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Chapter 0

Preface

”Jedes Naturgesetz, das sich dem Beobachter offenbart, lässt auf ein höheres,

noch unerkanntes schließen.”

- Alexander von Humboldt

”Every law of nature that reveals itself to the observer suggests a higher, still

unrecognized.”

- Alexander von Humboldt
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0.1 Zusammenfassung (deutsch)

Pneumatische Muskelaktuatoren und deren Verwendung in bio-

robotischen Systemen (Muskelgetriebene Roboter) stellen auf Grund

ihrer Eigenschaften (Nicht-lineares Verhalten, Hysterese, mono-

direktionale Wirkungsrichtung, etc.) eine besondere Herausforderung

an einen Regler. Während etablierte Regelstrategien wie Modell-

basierte Regelungen oder KI-basierte Regelungen zwar in der Lage sind,

muskelgetriebene Robotersysteme mit wenigen Gelenken und wenigen

mono-artikularen Muskeln zu handhaben, scheitern diese Ansätze an

der Skalierbarkeit (Erweiterung) von weiteren Muskel-Aktuatoren und

Gelenken. Besonders bi-artikulare Muskeln in solchen bio-inspirierten

Robotersystemen lassen sich mit den etablierten Regelstrategien nur

mit einer Steigerung der Komplexität (bei Modell-basierten Regelun-

gen) oder Datenquantität (KI-basierten Regelungen) meistern. Dies

liegt daran, dass diese Ansätze zwar Lösungen zu den bekannten

„Problemen“ wie Multi-Redundanz von Aktuatoren oder bi-artikulare

Muskeln allgemein bieten, jedoch diese generell als Problem definieren,

anstatt ihre Eigenschaften zu nutzen.

In dieser Arbeit wird ein alternativer Regelungsansatz vorgestellt,

der die nativen Eigenschaften von Muskel-Feder Aktuator Systemen

nutzt, welche eine technische Repräsentation des biologischen Muskel

Sehnen Komplexes darstellt. Dieser Regelungsansatz besitzt ein math-

ematisches Regler Modell, ohne jedoch ein mathematisches Aktuator

Modell. Durch die Nutzung der systemischen Eigenschaften von

bi-artikularen Muskeln in Gelenknetzwerken löst er das Skalierungs-

und Parameterproblem. Durch die geometrischen Eigenschaften der

Gelenk-Netzwerke können wenige zu bestimmende Parameter auf alle

Muskeln des Gesamtsystems angewendet werden. Das vorgestellte

Regelsystem stellt daher in einer bio-inspirierten Regler Hierarchie die

unterste Regler Schicht dar, jene, welche aus Gelenk Positionssollwerten

zugehörige Muskelkommandos generiert. Dieses Regler System wird

an Hand von zwei robotischen Systemen untersucht und die Regler

Leistung als Zeit in der eine stabil Position mit einer bestimmten

resultierenden Regel Abweichung (Genauigkeit) resultiert, definiert.

Dieses Regelsystem fokussiert sich damit darauf, anwendbare robo-

tische Systeme in Echtzeit unter biologischen Gegebenheiten wie
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Sensorverzögerung zu Regeln. Das Regelsystem stellt nicht den

Anspruch an sich eine Replikation des biologischen Regelsystems zu

sein.

0.2 Declaration of honor

I declare that this thesis has been composed solely by myself and that it

has not been submitted, in whole or in part, in any previous application

for a degree. Exceptwhere stated otherwise by reference or acknowledg-

ment, the work presented is entirely my own.
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0.3 Structure

This work starts with a quotation from Alexander Humboldt. To under-

standwhy I chose this citation, it is important to understandmy general

point of view, which is explained in the next section. Themath notation

is introduced afterward. Because this work challenges interdisciplinary

questions, algebraic conformity is difficult to apply. The section ”Math

notation” is therefore intended to establish clarity.

The main content of this work starts with chapter 1, which introduces

the topic, its scientific questions, and the necessary information regard-

ing the test-beds. The scientificquestionsaremarkedwithaQandcorre-

spond to the answers to these questions,markedwith anA. The answers

are summarized in the chapter 4 ”Discussion” and are based on the re-

sults of themethodology. Themethod includes chapters 2 ”Muscle Spring

Unit” and 3 ”Controller”.

0.4 Point of view

I studied electrical engineering as amajor and sports science as aminor.

When I reflect on the last century, I see that the technical world has

changed tremendously, especially in the field of electronics. Based on

the thermionic triode invented in 1907, the transistor and many other

electronic components were invented in the following years. Today, we

are used to communicating with others wherever we are via portable

high-performance computers, called smart phones, and we can barely

remember what the work environment was like without computers.

Back in the early 20th century, probably nobody could have imagined

how life would be today, but just because no one could imagine it does

not mean that it was not possible or could not happen. This work was

written during the coronavirus pandemic, and also in the beginning

2020, nobody could imagine how a virus could turn everyone’s lives

upside down. A technical example is the operating limit of optical

microscopes. Scientists determined the limit of such microscopes until

the early 21st century to be around 200nm. This limit was taught in

schools and universities and was considered a given rule until Stefan
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Hell and colleages surpassed it with a new technique, for which they

recieved the Nobel Prize in 2005.

I try to avoid considering limits as given just because I do not know a

method or technology that surpasses that limit. Just because I do not

know something does not mean it does not exist, just like the people

in the early 20th century who could not imagine how dependent on

electronics life would be in the 21st century.

This makes sense for things that humankind may or may not invent in

the future. However, it is more difficult to transfer this way of thinking

to already existing entities not created by humanity like our body or

biology in general. A lack of understanding structures, behavior, or

events often leads us to the conclusion that these things play a minor

role or can be neglected. The function of the muscle fascia or the power

of the mRNA illustrate such misjudgment. Even the parts of our DNA

we do not understand are summarized as crap DNA as if they were only

meaningless amino acids.

Inmy opinion, this widespreadway of viewing things is counterproduc-

tive. That is why I introduced this work with the quote from Humboldt,

which expresses the infinity of obtainable knowledge if we consider

things as possible even if we do not understand them yet. Especially

in the field of biology, I am strongly convinced that every structure has

one ore more functions, even if we do not understand them yet. The

ultimate premise of my point of view is that there is no useless structure

in our biological system. Some structures can have evolutionary reasons

that can be less useful under given circumstances, but in my viewpoint,

there is no such thing as crap DNA. That is what I want to illustrate with

the sentence ”It is not a bug; It is a feature”, which can be found in the

introduction as well as the conclusion.

This hypothesis can be considered asmy base assumption andwillmost

likely never be verified nor falsified since, we do not know what we do

not know. Furthermore, I do not claim my point of view to be optimum

because there may be existing perspectives that I do not know yet.
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0.5 Math notation

Mechanical components are represented by Greek capital letters (e.g.,

the joints Φ and the muscles M). To prevent confusion, the letters M

and N are only used as the Greek capital letters ”my” and ”nu”. The

information that sensors provide or actuators receive is represented

by its associated Greek lowercase letters accordingly. For example, the

jointΦ1 provides the joint value information ϕ1. The information of all

n joint angle sensors as a vector is illustrated in bold:

State variables: ϕ =

 ϕ1

...

ϕn


Accordingly, overall actuation is defined as µ, the stimulation vector

containing µ1...µj of all j muscles M.

Matrices containing system parameters are represented by bold Latin

capital letters (e.g., the control MatrixP ).

Matrices containing parameter: P =

p11 . . . p1k
...

. . .
...

pj1 . . . pjk


Its elements are the associated Latin lowercase letters pjk . Parameters

in general are illustrated in Latin lowercase letters (e.g., the spring rate

d). Sets of parameters containing the same type of n-parameters are in

bold Latin lowercase letters:

Parameters: d =

 d1
...

dn


(e.g., the spring rates of all muscle spring units as a vector). If a set of

parameters contains different parameters, these are indicated and refer-
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enced to its definition:

Different parameters with reference: a
(5)
d,` =


d1
...

dn
`


This is a parameter set with different parameters, which has been intro-

duced earlier as equation (5). Systems and networks are represented by

calligraphic Latin capital letters (e.g., the robot AtaroA). Overall infor-

mation that a system provides or receives is consistently given as:

Different state variables with reference: α(8)
ϕ,µ =



ϕ1

...

ϕn

µ1

...

µn


The information is defined in boldGreek lowercase letterswith reference

to its introduction. Functions and correlations are represented in calli-

graphic Latin lowercase letters (e.g., the correlation function w):

Functions: w(b) =
l2(b) · f2(µ2, λ2)

l1(b · f1(µ1, λ1))

It must bementioned that system variables like themuscle length λ can

also be a function due to their dependencies (λ(F, µ)). Sets of functions
are in bold. Physical units (e.g., the forceF or torqueT ) are, in Latin cap-
ital letters; hence,most physical units are established in thisway. Excep-

tions are the accelerationA, which is also in Latin Capital letters in this

work to keep the notation consistent.
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0.6 Word definition and delimitation

The scope of this work is a technical control solution for bio-robotic ap-

plications, but the scientific questions arise from the interdisciplinary

field of bio-robotics. In the context of this work, bio-robotics is under-

stood as the intersection between biology and engineering containing

many sub fields of both. Therefore, the following definitions are made:

0.6.1 MTC versusMSU

The muscle tendon complex (MTC) describes the biological actuator,

while the muscle spring unit (MSU) is its technical pendant.

0.6.2 Systemmodel versus controller model

The word ”model” generally describes the model of the system if not

specified. Each controller has its controller design or policy, which can

be seen as a controller model, but the word ”model” without specifica-

tion never describes the controller in this work.



Chapter 1

Introduction

1.1 Motivation and scientific questions

High-tech arm robots such as theM-2000iA/2300 (figure 1.1) six-axis in-

dustrial robot, uses six electrical drives and less than 100 sensors to per-

form motion. The control unit of such a robot requires high-tech GHz

processor technology to enable control in real time.

Figure 1.1: The M-2000iA/2300 six-axis industrial robot performing motion.

(Source: https://www.fancu.eu)

The human motor control system uses more than 600 muscles to drive

motion of the human body (figure 1.2). To do so, the motor control sys-

12
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temreceivesmillionsof piecesof sensor information simultaneously and

has a hardware structure (neurons) that saturates at 200 Hz.

Figure 1.2: The human body performing motion (Source: https://www.eu-

rosport.de)

It may seem obvious that the design of the motor control structure is

different from the design of modern industrial controller [18, 16]. The

model-basedapproachof industrial controllers enable extremeprecision

and speeds that can sometimes even outperform equivalent humanmo-

tion for basic tasks. On the other hand, this control approach is also the

reason for the need for high-performance hardware (e.g., giga hertz pro-

cessors) for industrial robots due to the high calculation effort of their

underlying models. Models also exist for biological morphology, and

various biomechanical models have been developed in the last decades

to address different motion challenges. Schumacher et al. [97] catego-

rized these models according to the challenges they adress: the stance

models [35, 55, 11, 72, 36, 1, 71, 106], the balance models [121, 37, 92, 102,

70], and the swingmodels [86, 89, 57, 65, 112]. All of thesemathematical

models share in common, the complexity scale with the number of ac-

tuators and joints. As a result, the complexity of calculating the control

parameters with a model-based control approach increases as well.
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The following example illustrates this issue:

Figure 1.3: General closed-loop control circuit

Figure 1.3 shows the general control scheme for all technical control ap-

proaches with C as the control policy and S as the controlled system.

A model-based controller uses a mathematical model of the controlled

system to calculate the control parameters of the controller. Thatmeans

the controller C has a control law, and for the system S , a mathematical

model is available. Figure 1.3 can be considered as a joint angle control

circuit given by:

• ϕdes as the desired joint angles

• C as a basic P-controller with a control parameter matrixP

• µ as the control variables generated by the controller

• S as the controlled system

• ξall as all the system outputs

• ϕobs as the observed joint angle values out of all possible system

outputs ξall

Here, we let the control law be a simple P-controller with the control pa-

rameter matrix P . The size of P is in this case j × k containing all P-

parameters of all muscles j acting on all joints k:

µ = P (ϕdes −ϕobs) with ϕobs = µ · S (1.1)

S is the model of the system and must be replaced with a system equa-

tion of the appliedmodel. In themodel based approach, the elements of
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Figure 1.4: Applied control scheme of figure 1.3 for a joint angle controller

the control matrix are defined via the two system equations of (1.1).

The control parameter matrix P increases with the number of joints

and actuators, resulting in more parameters to calculate. Each param-

eter must be calculated by the mathematical description of the applied

systemmodel. Therefore, three disadvantages occour in using a model-

based approach to solve control tasks of a bio-inspired muscle-driven

system:

• The number of parameters to calculate scale with the number of

actuators and joints

• The complexityof theapplied systemmodel impact theparameter

calculation

• The controller performs only as well as the systemmodel used

Bio-inspired muscle-driven systems can be controlled by model-based

control approaches but at the cost of higher hardware requirements.

Hence, in the model-based approach, these three challenges are solved

by increasing calculation power.

Having the premise, that every structure has its function, and that our

motor control system uses neurons with firing rates more than one mil-

lion times slower thanour commercial processors, the idea that themor-

phology is beneficial for control could be the solution. The geometry of

the structures [61, 93], the ratios of the muscles [48], and the inter-joint

couplings [59] can be considered beneficial formotion control [84]. Fur-

thermore, it can involve amorphological computation, a computation or

control reduction performed by the morphology itself in exchange with
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its environment [83, 33, 123]. This theory is compliantwith the ideaofdif-

ferent control levels in the humanmotor control system [63], where each

level solves different tasks of control [69, 114, 44, 91, 108, 48]. The high-

level control (HLC) thereby focuses on the superordinatemotion control

of complexmotion [53, 14, 5]. The low-level control (LLC) focuses on the

actuation of the single muscles that act within a complex motion.

This work focuses on an applicable LLC framework for

muscle-driven robots by exploiting the bio-inspiredmorphology.

The transfer of the control benefits of biological motor control into the

applicable field of robotics is done by observations that lead to assump-

tions. It is not possible to look into a human motor control system and

analyze the controller design, at least not yet. Following this, the super-

ordinate scientific question addressed in this work is:

Q1: Aremathematical models of a complexmuscle-driven system

mandatory for a controller to perform precise motion, or can the

morphology of such systems be exploited to reduce the control

complexity?

Different approaches such as fuzzy control [2], AI-based control [24], or

a mixture of both [117, 3] already exist to control muscle-driven systems

using ”learned” experience to control it. The controller of such systems

must be trained to learn the system input and output behavior, which

can be considered as experience. Therefore, these control approaches do

not need a mathematical model of the controlled system. On the other

hand, the downside of such systems are the long training time, and even

minor changes to the system can negate the obtained experience, and

the training must be repeated. In general, experience-based control ap-

proaches (AI and fuzzy) solve control complexity by data quantity. Even

if the underlying control policy perfectly fits the control challenge, an in-

crease in complexity by addingmore joints ormuscles can tremendously

increase the training time and data needed. Perhaps, the most signifi-

cant disadvantage of experience based control approaches is the depen-

dency on the quality of the training data. If a system is not trainedwith a



CHAPTER 1. INTRODUCTION 17

special situation, which means the quality of the training data does not

reflect the situation, it is uncertain how the system will react. For this

reason, AI is still excluded inmany fields of products such asmedical de-

vices directly interacting with humans [116, 32]. Nevertheless, AI-based

approaches do not need a model of the system. They simply learn to in-

teractwith a systemand to choose the right system inputs to achieve the

desired system output. AI-based control approaches are, despite their

downsides, able to handle bio-inspired muscle-driven systems [24] and

their challenging features. Such systems offer several unique features to

the controller:

• Muscle redundancy (multiple actuators for the samemotion)

• Bi-articular muscles (muscles that act over two joints)

• Scalability (the number ofmuscles that a control system can han-

dle)

Model-based and AI-based control approaches are able to perform con-

trol tasks of muscle-driven systems, but these control approaches con-

sider the features of bio-inspired systems as problems or at least chal-

lenges. The model-based control approach ”solves” the features of bio-

inspired muscle-driven systems by computing power, while the AI- and

fuzzy-based control approach ”solves” it with data quantity. All of

the model-based, fuzzy and AI-based control solutions that target bio-

inspired features increase the control systemcomplexity. Therefore, they

are limited in scalability. These approaches view these features as draw-

backs that require additional control solutions to deal with them. None

of these control solutions exploit bio-inspired features to decrease com-

plexity and enable scalability.

Inmy opinion, this way of thinking is themain reason these approaches

are limited and do not benefit from these bio-inspired features. This

work thus offers a framework that can be considered as a toolbox for ex-

ploiting biological features to reduce complexity and unleash possibili-

ties.
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”It is not a bug; It is a feature”

Nature would not have given us muscles if they were the second-best

actuators. Electrical drives may be the number-one choice of actuators

in many applicable systems and will displace even combustion engines

in the future. The main reason they are also used in robotic applica-

tions that intend to mimic biology is not because of their innate bene-

ficial properties for such applications. The reason lies in a lack of under-

standing of bio-inspired actuator setups [67, 97] and applicable techni-

cal control solutions for bio-inspired actuator setups [49, 105]. Indeed,

electrical drives lack essential features that biological muscle actuators

include:

• Compliance (Electrical drives have no passive compliance)

• Stiffness variation (Electrical drives create a torque according to

its activation, and the stiffness results from the load acting on that

joint)

Compliance is the ability of an actuator to adapt to the environment

without external control. The biological muscle tendon complex (MTC)

[43, 46] can be stretched passively, which plays a major role in locomo-

tion [96, 34]. Joint stiffness variation is the ability to vary the joint stiff-

ness independent from position. Muscle spring units (MSUs) in antag-

onistic setups enable this feature [122], which is crucial for locomotion

[41, 31]. The MSU is the technical pendant to the MTC and can be found

in many bio-robotic setups [27, 49, 50, 62, 76, 82, 88]. The goal of the

MSU’s in bio-robotic setups is to attain these biological properties [122,

51, 50, 82].

To further investigate the benefits ofmuscle spring units in antagonistic

joint setups, the scientific question this work addresses is:

Q2: What are the benefits of bio-inspired antagonistic

muscle-driven joint setups in applied bio-robotics?

Firstly, in bio-inspiredmuscle driven systems, anMSUcomeswithmany

benefits compared to a single pneumatic muscle. Passive compliance as
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mentioned before, is just one of these. Furthermore, the ratio between

spring and muscle length can be seen as a design element [11, 62, 61,

79, 104] to create the desired force-pressure-length ratio [73, 100, 97].

A long muscle enables higher control ability [10], whereas a long ten-

don increases the innate passive abilities [39, 40, 52, 90, 109]. However,

the ultimate benefits appears in the field, when anMSU is implemented

in an antagonistic joint setup with other MSUs [122]. The loss of mo-

tion range by using anMSU instead of single pneumatic muscles can be

completely neglected in an antagonistic setup and ahigh range of torque

generation and joint stiffness can be achieved [59]. The benefits of MSU

in antagonistic setups are further expounded in chapter 2. There, the

force-pressure-length relation is investigated through experiments, and

the impact of motion range, torque generation, and joint stiffness in an-

tagonistic setups is analyzed (Chapter 2 has already been published by

the author of this work inWolfen 2018 [122]).

Biology designs muscle arrangement in redundant setups. When we

consider the elbow joint, for example, there are three muscles that pro-

vide elbow flexion: the m. biceps brachii, the m. brachialis, and the

m. brachioradialis. Technical industrial solutions like the industrial arm

robot in figure 1.1 never use redundant actuators; hence, it is possible to

manufacture electrical drives for various torques. If an electrical drive is

too weak, it can be replaced by a stronger one. Maximum force creation

is also not a feasible reason for biology to use muscle redundancy; thus,

a single muscle can be trained, and its maximum force can be increased

[81, 110]. Muscle redundancymeans that there aremore actuators acting

on a joint than this joint has degrees of freedom. This theoretically en-

ables infinite actuation possibilities for the samemotion. The benefits of

this condition is in the scopeof scientific investigations [60, 22] but is out

of scope of this work. Nevertheless, a controller driving a bio-inspired

setup with muscle redundancy is confronted with this condition [47].

Muscle redundancy is connected to the question of scalability. If more

muscles provide benefits (and I assume that, as mentioned in the pref-

ace), the control system should be scalable with actuators to be an gen-

eralizable applicable robotic solution. The same applies to the increase

of joints or degrees of freedom provided by additional muscles.
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Therefore, another scientific question addressed in this work is:

Q3: How can themuscle redundancy and scalability challenge be

solved?

In addition to muscle redundancy, bi-articular muscles are extremely

uncommon from an engineering perspective. Bi-articular muscles are

muscles that act over two joints. Industrial robots never have actuators

that act on twodifferent joints, hence it increasesmodel complexity [58].

However, nature does have this. Experiments and simulations on hu-

mans and animals have shown that bi-articular muscles mechanically

increase locomotion performance [38, 74, 87, 95, 120] and also have a

positive impact on themetabolic costs of locomotion [25, 26, 119]. There-

fore, bi-articular muscles in bio-robotic setups have been in the scope of

study over the last decade [6, 7, 62, 66, 77, 82, 99, 101, 104]. It is also the

case that robotic setups benefit from bi-articular muscles as these show

an increase in motion speed [23], locomotion efficiency [54] and robust-

ness [23].

However, the control of bio-robotic setups with bi-articular muscles

is still an obstacle because established control approaches treat bi-

articular muscles as a problem instead of making use of them, as pre-

viously explained. Applying the premise that every biological structure

is evolutionary adapted and therefore advantageous for its purpose, bi-

articular muscles must be beneficial for control. In fact, there are many

indications for control benefits of bi-articular muscles [19, 62, 61, 104,

115]. Assuming that motor control uses different hierarchical levels of

control [63], bi-articular muscles show sensory benefits [15, 85, 104, 118]

and supportive stabilization benefits [98] for high level control. On the

other hand, all these well-investigated control benefits of bi-articular

muscles do not provide a control scheme that exploits these bi-articular

muscles to reduce control complexity. Therefore, the last and perhaps

most interesting scientific question of this work is:

Q4: How can a controller exploit bi-articular muscles to reduce

control complexity?

To investigate these scientific questions, two robotic setups are used: the
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arm robot Ataro and the one-legged robot SH1. With the robotic test-

bed of Ataro, the controller is investigated and its performance output of

point-to-point reaching is recorded and serves as a benchmark. The con-

trol framework is explained in detail in section 3, and its stability and pa-

rameter robustness are investigated in section 4. Point-to-point reach-

ing performance is defined by speed and accuracy. In particular, it is the

time a controller needs to reach stable target position within a specified

accuracy (joint angle deviation to target position).

The impactof loss in controlby reducing thecontroller input information

and its output possibilities is investigated with the stable stance control

of SH1. Both robotic test-beds use the same control structure.

The control framework of this work is not intended as a represen-

tation of the motor control system. It is inspired by it to exploit

thebenefits ofmuscle-driven systemsbyusing its so-called”draw-

backs” (e.g., redundancy, bi-articular actuators) as an advantage

for applicable muscle-driven robotic solutions. Furthermore, this

work shows a low-level control framework. The inputs of the pro-

posed control framework are target vectors (besides sensor infor-

mation) generatedbyapossibleupstreamhigh-level control struc-

ture. This also enables compatibility for various other upstream

control structures. The output of this control framework is mus-

cle commands. It is called a ”framework” and not a ”controller”

or ”method” due to its exchangeable components and its general

applicability to all systemswithin scope.
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1.2 Bio-robotic Test Bed

1.2.1 Ataro

Figure 1.5: The robotic test bed Ataro
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My contribution to the robotic test bed Ataro

Ataro was developed in cooperation between the University of Stuttgart

and the Hertie Institute for clinical brain science Tübingen. Hereby, the

designwasdevelopedbyProf. Dr. SynSchmitt (Stuttgart) andDr. Daniel

Häufle (Tübingen) andAtaromanufactured by an external supplier. Fur-

thermore, several improvements have beenmade byme until today:

• Interface hardware between Ataro, computer system and remote

control was developed, manufactured, and installed byme.

• Security testmodewas added byme, to enable a simulationmode

in which all sensor information are transferred but the actuation

is blocked on the hardware level (manual switch).

• Finger force Sensorwas installed at thefinger tip and the amplifier

hardware was developed, manufactured, and installed byme.

• An optional panel can bemounted on the arm side of Atarowhich

illustrates the possible motion area. The area was calculated by

me and the panel wasmanufactured under my supervision.

• The camera system Kinect was added on top of Ataro by Tobias

Nadler. The interface and communication hardware and software

was developed, manufactured and installed byme.

• Several software modes and motion programs have been devel-

oped by me (which are not in scope of this work) to demonstrate

the research output of our Institute and increase the visibility

of our research group inside and outside the University. Note-

worthy are the Hannover fair 2017 and the demonstration of the

evaluation for the German excellence University program 2019 to

represent the Simtech Cluster of Excellence of the University of

Suttgart. Additionally, Ataro was demonstrated at several work-

shops, colloquiums, and University exhibitions byme.
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The robotic test bed AtaroA is an bio-inspired arm robotwith two hinge

joints, representing the shoulder and the elbow joint.

The joints are defined as:

Φ =

(
Φs

Φe

)
(1.2)

Ataro’s motion possibilities are limited to the para-sagittal plane and

therefore, the shoulder jointΦs only enables the anteversion and retro-

version as well as the elbow jointΦe only enables the flexion and exten-

sion.

Definition of joint direction:

The anteversion of the shoulder and the flexion of the elbow are

defined as positive joint directions in this work. The retroversion

and extension are defined as negative directions respectively.

The joints are equipped with incremental encoders providing sensor in-

formationϕ about the joint positions, respectively defined as:

ϕ =

(
ϕs

ϕe

)
(1.3)

The information of the shoulder joint position ϕs and the elbow joint

position ϕe are encoded into increments. The joints are driven by five

muscle spring units (MSU) using pneumatic actuated McKibben mus-

cles. The muscle spring units have a bio-inspired arrangement and rep-

resent biological pendants:

• m. latissimus (M1) for shoulder anteversion

• m. deltoideus (M2) for shoulder retroversion

• m. biceps brachii (M3) for shoulder anteversion and elbowflexion

• m. triceps brachii caput laterale (M4) for elbow extension

• m. brachialis (M5) for elbow flexion
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Figure 1.6: CAD Drawing of Ataro and it’s muscles. A human arm has more

muscles and degrees of freedom than Ataro (figure 1.7). Ataro was build in a co-

operation project of the University Stuttgart and the Hertie-Institute for clinical

brain research Tübingen to investigate the motor control system of the human

body. For that, a minimal setup with two elementary biological drives and a bi-

articularmuscle spring unitwas needed. An elementary biological drive consists

of two antagonistically arrangedmuscle actuators that drive a joint.

Themuscle spring unitsM are defined as:

M =

 M1

...

M5

 (1.4)
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Figure 1.7 illustrate the biological pendants of the muscle spring units

and their locations in the human body.

Figure 1.7: Human upper body with the locations of the biological pendants

used at Ataro. Source: https://de.freepik.com

The bi-articular muscle spring unit M3 and the mono-articular muscle

spring unit M2 is located inside the torso of Ataro due to space limita-

tions of the upper arm and shoulder. A rope deflection ensures the cor-

rect motion impact. Figure 1.8 shows themuscle spring unit locations of

Ataro and the rope deflections.
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Figure 1.8: CADDrawing of Ataro with actuator locations.
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Figure 1.9: Experimental setup of Ataro and the interaction of all physical com-

ponents

Ataro is a bio-robot, which means it has muscles that can interact with

bones N and jointsΦ resulting in motion. The muscles generate forces

Figure 1.10: Industrial robots commonly uses electrical drives which generate

torques directly on the joints. A robotic systemwith electrical drives as actuators

would have figure 1.9 changed to this interaction system.

F on the bones resulting in torques T on the joints. That distinguishes

muscle driven systems from industrial robots. Industrial robots are com-
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monly driven by electrical driveswhich generate a torque directly on the

joint (figure 1.10). This is a crucial difference for applied control theories

of these systems, hence the joints of a bio-robotic systemhas a back cou-

pling impact to the muscles via the muscle lengthλ. The muscle length

λ is according to (1.4) defined as:

λ =

 λ1
...

λ5

 (1.5)

The muscles spring units of Ataro are actuated via the actuation signal

µ, which is respectively defined as:

µ =

 µ1

...

µ5

 (1.6)

As figure 1.9 shows, the actuation signal µ exists in different physical

shapes. Inside the computer,µ is a variable from type double. Between

the IO-Board and the pressure valve, µ is an analog electrical signal.

When it reaches the muscle spring unit, µ is an air pressure between

0...6bar. Hence, the physical shape ofµ plays an underlying role in this

work, it is not differentiated in the following and just treated as themus-

cle activationµ. Allmuscle spring unitsM are equippedwith length and

force sensors providing the muscle length information ` and the force

acting on the correspondingmuscle spring unit against it’s contraction:

γ =

 γ1
...

γ5

 (1.7)

In addition, a Kinect optical sensor is mounted on top of Ataro to detect

up to twomarkers. The Kinect sensor provides via 2x 12bit parallel trans-

mission the informationκ of the twomarker positions in space.

κ =

(
κa
κh

)
(1.8)

κa is thepositionofAtaro’s finger tip andκh is thepositionof thehuman

finger tip. This featurewas used as a high level controller for demonstra-

tion purposes and is out of scope of this work. All sensor information
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gathered by the IO-Board is transmitted to the Matlab/Simulink Model

and defined as:

ακ,ϕ,λ,γ =


κ
ϕ
λ
γ

 (1.9)
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1.2.2 Stuttgart Humanoid 1

Figure 1.11: Stuttgart Humanoid 1 (SH1) is an one-legged robot mimicking a hu-

man left leg
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My contribution to the robotic test bed SH1

Stuttgart Humanoid 1 was developed by Prof. Dr. Syn Schmitt and Dr.

Daniel Häufle and mechanically manufactured by the University work-

shops. The initial state when I started my work at SH1 was a mechani-

cal setup including all joints and construction elements representing the

bones, 12 muscles connected to pressure valves which could only con-

trolledmanually. Several improvements have beenmade byme until to-

day:

• Interface hardware between SH1 and computer systemwas devel-

oped, manufactured, and installed byme.

• The complete wiring was implemented byme.

• The complete sensor signal processing and amplifier hardware

was calibrated or completely new developed, manufactured, and

installed byme.

• Additional muscle m. soleus was added and the foot of Ataro has

been re-designed byme.

• All MSU were re-designed to improve the actuation ranges and

passive abilities.

• Several software modes and motion programs have been devel-

oped by me (which are not in scope of this work) to demonstrate

the research output of our Institute and increase the visibility of

our research group inside and outside the University. Notewor-

thy are the Hannover fair 2016 and 2018 to represent the Simtech

Cluster of Excellence of the University of Suttgart. Additionally,

Ataro was demonstrated at several workshops, colloquiums, and

University exhibitions byme.



CHAPTER 1. INTRODUCTION 33

Stuttgart Humanoid 1 represents a technical model of a human left leg

which is able to performmovements in 5 degrees of freedom (DOF). The

hip joint is designed by two hinge joints which provide abduction/ad-

duction and flexion/extension movements. Nevertheless, the hip joint

motion is disabled formeasurements of thiswork and can be considered

rigid. The knee joint is a single hinge joint, enabling flexion/extension

movement. According to its biological role model, the ankle joint is di-

vided into two hinge joints, the upper and lower ankle. The upper ankle

allows flexion/extension movement, the lower ankle supination/prona-

tion. Subsequently, SH1 can be considered as a 3-dimensional inverted

pendulum. 13 MSU’s representing the muscles:

• m. glutaeus maximus

• m. adductor (lumped)

• m. rectus femoris

• m. iliopsoas

• m. glutaeus medius

• m. sartorius

• m. tibialis posterior

• m. biceps femoris caput breve

• m. tibialis anterior

• m. peronaeus

• m. gastrocnemius

• m. vastii (lumped)

• m. soleus

The geometry of SH1 is based on a 50-percentile 1.78m man [111]. The

insertion and origin points of the actuators are close to their biological



CHAPTER 1. INTRODUCTION 34

Figure 1.12: SH1 ankle joint and antagonistic muscle arrangement according to

a human ankle joint. Foot source: https://anatomy.lexmedicus.com

pendant despite some muscles being lumped together for spatial rea-

sons and are represented by a singleMSU. Themuscle arrangement con-

tains both, antagonistic setups and bi-articular muscles illustrated in

figure 1.12. Antagonistic muscle pairs must not equal in terms of maxi-

mum force nor lever arm according to its biological pendant. This im-

balance is illustrated in figure 1.12 in the right picture. The m. soleus is

seven times stronger than them. tibialis anterior in thebiological system

(m. soleus with approximately 140Nm [13] and the m. tibialis anterior

with approximately 20Nm [113] voluntarily contraction impact on the

ankle joint). Due to mechanical limitations of SH1 (commercially avail-

able parts, spatial limitations, etc.), the lack of muscle force is compen-

sated by an increased lever arm for some muscles. This is the case for

them. peronaeus and them. tibialis posterior (left picture in figure 1.12).

In addition to the bio-inspired muscle relations, SH1 also mimics the bi-

articular muscles of the lower limb. In example, the m. gastrocnemius

impacts both, the ankle joint and the knee joint.

SH1 has 5 incremental encoders in its joints and eachmuscle spring unit

has a force sensor included. It can perform a stable stance with differ-

ent joint positions without collapsing. SH1 runs withMATLAB/Simulink

real-timeenvironment. A given stanceposition canbe achievedwithdif-
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Figure 1.13: Matlab/Simulink real-time environment scope of SH1 in stable

stance showing the joint positionswhile alteringmuscle activation shown infig-

ure 1.14.

ferent levels of co-contraction of the muscles, as illustrated by the two

measurement scopes of figure 1.13 and 1.14. Bothdata scopes are recorded

within the samemeasurement. The joint angle scope of figure 1.13 shows

the joint value from the incremental encoders over time, (10 ticks equals

one degree). The bio-inspired control algorithm in hybrid mode (chap-

ter 3) keeps thepositionwhile reducing theopen-loopactivation in steps

(10% open-loop reduction per step) illustrated in figure 1.14. This shows

that the same joint position can be reachedwith different actuation lev-

els of theMSUs and therefore different joint stiffness 1.10. The joint stiff-

ness Si of a jointΦi is given by:

Si =

j∑
n=1

Tn (1.10)

Si is the sum of all torques T generated by all muscles j that impact the

jointΦi. SH1 collapses completely without actuation.
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Figure 1.14:Matlab/Simulink real-time environment plot of SH1 in stable stance

with different actuation levels and joint stiffness configurations
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1.2.3 Main Program and Parameters: Implementation

Figure 1.15: Ataro main Program in Matlab/Simulink. This program has more

features than explained in the chapters before. There is a finger following pro-

gram using a kinect as joint value input and a force control program that uses

a force sensor to enable active compliance. These features are gimmicks for

demonstrations and use the identical controller described in chapter 3. Further-

more, these programs run in parallel or instead of the closed loop controller and

did not effect the results shown in this work.
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Prior to run the program, several variables have to be initiated. All these

variables are summarized in a single script. The script starts with the

initialization of the input and output scaling parameters:

c l ea r ; %re f r e sh workspace
% This i s the parameter sheet to i n i t i a l i z e a l l i n i t i a l

parameters and a l l o ca t e necessary workspace

% Simulation and sample time
T_S = 1/500; %Sample time in seconds
T_sim = 300; %Simulation time in seconds

%% Hardware Block Parameters

% Mean Value F i l t e r Parameter Matrix
MVF_para =. . .
[100 2 ; . . .% 1 st : Samples , 2nd : Dig its fo r Length Sensor

F i l t e r
100 2 ; . . .% 1 st : Samples , 2nd : Dig its fo r Force Sensor

F i l t e r
100 2 ; . . .% 1 st : Samples , 2nd : Dig its fo r Pressure Sensor

F i l t e r
] ;

%Sensor delay parameters
Fin_para =. . .
[100 2 ; . . .
400 -100 ] ;

% Sensor Scal ing Parameter Matrix
SS_para =. . .
[109/5 109/5 109/5 109/5 109/5; . . .% 1V= [mm] : [

L_SE L_SF L_Bi L_EE L_EF]
200 200 200 200 200; . . . %1V= [N] : [F_SE F_SF F_Bi F_EE

F_EF]
1 1 1 1 1 ; . . . %1V= [ bar ] : [P_SE P_SF P_Bi P_EE

P_EF]
360/163000 360/163000 16 .03 19 .7 0 ; . . .% [ deg/

puls .S deg/puls.E off_S off_E 0]
] ;

% Actuator Scal ing Parameter Matrix
AS_para =. . .
[0 6 ; . . .% [ min max] P_SE Pressure in bar
0 6 ; . . .% [ min max] P_SF Pressure in bar
0 6 ; . . .% [ min max] P_Bi Pressure in bar
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0 6 ; . . .% [ min max] P_EE Pressure in bar
0 6 ; . . .% [ min max] P_EF Pressure in bar
] ;

The summation parameters are boolean parameters. They enable and

disable the different modes:

%% Summation Parameters

% CL-Summation
CLSum_Para =. . .
[ 0 ; . . . % Finger Force Cotrol
1 ; . . . % Joint Angle Control
0 ; . . . % Muscle Tonus Control
0 ] ; % Posit ion Recognition Control

% OL-CL Summation
OCSum_Para =. . .
[ 1 ; . . . % Open Loop
1 ] ; % Closed Loop

The open loop block parameters initialize starting values, define equilib-

rium points, and determine open loop controller behavior:

%% Open Loop Stimulation Block Parameters

%B1: Increase act ivat ion with step s i z e
%B2: Increase act ivat ion with step s i z e
%B3: n .a .
%B4: set act ivat ion smoothly to zero
%B5: Switch muscle ( Active muscle i s displayed by the

tower

%I n i t i a l i z a t i o n and Equilibrium Points (EPs)
MRC_para =. . .
[0 .1 0 .1 0 .1 0 .1 0 .1 ; . . .% Step Size per c l i c k [P_SE P_SF

P_Bi P_EE P_EF]
0 .9947 0 .9965 0 .9974 0 .9979 0 .9982 ; . . .% Switch Posit ion [2

s 3s 4s 5s 6s ] Parameter = Threshold ^(T_S/Time to
reach ) | Threshold = 0 .005 (0 .5% Dif ference )

2 .5 0 .1 4 .5 1 6 ; . . .%EP1
1 .1 2 .2 2 .6 6 0 .4 ; . . .%EP2
2 .3 0 .2 2 .2 2 .4 0 .5 ; . . .%EP3 ( Zero )
2 .3 1 .1 2 2 .7 0 .3 ; . . .%EP4
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2 .7 1 .5 2 6 0 .3 ; . . .%EP5
] ;

%EPs for motion tasks
EP_pool =. . .
[1 22 0 1 .61 4 .30 1 .24 0 ; . . . %EP1- pool
-32 -20 0 0 .67 2 .07 0 .24 0 ; . . .% EP2- pool
0 -18 0 1 .85 1 .80 4 .56 0 ; . . .%EP3- pool
-33 21 0 0 .37 3 .55 0 1 .37 ; . . .%EP4- pool
] ;

%% Joint Angle Control ler

% These are a l t e rnat ive parameter se t s fo r the j o i n t angle
c o n t r o l l e r . They are dependent from only one s i n g l e

muscle parameter.
% %Closed -Loop P- Matrix ( colums are jo ints , rows are

muscle )
% %shoulder => (1)
% %elbow => (2)
%
%PM_Pos = 0 .015∗ . . .
%[ -0 .05 0 ; . . . %0.5
%0 .05 0 ; . . .
%0 .05 0 .05 ; . . .
%0 -0 .05 ; . . .
%0 0 .05 ; . . .
%] ;
%
%p11 = -3 .25e - 4 ;
%
%PM_Pos =. . .
%[ p11 0 ; . . . %0.5
%-p11 0 ; . . .
%-p11∗3 .44 -p11∗0 .93 ; . . .
%0 p11∗0 .93 ; . . .
%0 -p11∗0 .56 ; . . .
%] ;
%
% %Closed -Loop D- Matrix ( colums are jo ints , rows are

muscle )
%
% D_JAC= 0.005∗ . . .
[0 .0035 0 ; . . .
%-0 .001 0 ; . . .
%0 .0035 0 .001 ; . . .
%0 0 .001 ; . . .
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%0 -0 .001 ; . . .
%] ;
%
% %Closed -Loop I - Matrix ( colums are jo ints , rows are

muscle )
% I_JAC= 0 .1 ∗ [0 .001 0 .001 ] ; . . . %0.8
%
% %I n i t i a l Condition Matrix
% %I_JAC = 0 .5 ∗ [0 .001 0 .004 ] ;

%% Posit ion Control Parameters

%Closed -Loop P- Matrix ( colums are jo ints , rows are muscle )
%shoulder => (1)
%elbow => (2)
%q1 q2
P_CL= 0 .5 ∗ . . .
[0 .023 0 ; . . . %0.5
-0 .005 0 ; . . .
0 .023 0 .02 ; . . .
0 0 .02 ; . . .
0 -0 .05 ; . . .
] ;

%Closed -Loop D- Matrix ( colums are jo ints , rows are muscle )
%q1 q2
D_CL= 0.005∗ . . .
[0 .0035 0 ; . . .
-0 .001 0 ; . . .
0 .0035 0 .001 ; . . .
0 0 .001 ; . . .
0 -0 .001 ; . . .
] ;

%Closed -Loop I - Matrix ( colums are jo ints , rows are muscle )
%q1 q2
I_CL= 0 .05 ∗ . . .
[0 .001 0 ; . . . %0.8
-0 .001 0 ; . . .
0 .0001 0 .0001 ; . . .
0 0 .002 ; . . .
0 -0 .002 ; . . .
] ;

%I n i t i a l Condition Matrix
I_MX = 0 .05 ∗ [0 .001 0 .004 ] ;
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PC_IM = [0 .178 ;0 .12 ] ; %for p=3 ,25: [0 .178 ;0 .12 ]
M_CL = [0 0 0 0 0 ; . . . %Pos_Set Pos_Clear t_start

desPhiS desPhiE
0 0 0 0 0; . . . %run_CL I_Phi I_Phi 0

0
0 0 0 0 0 ; . . . %P_SF P_SE P_bi P_EF P_EE
% 0 0 0 0 0; . . . %I_SF I_SE I_bi I_EF

I_EE
] ;

To ensure smooth motion while changing equilibrium point in open-

loopmode, a smoothingfilter is used. Thisfilter stores thepre-calculated

target positions in amatrix and apply themean value as the output. This

requires pre-allocating memory:

%% Open Loop Smoothing

OLS_Filter = [ 0 0 0 0 0 ; . . . %1
0 0 0 0 0; . . . %2
0 0 0 0 0; . . . %3
0 0 0 0 0; . . . %4
0 0 0 0 0; . . . %5
0 0 0 0 0; . . . %6
0 0 0 0 0; . . . %7
0 0 0 0 0; . . . %8
0 0 0 0 0; . . . %9
0 0 0 0 0; . . . %10 -10∗T_S = 20ms Delay
0 0 0 0 0 ; . . . %1
0 0 0 0 0; . . . %2
0 0 0 0 0; . . . %3
0 0 0 0 0; . . . %4
0 0 0 0 0; . . . %5
0 0 0 0 0; . . . %6
0 0 0 0 0; . . . %7
0 0 0 0 0; . . . %8
0 0 0 0 0; . . . %9
0 0 0 0 0; . . . %10 -20∗T_S = 40ms Delay
0 0 0 0 0 ; . . . %1
0 0 0 0 0; . . . %2
0 0 0 0 0; . . . %3
0 0 0 0 0; . . . %4
0 0 0 0 0; . . . %5
0 0 0 0 0; . . . %6
0 0 0 0 0; . . . %7
0 0 0 0 0; . . . %8
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0 0 0 0 0 ; . . . %9
0 0 0 0 0; . . . %10 -30∗T_S = 60ms Delay
0 0 0 0 0 ; . . . %1
0 0 0 0 0; . . . %2
0 0 0 0 0; . . . %3
0 0 0 0 0; . . . %4
0 0 0 0 0; . . . %5
0 0 0 0 0; . . . %6
0 0 0 0 0; . . . %7
0 0 0 0 0; . . . %8
0 0 0 0 0; . . . %9
0 0 0 0 0; . . . %10 -40∗T_S = 80ms Delay
0 0 0 0 0 ; . . . %1
0 0 0 0 0; . . . %2
0 0 0 0 0; . . . %3
0 0 0 0 0; . . . %4
0 0 0 0 0; . . . %5
0 0 0 0 0; . . . %6
0 0 0 0 0; . . . %7
0 0 0 0 0; . . . %8
0 0 0 0 0; . . . %9
0 0 0 0 0; . . . %10 -50∗T_S = 100ms Delay
0 0 0 0 0 ; . . .%d i f f e r e n t i a l
1 0 0 0 0 ; . . .%parameters
] ;

This section initialize the force control of the finger tip for active compli-

ance:

%% Force Control
%q1 q2 Finger
FC_PM =. . .%The P- matrix
[ -0 .01 0 ; . . .%m1 0 .01
0 .01 0 ; . . .%m2 0 .01
0 .01 0 .01 ; . . .%m3 0 .005 both
0 0 .03 ; . . .%m4 0 .03
0 -0 .03 ; . . .%m5 0 .03
] ;

%q1 q2 Finger
FC_IM = 0 .05 ;% The Integrator matrix - a l t e rnat ive value :

0 .03

%Sensor noise f i l t e r
MFC_PM =. . .
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[ 0 0 ; . . .%m1 Finger
0 0 ; . . .%m2
0 0; . . .%m3
0 -0 .01 ; . . .%m4
0 0 .01 ; . . .%m5
] ;

%S e n s i t i v i t y
V_MFP = 0 .5 ∗ . . .
[0 .01 ; . . .
0 .004 ; . . .
0 .005 ; . . .
0 .01 ; . . .
0 .01 ; . . .
] ;

%Enable/ Disable f eatures
V_MFI =
[ 0 ; . . .
0 ; . . .
0 ; . . .
0 ; . . .
0 ; . . .
] ;

While in real-time simulation mode, the different tasks can be set via

Matlab Simulink interface. These settings have no impact on the con-

troller and only apply to the interface:

%% Inter face
Interface_M =. . .%These parameters apply to the contro l

i n t e r f a c e of Matlab Simulink
[ 0 0 23 -20 18 -5 15 7 12 18; . . .
0 0 15 -13 8 3 8 15 0 0 ; . . .
12 -22 4 -5 -3 10 -5 20 0 0 ; . . .
5 -20 -5 0 -12 13 0 0 0 0 ; . . .
-2 -20 -14 0 -22 15 0 0 0 0 ; . . .
-8 -20 -20 -2 0 0 0 0 0 0 ; . . .
-15 -20 0 0 0 0 0 0 0 0 ; . . .
-20 -20 0 0 0 0 0 0 0 0 ; . . .
] ;

To model the biological muscle tonus, a minimum activation of each

muscle is ensured depending on the actual force acting on the muscle:
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%% Muscle Tonus Control
tonus_para =. . .%These are thresholds and contro l parameter

d e f i n i t i o n s
[ 25 10 20 60 10; . . . %Threshold
0 .00115 0 .00025 0 .00107 0 .001 0 .0025 ; . . . %P- Value
0 .15 0 .15 0 .15 0 .15 0 .15 ; . . . %I - Value
] ;

Thismode is usedwith a Kinect optical systemusingmarkers on the fin-

ger tip to detect and control the finger position:

%% Posit ion Recognition Control
%Ataro only acts in within the sagg i ta l plain , there fore

only the y - and z - axis of the Kinect system i s
re l evant .

%y z
P_PRC = 0 .02 ∗ . . .%P- matrix of th i s mode
[0 .01 0 .03 ; . . . %0.5
-0 .01 -0 .03 ; . . .
0 0 ; . . .
-0 .04 0 ; . . .
0 .04 0 ; . . .
] ;
I_PRC = 0 .3 ;%I - matrix of th i s mode
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1.2.4 Length Sensor Processing

The length sensors are implemented as input blocks (Figure 1.16) provid-

ing the information of the sensors via hardware I/O-board. The process-

ing (Figure 1.17) provides the sensor information and their first deriva-

tive.

Figure 1.16: Length Sensor Inputs
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Figure 1.17: Length sensor signal processing

The parameters are initialized by the parameter script explained in sec-

tion 1.2.3.

function [ Fsignal , dFsignal , next_step ] = F i l t e r ( s ignal ,
last_step , MVF_para, SS_para , T_S)

%I n i t i a l i z a t i o n for each time step
i = last_step (1) ;
value = last_step (2) ;
hold = last_step (3) ;
dhold = last_step (4) ;

%Allocat ing parameters from the parameter s c r i p t
MVF_S = MVF_para(1 ,1) ;
d i g i t = MVF_para(1 ,2) ;
s ca l e = 10^ d i g i t ;

%Applying the f i l t e r and ca lcu lat ing the der ivat ive
i f ( i < MVF_S)
value = value + s igna l ;
i = i +1;
e l s e
hold = round ( value∗ sca l e /MVF_S)/ sca l e ;
dhold = ( hold - last_step (3) )/MVF_S;
value = 0;
i = 0;
end

%Determining the output parameters



CHAPTER 1. INTRODUCTION 48

next_step = [ i value hold dhold ] ;
Fsignal = hold∗SS_para(1 ,1) ;
dFsignal = dhold∗SS_para(1 ,1) /T_S;

The same filter is applied for each length sensor.
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1.2.5 Force Sensor Processing

The force sensors are implemented as input blocks (Figure 1.18) provid-

ing the information of the sensors via hardware I/O-board. The process-

ing (Figure 1.19) provides the sensor information and their first deriva-

tive.

Figure 1.18: Force Sensor Inputs
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Figure 1.19: Force sensor signal processing

The parameters are initialized by the parameter script explained in sec-

tion 1.2.3.

function [ Fsignal , dFsignal , next_step ] = F i l t e r ( s ignal ,
last_step , MVF_para, SS_para , T_S)

%I n i t i a l i z a t i o n for each time step
i = last_step (1) ;
value = last_step (2) ;
hold = last_step (3) ;
dhold = last_step (4) ;

%Allocat ing parameters from the parameter s c r i p t
MVF_S = MVF_para(2 ,1) ;
d i g i t = MVF_para(2 ,2) ;
s ca l e = 10^ d i g i t ;

%Applying the f i l t e r and ca lcu lat ing the der ivat ive
i f ( i < MVF_S)
value = value + s igna l ;
i = i +1;
e l s e
hold = round ( value∗ sca l e /MVF_S)/ sca l e ;
dhold = ( hold - last_step (3) )/MVF_S;
value = 0;
i = 0;
end
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%Determining the output parameters
next_step = [ i value hold dhold ] ;
Fsignal = hold∗SS_para(2 ,1) ;
dFsignal = dhold∗SS_para(2 ,1) /T_S;

The same filter is applied for each force sensor.
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1.2.6 Joint Angle Sensor Processing

The joint angle sensors are implemented as input blocks (Figure 1.20)

providing the joint position information in increments of the sensors via

hardware I/O-board. The processing (Figure 1.21) provides the sensor in-

formation and their first derivative.

Figure 1.20: Joint angle sensor inputs

The parameters are initialized by the parameter script explained in sec-

tion 1.2.3.

function [ Fsignal , dFsignal , next_step ] = F i l t e r ( s ignal ,
last_step , SS_para , T_S)

%I n i t i a l i z a t i o n for each time step
i = last_step (1) ;
value = last_step (2) ;
hold = last_step (3) ;
dhold = last_step (4) ;
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Figure 1.21: Joint angle sensor signal processing

%Allocat ing parameters from the parameter s c r i p t
MVF_S = MVF_para(2 ,1) ;
d i g i t = MVF_para(2 ,2) ;
s ca l e = 10^ d i g i t ;

%Applying the f i l t e r and ca lcu lat ing the der ivat ive
i f ( i < MVF_S)

value = value + s igna l ;
i = i +1;

e l s e
hold = round ( value∗ sca l e /MVF_S)/ sca l e ;
dhold = ( hold - last_step (3) )/MVF_S;
value = 0;
i = 0;

end

%Determining the output parameters
next_step = [ i value hold dhold ] ;
Fsignal = hold∗SS_para(2 ,1) ;
dFsignal = dhold∗SS_para(2 ,1) /T_S;

%Fsignal = - s igna l ∗SS_para(4 ,1) + SS_para(4 ,3) ;%
a l t e rnat ive s e t t ings

%dFsignal = ( Fsignal - last_step (1) )/T_S;% al te rnat ive
s e t t ings

%next_step = Fsignal ;% a l t e rnat ive s e t t ings

The same filter is applied for each joint angle sensor.
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1.2.7 Pressure Sensor Processing

The pressure sensors are implemented as input blocks (Figure 1.23) pro-

viding the information of the sensors via hardware I/O-board. The

processing (Figure 1.22) provides the sensor information and their first

derivative.

Figure 1.22: Pressure sensor signal processing

The parameters are initialized by the parameter script explained in sec-

tion 1.2.3.

function [ Fsignal , next_step ] = F i l t e r ( s ignal , last_step ,
MVF_para)

%I n i t i a l i z a t i o n for each time step
i = last_step (1) ;
value = last_step (2) ;
hold = last_step (3) ;

%Allocat ing parameters from the parameter s c r i p t
MVF_S = MVF_para(3 ,1) ;
d i g i t = MVF_para(3 ,2) ;
s ca l e = 10^ d i g i t ;

%Applying the f i l t e r and ca lcu lat ing the der ivat ive
i f ( i < MVF_S)
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value = value + s igna l ;
i = i +1;
e l s e
hold = round ( value∗ sca l e /MVF_S)/ sca l e ;
value = 0;
i = 0;
end

%Determining the output parameters
next_step = [ i value hold ] ;
Fsignal = hold ;

The same filter is applied for each pressure sensor.



CHAPTER 1. INTRODUCTION 56

Figure 1.23: Pressure sensor inputs
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1.2.8 Muscle Output Implementation

The muscle actuation is implemented as output blocks (Figure 1.24)

transferring the controller motor commands via hardware I/O-board

into analog signals for the pressure valves. The processing (Figure 1.17)

consists of a security check to ensure an applicable operating range for

the pressure values.

Figure 1.24: Motor command outputs
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Figure 1.25: Motor command output saturation

The parameters are initialized by the parameter script explained in sec-

tion 1.2.3. The output saturation prevents damage to the pressure valves

by limiting the motor commands. Besides that, it has no function.

function y = fcn (u , AS_para)

%Allocat ing parameters from the parameter s c r i p t
u_min = AS_para(1 ,1) ;
u_max = AS_para(1 ,2) ;

%Applying the f i l t e r and ca lcu lat ing the der ivat ive
i f (u >= u_max)
u = u_max;
e l s e i f (u <= u_min)
u = u_min;
end

%Determining the output parameters
y = u ;

The same saturation is applied for eachmotor command output.



Chapter 2

Muscle Spring Unit

This chapter was published in 2018 at theM2VIP Conference [122] by the

author of this work.

2.1 Mechanical design

To mimic biological actuation MSUs are used. Each MSU consists of a

nonlinear PAM (Festo DMSP fluidic muscle [20]), which can be actuated

in a pressure range ofP = 0 …8 bar and a linear metal spring in series.

Furthermore, aMSUhas additional stiff construction elements tomount

theMSU on the robot. The total length of a MSULMSU is given as:

LMSU(FM, FS, P ) = LM(FM, P ) + ∆LS(FS) + LR (2.1)

LM(FM, P ) is the load and pressure dependent length of the active

membrane of the PAM. Under zero pressure condition (P = 0 bar,
FM = 0N), this length is named nominal length LM,nom and is given in

59
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Figure 2.1: CAD drawing of a muscle spring unit with a type DMSP-20-100N

PAM, force sensor, spring and stiff construction elements as it is used for the m.

gastrocnemius.

the data sheet of the PAM.∆LS(FS) is the length of the elongation of the
spring and LR is the length of all rigid construction elements including

the force sensor and the nominal length of the tensile springLS. There-

fore, LM(FM, P ) is the only active part and the pressure P is the only

control variable of the MSU. According to the data sheet of the PAM, the

length is given in relation to its nominal length depicted as shorteningh:

hM = 100%− LM(FM, P )

LM,nom

· 100% (2.2)

This notation is beneficial to assess the active and passive behavior

of the muscle hence it only shortens its length while being activated.

To describe the force-length-pressure relation and the resulting forces,

we symbolize the relation as FM(h, P ) for the muscle membrane and

FMSU(h, P ) for the entire MSU respectively.

The black membrane (LM) of the Festo PAM is the only part of the MSU

which can be actively contracted. The membrane of this PAM can only

be stretched at higher pressure values. Therefore, its passive abilities are

strongly dependent on the actuation level. The spring length LS is the

initial length of the spring. It can be passively stretched independent

from any pressure value of the PAM. The difference between the initial

length of the spring and its actual length is named as ∆LS and is not

shown in this picture. LMSU is defined in (equation (2.1)) as the total

length of theMSU between origin and insertion.
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2.2 Rating of the spring stiffness

Figure 2.2: Discrete force-length relation FM(h, P ) of an isolated PAM type

DMSP-10-230Npneumaticmuscle (black) at anoperatingpressureofP = 4 bar.
The gradients g1, g2 and g3 are parallel shifted force-length relations of tension

springs,whereg1 is a veryhard spring,g2 is amediumhard springandg3 is a soft
spring. The abscissa only counts to determine the gradients of the lines g1..g3,
not for its h-value.

The rating of the spring stiffness is a trade-off between active and pas-

sive movement range. A very stiff spring will keep the active movement

range of the PAM alone for the whole MSU but will add a very limited

passive ability. A very soft springwill change the force-length character-

istics of theMSU nearly to the characteristics of the spring and decrease

the active movement range of the MSU to zero. In this case, the spring

will compensate every active movement of the pneumatic muscle in a

MSU, which transforms the MSU to an almost passive structure. Fur-

thermore, only tension springs are reasonable using in series to theMSU
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setup from Figure 2.1, because the PAM can only contract. Fig. 2.2 visu-

alizes three different spring stiffness for a typeDMSP-10-230N PAM. The

absolute value of the gradients of the force-length relation g1..g3 yield

the spring stiffness k1..k3 (ki = |ġi|). The gradients of g1..g3 are only

negative due to the illustration of the shortening h, according to equa-

tion ((2.2)). The lines g1..g3 of the tension springs are right shifted until

they match FM(h, P ). To balance the active and passive abilities of the

MSU for a defined pressure, it is necessary to find a spring stiffness kopt
which depicts the best compromise between active and passive range,

dependent on the used pneumaticmuscle. If there are no boundary con-

ditions concerning the active or passive range, it is a good compromise to

adapt the spring stiffness to the PAMs gradient of shortening ∂FM

∂h at its

most nonlinear point. At this point, the deviation to the respective iso-

lated PAM curve ofFM(h, P ) is low. Therefore, active and passive range
are balanced. The most nonlinear point of FM(h, P ) is at the inflection
point of its first derivative and therefore at the maximum of its second

derivative. We define this point as FM(hnlin, P ) at the shortening hnlin
for a certain pressure P . Hence, hnlin can be calculated by ∂3FM

∂h3 = 0.
With hnlin the optimized spring stiffness kopt can be calculated as:

kopt = |∂FM

∂h
(hnlin, P )|

Thus, kopt is pressure dependent and not a fixed point over all operat-

ing pressures. Finding a solution in the length-dimension still results

in a set of kopt(P )-lines for the pressure-domain. A reasonable spring

rate for an applied pressure range is given by an average determination

of all kopt(P )-curves. Another method to find kopt(Px) for a specified

pressure Px could be the the calculation of a lineG(Px) with the least

squares ofFM(h, Px). Thus, the spring ratekopt(Px) equals the absolute

valueofG(Px) (kopt(Px) = |Ġ(Px)|). Thismethod is onlybeneficial for

higher pressure operating ranges, because otherwise FM(h, P ) is small

for almost the entire shortening range [20], which results in a very flat

lineG(P ) and therefore a too soft stiffness. Taken together, the spring

stiffness affect the overall characteristics of the MSU essentially and is

therefore a determinable element in an AAS.



CHAPTER 2. MUSCLE SPRING UNIT 63

2.3 Active and passive characteristics

The violet range bars (Fig. 2.3) show the active movement range for

all operating pressures in 500N steps. The blue, red, brown and black

range bars show the passive movement range at the respective operat-

ing pressure and a tensile load up to FM = 1k N. The isolated PAM

(top) has an active movement range of more than 20% of its nominal

length under lower tensile load (FM ≤ 500N) and less than 15% at

forcesFM ≥ 1.5 kN (extrapolation ofFM(h, P ))within a pressure range

up to P = 7 bar. Its passive movement range is below 12% at forces

FM ≥ 1 kN which decrease rapidly with low pressure values. The ac-

tive movement range of the MSU (bottom) amounts to approximately

5% of its nominal length for all operating pressures. Its passive move-

ment range is constantly 8% of its nominal length at forces FM ≥ 1 kN
for all operating pressures. The stiff mounting parts are included in the

shown results which significantly affect the active and passive abilities

by reducing them proportional to LR. The force-length relation of the

MSU has a shift in the range of shortening compared to the isolated

PAM. This shift illustrates the gain of passive abilities at the cost of ac-

tivemovement range (Fig. 2.3). With zero pressure, the PAM can only be

stretched up to 3% (diameter dependent) of its nominal length by forces

ofFM ≥ 1 kN [12, 21], whereas theMSU crosses this line below an actual

force of FM = 500N. Hence, an appreciable passive range of approxi-

mately 10%of the isolated PAMonly exists above operating pressures of

P ≥ 3 bar. The MSU has a passive movement range of approximately

h = 8…10% for all operating pressures and is, compared to the passive

rangeof thePAM, constantlyhigherover thewholepressure range. How-

ever, themaximumactive shorteningof theMSU is lower than its respec-

tive isolated PAM by approximately 10…15%. The low active range of

the MSU is essentially caused by the high length LR of the stiff connec-

tion elements which effects the total length LMSU of the MSU by equa-

tion ((2.1)). In summary, the reduced active and increased passive range

of theMSU is kept constant over the pressure range while the active and

passive range of the isolated PAM is highly pressure dependent.
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Figure 2.3: Measured force-length relation of a isolated PAM (top) and a MSU

(bottom) in four pressure states for a typeDMSP-20-100NPAManda springwith

a stiffness of kS = 38 N
mm

.
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2.4 AAS geometry of the SH1 upper ankle

Fig. 2.4 illustrates the SH1upper ankle jointwith twoMSUs, representing

the m. soleus (index S) and the m. tibialis anterior (index T ) in an AAS.

From geometrical constraints, the totalmuscle lengths can be expressed

by

LMSU(ψ) =
√
(L2

O + L2
I − 2LOLI cos(ψ), (2.3)

where

ψT/S(θ) = 180◦ − αT/S − βT/S ∓ θ (2.4)

is the effective muscle angle. The distances LO and LI of the muscle’s

origin and insertion points to the joint axis, as well as the mechanical

angles α and β are constant over any motion of the joint angle θ. The
moment arms rMSU := ∂LMSU

∂θ are given by the derivative of ((2.3)) with

respect to the joint angle θ:

rMSU(ψ) =
LOLI sin(ψ)√

L2
O + L2

I − 2LOLI cos(ψ)
. (2.5)

The range of motion (ROM) of an AAS driven joint is depending on all

acting MSUs, its angle dependent moment arms ((2.5)) and its MSU pa-

rametersLR,LM,nom, and kS.

The benefits of the trade-off for less active and increased passive range

of a MSU becomes clear when the MSUs are mounted in an AAS. Fig. 2.5

shows the ROMof the AAS driven upper ankle joint of SH1. By activating

an agonist of the upper ankle its antagonist gets stretched, resulting in a

joint motion of θ.
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Figure 2.4: Sagittal view of the CAD model of SH1 showing the length LMSU of

the m. tibialis anterior and its moment arm. Both, the m. tibialis anterior and

them. soleus (red) are the mono-articular players of the upper ankle.
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Figure 2.5: The shortening of the upper ankle AAS of fig. 2.4 over the joint ROM.

The AAS ROM is constrained by the limitations of the active and passive

abilities of the used actuators. The ROM of an AAS using only PAMs is

limited by its passive ranges, while its active range can not be fully ex-

ploited. A joint angle change by contracting the agonist of an AAS is only

possible if the passive ability of the antagonist allows it. Therefore, both

a PAM and a MSU driven AAS have joint ROM limitations. While a MSU

driven AAS joint ROM is limited by its active range, a PAM driven AAS

with same length and stiffmounting parts is limited by its passive range.

The limitations (dashed lines) are shownaccording to themeasurements

of fig. 2.3 which are a 3% passive range limitation (brown) of the PAM

and an averaged 7% active range limitation (violet) of the MSU. Out of

this limitations, the AAS joint ROM can be determined. A preloading of

the AAS will result in an offset of the shown curves, which can increase

the joint ROM of a PAM driven AAS. The geometrical joint design will

shift the zero joint position (black dot) over the joint ROM (gray), while

the moment arm will affect the gradient of the curves. Furthermore,
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the 3% passive ability of an antagonistic PAM can only be reached with

forces> 1 kN under zero pressure and forces� 1 kN for other pressures

due to the nonlinear growth of the passive range of a PAM (fig. 2.3). This

cannot be achieved by the agonist of a bidirectional AASdriven joint and

hence, themarked ROMof fig. 2.5 is significantly smaller in reality when

using isolated PAMs. By using MSUs in an AAS, the active ranges are re-

duced and the passive ranges are increased, which results in an overall

increased ROM. The only solution of a PAMdriven AAS to achieve an ap-

proximate high ROM as aMSU driven AAS, is to preload the PAM driven

setup. By this, the kinetic adjustment possibilities, e.g. joint torque and

stiffness are considerably reduced.

2.5 Kinetics of theMSUs in an AAS

2.5.1 Force law of singleMSUs

The force law of an isolated PAM is dependent on pressure P , as well as

on its lengthLM, and canbedescribedby themodel createdbyChouand

Blake [17]:

FM(P,LM) =
Pb2

4πn2

(
3L2

M

b2
− 1

)
, (2.6)

with b and n being specific parameters of the PAMs geometry [17]. Due

to the PAM’s serial connection to a spring with the linear force lawFS =
kS∆LS, the total force of an MSU satisfies FMSU = FM = FS. To obtain

a force law of the totalMSU, the length of the PAM is expressed byLMSU,

LR and ∆LS, according to ((2.1)), and the force equilibrium is used to

substitute∆LS:

FMSU(P,LMSU) =
Pb2

4πn2

(
3(LMSU − FMSU

kS
− LR)

2

b2
− 1

)
. (2.7)
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Consideringonlypositive solutionsof (2.7) (theMSUcancreateonly ten-

sile force), the resulting force law of a single MSU is given by

FMSU(P,LMSU) =
3P (LMSU − LR) + 2πn2k2S

3P
+ (2.8)

kS
3P

√
12Pn2πkS(LMSU − LR) + 3P 2b2 + 4π2n4k2S

2.5.2 Resulting torques and variable stiffness in the

SH1 ankle

The kinetic effects of the twoMSUs, representing themuscles m. tibialis

anterior and m. soleus in the upper ankle joint of the SH1 can hence be

analyzed. With the force law (2.8) for a single MSU and its moment arm

((2.5)), the joint torque is given by T = rMSUFMSU. The resulting AAS

torque in the ankle joint of SH1 is

TA(PT, PS, θ) = rTFT − rSFS. (2.9)

An equilibrium pose of the ankle joint can be achieved if all resulting

torques vanish, such that TA = Tgrav. For simplicity, we examine sit-

uations of significant co-contraction with Tgrav � TT, TS. With this as-

sumption, the resulting torques of m. tibialis anterior and m. soleus are

equal (TT = TS) in an equilibrium pose. Figure 2.6 shows the torque

generation with respect to the ankle joint angle θ for both muscles in

the constant pressure setups of 0.1 bar and 7 bar for each muscle. The

surface in-between the 0.1 bar and 7 bar lines (gray) represents a torque
range of theMSU that canbe employed for different pressure setups con-

sidering its active range limitations from fig. 2.5. An unpreloaded AAS

with PAM’s has a reduced torque adjustment range (dashed PAM area)

considering its passive range limitations.

Note, that for a desired joint angle θ∗ within the range, for which torque

equilibriumcanbe achieved, the solution for the individual pressure val-
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Figure 2.6: Resulting torques on the SH1 ankle joint for different pressure set-

tings of the m. tibialis andm. soleus.

ues is not unique. In other words, there is a manifold of pressure values

PT andPS to achieve torque equilibrium for θ∗. This allows to addition-
ally choose the stiffness within a range at θ∗. To further analyze this, we

firstly consider the definition of the stiffnessKMSU := ∂FMSU

∂LMSU
of a single

isolatedMSU.With [107]

KPAM(P,LM) =
3PLM

2πn2

the total stiffness of a singleMSUcanbe calculatedby 1
KMSU

= 1
KPAM

+ 1
kS
:

KMSU =
3PLMkS

3PLM + 2πn2kS
. (2.10)
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The resulting ankle joint stiffness of SH1 is S := ∂TA

∂θ . With ((2.9)), and

the product rule, the stiffness is expressed by

SA(PT, PS, θ) =
∂rT
∂θ

FT + rT
∂FT

∂θ
− ∂rS
∂θ

FS − rS
∂FS

∂θ
. (2.11)

The derivative of a muscle’s moment arm rMSU(θ) (equation 2.5) with

respect to the joint angleψ(θ) (equation. (2.4)) is

∂rMSU

∂ψ
=
LILO(LI cos(ψ)− LO)(LO cos(ψ)− LI)

(L2
I + L2

O − 2LILO cos(ψ))
. (2.12)

The derivative of FMSU with respect to θ can be calculated by using the

definitionsof themomentarmrMSU := ∂LMSU

∂θ andof themuscle stiffness

KMSU := ∂FMSU

∂LMSU
:

∂FMSU

∂θ
=
∂FMSU

∂LMSU

∂LMSU

∂θ
= KMSUrMSU. (2.13)

That is,we can formulate the joint stiffness in closed form , by combining

((2.10)-(2.13)):

SA(PT, PS, θ) =
∂rT
∂θ

FT + r2TKT −
∂rS
∂θ

FS − r2SKS. (2.14)

Figure 2.7 shows the joint stiffness versus the joint angle θ for four differ-
ent pressure setups. It illustrates the high range of adjustable joint stiff-

ness of an AAS with MSUs. In summary, the MSUs enable a high ROM

of an AAS but not at the cost of a reduced adjustable stiffness or torque

range as AAS with PAMs do.
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Figure 2.7: Variable joint stiffness of the ankle joint of SH1. Increasing the pres-

sure values in theMSU results in higher stiffness of the joint. All joint stiffness in

between the lines can be achieved by an AAS withMSUs.



Chapter 3

Controller

3.1 Closed Loop Controller

Figure 3.1: Low level control scheme. The control circuit has PI- characteris-

tics (proportional (P) and integral (I)) with an interacting control structure. The

control matrixP transforms the resulting desired joint vectorχ intomuscle ac-

tivationµ.

The control law for the muscle stimulationµ is given by:

µ = Pχ with χ = κ−ϕ+ I

∫
(κ−ϕ)∂t (3.1)

73
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The control law is implementation in Matlab and is given by the code

listing 3.1. The control matrixP is an j × kmatrix with j as the number

of muscles M and k as the number of jointsΦ.

P =

p11 . . . p1k
...

. . .
...

pj1 . . . pjk

 P → A : P =


p11 p12
p21 p22
p31 p32
p41 p42
p51 p52

 (3.2)

The interacting control structure reduces the size of the integratormatrix

I compared to a classic Ideal-PI control structure(fig. 3.2), where theP
and I matrices are parallel resulting in the same j × kmatrix size.

Figure 3.2: Ideal-PI control structure. The matrix P and I have the same size

resulting in the same amount of matrix elements.

The I-matrix in this controller is only a vector of size k:

I =

i1...
ik

 I → A : I =

[
i1
i2

]
(3.3)

The change from Ideal-PI control to the interacting control structure

used has consequences: In an Ideal-PI control, an integration parameter

can be set for eachmuscle and each joint. This enables the possibility for

different integration behavior of each single muscle. In the interacting
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form (fig.3.1), the integration value acts like an offset to the desired joint

value. Hence, the integration behavior can now be set up for joints in-

stead ofmuscles resulting in a parameter reduction of I (equation (3.3)).

Considering that no actuatormodel can be used to calculate parameters,

parameter reduction by design is a crucial part of the control concept of

this control framework.

3.1.1 Parameter determination

The parameters of the control matrixP can be determined by informa-

tion the investigated system provides.

Muscle arrangement

By knowing which joints are effected by which muscle, we can decrease

the number of p-parameters. Hence, not every muscle effect every joint.

Considering that, theP -matrix for the control system ofA results in:

P → A : P =


p11 0
p21 0
p31 p32
0 p42
0 p52

 (3.4)

According to the control law (equation (3.1)), the parameters p12, p22,
p41, p51 have to equal zero because theymust not have effect to the joint

in question.

Muscle operating principle

TheMSU used can only contract, and therefore, can only act in the same

way like biological muscles. In an antagonistic setup each muscle en-

ables motion in one direction of an effected joint. By defining positive
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joint directions (see chapter 1.2.1), the sign of the resulting p-parameters

can be determined:

P → A : P =


−|p11| 0
+|p21| 0
+|p31| +|p32|

0 −|p42|
0 +|p52|

 (3.5)

Muscle dependencies

Considering an elementary antagonistic setup (AAS)H with two mus-

cles acting on a single joint, which is used in many publications [2, 107,

4]. TheP -matrix would be:

P → H : P =

[
p1
p2

]
(3.6)

The control parameters for position control of the two muscles are not

independent from each other and hence are physically connected over

the joint. By using the exact samemuscles with the same lever arms, the

p-parameters would be:

p1 = −p2 (3.7)

Hence, the two muscles are antagonistically arranged one muscle will

affect the joint in positive and the other in negative direction which de-

termines the sign of the parameter. By changing the properties of only

one actuator, e.g. contraction range or lever arm, the equation (3.7) has

to be enlarged to:

p1 = −p2 · w(b) (3.8)
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b is a set of parameters dependent of actuator and arrangement proper-

ties. The function w(b) represents the unsymmetrical correlation of the

twomuscles withinH. w(b) is defined as the correlation function.

w(b) < 0 if the muscles are antagonists and w(b) > 0 if they are syn-
ergists. |w(b)| = 1 if the AAS is symmetric (equal muscles equally ar-

ranged) andw(b) = 0 if the twomuscles do not have a joint in common

(equation (3.7)). In short, The correlation function defines the ratio of

twoP -parameters and its sign is determined by the role of themuscles,

antagonist or synergist. InH it is:

p1
p2

= −w(b) (3.9)

If identical muscles are in use, but unsymmetrically arranged, w(b) can
be reduced to the ratiobetween the leverarms l1(b)and l2(b)of themus-

cles M1 andM2:

w(b) =
l2(b)
l1(b)

(3.10)

Hence, a better lever arm leads to ahighermotion impact, the correlation

function determining the ratio of control parameters have to be recipro-

cal to keep the balance between antagonists. A higher joint impact of a

muscle must result in a lower control parameter p.
If the lever arms of (3.10) are linear, they can be calculated out of the

geometry. In this case, b is a set of geometric parameters. Non-linear

lever arms l (b,ϕ) have to be linearized over the range ofϕ used or re-

sult in nonlinear p(ϕ) ∈ P if |w(b)| 6= 1. Unbalance caused bymuscle

properties, e.g. muscle length or maximum force, can be solved analog.

Hence, w(b) represents the unsymmetrical correlation. If H is a setup

with unequal muscles and unsymmetrical lever arms, w(b)must be en-

larged to:

w(b) → Q : w(b) =
l2(b) · f2(µ2, λ2)

l1(b · f1(µ1, λ1))
=
T2(b2, µ2, λ2)

T1(b1, µ1, λ1)
(3.11)
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where f (µ, `) represents the force-length-pressure relation of the actu-

ator. Pressure is represented by the actuation µ and the actual length

of the muscle is represented by λ. According to the Law of the Lever,

lj(b) · fj(µj , `j) equals the torque Tj that the actuator j can create.

It is possible to consider |w(b)| = 1 in H when T1(b1, µ1, `1) ≈
T2(b2, µ2, `2) over the range of possible µj . That is the case when a

stronger lever arm compensates itsweaker actuator. Hence, it is not nec-

essary toknow fj(µj , `j)butonly anapproximationof the ratiobetween

l1(b) · f1(µ1, `1)/l2(b · f2(µ2, `2)) inH.

Matrix dependencies

Correlation functions only exist among muscles with a joint in com-

mon. According to equation (3.5) and (3.9), a set of correlation functions

w(b) → A can be found as followed:

p11
p21

= −w11,21(b) (3.12)

p11
p31

= −w11,31(b) (3.13)

p42
p32

= −w42,32(b) (3.14)

p52
p42

= −w52,42(b) (3.15)

The correlation functions w(b) of this set can be determined via muscle

dependencies as shown before. They are only an approximation of the

ratio between two antagonistic muscles based on information of their

ability to generate torque. With this set of correlation functions, the el-

ements of each row of the matrix (3.5) can be calculated out of one pa-

rameter:
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p21 = − p11
w11,21(b)

(3.16)

p31 = − p11
w11,31(b)

(3.17)

for the first row ofP (out of equation (3.12) and (3.13)) and

p42 = −p32 · w42,32(b) (3.18)

p52 = −p42 · w52,42(b) (3.19)

for its second row (out of equation (3.14) and (3.15)). As a result of the

correlation functions, the parameter determination for the matrix P is

reduced to one for each row. Onaphysical level, thismeans thatweneed

to find only one parameter for each joint, independent of the number of

actuators effecting this joint.

Ataro has a bi-articular muscle (M3) which effects both joints of A ac-

cording to (3.5). Both control parameters p31 and p32 effect the same

actuator. Hence, the ratio of possible torque generation to the joints de-

termines the ratio of the parameters:

p31
p32

=
l32(b) · f (µ, λ)
l31(b · f (µ, λ))

=
l32(b)
l31(b)

(3.20)

The ratio (3.20) has a positive sign because the muscle M3 affect both

joints in positive direction according to (3.5). f (µ, λ) can be cut out be-

cause it is the samemuscle. Therefore,p32 is givenbyp32multipliedwith

the reciprocal ratio of its movement arms:

p32 = p31 ·
l31(b)
l32(b)

(3.21)

ljk(b) is the movement arm of muscle (Mj) to joint Φk .With the bi-

articular muscle arrangement ofA, all parameters of the matrix P can
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be represented by only one parameter p11 and the correlation functions.
p21 and p31 are given by (3.16) and (3.17). p32 is given by the ratio (3.21)

and (3.17):

p32 = p31 ·
l31(b)
l32(b)

= −p11 ·
l31(b)

w11,31(b) · l32(b)
(3.22)

With equations (3.18) and (3.22) the parameter p42 is given by:

p42 = p11 ·
w42,32(b) · l31(b)
w11,31(b) · l32(b)

(3.23)

Out of equations (3.19) and (3.23) the parameter p42 is given by:

p52 = −p11 ·
w42,32(b) · w52,42(b) · l31(b)

w11,31(b) · l32(b)
(3.24)

As a result, using bi-articular muscle arrangements, which connect all

joints, enables control parameter reduction to a single parameter, inde-

pendent from the amount of muscles:

P → A : P = p11



−1 0

1
w11,21(b)

0

1
w11,31(b)

l31(b)
w11,31(b)·l32(b)

0 −w42,32(b)·l31(b)
w11,31(b)·l32(b)

0
w42,32(b)·w52,42(b)·l31(b)

w11,31(b)·l32(b)


(3.25)
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Parameter optimization

The control parameters p, i can be trained with a iterative learning ap-

proach using Gradient Descent:

p̃n+1 = p̃n − α
∂ẽ

∂p̃
ĩn+1 = ĩn − α

∂ẽ

∂ĩ
(3.26)

where the p̃and ĩvaluesof then+1 iterationareupdatedwitha learning

rateα . The cost-function ẽ is given by the square of the absolute error:

ẽ = (ϕ̃target − ϕ̃actual)
2 (3.27)

The discrete derivative ∂ẽ/∂p̃ can be determined by:

∂ẽ

∂p̃
=
ẽn − ẽn−1

p̃n − p̃n−1
(3.28)

wheren is the actual iteration andn− 1 is the previous iteration. ∂ẽ/∂ĩ
can be determined respectively. Hence the system is considered as a

black box where p̃ and ĩ parameters result in an error of ϕ̃, the SI units
are not directly connected. Therefore a normalization is necessary. This

can be done by normalizing the control parameters to its starting values:

p̃n =
pn

pstart
ĩn =

in
istart

(3.29)

The resulting joint angles ϕ̃actual and the target joint angle ϕ̃target are

normalized to the step size of the target transition:

ϕ̃target − ϕ̃actual =
ϕtarget − ϕactual

ϕstep
(3.30)
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Furthermore a goal criteria has to be defined. On the basis of the goal cri-

teria, the error can be calculated by using equation (3.27). A goal criteria

can be a total compensation of the control deviation (target− actual)
after a defined time. The goal criteria should be chosen optimistically

hence it is not important to reach the goal. The control parameters p, i
must only be optimized and therefore an optimistic goal criteria leads to

a higher error resolution, resulting in more accurate parameter updates

for each iteration.

The starting values for the control parameters p, i have to be estimated.

In general, if the starting values are too high the system will become

unstable. If the starting values are too low the system will act slowly

which only increases the number of iterations for parameter optimiza-

tion. Fromexperiencewithmuscledriven systems, apossiblemagnitude

of pstart is:

pstart ≤ magnitude{ts ·
input

output
} with ts =

1

fs
(3.31)

ts is the sample time of the controlling system and fs its sample fre-

quency. Hence we do not have any behavioral information (time con-

stants, order, etc.) about the control system, the starting values of the

control parameters p, i have to be chosen appropriate to the control sys-
tem properties and the magnitude between input and output values of

the controller. The i-parameters affect only the time integration ofκ−ϕ
which is additionally multiplied by the p-parameter (3.1). For low per-

turbed systems (only tare mass), it acts as a weight factor between the

absolute control deviation κ − ϕ and the integrated control deviation

I
∫
(κ − ϕ)∂t. From experience, a possible starting value for istart is

10%:

20% ≤ istart < 0% (3.32)

Ataro has two joints resulting in two i-parameters. A bi-articularmuscle

M3 connects both joints and reduces the p-parameter space to one.

The control system of Ataro works at a sample rate of fs = 500 Hz.
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parameter value normalized parameter normalized value

pstart1 1 · 10−4 p̃start 1
pstart2 2 · 10−4 p̃start 2

i1,start 0.1 ĩ1,start 1

i2,start 0.1 ĩ2,start 1

Table 3.1: The normalized starting parameters for the p-optimization.

Therefore, the sample time ts in which data is red, processed and the

outputs are updated is ts = 2 ms. The possible joint angle ranges are

within a magnitude of 100 degree and the outputs to drive the muscles

are within a magnitude of 10 bars. According to (3.31) and (3.32) the

starting values for the parameters are:

The iterative parameter training startswith optimizing the p-parameter.

The controller (fig. 3.1) is set with the parameters of table 3.1 and per-

forms a specifiedmotion by changing the desired values of the controller

input (fig. 3.3). The motion is a point-to-point task where the points are

56cm away from each other.
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Figure 3.3: Joint angle control with applied start values.

To calculate the discrete derivative (3.28) a second starting value is

needed. Hence the parameter pstart result in a duration > 10 s to
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iteration n p̃n ϕdesired ϕactual ẽ ∂ẽ/∂p̃
start 1 1 1° -26.7305° 0.70613465

start 2 2 1° -18.7884° 0.35957831 -0.347

1 2.35 1° -15.9504° 0.26383477 -0.276

2 2.62 1° -14.1504° 0.21077559 -0.192

3 2.81 1° -12.9003° 0.17742731 -0.174

4 2.99 1° -11.8004° 0.15045936 -0.155

5 3.14 1° -11.0517° 0.13337325 -0.110

Table 3.2: Intermediate data of the p-optimization.

achieve the desired position, the second start parameter pstart2 has be

chosen higher. With pstart2 = 2 · 10−4 (dashed lines in fig. 3.3) the

speed of the point-to-point motion increased. By defining a goal crite-

ria, the normalized errors of both parameter sets can be calculated with

equation (3.27). The defined goal criteria used is target reaching after2 s.
The next step is to calculate the discrete derivative (3.28) with the calcu-

lated errors ẽn andupdate the p̃n-parameter to p̃n+1with (3.26). Repeat

the process until there is no significant increase. Figure 3.4 illustrates the

iterations of thep-optimization to an abort criteria ofϕn+1−ϕn ≤ 0.5°
at tgoal = tstep + 2 s. Table
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Figure 3.4: Joint angle control iteration for p-optimization

The p-parameter is only optimized with the shoulder joint. The elbow
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iteration n ĩn ϕdesired ϕactual ẽ ∂ẽ/∂ĩ
start 1 1 1° -10.1904° 0.11499087

start 2 1.5 1° -3.463° 0.01829051 -0.193

1 1.69 1° -1.9369° 0.00792046 -0.0536

2 1.75 1° -1.5614° 0.00602458 -0.0354

Table 3.3: Intermediate data of the shoulder i-optimization.

joint is implicitly optimized by this procedure hence theP -Matrix (3.25)

connects both joints with the p-parameter. If there are more than one

p-parameters (autonomous jointswithout bi-articularmuscles), the pa-

rameters have to be optimized consecutively.

The i-parameters are optimized equally (fig. 3.5 and 3.5). The integrator

work on the joint level (fig. 3.1) which enables individual control behav-

ior adjustment for each joint. Both i-parameter affect the bi-articular

muscle. Therefore, tuning the shoulder i-parameter also have an impact

on the elbow joint (fig. 3.5).
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Figure 3.5: i-parameter optimization for the shoulder

Table 3.3 and 3.4 shows the intermediate data after each iteration while

optimizing the i-parameters. The shoulder optimization was stopped

after the second iteration. The increase in speed at tgoal = tstep + 2 s

was below 0.5° for that iteration.
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Figure 3.6: i-parameter optimization for the elbow

iteration n ĩn ϕdesired ϕactual ẽ ∂ẽ/∂ĩ
start 1 1 22° 20.0799° 0.00209001

start 2 1.2 22° 19.9606° 0.0023578 0.00134

Table 3.4: Intermediate data of the elbow i-optimization.

The starting values for the elbow i-iteration result in a performance in-

crease below 0.5° at tgoal = tstep + 2 s. If this is the case, the starting
value alreadymatches the optimal parameter range for the chosen opti-

mizationmethod.

After parameter optimization, the new parameters are popt = 3.14 ·
10−4, is,opt = 1.75 · 10−1 and ie,opt = 1.2 · 10−1.
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3.1.2 Closed-Loop Controller Implementation

Figure 3.7: Closed-loop controller

The closed-loop controller is implemented as aMatlab function. The pa-

rameters are initialized by the parameter script explained in section 1.2.3.

Listing 3.1: closed-loop controller code

function [MotCom, AngleDif , show_Ival , next_step ] = fcn (
Phi , des_PhiS , des_PhiE ,posConRUN, reset , compliance ,

last_step , PM_Pos, PC_IM, MRC_para)

% Joint angle values within :
% -43 (max f l e x ) . . . +25 (max ext ) fo r shoulder
% -26 (max f l e x ) . . . +25 (max ext ) fo r elbow

%%I n i t i a l i z a t i o n for each time step

last_Int = last_step (1 :2 ,1 ) ;
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desPhi = [ des_PhiS ; des_PhiE ] ;
actPhi = [ Phi (1) ; Phi (2) ] ;

%Reset of the c o n t r o l l e r
i f ( r e s e t == 1)
last_Int = last_Int ∗MRC_para(2 ,2) ;
end
i f ( r e se t == 2)
last_Int = [ 0 ; 0 ] ;
end

%% Control Law

%Run condit ions
i f (posConRUN == 1)&&(compliance == 0)
difPhi = desPhi - actPhi ;
e l s e
di fPhi = [ 0 ; 0 ] ;
end

d i f = desFor - actFor ;

i f ( abs ( d i f ) <= Tresh )
d i f = 0;

end

%I - Control ler
Integrat ion = last_Int + difPhi ;
I_dif = ( Integrat ion . ∗PC_IM) + difPhi ;

F_dif = [ d i f ; d i f ] ;
F_Ival = F_dif + Integrat ion ;
F_val = [ desFor ; desFor ] + FC_IM∗F_Ival - [ actFor ; actFor

] ;

i f ( d i f == 0)
F_Ival = F_Ival∗0 .9980 ;

end

%P- Control ler
P_value = PM_Pos∗I_dif ;

%% Maximum Value
i f (P_value (1) >= 6)
P_value (1) = 6;
end
i f (P_value (2) >= 6)
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P_value (2) = 6;
end
i f (P_value (3) >= 6)
P_value (3) = 6;
end
i f (P_value (4) >= 6)
P_value (4) = 6;
end
i f (P_value (5) >= 6)
P_value (5) = 6;
end

%% Minimum Value
i f (P_value (1) <= -6)
P_value (1) = -6 ;
end
i f (P_value (2) <= -6)
P_value (2) = -6 ;
end
i f (P_value (3) <= -6)
P_value (3) = -6 ;
end
i f (P_value (4) <= -6)
P_value (4) = -6 ;
end
i f (P_value (5) <= -6)
P_value (5) = -6 ;
end

%% Outgoings

MotCom = P_value ;
next_step = Integrat ion ;
AngleDif = difPhi ;
show_Ival = Phi ;
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3.2 Open-Loop Controller

The open-loop controller is implemented by applying the actuationµ of

an given equilibrium point to themuscle actuation output. By changing

the target equilibrium point, the difference between the old actuation

and thenewactuation is calculatedanddecreasedover time (code listing

3.2).

3.2.1 Equilibrium Points

In this work, equilibrium points are defined as a set of information re-

lated to a specified physical condition.

ep:xϕ,λ,µ,γ =


ϕx

λx

µx

γx

 =



ϕs,x

ϕe,x

λ1,x
...

λ5,x
µ1,x

...

µ5,x

γ1,x
...

γ5,x



(3.33)

Equilibrium points are based on the Equilibrium Point Hypothesis from

Feldmann [29, 30]. They describe a certain state of a system in its envi-

ronment from an information perspective. To transfer this into the field

of bio-robotics, equilibrium points are defined as a matched pair of in-

formation including actuation according to the available sensor infor-

mation and actuation possibilities. By this means, an equilibrium point

connects e.g. a certain position by a specified actuation for a specified

environmental condition with the sensor information to represent that
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status. If the same actuation leads to different sensor information, the

environmental condition or the system has changed, hence, a different

equilibrium point is applied. An equilibrium point must not contain all

available information and can be reduced to only relevant information

needed by the controller. Example:

ep:1ϕ,µ is an equilibriumpoint of Ataromatching themuscle actuation

µ1 with a certain joint positionϕ1:

ep:1ϕ,µ =

(
ϕ1

µ1

)
=


ϕs,1

ϕe,1

µ1,1

...

µ5,1

 (3.34)

If a load is appended to Ataro’s arm, the joint values will change while

the muscle actuation is still the same. Hence, Ataro is not in ep:1ϕ,µ

anymore. The new equilibrium point of Ataro is ep:2ϕ,µ with

ep:2ϕ,µ =

(
ϕ2

µ2

)
=


ϕs,2

ϕe,2

µ1,2

...

µ5,2

 (3.35)

even ifµ1 = µ2.



CHAPTER 3. CONTROLLER 92

3.2.2 Open-Loop Performance

To find equilibrium points, the closed-loop controller of section 3.1 is

used. Manually tuning themuscles to a certainposition is also anoption.

Once, a desired position is reached, the values of the sensor and actua-

tor information can be stored and represent an equilibrium point. These

stored equilibrium points enable open-loop control, hence a certain ac-

tuationµ is connected toa certainpositionϕunder the sameconditions.

On the other hand, the causal behavior (hysteresis) of the pneumatic ac-

tuatorsmakes it difficult to reach the same position with the same actu-

ation, hence the previous state of the muscles matters.
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Figure 3.8: Open-loop point reachingwith previous defined equilibrium points

Figure 3.8 shows four equilibriumpoints ofAtarowhichare targeted suc-

cessively in anuprising pyramid order (ep:1 ->ep:2 ->ep:3 ->ep:4 ->

ep:3 -> ep:2 -> ep:1). All equilibrium points have been defined sepa-

ratelywith the closed-loop controller of section 3.1. Then, the calibration

sequence has been performed (Onemaximumshoulder anteversion and

elbow flexion, see chapter 3.3.1 - experiment execution) without closed

loop point reaching. As a result, the open-loop controller is not able to

fulfill point reaching without a deviation.
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3.2.3 Open-Loop Controller Implementation

Figure 3.9: Open loop controller

The open-loop controller is implemented as a Matlab function. The pa-

rameters are initialized by the parameter script explained in section 1.2.3.

The output is modified by a smoothing filter to prevent the motor com-

mands from jumping. (code listing 3.2)

Listing 3.2: open-loop controller code

function [MotCom, next_step ] = fcn ( posit ion , manual ,
last_step , MRC_para, AS_para , EP_pool)

%% I n i t i a l i z a t i o n
% Muscle Activation
mAct = [ last_step (1 ,1) last_step (1 ,2) last_step (1 ,3)

last_step (1 ,4) last_step (1 ,5) ] ;

% Button Status ( remote contro l and Matlab i n t e r f a c e )
i f (manual (2) > 0)% Increase se l ec ted muscle
b_1 = 1;
e l s e
b_1 = 0;
end

i f (manual (2) < 0)% Decrease se l ec ted muscle
b_2 = 1;
e l s e
b_2 = 0;
end

i f ( pos i t ion == 3)
b_3 = 1;
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e l s e
b_3 = 0;
end

i f ( pos i t ion == 4)% Shut down OL
b_4 = 1;
e l s e
b_4 = 0;
end

i f ( pos i t ion == 5)%EP1
b_5 = 1;
e l s e
b_5 = 0;
end

i f ( pos i t ion == 6)%EP2
b_6 = 1;
e l s e
b_6 = 0;
end

i f ( pos i t ion == 7)
b_7 = 1;
e l s e
b_7 = 0;
end

i f ( pos i t ion == 8)
b_8 = 1;
e l s e
b_8 = 0;
end

i f ( pos i t ion == 9)
b_9 = 1;
e l s e
b_9 = 0;
end

stateB1 = 0;% Increase se l ec ted muscle
stateB2 = 0;% Decrease se l ec ted muscle
stateB3 = 0;% n.a .
stateB4 = 0;% Shut down OL
stateB5 = 0;% EP1
stateB6 = 0;% EP2
stateB7 = 0;% n.a .
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stateB8 = 0;% n.a .
stateB9 = 0;% n.a .

% Muscle s e l e c t i o n
musSelect = last_step (3 ,1) ;

% Shut Down Sequence
shutD = last_step (3 ,2) ;
checkT = last_step (3 ,4) ;

% EP Posit ions (EP_Loop)
ep1pos = last_step (4 ,1) ;
ep2pos = last_step (4 ,2) ;
ep3pos = last_step (4 ,3) ;
ep4pos = last_step (4 ,4) ;

EP_zero = [0 0 0 0 0 ] ;
EP_calib = [0 2 .3 4 .3 0 6 ] ;

EP = EP_pool ( : , 3 : 7 ) ;

%% Edge detect ion ( r i s i n g edge ) - required for pulse
contro l

% Remote Control Buttons
lastB1 = last_step (2 ,1) ;
lastB2 = last_step (2 ,2) ;
lastB3 = last_step (2 ,3) ;
lastB4 = last_step (2 ,4) ;
lastB5 = last_step (2 ,5) ;
lastB6 = last_step (5 ,1) ;
lastB7 = last_step (5 ,2) ;
lastB8 = last_step (5 ,3) ;
lastB9 = last_step (5 ,4) ;

i f ( lastB1 < b_1) %( r i s i n g edge )
stateB1 = 1;
end
i f ( lastB2 < b_2) %( r i s i n g edge )
stateB2 = 1;
end
i f ( lastB3 < b_3) %( r i s i n g edge )
stateB3 = 1;
end
i f ( lastB4 < b_4) %( r i s i n g edge )
stateB4 = 1;
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end
i f ( lastB5 < b_5) %( r i s i n g edge )
stateB5 = 1;
end
i f ( lastB6 < b_6) %( r i s i n g edge )
stateB6 = 1;
end
i f ( lastB7 < b_7) %( r i s i n g edge )
stateB7 = 1;
end
i f ( lastB8 < b_8) %( r i s i n g edge )
stateB8 = 1;
end
i f ( lastB9 < b_9) %( r i s i n g edge )
stateB9 = 1;
end

%% Manual Muscle Stimulation
% Inter face
i f (manual (1) > 0)
musSelect = manual (1) ;
end

%Check routine to ensure that musSelect = [1 . . 5 ]
i f ( musSelect >= 6)
musSelect = 1;
e l s e i f ( musSelect <= 1)
musSelect = 1;
end

% Motor Command Increase /Decrease (B1/B2)
i f ( stateB1 == 1)
mAct( musSelect ) = mAct( musSelect ) + MRC_para(1 , musSelect ) ;
end

i f ( stateB2 == 1)
mAct( musSelect ) = mAct( musSelect ) - MRC_para(1 , musSelect ) ;
end

% Security check for act ivat ion within allowed pressure
range

i f (mAct( musSelect ) >= AS_para( musSelect , 2 ) )
mAct( musSelect ) = AS_para( musSelect , 2 ) ;
e l s e i f (mAct( musSelect ) <= AS_para( musSelect , 1 ) )
mAct( musSelect ) = AS_para( musSelect , 1 ) ;
end
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%% Shut Down (B4)
% s i n g l e time sequence :

i f ( stateB4 == 1)
shutD = 1;
checkT = 1;
end

% Execution :
i f ( shutD == 1)

ep1pos = 0; %Gegenseit ige Verriegelung
ep2pos = 0;
ep3pos = 0;
ep4pos = 0;
checkT = checkT∗MRC_para(2 ,5) ;

i f ( checkT <= 0.005 )
shutD = 0;
checkT = 0;
mAct = EP_zero ;
end

mAct = EP_zero - (EP_zero -mAct)∗MRC_para(2 ,5) ;
end

%% Go to EP1 Posit ion (B5)
% Single execution :

i f ( stateB5 == 1)
ep1pos = 1;
checkT = 1;
end

%Repeated Execution :
i f ( ep1pos == 1)

ep2pos = 0;
ep3pos = 0;
ep4pos = 0;
checkT = checkT∗MRC_para(2 ,1) ;

i f ( checkT <= 0.005 )
ep1pos = 0;
checkT = 0;
mAct = EP( 1 , : ) ;
end
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mAct = EP( 1 , : ) - (EP( 1 , : ) -mAct)∗MRC_para(2 ,1) ;
end

%% Go to EP2 Posit ion (B6)
% Single execution :

i f ( stateB6 == 1)
ep2pos = 1;
checkT = 1;
end

%Repeated Execution :
i f ( ep2pos == 1)

ep1pos = 0;
ep3pos = 0;
ep4pos = 0;
checkT = checkT∗MRC_para(2 ,1) ;

i f ( checkT <= 0.005 )
ep2pos = 0;
checkT = 0;
mAct = EP( 2 , : ) ;
end

mAct = EP( 2 , : ) - (EP( 2 , : ) -mAct)∗MRC_para(2 ,1) ;
end
%% Go to EP3 Posit ion (B7)

% Single execution :
i f ( stateB7 == 1)
ep3pos = 1;
checkT = 1;
end

%Repeated Execution :
i f ( ep3pos == 1)

ep1pos = 0;
ep2pos = 0;
ep4pos = 0;
checkT = checkT∗MRC_para(2 ,1) ;

i f ( checkT <= 0.005 )
ep3pos = 0;
checkT = 0;
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mAct = EP( 3 , : ) ;
end

mAct = EP( 3 , : ) - (EP( 3 , : ) -mAct)∗MRC_para(2 ,1) ;
end

%% Go to EP4 Posit ion (B8)
% Single execution :

i f ( stateB8 == 1)
ep4pos = 1;
checkT = 1;
end

%Repeated Execution :
i f ( ep4pos == 1)

ep1pos = 0;
ep2pos = 0;
ep3pos = 0;
checkT = checkT∗MRC_para(2 ,1) ;

i f ( checkT <= 0.005 )
ep2pos = 0;
checkT = 0;
mAct = EP( 4 , : ) ;
end

mAct = EP( 4 , : ) - (EP( 4 , : ) -mAct)∗MRC_para(2 ,1) ;
end

%% Outgoings

next_step = [mAct; . . .
b_1 b_2 b_3 b_4 b_5; . . .
musSelect shutD 0 checkT 0; . . .
ep1pos ep2pos ep3pos ep4pos 0 ; . . .
b_6 b_7 b_8 b_9 0; . . .
] ;
MotCom = mAct;
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Figure 3.10: Smoothing filter to prevent open-loop jumping

The parameters are initialized by the parameter script explained in sec-

tion 1.2.3.

function [ softCom , dAct , next_step ] = fcn (musAct ,
last_step , T_S, OLS_Filter )

%% Smoothing parameters

[m, n ] = s i z e ( OLS_Filter ) ;
steps = m- 2 ;

%% Calculate D i f f e r e n t i a l

d i f = (musAct - last_step ( 11 , : ) ) ∗1/T_S;

%% Edge Smoothing
i = last_step (m,1 ) ;

delay = last_step (1 : steps , : ) ;

%outCom = delay ( i , : ) ; - t e s t se t t ing
outCom = sum( delay ) . ∗1/ steps ;

delay ( i , : ) = musAct ;

i = i +1;
i f ( i > steps )
i = 1;
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end

%% Outgoings

next_step = [ delay ; musAct ; i 0 0 0 0 ] ;
dAct = d i f ;
softCom = outCom;
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3.3 Hybrid Controller

3.3.1 Experiment execution

Figure 3.11: Measurement execution

The properties of the control system are investigated via real-timemea-

surements. Each measurement is executed as shown in figure 3.11. At

the beginning of each measurement (0s< Time < 10s), the joint an-

gle sensors (incremental encoders) have to be calibrated (peaks at mea-

surement start) by performing a maximum shoulder anteversion and a

maximum elbow flexion. The calibration is necessary to cross the zero

point positions of the incremental encoders, otherwise the initial po-

sition when powering ataro would be considered as zero which can be

different. After the calibration, the closed-loop controller (3.1) is started

(10s< Time < 70s) and Ataro reaches point one (ϕshoulder = −32°
and ϕelbow = −20°). Ataro is now ready. The first measurements

(30s< Time < 70s) are point-to-point reaching without perturbation

via weight mounted on the arm. All measurements are executed within

the same run. For that, the closed-loop controller was stopped and the

actuation was kept with open-loop (figure 3.11 at 70s< Time < 120s).
The open-loop controller is not able to perform accurate point-to-point

reaching, but once the position is reached via closed-loop control it can

easily be kept, as figure 3.11 illustrates. Aweightwith 700gwasmounted
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on Ataro’s wrist (80s< Time< 120s). It is important to switch to open-

loop control whilemounting aweight on Ataro’s armdue to high danger

while being in range of Ataro during active closed-loop control. There-

after, the point-to-point reachingwas repeatedwith the additional load.

Hence, muscles are under-actuated at the start, the duration of all point

reaching executions that targets a point for the first time are increased.

This causes an overshooting for the first point to reach, shown at Time

= 122s. It can be considered as a warm-up and depends on the mus-

cle arrangement and mechanical limitations of the robotic system. This

effect will appear each time the closed-loop joint angle control was de-

activated and is not considered for the resulting measurements. After

that, the performance measurement with perturbation has been exe-

cuted. The control parameters have not been changedwithin ameasure-

ment. Hence, each change of a control parameter was recorded in a new

measurement. The muscle activation for all measurements have been

recorded (figure 3.11 bottom graph). The pneumatic muscles can not be

activatedwithnegative values. If theactuation falls belowzero, themus-

cle actuation is treated as zero instead.
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3.3.2 Hybrid Control Performance

A hybrid controller from Bayer et al. [8] combining open- and closed-

loop activation is used to improve control performance (speed and ac-

curacy). The performance is defined as time (speed) in which the target

position can be reached. The deviation between target position and ac-

tual position at this time step is defined as the accuracy. The resulting

muscle activationµhyb of the hybrid-controller (open- and closed-loop

combination) is given by:

µhyb = bopen · µopen + µclosed (3.36)

The open-loop part is multiplied by the open-loop weight bopen. This
enables additional optimization properties by modulating the intensity

of the open-loop impact. It can reduce overshooting and increases the

performance significantly:

Figure 3.12: Point-to-point reaching in hybrid control with zero open-loop in-

tensity (bopen = 0) without perturbation. The x-axis shows the time in seconds

and the y-axis shows the joint angle in degrees.

Figures 3.12 and 3.13 illustrates the impact of the open-loop control part
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to theoverall control performance. 3.12 shows the single closed-loopper-

formance, hence the open-loop weight bopen equals zero.

The performance for single closed-loopmode point-to-point

reaching of 0.6mwithout perturbation is 2.5s for a joint angle

deviation of less than 0.5°

Figure 3.13: Point-to-point reaching in hybrid control with 100% open-loop in-

tensity (bopen = 1) without perturbation. The x-axis shows the time in seconds

and the y-axis shows the joint angle in degrees.

Figure 3.13 illustrates the behavior with full open-loop intensity.

The performance for hybridmode point-to-point reaching of

0.6mwithout perturbation and 100% open-loop intensity is 3.5s

for a joint angle deviation of less than 0.5°

The overshooting caused by 100% open-loop intensity decreases the

overall performance by 1s.
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Figures 3.14 and 3.15 illustrates the impact of the open-loop control part

to the overall control performance with perturbation of a 700g weight

mounted on Ataro’s wrist. Figure 3.14 shows the single closed-loop per-

Figure 3.14: Point-to-point reaching in hybrid control with zero open-loop in-

tensity (bopen = 0) with 700g weight perturbation. The x-axis shows the time

in seconds and the y-axis shows the joint angle in degrees.

formance.

The performance for single closed-loopmode point-to-point

reaching of 0.6mwith perturbation is 2.5s for a joint angle

deviation of less than 0.5°

The perturbation has therefore no performance impact in single closed-

loopmode. Figure 3.15 illustrates the behaviorwith full open-loop inten-

sity.

The performance for hybridmode point-to-point reaching of

0.6mwith perturbation and 100% open-loop intensity is 3.4s for a

joint angle deviation of less than 0.5°

There is no significant difference in the performance with perturbation
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Figure 3.15: Point-to-point reaching in hybrid control with 100% open-loop in-

tensity (bopen = 1) with 700g weight perturbation. The x-axis shows the time

in seconds and the y-axis shows the joint angle in degrees.

compared to the performance without perturbation. The 0.1s perfor-

mance increase can be caused by the arm weight pushing Ataro’s arm

down.
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Figures 3.16 and 3.17 illustrates the control performance with 50% open-

loop intensity for both, with and without perturbation. Figure 3.16

Figure 3.16: Point-to-point reaching in hybrid control with 50% open-loop in-

tensity (bopen = 0.5) without perturbation. The x-axis shows the time in sec-

onds and the y-axis shows the joint angle in degrees.

shows the performance without perturbation.

The performance for hybridmode point-to-point reaching of

0.6mwithout perturbation and 50% open-loop intensity is 1.5s for

a joint angle deviation of less than 0.5°

The performance increases significantly by 1s compared to single closed-

loop mode and 2s compared to hybrid mode with full open-loop inten-

sity. Figure 3.17 shows the performance with 700g wrist weight pertur-

bation.

The performance for hybridmode point-to-point reaching of

0.6mwith perturbation and 50% open-loop intensity is 1.5s for a

joint angle deviation of less than 0.5°

The performance increases significantly by 1s compared to perturbed

single closed-loop mode and 1.9s compared to perturbed hybrid mode
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Figure 3.17: Point-to-point reaching in hybrid control with 50% open-loop in-

tensity (bopen = 0.5) with 700g armweight perturbation. The x-axis shows the

time in seconds and the y-axis shows the joint angle in degrees.

with full open-loop intensity. The perturbation has not shown any sig-

nificant impact in performance but in the motion trajectory. Figures

3.12 and 3.13 illustrates the oscillation caused by the impact of full open-

loop intensity. This oscillation is reduced with perturbation caused by

the higher mass inertia as figures 3.14 and 3.15 shows. Using open-loop

weights bopen > 0will always increase the oscillation of themotion tra-

jectory even if it can increase the overall performance.
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Discussion

4.1 A2: Muscles in Bio-inspired Setups

Muscle spring units are designed to attain properties of biological actu-

ators for reproducing biological motion in AAS. Despite the fact that the

biological muscle tendon unit still outperform the muscle spring unit,

an antagonistic setup operated by the proposedmuscle spring units can

be anhighly beneficial solution for bio-mimetic robots. With the applied

design of chapter 2, I have shown that the loss of active contraction

range of a singlemuscle spring unit does not reduce the range ofmotion

in an antagonistic setup. Moreover, by using muscle spring units, the

whole range of motion can be driven with the full pressure spectrum,

which is not possible with an antagonistic setup using only pneumatic

muscles. An antagonistic setup with only pneumatic actuators without

serial elasticity has to be preloaded instead, which leads to a reduction

of the available pressure range and therefore reduces the overall range

of motion. Furthermore, a reduced available pressure range comes

along with a decrease in the range of available joint stiffness values

SA. A controllable joint stiffness is the general benefit of the proposed

setup compared to other actuators, e.g. electrical drives where stiffness

110
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can only be mimicked by control, requiring high band-width control.

Pneumatic actuators with serial elasticity in an antagonistic setup do

not only provide the possibility of using a maximal pressure spectrum

for adjusting the joint stiffness, but do also allow for adjustment of

variable joint torque values at a given joint angle. We have shown

that deploying muscle spring units provides significant potential for

designing joint characteristics for the range of motion, the torque and

the stiffness, even across sizes. This enables awide range of applications

for bio-mimetic robots.

A2 in facts:

To sum it up, using muscle spring units in antagonistic joint setups

comes along with the following benefits:

• Innate passive ability (figure 2.3)

• Increased range of motion compared to antagonistic muscle only

setups (figure 2.5)

• Wide range of joint torque generation (figure 2.6)

• Adjustable joint stiffness (figure 2.7)

Even if the performance of commercially available pneumatic muscles

with serial elasticity is presentable, the development of such actuators is

still in its infancy. Reducing the lengthof stiffmountingparts or combin-

ing the springwith themuscle to optimize the overall length are promis-

ing approaches. The reason,why suchactuators lack indevelopment can

be found in lack of applicable control strategies.
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4.2 A1,A3 andA4: TheControl Framework in

a Nutshell

The answers to the introduced scientific questions A1 to A4 are strongly

connected. Solving the questions Q3 and Q4 implicitly solves the ques-

tion Q1. As explained in the introduction and the preface of this work,

we have to leave our engineering perspective of howwe rate properties.

Non-linearmuscle actuators with hysteresis in series to elastic elements

are not unserviceable in general, but only for commonmodel based con-

trol policies. The same applies to the design of joints with bi-articular

actuators.

”It is not a bug; It is a feature”

Compared to electrical drives, muscles can only create force in one

direction, which means we always know how actuation effects a joint

motion in terms of direction. Additionally, muscles have always the

same force-length-actuation behavior, they only differ in scale. Both

features count for biological muscle tendon units as well as bio-inspired

muscle spring units. Therefore, the only thing that is needed is to find a

control policy that canmake use out of the provided information.

A1 solved by A3 and A4:

The control framework that is proposed in chapter 3 make use of the

available information in the following steps.

• The arrangement of themuscles in amuscle driven system shows

us the overall possibility to effect motion of the system (equation

(3.4))

• The knowledge of the motion direction impact of an actuated

muscle shows us the sign of the control parameter for its respec-

tive muscle (equation (3.5)).

• Muscles share the same force-length-actuation behavior, they

only differ in scale. If we know the scale (correlation function
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w(b)), we can create a dependency between two muscles effect-

ing the same joint (equation (3.8)) (A3)

• If we can create correlation functions between two muscles of a

joint,wecancreate correlation functions toallmusclesof the joint,

including bi-articular muscles (set of equations (3.12) and (3.13))

(A3)

• Bi-articular muscles effecting two joints, that means we can

also create correlation functions over multiple joints using a bi-

articular muscle (equation (3.14)) (A4)

• If all joints of a system are connected by bi-articular muscles, we

are able to create correlation functions to allmuscles in our system

which reduces the control parameter amount to a single muscle,

no matter how many muscles the system uses (equation (3.25))

(A4)

• Finding and optimizing one single parameter implicitly optimizes

all other parameters. This can be done by various optimization

methods (e.g., Gradient Descent - equation (3.26)) (A1).

Proportional control parameters comes along with a steady control de-

viation. Therefore additional integral behavior is needed. The popular

control scheme of an ideal control (figure 3.2) brings integral behavior to

eachmusclewhichmakes it necessary tofind I-parameters for eachmus-

cle. The correlation functions can not be applied to the I-parameters,

hence the integral behavior handles the deviation caused by perturba-

tion and inaccuracy and not the relation of actuator activation based on

design. Butdoweneed integralbehavioronactuator level? -nowedon’t.

The integral behavior must not eliminate the actuator deviation but the

deviation of the desiredmotion or on point of the joints. In this case, we

can transfer the integralbehavior to the joint levelbyusingan interacting

control scheme instead (figure 3.1). The amount of I-parameters are now

dependent to the number of joints than to the number ofmuscles which

means a parameter reduction for antagonistic setups with bi-articular

muscles especially for systems with more than two-dimensional range

of motions like SH1.
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Another benefit by using the proposed interacting control scheme is the

way it influences the actuation. Instead of biasing the proportional out-

put of an ideal control scheme, it bias the input of the proportional con-

troller instead (equation (3.1)). With ideal control, the integral part can

totally replace the proportional part in steady state. This appeared espe-

ciallywith an ideal control schemedriving SH1 to performa stable stance

for a longer period of time. The control law of the interacting control

schememakes this impossible (equation (3.1)).
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4.3 Parameter Robustness and Stability

Standard model based control criteria to investigate the stability of a

control scheme (e.g. Lyapunov criteria) can not be applied because there

is no mathematical model considered for the controlled system. There-

fore, the parameter robustness and stability is investigated only on an

experimental and phenomenological level. Furthermore, the increase of

control parameters in the following experiments are limited to±30% for

the proportional control parameter and±50% for the integral parameter

due to the danger of permanently destroying the robotic setup.

The proposed bio-inspired controller has shown a high parameter ro-

bustness on that experimental level as figures 4.1, 4.2 and 4.3, 4.4 illus-

trate. To investigate the controllers parameter robustness, the closed-

loopmode is used (not the hybridmode). The benchmark of the closed-

loop mode was 2.5s to reach desired position. All measurements are

point-to-point measurements with the same distance (0.6m) as the re-

sults of chapter 4 show. Figures 4.1 and 4.2 shows the anteversion and

elbow flexion without load to reach the target position. As expected, an

increase in the control parameterswill also lead to an increase in the per-

formance but will cause overshooting. Furthermore, by increasing the

integral parameters by 50% (figure 4.1 and 4.2, light blue) oscillations

appear. The same can be investigated when increasing the proportional

parameter by 30% (violet). This oscillation is amplified when applying

the 700g wrist weight as perturbation (figure 4.3 and 4.4). Therefore,

the perturbation has a significant impact on the parameter robustness

and stability. This is remarkable because the perturbation has no sig-

nificant impact on the performance when using optimized parameters.

Another perceptible effect is that a variation in the proportional param-

eter can be compensated by an increased integral parameter. The dark

blue line (p-30%, i+50%) covers nearly the same trajectory as the default

valuespopt;iopt. This is due to the fact, that bothare factors in the control
law (equation (3.1)). Finally, the bio-inspired control policy do not need

exact control parameters to work, instead it tolerates control parameter

deviation up to 30% of the optimized parameters. This is not a general

rule and applies only to the Ataro setup.
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Figure 4.1: Point-to-point reaching with different parameter sets. The per-

formed motion is a shoulder anteversion and elbow flexion. The graph shows

the shoulder motion.
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Figure 4.2: Point-to-point reaching with different parameter sets. The per-

formed motion is a shoulder anteversion and elbow flexion. The graph shows

the elbowmotion.
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Figure4.3: Point-to-point reachingwithdifferentparameter sets andadditional

load. The performed motion is a shoulder anteversion and elbow flexion. The

graph shows the shoulder motion.
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Figure 4.4: Point-to-point reaching with different parameter sets and addi-

tional load. The performed motion is a shoulder anteversion and elbow flexion.

The graph shows the elbowmotion.
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4.4 Reducing Information and Control

Biological systems like animals and humans suffer from information re-

duction when they are tired or under the influence of medication. Fur-

thermore, our possibilities to activate our muscles can also be effected.

Up to a certain level, the biological motor control system can handle

this challenge and can keep system stability by control. This is an phe-

nomenologically observed stability

To investigate the behavior of the proposed bio-inspired controller, ex-

periments have beenmadewith the leg robot SH1 to observe stability on

a phenomenological level. For that, the possible actuation and the sen-

sor information of the joint valueswere limited to discrete steps. The ex-

periment execution for allmeasurementshasbeenmade in the following

order:

• SH1 gets startedwithout control penalties and brings himself into

a stable stance position.

• After reaching a stable stance, the penalties have been applied to

the controller.

• Themeasurements starts.

• SH1 was set to perform a one legged squat to a lower equilibrium

point position.

• After one second, SH1was set to standup to thehigher initial equi-

libriumpoint and to regain stability (stable stancewithout falling)

The penalties that have been applied to investigate the control behavior

under information and control reduction consist of two parts. First, the

input of the controller is penalized by reducing the information the con-

troller receives from sensors. In the default mode, Ataro and SH1 receive

sensor information at a sample rate of 500Hz, therefore every ∆t =
2ms. The biological 200ms delay [64] is always applied for both robots

in addition to all measurements of this work, as described in Section 1.2

Bio-Robotic Test Bed. The information penalty consist of an increase of

∆t. The measurements have been executed with∆t = 2ms(default),
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10ms, 14ms and 20ms.
Second, the output of the controller is penalized by increasing the step

size of the possible pressure values. The default step size is ∆u =
0.01bar. The applied penalty steps are ∆u = 0.1bar, 0.5bar, 0.7bar
and 1bar. Figure 4.5 shows the behavior of applied actuation penal-

ties without information reduction. The initial joint values of the knee

(blue), the upper ankle (orange) and the lower ankle (yellow) aremarked

as dashed lines. The values of the joint position are in increments, where

10 increments equals 1°. The time axis is in seconds.

The performance is executed by controlling 8muscles in bio-inspired re-

dundant arrangement in 3-dimensions (Section 1.2). Therefore, the in-

terplay of the muscles prevent jumps of the joint values (e.g. at∆u =
1bar), hence not all muscles switch their values at the same time.

Thismeasurement cannot be executedwithAtaro, because the lowmus-

cle redundancy (onlyfivemuscles for two joints andonly onebi-articular

muscle) will cause the system to jump under ∆u = 1bar by creating

high torques which destroys the Ataro setup permanently. Figure 4.5

shows, that the system tolerates a reduction of the control variable to re-

gain stance with minor joint angle deviation. By applying an actuation

penalty of∆u ≥ 0.7bar, the system starts oscillating permanently but

still regains stance.
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Figure 4.5: SH1 performing a stable stance control after equilibrium point

change under reduction of possible actuation
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Figure 4.6: SH1 performing a stable stance control after equilibrium point

change under reduction of possible information and actuation.
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Figure 4.7: SH1 getting unstable by performing equilibrium point change under

reduction of sensor information.
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4.5 Conclusion

4.5.1 Generalization

To summarize the benefits of the proposed control scheme of this work,

the following statements can bemade:

• Bi-articular muscles are not a ”problem” that causes in-

creased control complexity, in fact, they are the solution to

reduce complexity.

• The amount of muscle actuators and their non-linearity do

not play a significant role in terms of control complexity as

long as always the same type (different scales are possible)

of muscle actuator is used and all joints are connected with

bi-articular muscles.

• Bio-inspired actuator setups brings innate bio-inspired fea-

tures such as compliance.

• Non-linear bio-inspired actuators in muscle driven systems

can achieve remarkable performancewith bio-inspired con-

trol policies. Point-to-point performance of 0.6m in 1.5s into

a stable steady state independent from perturbation is the

best result with this controller so far.

• There is no best parameter, only matching sets of parameter

which can have the same results

Bi-articular muscles became an object of high interest in the last years

[56, 45, 78, 98, 97]. The complex arrangement of bi-articular mus-

cles seem to be disadvantageous on the first view from a classical engi-

neering perspective. Since they have been investigated more in the last

decade, more benefits of such structures have been exposed [23, 54, 62].

Bi-articular muscles can reduce the overall energy consumption while

performing motion [68, 28] while energy consumption can be a crucial

policy for motion control [42]. Furthermore, bi-articular muscles in-

crease motion ability such as jumping [94]. However, for established
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controllers, bi-articular muscles seem to be a drawback that has to be

overcome via hardware performance (model based approach) or data

quantity (AI and Fuzzy), although there is much so suggest that mor-

phology must be beneficial for control [103, 105, 104, 115, 62, 61, 19, 98].

This work fill this gap, by proposing a control framework that exploit bi-

ological morphology to reduce complexity instead of compensating the

morphology. Furthermore, the proposed control framework can exploit

bi-articular muscles to not only reduce system complexity but also to

make the whole system scalable to high amounts of muscles or joints.

The control framework is generalizable

Bi-articular muscles enable inter-joint couplings which can be used to

minimize the amount of determinable parameters: One parameter per

inter-joint coupling network and per controller type (two parameters

for PI-controller, three for PID). An inter-joint coupling network is the

mechanical construction of all joints that are connected via bi-articular

muscles.

The structure of the controller stays always the same. The control pa-

rameters may be recalculated depending on the case:

Case: Inter-joint network remains untouched, new muscles are

added

If muscles are added to an existing joint network, the control parame-

ters for the previous muscle setup remain, even if these muscles are bi-

articular. Just the new parameters of the parameter matrix have to be

calculated, because some of the zeros of the p-matrix ((3.2)) turn into

parameters (see chapter 3).

Case: Inter-joint network extends or a new joint is added but the

main network remain unchanged

If joints are added to a network with newmuscles, correlation functions

for the new muscles and joint ratios have to be defined and the new
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added parameters can be calculated. If two inter-joint networks have

been connected via bi-articular muscles, for one network, the parame-

ters remain but for the other network, the parameter have to be recalcu-

lated. In this case, the added network is not independent anymore and

the parameters affecting that network have to be dependent to themain

network.

Case: Thewhole inter-joint network change

In this case, the parameter matrices have to be determined according to

chapter 3 and all its correlations have to be redefined. This case creates

the most effort, but the controller structure stays exactly the the same.

If all joints ob the bio-robotic test-bed are part of an inter-joint network

(via bi-articular muscles), only one parameter per controller type (two

parameters for PI-controller, three for PID) have to be optimized accord-

ing to chapter 3.

4.5.2 Performance and comparison

Performance is defined in thiswork as the time a robotic systemneeds to

reach a certain accuracy of the target position (measured in deviation to

target position). The best performance of the Ataro controller is reached

in hybrid mode (open- and closed-loop combination [8]):

The performance for hybridmode point-to-point reaching of

0.6mwith perturbation and 50% open-loop intensity is 1.5s for a

joint angle deviation of less than 0.5° (Figure 3.17)

Comparing output performance is difficult and can always be seen crit-

ical, hence the systems of the different control policies published, dif-

fer from each other. A fair comparison can only be made if all compara-

ble policies have been run on the same setup under the same conditions.

This is usually not the case and can also be seen critical here.

To compare the control performance of this work, one arm simulation
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[75] and one arm robot controller [80] with bi-articular muscles have

been chosen. Themuscle arrangement is not identical however. Thefirst

compared controller drives an arm simulation. It controller is impacted

by a delay similar to Ataro. The arm model has two joints, driven by

visco-elastic-muscle models. The model-based control approach suf-

Figure 4.8: Two joint armmodel of Murao 2017 [75]

fer from the complexity of bi-articular muscles. Its performance results

in approximately 4 seconds reaching target position (picture 4.9). Ataro

can perform thismotionwith the proposed control framework in 1.5 sec-

onds.
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Figure 4.9: Output performance of Murao 2017 [75](solid red lines).
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The second compared controller is driving anarmrobot shown inpicture

4.10. This robot also uses bi-articular muscles. Nishimuras arm robot

Figure 4.10: Two joint armmodel of Nishimura 2021 [80]

performs remarkable precision but lack in speed. It performs motion in

y-axis of 0.2 meters in 10 seconds (picture 4.11). Ataro performs 0.6 me-

ters in 1.5 seconds. Asmentioned, the comparisons have to be seen criti-

cal and the proposed controller does not claim to be better in all aspects.

Furthermore, the proposed controller should be seen as a toolbox and its

single steps such as optimizing can be replaced with other methods, ac-

cording to the tasks. The potential of the controller framework exceeds
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Figure 4.11: Output performance of Nishimura 2021 [80].

the sown applications, hence, it can be further improved (e.g., D-control

behavior) nor is this setup limited to joint position control (e.g., force-

control).
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4.5.3 Critics and outline

”So eine Arbeit wird eigentlich nie fertig, man muß sie für fertig erklären,

wenn man nach Zeit und Umständen das Möglichste getan hat.”

- JohannWolfgang von Goethe

”Properly speaking, such work is never finished; one must declare it so when,

according to time and circumstances, one has done one’s best.”

- JohannWolfgang von Goethe

Comparability

The comparisons have to be seen critical and the proposed controller

does not claim to be better in all aspects. Furthermore, the compared

robots may not even have the same performance criteria nor have they

the same technical requirements. The best case to compare controller

performance would be, if a standard muscle driven bio-robotic test-bet

would be defined so that all control approaches can be compared under

equal conditions and under the same performance criteria.

PID-structure

The proposed controller is tested and developed as an PI-controller.

Other combinations such as the PD-lambda-controller [8] or a PID-

controller is possible and can further increase the performance. Where

to include the d-part of a PID-controller has to be investigated and may

depend on the goal.

Optimizationmethods

The tested optimizationmethodmay not be the best solution for all ap-

plications nor do this work claim that this optimization method is the
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best solution even for the proposed controller. Optimization is one part

out of the toolbox and the chosenmethodmay vary from case to case.

Combinationwith other control methods

Neural networks areoften combinedwith fuzzy control, hence fuzzy con-

trol needs experience of a system and machine learning can serve that

demand. It may be possible to reduce complexity by the proposed con-

trol framework of this work and afterwards calculate the remaining pa-

rameters with model based control approaches (instead of optimizing

the remaining parameters). This approach has not been tested yet and

can be promising, hence, the proposed framework neglect the weakness

of model based approaches.

Processing time is not bio-inspired

The time between reading the input information and applying the out-

put actuation is determined by the available hardware. The sample time

was set to 2ms. The signal processing of the inputs collect 100 sam-

ples (see sensor processing section 1.2) and calculates the average of the

samples to reduce the sensor signal noise and therefore, applying a bio-

inspired200msdelay [64] for the controller inputs. Afterwards, the con-

trol, the hybrid mode, additional filters (e.g., smothing filter for open

loop) and the output saturation is processed, each within a single sam-

ple time of 2ms. This leads to an overall processing between input and

output of 210mswhich is determined by the hardware and not inspired

by biology.

Scope of the framework is limited to 2Dmotion in this work

Themotionperformance is investigatedby the robotic setupAtarowhich

has only motion possibilities in the saggital plane. Furthermore, only

hinge joints are investigated. The controller setup must be improved to
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enable control for 3D joints (e.g., ball joints). The challenge of compress-

ing ” the movement system’s state space of very many dimensions into a control

space of few dimensions” [9] is not new but can not investigated with the

introduced robotic setups. Despite SH1 possibilities to collapse in all 3

dimensions, it only uses hinge joints even if the lower ankle enable 3D

motion by two hinge joints acting in different planes. Furthermore, the

motion rangeof SH1 limits thepossibility to investigate improvedcontrol

approaches of the proposed framework.

Final words

The proposed controller should be seen as a toolbox and its single steps

such as optimizing or interacting control scheme can be replaced with

other methods. It is also not a finished controller setup nor is this setup

limited to joint position control. The scope of this work is to find an ap-

plicable generalizable control solution for complex muscle driven sys-

tems that exploit its features instead of ”just dealing with it”. It is in-

vestigated by its output performance and other observable outputs. Ob-

servation in general was my self-imposed limit, leading to the scientific

questions of this work and also determine themethod of investigation. I

demonstrated, that it is possible todesigna controller that is able tohan-

dle complex systems just by informationof observationwithout intrinsic

system knowledge like mathematical systemmodels. Furthermore, this

controller do not claim to be ”better” than other control frameworks. It

is a just another approach and its utility depends on the case.
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