudes ncwt ≥ 8 during 0.1 ≤ t/T ≤ 0.4 compared to the steadily increasing n-factors
of the original laminar flow. Again, the increased stability (αi ↑) indicates a change
of the transient base flow due to non-linear effects. However, unlike the calmed
region and the observed slight amplitude-dips in the cases discussed above, this be-
havior is found further upstream and not just in the wake of the turbulent flow.
Here, the (weakly) non-linear stage of the creative-transition phase is held respon-
sible for this behavior since it spatially coincides (0.33 ≤ x ≤ 0.45) and periodically
precedes the affected region. This can be confirmed with the MFD in figure 3.21(d),
where the levels remain almost constant spatially at x ≈ 0.38. The MFD does not
appear to be stronger than in the cases at low degrees of unsteadiness. However,
due to the higher frequency κ = 4, the mean flow has “less time” to recover with
respect to the period T which causes an early attenuation of incoming modes.

The spatio-temporal evolution of the MFD in the non-turbulent flow is very con-
tinuous and does not display any evidence of a “trailing edge” of the calmed region.
Both, the MFD (caused by the (weakly) non-linear stage with high-amplitude TS-
waves) as well as the calmed region (caused by the fully non-linear turbulent flow)
can be regarded as phases where the flow recovers from the preceding action of
the Reynolds stresses. Consequently, the early MFD and the calmed region can be
considered as related transient non-linear effects of the unsteady transitional flow.

The observations regarding the MFD are consistent with results of Gostelow et al.
(1997). In this study, an “early calmed region” was found behind a wave packet in
absence of a turbulent flow using wall-normal vorticity profiles for detection. The
authors therefore suggested that the nature of the calmed region is connected more
to the stability properties of the velocity profile than to the turbulent flow. In
this study, a periodic wake-induced transition was investigated at a low Reynolds
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number where TS-waves are not relevant. The attenuation of modes due to the
MFD-delay/early calmed region has therefore a minor impact on the qualitative
behavior of the unsteady flow.

However, in the present flow scenario, TS-waves are continuously introduced with

77



CHAPTER 3. ATTACHED-FLOW SCENARIO

the disturbance strip which corresponds to the unsteady natural transition investi-
gated by Obremski & Fejer (1967), Studer et al. (2006) and Romblad (2023). Here,
the delay of the MFD can be identified as the actual cause of the stalling of the
creative-transition mode and the occurrence of the convective-transition mode. The
crucial point for this transient mechanism can be located at the temporal end of
the (weakly) non-linear stage, where the downstream movement of the transition
begins. TS-waves (e.g. with the trajectory T in figure 3.21(b)) already exhibit a
decreasing amplitude before reaching the calmed region. Accordingly, this can be
referred to as a transient branch II, which is momentarily generated by the lagging
MFD. In addition, the decreasing density of TS-wave crests is expected to promote
the final stalling of the creative-transition at point X . The transitional densities at
the creative phase can be approximated with Dtr ,u = 3.41 and Dtr ,d = 0.69. Since
the calmed region (with a leading-edge velocity of ẋcr ,le = 0.4) is initiated at this
point, all following modes are strongly damped, which results to a self-perpetuating
convective-transition phase. This phase is interrupted once new modes are strong
enough (due to base-flow oscillation or weakening MFD) with the calmed region
weak enough for a new creative-transition.

Figure 3.22 contrasts the laminar/linear transient base flow (URANS) with the
actual non-linear flow solution (DNS) for the trajectory T in picture 3.21(b). With
the flow properties along this trajectory—which corresponds to a TS-wave passing
through different stages of the convective-transition phase—the effect of the tran-
sient branch II can be illustrated and further analyzed. The increasing deviation
of the (running and spanwise averaged) velocity profiles is given in 3.22(a). The
DNS shows practically no difference to the URANS at x = 0.3, t/T = 0.8, which
is why the label “pristine laminar flow” is appropriate here. However, in the stage
attributed to a significant mean flow distortion, a discrepancy of one to four line-
thicknesses are evident. The profiles from DNS are fuller compared to the slightly
inflectional profiles of the theoretical laminar flow. This is consistent with the obser-
vation of increased stability (αi ↑) of the transient flow indicated by the attenuation
of modal amplitudes in the DNS. The calmed region in the wake of the turbulent
spot is characterized by even fuller velocity profiles. The instantaneous velocity dis-
tributions reflect the relaxation from the turbulent to a laminar boundary layer and
qualitatively agrees with findings of Seifert & Wygnanski (1995); Gostelow et al.
(1997). A gradual progression from the early MFD to the calmed region is evident
in the velocity profiles, again indicating the common nature of both effects. The
final velocity profile at x = 0.6, t/T = 1.9 represents the turbulent flow originating
from the most recent creative-transition phase.

The impact of the transient non-linear effect of the MFD/calmed region on the lin-
ear modes can be further analyzed with the stability diagrams based on the URANS
and DNS solutions, see figure 3.22(b) & (c), respectively. While the stability banana
of the URANS flow qualitatively compares to the steady-state reference case in figure
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3.3(a), the amplified region (αi < 0) of the spanwise-averaged DNS flow along the
trajectory is truncated and ends at x ≈ 0.49. The progression of the n-factors down-
stream of the unstable zone shows the rapid attenuation of linear modes within the
calmed region. However, the damping effect of the MFD can already be identified
upstream through the spatial lag of the n-factors which is illustrated with the gray
∆ in figure 3.22(c). The transient branch II for the introduced disturbance ωDS can
be found at x ≈ 0.41 and coincides with the beginning of the descent of ncwt in the

79



CHAPTER 3. ATTACHED-FLOW SCENARIO

0.35

0.4

0.45

0.5

0.55

x

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

t/T =

u′
s,ω

0.02

-0.02

u
1.2

-0.1

pw
7.95

7.75

isocontours:
Q = 100,000

isolines: transient base flow,
p = 7.899 (thick), ∆p = 0.003
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DNS. At this point, the mode still has a value of n ≈ 8.8, which, however, is below
the threshold required to trigger the transition. Since transient branch II spans over
the entire frequency range ω for amplified modes, the described mechanism for the
occurrence of the convective-transition mode is also expected to apply in case of a
broad spectrum of disturbances. In this case, however, the stalling and resuming of
the creative-transition phase must be expected to be different due to the change of
the underlying linear problem, then described with the transient envelope N .

Case: κ = 4, v′gust = 0.06

The case with κ = 4 at v′gust = 0.06, shown in figure 3.23, corresponds to the highest
degree of unsteadiness κtr = 1.83 which is investigated in this work. Increasing the
amplitude by a factor of three compared to the previous case results in an overturned
pattern of the n-factors in the purely laminar/linear consideration. The unsteady
transitional flow is again characterized by a creative-transition phase and a subse-
quent convective-transition phase. A spatially enclosed turbulent zone periodically
appears for 0.6 ≤ t/T ≤ 0.9. In the present case, the overturned pattern is the
product of both the corresponding amplification of the modes by linear effects and
the following non-linear convective transition. Nevertheless, the transition indicated
by cf in figure 3.23(a) appears to have a good agreement with the linear theory. The
overturned spatio-temporal behavior of the creative-transition phase due to linear
theory is evident due to the traces of TS-waves in cf and in the spectral analysis in
figure 3.23(b). Here, the peak of ncwt > 10 exhibits a sharp shape and is aligned to
the TS-wave trajectory. Moreover, several peaks of ncwt > 10 further downstream
and slightly later indicate a continuous creative transition before the turbulent flow
eventually reaches its leading-edge velocity of ẋt ,le = 0.95 at x ≈ 0.53.

Noteworthy in this case is the behavior of the amplitudes ncwt temporally between
the creative-transition phases. The discrepancy of the amplitudes from the linear
theory already starts for ncwt = 5 with a saddle point emerging at x = 0.28. This
continues downstream through a narrow zone of very small amplitudes with values
as low as ncwt ≈ 1.5 and extends to the laminar-turbulent interface of the convective
transition. It is noticeable that lower values are found far upstream after the passing
of the (weakly) non-linear stage than in the wake of the turbulent flow. This indicates
an early calmed region caused only by high-amplitude waves, which relates to the
observations of Gostelow et al. (1997). However, the question must be asked why
TS-waves seem to cross the calmed region but then rapidly recover their amplitude
ncwt just before transition. This is also indicated by the traces of the TS-waves in
cf , which seem to be barely affected by the calmed region. Consequently, effects are
most likely present here that cannot be described by linear theory with the quasi-
steady assumption. The transient MFD in figure 3.23(d) generally agrees with the
location of the calmed region in the x/t diagram. Interestingly, the MFD appears
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to extend in upstream direction during the convective-transition phase, which is
not reflected in the transient shape-factor deviation in figure 3.23(c). An additional
(modal) response of the boundary layer, not covered by the URANS equations but
simulated in DNS, is conceivable here. The behavior of the MFD/calmed region as
well as the TS-waves is therefore not yet fully understood for this case.

As an example, the case κ = 4 at v′gust = 0.06 is selected for an instantaneous,
three-dimensional visualization over one gust period, see figures 3.24 & 3.25. The
oscillating transient base flow is indicated by the upstream and downstream-moving
isolines of the pressure. The times with creative-transition t/T ∈ [0.6, 0.05] can
be identified with high-amplitude 2D TS-waves in u′

s,ω and subsequent Λ-vortices.
Note that the spanwise position of the Λ-vortex alternates with π, since the phase
synchronization of the secondary mechanism is constantly disturbed over the os-
cillation. In contrast, the flow upstream of the laminar-turbulent interface of the
convective-transition phase (starting at t/T = 0.1) is characterized by an absence
of disturbances in u′

s,ω and wall pressure pw, which indicates the calmed region. For
t/T ∈ [0.4, 0.55], a train of approaching TS-waves with steadily increasing ampli-
tudes can be observed. This behavior reflects the overturned pattern of n-factors
predicted by linear theory and therefore corresponds to the spatial and tempo-
ral modulation of the waves imposed by the oscillating boundary-layer flow. At
t/T = 0.6, four clearly isolated Λ-vortices can be seen which represents the onset of
the creative-transition phase. The inner two Λ-vortices already depict an advanced
stage with ejecting Ω-vortices, which again is consistent with the overturned tran-
sitional behavior. This leads to an isolated turbulent spot which can be observed
starting at t/T = 0.65. The leading edge of the patch moves rapidly with ẋt ,le = 0.95

and outruns the remaining downstream TS-waves. Nevertheless, two Λ-vortices can
be still found at t/T = 0.65 and t/T = 0.7 behind the turbulent flow, which can be
attributed to the overturned n-factor behavior. The large fluctuations in u′

s,ω at the
leading edge of the turbulent flow relate to 2D structures at the frequency ωDS . This
is consistent with the CWT in figure 3.23(b) and suggest that spectral remnants or
2D structures from the creative-transition are pushed downstream by the turbulent
spot. Finally, the turbulent flow penetrates the calmed region before merging with
the previous turbulent spot (not shown) at its much slower trailing edge with the
velocity ẋt ,te = 0.4.

3.4.6 Parameter study

The results of the CWT for all other simulations with κ ∈ {1; 2; 3; 4; 8} at v′gust ∈
{0.01; 0.02; 0.04; 0.06} (cf. matrix in figure 3.1.2) are given in figure 3.26. They
demonstrate that the transition prediction with the trajectory-following method
shows a (qualitatively) good agreement for the pristine laminar flow and the phase
of creative transition in all cases. However, for κ = 8, the n-factors deviate slightly
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from the modal amplitudes in the DNS. Since the temporal scales of the TS-waves
and the gusts are only about one order apart with ωDS/ωgust = 12.5, the quasi-
steady approach for the stability analysis may reach its limits here. In addition, a
mildly increasing deviation from LST is observed with increasing gust amplitude.

Generally, a clear trend of the unsteady transition behavior is evident versus
gust frequency κ and gust amplitude v′gust . The individual effects and types of
transition have already been discussed in detail in sections 3.4.3 to 3.4.5. Apparently,
the occurrence of the convective-transition mode depends on the gust frequency
and the gust amplitude. All cases with v′gust = 0.01 show a continuous creative-
transition mode with an uninterrupted (weakly) non-linear stage. For v′gust = 0.02,
however, a convective-transition mode for the cases κ ≥ 3 is apparent. At κ = 8,
the convective transition/calmed region can hardly develop spatially, as it is directly
overrun by a new turbulent spot emerging from the next creative-transition phase.
For v′gust ≥ 0.04, all cases exhibit a convective-transition mode. For κ = 1 at
v′gust = 0.04, it should be noted that a transient branch II is already reached in
the theoretical consideration of the undisturbed but unsteady laminar flow. This
is indicated by the white lines of the linear theory extending only to n ≤ 6. For a
broad spectrum of modal disturbances, a convective-transition mode might not be
present here. A slight fluctuation of ∆l⟨cf⟩ω = 0.001 can be seen at the trailing edge
of the turbulent flow in case κ = 4 at v′gust = 0.04. This is attributed to an acoustic
perturbation emanating from the upstream creative transition via a trajectory with
the velocity ≈ u∞(1 + 1/Ma).
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Figure 3.27: Spatio-temporal development of amplitudes ncwt from DNS at increased
disturbance amplitude of modes A↑

v (a) κ = 2 at v′gust = 0.02 (b) κ = 4 at v′gust =
0.02 (c) κ = 4 at v′gust = 0.06; solid white lines: n-factors from LST with n ∈
{0 ... 11} with ∆n = 1 in downstream direction, ∆l⟨cf⟩ω = 0.001,
maxys{u′

s,cwt} = 0.01, dashed white lines: exemplary trajectories of TS-waves c−1
TS ,

free-stream velocity u−1
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The results of the CWT for the simulations with increased initial modal ampli-
tudes A↑

v and the resulting threshold value ncrit = 7 are depicted in figure 3.27. In
agreement with linear theory, the case κ = 2 at v′gust = 0.02 in figure 3.27(a) shows
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an earlier transition location which oscillates only weakly in contrast to the case
with ncrit = 10 discussed above. The same observations apply to the case κ = 4 at
v′gust = 0.02 in figure 3.27(b). However, it is interesting to note that the convective-
transition mode does not occur here due to the increased initial perturbation (smaller
ncrit), cf. default case in figure 3.19(b). For the case with κ = 4 at v′gust = 0.06

in figure 3.27(c), the convective-transition mode is sill present but greatly reduced
in space and time. Accordingly, the occurrence of the convective-transition mode
also depends on the threshold value ncrit/initial amplitude Av. Moreover, another
interesting observation here is that the length of the (weakly) non-linear stage in
figures 3.27(a) & (b) oscillates harmonically and without interruptions at about the
same length in the x direction. Given the comparatively high frequencies κ = 2 and
4, this supports the assumption made above that the transient behavior of the sec-
ondary mechanism (fundamental resonance) can also be considered as quasi-steady
here.

3.4.7 Discussion and comparison with literature

The general phenomenon for the occurrence of the convective-transition mode as
found in this work is depicted in figure 3.28(a) and is revisited here. This qualitative
description of the physical process therefore refers to the case of natural transition
with TS-waves in an oscillating flow with an (average) APG. The white region
represents the pristine laminar flow which relates to the transient base flow. In
this range, deformations of the velocity profiles are still negligible. Therefore, TS-
waves show linear but unsteady behaviour along their trajectories, corresponding
to the quasi-steady LST (black lines). The fully non-linear turbulent flow (gray)
is periodically triggered by the creative transition (thick red line) were TS-waves
reach critical amplitudes. This phase is preceded by the weakly non-linear stage
(thin red lines) in which the secondary mechanism (resonance) leads to the final
three-dimensional breakdown.

The cycle can be divided into three intervals along the trajectories, referred to
here as TS-wave “cohorts” i to iii . Cohort i corresponds to the second half of the
creative-transition phase where the amplitudes agree with the linear theory based
on the theoretical unsteady laminar flow. As for steady-state conditions, the MFD
(light blue) increases due to the high-amplitude waves with u′ > 0.01 in the (weakly)
non-linear stage. For the transient flow, however, the MFD is lagging and does not
decrease at the same velocity as the theoretical downstream movement of critical
n-factors for transition. The MFD-delay therefore causes fuller velocity profiles
with increased stability properties αi ↑ for the TS-wave cohort ii . Consequently,
these modes experience a transient branch II (αi > 0) which is indicated by the
divergence of the actual amplitudes (thin red lines) from the theoretical pristine
laminar/linear behavior (gray lines). This is identified to be the key mechanism for
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the emergence of the convective-transition mode, as the TS-waves fail to reach the
threshold required for the natural transition to turbulence. The stalling point of the
creative transition is found at X , which coincides with the disappearance of the
secondary mechanism indicated by u′ < 0.01 for the 2D modes (outer thin red line).
It is assumed that the decreased frequency of arriving TS-wave crests (and thus also
of Λ-vortices) at the downstream-moving transition front (Doppler effect analogy)
has an additional reinforcing effect on the emergence of the transition stalling. In
other words, the turbulent flow is expected to be more prone to convect downstream
if the transition front is fed at a less frequent rate with incoming disturbances. The
onset of the convective transition initiates the calmed region (dark blue) in the
wake of the turbulent spot, which also briefly forms a spatial “hole” in the turbulent
flow. At this point, the convective-transition phase can be considered to be self-
perpetuating, since the subsequent modes of the cohort ii will be damped as they
enter the calmed region. This phase can only be overcome once the TS-waves are
strong enough and/or the calmed region is weak enough to trigger natural transition.
Hence, the beginning of cohort iii is defined with the associated trajectory. This
interval refers to the first half of the creative-transition phase, in which the modes are
still attenuated (cf. gray lines) due to the not fully recovered mean flow. Therefore,
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compared to the theoretical laminar/linear prediction, the transition location in the
streamwise direction is slightly delayed.

The velocities of relevant characteristics of the convective-transition mode, cf.
figure 3.28(a), remain approximately constant for the investigated cases. This is not
surprising since all cases relate to the same average flow with the same APG and
the transition oscillates only in a limited range of Rex. The velocities of the leading
and trailing edges of the turbulent flow detected with the criterion ∆l⟨cf⟩ω = 0.001

are found at ẋt ,le = 0.95 and ẋt ,te = 0.4, respectively. The values are consistent with
the extremes of the measured velocities for the convection of a turbulent spot under
an APG by Seifert & Wygnanski (1995). In the work of Gostelow et al. (1996, 1997)
with an APG, the velocities ẋt ,le = 0.872 and ẋt ,te = 0.413 were determined. For the
convective phase at natural transition, Obremski & Fejer (1967) found trailing-edge
velocities of ẋt ,te = 0.53 and = 0.5 for the APG cases D-5 and D-6, respectively. For
the related Case2 of Studer et al. (2006), ẋt ,te = 0.348 was observed. A summary
of spot velocities for ZPG cases is given in Pfeil et al. (1983).

The leading edge of the calmed region ẋcr ,le = 0.4 is equal to the trailing edge of
the turbulent flow and is inaccessible for the TS-waves with cTS = 0.35. The ap-
proximation of the trailing-edge velocity of the calmed region ẋcr ,te = 0.2 is based on
the transient behavior of modal amplitudes ncwt , which coincides with the constant
level of ∆l⟨H12⟩ω = −0.2. This is in agreement with Gostelow et al. (1997) where
a threshold for the velocity fluctuations was selected to identify the calmed region
with ẋcr ,te = 0.194. However, due to the observed transient behavior of the MFD,
it is questionable whether the calmed region can be confined precisely in space and
time. Levels of ln(MFD) which relate to the onset of the convective-transition phase
are found to move downstream at velocities as slow as ẋmfd = 0.05. For ZPG flows,
the calmed region exhibits higher velocities with ẋcr ,te ≈ 0.3 due to the increased
velocity of the spot trailing edge, see e.g. Orth (1993); Halstead et al. (1997). Con-
sequently, the calmed region cannot be accessed by TS-waves in this case, since their
phase velocities are usually found at cTS < 0.3.

Most comparable to the observed transient mechanism presented in figure 3.28(a)
is Case2 of Studer et al. (2006), where a convective phase was found for natural TS-
wave transition at an APG. In this case, however, the (creative) transition front
is continuously moving upstream without being interrupted by a calmed region.
Accordingly, no overturned pattern with spatially enclosed turbulent and laminar
regions can be found. With the new findings, the cause of this difference could be
either explained with a weaker calmed region or stronger disturbances. The lat-
ter is likely due to the broad frequency range of TS-waves which indicates “more”
chances to reach critical n-factors, cf. envelope in figure 2.3. The APG case D-5
of Obremski & Fejer (1967) shows periodic turbulent spots and agrees qualitatively
very well with the convective-transition found in the investigated scenario of this
thesis. The case 15 of the same study shows different characteristics due to the
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ZPG. In comparison to the APG case, the TS-waves at a decreased phase speed
are too slow to reach the calmed region which has an increased trailing-edge veloc-
ity. However, this does not explain the origin of the convective-transition phase.
Since natural transition is investigated here (confirmed by Obremski & Morkovin
(1969)), a theoretical transition location based on the pristine laminar flow can be
also imagined. This location would be continuous over time with the limit for the
downstream velocity ẋtr ,d(ncrit) ≤ cTS = 0.29, see section 3.3.3. However, the suc-
ceeding “wave packets” indicate a periodic modification of the laminar mean flow,
see discussion above. Consequently, a dampening effect of the MFD is identified
to be responsible for the stalling of the creative-transition phase and the resulting
convection with ẋt ,te = 0.55. Furthermore, the observed “wave packets” are rather
continuous TS-waves with spatiotemporally modulated amplitudes due to the os-
cillating flow, cf. (weakly) non-linear stage in the present work. According to the
theoretical considerations, this effect may also occur in FPG flows. However, this
becomes increasingly unlikely due to the slower phase velocities of the modes (see
Wazzan et al. (1981)) and the faster calmed region/turbulent spot (see Gostelow
et al. (1996)).

3.4.8 Dimensional analysis and characterization

The simulation results of the parameter study show that the occurrence of a fully-
developed, self-perpetuating convective-transition mode depends on the gust fre-
quency κ, the gust amplitude v′gust , and the threshold value ncrit/initial modal am-
plitude Av. A qualitative physical explanation for this tipping-point can be estab-
lished when considering the transient effects discussed above. Theoretically, if the
mean flow distortion had no delay and the base flow recovered instantaneously, a
continuous creative transition in accordance with the predicted ncrit from linear the-
ory would always be present. However, since the transient behavior of the MFD is
independent from the gust frequency, there is always the danger of the emergence of
a convective transition at the downstream-moving transition front. With an increas-
ing frequency κ, the critical n-factors of the linear theory migrate faster downstream
in contrast to the MFD which decreases at its own speed. Hence, at a certain gust
frequency, the amplification of TS-waves is not sufficient to overcome the stabiliz-
ing properties of the lagging MFD, leading to the convective-transition mode with
a subsequent calmed region. Another important factor for this tipping-point ver-
sus frequency is probably the increasing reduction of the incoming TS-wave crests
(Doppler analogy) at the beginning of the downstream-moving transition. The same
conclusions can be drawn for the dependence on the gust amplitude: With larger
v′gust , the velocity of the downstream-moving n-factors also increases, which favors
the emergence of a convective-transition mode. Likewise, the dependence of the
tipping-point on the modal initial perturbation Av can be explained. With an in-
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creased Av, lower velocities ẋ(ncrit) are present at the downstream-moving transition
front, making the convective-transition mode less likely. Accordingly, it can be as-
sumed that the convective-transition mode appears in nature primarily at high Ncrit ,
which is only found at low turbulence intensities of the free stream.

An obvious choice for the characterization of this tipping-point is the unsteadi-
ness quantity κtr introduced with equation (3.7). This non-dimensional number
accounts for the gust frequency as well as (indirectly) the gust amplitude via the
maximum length of the oscillation of ncrit in x direction. Furthermore, it is shown
in section 3.3.4 that this quantity is very well suited to characterize the velocities
of the oscillating n-factors. Since the transient MFD-delay is generally independent
of the gusts properties, a threshold value may be identified for the occurrence of
the convective-transition mode using the parameter κtr . In figure 3.28(b), the frac-
tion of the convective-transition mode over one period (with respect to the TS-wave
trajectories) γtr is plotted versus two definitions of κtr for all cases. Consequently,
γtr equals ∆t/T of the modes corresponding to cohort ii in figure 3.28(a). For the
standard definition κtr (upper), all cases without the convective transition (γtr = 0)
are found in κtr < 0.55. However, a clear threshold is only evident for the related
second definition (lower) for κtr

sears ≈ 0.57. The quantity κtr
sears only considers the ef-

fective gust amplitude with the Sears function in contrast to κtr which also accounts
for additional attenuation of the oscillation of ncrit due to linear effects, see section
3.3.4. As can be seen from the DNS results in figure 3.26, the LST overestimates the
attenuation of the oscillation of n(cwt)-factors for the cases at κ = 8. Therefore, κtr

based on LST fails for threshold characterization due to the already (weakly) non-
quasi-steady stability behavior. The decline of the fraction γtr versus κ for the cases
with a convective-transition phase can be partially related to the Sears function.
Note that this threshold value also “sorts” the cases with different ncrit , see κ = 4 at
v′gust = 0.02 in figure 3.28(b). However, for other transition scenarios featuring e.g.
a different secondary mechanism, a broad range of primary TS-modes or a naturally
oscillating branch I, the threshold value for κtr

sears is expected to vary. The blue line
in the matrix in figure 3.29 corresponds qualitatively to the tipping-point for the
emergence of the convective-transition mode based on κtr

sears .
The non-steady Reynolds number of Obremski & Fejer (1967) mentioned in sec-

tion 3.3.4 does not prove to be a suitable quantity for characterization here. In that
study, unstable wave packets were found for all cases. However, a bursting to tur-
bulence of the packets was only observed for ReNS > 27,000, see also White (2006).
The results of the present work correspond to 2,000 < ReNS < 53,000 with high
values for low frequencies at high amplitudes and low values for high frequencies at
low amplitudes. Since no corresponding observations could be made here regarding
the threshold value, doubts arise as to the general applicability of ReNS .

As outlined at the end of section 3.3.4, data from DNS could be employed to
enhance the unsteady transition-prediction method with regard to non-linear effects
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(point d ). For instance, the emergence of the convective-transition mode could be
incorporated in a URANS transition model with a a semi-empirical approach. The
quantity κtr is of limited use here, since it refers only to the global properties of the
unsteady flow and not to the local/instantaneous flow. A method for predicting the
“local” tipping-point for the convective transition (point X in the x/t diagram in
figure 3.28(a)) could be derived with physical properties (e.g. predicted amplitude
n, modeled MFD, Dtr) found at the beginning of the downstream motion of ncrit .
Conceivable are non-dimensional quantities involving a ratio of the downstream
velocities ẋ(ln(MFD) = const .) and ẋ(n = const .) or the differences ∆ln(MFD) and
∆n with respect to the fully non-linear stage.

3.5 Summary

This section summarizes the most important aspects of the research presented in
this chapter. First, a brief review of the numerical setup is given, followed by
an enumeration of the identified physical effects and a classification into identified
unsteady flow scenarios. A comprehensive summary with further conclusions can be
found in chapter 5.

The unsteady behavior of natural transition in an attached boundary-layer flow
of an NLF airfoil due to periodic vertical gusts was numerically investigated. First,
transient base flows were generated using URANS simulations in conjunction with
the disturbance velocity approach for different frequencies κ and amplitudes v′gust .
The periodic unsteady laminar flows were investigated with linear stability analysis
by using an extension of the en-method. By following the TS-waves along their tra-
jectories, the theoretical motion of the transition location according to linear theory
can be characterized. As a hybrid approach, the URANS flow fields were also used
for DNS, with a domain covering the relevant part of the flow for the unsteady tran-
sition. Thereby, the transient base flows containing the airfoils gust response were
prescribed with modified unsteady boundary conditions. The continuous wavelet
transform was used to determine the spatio-temporal evolution of TS-wave ampli-
tudes in the oscillating flow. Having a theoretical laminar and linear reference along
with the non-linear results of the DNS proved to be very helpful in deducing cause
and effect physics. The numerical methods were validated with experimental results
of Romblad et al. (2020); Romblad (2023). Even though a specific airfoil geometry
is being used, a claim to generality can be made for this study due to the following
properties: a generic definition for periodic gusts; relevant Reynolds number and
Ncrit ; a comparably constant streamwise pressure gradient; and most important a
sinusoidal response of the transition location for the quasi-steady case κ → 0.

With the findings of this chapter, the physical effects responsible for the behav-
ior of natural transition with (convective) TS-modes at unsteady conditions can be
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dissected. In direct comparison to the classical transition under steady-state condi-
tions, four major consecutive effects are identified for the airfoil boundary-layer flow
with gusts:

1 Response to gust and unsteady pressure gradient: The oscillating pres-
sure gradient is determined by the gust amplitude and frequency. Due to the
response of the airfoil flow to the gust, however, there is a strong attenuation
of the effective amplitude with increasing frequency κ, which can be described
with the Sears (1941) function. The absolute amplitude v′gust has a quasi-
linear influence in this respect. In addition, the sinusoidal gust signal leaves
a spatio-temporal footprint in the pressure gradient whose characteristics mi-
grate downstream with approximately u∞. See discussion in section 3.2.1.

2 Viscous delay of the boundary layer: The viscous laminar boundary layer
directly responds to the unsteady pressure gradient imposed by the gust. How-
ever, the velocity profiles are lagging behind due to an inherent viscous delay.
This also results in a spatio-temporal delay of the change of the amplification
rates αi for the linear modes. See URANS results in section 3.2.2.

3 Spatio-temporal development of TS-waves: The phase speed of the TS-
waves with cTS ≈ 0.35 is considerably slower than the gust with u∞ and
is approximately velocity congruent with the characteristics of the lagging
velocity profiles and consequently αi. The amplification of the TS-waves along
their spatio-temporal trajectories in the lagging transient base flow results
in an asymmetric (or overturned) motion of the transition front over time.
At κcrit , which refers to the frequency where the mean lifetime of the TS-
waves is equal to the period of the gust, the most skewed or asymmetric
temporal behavior of the transition is found. The amplitude of the streamwise
oscillation of the transition motion can be directly related to the Sears (1941)
function. Furthermore, the velocities of the transition fronts in both upstream
and downstream directions follow a clear trend over the newly introduced
unsteadiness quantity κtr . This behavior can be entirely described with linear
theory, see results in section 3.3.

4 Transient non-linear effects: At high levels of unsteadiness, the (weakly)
non-linear stage and the fully non-linear turbulent flow can cause a mean
flow distortion that temporarily alters the stability properties for the flow.
This can create a transient branch II for the forthcoming TS-waves, result-
ing in a drop below the thresholds required for the transition. The so-called
convective-transition mode, in which the natural transition front is inter-
rupted, is explained with this effect. The fewer incoming TS-wave crests
at the downstream-moving front (Doppler analogy) is expected to contribute
to the “stalling” of the creative transition. The self-perpetuating convective-
transition phase creates a calmed region in the wake of the turbulent flow,
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which further alters the stability properties of the flow. A tipping-point for
the occurrence of the convective-transition mode was identified with a vari-
ant of the unsteadiness quantity κtr

sears . See DNS results in section 3.4 with
sections 3.4.7 & 3.4.8 for a detailed discussion. In the case of an overturned
linear behavior, the potentially faster leading edge of a convective turbulent
spot must be considered. In the non-linear stage of the transition, the ampli-
tudes of the velocity fluctuations at the upstream-moving front are consider-
ably higher compared to the downstream-moving front. This is also explained
by the Doppler analogy for the incoming TS-wave crests which leads to more
non-linear interactions.

(a)

(b)
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Figure 3.29: Classification of the identified scenarios of unsteady natural transition.
(a) Schematic spatio-temporal development. (b) Parameter space of the investi-
gations. Dashed lines correspond to the separation at higher initial disturbance-
amplitudes A↑

v or lower ncrit .

Figure 3.29 shows a classification of the unsteady transition scenarios based on
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the findings of this work. The schematic spatio-temporal development for all cases
is depicted in figure 3.29(a) with TS-wave trajectories (dashed red), the creative
transition (red) as well as the convective-transition (green) including the calmed
region (blue). Figure 3.29(b) shows the parameter space of reduced frequency κ and
gust amplitude v′gust with the investigated numerical and experimental cases (gray),
cf. figure 3.4. The separation of the scenarios in the matrix is based on the two
variations of the unsteadiness quantity introduced in section 3.3.4. Here, the black
line corresponds to κtr ≈ κtr

sears ≈ const ., the blue lines to κtr
sears ≈ const ., and the

red lines to κtr ≈ const . The same thresholds apply to the third parameter of the
dimensional analysis, which corresponds to the variation of the initial amplitudes
of the modes. Accordingly, the isolines for A↑

v are shifted in the κ/v′gust plane, see
dashed lines. The four scenarios can be distinguished as follows:

I Quasi-steady behavior for κtr ⪅ 0.1: The trajectories of the TS-waves are
(almost) horizontal in the x/t diagram due to the low gust frequency. The
resulting transition behaves “symmetrically” over time, moving sinusoidally at
nearly equal speeds in the upstream and downstream directions. Consequently,
the transition motion can be considered as quasi-steady and may be approx-
imated with the classical en-method. However, increased amplitudes in the
non-linear stage of the transition can already occur at the upstream-moving
front due to more incoming crests of TS-waves (Doppler analogy). Experimen-
tal results that can be attributed to this category are Case1 of Studer et al.
(2006) and Romblad et al. (2020); Romblad (2023) for κ < 0.5.

II Unsteady behavior due to linear effects for κtr ⪆ 0.1 with κtr
sears ⪅ 0.57:

The laminar boundary layer exhibits a viscous delay and the phase speed of the
TS-waves (see inclined trajectories) causes additional hysteresis. The resulting
transition, here referred to as “asymmetric” in time, has a fast upstream- and
a slow downstream-moving front. This behavior can be entirely attributed
to linear effects. For transition prediction, the LST can be extended with a
trajectory-following method which is applied on the spatio-temporal velocity
profiles of the transient base flow. However, due to the increased effect of the
Doppler analogy, much higher amplitudes at the upstream transition front are
to be expected. The experimental results of Romblad et al. (2020); Romblad
(2023) for 0.5 < κ < 1.7 can be attributed to this category.

III Unsteady behavior with convective transition for κtr
sears ⪆ 0.57: The

effects of the previous case are also found here. However, the “convective
transition” is present here, which appears at a certain threshold of unsteadi-
ness (blue line in figure 3.29(b)). Due to a delay of the mean flow distortion
which alters the stability properties, the “creative transition” is stalled at the
downstream-moving front. In the simulations, variation (A) in figure 3.29(a)
was observed where a calmed region spatially interrupts the turbulent flow.

94



3.5. SUMMARY

Experimental results which can be attributed to variation (A) of this category
are e.g. the cases 15 and D-5 of Obremski & Fejer (1967). However, the vari-
ation (B) in figure 3.29(a) where a continuous creative transition is present at
the upstream-moving front is identified in Case2 of Studer et al. (2006) or D-6
of Obremski & Fejer (1967). In the latter cases, the TS-waves are apparently
strong enough to overcome the calmed region.

IV Unsteady behavior with overturned n-factors for κtr ⪆ 0.9: The effects
of the previous case are also found here. However, an additional “overturned”
pattern of the spatio-temporal motion of the creative transition is present.
This can be described by the linear theory and is independent of the non-linear
convective transition which occurs in parallel. As seen in figure 3.29(b), this
behavior is most pronounced for ≈ κcrit , where the TS-wave life span roughly
matches the oscillation period. The results of the wind-tunnel measurements
15 and D-5 of Obremski & Fejer (1967) indicate some contribution of an
overturned behavior of the linear modes. For periodic unsteady transition,
an overturned pattern of n-factors purely based on linear theory without the
presence of a convective transition is rather unlikely. For isolated or pulsed
“1-cos” gusts, however, the overturned linear effect might be more relevant due
of the absence of an earlier non-linear impact on the transient base flow.
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4 Separated-flow scenario

The aim of this chapter is to extend the findings of the previous chapter to the case of
boundary-layer flow with a laminar separation bubble under unsteady conditions due
to periodic gusts. An introduction to previous studies on this topic is given in section
1.2. The structure of this chapter differs from the previous because the unsteady
stability analysis is only performed based on the DNS results and fundamental
characteristics of unsteady laminar boundary layers due to gusts have already been
discussed in section 3.2.2. Hot-wire measurements are available for the associated
experimental campaign—which are not available for the LTT case—allowing the
numerical approach to be further validated. The content of this chapter is largely
based on Ohno et al. (2023a). The experimental wind-tunnel results shown in this
chapter are kindly provided by Michael Greiner.

The chapter is structured as follows: fundamental characterization of the scenario
including steady-state stability analysis in section 4.1, validation of the URANS base
flows in section 4.2, discussion of the DNS results for the steady-state reference case
in section 4.3, the DNS results with gusts in section 4.4 including the characterization
of the unsteady separation, transition and reattachment as well as the influence of
effects such as the absolute instability and lock-in, and finally a summary of the
results in section 4.5.

4.1 Characterization of the flow scenario

The laminar flow airfoil “LNA-19121” depicted in figure 4.1 was designed for exper-
imental investigations as well as the numerical investigations on unsteady laminar
separation. While considering the flow conditions in the wind tunnel, the geometry
was designed in such a way that a laminar separation bubble (LSB) is formed in
the rear section on the suction (upper) side. The original coordinates used to de-
termine the airfoil surface via NURB-splines (see explanation in section 2.3.1) for
the numerical simulations can be found in Greiner (2024). In accordance with the
corresponding wind-tunnel experiments, a Reynolds number of Re = 880,000 with
respect to the chord length and a Mach number of Ma = 0.056 are chosen here.
The wind-tunnel experiments were carried out at a chord length of L̃c = 0.7m and
a velocity of ũ∞ = 19m/s. An angle of attack of AoAref = 1.5◦ as the steady-state
reference case is selected. For further results and details of the experimental setup,
see Greiner & Würz (2021); Greiner (2024).
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4.1.1 Properties of numerical setups

As for the scenario in the previous chapter, the setup of the URANS simulations is
explained in detail in section 2.3.1. In the present scenario, the transition locations
are held at xtr ,suction = 0.644 on the suction (upper) side and xtr ,pressure = 0.15 on
the pressure (lower) side in all simulations. The transition location on the pressure
side refers to a trip wire installed on the airfoil in the wind-tunnel experiments in
order to prevent additional laminar separation.

As shown in figure 4.1, the curvilinear DNS domain starts at xin = 0.5 and ends
just before the trailing edge at xout ≈ 0.991. However, the analyzed region of the
DNS extends from the inflow only up to x = 0.82 since grid stretching followed
by sponge zones is applied at this point towards the outflow. A grid stretching
in wall-normal direction according to the description in section 2.4 is applied with
a constant height of the DNS domain of ys,top = 0.06. The spanwise extent of the
domain, ∆z0 = 0.0314, is determined with the selection of the disturbance input, see
section 4.1.3. In this flow scenario, a grid resolution of 1500× 300× 256 = 115.2M

points is chosen along the airfoil contour, the wall-normal direction and the spanwise
direction, respectively.

Analogously to the LTT case in the previous chapter, the sufficiency of the grid
resolution for the simulation of the flow characteristics is given by multiple aspects.
The modes introduced at the disturbance strip are resolved with ≈ 120 points in
xs direction and 256 points in z direction. This considerably high resolution with a
high-order DNS code allows the generation of a sufficient number of higher harmonics
to simulate the non-linear transitional part of the flow. Again, the resolution of the
transition process can be validated with results from LST, see sections 4.3 & 4.4.
Furthermore, the flow downstream of the transition is sufficiently resolved with the
inner units of ∆x+

s < 9, ∆y+s,w < 1.2 and ∆z+ < 5 (see Poggie et al. (2015)) to
describe the qualitative behavior of turbulent parts of the boundary layer. The
simulations were performed with a time step of ∆tsim = 2.5 · 10−7.

As in the LTT case, the boundaries at the inflow, free stream, and outflow are
treated with characteristic (unsteady) boundary conditions including forcing terms,
see section 2.6.2 & 2.6.3 for fundamentals. The sponge zones which are applied at
the outflow and the free stream, cf. figure 4.1, start at xsp ≈ 0.871 and ys,sp ≈ 0.0388

in streamwise and wall-normal direction, respectively. Here, the maximum value of
the gain distribution for equation (2.24) is set to Gmax = 100 at both boundaries.
In contrast to the LTT case, it was not necessary to use a sponge zone at the inflow
to prevent reflections. Again, the wall boundary condition is chosen to be adiabatic,
while periodic boundary conditions are used for the spanwise direction.
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Figure 4.1: Depiction of the “LNA19121” laminar flow airfoil with DNS domain and
distribution of gain function G(x) (blue); boundary-layer thickness δ and separation
bubble is strongly exaggerated in wall-normal direction.

4.1.2 Investigated steady-state and unsteady cases

In addition to the simulation of the reference case with AoAref = 1.5◦, two additional
steady-state simulations with AoA± are conducted to provide insights into the theo-
retical case with κ → 0. With this quasi-steady consideration of an “infinitely large”
gust λx,gust → ∞ introduced in section 2.2 one can speak of a variation of the angle
of attack around AoA′ = arctan (v′gust/u∞) ≈ 2.3◦. Therefore, the simulations with
AoA± = AoAref ±AoA′ correspond to the maximum (AoA+ = 3.79◦) and minimum
(AoA− = −0.79◦) angles of attack (or quasi-steady gusts impact). In the matrix or
parameter space in figure 4.2, this theoretical case is marked “Q-S”.

Four cases with frequencies, κ = 1.04, κ = 2.08, κ = 4.16 and κ = 8.32 at an
amplitude v′gust = 0.04 (i.e. 4% of free-stream velocity u∞) are selected for the
DNS with oscillating boundary conditions, see parameter space in figure 4.2. At
the higher two frequencies, the wavelength λx,gust is shorter than the chord length
Lc. For all cases, at least one gust period and at least five characteristic time units
(number of runs through domain with u∞) were simulated before recording the time-
dependent flow fields for analysis. One gust period was recorded for κ = 1.04 and
κ = 2.08, while two and four gust periods were recorded for κ = 4.16 and κ = 8.32,
respectively. Therefore, Tsim—which corresponds to the total physical time of the
simulation data written out—differs depending on the case. In the corresponding
experimental campaign, a gust generator was used to create an unsteady inflow to
the airfoil with frequencies up to κ = 2.08, see Greiner & Würz (2021); Greiner
(2024). In this work, however, only the measurement results of the two frequencies
κ = 1.1 and κ = 1.7 with an effective gust amplitude of v′gust ≈ 0.01 are used for
validation, see matrix in figure 4.2.
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Figure 4.2: Depiction of simulated cases as well as wind-tunnel (WT) experiments
within the parameter space of reduced frequency κ and gust amplitude v′gust ; top:
illustration of ratio of gust wavelength to chord length (λx,gust/Lc = π/κ).

4.1.3 Linear stability properties and actuation

The stability diagram of 2D modes (i.e. with spanwise wavenumber β = 0) for
the reference case is shown in figure 4.3(a). As a base flow for the steady-state
stability analysis, the URANS mean flow is used up to x = 0.5. For x > 0.5, the
spanwise averaged DNS mean flow is utilized, due to a better agreement with the
experimental results. The evolution of the eigenfunction amplitudes of the amplified
2D modes in downstream direction is depicted in figure 4.3(b) for the corresponding
positions marked in figure 4.3(a). At the positions x = 0.4 and x = 0.515, the
eigenfunctions of the modes exhibit the shape of TS-waves under the influence of an
adverse pressure gradient. Downstream of x ≈ 0.55 towards the separation point,
however, eigenfunctions display the shape of a shear-layer instability with three
peaks in ys direction, see mode at position x = 0.6. Furthermore, the spectrum of
amplified modes broadens while shifting up to higher frequencies. Nevertheless, the
highest n-factors are reached at the lower frequencies ω ≈ 120 due to the head start
of the TS-waves in the attached flow upstream.

As in the flow scenario of chapter 3, disturbances may also be introduced into
the boundary layer via blowing and suction at the wall, see section 2.6.4 for details.
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Figure 4.3: (a) Stability diagram with spatial amplification rate αi and n-factor
for steady-state reference case with AoAref = 1.5◦ for β = 0; Inset figure: spatial
amplification of 3D modes over β at x = xDS with direction of wave propagation
ξ = arctan(β/αr) (b) Eigenfunctions with β = 0 (c) Eigenfunctions of oblique modes
with β = ±200 at the disturbance strip; all normalized with maxys{|ûs|}.

Here, a disturbance strip is placed downstream from the inflow of the DNS domain
at xDS = 0.515, see v′s,DS in figure 4.1. The amplitudes of realistic disturbances in
the laminar boundary layer missing in the simulation can be “recovered” this way,
since the domain only starts in the amplified region behind branch I, see position
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of disturbance strip “DS” (red) in figure 4.3(a). In addition, this adds the character
of convective instability to the already existing absolute instability of the separation
bubble.

In this flow scenario, the so-called oblique resonance or oblique breakdown with
two modes running in opposite spanwise direction z is used. First simulations with
this scenario were carried out by Thumm (1991) and Schmid & Henningson (1992).
Rist et al. (1996) conducted simulations of laminar separation bubbles with the
oblique mechanism and compared it to the subharmonic transition scenario. This
scenario was chosen for this work, since the 2D structures in the rear region of
the separation bubble (favored by the narrow domain in the spanwise direction)
are broken up three-dimensionally. Here, the frequency ωDS = 104 and spanwise
wavenumbers βDS = ±200 is selected for the pair of oblique modes. Therefore,
the modes are labeled (1,±1), based on the definition (h, k) in the double Fourier
spectrum, introduced in section 2.6.4. Despite the oblique angle, the modes with
ωDS are still highly amplified. The inset figure in figure 4.3(a) shows the ampli-
fication in the wavenumber-frequency space at xDS with the position of the mode
“DS” (red) with β = 200 introduced via actuation at the wall traveling in positive
z direction. Therefore, as is common for oblique resonance, the direction of wave
propagation features an angle of ξ = arctan(βDS/αr) ≈ 42◦. The respective eigen-
function amplitude of this mode at the disturbance strip is depicted in figure 4.3(c).
Again, to allow a clean spectral analysis of the laminar stretch of the flow field
with FFT and CWT, the frequency ωDS = 104 was chosen because it always cor-
responds to a multiple of the fundamental frequency of the simulation ωsim , which
depends on the gust frequency and number of simulated gusts. Here, the spanwise
wavenumber also determines the size of the domain in the z direction, which is iden-
tical to the fundamental wavelength λz,0 = 2π/βDS = 0.0314. Based on LST and
wind-tunnel measurements (Ncrit ≈ 12) of the transition location including turbu-
lent reattachment, a total amplitude of Av = 2 · 10−5 is chosen for the superposed
disturbances v′s,(h,k), see equation (2.28). In streamwise direction, the wall-normal
blowing/suction is defined with a monopole function (see equation (2.29)) whereas
the slit size is ∆xs,DS = 5 · 10−3. The sampling rate for the recorded flow fields is
chosen to continuously capture the period of the introduced modes at ωDS with 20

time steps.

4.2 Validation of URANS base flows

In this section, the steady and transient base flows acquired with URANS simulations
are validated with experimental results. Furthermore, the feasibility of using these
base flows as (unsteady) boundary conditions in the DNS is discussed. In contrast to
the LTT case in chapter 3, unsteady velocity profiles were also measured during the
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wind-tunnel tests, which are compared with the simulation results in this section.

4.2.1 Mean-flow properties

For validation and fundamental characterization, the steady-state case with AoAref

without gusts is analyzed in terms of the time- and spanwise-averaged pressure dis-
tribution cp as well as skin friction cf , see figure 4.4. In these distributions, the
laminar separation bubble is indicated by a small region of almost constant pressure
in cp and negative values of skin friction cf < 0. The laminar separation bubble in
the flow solution of the (2D) URANS turned out to be significantly shorter compared
to the results from experiments and subsequent DNS. However, this deviation, which
results from the simplified flow physics of the turbulence model used, is not neces-
sarily problematic for the process chain including the following investigations with
DNS and LST. The unsteady field solution of the URANS simulations are only im-
posed on the boundaries of the DNS domain. Again, the velocity profile at the inflow
boundary and the pressure gradient at the free stream are most important for the
correct representation of the unsteady flow with regard to this application. The re-
sults of the following two DNS cases, where the full three-dimensional Navier–Stokes
equations are solved, show a flow with an prolonged separated region (∆xLSB ≈ 0.12

which equals ≈ 3.8 domain widths) and an adequate matching of the pressure dis-
tribution of the wind-tunnel experiments, see figure 4.4. Furthermore, it is evident
from the curve of cf that the separation point (S) of the DNS results almost perfectly
matches the URANS result. This implies that the effect of the pressure gradient in
the DNS is consistent with the URANS simulations. Therefore, the URANS flow
field can nevertheless be considered as a suitable base flow for the DNS, in case the
above specified domain is used. For the (unsteady) linear stability analysis, the flow
field of the DNS can be applied as a base flow instead of the URANS solution.

Using hot-wire measurements, the two-dimensional steady-state URANS results
can also be validated using the time-averaged profiles of the absolute velocity |u| =√
u2 + v2, see figure 4.5. A typical dimensionless similarity variable

η = ỹs

√
ũ∞

ν̃x̃s

= ys
√
Re/xs , (4.1)

is used here for the wall-normal direction. The two locations shown, x = 0.564 and
x = 0.594, are located just before and just after the separation point (S), respec-
tively. As expected, the boundary layer rapidly increases in downstream direction
in this area. The boundary-layer thickness seems to be somewhat smaller in the
experimental investigations compared to the simulations, which can be explained by
a minimal offset of the separation point xsep in the flow direction. However, con-
sidering the complexity of the numerical and experimental setups and taking into
account this particularly critical position, the agreement is very satisfactory.
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Figure 4.4: Temporal and spanwise averaged pressure distribution cp and skin fric-
tion cf for steady-state reference case AoAref .

4.2.2 Unsteady amplitude profiles

In the next step, the transient base flows with DVA gusts can also be characterized
and validated with the wind-tunnel measurements. In general, the amplitude profile
of the velocity—defined here as the maximum oscillation of the absolute velocity
over a full period ∆utbf (η) = maxt{|utbf |}−mint {|utbf |}—provides a deeper insight
into the transient boundary-layer development. Oscillating boundary-layer flows are
typically characterized by such amplitude profiles in the wall-normal direction, see
Hill & Stenning (1960), Reeh (2014) or Agarwal et al. (2022). Figure 4.5 shows
the amplitude profiles of the simulations and the wind-tunnel measurements for
different frequencies κ at the corresponding x positions mentioned above. A special
feature of the plot is that the profiles are linearly scaled to the case with a gust
amplitude of v′gust = 0.01 with ∆u∗

tbf = ∆utbf · 0.01/v′gust for better comparability.
Moreover, this scaling is also used because the numerical simulations were performed
at v′gust = 0.02 and 0.04, while an amplitude of v′gust ≈ 0.01 was yielded in the
wind-tunnel experiments. First of all, it can be observed that the scaled profiles
for both amplitudes v′gust of the URANS simulations in figure 4.5 (thin solid and
dashed lines) match almost perfectly. This is true for the two frequencies κ as well
as positions of x depicted here and confirms the validity of the above described
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Figure 4.5: Averaged profiles of the absolute velocity |u| =
√
u2 + v2 for AoAref

(black) and amplitude profiles of the boundary-layer oscillations ∆u∗
tbf (scaled to

v′gust = 0.01) for transient cases (red/blue) in the wall-normal direction η at (a)
x = 0.564 and (b) x = 0.594.

linear amplitude scaling of the profiles for general characterization of the transient
base flow. Moreover, it can be concluded that the shape of the amplitude profile
essentially depends only on the frequency κ, while the gust amplitude v′gust influences
only its scaling. A peak or overshoot can be seen in the profiles within the boundary
layer, which is significantly larger than the fluctuation above the boundary-layer
edge. The wall-normal distance of the peak increases in proportion to the growth
of the boundary-layer thickness from η ≈ 2 at x = 0.564 to η ≈ 2.8 at x = 0.594.
Furthermore, the amplitude profile for κ = 2.08 exhibits a dip towards the boundary-
layer edge. This qualitative behavior is in agreement with the results of previous
work on generic, unsteady, flat plate boundary-layer flows, see Hill & Stenning
(1960); Obremski & Fejer (1967); Reeh (2014); Agarwal et al. (2022).

The most remarkable aspect of the amplitude profiles in figure 4.5, however, is
the dependence of the peaks on the gust frequency κ. When doubling the frequency
from κ = 1.04 to κ = 2.08, the maximum decreases by the factor ≈ 0.64 and
≈ 0.54, respectively for x = 0.564 and x = 0.594. In general, it is known that the
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characteristics of the amplitude-profile overshoot can change with frequency κ, see
Reeh (2014). However, the “viscous response” of the airfoil boundary layer cannot be
held solely responsible for this behavior. The fluctuation of the velocity profiles—
from which the amplitude profiles result—is mainly determined by the pressure
gradient dp/dx, which in turn is imposed by the gusts. However, the “effective
amplitude” of the pressure-gradient variation decreases with larger κ. This is due
to the fact that the wavelength of the gust λx,gust becomes smaller in relation to
the chord length Lc, which increasingly “integrally smears” the influence of the gust
amplitude over the finite body of the airfoil. The Sears (1941) function, introduced
in section 3.2.1, can again quantify the impact of this effect to some degree. The
ratio of the absolute values of the Sears function of the two frequencies is |S(κ =

2.08)|/|S(κ = 1.04)| = 0.73. As expected, this value is close to the above-mentioned
factors of the amplitude reduction of the peaks.

The amplitude profiles can likewise be validated with hot-wire measurements car-
ried out in the wind tunnel at different frequencies κ. However, in the experimental
investigations, such measurements were performed only at the frequencies κ = 1.1

and κ = 1.7 at the gust amplitude of v′gust ≈ 0.01, see matrix in figure 4.2. First of
all, it can clearly be seen in figure 4.5 that the wall-normal distances η of the maxima
of the amplitude profiles agree very well with those of the simulations. Furthermore,
the above-described trend of the amplitude decrease of the peaks with increasing
frequency κ is clearly present in the measurements at a similar rate. It should also be
noted that the dip seen in the amplitude profile at κ = 2.08 in the simulation is not
present in the experiment at the higher frequency κ = 1.7. Possibly the frequency in
the experiment is not high enough for this characteristic shape. Again, taking into
account the complexity of the numerical and experimental setups, it can be con-
cluded that the unsteady flow physics observed in the wind-tunnel measurements
and in the simulations are in satisfactory qualitative agreement.

At this point, it can also be checked whether the unsteady laminar boundary layer
is correctly simulated by the subsequent DNS with its unsteady boundary conditions.
The amplitude profiles of the DNS (thick lines) show only a slight deviation from the
original URANS solution before the separation point (with respect to steady-state
reference case) at x = 0.564 in figure 4.5(a). At x = 0.594 in figure 4.5(b), however,
there is a significantly stronger deviation, especially at the frequency κ = 2.08.
This stems from the different equations used in the simulation methods, with the
DNS employing the full three-dimensional Navier–Stokes equations to calculate the
actual flow physics under the given (transient) boundary conditions. Since the point
x = 0.594 lies already in the continuously separated flow for both frequencies κ, the
deviation of the amplitude profiles is not surprising, because the turbulence model
lacked the correct representation of the separation bubble in the steady-state case.

In both DNS and wind-tunnel experiments, the influence of unstable modes such
as TS-waves on ∆utbf can be neglected since their amplitudes in the laminar flow
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(where linear theory applies) are extremely small compared to the induced boundary-
layer fluctuations of the gusts. Rather, the periodic fluctuation of the boundary-layer
profiles characterized here is one of the aspects of the resulting unsteady base flow,
which determines the transient evolution of amplified modes. The general spatio-
temporal impact of these large-scale perturbations including the viscous delay of
the boundary layer on the development of modes has already been presented and
discussed in detail for the LTT case (attached flow) in sections 3.2 & 3.3. Here, the
same qualitative behavior is observed, which is why only the resulting n-factors are
discussed in the 4.4.4 section.

4.3 DNS of steady-state reference case

In the previous section, the URANS flow fields were validated for the steady-state
case as well as for the case with gusts, and their applicability as transient base
flows for DNS was confirmed. In this section, the resulting flow field of the DNS is
validated with spectral means and characterized in detail.
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Figure 4.6: Instantaneous vortex visualizations with isocontours for Q = 10, 000
(left) with spanwise averaged skin friction cf in the x/t plane (right) for the steady-
state case with AoAref . (a) DNS without actuation (b) DNS with disturbance strip.

As displayed in figure 4.4, the laminar separation bubble in the DNS with a dis-
turbance strip “+DS”—see explanation in section 4.1.3—is slightly smaller and closes
earlier than in the DNS without disturbance input. Due to a shorter reverse flow
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vortex, the point of turbulent reattachment (R) moves upstream. As for the pres-
sure distribution cp, this result matches better to the wind-tunnel measurements,
which suggests that the disturbance input “recovers” the missing disturbance level
(free-stream turbulence and upstream TS-waves) at the inflow. However, this also
changes the nature of the flow with respect to laminar-to-turbulent transition of the
separated shear-layer and the following turbulent reattachment, see the instanta-
neous flow visualizations in figure 4.6 (left).

The simulation without disturbance input in figure 4.6(a) shows coherent 2D
structures traveling in streamwise direction which are arising in the rear region of
the laminar separation bubble. The roll-up of these structures can be attributed to
the shear-layer or Kelvin–Helmholtz instability. Several authors concluded that for
incompressible flows (hence for low Mach numbers as in this case) a 2D absolute
instability is only expected if the mean flow exhibits at least 15% of reverse-flow in-
tensity in the separation bubble, see Rist & Maucher (2002). Since the reference case
with AoAref shows a reverse-flow intensity of 20%, the presence of a self-sustaining
absolute instability can be assumed with confidence. The transition from laminar-
to-turbulent flow is thus caused by an intrinsic absolute instability involving natural
frequencies and does not necessarily depend on upstream disturbances, but rather
on local flow properties. However, it must be mentioned that a two-dimensional
character is favored here, since the relatively narrow simulation domain in the span-
wise direction with the size λz,0 doesn’t allow “slightly oblique” waves which could
break up the structures. The spanwise averaged spectral analysis of the wall pres-
sure p′w of the simulation without disturbance input shows a reasonable agreement
with the wind-tunnel measurements with respect to frequency content, cf. figure
4.7(a) with (b). In both results, the dominant natural frequency lies at ω ≈ 110.
Shortly downstream of the occurrence of those peaks, the frequency spectrum fills
up rapidly due to non-linear interactions indicating breakdown to turbulence. As
expected and in agreement with the pressure distribution cp described above, this
occurs slightly further upstream in the measurements, since initial disturbances are
present in contrast to this simulation.

In addition to the absolute instability, a convective instability is added when in-
troducing unsteady modes via the disturbance strip. The impact of the application
of an oblique resonance scenario (see description in section 4.1.3) can be observed in
the instantaneous vortex visualization in figure 4.6(b). Compared to the simulation
without disturbance input, the dominant 2D structures break up three-dimensionally
due to the oblique modes. These observations are consistent with the results of Rist
et al. (1996), where large 2D disturbance waves were found in the case of subhar-
monic resonance, but a rapid breakdown to 3D structures in the case of oblique
resonance. As expected, the most prominent frequency in the Fourier analysis of
the wall pressure—see figure 4.7(c)—is that of the disturbance input ωDS = 104,
while its higher harmonics are likewise visible. In a sense, the separation bubble
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Figure 4.7: FFT of wall pressure p′w for steady-state case with AoAref . (a) Wind
tunnel (b) DNS (c) DNS with disturbance strip.

now acts as a resonator to the actuation signal.
Another possibility to compare both simulation scenarios is the visualization of

the (spanwise averaged) skin friction in the x/t plane, see figure 4.6 (right). With-
out disturbance input, the coherent 2D structures are clearly visible in the form
of inclined footprints or traces with cf < 0 and cf > 0 starting from x ≈ 0.65.
Evidently, these 2D structures have an impact on the wall ranging from the cen-
ter of the separation bubble to far behind the turbulent reattachment point, where
vortex-shedding is observed. Even though a clear natural frequency can be seen
here, it is fair to speak of a relatively high temporal intermittency of the flow. This
is not the case in the simulation with the disturbance input—see figure 4.6(b)—in
which no footprints of 2D structures are found and the flow is hardly intermittent
in time. Here, the transition in the shear-layer occurs in a regular manner, resulting
in a relatively ordered reattachment in which the reverse-flow vortex can be seen
continuously over time.

For a detailed examination of the transition process, the double-spectral analysis
is utilized. Figure 4.8 shows the modal amplitudes of the disturbance velocity com-
ponent u′

s,(h,k) in the wall-normal system with h ∈ {0.5; 1 ... 6} and k ∈ {1 ... 5} with
respect to ωDS and βDS , respectively. In both scenarios, the point of non-linear satu-
ration occurs at about x ≈ 0.68. However, the cases differ significantly with respect
to the transition mechanism. Well before the separated region, two-dimensional
perturbations can be observed for several frequencies (h, 0) for the case without dis-
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turbance input, see figure 4.8(a). These stem from upstream traveling waves from
the strongly fluctuating rear part of the separation bubble, which in turn excite the
boundary layer upstream of the separation. Therefore, this can be considered as a
kind of feedback-loop, i.e. an absolute (or global) instability. The steady modes
(0, 1) and (0, 2)—which can be regarded as a mean flow distortion in spanwise di-
rection or streaks—grow quickly before the wavenumber-frequency spectrum fills up
due to non-linear interactions. In contrast, the modal development of the case with
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disturbance input behaves according to the oblique resonance transition scenario,
see figure 4.8(b). With the introduced modes (1,±1) at the disturbance strip, mode
(0, 2) is generated which in turn generates the modes (1,±3). A resonance of the
latter modes with the introduced (primary) modes ultimately leads to transition.
The modal development of the pair of oblique waves follows linear theory. Here,
the location xtr = 0.665 can be considered as the point of shear-layer transition,
since the amplitudes deviate from linear theory just before reaching the non-linear
saturation. An important finding is that the 2D waves (h, 0) do not play an active
role before the onset of the non-linear interactions in this simulation. Therefore, it
can be concluded that the absolute instability plays a minor role—at least in the
steady-state case with AoAref —if the disturbance strip is switched on. This is an
important observation which will be relevant for the interpretation of the respective
analyses of transition in separation bubbles under the influence of gusts in section
4.4.5.

4.4 DNS of unsteady cases with gusts

Results of the simulations with gusts including interpretations and conclusions are
presented in this section, which is divided into five sections: the results of the quasi-
steady consideration with κ → 0, the results of transient flows with actual gusts
at different frequencies κ > 0, the characterization of the separation point, the
characterization of the reattachment including the transition behavior and finally
the contribution of the absolute instability as well as lock-in effects.

4.4.1 Quasi-steady consideration (κ → 0)

The impact of a quasi-steady gust (κ → 0) can be characterized with steady-state
simulations at different angles of attack AoA according to the gust amplitude. In
this section, only results of simulations where the disturbance strip was activated
are presented.

The spatial separation intermittency γz,cf , representing the fraction of separated
flow over the spanwise direction z (therefore cf < 0), is shown in the x/t plane
for AoA+, AoAref and AoA− in figure 4.9. As expected, the separation bubble
shifts upstream or downstream depending on the adverse pressure gradient for each
AoA, indicated by the black/dark area. (The two contour colors for γz,cf > 0.5

represent the areas in which the spanwise average of skin friction cf is negative.) By
using γz,cf , it is easy to identify whether coherent 2D structures are formed during
reattachment of the transient separation bubble at a given time t and location x.
The point of separation (S) as well as the time averages of the locations of shear-
layer transition (T) and turbulent reattachment (R) are also marked in figure 4.9.
The transition point (T) is defined according to the amplitude development of the
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introduced modes, see spectral analysis in section 4.3. Moreover, the reverse-flow
vortex can be seen in this plot represented by a darker (hence mostly separated)
zone, which is marked “RFV”. This area serves to locate the end of the separation
bubble, since the reattachment point (R) naturally lies directly behind it. The
length of the laminar separation bubble from point (S) to point (R) is denoted here
as ∆xLSB , see figure 4.9(a).

(a)

(b)

(c)

∆xLSB

t
t

t

0.5 0.55 0.6 0.65 0.7 0.75x

1

0.5

0

1

0.5

0

1

0.5

0

(S) (T) (R)

RFV

AoA+

AoAref

AoA−

c−
1

mode

u−1
∞

c−
1

mode

u−1
∞

c−
1

mode

u−1
∞

γz,cf
0.99
0.5
0.01

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 n

0 1 2 3 4 5 6 7 8 9 9

0 1 2 3 4 5 6 7 8 9 9

0 1 2 3 4 5 6 7 8 9 9ncwt

Figure 4.9: Separation intermittency γz,cf in spanwise direction z with n-factors
from LST and amplitudes of the continuous wavelet transform ncwt in the x/t plane
for steady-state cases: (a) AoA+ (b) AoAref (c) AoA−.

Furthermore, the n-factors of the modes (1,±1) calculated with equation (2.20)
along the trajectories with the phase velocity cmode is given in figure 4.9. Due to the
steady-state conditions, the result is equivalent to that of the classical en-method.
Nevertheless, the instantaneous (spanwise averaged) flow fields of the DNS served
as base flows here. This further demonstrates the robustness of the method, since it
is possible to properly calculate the amplification rates even if intrinsic oscillations
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are present towards the end of the analyzed flow field. In all cases, the phase
velocity cmode of the shear-layer instability increases with downstream convection,
as indicated by the decreasing inclination of the trajectories (red dashed lines) in
the x/t plane. This is particularly pronounced in the separated region, since the
velocity at the inflection point of the base-flow velocity profile grows due to the
increasing distance from the wall. The mean phase speeds cmode (integrated from
the disturbance strip up to n = 8) for the three cases AoA+, AoAref and AoA− are
0.46u∞, 0.51u∞ and 0.55u∞, respectively. Although the shortest separated region is
found for AoA−, the modes here exhibit a higher phase speed on average due to the
extended length up to x ≈ 0.67. Performing the (unsteady) LST based on flow fields
from the DNS with the disturbance strip turned off did not result in a significant
difference in the n-factors.

Due to transient, non-linear or non-parallel effects, the amplitudes of the actual
amplified modes may deviate from the calculated n-factors of the local linear stability
analysis based on the instantaneous base flow. As in the DNS of LTT case in section
3.4, the unsteady flow field is analyzed with the means of CWT in order to acquire
the corresponding downstream development of the streamwise velocity perturbation
u′
s. Therefore, ncwt relates to the introduced amplified modes (1,±1) with ωDS

which are subject to the cyclic variation imposed by the gust. In this section, the
application of this method for a separated flow is first validated and evaluated for
the quasi-steady cases before being applied to the transient cases with gusts in the
next section. It should be noted that, in contrast to the fundamental resonance
scenario in section 3.4, the spanwise averaged flow field is unsuitable for analysis
here, since the u′

s perturbations cancel each other out when employing the oblique
resonance scenario. Hence, the CWT is performed at a given spanwise position
z = const . Based on the average amplitude found at the disturbance strip in the
steady-state case AoAref , Au = 3 · 10−5 was determined and used to calculate ncwt

with equation (2.34) for all other flow cases. Due to boundary-layer receptivity, the
induced amplitude in flow direction Au is slightly higher than the forced vertical
amplitude Av = 2 · 10−5 (see section 4.1.3) of the wall-normal blowing and suction.

In figure 4.9, the spatio-temporal development of ncwt is indicated by the green
contour lines. A very good agreement with the n-factors of the linear theory can
be found for AoAref . Furthermore, the levels barely fluctuate in time as expected
for a steady-state case. For AoA+, the upper values ncwt > 3 are also in perfect
agreement with linear theory. However, a slight deviation due to a quicker increase
of the values ncwt can be seen for AoA−. In contrast to the LST with the maximum
value of n = 8, the CWT reaches a value up to ncwt = 9 and reflects the peak
of non-linear saturation. The temporal boundary effects—also known as cone of
influence (COI), see explanation in section 2.7,—can be evaluated here. The results
presented for AoAref in figure 4.9(b) are based on simulation data obtained over
time Tsim = 1.2. For AoA+ and AoA− in figure 4.9(a) & (c), however, only half of
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the time is available, which is why the data is “doubled” in time, see in horizontal
line at t = 0.6 indicating the separation of the “periodic” time series. For AoAref as
well as AoA− no significant boundary effects are visible at the beginning and end of
the time series. At AoA+, however, fluctuations of ncwt can indeed be found, which
are outside the temporal limit of the COI at this frequency. This is especially true
for the attached flow, where the amplitudes of u′

s,cwt are still small. Responsible
for this are intermittent disturbances which travel upstream from the inherently
unstable separation bubble. These perturbations affect the result at the temporal
edges because, unlike the actuation with ωDS , they do not behave periodically with
respect to the gust frequency ωgust .

As described in section 4.2.1, the time average of the shear-layer transition loca-
tion can be pinned at xtr = 0.665 for the stationary case AoAref , which corresponds
to ncwt ≈ 8.6, see white dashed lines (T) in figure 4.9. In all three cases, the earliest
temporary occurring local reattachments (γz,cf < 0.99) start at n(cwt) ≈ 7.5. First
of all, it is interesting that the introduced convective modes do not seem to be af-
fected by those reattachment fluctuations near the wall, since linear stability theory
and wavelet analysis agree very well. Given that those fluctuating structures always
occur at the same level of n(cwt), they can be assumed to be associated with the
transition point (T) and the final reattachment (R) of the flow further downstream.
Therefore, the early local reattachments implicitly depend on the amplification of the
introduced oblique modes, at least at steady-state conditions. However, at AoA+,
distinct 2D structures (γz,cf > 0.99 and γz,cf < 0.01) can again be found in the
trailing region of the bubble including some intermittency in time, resembling figure
4.6(a). Furthermore, the instantaneous transition location is mildly fluctuating over
time (indicated by the line of ncwt = 9), most likely due to an impact of the 2D
structures on the transient base flow. In the case of AoA−, on the other hand, the
transition and area of reattachment seems to be even more determined and locked
onto the disturbance input compared to AoAref . Therefore, it can be assumed that
at AoA+—which corresponds to the quasi-steady gust phase at maximum adverse
pressure gradient—the absolute instability again plays a partial role.

4.4.2 Simulations with gusts (κ > 0)

The DNS with periodic gusts employing transient base flows are presented analo-
gously to the analysis for the steady-state cases described in the previous section.
Unless explicitly stated otherwise, all results presented here are from simulations
with the disturbance strip turned on. In figures 4.10 & 4.11, the spanwise separa-
tion intermittency γz,cf for the four simulations with different reduced frequencies
κ is plotted in the x/t plane. The time in this graph is normalized by the respec-
tive oscillation period T . However, the y axis is scaled to physically match the
non-dimensional time t in figure 4.9 of the steady-state cases for better compari-
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son. Here, the separation bubble (indicated by the black/dark area) actually travels
upstream and downstream within the period T of the oscillating adverse pressure
gradient induced by a physical gust with κ > 0.
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In figures 4.10 & 4.11, the unsteady n-factors from linear theory oscillate peri-
odically due to the DNS flow solution used as a transient base flow. In contrast
to the quasi-steady cases, the values for the amplification rate αi of the modes are
time-dependent and lead to a harmonic oscillation of the n-factor contour lines in
the x/t plane. Moreover, in these transient cases, the spatio-temporal dependence
of the phase velocity cmode (see inclination of mode trajectories) has an influence on
the position of the resulting n-factor curves. This factor is more significant here in
comparison to the attached flow scenario of chapter 3, since the phase speed changes
even more in downstream direction.

The ncwt -factors of the continuous wavelet transform show in general a very good
agreement with the n-factors of the linear stability analysis. As in the LTT case
presented in chapter 3, not only is the periodic behavior of the amplified modes
qualitatively very well reflected, but also the levels of the highest n(cwt)-factors match
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remarkably well. Since the values for ncwt = 0 fluctuate only very little around the
position of the disturbance strip (n = 0), the assumption of quasi-steady behavior
of the receptivity can be confirmed, at least for transient cases investigated here.
(On close inspection, a slight oscillation of ncwt = 0 to the period T of the gusts can
be observed for the cases κ = 2.08 and κ = 4.16, but this is nevertheless neglected
here.) The low values of ncwt in the region of attached flow are somewhat wiggly
in all cases. Since the amplitudes of u′

s,cwt , which are still very small in this region,
are superimposed by noise from other inherent disturbances as well as interference,
these slight deviations are not surprising. The results of κ = 1.04, κ = 4.16, and
κ = 8.32 shown in figures 4.10 & 4.11 represent the complete time Tsim of the
recorded simulation data. At κ = 2.08 in figure 4.10(b), however, the simulation
result is shown in sequence twice for better illustration which is indicated by a
thin horizontal line at t/T = 1 for separation. Accordingly, the already mentioned
boundary effects on ncwt can be found at the temporal beginning and end of the
data, as well as for κ = 2.08 at t/T = 1. As in the steady-state case of AoA+, see
figure 4.9, the temporal influence of the effects—which are mainly seen at low levels
of ncwt—correspond to the COI.

4.4.3 Characterization of separation point

First of all, the motion of the separation point can be characterized for the quasi-
steady consideration (κ → 0). The distinct interface between the attached flow
and the fully separated flow at (S) in figure 4.9 shows that the separation point
does not vary with time in either flow direction x or spanwise direction z. As
commonly known, the separation location of laminar separation bubbles is mainly
determined by the pressure gradient dp/dx. Figure 4.12(a) shows the spanwise mean
of the separation point xsep with the streamwise pressure gradient in the x/t plane
for the three steady-state cases. It can be seen that the separation always occurs
downstream of the maximum of the pressure gradient x(t)|maxx{dpw/dxs} (black dashed
line) at a similar distance.

In the simulations with actual gusts (κ > 0), the separation point of the bubble
also seems to remain almost continuously uniform in the spanwise direction z over
the entire period in all cases, see figures 4.10 & 4.11. However, slight variations in
the downstream movement are apparent, which will be discussed later in the charac-
terization of the unsteady reattachment. As for the steady-state flows, figure 4.12(b)
& (c) depict the spanwise mean of the separation point xsep with the instantaneous
streamwise pressure gradient in the x/t plane for κ = 1.04 and κ = 2.08, respec-
tively. Here, in contrast to figures 4.10 & 4.11, the time scale is not normalized to the
period T . Based on the behavior of the quasi-steady consideration in figure 4.12(a),
it can be assumed that the separation point for an “infinitely large” gust with κ → 0

is always in phase with the maximum of the pressure gradient x(t)|maxx{dpw/dxs}. For
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κ = 1.04, however, a phase lag ∆tsep of the oscillation of the separation line to the
oscillation of the pressure gradient maximum can already be observed. Similar to
the behavior of the shape factor observed in the attached-flow scenario in section
3.2.2, this transient effect arises from the viscous time scale of the boundary layer.
Furthermore, it can be assumed that additional delaying effects are induced by the
separated region. The relative phase lag with respect to a period ∆tsep/T becomes
significantly larger for the higher frequency κ = 2.08 in figure 4.12(c). Interestingly,
the physical time delay ∆tsep with respect to the spatial minima of these oscillations
remains almost the same from κ = 1.04 to κ = 2.08, which furthermore suggests
a viscous time delay which is not tied to the gust period T . Among other charac-
teristics of the motion of the separation point, the phase offset ∆tsep/T is plotted
over the investigated frequencies κ in figure 4.13. This trend behaves sublinearly
up to κ = 4.16, since the physical unnormalized ∆tsep changes only slightly. As for
the other characteristics, κ = 8.32 has to be considered as a special case here, since
lock-in effects are present which will be discussed in section 4.4.5.

Moreover, it can be observed in figure 4.12(b) & (c) that the inflection point of
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the motion of the separation point xsep is in phase with the temporal maximum of
the pressure gradient x(t)|maxx{dpw/dxs} for both transient cases, see dashed line with
tsep,IP . In other words, the separation point has the highest velocity in the upstream
direction at the time of the maximum pressure gradient. This observation also holds
for κ = 4.16, but not for κ = 8.32. Furthermore, the upstream and downstream
velocities of the separation point ẋsep start to differ towards higher frequencies κ.
While for κ = 1.04 the upstream and downstream velocities are about the same,
for κ = 2.08 the separation point is found to move slightly slower upstream than
downstream. This is interesting since this is exactly the opposite for the periodic
motion of the laminar-to-turbulent transition in oscillating boundary layers, see
discussion regarding unsteady n-factors below or chapter 3. Such behavior can be
explained by the fact that the pressure gradient during the downstream movement is
significantly weaker at κ = 2.08 compared to κ = 1.04, which causes the separation
point to be pushed downstream more rapidly. The same characteristics can also be
found for κ = 4.16, but not for κ = 8.32, cf. figure 4.13.
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Figure 4.13: Characterization of unsteady separation point (S) or xsep versus gust
frequency κ. |C|∗ and |S|∗ represent the scaled Theodorsen and Sears function,
respectively. The colors of the curves match the colors of the corresponding ordinate
axis.

The amplitude of the separation-point motion in the flow direction ∆xsep also
depends strongly on the gust frequency. In figure 4.13, it can be clearly seen that
this amplitude decreases with higher κ. An obvious approach to explain this trend
would be—analogous to the approximation of the transition motion ∆xtr in section
3.3.2 (LTT case)—to apply the Sears (1941) function here. However, despite a
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qualitative similarity, the scaled Sears function |S|∗ in figure 4.13 does not reflect the
unsteady behavior over κ. This is not surprising, as multiple factors are responsible
for this particular separation movement. The scaled Theodorsen (1935) function
|C|∗, exhibits a much better agreement with ∆xsep(κ). This function is related to
the Sears function and is derived to approximate the oscillation of the lift of an
unsteady pitching airfoil, see Leishman (2006) for details. An explanation for the
agreement can be given by the fact that the dead-air region (see figure 4.4) might
experience the gust more like a standing wave instead of a traveling wave due to the
inertia effects of the lower flow velocities. The Theodorsen function, where fluid is
moved up and down due to the pitching motion, can be related to a problem with
a standing wave, see Turhan et al. (2022).

4.4.4 Characterization of transition and reattachment

In contrast to the separation point xsep or (S), neither the transition position (T)
nor the location of reattachment (R) can be determined unambiguously or smoothly
over time due to the fluctuations in the rear region of the separation bubble. The
application of a running mean would merely blur the results, since the time scales
of vortex-shedding are already too close to the periods of the applied gusts. There-
fore, an exact characterization of the unsteady transition and reattachment versus
the gust frequency κ—analogous to the plot of the separation point in figure 4.13—
cannot be created. A possible solution would be to evaluate the data over numerous
gust periods in experimental investigations or simulations which require fewer re-
sources. With a phase (or periodic ensemble) average, the positions can then be
determined. Nevertheless, by observing γz,cf as well as the instantaneous results
of LST and CWT, the transient behavior of the transition location as well as the
reattachment can be qualitatively evaluated. The two lines (T) and (R) drawn
manually in figures 4.10 & 4.11 for the three lower κ represent the approximate
periodic behavior. The first line is based on the knowledge about the critical value
n(cwt) ≈ 8.6 of the transition in the quasi-steady case, while the second represents
the approximate end of the intermittent reverse-flow vortex (RFV) with γz,cf < 0.5.
At κ = 8.32, however, the unsteady transition location and the reattachment point
is difficult to localize, which is why the periodic mean is shown here instead. With
these lines drawn in figures 4.10 & 4.11, the time evolution of the approximated
length of the laminar separation bubble ∆xLSB can be visualized.

The modes with phase velocity of cmode ≈ 0.5u∞ on average travel significantly
slower downstream than the gust which convects with cgust = u∞ (see gray dashed
lines in figures 4.10 & 4.11) through the airfoil flow. Naturally, this results in a time
delay of the oscillation of the n-factors with respect to the gust as well as other flow
characteristics. The phase shift of the oscillation of the separation point xsep—which
also has its own viscous delay, see above—to the oscillation of the highest factor from
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stability analysis n = 8 (closely linked to transition (T) and reattachment (R)) is of
special interest here. Therefore, this shift characterizes the qualitative development
of the streamwise separation bubble length ∆xLSB over time. For the low-frequency
case κ = 1.04, only a slight phase lag of the n-factor curves to the separation point
can be seen. Therefore, the length of the separation bubble ∆xLSB varies little
over the period T and behaves similarly to the quasi-steady case with κ → 0, see
figure 4.9. However, at κ = 2.08, the phase offset is so large that the motion of
xsep is beginning to oppose the motion of the higher n(cwt)-factors and therefore
the approximate transition point (T). This is even more pronounced at κ = 4.16

with a phase shift of ≈ π, where the lines (T) and (R) always move in the opposite
direction to the separation line (S) over the gust period. While the separation point
responds directly to the pressure gradient induced by the gust (with some degree of
viscous delay), the resulting transition motion is still bound to the phase velocity
of the modes cmode . Due to this effect, the length of the separated region ∆xLSB

varies much more dramatically for κ = 2.08 and κ = 4.16 compared to the low-
frequency case with κ = 1.04. In other words, at high frequencies the separation
bubble “breathes” or changes its size in both directions, while at lower frequencies
it instead moves upstream and downstream as in the quasi-steady case. Therefore,
at these two frequencies κ we can speak of an “amphora-shaped” footprint of the
separation bubble ∆xLSB in the x/t plane, see figures 4.10(b) & 4.11(a).

As known for oscillating transitional boundary-layer flows without separation, see
results of LTT case in chapter 3 or Ohno et al. (2022); Romblad et al. (2020); Studer
et al. (2006), it can be observed that the n(cwt)-factors move faster upstream than
downstream. This deviation of ẋ(n(cwt) = 8) is especially visible for κ = 4.16 in
figure 4.11(a). Since the velocity of the motion of the separation point ẋsep behaves
inversely for κ = 2.08 and κ = 4.16, the “amphora shape” of the separation bubble
is even further enhanced here. For κ = 8.32, however, the higher values of ncwt > 7

no longer oscillate over the gust period and therefore deviate from the n-factors of
the linear theory. Here, the quasi-steady approach of the stability analysis with
steady-state equations probably reaches its limits, since the actuation frequency is
already very close to the (fundamental) gust frequency ωDS/ωgust = 6.25. However,
more plausible for the deviation is the lock-in effect of the gust with the separation
bubble, leading to non-linear interaction, see end of this section.

A particularly interesting transient behavior is also observed for the early in-
termittent reattachment with γz,cf < 0.99 further upstream. For all three angles
of attack AoA of the steady-state cases, these near-wall structures were found at
n(cwt) ≈ 7.5, see figure 4.9. For κ → 0, it can be assumed that these structures
are always present at this n(cwt)-factor and are implicitly bound to the transition
location (T) as well as bubble length ∆xLSB . However, in all simulations with ac-
tual gusts, see figures 4.10 & 4.11, there is a spatial undershoot of these structures
with respect to the quasi-steady reference of n(cwt) ≈ 7.5. Since this undershoot
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occurs periodically and the momentary reattachments are in contrast to the steady-
state cases almost exclusively two-dimensional (γz,cf < 0.01), the observation can
definitely be considered an unsteady effect. This is already apparent in the low-
est frequency case κ = 1.04. For most of the period, though, the structures here
also appear mainly at n(cwt) ≈ 7.5 and are barely two-dimensional similar to the
steady-state cases. However, for the interval of 0.45 < t/T < 0.8 structures which
are consistently two-dimensional are already apparent at n(cwt) ≈ 6.5. This behav-
ior is even more pronounced at higher frequencies. For κ = 4.16, for example, the
momentary reattachments appear as early as n(cwt) ≈ 5. Due to those structures,
the above-mentioned graphical impression of an “amphora shape” in the x/t plane
can also be found for the purely separated region with γz,cf > 0.99 for κ = 2.08 as
well as κ = 4.16. However, the periodically occurring spatio-temporal “streaks” with
γz,cf < 0.01 in the x/t plane, indicating near-wall 2D structures, strongly resemble
the simulation results of the steady-state reference case without the disturbance strip
turned on, see figure 4.6(a). It can therefore be assumed that absolute instability
has an impact here. It should be mentioned that the n(cwt)-factors do not take into
account the potential influence of the absolute instability. Unlike a global analysis,
the local (unsteady) LST can only calculate the amplification of convective modes
and therefore cannot predict self-sustaining instabilities. Furthermore, the spectral
result of the CWT refers only to the actuation frequency ωDS , which is why other
disturbances with different frequencies are disregarded here.

4.4.5 Absolute instability and lock-in with gust

However, the influence of absolute stability over one gust period can be investigated
with a double-spectral analysis. The modal development for the simulation with
κ = 2.08 without additional disturbance input is shown in figure 4.14(a), where the
fundamental gust frequency—denoted with (1, 0)gust—can be seen with its higher
harmonics. In direct comparison with the steady-state simulation, see figure 4.8(a),
the 2D disturbances (h, 0) obtain larger amplitudes due to the influence of the gust.
This influence becomes more obvious when comparing the simulations with the
disturbance strip turned on: While in the steady-state simulation in figure 4.8(b)
the 2D perturbations (h, 0) are not relevant for the transition process, they appear
with higher levels in the simulation with gust in figure 4.14(b). This confirms the
occurrence or influence of absolute instability, which increases as soon as gusts affect
the flow. In contrast to the stationary counterpart in figure 4.8(b), the amplification
of the modes (1,±1) in figure 4.14(b) is clearly reduced downstream. Furthermore,
it can be observed that the peak of non-linear saturation is attenuated over the
oscillation period, which also indicates the increased influence of absolute instability.

Besides the higher influence of an absolute instability, other effects may be in-
volved. At κ = 2.08 and κ = 4.16, small fluctuations of the separation point are seen
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Figure 4.14: Downstream development of modal disturbance amplitude u′
s,(h,k) (max-

imum over ys) for gust frequency κ = 2.08. (a) DNS without actuation (b) DNS
with disturbance strip. “Separated flow” refers to the periodic mean.

at the maximum point (or apex) of xsep , see blue dashed circle in figure 4.10(b) &
4.11(a). When considering the trajectory of cmode for case κ = 2.08, it seems appar-
ent that the strong 2D structures which appear during reattachment (at x ≈ 0.63

and t/T ≈ 1.15) are caused upstream by the fluctuations of the separation point.
These waves reoccur at each period and therefore might be seen as a kind of insta-
bility of the laminar separation point. Upon closer examination, it can be seen that
the separation line is generally somewhat more “shaky” when moving downstream
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compared to the upstream movement. This is counterintuitive in a sense, since the
most downstream separation position (see figure 4.9(c)) turned out to be the most
stable in the quasi-steady consideration. These fluctuations can be seen as an effect
of the transient flow and may also be responsible for the increased occurrence of 2D
structures in the reattachment zone during this particular time period. However,
this behavior indicates a short-term increase of the absolute instability (hence a
feedback-loop of the flow), which makes it difficult to argue with cause-and-effect
at this point. Another and rather intuitive explanation is that 2D structures may
also be generated due to the “stretching” and “squeezing” of the separation bubble
through the oscillating pressure gradient dp/dx in the flow direction. These obser-
vations and tentative conclusions require further investigation, possibly under more
generic conditions.
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Figure 4.15: FFT of wall pressure p′w for simulations with gusts. (a) κ = 1.04 (b)
κ = 4.16 (c) κ = 8.32.

In addition, the question arises as to what point a so-called lock-in effect between
the gust and the laminar separation bubble occurs. This effect can also be observed
in separation control, where the vortex-shedding frequency may be locked onto the
actuation frequency, see Dianics et al. (2015) or Kang et al. (2020). For the case
with κ = 4.16 in figure 4.11(a), a clear regularity of the structures over one period
can already be observed. This is even more evident in figure 4.11(b), where the
frequency of the natural oscillation is only about six times of the gust frequency
κ = 8.32. The lock-in effect can also be confirmed in the spectral analysis of the
wall pressure, see figure 4.15.
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The spectrum for κ = 1.04 in 4.15(a) shows a broader hump centered at ω ≈ 150

in comparison to the narrower one of the steady-state case in figure 4.7(b). This
can be explained by the fact that the natural frequencies vary depending on the
position and size of the laminar separation bubble during one gust period. For
κ = 4.16 in figure 4.15(b) the higher harmonics of the gust can already be seen.
Nevertheless, the spectrum is still relatively broad with a peak at ω ≈ 115, which is
why there is not yet a complete lock-in to the gust. A complete lock-in of the flow,
however, is evident at κ = 8.32 in figure 4.15(c), since the whole spectrum follows
the multiples of the gust frequency. Here, the separated flow resonates primarily
with the periodic gust. The characteristics of cf for κ = 8.32, as depicted in figure
4.11(b), are practically identical to the case with no actuation via disturbance strip.
This is another indication of lock-in to the gust, since the reattachment process is no
longer influenced by the actuation signal. Nevertheless, for the case with actuation,
the lock-in effect does not seem to have a strong impact on the amplification rates of
the modes, since ncwt evolves similarly to n. However, for higher values of ncwt the
periodic pattern is “smeared” over time, leading to an almost quasi-steady behavior.

4.5 Summary

This section aims to summarize the most important aspects of the research presented
in this chapter. The conclusions drawn here directly follow the deductions of the
attached-flow scenario of the previous chapter, see summary in section 3.5. First,
the numerical setup is briefly reviewed, followed by an enumeration of the identified
physical effects and a classification into identified scenarios for unsteady flows with
separation. A comprehensive summary with more conclusions is given in chapter 5.

The behavior of laminar separation bubbles on an NLF airfoil under the influence
of periodic vertical gusts was investigated with direct numerical simulations. The
hybrid approach, in which flow fields of URANS simulations with gusts are used
for unsteady boundary conditions in the DNS, has been shown to perform robustly
for a flow with laminar separation. The numerical method was validated through
results from corresponding wind-tunnel experiments (see Greiner (2024)) with re-
spect to the mean-flow properties, oscillating boundary-layer profiles as well as in
spectral content. The linear behavior of the convective shear layer instability is char-
acterized by comparing the amplitudes from the continuous wavelet transform with
the predicted n-factors from the (unsteady) linear stability analysis. Furthermore,
the presence of the absolute instability was investigated in steady-state simulations
of the reference case, in particular by comparing the results with and without the
excitation of oblique resonance via a disturbance strip.

In the case of the attached-flow scenario presented in the previous chapter, four
consecutive physical effects were identified as most important to explain the char-
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acteristics of unsteady transition: 1 The “footprint” of the gust in form of an
unsteady pressure gradient which depends on the amplitude v′gust and the relation
of λx,gust(κ)/Lc (Sears function), 2 a viscous delay of the laminar boundary layer
responding to the change of pressure gradient leading to a spatio-temporal lag of
amplification rates αi for convective modes, 3 the spatio-temporal trajectories due
to the gust-independent phase speed cmode of the modes causing skewed or even
overturned transition behavior and finally 4 a non-linear distortion of the mean
flow leading to altered stability properties. (See section 3.5 for details.) With the
exception of the last point—which might occur at at higher amplitudes—, these
effects were also found in this flow scenario involving laminar separation. However,
for the present scenario, two further transient effects are identified, hence the list
can be extended by:

5 Absolute instability increased: With increasing gust frequency, the impact
of the absolute instability in the transition process of the laminar separation
bubble increases. The structures in the turbulent reattachment of the flow are
also increasingly coherent and two-dimensional.

6 Lock-in effect: At very high gust frequencies, a lock-in or resonance of the
separation bubble with the gust occurs, whereby convective modes play a
minor role. The reattachment is entirely governed by the gust frequency and
its higher harmonics.
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Figure 4.16: Schematic spatio-temporal development of separated area (blue) with
transition movement (red). (a) Quasi-steady behavior κ ⪅ 0.5 (b) Unsteady behav-
ior (“amphora shape”) 0.5 ⪅ κ ⪅ 5 (c) Lock-in with gust κ ⪆ 5.

A tentative breakdown of transient cases of this scenario for an increasing fre-
quency κ at v′gust = 0.04 is shown in figure 4.16, where the spatio-temporal devel-
opment of the laminar separation bubble (blue area) is schematically depicted. The
trajectories of the convective instability with the phase velocity c−1

mode (dashed red)
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with the resulting unsteady shear layer transition (solid red) are also shown. The
three simplified cases can be distinguished as follows:

I Quasi-steady behavior for κ ⪅ 0.5: The trajectories of the amplified modes
are (almost) horizontal in the x/t diagram due to the low-frequency gust. The
separation bubble moves upstream and downstream while changing its size
over one oscillation period. A quasi-steady consideration is therefore sufficient
here.

II Unsteady behavior for 0.5 ⪅ κ ⪅ 5: The point of separation responds
quickly (with some degree of viscous delay) to the time-dependent pressure gra-
dient and oscillates over a shorter stretch compared to the quasi-steady case.
The transition and the subsequent turbulent reattachment exhibits a phase
lag with regard to the upstream separation line, due to the gust-independent
phase speeds cmode of the modes. This results to a “breathing” separation bub-
ble with an “amphora-shaped” spatio-temporal development of the separated
region in the x/t plane. Furthermore, the impact of an absolute instability is
increased. However, the behavior can be mostly attributed to unsteady lami-
nar effects and the behavior of time-dependent convective disturbances which
can be described by local linear theory.

III Lock-in with gust for κ ⪆ 5: The distance of the oscillation of the separa-
tion location further decreases. The rear region of the bubble including the
resulting vortex-shedding is fully determined by the gust frequency and its
superharmonics, hence a lock-in with the gust is present. Due to the short
period of the pressure-gradient oscillation T in relation to the lifespan of the
convective modes, the transition and the subsequent reattachment exhibit a
quasi-steady behavior, cf. unsteady transition-behavior at high frequencies in
section 3.3.2.
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5 Conclusions
The unsteady behavior of the boundary-layer flow on two NLF airfoils subjected
to periodic vertical gusts has been numerically investigated. In the first scenario,
the unsteady natural transition with TS-waves in an attached flow was investigated.
Building on this, the transient behavior of a laminar separation bubble was studied
in the second scenario.

Transient base flows for different gust frequencies κ and amplitudes v′gust were
generated using URANS simulations in conjunction with the disturbance velocity
approach. As a new hybrid approach, these unsteady flow fields were used for direct
numerical simulations, with domains covering the relevant part of the boundary-
layer flows. Thereby, the transient base flows containing the gust response of the
airfoils were prescribed with modified unsteady boundary conditions. The spatio-
temporal evolution of the modal amplitudes in the oscillating flows was determined
using the continuous wavelet transform. Those amplitudes could be compared with
the linear theory by using an unsteady extension of the en-method where modes are
followed along their trajectories. Having theoretical laminar and linear references
from URANS along with the non-linear results of the DNS proved to be very helpful
in deducing cause-and-effect physics.

Attached-flow scenario

First, the spatio-temporal behavior of unsteady laminar flows from URANS simu-
lations was qualitatively characterized. A “footprint” of the gust could be identified
in the unsteady pressure gradient, which convects with the free-stream velocity u∞

and becomes more distinctive with increasing frequency κ. The subsequent response
of the velocity profiles shows a lagging behavior, which is inherent to the viscous
boundary layer and leads to a hysteresis of the amplification rates αi. Furthermore,
the phase speed of the TS-waves cTS is considerably slower than the gust. Both
transient effects are accounted for by the unsteady linear stability analysis used for
time-dependent transition prediction. The numerical method was validated with
the measurements of Romblad et al. (2020); Romblad (2023). In those cases, the
unsteady transition location exhibits an “asymmetric” behavior over time, with a
faster upstream-moving front and a slower downstream-moving front.

A general characterization of the linear effects was carried out with a parameter
study for 0 ≤ κ ≤ 8 and 0.01 ≤ v′gust ≤ 0.06. It was found that the amplitude of
the streamwise oscillation of the transition can be approximated by the Sears (1941)
function. The most skewed or asymmetric temporal behavior of the transition was
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found at κcrit , which refers to the frequency where the average lifetime of the TS-
waves is equal to the period of the gust. For high amplitudes at this frequency, a so-
called overturned pattern of the transition location is found. In this case, an isolated
turbulent stretch within the laminar flow is predicted according to the linear theory.
A dimensionless number κtr based on frequency and effective amplitude has been
suggested to quantify the degree of unsteadiness of the cases. This parameter proved
to be well suited for characterizing the unsteady transition, since the velocities of the
fronts in both upstream and downstream directions (or leading and trailing edges for
the overturned pattern) follow a clear trend over κtr . A general transition prediction
method is suggested based on the laminar/linear considerations.

The physics of unsteady flow including non-linear effects were investigated with
DNS. For all simulations, fundamental resonance was applied as a breakdown sce-
nario with initial amplitudes corresponding to ncrit ≈ 10 and ≈ 7. The steady-state
reference case was characterized and validated with wind-tunnel measurements. In
the simulations with gusts, the n-factors of the linear theory (based on the transient
base flow) were directly compared with the amplitudes of the introduced modes,
which were obtained using the continuous wavelet transform. A perfect agreement
of the transient modal development with the linear theory was found for the cases at
low degrees of unsteadiness with low frequencies and low amplitudes. The (weakly)
non-linear stage and the fully non-linear turbulent flow oscillate continuously in
upstream and downstream direction. In addition, a transient delay of the mean
flow distortion was observed. A consistent qualitative behavior of the unsteady
transition was found in the comparison with the wind-tunnel measurements from
Romblad (2023). The observed pronounced amplitudes of the upstream-moving
transition front were interpreted in analogy to the Doppler effect with an increased
number of incoming TS-wave crests.

The convective-transition mode—which was described by Obremski & Fejer (1967)
and Studer et al. (2006)—was found for cases at higher levels of unsteadiness. In
this work, it was shown that the transient delay of the mean flow distortion is pri-
marily responsible for the occurrence of this phenomenon for natural transition. The
MFD-delay generally appears to attenuate the amplification rates of the TS-modes
at the onset of the downstream-moving transition phase. Accordingly, a transient
branch II is present, which ensures that TS-waves no longer reach the necessary
thresholds for transition for a short time. Furthermore, the effect of fewer incoming
TS-wave crests at the downstream-moving front (Doppler analogy) is assumed to
contribute to the “stalling” of the creative transition. A calmed region—well known
from studies of turbulent spots and wake-induced transition in turbomachinery—is
eventually formed in the wake of the convecting turbulent flow. In all cases, the
spatio-temporal evolution of the modes leading to creative transition shows good
agreement with the unsteady n-factors from quasi-steady LST. Therefore, an ex-
tended transient approach as proposed by Citro & Luchini (2015) is not necessary
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in this scenario. Based on physical considerations, a tipping-point for the occurrence
of the convective-transition mode was identified. This corresponds to a threshold
value of a variation of the unsteadiness quantity with κtr

sears ≈ 0.57.
A claim to generality can be made for this study due to the following properties:

a generic definition for periodic gusts; relevant Reynolds number and realistic Ncrit ;
a comparatively constant streamwise pressure gradient; and most importantly, a
sinusoidal response of the transition location for the quasi-steady case κ → 0.

Separated-flow scenario

The laminar separation bubble was first characterized through three different steady-
state simulations at different angles of attack, which relates to the theoretical quasi-
steady case of an “infinitely large” gust with frequency κ → 0. In the investigations
with actual gusts with 1 ≤ κ ≤ 8 at the amplitude v′gust = 0.04, several transient
effects of the LSB were identified. In particular, the motion of the separation point
as well as the transient behavior of the rear region of the LSB with regard to the
transition location was investigated.

The unsteady modal amplitudes and the resulting unsteady transition position
exhibit an inherent delay due to the time-dependent amplification rates αi and
the slower phase velocity of the convective modes cmode compared to the gust with
the free-stream velocity u∞. As already known from attached boundary-layer flows,
these (linear) influences also cause the transition front to move faster upstream than
downstream, which is especially noticeable at the higher gust frequencies. Clear
trends were found regarding the movement of the separation point, which for the
most part can be regarded as effects of viscous delay of the boundary layer. The
separation point reacts faster to the oscillating pressure gradient than the transi-
tion location and the subsequent turbulent reattachment of the separation bubble.
Interestingly, at some frequencies κ the separation point moves faster downstream
than upstream—exactly the reverse of the behavior of the transition position.

In the simulation with the lowest frequency, it was observed that the separated
area essentially moves upstream and downstream according to the oscillation, while
the length of the LSB varies only mildly. However, at the higher frequencies, a
“breathing” LSB, which grows or shrinks simultaneously in both the upstream and
downstream directions was observed. The LSB leaves an impression of an “amphora-
shaped” footprint in the x/t plane, which is mainly due to the delay of the higher
n-factors of the modes due to their gust-independent phase velocity cmode . Further-
more, it was found that in the unsteady flow with gusts, the absolute instability
inherent to the LSB becomes more influential. Apparently, this leads to coherent
near-wall 2D structures in the rear region of the LSB, which occur periodically at
certain times of the cycle. At the highest frequency investigated, a clear lock-in
effect or resonance of the LSB onto the disturbance of the gust was identified.
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Outlook

In this work, a general formulation for an unsteady transition prediction method
based on quasi-steady LST was presented and validated by experimental investi-
gations and DNS. Consequently, the method can be implemented as a transition
model for URANS simulations, enabling transient studies of full-scale aircraft con-
figurations. This would also allow the unsteady characterization of the transition in
novel configurations e.g. with (hybrid) laminar flow control ((H)LFC). In this case,
the base flows are manipulated (e.g. with boundary-layer suction), which poten-
tially results in a significantly different behavior of the transient flow with respect
to stability properties.

In addition, prospects for further research on the fundamentals of unsteady transi-
tion can be outlined. An extended formulation of the unsteady LST—possibly using
Floquet theory—could be derived for cases with very high degrees of unsteadiness.
DNS corresponding to this work with a variation of the mean (steady-state) pressure
gradient as well as the Reynolds number are desirable for further characterization.
In addition, the transient behavior of the secondary mechanism and the subsequent
late stages of breakdown can be studied in depth. More insights are expected for
transient DNS with a disturbance formulation where the mean flow distortion is
suppressed. This study also demonstrated the importance of transient mean flow
distortion behavior, which is not yet investigated. An appropriate general character-
ization and modeling is therefore of great interest for transient flow problems. This
can also be of use for new transition prediction methods for unsteady conditions.
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A Flux vectors of Navier–Stokes equations

For numerical solution with NS3D, the set of equations presented in section 2.1 is
rewritten to flux vectors, i.e.

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z︸ ︷︷ ︸
−N (Q)

= 0 , (A.1)

with the state vector of conservative variables Q = (ρ, ρu, ρv, ρw,E)T . Here, N
denotes the general compressible Navier–Stokes operator. The flux vectors F , G,
H read

F =


ρu

ρu2 + p− τxx
ρuv − τxy
ρuw − τxz

u(E + p) + qx − uτxx − vτxy − wτxz

 , (A.2a)

G =


ρv

ρuv − τxy
ρv2 + p− τyy
ρvw − τyz

v(E + p) + qy − uτxy − vτyy − wτyz

 , (A.2b)

H =


ρw

ρuw − τxz
ρvw − τyz

ρw2 + p− τzz
w(E + p) + qz − uτxz − vτyz − wτzz

 , (A.2c)

where cv denotes the specific heat capacity, the normal stresses

τxx =
µ

Re

(
4

3

∂u

∂x
− 2

3

∂v

∂y
− 2

3

∂w

∂z

)
, (A.3a)

τyy =
µ

Re

(
4

3

∂v

∂y
− 2

3

∂u

∂x
− 2

3

∂w

∂z

)
, (A.3b)

τzz =
µ

Re

(
4

3

∂w

∂z
− 2

3

∂u

∂x
− 2

3

∂v

∂y

)
, (A.3c)
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the shear stresses

τxy =
µ

Re

(
∂u

∂y
+

∂v

∂x

)
, (A.4a)

τxz =
µ

Re

(
∂u

∂z
+

∂w

∂x

)
, (A.4b)

τyz =
µ

Re

(
∂v

∂z
+

∂w

∂y

)
, (A.4c)

the heat fluxes

qx = − ϑ

(γ − 1)RePrMa2

∂T

∂x
, (A.5a)

qy = − ϑ

(γ − 1)RePrMa2

∂T

∂y
, (A.5b)

qz = − ϑ

(γ − 1)RePrMa2

∂T

∂z
, (A.5c)

and the total energy

E = ρ

∫
cvdT +

ρ

2
(u2 + v2 + w2) . (A.6)
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B Lagrange polynomials for DNS
In this section, the formulation of the 3rd-order Lagrange polynomials implemented
in NS3D for temporal interpolation is given. In order to save computational re-
sources, it is important to use an efficient interpolation scheme since it is performed
during the DNS. With an equidistant time step ∆t of the original URANS flow
data, the numerical formulation of the Lagrange polynomials can be simplified. The
general concept is illustrated in figure 2.5.

The Lagrange interpolation from equation (2.26) for an arbitrary primitive vari-
able ϕ with the Lagrange basis polynomials of equation (2.27) can be rearranged for
the order of k = 3 to

ϕref (t) = a3t
3 + a2t

2 + a1t+ a0 , (B.1)

for t ∈ [0, T ). This calculation is performed at all relevant grid points at every
(sub)iteration of the DNS. However, the coefficients a0 to a3 are updated in case the
simulation time reached a new interval between two temporal data points t1 and t2.
This is done by the following calculation of coefficients in the given order, while first
calculating the auxiliary coefficients

b1 =
ϕ2 − 2ϕ1 + ϕ0

2∆t2
, b2 =

ϕ3 − 6ϕ2 + 3ϕ1 + 2ϕ0

6∆t
. (B.2)

The final coefficients for equation (B.1)

a3 =
ϕ3 − 3(ϕ2 − ϕ1)− ϕ0

6∆t3
, a2 = b1 − 3a3t1 ,

a1 = 3a3t
2
1 − 2b1t1 − b2 , a0 = −a3t

3
1 + b1t

2
1 + b2t1 + ϕ1 ,

(B.3)

can be calculated in sequence. Numerically, current time t in equation (B.1) is
always determined by a modulo operation on the physical time in the simulation
with the period T as a divisor. Therefore, the interpolation is repeated cyclically
over several periods.
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C Supplementary plots

(a) (b)

0

0.5

1

1.5

2

t/
T

x
0.2 0.3 0.4 0.5 0.6

x
0.2 0.3 0.4 0.5 0.6(c) (d)

0

0.5

1

1.5

2

t/
T

x
0.2 0.3 0.4 0.5 0.6

x
0.2 0.3 0.4 0.5 0.6

cf · 103

5
2
-1

ncwt

10
5
0

∆l⟨H12⟩ω
0
-0.3
-0.9
-1.5

ln(MFD)

12
10.5
9
7.5

Figure C.1: Spatio-temporal development for κ = 1 at v′gust = 0.02 (a) Skin-friction
cf (b) Amplitudes of continuous wavelet transform ncwt (c) Shape-factor deviation
∆l⟨H12⟩ω (d) Mean flow distortion ln(MFD); solid white/gray lines: LST with n ∈
{0 ... 10} with ∆n = 1 in downstream direction, ∆l⟨cf⟩ω = 0.001,
maxys{u′

s,cwt} = 0.01, dashed white/gray lines: exemplary trajectories of TS-waves
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TS , free-stream velocity u−1
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