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Notation

This list contains only the most important symbols and abbreviations that are used several
times throughout this thesis.

List of Symbols

General mathematical notation

f function
df
dx total derivative of f with respect to x
∂f
∂x partial derivative of f with respect to x
ẋ first time derivative of x
ẍ second time derivative of x
xi i-th element of vector x, typically, i = 1, . . . , nmusc

xt current state x at a given time t
xt−δ time-delayed state x at time t− δ

xt+1 state x at next time increment t+ 1

x mean value of x
E(x) expected value of x
R set of real numbers

Rigid body mechanics

nDoF number of degrees of freedom
q ∈ RnDoF vector of generalized coordinates, see Eq. (2.9)
F ∈ RnDoF generalized forces, see Eq. (2.9)
L(q(t), q̇(t)) Lagrangian, see Eq. (2.10)
T kinetic energy of the system, see Eq. (2.10)
U potential energy of the system, see Eq. (2.10)
M ∈ RnDoF×nDoF symmetric, positive definite mass matrix, see Eq. (2.13)
C ∈ RnDoF vector of the gravitational, centrifugal, and Coriolis forces, see Eq. (2.13)

Muscle-tendon notation

u ∈ [umin, 1] muscle stimulation [ ], see Eq. (2.1-2.2)
a ∈ [amin, 1] muscle activity [ ], see Eq. (2.1-2.2)
γ ∈ [γmin, 1] normalized calcium ion (Ca2+) concentration [ ], see Eq. (2.1-2.2)



VI Notation

lCE, lMTU ∈ R length of a CE, and MTU [m], see Eq. (2.3)
FMTU ∈ R force of MTU [N], see Eq. (2.5)
nmusc ∈ R number of muscles
τMTU ∈ R torque produced by MTU [Nm], see Eq. (2.6)
r ∈ R moment arm [m], see Eq. (2.8)
lCE,opt ∈ R optimal muscle fiber length (CE) [m], see Eq. (2.17)
Fmax ∈ R maximum isometric force [N], see Eq. (2.19)
lSEE,0 ∈ R tendon slack length (SEE) [m], see Eq. (2.20)
lS ∈ R sarcomere length [m], see Eq. (2.17)
lS,opt ∈ R optimal sarcomere length [m], see Eq. (2.17)
PCSA ∈ R2 physiological cross-sectional area [m2], see Eq. (2.18)
V mus ∈ R3 muscle volume [m3], see Eq. (2.18)

Control notation

x state
u control signal
uff feedforward control signal, see Eq. (2.21)
ufb feedback control signal, see Eq. (2.21)
K feedback gain, see Eq. (2.22)
xdes desired state, see Eq. (2.22)
l loss function, see Eq. (2.29)
r reward function, see Eq. (2.32)
ot observation at time t, see Eq. (2.32)
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List of Abbreviations

AAS agonistic-antagonistic setup
ATD anthropometric test device
BE biarticular extensor
BEESR biarticular elbow extensor shoulder

retroversion
BEFSA biarticular elbow flexor shoulder an-

teversion
BF biarticular flexor
CE contractile element
CPG central pattern generator
CSE cervical spine extension
CSF cervical spine flexion
CSSBL cervical spine side bend left
CSSBR cervical spine side bend right
DHM Digital Human Model
DoF Degree of Freedom
EBD elementary biological drive
EE elbow extension
EF elbow flexion
EI Embodied Intelligence
EMG electromyography
FE foot extension
FEM Finite Element Method
FF foot flexion
HAbd hip abduction
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HF hip flexion
IMU inertial measurement unit
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MB Multibody
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MPC model predictive control

MRI magnetic resonance imaging
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OC optimal control

ODE ordinary differential equation
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Abstract

We are facing the challenge of an over-aging and overweight society. This leads to an in-
creasing number of movement disorders and causes the loss of mobility and independence.
To address this pressing issue, we need to develop new rehabilitation techniques and design
innovative assistive devices. Achieving this goal requires a deeper understanding of the un-
derlying mechanics that control muscle-actuated motion. However, despite extensive studies,
the neural control of muscle-actuated motion remains poorly understood. While experiments
are valuable and necessary tools to further our understanding, they are often limited by
ethical and practical constraints. Therefore, simulating muscle-actuated motion has become
increasingly important for testing hypotheses and bridge this knowledge gap. In silico, we
can establish cause-effect relationships that are experimentally difficult or even impossible
to measure. By changing morphological aspects of the underlying musculoskeletal structure
or the neural control strategy itself, simulations are crucial in the quest for a deeper under-
standing of muscle-actuated motion. The insights gained from these simulations paves the
way to develop new rehabilitation techniques, enhance pre-surgical planning, design better
assistive devices and improve the performance of current robots.

The primary objective of this dissertation is to study the intricate interplay between muscu-
loskeletal dynamics, neural controller and the environment. To achieve this goal, a simulation
framework has been developed as part of this thesis, enabling the modeling and control of
muscle-actuated motion using both model-based and learning-based methods. By utiliz-
ing this framework, musculoskeletal models of the arm, head-neck complex and a simplified
whole-body model are investigated in conjunction with various concepts of motor control.
The main research questions of this thesis are therefore:

1. How does the neural control strategy select muscle activation patterns to generate the
desired movement, and can we use this knowledge to design better assistive devices?

2. How does the musculoskeletal dynamics facilitate the neural control strategy in accom-
plishing this task of generating desired movements?

To address these research questions, this thesis comprises a total of five journal and conference
articles.

More specifically, contributions I-III of this thesis focus on addressing the first research
question which aims to understand how voluntary and reflexive movements can be predicted.
First, we investigate various optimality principles using a musculoskeletal arm model to
predict point-to-manifold reaching tasks. By using predictive simulations, we demonstrate
how the arm would move towards a goal if, for example, our neural control strategy would
minimize energy consumption. The main finding of this contribution shows that it is essential
to include muscle dynamics and consider tasks with more openly defined targets to draw
accurate conclusions about motor control. Through our analysis, we show that a combination



of mechanical work, jerk and neuronal stimulation effort best predicts point-reaching when
compared to human experiments.

Second, we propose a novel method to optimize the design of exoskeleton power units taking
into account the load cycle of predicted human movements. To achieve this goal, we employ
a forward dynamic simulation of a generic musculoskeletal arm model, which is first scaled
to represent different individuals. Next, we predict individual human motions and employ
the predicted human torques to scale the electrical power units employing a novel scalability
model. By considering the individual user needs and task demands, our approach achieves
a lighter and more efficient design. In conclusion, our framework demonstrates the potential
to improve the design of individual assistive devices.

The third contribution focuses on predicting reflexive movements in response to sudden
perturbations of the head-neck complex. To achieve this, we conducted experiments in which
volunteers were placed on a table while supporting their heads with a trapdoor. This trap-
door was then suddenly released leading to a downward movement of the head until the
reflexive reaction of the muscles stops the head from falling. We analyzed the results of
these experiments, presenting characteristic parameters and highlighting differences between
separate age and gender groups. Using this data, we also set up benchmark validations for
a musculoskeletal head-neck model, including reflex control strategies. Our main findings
are that there are large individual differences in reflexive responses between participants and
that the perturbation direction significantly affects the reflexive response. Furthermore, we
show that this data can be used as a benchmark test to validate musculoskeletal models and
different muscle control strategies.

While the first three contributions focus on the research question (1), contributions IV-V
focus on (2) whether and how the musculoskeletal dynamics facilitate the learning and control
task of various movements. We utilize a recently introduced information-theoretic approach
called control effort to quantify the minimally required information to perform specific move-
ments. By applying this concept, we can for example quantify how much biological muscles
reduce the neuronal information load compared to technical DC-motors. We present a novel
optimization algorithm to find this control effort and apply it to point-reaching and walking
tasks. The main finding of this contribution is that the musculoskeletal dynamics reduce the
control effort required for these movements compared to torque-driven systems.

Finally, we hypothesize that the highly nonlinear muscle dynamics not only facilitate the
control task but also provide inherent stability that is beneficial for learning from scratch.
To test this, we employed various learning strategies for multiple anthropomorphic tasks,
including point-reaching, ball-hitting, hopping, and squatting. The results of this investiga-
tion demonstrate that using muscle-like actuators improves the data-efficiency of the learning
tasks. Additionally, including the muscle dynamics improves the robustness towards hyper-
parameters and allows for a better generalization towards unknown and unlearned perturba-
tions.

In summary, this thesis enhances existing methods to control and learn muscle-actuated
motion, quantifies the control effort needed to perform certain movements and demonstrates
that the inherent stability of the muscle dynamics facilitates the learning task. The models,
control strategies, and experimental data presented in this work aid researchers in science



and industry to improve their predictions in various fields such as neuroscience, ergonomics,
rehabilitation, passive safety systems, and robotics. This allows us to reverse-engineer how we
as humans control movement, uncovering the complex relationship between musculoskeletal
dynamics and neural controller.





Zusammenfassung

Wir stehen vor der Herausforderung einer überalternden und übergewichtigen Gesellschaft.
Dies führt zu einer zunehmenden Anzahl an Bewegungsstörungen und hat den Verlust von
Mobilität und Unabhängigkeit zur Folge. Um diese dringliche Problematik anzugehen, müssen
neue Rehabilitationstechniken entwickelt und innovative Assistenzsysteme entworfen werden.
Um dieses Ziel zu erreichen, ist ein tieferes Verständnis der zugrunde liegenden Mechanik, die
die muskelaktuierte Bewegungen kontrolliert, erforderlich. Trotz umfangreicher Studien ist
die neuronale Kontrolle muskelaktuierter Bewegungen jedoch nach wie vor kaum verstanden.
Experimente sind zwar ein wertvolles und notwendiges Instrument, um unser Verständnis
zu vertiefen, allerdings sind diese häufig durch ethische und praktische Einschränkungen
limitiert. Daher wird die Simulation muskelgetriebener Bewegungen immer wichtiger, um
Hypothesen zu testen und diese Wissenslücke zu schließen. In silico können wir Ursache-
Wirkungs-Beziehungen herstellen, welche experimentell schwierig oder sogar unmöglich zu
messen sind. Durch die Veränderung morphologischer Aspekte der zugrunde liegenden mus-
kuloskelettalen Struktur oder der neuronalen Kontrollstrategie selbst, sind Simulationen von
entscheidender Bedeutung bei der Suche nach einem tieferen Verständnis muskelgetriebener
Bewegungen. Die aus diesen Simulationen gewonnenen Erkenntnisse ebnen den Weg für die
Entwicklung neuer Rehabilitationstechniken, eine Erweiterung der präoperativen Planung,
die Konstruktion besserer Assistenzsysteme und die Verbesserung aktueller Roboter.

Das Hauptziel dieser Dissertation ist die Untersuchung des komplexen Zusammenspiels
zwischen muskuloskelettaler Dynamik und neuronaler Kontrolle. Um dieses Ziel zu erreichen,
wurde im Rahmen dieser Arbeit ein Simulationsframework entwickelt, welches die Modellie-
rung und Steuerung muskelgetriebener Bewegungen sowohl mit modellbasierten als auch mit
lernbasierten Methoden ermöglicht. Unter Verwendung dieses Frameworks werden muskulos-
kelettale Modelle des Arms, des Kopf-Nacken-Komplexes und ein vereinfachtes Ganzkörper-
modell in Verbindung mit verschiedenen Konzepten der motorischen Steuerung untersucht.
Die Hauptforschungsfragen dieser Arbeit sind, (1) wie die neuronale Kontrollstrategie Mus-
kelaktivierungsmuster auswählt, um die gewünschte Bewegung zu erzeugen und (2) wie die
muskuloskelettale Dynamik die neuronale Kontrollstrategie bei der Bewältigung dieser Auf-
gabe unterstützt. Um diese Forschungsfragen zu beantworten, umfasst diese Arbeit insgesamt
fünf Zeitschriften- und Konferenzartikel.

Genauer gesagt konzentrieren sich die Beiträge I-III dieser Arbeit auf die Beantwortung
der ersten Forschungsfrage, die darauf abzielt zu verstehen, wie freiwillige und reflexive Be-
wegungen vorhergesagt werden können. Zunächst untersuchen wir verschiedene Optimali-
tätsprinzipien unter Verwendung eines muskuloskelettalen Armmodells zur Vorhersage von
Punkt-zu-Mannigfaltigkeit-Armbewegungen. Mit Hilfe prädiktiver Simulationen zeigen wir,
wie sich der Arm auf ein Ziel zubewegen würde, wenn beispielsweise unsere neuronale Kon-
trollstrategie den Energieverbrauch minimieren würde. Die Haupterkenntnis dieses Beitrags



zeigt, dass es unerlässlich ist, die Muskeldynamik einzubeziehen und Aufgaben mit offener
definierten Zielen zu betrachten, um korrekte Schlussfolgerungen über die motorische Kon-
trolle zu ziehen. Durch unsere Analyse zeigen wir, dass eine Kombination aus mechanischer
Arbeit, Ruck und neuronalem Stimulationsaufwand im Vergleich zu menschlichen Experi-
menten Armbewegungen am besten vorhersagt.

Zweitens schlagen wir eine neuartige Methode zur Optimierung des Designs von Exoskelett-
Antriebseinheiten unter Berücksichtigung des Belastungszyklus der vorhergesagten menschli-
chen Bewegungen vor. Um dieses Ziel zu erreichen, verwenden wir eine dynamische Vorwärts-
simulation eines generischen muskuloskelettalen Armmodells, welches zunächst skaliert wird,
um verschiedene Personen darzustellen. Anschließend werden die vorhergesagten mensch-
lichen Drehmomente zur Skalierung der elektrischen Leistungseinheiten unter Verwendung
eines neuartigen Skalierbarkeitsmodells verwendet. Durch die Berücksichtigung der individu-
ellen Bedürfnisse des Benutzers und der Aufgabenanforderungen ermöglicht unser Ansatz ein
leichteres und effizienteres Design. Zusammenfassend lässt sich sagen, dass unser Framework
das Potenzial hat, das Design von individuellen Assistenzsystemen zu verbessern.

Der dritte Beitrag konzentriert sich auf die Vorhersage reflexiver Bewegungen als Reaktion
auf plötzliche Störungen des Kopf-Nacken-Komplexes. Zu diesem Zweck haben wir Experi-
mente durchgeführt, bei denen Probanden auf einem Tisch platziert wurden, während ihr
Kopf durch eine Falltür gestützt wurde. Diese Falltür wurde dann plötzlich ausgelöst, was zu
einer Abwärtsbewegung des Kopfes führte, bis die reflexive Reaktion der Muskeln den Kopf
am Fallen hinderte. Wir haben die Ergebnisse dieser Experimente analysiert, charakteristische
Parameter dargestellt und die Unterschiede zwischen den einzelnen Alters- und Geschlechts-
gruppen herausgestellt. Anhand dieser Daten haben wir auch Benchmark-Validierungen für
ein muskuloskelettales Kopf-Nacken-Modell durchgeführt, welches auch Reflexkontrollstrate-
gien umfasst. Unsere wichtigsten Ergebnisse zeigen, dass es große individuelle Unterschiede in
den reflexiven Reaktionen zwischen den Teilnehmern gibt und dass die Störungsrichtung diese
Reaktion signifikant beeinflusst. Darüber hinaus zeigen wir, dass diese Daten als Benchmark-
Test für die Validierung von Muskel-Skelett-Modellen und verschiedenen Muskelkontrollstra-
tegien verwendet werden können.

Während sich die ersten drei Beiträge auf die Forschungsfrage (1) konzentrieren, geht es in
den Beiträgen IV-V um die Frage (2), ob und wie die muskuloskelettale Dynamik das Lernen
und die Kontrolle verschiedener Bewegungen erleichtert. Wir verwenden einen kürzlich einge-
führten informationstheoretischen Ansatz, den sogenannten “control effort”, um die minimal
erforderlichen Informationen für die Ausführung bestimmter Bewegungen zu quantifizieren.
Durch die Anwendung dieses Konzepts können wir zum Beispiel abschätzen, wie sehr biologi-
sche Muskeln die neuronale Informationslast im Vergleich zu technischen Gleichstrommotoren
reduzieren. Wir stellen einen neuartigen Optimierungsalgorithmus vor, um diesen Kontroll-
aufwand zu ermitteln und wenden ihn auf Arm- und Gehbewegungen an. Das Hauptergebnis
dieses Beitrags ist, dass wir zeigen, dass die Muskeldynamik den Kontrollaufwand für diese
Bewegungen im Vergleich zu drehmomentgesteuerten Systemen reduziert.

Schließlich stellen wir die Hypothese auf, dass die hochgradig nichtlineare Muskeldynamik
nicht nur die Steuerungsaufgabe erleichtert, sondern auch eine inhärente Stabilität bietet,
die für das Lernen von Vorteil ist. Um dies zu testen, haben wir verschiedene Lernstrate-
gien für mehrere anthropomorphe Aufgaben eingesetzt, darunter Armgreifbewegungen, das



Schlagen eines Balls, Hüpf und Kniebeuge-Bewegungen. Die Ergebnisse dieser Untersuchung
zeigen, dass die Verwendung muskelähnlicher Aktuatoren die Dateneffizienz der Lernaufgaben
verbessert. Darüber hinaus verbessert die Einbeziehung der Muskeldynamik die Robustheit
gegenüber Hyperparametern und ermöglicht eine bessere Verallgemeinerung gegenüber un-
bekannten und nicht gelernten Perturbationen.

Zusammenfassend lässt sich sagen, dass diese Arbeit die bestehenden Methoden zur Kon-
trolle und zum Erlernen muskelgetriebener Bewegungen verbessert, den für die Ausführung
bestimmter Bewegungen erforderlichen Kontrollaufwand quantifiziert und zeigt, dass die in-
härente Stabilität der Muskeldynamik die Lernaufgabe erleichtert. Die in dieser Arbeit vor-
gestellten Modelle, Kontrollstrategien und experimentellen Daten ermöglichen Forschern so-
wohl in Wissenschaft als auch Industrie, ihre Vorhersagen in verschiedenen Bereichen wie
Neurowissenschaften, Ergonomie, Rehabilitation, passive Sicherheitssysteme und Robotik zu
verbessern. Auf diese Weise können wir nachvollziehen, wie wir als Menschen Bewegungen
steuern, und die komplexe Beziehung zwischen der Dynamik des Bewegungsapparats und der
neuronalen Steuerung aufdecken.





1. Introduction

1.1. The importance and challenge of understanding
muscle-actuated motion

Every day, humans perform complex movements such as walking over uneven terrain, lifting
and carrying objects, or playing sports. Remarkably, we have the innate ability to achieve
these movements in a seemingly effortless way. For example, we can lift objects, such as
a bottle of water, without needing to know the exact weight before we grasp it. These
capabilities are the result of the complex interplay between the neural control system, the
underlying biophysical structures and the environment. Understanding these interactions
and the principles of human motion has fascinated scientists for centuries and is still an
open challenge in biomechanics and motor control. Doing so, advances our knowledge of
motor disorders on the one hand, and on the other hand, gives us the potential to predict
motions in potentially harmful situations such as in automotive safety or ergonomics in
general. Furthermore, an improved knowledge of the biological motor system can be beneficial
in the design and construction of robots and assistive devices.

A multitude of experimental studies have been performed to elucidate and understand
the cause-effect relations of biological motion. They range from studies investigating the
mechanical properties of individual muscles over the investigation of intrinsic muscle proper-
ties in combination with control principles to the investigation of the interaction of human
motion with the environment including assessing injury risks. One of the most well-known
experiments in biomechanics is the work of Hill (1938) which is the foundation for modern
models of muscle mechanics. With his experiments, he showed that the force production of a
muscle is dependent on the contraction velocity of the muscle fiber. In addition to studying
isolated muscle properties, modern experiments investigate how these intrinsic muscle prop-
erties interact with the neural control to maintain stable locomotion. For example, based
on experiments with running guinea fowl that experience sudden drops, Daley et al. (2009)
showed that intrinsic muscle properties increase the robustness towards unexpected pertur-
bations. Furthermore, techniques such as electromyography have been extensively used in
studies aiming to gain insights into the neural control of human walking, enabling us to infer
the muscle coordination pattern (Winter and Yack, 1987; Murray et al., 1984).

While these experimental studies are necessary, they face various limitations due to the
invasiveness of the techniques. For example, experimentally testing isolated changes in the
musculoskeletal, sensory or neural system is difficult or ethically unacceptable. To tackle these
challenges, musculoskeletal physics-based simulations have become helpful tools in recent
decades. They allow us to understand the human system better, test hypotheses about
neural control and movement, and to estimate values that are difficult to measure in vivo.



2 Introduction

Typically, in the field of biomechanics, two different ways of using physics-based simulations
have emerged: The inverse approach (also called tracking simulations) and the forward ap-
proach (also called predictive simulations). Until today, the most widely used method is still
the inverse approach, for which experimental data of a motion is used as input for a human
body model. Such data typically requires the analysis of multimodal sensors, such as motion
capture data, e.g, using experimental markers, as well as neuronal state information recorded
with electromyography, and ground reaction forces measured with force plates. Using such an
inverse approach then allows the calculation of torques acting on the joints within the human
body (Kuo, 1998; Zajac et al., 2002). Especially combined with state-of-the-art optimization,
this approach is able to analyze the contribution of individual muscles (Crowninshield and
Brand, 1981; Anderson and Pandy, 2001b; Erdemir et al., 2007). However, the use case of this
method is limited to the study of motions that have been previously recorded experimentally.
Hence, predictive simulations are required to analyze and predict new, unseen movements,
as well as to test hypotheses about the neural control of human motion and pathological
diseases.

In the realm of predictive simulations, models of the neural control system or bioinspired
control strategies are used to drive the motion into future states and, thus, predict the time
development of the musculoskeletal system. Using predictive simulations, we can ask “what
if” questions, such as “what if the muscle activation pattern changes” or “what if the actuator
dynamics are different”. They have been successfully applied to investigate maximum height
jumps (Anderson and Pandy, 1999), three-dimensional walking (Song and Geyer, 2015), load
sharing in the human spine (Meszaros-Beller et al., 2023), as a tool in forensics in a real crime
case (Graevemeyer, 2023), and many more. In this thesis, mainly predictive simulations are
used to investigate the interplay between the neural control system, the biophysical structures
and the environment as shown in Figure 1.1. As visualized, this means taking into account
the nonlinear muscle-tendon dynamics while developing bioinspired control strategies that
drive the motion. Although these predictive simulations have been successfully applied to
investigate human motion, there still remain challenges when it comes to muscle-actuated
motion. In the following, I will discuss some of these challenges, which serve as the basis for
this dissertation, as the contributions of this thesis aim to tackle these issues.

1.2. Challenges in predicting muscle-actuated motion

Human body models including muscle-tendon dynamics Biological motion is driven by
muscles, a complex actuation principle of nature. For many years, it was regarded as overly
complex and computationally expensive to model muscle-tendon dynamics in biomechanical
simulations (Hume et al., 2019; De Groote and Falisse, 2021). Therefore, as an alternative to
muscle-driven actuation, torque-actuated (or joint-actuated) motion is often used to model
and simulate biomechanical systems in computer science, robotics, neuroscience, automo-
tive safety and biomechanics. In muscle-actuated motion, the dynamics of muscles including
activation and contraction dynamics, tendon dynamics and nonlinear muscle routing is ex-
plicitly modeled to produce joint torques, which in turn produce joint motion. However,
in torque-actuated motion, the joint torques are directly controlled without modeling the
muscles explicitly. While both approaches have advantages and disadvantages, the choice of
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Figure 1.1.: Predictive simulations allow us to study the complex interplay between neural
control, the human body and the environment. This thesis shows how muscle-
actuated motion can be controlled for various locomotion and reaching tasks.
To do so, the brain and central nervous system take into account and exploit
the nonlinear muscle-tendon dynamics. The control concepts are also tested and
extended for personalized models which are used to design and scale assistive
devices. Additionally, I expose the learned motions to unknown and unlearned
perturbations such as lifting weights or reacting to external pushes.



4 Introduction

whether muscle dynamics is included depends on the specific research goals, the application
and the available resources. For example, in the related field of computer animation, virtual
humans are often modelled using torque-actuation, e.g. Wu and Popović (2010), or linearized
versions of the muscle dynamics, e.g. Lee and Terzopoulos (2006), which simplifies the simu-
lation. While it has been noted, that using torque-actuation is not biologically realistic and
the predicted torque patterns are often unnatural or infeasible for humans to achieve (Komura
et al., 2000; Jiang et al., 2019), it is still widely used in computer graphics and animation
due to several challenges. One of the main challenges preventing the use of muscle dynamics
is the high computational cost of muscle-actuated motion. Additionally, modeling realistic
human models including muscles, requires complex modeling efforts and is considered too
labor-intensive (Geijtenbeek et al., 2010; Jiang et al., 2019; McErlain-Naylor et al., 2021).
Further, the high redundancy of the musculoskeletal system makes it challenging to develop
control strategies (Komura et al., 2000) which is addressed in the next section.

Similarly, in the field of automotive safety, it is still common to use passive human body
models, anthropomorphic test devices (ATDs, also known as crash-test dummies) or post-
mortem human subjects (PMHS) to predict injury risks during vehicle collisions. While these
models and surrogates are necessary and have been historically used successfully, they do not
capture the full, complex dynamics of human motion. One reason for this is that crash-test
dummies were developed for specific loading directions and severe impacts which makes it
difficult to predict the injury risk for less severe impacts (Beeman et al., 2012). Furthermore,
it is not possible to analyze the stress and deformation distribution in detail (Xu et al.,
2018). To overcome this challenge, the use of active human body models has been proposed.
Here, several studies have shown that a human body model can predict the human response
better compared to standard crash test dummies such as the Hybrid III model (Östh et al.,
2015). Other studies show that the head kinematics are altered by the reaction of the muscles
(van der Horst et al., 1997; Siegmund et al., 2002; Putra et al., 2019). Nevertheless, modeling
efforts and computational costs still limit the use of muscle-actuated models in automotive
safety for similar reasons as the challenges previously mentioned.

This thesis aims to tackle these challenges and develop new methods to model human mo-
tion including muscle-tendon dynamics. Therefore, as part of this thesis, two simple models of
a human arm and a human all-body model have been improved, developed and made available
open-source (Appendix A, Appendix B). They include the activation dynamics, the muscle-
tendon dynamics, and nonlinear muscle routing. Additionally, a recently developed Hill-type
muscle material with a more realistic eccentric force-velocity relation and serial damping
(Günther et al., 2007; Haeufle et al., 2014a; Kleinbach et al., 2017) has been incorporated
in the detailed head-neck model of the commercially available THUMS v5 model (Iwamoto
and Nakahira, 2015) as part of this thesis (contribution III, Wochner et al. (2022a)). This
muscle model shows better model accuracy and accelerates the simulation time compared
to the standard muscle model used in the simulation software LS-DYNA (Kleinbach et al.,
2017).

Controlling muscle-actuated motion Closely linked to the challenges in modeling realistic
human motion is the challenge of controlling muscle-actuated motion. While previous studies
have shown impressive results in controlling muscle-driven motion, there still remain unsolved
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challenges. It has been stated that controlling muscle-driven motion is especially challenging
due to the high dimensionality of the control space and the high nonlinearity of the muscle dy-
namics (Full and Koditschek, 1999; Wolpert et al., 2001). This difficulty in controlling highly
nonlinear actuators is not only a challenge in biomechanics but also in robotics. Therefore,
traditionally, actuators have been made as stiff as possible in robotic applications to allow
for precise position control (Van Ham et al., 2009). However, nowadays, variable impedance
actuators or other muscle-like actuators are on the rise due to their advantages in safety,
energy-efficiency and the possibility to achieve highly dynamic motions (Vanderborght et al.,
2013). This requires the control of highly nonlinear actuators or muscle-like actuators in
both robotics, biomechanics and overlapping fields such as rehabilitation and human-robot
interaction. Additionally, in these research fields, there is a need to develop controllers for
more complex tasks that are able to adapt to dynamic environments (Song et al., 2021). One
possibility to solve these challenges is to use learning approaches for movement control. How-
ever, these approaches typically require carefully designed reward functions and strategies to
resolve the redundancy of the musculoskeletal system.

Therefore, this thesis contributes towards these challenges in various steps: I propose a
method to solve the redundancy problem by investigating which optimality principles best
explain human reaching motions. This is done using the example of point-to-manifold reach-
ing tasks while accounting for muscle dynamics (contribution I, Wochner et al. (2020)). Ex-
tending this approach, this thesis demonstrates the control of muscle-actuated motion for a
wide range of tasks, including variants of reaching and locomotion tasks using various learn-
ing concepts (contributions IV-V, Haeufle et al. (2020b); Wochner et al. (2022b)). While the
challenge of how to control muscle-actuated motion is one of the core technical challenges of
this work, it also gives insights into different research questions: It is investigated how robust
the control of muscle-actuated motion is, for example, towards unknown perturbations of
external pushes. Additionally, it is tested how the control of muscle-actuated motion can
be adapted to lifting unknown weights. Furthermore, this work explores how the control
task can be simplified by exploiting the morphology, e.g. using different actuator dynamics
such as muscle or torque actuators. Finally, this thesis asks whether and how the learning
task can benefit from the highly nonlinear muscle dynamics that provide inherent stability.
To summarize, this work demonstrates and quantifies that the muscle dynamics counter-
intuitively simplify the control (contribution IV, Haeufle et al. (2020b)). Furthermore, I
show that including muscle dynamics is beneficial for more data-efficient and robust learning
of anthropomorphic tasks (contribution V, Wochner et al. (2022b)).

Individualization and subject-specific modeling In the field of biomechanics, it is common
to use generic models of the human body that represent an average person. However, while
this lack of personalization may be sufficient for studying control phenomena that are de-
coupled from an individual, certain applications require individualized models (Saxby et al.,
2020). For instance, when designing exoskeletons or assistive devices for rehabilitation or
manual labor, individual models are essential to maximize the benefits of exoskeleton assis-
tance (Slade et al., 2022). Similarly, individual differences in the human body, such as age,
BMI, gender, and anthropometry, have been shown to affect injury risks which is critical for
the design of safety systems for vehicles (Newgard and McConnell, 2008; Kent et al., 2009;
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Carter et al., 2014). Specifically, individual reflexive responses to head-neck perturbations
can influence the injury risks in traffic accidents, but also in recreational-related collisions
(see Le Flao et al. (2018) for an overview). To understand these individual differences, it is
necessary to develop individual models and adjusted control strategies. However, it is cur-
rently still infeasible to estimate all parameters for an individual model from medical imaging
data. Additionally, collecting specific data from experiments is often a time-consuming and
expensive process.

This thesis presents a scaling approach that allows to estimate individual parameters from
generic models based on the height and weight of individual persons. This is similar to the
idea of buying clothes with different sizes, e.g. S, M, and L. These scaled models are then
used to dynamically predict the driving torques of various arm movements representing both
manual labor and daily activities. In turn, these torques are used to design and scale a
power unit as part of an exoskeleton (contribution II, Waldhof et al. (2022)). In addition
to this personalization of the musculoskeletal system, this thesis also poses the question
of how individual control adaptations, such as the sensitivity of the neuronal state in a
reflex controller influence the biomechanical reflex response (contribution III, Wochner et al.
(2022a)).

Validation and benchmark tests Another challenge that bars the widespread use of muscle-
actuated models is the lack of verification and validation (Anderson et al., 2007; Fregly, 2021).
Evaluating the validity of muscle-actuated models impacts clinical practice, medical device
design or the testing of safety systems. Furthermore, this ensures the reliability of the models
and the trust of our society in the results of the models. It has been identified that this
requires the availability of open-source datasets including comprehensive experimental data
and the development of standardized benchmark tests (Hicks et al., 2015).

As part of this thesis, novel experimental data are presented in a standardized ’falling
heads’ setup that allows the investigation of reflexive responses to head-neck perturbations.
This data is used in combination with forward dynamic simulations to validate the used
human body model and various control strategies. The setup of these experiments and their
numerical equivalent is simple, making them ideally suited as benchmark tests for future
validations in virtual test procedures (contribution III, Wochner et al. (2022a)). Indeed, the
presented data has also been used in a follow-up study to compare three existing human body
models with varying software codes and muscle materials (Martynenko et al., 2021).

1.3. Objectives and structure of this thesis

Concluding, the aim of this thesis is two-fold: First, I present control and modeling methods
along with scaling approaches for individual persons aimed at addressing the challenges asso-
ciated with muscle-actuated motion. Second, I demonstrate the benefits of muscle-actuated
motion regarding control and learning by investigating a diverse range of human movements
including reaching and locomotion tasks. By addressing these objectives, this thesis provides
valuable insights into the complex interplay between the neural control system, biophys-
ical structures, and the environment, as illustrated in Figure 1.1. Chapter 2 provides a
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comprehensive overview of the current state of the art in modeling and control of neuromus-
culoskeletal models. It also introduces the concept of embodied intelligence or morphological
computation, highlighting how the morphology of the human body can be exploited to im-
prove the control and learning capabilities. The objectives and contributions of this thesis
are summarized in Chapter 3, and a detailed overview of the publications contributing to
this thesis is given in Chapter 4. The corresponding publications answering the overarching
research question of this thesis are presented in contributions I-V. Here, each contribution
focuses on different sub-aspects, as indicated in the in Figure 1.1. Finally, a summary of the
main findings and an outlook on future work is given in Chapter 5.





2. Methods and literature background

2.1. Musculoskeletal models

Computational musculoskeletal models describe the interaction between various biophysical
structures including signals of the nervous systems, the chemical processes needed to activate
the muscle, the force production in the muscles and their effect on the environment. De-
pending on the level of detail of the underlying model, they can be crucial in understanding
healthy as well as pathological motions. The main reason behind this is that models of the
musculoskeletal system can be used to test hypotheses of motor control and biomechanical
dynamics by modifying parts of the model or their surrounding environment which would
either not be possible or too dangerous in vivo. A schematic overview of the components
required to model biophysical movements is shown in Figure 2.1.

Typically, we control, optimize or learn the muscle stimulation signal u which is the input to
the nonlinear activation dynamics modeling the free-calcium ion concentration. The resulting
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Figure 2.1.: Musculoskeletal modeling in a predictive simulation requires various components:
the activation dynamics modeling the free-calcium concentration, the contraction
dynamics modelled in the Hill-type muscle model, the anatomical muscle routing,
which translates the muscle forces to torques acting on the joints, and finally the
skeletal dynamics predicting the resulting joint angle trajectory.
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activation signal a is then used to calculate the force FMTU of the muscle-tendon unit (MTU)
by taking into account the nonlinear force-length and nonlinear force-velocity relation as well
as the nonlinear tendon elasticity. Finally, these forces are applied to the skeletal system
by transforming the forces into torques using the anatomical muscle routing resulting in
nonlinear lever arms. In the following, each of these components is described in more detail
with a focus on how they are modelled in this thesis.

Activation dynamics The muscles are activated with the control signal u, which can be seen
as a representation of signals coming from the central nervous system or the brain, and our
case is typically modeled as the total neural excitation of all neuromuscular junctions of a
muscle. This signal u is nonlinearly transformed into an activation signal. This activity a is
modeled as a first-order differential equation depending on the normalized calcium ion con-
centration γ as introduced by Hatze (1977) and simplified by Rockenfeller et al. (Rockenfeller
et al., 2015; Rockenfeller and Günther, 2018):

γ̇t =MH(ut − γt). (2.1)

Next, this calcium ion concentration γ is nonlinearly mapped onto the muscles’ activity

at =
anll +$

1 +$
, (2.2)

with $(γt, l
CE
t ) = (γt · ρ(lCE

t ))ν and ρ(lCE
t ) = γc · ρnll · lCE

t

lCE,opt . Note, that the subscript t
denotes the time-dependency of the variables. The parameters lCE

t and lCE,opt denote the
current and the optimal fiber length, respectively. All other variables (MH, anll, γc, ρnll, ν) are
constant parameters that are chosen muscle non-specifically (a detailed overview for the used
models is given in the supplementary material, see Table B.5). From a control perspective,
the characteristics of this activation dynamics a can be understood as a low-pass filter of the
control signal u.

Nonlinear force-length relation In a biological muscle, the force production is dependent on
the current length of the muscle fiber. The active force production is modeled by a nonlinear
force-length relation characterized by a positive slope (ascending limb) at short muscle lengths
and a negative slope (descending limb) at long muscle lengths. The maximum of this curve
is reached at the optimal fiber length lCE,opt (plateau region), where the maximum isometric
force Fmax is produced. This nonlinearity can be explained with the sliding filament theory
(Gordon et al., 1966): Inside the sarcomere, the basic contractile unit of a muscle fiber, two
myofilaments, the actin (thin) and myosin (thick) are sliding over one another. The myosin
heads are attached to the actin filaments and can slide along the actin filaments. The sliding
of the myosin heads along the actin filaments is driven by the energy released by the hydrolysis
of ATP. The myosin heads are attached to the actin filaments by cross-bridges. Based on the
geometrical overlap of these two sliding filaments, the number of formed cross-bridges changes.
This is assumed to be proportional to the contractile force that is produced by the muscle
fiber. Experimentally, this force-length relation can be measured using various techniques.
The most common one is to attach a force transducer to the muscle, which is a device that
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Figure 2.2.: Nonlinearities modeled in a Hill-type muscle model. (a) and (b) show a typi-
cal nonlinear force-length and force-velocity curve of the muscle, (c) shows the
nonlinear tendon elasticity. All forces are normalized with respect to the maxi-
mum isometric force Fmax. The muscle length is normalized with respect to the
optimal fiber length lCE,opt, and the tendon strain is normalized with respect
to the tendon slack length lSEE,0. Note, that while the force-length and force-
velocity relation are plotted two-dimensionally, in reality, they form a surface.
The shown curves are cross-sections of this force-length-velocity surface, where
either the muscle length or the muscle velocity is kept constant.

measures the generated force. During the experiment, the muscle is fixed at different lengths
while stimulating it. This leads to the generation of different forces depending on the current
length. The resulting force-length relation is then fitted to a mathematical function as shown
in the curve in Figure 2.2 (a). Additionally, this figure shows the passive force-length relation
in red, which is the force generated by the muscle when inactive and stretched beyond its
optimal fiber length. These passive forces are generated by the connective tissue surrounding
the muscle fibers and can be characterized similarly to a nonlinear spring. The total force
generated dependent on the current muscle length is the sum of the active and passive force,
as shown in the black dashed curve in Figure 2.2 (a). Note, that this dependency is plotted
for a fixed velocity (for a detailed discussion regarding this issue, I refer to Yeo et al. (2023)).

Nonlinear force-velocity relation Similar to the nonlinear generation of force depending on
the current muscle fiber length, the force production of a muscle fiber also depends on the
current velocity of the muscle fiber. This relation is also nonlinear and can be characterized by
a decreasing force for faster shortening velocities (concentric contraction) and an increasing
force when the muscle is externally stretched against its contraction direction (eccentric
contraction). At the isometric point (velocity = 0) the maximum isometric force Fmax is
produced, and at the intersection of the curve with the x-axis (force = 0), the maximum
contraction velocity is reached. The basis for this hyperbolic relationship was first described
by Hill (1938) and an exemplary curve is visualized in Figure 2.2 (b). In Hill’s original quick-
release experiment, this relationship was measured by first fixing the muscle at a fixed length,
then activating the muscle and finally releasing it to measure the initial shortening velocity
while forcing it to resist against various loads.

Nonlinear tendon elasticity In addition to the biological muscle, the tendon needs to be
modelled. Tendons attach the muscle to the bone and therefore, are responsible for the
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transmission of forces from the muscle to the bone. The tendon is a viscoelastic structure
which is able to store and dissipate energy. It acts as a nonlinear spring where typically
a nonlinear toe-region in the stress-strain curve is followed by a linear continuation until
the tendon experiences mechanical failure at the risk of injury. This nonlinear force-strain
behavior is visualized in Figure 2.2 (c). Note, that in the nonlinear toe-region, the fibers
of tendons typically are slack until they are stretched beyond a certain threshold, which we
call the tendon slack length lSEE,0. Even though the tendon only passively contributes to
the force generation, its compliance affects the force generation of the muscle. This can be
intuitively understood by the following example: If the tendon is short and very stiff, the
muscle length will change less compared to the case of a long and compliant tendon. This
also directly impacts the current force-generation capacities of the muscle as the force is
nonlinearly dependent on the current muscle length.

Hill-type muscle tendon model The Hill-type muscle model is a widely used model to
describe the force production of biological muscles. It is based on the idea that muscle
behavior can be modeled as an active viscoelastic element. To do so, the MTU is modeled
as a spring-damper system including several components to represent different mechanical
properties. Using this macroscopic muscle model, forces can be predicted based on the
activity a as, e.g., given by Eq. 2.2. In this thesis, the used Hill-type muscle model (Hill,
1938; Günther et al., 2007; Haeufle et al., 2014a) includes four spring-damper components
(see Fig. 2.3): The contractile element (CE) models the cross-bridge-cycle of the myosin
heads attaching to the acting filaments and therefore, predicts the active force production of
biological muscle fibers. This element incorporates the nonlinear force-length and nonlinear
force-velocity relation of biological muscles. The parallel elastic element (PEE) models the
passive connective tissue in the muscle belly and is arranged in parallel to the CE. Tendons
and other compliant materials including their viscoelastic properties are modeled in series to
the CE element using a serial elastic element (SEE) and a serial damping element (SDE). All
in all, the governing model dependencies for all muscles i = 1, ..., n are:

l̇CE
i = fCE(lCE

i , lMTU
i , l̇MTU

i , ai) (2.3)

ȧi = fa(ai, ui, l
CE
i ) (2.4)

FMTU
i = fMTU(lMTU

i , l̇MTU
i , lCE

i , ai) , (2.5)

where the first differential equation (Eq. 2.3) denotes the contraction dynamics which models
the velocity l̇CE of the contractile element. This contraction velocity is dependent on the
current CE length lCE, the length and contraction velocity of the muscle-tendon unit lMTU

and l̇MTU respectively, and the activity a. The latter is modeled by the activation dynamics
(see Eq. 2.1,2.2,2.4). Finally, based on these differential equations, the force FMTU

i for each
muscle can be predicted.

Nonlinear moment arms The muscle-tendon units are attached at fixed insertion and origin
points where the force acts along the routing path from one attachment point to the other.
Based on this anatomical routing, nonlinear moment arms can be identified that translate
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Figure 2.3.: The muscle-tendon model is modeled as lumped Hill-type muscle model (figure
adapted from Haeufle et al. (2014a)).

the force of the muscle-tendon units into joint torques acting on the joint’s center of rotation:

τMTU = r × FMTU (2.6)

Furthermore, the fixed attachment of the muscle path also implies that the moment arm r

and the length of the muscle-tendon unit lMTU change if the joint angle changes. In order to
get a mathematical description for the moment arm r, we can also make use of the principle
of virtual work. This states that the total virtual work of forces acting on the system is
zero for any virtual displacement. Therefore, the virtual work done by a muscle is equal to
the virtual work of all external moments. The latter can be defined as the product of the
moment τMTU with a virtual joint angle displacement δφ, whereas the work of the muscle is
the product of force generated by the muscle FMTU with an infinitesimal displacement of the
length of the muscle-tendon unit δlMTU (Sherman et al., 2013):

τMTU · δφ = FMTU · δlMTU (2.7)

Combining this equation with Eq. 2.6 we get an expression for the moment arms which is
dependent on the muscle length lMTU and the joint angle φ:

r =
δlMTU

δφ
(2.8)

This equation is helpful to measure moment arms experimentally. Moment arms can be
measured visually with MRI scans for a fixed position by measuring the vertical distance
between the muscle fiber and the joint center (in vivo). Alternatively, the so-called tendon-
excursion method (An et al., 1984) based on Eq. (2.8) can be used, where position transducers
measure the displacement of the muscle length lMTU while the joint angle is rotated around
the range of motion using, e.g., cadaver recordings. Based on this data, the muscle path
around the joint can be modeled. There exist multiple numerical approaches to model this
routing of the muscle path (Hoy et al., 1990; Delp et al., 1990; Garner and Pandy, 2000).
The simplest one is to assume constant or polynomial functions that model the lever arms
as a function of the joint angles. A more complex approach for modeling the muscle path
around the joints is to model the routing via deflection ellipses (Hammer et al., 2019). If
the length of the half-axes of all ellipses is set to zero, this approach can be simplified to the
more commonly used fixed via-point approach for muscle routing. Based on the resulting
moment arms of the muscles, the force FMTU is translated to generalized torques acting on
the degrees of freedom of the system.
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Modeling the mechanical system There exist two computational methods to model the
mechanical system of a musculoskeletal model: Multibody (MB) methods and the Finite
Element Method (FEM). Typically, MB methods, also known as rigid body dynamics are
used to model the motion of the system as interconnected rigid bodies. These methods
are based on the principle of Newtonian mechanics describing the movement of solid bodies
as a result of the action of forces. In contrast, the Finite Element Method is a numerical
method to solve partial differential equations (PDEs) modeling the deformation and stress of
flexible bodies. The FEM is based on the principle of solid continuum mechanics where the
deformation of the body as a result of the acting forces is described by modeling a set of nodes
and elements for which the equations are solved individually. In biomechanics, typically, MB
methods are used to estimate internal body forces and understand muscle functions, whereas
FEM can be used to investigate the loads on tissues, e.g., bone and cartilage. Both methods
have different strengths and weaknesses; FE methods are typically computationally more
demanding compared to MB methods but can be used to extract the deformation, strains and
stresses of flexible bodies. Therefore, typically the underlying research questions determine
which method is used to model the mechanical system.

Equations of motion describe the motion of physical systems as a function of time. They are
used to model mechanical, chemical, quantum mechanical and robotic systems. To describe
the dynamics of these systems, one can derive the Lagrange equation of motion (second kind)
in generalized coordinates as a mathematical result from the calculus of variations:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= Fj (2.9)

In the given equation, q represent the generalized coordinates, while F refer to generalized
forces, i.e. internal and external forces acting on the system. It should be noted that in
the case of muscle-actuation, the torques generated by the muscle-tendon units on each joint
are included in the vector F . The term L(q(t), q̇(t)) is known as the Lagrangian and is
conventionally defined as follows:

L = T − U (2.10)

where T denotes the total kinetic energy and U is the potential energy of the system. Using
Eq. 2.9, we can then compute the partial derivatives analytically. Using the chain rule, we
have:

d

dt

∂L

∂q̇j
=

∂

∂qj

∂L

∂q̇j
· q̇j +

∂

∂q̇j

∂L

∂q̇j
· q̈j . (2.11)

This results in
∂

∂q̇j

∂L

∂q̇j
· q̈j︸ ︷︷ ︸

M(q)q̈

+
∂

∂qj

∂L

∂q̇j
· q̇j −

∂L

∂qj︸ ︷︷ ︸
C(q,q̇)

= Fj , (2.12)

which can be rewritten to get the differential form of the equations of motion:

M(q)q̈+ C(q, q̇) = F . (2.13)

Here, M ∈ RnDoF×nDoF denotes the symmetric, positive definite mass matrix and C ∈ RnDoF

denotes the vector of the generalized gravitational, centrifugal, and Coriolis forces. Note, that
this equation is written in an inverse dynamics form. This can be used to infer the forces
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that take the system from the current state to a future outcome. However, in this thesis,
most problems are solved using forward dynamic predictions. Here, the goal is to predict
future states (e.g. the angle trajectory q) based on the forces that are applied externally or
using muscles. To evaluate the angle trajectory, we can write the forward dynamics form:

q̈ = M(q)−1(F − C(q, q̇)) (2.14)

State of the system In the fields of cybernetics and control theory, typically a state vector
x is used to uniquely describe the state of a system. Through the use of differential equations,
this state vector tracks the evolution of the system over time, as determined by the underlying
system dynamics. In most cases, the state vector includes kinematic variables that capture
key features such as the current location and velocity of structures. When working with rigid-
body assumptions, these kinematic variables can be represented in terms of the generalized
joint angles q and their respective velocities q̇. Additionally, using a musculoskeletal model
with a Hill-type muscle model (as outlined in Sec. 2.1) requires the solution of two additional
differential equations for each muscle incorporated. As a result, the number of state variables
increases, necessitating a formulation of the complete state vector x that encompasses all
included muscles i = 1, . . . , nmusc and generalized coordinates j = 1, . . . , nDoF. This can be
expressed as follows:

x ∈ R2nmusc+2nDoF
= {qj , q̇j , lCE

i , γi} (2.15)

where nmusc and nDoF denote the number of muscles and the number of generalized coordi-
nates, respectively.

Generic and individual representations of musculoskeletal models To predict human mus-
culoskeletal motion using the equations discussed previously, it is necessary to determine
various parameters related to both the mechanical properties and muscle-related parameters
influencing the muscles’ force output. There are two general approaches for estimating these
parameters: Using individual measurements to represent a specific human, or generic models
that can be scaled and used to model representative humans. While the first approach is
preferable because it allows for better prediction of the movements of individual patients,
it is also more expensive and, for some parameters, ethically and experimentally infeasible.
Hence, a generic baseline model is often used to represent averaged human motion, which is
then scaled based on different individual measurements. This approach relies on statistical
regression based on anthropometric data sets (Associates et al., 1978; Winter, 2009; DIN
33402-2:2005-12). Assuming linear correlation, a model parameter y can be calculated based
on a known or measured anthropometric property x, using the following regression equation:

y =
σy
σx
cxy(x− x) + y. (2.16)

Here, the standard deviations and mean values of each distribution are denoted as σx, σy, and
x and y, respectively, and cxy ∈ (−1, 1) describes the correlation coefficient. This statistical
approach can be used to estimate, e.g., a segment length based on measured body height.
However, for certain research questions, modeling specific individuals may not be helpful. For
instance, car occupant models (Pankoke and Siefert, 2007), pedestrian safety models (Decker
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et al., 2019; Pak, 2019) or ergonomic studies (Siefert et al., 2008) among others, often use rep-
resentative quantities instead. Typically, three human sizes are chosen: F05, M50 and M95,
which represent the 5th percentile female, the 50th percentile male and the 95th percentile
male person, respectively. These representatives are commonly used in biomechanical studies
because they cover the range between these model sizes (in body height and weight) repre-
senting roughly 90% of the entire human population. Based on existing data sets, it seems
reasonable to assume a normal distribution of the anthropometric data. Therefore, instead
of using the mean and standard variation in Eq. (2.16), it is equivalent to determining the
values of the three different percentiles. Based on this approach, all mechanical parameters
can be used to scale models to individual properties. More specifically, this includes the
following mechanical parameters for a musculoskeletal model: lengths and inertia properties
of all segments, location of the joint center and joint axis of rotation.

Furthermore, various musculoskeletal parameters need to be estimated and scaled including
the nonlinear muscle routing, the optimal fiber length lCE,opt, the tendon slack length lSEE,0

and the maximal isometric force Fmax. These parameters can be estimated using different
methods, either based on (1) anthropometric dimensions or (2) experimental measurements
such as joint angle-torque relationships (Garner and Pandy, 2003; De Groote et al., 2010),
EMG-based muscle excitation (Lloyd and Besier, 2003; Falisse et al., 2016) or MRI-based
muscle-tendon length measurements (Herzog et al., 1991; Blemker et al., 2007), which take
into account the subject’s specific moment-generating characteristics. In the following, I will
briefly introduce the scaling of parameters based on anthropometric dimensions, as these
methods are commonly used due to their ease of use and computational efficiency. One of
the challenges related to estimating muscle-tendon parameters is measuring the optimal fiber
length and tendon slack length, even with expensive imaging technologies such as ultrasound
or MRI (Herzog et al., 1991; Blemker et al., 2007). Therefore, muscle-tendon parameters are
often determined in cadaver studies as mean values and then scaled to the respective segment
lengths. To determine the generic optimal fiber length, the mean fiber length l

CE and mean
sarcomere length l

S are typically measured experimentally. The optimal fiber length is then
calculated by dividing these two lengths and multiplying it by the optimal sarcomere length
lS,opt:

lCE,opt =
l
CE

l
S · lS,opt. (2.17)

Here, the optimal sarcomere length is defined as the sarcomere length at which maximum
isometric tension is generated and has been estimated for humans to be lS,opt = 2.7µm

(Walker and Schrodt, 1974). To scale this optimal fiber length, a simple approach is to rely
on linear scaling based on the scaled segment lengths (Seth et al., 2018; Winby et al., 2008).
To calculate the maximal isometric force Fmax and scale it accordingly, the physiological
cross-sectional area PCSA of the muscle needs to be determined, as it correlates with the
maximum force. The muscle volume V mus can be measured from cadavers or MRI scans
(Wickiewicz et al., 1983; Handsfield et al., 2014). Assuming a cylindrical muscle belly shape,
the PCSA can be calculated based on the optimal fiber length and the measured muscle
volume V mus as:

PCSA =
V mus

lCE,opt . (2.18)

The subject-specific maximal isometric force in the Hill-type muscle model is then calculated
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by multiplying the specific maximum isometric stress σ of the muscle with the PCSA:

Fmax = PCSA · σ. (2.19)

The specific maximum isometric stress of muscles is typically assumed to be in the range
of σ = 20 · · · 35N/cm2 (see also Mörl et al. (2020) for a more detailed discussion regarding
maximum isometric stresses). It is worth noting that the muscle volume has been found
to scale with body mass, suggesting that the maximal isometric force can be scaled based
on this quantity as well (Handsfield et al., 2014; van der Krogt et al., 2016). Finally, as
mentioned earlier, measuring the tendon slack length lSEE,0 experimentally is challenging due
to the nonlinear origin-insertion paths of the muscle-tendon unit. Therefore, it is often scaled
subject-specifically. In the case of the spine and thorax muscles, one assumption used also in
this thesis (contribution III) is that these muscles are at their optimal length when standing
upright. Consequently, the following assumption can be made for these muscles (Rupp et al.,
2015; Wochner et al., 2022a; Meszaros-Beller et al., 2023):

lSEE,0 = lMTU − lCE,opt. (2.20)

For limb muscles, it is typically preferred to either optimize the tendon slack length based
on measured relationships of fiber length and joint angle or match experimentally measured
peak isometric torques at certain joint angles. The former approach is also employed in this
thesis to scale the optimal fiber length and tendon slack length at representative poses for
the muscles of the arm model (contribution II).

In conclusion, the scaling of musculoskeletal models using Hill-type models involves often
estimating generic muscle-tendon parameters from cadavers or MRI methods and then using
subject-specific scaling methods. Various methods can be used, ranging from simple linear
scaling methods based on individual anthropometrics (Seth et al., 2018; Winby et al., 2008)
to more complex nonlinear scaling methods that match experimentally measured joint angle-
moment curves (Garner and Pandy, 2003; De Groote et al., 2010), or EMG-based muscle
excitation (Lloyd and Besier, 2003; Falisse et al., 2016) among other approaches. For a more
detailed discussion on the scaling of musculoskeletal models using Hill-type models, refer to
Winby et al. (2008); Heinen et al. (2016) and Modenese et al. (2016).

Computational simulation frameworks of biomechanical models There exists a wide range
of different simulation frameworks to predict human musculoskeletal motion. These frame-
works can be divided into two main categories depending on whether they use the multibody
approach or the finite element method to model the musculoskeletal system. Regarding the
latter, one of the most widely used frameworks is the FE simulation software LS-Dyna. LS-
Dyna is a commercial software package that is used to simulate the dynamic behavior of
mechanical systems. It is based on the finite element method and can be used to simulate
a wide range of different mechanical systems. There exist several advanced FE human body
models that integrate active muscles into the body, for an overview, I refer to the supple-
mentary material of Wochner et al. (2022a). While these detailed FE simulations are able to
describe the behavior of tissues with greater detail e.g. to evaluate the injury risks in traffic
accidents, they are computationally more expensive and therefore not suitable for research
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questions focusing on complex movements with many degrees of freedom. Therefore, another
alternative is to use multibody simulation platforms such as OpenSim (Delp et al., 2007; Seth
et al., 2018), Anybody (Rasmussen et al., 2003; Damsgaard et al., 2006), MuJoCo (Todorov
et al., 2012), biorbd (Michaud and Begon, 2021) or demoa (Schmitt, 2022). Additionally,
platforms that build upon existing simulation frameworks were recently released that ac-
celerate the underlying simulators and combine them with control libraries, e.g. SCONE
(Geijtenbeek, 2019) based on optimal control and MyoSuite (Caggiano et al., 2022) using
learning methods. While all these frameworks are able to model the muscle and tendon me-
chanics, skeletal dynamics and neural inputs, they differ in the details of the implementation
and the underlying mathematical models. While some of these details are openly discussed
in the literature, e.g. the trade-off between modeling tendon accurate in OpenSim and the
computational speed in MuJoCo (Ikkala and Hämäläinen, 2022; Wang et al., 2022), others
are more difficult to compare due to the proprietary nature of the software (e.g. Anybody
or simulation engine HyFyDy of SCONE). Additionally, one of the few comparison studies
that were carried out recently (Kim et al., 2018; Trinler et al., 2019) compared the accuracy
and results of OpenSim and Anybody. While they argued that the shown differences in the
outputs are mainly due to model choices, a complete benchmark across different frameworks
comparing existing tools to simulate human musculoskeletal motion is still missing. There-
fore, it is at the moment still up to the user and the underlying research question to carefully
decide which framework to use based on different modeling assumptions.

2.2. Theories and concepts of biological movement control

The following section introduces several concepts of biological movement with a focus on
control. These concepts lay the foundation for the following chapters and are therefore
briefly discussed here.

Motor equivalence problem One fundamental challenge when trying to control biological
movement is that every movement can be produced by a possibly infinite number of motor
actions. The reason behind this is the highly redundant musculoskeletal system including 244
kinematic degrees of freedom (DoF) (Morecki et al., 1984) and roughly 630 skeletal muscles of
the human body (Prilutsky and Zatsiorsky, 2002). This redundancy problem was first stated
by Bernstein (1966) and is called the motor equivalence problem. It can be separated into
two sub-problems: A controller needs to solve both the kinematic redundancy and the kinetic
redundancy. This means that the controller has to decide and plan how to move the joints to
achieve a certain posture to resolve the kinematic redundancy. Additionally, the controller
has to decide how to activate the muscles to achieve these joint movements to resolve the
kinetic redundancy. While from a technical viewpoint, this might seem overly complicated,
this redundancy also gives rise to motor variability. This means that our movements can be
more robust, and we can select alternative patterns when one or multiple muscles lose their
function temporarily or permanently (e.g. due to fatigue or diseases) (Rasmussen et al., 2001;
Sohn et al., 2019).
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Optimality To overcome this challenge of controlling a highly redundant system, researchers
often assume that through evolution, the brain and central nervous system have adapted to
perform movements in an optimal manner. To be more specific, controlling a movement op-
timally means that a set of motor actions is selected to fulfill a certain task while optimizing
a specific cost function. Commonly used examples of such cost functions include maximizing
smoothness (Flash and Hogan, 1985; Todorov and Jordan, 1998), reducing energy consump-
tion (Srinivasan and Ruina, 2006) or minimizing effort (Ackermann and Van den Bogert,
2010). This optimality assumption is based on the observations of several experiments: Start-
ing from the early 50s, several researchers performed various arm movements with human
participants. In these experiments, participants were asked to point from plate-to-plate (Fitts,
1954), from point-to-point (Abend et al., 1982) or even move their hand between multiple
points (Harris and Wolpert, 1998). Surprisingly, they noted that the resulting trajectories
were highly stereotypical even though there exist infinitely many possibilities to perform these
motions. Typically, however, humans tend to move the hand roughly in a straight line with
a bell-shaped velocity profile.

Similar to experimental evidence for optimality in arm-reaching, several studies also in-
vestigated walking in animals and humans. Again, it was shown that gait patterns tend
to be highly stereotypical. For example, it has been demonstrated that metabolic energy
expenditure is minimal for the preferred walking pattern. This metabolic cost can be mea-
sured experimentally by monitoring oxygen consumption while walking on a treadmill. It was
shown that walking requires less energy consumption than running for speeds below 2 m/s,
whereas above 2 m/s running is more energy-efficient than walking. This speed limit corre-
lates directly with the threshold humans typically choose for switching gaits which confirmed
the hypothesis that gaits are adopted to minimize energy costs (McNeill Alexander, 2002).
More specifically, this concept is called cost of transport and means that biological locomotion
maximizes the distance traveled given a certain energy budget (Alexander, 2003). Indeed,
several experiments showed that at preferred walking speed, the cost of transport is minimal
(Ralston, 1976; Cavagna and Kaneko, 1977; Holt et al., 1991). In addition to these and other
experiments, assuming optimality in forward dynamic simulations has been used to explain
and predict human movement in various tasks. More details about optimal control will be
given in Sec. 2.3.

Feedforward and feedback control To find muscle stimulations that generate and control a
desired movement, various control approaches exist. They can be distinguished into two gen-
eral strategies, namely feedforward and feedback control. While feedforward control predicts
the future motor command in an anticipatory way, feedback control uses sensory feedback
to adjust the motor command based on the error between the current and the desired state.
Although these concepts originate from the field of technical control, it is widely accepted
that both strategies are also used in human and animal locomotion (Desmurget and Grafton,
2000). Mathematically, we can formulate this as follows:

ut = uff
t + ufb

t , (2.21)

ut = uff
t +Kt · f fb(xt − xdes

t ). (2.22)



20 Methods and literature background

Here, u is the motor command, uff and ufb represent the feedforward and feedback component,
respectively, and K is the feedback gain. f fb represents the feedback function dependent on
the current state x and the desired state xdes. In biological motor control, this feedback
function relies on a multitude of sensory information from the body, including proprioceptive
feedback from the muscles, the skin, as well as visual, auditory and vestibular information.
One commonly known example of such a feedback loop are stretch reflexes, or more specifically
the patellar tendon reflex, where a physician taps the patellar tendon of a patient to elicit
a knee-jerk response. A simple explanation for this reflex is that the muscle spindle detects
the stretch of the muscle and sends this signal to the spinal cord. This, in turn, triggers a
signal to the motor neurons that causes the muscle to contract, thereby reducing the stretch
of the muscle (see Reschechtko and Pruszynski (2020) for a more detailed discussion about
stretch reflexes). While such short-latency reflexes are used to regulate the muscle’s activity,
force, and stiffness, also more complex longer-latency responses are embedded in our control
system to maintain balance and coordinate movement. Nevertheless, using only feedback
control is not sufficient for stable and robust movement control. For example, Moritz and
Farley (2004) showed that for human hopping on surfaces with randomized but expected
ground stiffness, a modulation of the feedforward pattern increases the mechanical stability.
Additionally, Gordon et al. (2020) showed that running guinea fowls are able to tune their
feedforward control strategies in reaction to perturbations in an uneven terrain after the
loss of proprioceptive feedback. This inclusion of feedforward actuation in biological systems
is not only beneficial but also crucial due to the need to counteract large delays in sensory
feedback pathways, especially compared to technical systems. Therefore, one theory in motor
control states that this anticipatory component is achieved by learning an internal model
estimating how the motor command will be transformed into an actual movement. It has
been hypothesized, that the cerebellum is responsible for this internal model learning. This
internal model is then used to predict the future state of the system and to adjust the motor
command accordingly in a feedforward fashion (Kawato, 1999; Wolpert et al., 1998). In
this thesis, both feedforward and feedback approaches are investigated in combination with
exploiting the intrinsic muscle properties.

2.3. Computational approaches to human motor control

Humans and animals have the remarkable ability to control a wide variety of movements
in uncertain environments while adapting to new situations. While many previous studies
have investigated the control of these movements in simulations and robotics, we still do
not fully understand the underlying strategies of the brain and the central nervous system.
However, there exists a multitude of proposed control strategies ranging from more technical
to bioinspired approaches which enable controlling musculoskeletal models in biomechani-
cal simulations or bioinspired robots. Please note, that the focus of this chapter is on the
computational control of the musculoskeletal system without relying on experimental data.
There exist a multitude of approaches that use for example electromyography-informed mus-
culoskeletal models to estimate tissue loadings (Lloyd et al., 2005; Manal and Buchanan,
2013; Sartori et al., 2015; Pizzolato et al., 2015). Other approaches rely on experimental
trajectory data for motion mimicking (Lee et al., 2010; Hong et al., 2019; Lee et al., 2019).



2.3 Computational approaches to human motor control 21

While both, the EMG-informed approach and motion-capture-driven control are powerful
tools, they do not allow us to make predictive statements in ’what if’ scenarios. Therefore, I
present some of the main approaches of computational control of neuromusculoskeletal mod-
els in the literature. Note, that while these approaches are grouped for the ease of the reader,
some of these approaches can also be combined in multiple ways. They are ordered ranging
from more bioinspired to more computational approaches. However, this distinction is not
always clear based on the exact implementation, exploitation or learning strategy.

Muscle Length Feedback Controller One of the simplest controllers used in biological
motor control combines a feedforward command uopen

t with a feedback command uclosed
t in-

corporating proprioceptive muscle length feedback. The combined hybrid controller for each
muscle stimulation ui,t can be formulated as:

ui,t = uopen
i,t + uclosed

i,t . (2.23)

The open-loop part represents the activation of the α-motoneurons and therefore, changes
the rest lengths and stiffness of the muscles without any sensory feedback. Using this open-
loop stimulation, learned movements can be performed. The closed-loop part in Eq. (2.23) is
also called the λ-model and represents the activation of γ-motoneurons whenever the muscle
spindle detects changes in muscle length lCE and the speed of change in muscle length vCE.
Therefore, a more detailed form of Eq. (2.23) for a single muscle is given as:

ut = uopen
t +

[
kp

lCE,opt

(
lCE
t−δ − λt

)
+

kd

lCE,opt

(
vCE
t−δ − λ̇t

)]
(2.24)

In this equation, kp and kd represent the proportional and the derivative gain, and lCE,opt

stands for the optimal fiber length of the contractile element. λ and λ̇ represent the desired
fiber length and velocity, respectively and their difference is calculated to the time-delayed
muscle fiber length lCE

t−δ and velocity vCE
t−δ.

Using this controller, several studies have shown that it is possible to predict fast goal-
directed single-joint movements (Kistemaker et al., 2006; Bayer et al., 2017), or to predict
the response to two-degree-of-freedom point-to-point arm movements supported by assistive
force (Stollenmaier et al., 2020) and even walking in 2D (Günther and Ruder, 2003). In this
thesis, this controller was the basis to predict reflexive responses to head-neck-perturbations
(contribution III, Wochner et al. (2022a)) and to predict the torque trajectories of different
scaled human arm models to optimally design and scale exoskeleton power units (contribution
II, Waldhof et al. (2022)).

Neuromechanical Feedback Control Based on the previously discussed muscle length feed-
back controller, several methods have been presented that use and extend this approach by
relying on multiple biologically motivated reflexes or incorporating them in a hierarchical way.
These simple feedback laws rely on proprioceptive sensory data such as muscle length, speed
and force feedback emulating the feedback signals from muscle spindles and Golgi tendon
organs. One of the most commonly used approaches is based on the controller proposed by
Geyer and Herr (2010). This controller is able to predict gait patterns of a two-dimensional
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musculoskeletal model which closely matches natural human gait. In a later work by Song
and Geyer (2015), this was further extended for three-dimensional walking and running and
tested against perturbations, including walking across various terrains such as slopes, stairs
and obstacles. Another controller using and extending the framework of the muscle length
feedback controller, is the hierarchical approach introduced by Walter et al. (2021). While
the lowest layer in this controller is similar to Eq. (2.24), additional layers are added. These
layers account for a transformation of an abstract postural plan in terms of joint angles or
torques to muscle lengths. To do so, Jacobi matrices are used that take into account muscle
geometry and stiffness to resolve the redundancy problem. This approach has been used,
e.g., to model standing and squatting movements (Walter et al., 2021).

Central Pattern Generators and Decomposition in Movement Patterns Central Pattern
Generators are distributed networks or neural circuits which produce rhythmic movement
patterns without requiring sensory feedback. While the role of feedfoward control in hu-
mans remains a topic of ongoing debate, this type of control could play a crucial role in
generating rhythmical movements such as walking, running, breathing or chewing. However,
simple and low-dimensional sensory feedback can be used as input signals to modulate the
rhythmic pattern and shape the high-dimensional pattern. In nature, evidence for the pos-
sibility of generating such signals was found by isolating the spinal cord of lampreys (Cohen
and Wallén, 1980), salamanders (Delvolvé et al., 1999) or frog embryos (Soffe and Roberts,
1982). Surprisingly, if these deafferented animals are then stimulated with simple electrical
or chemical signals, the resulting activity pattern still resembles the original pattern during
intact locomotion. Mathematically, these pattern generators can be described by a set of
coupled amplitude-controlled phase oscillators. Each oscillator i is described by the following
differential equation (Sproewitz et al., 2008):

φ̇i = ωi +
∑
j

ωijrj sin(φj − φi − ϕij) (2.25)

θi = xi + ri cos(φi). (2.26)

Here, xi, ri, and φi are the offset, amplitude and phase of oscillator i, respectively. ωi de-
termines the intrinsic frequency of oscillator i, whereas ωij and ϕij represent the coupling
weight and phase shift between oscillator i and j, respectively, determining how much the os-
cillators influence each other. The generated CPG trajectories θi are then used to control the
movement of the model, e.g. by using them as angle reference trajectories. Alternatively, the
output can be directly used as muscle activation patterns, where a simple sinusoidal pattern
can be used to alternate between the stimulations of flexing and extending muscles. This
concept has been successfully applied to control the bipedal walking of a neuromechanical
model (Taga et al., 1991; Dzeladini et al., 2014), to create oscillatory hand movements (Haeu-
fle et al., 2020a) and to control various swimming and walking robots (Ijspeert and Crespi,
2007; Ijspeert et al., 2007; Spröwitz et al., 2013) to name but a few. They have been highly
successfully applied to these various rhythmic tasks due to their distributed control, their
ability to deal with redundancies provided by fast reflex loops and the ability to modulate
locomotion patterns.
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Muscle synergy control Several researchers have proposed that the central nervous system
(CNS) uses a modular control strategy to control the redundant musculoskeletal system. Fol-
lowing with this hypothesis, a set of muscles denoted as ”muscle synergies”, are activated
together to perform a certain task. This phenomenon can be exploited as a control strat-
egy, involving the simultaneous activation of multiple muscles in response to a single input,
thereby contributing to specific movements (Lacquaniti et al., 2012; Bizzi and Cheung, 2013).
Therefore, this approach effectively mitigates the challenge posed by the redundancy prob-
lem. Fundamentally, the main idea of this concept is that muscle activity profiles can be
decomposed into a series of muscle synergies based on simple, usually linear combinations of
a few muscle activation patterns. Mathematically, this can be expressed as follows:

ui,t =

nsynergy∑
j=1

pj,t · ωij , (2.27)

where pj,t represents the time-dependent pattern associated with the j-th synergy, and ωij

represents the weight corresponding to the j-th synergy and i-th muscle.
One common approach for extracting these synergies involves statistical methodologies such
as non-negative matrix factorization or principal component analysis to decompose recorded
EMG signals originating from numerous muscles into a set of synergies. Subsequently, these
synergies can be used to control the movement of musculoskeletal models or assistive devices.
However, there are also counterarguments challenging the existence of muscle synergies. For
example, it has been argued that while the results of previously investigated tasks reveal a
low dimensionality of these experiments, this might not be surprising considering the imposed
task constrained. Moreover, evidence that humans can train individual muscles contradicts
the hypothesis that the control synergies of the CNS are solely based on muscle grouping,
for a detailed discussion see (Tresch and Jarc, 2009). Despite the ongoing debate, muscle
synergies have been successfully applied to simulate human walking (Neptune et al., 2009;
Mehrabi et al., 2019), pedaling (Raasch and Zajac, 1999), reaching movements (Nori and
Frezza, 2005), and have been employed in controlling anthropomorphic robots (Averta et al.,
2020), among numerous other studies.

Impedance Control Impedance control is a control strategy which is based on the idea of
controlling the impedance or more specifically the stiffness of the system to resist deviations
or externally induced motions (Hogan, 1984a,b). In the biological system, this modulation
can be achieved by changing the muscular co-contraction leading to a modified biomechanical
response of the controlled limb. Experiments have shown that humans exploit this strategy
to control and stabilize arm movements in unstable dynamic environments (Burdet et al.,
2001; Franklin et al., 2007). Interestingly, impedance is also modulated during the learning
process: During initial exploration, errors are large, and therefore, a large stiffness is required
to stabilize the movement. As the movement becomes more accurate, the stiffness decreases
(Franklin et al., 2008). When trying to implement this concept to control neuromechanical
models, typically inverse dynamics is used to estimate the required forces and torques to
stabilize the movement. In its most general form, the required torques τ are calculated by
the following equation:

τ = Z · (x− xdes), (2.28)
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where Z represents the impedance matrix, x represent the actual trajectory and xdes the
desired goal position or trajectory. While in robotics, these trajectories are typically defined
as end-effector or joint angle positions, this equation can also be reformulated for the antago-
nistic muscle torques based on individual muscle stimulations u (Mitrovic et al., 2010). While
this control strategy has the disadvantage of requiring high control and sensing frequencies,
as well as an accurate inverse model, it nevertheless has proven to be a powerful tool to
control arm movements (Hogan, 1984a), biped robot locomotion (Park, 2001), and various
rehabilitation orthosis (Mat Dzahir and Yamamoto, 2014).

Optimal Control As introduced earlier, there is evidence that humans and animals are
able to perform movements in an optimal manner, which makes optimal control a promising
approach to control musculoskeletal models. In optimal control, typically a loss function l is
minimized which depends on the current state xt ∈ Rnx and the applied input ut ∈ Rnu at
a given time t:

min
πt

J = min
πt

T∑
t=0

l(xt, ut, t), (2.29)

subject to xt+1 = f(xt, ut, t), (2.30)

ut = πt(x0, ..., xt). (2.31)

This loss function l is subject to the system dynamics f (for more details see Sec. 2.1) and is
used to find an optimal policy πt which applies the input u, in our case muscle stimulations,
to the system. There exist two commonly used direct transcription methods to solve this
trajectory-optimization problem: Direct shooting and direct collocation (Kelly, 2017). In the
first case, the idea is to start from a given start point x0 and based on selected control inputs
u, the system dynamics is calculated and simulated in forward-dynamics fashion to generate
a prediction (shoot in the future). Based on the calculated prediction, the loss function l

and the constraints are evaluated and used to generate a new guess u as input to the system.
This approach is often compared to the idea of aiming with a cannon where the goal is e.g.
to find the initial velocity of a cannonball. In this example, one first selects a velocity, uses
it to simulate the forward dynamics of the system, and then compares the endpoint of the
cannonball trajectory to the desired endpoint. Based on this distance, the initial velocity can
be re-adjusted iteratively. In contrast to this, when using collocation methods the entire state
and control trajectory is represented using polynomial splines. To ensure the physical validity
of this approach, intermediate collocation points are used. At these points, the derivatives of
the polynomial need to match the dynamics (the derivative of the state).

Currently, both approaches are widely used in biomechanics to solve the optimal control
problem for locomotion tasks due to their different advantages and disadvantages. The major
difference is that shooting is more akin to natural learning and is able to handle neural delays,
motor noise and perturbations whereas collocation solves the problem extremely fast and is
less sensitive to the controls and initial state.

Using optimal control, researchers were able to predict walking for healthy and patholog-
ical gaits (Anderson and Pandy, 2001a; Falisse et al., 2019), investigate different optimality
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principles for optimal gaits (Ackermann and Van den Bogert, 2010; Miller et al., 2012b),
and predict the effects of using assistive devices (Handford and Srinivasan, 2018). To tackle
these problems, recently different new software tools were introduced including OpenSim
Moco (Dembia et al., 2020), e.g. to predict and assist with squat-to-stand motions, Bioptim
(Michaud et al., 2022), e.g. to predict a twisting somersault and Scone (Geijtenbeek, 2019),
e.g. used for walking predictions with muscle weaknesses.

In this thesis, optimal control was used to investigate optimality principles for point-
reaching (contribution I, (Wochner et al., 2020)) and to test whether muscle-actuated motion
is beneficial for learning (contribution V, (Wochner et al., 2022b)).

Model Predictive Control Model predictive control (MPC) is an optimal control-based
method which tries to solve the general optimal control problem (Eq. 2.29) in a receding-
horizon fashion for a shorter time horizon (N ≤ T ). In contrast to the approaches discussed in
the previous section, the control problem is solved recursively, where only the first element of
the predicted control strategy u0 is applied to the system. Afterwards, the control horizon is
shifted to the new initial state xt+1 and a new optimization loop starts where the knowledge of
the previously applied ut can be leveraged as an initial guess for the optimizer. In contrast,
to purely open-loop optimal control, MPC has the advantage to deal with uncertainties
and counter-act perturbations. Furthermore, it can be argued that it seems highly unlikely
that we as humans employ infinitely long trajectory predictions rather than using smaller,
finite prediction horizons (Mehrabi et al., 2017). However, these advantages come with the
disadvantage of an increased computational burden due to the fact that the optimization
problem needs to be solved repeatedly. Nevertheless, this concept has been successfully
applied to predict muscle stimulations in human reaching tasks (Mehrabi et al., 2017) and
to predict walking patterns for humanoids (Zhang et al., 2019). In this thesis, both optimal
control and model predictive control are used to compare whether muscle-actuated motion is
beneficial for learning in terms of data-efficiency and robustness (contribution V, (Wochner
et al., 2022b)).

Reinforcement Learning In contrast to optimal control, where typically a loss function l

is minimized, in reinforcement learning the reward rt is maximized. Reinforcement learning
is a machine learning framework where an agent interacts with the environment and gets
different rewards based on the selected action and experience (closed-loop strategy). Here,
conventionally the goal is to maximize the expected cumulative reward. To reach this goal,
a policy π(ut|ot) is learned that defines the behavior by choosing actions ut that the agent
should take based on the current observation ot. Here, the latter is a function of the state
xt, which typically is only partially available to the agent. Based on the chosen action ut,
the system dynamics f defines the transition to a new state xt+1. Due to interactions with
the environment, the policy π is optimized over time to maximize the expected reward:

max
πt

J = max
πt

E
T−1∑
t=0

βt−1rt (2.32)

where β ∈ [0, 1] is a discount factor weighting long-term rewards less strongly. Note, that
this policy can be either stochastic or deterministic and one of the biggest challenges in
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RL is to design good policies. Even though reinforcement learning can be understood as
a biologically-inspired strategy, there exist several challenges while applying RL strategies
to control muscles: Muscle actuators are set up in a highly redundant, antagonistic setup
with a high dimensional state (e.g. up to 600 muscles in the human body). Furthermore,
due to the low-pass filter characteristics of the nonlinear activation dynamics, short muscle
twitches often do not generate large torques on the joint level which makes the exploration
difficult. Therefore, many recently published RL control schemes for musculoskeletal motions
use various simplifications: Either only a few muscles are actuated, simplified muscle models
are used or muscle synergies are extracted before RL methods are deployed, as well as relying
on reward shaping or motion mimicking for specific tasks. Using these restrictions, RL control
schemes have been used to accomplish arm-reaching (Joos et al., 2020; Fischer et al., 2021;
Caggiano et al., 2022) or even more complex locomotion tasks (La Barbera et al., 2021;
Kidziński et al., 2018; Lee et al., 2019; Kidziński et al., 2020; Song et al., 2021; Schumacher
et al., 2022; Qin et al., 2022).

2.4. Intelligence by design: Benefits of biomechanical properties

Through evolution, humans and animals have developed structures and patterns which in-
crease their fitness and embodied intelligence. Fitness in a biological context is seen as the
probability of having reproductive success in the sense of passing genes along to the next
generation. Mathematically, this probability can be optimized by maximizing a function
depending on the velocity, acceleration, endurance, energetic economy, and maneuverability
among other characteristics which results in an improvement of the underlying organism in
terms of structure, material and morphology. These emergent properties often result in an
increased physical intelligence and have led to the development of the concept of morpho-
logical computation or embodied intelligence (Paul, 2006; Iida and Pfeifer, 2006; Pfeifer and
Bongard, 2006; Blickhan et al., 2007; McEvoy and Correll, 2015; Ghazi-Zahedi et al., 2021).
This embodied intelligence (EI) is directly encoded in the body and interacts with neural
intelligence, such as the brain or nervous system. For humans and animals, embodied intel-
ligence simplifies controlling and perceiving their bodies autonomously in unstructured and
uncertain domains through their physical design. Here, the focus is on the benefits of the
physical design of biomechanical systems and more specifically their morphology. The term
morphology is used to describe the shape and structure of an organism or the physical design
of a system. More specifically throughout this thesis, morphology is understood by taking
into account the following structures and properties of the human body: The number of
segments, the segment lengths, how they are connected (e.g. joints), the mass distribution of
the organism, its actuator and sensor characteristics, material properties and the placement
of actuators and sensors. The goal of the research field of embodied intelligence is to under-
stand why evolution favored certain morphologies and how these morphologies can be used to
design technical machines. This is crucial for the development of wearable devices assisting
humans as well as robots that can operate in unstructured and uncertain environments. In
the following, some beneficial properties of biological structures or movement patterns that
enable EI in muscle-actuated systems are discussed.
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Benefits of biological shape morphology: Number of links, link sizes and type of con-
nection The concept of exploiting shape morphology to achieve walking movements can
be traced back to one of the earliest examples known as the passive dynamic walker : The
main idea behind this concept is that it is possible to achieve walking movements by simply
exploiting the dynamics and gravity without requiring any external actuation. In his seminal
work, McGeer et al. (1990) demonstrated that this concept can be used to build technical
walking machines by connecting simple mechanical segments via joints in a human-like shape
without the use of motors or controllers, which are able to mimic the natural gait of human
walking patterns. To accomplish this, the walking machine relies on the design of its compo-
nents and their mass distribution. In addition, including knees into these systems (McGeer,
1990), further enhances foot clearance and stability. This concept of using the general shape
design of a biomechanical system to reduce computational effort was later also extended to
three-dimensional systems (Collins et al., 2001) and used to design various hybrid bipedal
robots (van der Linde, 1999; Paul et al., 2003; Wisse and Van Frankenhuyzen, 2006).

Benefits of biological passive structures Including elasticity, several authors showed that
the material properties of passive structures can be beneficial for locomotion: One example is
the inclusion of tendons that can be used to store energy and reduce the energy consumption
of the system. It has been shown that biological tendons act as nonlinear serial springs and
can be used to store and release mechanical energy during ground contact e.g. Alexander
et al. (1982); Alexander (1991); Biewener and Roberts (2000). This spring-like bouncing
mechanism (Ishikawa et al., 2005) also improves the shock tolerance which potentially reduces
stretch-induced muscle injuries (Roberts and Azizi, 2010; Konow and Roberts, 2015). This
has been used as inspiration to create robotic tendons, parallel and serial elastic actuators
(SEA’s) (Pratt and Williamson, 1995) to use the elastic properties to reduce peak power
and energy demands on the motor. They have been included in assistive devices to support
walking (Hollander et al., 2006; Au et al., 2007) as well as in legged robots (Robinson et al.,
1999; Spröwitz et al., 2013; Hutter et al., 2016; Hubicki et al., 2016). These robotic systems
give further evidence that the material properties can increase the efficiency of locomotion
by storing and releasing energy as well as improving stability and balance while walking on
uneven terrain.

In addition to exhibiting spring-like behavior, certain damping properties in series to the
contractile element, such as tendons, aponeuroses and titin, have been identified as beneficial
for locomotion. This is particularly relevant in cases where high-frequency oscillations occur,
such as when legs impact the ground, as these oscillations can result in damage or even rupture
of the tendons. To test this hypothesis, Günther et al. (2007) conducted a study in which they
compared a Hill-type model with and without serial damping to experimental data obtained
from a piglet muscle-tendon complex. Their findings indicate that serial damping is sufficient
to explain the damping of high-frequency vibrations of low amplitudes, thus confirming the
protective role of damping in locomotion. In this thesis, such a serial damping element is
included as part of the Hill-type muscle model (Hill, 1938; Günther et al., 2007; Haeufle et al.,
2014a) that is used in the numerical simulations (see also SDE in Figure 2.3).

Another example of beneficial passive structures in biology are the ligaments in the human
spine, which have been shown to reduce the workload of the back muscles and spinal discs.
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During forward bending, both the back muscles and the passive structures in the spine are
stretched and therefore, store energy. When returning to an upright posture, the passive
structures release this energy, assisting the back muscles in extending the spine (White, 1990;
Adams and Dolan, 2005; Adams et al., 2012). This reduces the workload of the back muscles
and the compressive forces in the spine. In particular, structures such as the supraspinous
ligament and the strong posterior band of the lumbodorsal fascia have longer lever arms than
the back muscles due to their anatomical placement. Consequently, any extensor moment
generated by these passive structures exerts a smaller compressive force on the spine (Dolan
and Adams, 1993; Adams et al., 2012). This mechanism has been utilized in the design of
passive exoskeletons or exosuits that reduce the metabolic cost, back strain, and spinal disc
compression (Koopman et al., 2020; Chang et al., 2020; Ali et al., 2021).

Benefits of biological sensors Morphological computation not only simplifies the control
task but is also closely linked to a facilitated perception of the body and its environment,
potentially leading to a simpler computation of the motor control. One example from the field
of vision is how the retina acts as a pre-processor and distills significant incoming sensory data
before sending it to the brain (Gollisch and Meister, 2010). Hence, the retina is able to discard
redundant information, while the processing in the brain is accelerated, for example regarding
pattern recognition and interpretation. Such beneficial features have inspired both the design
of so-called neuromorphic vision sensors (Liao et al., 2021), as well as novel machine learning
techniques such as convolutional neural networks (Hubel and Wiesel, 1968; Fukushima, 1980;
LeCun et al., 1989).

Further, it has been discussed that sensor fusion is crucial to improve robustness and provide
contextual information for motor control. For example, human standing balance requires
various sensor signals, including vestibular, visual, auditory and somatosensory information.
If such an integration of sensory cues is not functional, this might lead to balance impairments.
In patients, this effective, adaptive and intelligent combination of sensory signals can be
probed using the sensory organization test (SOT) (Nashner et al., 1982; Nashner and Peters,
1990). This SOT test is used to assess the ability of the central nervous system to integrate
sensory information from different modalities. It consists of a series of balance tasks where
the patient’s senses are perturbed by moving the supporting standing platform and removing
or distorting vision. Therefore, the motor response is tested based on the ability to integrate
vestibular, visual and proprioceptive sensory inputs and in healthy subjects this ability allows
maintaining postural stability in stance. This test demonstrates the power of our biological
sensor fusion to combine different sensory modalities to improve the balance and control task.

Benefits of biological actuator placement Another notable example of biological embodied
intelligence is the strategic placement of actuators in biological systems. In these systems,
actuators are arranged in an antagonistic setup, where at least two muscles, positioned on
opposite sides of a joint, generate torques that induce the rotation of this specific joint. This
setup is crucial because muscles can only actively contract, necessitating the ability to flex
and extend joints by producing torques in opposing directions. This placement of muscles in
an antagonistic setup also means that always at least twice as many actuators are needed,
compared to a classical robotic system e.g. employing DC motors. While at first glance
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this might seem unnecessarily complex from a technical viewpoint, this agonistic placement
offers the biological system the distinct advantage of co-contraction allowing for a modulated
joint stiffness without altering the net joint torque. This mechanical impedance provides
a stabilization mechanism unaffected by neural time delays and therefore, also acts as a
zero-delay preflexive response to perturbations (Hogan, 1984a; Loeb, 1995).

Furthermore, also biarticular muscles, spanning across two or more joints, are present in
biological systems. Therefore, these muscles also generate torques at multiple joints simulta-
neously. Including biarticular muscles has been argued to enhance locomotion efficiency by
facilitating energy transfer towards distal joints (Junius et al., 2017; van Ingen Schenau et al.,
1987). For instance, during jumping, it was shown that power is transferred from the knee
extensor to plantar flexion due to the biarticular muscle gastrocnemius, resulting in a higher
jumping height. Furthermore, biarticular muscles help to prevent the leg from over-extension
by securing the zigzag configuration of the leg and consequently, providing stability (Seyfarth
et al., 2006). This, in turn, reduces the computational demand of the controller, which can
rely on the inherent stability of the system.

To summarize, in this section evidence was presented that the morphology of biological
systems simplifies challenges for control and perception for uncertain, complex and novel
environments. This is due to the fact that the morphology of the biological system is designed
in a way that it can be controlled and perceived without the need for complex controllers or
sensors. This is in contrast to technical systems where the morphology is often designed to be
as simple as possible to reduce the cost of the system. The examples given above demonstrate
how the design of the morphology of a system can be beneficial for the control and perception
of the system. In the next section, I will focus very specifically on one morphological aspect,
namely the actuator or more specifically, the inherent muscle properties.

2.5. Benefits of intrinsic muscle properties

Muscles have highly nonlinear dynamics which from a classical control perspective makes
it difficult to use them for movement control. Nevertheless, several studies have shown that
including intrinsic muscle properties in biophysical models can be beneficial due to three major
reasons: 1. It was hypothesized and shown that muscle-like properties improve the stability
and robustness of the system. 2. Additionally, it was shown that muscle-like properties
can simplify the control problem by reducing the required amount of information processing
(morphological computation). This thesis gives further evidence that the neural information
load is reduced using muscle-like properties for pointing and walking movements (contribution
IV, Haeufle et al. (2020b)). 3. Finally, this thesis contributes to understanding the benefits
of muscle-like properties for the problem of learning anthropomorphic movements. It was
shown that muscle-like properties can improve the data-efficiency, are less sensitive towards
hyperparameters and more robust towards force perturbations not present during learning
(contribution V, Wochner et al. (2022b)). In the following, a brief overview of the existing
studies that investigated the benefits of muscle-like properties is given.

Muscles provide stability and robustness Several researchers (Wagner and Blickhan, 1999;
Eriten and Dankowicz, 2009) investigated the stability properties of a two-link model repre-
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senting the human lower limb with muscle-like properties. To do so, analytical investigations
based on Lyapunov stability and Floquet multipliers were applied to a simple motion such
as knee bending. It was shown that the nonlinear force-velocity and force-length relationship
improve the stability of the system. Going one step further, it was shown that these muscle-
like properties such as the nonlinear force-velocity and the nonlinear force-length relation
also improves resistance to perturbations: van Soest and Bobbert (1993) compared high-
jumping movements in a purely torque-driven model to a model driven by muscles. While
the original movement was comparable, small perturbations of the initial position or angular
velocities revealed that the muscle-driven model was more robust to perturbations. More
specifically, this zero-time delay feedback mechanism requires no adaptation of the muscle
stimulation pattern as a response towards the perturbations. Similar to this, Gerritsen et al.
(1998) compared a purely torque-driven model to three different models modeling separate
properties of muscles, including a model with the nonlinear force-velocity relation, a model
with the nonlinear force-length relation and a model which combined both properties. They
investigated these models for planar walking movements and applied both static and dynamic
perturbations. Their results showed that only the model including the combination of both
muscle-like properties was able to resist all perturbations. Furthermore, their results sug-
gested that mainly the force-length relation is responsible for resisting static perturbations
whereas the force-velocity relation is responsible for resisting dynamic perturbations. Later,
this work was extended to walking motions in 3D (John et al., 2013). They showed that both
the force-length-velocity properties of the muscle fibers as well as the tendon elasticity have
a stabilizing effect towards perturbations applied in a variety of directions.

Quantification of how much muscles simplify control In addition to these studies, re-
searchers suggested that muscle-like properties might counterintuitively simplify the control
problem by reducing the required amount of information processing by the controller (Full
and Koditschek, 1999; Holmes et al., 2006; Blickhan et al., 2007). For example, Geyer et al.
(2003) showed that steady-state hopping is possible with only a constant stimulation pattern
and simple length or force feedback instead of a more complex, optimized stimulation pat-
tern. They concluded, that the control is largely simplified by exploiting the musculoskeletal
dynamics in combination with the reflex dynamics. While this study and the studies men-
tioned earlier on stability provided qualitative evidence that control is simplified, the actual
control effort was not quantified. Currently, two major information-theoretic approaches ex-
ist to quantify the contribution of the morphology of the system to the control problem:
The metric of morphological computation (Zahedi et al., 2010; Zahedi and Ay, 2013) and the
metric of control effort (Haeufle et al., 2014b). In the first approach, the Kullback-Leibler
divergence MCW is used to quantify how much the distribution of the current observation
depends on both the previous state and the actuator signal, compared to depending only on
the actuator signal. If this metric MCW is small, the morphology of the system contributes
less to the control problem and the physical properties are not exploited. This concept has
been applied, for example, to compare the morphological computation of a hopping task with
DC-motor driven actuators, linearized muscle and nonlinear muscle actuators (Ghazi-Zahedi
et al., 2016). The results confirmed that indeed the nonlinear muscle-like properties con-
tribute to the morphological computation. This type of ”morphological computation“ was
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also quantified through the metric of control effort (Haeufle et al., 2014b). In this second ap-
proach, the control effort is defined as the minimal amount of information required to perform
a certain movement and can be directly used to measure and compare the information load
of different morphologies, e.g., for hopping tasks. This thesis contributes to investigating this
concept also for point-reaching and walking tasks (contribution IV, Haeufle et al. (2020b)) in
order to quantify the benefits of muscle-actuators in terms of neural information load. The
results show that indeed the control effort is reduced if muscle-like properties are used.





3. Objectives and contributions

The overarching goal of this thesis is to improve the control and modeling of biomechanical
systems for simulations and robotics, particularly by investigating the complex interplay
between the neural controller and underlying biophysical structures. To achieve this objective,
I employ neuro-musculoskeletal models of the human body capable of predicting human
motion during voluntary movements and reflexive movements using forward dynamics. The
central research question that is tackled in this thesis, is the following:

How does the complex interplay between the neural con-
troller and underlying structures enable us humans to gen-
erate movements?

Overarching research question

To address this question, I examine the intricate relationship between the neural controller,
which represents the brain and central nervous system, and the underlying structures,
including the musculoskeletal system and the proprioceptive feedback it provides. The
neural controller is modelled using bioinspired control strategies to drive muscle-actuated
models, while the underlying structures include the nonlinear actuator dynamics of the
muscle-tendon unit, accounting for all nonlinearities that arise through the activation and
the contraction dynamics, as well as the elasticity of the tendon. In addition, the anatomical
routing with its nonlinear lever arms and the antagonistic setup of biological muscles are
taken into account. Further, muscles in combination with the muscle spindle provide the
possibility of proprioception and thus, the ability to sense the position and movement of
limbs and trunk. Therefore, I also consider the inherent proprioceptive feedback. To address
this research question, I tackle five objectives, each with its sub-questions, that correspond
to a separate publication (see also an overview of publications in Sec. 4). The first three
publication focus on how we can control and predict movements while accounting for muscle
dynamics, whereas the last two publications focus on unveiling how the muscle morphology
contributes to the neural control by simplifying the learning and control task. Specifically,
the following sub-questions are addressed in this thesis:

1. How can we predict voluntary movements at the example of point-reaching movements?
2. How can we predict voluntary movements to design individual assistive devices?
3. How can we predict individual human motion in reflexive situations?
4. How can we quantify the contribution of the underlying structures to the neural control?
5. Is the learning task facilitated by the biological motor system?

These research questions are consecutively addressed by the following contributions.
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Contribution 1: How can we predict voluntary movements at the example of
point-reaching movements?

In the study of human motor control, it is widely assumed that through learning, adaptation,
and evolution, the brain and the central nervous system have developed a strategy to solve
the problem of redundancy by selecting a specific optimality principle. This principle narrows
down the range of possible actions to perform voluntary movements. However, determining
which optimality principle the brain potentially employs is still a topic of investigation for
researchers. One of the main challenges in studying human arm movements is the limited
ability of commonly used tasks, such as point-to-point reaching movements, to distinguish
between different optimality principles. To overcome this limitation, point-to-manifold or
point-to-bar experiments have recently been proposed that are employed in this study. Fur-
thermore, prior studies that predicted human arm movements based on optimality principles
have often neglected the underlying biophysical structures, specifically the muscle dynamics.
This simplification was previously necessary due to computational complexity, but recent ad-
vancements in musculoskeletal modeling and optimization techniques have made it possible
to include muscle dynamics in the study of human motor control and biomechanics. Includ-
ing muscle-actuated dynamics is crucial because the actuator morphology can significantly
influence movement outcomes. For example, Pinter et al. (2012) showed that different con-
clusions about motor control can be drawn depending on the actuator morphology. In the
first contribution of this thesis (chapter I, Wochner et al. (2020)), we investigate the effect
of the underlying biophysical structures on the selection of the optimal control by testing
whether accounting for muscle dynamics is essential to accurately predict human reaching
movements. Our findings suggest that including muscle dynamics is crucial to predicting
human reaching movements accurately. To this end, we explore a combination of previously
proposed cost functions to predict how the brain selects the optimal muscle stimulations for
point-to-manifold reaching movements. We show that a combined cost function taking into
account mechanical work, jerk, and neuronal stimulation effort best predicts human reaching
while accounting for muscle dynamics. This finding underscores the importance of including
muscle dynamics in the study of human motor control while also considering more open-ended
movement tasks, such as point-to-manifold reaching.

Contribution 2: How can we predict voluntary movements to design individual
assistive devices?

Building on the findings of the previous contribution, the next contribution (chapter II,
Waldhof et al. (2022)) aims to improve the design of individual assistive devices, such as
exoskeletons, by taking into account the load cycle of predicted human movements and mus-
cle dynamics in the prediction of voluntary arm movements. In order to achieve this goal,
we evaluate whether employing a coupled forward-dynamic approach of subject-specific arm
models in combination with a novel scalability model for the electrical power unit can improve
its performance. Currently, the design of exoskeletons is often based on generic models that
do not take into account individual differences between persons. This leads to a mismatch be-
tween the exoskeleton and the individual, therefore, reducing the exoskeleton’s performance.
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To address this issue, we use subject-specific arm models in combination with our scaling ap-
proach to optimize the design of exoskeletons. In our study, we evaluate the performance of
the exoskeletons by supporting three different representative models performing typical tasks
while considering muscle dynamics. By considering individual user needs and task demands,
our proposed scaling approach results in a lighter and more efficient design. Our frame-
work demonstrates the potential to improve the design of individual assistive devices, such
as exoskeletons, and provides valuable insights for designing personalized assistive devices for
individuals with motor impairments or in manually demanding tasks.

Contribution 3: How can we predict individual human motion in reflexive
situations?

While the first two contributions focus on voluntary movements, the third contribution (chap-
ter III, Wochner et al. (2022a)) aims to investigate muscle-actuated motion while resisting
perturbations. The response of individuals to sudden perturbations can significantly affect
their injury risks in various scenarios, including traffic accidents, physical assaults, and sports
or recreation-related collisions. Some of the most common injuries in these situations are head
and neck injuries, such as traumatic brain injuries, concussions or whiplash-associated dis-
orders. In this contribution, we conducted perturbation experiments where volunteers were
placed on a table with an additional trapdoor that was suddenly released. This sudden drop
led to a free-falling movement of the head until the volunteers’ reflexes reacted to the per-
turbation stopping the downward movement. In addition to the physical experiments, we
also conducted simulations, where two different simple reflex controllers based on the muscle
length were implemented demonstrating that this reflexive behavior can be predicted. Based
on these controllers, we showed that a higher sensitivity of the neuronal state (in terms of
sensitivity to the stretching of the muscle) can help to reduce acceleration peaks. Addi-
tionally, we showed that the reflexive behavior is different for the supine case (extension of
head-neck muscles) compared to the prone case (flexion of head-neck muscles) in terms of
vertical displacement and peak accelerations. This difference can be explained by the ability
of the extensor muscles to create a larger moment compared to the flexor muscles due to
their muscle mass difference, as well as the postural role of the extensor muscles. These
two findings based on the muscle-actuation dynamics have implications for designing safer
vehicles or sports equipment: Developing mechanisms to alert humans to upcoming pertur-
bations, such as using sound signals, might change their sensitivity, and thus their reflexive
behavior. Furthermore, the direction of applied force matters, such as sitting frontal versus
backward in a vehicle, which might have direct implications for injury risks of concussions or
whiplash-associated disorders.

Contribution 4: How can we quantify the contribution of the underlying
structures to the neural control?

While the first three contributions focused on the control of voluntary and reflexive muscle-
actuated movements, and used these predictions to design individual assistive devices, the
fourth contribution (chapter IV,Haeufle et al. (2020b)) investigates whether muscle-actuated
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motion also simplifies the control task. To do so, we quantify the minimally required infor-
mation that is needed to control a certain movement. This concept is called control effort,
and the key idea is to compare different morphologies, such as actuator dynamics, and de-
termine which morphology requires less information to generate a desired movement. More
specifically, in this contribution, we compared models driven by idealized torque actuators
to muscle-driven motion and optimized for the minimally required information. This can
be done by varying the resolution of the control and sensor signals both in time and am-
plitude. Our results show that neuromuscular models require less information to generate
point-reaching and walking movements compared to their torque-driven counterparts. There-
fore, these results support the hypothesis that muscle-actuation motion simplifies control by
off-loading computation to the morphological structure.

Contribution 5: Is the learning task facilitated by the biological motor system?

While previous literature showed that muscle-actuated motion simplifies the control by im-
proving stability and robustness, it has not yet been shown that muscle-actuated motion also
benefits the learning task. When looking at current robotic systems, we see that they strug-
gle with real-world scenarios and are still outperformed by humans in terms of robustness,
versatility and learning of new tasks. The major hypothesis of this work (chapter V,Wochner
et al. (2022b)) is that the underlying muscle actuator dynamics provide inherent stability,
favorable to learning from scratch. We test this hypothesis by applying different learning
strategies to various anthropomorphic tasks such as reaching, hitting a ball, hopping, squat-
ting and high-jumping. Based on this, we show three main findings: First, we showed that
the learning of anthropomorphic tasks is more data-efficient when using muscle-actuated mo-
tion compared to torque-driven motion. Second, we showed that muscle-like actuators are
less sensitive toward hyperparameter variations. Third, the learned policies using muscle-like
actuators are more robust towards unknown and unlearned force perturbations and generalize
better across perturbations in transfer tasks.



4. List of publications and personal
contributions

As mentioned in the previous chapters, this thesis is based on five publications. These
publications all answer the overarching research question of this thesis of how muscle-actuated
motion can be beneficial for the control and modeling of biomechanical systems. These
publications were written and realized with the help of different people. All publications
have been accepted and published in peer-reviewed venues. In the following, I would like
to summarize their main finding and highlight my personal contributions to each of the
publications to which all the co-authors agreed.
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Manuscript 1 (Wochner et al., 2020)

Title: Optimality Principles in human point-to-manifold reaching accounting
for muscle dynamics

Authors: Isabell Wochner, Danny Driess, Heiko Zimmermann, Daniel F. B.
Haeufle, Marc Toussaint, Syn Schmitt

Journal: Frontiers in Computational Neuroscience
Year: 2020
Link: https://doi.org/10.3389/fncom.2020.00038 (see also for electronic sup-

plementary material)
Summary: Multiple studies have shown that human arm movements are highly

stereotypical. Therefore, a common assumption in human motor con-
trol is that the redundancy in musculoskeletal motions can be solved
using optimality principles that have evolved through evolution, learn-
ing and adaptation. However, optimality principles were typically
only tested for point-to-point reaching tasks, which do not allow for a
good discrimination between different principles. Furthermore, previ-
ous studies neglected the nonlinear muscle dynamics in the prediction
of movement trajectories. To overcome these limitations, we com-
pared different optimality principles using musculoskeletal simulations
to synthesize point-to-manifold reaching experiments. The main nov-
elty compared to previously published work is that we included the
muscle dynamics to predict these optimal movements based on both
isolated and combined cost functions using forward dynamic simula-
tions.

Main finding: Our study shows that a combination of optimality principles including
mechanical work, jerk and neuronal stimulation effort best predicts
point-to-manifold reaching if muscle dynamics are included.

Contribution: Together with Syn Schmitt and Marc Toussaint, I contributed to the
project concept. I set up and performed all the numerical experiments
and analyzed the resulting data under the supervision of Syn Schmitt.
I created all the figures of the manuscript, wrote the first draft and
contributed significantly to all parts of the text during the draft and
revision process.

https://doi.org/10.3389/fncom.2020.00038
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Manuscript 2 (Waldhof et al., 2022)

Title: Design and Scaling of Exoskeleton Power Units Considering Load Cy-
cles of Humans

Authors: Marcel Waldhof, Isabell Wochner, Katrin Stollenmaier, Nejila Par-
spour, Syn Schmitt

Journal: Robotics
Year: 2022
Link: https://doi.org/10.3390/robotics11050107
Summary: Exoskeletons can be used to support humans in manually exhausting

or dangerous environments as well as provide assistance for patients
with pathological conditions. One major drawback of current exoskele-
tons is the lack of personalization and individualization. To tackle this
challenge, we present a method to scale an arm model in combination
with a power unit to represent external assistance for different humans.
Based on our scaled musculoskeletal arm model, different torque pro-
files resulting in various motions are predicted.

Main finding: Based on these scaled torque profiles, we optimized and scaled a power
unit as part of an exoskeleton for different users, which led to better
performance and a lighter design.

Contribution: Together with Marcel Waldhof, Katrin Stollenmaier and Syn Schmitt,
I contributed to the project concept. Together with Katrin Stollen-
maier, I scaled the arm model and conducted different reaching tasks.
I wrote the first draft of the arm model chapter and large parts of the
manuscript. Furthermore, I contributed significantly to all parts of the
text. During the review process, I was responsible for addressing all
questions regarding the biomechanical modeling and results.

https://doi.org/10.3390/robotics11050107
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Manuscript 3 (Wochner et al., 2022a)

Title: Falling Heads: investigating reflexive responses to head-neck pertur-
bations

Authors: Isabell Wochner, Lennart V. Nölle, Oleksandr V. Martynenko, Syn
Schmitt

Journal: Biomedical Engineering OnLine
Year: 2022
Link: https://doi.org/10.1186/s12938-022-00994-9 (see also for electronic

supplementary material)
Summary: Head-neck injuries can occur in various scenarios ranging from sports-

related impacts to car accidents. These injuries are affected by the
reflexive responses to head-neck perturbations, which we investigated
in this study. Compared to previously published work, the main nov-
elty is two-fold: We used a perturbation setup (called ’falling heads’)
with two different force directions, namely flexion and extension. Fur-
thermore, we compared this setup to numerical experiments with a
muscle reflex controller.

Main finding: The main results of this study show that the head-neck responses and
potential injury risks are affected by the force direction as well as by
human diversity, such as biological sex and age.

Contribution: Together with Syn Schmitt, I designed the project concept and re-
search questions. I analyzed the experimental data, set up the nu-
merical methods and created all figures. I wrote the first draft of
the manuscript and was responsible for the revision process (including
comments to reviewers, new analysis and re-writing).

https://doi.org/10.1186/s12938-022-00994-9
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Manuscript 4 (Haeufle et al., 2020b)

Title: Muscles reduce neuronal information load: quantification of control
effort in biological vs. robotic pointing and walking

Authors: Daniel FB Haeufle, Isabell Wochner, David Holzmüller, Danny Driess,
Michael Günther, Syn Schmitt

Journal: Frontiers in Robotics and AI
Year: 2020
Link: https://doi.org/10.3389/frobt.2020.00077 (see also for electronic sup-

plementary material)
Summary: To generate movements in complex and uncertain environments, hu-

mans rely on their typical biomechanical structure, including the
highly nonlinear muscle dynamics, to provide stability. The research
question of this study was whether the biological morphology also sim-
plifies the control in the sense of reducing the computational burden.
Recently, a new concept called control effort that measures the min-
imally required information to generate movements was introduced
to quantify this morphological computation. In this work, we im-
plemented an optimization algorithm to find this control effort more
efficiently.

Main finding: We showed that muscle-driven models require less information to gen-
erate movements such as point-reaching and walking compared to their
torque-driven counterparts.

Contribution: I implemented, analyzed and processed the control effort for the point-
reaching movements. Together with Daniel FB Haeufle, I drafted the
first version of the paper and contributed significantly to all parts
of the text with the focus on the point-reaching tasks, optimization
approaches and effects of delays.

https://doi.org/10.3389/frobt.2020.00077
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Manuscript 5 (Wochner et al., 2022b)

Title: Learning with Muscles: Benefits for Data-Efficiency and Robustness
in Anthropomorphic Tasks

Authors: Isabell Wochner, Pierre Schumacher, Georg Martius, Dieter Büchler,
Syn Schmitt, Daniel FB Haeufle

Journal: CoRL (Conference on Robotics and Learning)
Year: 2022
Link: https://openreview.net/forum?id=Xo3eOibXCQ8
Summary: Humans have the remarkable ability to learn new and challenging tasks

and control their movements in complex and uncertain environments.
We hypothesize that to achieve this, humans rely on their biomechan-
ical structure, including the highly nonlinear muscle dynamics, to pro-
vide stability. The research question of this study was whether the
learning of muscle-actuated systems also benefits from this morphol-
ogy. Previous research showed that applying state-of-art learning tech-
niques to muscle-actuated systems is possible. However, it still needs
to be determined whether the learning of such systems also benefits
from the highly nonlinear muscle dynamics. To investigate this, we
applied different learning strategies to a wide variety of anthropomor-
phic movements in this study.

Main finding: We showed that highly nonlinear muscle dynamics are beneficial for
learning in terms of data-efficiency, hyperparameter sensitivity and
robustness.

Contribution: Together with Pierre Schumacher, Daniel FB Haeufle and Syn Schmitt,
I designed the project concept and formulated the research hypothesis.
I implemented, analyzed and created all the results for the OC and
MPC cases. I created the first draft of the manuscript and contributed
significantly to all parts of the text during the draft and review phases.

https://openreview.net/forum?id=Xo3eOibXCQ8


5. Discussion and future work

Summary and impact of this thesis The aim of this thesis is to improve the understanding
of the control of human movement, with a focus on the underlying muscle dynamics. This
is achieved using both model-based and learning-based strategies to control musculoskeletal
models. These control strategies and models are validated using existing experimental data
and novel data presented within this thesis. The overall findings demonstrate that predictive
simulations for musculoskeletal models serve as a powerful tool for studying human movement.
Moreover, this knowledge can be translated to biorobotic applications such as developing
better robots or exoskeletons.

More specifically, contribution I explores the prediction of human point-to-manifold reach-
ing by investigating different optimality principles within a forward dynamic simulation that
incorporates muscle dynamics. The results showed that a combination of mechanical work,
jerk and neuronal stimulation effort best predicts these reaching tasks. Furthermore, it is re-
vealed that a single set of muscle stimulations in an open-loop control strategy is in principle
capable of predicting these movements due to the inherent nonlinearities involved. More-
over, this contribution emphasizes the importance of using more openly defined movement
tasks such as point-to-manifold reaching to distinguish between different optimality princi-
ples. Building upon this, the used arm model was scaled to represent different individual
persons in contribution II. This enables the investigation of how the scaling of the model and
different tasks impact the resulting torque profiles and load cycles. Consequently, this infor-
mation can be applied to scale an exoskeleton power unit on an individual basis, leading to a
better performance and a lighter design. Note, that the same bioinspired control signal effec-
tively predicts the movement of different, individual persons. This is a significant advantage
of robustness and generalization that helps to understand the guiding principles of voluntary
human movement. In contribution III, a similar control scheme is employed, using a refined
head-neck model to investigate reflexive movements. Additionally, novel experimental data
is presented which can be used as a benchmark test for comparing different muscle control
strategies and validating existing Human Body Models directly. This represents a crucial
step towards improving predictive simulations using musculoskeletal models, which are used
in many applications such as in the rapidly growing field of human-centered engineering and
virtual testing in automotive and occupant safety.

While the first three contributions (contributions I-III) focus on improving the control and
modeling of various human movements using muscle dynamics, the last two contributions
(contributions IV-V) quantify the contribution of muscle dynamics to the control and the
learning of human movement. In contribution IV, I together with the co-authors showed
that muscle dynamics can reduce the neural information load for point-reaching and walking
movements compared to idealized torque actuators. To do so, control effort was used as
a measure to quantify the information load. This contribution characterized the minimum
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needed information to successfully generate a movement by optimizing for the minimal signal
resolution and amplitude in both control and sensing. Going one step further, in contribution
V, I showed that muscle dynamics can also improve the learning of human movement. This
is achieved by reducing the amount of data needed to learn a movement and by improving
the robustness of the learned movement. For a more detailed discussion of each of the
contributions, I refer to the discussion section in the respective contributions (contributions
I-V).

In chapter 3, I raised the overarching research question of this thesis of how the complex
interplay between the neural controller and underlying structures enables us humans to gen-
erate movements. In conclusion, the first three contributions of my thesis demonstrated that
(i) a combination of optimality principles is able to explain point-reaching movements, but
it is crucial to consider more openly defined tasks such as point-to-manifold reaching and to
account for muscle dynamics, (ii) predictive arm simulations can be used to scale exoskele-
tons correctly to support individual people, and (iii) reflexive movements of the head-neck
complex can be predicted using a simple reflex controller that relies on internal muscle length
sensing as low-level feedback. Finally, the last two contributions of my thesis showed that
it is crucial to include muscle dynamics to (iv) simplify the control e.g. for pointing and
walking movements, and (v) learn robust motions more data-efficiently.
In the following, I will discuss additional findings and thoughts and how they can be embed-
ded in future work.

Fairness of comparing different morphologies To make statements about embodied intelli-
gence, one possibility is to compare different morphologies. This requires careful consideration
of the control setup and evaluation criteria to allow for a fair comparison. While these points
might seem trivial at first glance, overlooking or neglecting them can lead to misleading
results. Therefore, one should consider the following points:

First, the control scheme should be independent of the underlying morphology. Early
work in this direction typically used minimalistic control schemes, such as simple oscillatory
drives for swimming (Ziegler et al., 2006), walking (Iida and Pfeifer, 2006), and flying (Wood,
2007). While they powerfully demonstrated the potential of morphological computation, the
associated control schemes were specifically designed and engineered for a specific morphology
or required individual fine-tuning for each morphology. Due to this coupling of morphology
and motion, it is difficult to compare different morphologies with such specifically crafted
control strategies as this might implicitly bias the comparison. This is why optimal control
or learning methods are a good choice to eliminate the dependency between the controller
and the morphology, as mentioned also by (Rückert and Neumann, 2013; Yesilevskiy et al.,
2018). By leveraging such learning methods, a control signal is found that is optimal for the
considered task based on some cost function or reward. Therefore, the same control scheme
can be used for all models. Note, that if the control scheme is specifically designed for the
underlying morphology, an alternative approach to estimate embodied intelligence should be
used: For instance, the concept of morphological computation (Zahedi et al., 2010; Zahedi
and Ay, 2013), introduced earlier and detailed in Section 2.4 provides a framework that
allows the investigation of one specific morphology even with a specifically designed control
scheme, as demonstrated e.g. in (Haeufle et al., 2020a). However, this is outside the scope of
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my thesis, where I mostly focused on comparing different morphologies to make statements
about embodied intelligence.

Second, if optimal control or learning methods are used, the cost function or reward func-
tion needs to be carefully designed to be independent of inherent differences of the underlying
morphologies. This is especially important if the final loss of this cost function or reward
function is used as the main performance metric to compare different actuator morphologies,
e.g. as in this thesis where typically idealized torque actuators are compared to muscle-like
actuators. Usually, including a cost term that penalizes the control variable squared (u2) is
a good choice in optimal control because it acts as a regularization term and simplifies the
computation. However, in the case of comparing actuators minimizing u2 would represent
either minimizing muscle stimulations or minimizing the torque input signals which is not
a linear transformation. Hence, evaluating the final loss of such a cost function would lack
coherence. Instead, in the case of comparing different actuator morphologies, the comparison
metric should always be action-space-agnostic to allow for a fair comparison. This allows to
use the same reward function for all models, e.g. as shown in Wochner et al. (2022b). Of
course, another possibility is to use morphology-dependent cost terms but choose another
metric for the comparison (e.g. control effort as shown in Contribution IV).

Third, when comparing different actuator morphologies, meticulous consideration of the
maximum capacities of these actuators becomes crucial to ensure meaningful and valid
comparisons. For example, in this thesis, I compared idealized torque actuators with muscle-
like actuators. To ensure comparability, it is crucial for the maximum torques generated by
these actuators to align. Therefore, I imposed a hard constraint on the maximum torque in
the torque-actuated case, restricting it to the maximum physiological muscle force achievable
by the models under consideration. Although it may be technically feasible to increase
the maximum torque within a technical system, such an adjustment would compromise the
fairness of comparing underlying morphologies. Theoretically, other control features such
as the maximum speed or average torque of the torque actuator could also be aligned with
the muscle morphology. In my thesis, however, I specifically focused on aligning only the
maximum torque, as exemplified in Contribution IV-V. The reason behind this choice was
that this only changes the action-space of the actuator, whereas imposing other constraints
such as maximum speed or average torque would also change the actuator behavior, and
therefore the morphology, itself. This deliberate choice allows the idealized torque actuators
to serve as an upper performance boundary: For example, the torque actuators are able to
instantaneously generate any desired force, which is not possible for the muscle actuators
that only slowly change their output due to the activation dynamics and the dependency
on the kinematics. This also has advantages for the torque actuators, for example for the
high-jumping case in Contribution V: Here, a strong and fast motion is required to launch the
body upwards, which is solved much faster in the torque case - though it has to be noted, that
we did not consider any stability requirements. Including an additional speed limit would
therefore also worsen the upper performance bound of the torque actuator. Nevertheless, it
is worth noting that for other research questions other sensory limitations, such as sensory
conduction velocities (More et al., 2010; More and Donelan, 2018) or the trade-off between
energy and information (Niven and Laughlin, 2008) observed in biological systems, as well
as matching maximum speed or average torque, could be taken into account.
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Fourth, to make more generally applicable statements about the underlying morphology, it
is important to consider a wide range of evaluation criteria. In this thesis, the focus was on
the control effort (contribution IV), data efficiency in the learning process, robustness towards
hyperparameter variations and the robustness towards unknown and unlearned perturbations
(contribution V). Other criteria that have been investigated are stability and robustness,
energy efficiency, precision, cost, performance and many more (see also Section 2.4). These
criteria might be taken into consideration either individually or depend on a combination of
different criteria. Which criteria are selected for comparison might depend on the task for
which the morphology is used.

Finally, closely linked with the previous point, it is important to consider the task for
which a specific morphology is used. While this thesis investigated the benefits of muscle-
actuated motion in terms of control effort and learning for a wide range of reaching and
locomotion tasks, the focus was always on anthropomorphic movement objectives. Similar to
the concept of ecological niches, an optimal morphology might only be optimal for a specific
task. For example, a morphology that is optimal for human-like tasks might not be optimal
for industrial tasks such as welding, pick and place or packaging. This is why it is important
to consider the task(s) for which a specific morphology is used. This itself, however, might
of course also be used as an evaluation criterion: General-purpose systems are desirable,
and typically the performance should not only be good enough to perform isolated tasks
but rather be adaptable to coordinate several functions in order to traverse unstructured
environments (Toda, 1962; Gilday and Iida, 2022).

About the importance of modeling muscle-tendon dynamics As was shown in this thesis,
muscle-tendon dynamics are beneficial for controlling and learning biological movements.
Additionally, including muscle-tendon dynamics in the study of human motor control and
biomechanics is crucial because the choice of modeling simplification impacts the conclusions
drawn about motor control. While the choice of simplifying models is often driven by the
need to reduce computational complexity, it is important to consider the implications of these
simplifications on the conclusions drawn about motor control.

My findings, presented in this thesis, align with existing literature, where similar findings
have been presented. For instance, in Contribution I, I demonstrated that using a macro-
scopic model formulation of the muscles’ dynamics leads to a change in the arm kinematics,
particularly the tangential velocities. This is closely in line with the outcomes discussed in
Pinter et al. (2012) where they compared different types of actuator models - ranging from a
torque-driven model and second-order linear mass-spring-damper system to a musculoskele-
tal model. They demonstrated that the responses to perturbations vary and are significantly
different depending on the level of detail used to model the underlying actuator. There-
fore, both of our studies demonstrate in different ways that the actuator morphology has a
large influence on the movement and if the macroscopic muscle characteristics are neglected,
inadequate conclusions about motor control are drawn.

Similar, recent works using predictive simulations have shown that muscle-tendon dynamics
are required to achieve human-like motion (Wang et al., 2012; Miller et al., 2012b), and it
has been stated that torque-driven models exhibit distinct behavior under the same optimal
control assumption compared to muscle-driven models (McErlain-Naylor et al., 2021). This
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insight is directly applied in Contribution II, where a muscle-driven model is directly employed
to generate human-like motions for designing an assistive device. Using this model instead of
generating torque speed profiles without muscle dynamics allows for the direct incorporation
of natural constraints such as movement speed, muscle fatigue, and muscle strength.

Furthermore, I together with the co-authors showed in Contribution V that including mus-
cle dynamics improves stability and balancing tasks. Here, muscle actuators result in more
robust controllers that generalize effectively across perturbations and transfer tasks, such
as adding unknown weights to the arm or applying external forces at the hip joint during
squatting and hopping tasks. Similar to this, Van Wouwe et al. (2022) showed that includ-
ing muscle dynamics improves the predictions of human standing balance because muscle
co-contraction is predicted as a result of a minimal effort strategy. While I did not conduct
a direct investigation of muscle co-contraction in my thesis, it was still demonstrated that
muscle dynamics improves the stability against perturbations in various movements.

However, simply including muscle dynamics might not be enough if the elasticity of the
tendon is neglected: It is well known that assuming rigid tendons in muscle-driven simulations
speeds up the computational time but leads to inaccurate predictions of muscle co-contraction
(De Groote et al., 2016). This simplification is especially crucial for motions where the elas-
ticity of tendons is used to store energy such as in high-force motions e.g. in running (Hicks
et al., 2015). Additionally, the removal of serial tendon elasticity, as shown by Miller et al.
(2012a) leads to a reduction in achievable maximum sprinting speed. Yet, the importance
of tendon elasticity in learning new behaviors from scratch remains an open question. Our
experiments, thus far, have not definitively confirmed nor denied its significance: Contribu-
tion V, demonstrates the benefits of muscle dynamics in learning new behaviors, although
two different muscle models were employed: In the Demoa muscle model visco-elastic, pas-
sive tendon characteristics are included, which are neglected in the MuJoCo muscle model.
Therefore, the role of tendon elasticity in the learning process remains uncertain.

Exploring other specific factors that might contribute to the learning advantages such as
the nonlinear force-length, nonlinear force-velocity, activation dynamics, and the nonlinear
routing of the muscle-tendon unit were however investigated in several ablation studies shown
in Fig. 18 and 23 in the supplementary material of Contribution V. Notably, switching off
the nonlinear force-velocity relation has the strongest impact of all aforementioned proper-
ties, resulting in poorer learning performance than even the torque actuator performance.
Secondly, we added low-pass filters akin to a simplified muscle activation dynamics func-
tion to the torque actuation scheme, however, this did not significantly improve the learning
performance. However, is important to note that implementing a more complex muscle ac-
tivation function such as the Hatze activation dynamics (Hatze, 1977; Rockenfeller et al.,
2015; Rockenfeller and Günther, 2018) is not possible in the torque actuated case as this
function is dependent on the muscle length. Furthermore, the intricate interplay of these
muscle properties complicates isolating the significance of each individual property.

Scenarios where muscle-tendon dynamics are not advantageous While this thesis and the
literature in the previously mentioned section support the idea that muscle-tendon dynamics
is beneficial for the control and learning of biological movements, it is important to note
that this is not always the case. Traditionally, in robotics, the interface between an actuator
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and its load has been made as stiff as possible. Choosing a high interface stiffness has
the benefit of maximizing the bandwidth (Pratt et al., 1997). Additionally, conventional
actuators such as linear or rotary electrical motors are able to provide high power with fast
response times (Chen et al., 2021) which made them highly successful in classical industry
tasks for centuries. Therefore, this thesis does not claim that muscle-like actuators are always
beneficial, but rather for anthropomorphic tasks that require stability and robustness. In the
following, I discuss three exemptions where muscle actuators are not beneficial:

In Haeufle et al. (2020b), I together with the co-authors showed that neural information
load for point-reaching and walking tasks is reduced if muscle dynamics are included com-
pared to ideal torque actuators. This can be easily understood if one considers that a single
constant control input leads to a dynamic movement trajectory while using muscle dynamics,
and therefore, this corresponds to the lowest possible control effort Imin = 0. A similar hy-
pothetical scenario can be constructed for the torque actuator: If one considers a single-joint
pendulum that should produce a constant end effector force, this can be generated by a single
torque actuation signal. On the other hand, using muscle dynamics in this scenario would
require a continuous adaptation of the muscle activation signal due to the nonlinearities,
leading to a higher information load.

The second exemption shows that while I demonstrated in Wochner et al. (2022b) that
learning with muscle-like actuators is beneficial in terms of data-efficiency and robustness,
there are some tasks where this does not hold true: In tasks that require fast and strong
motions such as the high-jumping tasks, the learning is improved when using torque actuators.
This can be explained by the fact that in this case I only optimized for a swift motion that
launches the system into the air, and not for a stable landing. This leads to an almost
instantaneous, maximum torque output that is not possible with muscle-like actuators.

Finally, while most examples in this thesis are solved by forward dynamics, it has been
shown that if synthetic reference trajectories should be replicated by different actuator mor-
phologies, the muscle actuators might not lead to faster learning (Peng and Van De Panne,
2017). Note, that in fact the idealized torque actuator always acts as an upper performance
bound due to the ability to instantaneously generate any desired torque. However, while
(Peng and Van De Panne, 2017) showed that this is beneficial for learning the replication of
artificial trajectories, this might not necessarily hold true for human-like movements, which
is the focus of this thesis. Additionally, I showed that the muscle actuators are beneficial for
learning new behaviors and also showed this for more complex 3D models (see contribution
V, Wochner et al. (2022b)).

Limitations of the modeling and control approach Although I showed that muscle-
actuated motion has various benefits, there are still some limitations that should be con-
sidered.

First, the muscle model mainly used in this thesis (Günther et al., 2007; Haeufle et al.,
2014a) neglects some muscle characteristics that may enhance stability. For example, it has
been reported that muscles exhibit short-range muscular stiffness that helps to resist against
lengthening at the start of a movement (Rack and Westbury, 1974). Furthermore, it has been
shown in experiments with running guinea fowls that the history-dependent force production
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in muscles plays an important role to counteract unexpected drops in terrain (Daley et al.,
2009). Including these properties might further improve the stability of the system.

Second, the human arm (Appendix A) and full body model (Appendix B) that I mainly
used in this thesis, have various simplifications. The musculoskeletal arm model is restricted
to the planar motion of the arm. This can be justified for the investigated point-reaching
tasks (Wochner et al., 2020) because the analysis of the experimental data revealed that
the recorded movement mostly lay along the para-sagittal plane. In the full body model,
I included 8 controllable joints (ankle, knee, hip, lumbar and cervical spine joint) and two
arms with passively actuated joints. This is a simplification of the human body which has
244 kinematic degrees of freedom (Morecki et al., 1984). Additionally, each joint was ac-
tuated using only the elementary biological drive of two muscle-tendon units set up in an
agonistic way (Schmitt et al., 2019). Therefore, several biological muscles are represented as
lumped muscles neglecting their individual contributions. Furthermore, biarticular muscles
which span across multiple joints were not included. While this simplification is justified
for the investigated research question of whether muscle properties are beneficial for control
and learning in robotics, it is important to note that this model might be too simplistic to
investigate the complexity and variability of human movement. However, including biartic-
ular muscles might further support our findings because it has been shown that biarticular
muscles provide stability for example by securing the zigzag configuration of the leg (see also
Sec. 2.4).

Finally, also limitations regarding the assumptions of the control scheme need to be dis-
cussed. In this thesis, I assume that human motion can be explained by an underlying
optimality principle expressed as a mathematical cost function (Wochner et al., 2020). While
there is evidence to support this assumption, and we can make use of it to control robots in a
human-like manner, it is difficult to falsify this assumption (Berret et al., 2019). Arbitrarily
complex cost functions with composite costs can always be constructed to fit any fixed set
of data. Using Occam’s razor principle or testing generalization across tasks can increase
confidence in the validity of the cost function. Additionally, it has been argued that motor
control is just “good enough” (Loeb, 2012) or habitual (De Rugy et al., 2012) instead of
being truly optimal. This remains an open debate and while there is evidence to support
the hypothesis that in novel situations individuals converge towards habitual behaviors, the
question remains whether this is just a question of adaption time or if there is a fundamental
difference between optimal and habitual behaviors. Moreover, similar to our findings that
incorporating muscle dynamics alters the conclusions drawn about optimality, including more
morphological aspects of biophysical systems such as neural structures could further improve
our understanding of human movement.

Outlook and first steps in these directions This thesis gives the basis towards furthering
our understanding of human movement. More specifically, it gives insights into understanding
healthy biological movement for both voluntary as well as reflexive movements in both upper-
and lower-body movements. Predicting healthy movement is crucial in order to discern the
movement patterns from pathological conditions affecting the motion. These pathological
conditions range from impairments of the muscle-tendon system, e.g., due to diseases such
as muscular dystrophy or injuries such as tendon ruptures, to impairments of the nervous
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system itself, e.g., due to diseases such as Parkinson’s disease or injuries such as spinal cord
injuries. In all these cases, the movement is affected, necessitating continuous adaptation of
the control system to the new circumstances. Additionally, the complex interplay between
the control system and the underlying musculoskeletal system is impaired by aging, affecting
us all. Mechanistically, this might lead to a decrease in muscle strength (Goodpaster et al.,
2006; Delmonico et al., 2009), altered muscle stiffness and activation dynamics (Lim et al.,
2019; Pavan et al., 2020), changes in joint stiffness (Blanpied and Smidt, 1993) and increased
neural signal delays (Rivner et al., 2001). Using predictive simulations, these effects can
be studied in a controlled environment as shown e.g. in Song and Geyer (2018), where
evidence was presented that mainly the loss of muscle strength and contraction speed leads
to observed changes in gait patterns such as reduced walking speed and economy. Some
of these mechanistic effects were also shown in this thesis (Wochner et al., 2022a), where
our experimental data revealed, for instance, that elderly individuals exhibit longer latency
times measured by the EMG signal compared to younger individuals. As a first step toward
modeling this, the sensitivity of the reflex controller was adjusted, as presented. Nevertheless,
more detailed investigations are required to model pathological diseases, regarding both the
control system and the musculoskeletal system.

Moreover, the knowledge gained in this thesis can be used to develop personalized reha-
bilitation strategies. Recent research has shown that the fusion of video- and IMU data for
human motion tracking, coupled with biomechanical modeling, can be utilized to predict the
movement of healthy individuals (Pearl et al., 2022). This knowledge can be leveraged to
devise personalized rehabilitation strategies for individuals with impaired movements, such
as patients suffering from osteoarthritis. Typically, a therapeutic rehabilitation strategy
involving a 5◦ toe-in walking gait is employed to hinder the further progression of knee os-
teoarthritis (Shull et al., 2013). While their proof-of-concept fusion method (Pearl et al.,
2022) shows promising outcomes, it can be further extended based on this thesis by using full
3D muscle-driven simulations in conjunction with dynamic optimization. This approach offers
the advantage of not only using standardized therapeutic toe-in strategies but also tailoring
rehabilitation strategies to individual patients based on their individual muscle recruitment
patterns.

Further, improving the quality of life for people with disabilities or pathologies can be
achieved using exoskeletons and prostheses. Exoskeletons are wearable devices that support
the wearer in performing tasks that would otherwise be difficult or impossible due to their
impaired mobility. In this thesis, methods are proposed for tailoring the design of an elec-
trical machine to individual users (Waldhof et al., 2022). This customization can be used to
design exoskeletons that are more efficient and more robust. Additionally, these exoskeletons
can be controlled using the same control strategies as the biological system (Wochner et al.,
2020). This approach offers the advantage of predicting more human-like movements that
potentially feels more natural to the wearer. Moreover, I showed that the control signal can
be significantly reduced while still generating stable and dynamic movements. Although the
concept of control effort was initially used only as an analysis tool for comparing actuators, it
may also have implications for driving neural prostheses based on functional electrical stimu-
lation. Existing evidence suggests that a very high stimulation frequency can lead to fatigue
(Rongsawad and Ratanapinunchai, 2018). Exploring whether the concept of minimizing in-
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formation can also be applied to control neural prostheses is an open question for future work.
Additionally, a significant challenge that persists is how to predict and integrate the user’s
intended movement as the next most probable action into the exoskeleton’s movement.

Finally, the knowledge gained in this thesis can be used to design and control robots that
are more efficient and robust. Specifically, it is proposed to include properties of the bio-
logical morphology such as the nonlinear properties of the muscle-tendon system to improve
robustness and learning capabilities (Wochner et al., 2022b). This can be implemented in two
different ways: Muscle characteristics such as the force-length-velocity relation and low-pass
filter characteristics can be simulated and integrated into low-level control layers applied to
torque-controlled robotic systems. Alternatively, novel soft robotic actuators, such as arti-
ficial muscles (Klute et al., 2002; Tondu, 2012; Wolfen et al., 2018), have been developed
to mimic the muscle-tendon system. In contrast, researchers have recently also powered a
biohybrid robot by an antagonistic pair of skeletal muscle tissues (Morimoto et al., 2018).
These in vitro constructed cells can be selectively actuated through electric fields, where the
voltage leads to muscle contractions. Testing these various actuators in combination with the
proposed control strategies is a promising direction for future work. Furthermore, although
not the primary focus of this thesis, simplifying control and reducing computational demands
in terms of data-efficiency is a very first step towards creating more sustainable robots. In-
tegrating bioinspired morphology, such as muscle-like properties, might increase energetic
sustainability. This might lead to more energy-efficient robots which has been identified as a
large challenge ahead for robotics (Mazzolai and Laschi, 2020).
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Human arm movements are highly stereotypical under a large variety of experimental

conditions. This is striking due to the high redundancy of the human musculoskeletal

system, which in principle allows many possible trajectories toward a goal. Many

researchers hypothesize that through evolution, learning, and adaption, the human

system has developed optimal control strategies to select between these possibilities.

Various optimality principles were proposed in the literature that reproduce human-like

trajectories in certain conditions. However, these studies often focus on a single cost

function and use simple torque-driven models of motion generation, which are not

consistent with human muscle-actuated motion. The underlying structure of our human

system, with the use of muscle dynamics in interaction with the control principles, might

have a significant influence on what optimality principles best model human motion. To

investigate this hypothesis, we consider a point-to-manifold reaching task that leaves

the target underdetermined. Given hypothesized motion objectives, the control input

is generated using Bayesian optimization, which is a machine learning based method

that trades-off exploitation and exploration. Using numerical simulations with Hill-type

muscles, we show that a combination of optimality principles best predicts human

point-to-manifold reaching when accounting for the muscle dynamics.

Keywords: neuro-musculoskeletal model, motor control, optimality principles, hierarchical control, biomechanics,

biorobotics, Bayesian optimization

1. INTRODUCTION

Goal-directed armmovement has been studied extensively in neuroscience with the aim of deriving
a predictive model of human and animal movements (e.g., Bizzi et al., 1984; Flash and Hogan,
1985; Harris and Wolpert, 1998; Campos and Calado, 2009). It is widely accepted that the central
nervous system (CNS) selects a specific movement to follow an optimal path, which minimizes
certain costs to achieve the movement goal (Todorov and Jordan, 2002; Franklin and Wolpert,
2011). Still, it is unclear which criterion of optimality is chosen by the CNS while generating
and controlling the motion. For point-to-point reaching tasks, several different isolated optimality
criteria have been proposed, such as e.g., minimum hand jerk (Flash and Hogan, 1985), minimum
torque change (Uno et al., 1989), minimum energy (Alexander, 1997), and minimum variance
(Harris and Wolpert, 1998). In a more recent work, Berret et al. (2011b) used kinematic input
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data and reconstructed the optimality function for point-
to-manifold movements in humans. Such point-to-manifold
movements are interesting, as they allow for a richer set of
solutions as compared to point-to-point movements (de Rugy
et al., 2012; Kistemaker et al., 2014; Mehrabi et al., 2017).
Berret et al. (2011b) found that only a combined cost function
minimizing mechanical energy consumption and movement
jerk (maximizing smoothness) allows to reasonably predict the
trajectories of point-to-manifold movements.

In the study of Berret et al. (2011b), muscle forces acting
on the respective joints are lumped to one joint torque per
each joint. While this assumption is supported by the idea
that muscles are grouped together to produce joint torque
forming synergies of muscles (e.g., d’Avella et al., 2003), it
neglects the contribution of the individual muscle to joint
torque generation. Similar, in a very recent study by Oguz et al.
(2018), free-space reaching motions were investigated by using
joint torques representing muscle contractions. Both studies
do not take into account the interaction of the individual,
non-linear muscle dynamics with the non-linear dynamics of
the skeleton. However, it is known that muscles with their
characteristic activation dynamics, non-linearities, elasticities,
and antagonistic setup contribute to the characteristics of
biological movement (van Soest and Bobbert, 1993; Daley
et al., 2009; Schmitt et al., 2019) which has consequences for
the interpretation of the underlying motor control principles
(Pinter et al., 2012). Thus, the question is whether individual
muscle dynamics play a significant role in the optimality of
motion generation and control for point-to-manifold tasks?
More precisely, in comparison with Berret et al. (2011b)
the question is, whether or not the composite optimality
function found, still holds true, if muscle dynamics are
considered, explicitly?

In this contribution, a neuro-musculoskeletal arm model
(Bayer et al., 2017; Driess et al., 2018; Stollenmaier et al.,
2020) is used to simulate arm movements. Point-to-manifold
experiments are investigated numerically. The underlying
control policy to generate arm movements is synthesized
using different isolated, well-known optimality principles and
combinations thereof. Due to the complexity of the movement
apparatus, the optimality of a given control policy can only
be evaluated by performing a simulation. Therefore, we
propose to use Bayesian optimization as a sample efficient
technique to optimize the cost function corresponding to
a chosen optimality principle. Bayesian optimization uses
a probabilistic surrogate model of the cost function to
automatically trade-off exploitation and exploration according
to a utility function. Thus, it can be interpreted as a form
of reinforcement learning similar to the natural process in
animal learning.

The purpose of this study is to investigate whether previously
proposed cost functions allow to reproduce experimental data
of human point-to-manifold movements. The novelty of our
work is the use of a neuro-musculoskeletal model to synthesize
optimal movement considering both isolated and combined cost
functions and investigate the contribution of individual muscle
dynamics in point-to-manifold movements.

2. METHODS

Different optimality principles are applied to a two-joint
biophysical arm model with six muscles, represented by Hill-
type muscles (Günther et al., 2007; Haeufle et al., 2014),
to investigate free endpoint movements. A point-to-manifold
scenario is set up to distinguish between various cost functions.
The arm movement is generated by finding a static, open-
loop muscle stimulation set for all included muscle, using the
selected optimality principle, to reach the manifold from a given,
fixed starting point. Thus, let ξ be a trajectory of features
(e.g., joint positions, velocities, torques, etc.) that is obtained by
simulating an arm movement as a function of the static muscle
stimulation u. The trajectory evolves solely from the dynamics
of the musculoskeletal system. The optimization problem for the
specified cost function J reads as

min
u∈U

J(ξ (u)) (1)

where U = [0, 1]n denotes the space of n possible muscle
stimulations (in our case n = 6). Testing a new muscle
stimulation involves the computationally expensive simulation of
the arm system since no closed-form expression for ξ (u) exists.
To address this challenge, we propose to findmuscle stimulations
in a sample efficient way via Bayesian optimization.

In the following, the single components of the workflow,
namely the neuro-musculoskeletal arm model, the formulation
of the optimality principles as cost functions, and Bayesian
optimization are described. Furthermore, the general setup is
shown.

2.1. Setup
Point-to-manifold experiments are more suitable to distinguish
between different cost functions than point-to-point
experiments, as shown by Berret et al. (2011b). To validate
the predictions of our model, we resort to previously published
experimental data from Berret et al. (2011a). In this study,
subjects were asked to point with a one-shot movement to a
bar placed in front of them with closed eyes. In contrast to
typical point-to-point experiments, the endpoint on the bar
was not defined a priori but is freely chosen by the subjects.
The numerical setup is established accordingly by placing the
neuro-musculoskeletal arm model in front of a vertical bar, as
visualized in Figure 1. The bar represents the target manifold in
front of the subject at a distance of 85% of the total arm length
(L = l1 + l2, where l1 and l2 denote upper arm and forearm
lengths, respectively). Every simulation starts from the same
given set point with zero initial velocities and an arm posture of
ϕ = 90◦ for the elbow and ψ = 0◦ for the shoulder angle. This
initial condition can be seen in Figure 1, the angles are defined
in Figure 2. These values are chosen to mimic the experimental
setup from Berret et al. (2011b). The initial condition for the
muscles was chosen to minimize the sum of muscle stimulation
to resemble a relaxed starting position (Bayer et al., 2017).
Applying an open-loop stimulation u ∈ U then results in the
execution of a dynamic movement. The trajectory and endpoint
equilibrium position depend on the chosen stimulation u.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 38



Wochner et al. Optimality Principles

FIGURE 1 | Illustration of the setup. Possible trajectories of the finger tip from

the start position to the bar are shown in dashed lines.

2.1.1. Point-to-Manifold

We define the point-to-manifold scenario for our study
as follows:

x(0) = x0, ẋ(0) = 0,

z(0) = z0, ż(0) = 0,

x(T) = x⋆, ẋ(T) = 0,

z(T) : arbitrary ż(T) = 0. (2)

Here, x and z are the hand positions in the respective directions
for the starting time t = 0 and the movement duration t =

T, ẋ and ż denote the time derivatives of these quantities.
Furthermore, x⋆ stands for the desired horizontal end position.
Note, that in contrast to point-to-point movements, here the
desired z position is a random goal point within the manifold
spanned by the z axis.

2.2. Musculoskeletal Model
The numerical arm model consists of two segments representing
the upper and lower arm, which are driven by six muscles, two
monoarticular muscles each for the shoulder and the elbow joint,
as well as two biarticular muscles acting on both joints (Driess
et al., 2018, see Supplementary Material for more details). The
parameters are based on previous publications (Kistemaker et al.,
2007; Bayer et al., 2017). The upper body is fixed in space,
and a hinge joint connects the two segments. The limitation
to planar movements is justified, as it has been shown in the
analysis of experimental data that the movements mostly lay
along the para-sagittal plane (Berret et al., 2011a). The dynamics

FIGURE 2 | The numerical model of a human arm. The six muscles are

modeled as lumped Hill-type muscles depicted on the left (figure adapted from

Haeufle et al., 2014). On the right, the kinematic chain (green lines) with the

two joints and the joint angles ψ and ϕ is shown. Red lines depict the two

monoarticular shoulder muscles (ante- and retroversion), orange lines the two

biarticular ones and blue lines represent the two monoarticular elbow muscles

(flexor and extensor).

of the skeletal system are modeled as rigid bodies solving the
Euler-Lagrange equation

M(θ)θ̈ + C(θ , θ̇) = F(θ , θ̇ , t), (3)

where M(θ) is the mass matrix, θ = [ϕ,ψ] contains the
elbow and shoulder angle, respectively, C(θ , θ̇) consists of the
centrifugal, gravitational and Coriolis forces and F denotes all
components of the muscle-tendon forces acting on the arm.
Muscle forces acting on the segments are predicted by Hill-type
muscle models (Haeufle et al., 2014). This means that the muscle-
tendon unit (MTU) is modeled with spring-damper elements
consisting of four components (Figure 2): a contractile element
(CE) modeling the force-length and force-velocity properties of
active muscle fibers, a parallel elastic element (PEE), a serial
elastic element (SEE), and a serial damping element (SDE). The
underlying non-linear dynamics of the muscle model can be
formulated as follows

l̇CE = fv(lCE, lMTU, l̇MTU, a) (4a)

FMTU = ff (lMTU, l̇MTU, a, lCE, l̇CE). (4b)

Here, the first-order differential equation describes the
contraction dynamics of the contractile element l̇CE, which
is integrated in the calculation of the force of the muscle-
tendon unit FMTU. The muscle’s force depends on the current
contraction state of the muscle lCE, the length of the muscle-
tendon unit lMTU, and the muscle activity a. The relation
between a neural stimulation signal u and the muscle activity a
is a complex biochemical process which is approximated here
by Hatze’s model of activation dynamics (Hatze, 1977). Thus,
the muscle activity a, which represents the free calcium ion
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concentration in the muscle, can be predicted with a first-order
differential equation

ȧ = fa(a, lCE, u). (5)

To generate the stimulation signal u ∈ [0, 1]6, an open-loop
controller is implemented, which ensures that the simulated
arm movements always terminate in a static equilibrium with a
vanishing net joint moment (Bayer et al., 2017). The stimulations
u are selected based on the chosen optimality principle with
Bayesian optimization.

Performing a forward dynamic simulation with this arm
model results in a feature matrix ξ (u)

ξ (u)=
(

θi(t), θ̇i(t), θ̈i(t),
...
θi(t), x(t), z(t),

...
x (t),

...
z (t), τi(t), τ̇i(t), u

)T

t=0

for i = 1, 2. (6)

The single components of ξ (u) are trajectories in time t and
represent different physical quantities, such as the joint angles
θ = [ϕ,ψ], the hand position in x- and z-direction, the torques τ1
and τ2 (acting on the two joints, elbow and shoulder, respectively)
and time derivatives of these quantities. Note that all the results
are shown for a non-fixedmovement duration T (if not otherwise
mentioned). This is due to the fact that open-loop muscle
stimulations were found, which ensured that a steady state is
always reached at the end of the arm movement. Therefore, the
simulation was set up such that the model simulates until the
arm velocity drops below a threshold value (10−4 m/s) and then
terminates because the equilibrium state is reached.

2.3. Optimality Principles
Several cost functions have been proposed in the literature to
investigate human arm movement with optimality principles.
The most common ones are presented and compared here. Based
on the evaluated state variables (i.e., components of feature
matrix ξ ), they are divided into five general groups. First,
we consider kinematic models, e.g., the minimum-jerk model
in joint and Cartesian-space coordinates (Flash and Hogan,
1985; Wada et al., 2001) and the minimum angle acceleration
model (Ben-Itzhak and Karniel, 2008). They penalize high-order
derivatives which in turnmaximize the smoothness as introduced
by Todorov and Jordan (1998). Historically, the minimum-jerk
model was one of the most influential theories in motor control
theory which was able to reproduce many of the experimental
observations in real-human movements. However, kinematic
models do not take anatomical constraints or non-linear arm
characteristics into account. Therefore, dynamic models were
proposed. In the literature, two cost variables are formulated at
the dynamic level, namely the minimum torque (Nelson, 1983)
and theminimum torque changemodel (Uno et al., 1989; Nakano
et al., 1999). Although it might not seem intuitively important to
optimize the torque change in biological systems, it was argued
that the minimization of wear and tear on the musculoskeletal
system is desired. On the contrary, the necessity of energy
efficiency in the biological system is evident. Therefore, energetic
models were proposed. One approach could be to minimize

the metabolic energy consumed by the muscles, which is not
considered here. Instead, the total absolute work was formulated
as a cost function which is related to the mechanical energy
(Berret et al., 2008). Alternatively, a more robotic approach, such
as minimizing the control effort, can be used. Typically, using
control effort models helps to handle redundancies. In this case,
the amount of motor neuron activity is optimized by penalizing
the sum of the squared muscle activations (Guigon et al., 2007).
Furthermore, the class of hybrid models combines several single
optimality principles. This work specifically focuses on the hybrid
cost function proposed by Berret et al. (2011a) and Hilt et al.
(2016). This model combines an energy term with a smoothness
expression (e.g., angle jerk) and is able to predict free-endpoint
arm movements. Our hypothesis was that due to the use of
muscle dynamics, an additional term for the hybrid cost function
might be necessary. We propose to include the control effort
term (see JJEE in Table 1) as it is the only single cost function
term that directly affects muscle dynamics by taking the muscle
stimulations into account. An overview of the cost functions used
in this study is given in Table 1.

2.3.1. External Task Constraint

To ensure that the task constraints of pointing to a vertical bar
are fulfilled, the desired end position is imposed. This is done by
extending the cost function with an additional term. The total
cost function is then defined as

Jtotal = ||xT − x⋆||2 + 0.01 · Jopt (7)

where xT denotes the reached x-position of the hand in
equilibrium and x⋆ stands for the desired horizontal end position
(location of the bar). Note that the relation between the task
constraint and the chosen optimality principle has the same
magnitude as suggested by Li and Todorov (2007).

2.4. Finding Muscle Stimulations via
Bayesian Optimization
As discussed in section 2, the goal is to find static muscle
stimulations u ∈ U ⊂ R

6 that, when applied to the neuro-
musculoskeletal system, minimize the specified cost function J.
However, no analytical form of J, i.e., no gradient in particular,
is known, instead, J can only be queried for specific choices
of u, which involves the computationally expensive forward
dynamic simulation of the system, cf. section 2.2. Therefore, the
optimization procedure is an episodic process that seeks for an
optimal set of muscle stimulations based on the information
gathered so far. In this way, there are parallels between the
situation in the present work and real-world motor learning
tasks, where humans improve their skills by trial and error (Taube
et al., 2008).

Bayesian optimization (Brochu et al., 2010) addresses these
problems in a sample efficient manner, by learning a probabilistic
surrogate model of the cost function u 7→ J(ξ (u)) based on
collected data Dn =

{

(ui, J(ξ (ui)))
}n

i=1
obtained from n previous

episodes. (The cost function model can be interpreted as an
internal model of a biological system.)

A common choice for the probabilistic surrogate model are
so-called Gaussian processes (Rasmussen and Williams, 2004),
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TABLE 1 | Cost functions as proposed in literature.

Optimality principle Mathematical description

Angle acceleration (Ben-Itzhak and Karniel, 2008) JACC =
T
∫

0

(

ϕ̈2 + ψ̈2
)

dt

Hand jerk (Flash and Hogan, 1985) JHJ =
T
∫

0

(...
x 2 +

...
z 2

)

dt

Angle jerk (Wada et al., 2001) JAJ =
T
∫

0

(...
ϕ2

+
...
ψ

2
)

dt

Torque (Nelson, 1983) JT =
T
∫

0

(

τ 21 + τ 22

)

dt

Torque change (Uno et al., 1989; Nakano et al., 1999) JTC =
T
∫

0

(

τ̇1
2 + τ̇2

2
)

dt

Energy (Berret et al., 2008) JEN =
T
∫

0

(

|ϕ̇ · τ1| + |ψ̇ · τ2|
)

dt

Effort (Guigon et al., 2007) JEFF =
6
∑

i=1

u2i

Hybrid jerk and energy (Berret et al., 2011a; Hilt et al., 2016) JJE =
T
∫

0

(

|ϕ̇ · τ1| + |ψ̇ · τ2|
)

dt+ 10−3 ·
T
∫

0

(...
ϕ2

+
...
ψ

2
)

dt

Hybrid jerk, energy, and effort JJEE =
T
∫

0

(

|ϕ̇ · τ1| + |ψ̇ · τ2|
)

dt+10−3 ·
T
∫

0

(...
ϕ2

+
...
ψ

2
)

dt+
6
∑

i=1

u2i

which describe the probability density of J(ξ (u)) given the
current dataset Dn as a Gaussian distribution

P(J(ξ (u))|Dn) = N (J(ξ (u))|µn(u), σ
2
n (u)) (8)

with meanµn(u) = κ(u)T
(

Kn+ε
2In

)−1
yn and variance σ

2
n (u) =

k(u, u)−κn(u)
T
(

Kn+ε
2In

)−1
κn(u), where κn(u) =

(

k(u, ui)
)n

i=1
,

Kn =
(

k(ui, uj)
)n

i,j=1
, yn =

(

J(ξ (ui))
)n

i=1
. In this work, we use

the common squared exponential kernel k :U × U → R with

k(u, u′) = α exp
(

−γ
∥

∥u− u′
∥

∥

2

2

)

. The choice of the kernel and

its hyperparameters encodes the correlation between data points
and thereby the complexity/smoothness of the surrogate model.
In this case, the hyperparameters are the length scale γ ∈ R and
signal variance α ∈ R.

Based on the information encoded in the Gaussian process
model, Bayesian optimization selects the next query point un+1

for the next episode by maximizing an acquisition function a

un+1 = argmax
u∈U

a(u;Dn). (9)

In the vicinity of the already collected stimulations, the model
has high certainty, reflected in a low variance σ 2

n (un+1). This
knowledge can be exploited by querying the cost function at a
point of high certainty and low predicted cost. However, there
might be unexplored regions in U with low costs that the current
model is unaware of, i.e., has high uncertainty. This trade-off
between exploring U and minimizing J based on the current
information in the probabilistic model is formalized in the upper
confident bound acquisition function

aUCB(u;Dn) = βσn(u)− µn(u), (10)

where β ∈ R controls this exploration/exploitation tradeoff.
In all experiments, the tradeoff parameter was β = 0.01,

the kernel hyperparameters α, l were optimized with L-BFGS by
maximizing the data likelihood. The dataset was initialized with

10 random muscle stimulations sampled uniformly in U . The
optimization of the acquisition function was also performed with
L-BFGS using 30 random restarts, again uniformly sampled in
U . The algorithm terminates after a fixed number of iterations
(maxIter), in this case, after 600 iterations, which seems to be a
good choice for this problem setting, as shown in section 3.3.

The pseudo-code of this algorithm is shown in Table 2.
Bayesian optimization has empirically been shown to be a sample
efficient method for optimizing black-box cost functions, e.g., in
real world robotic applications (Marco et al., 2016; Drieß et al.,
2017).

3. RESULTS

3.1. Predicted Trajectories
Our neuro-musculoskeletal model predicts eight different
trajectories, one for each optimality principle. The first eight
subplots in Figures 3A–H show the best five simulated
trajectories corresponding to the five best u of each cost function,
which were found using Bayesian optimization. The last plot on
the lower right in Figure 3I, shows the recorded experimental
data for 17 subjects as collected by Berret et al. (2011a). Note,
that the data was post-processed in the same way as in the paper
from Berret et al. (2011a): The signals were low-pass filtered
using a digital fifth-order Butterworth filter at a cutoff frequency
of 10 Hz. Furthermore, the on- and offset of the movement
were defined at the time points where the linear tangential
velocity of the fingertip exceeded 5% of its peak velocity, and
respectively dropped below. The graphs show that the predicted
finger paths differ for the different optimality principles (subplots
Figures 3A–H). This is not surprising as, in contrast to typical
point-to-point tasks, the point-to-manifold experiment allows
more freedom. Another point to be mentioned is the similarity
between the angle acceleration model (Figure 3A), the hand jerk
model (Figure 3B), the angle jerk model (Figure 3C), and the
torque changemodel (Figure 3E). This behavior can be explained
by the fact that all four models maximize the smoothness of
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TABLE 2 | Bayesian optimization algorithm.

Algorithm

initialize data set D0 with 10 random samples

for n = 1,2,...,maxIter do

select muscle stimulation un ∈ R
6 by optimizing the acquisition function aUCB

un = argmax
u∈U

aUCB(u;Dn−1 )

Run dynamic simulation of musculoskeletal system to obtain ξ (un)

Evaluate the cost function J(ξ (un))

Augment the data Dn = Dn−1 ∪
{(

un, J(ξ (un))
)}

Update Gaussian process model of the cost function

end for

movements. Figure 3D displays the results using the torque
model. Based on this optimality principle, the arm points more
or less on a straight path toward the bar and predicts a much
lower endpoint on the bar compared to the experimental data.
Similar to the torque model, the energy model predicts a lower
endpoint on the bar (Figure 3F). Furthermore, the general
curvature is different to the experimental data. Instead of having a
concave trajectory as shown in the experimental data, the energy
model predicts trajectories which first drop downwards, before
pointing forward. It is also interesting to observe the effort model
(Figure 3G) for which the simulated trajectory first falls strongly
and then points upwards to the bar. Therefore, this model is the
only one which predicts a lower endpoint on the bar than the
original start point. As prioritized by the cost function, this model
uses the lowest muscle activations to control the movement in
comparison to all other model predictions. However, none of
the optimality principles with a single cost term reproduces the
experimental trajectories as well as the hybrid model JJE.

Similar to the results of Berret et al. (2011a), our model can
predict biological behavior more realistically with the hybrid
model (Figure 3H) in comparison to all single-cost optimality
principles. For the hybrid model, the endpoint, as well as
the general curvature, match the experimental data well (c.f.
Figure 3I). For the comparison between the simulated and the
experimental trajectories, it is still an open question in motor
control how to define a metric that includes all important
movement features (Gielen, 2009). One metric, which was
proposed by Berret et al. (2011a), is a sum of measuring the
Cartesian and curvature errors between the simulated and the
experimental trajectories. They discussed that based on human
intuition, it is important to include both the shape of the path
and the endpoint position. Due to this metric, we analyzed
all the endpoints and curvatures of the simulated trajectories
visually, as shown in Figure 3. Furthermore, we performed a
quantitative analysis, where we computed the endpoint error on
the bar and the maximum signed curvature error as a measure
of convexity or concavity of a trajectory. The results of this
quantitative analysis are shown in the Table S1 and Figure S2.
To summarize this analysis, looking at both trajectory metrics,
the hybrid jerk and energy model has the lowest error compared
to the experimental data for all cost functions presented in
Figure 3.

To conclude, the results presented above show the behavior
of different single cost functions. None of them is able to match
both the curvature and the endpoint of the experimental data
well. The predicted trajectory of the hybrid jerk and energymodel
is the closest to real human behavior w.r.t. the endpoint error
and curvature error, which is the reason why this cost function
is investigated in more detail in the following.

3.2. Influence of Muscle Stimulations on
Tangential Velocities
So far, only the position trajectory has been analyzed and
discussed. The next step is to investigate whether the hybrid
model (jerk and energy) is also able to predict other kinematic
features, such as the tangential velocity correctly. This is shown in
Figure 4. On the left, the experimental tangential velocities (again
17 subjects) are shown in comparison to the velocity curves of
the model with the best trajectory prediction, i.e., the hybrid
model JJE (solid blue line in Figure 4B). It is striking that both the
peak as well as the general curvature, are significantly different.
This is contrary to the results of Berret et al. (2011a), where
the hybrid model was able to match the experimental velocities
well. An explanation for these differences could be that in our
study, muscle stimulations are used as control variables instead
of controlling the torques directly. Another point is that the
movement duration was not restricted. Previous investigations
(e.g., Gribble and Ostry, 2000; Kistemaker et al., 2006; Shadmehr,
2010; Berret et al., 2011a; Pinter et al., 2012) usually fixed the
movement duration. To show how this affects the results, we
additionally implemented a limitation of the movement duration
to 1 s, which corresponds to the experimental movement
duration. This was done by terminating the simulation after 1
s. To ensure that the velocity at the endpoint is still zero, an
additional term was added to the external task constraint in
Jtotal. Restricting the movement duration also takes into account
that slow movements are favored by the jerk model due to the
fact that the jerk cost approaches zero for an infinite movement
duration. However, this restriction still leads to a right-skewness
in the curvature of the predicted tangential velocities, as shown
in Figure 4B (dashed red line). Consequently, the difference
in modeling the arm by including muscle dynamics was taken
into consideration. As mentioned previously (section 2.2), the
Hatze activation function was used for modeling the activation
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A B C

D E F

G H I

FIGURE 3 | The best five predicted trajectories for the fingertip movement ending on the bar are shown. Eight different cost functions are compared with the

experimental trajectories, in analogy to the metric of Berret et al. (2011a), which is based on Cartesian (endpoint of trajectory) and curvature errors (see section 3.1).

dynamics of themuscles. This function has the property that high
muscle stimulations only need a short time to reach peak activity,
while the time to decrease is longer (Rockenfeller et al., 2015;
Bayer et al., 2017). Indeed, some of the chosen muscle activations
based on the hybrid model are very high, e.g., the monoarticular
anteversion shoulder muscle (MSA) is activated with u = 1.
This explains the strong asymmetrical behavior of the tangential
velocity (Figure 4B).

This is in line with our hypothesis, as mentioned above
in section 2.3 that it is necessary to restrict the search space
by selecting low activated muscle stimulations. Therefore, we
proposed to add an effort term to the hybrid cost function, which

favors a small sum of squared muscle stimulations (JJEE, last
row of Table 1). This additional term directly affects and takes
the muscle dynamics into account. As shown with the JJEE line
(orange) in Figure 4C, this leads to movements with a realistic
bell-shaped velocity curve with a peak velocity of 0.85m/s.
This is comparable to experimental data. All other tangential
velocities shown in Figure 4C have smaller peak velocities and
show more right-skewness in their velocity profiles compared to
both the experimental data and the JJEE function. Furthermore,
Figure 5 shows that the predicted finger path of the new cost
function JJEE is similar to the experimental results regarding two
significant movement features: the Cartesian error (endpoint of
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A B C

FIGURE 4 | (A) The experimentally measured tangential velocities of 17 subjects are compared to the simulated velocities using (B) the hybrid JJE model and (C) all

cost functions including the extended hybrid JJEE model (1 s) for the best prediction.

A B

FIGURE 5 | Comparison between the experimental trajectories and the new

cost function JJEE.

the trajectory) and the general curvature error (based on the
metric of Berret et al., 2011a). Taken these twomovement features
together with the movement features of the velocity curve (see
Figure 4C: bell-shaped profile and peak velocity matches), this
supports our hypothesis that the additional effort term should be
included in the cost function JJEE. In addition, we performed a
quantitative analysis for the two trajectory movement criteria (as
mentioned above) and for two velocity movement criteria for all
cost function including the final proposed cost function JJEE. The
quantitative analysis of the velocity profiles consists of the peak
velocity error and the skewness error (measuring bell-shapedness
or left- or right-skewness) in comparison to the experimental
data. The results are shown in Table S1 and Figure S2. For all
movement criteria, the JJEE cost function has either the lowest or
a very small error compared to the other presented models.

Summed up, the results show that our model can predict
biological behavior more realistically if the muscle activation is
taken into account.

3.3. Performance of Bayesian Optimization
The performance of Bayesian optimization in comparison to
random testing was investigated. The reason for this is to show

that the optimization is better than simply randomly sampling
the search space of u ∈ U ⊂ R

6. The results for all cost functions
were similar, therefore, they are shown using the example of the
hybrid model (JJE). To do so, three test runs were performed
using random testing (each run with 600 iterations) and then
compared to three test runs using Bayesian optimization (each
run with 600 iterations). The resulting cost function Jtotal for
both cases is shown with boxplots in Figure 6. It can be stated
that the median of Jtotal, indicated by the red central line, for
random testing (left side) is significantly higher compared to
using Bayesian optimization (right side). Furthermore, the 25th
to 75th percentiles, also called the interquartile ranges (IQR), are
in different magnitudes as indicated by the blue boxes. In this
case, the maximum whisker length w is 1.5 times the IQR. This
means that points are classified as outliers if they are greater than
q3+ w · (q3− q1) or less than q1− w · (q3− q1), where q1 and
q3 are the 25th and 75th percentiles of all drawn observations.
It is interesting to note that most points classified as outliers
in the Bayesian optimization case (shown as orange crosses)
are still part of the interquartile range in the case of random
testing. Additionally, it can be shown that the mean values of
the two test scenarios are from different populations by using a
statistical hypothesis test with the Student’s t-distribution. The
H0-hypothesis that the two test runs have an equal mean value
is rejected with a significance level of α = 0.01. Therefore, it
can be stated that Bayesian optimization is better than random
testing for sampling muscle activations under the consideration
of different optimality principles.

Furthermore, we evaluated how the absolute cost value
of the best evaluation changes over the iterations for thirty
repeated runs. The mean and the standard deviation of this
evaluation is shown in Figure 7. The absolute cost value
drops at the beginning and then settles on a mean value
of around 8.09e−5. Note, that we would not expect the
absolute cost value to go to zero, because the movement
has a cost and rather converges toward a finite value.
Furthermore, the absolute value of the standard deviation
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FIGURE 6 | Performance of Bayesian optimization. The total error using

random testing (left boxplot) is compared to using Bayesian optimization (right

boxplot). The median of all observations is shown with a central red line, and

the blue boxes represent the 25th to 75th percentile. The tested muscle

activations sampled by Bayesian optimization result in a significantly lower

error compared to randomly drawn stimulations.

FIGURE 7 | Absolute cost value of the best observation. Plotting the mean

and the standard deviation (shaded area) for 30 repeated runs.

(shown as the shaded area) narrows down, the more iterations
are performed.

4. DISCUSSION

In this study, we hypothesized that a combination of optimality
principles determines human point-to-manifold reaching and
that the muscle dynamics have an influence on the investigation
of optimality. For this purpose, we applied several cost functions
to a forward dynamics simulation of a muscle-driven armmodel.
The cost functions are minimized using Bayesian optimization,
which searches for optimal open-loop muscle stimulations. We
showed that a mixed cost function minimizing mechanical work,
jerk, and neuronal stimulation effort simultaneously can replicate

the participants’ behavior in this task much better than any other
of the investigated single cost criteria (Figure 3).

In the human arm, all sources of mechanical energy to
drive the movement lie in the muscle-tendon unit (MTU). All
actions of the MTU are triggered by motor commands of the
central nervous system (CNS) sent directly to the individual
muscle fiber within theMTU over neural pathways. Additionally,
the MTU sends sensory signals back to the CNS. Thus, the
MTU is the crucial link between the neuronal communication
of the CNS and the physical interaction within the body’s
structure and the environment. In literature, several authors
highlight the contribution of muscle properties to the control of
motion, e. g., in jumping (van Soest and Bobbert, 1993), hopping
(Haeufle et al., 2010), animal running (Daley et al., 2009).
For studying neuroscience, however, it is still unclear which
features to include into a mathematical model of a biological
motion system. Pinter et al. (2012) compared arm models with
actuators of different levels of detail – from a plain torque
generator to a model actuated by four macroscopic Hill-type
MTUs. They demonstrated that the response to perturbations
varies and conclusions on control concepts may be inadequate
if the macroscopic muscle characteristics are not considered.
The findings of this work are in line with the literature. By
using an arm model including individual muscles and, at least,
a macroscopic model formulation of the muscles’ dynamics,
the arm kinematics change, significantly. We are not the first
to mention that the choice of the used biophysical model and
its level of detail to study motion generation and control is
sensible as mentioned above, however, we recommend to include
explicit formulations of the muscles’ dynamics (Kistemaker
et al., 2014; Mehrabi et al., 2017). For example, the velocity
profile of the arm kinematics changed dramatically (Figure 4),
just by accounting for appropriate muscle stimulations in the
cost function.

In combination with these Hill-type muscles, we used an
open-loop control approach to investigate optimality principles.
This means no trajectories were planned, nor did we perform
an inverse dynamics calculation (internal inverse model).
Furthermore, open-loop control, in this case, means no sequence
of muscle activations was used because setting only one set of
scalar muscle stimulations is sufficient to produce trajectories
(Figures 3, 5). This is different from some of the previous
investigations (e.g., Kawato et al., 1987; Wolpert et al., 1995;
Todorov and Jordan, 2002; Berret et al., 2011a) where closed-
loop control or inverse simulations were used to analyze different
cost functions. We think the assumption that feedback does
not play a large role in this experiment is justified (Shadmehr
et al., 2010; Oguz et al., 2018) because the participants had
closed eyes without any external perturbations. Furthermore,
the lack of feedback corrections means that the controller
also acts as a planner (internal forward model) because it
predicts the arm motion for a selected control signal. Summed
up, we showed that it is possible to generate trajectories
and investigate optimality with a simple open-loop control
(see Figure 3).

Another important aspect of the controller is not only
investigating optimality but also fulfilling the task, in this
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case, point-to-manifold reaching. Point-to-manifold reaching
allows discriminating between cost functions which is shown
in Figure 3. This is important because other tasks, like the
intensely studied point-to-point reaching task, may result in
similar behavior for different cost functions resulting in the
conclusion that cost functions may be interchangeable (Nelson,
1983; Kistemaker et al., 2014; Spiers et al., 2016). Tasks like
point-to-manifold reaching with a more openly defined target
have a higher potential for revealing differences in the optimality
principles as they result in different trajectories. This was also
discussed by Berret et al. (2011a) where they showed, as a proof
of concept, that hand jerk and torque change cost functions
are much more distinguishable in point-to-manifold than in
point-to-point reaching. Furthermore, we performed point-to-
point simulations with a similar setup described above from the
point-to-manifold simulations (see Figure S1). As shown there,
almost all criteria predict the two typical movement features
for point-to-point reaching movements: straight paths and bell-
shaped speed profiles similar to previous findings in the literature
(e.g., Abend et al., 1982; Flash and Hogan, 1985; Harris and
Wolpert, 1998; Todorov, 2004). This makes it almost impossible
to decide which cost function is the true one based on the
given task since they all have a good theoretical basis and
predict very similar trajectories. Therefore, it can be stated that
conclusions on optimality principles depend, at least partly, on
the chosen task.

Using this openly defined task, we showed that a combination
of smoothness, energy, and effort seems to be a good choice as
optimality principle for selecting a trajectory (Figure 5). Many
arguments have been made to give an understanding of why
each of the single cost criteria gives an advantage to the survival
of the fittest (for an overview see Todorov, 2004). It is often
argued that while energy is a limited resource in our system,
it is important to minimize its consumption (Hatze and Buys,
1977; Alexander, 1997; Berret et al., 2008), whereas smoothness
can be interpreted as a measure of the prevention of self-injuries
of the musculoskeletal system (Todorov and Jordan, 1998). A
combination of these two principles was already proposed by
Berret et al. (2011a). However, we found that by including muscle
dynamics, the cost function needs to be adapted, as well. If muscle
stimulation represents a physiological signal, like the muscle
membrane potential in our case, we found that the interpretation
of control effort is more plausible and physiologically valid.
Therefore, including the cost of muscle stimulation into the cost
function (JJEE, last row of Table 1) is not only necessary but
allows for a more realistic search for the underlying optimality
principles, as well. Additionally, such an enhanced cost function
allows for an implicit integration of earlier findings regarding
movement optimality, such as reduction of noise (Harris and
Wolpert, 1998), because noise scales with the control signal.
Furthermore, it was mentioned by McKay and Ting (2012) that
similar muscle activity patterns are predicted by cost functions,
such as reduction of signal-dependent noise compared to the
minimization of control effort. This would further support our
findings. Concluding, a combination of these cost functions is
reasonable, and evidence for this combination is shown in this
work (see Figure 5).

Considering this influence of the muscles on the selection
of the optimality principle, the question arises if other implicit
aspects also have an influence? In this study, we showed that
transferring a real task to a valid simulation task also leaves
some other parameters open to be set, such as movement
duration (see Figure 4). It is unclear how the non-specific task
requirement of pointing fast is translated into a quantitatively
measured time. Some authors (e.g., Tanaka et al., 2006) argued
that movement duration is minimized under the constraint that
the endpoint accuracy of the movement is still good enough
based on Fitts’s law (Fitts, 1954). However, in this openly
defined target we used in this work, the accuracy is not given
explicitly, which in turn makes it difficult to set a movement
end time. Therefore, we first choose an open subset of possible
solutions by simulating the movement until an equilibrium
endpoint is reached. However, we have seen that restricting
the movement duration from an equilibrium endpoint to 1 s,
consequently, also changed the tangential velocities. Setting this
new end time which is closer to the experimental movement
durations, affected the simulated tangential velocities such that
theymatched the experimental ones better (Figure 4). This shows
that it is not clear how implicit task aspects, such as time
are incorporated in the biological structure nor how they can
be modeled.

Another point which is important for investigating muscle-
actuated synthesized movement is that not only the initial angles
or initial end-effector position determine the system state but
rather the pre-activation of the muscles needs to be included
as well. In another study by Bayer et al. (2017), it was shown
that the pre-activation of the muscles has a strong effect on the
maximummovement velocity. Therefore, we chose theminimum
sum of muscle stimulations as the initial condition. This can
be interpreted as a “relaxed” starting state. Taken this together
with the previously discussed time aspect (Figure 4), we want
to emphasize that through external factors or non-specific task
requirements, the arm movement control is changed. In this
context, by external factors, we mean both the environment
as well as the given task. Here, the environment includes,
e.g., external perturbations, joint limits, obstacle avoidance, and
many more. Both the environment and the given task can
influence the movement features, such as speed and movement
duration, accuracy, distance and amplitude, noise and the initial
condition. Connecting these points, this supports the hypothesis
that optimality is a restricted function in the domain of task
and environment.
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Abstract: Exoskeletons are powerful tools for aiding humans with pathological conditions, in danger-
ous environments or in manually exhausting tasks. Typically, they are designed for specific maximum
scenarios without taking into account the diversity of tasks and the individuality of the user. To
address this discrepancy, a framework was developed for personalizing an exoskeleton by scaling
the components, especially the electrical machine, based on different simulated human muscle forces.
The main idea was to scale a numerical arm model based on body mass and height to predict different
movements representing both manual labor and daily activities. The predicted torques necessary
to produce these movements were then used to generate a load/performance cycle for the power
unit design. Considering these torques, main operation points of this load cycle were defined and
a reference power unit was scaled and optimized. Therefore, a scalability model for an electrical
machine is introduced. This individual adaptation and scaling of the power unit for different users
leads to a better performance and a lighter design.

Keywords: axial flux machine; exoskeletons; human arm model; multiphase electrical machines;
permanent magnet machines; personalization

1. Introduction

The application areas of exoskeletons are as wide-ranging as the requirements for the
drive units. In medical environments, exoskeletons can be used for the rehabilitation of
motor-impaired patients, for one, or permanently to compensate for muscle/neurological
diseases. In addition to medical applications, exoskeletons are also employed in industrial
environments. Here, they support workers during heavy activities in order to counteract
long-term damage to the body. In [1,2], the usage of exoskeletons in industrial environments
is investigated, and displays an increase in productivity. Smets [3] shows the challenges
of this practice in his study. He states that a “one for all solution” is not effective because
the different requirements of the users cannot be met to the same extent and thus the use
of the exoskeletons by workers is negated. In addition, the weight and comfort of the
exoskeletons are brought up as major criteria. The classic design process of exoskeleton
power units focuses on maximum loads, whereas the interaction with the human force
component is neglected. This leads to an oversizing of the drivetrain and thus to a high
weight. This problem was also stated in a recent review of the design of current upper limb
exoskeletons by Gull et al. [4]. More specifically, they defined the still unsolved challenge of
designing novel exoskeletons based on neuro-musculoskeletal models. In the following, we
present some of the earlier studies that investigated human- and task-centered approaches
to more accurately design the drive system and the exoskeleton.

Shao et al. [5] optimized the design of a three-DOF cable-driven upper arm exoskeleton
by minimizing the force exerted on a numerical arm model. Using this optimization based
on the mechanical arm model, they were able to ensure that one representative user could
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perform all motions over a large range of motion, though the muscle dynamics were
neglected. Zhou et al. [6] proposed a method used to optimize the design of robotic
exoskeletons using simulations of a musculoskeletal arm model to addresses the individual
requirements of the user. Here, they optimized the stiffnesses of a simplistic exoskeleton
based on linkages arranged as a parallelogram at the example of a generic arm model driven
by recorded human motion data. Zoss [7] also used clinical gait data (CGA) to design a
lower body exoskeleton. Using these data for a scaled generic human in combination with
a simple power analysis, they showed that appropriately sized electric actuators could
be chosen, leading to a decrease in power consumption, with the disadvantage of being
twice as heavy as the original actuation. To overcome this drawback of overdimensioned
actuators, Toxiri et al. [8] focus on a specific use case of the exoskeleton and generate the
requirements for the drive system based on this by including an elastic element acting
to the mechanical in parallel. Calanca [9] uses both of the different requirements and
adapts his drive systems with commercially available components for the gearbox and
electric drives to better fit the drive systems to the user. All of these approaches show a
significant increase in the user’s acceptance of using the exoskeletons, but they still do not
adequately meet the user’s individual needs. Most of the presented approaches require
real human motion data to drive the biomechanical model, which has the disadvantage
of novel and potentially dangerous tasks not being able to be tested virtually a priori.
Furthermore, all of them optimized the exoskeletons design for one generic biomechanical
model. Therefore, typically, only one or two design variables could be optimized, whereas
a greater fine-tuning of the drive system requires individual scaling of the electric machine.

In [10,11], a general approach for scaling electromagnetic systems is presented. Pries
further shows that an electric machine can be scaled with a constant parameter. This
approach is refined in [12,13]. It scales the outer diameter as well as the active length of an
electric drive via parameters and optimizes it to the driving cycle of electric mobility. This
shows a significant increase in efficiency as well as torque density. Seok [14] gives a similar
approach, where he scales the outer diameter and axial length of the motor for a legged
robot. This approach shows a good adaption to the desired task, but is still limited to a
few geometric motor parameters. A major remaining challenge in scaling is the production
of the drive in quantities of one. However, many concepts of additive manufacturing for
electric drives have been presented recently that can solve this challenge [15–17].

It has been found that, in order to create an individual exoskeleton for the individual
user, the physiology of the user must be recorded and taken into account. Furthermore, the
performed task has to be investigated and then the drive system has to be scaled according
to these requirements in order to generate a drive system that is as light and efficient
as possible.

This personalized design process, which is currently unknown to the author in the
literature, shall be further examined in this approach. For this purpose, a scalable human
arm model shall be created, which represents the individual user’s exoskeleton require-
ments. Finally, a novel scaling model of a drive unit is presented in order to implement an
individual drive. The purpose of this study is to optimize the design process for personal-
ized exoskeletons to reduce the weight and increase the power density of exoskeletons. To
this end, the unique body dimensions of each person and the required task are considered.
In a first step, the body dimensions were used as the input for a scalable human model
(see Section 2.2) to generate the occurring forces for the desired task. Therefore, the total
height lB and mass mB of the body was measured. To define the task trajectory, the entire
movement was split up into sub-movements with a defined start and target angles of the
elbow and the shoulder joint. Resulting torques were analyzed and used to generate a load
cycle for the power unit design (see Section 2.5). The defined main operation points, in
addition to user-dependent constraints such as mass and size, were used to scale a reference
power unit for the specialized needs (see Section 2.6). In Figure 1, a schematic overview of
the design process and the structure of this paper is given.
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Figure 1. Schematic overview of the design method in this approach.

The novelty of this work is the combined virtual prototyping environment coupling
the forward dynamic simulation of different scaled musculoskeletal arm models with the
scaling of the electrical machine. To this end, a novel scaling model for a geometrical scaled
drive unit is introduced.

Use Case

The design approach introduced in this paper was demonstrated by the example of an
upper body exoskeleton, more specifically, on the elbow power unit. As a representation
of a human model, an arm model with a shoulder and elbow joint was used to predict
movement parameters necessary for the power unit design. The power unit scalability
model was introduced for an axial flux machine; in particular, five geometric parameters of
the axial flux machine were scaled, and this model was verified on a five-phase air-cored
case study. Further, the general approach should be applicable to any exoskeleton with
any electrical machine design used for the support of different body parts. However, the
applied constraints and feasibility were specified on this case study. The study case of the
air-cored machine allows us to neglect the iron core losses and non-linear effects of iron in
the machine.

2. Materials and Methods
2.1. Definition of Movement

To demonstrate that the power unit is designed for a representative biological move-
ment range of the arm, the following movement matrix is defined. Consider both flexion
and extension movements for one- and two-joint movements with different velocities
in three different conditions: without additional weight (no load), lifting a fixed weight
(2.5 kg) and a scaled weight (100% arm weight). In total, this represents eight different
cases shown in Table 1 and visualized in Figure 2. The chosen angle deviation is 90◦ for
both the shoulder ΘS and the elbow joint ΘE in the two-joint movement in order to include
a wide range of motion.

Table 1. Movement matrix.

Cases Start to Target Angle [ΘE, ΘS] Mov. Duration DoF

A [00◦,00◦] to [−90◦,−90◦] flex. 1.2 s two joints

B [−90◦,−90◦] to [00◦,00◦] ext. 1.2 s two joints

C [00◦,00◦] to [00◦,−90◦] flex. 1.2 s one joint

D [00◦,−90◦] to [00◦,00◦] ext. 1.2 s one joint

E [00◦,00◦] to [−90◦,−90◦] flex. 0.6 s two joints

F [−90◦,−90◦] to [00◦,00◦] ext. 0.6 s two joints

G [00◦,00◦] to [00◦,−90◦] flex. 0.6 s one joint

H [00◦,−90◦] to [00◦,00◦] ext. 0.6 s one joint
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Furthermore, a target position of 90◦ for both joints is a typical position in manual
labor such as overhead drilling [1,2], which is a potential application for this exo power
unit. Another potential use case is exos in rehabilitation, where single-joint movements
are often performed in typical exercises [18]. All cases include representations of typical
daily activities; for instance, opening a door or carrying objects. Apart from joint angle
configuration, movement speed and movement duration typically have a crucial influence
on biomechanical parameters such as torque. Therefore, two typical movement durations
were selected to represent both faster (0.6 s) and slower (1.2 s) movements [19,20].

ΘS
ΘE

(a) Arm joint angles in deg

A,E

B,F

(b) Two degrees of freedom

C,G

D,H

(c) One degree of freedom

Figure 2. Visualization of arm model with the considered movement matrix. In (a), the defined
angles are shown. (b,c) show the start and target positions of the movements as well as the
controlled trajectory.

2.2. Arm Model

Modeling the lifting movement, the “Arm26” model as described in [21] was used. It
consists of two joints (elbow and shoulder) and six muscles, modeled as Hill-type muscles
(see Figure 2a). Here, each joint was actuated with two monoarticular muscles, as well
as two biarticular muscles. The dynamics of the skeletal system were modeled as rigid
bodies solving the Euler–Lagrange equation. Furthermore, the muscle model consisted of
an extended Hill-type muscle model with a more realistic eccentric force–velocity relation
and serial damping as shown in [22,23]. The routing of the muscle path around the joints
was accomplished using deflection ellipses as described in [24] and we included nonlinear
activation dynamics according to [25]. For a more detailed description, we refer to the
supplementary material of [21]. Additionally, physiological joint limits were included as
linear one-sided spring-damper elements. Note that the arm model was implemented
using Matlab®/Simulink® version 2018a with the Simscape Multibody™environment.

It was scaled for three different human sizes: F05, M50, M95. These model sizes are
typically used in biomechanical studies, e.g., in car occupant models [26] and pedestrian
safety models [27,28] among others. The reason behind this is because the range between
the 5th percentile female and the 95th percentile male (in both size and weight) represents
90% of the population. The total body height lB and total body mass mB used in this study
were taken from [29] as shown in Table 2.

Table 2. Total height and weight for three typical human percentiles commonly used in
ergonomic studies.

Description Unit F05 M50 M95

total height lB m 1.535 1.750 1.855
total weight mB kg 52.000 79.000 100.000
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2.3. Scaling Approach

For scaling a musculoskeletal model, three sets of parameters need to be modified:
first, the geometry of the model, including segment lengths, segment masses, centers of
mass and moments of inertia, needs to be scaled. These quantities were scaled linearly
based on the total height of the considered person lB and the total body mass mB. The
linear scaling factors used for the “Arm26” model were taken from Winter et al. [30].

The second set of parameters that were scaled includes all muscle lengths, i.e., muscle
attachment points relative to the bones (muscle origin, insertion and deflection points),
as well as the muscle-length-dependent parameters lCE,opt and lSEE,0. These were scaled
proportionally to the segment lengths and used the “Arm26” model as reference [21].

Finally, the maximum isometric force Fmax of all muscles needs to be scaled. Since this
force is linearly related to physiological cross-sectional area (PCSA), the PCSA was scaled
instead. This cross-sectional area PCSA can, in turn, be scaled dependent on the total body
mass mB [31]. Notably, all parameters can be scaled depending on the total body height lB
and mass mB. Although statistical parameters (as given in [29]) were used for these two
quantities, they can easily be exchanged for subject-specific modifications.

2.4. Control

As desired movement trajectory, a minimum jerk trajectory with a fifth-order poly-
nomial was implemented to ensure a smooth trajectory in accordance with [32]. This
higher-level input Θdes

E (t) was then transformed into a triphasic stimulation pattern u(t)
using the pattern search algorithm in Matlab® (as described in [33]). The assumption
to use a triphasic stimulation pattern as in [33] is justified because, during fast point-to-
point movements, three phases in the muscle surface electromyogram (EMG) patterns
are typically observed [34,35]. This corresponds to an acceleration phase where mostly
the agonist muscles are active, which is followed by a braking phase of the antagonistic
muscles, until the arm is kept in the desired end position in the final phase. Based on this
muscle stimulation, a forward-dynamic simulation of the arm model was performed.

2.5. Load Cycle Analysis

The necessary torque Tload,opt to perform the actions in time was specified by a dy-
namic simulation based on classical mechanics with an inverse dynamics approach. This
theoretical torque curve was compared to the results of the human arm model, from which,
the required supporting torque of the power unit was calculated.

To generate load profiles for the electrical machine, the required movement was
simulated with and without additional load. To the user, the movement with an added
weight should feel comparable to an unloaded movement. This signifies that the movement
velocity should be equal to the optimal unloaded movement velocity ωopt.

Treq = Tload,opt − kper Tload − (1 − kper) TnoLoad (1)

ωreq = ωopt (2)

The support torque is individually adjustable. The constant kper describes the power
factor of the person. If kper is set to one, the person will take the full load of the load cycle,
which means that there will be no support of the drive unit. If the constant is zero, the
weighted movement will feel like the unloaded movement. However, independent of
kper, the difference in the torque curves is supported to match the optimal trajectory. In
Figure 3, exemplary torque curves are visualized. More torque curves are presented in the
Appendix A (c.f. Figures A1–A4). The torque–speed plane was then calculated with (1)
and (2) and presented in Figure 4 for three different people for movement A with 100%
additional arm weight.



Robotics 2022, 11, 107 6 of 18

0

30

60

90

0 0.2 0.4 0.6

−20

0

20

40

0 0.4 0.8 1.2

a)

jo
in

ta
ng

le
Θ

E
in

de
g

tmov = 0.6 s
b)

tmov = 1.2 s

TM50
noLoad

TM50
load

TM50
load,opt

c)

time t in s

jo
in

tt
or

qu
e

T E
in

N
m

d)

time t in s

F05 M50 M95
100% arm weight 2.5 kg weight no Load

Figure 3. Simulated load cycle comparison for the movements, case A and E (see Table 1), with
different movement durations tmov and loads mload. The solid black line shows the optimal trajectory
and torque curve Tload,opt of the M50 with 100% arm weight. In (a,b) the joint angles of the elbow and
in (c,d) the resulting torque in the elbow joint during the performed task are presented. Further, in
(c), exemplary for M50, the torque curves used in (1) are marked.
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Figure 4. Clustering result for all persons for case A with the relative weight of 100% arm weight
and a support of kper = 0.5. The cluster centroids with their statistical weight. The size of the
cluster weight circle shows how many points and how much loss power are grouped in this cluster,
statistically related to the number of all points and total loss power of the load cycle. The maximum
operation point later is used as EM design point.

To ensure that all requirements were met, the maximum operating point (maximum
speed, maximum torque) was used as the design point for calculating the electric machine.
In addition to the maximum operating point, all other operating points are also relevant for
the optimum design of the drive, since the loss energy varies in each one, respectively. In
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this context, partial load points may occur more frequently in a load cycle, where a high
efficiency would be desirable. To optimize the overall efficiency over the course of a load
cycle, the efficiency has to be considered at each stage thereof. Determining these is very
computationally and time consuming for variable electric machines during optimization.
Consequently, a reduction of these points needs to be considered. Data downsampling
alone could lead to a loss of information about the cycle, which is not recommended. For
data reduction, cluster algorithms are a promising approach. Various methods of analyzing
driving cycles are presented in the literature [36,37]. Besides the thorough knowledge of
experts used to generate relevant operating points, the k-means machine learning algorithm
is superior to other algorithms mentioned there. This algorithm generates a centroid by
using the Euclidian distance for a given number of clusters under consideration of different
similarity constraints [38].

In this approach, in addition to the torque/speed characteristic and considering
the physical behavior in the cluster algorithm, the power dissipation was chosen as a
supplemental constraint. In robotic applications, especially in this case study, the amount
of copper losses is dominant and calculated with

PL,C =
m
k2

T
Rph Treq

2 . (3)

Here, the phase resistance Rph, the number of phases m and the torque constant kT of
the reference motor were used. Based on the clustering results with three clusters (Figure 4),
the elaborated points can be used for electrical machine scaling instead of using all data
points. Furthermore, the clusters were weighted based on the time of the cycle within the
cluster multiplied by the copper losses related to the total loss power.

2.6. Power Unit Design
2.6.1. Reference Machine

The reference power unit (PU) in this approach consisted of a yokeless double-sided
axial flux machine (AFM). In [39], the AFM was geometrically compared to other motor
topologies, such as radial and transversal flux machines [40]. The result shows that the
AFM is beneficial over other topologies for torque production in flat application fields.
The AFM was connected to a harmonic drive gear (HD) by a toothed belt. The optimal
gear ratio was designed in accordance with [41], where the stator current of the electrical
machine considering a known LC was minimized. This leads to a total gear reduction of
iG = 235, on average, for different load cycles. The gear ratio is quite high for dynamic
applications. This leads to some issues in back drivability of the system, which can be
handled through compensating control algorithms. The gear ratio is adaptable and not
necessarily fixed for the scaling approach.

Finally, this leads to a design torque of TAFM = 180 mNm of the AFM. The DC-Link
voltage of the reference machine was set to 48 V. Stator housing and coil holders, presented
in Figure 5, are made of 3D-printed PLA. Hence, small adjustments in geometry scaling are
easily implementable.

AFM Harmonic Drive Gear

Housing fixed Housing mobile

(a)

Coil Holder

Coil Winding

(b)
Figure 5. Reference power unit design prototype. (a) Power unit for an elbow. All housing compo-
nents are made of 3D-printed PLA. (b) 3D-printed coil holders with winding.
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2.6.2. Scaling Approach

Figure 6 shows the considered geometry and introduces the geometrical scaling
parameters. The general topology was set to a five-phase machine with a stator pole pair
number of one. To increase the winding factor, a rotor pole pair number of three was chosen.

h W
h P

M
h R

bN

(a)

d
out /2

d
in /2

bN

τ
pm

τC

(b)
Figure 6. Geometry drawings of yokeless double-sided axial flux machine with relevant design
parameters. The outer diameter of the AFM is expressed by dout. The ratio between the inner
diameter and the outer diameter is expressed through kD. The winding area is defined through the
height hW and the width bN . The coil width is defined with τC. The winding is implemented parallel
along radial direction. The heights of the permanent magnets hPM and the width τpm are shown. The
rotor height is given with hR. (a) Cut view on the middle radius. (b) Top view.

The scaling approach utilized in this paper was based on analytical functions that are
presented in literature [42,43]. This means varying the machine parameters to a certain
extent around the reference machine design. The general scaling law can be given for x as
product of x0, the considered value of the reference machine and cx, the scaling factor of x.
Rearranging this leads to the desired relationship

cx =
x
x0

. (4)

Further, x can be set to every parameter of the electrical machine and can be defined
as x = f (dout, kD, hW , . . . ). Applying (4) to every parameter leads to the general model

cx = f (cdout , ckD , chW , . . . ) . (5)

The general scaling law in (5) can basically be applied to all of the output quantities.
For some relationships, it is convenient to introduce so-called auxiliary constants. These
will be abbreviated with fx and depend solely on values of the reference machine and
physical, material or other auxiliary constants.

In the following, an example for the torque is given. The torque is calculated as

TAFM =
π

4
ζw,ν B̂δ AAFM dout

3 (kD − kD
3). (6)

The winding factor ζw,ν, the flux density B̂δ and the current density AAFM are given.
In case of the torque equation, the scaling model is defined as

cT =
TAFM

T0
= cel cmagn cgeom. (7)

For a better understanding of the scaling influences, they can be grouped into elec-
trical, magnetic and geometrical dependencies. In this paper, the geometrical scaling is
investigated. Geometrical cross-dependencies to magnetical and electrical scaling are con-
sidered. The scaling parameters are defined as λ = (cdout , ckD , chW , cbN , chPM )T . Further,
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it is implicated that the electrical and magnetic load of the electrical machine should be
constant. In other words, the winding scheme, magnet topology, etc., are fixed. In terms of
the magnetic flux density B̂δ in the air gap, there is a geometric relationship between the
height of the permanent magnet hPM and the height of the winding hW . This dependency
leads to additional constraints that are considered for the solution of the problem. In (8),
(see following page) the torque scaling model is given. Important parts in this equation are
the scaling factors for the winding factor cζ1(λ) and the edge leakage factor ckL(λ).

The winding factor is investigated in [44]. The scaling behavior was simplified to the
carrier wave of the system on the centered radius in this case. Then, the trigonometric
functions were mapped to a third grade Taylor polynomial, which maps the function with
less than one percent error.

The leakage factor contemplates the edge effects of the permanent magnets on the outer
and inner radius of the machine. Furthermore, the shortcut effects between the permanent
magnets are taken into account. This factor is based on an average area reduction of the
permanent magnet, thus leading to a reduction in the magnetic flux density in the air gap.

In addition, torque cT , speed cω , mass cm, acceleration cα and efficiency cη are defined
as necessary values for scaling in personalization for exo drives. The detailed model
functions are given in (8) to (12).

The exemplary design area generated from the model (Figure 7) depends on the
first three geometric scaling factors of λ. All other scaling factors are kept constant
for visualization.

0.5
1

1.5
2

1
1.5

2
0.5

1

1.5

2

cdout
ckD

c h
W

cm
cη
cα
cT

0.5 1.0 1.5 2.0 2.5

Figure 7. Model dependency on three exemplary different scale factors. The iso-surfaces visualize
the scaling of the torque. The contour lines in the axes limit show the scaling for all model outputs.

The model provides the opportunity to generate these design areas for all different
kinds of scaling factors. To solve the model for the load cycles as defined in Section 2.5, the
intersubsection points of these scaling functions must be identified.
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cT = cN cI cζ1 ckL

cBr

1 + fδ

(
fδ0 cδ+ fhPS0

chPS
+ fhW0

chW
chPM

− 1
) cdout

2
(

fK2 + (1 − fK2) ckD
2
)

(8)

cω =
cUi

cN cζ1 ckL
cBr

1+ fδ

(
fδ0 cδ+ fhPS0

chPS
+ fhW0

chW
chPM

−1
) cdout

2
(

fK2 + (1 − fK2) ckD
2
) (9)

cα =
cT

cdout
4

1+ fΘ1

(
chR +

chPM
fΘ2

(
1 − ckD

4
(

1 − 1
fK4

))) (10)

cm =
cdout

2

1
fm1

+ fm2 (1 − fα2) + fF + 1

(
chR

fm1

+
(

fK2 + (1 − fK2) ckD
2
) (

chPM fm2 (1 − fα2) + chPS fF + chW

))
(11)

cη =
cT cn

fPmech0 cT cn + fPCu0
cN 2cI 2

ckCu
chW

cbN

((
fPCu1 − fPCu2 ckD

)
cdout − fPCu3 cbN

) (12)

2.6.3. Solving

The model equations are solved with the Levenberg–Marquardt algorithm, which is
based on the least-square algorithm method. The solvability strongly depends on the initial
points. Therefore, a multi-start algorithm is used to check a wide range of initial points.
A pre-calculated geometrically feasibility check of the initial points restricts the solver to
start only with feasible initial points. The solution is based on the following equations.
From the load cycle analysis, in combination with the individual body requirements of
the user, minimal needed values are identifiable. Therefore, the maximum needed torque
Tmax,req (see (13)) and the minimum necessary acceleration αmin,req (see (15)) that fulfil the
load cycle are determined. Depending on the user, a maximum weight mmax,user of the
electrical machine is chosen (see (14)).

cT(λ)− Treq/T0 = 0 (13)

cm(λ)− mmax,user/m0 ≤ 0 (14)
αmin,req/α0 − cα(λ) ≤ 0 (15)

Only in the case of the demanded torque is a strict maximum bond given. For the
acceleration and mass, soft maximum and minimum bonds are given. In other words, only
the necessary torque should be exactly achieved. Should it be possible through scaling to
achieve a lighter motor than the permissible weight or more dynamics as the demanded
acceleration for a higher efficiency, the solver can choose this solution. This leads to a better
performance of the solver.

2.6.4. Constraints

An important part of scaling definitions is to define the feasible possibilities of the
model. Therefore, the following constraints are examined.

For the geometric feasibility, the maximum possible assembly space for the power
unit is considered, as well as the space constraint at the inner radius of the AFM. Here, the
width of the winding slot has to be small enough to fit two times within the pole pitch of
the AFM:

cbN

cdout ckD

− dout kD
2 bN

π

m︸︷︷︸
f1

< 0 . (16)

Under consideration of a parallel slot opening over the machine diameter, the factor
f1 has to be adapted to

f1 = sin(π/m). (17)



Robotics 2022, 11, 107 11 of 18

As mentioned in [39], the double-sided AFM is beneficial over a radial flux machine
(RFM) if the assembly space factor cAR is smaller than one. Therefore,

cx
2 fAR1 − cx fAR2 + fx2

cx3 ckD ( fK2 − ( fK2 − 1) ckD
2)

− 1
fAR0

< 0 , (18)

is defined, where cx describes the ratio between the outer diameter and the active length in
terms of the machine geometry.

Besides the geometric constraints, thermal constraints were implemented as well.
The thermal behavior of the AFM was controlled through the maximum allowed current
line density. In air-cooled electrical machines, a current line density of 5–10 A/mm2 is
recommended. For short time operations, a current line density of Jmax = 30 A/mm2 is
permissible [45]. The following constraint is given to

cN cI
ckCu cbN chW

− Jmax

J0
< 0. (19)

Figure 8 shows a design map for an exemplarily designed load cycle (case A) of
M50 person. The blue surface shows all scaling combinations that match the torque
requirement. Some of the above-mentioned constraints and model equations are displayed
as intersubsection lines of the constraint surfaces on the constant torque surface. A further
design criterion is the efficiency of the scaled machine. The scaling influence on the
efficiency is shown as a contour plot on the constant torque plane. In this case, the efficiency
is rising equally to the slot height chW . Based on these findings, the most efficient scaled
machine on the intersubsection lines of (14) and (16) of the possible variants was chosen
(see blue dot).

0.5
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1.5
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1
1.5

2
0.5
0.6
0.7
0.8
0.9

1

cdout
ckD

c h
W

cη

0.9

0.95

1

1.05

1.1

const. torque min acceleration
max mass feas. inner radius
efficiency result

Figure 8. Solution map for the elbow power unit of a M50 at the movement case A.

2.6.5. Validation

The model validation is accomplished in two steps: At first, the influences of the
scaling parameters are proven by a three-dimensional FEA simulation. Secondly, the
reference power unit is built up as a first prototype (see Figure 5) to validate the FEA
simulation as well as the analytical model. The measurements are performed on a motor
test bench where constant operating points, as well as the earlier mentioned reference load
cycle, are implementable. For the speed characteristic, the induced voltage in open circuit
operation mode is validated, which indicates the right electromagnetic behavior. For torque
and performance validation, the motor is controlled as presented in [46]. Detailed results
are given in Table 3 and can be observed as matching very well.
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Table 3. Result comparison from the analytical model (AM), 3D finite element analysis (FEA) and
measurements of the prototype (PT).

Parameter Unit AM FEA PT

Torque TAFM mNm 180.80 178.90 176.20
Ind. Voltage Ui mV/rpm 1.54 1.49 1.49
Mass mre f g 156.15 156.35 157.20
Efficiency η 1 % 62.49 62.25 61.90

1 at n = 3000 rpm, î1 = 5 A.

The differences between prototype and FEA simulation are in all values under 1.5%.
The maximum deviation between analytical model and prototype is 3.2%, which is accept-
able under the assumptions at hand.

3. Results

For the discussion of the results, an exemplary load cycle consisting of the movements
“ABCD” and “EFGH” was investigated. Further, the slow load cycle will be called “slc”,
and the fast one “flc”.

3.1. Influences of Movement

The movement velocity has the largest impact on the load cycle and the requirements
of the power unit, as shown in Figure 9a. With a decrease in the movement time, dynamic
effects are dominating and the torque necessary to compensate the inertia is rising. In
the case of the M95 person, the needed torque rises from 10.11 Nm to 22.81 Nm. This
corresponds to an increase of 125.6%. Furthermore, the power unit speed scales up linearly
to the movement velocity. This means that two completely different design points are
necessary for the PU designs. Figure 9b shows the difference in the load cycle for different
weights. It should be noted that the course of the load cycle remains similar whereas the
maximum needed torque scales up linearly. To check the type of movement in Figure 9c,d,
movements with different degrees of freedom are shown. In Figure 9c, it is notable that the
design point is nearly independent of the movement. On the other hand, the course of the
load cycles is different. The cluster points of the single joint movement are shifted into a
low speed range, which changes the load cycle efficiency, so the electrical machine has to be
adapted. In Figure 9d, the same movements are visualized, only with a shorter duration. In
the case of the M95 person, the difference in the demanded torque is between 108% in the
slow movement (s. Figure 9c) and 242% in the fast movement (s. Figure 9d). The cross effect
to the movement speed is dominant. Further, the cluster points are shifted into a region
with higher torques. It can be confirmed, as known in mechatronic systems, that both the
type of movement and the speed of movement should be considered in combination and,
more precisely, a task-defined load cycle is necessary.

3.2. Influences of Person

Based on the torque–speed profiles, differences caused by the individual person are
also noticeable in Figure 9. Due to the different body dimensions, the same activities require
different load forces. The comparison of a fixed weight with the weight adjusted to the body
mass does not show any differences for the F05 person, whereas the requirements almost
double for the M95 person. Figure 9a shows that the dynamic effects also upscale depending
on the body dimensions. As mentioned above, concerning the M95 person, the torque
demand increases by 125.6%, and, in the case of the F05 person, by 50%. Furthermore, the
simulation shows that the model of the F05 woman cannot lift heavy loads smoothly due to
a reduced maximum force in the muscles. This leads to the conclusion that the personalized
body dimension will lead to the optimal consideration of the demanded torques.
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Figure 9. Comparison of load cycle data based on several criteria. Besides the load cycle data points
(low opacity in background), the cluster centroids of the k-means algorithm are displayed. The cluster
weight is not further visualized. As electrical machine design point, the maximum operation point is
used. (a) Load profiles slc and flc with a fixed weight of 2.5 kg. (b) flc with fixed load at 2.5 kg and
referred load at 100% arm weight. (c) Movements of case A vs. C with an additional load of 100%
arm weight. (d) Movements of case E vs. G with an additional fixed weight of 2.5 kg.

3.3. Power Unit Scaling

To quantify the benefit of scaling the power modules to the personal needs of the user
objectively, the mass of the power module was used as a benchmark characteristic. The
mass of the reference motor was compared to the scaled versions. To consider differences
in the efficiency of the modules, an additional accumulator mass was calculated. Here, the
difference in loss energy over 1000 performed cycles is referred to as the energy density
e = 180 Wh

kg (=̂ 648 Ws
g ) of a lithium-ion accumulator. The formula is given as

∆madd = msc + ncyc
EV,cu,sc − EV,cu,re f

e
− mre f . (20)

If this additional mass madd is smaller than zero, the scaled machine for the considered
load cycle is advantageous.

The mass saving of the scaled machines in comparison to the reference machine is
given in Table 4. In the case of the slc performed by the F05 person, a mass of 46.7 g is
saved. This leads to a reduction of 29.4% of the AFM mass compared to the reference
design. Comparing the load cycle slc to flc for the M95 person, the weight saving is 28.4%.
Moreover, it needs to be mentioned that the reference power unit could not meet all torque
demands. This would lead to a new reference design with additional weight in the case of
a standardized solution, which, in turn, leads to more weight saving in other cases. This
indicates that the introduced scaling approach is highly beneficial.

Table 4. Weight differences between the reference machine and scaled electrical machines for exem-
plary load cycles with different load weights and a total number of cycles ncyc = 1000.

Load Cycle Person mload [g] ηLC [%] ∆madd [g]

slc F05 2.5 33.8 −46.7
M50 2.5 43.8 −44.3
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Table 4. Cont.

Load Cycle Person mload [g] ηLC [%] ∆madd [g]

M95 2.5 37.9 −39.6
F05 2.6 30.9 −40.5
M50 3.95 49.2 −25.7
M95 5 57.6 −9.7

flc F05 2.5 51.3 −32.2
M50 2.5 67.2 −15.8
M95 2.5 74.2 6.8
F05 2.6 52.4 −28.7
M50 1 3.95 73.4 14.5
M95 1 5 77.8 42.63

1 Reference machine does not fulfil all maximum requirements.

4. Discussion and Conclusions

In this paper, a methodology for the individual design of exoskeleton drive units for
user- and task-dependent applications was presented. This approach merged a scalable
biomechanical human model and a scalable electromagnetic and mechanical model of an
electrical machine.

With the scalable human model, forces from arbitrary tasks with different loads are
predictable. Thereby, necessary forces for the drive unit design were generated. Alterna-
tively, these forces could be generated from experimental data using an inverse dynamics
method, which avoids the model assumptions and limitations presented in [21]. A clear
advantage of our method compared to this is that we can easily scale an exoskeleton for
different participants based only on the height and weight of the participant. Therefore, we
can avoid time-expansive and costly lab measurements.

The analysis of the simulated load cycles shows clear dependencies of the performed
task. Among other parameters, the movement speed has a strong influence on the load
cycle. In addition, a clear difference is apparent by scaling the human model. Here, in
the case of the same movement and load, the force difference between the 5th percentile
woman and the 95th percentile man was simulated to 46% related to F05.

Based on these generated forces, a reference elbow power unit was adapted by using
the electrical machine scaling model, introduced here in order to meet the exact require-
ments of the user. The model varies geometrical parameters of the electrical machine to fit
the requirements in torque, mass and acceleration. Commercially available motors are not
suitable in terms of construction space and power class. Ill-fitting motors cause an oversiz-
ing of the power unit, which will lead to additional weight. The typical power density in
exoskeleton electrical machines is at 200–300 W/kg. An off-the-shelf motor that meets the
performance characteristics introduced here is given a motor weight of 850 g [47]. This is
more than five times the weight of the presented reference motor in this journal. Further,
the construction space fits in the outer diameter but the axial length of the commercial
motor is three times higher, which does not fit in the construction space. Off-the-shelf
motors are often limited in scaling and only configurable via a modular system, which is
realized by adjusting the active length or the number of windings. The double-sided axial
flux machine introduced here, in combination with the additive manufacturing, is easily
adaptable to the individual user needs. This scaling leads to a smaller motor weight that
saves up to 30% compared to the reference motor. In summary, it can be stated that the
scaling presented here enables a significant improvement for the personalization of the
electrical machine.

The biomechanical and analytical motor model were validated through experimental
data, separately. The measurements used for the biomechanical model are presented in
previous investigations [21]. The analytical motor model was validated by a prototype and
measurements in this journal. The deviation between the calculation and measurements
is below 3.2%, which shows a good suitability of the model. Combined experiments are
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planned in future research. For a collaborative validation of the approach, a comprehensive
ergonomics study with several people wearing a reference exoskeleton on the one hand
and a personalized exoskeleton on the other hand is necessary. In this way, objective results
on the suitability of the approach can be obtained. These experiments can be realized in
future projects.

In addition, the convergence of the biomechanical simulation was used to show which
loads can be performed by specific groups of people. Here, it could be observed that the
F05 person could not handle as large loads as the M50 or M95 person. This is due to the
restricted muscle forces in the model. Thus, in future research, it would be interesting
to create a closed coupling between a human and electromechanical model in order to
handle heavier loads. Further, human movements can reach speeds of up to 0.2 s for am
elbow flexion of 90 degrees. The simulation shows that the actual power unit is not able
to support those movement speeds. In ongoing research, the power unit is optimized for
such scenarios.

In summary, it is evident that the drive design is improved by the framework presented
here and that a lighter design of the exo power unit is possible under consideration of the
individual needs of the user and demands of the task.
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Appendix A. Flexion Movement Load Cycles
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Figure A1. Load profiles for all 3 individuals for m = 100% arm weight and case E.
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Figure A2. Load profiles for all 3 individuals for m = 2.5 kg and case E.
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Figure A3. Load profiles for all 3 individuals for m = 100% arm weight and case A.
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Abstract 

Background: Reflexive responses to head–neck perturbations affect the injury risk in 
many different situations ranging from sports-related impact to car accident scenarios. 
Although several experiments have been conducted to investigate these head–neck 
responses to various perturbations, it is still unclear why and how individuals react 
differently and what the implications of these different responses across subjects on 
the potential injuries might be. Therefore, we see a need for both experimental data 
and biophysically valid computational Human Body Models with bio-inspired muscle 
control strategies to understand individual reflex responses better.

Methods: To address this issue, we conducted perturbation experiments of the head–
neck complex and used this data to examine control strategies in a simulation model. 
In the experiments, which we call ’falling heads’ experiments, volunteers were placed 
in a supine and a prone position on a table with an additional trapdoor supporting the 
head. This trapdoor was suddenly released, leading to a free-fall movement of the head 
until reflexive responses of muscles stopped the downwards movement.

Results: We analysed the kinematic, neuronal and dynamic responses for all individu-
als and show their differences for separate age and sex groups. We show that these 
results can be used to validate two simple reflex controllers which are able to predict 
human biophysical movement and modulate the response necessary to represent a 
large variability of participants.

Conclusions: We present characteristic parameters such as joint stiffness, peak accel-
erations and latency times. Based on this data, we show that there is a large difference 
in the individual reflexive responses between participants. Furthermore, we show that 
the perturbation direction (supine vs. prone) significantly influences the measured 
kinematic quantities. Finally, ’falling heads’ experiments data are provided open-source 
to be used as a benchmark test to compare different muscle control strategies and to 
validate existing active Human Body Models directly.

Keywords: Reflex behaviour, Head–neck perturbations, Motor control, 
Musculoskeletal model, 3D finite element modelling, Muscle modelling
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Background
Head and neck injuries, such as traumatic brain injuries, concussions and whiplash-
associated disorders, can occur in a multitude of scenarios varying from traffic acci-
dents and physical assaults to sports and recreation-related collisions. The main point 
they have in common is that they are induced by biomechanical forces such as contact 
or inertial forces that are transmitted to the brain, head or upper body. The resulting 
injuries are widely recognized as a significant public health concern [3, 61]. Hence, it is 
critical to identify individual risk factors for such injuries to understand the causes and 
develop injury prevention strategies.

Previous studies investigating head–neck responses to perturbations conducted experi-
ments with different methodological setups, including load dropping, release and direct 
impacts to the head–neck complex [29, 42, 47, 56, 67, 72]. One of these methods, the 
release experiment, was proposed by Ito et al. [29, 30]. They introduced this new technique 
for studying responses in neck muscles by exposing the head to a sudden onset of a free fall 
under its own weight. Using this method, they compared normal and labyrinthine-defec-
tive subjects in the supine position (extension of the head) and demonstrated that reflex 
responses contribute significantly to head-righting. Investigations of another research 
group by Portero et  al. [54–56] examined the response to a similar release experiment, 
including preloads in both flexion and extension positions. They focused on assessing the 
musculotendinous stiffness of the head–neck segment but only in the first 30ms after the 
acceleration peak to avoid altered kinematics due to reflexive contributions. For a general 
overview of experimental studies with regard to head–neck perturbations, we refer to the 
systematic review of Le Flao et al. [42]. As a conclusion, they requested future studies to 
include neck muscle latency [ ms ], neck stiffness [ Nm/rad ], linear accelerations [ g ] and rota-
tional head accelerations [ rad/s2 ] due to their potential use in assessing concussion risks.

These concussion risks are related to linear and rotational head accelerations as pre-
vailing injury theories provided in literature [19, 60, 81] suggest. However, the mag-
nitude of force needed to cause these injuries cannot be studied in ethically justifiable 
experiments. Computer simulations using musculoskeletal models provide an alterna-
tive assessment tool, additionally used in this study.

These simulations allow us to estimate the forces and moments within the body, while 
varying muscle activations and control strategies. To ensure that the predicted response 
during simulation studies using biomechanical models is biophysically valid, both cor-
rect muscle modelling, as well as bio-inspired control strategies, are crucial. Sev-
eral studies [26, 57, 66] state that the muscles’ reaction alters the head kinematics and 
therefore, the influence of cervical muscles and their control strategy on the head–neck 
response can be significant.

In this contribution, we want to study this influence by presenting the results of ’falling 
heads’ experiments in a supine and prone position to investigate the individual responses 
to head–neck perturbations. Additionally, we mimicked this experimental setup in 
numerical simulations. Based on these setups, we quantify the kinematic, dynamic and 
neuronal response to head–neck perturbations and pose the question of how human 
diversity (such as biological sex and age) affects these quantities. Furthermore, we use the 
numerical model to answer the question whether and how the biomechanical response is 
affected by changes of the neuronal state (e.g. sensitivity to the stretching of the muscle).
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The purpose of this study is to give insights in understanding individual head–neck 
responses to perturbations and to provide a comprehensive data set as open-source1 
which can be directly used as a benchmark setup to compare and validate different 
models and controllers. The novelty of our work is twofold: first, we use a similar ’fall-
ing heads’ setup as proposed by Ito et al. [29, 30] but with two different force directions 
(flexion and extension) and for a larger number of healthy participants with different 
ages and sexes. Second, we build up a numerical model with the same setup and com-
pare potential muscle reflex controller strategies to experimental findings.

Results
Kinematic, neuronal and dynamic characteristics of the reflex response

In this section, we present the main results in a condensed form. First, vertical displace-
ment curves of all participants extracted from the video data are shown in Fig. 1. Addi-
tionally, the simulation curve for the supine case is given in Fig. 1a as a comparison value. 
Three things can be noted from the presented results: first, the range of the maximal falling 
height varies between participants (in the range between 3.2–14.9 cm for the supine case). 
Second, the participants tend to fall less in the prone case (range between 0.5–8.3 cm , 
Fig. 1b) compared to the supine case. This difference is significant ( p < 0.01 ), for a detailed 
overview of the statistical analysis we refer to Additional file 1: Table E3 the supplemen-
tary material E. Third, the simulated supine experiment shows a good agreement with the 
experiments with regard to the displacement and can predict similar head-fall kinematics 
in terms of both the maximum displacement as well as the general slope and timing.

The difference between peak displacements in the supine and the prone cases shows a 
similar trend for the peak accelerations and time to peak accelerations. An overview of 
all mean and standard deviations for the peak accelerations is given in Table 1. Both, the 
linear peak acceleration and the time to linear peak acceleration are higher in the supine 
compared to the prone case ( p < 0.01 ). These values are comparable to literature values 

Fig. 1 Vertical displacement of ’falling heads’ experiment. The vertical displacement of the supine (a) and 
prone (b) position is shown for all participants and all trials (light blue solid lines). For the supine case, we 
additionally show the simulation trajectory (as dark blue line with asterisks)

1 The dataset for the electromyographic (EMG) data is available at https:// doi. org/ 10. 18419/ darus- 1038 and the dataset 
for the kinematic trajectories can be found at https:// doi. org/ 10. 18419/ darus- 1132.
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of similar experiments, e.g. Ito et al. [29, 30] who reported linear mean peak acceleration 
values of 0.76–1.2 g for the supine case (for the healthy participants). The same tendency 
of greater peak acceleration in the supine case can also be seen for the rotational accel-
erations ( p < 0.01 ). The same increase between peak accelerations during forced flexion 
(prone case) and forced extension (supine case) is also reported in the literature [47, 72]. 
They report smaller absolute values (in the range of 12.8–36.2 rad/s2 ); however, they also 
had smaller flexion and extension angles due to a different experimental setup.

These kinematic characteristics are partly influenced by the latency time of the muscles 
contributing to reflexive behaviour in response to the perturbation. The mean and stand-
ard deviations for the detected EMG onset for both muscles (SCM and trapezius) are given 
in Table 2. The range of latency times in this study was 17.67–86.67ms which is compara-
ble to previously reported values of 18.6–88.0ms for quick-release or load-dropping stud-
ies [7, 14, 29, 30, 47, 63, 72]. Furthermore, it can be noted that the SCM is activated faster 
than the trapezius in both cases which is also reported in Corna et al. [7], Ito et al. [30].

The effective stiffness represents the combination of these kinematic and neuronal 
reflex responses. We show this stiffness plotted over the change of torque in Fig. 2. The 
absolute values are comparable to previous studies which reported 22Nm/rad [67] or a 
range between 22.6–41.3Nm/rad [72]. Furthermore, we see an increase of the effective 
stiffness for an increase in torque as also supported by Portero et al. [55, 56].

Age and sex differences

Typically, age and sex are investigated as covariates influencing the dynamic response to 
head and neck perturbations. Hence, we present the experimental results split up into 
three age groups and two sexes in the following.

The differences for these covariates for the vertical displacement curves are shown 
in Fig. 3. The panels on the left (Fig. 3a, c) show the trajectories for the different sexes 
with different colours, the panels on the right (Fig. 3b, d) the ones for the age groups, 
respectively. Based on these results, we can note two things: first, male participants fall 
a shorter distance than female participants in the supine position. In the prone posi-
tion, this behaviour is reversed (not significant, ( p = 0.07 ). A detailed overview of the 
statistical analysis is given in Additional file 1: Table E4 regarding the covariate sex and 

Table 1 Peak accelerations (given as mean ± standard deviation)

Supine Prone

Peak lin. acc. − 0.7 ± 0.1 g − 0.5 ± 0.2 g

Time to peak lin. acc. 44.0 ± 3.5 ms 36.4 ± 2.5 ms

Peak rot. acc. 62.4 ± 11.5 rad/s2 44.0 ± 18.2 rad/s2

Time to peak rot. acc. 52.1 ± 10.1 ms 57.8 ± 12.1 ms

Table 2 EMG latency times (given as mean ± standard deviation)

Supine Prone

SCM 33.4± 17.6ms 31.5± 12.1ms

Trapezius 49.0± 19.7ms 43.8± 13.5ms
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Additional file 1: Table E5 regarding the covariate age in the supplementary material E). 
Second, in the supine position, elderly (63–71 years) people fall less strongly compared 
to younger people, in the prone position, this behaviour is also reversed.

We can observe similar trends dependent on the force direction for the peak accel-
eration values. An overview of all acceleration values split up into different sex and age 
groups is given in Table 3. Two main points can be emphasized here: first, for the elderly 

Fig. 2 Effective stiffness. The effective stiffness of the supine position (a) and the prone position (b) is shown 
for all participants and all trials (black diamonds). For the supine case, we additionally show the simulation 
value (red triangle)

Fig. 3 Differences in vertical displacement for different ages and sexes. Experimental vertical displacement 
trajectories for both the supine (a, b) and the prone position (c, d) are shown. The differences of age and sex 
are highlighted with different colours
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people both the peak linear and the peak rotational acceleration, as well as the time to 
peak acceleration, have the smallest value in the supine case. However, this behaviour is 
reversed in the prone case. Here, both the peak linear and rotational accelerations have 
the highest values compared to the other age groups. Second, the exact opposite applies 
to the women participating in this study compared to the male participants. The peak 
linear and rotational acceleration, as well as the time to peak, is higher in the supine 
case. In contrast to this, the peak linear and rotational acceleration of female partici-
pants is smaller compared to male participants in the prone case.

In contrast to this force-directional dependency, the latency times (the difference 
between the perturbation and muscle onset) show similar trends for both force direc-
tions. They are shown as bar plots in Fig.  4 where the mean value is shown as a red 
square and the standard deviation as black bars. Based on the age and sex subgroups, we 
can see that elderly people have higher latency times (mean value is 1.3–2.2 times higher 
compared to the 36–51 years old, significant for SCM ( p < 0.05)). Further, we can state 
that men seem to have higher latency times than women. Even though there might be a 
slight bias (only men were in the oldest age group), these findings are in accordance with 
the literature [14, 72].

In‑depth force analysis

As a result of calculating the inverse dynamics, we show the calculated net moment Mnet 
plotted over the angular displacement for a representative participant (participant 4) in 
Fig. 5. The three different curves correspond to the separate trials. It can be seen that 

Fig. 4 Experimental latency times. The latency times for the SCM and trapezius muscles in both the supine 
(a, c) and prone position (b, d) are shown. The mean and standard deviation were calculated for different age 
and sex groups
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the slope is almost linear in the beginning, which is comparable to previous studies [54–
56]. Furthermore, we see a hysteresis at the end of the torque–displacement curve in 
our experiments: the torque increases at first for increasing angular displacement, then 
reaches a maximum torque and displacement value and then gets smaller for decreasing 
displacement. For an overview of all torque–displacement curves for each participant, 
we refer to the two figures for the supine and prone case in Additional file 1: Supplemen-
tary material A. Based on these figures, one can conclude that the overall curve charac-
teristics are similar within participants and especially in between trials.

As a second result, we compare the three different dynamic quantities resulting from 
Eq. (6) for the experimental as well as the simulated data in Fig. 6. We show the experi-
mental results for participant 17 because both the height and weight have similar values 
compared to the simulation model. Several points can be noted here: first, the peak force 
in the vertical direction Fy is more than three times higher than in horizontal direc-
tion Fx . Second, both the peak forces as well as the general force curve over time are 
roughly similar in both experiment and simulation. Finally, the simulation model is able 
to predict the linear increase of moment over angle in the beginning and has a similar 
peak moment as in the experiments. There are some discriminable differences between 

Fig. 5 Experimental net moment. The net moment Mnet plotted over the angle is shown here for a 
representative participant (participant 4), in both experiments (supine and prone position). The different 
colours represent the three separate trials

Fig. 6 Dynamic quantities. Comparison of different dynamic quantities for both the experimental results 
(participant 17, all three trials, displayed in colour) and the simulation result (displayed in black)



Page 9 of 23Wochner et al. BioMedical Engineering OnLine           (2022) 21:25  

the simulation and experimental results, e.g. the hysteresis behaviour at the end of the 
torque–displacement curve where the decrease in torque for a decreasing displacement 
is less than in the experiments. However, these differences are less pronounced than the 
observed variations between participants (e.g. as shown in the torque–angle curves in 
Additional file 1: supplementary material A of all participants).

Controller variation in the simulation

We varied the reflex control parameter ω representing the strain threshold to see how 
this influences the prediction of human reflexive movement. The results for the vertical 
and rotational displacement are shown in Fig. 7a, c, respectively. Note, that the vertical 
displacement of Marker 2 from the experiments corresponds to the head centre of grav-
ity of the model as their position are roughly aligned. Based on the figures, we can see 
that thresholds ω between 3− 10% fit the experimental corridor well (standard deviation 
shown as a grey area). The other thresholds predict trajectories which lie outside the 
standard deviation, but still show similarities to trajectories of real participants (shown 
as dashed grey lines). Besides, we see that for smaller reflex thresholds the peak dis-
placement is less pronounced, which in turn reduces both the linear and rotational peak 
accelerations. Furthermore, we can state that the trajectory predicted using the reflex 
controller with a threshold of 5% has the smallest L2-error compared to the experimen-
tal mean trajectory.

Therefore, we used this threshold for a comparison with the lambda controller and 
computed comparable kp values (an exemplary transformation from reflex to lambda 
control parameters is shown in Additional file  1: supplementary material B). The 

Fig. 7 Results of controller variation. Simulation results showing the vertical and rotational displacement 
trajectories for both the reflex controller (a, c) and the lambda controller (b, d). In comparison to the 
simulation results (displayed in colour), the mean value of the experimental data is shown with a black solid 
line, the standard deviation of the experimental data is shown as a grey area and all experimental trajectories 
are shown as dashed grey lines
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predicted vertical and rotational displacements using the lambda controller are shown in 
Fig. 7b, d. It can be seen that the predicted trajectory is close to the experimental mean 
trajectory.

Discussion
In this study, we characterized the reflexive response to head–neck perturbations using a 
’falling heads’ experiment (as shown in Fig. 8). For this purpose, we extracted kinematic 
(displacements, accelerations), dynamic (stiffness) as well as neuronal (EMG latencies) 
quantities from the experimental data and compared them both to literature data as 
well as to our simulation results. We demonstrated that our results fit well with the data 
found in literature. Furthermore, we showed that a different behaviour for the supine 
case (extension) compared to the prone case (flexion) is observable: we see less vertical 
displacement (see Fig. 1), smaller peak accelerations (see Table 1) and a faster response 
in terms of EMG latency time (see Table 2) in the prone case. The reason for this differ-
ence is the muscles’ ability to generate a more significant extension moment compared 
to flexion, as reported in the literature [74]. This larger extension strength over flexion 
has two main reasons: first, the postural role of extensor musculature and second, the 
apparent muscle mass difference between posterior and anterior muscles of the cervical 
spine [32, 71]. This finding might have direct implications for the evaluation of concus-
sion and whiplash-associated-disorder risks because if the force is applied from a differ-
ent direction (frontal versus back), the peak linear and rotational accelerations values are 
reduced as shown in Table 1.

Age and/or sex are typically used to cluster people in groups for a more structured 
discussion of the results of biomechanical studies. In the present study, the compari-
son of the results, distinguished by age or sex revealed differences (Figs. 3, 4; Table 3), 
however most of them were not statistically significant (see also Additional file  1: 
Suppl. Material S5). Therefore, we want to stimulate a broader discussion of how to 
group people according to the mentioned attributes in general. Traditionally, as was 
done to analyse the data in this contribution, age groups are defined to account for 
younger, middle-aged and more elderly people, while sex groups separate women and 
men. This subgrouping inevitably implies the study results to be dependent on the 
number of days lived since birth or the biological sex. However, we ask whether this 
is always appropriate? From an ergonomics perspective, grouping along biological sex 
and age is appropriate, because it can be easily determined and, thus, is a trivial and 
valid task. It enables to correlate generic characteristics with the respective groups 
[69]. Correlation of demographic characteristics such as height and weight with, 
for example, biological sex also holds for our experimental data (see Table  4). Such 
a correlation even allows to guess, for example, whether sizes of seats or doors fit 
most people or a special group of people (e.g. elderly, [35]) or how to design work 
places [28, 59]. Undoubtedly, ageing affects individual system properties, like mus-
cle torque, velocity and power [39]. In this sense, the classical grouping is appropri-
ate. From a biomechanics standpoint, it is key to understand the underlying cause 
of experimental observations, e.g. forces or torques. In living systems, these forces 
or torques depend on the current state of the respective system. For example, how 
often a ligament has been stretched close to its individual failure strain. In this case, 
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number of stretches close to failure and individual failure parameter are two impor-
tant values to determine the ligament’s state. It might turn out that a neck ligament 
of a 90-year old man is in the same degenerated state relative to its initial state when 
this very person was 20 years old—say 90% degenerated, compared to a 60-year-old 
woman who gave birth to five children. So in this hypothetic example, a grouping into 
age or biological sex does not seem appropriate to understand causes of potentially 
different head kinematics. Related research fields such as clinical biomechanics have 
proposed similar ideas, where they suggested to group cervical spines according to 
biological age, e.g. [75]. They characterize biological age as degeneration of ligaments 
among other factors rather than relying on chronological age. Another interesting 
approach comes from the field of computer vision, where they take body shapes into 
account to create and scale human body models [44]. This overcomes the need to 
scale digital human body models solely based on height, weight and biological sex. 
The advent of these digital human body models allows to generate synthetic composi-
tions of humans. Already five decades ago, three-dimensional, mathematical models 
of the human body emerged [21]. The core idea of representative segments for which 
individual body parameters are determined based on data regression remained but 
was improved over time [9, 11, 76, 80]. There have even been attempts to account for 
age [24, 31]. It seems now is the right time to start understanding individual contri-
butions of degenerated (aged) and subject-specific body parts on functional charac-
teristics like joint angle progression. Therefore, we would like to encourage research 
towards finding new concepts to distinguish humans based on causal dependencies 
of forces and torques around joints and age (degeneration). As we have stated above, 
this paragraph intends to stimulate the discussion. We see a need to find more appro-
priate grouping, but unfortunately have no solution yet. However, we hypothesize to 
group people and scale human body models according to attributes such as, e.g. body 
shape, degeneration, and fitness, among others. Therefore, we conclude that current 
grouping might be inappropriate and attenuate our findings with respect to the sub-
groups presented in this study (see Sect. 2.2).

Experimental validation of active Human Body models (AHBMs) raises significant 
challenges as one needs to validate both the human body’s passive and active mechani-
cal characteristics and its subsystems. To ensure this validation process, various studies 
are focusing both on the whole body [12, 15, 27] and subsystems [8]. However, there is a 
clear need to explore the passive and active behaviour of the neck region required [64]. 

Table 4 Demographic characteristics for participants ( n = 17 ), given as mean ± standard deviation

Age groups Sex

22–24 years 36–51 years 63–71 years Male Female

(n = 7) (n = 6) (n = 4) (n = 7) (n = 10)

Age [years] 22.4± 0.8 44.7± 6.4 66.5± 3.4 51.9± 20.7 32.8± 11.9

Weights [kg] 65.6± 9.5 60.0± 11.6 68.5± 8.4 72.0± 8.6 58.9± 7.5

Height [m] 1.70± 0.06 1.69± 0.08 1.78± 0.01 1.78± 0.03 1.67± 0.03

BMI [kg/m2] 22.6± 3.3 20.9± 2.1 21.8± 2.8 22.6± 2.5 21.3± 2.9

Sex [#m, #f ] 2 m, 5 f 1 m, 5 f 4 m, 0 f 7 m, 0 f 0 m, 10 f
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Our study offers force (Fig. 5) and dynamic (Fig. 6) data from the experiment and simu-
lation for this specific region. A recent work where such force data were directly used 
to improve a digital human body model is the study of Mörl et al. [51]. Here, they dem-
onstrated how a similar stiffness calculation could be used directly to adjust their lum-
bar spine model values taken from well-established literature sources of ligament and 
passive muscle stiffness to fit the experimentally measured stiffness. Similarly, research-
ers could take our data to improve their neck models. Furthermore, our data set could 
be used to validate and compare existing control strategies. In our model, we only used 
two stretch-based reflex controllers, however, recently a more sophisticated control 
approach for a multi-body head–neck model was proposed by Zheng et al. [82] where 
the vestibular reflex was additionally included. This reflex is modulated by sensing the 
disturbed head motion (linear acceleration and angular velocity) by the vestibular organs 
in the inner ear (both the semicircular canals and the otoliths) [36]. Therefore, the main 
purpose of the dataset presented here (available with open-source access), is to serve as 
a benchmark test for both passive neck properties, but also for different muscle control 
strategies in the same model and its implementations in various codes. We believe that 
the outcome and the experimental data of this study will help to improve existing and to 
develop potentially better AHBMs.

Initially, we posed the question how the biomechanical reflex response changes, if we 
vary the neuronal state in the simulation. Therefore, two muscle length feedback controllers 
were used to run a ’falling heads’ simulation with varied controller variables (threshold ω 
and spindle feedback gain kp , respectively) to represent the sensitivity of the neuronal state 
to the perturbation. Based on these simulations, we postulate that we are able to synthesize 
biophysically valid human movement with our control approach (as shown in Fig. 7). This 
is in line with the literature, where various authors [26, 57, 58] showed that including mus-
cle activations helps to improve the agreement of experimental and simulated responses by 
decreasing the acceleration of the head. Furthermore, we showed that we are able to modu-
late the response using simple control parameter adjustments (see Fig. 7a, c). On the one 
hand, this modulation of the response can be used to represent a large variability of partici-
pants. On the other hand, it shows how a higher sensitivity of the neuronal state (in term 
of reflex thresholds) helps in reducing acceleration peaks. Whether these reflex thresholds 
are set explicitly like this by the nervous system as a result of an optimization function for 
unexpected perturbations, e.g. to minimize these accelerations peaks, stress or in general 
injury risks, was not investigated in this study. However, previous work showed that by 
using optimization principles it is possible to explain and predict voluntary movement, e.g. 
for walking [1, 50], eye movements [22], standing from a chair [53], and point-to-manifold 
reaching [78]. Whether such an optimization function is also adapted for unexpected per-
turbations, should be explored in further work. Independent of which optimization crite-
rion is used, future work can directly exploit the correlation between a reduction in peak 
acceleration and the sensitivity of the neuronal state to develop better injury prevention 
strategies. This means that if mechanisms are applied to prepare humans to upcoming 
events (e.g. by sound signals), they can pre-tune their reflex gains accordingly, which in turn 
might reduce potential injury risks.
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Conclusions
In this study, we present novel experimental data in a ’falling heads’ setup in order to inves-
tigate individual reflexive responses to head–neck perturbations. We extracted several bio-
mechanical parameters such as joint stiffness, peak acceleration and latency times based on 
this data.

Analysing this data, we show that there is a large difference in the individual reflexive 
responses between participants, e.g. for the peak falling height. Furthermore, we show that 
the perturbation direction has a significant influence on the kinematic quantities (e.g. peak 
linear and rotational acceleration) which is not reflected in the EMG latency times. Finally, 
we show that the musculoskeletal simulations with a reflex controller provide compara-
ble results to the experiments. The setup of these numerical simulations is simple, making 
them an ideal candidate for future validation requirements in virtual testing procedures.

Concluding, a novel experimental dataset for head–neck perturbations including two dif-
ferent force directions (flexion and extension) for a larger number of healthy participants 
with different ages and sexes) is now available open-source. This experimental dataset can 
be used as a benchmark test to improve, compare and develop better human body models 
and muscle control strategies.

Methods
We conducted experiments in which relaxed volunteers were placed on a table in a 
supine and a prone position to investigate the individual responses to head–neck pertur-
bations. The subject’s head was supported by a trapdoor, which was suddenly released. 
This action resulted in a free-fall movement of the head until the subject reacted to the 
perturbation by developing a force in the antagonistic muscles, leading to the decelera-
tion of the falling head. We recorded the kinematic trajectory of the head and the elec-
tromyographic (EMG) signal of the sternocleidomastoideus and the trapezius muscles 
to investigate this reflexive behaviour. Furthermore, we performed simulations match-
ing the supine experiments using the academic THUMSv5 model [33] including Hill-
type muscles activated using two different threshold-based reflex controllers. For both 
scenarios (real-world experiment and simulation), we performed an inverse dynamics 
analysis to determine the underlying force interactions, give an estimate for the stiff-
ness values and use this data to validate the used human body model. The methods are 
described in further detail in the following.

Participants

Seventeen subjects volunteered to participate in the experiment (7 males, with an age 
range of 22–71 years). All of them were healthy. The demographic characteristics of all 
participants are given in Table 4. To investigate whether age or sex influenced the reflex-
ive behaviour in this experimental setup, we divided the experimental data for some 
of the analysis into three age groups and two sexes (male, female) as shown in Table 4. 
Written informed consent was obtained from each participant in the study, which was 
approved by the ethics committee of the Karl-Franzens-University of Graz (reference 
number: 39/67/63 ex 2014/15). In addition, we certify that all methods were carried out 
in accordance with all applicable institutional and governmental regulations concerning 
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the ethical use of human volunteers and in accordance with the Helsinki declaration 
during the course of this research.

‘Falling heads’ experiment

An illustration of the conducted ’falling heads’ experiments is shown in Fig. 8. Partici-
pants were placed on a table first in the supine and then the prone position. The head 
was supported by a trap door, which was unexpectedly released by an electromagnet 
at irregular intervals. In the supine position, it was ensured that the T1 vertebrae was 
placed directly on the edge of the table. They were not restrained, however, in the supine 
position, arms were placed on the abdomen of the participants and in the prone posi-
tion, arms were placed such that they hang quietly in an angle of 90◦ to the horizontal 
line (armpits directly on the table’s edge). Furthermore, the boundary conditions were 
adapted to account for the different anthropometries of the participants by manipulating 
the position and height of the table to ensure two things: first, that the edge of the table 
was parallel and on the same height as the trapdoor. Secondly, to adjust the gap between 
the table and the trapdoor such that head was always placed on the same marked posi-
tion on the foam of the trapdoor. In the prone position, this position was equivalent to 
placing the forehead to nasal bone on the trapdoor. The trapdoor was not moved due 
to calibration reasons. For every participant, the experiment was repeated three times 
in each position. The free fall would gently brake by the cushioned trapdoor after a 
maximum angle deviation of 40◦ to avoid any injuries (if the participants did not react 
before that). The subjects were encouraged to relax between each drop. Relaxation was 
also checked based on the level of EMG activity. To ensure that the recorded kinematics 
and the EMG signal are synchronized, we included a hardware trigger (by breaking the 
power circuit) which releases the trapdoor, starts the recording of the camera and sets a 
trigger index in the EMG signal.

Kinematic analysis

Head and neck kinematics were recorded using a HCC-1000 camera and HCC Control 
software (VDS Vosskühler GmbH/Germany) at a sampling rate of 462 fps . Three mark-
ers were recorded to detect both translational as well as rotational movements of the 
head. Volunteers were asked to wear a swimming cap in order to place the markers bet-
ter and to avoid that they are obscured by hair. Marker 1 was positioned close to the eyes 

Fig. 8 Sketch of the volunteer placement. The volunteer were placed in supine (a) and prone (b) position. 
The participant’s head was supported by a trapdoor released at the start of the experiment. The three 
recorded markers are labelled as M1, M2 and M3 in the figure. Here, ϕ = 0 represents the starting position, 
where the head is at rest
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on the sphenoid bone. Marker 2 was positioned in sight line with a distance of 4 cm to 
Marker 1 and corresponds to the head centre of gravity projection in the sagittal plane. 
Finally, Marker 3 was attached such that all three markers formed an equilateral triangle 
as shown in the sketch in Fig. 8. The motion analyses were performed with custom soft-
ware written in  Matlab® (Mathworks, Natick, MA, USA) based on the recorded marker 
positions.2 From these recorded trajectories, we calculated displacements, velocities and 
accelerations and processed the signals with a Butterworth low-pass filter (cut-off fre-
quency 15 Hz; fourth-order).

Electromyographic analysis

Muscle activation was monitored using surface EMG of the sternocleidomastoi-
deus (SCM) muscle and the trapezius muscle. The EMG activity was recorded at 1000Hz 
using myoResearch software (Noraxon/USA). The placement of the electrodes at the 
trapezius muscle was done according to SENIAM guidelines [23]: the electrode pair was 
placed in the middle of the line between the spinous process of the 7th cervical verte-
bra and the acromion. The electrodes for the sternocleidomastoideus (SCM) muscle were 
placed over the middle part of the SCM muscle according to Sheykholeslami et al. [65]. 
All electrodes were attached parallel to the muscle fibre orientation at a distance of 20 
mm. The reference electrode was fixed on the acromion. Volunteers were asked to relax 
their muscles before the onset of the movement. To measure the time delay between 
the release of the trapdoor and the first muscle activation, we used a threshold-based 
EMG onset detection method [43], which is a combination of two other methods [4, 25]. 
The main idea is to use the full-wave rectified EMG signal yk to compute a test function 
gk and to define the muscle activity onset t0 as the point of time when this test func-
tion exceeds a threshold value. This threshold value is specified as a multiple h of stand-
ard deviations. As a rule of the algorithm, at least T1 samples should be higher than the 
threshold value, while allowing for T2 samples to fall below this value. The algorithm is 
summarized below [68]:

Here, W denotes the width of the fixed-size sliding test window, k the current time, and 
µ̂0 and σ̂0 the mean and standard deviation of the M initial samples of yk , respectively. 
Five parameters need to be chosen for the onset detection: the number of initial samples 
M, the number of multiple standard deviations to calculate the threshold h, the win-
dow size W, the minimum number of samples above the threshold T1 and the number 
of samples which are allowed to fall below the threshold in this period, T2. Detected 
latency times t0 smaller than 10ms or larger than 100ms were considered as invalid. 
The lower value was chosen because due to the conduction times of the action potential 
propagation and the central delay of the involved synapses [41], the muscles cannot be 

(1)t0 =min
k≤W

(gk ≤ h)−W + 1,

(2)gk =
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2  The postprocessing code is available at https:// doi. org/ 10. 18419/ darus- 2526.
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activated instantaneously. The upper value was chosen because we are only interested in 
the reflex activation and all latency times larger than 100ms were considered to be a vol-
untary reaction. We justify this restriction interval because previous studies found neck 
muscle latencies in response to perturbations to be in the range of 18.6–88ms [7, 14, 29, 
30, 47, 63, 72].

An optimization algorithm with two objective criteria was utilized to find the five 
necessary parameters for the neck reflex latency. The first criterion ensures that the 
optimized parameters minimize the number of invalid latency times t0 . Additionally, 
the second criterion tries to find parameters which minimize the standard deviation σ 
of latency times between trials for each subject. Such an approach allowed us to find 
parameter values as objectively as possible without having to rely on expert opinions.

We define the entire objective criterion ε as:

Here, n denotes the number of subjects (in our case n = 17 ) and m the number of trials 
(in our case m = 3 ). We chose a weighting factor w = 100 to emphasize the importance 
of detecting as many valid latency times as possible. The objective function was mini-
mized using the surrogateopt algorithm in  Matlab® (Mathworks, Natick, MA, USA).

Inverse dynamics analysis

We formulate the equations of motions for the head–neck segment to extract the 
joint torque Mnet exerted on the head–neck segment by the trunk segment at the con-
necting joint. Previous studies modelled the head–neck system as a rigid inverted 
pendulum with a fixed centre of rotation [55, 67]. For our analysis, we had to extend 
their approach because the investigated head movement in our study is a combination 
of translation and rotation. For the rigid head–neck segment as part of an open chain 
in the sagittal x-y-plane, the following three equations of motion apply [17, 76]:

The force Fy acting in the vertical axis is dependent on the gravitational acceleration g. 
We estimate the head–neck mass m based on [76] as 8.1% of the total subject’s mass. We 
calculate the moment of inertia I about the centre of mass (based on data from [76]) and 

(3)ε1 =

n
∑

i=1

m
∑

j=1

(t0(i, j) < 10) ∨ (t0(i, j) > 100),

(4)ε2 =

n
∑

i=1

σ(t0(i, j)), with j = 1 . . .m,

(5)ε = w · ε1 + ε2.

(6)Fx = mẍ,

(7)Fy = m(ÿ− g),

(8)Mnet = I ϕ̈ − rxFy + ryFx.
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scaled accordingly with the total subject’s mass and height. The vectors rx and ry repre-
sent the distance between the bone centre of mass (COM) to the centre of joint rotation. 
The perturbing force ( m · g ) was delayed by 4ms to take into account that the detach-
ment of the head from the trapdoor does not happen instantaneously (alternatively a 
contact force at t = 0 could be defined). This delay was determined by comparison of the 
onset of the perturbing force and the measured head acceleration traces and adjusting 
the delay accordingly. We use this model and the calculated torque to estimate neck stiff-
ness for the first 150ms following perturbation onset similar to the study of Simoneau 
et al. [67]. This stiffness is called effective neck stiffness because it represents a combina-
tion of intrinsic and reflexive components. We calculate this stiffness for the first 150ms 
as a linear approximation, i.e. the change in torque versus change in angle [56]:

Note that there are various approaches to calculate joint stiffness. Many of them are 
more complicated comparing to the proposed one. For example, one can include initial 
rest angle, damping, shifts of rest length and nonlinearities to calculate leg stiffness [6, 
16]. Such methods allow making statements about the underlying biomechanical struc-
tures. However, we chose this somewhat reduced approach to enable a comparison of 
our absolute values to similar neck stiffness calculations done by Simoneau et  al. [67] 
and Portero et al. [56].

Simulations

We compared the experiments of the supine case to simulations of the head-fall setup. 
There are two main computational methods used for simulations with human body 
models: Multibody  (MB) Dynamics and Finite Element  (FE) Analysis and the current 
study utilizes the latter. Among the most advanced FE Active Human Body Models 
(AHBMs) with muscle elements and a controller integrated into the whole body we can 
name the Global Human Body Models Consortium (GHBMC) [10], Total HUman Model 
for Safety (THUMS) [33, 34], SAFER A-HBM [40], THUMS TUC-VW AHBM [70, 79] 
and the AHBM developed during the joint collaboration of Mercedes-Benz AG and Uni-
versity of Stuttgart [49, 52]. A detailed comparison of these models and muscle control 
strategies used is given in Additional file 1: Table D2 in the supplementary material D. 
For our simulations, we used the THUMS  v5 AM50 Occupant Model Academic Ver-
sion [33] using the FE simulation software LS-DYNA. This model is driven by Hill-type 
muscles which are activated using two different threshold-based stretch reflex con-
trollers. Please note, that there exist more sophisticated controllers (e.g. [82] for a MB 
model) which account also for the vestibular reflex which is modulated due to linear 
acceleration and angular velocity. Our model modifications and the necessary reposi-
tioning to replicate the experimental setup, are described in the following.

Positioning of the model

The model was repositioned according to the experimental setup shown in Fig. 8. All the 
parts, not related to the head, neck or torso regions were removed. Besides, translational 

(9)S =
�Mnet

�ϕ
.
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and rotational constraints were introduced to the pelvis and abdomen. The gravitational 
load was applied according to the new model orientation. The table was implemented 
using a planar rigid wall supporting the lower back of the model. Furthermore, a second 
rigid plane was implemented to model the trapdoor supporting the head–neck complex. 
To ensure that the model starts in a planar equilibrium, we let the model settle due to 
the gravitational acceleration. Then, after this pre-simulation, the model was considered 
identical to the initial position of the volunteers and the second rigid plane was released 
to simulate the release of the trapdoor.

Modification of the muscles

In the standard version of the THUMS v5 model, muscles are modelled with a material 
named *MAT_MUSCLE (*MAT_156)  [46]. Recently, a new Hill-type muscle material 
with a more realistic eccentric force–velocity relation and serial damping  [18, 20] was 
implemented in LS-DYNA as a user-defined material which was named the extended 
Hill-type muscle model (EHTM) [37, 38, 48]. It shows a better material model accu-
racy compared to the standard muscle model *MAT_MUSCLE (*MAT_156) used 
in LS-DYNA [37, 77]. Therefore, in order to make the THUMS v5 more biophysically 
valid, we replaced the *MAT_MUSCLE material by this user-defined EHTM material 
for all muscles defined in the head–neck region (see Appendix A of THUMS v5 docu-
mentation  [73]). Corresponding *MAT_MUSCLE parameters were converted into the 
EHTM parameters according to the procedure described in the supplementary material 
C. Note, that such a conversion is not unambiguous because the new muscle material 
requires at least one additional parameter, e.g. the ratio between the optimal fibre length 
lopt or the tendon slack length lSEE,0 (can be taken from literature). Similar to [62], we 
define this ratio as:

Using the assumption that the original muscle length l0 = lopt + lSEE,0 , we can then 
directly calculate the missing values of the model (abbreviated with mdl) based on the 
literature data (abbreviated with lit):

This a valid assumption for a normal upright state [62], which we have for the head–neck 
muscles. It should be mentioned here, that in the special case of mratio = 1 , we directly 
set the tendon slack length lSEE,0 to 1mm . As literature source for mratio , we used values 
taken from [5]. The neck muscle parameters we used in this study are provided open-
source.3 Note, that we excluded the digastricus, the mylohyoideus and the stylohyoideus 
muscles from the simulation model. This was done because they are mainly responsible 
for lifting the jaw or tongue, which is not relevant for the investigated movement in this 

(10)mratio =
lopt

lopt + lSEE,0
.

(11)lopt, mdl = mratio,lit · l0,mdl,

(12)lSEE,0,mdl = l0,mdl − lopt, mdl.

3 The neck muscle data set is available at https:// doi. org/ 10. 18419/ darus- 1145.
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study. Besides, the specific parameters for these muscles were not available in Borst et al. 
[5].

Muscle reflex controller

A dedicated reflex controller was proposed and included in the user-defined EHTM 
material model to determine the muscle stimulation ui based on the current strain [13, 
38, 48]. The latest improved open-source code version is made available.4 The proposed 
reflex controller is a stretch-based muscle length controller, which activates every ith 
muscles with 100% stimulation ui as soon as a particular strain threshold ω is exceeded. 
The detailed description of the controller’s logic is given in Table 5 (adapted from [38]). 
Three parameters can be defined prior to the simulation: the delay time τ , the reference 
length of the contractile element lCE,ref and the threshold ω . For the ’falling heads’ setup, 
we chose the initial lengths of the contractile element after settling on the table as refer-
ence lengths lCE,ref because they correspond to the relaxed state of the participants lying 
on the table. Previous studies  [13, 26] reported to use a delay value of 25ms , which is 
why we chose this value for τ . The threshold ω was varied between 1 and 10% because 
this range has a good agreement (small L2-error) with the experimental data (see also 
Fig. 7). As we show later in the Results section, the reflex threshold 5% has the small-
est L2-error compared to the mean of the experimental data. Therefore, the simulation 
results are shown only for this curve if not stated otherwise.

Muscle lambda controller

As an alternative to the reflex controller, there also exists a neural feedback controller 
[2] based on the muscle fibre length of the contractile element (CE) lCEi  . The stimula-
tion signal ulambda

i  is calculated as follows:

(13)ulambda
i :=

kp

lCE,opt
(lCEi (t)− �i).

Table 5 Reflex controller algorithm (adapted from [38])

4 The EHTM code and manual are available at https:// doi. org/ 10. 18419/ darus- 1144.
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With this, a sensory feedback mechanism can be described, because ulambda
i  depends on 

the difference between the currently desired fibre length of the contractile element �i 
and the actual CE fibre length lCEi  . The difference is weighted by a muscle spindle feed-
back gain kp and the optimal CE fibre length lCE,opt.
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It is hypothesized that the nonlinear muscle characteristic of biomechanical systems

simplify control in the sense that the information the nervous system has to process

is reduced through off-loading computation to the morphological structure. It has

been proposed to quantify the required information with an information-entropy based

approach, which evaluates the minimally required information to control a desired

movement, i.e., control effort. The key idea is to compare the same movement but

generated by different actuators, e.g., muscles and torque actuators, and determine

which of the twomorphologies requires less information to generate the samemovement.

In this work, for the first time, we apply this measure to numerical simulations of more

complex human movements: point-to-point arm movements and walking. These models

consider up to 24 control signals rendering the brute force approach of the previous

implementation to search for the minimally required information futile. We therefore

propose a novel algorithm based on the pattern search approach specifically designed to

solve this constraint optimization problem. We apply this algorithm to numerical models,

which include Hill-type muscle-tendon actuation as well as ideal torque sources acting

directly on the joints. The controller for the point-to-point movements was obtained by

deep reinforcement learning for muscle and torque actuators. Walking was controlled

by proprioceptive neural feedback in the muscular system and a PD controller in the

torque model. Results show that the neuromuscular models consistently require less

information to successfully generate the movement than the torque-driven counterparts.

These findings were consistent for all investigated controllers in our experiments, implying

that this is a system property, not a controller property. The proposed algorithm to

determine the control effort is more efficient than other standard optimization techniques

and provided as open source.

Keywords: muscle, control effort, morphological computation, reinforcement leaning, reflexes during walking,

information entropy, torque actuator
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1. INTRODUCTION

To generate dynamic movements, biological and technical
systems actively process information by sensing their state and
deriving control signals. The part of the system that performs
this active information processing is typically termed controller.
A controller has to deal with the dynamics characteristics of the
controlled system, e.g., the neuronal delays, and the muscular
elasticities and nonlinearities in biological systems or the ideally
linear torque characteristics in technical systems. While—from
a classical engineering point of view—muscular elasticities and
nonlinearities complicate the implementation of an adequate
controller, several studies show that they are beneficial for
the generation of movements in terms of robustness against
perturbations (van Soest and Bobbert, 1993; Gerritsen et al., 1998;
Wagner and Blickhan, 1999, 2003; Eriten and Dankowicz, 2009;
van der Krogt et al., 2009; Haeufle et al., 2010, 2012; John et al.,
2013). Examinations of the control of point-to-point movements
in the human arm (Pinter et al., 2012; Kambara et al., 2013; Bayer
et al., 2017; Stollenmaier et al., 2020; Wochner et al., 2020) as well
as in a frog’s leg (Giszter et al., 1993), suggest that the neuronal
system explicitly relies on the visco-elastic characteristics of the
muscles to stabilize a specific posture or to generate smooth
dynamic trajectories from jerky control signals.

When discussing the potential contribution of morphology
to control, researchers use conjectures like “reduce the control
effort” (Blickhan et al., 2007) or “simplify control” (Full and
Koditschek, 1999; Holmes et al., 2006) to suggest that less
information has to be processed by the biological controller, i.e.,
the nervous system, during the movement due to the specific
morphology. This part is then performed by the morphology, in
the sense of “morphological computation” (Paul, 2006; Zahedi
and Ay, 2013; Ghazi-Zahedi et al., 2016). A quantitative analysis
of the information processing benefit that is gained by these
characteristics of the biological system in direct comparison
to (technical) systems with different characteristics is possible.
For this purpose, we have proposed to measure the minimally
required information to generate a movement, i.e., the control
effort (Haeufle et al., 2014b). Applied to a simplified model of
human hopping—with only one actuator and one mechanical
degree of freedom—this approach showed that the muscle
properties allow reducing the control effort almost by a factor
of 20 in comparison to an ideal torque generator model-driven
by a PD controller (Haeufle et al., 2014b). This and the existing
evidence for muscular benefits in control suggests that relief
of effort for the nervous control system may be engraved into
muscle design, and may, in other words, have been one of
several basic design criteria during the evolution of biological
muscle. We, therefore, hypothesize that control effort is relevant
in different and more complex movements.

To study this, we here extend the quantification of control
effort to more complex movements as, e.g., human point-to-
point arm movements and human walking, which is the first
novelty of this paper. To determine control effort in complex
musculo-skeletal or robotic models with many control signals,
we propose a new algorithm (provided online), which is the
second novelty of this paper. We applied this algorithm to

two existing musculo-skeletal models: one for arm movements
(Driess et al., 2018; Stollenmaier et al., 2020), and one for planar
walking (Geyer and Herr, 2010). For each model, a “robotic”
version equipped with ideal torque generators was deployed (in
analogy to “MOM” in van Soest and Bobbert, 1993). To obtain
the controller for point-to-point arm movements, we considered
deep reinforcement learning methods. Walking was controlled
with proprioceptive neural feedback as well as a PD controller.

2. A SUMMARY OF THE APPROACH TO
QUANTIFY CONTROL EFFORT

The measure of control effort previously introduced (Haeufle
et al., 2014b) quantifies the minimal information required
to generate a specific movement. The basis for this is the
quantification of the information of the control signals—
i.e., sensor signals and actuator command signals—based on
SHANNON’s information entropy (Shannon and Weaver, 1949).
In a nutshell, the idea is to change the resolution of discretized
control signals to reduce their information content. If the
discretization is too coarse, the movement breaks down. The
coarsest resolution where the movement still works represents
the minimal information and is termed control effort. In the
following, we will briefly summarize the concept.

We start with defining parameters for the discretization
of the control signals: Each control signal ui(t) (with i ∈

{1, . . . ,Nu} and Nu the number of control signals) is discretized.
Discretization limits the number of possible sensor measurement
values to ni (amplitude resolution) and the number of repeated
measurements during the movement to mi (time resolution).
Both are positive natural numbers ni ∈ N1 and mi ∈ N1

(excluding 0). Each pair (ni,mi) represents the overall resolution
of a specific signal ui. The vector

r = (n1,m1, n2,m2, . . . , ni,mi, . . . , nNu ,mNu ) ∈ R (1)

is the vector containing all amplitude and time resolution
parameters. It has 2Nu elements. The set of possible parameter
vectors is R:=N

2Nu
1 , the set of all possible vectors of length 2Nu

with positive natural numbers.
The information of these control signals can then be calculated

by (see also Appendix A):

I(r) =
∑Nu

i=1mi log2 ni . (2)

with I :N
2Nu
1 → R. This is a simple monotonic function,

which depends on the resolution parameter vector. By reducing
the values in r, i.e., lowering the resolution, the information
is reduced.

By reducing the information in the control signal, the
movement performance will deteriorate and eventually break
down. As an example: if the sensor resolution on the elbow joint
position is reduced, the deviation from the target position will
eventually increase. To quantify this, we define a performance

function P :N
2Nu
1 → R. This performance function is movement

specific and will be specified later (see sections 4.1.2, 4.2.2).
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Finding the minimally required information, i.e., the control
effort, is, thus, a constrained optimization problem of the form

min
r∈R

I(r)

subject to P(r) ≤ 0 (3)

The cost function I(r) is cheap to evaluate and straight-forward
to optimize. Evaluating the constraint P(r), however, requires the
simulation of a movement which is computationally expensive.

3. NEW ALGORITHM TO QUANTIFY
CONTROL EFFORT

In the publication, where we proposed the approach to quantify
control effort, we searched for the minimal information by
brute force (Haeufle et al., 2014b). This was possible due to the
small number of control signals (Nu ≤ 3). For more complex
movements with many signals (as investigated here) such an
approach needs to be replaced by a systematic optimization.
As stated above, it is a constrained optimization problem with
a very simple cost function, but a computationally expensive
Boolean constraint (movement succeeded or failed), which is
additionally stochastic in the presence of motor noise in the
investigated arm movements. This prohibits the calculation of a
derivative, even by numerical methods. Therefore, all constrained
optimization techniques that rely on a gradient of the constraint
are not applicable. As the cost function is computationally cheap,
it should always be evaluated first and it should be avoided to
calculate the constraint function for parameter sets for which
it is already clear that the cost is larger than for the currently
best parameter set. This makes it difficult to apply algorithms
that rely on surrogate functions (e.g., SGHO), as the objective
would become very unsteady, also due to the Boolean constraint
(a failed movement would be interpreted as a very high cost).
Direct search methods seem therefore appropriate (e.g., dual
annealing, differential evolution, pattern search). Furthermore,
we know two important aspects of our optimization problem: our
cost function is monotonically decreasing and if the resolution
becomes to coarse, the movement will break down. Thus, we
expect a clear border above which the constraint is fulfilled and
below it is not. With this knowledge, we can specifically tailor the
optimization to minimize the costly calculation of the constraint
function. We, therefore, developed a direct search approach that
is specifically designed for our optimization problem (Equation
3). The algorithm is based on the pattern search concept, a
class of derivative-free direct search algorithms (Todorov and
Jordan, 2003; Lewis et al., 2000; Rios and Sahinidis, 2013). In
the following, we will describe the concept of the algorithm.
Its algorithmic details are given in the Appendix B and the
algorithm can be found online at https://github.com/daniel-
haeufle/Control_Effort_Optim_Algorithm.

3.1. Outline of the Algorithm
In every iteration of the algorithm, a new set of parameters r ∈ R

is selected (polled), evaluated, and the results are compared to the
previous best solution (Algorithm 1, Appendix B.1). The key step

of the optimization algorithm is the selection (polling) of new
parameter sets r.

The initial guess of the parameter set rinit has to be with
high values for time and amplitude resolution ni and mi,
almost resembling numerically continuous signals. With the high
resolution parameters, rinit fulfills the constraint function P(r).
Therefore, it becomes the currently best parameter set in the first
iteration: r = rinit.

Starting from this initial guess, the pattern search algorithm
searches for a better solution by exploratory moves (polling) in
the parameter space by sampling the function in the vicinity
of the currently best parameter set r. Polling is performed by
iteratively adding a specified setD of vectors dl ∈ D (the pattern),
multiplied by a current mesh size vector m ∈ R

2Nu to the
currently best solution as

rtest = r−m⊙ dl (4)

(where ⊙ represents the element wise multiplication of the two
vectors). The mesh size vector basically contains one “scaling
factor” for each resolution parameter (entry in r). In general, the
mesh size vector is reduced (scaled by 0.5) if no better solution
is found in the evaluated parameter space and increased (scaled
by 2) if a better solution is found. This represents an adaptive
search step width (mesh size). For a very helpful overview of
the approach of pattern search algorithms, we refer the reader to
Torczon (1997).

Our algorithm employs three different pollingmethods, which
differ by the pattern vectors D.

3.1.1. Phase 1: Rapid Parallel Reduction of

Resolution in All Signals
The first phase is an initial rough sweep where all signals are
treated equally. Polling is done by a bisection search method
working uniformly on all entries of r, i.e., the pattern of this first
phase D1 contains only one vector

d̄ =(1, 1, . . . , 1). (5)

By adapting the mesh size as described above, this results in
a global bisection algorithm acting in parallel on all entries
of r. The bisection search algorithm is shown in Algorithm 2,
Appendix B.2. The benefit of phase 1 is that the performance
function needs to be evaluated only a few times to identify a first
rough performance limit, even for models with a high number of
control signals.

3.1.2. Phase 2: Pattern Search
The more thorough sweep of the second phase is more closely
inspired by pattern search algorithms. The pattern D2 consists
of the vectors dl:=el, where el = (0, . . . , 0, 1, 0, . . . , 0) is the l-
th unit vector. It is motivated by the fact that the cost function
is monotonically decreasing for each entry. Thus, with this set,
the algorithm only polls in the direction of reduced cost I(r)
saving a lot of computational time to less specific search patterns.
The vectors dl represent a linearly independent basis and only
modify each variable individually. This is fine for most cases,
but may cause the optimization to converge to an undesired
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local minimum. To reduce this risk, we added a set of vectors
{d̄l} in case the previous poll did not reveal any new and better
solution. These vectors were constructed such that they had a
positive value of 0.5 added to the entry of the previous successful
polling direction: d̄l = dl + (0, . . . , 0.5, . . . , 0). Let us say the
previous successful poll modified the second entry of r. Then, the
additional polling vectors would look like this:

d̄1 = (1,−0.5, 0, . . . , 0)

d̄2 = (0, 0.5, 0, . . . , 0)

d̄l = (0,−0.5, . . . , 1, . . . , 0)

d̄2Nu = (0,−0.5, 0, . . . , 1) .

These additional vectors represent linear combinations and allow
the optimization algorithm to go “back” in one parameter to get
out of a local minimum.

Please note: the mesh size vector m is also adapted as in
phase 1. The algorithm for phase 2 is shown in Algorithm 3
Appendix B.3.

3.1.3. Phase 3: Check Local Neighborhood and

Calculate Error
The third and final phase is used to scan the local neighborhood
of rbest for better solutions and, at the same time, to calculate the
error 1Iopt. We allow for three simultaneously changed entries
in r as linear combinations of the vectors in the pattern D2 to
find potentially better solutions. For this systematic sweep, the
mesh size vector is not adapted anymore. It is simply a vector of
ones. This is shown in Algorithm 4, Appendix B.4. In principle,
allowing more than three non-zero entries in d may further
improve the found vector r. However, this would come with a
high computational cost.

3.2. Optimal Result: Control Effort Imin
At the end of the third phase, ropt = r represents the best
parameter vector found by the algorithm. With this, we calculate
the control effort, which is the actual information content
(Equation 15, Appendix A) of all signals

Imin = ISh(ropt) (6)

=

Nu
∑

i=1

ni
∑

j=1

p
opt
ji log2 p

opt
ji . (7)

This is the minimally required information content of all control
signals to generate the desired movement, i.e., still fulfilling the
performance constraint P(r) = 0. We identify this minimal
information as control effort and symbolize it with Imin.

Please note that during the optimization, we assumed equal
distribution of the signal values uji in the range umin

i ≤ uji ≤ umax
i

with j = 1, . . . , ni. Therefore, the probabilities were assumed to
be pji = 1/ni. The cost function of the optimization is based
on this assumption and therefore requires no computationally
expensive simulation to evaluate the cost function. However, the
actual probability pji = p(ui(t) = uji) that a signal ui(t) has the
value uji at time t differs from the original assumption. Therefore,

the actual information at the optimal solution differs too. The real
probabilities were estimated from the recorded control signals of

the optimal walking simulation (p
opt
ji ) using (Equation 7).

3.3. Error Estimation
We want to quantify the amount of error that we make by
confining the components r to integer values. To this end,
our search algorithm calculates an error 1Iopt specifying the
maximum information reduction that can be achieved by
reducing a single entry of ropt by one. Specifically, we define

1Iopt:= max
l∈{1,...,2Nu}

I(ropt)− I(ropt − el). (8)

For small1Iopt, we thus expect the discretization of r to only have
little effect on the continuous information Imin ∈ [0,∞).

4. CONTROL EFFORT IN TYPICAL HUMAN
MOVEMENT TASKS

This study hypothesized that reduced control effort for muscle
models over torque actuators found in a simplified hopping
model (Haeufle et al., 2014b) is also present in more realistic
models of human movements. To test this, we applied the
measure described above to biologically plausible models of
human point-to-point arm movements and human walking. The
models we employed for this study (or very similar ones) have
been previously used to study motor control phenomena, where
muscle characteristics play a role. Such arm models were used
to investigate hypotheses on the control of fast arm movements
(Kistemaker et al., 2006), motor learning to compensate for loads
during armmovements (Gribble andOstry, 2000), or the reaction
to external forces (Stollenmaier et al., 2020). The walking model
was originally used to demonstrate that level walking could be
generated by simple reflex control schemes in the spinal cord
and does not necessarily require central planning or pattern
generators (Geyer and Herr, 2010). It reproduces human muscle
activity patterns, joint torques, and kinematics quite well.

In both cases, muscle-driven models were the starting point.
For comparison, we derived torque-driven models by stripping
these models of all muscular dynamics and considering direct
torque actuators in the joints. This resulted in a total of
six different cases for which we quantified control effort:
two different movements with three different scenarios to
quantify control effort each. The two movements were goal-
directed (pointing) arm movements and level walking. The three
different scenarios to quantify control effort were the following
(Figure 1)

• STIM: discretization of the motor signals stimulating the
muscles (controller output) in the neuromuscular model.

• SENS: discretization of the sensor signals fed back to the
controller (its input) in the neuromuscular model.

• TORQUE: discretization of the motor signals (controller
output) fed to ideal torque generators.

STIM and SENS represent the biological, neuromuscular system.
TORQUE represents the robotic, technical system. In the
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FIGURE 1 | Schematics of the study design: the two movements investigated in this study are goal-directed pointing movements (POINTING) and periodic level

walking (WALKING). The pointing movements were simulated with a model consisting of two rigid bodies (upper and lower arm) connected by two hinge joints (based

on Stollenmaier et al., 2020). The walking model has seven rigid bodies (two legs with foot, shank, thigh and a single head-arms-trunk segment), all connected by six

hinge joints (based on Geyer and Herr, 2010). The muscle-driven models considered nonlinear visco-elastic muscle characteristics and muscular activation dynamics,

six muscles in the pointing, 14 in the walking model. The torque-driven models use ideal torque actuators in each hinge joint. The control policy in the pointing models

(RL policy) is derived by reinforcement learning. Walking in the muscle-driven model is generated by a reflex-based neural control scheme (Geyer and Herr, 2010) and

by a PID controller in the torque-actuator model. To determine control effort, the control signals are discretized in amplitude (1ui ) and time (1ti ). In the STIM and

TORQUE scenario, this discretization is applied to the output of the controller, i.e., the muscular control signals or the torque signals, respectively. In the SENS

scenario, the input to the controller is discretized, i.e., the proprioceptive sensor signals.

following, we compare control effort for biological and technical
systems in the same movement task.

4.1. Movement 1: Pointing
4.1.1. Models
The first movement investigated was a point-to-point arm
motion simulated with a 2D arm model (Driess et al., 2018;
Stollenmaier et al., 2020). The task is to reach a certain goal
position, which also defines the performance criterion P and
is described in section 4.1.2 below. The arm model consists of
two segments representing the upper and lower arm, which are
connected by the elbow and shoulder joint to the fixed shoulder
(Driess et al., 2018).

We considered two different ways to generate the actuation
torques at the joints: First, a muscle-driven arm model using

six Hill-type muscle-tendon units—four monoarticular and two
biarticular muscles—that produce torques through nonlinear
moment arms. The model of the muscle-tendon units considers
the nonlinear force-length-velocity characteristics of the muscle
fibers, the nonlinear elasticity of the tendon (Haeufle et al.,
2014a), and the biochemical processes leading from neuronal
stimulation to muscle force (Hatze, 1977). With this, it considers
the visco-elastic and low-pass filter properties of muscles, which
are considered to be important for stabilizing movements
(Gerritsen et al., 1998; Haeufle et al., 2010; Pinter et al., 2012; John
et al., 2013). The details and the parameters of the model can be
found in Supplementary Material (Data set 1).

As a second model to generate the actuation torques, we
simply considered two ideal torque actuators that act directly on
the joints of the arm.
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FIGURE 2 | Overlay of 100 sampled trajectories of the end-effector position in

the best trained models for the muscle-driven arm (green) and the

torque-driven arm (blue). The end-effector moves from its initial position (lower

left) to its goal (0.5, 0). Noise in the trajectories arises from noise in the

controller (policy) π (at|st ). The data shown here was generated without delay in

the control loop for both models.

In both cases, we used a deep reinforcement learning (RL)
algorithm to obtain a controller for reaching a certain goal
position. Details about the RL algorithms can be found in
Appendix C. We use Deep RL since it bears parallels to biological
learning (Neftci and Averbeck, 2019), and the task is simple
enough so that we can find good controllers using such a very
general learning scheme. The goal of the RL algorithm is to find
a policy π which maps an observation (related to the state of the
arm model) to an action (the control input), hence a closed loop

controller, such that the expected sum of rewards E
(

∑T
t=1 rt

)

is

maximized. A high reward here corresponds to a low deviation
from the target position and low applied muscle activations resp.
torques. See Appendix C for a proper mathematical definition of
these terms.

In our case, the simulation is interrupted every 10ms in order
to get a new control input. We do this for a fixed number T ∈ N

of iterations. In each of the T iterations, the simulation yields a
state st . From the state, we compute an observation ot = f (st). A
given policy π then yields a probability distribution π(at|ot) from
which an action at is sampled. This action either corresponds
to (normalized) muscle stimulations or to torques. Due to the
sampling of the probability distribution, this action has small
stochasticity included, similar to motor noise. A fixed reward
function R is used to compute a reward rt = R(st , at). Using
the action at as a control input, another 10ms of movement is
simulated and the next state st+1 = S(st , at) is obtained.

Note that the same RL algorithm was used to learn policies
for both models (muscle- and torque-driven arm), but the

dimensions of the action and observation spaces differ among
these models (cf. Appendix C). By construction of this RL
algorithm, the distributions π(at|ot) are Gaussian, i.e., the output
of the policy always contains additive Gaussian noise with non-
zero variance. More specifically,

π(at|ot) = N
(

at|NN(ot), diag(e
2s1 , . . . , e2sda )

)

,

i.e., at follows a Gaussian distribution with mean given by a
learnable neural network applied to ot and a diagonal covariance
matrix with learnable parameters s1, . . . , sda , where da is the
dimension of at . While the RL algorithm can adapt the variance
of the noise during training, Faisal et al. (2008) suggest that
humans can also manage to reduce noise in the nervous
system by various complicated mechanisms that cannot easily
be modeled or are not yet fully understood. Figure 2 shows that
the generated trajectories still contain remaining noise, especially
toward the end of the muscle-arm trajectory.

Another difference between the muscle- and torque-driven
arm is that we trained and tested the control policy for
the muscle-driven model with a delay for sensor signals of
30ms similar to the electromechanical delay (Mörl et al., 2012;
Rockenfeller and Günther, 2016) in human muscles (De Vlugt
et al., 2006), i.e., using ot = f (st−3). We did not consider any
control signal delays in our torque-drivenmodel(s) as such delays
can be neglected in real-world technical systems that employ
torque drives.

4.1.2. Nonlinear Constraint: Movement Performance

for Pointing
For pointing movements, we selected as performance criterion
P the accuracy of pointing to a specific point in space. For
each poll, five simulation runs were performed to ensure that
the stochasticity of the controller does not affect the result.
Accordingly, it was checked as a first part of the criterion P
whether the arm model’s “finger” trajectory ended up in a circle
around the desired end goal xgoal with radius 2.5 cm:

(xgoal − x(tend))
2 + (ygoal − y(tend))

2 < (2.5 cm)2. (9)

Note, that the mean over the five simulation runs was taken for
the end position of the trajectories x(tend) and y(tend) to account
for the effect of movement variability. The second part of P is
necessary to ensure that the “finger” not only passes through the
target but actually holds this position. Therefore, it was checked
whether both angle velocities q̇i (again averaged) were smaller
than a certain threshold:

q̇i < 0.15 rad/s, with i = 1, 2. (10)

Only if both criteria were fulfilled, the poll was considered
successful, which gives a conditional expression for the
performance criterion as follows:

P(r) =

{

0, if Equation (9) and Equation (10) are true

1, otherwise.
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4.2. Movement 2: Walking
4.2.1. Models
The second movement investigated in this study was human
walking as “defined” by the performance criterion P described
in section 4.2.2 below. For this, we resorted to an existing
neuromuscular model (Geyer and Herr, 2010). It is a multi-
body model with seven segments and hinge-joints in the
ankle, knee, and hip. It is actuated by 14 Hill-type muscle-
tendon complex models. The muscular control is based on
neuronal reflex pathways processing in total 24 proprioceptive
signals with biologically realistic neuronal delays. Such a control
concept is inspired by the presence of mono-synaptic reflex
pathways in the spinal cord, which could explain the low-level
implementation of the rhythmic pattern generation of level
walking (see Geyer and Herr, 2010, for more details). In forward-
dynamic simulations, this model predicts robust walking patterns
with strikingly realistic kinematics, ground reaction forces, and
muscular activities.

Like for the arm model, we derived a technical model,
which, in our case, is a torque-driven model without muscle-
tendon characteristics and without neuronal control. This model
had the same anthropometrics as the neuromuscular walking
model. However, the joint torques for each of the six joints
were generated based on PD controllers enforcing the joint
kinematics ϕref

i recorded from a reference simulation using the
neuromuscular model (Geyer and Herr, 2010):

u
TORQUE
i = kP(ϕi − ϕref

i )+ kD(ϕ̇i − ϕ̇ref
i ),

with i = 1 . . . 6 for the six joints (2x ankle, 2x knee, 2x hip). This
represents a typical low-level control implementation in classical
robotics. We here ignore all potential higher-level planning
contributions and replace them with the recorded kinematics as
the desired trajectory. This is, therefore, equivalent to the level of
investigation in the reflex-driven neuromuscular model.

The joint torque was limited to 1.5 times the maximum
active values generated by the muscles in the neuromuscular
reference simulation. Two sets of feedback gain parameters kP
and kD, one for stance and one for swing phase were determined
in simulations with very fine discretization (n = 1015 and
m = 1015) by a pattern search algorithm (Matlab (R) global
optimization toolbox, with random initial conditions). We will
show the results for the two best control parameter sets (CP2
and CP10).

The multi-body dynamics of both models are implemented
in SimMechanics 1st generation within Matlab(R), SimulinkTM
version 2016a. The differential equations are solved with a
variable step solver (ode23s stiff/Mod. Rosenbrock) with relative
and absolute tolerance of 10−3 and 10−4, respectively. After an
initial phase of approximately 5 s, the model’s walking pattern
is fairly repetitive. Therefore, all evaluations were done on the
interval t ∈ [5 s, 10 s].

4.2.2. Nonlinear Constraint: Movement Performance

for Walking
The nonlinear constraint for the walking model was a
combination of a criterion for a desired walking speed and

a second one for “not falling”: From the continuous walking
simulation, we can estimate the typical walking speed of the head-
arms-trunk (HAT) segment with linear regression to ẋHAT,cont. =
1.33ms−1. The first criterion for the performance limit is for the
x-coordinate of the HAT segment xHAT to stay within 6% to this
walking speed:

∣

∣ẋHAT,cont. − ẋHAT(t)
∣

∣

ẋHAT,cont.(t)
< 0.06 (11)

The second criterion—not falling—is simply described by the
vertical position of the HAT segment yHAT. Simulation tests
showed that if the condition

yHAT(t) > 1.24m (12)

is violated, the model is falling and not walking anymore.
If at least one of these criteria is violated, the simulation stops

(at tstop) and the performance is the time difference to the desired
simulation time

P(r) = T − tstop. (13)

The optimization constraint

P(r) = 0 (14)

thus only allows for parameter sets which generate walking
patterns not violating the above two conditions during the entire
simulation time T = 10 s.

4.3. Discretization of Signals to Determine
Control Effort
In principle, it is not clear which signals need to be discretized
to determine control effort. At first sight, all output signals of
the controller which directly control the actuators—the muscle
stimulation or the joint torque signals—seem the obvious choice.
However, also the sensor signals provide important information
to the system, so it could also be argued that all input signals to
the controller need to be discretized (Haeufle et al., 2014b). Here,
we tested three scenarios (Figure 1).

4.3.1. Discretize Muscle Stimulations (STIM)
In the first scenario, we discretized the muscle stimulations both
in time and amplitude for all muscles with the algorithm given
above. These discretized muscle stimulations uSTIMi are then
used as an input signal to each muscle. Because the muscles

can be activated between 0 and 100%, we set uSTIM,min
i = 0

and uSTIM,max
i = 1 respectively, as well as the duration of the

movement TPOINTING = 1 s for the pointing movements and
TWALKING = 5 s. The time and amplitude resolution parameters
mi and ni of each of the stimulation signals uSTIMi were then
varied with the algorithm described above.

4.3.2. Discretize Proprioceptive Sensor Signals

(SENS)
In the second scenario, all proprioceptive sensor signals uSENSi (t)
are discretized in the neuromuscular models (Figure 1). Here
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the minimum umin
i and maximum umax

i signal values were
determined from a not discretized reference simulation. As
above, the duration was TPOINTING = 1 s and TWALKING = 5 s
and the signal resolution parameters were optimized for minimal
information with the algorithm above.

4.3.3. Discretize Torque Actuations (TORQUE)
In the third scenario, we discretized the control signals

for the torque-driven system u
TORQUE
i (t) (Figure 1). For the

POINTING movement, we set umin
i = −20Nm and umax

i =

20Nm to approximately match the capacities of the muscles in
the arm model. For the WALKING movement, the minimum
umin
i and maximum umax

i signal values were determined from a
not discretized reference simulation and the durations were again
TPOINTING = 1 s and TWALKING = 5 s. The signal resolution
parameters were optimized for minimal information with the
algorithm above.

5. RESULTS

The control effort, i.e., the minimally required information Imin

to generate pointing and walking movements, is lower in the
neuromuscular models STIM and SENS as compared to the
TORQUE model (Figures 3A,B).

In the pointing movements, the control effort is lowest for
the STIM scenario (ISTIMmin = 67.5 bit/s), where the information
is reduced in the output of the controller. The control policy
derived by reinforcement learning (RL), however, does not allow
to reduce the information as much on the input side (SENS) as
on the output side (STIM), resulting in almost three-fold higher
control effort (ISENSmin = 222.5 bit/s). The torque model requires
the most information, resulting in an almost four-fold higher

control effort (ITORQUEmin = 310.3 bit/s).

In the walking model, the control effort for the STIM and
SENS scenarios are quite similar and both about half of the
best TORQUE model (Figure 3B and Table 1). The second best
(CP2) PID controller parameters require double the amount of
information than the best parameters (CP10).

The discretization—introduced to reduce the information
content of the control signals—modifies the walking pattern. In
the STIM and SENS scenarios, the parameters ropt (minimal
information solution) result in slower walking patterns than
in the reference solution (Figure 4). In the TORQUE scenario,
the parameters ropt result in strong oscillations in the joint
torques (Figure 5).

To demonstrate the reduction in information by changing the
resolution parameters ni and mi to lower values (more coarse),
we give the results for the different stages of the optimization
algorithm (Table 1). The algorithm started with an initial guess
of ni = 1015 and mi = 1015, resulting in high initial information
content I0 of the control signals which is about two orders of
magnitude larger than the optimal result. This initial guess is
highest for the SENS model as this model discretizes all 24 sensor
signals—the highest number of signals investigated in this study.
Therefore, I0 is naturally high. Also, the number of required
iterations is high, especially in the third stage, due to the high
number of possible linear combinations checked in this stage.
However, at the end of the third stage, the control effort Imin of
the SENS model is the lowest.

In this study (Figure 3A), the model scenarios STIM and
SENS were trained and tested with a sensor delay (δt = 30ms
in pointing and δt = 5 . . . 20ms in walking), representing
the unavoidable neuronal delay (More et al., 2010) in biology,
while the torque model had zero delay representing a modern
technical solution. To investigate the influence of sensor delays
on control effort in some more depth, we additionally trained

FIGURE 3 | Control effort of (A) POINTING movements and (B) WALKING. In general, the control effort of walking is higher than the control effort of pointing

movements. For both movements, the two neuromuscular models STIM and SENS require less information to generate the motion than the torque-driven model.

Frontiers in Robotics and AI | www.frontiersin.org 8 June 2020 | Volume 7 | Article 77



Haeufle et al. Muscles Reduce Control Effort

TABLE 1 | Control effort of walking as determined with the adapted pattern search algorithm at the different stages of the optimization.

Model Number of control signals

Nu

Initial I

I0 [kbit/s]

I stage 1

I1 [kbit/s]

I stage 2

I2 [kbit/s]

Control effort

Imin [kbit/s]

Optim. error

1Iopt [kbit/s]

STIM 14 688 3.48

#16

2.68

#611

1.49

#21,715

0.0016

SENS 24 1, 229 7.74

#16

1.88

#3,275

1.29

#67,953

0.0063

TORQUE (CP10) 6 295 295

#16

3.54

#527

3.28

#209

0.0002

TORQUE (CP2) 6 295 220

#16

7.84

#590

6.46

#434

0.0060

Also given are the number of iterations # for each stage of the optimization. [kbit/s] means [103 bit/s].

FIGURE 4 | Comparison between walking patterns of the minimal information (SENS model, black) and reference (red) solutions. In the beginning, both solutions

overlap until the discretization begins at approximately 6 m walking distance (5 s). Then, the coarse discretization of the minimal information solution affects the

walking pattern: the model walks slightly slower than in the reference simulation but still remains within the required performance limit (Equation 11).

FIGURE 5 | Ankle joint torques of the minimal information solutions. In the STIM (A) and SENS (B) model, the minimal information solutions (black) involve ankle

torques with magnitudes similar to the reference case (red dashed). In the SENS model, the discretization causes over-extensions in the flight phase, which results in

short negative torque spikes due to the passive mechanical joint limits of the model. In the TORQUE model (C), the minimal information solution is dominated by a

bang-bang pattern between the joint torque limits (±210Nm). This is a direct result of the coarse discretization of the motor commands uTORQUEi (see Figure 1).

and tested control policies for the neuromuscular POINTING
movements without delay (unphysiological) in the muscle-
driven and with delay (bad engineering) in the torque-driven
model. The resulting optimized control effort is shown in
Figure 6 in relation to the “correct” models. In the muscle-
driven models, the control effort increases in the unphysiological
zero-delay scenario, while the torque-driven model benefits
from zero-delay.

The estimated error of the control effort in walking 1Iopt
is small with respect to the difference between the models.
The certainty range is an order of magnitude higher than the
optimization error. This means that in the last stage of the
pattern search, the local neighborhood of the optimal solutions
was checked intensively.

Finally, our algorithm is very efficient in finding the control
effort. For comparison, we repeated the optimization of the
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FIGURE 6 | Control effort of the different investigated models, each trained

and tested with and without delay for the POINTING movement. The

muscle-driven models trained with delay (STIM and SENS) require less

information than the corresponding models that were trained and tested

without delay (STIMno_del and SENSno_del). The TORQUEdel model, however,

requires more information than the TORQUE model without delay.

torque model for the pointing movement with other standard
optimization algorithms available in Python and found the
following: Our algorithm converged in 42 iterations and found a
value of 310 bit. In comparison, dual annealing stopped at 385 bit
after 1000 iterations (the set limit) with 4,067 total function
evaluations. Differential evolution stopped at 472 bit after 1,000
iterations (the set limit) with 30,033 total function evaluations.
SHGO did not converge.

6. DISCUSSION

Control effort is reduced in muscle-driven systems compared to
torque-driven systems for pointing andwalkingmovements. This
supports the general notion that muscle contraction (van Soest
and Bobbert, 1993; Haeufle et al., 2010) and activation dynamics
(Kistemaker et al., 2005; Rockenfeller and Günther, 2018, app. A)
can serve as a low-level zero-delay feedback system (preflexes;
Brown et al., 1995) supporting the generation and control of
dynamic movements (Ekeberg et al., 2004; Proctor and Holmes,
2010). Here, we provide quantitative evidence for its contribution
and the potential reduction in information load. From our point
of view, this is interesting, because the two typical movements
chosen differ greatly in their characteristics and by the number of
muscles needed for their generation. Thus, control effort seems
to be a general measure for the contribution of morphology to
perform a specific task in biological and robotic motion.

Minimization of information processing may be a design
principle for shaping bodies and structures during biological
evolution (Niven and Laughlin, 2008) as it certainly comes
along with the minimization in metabolic energy consumption

of the information processing structures themselves (Niven et al.,
2007). However, it is competing with other movement criteria. A
prominent example would be the performance, as demonstrated
here, but probably other optimization criteria as well, such
as maneuverability, jerk, stability, robustness, accuracy, or
reproducibility. Pushing this surely incomplete list of potentially
relevant movement criteria to extremes, minimization of control
effort is definitely competing with the soundness of body tissue:
damage and failure are even more costly than corrections and
compensations in movement execution. However, we see that
the minimization of information processing may be crucial in
the evolution of morphology, and our approach allows us to
quantify it.

Having this said, we would like to emphasize that we do
not expect the actual system to process only this minimal
amount of information. Especially in biology, there is an
abundance of structures (Latash, 2012)—many muscles, sensors,
and neurons—which are not considered here. Also, in robotics,
one would never control a robot at this limit, as it is just
on the verge of instability. However, by applying this minimal
information approach systematically to the same movement but
different morphologies, the contribution of the latter can be
uncovered and quantified.

6.1. Influence of Delay on Control Effort
Delay in information processing seems per definition
unavoidable (Nishikawa et al., 2007; Shadmehr et al., 2010).
In robotic systems with their electric cables, the delay can be
very small—usually smaller than the typical time resolution 1t.
However, it is a universal characteristic of neuronal information
processing in biological systems that the delay is, in general,
much larger than the time resolution, and scales with the size of
the animal (More et al., 2010). Despite these large delays, animals
can perform quite well in uncertain environments. In fact, our
approach shows that neglecting this delay in the neuromuscular
model increases control effort (Figure 6). On the other hand,
engineers who employ widespread electric motors do good in
trying to minimize delay (Figure 6).

Neuronal systems have additional possibilities that allow them
to compensate drawbacks of delays, which are not considered
in our models. They may use open-loop control signals—
potentially from an inverse model or a model template (Full and
Koditschek, 1999; Holmes et al., 2006)—to drive a movement
and only use feedback if a perturbation occurs (Todorov
and Jordan, 2003). Furthermore, by predicting sensor states
with a forward model (e.g., a template), they may deal with
possible instabilities arising from delays (Shadmehr, 2010), at
least as long as no external perturbation occurs (Kalveram
and Seyfarth, 2009). Despite these neuronal capabilities, the
control approach can still rely on the stabilizing response
of the visco-elastic muscles to external perturbations (van
Soest and Bobbert, 1993; Wagner and Blickhan, 2003; Haeufle
et al., 2012; Stollenmaier et al., 2020). Brown et al. (1995)
termed these responses “preflexes,” due to their zero time-delay
response. There are strong indications that such strain-rate-
dependent actuator properties, even more in combination with
positive muscle force feedback (Geyer et al., 2003), as well as

Frontiers in Robotics and AI | www.frontiersin.org 10 June 2020 | Volume 7 | Article 77



Haeufle et al. Muscles Reduce Control Effort

position-plus-rate characteristics of proprioceptors (McMahon,
1984, p. 154–155) can also provide predictive information
that is valuable for movement stabilization. Thus, a delay
well-tuned to the controller/control-system interaction may even
improve performance (Hedrick and Daniel, 2006; Shadmehr,
2010), and potentially allow to reduce the control effort, as our
results indicate.

6.2. Information Processing in Walking
Machines
The processed information in a digitally controlled walking
machine can be estimated with Appendix A, Equation 17.
Although the necessary parameters would be easy to determine
for the construction engineer, they are usually not published. As
one example, we estimated the parameters for a walking pattern
reported for the robot MABEL from information given in Park
et al. (2011) and Sreenath et al. (2011). MABEL seems to be
interesting for comparison, as it is a 2D walking machine that
considers elasticities in the drive. Based on the data provided
by the papers, we estimate the total information processed in
MABEL per second to be I = 6.4 · 104 bit/s. The derivation of
this is described in more detail in Appendix D.

This value is large in comparison to the minimal information
Imin predicted by our models but low in comparison to our
initial guess I0. Obviously, the choice of encoder resolution is not
made to generate walking with the least amount of information.
This is very well not recommended in a technical system, as low
resolutions entail the risk of significant oscillations, as seen in our
optimized TORQUE results. However, with this comparison, we
speculate that our results are in a reasonable range. To evaluate
the contribution of morphology to the control and to verify our
model calculations, it would yet be quite interesting to apply our
algorithm to MABEL while further modifying the characteristics
of this machine’s actuators.

6.3. A Hypothetical Scenario Where an
Ideal Torque Generator Would Be
Advantageous
Above, we exclusively cited papers indicating and demonstrating
the benefit of muscles, and our results fit in this picture.
Therefore, it is important to point out that control effort cannot
be expected to always be lower in muscle-driven systems. For
this, we would like to perform a short though experiment.
Imagine a hypothetical task: an arm with a single joint has to
generate exactly the same tangential endeffector force at any
given joint angle (at rest). An ideal torque generator, would
require a single constant input signal. Such a signal, per definition
of Equation (2), contains the minimally possible control effort as
the resolution parameters could be reduced tom = 1 and n = 1,
and, consequently, Imin = 0. Amuscle-actuated arm, on the other
hand, would have to adapt the stimulation to each and every angle
as the muscle force depends on its length and therefore also on
the joint angle. This is only to highlight that muscles are very well
suited for particulary dynamic tasks, but not in general the best
actuator for everything.

6.4. Other Optimal Control Approaches for
Measuring Simplicity
In the present work, we utilize control effort, which has recently
been proposed by us (Haeufle et al., 2014b), to quantify the
minimal information required to generate a specific movement.
This measure is based on the quantification of the information
of the control signals, i.e., sensor signals and actuator command
signals, based on SHANNON’s information entropy (Shannon
and Weaver, 1949, see section 2). By comparing control effort
for different morphologies, it quantifies, to some extent, how
“simple” it is to generate a specific movement depending on the
morphology of the system.

Brockett (1997) argue to consider simplicity as a way to
synthesize controllers, which they call Minimum Attention
Control (MAC). In order to measure simplicity, they introduce
the concept of attention, which quantifies the required rate
of change of the control to achieve desired changes in
the system state. This can be interpreted as the difficulty
to implement a respective controller (Brockett, 1997). For
example, a control system which can be controlled by just
a constant input would require minimal (no) attention.
Thus, the basic idea is to find controllers through an
optimal control framework where the objective function trades-
off system performance with attention, i.e., simplicity of
the controller.

In Della Santina et al. (2017), MAC was found as a beneficial
solution for controller design in soft robots. Biomechanical
systems such as the arm model used in the present work have
properties which enable to reach a desired system state with a
constant control input. This has been exploited in Driess et al.
(2018), Wochner et al. (2020) and Driess et al. (2019) to learn a
controller for such systems efficiently. The controllers of Driess
et al. (2018) and Driess et al. (2019), Wochner et al. (2020) are,
by design, optimal with respect to attention with zero attention,
since the controller produces constant controls for each desired
system state.

The measure of attention from Brockett (1997) is, in a
way, similar to control effort of the present work, as it is also
driven by the idea that a specific design of a control system
could be beneficial to achieve a certain system behavior without
an overly complex controller. Thus, the process of evolving
structures and functioning—simultaneous and codependent
control system and controller design—can also be supported
by MAC.

However, there is also an important difference between
MAC and control effort as considered in the present work.
MAC is a paradigm to synthesize controllers by integrating
it directly into the cost function of an optimal control
framework. In contrast, we use control effort here as a measure
to analyze the contribution of the systems dynamics to the
control of the movement. Therefore, it measures a system
property. Indeed, the controllers that are either learned or
hand-tuned in this work at no point have the objective to
minimize control effort. Solving the optimal control problem
with MAC as an objective is non-trivial, especially for nonlinear
systems. In the future it could be investigated whether MAC
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can be extended to nonlinear biomechanical models and
to test whether it allows to find controllers that show a
difference in attention between musculoskeletal and torque-
driven actuators.

6.5. The Optimization Algorithm
Quantifying control effort requires to solve an optimization
problem (Equation 3). The algorithm proposed here is novel and
specifically designed to efficiently optimize the given problem.
The three stages of the algorithm differ in their computational
expense, with the first stage being computationally cheap (16
iterations for the walking model), while the other two require
more iterations (Table 1). For the few control signals discretized
in the TORQUE model, the final search in stage 3 is also
computationally cheap. For more control signals, the linear
combinations tested in the third stage are computationally
expensive. It may be considered to exclude the final stage, as
we did for the POINTING movements, since the difference
in the results between stage two (I2) and final result (Imin)
in the walking model are not very large, and the general
trend can already be seen. In general, this algorithm can
easily be applied to any other simulation of movements,
and also to robotic systems (which would, however, require
safety measures to avoid damage in the low-resolution trials).
By providing it as open source, we hope to foster the
quantitative evaluation of control effort and a more systematic
study of the contribution of morphology to control in
biological systems.
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Abstract: Humans are able to outperform robots in terms of robustness, versatility,
and learning of new tasks in a wide variety of movements. We hypothesize that
highly nonlinear muscle dynamics play a large role in providing inherent stability,
which is favorable to learning. While recent advances have been made in applying
modern learning techniques to muscle-actuated systems both in simulation as
well as in robotics, so far, no detailed analysis has been performed to show the
benefits of muscles when learning from scratch. Our study closes this gap and
showcases the potential of muscle actuators for core robotics challenges in terms
of data-efficiency, hyperparameter sensitivity, and robustness 2.
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Figure 1: Key differences between torque actuator morphology and muscle actuator morphology.

1 Introduction
Recent developments in new learning methods allow the generation of complex anthropomorphic
motions such as grasping, jumping or hopping in robotics. However, current systems still struggle
with real-world scenarios beyond the narrow conditions of laboratory experiments. Humans, on the
other hand, are capable of quickly adapting to uncertain, complex, and changing environments in a
sheer endless variety of tasks. One key difference between biological and robotic systems lies in their
actuator morphology: robotic drives are mostly designed to yield a linear relation between control
signal and output torque. In contrast, muscles have complex nonlinear characteristics.

It has already been demonstrated, that muscular nonlinearities may provide a benefit for stability and
robustness, especially under environmental uncertainties or perturbations [1, 2, 3]. A benefit over
linear torque actuator morphology has been observed in computer simulations by exchanging the
actuator morphology (similar to Fig. 1) in otherwise identical anthropomorphic tasks like reaching [4]

∗Equal contribution. † Equal contribution.
2See https://sites.google.com/view/learning-with-muscles for code and videos.
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or locomotion [5, 6, 7, 8]. Similarly, reduced demand on the information processing capacity has been
shown for muscles when compared to torque actuator morphology [9, 10, 11, 12, 13]. This opens the
question whether muscular morphology could also be beneficial for robustness and data-efficiency in
the process of learning movement control.

Recent advances in deep learning facilitated the generation of complex movements like point-reaching
[14, 15, 16, 17] and locomotion [18, 19, 20, 21, 17] in simulations with muscular actuator morphology.
In the real world, optimization and learning approaches can also find controllers for robotic systems
with pneumatic muscles exhibiting somewhat muscle-like actuator morphology [22, 23]. These
examples demonstrate that learning and optimization methods can control muscle-driven systems and
may enable benefits such as safe learning and robustness [23]. However, investigating advantages of
nonlinear muscular actuator morphology over linear torque actuator morphology requires a direct
comparison of both, which is—to our knowledge—missing in the literature.

While Peng et al. [24] performed a comparative analysis of different actuator morphologies, their
work was focused on replicating reference trajectories. In contrast, we learn behaviors without
demonstrations, provide extensive hyperparameter ablations and not only employ RL, but also other
optimization methods applied to complex 3D models.

The purpose of this study is to test if learning with muscular actuator morphology is more data-
efficient and results in more robust performance as compared to torque actuator morphology when
learning from scratch. We investigate this in a very broad approach: we employ different learning
strategies on multiple anthropomorphic models for multiple variants of reaching and locomotion
tasks solved in physics simulators of differing levels of detail. This provides new and comprehensive
evidence of the beneficial contribution of muscular morphology to the learning of diverse movements.

2 Morphological difference between torque and muscle actuators
In contrast to idealized torque actuators, where torque is simply proportional to the control signal
utorque ∈ [−1, 1],

τ = τmax utorque (1)
muscular force output nonlinearly depends on the muscle control signal umuscle, the muscle length
lMTU and contraction velocity l̇MTU. These biologically observed dependencies can be predicted by
so-called Hill-type muscle models [25]. In a nutshell, the model captures biochemical processes
transforming muscle stimulation umuscle ∈ [0, 1] to the force-generating calcium ion activity a. This
can be modeled by a first-order differential equation of the form [26]

ȧ = fa(umuscle − a) (2)
which induces low-pass filter characteristics (Fig. 1). The model further captures the nonlinear
force-length and force-velocity relations [25]. The force-length relation is characterized by a positive
slope (increasing force with increasing muscle fiber length) in the typical operating range of biological
muscle fibres (Fig. 1). The force-velocity relation is characterized by decreasing force for faster
shortening velocities and increasing force if the muscle is externally stretched against its contraction
direction (Fig. 1). A lever arm ρ(α) translates joint angle α into muscle-tendon-unit length lMTU and
muscle force into joint torque

τ =

N∑
i=1

ρi(α)fτ

(
lMTU,i(α), l̇MTU,i(α̇), ai

)
. (3)

for N muscles which span a joint—typically at least two in an antagonistic arrangement.

In practice, we employ two different muscle models: A detailed one with more physiological details,
contained in demoa [27], and a simpler model that efficiently adds muscular properties to existing
MuJoCo [28] simulations without sacrificing computational speed. See Suppl. 6 for details.

3 Methods
3.1 Learning approaches for movement control
We test if muscle actuator morphology facilitates learning by applying state-of-the-art learning
algorithms covering an extensive range of approaches currently used in robotics. The common thread
of the selected algorithms lies in their independence of the actuator morphology: this allows us to
easily exchange idealized torque actuator morphology with muscle actuator morphology. We choose
optimal control, model-predictive control and reinforcement learning as learning approaches.
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Table 1: Overview of all models and tasks
Model Task Control Environment

ArmMuJoCo precise reaching RL MuJoCo
ArmMuJoCo fast reaching RL MuJoCo
ArmDemoa smooth point-reaching opt. control, MPC demoa
ArmDemoa hitting ball with high-velocity opt. control, MPC demoa
Biped hopping RL MuJoCo
FullBody squatting opt. control, MPC demoa
FullBody high-jumping opt. control, MPC demoa

(a) ArmMuJoCo (b) ArmDemoa (c) Biped (d) FullBody

Figure 2: Models used for the experiments.

Optimal control (OC) The control problem with horizon N can be defined as:

min
πk

J = min
πk

N∑
k=0

l(x(k), u(k), k), subject to x(k + 1) = f(x(k), u(k), k),

u(k) = πk(x(0), ..., x(k)). (4)

where x(k) ∈ Rnx denotes the current state at time k, and u(k) ∈ Rnu is the applied input at time k.
Furthermore, l specifies the cost function, and f denotes the system dynamics. To optimize for the
best control policy, we use the covariance matrix adaptation evolution strategy (CMA-ES) [29] in
the optimal control case (open-loop strategy). CMA-ES is a derivative-free algorithm and widely
used in machine learning. It combines different learning mechanisms for adapting the parameters of
a multivariate normal distribution. Note, that we choose the same optimization parameters for both
actuator morphologies to allow for a fair comparison even though the number of decision variables
nu is always larger in the muscle-actuated case due to the antagonistic setup.

Model predictive control (MPC) In MPC, we solve the control problem in a receding-horizon
fashion with varying prediction horizons and recursively apply only the first element of the predicted
optimal control sequence u(0) (closed-loop strategy). We employ a warm start procedure using the
CMA-ES optimizer and afterwards start the MPC routine with the local optimizer BOBYQA [30].
The parameters of the optimizers are either varied (see Sec. 4) or given in Suppl. 7.

Reinforcement learning (RL) RL allows learning of reusable feedback controllers. Instead of
minimizing a cost function (see Eq. 4), conventionally the discounted expected reward is maximized:

max
π

J = max
π

E

[
N−1∑
k=0

γk−1 r(k)

]
(5)

where r(k) is the reward at time k, π is a control policy and γ ∈ [0, 1] is a discount factor such that
long-term rewards are weighted less strongly. RL consequently solves a similar problem to MPC,
but the resulting controllers are able to act in closed-loop fashion without being given an explicit
prediction model. For the point-reaching tasks, we additionally employ goals g characterizing the
desired hand position, which then constitutes an additional dependence of the reward function. The
aim of the learning process is to learn a controller policy π(u(k)|x(k)) that takes as input the current
sensor values, or state x(k), and outputs a control signal, or action, u(k) such that a task is solved. In
practice, we use the RL algorithm MPO [31], implemented in TonicRL [32].

3.2 Models
Arm The Arm model (Fig. 2 a, b) consists of two segments connected with hinge joints (2 joints
total) moving against gravity. The ArmMuJoCo [28, 17] model contains four muscles, two for each
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joint. In the muscle-actuated case in ArmDemoa [33, 34], six Hill-Type muscles generate forces: two
muscles for the shoulder and two for the elbow joint, plus two biarticular muscles acting on both
joints. All joints are individually controllable.
Biped We converted the geometrical model of an OpenSim bipedal human without arms [19] for
use in MuJoCo. The model, consisting of 7 controllable joints (lower back, hips, knees, ankles)
moves in a 2D plane. Each joint is actuated by two antagonistic muscles or one torque actuator.
FullBody The FullBody model [35, 36] consists of two legs and an upper body including arms
based on a human skeletal geometry. It consists of 8 controllable joints (ankles, knees, hips, lumbar
and cervical spine) in 3D, and 14 movable joints in total including the arms. Each controllable joint
was either actuated by two antagonistic muscles (muscle-actuated case) or by one idealized torque
actuator (torque-actuated case). For more details, we refer to Suppl. 8.
All models and their respective physics differential equations were solved with variable time step
(max. time step 0.001s) in demoa and fixed time step (0.005s) in MuJoCo.

3.3 Objectives and rewards
We choose anthropomorphic movement objectives which are highly relevant for robotic applications.
We expect that muscular actuator morphology provides benefits for such tasks. All task formulations
allow application in muscle and torque actuator morphologies with an identical reward or objective
function. For a precise formulation of the used functions and conditions, see Suppl. 9.
Smooth point-reaching This task encourages smooth point-reaching. Therefore, the objective
minimizes the L2-error between the desired and current joint angle while penalizing the angle velocity
and jerk to ensure a smooth motion. The desired angle is 90◦ for both the shoulder and the elbow
joint, as this requires a large motion.
Precise point-reaching Similar to [13], we incentivize reaching a random hand position in a pre-
determined rectangle, while minimizing the distance of the end effector to the goal. We specifically
add a reward term that gives a much larger reward for precise motions that reach the center of the
target area. The episode does not terminate until a time limit of 1000 steps elapses.
Fast point-reaching The same objective as for precise point-reaching is used, but the episode
terminates if the target is reached, incentivizing reaching speed over precision.
High-velocity ball serve A ball is dropped in front of the Arm model and the controller learns to
hit the ball to achieve maximum ball velocity.
Squatting This squatting objective is taken from [35] and encourages desired hip, knee, and ankle
angles for a squatting position.
Maximum height jump The objective for the high-jumping task is taken from [37] and maximizes
the position and velocity of the centre of mass of the human body model at the time of lift-off. The
model is initialized to start from a squatting position.
Hopping We developed an objective based on the z-axis velocity of the center of mass (COM)
of the system that encourages periodic hopping with maximum height. The episode terminates if
extreme joint angles are exceeded.

4 Results
In the following, we present three major results for the investigated approaches and environments:
(1) Muscle-like actuators in general improve data-efficiency compared to torque-actuators. (2)
The investigated learning and optimization algorithms exhibit greater robustness to hyperparameter
variations when applied to muscle-driven systems. (3) The motions and controllers obtained from
the muscular morphology are more robust against force perturbations that were not present during
learning. We average results over 5 and 8 random seeds for OC/MPC and RL respectively.

4.1 Data efficiency: Learning with limited resources
Robotics applications in real-world scenarios often suffer from limited resources, which holds true
for training and inference time. Therefore, we investigate the advantages of muscle-like actuator
morphology in terms of overall learning efficiency and temporal control resolution.

Advantages of muscular morphology Smooth and precise point-reaching generally require more
data with torque-driven systems, as seen in Fig. 3. The performance of the muscle actuator, in contrast
to torque morphology, varies very little for different settings of the temporal control resolution c.
Precise reaching with RL also results in stable performance with fewer training iterations, and a very
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outperform all other considered morphologies with OC, while PD-control achieves lower cost than
torque actuation with large control resolution c = 0.3. Right: PD-control does not yield an advantage
over torque actuators with RL when applied to the precise point-reaching task.

small standard deviation across runs. Similar findings are seen for the squatting and hopping task,
where muscle-actuators achieve better data-efficiency and smaller variation across runs and are able
to find a good-enough optimum with fewer iterations.

Advantages of torque morphology In tasks requiring fast and strong motions, without emphasis
on stabilization, we find torque actuators to hold certain advantages. In ball hitting and fast reaching,
the torque cases show similar or smaller variance, even though both actuators perform well for
singular runs. The high-jumping task, where only a strong, swift motion is required to launch the
system upwards, is solved much faster in the torque case. We can also observe in the hopping task
that, although only after a considerable number of training iterations and exhibiting a large variance,
some torque-actuated runs achieve a larger overall return than the best muscle-actuated runs.

We additionally investigated a PD controller for the torque actuator morphology, see Fig. 4. While
the PD controller slightly improves the data-efficiency for some cases, for both OC as well as for RL,
the muscle actuator outperforms all baselines. See Sec. 11.2 for more experiments.

4.2 Robustness to hyperparameter variations

Tuning a growing number of hyperparameters for learning models typically requires considerable
time and computational resources. By analysing hyperparameter sensitivity, we test if tuning with
torque or muscle actuator morphologies requires less resources.
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Figure 5 shows the cost curves for smooth point-reaching for the evolutionary optimization algorithm
CMA-ES for different values of σ, which is the principal tuneable parameter for this algorithm. The
performance curves vary much more for torque actuators for all considered cases. Furthermore, all
muscle-actuated cases find a good-enough optimum with fewer iterations and a smaller variance,
independent of the hyperparameter σ and the control resolution c.

The same task was repeated using MPC while varying the main hyperparameter tpred, which represents
the prediction horizon in moving horizon strategies. The performance curves and the final cost vary
much more for torque actuators (Fig. 7a, note, the cost is plotted logarithmically).

Finally, we performed an extensive hyperparameter optimization for precise point-reaching. For each
iteration, 50 sets of parameters are randomly chosen and the final task performance is evaluated after
2 × 106 learning iterations. The sampling distributions for the parameters are then fit to the best
performing runs and 50 additional sets are evaluated for the next iteration. We optimize the learning
rates of MPO, as well as gradient-clipping thresholds, as these have a strong influence on learning
speed and stability. Muscle actuators already outperform torque-actuators in the first iteration, with a
greater number of well performing parameter sets (Fig. 6). Almost no low-performing runs remain
for iteration 7, while a large torque-performance is only achieved by a small subset of parameter
settings. See Suppl. 10 for more hyperparameter variations.

4.3 Robustness to perturbations

In this section, we probe the robustness of the obtained policies against unknown perturbations. In
precise point-reaching, we evaluated the RL reaching policies for two modifications that were not
present during training: First, the hand-weight of the model is increased by 1.5 kg (dynamic load),
and secondly a free spherical weight is attached to the end effector with a cable (chaotic load). We
can see in Fig. 8 that the muscle-based policy does not suffer significant changes in performance,
except for a small circular motion (3 cm) around the goal position in the chaotic load case. In contrast,
the torque actuator morphology leads to unstable reaching and strong oscillations. Both morphologies
seem to handle the dynamic load well. See Suppl. 10 for more goals.
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For the MPC controller, we evaluated robustness by introducing environment changes that are
unknown to the prediction model. One example is the lifting of an object with unknown weight,
a typical robotics task. When adding 1 kg to the lower arm of the ArmDemoa model (Fig. 7), the
performance in both actuator cases is worse than in the unperturbed case (left); the movement is
also slower. However, the variance and absolute value of the final cost in the muscle-actuated case
are still much lower compared to the torque-actuated case (plotted logarithmically). See Suppl. 11.3
for more weight variations.

For periodic hopping with the Biped model, we evaluated trained RL policies with random forces
that were drawn from a Gaussian distribution F ∼ N (·|0, σF ) and applied to the hip, knee, and
ankle joints with a probability of 0.05 at each time step. We see in Fig. 10 that the torque actuator
morphology is stronger affected in relative performance than the muscle morphology. In the robustness
investigation with MPC in the FullBody squatting task, a force is applied to the hip joint after the
system has reached its desired position. Figure 9 (left) shows that the desired joint angles are much
less affected by the perturbation when muscle actuators are controlled. Furthermore, the cost value
associated with the movement recovers much slower for torque actuators (Fig. 9 right).
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5 Discussion
We investigated if muscle-like actuators have beneficial effects for modern learning methods in terms
of data-efficiency, hyperparameter sensitivity and robustness to perturbations. A multitude of varia-
tions across physics simulators, learning algorithms and task domains was considered in order to show-
case the potential of the considered morphologies independently of the underlying implementation.
We showed that muscles yield benefits in tasks requiring stable motion, even when compared to ideal-
ized torque actuators, which can be considered an upper performance bound. Indeed, the used torque
actuators are able to instantaneously output any desired force at any point of the trajectory, while
muscles only slowly change their output due to activation dynamics and can only produce kinematics-
dependent force output. Despite these limitations, the considered learning algorithms learn more effi-
ciently with muscle actuation in all tasks, except for extreme motions where objectives require a strong
force application without stability considerations, such as ball-hitting and high-jumping. In bipedal
hopping, it was found that muscles result in more efficient learning, even though some torque-runs
achieve higher asymptotic performance. Finally, we observe muscle actuation to result in increased ro-
bustness to perturbations and hyperparameter variations, which can facilitate learning on real robotic
systems that not only present sensor and motor noise, but also prohibit extensive parameter searches.

Outlook for real-world robotics We see two use-cases of our findings: (1) Muscular force-length-
velocity and low-pass filter characteristics can be implemented as low-level actuator control for
torque-controlled robotic systems (e.g., [38, 39, 40, 41]). This could allow us to exploit the improved
data efficiency and robustness observed in our study for RL on a real robotic system. (2) Novel
soft robotic actuators, such as artificial muscles [42, 43, 44, 45], promise to revolutionize specific
application scenarios of robotics, e.g., wearable rehabilitation devices [46]. While soft actuated
systems are hard to control from a classical control theory point of view, our results and other works
[24] suggest that RL may even benefit from their properties. In our study, the simplified MuJoCo
muscle model is applicable as a low-level controller in the sense of the first use case, while the results
with the complex series-elastic muscle model in Demoa highlights the second use-case, making both
cases strong arguments to consider RL and muscle properties a promising combination.

Limitations Although we have reported results for a wide variety of algorithms and tasks, we
cannot give theoretical statements about the general applicability of our findings. Additionally, some
of the tasks we employed were limited in complexity and might also be solvable with classical
control algorithms. The MuJoCo muscle model, while computationally efficient, only captures
rudimentary properties of biological systems. The demoa implementation, on the other hand, includes
visco-elastic, passive tendon characteristics and muscle routing as joint angle-dependent lever arms
to account for many physiological details—at substantial additional computational cost. Finally,
learning with intermediate control signals given to impedance or position controllers, instead of direct
torque commands, might also improve learning performance, while muscle-like properties could have
been introduced by learning priors or additional cost terms.
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Supplementary Material for
Learning with Muscles: Benefits for Data-Efficiency and

Robustness in Anthropomorphic Tasks

6 Muscle model
In this section, the implementations of the muscle models for demoa and MuJoCo are described. The
demoa model approximates biological muscles with more physiological detail and accuracy, whereas
the simpler MuJoCo model allows the simulation of rudimentary muscular properties at minimal
computational cost, rendering it usable for machine learning.

6.1 Muscle model in Mujoco
Even though the MuJoCo simulator includes the capability of simulating muscles, it requires the
explicit definition of tendon insertion points and wrapping surfaces for each model. We, therefore,
use our own muscle implementation for the MuJoCo experiments, that does not contain tendons. As
a direct consequence, the muscle-fiber length is uniquely determined by the joint angle.

In the following, we describe activation dynamics, definitions of muscle-fiber length and velocity, the
computation of the resulting torque and the parametrization.

Muscle-tendon-unit Each controllable joint of the MuJoCo model is actuated by two monoarticular
muscles and we do not compute tendon length. We assume that:

lMTU = lCE, (6)

where lMTU is the length of the entire muscle-tendon-unit and lCE is the length of the muscle fiber,
or contractile element. We define muscle-fiber length and velocity by a linear equation [47, 48, 49]:

lCE,i = mi φj + lref,i (7)

l̇CE,i = mi φ̇j , (8)

where φj is the joint angle, mi and lref,i are computed from user-defined parameters, and i ∈ {1, 2},
as we assume two antagonistic muscles per joint. The parameter mi acts as a constant moment arm
in our model, see Eq. 11.

Activation dynamics The evolution of muscle activity obeys the following first-order ordinary
differential equation:

ȧ(t) =
1

∆ta
(u(t)− a(t)), (9)

where u(t) is a control signal.

Muscle force Given the previous quantities, the muscle force is computed by:

Fi =
[
FL(lCE,i) FV(vscale l̇CE,i)ai + FP(lCE,i)

]
Fmax, (10)

where vscale is a scaling parameter to adjust in which region of the force-velocity (FV)-curve typical
fiber velocities operate. We can then compute the resulting joint torque:

τ = −(m1 F1 +m2 F2). (11)

The functions FL, FV and FP are given by MuJoCo internal functions that phenomenologically
model experimental data and are applied to normalized muscle lengths and velocities, see MuJoCo
documentation [28] and Fig. 11.

Parametrization As the there is a one-to-one mapping of joint angle to muscle lengths in our
model, we can determine the required parameters mi and lref,i, if a mapping of lmin to φmin and lmax

to φmax is specified (assuming lmax to be the maximal muscle-fiber length lCE). Inserting them into
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Figure 11: Force-length (FL) and force-velocity (FV) relationships and passive force (FP) used in
MuJoCo [28]. We use the same phenomenological functions in our own MuJoCo muscle model.
While FL and FV get scaled by the current muscle activity a, FP does not (see Eq. 10).

Table 2: Parameters for the MuJoCo muscle morphology.

(a) Muscle parameters

Parameter Value
lmax 1.05
lmin 0.95
φmax π/2 [rad]
φmax -π/2 [rad]
∆ta 0.01 [s]
vscale 0.5

(b) Maximum isometric force

Task Value
ArmMuJoCo 295 [N]
Biped 5000 [N]

Eq. 6 and solving the resulting system of equations gives:

m1 =
lmax − lmin

φmax − φmin + ε
(12)

lref1 = lmin −m1 φmin (13)

m2 =
lmax − lmin

φmin − φmax + ε
(14)

lref2 = lmin −m2 φmax (15)
(16)

All in all, φmin, φmax, lmin, lmax and Fmax are required to be specified. The constant ε = 0.01
ensures numerical stability. We use the same parametrization for each MuJoCo task, see Table 2.

The maximum and minimum joint angles were chosen to allow for a large range of motion. They
do not constitute hard limits, but the passive elastic force FP will increase strongly when reaching
them. The maximum and minimum fiber lengths are identical to the MuJoCo default values. As we
want to study the benefits of muscular properties in learning, we chose the time and velocity scales
∆ta = 0.01 and vscale = 0.5 to be large enough to produce noticeable effects, such as low-pass
filtering and self-stabilization properties, across all performed tasks. To determine maximum muscle
forces, we trained muscle-actuator policies for a chosen maximum force value, after which we
adjusted maximum torque-actuator forces to be identical or slightly larger to the maximally observed
muscle forces in the final task policies. We repeated this procedure with different force values until
good performance could be observed for both morphologies, see Suppl. 10.1 for an evaluation across
different force values. All other MuJoCo internal parameters related to muscle modeling are kept to
their default values.

In practice, we implement the muscle model in Cython [50], interfacing with OpenAI gym [51],
which achieves similar execution speed to native MuJoCo.
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6.2 Muscle model in demoa
The muscle model implemented in demoa [27] includes additionally visco-elastic, passive tendon
characteristics and muscle routing as joint angle-dependent lever arms to account for many physio-
logical details. In the following, we describe the activation and contraction dynamics of the muscle
model, as well as the tendon characteristics and the nonlinear lever arms.

Activation dynamics The muscles are activated with the learned and optimized control signal u,
which is nonlinearly transformed into an activation signal. The activity a is following a first-order
differential equation of normalized calcium ion concentration γ as introduced by Hatze [52] and
simplified by Rockenfeller et al. [26, 53]:

γ̇(t) = MH(u(t)− γ(t)) (17)

and a nonlinear mapping onto the muscles activity

a(t) =
a0 +$

1 +$
, (18)

with $(γ(t), lCE(t)) = (γ(t) ·ρ(lCE))
ν and ρ(lCE) = $opt · lCE

lopt
= γc ·ρ0 · lCE

lopt
. The parameter values

are chosen muscle non-specifically and are given in the description of the models (see [33, 36]).

Muscle-tendon-unit The predicted forces are modeled using Hill-type muscle models [54] includ-
ing four spring-damper components (see Fig. 12): The contractile element (CE) models the active
force production of biological muscle fibers, including the nonlinear force-length and nonlinear
force-velocity relation. The parallel elastic element (PEE) models the passive connective tissue in
the muscle belly and is arranged in parallel to the CE. The visco-elastic properties of the tendons
are modeled using a serial elastic element (SEE) and a serial damping element (SDE). All in all, the
governing model dependencies for all muscles i = 1, ..., n are:

l̇CE,i = fCE(lCE,i, lMTU,i, l̇MTU,i, ai) (19)
ȧi = fa(ai, ui, lCE,i) (20)

fMTU,i = fMTU,i(lMTU,i, l̇MTU,i, lCE,i, ai) , (21)

where the first differential equation (Eq. 19) denotes the contraction dynamics which models the
velocity l̇CE of the contractile element. This contraction velocity is dependent on the current CE
length lCE, the length and contraction velocity of the muscle-tendon unit lMTU and l̇MTU respectively,
and the activity a. The latter is modeled by the activation dynamics (see Eq. 17,18,20). Finally, a
force fMTU,i for each muscle is produced which is translated into joint torques.

Nonlinear lever arms To translate the force into joint torques, the muscle path around the joints
is routed via deflection ellipses in demoa [55]. If the length of the half-axises of all ellipses are set
to zero, this approach can be simplified to the more commonly used fixed via-point approach for
muscle routing. Based on the resulting moment arms of the muscles, the force fMTU is translated to
generalized torques acting on the degrees of freedom of the system.

State of the system Using a musculoskeletal model with a Hill-type muscle model, as described
in this section, increases the number of state variables because two additional differential equations
need to be solved for each included muscle. The entire state vector x can therefore be formulated as:

x ∈ R2nmusc+2nθ = {γi, lCE,i, θj , θ̇j} (22)

where θ and θ̇ represent the generalized joint angle coordinates and their respective velocities, and
nmusc and nθ denote the number of muscles and the number of joints, respectively.

7 Experimental details and hyperparameters
In this section, we describe algorithm implementation details while also reporting additional settings
that were used to obtain previously shown results, as well as used hyperparameters. The section is
divided such that experiment details are shown with the control algorithm that was used to generate
the results.
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Figure 12: The muscle model in demoa is modeled as lumped Hill-type muscle model (figure adapted
from Haeufle et al. [54]).

7.1 Optimal Control (OC)
In the optimal control case, we used the covariance matrix adaptation evolution strategy (CMA-ES)
[29] to find the control policy u(k). As mentioned in the main paper, we chose the same population
size and number of generations for both actuator morphologies to allow for a fair comparison, even
though the number of decision variables nu is always larger in the muscle-actuated case. In all cases,
if not otherwise mentioned, we use a fixed population size of 36 and a fixed number of generations
of 100 while varying the control resolution c. If the control resolution is refined, this correlates to
an increase in the number of decision variables nu, however, we specifically did not change the
population size or generation number because we wanted to compare the data-efficiency and learning
with limited resources for the chosen actuators. The temporal control resolution c was typically varied
for c = {0.05, 0.15, 0.3} s. The upper bound of these control resolutions (c = 0.3 s) corresponds to
a triphasic control pattern for a typical movement duration of 0.9 s as it was selected in the smooth
point-reaching and squatting task. This selection of c was inspired by biological experiments, where it
was shown that triphasic patterns occur in muscle surface electromyograms in typical point-reaching
movements (e.g. see [56, 57]). The main hyperparameter of the CMA-ES algorithm σ was set to the
default value of 0.2 if not otherwise stated.

7.2 Model Predictive Control MPC
We employed a warm start procedure using the CMA-ES optimizer and afterwards started the MPC
routine with a local optimizer BOBYQA [30] (part of the standard python optimization package
NLOPT). As temporal control resolution in this closed-loop setting, we chose a very fine resolution of
c = 0.01 s, similar to the RL setup. This allows counteracting perturbations. The prediction horizon
was varied between tpred = {0.2, 0.3, 0.4, 0.5} s as shown in the result section of the main paper.

7.3 Reinforcement Learning (RL)
We use the RL algorithm MPO [31], implemented in TonicRL [32]. Hyperparameters were optimized
with a simplified in-house CEM optimizer. All RL experiments are averaged over 8 random seeds
except for the hyperparameter optimization, which would have been computationally intractable.
Each experimental run was computed with 1 NVIDIA V100 GPU and 20 CPUs of varying speed and
type. We use a fixed control resolution of c = 0.01 s for all RL experiments.

7.3.1 Experimental details
We give further experimental details in this section.

Data-efficiency For the point-reaching experiments, we used the hyperparameters that were found
in the meta-optimization (see Fig. 6) for both morphologies. For the hopping task, we used default
MPO parameters. The updated learning curves with optimized parameters, as well as additional
results on hyperparameters and maximum force settings can be found in Suppl. 10.

Hyperparameter optimization We optimized the performance of both actuator morphologies in
the precise point-reaching task in MuJoCo (see Fig. 15). For each iteration, Nsets sets of random
parameters are drawn from fixed normal and log-normal distributions. For each of these sets, the
task performance is evaluated after Ttrain environment interactions, where Ttrain is chosen such
that a noticeable increase in performance can be observed with both actuator morphologies. After
each iteration, Melite elite parameter sets are chosen and the mean and standard deviation of each
parameter-generating distribution is updated by fitting a (log-)normal distribution to the Melite elite
sets with maximum-likelihood estimation. See Table 3 for exact specifications. The meta-optimization
for hopping can be found in Fig. 16.
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Table 3: Settings for the hyperparameter search.

(a) Precise point-reaching

Parameter Value
Nsets 50
Ttrain 2× 106

Melite 10

(b) Hopping

Parameter Value
Nsets 20
Ttrain 5× 106

Melite 10

(c) Initial distributions

Parameter Distribution Bounds
lra truncated log-normal [2.5× 10−4, 3× 10−2]
lrc truncated log-normal [0.5× 10−2, 10−1]
lrd truncated log-normal [0.5× 10−2, 1]
clipa truncated log-normal [10−7, 10−4]
clipc truncated log-normal [10−7, 10−4]

In the experiments, we only used truncated log-normal distributions to generate parameters. The
samples were clipped to the bounds given in Table 3 and initial mean and standard deviation were
chosen to lie inside the bounded interval. More precisely, we defined log(µ) = (a + b)/2 and
log(σ) = (b − a)/4, where a and b are the chosen bounds. The chosen parameters were the actor
learning rate lra, the critic learning rate lrc, the learning rate of the dual optimizer lrd, the gradient
clipping threshold for the actor clipa and the critic clipa.

Robustness point-reaching We trained policies with both morphologies in precise point-reaching
for 1.5 × 107 iterations. The best performing policies were then evaluated for the perturbation
experiments. For dynamic load, the mass of the hand is increased by 1.5 kg to simulate an object. For
chaotic load, a ball with radius 0.12 m and a density of 1000 kg/m3 is attached to a cable of length
0.6 m, that is connected to the hand. We sample 10 random goals from the training distribution and
visualize three trajectories such that there are no overlapping paths. All 10 goals are shown in Fig. 14.

Robustness hopping We trained policies for both morphologies for hopping with the hyperparam-
eters obtained in Fig. 16 and for 1.5× 107 iterations. We then record 100 evaluation episodes where
random forces drawn from Fi ∼ N (·|0, σF ) are applied with a probability of p = 0.05 to the hip,
knee and ankle joints and to the pelvis position and rotation. Center of mass trajectories are shown
for an interval of 15 s in the main manuscript, black vertical bars mark episode resets due to extreme
angles of the biped, which would cause it to fall to the ground. The performance for each perturbation
level is divided by the unperturbed performance for each morphology to yield a relative performance
comparison.

7.3.2 Hyperparameters
The hyperparameters for all RL tasks were set to the best performing runs in the shown hyperparameter
optimization. They best trained policies were then used for the perturbation experiments.

8 Models
We give detailed descriptions of the used models in this section. See Table 5 for more information
about the MuJoCo models.

8.1 Arm
The Arm model consists of two segments connected with hinge joints moving against gravity. The
ArmDemoa [33] is freely available using the multi-body software demoa [27]. In the muscle-actuated
case, six muscles were included, modeled as Hill-Type muscles (6.2). Here, two monoarticular
muscles, each for the shoulder and elbow joint, and two biarticular muscles acting on both joints
are included. The segments are modeled as rigid bodies, and the dynamics are solved using the
Euler-Lagrange equation. In the torque-actuated case, each joint is driven by one torque actuator. For
more details on the demoa model, we refer to the Technical Report [33]. The variant ArmMuJoCo
was derived from an implementation of Arm26 included in MuJoCo [28], it was modified to yield a
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Table 4: RL parameters for MPO in TonicRL for the different tasks. Non-reported values are left to
their default setting in TonicRL [32]. Common MPO settings are equal for all experiments.

(a) Point-reaching MPO (muscle)

Parameter Value

lra 3× 10−4

lrc 10−3

lrd 2× 10−2

clipa 4× 10−5

clipc 3× 10−5

batch size 100
return-normalizer No

(b) Point-reaching MPO (torque)

Parameter Value

lra 10−3

lrc 5× 10−3

lrd 8.2× 10−3

clipa 7× 10−6

clipc 10−6

batch size 100
return-normalizer No

(c) Hopping MPO (muscle and torque)

Parameter Value

lra 3× 10−4

lrc 3× 10−4

lrd 10−2

clipa None
clipc None
batch size 256
return-normalizer Yes

(d) Hopping perturbation (muscle)

Parameter Value

lra 9× 10−4

lrc 3× 10−3

lrd 10−2

clipa 10−5

clipc 3× 10−7

batch size 256
return-normalizer Yes

(e) Hopping perturbation (torque)

Parameter Value

lra 10−3

lrc 7× 10−4

lrd 2× 10−2

clipa 2× 10−5

clipc 10−6

batch size 256
return-normalizer Yes

(f) Common MPO settings

Parameter Value

buffer size 106

steps before batches 5× 104

steps between batches 50
number of batches 50
n-step return 3
n parallel 20
n sequential 10
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Table 5: State information for all MuJoCo environments. The elements actuator lengths
and velocities are directly derived from MuJoCo internal attributes actuator_length and
actuator_velocity and keep the two morphologies as consistent as possible.

model observations
ArmMuJoCo (muscle) joint positions, joint velocities, muscle positions, muscle velocities,

muscle forces, muscle activities, goal position, hand position
ArmMuJoCo (torque) joint positions, joint velocities, actuator positions, actuator velocities,

actuator forces, goal position, hand position
Biped (muscle) joint positions, joint velocities, muscle lengths, muscle velocities,

muscle forces, muscle activities, head position, pelvis position, torso
angle, scaled COM-velocity

Biped (torque) joint positions, joint velocities, actuator lengths, actuator velocities,
actuator forces, head position, pelvis position, torso angle, scaled
COM-velocity

torque-variant similar to [17]. We additionally created a muscle-variant consisting of 2 muscles per
joint. The maximum torques for the torque actuators were matched to the highest achieved torques
by the trained muscle policies for both versions independently.

8.2 Biped
We converted the geometrical model of an OpenSim bipedal human without arms [19] for use in
MuJoCo. The model, consisting of 7 controllable joints (lower back, hip, knee, ankle) moves in a
2D-plane. Each joint is actuated by two antagonistic muscles or one idealized torque actuator. During
execution, we only allow control signals for one leg, the actions for the other leg are kept identical
to the first one. This incentivizes symmetric hopping motions, even though both legs can still move
differently due to differing initial configurations or external forces. The maximum torques for the
torque actuators were matched to the highest achieved torques by the trained muscle policies.

8.3 FullBody
For the squatting and high-jumping task, we used the FullBody (allmin) model [36] which is freely
available using the multi-body software demoa [27]. It consists of two legs and an upper body with a
skeletal geometry similar to humans and moves in 3D. The ankle, knee and hip joints, as well as a
lumbar and a cervical spine joint are controllable (8 controllable joints). The model also consists of
two arms with their respective joints, however, these joints were not controlled in this study. In total,
14 joints are modeled with 20 degrees of freedom. Each controllable joint was either actuated by two
muscles (6.2) set up in an agonistic-antagonistic setup (muscle-actuated case) or by one idealized
torque actuator (torque-actuated case). The maximum allowed torques were matched to the highest
torques that occurred in the optimization in the muscle-actuated case to allow for a fair comparison.
Only monoarticular muscles (spanning one joint) were used. Furthermore, we reduced the number
of control inputs nu for this study by using symmetrical control signals for the left and right legs.
Additional to the torques generated by the actuators, also joint limitations are modeled as linear
one-sided spring-damper elements. We refer to the Technical Report [36] for more details.

9 Tasks
We chose movement objectives which represent both, robotic challenges and naturally observed
movements of humans.

Smooth point-reaching (OC/MPC) This task encourages smooth point-reaching. Therefore, the
objective minimizes the L2-error between the desired angle endpoint and the desired joint angle
velocity, as well as penalizing the angle jerk to ensure a smooth motion. The objective for smooth
point-reaching is given by:

ε =
ωi

Si
(θi − θdesi )2 +

ωi

Si
(θ̇i − θ̇desi )2 +

...
θ
2
, (23)

where θi denotes the joint angle, θ̇i the joint angle velocity and the last term
...
θ penalizes the angle

jerk to ensure a smooth motion. ωi and Si are weighting and scaling parameters, respectively. Their
values (shoulder and elbow) are given in Table 6. The scaling parameters were chosen based on

19



Table 6: Parameters for cost functions of OC/MPC tasks.

(a) Scaling parameters

parameter value

Sθ,sh 2.45 [rad]
Sθ,elb 2.45 [rad]
Sθ,hip 1.92 [rad]
Sθ,knee 2.11 [rad]
Sθ,ank 1.05 [rad]
Sθ,ls 0.52 [rad]
Sθ,cs 1.05 [rad]
Sθ̇,sh 18.7 [rad/s]
Sθ̇,elb 27.9 [rad/s]
Sθ̇,hip 14.1 [rad/s]
Sθ̇,knee 28.4 [rad/s]
Sθ̇,ank 12.6 [rad/s]
Sθ̇,ls 5.2 [rad/s]
Sθ̇,cs 10.4 [rad/s]

(b) Weighting parameters

parameter value

ωθ,sh 2
ωθ,elb 2
ωθ,hip 2
ωθ,knee 2
ωθ,ank 2
ωθ,ls 2
ωθ,cs 2
ωθ̇,sh 1
ωθ̇,elb 1
ωθ̇,hip 1
ωθ̇,knee 1
ωθ̇,ank 1
ωθ̇,ls 1
ωθ̇,cs 1

measured upper limits for human joint angular velocity [58] and human joint angle limits (Table 2 in
[36]). The desired angle θdesi is set to 90◦ for both the shoulder (sh) and the elbow (elb) joint, as this
requires a large motion. The movement duration in this task was set to 0.9 s.

Precise point-reaching (RL) We employ a similar reward function to [13]:

r = −λ1(d− log(d+ ε2))− λ2

N

∑
a2i − 2, (24)

where d is the Euclidean distance between end effector and target position, ε = 10−4 prevents
numerical instabilities, λ1 = 0.1 and λ2 = 10−4. A smaller distance d increases the overall reward,
but in contrast to the usual Euclidean distance, the log-term increases rewards for very small distances
even further, incentivizing precision. The episode does not terminate until a time limit of 1000 steps
elapses.

Fast point-reaching (RL) This task is identical to the previous one, but, in addition to the time
limit, the episode also terminates if the distance between end effector and target position is below 5
cm, which incentivizes reaching speed over precision.

Hitting a ball with a high velocity (OC/MPC) A ball with a mass of 250 g is dropped in front of
the arm model and the controller learns to hit the ball with a high velocity by optimizing the following
objective:

ε = −max żball, (25)
where żball denotes the ball-velocity in z-direction (direction of gravity).

Squatting (OC/MPC) The objective for squatting is given by:

ε =
ωi

Si
(θi − θdesi )2 +

ωi

Si
(θ̇i − θ̇desi )2, (26)

where θi denotes the joint angle, θ̇i the joint angle velocity. ωi and Si are weighting and scaling
parameters, respectively. Their values are given in Table 6. The scaling parameters were chosen
based on measured upper limits for human joint angular velocity [58] and human joint angle limits
(Table 2 in [36]). The movement duration in this task was set to 0.9 s. This squatting objective is
taken from [35], where the desired hip θdeshp , knee θdeskn and ankle θdesan joint angle are defined to be:

θdesan = −20◦,

θdeskn = sin−1(−Ls

Lt
· sin(θdesan ))− θdesan − θan,0,

θdeshp = −θdeskn − θdesan .
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High-Jumping (OC/MPC) The objective for the high-jumping is taken from [37] and maximizes
the position and velocity of the centre of mass of the human body model at the time of lift-off tl.
Additionally, we slightly expanded this objective to account for the three-dimensionality of our
jumping model by penalizing deviations of the centre of mass in the x and y-direction:

ε = zcom(tl) +
ż2com(tl)

2g
− |(xcom(tl)− 0)| − |(ycom(tl)− 0)|. (27)

Note, that zcom denotes the centre of mass position (CoM) in z-direction (direction of gravity). The
model is initialized to start from a squatting position in this task.

Hopping (RL) We developed a reward function that is able to induce hopping in different leg-driven
systems and can be applied independently of the actuator morphology. We did not obtain good results
with height-based rewards or the gym hopper [51] reward function. The reward for hopping is given
by:

r = exp(max{0, v̂COM
z })− 1, (28)

where vCOM
z is the z-velocity of the center of mass. The transformation v̂ = min{10, 100 v} adjusts

the sensitivity of the reward function while also preventing numerical overflows of the exponential
function. Crucially, large positive velocities are weighted much more strongly than small or negative
velocities, driving the system to maximum height periodic hopping. The second term prevents positive
rewards for velocities close to zero, as exp(0) = 1. We additionally use regularizing cost terms:

rreg = ralive − λ1 raction − λ2 rjoint, (29)

where λ1 = 10−4, λ2 = 10−3, ralive is 1 if the episode does not terminate and 0 otherwise,
raction =

∑
a2i /N punishes large actions and rjoint punishes joint angles close to the limits of the

system. Specifically:

rjoint =


−1, if |qmax,i − qi| < 0.1

−1, if |qmin,i − qi| < 0.1

0, otherwise.
(30)

Finally, we terminate the episode after the lapse of a time limit of 1000 iterations, or if different parts
of the model are very close to the ground, as this indicates a fall. The termination conditions are:

hskull < 0.3 [m]

hpelvis < 0.2 [m]

htibial < 0.3 [m]

htibiar < 0.3 [m]

θtorso > 1.22 [rad]

θtorso < −0.88 [rad],

where h is the height of the respective body part and θtorso marks the torso angle deviation from the
upright position.

10 Additional experiments (RL)
10.1 Maximum force variation
Although the maximum force of the actuators is not freely adjustable in real systems, it is trivial
to do so in simulation and has a strong influence on performance. We, therefore, used the biped
parameters resulting from our hyperparameter optimization and recorded learning curves for the
hopping task for both actuator morphologies for different maximum actuator forces. For each setting,
we set the maximum isometric force for all muscle actuators to a certain value, trained the systems to
convergence, and then recorded the torque values occurring at each controllable joint during execution
of the hopping behavior. We then trained torque-actuator policies while setting τmax to the previously
observed maximum values for each individual joint. The results are shown in Fig. 13. Even though
singular torque-driven runs are able to outperform all muscle-driven runs at the end of training, this
not only takes a considerable number of learning iterations, but also comes at the cost of strong
learning instabilities. Looking at the learned behaviors, the torque-driven policies tend to jump very
high, but violate the allowed torso-angles at the peak due to their unstable explorative policies. No
periodic hopping could be observed. The muscle-driven policies, on the other hand, achieve periodic
hopping, even though the apex hopping height is smaller.
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Figure 13: Hopping performance for different actuator strengths. Hyperparameters are optimized
for hopping with a maximum muscle strengh of Fmax = 5000 N as used in the previous hopping
experiment. The maximum isometric muscle force is set to different values and the policies are
trained for the task. Afterwards, the maximum used torques for the learned behaviors are recorded for
each joint and set to identical values for the torque actuator. Muscle-actuators lead to more consistent
performance and yield periodic hopping. Torque-actuators yield unstable policies that manage to
jump very high once, but terminate the episode due to falls.

10.2 Additional goals for point-reaching with perturbations
We show ten random arm goals for precise point-reaching with perturbations that were not present
during training in Fig. 14.

10.3 Additional hyperparameter variations
We show the relative performance of all runs of the hyperparameter searches in polar coordinates
for precise point-reaching and hopping for both actuator morphologies (Fig. 15 and Fig. 16). The
angles mark the specified hyperparameter (see Suppl. 7.3.1 for definitions), while the radius marks the
chosen value in log10-coordinates. The top row marks performance with muscle-actuators, the middle
row with torque-actuators and the bottom row shows histograms of returns for both morphologies
at different iterations. For point-reaching, muscle morphology leads to a return distribution that is
centered around the top-performing parameter sets, with almost no badly performing sets left at
iteration 7. In contrast, for torque-morphology a large number of runs is still distributed at low return
values. For hopping, a much harder task, muscle-morphology quickly leads to a large number of runs
at the top-performance level, while some badly performing parameter sets remain even at iteration
5. For torque-morphology, a large peak can be observed for returns close to 0, as most sampled
parameter sets do not achieve any kind of hopping. Only at iteration 7, a few singular well-performing
runs appear, that strongly outperform even the best muscle-driven run. This was to be expected, as
any muscle-actuator behavior can in principle be replicated by torque actuators, given that the policy
is able to learn it. Muscle actuators, on the other hand, are restricted to trajectory-dependent output.

10.4 Additional actuator models
Similar to Peng et al. [24], we present more actuator models that are widely used in robotics. We
consider the ideal torque actuator to be neutral in its properties—only executing exactly what it was
told. In contrast, a PD-controller [59] embeds additional knowledge about position control elements
and error propagation dynamics. For the RL experiments, we use an identical PD formulation to
Peng et al. [24]:

u(t) = kp (q̂(t)− q(t)) + kd (ˆ̇q − q̇), (31)

with the joint angles q, the joint velocities q̇, the desired position q̂ and the desired velocity ˆ̇q. We also
set ˆ̇q = 0, similar to [24]. We tuned the PD-controller by hand to achieve good step-wise trajectory
tracking, see Fig. 17. We also ensured that it remains stable for faster position changes.

As a second additional actuator, we implemented a low-pass filtered torque actuator. The control
signal is filtered according to the simplified muscle activation dynamics in the MuJoCo muscle model
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Figure 14: Trajectories for dynamic (1.5 kg weight) and chaotic (attached ball) load. Left: The
torque actuator handles the dynamic load case slightly better than the muscle actuator for all goals,
especially compared to the goals in grey, brown and purple. Right: The muscle-actuator performs very
well for all chaotic load goals, except for a small deviation from the end-point. The torque actuator
exhibits strong instabilities. The respective goal positions are marked as circles, the unperturbed
baseline for each goal is shown with a dashed line, the perturbed trajectories with slightly transparent
solid lines.

Eq. 9, which effectively act as a low-pass filter:

ȧ(t) =
1

∆t
(u(t)− a(t)), (32)

which gets approximated in practice as:

at+1 = at +
∆tsim
∆t

(u(t)− a(t)). (33)

The variable a(t) denotes the effective action that is applied to the underlying torque actuator, u(t)
is the control signal, ∆t is the time scale of the low-pass filter and ∆tsim is the time step of the
physics simulation, which is not to be confused with the control time step: ∆tcontrol = 2∆tsim for
the MuJoCo simulations. All actuator properties such as the muscle dynamics, the low-pass filter and
the PD controller are updated with the physics simulation time step, while the RL policy computes
new actions only with the control frequency.

We repeated the precise point-reaching task with ArmMuJoCo with muscle actuation, torque actuation,
PD actuation and two low-pass filter variants. The fast variant uses the time scale ∆t = 0.01, which
is the same as used in the muscle model and reacts very fast to new control signals. The slow variant
uses ∆t = 1 and produces a much stronger filtering effect. The results in Fig. 18 show that the
muscle actuator outperforms all other variants.

Individual runs are shown in the right column in order to obtain an accurate picture of the variance
across seeds for all actuators. Even when not considering the badly performing outliers, torque
actuation seems to present larger variance than muscle actuation. The PD-controller performs worse
than pure torque control for this task, which validates results by [60]: They found PD-controllers
to perform worse than torque control when learning behaviors from scratch as opposed to tracking
reference motions [24].

We noticed that, while the muscle only uses a maximum of ≈ 30 Nm during normal reaching, its
properties allow it to intermittently use larger torques when perturbations are applied. We therefore
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Figure 15: Hyperparameter variation for precise point-reaching. Hyperparameters are optimized
following an iterative sampling scheme and individual runs train for 2 × 106 iterations. Fifty sets
of parameters are sampled randomly from pre-determined distributions, the final performance is
evaluated and used to adapt the sampling distributions for the next iteration. We record 7 iterations
which equals 350 runs in total. We optimize 5 parameters related to MPO. The angle of the radarplot
marks the parameter, the radius marks the value (in log10-coordinates). Top: Radarplot of parameters
for the muscle in precise point-reaching at iteration 1, 2 and 7. The color marks the achieved
performance of the parameter sample relative to the best achieved performance over all sampled
parameters. Middle: precise point-reaching torque. Bottom: Histogram of returns for all sets of
parameters at iterations 1, 2 and 7.
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Figure 16: Hyperparameter variation for hopping. Hyperparameters are optimized following an
iterative sampling scheme and individual runs train for 5× 106 iterations. Twenty sets of parameters
are sampled randomly from pre-determined distributions, the final performance is evaluated and
used to adapt the sampling distributions for the next iteration. We record 5 iterations which equals
100 runs in total. We optimize 5 parameters related to MPO. The angle of the radarplot marks the
parameter, the radius marks the value (in log10-coordinates). Top: Radarplot of parameters for the
muscle in the hopping task at iteration 1, 2 and 5. The color marks the achieved performance of the
parameter sample relative to the best achieved performance over all sampled parameters. Middle:
hopping torque. Bottom: Histogram of returns for all sets of parameters at iterations 1, 2 and 5.
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Figure 17: Top row: We tuned a PD-controller for ArmMuJoCo that is then used as an intermediate
control layer for an RL agent. We tuned the parameters by hand to achieve good joint angle control
over the workspace, shown in the figure for both joint angles. The slight mismatch in the shoulder
joint (left) is due to gravitational forces, which are not counteracted in the controller design. An RL
agent easily learns to compensate for this shift. Bottom row: We show two low-pass filtered torque
actuators for an exemplary step-signal. The fast-filter uses the same parameters as the activation
dynamics in the MuJoCo muscle model.

conduct a second series of experiments where we adjust the maximum allowed torque for all torque
actuators to the intermittent upper limit of the muscle, which is τmax = 60 Nm. New learning curves
were recorded for ArmMuJoCo point-reaching and are shown in Fig. 19. Generally, the performance
for the non-muscular actuators decreases with larger torque limits. Only the PD-controller seems to
exhibit smaller variance than in the small torque limit case.

10.5 Additional robustness experiments
In this section, we present evaluation of the robustness of the learned policies with a wide variety of
masses and additional actuators. The results are reported for two different maximum torque limits for
the non-muscle-based actuators, following the reasoning of Sec. 10.4.

The variations are investigated for policies trained for point-reaching with ArmMuJoCo. All weights
are added as a chaotic load that is attached with a rope. The results can be seen in Fig. 20 and Fig. 21
for τmax = 30 Nm and τmax = 60 Nm respectively. We use masses varying from 1 to 4 kg in the
high force case, while they are halved in the other case. Even though the muscle actuator is the most
stable across all variations, the pure torque actuator variant performs quite well when large forces are
allowed. However, large torque limits also diminish the learning performance, as seen previously
in Fig. 19. The results suggest a trade-off between learning speed and robustness for the torque
controller, while the muscle actuator is able to leverage low forces during learning and automatically
reacts to perturbations with stronger forces. The PD-controller only outperforms raw torque control
for the large torque limit τmax = 60 Nm and a comparatively small perturbation mass of 1 kg, see
Fig. 21 (second row, middle).

10.6 MuJoCo simulation time step ablation
To assess the influence of simulation accuracy on the obtained results, we record additional muscle
and torque actuator learning curves with a much smaller simulation time step of ∆tsim = 0.001
instead of ∆tsim = 0.005. We additionally increase the frameskip of the simulation to achieve an
equal control time step of ∆tcontrol = 0.01 in both cases. The results are shown in Fig. 22. With
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Figure 18: The muscle actuator outperforms all other considered actuator designs. We compare
the learning curves for muscle, torque, PD and two low-pass filter actuators in the precise point-
reaching task for ArmMuJoCo. Averages across random seeds and standard deviation are shown
in the left column, individual runs in the right column. The torque actuator and the low-pass filter
variants perform quite well, but their variance across seeds is larger than for the muscle, even when
outliers are not considered. The PD-controller seems to exhibit less variance than a pure torque-driven
approach, but the overall performance is worse. We recorded 8 random seeds for each actuator.
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Figure 19: Torque actuators perform worse when the maximum allowed force is increased.
We repeat the experiment in Fig. 19, but allow the torque actuator to use a maximum torque of
τmax = 60 Nm. This value is the maximum torque that the muscle actuator can output in perturbation
experiments, even though it is not reached during point-reaching under normal conditions. While
singular runs still perform well for the torque actuator variants and the PD controller achieves even
less variance across seeds than before, the overall performance suffers when increasing the maximum
force. We recorded 8 random seeds for each actuator.
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Figure 20: The muscle actuator is more robust for all considered masses than the alternative.
We conducted perturbation experiments for all actuator models during which chaotic loads of differing
masses were attached to the robot which were not present during training. The muscle actuator
performs well up to 1.5 kg, when deviations start to get bigger. It does not reliably reach the
goal for m = 2 kg. The torque actuator exhibits strong lateral oscillations for all masses and
slight undershooting of the goal position. The PD-controller oscillates less for small masses, but
undershoots the goals by a larger amount, as it was not tuned for this scenario. The low-pass filtered
actuators perform similar to the pure torque case. For each experiment we used the best performing
policy of each learning curve in Fig. 18 at the end of training. Ten goals were randomly chosen and
used for all experiments.
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Figure 21: Torque control is more robust with larger torque limits, but is still outperformed by
muscles. We repeat the experiment in Fig. 20 with a larger maximum torque limit of 60 Nm. All
torque-variants seem to perform better than in the low torque limit case. For m = 1 kg, the PD-
controller and the low-pass filter versions slightly outperform the pure torque actuator. Nevertheless,
the muscle reacts more robustly for all considered masses. For each experiment we used the best
performing policy of each learning curve in Fig. 19 at the end of training. The same ten goals as in
Fig. 20 were used.
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Figure 22: We present physical simulation time step ablations for ArmMuJoCo and precise point-
reaching. While the ∆tsim was varied, the frameskip parameter was adjusted to achieve the same
control time step ∆tcontrol = 0.01 in all cases. Top: With the exception of a single unlucky run,
the simulation time step does not seem to affect the performance of the muscle actuator in this task.
Bottom: Surprisingly, the torque actuator performs much worse with a smaller simulation time step.
As simulation accuracy increases with a smaller time step, we do not suspect this to be the result of
numerical instability. A setting of ∆tsim = 0.005 was used for the all other MuJoCo experiments.
We recorded 8 random seeds for each actuator.

the exception of one unlucky run, the muscle actuator performance seems to be unchanged under
the more accurate simulation setting. The torque actuator, in contrast, seems to perform worse. As
simulation accuracy increases with a smaller time step, we do not suspect this to be the result of
numerical instability. As this only reinforces prior results, we conclude that the improved muscle
actuator data-efficiency is not a result of numerical instability.

11 Additional experiments (OC/MPC)

11.1 Nonlinearity in muscle model

In our study, we conclude that the nonlinear muscle properties can be beneficial for learning in
terms of data-efficiency and robustness. To show-case the influence of individual properties, we
performed additional smooth point-reaching and squatting experiments. The four major properties
that differ between the torque actuator morphology and the muscle actuator morphology are the
nonlinear activation dynamics, the nonlinear force-length, the nonlinear force-velocity relation and
the nonlinear lever arms (see also Fig. 1 in the main paper). We switched each of these properties
separately off to test which nonlinear muscle property contributes the most to the beneficial behavior.
The results can be seen in Fig. 23. As shown in this figure, switching off the nonlinear force-
velocity relation (no Fv) has the strongest impact and leads to results that are even worse than the
torque actuator optimization. Additionally, the nonlinear activation dynamics (no actdyn) has some
influence on the performance of the data-efficiency results. With these results, we would like to give
a first indication that indeed the non-linearity of different muscle properties are beneficial for the
data-efficiency in learning anthropomorphic tasks.
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Figure 23: Cost value for point-reaching while switching off different muscle properties. Plot-
ting the mean and standard deviation (shaded area) for 5 repeated runs for the two main actuator
morphologies (muscle in red, torque in blue). Additionally, different morphologies are tested where
muscle properties are switched off separately: We switched off the force-length relation (no Fl),
set moment arms to be constant (const r), switched off the force-velocity (no Fv) and excluded the
activation dynamics (no actdyn).
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Figure 24: Cost value for smooth point-reaching with additional baseline using PD control for
torque actuator. Plotting the mean and standard deviation (shaded area) for 5 repeated runs for the
three main actuator morphologies (muscle in red, torque in blue, torque with PD controller in black).

11.2 Proportional-derivative torque control for learning
In the results presented in the main paper, we mainly compared the muscle actuator morphology to an
idealized torque actuator without embedding any additional knowledge, e.g. position control which is
typically used with a PD controller. Nevertheless, we consider the comparison with the PD control
action space as a valuable baseline comparison. Therefore, we performed additional experiments
for the smooth point-reaching task, where we added this additional baseline using PD control on top
of the torque actuator morphology. Similar to the RL experiments (10.4), we use an identical PD
formulation to Peng et al. [24]:

u(t) = kp (q̂(t)− q(t)) + kd (ˆ̇q − q̇), (34)

with the joint angles q, the joint velocities q̇, the desired position q̂ and the desired velocity ˆ̇q. We
also set ˆ̇q = 0, similar to [24] and our original cost function for smooth point-reaching (Eq. 23). In
contrast to the RL experiments where we directly learn the desired angles for the control signal u(t)
for PD controller, here, with OC, we instead learn the kp and kd parameters. We allow for changes
in these parameters every c = 0.3 s, whereas the control signal was updated continuously. Fig. 24
shows that the data-efficiency is slightly improved using a PD controller for the torque-actuated case
in the smooth point-reaching task but it does not reach the performance of the muscle actuator.

11.3 Additional robustness experiments
In this section, we present additional robustness experiments for perturbing the arm model in the
point-reaching task while adding unknown weights to the lower arm. In contrast to the main paper,
we do not only show the perturbation using 1 kg, but varied the unknown weight up until 5 kg in 1 kg
steps. The resulting angle trajectories are shown in Fig. 25. We see that both actuators are able to
counteract unknown perturbation weights with 1 kg. For larger weights, the perturbations result in
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Figure 25: Muscle morphology is more robust towards unknown weight perturbations. Plotting
the angle trajectories of the shoulder and elbow angle over time for the two actuator morphologies
(left: muscle, right: torque) while varying the unknown weight (between 1 and 5 kg in 1 kg steps).

overshoots in the elbow joint angle which can be corrected in the muscle-actuated case, whereas the
torque actuator struggles to counteract these perturbations. Summed up, the muscle morphology is
more robust towards perturbations for a wide range of different unknown weights.
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A. Arm26: A Human Arm model
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Figure A.1.: (a) Visualization of the musculoskeletal model of the arm and the definition
of the shoulder angle ψ(t) and the elbow angle ϕ(t) and (b) Structure of the
arm model: the motor command u(t) is fed into the model of the activation
dynamics of muscles which relates the neuronal stimulation to muscular activity
a(t) that drives the muscle model. The muscles produce forces F(t) that act on
the skeletal system resulting in a simulated movement q(t) = [ϕ(t), ψ(t)] of the
arm.

This supplementary material describes the neuro-musculoskeletal model Arm26 modeling
a reduced human arm model. Large parts of the following model description were published
as electronic supplementary material accompanying Stollenmaier et al. (2020); Wochner et al.
(2020). The code and an actively maintained version of this description can be found online
(Wochner and Schmitt, 2022). The neuro-musculoskeletal model Arm26 consists of a mus-
culoskeletal model of the arm with two degrees of freedom actuated by six muscles and a
controller. The model is implemented in C/C++ code within the freely available multi-body
software demoa (Schmitt, 2022). For a better overview, the implementation of the model is
divided into three parts: the mechanical part (representing the bone structure and the muscle
routing), the actuation of this mechanical part (muscle-tendon structures) and the controller
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(nervous system) which provides the input to the actuation part.

A.1. Musculoskeletal model of the arm: Mechanics and Actuation

The musculoskeletal model Arm26 of the human arm uses the same geometry and muscle
parameters as the simulation model described in Driess et al. (2018) which is based on Bayer
et al. (2017). It consists of two rigid bodies (lower and upper arm) that are connected via
two one-degree-of-freedom revolute joints that represent the shoulder and elbow joint. This
multibody system is actuated by six muscle-tendon units (MTU), four monoarticular and
two biarticular muscles (see Figure A.1a). The muscles are modeled as lumped muscles, i.e.
they represent a multitude of anatomical muscles:

1. monarticular elbow flexor (MEF) (short: elbow flexion (EF)):
m. brachioradialis, m. brachialis, m. pronator teres, m. extensor carpi radialis

2. monarticular elbow extensor (MEE) (short: elbow extension (EE)):
m. triceps lateralis, m.triceps medialis, m. an-coneus, m. extensor carpi ulnaris

3. biarticular elbow flexor shoulder anteversion (BEFSA) (short: biarticular flexor (BF)):
m. biceps brachii caput longum and caput breve

4. biarticular elbow extensor shoulder retroversion (BEESR) (short: biarticular extensor
(BE)):
m. triceps brachii caput longum

5. monoarticular shoulder anteversion (MSA) (short: shoulder flexion (SF)):
m. deltoideus (pars clavicularis, anterior, lateral), m. superior pectoralis major, m.
coracobrachialis

6. monoarticular shoulder retroversion (MSR) (short: shoulder extension (SE)):
m. deltoideus (pars spinalis, posterior), m. latissimus dorsi

The MTU structure is modeled using an extended Hill-type muscle model as described in
Haeufle et al. (2014c) with muscle activation dynamics as introduced by Hatze (1977). The
muscle model is a macroscopic model consisting of four elements: the contractile element
(CE), the parallel elastic element (PEE) and the serial elastic element (SEE) and serial
damping element (SDE), as illustrated in Figure A.1b. The inputs to the muscle model are
the length of the MTU lMTU, the contraction velocity of the MTU l̇MTU and the muscular
activity a. The output of the muscle model is a one-dimensional muscle force FMTU. This
force drives the movement of the skeletal system. For the routing of the muscle path around
the joints, deflection ellipses are implemented as described by Hammer et al. (2019) (see
Figure A.2). The muscle path can move within these ellipses and is deflected as soon as it
touches the boundary.

All in all, the governing model dependencies for all muscles i = 1, ..., n are:
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l̇CE
i = fCE(l

CE
i , lMTU

i , l̇MTU
i , ai) (A.1)

ȧi = fa(ai, ui, l
CE
i ) (A.2)

FMTU
i = fF (l

MTU
i , l̇MTU

i , lCE
i , ai) (A.3)

q̈ = fq(q̇,q,F
MTU) , (A.4)

where q denotes a generalized state vector, in this case it can be defined as q = [ϕ,ψ] and
FMTU =

{
FMTU
i

}n

i=1
.

The mechanical parameters of the arm segments are taken from Kistemaker et al. (2006)
and can be found in Table A.1. The positions and sizes of the deflection ellipses were chosen
in order to match moment arms in literature (see Figure A.3). For more details on this see
Suissa (2017). The (non-)muscle-specific parameters can be found in Table A.2 and Table A.3.

Length [m] d [m] Mass [kg] I [kgm2]

Upper arm 0.335 0.146 2.10 0.024

Lower arm 0.263 0.179 1.65 0.025

Table A.1.: Mechanical parameters of the skeletal structure (Kistemaker et al. (2006)) with d:
distance from proximal joint to center of mass and I: moment of inertia with
respect to the center of mass.

Fmax [N] lCE,opt [m] lSEE,0 [m]

monarticular elbow flexor (MEF) 1420 0.092 0.182
monarticular elbow extensor (MEE) 1550 0.093 0.187
monoarticular shoulder anteversion (MSA) 838 0.134 0.039
monoarticular shoulder retroversion (MSR) 1207 0.140 0.066
biarticular elbow flexor shoulder anteversion (BEFSA) 414 0.151 0.245
biarticular elbow extensor shoulder retroversion (BEESR) 603 0.152 0.260

Table A.2.: Muscle-specific actuation parameters (Kistemaker et al. (2006) and Kistemaker
et al. (2013)), with Fmax: maximum isometric force, lCE,opt: optimal length of the
contractile element, lSEE,0 rest length of the serial elastic element. The lengths
of lCE,opt and lSEE,0 were adapted to match the muscle path routed through the
ellipses in order to allow for a big range of motion. For this parameter adaptation
method see Suissa (2017).



A.1 Musculoskeletal model of the arm: Mechanics and Actuation 191

Figure A.2.: Illustration of the positions of the deflection ellipses that are used for the muscle
routing in two different arm positions. Green arrows indicate active ellipses that
deflect the muscle path, while red arrows indicate inactive ellipses that do not
change the muscle path.
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Figure A.3.: Comparison of the moment arms of the muscles in the model with simulation
and experimental data from literature for the elbow muscles (upper plot) and
the shoulder muscles (lower plot). The lines marked with “demoa” refer to our
model (for the naming of the muscles see Table A.2). The moment arms are com-
pared to a calculatory model by Bayer et al. (2017) (here M/B stands for mono-
and biarticular, E stands for elbow and F/E stands for flexion and extension,
respectively) and to experimental data. The black marks show experimental
data of the biceps brachii (BB) and the triceps brachii (TB) taken from Pigeon
et al. (1996). The yellow line shoes a weighted combination of the monoarticular
flexor muscles that are represented by the MEF in the model. They are weighted
according to their proportion of the joint torques, see Sobotta (2010); Aumüller
et al. (2017). The figure was taken from Suissa (2017) with kind permission of
the author.
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Parameter Unit Value Source Description

CE ∆W des [ ] 0.45 similar to Bayer et al.
(2017); Kistemaker
et al. (2006)

width of normalized bell curve
in descending branch, adapted
to match observed force-length
curves

∆W asc [ ] 0.45 similar to Bayer et al.
(2017); Kistemaker
et al. (2006)

width of normalized bell curve
in ascending branch, adapted
to match observed force-length
curve

νCE,des [ ] 1.5 Mörl et al. (2012) exponent for descending branch
νCE,asc [ ] 3.0 Mörl et al. (2012) exponent for ascending branch
Arel,0 [ ] 0.2 Günther (1997) parameter for contraction dy-

namics: maximum value of Arel

Brel,0 [1/s] 2.0 Günther (1997) parameter for contraction dy-
namics: maximum value of Brel

Secc [ ] 2.0 van Soest and Bobbert
(1993)

relation between F (v) slopes at
vCE = 0

Fecc [ ] 1.5 van Soest and Bobbert
(1993)

factor by which the force can ex-
ceed F isom for large eccentric ve-
locities

PEE LPEE,0 [ ] 0.95 Günther (1997) rest length of PEE normalized to
optimal length of CE

νPEE [ ] 2.5 Mörl et al. (2012) exponent of FPEE

FPEE [ ] 2.0 Mörl et al. (2012) force of PEE if lCE is stretched
to ∆W des

SDE DSDE [ ] 0.3 Mörl et al. (2012) dimensionless factor to scale
dSDE,max

RSDE [ ] 0.01 Mörl et al. (2012) minimum value of dSDE (at
FMTU = 0), normalized to
dSDE,max

SEE ∆USEE,nll [ ] 0.0425 Mörl et al. (2012) relative stretch at nonlinear lin-
ear transition

∆USEE,l [ ] 0.017 Mörl et al. (2012) relative additional stretch in the
linear part providing a force in-
crease of ∆F SEE,0

∆F SEE,0 [N] 0.4Fmax both force at the transition and
force increase in the linear part

Hatze m [1/s] 11.3 Kistemaker et al. (2006) time constant for the activation
dynamics

c [mol/l] 1.37e-4 Kistemaker et al. (2006) constant for the activation dy-
namics

η [l/mol] 5.27e4 Kistemaker et al. (2006) constant for the activation dy-
namics

k [ ] 2.9 Kistemaker et al. (2006) constant for the activation dy-
namics

q0 [ ] 0.005 Günther (1997) resting active state for all acti-
vated muscle fibers

ν [ ] 3 Kistemaker et al. (2006) constant for the activation dy-
namics

Table A.3.: Muscle non-specific actuation parameters for the muscles and the activation dy-
namics.
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Name Type Movement Range of Motion (RoM) [rad]

Shoulder Revolute flexion/extension [−1.75 . . . 0.7]

Elbow Revolute flexion/extension [−2.45 . . . 0]

Wrist Revolute flexion/extension [0 . . . 0]

Table A.4.: List of all joints included in the model.

A.2. The Multibody System

The skeletal system is modeled as a chain of rigid bodies, connected by rotational joints
and described by differential equations. The resulting Degrees of Freedom (DoFs) Q(t) =

[q1(t), . . . , qnDoF(t)]T ∈ RnDoF of these rotational joints describe the movement of the rigid
bodies over time and are referred to as generalized coordinates. For the equations of motion,
a Lagrangian formulation with the generalized coordinates Q(t) as state variables is realized,
which can be set up algorithmically, e.g. as described by Legnani et al. (1996). The evaluation
of this algorithm leads to the differential equation of motion of the rigid body system in the
form

M(Q)Q̈ + C(Q, Q̇) = F, (A.5)

where M ∈ RnDoF×nDoF is the mass matrix, C ∈ RnDoF is a vector of gravitational, centrifugal
and Coriolis forces and F ∈ RnDoF is a vector of forces (internal and external) acting on the
mechanical part of the system. Hereby F includes forces, e.g. due to contact of the body
to the environment (external), as well as forces of the biological structures, such as muscles,
joint limitations (internal).

A.3. Joint limitations

The joint limitations are modeled as linear one-sided spring-damper elements, acting directly
on the respective DoF:

f lmt
i =


kl(qi − ql,i) + dlq̇i, qi < ql,i

0, ql,i ≤ qi ≤ qu,i
ku(qi − qu,i) + duq̇i, qi > qu,i

(A.6)

with the lower and upper threshold angles ql/u, corresponding to the respective RoM (Ta-
ble A.4), and linear spring and damping parameters kl/u = 1000 [Nm

rad ] and dl/u = 10 [Nm·s
rad ].
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Figure B.1.: (a) Frontal and side view of the visualization of the musculoskeletal model of the
human body. The green lines show the muscle geometry. (c) Structure of the
model: the motor command U(t) ∈ RnMTU is fed into the model of activation
dynamics (Hatze, 1977; Rockenfeller and Günther, 2018) of muscles which relates
the neuronal stimulation to muscular activity A(t) ∈ RnMTU that drives the
muscle model (Haeufle et al., 2014c). The muscles produce forces FMTU(t) ∈
RnMTU that act on the rigid bodies of the skeletal system. The resultant joint
torques FMTU depend on the respective moment arms ∂lMTU

∂q . In combination
with external forces, this results in a movement of the DoFs q(t) ∈ RnDoF of the
body.

This supplementary material describes the neuromusculoskeletal model allmin modeling a
reduced whole-body model. Large parts of the following model description were published as
electronic supplementary material accompanying Walter et al. (2021); Wochner et al. (2022b).
The code and an actively maintained version of this description can be found online (Walter
et al., 2022). The musculoskeletal model allmin consists of nRGB = 15 rigid bodies (see
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Table B.1). The rigid bodies are connected via 14 joints (see Table B.2) including nDoF = 20

degrees of freedom. Each Degree of Freedom (DoF) (except for the wrist) is controlled
by an agonistic-antagonistic setup (AAS) beeing congruent with the elementary biological
drive (EBD) as described by Schmitt et al. (2019). The musculoskeletal model is actuated
by nMTU = 36 MTU (see Table B.4 and Figure B.1a for first impression).

The model is implemented in C/C++ code within the freely available multi-body software
demoa (Schmitt, 2022).

B.1. The Multibody System

The skeletal system is modeled as a chain of rigid bodies, connected by rotational joints and
described by differential equations. The resulting DoFs q(t) = [q1(t), . . . , qnDoF(t)]T ∈ RnDoF

of these rotational joints describe the movement of the rigid bodies over time and are referred
to as generalized coordinates. For the equations of motion, a Lagrangian formulation with the
generalized coordinates q(t) as state variables is realized, which can be set up algorithmically,
e.g. as described by Legnani et al. (1996). The evaluation of this algorithm leads to the
differential equation of motion of the rigid body system in the form

M(q)q̈+ C(q, q̇) = F, (B.1)

where M ∈ RnDoF×nDoF is the mass matrix, C ∈ RnDoF is a vector of gravitational, centrifugal
and Coriolis forces and F ∈ RnDoF is a vector of forces (internal and external) acting on the
mechanical part of the system. Hereby F includes forces, e.g. due to contact of the body
to the environment (external), as well as forces of the biological structures, such as muscles,
joint limitations (internal).

B.2. Joint limitations

The joint limitations are modeled as linear one-sided spring-damper elements, acting directly
on the respective DoF:

flmt
i =


kl(qi − ql,i) + dlq̇i, qi < ql,i

0, ql,i ≤ qi ≤ qu,i
ku(qi − qu,i) + duq̇i, qi > qu,i

(B.2)

with the lower and upper threshold angles ql/u, corresponding to the respective RoM (Ta-
ble B.2), and linear spring and damping parameters kl/u = 50 [Nm

deg ] and dl/u = 10 [Nm·s
deg ]. For

the elbow joint qel, the wrist qwr, as well as the knee qkn and ankle joint qank the same force
law is used to model passive properties but with different parameters. The upper and lower
threshold angles are set as shown in Table B.2 and the spring and damping parameters are
set to kel = 100 [Nm

deg ], del = 0.001 [Nm·s
deg ], kwr = 15 [Nm

deg ], dwr = 1 [Nm·s
deg ], kkn,ank = 20 [Nm

deg ],
dkn,ank = 1 [Nm·s

deg ].
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B.3. Muscles

The muscles are modeled as lumped muscles, i.e. they represent a multitude of anatomical
muscles and motor units. A list of all included muscle elements can be found in Table B.4.
The MTU structure is modeled using an extended Hill-type muscle model as described in
Haeufle et al. (2014c) with muscle activation dynamics as introduced by Hatze (1977) and
simplified by Rockenfeller and Günther (2018). Herein, the muscles are activated using a 1st

order differential equation of normalized calcium ion concentration (Rockenfeller et al., 2014)

γ̇(t) =MH(u(t)− γ(t)) (B.3)

and a nonlinear mapping onto the muscles activation

a(t) =
anll +$

1 +$
, (B.4)

with $(γ(t), lCE(t)) = (γ(t) · ρ(lCE))ν and ρ(lCE) = $opt · lCE

lCE,opt = γc · ρnll · lCE

lCE,opt . The
parameter values are chosen muscle non specifically and are given in Table B.5.

The muscle model is a macroscopic model consisting of four elements: the CE, the PEE, the
SEE and SDE, as illustrated in Figure B.1b. Herein, the muscle fibers and their contraction
dynamics are described by a contractile element (CE) representing the cross-bridge-cycle of
the myosin heads and a parallel elastic element (PEE) representing the passive connective
tissue in the muscle belly. The viscoelastic properties of tendons are approximated using a
series elastic element (SEE) and a serial damping element (SDE).

The inputs to the muscle model are the length of the MTU lMTU, the contraction velocity
of the MTU l̇mtu and the muscular activity a. The output of the muscle model is a one-
dimensional muscle force FMTU. This force drives the movement of the skeletal system.

For the routing of the muscle path around the joints, deflection ellipses are implemented
as described by Hammer et al. (2019). The muscle path can move within these ellipses and
is deflected as soon as it touches the boundary. For the investigations presented here, we set
the length of both half-axes of all ellipses to zero, resulting in fixed via points. The position
of these points can be found in Table B.3. The resulting moment arms translate the muscle
force FMTU to generalized forces FMTU acting on the DoFs of the system

FMTU =
∂lMTU

∂q
· FMTU. (B.5)

All in all, the governing model dependencies for all muscles i = 1, ..., n are:

l̇CE
i = fCE(lCE

i , lMTU
i , l̇MTU

i , ai) (B.6)

ȧi = fa(ai, ui, l
CE
i ) (B.7)

FMTU
i = fMTU(lMTU

i , l̇MTU
i , lCE

i , ai) (B.8)

q̈ = f q(q̇, q, FMTU,Flmt,Fext) , (B.9)

where q = {qi}n
DoF

i=1 denotes a generalized state vector that contains all joint angles and
FMTU =

{
FMTU
i

}n

i=1
, Flmt,i =

{
flmt
i

}n

i=1
and Fext =

{
fext
i

}n

i=1
contain the muscle forces, the

joint limitation forces and the external forces, respectively.
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B.4. Model parameters

Body Name m [kg] rx [m] ry [m] hz [m] d1 [m] Child d2 [m]

Pelvis (world) 10.2516 0.1224 0.1643 0.18783 [0,0,0] Spine [0.000557293, 0.0000, 0.12213]
Thigh (l/r) [0.0147,±0.0796,−0.0657]

Spine 33.2397 0.1224 0.1643 0.4166 [-0.00055, 0.0000, -0.2083] Head [0.00055, 0.0000, 0.2083]
Uparm (l/r) [0.00677703,±0.1816, 0.10507988]

Head 4.8869 0.0993 0.0778 0.278194 [-0.0092, 0.0000, -0.11] - -
Uparm (l/r) 2.1631 0.0495 − 0.3065 [0.0000, 0.0000, 0.1456] Forearm (l/r) [0.0000, 0.0000, -0.1609]
Forearm (l/r) 1.3389 0.0477 − 0.2725 [0.0000, 0.0000, 0.1117] Hand (l/r) [0.0000, 0.0000, -0.1608]
Hand (l/r) 0.5252 0.028 0.089 0.192 [0.0000, 0.0000, 0.0574] - -
Thigh (l/r) 8.1719 0.0947 − 0.4347 [0.0000,∓0.0188, 0.1782] Shank (l/r) [0.0000, 0.0000, -0.2565]
Shank (l/r) 3.3541 0.0597 − 0.4239 [0.0000,∓0.0059, 0.1865] Foot (l/r) [0.0000, 0.0000, -0.2374]
Foot (l/r) ∗ 1.0172 0.0398 − 0.272 [-0.0656, 0.0000, 0.0402] - -

Table B.1.: List of all bodies included in the model with their mechanical properties with m: mass, rx,ry: radius in x and y direction,
hz: height in z direction, d1: distance proximal joint to the body’s center of mass and d2: distance center of mass to distal
joint. The spine body has an underlying curvature based on Kitazaki and Griffin (1997). The allover body dimensons are
based on data describing a 50th percentile male from NASA (1978).
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Name Type Movement RoM [◦]

Lumbar spine Universal left/right [−30 . . . 30]

Lumbar spine Universal flexion/extension [0 . . . 30]

Cervival spine Universal left/right [−30 . . . 30]

Cervival spine Universal flexion/extension [−30 . . . 30]

Shoulder (Right) Universal abduction/adduction [−10 . . . 60]

Shoulder (Right) Universal flexion/extension [−100 . . . 10]

Ellbow (Right) Revolute flexion/extension [−120 . . . 10]

Wrist (Right) Revolute flexion/extension [0 . . . 0]

Shoulder (Left) Universal abduction/adduction [−10 . . . 60]

Shoulder (Left) Universal flexion/extension [−100 . . . 10]

Ellbow (Left) Revolute flexion/extension [−120 . . . 10]

Wrist (Left) Revolute flexion/extension [0 . . . 0]

Hip (Right) Universal flexion/extension [−120 · · · − 10]

Hip (Right) Universal abduction/adduction [−10 . . . 70]

Knee (Right) Revolute flexion/extension [−1 . . . 120]

Ankle (Right) Revolute flexion/extension [−20 . . . 40]

Hip (Left) Universal flexion/extension [−120 . . . 10]

Hip (Left) Universal abduction/adduction [−10 . . . 70]

Knee (Left) Revolute flexion/extension [−1 . . . 120]

Ankle (Left) Revolute flexion/extension [−20 . . . 40]

Table B.2.: List of all joints included in the model.
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Name RO [m] Parent RDF1 [m] Parent RDF2 [m] Parent RI [m] Parent

LSE −0.028 0.000 0.108 Pelvis −0.040 0.000 0.110 Pelvis −0.042 0.000 −0.131 Spine −0.032 0.000 −0.129 Spine
LSF 0.018 0.000 0.101 Pelvis 0.088 0.000 0.089 Pelvis 0.069 0.000 −0.106 Spine 0.009 0.000 −0.120 Spine
LSSBL −0.005 0.050 0.104 Pelvis −0.005 0.050 0.104 Pelvis −0.011 0.050 −0.124 Spine −0.011 0.050 −0.124 Spine
LSSBR −0.005 −0.050 0.104 Pelvis −0.005 −0.050 0.104 Pelvis −0.011 −0.050 −0.124 Spine −0.011 −0.050 −0.124 Spine
CSE −0.054 0.000 0.199 Spine −0.054 0.000 0.199 Spine −0.056 0.000 −0.070 Head −0.056 0.000 −0.070 Head
CSF 0.043 0.000 0.175 Spine 0.043 0.000 0.175 Spine 0.044 0.000 −0.080 Head 0.044 0.000 −0.080 Head
CSSBL −0.006 0.050 0.187 Spine −0.006 0.050 0.187 Spine −0.006 0.050 −0.075 Head −0.006 0.050 −0.075 Head
CSSBR −0.006 −0.050 0.187 Spine −0.006 −0.050 0.187 Spine −0.006 −0.050 −0.075 Head −0.006 −0.050 −0.075 Head
HE (l/r) −0.075 ±0.080 0.025 Pelvis −0.075 ±0.090 −0.095 Pelvis −0.075 ∓0.019 0.121 Thigh −0.020 ∓0.009 0.031 Thigh
HF (l/r) 0.065 ±0.040 0.101 Pelvis 0.075 ±0.040 0.021 Pelvis 0.015 ∓0.019 0.101 Thigh 0.015 ∓0.019 0.020 Thigh
HAbd (l/r)−0.025 ±0.120 0.050 Pelvis 0.000 ±0.152 −0.030 Pelvis −0.030 ±0.040 0.035 Thigh −0.020 ±0.030 0.005 Thigh
HAdd (l/r) 0.000 0.000 0.000 Pelvis −0.010 ±0.010 −0.100 Pelvis −0.005 ∓0.035 0.090 Thigh 0.000 ∓0.020 0.010 Thigh
KF (l/r) −0.050 0.000 0.000 Thigh−0.050 0.000 −0.108 Thigh−0.059 0.000 0.106 Shank −0.030 0.000 0.100 Shank
KE (l/r) 0.040 0.000 0.000 Thigh 0.030 0.000 0.253 Thigh 0.030 0.000 0.050 Shank 0.030 0.000 0.050 Shank
FE (l/r) −0.050 0.000 −0.025 Shank−0.050 0.000 −0.175 Shank−0.125 0.000 0.050 Foot −0.125 0.000 0.050 Foot
FF (l/r) 0.030 0.000 −0.025 Shank 0.030 0.000 −0.175 Shank 0.030 0.000 0.050 Foot 0.030 0.000 0.050 Foot
SE (l/r) −0.069 ±0.182 0.113 Spine −0.050 0.000 0.125 Uparm−0.017 0.000 0.000 Uparm −0.017 0.000 0.000 Uparm
SF (l/r) 0.022 ±0.182 0.139 Spine 0.022 ±0.182 0.139 Spine 0.017 0.000 0.000 Uparm 0.017 0.000 0.000 Uparm
SAbd (l/r)−0.026 ±0.242 0.135 Spine −0.026 ±0.242 0.135 Spine 0.000 ±0.017 0.000 Uparm 0.000 ±0.017 0.000 Uparm
SAdd (l/r)−0.024 0.000 0.126 Spine 0.007 ±0.125 0.103 Spine 0.000 ∓0.040 0.125 Uparm 0.000 ∓0.017 0.000 Uparm
EF (l/r) 0.025 0.000 0.000 Uparm 0.030 0.000 −0.050 Uparm 0.030 0.000 0.014 Forearm 0.024 0.000 −0.100 Forearm
EE (l/r) −0.025 0.000 0.000 Uparm−0.049 0.000 −0.160 Uparm−0.048 0.000 0.100 Forearm−0.024 0.000 0.000 Forearm

Table B.3.: Muscle routing parameters: Origin RO, Deflection Point 1 RDF1 and 2 RDF2 and Insertion RI relative to their parent
body. All numbers in this table are rounded to four decimal digits. Muscle names: EF, EE, foot flexion (FF), foot
extension (FE), hip abduction (HAbd), hip adduction (HAdd), hip flexion (HF), hip extension (HE), cervical spine flexion
(CSF), cervical spine side bend left (CSSBL), cervical spine side bend right (CSSBR), cervical spine extension (CSE), knee
flexion (KF), knee extension (KE), lumbar spine flexion (LSF), lumbar spine side bend left (LSSBL), lumbar spine side
bend right (LSSBR), lumbar spine extension (LSE), shoulder abduction (SAbd), shoulder adduction (SAdd), SF, SE.
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Fmax [N] lCE,opt [m] ∆W asc lSEE,0 [m]

EF 1420.0 0.1885 1.0 0.1845
EE 1550.0 0.171 0.525 0.18
FF 3000.0 0.15 1.0 0.133
FE 3000.0 0.13 1.0 0.115
HAbd 2000.0 0.18 1.0 0.121
HAdd 2000.0 0.204 0.75 0.136
HF 5000.0 0.195 1.0 0.135
HE 5000.0 0.192 1.0 0.191
CSF 5000.0 0.07 1.5 0.01
CSSBL 5000.0 0.05 1.5 0.01
CSSBR 5000.0 0.046 1.5 0.01
CSE 5000.0 0.062 1.5 0.01
KF 6000.0 0.258 0.525 0.112
KE 6000.0 0.264 1.0 0.28
LSF 15000.0 0.2 1.5 0.11
LSSBL 15000.0 0.09 1.5 0.02
LSSBR 15000.0 0.09 1.5 0.02
LSE 15000.0 0.075 1.5 0.04
SAbd 6000.0 0.12 1.0 0.08
SAdd 6000.0 0.225 1.0 0.12
SF 10000.0 0.1 1.0 0.073
SE 6000.0 0.165 1.0 0.105

Table B.4.: Muscle-specific actuation parameters, with Fmax: maximum isometric force, lCE,opt: optimal length of the CE, ∆W asc:
width of normalized bell curve in ascending branch of the force-length relationship, lSEE,0 rest length of the SEE, lCE,init:
initial length of the CE. Muscle names: elbow flexion (EF), elbow extension (EE), foot flexion (FF), foot extension (FE), hip
abduction (HAbd), hip adduction (HAdd), hip flexion (HF), hip extension (HE), cervical spine flexion (CSF), cervical spine
side bend left (CSSBL), cervical spine side bend right (CSSBR), cervical spine extension (CSE), knee flexion (KF), knee
extension (KE), lumbar spine flexion (LSF), lumbar spine side bend left (LSSBL), lumbar spine side bend right (LSSBR),
lumbar spine extension (LSE), shoulder abduction (SAbd), shoulder adduction (SAdd), shoulder flexion (SF), shoulder
extension (SE).
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Parameter Unit Value Source Description

CE ∆W des [ ] 0.45 similar to Bayer et al.
(2017); Kistemaker
et al. (2006)

width of normalized bell curve
in descending branch, adapted
to match observed force-length
curves

νCE,des [ ] 1.5 Mörl et al. (2012) exponent for descending branch
νCE,asc [ ] 3.0 Mörl et al. (2012) exponent for ascending branch
Arel,0 [ ] 0.2 Günther (1997) parameter for contraction dy-

namics: maximum value of Arel

Brel,0 [1/s] 2.0 Günther (1997) parameter for contraction dy-
namics: maximum value of Brel

Secc [ ] 2.0 van Soest and Bobbert
(1993)

relation between F (v) slopes at
vCE = 0

Fecc [ ] 1.5 van Soest and Bobbert
(1993)

factor by which the force can ex-
ceed F isom for large eccentric ve-
locities

PEE LPEE,0 [ ] 0.95 Günther (1997) rest length of PEE normalized to
optimal length of CE

νPEE [ ] 2.5 Mörl et al. (2012) exponent of FPEE

FPEE [ ] 2.0 Mörl et al. (2012) force of PEE if lCE is stretched
to ∆W des

SDE DSDE [ ] 0.3 Mörl et al. (2012) dimensionless factor to scale
dSDE,max

RSDE [ ] 0.01 Mörl et al. (2012) minimum value of dSDE (at
FMTU = 0), normalized to
dSDE,max

SEE ∆USEE,nll [ ] 0.0425 Mörl et al. (2012) relative stretch at nonlinear lin-
ear transition

∆USEE,l [ ] 0.017 Mörl et al. (2012) relative additional stretch in the
linear part providing a force in-
crease of ∆F SEE,0

∆F SEE,0 [N] 0.4Fmax both force at the transition and
force increase in the linear part

activation
dynamics

MH [1/s] 11.3 Kistemaker et al. (2006) time constant for the activation
dynamics

γc [mol/l] 1.37e-4 Kistemaker et al. (2006) constant for the activation dy-
namics

ρnll [l/mol] 5.27e4 Kistemaker et al. (2006) constant for the activation dy-
namics

anll [ ] 0.005 Günther (1997) resting active state for all acti-
vated muscle fibers

ν [ ] 3 Kistemaker et al. (2006) constant for the activation dy-
namics

Table B.5.: Muscle non-specific actuation parameters for the muscles and the activation dy-
namics.
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