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(Zhenliang Zhou)

1Non-binding translation for convenience: This thesis is the result of my own independent work,

and any material from work of others which is used either verbatim or indirectly in the text is

credited to the author including details about the exact source in the text. This work has not been

part of any other previous examination, neither completely nor in parts. It has neither completely

nor partially been published before. The submitted electronic version is identical to this print

version.



Contents

1 Introduction 9

2 Related works 11

3 Fastspeech2 and transfer learning methods 13

3.1 Fastspeech2 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Phoneme Embedding . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Encoder and Decoder . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.4 Variance Adapter . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Background of Transfer Learning: . . . . . . . . . . . . . . . . . . . . 18

3.3 Adapter structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Adapter structure in NLP . . . . . . . . . . . . . . . . . . . . 20

3.3.3 Fastspeech2 adapter model . . . . . . . . . . . . . . . . . . . . 21

3.4 BitFit: Simple Parameter-efficient Fine-tuning . . . . . . . . . . . . . 22

3.4.1 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 BitFit algorithm: . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.3 Bias-term Fine-tuning(BitFit) in Fastspeech2: . . . . . . . . . 24

3.5 Diff-pruning: a parameter-efficient transfer learning method . . . . . . 25

3.5.1 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Diff pruning algorithm: . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Full finetuning: a transfer learning method by transfer training the

entire model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



3.6.1 Introduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.2 Full finetuning: . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Experimental setup 33

4.1 Training datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 LibriTTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 LJspeech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.3 vctk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Model Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Fastspeech2 model . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Tansfer Learning with Adapter algorithm . . . . . . . . . . . . 37

4.3.3 Tansfer Learning with BitFit algorithm . . . . . . . . . . . . . 38

4.3.4 Tansfer Learning with Diff pruning algorithm . . . . . . . . . 38

4.3.5 Tansfer Learning with full finetuning algorithm . . . . . . . . 40

5 Results and Evaluation 41

5.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Embedding training and pre-training . . . . . . . . . . . . . . 41

5.1.2 Adapter, BitFit, diff pruning, and fully finetuning spectro-

gram loss comparison . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.3 Training time comparison . . . . . . . . . . . . . . . . . . . . 45

5.1.4 Generate the comparison audios . . . . . . . . . . . . . . . . . 46

5.1.5 Cosine Similarity comparison . . . . . . . . . . . . . . . . . . 46

5.1.6 Naturalness comparison . . . . . . . . . . . . . . . . . . . . . 49

5.1.7 Similarity comparison . . . . . . . . . . . . . . . . . . . . . . 53

3



6 Results Analysis 56

7 Conclusions 59

8 Future work 61

A Spectrogram loss during training using vctk P230 and vctk P254,

and LJspeech 62

B Mel-spectrogram of all the models 65

C Test samples selected from vctk and LJspeech 72

List of Figures

1 Fastspeech2 model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Adapter Model in Transformer . . . . . . . . . . . . . . . . . . 20

3 Fastspeech2 adapter model . . . . . . . . . . . . . . . . . . . . . 23

4 the hard concrete distribution . . . . . . . . . . . . . . . . . . . 28

5 the diff pruning and magnitude pruning process . . . . . . . . 30

6 Spectrogtram loss of embedding training and pre-training . 41

7 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p252 200data . . . . . . . . . . . 43

8 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p252 150data . . . . . . . . . . . 43

9 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p252 100data . . . . . . . . . . . 44

10 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p252 50data . . . . . . . . . . . . 44

4



11 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with LJspeech dataset . . . . . . . . . . . . 45

12 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p230 200data . . . . . . . . . . . 62

13 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p230 150data . . . . . . . . . . . 62

14 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p230 100data . . . . . . . . . . . 63

15 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p230 50data . . . . . . . . . . . . 63

16 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p254 200data . . . . . . . . . . . 64

17 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p254 150data . . . . . . . . . . . 64

18 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p254 100data . . . . . . . . . . . 65

19 spectrogram loss of adapter, BitFit, diffpruning and fully

finetuning trained with vctk p254 50data . . . . . . . . . . . . 65

20 adapter vctk p230 50data . . . . . . . . . . . . . . . . . . . . . . 66

21 BitFit vctk p230 50data . . . . . . . . . . . . . . . . . . . . . . . 66

22 diff pruning vctk p230 50data . . . . . . . . . . . . . . . . . . . . 66

23 finetuning vctk p230 50data . . . . . . . . . . . . . . . . . . . . . 66

24 adapter vctk p230 100data . . . . . . . . . . . . . . . . . . . . . . 66

25 BitFit vctk p230 100data . . . . . . . . . . . . . . . . . . . . . . . 66

26 diff pruning vctk p230 100data . . . . . . . . . . . . . . . . . . . 66

27 finetuning vctk p230 100data . . . . . . . . . . . . . . . . . . . . 66

5



28 adapter vctk p230 150data . . . . . . . . . . . . . . . . . . . . . . 67

29 BitFit vctk p230 150data . . . . . . . . . . . . . . . . . . . . . . . 67

30 diff pruning vctk p230 150data . . . . . . . . . . . . . . . . . . . 67

31 finetuning vctk p230 150data . . . . . . . . . . . . . . . . . . . . 67

32 adapter vctk p230 200data . . . . . . . . . . . . . . . . . . . . . . 67

33 BitFit vctk p230 200data . . . . . . . . . . . . . . . . . . . . . . . 67

34 diff pruning vctk p230 200data . . . . . . . . . . . . . . . . . . . 67

35 finetuning vctk p230 200data . . . . . . . . . . . . . . . . . . . . 67

36 adapter vctk p252 50data . . . . . . . . . . . . . . . . . . . . . . 68

37 BitFit vctk p252 50data . . . . . . . . . . . . . . . . . . . . . . . 68

38 diff pruning vctk p252 50data . . . . . . . . . . . . . . . . . . . . 68

39 finetuning vctk p252 50data . . . . . . . . . . . . . . . . . . . . . 68

40 adapter vctk p252 100data . . . . . . . . . . . . . . . . . . . . . . 68

41 BitFit vctk p252 100data . . . . . . . . . . . . . . . . . . . . . . . 68

42 diff pruning vctk p252 100data . . . . . . . . . . . . . . . . . . . 68

43 finetuning vctk p252 100data . . . . . . . . . . . . . . . . . . . . 68

44 adapter vctk p252 150data . . . . . . . . . . . . . . . . . . . . . . 69

45 BitFit vctk p252 150data . . . . . . . . . . . . . . . . . . . . . . . 69

46 diff pruning vctk p252 150data . . . . . . . . . . . . . . . . . . . 69

47 finetuning vctk p252 150data . . . . . . . . . . . . . . . . . . . . 69

48 adapter vctk p252 200data . . . . . . . . . . . . . . . . . . . . . . 69

49 BitFit vctk p252 200data . . . . . . . . . . . . . . . . . . . . . . . 69

50 diff pruning vctk p252 200data . . . . . . . . . . . . . . . . . . . 69

51 finetuning vctk p252 200data . . . . . . . . . . . . . . . . . . . . 69

6



52 adapter vctk p254 50data . . . . . . . . . . . . . . . . . . . . . . 70

53 BitFit vctk p254 50data . . . . . . . . . . . . . . . . . . . . . . . 70

54 diff pruning vctk p254 50data . . . . . . . . . . . . . . . . . . . . 70

55 finetuning vctk p254 50data . . . . . . . . . . . . . . . . . . . . . 70

56 adapter vctk p254 100data . . . . . . . . . . . . . . . . . . . . . . 70

57 BitFit vctk p254 100data . . . . . . . . . . . . . . . . . . . . . . . 70

58 diff pruning vctk p254 100data . . . . . . . . . . . . . . . . . . . 70

59 finetuning vctk p254 100data . . . . . . . . . . . . . . . . . . . . 70

60 adapter vctk p254 150data . . . . . . . . . . . . . . . . . . . . . . 71

61 BitFit vctk p254 150data . . . . . . . . . . . . . . . . . . . . . . . 71

62 diff pruning vctk p254 150data . . . . . . . . . . . . . . . . . . . 71

63 finetuning vctk p254 150data . . . . . . . . . . . . . . . . . . . . 71

64 adapter vctk p254 200data . . . . . . . . . . . . . . . . . . . . . . 71

65 BitFit vctk p254 200data . . . . . . . . . . . . . . . . . . . . . . . 71

66 diff pruning vctk p254 200data . . . . . . . . . . . . . . . . . . . 71

67 finetuning vctk p254 200data . . . . . . . . . . . . . . . . . . . . 71

68 adapter LJspeech . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

69 BitFit LJspeech . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

70 diff pruning LJspeech . . . . . . . . . . . . . . . . . . . . . . . . . 72

71 finetuning LJspeech . . . . . . . . . . . . . . . . . . . . . . . . . . 72

List of Tables

1 Hyperparameters of Transformer TTS and Fastspeech2 . . . 36

2 Comparison among all four algorithms . . . . . . . . . . . . . . 38

7



3 Cosine Similarity of BitFit, full fine-tuning and adapter trained

by vctk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Cosine Similarity of BitFit, diff pruning, full fine-tuning and

adapter audios trained by LJspeech . . . . . . . . . . . . . . . . 48

5 Absolute Category Rating scale in MOS . . . . . . . . . . . . . 50

6 The evaluaiton criterion for naturalness MOS . . . . . . . . . . 51

7 Naturalness of BitFit, adapter, full fine-tuning, and original

speaker audios under low resource vctk dataset . . . . . . . . . 52

8 Naturalness of BitFit, adapter, full fine-tuning and original

speaker audios under high resource LJspeech dataset . . . . . 52

9 The evaluaiton criterion for similarity MOS . . . . . . . . . . . 54

10 Similarity of BitFit, adapter, full fine-tuning and original

speaker audios under low resource vctk dataset . . . . . . . . . 55

11 Similarity of BitFit, adapter, full fine-tuning, and original

speaker audios under high resource LJspeech dataset . . . . . 55

12 Test samples selected from vctk P230/P252/P254 to evalu-

ate cosine similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13 Test samples selected from LJspeech to evaluate cosine sim-

ilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

14 Test samples selected from vctk P230/P252/P254 to evalu-

ate MOS of naturalness and similarity . . . . . . . . . . . . . . 74

15 Test samples selected from LJspeech to evaluate MOS of

naturalness and similarity . . . . . . . . . . . . . . . . . . . . . . 74

8



1 Introduction

For the classic pre-trained model in natural language processing (NLP)[1], a large-

scale designed model will be trained for multi-task in the specific domain. Aiming to

swiftly obtain a model which could tackle a single special task, transfer learning[2]

is one perfect solution. Instead of retraining the entire model(full fine-tuning), some

transfer learning methods[2] take the layers from the large-scale pre-trained model

and freeze them so as to avoid destroying any of the information they contain during

future training rounds. In this paper, we will apply three methods to achieve transfer

learning[2] with smaller datasets and fewer steps in text-to-speech research.

As an alternative for transfer learning, the adapter module is proposed to solve

Parameter validity issues. Adapter modules[3] yields a compact and extensible model.

We add only a few trainable parameters per task, and new tasks can be added with-

out revisiting previous ones. The parameters of the original network remain fixed,

yielding a high degree of parameter sharing. Therefore, Adapters apply smaller task-

specific modules which are inserted inside the entire model. This method does not

require accessing all tasks during training. Normally, as new task flows arrive and are

discovered, the adapter layer can match the performance of a fully fine-tuned model,

while each sub-task requires a small amount of parameters’ variation(on average).

Bitfit[4], a way of sparsity tuning, only requires adjustments to the bias items of

the model. It is effective on small and medium-sized datasets and comparable with

the other sparse fine-tuning methods on huge data. In addition to its practicability,

it can better enable us to understand fine-tuning and learning knowledge in model

training rather than learning new domain tasks in new fields. Experiments show

that it is very effective to adjust bias parameters only, and even the bias between

the encoder and voice decoder can only be adjusted, accounting for only 0.04% of

the total parameters. This result makes it practical to deploy fine-tuned tasks in

many environments with limited memory and opens the way for trainable models

with fixed parameters. It leads to research directions to explore the role of bias in

the pre-training network in the fine-tuning process.

In this paper, Diff-pruning is similar to Adapters, but instead of modifying the
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structure of the model, Diff-pruning [5]extends the base model through a task-

specific trainable diff vector, which helps to finetune 0.1-1% of the pre-training

parameters. To learn this vector, we re-parameterize the model parameters for a

particular task as θtask = θpretrained+δtask, in which the parameter vector θpretrained is

fixed, and task-specific diff vector is fine-tuned. The difference vector is reconstructed

with a fine-tuned approximation of the L0-norm penalty to encourage sparsity[6].

In the text-to-speech research, we’ll use Fastspeech2[7] as our base model. Fast-

speech2 model contains phoneme embedding layer[8], encoder layer, variance adapter

layer, and mel-spectrum decoder layer. Compared to the Fastspeech model, fast-

speech2 has a much more outstanding structure. On the one hand, the Fastspeech2

model is trained with ground-truth speech instead of the outcome from the teacher

used in the Fastspeech model. On the other hand, the duration, pitch, and energy

information of speech is extracted by the Fastspeech2 model(extracted by duration,

pitch, and energy predictor from variance adapter layer), which could help to ex-

pand the text sequence to match the speech detail information of mel-spectrum.

This structure could solve the one-to-many problem effectively.

To demonstrate the effectiveness of adapter, Bitfit[4], and diff-pruning structure

applied in the text-to-speech domain. We intend to pre-train the Fastspeech2 model

for multiple speakers with the LibriTTS dataset first. Then we propose to add these

new structures to the Fastspeech2 model and retrain the model with LJSpeech[9],

a single-speaker English dataset consisting of 13100 short audio clips of a female

speaker reading passages from 7 non-fiction books, approximately 24 hours in total.

Other than that, We use vctk single speaker dataset to finetune the Fastspeech model

with adapter, BitFit, diff pruning, and full finetuning to evaluate the performance

of these models in low resources datasets.

We aim to compare the results between the full finetuning Fastspeech2 model and

our new model with adapter, Bitfit[4], and diff-pruning and try to find whether the

new transfer model will improve the parameters of single-speaker training.
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2 Related works

There are different model structures applied in text-to-speech. Wavenet [10], Tacotron

[11]series, Fastspeech[12] series, VITS[13], and PromptTTS are very popular models,

which can achieve a very high degree of imitation.

WaveNet replaces the traditional approach of using Fourier transform for audio

signals, which is the first neural network to achieve text-to-speech tasks. Therefore,

the transformation can be backpropagated, and the original audio data can be pro-

cessed by some techniques, such as dilated convolution, 8-bit quantization, .etc. But

people have been investigating ways to combine WaveNet’s method with traditional

methods, although this method’s loss function is calculated by multiple regression

instead of classification used by WaveNet[10].

Tacotron[11] is essentially an end-to-end model with an attention mechanism[14],

which consists of an Encoder and a Decoder. In the encoder structure, The phoneme

is obtained from the raw text as input. Pre-net is composed of a fully connected layer

plus dropout to improve the generalization ability and accelerate the convergence

of the model. Then, CBHG is Used to extract high-level features from sequences to

improve the generalization ability of the model. Also, k 1-D convolutions of differ-

ent sizes are added inside the encoder, similar to the idea of the n-gram language

model, which extracts context information on different lengths and piles the results

together after padding. Residual connection: The output of the convolutional layer

and the output of the pre-net are added to solve the problem of gradient disappear-

ance that may be caused by the great depth of the network. Highway: The input

is activated by ReLu[15] and Sigmoid function respectively, after passing through

a fully connected layer of the first layer. The highway layer mitigates the overfit-

ting problem caused by the deep network and reduces the training difficulty of the

deep network. Finally, the output is obtained by bidirectional RNN[16]. As for the

decoder, Pre-net, Decoder-RNN[16], and post-processing models are implemented.

The new structures are proved to be effective in reducing model training time and

improving convergence speed.

On the base of Tacotron[11], Tacotron2 makes some structural improvements.
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CBHG is replaced by three-layer convolution and bidirectional LSTM[17], which is

more concise. Location-sensitive Attention Mechanism: Reducing repetition or for-

getting of sub-sequences during decoding. The Decoder generates only one frame at a

time, replaces the Linear-frequency scale spectrum with a lower-level mel-frequency

spectrum, and adds a post-net to finetuning because this representation of time-

domain waveforms is easier for subsequent calculations.

Fastspeech[12] is a branch of the test-to-speech model. In 2019, Zhejiang Univer-

sity and Microsoft Research published a paper together, FastSpeech: Fast, Robust

and Controllable Text to Speech. In this paper, Fastspeech is first proposed. The

overall framework of Fastspeech is similar to the Transformer[18] Encoder, which can

be simply understood as removing the Transformer module[18] of the Decoder to

achieve parallel training of the model and speed up inference. Fastspeech is mainly

composed of three parts: FFT Block[19], Length Regulator and Duration Predictor.

Compared with the previous generation Fastspeech, the new proposed Fast-

speech2 model has several innovations. Instead of the aligned, synthesized spectrum

from the Fastspeechlearning teacher model, the new model directly leverages ex-

ternal alignment tools[20] to provide duration information. Besides duration, the

fundamental frequency and energy of speech are modeled separately at the same

time. These strategies effectively improve the model’s ability to extract speech in-

formation to fit the audio file closer to the real human voice.

PromptTTS: Text descriptions as hints to guide the generation of text or images

(e.g., GPT-3 [21]or DALLE-2) have recently attracted much attention. In addi-

tion to text and image generation, the authors explore the possibility of using text

descriptions to guide speech synthesis in this paper. Therefore, they developed a

text-to-speech (TTS) system (called PromptTTS) that takes prompts with style

and content descriptions as input to synthesize the corresponding speech. Specifi-

cally, PromptTTS consists of a style encoder and a content encoder to extract the

corresponding representations from the prompts and a speech decoder to synthesize

speech based on the extracted style and content representations. Compared to pre-

vious controllable TTS works, which required the user to have acoustic knowledge

to understand style factors such as rhythm and tone.
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3 Fastspeech2 and transfer learning methods

Normally, Text-to-speech is considered a one-to-many mapping problem in NLP[1].

There will be several speech information variations, including pitch, duration, en-

ergy, and volume. Therefore, the input texts will correspond to multiple possible

pronunciation sequences. Sometimes, the text information is not sufficient to sup-

port speech generation. In this case, the model could easily meet the overfitting

problem during the model training. In the Fastspeech model, three main issues are

discussed: 1) the training pipeline is complicated; 2) the duration information can-

not be calculated accurately. 3) information loss of mel-spectrogram. Therefore, the

Fastspeech2 model is proposed. In this model, the training pipeline is simplified effi-

ciently. And author adds a variance predictor layer to extract speech information. In

the following subsection, we will introduce the structure advantage in Fastspeech2

model[7].

3.1 Fastspeech2 model

The Fastspeech2 model architecture[7] is shown in Figure 1a. First, the phoneme

embedding layer[8] could transfer words to embedding vectors for further calcula-

tion. Positional encoding[22] inserts the positional information into the vectors to

represent the logical relationship inside sentences. The encoder converts phoneme

embedding[8] sequence into phoneme hidden sequence. Variance adapter could add

duration, pitch, and energy variance information. Mel-spectrogram decoder converts

the adapted hidden sequence into the hidden mel-spectrogram sequence in parallel.

Fastsoeecg2 has six feed-forward Transformer blocks[18] in the encoder and decoder.

The feed-forward transformer block[18] contains a stack of self-attention layers[14]

and 1D-convolution layers as the Fastspeech model. In addition, Fastspeech2 make

some updates to the structure. First, the teacher-student distillation pipeline in

Fastspeech is removed, and Fastspeech2 adopts ground-truth mel-spectrograms as

training targets. This change effectively avoids mel-spectrogram information loss
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and improves the audio quality of training targets. Then, the variance adapter layer

contains energy, pitch, and energy predictors. These predictors could extract energy,

pitch, and energy information from training audio signals. 1) the duration predic-

tor extracts the phoneme duration information collected by forced alignment[20] as

training target duration, which is more accurate than the duration information col-

lected from the attention map of the teacher model in Fastspeech. 2) the pitch and

energy predictors can provide more accurate information on variance. These struc-

tures can effectively solve the one-to-many mapping problem in the Test-To-Speech

problem. And the detail of each structure in Fastspeech2 will be introduced in the

following subsections.

Figure 1. Fastspeech2 model
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3.1.1 Phoneme Embedding

When word embedding is applied to speech recognition and speech synthesis tasks,

the results are not as good as those in NLP [1]tasks. The main reason is that the

semantic and syntactic information extracted by word embedding is difficult to in-

tegrate into speech-related tasks directly. Therefore, in text-to-speech, a phoneme-

based embedding method is proposed, unlike word embedding. The phonetic charac-

ters represent the pronunciation of phoneme sequences to generate phoneme vectors.

In phoneme embedding training[8]. The input is a phoneme label, and the output

is a corresponding acoustic feature. Word vectors can obtain semantic and syntac-

tic information by training neural network models related to the use of words and

phrases in the language. In contrast, the purpose of phoneme embedding[8] is to

capture acoustic information(such as speech features) and represent this informa-

tion as a phoneme vector.

In the phoneme embedding[8] training, the input is phoneme labels, and the output

is the corresponding acoustic features. Specifically, the one-hot coding of phoneme

labels is embedded into the layer to generate phoneme vectors, which will become

the inputs to the bidirectional long and short time memory(BLSTM)[23] cyclic neu-

ral network(RNN) regression model[16] to predict acoustic features. The phoneme

embedding[8] analysis shows that the phoneme vector has some interesting charac-

teristics. Phonemes with similar acoustic properties are close in cosine distance in

the generated phoneme vector space and tend to be similar after k-means clustering.

And in the Fastspeech2 model, phoneme labels will be extracted from the text of

training samples.

3.1.2 positional Encoding

Positional Encoding[22] is an important technique in the Fastspeech2 model[7] for

encoding positional information for each position in the input sequence. In the Fast-

speech2 model, there are only attention mechanisms[14] and fully connected neural

networks, and no structures that can process sequences like RNNS[16] or CNNS.
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Therefore, the role of Positional encoding[22] is to provide the model with posi-

tional information relative to each position in the sequence, ensuring that the model

considers positional order when processing inputs.

3.1.3 Encoder and Decoder

Fastspeech2[7] uses a new feed-forward transformer[18] network architecture that

abandons the traditional encoder-attention-decoder mechanism. Its main modules

adopt Transformer’s self-attention mechanism[18, 14] and 1D Convolution network.

This structure is considered a Feed-Forward Transformer Block(FFT Block)[19].

Multiple FFT blocks are stacked in a feedforward Transformer for Phoneme to mel-

spectrum transformation. There are N FFT blocks on the encoder and decoder. In

particular, there is a length regulator in the middle, which regulates the length dif-

ference between the phoneme sequence and the mel-spectrum sequence.

3.1.4 Variance Adapter

The purpose of a variable adapter is to add variable information(for instance, pitch

duration and energy, etc.) to a hidden phoneme sequence. This mechanism can pro-

vide sufficient information for the prediction of phonological variants, as well as

one-to-many problems in TTS. We would like to introduce the variance information

as follows:

1) Phoneme duration indicates the duration of pronunciation.

2) Pitch can convey emotional information, which affects speech prosody greatly.

3) Energy directly influences the loudness of the audio and correlates with the au-

dio’s amplitude.

Besides, the variance adapter can add more variance information, such as speak-

ing style and emotions. Therefore, this structure provides strong scalability for the

Fastspeech2 model. Duration, pitch, and energy structures are shown in Figure 1b.

During training, the truth values of duration, pitch, and energy information are
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extracted from a recording, which will be implemented into a sequence to predict

the target speech. In the meantime, the ground-truth duration, pitch, and energy

information will be used to train the duration, pitch, and energy predictors. These

trained structures will be used to synthesize target speech. We can see that the dura-

tion, pitch, and energy predictors share a similar structure, which is shown in Figure

1c. The structure consists of a 2-layer 1D-convolutional network[24] with ReLU[15]

activation function. Behind the output of the activation function, a normalization

layer, one dropout layer, and a hidden linear layer are added. We will introduce the

details of these three predictors in the following paragraphs.

Duration Predictor: This adapter predictor regards a hidden phoneme sequence

as input and predicts the duration of each phoneme. The duration information will

indicate how many mel-frames correspond to the hidden phoneme sequence. For

predictability, the duration information is converted into logarithmic domain

The duration adapter predictor is optimized with mean square error loss(MSE)[25].

Rather than using a pre-trained auto-regressive TTS model[26] to extract phoneme

duration in Fastspeech, Fastspeech2 uses Montreal Forced Alignment(MFA) tool[20]

to obtain the phoneme duration information, which can improve alignment accuracy

and reduce information difference between model input and output[7].

Pitch Predictor: The previous neural network designed to predict pitch informa-

tion always predicts pitch contour. But, since the pitch of ground truth has high vari-

ations, it is hard to predict the pitch values. And the results are very different from

ground truth distribution. Therefore, the continuous wavelet transform(CWT)[27]

is used to decompose the continuous pitch series into pitch spectrograms. Then the

pitch spectrograms will be designed as training targets for the pitch predictor opti-

mized with MSE loss[25]. And in inference, the pitch predictor will predict the pitch

spectrogram. Then the spectrogram will be converted back into pitch contour using

inverse continuous wavelet transform(iCWT). After extracting the pitch informa-

tion, the pitch contour should be set as input in both training and inference. In the
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original paper, The authors quantize pitch F0 of each frame to 256 possible values.

Then those will be further converted into pitch embedding vector p. Finally, the

corresponding pitch embedding vector is added to the expanded hidden sequence.

Energy Predictor: The energy is calculated by the L2-norm of the amplitude of

each short-time Fourier transform(STFT) frame. The same as the pitch predictor,

the authors quantize the energy of each frame to 256 possible values. Those values are

encoded into energy embedding and then added to the expanded hidden sequence[7].

3.2 Background of Transfer Learning:

Transfer learning[1] mostly uses a pre-train and finetune pattern. The pretraining

initializes the model parameter and finetunes on a task-specific objective. Pretraining

objectives include autoencoding[28], context prediction, text-to-speech as well as

variants of language modeling.

In this thesis, we construct a mathematical expression for transfer learning[2]. We

bring up a set with a potentially unknown set of tasks τ ∈ T with a training

set DT = {x(n)
τ , y

(n)
τ }Nn=1. For finetuning tasks, the final target is to modify model

parameters θτ and minimize the training loss.

min
θτ

1

N

N∑
n=1

C(fτ (x
(n); θτ ), y

(n)
τ ) + λR(θτ )(1)

In the function 1, fτ (·; θτ ) is the parameterized function with the input x. And

C(·, ·) is a loss function(eg, cross-entropy or L1-loss).R(·) is an additional regularizer

with hyperparameter λ. With this transfer learning method[2], the model can learn

independent parameters for each downstream task. However, the dramatic variation

of parameters in the pre-trained models makes this approach considerably param-

eter inefficient. Take an example in NLP[1], the widely-adopted models, such as

BERTBASE as well as BERTLARGE contain approximately 110M and 340M param-

eters, respectively.
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As we can imagine, storing a fully finetuned model consumes many resources, mak-

ing it hard even to store a moderate number of tasks. A classic approach to tackling

the parameter-inefficiency is to deploy a single shared model(with a task-specific

output layer). This approach is comparable to multiple tasks through joint training.

But the single shared model requires the set of tasks T to be known and solved in

advance to prevent catastrophic forgetting. Therefore, this method is unsuitable for

those unknown tasks when they arrive in the overall task stream.

In the following sections, we intend to introduce four transfer learning methods. And

we would implement these methods in Text-to-Speech and make some evaluations

to test the methods’ performance.

3.3 Adapter structure

3.3.1 Introduction:

In the context of transfer learning[2] in NLP[3], parametric inefficiency occurs when

a completely new model needs to be trained for each downstream task, and the

number of parameters becomes too heavy to train.

The traditional fine-tuning model copies the weight from the pre-trained neural net-

work. For solving new downstream tasks, the fine-tuning model has to finetune its

parameters, which requires a new set of weights while retraining the model. In other

words, the parameters are finetuned along with each layer in the model for each

task. The advantage of fine-tuning is that parameter efficiency may be higher if the

lower layers of the network are shared between tasks.

A recent paper proposes an adapter module in NLP[1] that provides parametric effi-

ciency by adding only a few trainable parameters per task. As new tasks are added,

previous tasks do not have to be revisited.

The main idea of this module is to enable the transfer learning of NLP[1] on the

new downstream tasks rather than having to train a new model for these tasks.
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Figure 2. Adapter Model in Transformer

3.3.2 Adapter structure in NLP

The proposed structure of the adapter layer is first applied in Transformer(Figure 2

left). The structure of the adapter layer[3] is shown in Figure 2 (right). Each layer

of the Transformer model contains an attention layer[14] and a feed-forward layer.

Both layers are followed by a projection that maps the feature size to the size of the

layers’ input. A skip connection is constructed across the two sub-layers. The output

of each sub-layer will be added to the layer normalization. We can see that two serial

adapter layers are inserted after each of these sub-layers. And the adapter layer is

specially designed and is always applied directly to the output of the sub-layer after

the projection to the input but before the skip connection.

A bottle-neck architecture is proposed to limit the number of parameters in the

adapter layer. As shown in Figure 2(right), adapters project the original d-dimension

features of layer input into a smaller dimension m. And after a non-linearity and

feed-forward up-project are applied. The dimension is back to d. Therefore, the total

parameter number added per layer, including biases, is 2md + d + m. Due to the

design of the bottle-neck structure, if setting n ≪ d, we can limit the total param-
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eter added per task. In NLP[1] tasks, the author uses around 0.5-8% of the entire

original parameters to accomplish new downstream tasks. Because the adapter layer

has a skip connection, if the parameters of the projection layers are initialized to

zero matrices, the module will be approximately initialized to an identity function.

For training the new downstream tasks, the parameters of the pre-trained network

will be frozen(meaning they remain fixed), and only a few additional task-specific

parameters, as well as parameters in the adapter layer, will be added for each new

task. Training the adapter layer will not affect the previous parameters. The in-

novation of this method is that the new downstream tasks can be solved by tun-

ing the pre-trained model with less trained parameters and less training time, but

this adapter model can achieve the same performance as the finetuning method.

Therefore, we propose the new Fastspeech2 model with an adapter layer and try to

evaluate the performance of this model trained by a small single-speaker dataset in

text-to-speech.

3.3.3 Fastspeech2 adapter model

As introduced before, Fastspeech2 as a non-autoregressive TTS model[26] has faster

training speed and better speech quality compared with Tacotron[11] and Fast-

speech model. And this model can be successfully used to deal with multi-speakers

and multi-language speech generation tasks. In this case, Fastspeech2 has great per-

formance trained by a large dataset.

However, with low resources, Fastspeech2 can not perform well as it trained with

hours of speech audio. Therefore, finetuning is one solution to this task. Fastspeech2

can be trained with multi-speaker datasets as a pre-trained model. Then, we can

build a small dataset with tens or hundreds of audio as a training dataset and re-train

the entire Fastspeech2 model. This fine-tuning Fastspeech2 model could combine the

prior information of the pre-trained datasets and the extracted tone and intonation

from the tuning datasets to imitate the speaker, whose limited audio signals are

collected.

The adapter Fastspeech2 model[7] resembles fine-tuning the Fastspeech2 idea. In

the structure shown in Figure 3a, an adapter layer is added after the encoder layer
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in Fastspeech2. And the adapter output will be used as the input of the variance

adapter layer.

The adapter structure we use has the same structure as the adapter in Transformer[18],

which we introduced in 3.6.2. As shown in Figure 3e, the input of the adapter layer

firstly passes through a linear layer with dimension d, then forwards to a bottleneck

layer designed to have dimensionn, after calculating in non-linearity(ReLU). The

bottleneck output restores to d dimension by mapping the linear layer. And the

resulting output vector is summed directly with the input of the adapter layer. To

reduce adapter layer parameters, we set the adapter’s bottleneck dimension much

smaller than the input and output dimension n << d.

In order to realize speech training with a small dataset, we first choose the multi-

speaker dataset LibrTTS[29] for the pre-training model, which contains around 242

hours of utterances from speakers so that the model can learn the intonation, en-

ergy, pitch, and duration information of the speech datasets. In the subsequent

transfer learning[2] training, we first freeze all the weight matrices and bias vectors

of the Fastspeech2, including the embedding layer, variance adapter layer, and mel-

spectrogram decoder layer. Then we add the adapter layer inside Fastspeech2 and

reload all modules’ pre-trained weight matrix data. To evaluate the performance of

adapter Fastspeech2 in the speaker adaption task, we build a small dataset from a

single speaker dataset for adaption finetuning and generating audio signals imitating

the speaker.

3.4 BitFit: Simple Parameter-efficient Fine-tuning

3.4.1 Introduction:

As we introduced before, the Fastspeech2 model is pre-trained on large, multi-

speaker datasets, and then finetuned on single-speaker supervised data. The large

size of the model makes it expensive to train and deploy. Besides, the extent to which

fine-tuning must change the original model led researchers to consider fine-tuning

only a small subset of the model parameters. But the entire model can perform well

as fine-tuning in the downstream tasks.
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Figure 3. Fastspeech2 adapter model

3.4.2 BitFit algorithm:

The researcher proposed an effective but simple method of fine-tuning, which has

several benefits[4]:

1. very few parameters will be changed per downstream task.

2. for every downstream task, the model changes the same subset of parameters

3. The variation of parameters is isolated across the entire parameter space of the

model.

4. for small to medium training data, changing only parameters in bias vectors can

reach the same or better results as full-finetuning with less training time.

More specifically, when applying the transfer learning[2] in the pre-trained model,

the author shows that freezing most of the network and fine-tuning only the bias

term is surprisingly effective. Moreover, in the original paper, the author proposes to

fine-tune only two bias terms(the ’query’ and ’middle-of-MLP’), whose parameters

only account for half of the bias parameters in the model. This method is practical

in applying fine-tuned models in memory-constrained environments. Since most of

the trainable parameters in the model are fixed, it is deployable for some weak com-
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putational hardware.

In addition, it provides a research direction regarding the role of the bias term in

pre-trained models, and the dynamics of the fine-tuning process.

3.4.3 Bias-term Fine-tuning(BitFit) in Fastspeech2:

As introduced in the last subsection, the author proposed a method called BitFit(Bias-

term Fine-tuning)[4]. Specifically, we should freeze most of the parameters in the

weight matrix in the pre-trained model and train only the bias terms. In conclusion,

BitFit[4] has three key properties: 1). fine-tune only a small portion of the model’s

parameters. 2). match the results of the full-finetuned model 3). enable tasks train-

ing in sub-parameters of the model.

This method is parameter-efficient: each new downstream task requires only bias

terms parameters trained. (the proportion of trainable parameters accounts for less

than 0.27% of the total parameters).

In specific, Fastspeech2 is composed of Phoneme embedding[8] layer, encoder layer,

and mel-spectrogram decoder layer. The encoder and decoder are composed of L

layers, where each layer l starts with M self-attention heads[30], in which a self-

attention head(m, l) [14]has key,query and value encoders, each calculated with a

linear equation:

Qm,l(x) = Wm,l
q x+ bm,l

q(2)

Km,l(x) = Wm,l
k x+ bm,l

k(3)

V m,l(x) = Wm,l
v x+ bm,l

v(4)

In these equations, x is the output of the previous encoder(But for the first en-

coder layer, s is the output of the phoneme embedding layer[8]). These vectors are

combined by an attention mechanism[14], which does not include new parameters:

hl
1 = att(Q1,l, K1,l, V 1,l, ..., Qm,l, Km,l, V m,l)(5)

24



Besides, after we iterate over all trainable parameters in Fastspeech2, we still

find the conv, linear, and normalization layers. All layer L could be expressed as:

Ln(x) = Wnx+ bn(6)

All the collection of entire matrices Wn and vectors bn belongs to Fastspeech2’s

parameters Θ. And the subset of red vectors bn is the bias term. The subscript n

represents the sequence number of layers in Fastspeech2.

The bias terms are additive parameters, corresponding to a very small proportion

of the neural network(0.27%). We want to show that by freezing all the parameters

Wn and training only the bias term bn we can also acquire the same and even better

audio quality in the Fastspeech2 model trained by small dataset.

3.5 Diff-pruning: a parameter-efficient transfer learning method

3.5.1 Introduction:

Except for adapter and BitFit[4], Diff pruning[5] also enables parameter-efficient

transfer learning[2] that performs well with new downstream tasks. This method

has the innovation in creating a task-specific ’diff’ vector that extends the training

parameters of the pre-trained model. This diff vector can be trained with a differ-

entiable approach optimized by L0-norm penalty to encourage sparsity[6]. The diff

pruning is parameter-efficient, even if the number of downstream tasks increases.

Since it only requires saving a small diff vector for each new task. Besides, diff prun-

ing can also achieve the same performance of the full finetuning baseline on the

Transformer model[18] in NLP[1], which only modifies 0.5% of the entire model.

To learn the diff vector in this algorithm, we can reparameterize the downstream

task parameters as θtask = θpretrained + δtask. In this function, the pre-trained pa-

rameter vector θpretrained is collected from the original trained model trained by a

large dataset and the δtask is the finetuned task-specific diff vector. The diff prun-

ing model also adds the L0-norm penalty to encourage sparsity[6]. Diff pruning is a

parameter-efficient algorithm because it only stores the non-zero masks and weights
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of the diff vector for each downstream task. When applied to the GLUE benchmark,

diff pruning shows the likely performance compared to full-finetuning.

3.5.2 Diff pruning algorithm:

Diff pruning[5] solves the downstream tasks by training a diff vector δτ , Then the

diff vector is added to the pre-trained model θ, which remains fixed during training.

The main idea of diff pruning is formulated as follows:

θτ = θ + δτ(7)

In the formula(1), θτ represents the task-specific fintuned parameters. To opti-

mize the downstream task, we choose the minimization method empirically.

min
θτ

L(Dr, fr, θ + δr) + λR(θ + δr)(8)

In this formula, L is defined as training loss during optimizing. We can brevity

design L(Dr, fτ , θ + δr) as:

L(Dr, fτ , θ + δr) =
1

N

N∑
n=1

C(fτ (x
(n); θτ ), y

(n)
τ )(9)

This formula(9) explains that the cost of storing the pre-trained parameters θ

is separated across tasks. And the marginal cost for new downstream tasks is the

diff vector. If we can apply an algorithm, which regularizes δ to be sparse such that

||δτ ||0 ≪ ||θ||0, then the downstream tasks will become more parameter-efficient.

Therefore, a l0-norm penalty is proposed for regularization, which is formulated as

follows.

R(θ + δτ ) = ||δτ ||0 =
d∑

i=1

1{δτ,i ̸= 0}.(10)
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Differentiable approximation to L0-norm Since the regularizer is designed as

L0-norm, the penalty term is not differentiable[5]. The optimization for regularizers

is very difficult. In order to approximate this L0-norm, an approach is applied for

gradient-based learning with L0 sparsity using a relaxed mask vector. This approach

maps a binary vector into continuous space. And then, we multiply it with a dense

weight vector to determine how much of the weight vector in the pre-trained model is

applied during downstream training. After training, the mask is made deterministic,

and a large proportion of the parameters in the diff vector is zero. To implement

this approach, the algorithm decomposes δτ into a binary mask vector multiplied by

a dense vector:

δτ = zτ ⊙ wτ , zτ ∈ {0, 1}d, wτ ∈ Rd.(11)

Now, the algorithm wishes to lower bound the true objective and optimize an

expectation with respect to zτ . And ατ is the trainable and additional parameters

which are equivalent to wτ plus the initial value of ατ . The distribution of parameters

zτ and ατ is defined as p(zτ , ατ ), which is initially Bernouli.

min
ατ ,wτ

Ezτ∼p(zτ ;ατ )[L(Dτ , fτ , θ + δτ ) + λ||δτ ||0].(12)

In this step, this objective is still complicated since the binary mask vector zτ

is still discrete. But the expectation provides guidance for effective relaxation. In

this paper (Louizos et al., 2018; Wang et al.,2019b)[31], the author came up with an

algorithm. It can achieve a continuous relaxation of discrete random variables. By

using this method, the binary mask vector zτ can be mapped into continuous space

[0, 1]d with a stretched hard-concrete distribution, which ensures that the mapped

mask vector is differentiable. Specifically, zτ is now defined to be a deterministic and

differentiable formula with a uniform distribution u.:

u ∼ U(0, 1),(13)

sτ = σ(log(u)− log(1− u) + ατ ),(14)
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sτ = sτ × (r − l) + l,(15)

zτ = min(1,max(0, sτ ))(16)

In formula(14), the σ is the activation function Sigmoid. In formula(15),l < 0 and

r > 1 are two hyperparameters with constant values, which are used to stretch

sτ into the interval(l, r)d before it mapped to [0, 1]d by using the minimax method

min(1,max(0, sτ )). As a result, the expectation of L0-norm could be formulated in

a differentiable closed-form.

E[||δτ ||0] =
d∑

i=1

σ

(
ατ,i − log

−l

r

)
.(17)

Therefore, the final optimization formula is expressed by:

min
ατ ,wτ

Eu∼U [0,1][L(Dτ , fτ , θ + zτ ⊙ wτ ) + λ
d∑

i=1

σ

(
ατ,i − log

−l

r

)
.(18)

Now, masks zτ can be optimized using gradient estimation with respect to ατ .

Finally, we can calculate the diff vector δτ by sampling u the uniform distribution

once to obtain zr. The clamping function will set the majority of parameters to zero

in the mask vector. But the mask vector can only become likely binary. Then we

can obtain the sparse diff vector via δτ = zτ ⊙ wτ .
11, zτ ∈ {0, 1}d, wτ ∈ Rd.

Figure 4. the hard concrete distribution
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We found a graphic demonstration from (Lukas Hauzenberger: An practical In-

troduction to Diff-Pruning for BERT)[32]. The author explains the detail of the hard

concrete distribution[31], which reflects the result of the mask vector if we set l and

r as −1.5 and 1.5 in the formula(13-16). In conclusion, if the parameter α is smaller

and closer to 0, the parameters in mask vector zτ are more likely to be equal to 0.

Therefore, the hyperparameter α typically should be initialized with a high value.

L0-ball projection with magnitude pruning for sparsity control As intro-

duced in the last section, the L0 regularization of the diff pruning algorithm achieves

a high sparsity rate[5]. However, the sparsity rate can not be controlled manually.

It would be ideal to define an exact sparsity rate. Since the regularization coeffi-

cient λ is a Lagrangian multiplier for the expectation of the diff vector’s zero norms

E[||δτ ||0]. The expectation is smaller than η, express as E[||δτ ||0] < η. The sparsity

control could be achieved by searching over different values of λ. But the author

proposes a more effective method to achieve the sparsity control[6] by projecting

onto a L0-ball after training.

Specifically, magnitude pruning is proposed, which is applied on the diff vector δτ .

The target vector only keeps the top t% of the parameters in each layer and keeps

t% × d values in δτ . t% represents the sparsity rate. It should be noted that this

magnitude pruning is based on the diff vector rather than the model parameters.

In the diff pruning paper[5], the author has an empirical suggestion that they rec-

ommend finetuning further δτ with the nonzero masks in magnitude pruning for

good performance. Since the magnitude pruning has parameter efficiency through

projection onto the L0-ball. And it can adapt to diff pruning easily.

Diff pruning and Magnitude pruning process As we introduced before, δτ is

the diff vector during diff pruning fine-tuning, which is defined as:

δτ = zτ ∗ (θfull − θpre)(19)
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Therefore, we can define the output of diff pruning model θτ as:

θτ = θpre + zτ ∗ (θfull − θpre)(20)

Here θfull = θpre + δτ are the full finetuned weights. The gradient can be cal-

culated using θfull. Since the original fully finetuned and pre-trained weights are

stored, the diff vector δτ could be recovered in each training step.

Figure 5. the diff pruning and magnitude pruning process

The diff pruning and magnitude pruning process is shown in Figure 5. Specifi-

cally, we create a vector for the trainable parameter α. α is first set as the addition

by the pre-trained model θpre and a initial value αinit. :

α = θpre + αinit(21)

Based on the conclusion of Figure 4, we can see that the gate of diff mask zτ will
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be open(the value is 1) if we set α as a large value. Therefore, we normally choose

5 as the initial value for αinit.

After calculating across logistic domain mapping and the continuous relaxation of

the discrete random variables, the diff mask is generated, which is demonstrated

by the green mask in Figure 5. During the first training period, we choose the diff

pruning algorithm[5] as the finetuning method.

First of all, the model should execute full-finetuning and obtain θfull vector. Then

the diff mask δτ of the current step will be calculated by the formula(19) graphically

shown in Figure 5. Then the output vector of diff pruning algorithm θτ is generated

with formula(20). And during each step of the first period, we calculated the normal

task loss with some loss function (formula (12)). we collect the L0 penalty terms from

each weight of the diff vector by looping over all modules that contain parameters

directly. Then the training loss will be backpropagated to α and finetuning weight

vectors. As shown in Figure 5, the rose vector will represent the learnable parameters

that training loss can influence.

However, the diff pruning can not control the sparsity[6] for finetuning weight vector.

Therefore, we will move forward to the second stage (the Magnitude Pruning). In

this stage, since the diff mask is determined, we would define an exact sparsity

percentage (we set 10% in the experiment), and then the finetuning weight vector

will keep only the top 10% values in terms of their magnitude.

We would iterate all the layers in the model and sort the values of parameters in each

layer. Then the threshold value is chosen based on the sparsity proportion, shown

by the gray mask in Figure 5. And we set the values smaller than the threshold in

the diff vector zero. Therefore, this magnitude algorithm can obtain the diff vector

with a certain sparsity.
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3.6 Full finetuning: a transfer learning method by transfer

training the entire model

3.6.1 Introduction:

As a method of transfer learning, full finetuning has been widely used in NLP and

text-to-speech. Therefore, in this thesis, we use full finetuning as the evaluation

standard for other transfer learning algorithms and compare the performance of

these models.

3.6.2 Full finetuning:

We pre-train the Fastspeech2 model using the LibriTTS dataset before using the

full finetuning algorithm. Then we can complete the downstream task by using the

checkpoint of the pre-trained model and training with the new migration dataset

without changing any structure in the original Fastspeech2 model.
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4 Experimental setup

4.1 Training datasets

4.1.1 LibriTTS

we would use all clean subsets of LibriTTS[29] for the pre-training model. LibriTTS

is a multilingual English language dataset that reads English speech for about 585

hours at a sampling rate of 24kHz, created by Heiga Zen (with assistance from the

Google Voice and Google Brain teams). LibriTTS is designed for TTS research. It

is derived from the original material of the LibriSpeech corpus[33](MP3 audio files

from LibriVox[34] and text files from Project Gutenberg). The difference between

LibriTTS[29] and LibriSpeech[33] are shown following:

1. The audio files are sampled by 24kHz.

2. The speech has obvious sentence breaks.

3. The original and normalized texts are collected in LibriTTS.

4. The contextual information can be extracted.

5. The speech audios with significant background noise are deleted.

For finetuning the pre-trained model, we intend to use LJspeech[29] and the single-

speaker subsets of vctk.

4.1.2 LJspeech

LJspeech[9] is a public domain speech dataset consisting of 13100 short audio clips

of a female speaker. The reading passages are collected from seven non-fiction books.

The clips range from 1 to 10 seconds, with a total length of about 24 hours.

The texts were published between 1884 and 1964 and are completely published. The

audio was recorded from 2016 to 2017 by the LibriVox project[34].

4.1.3 vctk

The vctk corpus includes speech data from 110 English speakers with different ac-

cents, such as Irish, English, Indian, and so on. Each speaker read 400 sentences
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from a newspaper, a rainbow article, and an inspired paragraph for use in the voice

stress archive. All voice data is recorded using the same recording setup: an omni-

directional microphone(DPA 4035) and a small diaphragm capacitive microphone

with a very wide bandwidth(Sennheiser MKH800), with a sampling frequency of

96kHz, 24 bits, located in a semi-anechoic chamber at the University of Edinburgh.

Then all records were converted to 16 bits and downsampled to 48kHz. The corpus

was originally used for text-to-speech synthesis systems based on HMM. Especially,

speech synthesis is based on speaker adaptive HMM, which uses average speech

models of multiple speaker adaptive techniques. The corpus is also suitable for DNN-

based multilingual human language synthesis systems and waveform modeling.

4.2 Experiment design

we intend to evaluate the model’s performance of Adapter[3], BitFit[4], Diff pruning,

and full finetuning in the finetuning tasks, especially finetuned with a small dataset.

Therefore we use an all-clean subset of LibriTTS[29] for embedding training and pre-

training in Fastspeech2 [7]. LibriTTS contains around 585 hours of utterances from

multi-speakers. To evaluate the performance of the mentioned models, vctk[35], an-

other multi-speaker TTS corpus with different acoustic information from LibriTTS,

is used to finetune the pre-trained model. In the experiment, two males and one

female are randomly selected from vctk[35] to work as the target speaker for the

finetuning adaptation. We randomly choose 50, 100, 150, and 200 sentences for each

speaker to construct small finetuning datasets. Another six extra sentences from

each speaker are randomly selected as a text set. As a result, we construct the fine-

tuning datasets with 50, 100, 150, and 200 training samples for each speaker and six

testing samples for each simple subset.

Besides, the subset of vctk [35]only has hundreds of training samples. The small

finetuning dataset may not be sufficient to extract the tone, intonation, and accent

information. In addition, we conduct an experiment with the LJspeech dataset[9]

for finetuning.

The LJspeech dataset[9] includes 13100 short audio clips from a female speaker. Like
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the previous experiment, we also use an all-clean subset of LibriTTS[29] for embed-

ding training and pre-training. And the adapter, BitFit[4], diff-pruning, and full fine-

tuning algorithms are implemented to finetune the pre-trained model. LJspeech[9]

is used as the downstream training dataset. We randomly selected six sentences as

text sets to evaluate the performance of the four algorithms we mentioned before.

And We generated the target audio using the adapter, BitFit, diff-pruning, and full

finetuning models. Then those output audios will be compared to the human target

audios in the text sets.

4.3 Model Configuration

In the previous subsections, we introduced datasets for model training and the ex-

periment design to evaluate the model performance. In the following, we intend to

introduce the models’ detailed settings.

4.3.1 Fastspeech2 model

Our Fastspeech2 model[7] consists of 6 feed-forward Transformer[18] blocks inside

the encoder and the mel-spectrogram decoder. In each feedforward block, the di-

mension of the phoneme embeddings[8] and self-attention size[14] are set as 256.

The number of attention heads is set to 2, and the kernel sizes of the 1D convolu-

tion, constructed after the self-attention layer[14], are set to 1. The input/output

of the first layer in the attention head is 384/384, and the input/output of the sec-

ond layer in the attention head is set as 384/384. The size of phoneme vocabulary

is 76, including the punctuations. In the variance predictor, the kernel sizes of the

1D convolution are initialized to 5 for the pitch predictor. The kernel sizes are set

to 3 for the duration and energy predictor, with input/output sizes of 256/256 for

both convolution layers. The dropout rate is set to 0.5 for the variance and energy

predictors. The dropout rate is set to 0.2 for the duration predictor. Our waveform

decoder consists of a 1-layer transposed 1D-convolution[24], whose filter size is 64
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Hyperparameter Fastspeech2

Phoneme Embedding Dimension 384

Pre-net Layers /

Pre-net Hidden /

Encoder Layers 6

Encoder Hidden 384

Encoder Conv1D Kernel 1

Encoder Conv1D Filter Size 1536

Encoder Attention Heads 1

Mel-Spectrogram Decoder Layers 6

Mel-Spectrogram Decoder Hidden 384

Mel-Spectrogram Decoder Conv1D Kernel 1

Mel-Spectrogram Decoder Conv1D Filter Size 1536

Mel-Spectrogram Decoder Attention Headers 1

Encoder/Decoder Dropout 0.2

Duration Predictor Conv1D Kernel 3

Duration Predictor Conv1D Filter Size 256

Duration Predictor Dropout 0.2

Pitch&Energy Predictor Conv1D Kernel 5

Pitch&Energy Predictor Conv1D Filter Size 256

Pitch&Energy Predictor Dropout 0.5

Waveform Decoder Convolution Blocks 42

Waveform Decoder Dilated Conv1D Kernel size 1

Waveform Decoder Transposed Conv1D Filter Size 1536

Batch Size 8

Total Number of Parameters 47M

Table 1. Hyperparameters of Transformer TTS and Fastspeech2
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and dilated residual convolution blocks are 30. And the skip channel and kernel sizes

of 1D convolution are set to 64 and 3. The hyperparameters and configurations of

the Fastspeech2 model is listed in Tabel 1.

We implement the pre-training with the Fastspeech2 model[7] on GeForce GTX TI-

TAN X[36], with a batch size of 8 sentences. And the LibriTTS[29] all clean dataset

is selected for pre-training. We set 10 warm-up steps to control the rate of gradient

descent. The Adam optimizer is chosen to optimize the model with a learning rate of

0.001. And we set 2 training phases. There are 150000 steps in the first phase for the

Fastspeech2 training and 50000 steps in the second phase for the style embedding[37]

and Fastspeech2 training. In the inference process, the output mel-spectrograms of

Fastspeech2 are transformed to audio samples using the HiFiGAN Generator.[38]

4.3.2 Tansfer Learning with Adapter algorithm

We add an extra adapter structure[3] in the Fastspeech2 model to implement down-

stream tasks. The adapter layer is added between the encoder and variance adapter

layers. There are only two linear layers in the adapter structure, which occupy 0.104%

parameters of the Fastspeech2 model. The model configuration of the pre-trained

Fastspeech2 model has been introduced in the last section.

In addition, we would like to introduce the experiment settings for adapter fine-

tuning. We also divide the training into two phases. The first phase includes 10000

training steps for the adapter Fastspeech2 training, and the second phase also has

10000 training steps for style embedding[37] and adapter Fastspeech2 training. The

batch size for the entire experiment is set as 8. The checkpoint we use in the adapter

finetuning is calculated by the average of 3 latest checkpoints in the pre-trained Fast-

speech2 model. Besides, we prepare ten warm-up steps to prevent overfitting prob-

lems at the beginning of the finetuning. We optimize the model using the Adam

optimizer, whose learning rate is increased linearly over the first ten steps and then

reaches 0.001. All runs are trained on a GeForce GTX TITAN X[36]. The hyperpa-

rameters are collected in Table 2.
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Hyperparameter Adapter BitFit Diff pruning full finetuning

Encoder Layers 6 6 6 6

Mel-Spectrogram Decoder Layers 6 6 6 6

Batch Size 8 8 8 8

First Training steps 10000 10000 10000 10000

Second Training steps 10000 10000 10000 10000

optimizer Adam Adam Adam Adam

training loss l1 loss+variation pre-

dictor loss

l1 loss+variation pre-

dictor loss

l1 loss+variation pre-

dictor loss+L0 penalty

l1 loss+variation pre-

dictor loss

with Adapter Yes / / /

parameter variation percentage 0.104% 0.27% 10% 100%

parameter variation in each layer weight and bias bias weight and bias weight and bias

with L0-norm penalty / / Yes /

with additional trainable parameters Yes, adapter layer No Yes, alpha matrix No

Total Number of Parameters in model 47M+49280 47M 47M 47M

Total trainable Parameters in model 49280 128007 94M 47M

Table 2. Comparison among all four algorithms

4.3.3 Tansfer Learning with BitFit algorithm

In the previous section, we introduced the detail of the BitFit algorithm[4] . The bias

terms are additive and correspond to a small subset of the Fastspeech2 model[7],

whose bias parameters make up 0.27% of the total number of parameters.

We evaluate the BitFit[4] on Fastspeech2[7], which is consistent with previous work.

We also divide the training into two phases and set the same training steps, opti-

mizer, and training loss as the Adapter Fastspeech2. The learning rate and warm-up

steps are identical to adapter Fastspeech2. In conclusion, The parameter setting will

make the final results comparable to other fine-tuning methods.

The main variation of the BitFit Fastspeech2 model is that we freeze the entire

weight matrix of all layers and make the bias vector trainable for linear, self-

attention[14], normalization, feed-forward macaron, and convolution layers in Fast-

speech2.

4.3.4 Tansfer Learning with Diff pruning algorithm

we intend to compare the diff pruning algorithm [5]against the following baselines:

Full fine-tuning, which fully finetunes Fastspeech2, adapter fine-tuning, which trains
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tasks-specific bottleneck layer between the encoder and variance adapter layer in

adapter Fastspeech2, and BitFit fine-tuning,[4] which freeze all the weight matrix

of the Fastspeech2 and make bias vector trainable.

Diff pruning introduces additional hyperparameters l, r(these parameters are used

to stretch the Hard-Concrete distribution) and λ(the relaxing factor for weighting

the approximate L0-norm penalty). We set l = −1.5, r = 1.5, λ = 1.25 × 10−10 to

work well across all tasks. We also initialize the diff vector δτ to 0, and ατ to a posi-

tive vector (we use 5) to encourage zτ to be 1 before training. Besides, we divide the

training into two phases. The diff pruning Fastspeech2 model is finetuned during the

first phase by training a small dataset. However, in the second phase, the magnitude

pruning will replace the diff pruning algorithm to control the sparsity[6] of the diff

vector. In the meanwhile, the style embedding is training in the second phase.

We initially train 10000 steps in the first phase for all training tasks for diff prun-

ing. And we set the batch size to 8 and the learning rate of training parameters in

Fastspeech2 1 × 10−5 and the learning rate of trainable hyperparameter ατ to 0.1.

Finetuning with the fixed mask after projecting into the L0-ball with magnitude

pruning is training for 10000 steps with a learning rate 1× 10−5 for all the datasets.

And we also set the batch size to 8 in the second phase.

The training of diff pruning is based on the Fastspeech2 model. Therefore the train-

ing loss is expressed as:

Ldiffpruning = L1 + Lpitch + Lduration + Lenergy + λL0penalty(22)

where L1 is calculated by the full finetuning in Fastspeech2[7], and the Lpitch,

Lduration, Lenergy are contributed by variance predictor during training. And L0penalty

is the penalty term of the diff vector, which is calculated by formula(17).

In addition, we demonstrate the difference in structure among all three algorithms

in Table 2.
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4.3.5 Tansfer Learning with full finetuning algorithm

As the evaluation comparison group, full finetuning is a relatively traditional transfer

learning algorithm. In this experiment, our experimental parameter settings are

the same as those of adapter, BitFit, and diff pruning. We use the pre-training

checkpoints and retrain the Fastspeech2 model without any changes. And we set

both the first training steps and the second training steps as 10000. Meanwhile,

we choose the same optimizer, Adam, as other algorithms. We keep 100% of the

training parameters of the Fastspeech2 model as trainable parameters. The detailed

experiment setting can be found in Table 2.
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5 Results and Evaluation

5.1 Training Results

5.1.1 Embedding training and pre-training

Figure 6. Spectrogtram loss of embedding training and pre-training

In the experiment, we train the embedding as a prior task to extract speaker and

style information. Then it is used in a frozen state in Fastspeech2[7]. The embedding

is trained with the LibriTTS dataset[29], and the training last 419737 seconds. As

we can see in Figure 6, the training loss of embedding finally converges to 0.7.

Then we train the Fastspeech2 model with LibriTTS all clean datasets, a multi-

speaker dataset, as the pre-trained model for further finetuning experiments. The

training lasts 166012 seconds, and finally, the training spectrogram loss converges

to 0.7724. After training, we generate the result example audio. The trained voice

sounds are relatively neutral because the data set consists of male and female voices.

And then, we intend to enable the pre-trained model to learn a new speaker’s pro-

nunciation patterns by finetuning.
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5.1.2 Adapter, BitFit, diff pruning, and fully finetuning spectrogram

loss comparison

To evaluate the performance of mentioned four finetuning algorithms trained with

a small single-speaker dataset, we plan to implement the transfer learning[2] in the

pre-trained Fastspeech2 model. We choose speaker p252 and randomly selected 200

training data to construct the finetuning dataset. The spectrogram loss of the en-

tire training process is recorded in Figure 7. The spectrogram losses of the four

algorithms start from 2.45-2.48 and gradually decrease as the training progresses.

Eventually, the spectrogram losses of adapter, BitFit[4], diff pruning, and fully fine-

tuning converge to 1.929, 2.194, 2.092, and 1.826, respectively. The idea of this

experiment comes from [13].

In addition, we implement fine-tuning of the four algorithms trained with the vctk[35]

p254 dataset, which has 150, 100, and 50 samples. The spectrogram loss is demon-

strated in Figure 8-10. We can see that, with the reduction of the training datasets,

the fluctuation in the decline of the spectrogram loss gradually becomes larger.

Besides, we also choose two other speakers, p230 and p254 from vctk[35] to eval-

uate the model performance. For each speaker, we also randomly select 200, 150,

100, and 50 data samples to construct small datasets to fine-tune the multi-speaker

pre-trained model. All the spectrogram loss of the training process is attached in

Appendix 1.

Except for using the low-resources datasets(vctk), we also prepared the four algo-

rithms trained with high resources datasets(LJspeech) [9]in Figure 11. LJspeech

dataset includes 13,000 samples from a female speaker. For comparison, the model

trained with more resources will have a more fluent gradient descent and lower train-

ing loss.
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Figure 7. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p252 200data

Figure 8. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p252 150data
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Figure 9. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p252 100data

Figure 10. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p252 50data
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Figure 11. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with LJspeech dataset

5.1.3 Training time comparison

Since we have shown the trainable parameters in Table 2, we can conclude that

adapter and BitFit[4] are the most parameter-efficient algorithms compared with

others. During training, we found that, with the same training device, BitFit[4]

uses the minimum training time to finetune the model. The adapter uses more

time than Bitfit[4], but it only spends 0.74% of the full finetuning training time.

Based on the algorithm of diff pruning, we can see that diff pruning should also do

the full finetuning in the first step(in section 3.4). Therefore, the algorithm should

spend more training time when doing the finetuning. The experiment verifies our

hypothesis. In the experiment of finetuning trained with vctk p252 200 datasets,

adapter finetuning finished the training task using 2291 seconds. BitFit spent only

1464 seconds finishing the task. In comparison, Diff pruning used 3410 seconds, and

full finetuning cost 3108 seconds. Besides, the other datasets show the same result.

BitFit and adapter are the most parameter-efficient and time-resolved algorithms in
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transfer learning[2].

5.1.4 Generate the comparison audios

For each speaker in vctk, we randomly select 6 sentences, resulting in a testing set

with a total of 72 comparison audios from 3 speakers, from whom there are four small

sample groups. All audio is generaated to 48kHz. And we will compare the generated

audio and the test audio from a real speaker. Unfortunately, the audios generated

by diff pruning finetuned with vctk[35] small datasets(all 50, 100, 150, 200 data

samples) are pure noise. In contrast, the adapter BitFit and finetuning algorithms

have detectable results for further evaluation. And we also generate audios trained

with LJspeech single speaker dataset [9]for the high resources comparison group.

There are 6 test sentences selected from LJspeech [9]to generate the target audios. All

audios are downsampled to 16kHz since the comparison test audios from LJspeech

are 16kHz as well. By using enough data samples for training, the diff pruning

algorithm can generate comparable samples to other proposed methods.

5.1.5 Cosine Similarity comparison

Cosine Similarity To evaluate the performance of the finetuning models, we will

measure the cosine similarity[39] between the output audios generated by finetuned

models and the target human audio samples. A high cosine similarity[39] means that

the voice of the output audio sounds similar to the target training speaker’s voice,

indicating a good imitation of speakers. [40]

We use the function from Pytorch[41] to calculate the cosine similarity[39], expressed

by torch.nn.functional.cosine similarity(x1, x2, dim = 0) This function calculates

the cosine similarity[39] between x1 and x2. x1 and x2 should be broadcastable to a

common shape. dim represents the dimension in this common shape. Then the dim

of the output will be squeezed, resulting in the tensor having one fewer dimension.

The Cosine similarity is calculated with the following formula:
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cosinesimilarity =
x1 · x2

max(||x1||2 · ||x2||2)
(23)

|| · ||2 represents the Euclidean norm.[42]

We calculate all the cosine similarities[39] for the output audios trained by vctk,

shown in Table 3. Since the diff pruning algorithm can not generate effective audio

trained by low resource dataset, table 3 will not include cosine similarity for diff

pruning. In comparison, we list the results for the adapter, BitFit, diff pruning, and

full finetuning trained by high resource dataset (LJspeech) [9]in Table 4.

we can conclude that trained with low resources, BitFit, and adapter perform better

than full finetuning compared with cosine similarity in most cases. But trained with

high resources, the adapter algorithm has more advantages in cosine similarity.

We noticed that when training with low-resource datasets, the duration information

will be influenced due to finetuning of the model. When training with full fine-

tuning, the duration predictor parameters obtained in pre-training will be some-

what affected. Therefore, when generating audio signals, the resulting audios will be

accelerated, affecting the audio quality. In contrast, the adapter algorithm freezes

the variance predictor layer and adds new linear layers, which will be fully trained

in the finetuning process. Therefore, the adapter can restore the speaker’s speech

information with low resources, and the speech duration, pitch, and energy are also

relatively consistent. BitFit has the same idea by freezing the parameters of the

weight matrix in each layer of Fastspeech2, which also includes variance predictor,

and training the model by finetuning the bias vector. Most parameters in variance

predictor layers obtained during pre-training are protected during finetuning, but a

few parts are allowed to be modified. This method can encourage the generation of

audio signals similar to that of the trained speaker.

The effect of the diff pruning algorithm in this experiment is not very satisfac-

tory when training with small datasets. The generated voice signals are all noise

signals. Meanwhile, the variance predictor layers cannot output effective duration

information due to overfitting in the training process. However, Training results for

diff pruning on the LJspeech dataset [9]are comparable to a certain extent because

LJspeech is a high resources dataset. In the process of transfer learning[2] for diff
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Cosine similarity(std.) BitFit full finetuning adapter

vctk p230 50data 0.9374(±0.0336) 0.9334(±0.0268) 0.9470(±0.0224)

vctk p230 100data 0.9281(±0.0394) 0.9402(±0.0237) 0.9262(±0.0289)

vctk p230 150data 0.9414(±0.0193) 0.9389(±0.0313) 0.9396(±0.0313)

vctk p230 200data 0.9104(±0.0485) 0.9132(±0.0319) 0.9061(±0.0469)

vctk p252 50data 0.8668(±0.0549) 0.7831(±0.0581) 0.8001(±0.0547)

vctk p252 100data 0.8307(±0.0451) 0.7925(±0.0617) 0.8077(±0.0675)

vctk p252 150data 0.8955(±0.0275) 0.8529(±0.0564) 0.8632(±0.0365)

vctk p252 200data 0.8614(±0.0405) 0.7966(±0.0533) 0.7872(±0.0467)

vctk p254 50data 0.8247(±0.0359) 0.8046(±0.0472) 0.8090(±0.0394)

vctk p254 100data 0.8681(±0.0274) 0.7980(±0.0662) 0.8740(±0.0680)

vctk p254 150data 0.8765(±0.0217) 0.8219(±0.0463) 0.8511(±0.0469)

vctk p254 200data 0.8612(±0.0491) 0.7633(±0.0711) 0.8341(±0.0235)

Table 3. Cosine Similarity of BitFit, full fine-tuning and adapter trained

by vctk

Cosine similarity(std.) Bitfit diff pruning full finetuning adapter

LJspeech 0.9501(±0.0078) 0.9124(±0.0153) 0.9410(±0.0169) 0.9274(±0.0177)

Table 4. Cosine Similarity of BitFit, diff pruning, full fine-tuning and

adapter audios trained by LJspeech

pruning, Fastspeech2 models can be fully trained, thus avoiding overfitting to a

certain extent. Therefore, under the training of high resources, the effectiveness of

the diff pruning algorithm has also been proved. According to the result of cosine

similarity[39] in Table 4, the BitFit algorithm has the best similarity trained with

high resources, and its evaluation result is better than the full finetuning baseline.

Although diff pruning and adapter have lower cosine similarity results than Bitfit,

the output audios quality is acceptable.
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5.1.6 Naturalness comparison

To measure the naturalness of the generated audio, a mean opinion score(MOS)[43]

test is conducted. A good synthesized sample should have high quality in naturalness[44]

and similarity with the target speaker. The naturalness evaluation[44] will be intro-

duced in the next subsection. We intend to evaluate the mean opinion score[43] of

naturalness[44] for the four mentioned algorithms in this part.

Mean opinion score Mean opinion score(MOS)[43] is an evaluation criterion

used in the domain of telecommunications engineering, providing the overall quality

of a system. It is the arithmetic average of all individuals’ ”values within a prede-

fined range that the subject assigns to his perception of the quality performance of

the system.”[45] Such ratings are usually collected in subjective quality assessment

tests but can also be estimated algorithmically.

MOS is a common metric for video audio and audiovisual quality assessment but

is not limited to these ways. ITU-T[46] defines several ways to cite MOS in Rec-

ommendation ITU-TP.800.1[46], depending on whether scores are obtained from

audiovisual, conversational, listening, talk, or video quality tests.

The Rating scales and mathematical definition: Mos is expressed as a single rational

number, usually in the range 1-5, where 1 is the lowest perceived quality, and 5 is

the highest perceived quality. Other MOS ranges are also acceptable, depending on

the rating scale used in the base test. The Absolute Category Rating scale is very

commonly used and maps ratings between Bad and Excellent to numbers between

1 and 5, as shown in Table 5.

The MOS is calculated as the arithmetic average of a single rating performed by

a human subject on a given stimulus in a subjective quality assessment test. It is

calculated by the formula:

MOS =

∑N
n=1Rn

N
(24)

Where R are the individual ratings for a given stimulus by N subjects.
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Rating Label

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

Table 5. Absolute Category Rating scale in MOS

For the property of MOS Studies have shown that for categorical rating scales(such

as ACR). Subjects do not perceive individual items equally. For example, the gap

between good and fair may be larger than the gap between good and excellent.

The perceived distance may also depend on the language into which the scale is

translated. However, previous studies have failed to prove that scale translation sig-

nificantly affects the results obtained.

There are several other biases in the typical way a MOS rating is obtained in addi-

tion to the non-linear scale problem described above. There is a ”range equilibrium

bias”: subjects tend to give scores that span the entire rating scale during subjec-

tive experiments. Suppose the quality range presented is different. It is impossible

to compare too different subjective tests. In other words, MOS is never an absolute

quality measure but only relative to the tests that obtained it. For the above rea-

sons, as well as several other environmental factors that affect the perceived quality

of subjective tests: MOS values should only be reported if the environment in which

they were collected is known and reported. Therefore, MOS values collected from

different environments and test designs should not be directly compared.

Specifically, the guide provides the following suggestion: It is meaningless to directly

compare the MOS values produced by individual experiments unless the experiments

are explicitly designed for comparison, and even the data should be statistically an-

alyzed to ensure that the comparison is valid.
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Rating Label description

5 Excellent the speech is broadcast-grade and very clear

and fluent,

4 Good There is no abnormal rhythm, relatively clear

and fluent,

3 Fair There are no serious prosodic errors, and very

few syllables that were not quite clear

2 Poor Occasionally, a few syllables are not quite

clear, and there are some unusual prosodic

patterns

1 Bad It’s not clear. It sounds like a simple concate-

nation of separate syllables

Table 6. The evaluaiton criterion for naturalness MOS

Specific experiment design for naturalness MOS calculation We made a

questionnaire for the naturalness[44] MOS evaluation. Considering the time cost for

each testee to finish the questionnaire, we control the questionnaire completion time

within 30 minutes so that the test subjects can complete the questionnaire within

an acceptable time range. Therefore, we selected the speech generated by the model

trained by 50 data samples and 200 data samples of three speakers, p230, p252, and

p254, from the vctk dataset for evaluation. Meanwhile, we also extracted 4 speech

signals of each speaker as comparison samples and put them into the questionnaire.

(Appendix C) Besides, we indicated the speech quality corresponding to each score

in the MOS test in the questionnaire so that the test subjects could refer to it. The

evaluation criterion for naturalness[44] MOS is recorded in Table 6.
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MOS of Naturalness(std.) BitFit adapter full finetuning original speaker

vctk p230 50data 3.8553(±0.8595) 3.3616(±0.8139) 3.1316(±0.9885) 4.3289(±1.1122)

vctk p230 200data 3.8289(±0.8389) 3.6316(±0.9070) 3.4211(±0.9968) 4.2895(±1.1292)

vctk p252 50data 3.7500(±0.8347) 3.3421(±0.8877) 2.6711(±0.8228) 4.4079(±0.9957)

vctk p252 200data 3.9211(±0.9057) 3.4737(±0.7741) 3.0526(±0.9222) 4.4342(±1.0111)

vctk p254 50data 3.2247(±0.8422) 2.8526(±0.8749) 2.2500(±0.8660) 4.5132(±0.9591)

vctk p254 200data 3.3026(±0.7307) 2.5658(±0.7718) 1.9342(±0.8693) 4.4737(±0.9997)

Table 7. Naturalness of BitFit, adapter, full fine-tuning, and original

speaker audios under low resource vctk dataset

MOS of Naturalness(std.) BitFit adapter diff pruning full finetuning original speaker

LJspeech 3.3553(±0.8595) 3.5000(±0.9730) 3.4079(±0.9406) 3.5395(±0.8861) 4.4342(±1.1116)

Table 8. Naturalness of BitFit, adapter, full fine-tuning and original

speaker audios under high resource LJspeech dataset

MOS results of naturnalness We found 19 subjects to complete the natural-

ness questionnaire. After that, we collected the test data and conducted statistical

analysis to calculate the mean and standard deviation of each finetune model test.

The results are shown in Table 7.

It can be seen that among the audio signals trained using the low resources dataset

of the same speaker with vctk. BitFit and adapter methods obtain the highest MOS

score, which means that the naturalness of the speech generated by BitFit and

adapter under the small dataset is close to that of the original speaker. In addition,

we can see that the audio naturalness generated by full finetuning trained with small

datasets of different speakers is the lowest among the three methods(as a standard),

which also confirms the effectiveness of the Bitfit and adapter model we use.

Besides, we also trained LJspeech(high resources dataset) to fine-tune the pre-

trained model to compare adapter, BitFit, diff pruning, and full finetuning methods’

naturalness of output audios. Since diff pruning can generate audio results in high

resources training. We add the MOS evaluation of diff pruning to Table 8.

Judging from the results of the evaluation. Audios obtained by the adapter and fine-
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tuning training model have the best naturalness. And their naturalness evaluations

are close, which is better than the audios generated by BitFit and diff pruning.

5.1.7 Similarity comparison

In the same way as the measurement method of naturalness[44] MOS in the previous

part, we also used 50 and 200 data samples selected by p230, p252, and p254 speakers

in vctk to finetune the Fastspeech2 model using the four mentioned methods. Since

diff pruning does not generate the hearable audios, this algorithm is excluded in

the low resources similarity evaluation. A similarity comparison was made between

these model-generated audio signals and 6 test samples randomly selected from each

speaker data set. We also used 1-5 as the scale for the test subjects to choose from.

In addition, we made a similarity evaluation for the algorithms implemented in

LJspeech[9](diff pruning also included). Like the evaluation in vctk, we also choose

6 test audio samples to make the evaluation. The target audios are compared to the

speeches generated by adapter, BitFit, diff pruning, and full finetuning.

Similarity has also been added to the test questionnaire. We can also provide testees

with 1-5 options. This criterion is shown in Table 9.

MOS results of Similarity For similarity evaluation, we found 14 subjects to

finish the questionnaire. After collecting all the test results, we conduct a statistical

evaluation. The main purpose is to evaluate the model’s performance by calculat-

ing and comparing the mean and variance of generated speech similarities for each

training speaker and transfer learning method. The evaluation results are shown

in Tables 10 and 11. It is shown in Table 10 that in the model using vctk single

speaker dataset(low resource) for transfer learning, audios from BitFit and adapter

have better speech similarity than full finetuning. And in most cases, BitFit has the

highest value. As a standard comparison object, full finetuning does not perform

well under the training of small datasets.

Relatively speaking, audios from the adapter and full finetuning have close similarity

among all the models trained by LJspeech, and the similarity of the two models’
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Rating Label description

5 Excellent This is the same speaker in both audios

4 Good I recognize the voice of the reference speaker,

but something is a bit different

3 Fair I recognize some characteristics of the voice

of the reference speaker, but there is a clearly

noticeable difference

2 Poor The voices are somewhat similar, but I think

these are different speakers

1 Bad This are different speakers

Table 9. The evaluaiton criterion for similarity MOS

audio is higher than the audios from BitFit and diff pruning, as shown in Table 11.

By analyzing the above similarity results, it can be conducted that the audio gener-

ated by BitFit and adapter is closer to the original speech under the training of low

resource dataset. Besides, training with high resource datasets, the audios obtained

from the adapter and full finetuning have better performance in similarity.
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MOS of Similarity(std.) BitFit adapter full finetuning

vctk p230 50data 3.0179(±1.2430) 3.0179(±1.3002) 2.7143(±1.1555)

vctk p230 200data 2.4821(±1.3347) 2.4464(±1.1896) 2.5357(±1.2499)

vctk p252 50data 2.6607(±1.2399) 2.8036(±1.3806) 2.4464(±1.2493)

vctk p252 200data 3.3036(±1.2638) 3.1607(±1.1875) 2.9107(±1.2251)

vctk p254 50data 2.5714(±1.1419) 2.3571(±1.1667) 1.9464(±0.9985)

vctk p254 200data 2.5893(±1.2177) 2.1429(±1.1025) 1.8571(±1.1510)

Table 10. Similarity of BitFit, adapter, full fine-tuning and original

speaker audios under low resource vctk dataset

MOS of Similarity(std.) BitFit adapter diff pruning full finetuning

LJspeech 2.6607(±1.1951) 2.8036(±0.9614) 2.6071(±1.3708) 2.8571(±1.2274)

Table 11. Similarity of BitFit, adapter, full fine-tuning, and original

speaker audios under high resource LJspeech dataset
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6 Results Analysis

In section 5, we evaluate the training loss, cosine similarity(Non-subjective eval-

uation), and the naturalness and similarity(subjective evaluation) of the model-

generated speech. In this section, we would like to introduce some conclusions and

details.

1. The training of Diff pruning on a small dataset fails to generate effective results,

which use vctk simple speaker dataset for transfer learning. The generated audios

from diff pruning are pure noise, whose duration information extracted from the

original text is also destroyed.

2. The performance of Finetuning algorithm is the worst trained with low resources

datasets(vctk) among all the three transfer learning methods tested. The audio’s

duration information is interfered, resulting in the output audio’s recitation speed

becoming faster.

3. Among the models we trained with low resource dataset(vctk single speaker),

BitFit and adapter have the best audio quality. We can conduct the above con-

clusion from the result of cosine similarity, MOS naturalness, and MOS similarity.

Moreover, the audio duration information can be better restored under the training

of low resource dataset, and the audio quality is better than our test criteria(full

finetuning).

4. We also evaulate the model performance in transfer learning trained with a high-

resource dataset(LJspeech). We found that the model using the diff pruning algo-

rithm trained with the LJspeech dataset is surprisingly effective and can generate

evaluable audio signals. Therefore we infer that the diff pruning algorithm could

meet the overfitting problem trained with low resource dataset.

Of all the models trained using the LJspeech dataset. The audios generated by the

models using the adapter and full finetuning methods have better MOS naturalness

and similarity than the audios using BitFit and diff pruning.

5. In terms of all the model training processes, BitFit requires the least transfer

learning training time when the same dataset is used for training. The adapter’s

training time is also excellent and obviously less than that of full finetuning, while
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diff pruning has the most model training time.

Based on the above conclusions and the previous introduction of all transfer learning

algorithms, we can conduct an effective analysis and infer some explanation.

Question1: Why does the diff pruning model trained with a low resource dataset

fail to generate evaluable audios(pure noise), and the duration information is dam-

aged?

Analysis: We can learn from the algorithm introduction of diff pruning[5] that when

computing diff vector, diff pruning first implements full finetuning. Since all lay-

ers of Fastspeech2 can be trained in diff pruning. The parameter from the variance

predictor in Fastspeech2 has great variation. However, due to insufficient training

data samples from low-resource datasets. Variance predictor’s training could meet

the overfitting issue during transfer learning, resulting in the distortion of dura-

tion information. In addition, diff pruning trims diff vector. The hyperparameter

alpha-group determines only some parameters in diff vector trainable by calculating

the hard concrete reflection. (which is shown in 3.5.2). Therefore, diff pruning leads

to overfitting when the model is trained with a low-resource dataset to a greater

extent. In contrast, in training using LJspeech datasets, the overfitting problem of

diff pruning can be effectively solved due to sufficient data. Besides, compared with

the full finetuning method, diff pruning makes Fastspeech2 have fewer parameter

changes in transfer learning.

Question2: Why do adapter and BitFit algorithms produce better audio when

trained on small datasets?

Analysis: For the adapter[3], we freeze all the layers in Fastspeech2, including the

encoder, variance predictor, and decoder. Besides, we insert the adapter layer in the

middle. The information of small datasets can be fully learned in this additional

layer, and the bottleneck structure will cause parameter validity. The model does

not meet the overfitting issue in the transfer learning process since only a small part
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of the parameter is trainable. In addition, because the variance predictor’s freezing,

duration, pitch, and energy information are not significantly damaged during trans-

fer learning, the adapter performs well on low and high resources datasets.

For the Bitfit algorithm[4], since we freeze the weight matrix(key parameter) of

all layers, only the bias vectors of all layers are trainable in the transfer learning

process. So, it does not greatly change the pre-trained model when training with

small datasets. Only a small part of the parameters are trainable. Therefore, the

training with low-resource datasets does not result in the overfitting of the model.

However, compared with high resources datasets training, the bias vector is not the

key parameter in model training. Hence, the limitation of the trainable parameters

results in low learning efficiency in transfer learning. We can see from the results

of MOS naturalness and MOS similarity. BitFit migration-trained audio performed

worse than the adapter on both assessments.

Question3: Why does BitFit take the least time in terms of training time, the

adapter takes the second least time, followed by full finetuning and diff pruning?

Analysis: First, BitFit’s trainable parameters are bias vectors, while the adapter’s

trainable parameters are weight matrix and bias vector(two linear layers). The train-

able parameters of these two transfer learning methods are the least. Moreover, when

the trainable parameters are in the same amount, the trainable parameters of the

BitFit algorithm with bias vector update faster than the adapter. In comparing the

training duration between full finetuning and diff pruning, diff pruning must first

carry out full finetuning training in each step when calculating the diff vector. Be-

sides, the magnitude pruning in the diff pruning algorithm will sort the parameters

of each layer and select the top percentage of parameters to update. These mecha-

nisms increase the training time, and also diff pruning adds the trainable parameter

alpha. So, the training time will be significantly more than full finetuning.
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7 Conclusions

In order to solve the overfitting problem of small dataset training in Fastspeech2,

four transfer learning methods are proposed. We hope to first train the model with

multi-speakers datasets to make the Fastspeech2 model learn the speech patterns of

different speakers. Then, the transfer dataset is used for transfer learning so that the

finetuned model can also imitate the tone, intonation, and other phonetic features

of the target speaker. In this paper, we implement the transfer learning methods

from NLP into text-to-speech tasks to achieve the mentioned goal. We adopt the

algorithms of BitFit, adapter, and diff pruning for transfer learning, and we take full

finetuning as the evaluation standard. After training, we also evaluate the generated

audios obtained by the above transfer learning methods trained with high resources

and low resources datasets in different data amounts.

For comparing the advantages and disadvantages of different models training with

high resources and low resources datasets. We make the non-subjective and subjec-

tive evaluation for the generated audios from the transfer learning models. The non-

subjective tests include evaluating training loss, training time, and cosine similarity.

Subject evaluation is also an effective evaluation for text-to-speech. We obtained 19

subjective scoring samples for MOS naturalness evaluation and 14 subjective scor-

ing samples for MOS similarity evaluation. Based on the evaluation results, we can

conclude as follows:

1. Training with low resource dataset, the audios generated by the BitFit model have

the best cosine similarity, MOS naturalness, and MOS similarity for different speak-

ers, and the training time is also the shortest. Compared with the evaluation result

of the full fine-tuning, BitFit has obvious advantages. However, under the training

of the high resources dataset. The evaluation of multiple parameters of BitFit is not

optimal, such as MOS similarity, MOS naturalness, and cosine similarity.

2. For the adapter algorithm, this model trained with high resources and low re-

sources datasets can both produce good quality audio. Trained with low resources

dataset, the MOS naturalness and MOS similarity evaluations of the adapter model

are both superior to the full fine-tuning model. Meanwhile, the model trained with
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high resources dataset has almost the same evaluation results as full finetuning. Sur-

prisingly, the training time of the adapter is significantly shorter than that of full

fine-tuning. So adapter can completely replace the full finetuning for text-to-speech

tasks.

3. We have also introduced the diff pruning algorithm, and it has been found that the

model trained with low resources datasets cannot generate effective audios, and the

duration information of audios has been destroyed in the process of transfer learn-

ing. Therefore, we conclude that diff pruning is not suitable for transfer learning

with low resources datasets. Surprisingly, we found that the diff pruning algorithm

is effective when training high resources datasets. It is found that the audio signal

generated by diff pruning has similar results as the BitFit in the evaluation of MOS

naturalness and MOS similarity. However, in comparison, the model training time

of diff pruning is the longest among all transfer learning methods and even higher

than that of full finetuning. Therefore, Diff pruning is not an optimal choice in text-

to-speech transfer learning.

4. As the assessment standard we adopt, we found that in the training process of

low resources datasets, the duration information of the full finetuning model would

be affected, resulting in faster speech speed and thus affecting the quality of speech,

Therefore, the full finetuning algorithm is not suitable for text-to-speech training

with low resources datasets, since full finetuning could meet the overfitting problem

if the training steps are beyond its needs. Relatively speaking, the training results

obtained by full finetuning using large datasets are excellent, achieving the best re-

sult in the evaluation of MOS naturalness and MOS similarity. But the disadvantage

is that the training time is longer than that of the adapter.

Therefore, in this thesis, we can conclude that in the text-to-speech task based on

the Fastspeech2 model, the BitFit, and adapter methods are the best choices if

there are transfer learning tasks trained with low resources datasets. If the training

dataset has high resources, adapter and full finetuning can be the first choice for

transfer learning tasks.
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8 Future work

Except for transfer learning, there are many other methods for imitating speakers

trained with low resources datasets. We have drawn a conclusion that Adapter and

BitFit models have better audio quality in transfer learning with small datasets. But

it may be necessary to combine various methods to restore the speaking styles of the

target speaker. The style embedding method[37] is recommended, which can help to

improve the audio quality. In addition, there are many tasks in text-to-speech that

transfer learning could be implemented into, such as finetuning models with small

datasets to generate emotional audios and check how well the model can reproduce

the emotion. In addition, the optimization of the hyperparameters is also a research

field worth exploring. For example, the training of diff pruning algorithms is divided

into two stages. The first stage is training using the diff pruning algorithm, and the

second stage is the magnitude pruning. We recommend that the two training stage

can be carried out alternately to see whether the quality of the speech generated by

the model can be improved and the hyperparameters such as the percentage of the

updated parameters in magnitude pruning can be modified to a lower value.

For the adapter algorithm, the total number of parameters of the adapter layer(bottleneck)

could be modified according to the total number of parameters in the original model

or according to the total number of samples in the training datasets to prevent the

overfitting issue caused by excessive trainable parameters during finetuning.

For BitFit and the full fine-tuning algorithm, we can try to freeze the weight and

bias parameters of the variance adapter layer in Fastspeech2 to prevent the dura-

tion, Pitch, and energy information in pre-training from being destroyed. See if this

change makes for better transfer learning for Fastspeech2 on small datasets.
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Appendix A Spectrogram loss during training us-

ing vctk P230 and vctk P254, and

LJspeech

Figure 12. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p230 200data

Figure 13. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p230 150data
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Figure 14. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p230 100data

Figure 15. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p230 50data
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Figure 16. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p254 200data

Figure 17. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p254 150data
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Figure 18. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p254 100data

Figure 19. spectrogram loss of adapter, BitFit, diffpruning and fully fine-

tuning trained with vctk p254 50data

Appendix B Mel-spectrogram of all the models
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Figure 20. adapter vctk p230

50data

Figure 21. BitFit vctk p230

50data

Figure 22. diff pruning vctk

p230 50data

Figure 23. finetuning vctk

p230 50data

Figure 24. adapter vctk p230

100data

Figure 25. BitFit vctk p230

100data

Figure 26. diff pruning vctk

p230 100data

Figure 27. finetuning vctk

p230 100data
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Figure 28. adapter vctk p230

150data

Figure 29. BitFit vctk p230

150data

Figure 30. diff pruning vctk

p230 150data

Figure 31. finetuning vctk

p230 150data

Figure 32. adapter vctk p230

200data

Figure 33. BitFit vctk p230

200data

Figure 34. diff pruning vctk

p230 200data

Figure 35. finetuning vctk

p230 200data
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Figure 36. adapter vctk p252

50data

Figure 37. BitFit vctk p252

50data

Figure 38. diff pruning vctk

p252 50data

Figure 39. finetuning vctk

p252 50data

Figure 40. adapter vctk p252

100data

Figure 41. BitFit vctk p252

100data

Figure 42. diff pruning vctk

p252 100data

Figure 43. finetuning vctk

p252 100data
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Figure 44. adapter vctk p252

150data

Figure 45. BitFit vctk p252

150data

Figure 46. diff pruning vctk

p252 150data

Figure 47. finetuning vctk

p252 150data

Figure 48. adapter vctk p252

200data

Figure 49. BitFit vctk p252

200data

Figure 50. diff pruning vctk

p252 200data

Figure 51. finetuning vctk

p252 200data
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Figure 52. adapter vctk p254

50data

Figure 53. BitFit vctk p254

50data

Figure 54. diff pruning vctk

p254 50data

Figure 55. finetuning vctk

p254 50data

Figure 56. adapter vctk p254

100data

Figure 57. BitFit vctk p254

100data

Figure 58. diff pruning vctk

p254 100data

Figure 59. finetuning vctk

p254 100data
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Figure 60. adapter vctk p254

150data

Figure 61. BitFit vctk p254

150data

Figure 62. diff pruning vctk

p254 150data

Figure 63. finetuning vctk

p254 150data

Figure 64. adapter vctk p254

200data

Figure 65. BitFit vctk p254

200data

Figure 66. diff pruning vctk

p254 200data

Figure 67. finetuning vctk

p254 200data
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Figure 68. adapter LJspeech Figure 69. BitFit LJspeech

Figure 70. diff pruning

LJspeech

Figure 71. finetuning

LJspeech

Appendix C Test samples selected from vctk and

LJspeech

For each speaker, we randomly select 6 sentences as test samples to generate target

comparison audios to evaluate cosine similarity. And the sub-datasets (50,100,150,200)

share the same test samples. The selected test samples for cosine similarity evalua-

tion are attached in Table 12 and Table 13.

And we need to evaluate the MOS of naturalness and similarity for all the men-

tioned models, we selected 4 sentences for each speaker. And the sub-datasets (50,

200) share the same test samples. The selected test samples for naturalness and

similarity evaluation are attached in Tables 14 and 15.
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vctk P230/P252/P254 test samples

P230/P252/P254 003 Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for

her brother Bob.

P230/P252/P254 006 When the sunlight strikes raindrops in the air, they act as a prism and form a

rainbow.

P230/P252/P254 008 These take the shape of a long round arch, with its path high above, and its two

ends apparently beyond the horizon.

P230/P252/P254 014 To the Hebrews it was a token that there would be no more universal floods.

P230/P252/P254 018 Aristotle thought that the rainbow was caused by the reflection of the sun’s rays by

the rain.

P230/P252/P254 021 The difference in the rainbow depends considerably upon the size of the drops, and

the width of the colored band increases as the size of the drops increases.

Table 12. Test samples selected from vctk P230/P252/P254 to evaluate

cosine similarity

LJspeech test samples

LJ001-0005 the invention of movable metal letters in the middle of the fifteenth century may

justly be considered as the invention of the art of printing.

LJ001-00014 And it was a matter of course that in the Middle Ages, when the craftsmen took

care that beautiful form should always be a part of their productions whatever they

were,

LJ001-0025 imitates a much freer hand, simpler, rounder, and less spiky, and therefore far pleas-

anter and easier to read.

LJ001-0038 while in fourteen seventy at Paris Udalric Gering and his associates turned out the

first books printed in France, also in Roman character.

LJ001-0046 their type is on the lines of the German and French rather than of the Roman

printers.

LJ001-0050 and though the famous family of Aldus restored its technical excellence, rejecting

battered letters,

Table 13. Test samples selected from LJspeech to evaluate cosine simi-

larity
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vctk P230/P252/P254 test samples

P230/P252/P254 008 These take the shape of a long round arch, with its path high above, and its two

ends apparently beyond the horizon.

P230/P252/P254 014 To the Hebrews it was a token that there would be no more universal floods.

P230/P252/P254 018 Aristotle thought that the rainbow was caused by the reflection of the sun’s rays by

the rain.

P230/P252/P254 021 The difference in the rainbow depends considerably upon the size of the drops, and

the width of the colored band increases as the size of the drops increases.

Table 14. Test samples selected from vctk P230/P252/P254 to evaluate

MOS of naturalness and similarity

LJspeech test samples

LJ001-0005 the invention of movable metal letters in the middle of the fifteenth century may

justly be considered as the invention of the art of printing.

LJ001-00014 And it was a matter of course that in the Middle Ages, when the craftsmen took

care that beautiful form should always be a part of their productions whatever they

were,

LJ001-0025 imitates a much freer hand, simpler, rounder, and less spiky, and therefore far pleas-

anter and easier to read.

LJ001-0038 while in fourteen seventy at Paris Udalric Gering and his associates turned out the

first books printed in France, also in Roman character.

Table 15. Test samples selected from LJspeech to evaluate MOS of nat-

uralness and similarity
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