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Zusammenfassung

Bei der Patientenversorgung verfasst medizinisches Fachpersonal große Mengen
klinischer Dokumente. Diese dokumentieren medizinische Fälle von der Anamnese
bis zum jeweiligen klinischen Endpunkt. Das automatisierte Analysieren und Fin-
den relevanter Krankenakten bietet die Möglichkeit, Ärzte in großem Umfang bei
ihrer täglichen Arbeit zu unterstützen. Das automatisierte Verständnis von klini-
schem Text ist jedoch nicht trivial, insbesondere das Verarbeiten von Pflegenotizen
und Diagnoseberichten stellt eine Herausforderung dar. Klinische Dokumente
weisen eine hohe Varianz in Länge, Struktur, Vokabular sowie lexikalischer und
grammatikalischer Korrektheit auf. Häufig sind sie stark vom jeweiligen klinischen
Kontext abhängig. Aus diesen Gründen scheitern Ansätze, die auf syntaktischen
Regeln und diskreter Textrepräsentationen basieren, oft.
Diese Arbeit befasst sich mit dem Entwurf und der Evaluierung von Metho-

den und Modellen, die sowohl generalisierbar als auch anpassungsfähig genug
sind, um klinische Texte automatisch zu analysieren. Ziel dieser Arbeit ist es,
die Grundlagen textbasierter klinischer Entscheidungsunterstützungssysteme zu
verbessern. Textbasierte klinische Entscheidungsunterstützungssysteme können
das Wissen in Krankenhausarchiven und medizinischen Publikationen im Alltag
von Ärzten nutzbar machen. Solche Systeme müssen der wachsenden Menge
an klinischen Dokumenten in Krankenhausarchiven gerecht werden. Ein Kern-
problem für textbasierte klinische Entscheidungsunterstützungssysteme besteht
in der ganzheitlichen Repräsentation von Patientendaten für die automatisierte
Verarbeitung. Wir begegnen diesen Herausforderungen, indem wir ein Frame-
work für die Deep-Learning-basierte Differenzialdiagnoseunterstützung entwerfen.
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Unter Betrachtung der genannten Anforderungen entwerfen und evaluieren wir
Methoden zur automatischen Analyse von medizinischen Texten, basierend auf
drei Informationsrepräsentationsparadigmen: (1) Diskrete Relationsextraktion
unter Verwendung des “Open Information Extraction” Paradigmas. (2) Neuro-
nale Textrepräsentationen basierend auf Sprach- und Themenmodellierung. (3)
Kombinieren komplementärer neuronaler Textrepräsentationen.

Unser Framework übersetzt klinische Diagnoseschritte und Pfade in statistische
und Deep-Learning-basierte Modelle. Wir zeigen, dass Deep-Learning basierte
Differenzialdiagnosesysteme von kontextualisierten Sprachmodellen profitieren. In
einem umfassenden Benchmark identifizieren wir Defizite des “Open Information
Extraction” Paradigmas welche eine Anwendung auf klinische Texte erschweren.
Wir entwerfen ein kontextualisiertes Textrepräsentationsmodell basierend auf
Themenmodellierung. Unsere Ergebnisse zeigen, dass neuronale Textrepräsenta-
tionen welche auf Themenmodellierung basieren, Informationen abbilden welche
komplementär sind, zu auf Sprachmodellierung basierenden Ansätzen. Unsere
Experimente mit Ärzten, basierend auf einer prototypischen Implementierung, vali-
dieren den Deep-Learning-gestützten Differentialdiagnoseprozess. Darüber hinaus
identifizieren wir auf Basis unserer qualitativen und quantitativen Erkenntnisse
sieben Designherausforderungen für textbasierte klinische Entscheidungsunter-
stützungssysteme.

xviii



Abstract

Medical professionals create vast amounts of clinical texts during patient care.
Often, these documents describe medical cases from anamnesis to the final clinical
outcome. Automated understanding and selection of relevant medical records
pose an opportunity to assist medical doctors in their day-to-day work on a large
scale. However, clinical text understanding is challenging, especially when dealing
with clinical narratives such as nursing notes or diagnostic reports. These clinical
documents differ extensively in length, structure, vocabulary, and lexical and
grammatical correctness. In addition, they are highly context-dependent. For all
these reasons, approaches based on syntactic rules and discrete text representation
often fail to address the variety of clinical narratives propagating unrecoverable
errors to downstream applications.
Therefore, this thesis focuses on evaluating and designing methods and mod-

els that are generalizable and adaptable enough to deal with these challenges.
Our goal is to enable text-based clinical decision support systems to utilize the
knowledge from clinical archives and medical publications. We aim to design
methods that can scale up to the growing amount of clinical documents in hospital
archives. A fundamental problem in achieving deep-learning-enabled clinical deci-
sion support systems is designing a patient representation that captures all relevant
information for automated processing. We engage these challenges by designing
a framework for deep-learning-enabled differential diagnosis support. Guided by
the needs emerging from this framework, we design and evaluate methods based
on three information representation paradigms: (1) Discrete relation extraction
using the open information extraction paradigm. (2) Neural text representations

xix



based on language and topic modeling. (3) Combining complementary neural
text representations.

Our framework translates clinical diagnostic steps and pathways to statistical and
deep-learning-based models. Accordingly, we can show that deep-learning-enabled
differential diagnosis benefits from contextualized information representations.
Further, we identify shortcomings of the open information extraction paradigm in
a comprehensive benchmark. We design a distributed text representation model
based on topical information. Our extensive large-scale experiment results show
that topical distributed text representations capture information complementary
to language modeling-based approaches across domains, thus enabling a holistic
text representation for medical texts. Our experiments with medical doctors
using our prototypical implementation of the deep-learning-enabled differential
diagnosis process validate this framework. Moreover, we identify seven crucial
design challenges for text-based clinical decision support systems based on our
qualitative and quantitative findings.
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Introduction

Medical professionals create vast amounts of clinical texts during patient care.
Often, these documents describe medical cases from anamnesis to the final clinical
outcome (Shickel et al., 2018). Accordingly, clinical archives pose a valuable source
of knowledge when dealing with uncommon complications and rare diseases
(Faviez et al., 2020; Ronicke et al., 2019; Shen and H. Liu, 2018). This knowledge
is often unused due to its inaccessibility to medical practitioners.
Automated understanding and selecting relevant medical records pose the

opportunity to solve this issue (Demner-Fushman, Chapman, and McDonald,
2009). Moreover, it enables automated Clinical decision support systems (CDSS)
to support medical practitioners in information-seeking and decision processes.
CDSS can serve a wide variety of tasks, such as Patient Safety (Eslami et al., 2012;
Mahoney et al., 2007; McEvoy et al., 2017), Clinical Management (McMullin et al.,
2004 Sep-Oct; Salem et al., 2018), Diagnostic Support (Cui, Bozorgi, et al., 2012;
De Fauw et al., 2018; Ronicke et al., 2019). Many diagnostic support systems
aim at a small subfield of medical care and often do not exploit data collected
in EHRs (De Fauw et al., 2018; Goldenberg, Nir, and Salcudean, 2019; D. Jiang
et al., 2020; Y. Liu et al., 2019).
However, clinical text understanding is a challenge, especially when dealing

with clinical narratives such as nursing notes or diagnostic reports. These clinical
documents differ extensively in length, structure, vocabulary, and lexical and
grammatical correctness. For all these reasons, approaches based on syntactic

1



rules and discrete text representation often fail to address the variety of clinical
narratives propagating unrecoverable errors downstream (Hong et al., 2018;
Leaman, Khare, and Lu, 2015; Pink, Nothman, and Curran, 2014; Starlinger et al.,
2017).

Therefore, this thesis focuses on evaluating and designing methods and models
that enable text-based clinical decision support systems to utilize the knowledge
from clinical archives and medical publications.

1.1. Clinical Information Management

Documenting the state and progress of a patient is a critical task in hospitals and
clinics. Therefore, medical practitioners store structured information such as lab
results and screening scores or unstructured data such as nursing notes, doctors’
letters, or radiology reports in Electronic Health Records (EHR). These records
document the patients’ trajectory and taken clinical pathways, including their
clinical endpoints (Shickel et al., 2018). The first entries in an EHR contain the
anamnesis and an initial evaluation of the patient’s trajectory. This initial trajectory
describes the severity of the case and the most likely outcomes. Correspondingly,
the medical professional initiates the most appropriate clinical pathway consisting
of a line of diagnostics and treatments (Z. Huang, Dong, et al., 2014). The
medical staff updates the EHR regularly during the whole process. These updates
include nursing notes and diagnostics results, such as radiologic images and the
corresponding radiology reports. The nursing notes and diagnostics reports are
usually written as free-form text to provide the crucial details and context of the
patients’ situation. Moreover, continually taken structured measurement data like
body temperature or oxygen saturation might also be included in these updates.
The medical personnel is reevaluating the patients’ current trajectory constantly
and adapts the clinical pathway as needed. Finally, the patients arrive at a clinical
endpoint, such as being cured. Conclusively, EHRs are a valuable and dense source
of medical knowledge. Therefore, gaining new medical insights and improving
treatment quality based on EHRs is an important goal (Aspland, Gartner, and
Harper, 2021; Landi et al., 2020).

Medical doctors see many patients with common and rare symptoms, diseases,
or complications. In particular rare cases are challenging for medical doctors,
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especially if they are at the beginning of their career and cannot rely on many
years of experience. To deal with situations of uncertainty, medical practitioners
can consult colleagues, medical guidelines, literature, or the clinics’ archives for
similar cases. Medical doctors often tend to stick to the first three options. As
a result, practitioners are not utilizing information collected in EHRs (Fu et al.,
2020).

The most significant problem is the inaccessibility of information stored in
clinical archives (Fu et al., 2020; R. T. Sutton et al., 2020). EHRs already pose the
opportunity to access clinical archives effectively, but the ever-growing amount
of medical notes in EHRs is overwhelmingly large. For example Charité Berlin
handled 806.524 cases in 20211. Modern EHRmanagement systems such as T-Base
(Schmidt et al., 2021) help clinicians retrieve EHRs but identifying critical clinical
concepts of each case and determining its relevance requires medical practitioners
to read the free-form text. This situation poses an immediate problem since medical
professionals often have minimal time boxes per patient and experience fast-paced
work intensification (Huhtala et al., 2021). Furthermore, even if a doctor collects
similar cases to the case at hand, she still needs to group, limit, and filter those
selected patients. Finally, she needs to evaluate and rank the clinical pathways
taken in the past for suitability, which is also a complex and time-consuming task.
Consequently, the doctor may miss examining clinical pathways that were proven
effective in the past (van der Vegt et al., 2020). Worse, this might also hinder the
research and development of new therapies or diagnostic protocols.

1.2. Supporting Clinicians with Text-Based Decision Support
Systems

One way of solving the problem is to apply natural language processing (NLP),
computer vision, and information retrieval (IR) methods. Using methods from the
fields of information retrieval enables operationalizing the information needs of
medical professionals (Ely et al., 2000). Computer vision and natural language
processing can extract information hidden in unstructured medical imaging and
text data (Fu et al., 2020; R. T. Sutton et al., 2020). These three approaches

1https://www.charite.de/die_charite/profil/zahlen_fakten/
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Figure 1.1.: The text-based differential diagnosis support process.

enable designing methods that can considerably increase the accessibility of clinical
archives for practitioners’ day-to-day use cases. However, every part of this solution
poses complex challenges and requires well-evaluated design decisions.
One practical approach is to frame the text-based clinical decision support

process as a recommendation task to suggest complementary clinical pathways or
single steps to medical practitioners based on observations made in the clinical
archive (see Figure 1.1). NLP methods such as Open Information Extraction (Banko
et al., 2007; Q. Wei et al., 2020), Clinical Concept Recognition (Jauregi Unanue,
Zare Borzeshi, and Piccardi, 2017), and Topic Modeling (Blei, 2012) can derive
these observations from free-text documents (2). Medical computer vision models
can provide additional clinical concepts (Esteva et al., 2021). A holistic model of
the patients’ current trajectory enables the IR methods to retrieve, group, and filter
similar patients (H. Liu et al., 2013 -3- 18) (3). Based on this cohort of relevant
patients, it is possible to recommend complementary clinical pathways to medical
practitioners (4). Finally, the medical staff validated the recommendations, giving
feedback to the system (5). Although this solution seems straightforward, several
challenges to consider hinder naive approaches from being successful.

High Context-Dependence. First, medical data is highly context-dependent
(Sharafoddini, Dubin, and J. Lee, 2017; Starlinger et al., 2017) and requires
approaches incorporating the patients’ current situation as completely as possible.
Methods with this capability are, for example, Deep-Learning-based (DL) models
(Esteva et al., 2021; M. E. Peters et al., 2018). However, these models require a
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vast amount of training data to be successful (J. Lee, Yoon, et al., 2019; Radford,
J. Wu, Child, et al., 2019; Vaswani et al., 2017).

Limited Access to Labeled Data. Second, there is a lack of available data due to
the high data protection standards. Available datasets are rather small and focus
on medical subfields such as intensive care (Johnson et al., 2016) or oncology
(Borchert et al., 2020) This problem affects quality measurements, training data for
supervised and unsupervised machine learning models. This circumstance is even
more problematic in research since it hinders the comparability and reproducibility
of studies conducted by different researchers using exclusive clinic specific data
sets.

Large Quantities of Data. Third, the amount of data in a typical hospital is
considerable (Schmidt et al., 2021) and requires infrastructure and methods to
handle large volumes of data with low response times.

High Variance, Ambiguity, and Noise. Fourth, models in clinical settings need
to perform with precision while being able to generalize to unseen data. General-
ization capabilities are essential for NLP models (Shickel et al., 2018). Medical
professionals often write clinical notes while interacting with patients utilizing
department- and context-specific abbreviations, writing styles and highly special-
ized terms. Accordingly, clinical notes often contain spelling errors, staccato-like
sentence fragments, and grammatical errors (Starlinger et al., 2017; van Aken,
Trajanovska, et al., 2021). These irregularities add additional challenges to the
already present challenge of ambiguity of medical concepts and their abbreviations.

General Multi-Modal Patient Representation. Fith, to enable high-quality rec-
ommendations, it is imperative to design a patient representation independent of
the medical profession. This representation needs to cover the problem space’s
multi-modality and be beneficial for information retrieval methods (Shickel et al.,
2018; R. T. Sutton et al., 2020).

This thesis approaches the problem by designing a framework for designing
differential diagnosis (DDx) support systems that utilize data stored in EHRs. Due
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to the complexity of the problem, we discuss exclusively text-based methods for
clinical decision support in this thesis.

1.3. Clinical Text Understanding

Written clinical narratives highly depend on context and contain dense information
about patients (Starlinger et al., 2017). These documents are the primary way to
communicate between hospital medical teams (Shickel et al., 2018).
The clinical text understanding component is an integral part of a text-based

clinical decision support system (CDSS). The common goal of clinical text under-
standing models is to extract information from the free-form text to be available
for clinical decision support systems (Shickel et al., 2018; R. T. Sutton et al., 2020).
The resulting text representation can be a valuable component of patient represen-
tations. Choosing knowledge to represent and representation methods influence
CDSS to a large extent. Classical approaches often use discrete feature vectors
obtained with information extraction models (Cui, Bozorgi, et al., 2012; L. Li
et al., 2015; Sarmiento and Dernoncourt, 2016). The recent success of latent
and distributed neural text representations opens new possibilities for clinical
use-cases and patient representations (Glicksberg, Miotto, et al., 2018; Gu et al.,
2021).

1.3.1. Discrete Representations

A central task in clinical text understanding is recognizing and disambiguating
bio-medical concepts mentioned in a text. Classical approaches often solve this
task by applying syntactic extraction patterns (Aronson and Lang, 2010 May-Jun;
Tseytlin et al., 2016) to identify a clinical concept’s beginning and end position in
a text. As a next step, a model disambiguates the mention against a controlled
vocabulary or knowledge base that contains all clinical concepts of interest (Fu
et al., 2020). Text segmentation (Beeferman, Berger, and Lafferty, 1999) and topic
modeling (Blei, 2012; L. Wang, S. Li, et al., 2017) pose additional signals for such
models by dividing texts into coherent sequences of sentences.
Clinical Concept Recognition models aim to extract mostly sentence-local infor-

mation, but the interaction between multiple clinical concepts can span multiple
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sentences or paragraphs. Therefore, relation extraction models may take sentence-
spanning context into account. Classical approaches to relation extraction use
syntactic extraction patterns to extract relations according to an a priory speci-
fied schema (Chiticariu, Krishnamurthy, et al., 2010; Kilias, Löser, and Andritsos,
2015).

Open Information Extraction (OIE) aims to extract relations between entities or
clinical concepts from large text corpora without pre-specifying a target schema
(Banko et al., 2007). An OIE system could extract all mentioned drug-drug inter-
actions from a text without specifying the number of involved drugs, the relation
type or schema, a priori (Nebot and Berlanga, 2012). For example, an OIE system
might extract the following 3-ary relation from a medical research paper (Triplitt,
2006): (Metformin, cimetidine, can compete for, elimination)1. Most
OIEmethods depend on intermediate syntactic representations such as dependency
trees (C. Manning and Schutze, 1999; Nivre et al., 2016) or part-of-speech-tags
(Jurafsky and James, 2021; C. Manning and Schutze, 1999; Marcus, Santorini,
and Marcinkiewicz, 1993).
Clinical narratives often contain modifiers regarding the mentioned clinical

concepts, such as negations. For downstream applications, assertion detection
models must extract these modifiers correctly (van Aken, Trajanovska, et al.,
2021).

Finally, the extracted information can populate databases, knowledge graphs, or
utilize decision support systems. This classical view of the clinical text understand-
ing models often leads to discrete patient representations e.g., a bag of clinical
concepts represented as a one-hot vector (Cui, Bozorgi, et al., 2012; Soysal et al.,
2018).

1.3.2. Latent Representations

With the reemergence of neural networks for solving natural language processing
tasks and their vast success, many authors propose deep learningmodels for clinical
text understanding (Esteva et al., 2021; J. Lee, Yoon, et al., 2019). Deep Learning
enables models to generalize to a wide variety of unseen data. Moreover, it is

1This example was produced using Stanford core NLP 4.2.2:
https://stanfordnlp.github.io/CoreNLP/history.html

1.3 | Clinical Text Understanding 7

https://stanfordnlp.github.io/CoreNLP/history.html


possible to combine multiple tasks in one model and profit from complementary
error signals, propagating back through specialized layers (Radford, J. Wu, Child,
et al., 2019; Raffel et al., 2020). Furthermore, neural networks enable pretraining
on basic unsupervised language understanding tasks and reusing the pre-trained
models for supervised training while significantly improving their performance on
the supervised task (Devlin et al., 2019). The reason for this property is that deep
neural networks can learn effective latent representations of text. These neural
text representations can contribute to a latent patient representation for clinical
decision support tasks (Glicksberg, Miotto, et al., 2018; Gu et al., 2021; Landi
et al., 2020; Miotto, L. Li, et al., 2016).

1.4. The Scope of this Thesis

This thesis focuses on designing a generally applicable CDSS framework and
investigating text representation methods that benefit such systems. We approach
the challenges of clinical decision support by proposing a framework and medical
text understanding models to address the three subproblems: Open Information
Extraction, Medical Text Representation, and Clinical Decision Support. We evaluate
the discrete open information extraction paradigm for its suitability in clinical
settings. Furthermore, we use the deep learning paradigm to explore distributed
latent text representations. Deep learning-based methods enable us to combine
hidden probability features learned from a wide variety of unsupervised tasks and
datasets. Moreover, methods based on deep learning are language-agnostic and
can be further specialized on clinic-specific vocabularies. In addition, we address
the challenges of high context dependence, training data efficiency, runtime
efficiency, and robustness regarding variance, ambiguity, and noise in clinical
text data. Throughout this thesis, we focus on evaluating and designing language
understanding models that are efficient in the clinical domain. We provide results
and insights from a preliminary user study.

1.4.1. Research Objectives

This thesis addresses the problems of automatic clinical decision support and
clinical text understanding. The central hypothesis of this thesis is the following:
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The differential diagnosis process can be the foundation for developing deep-
learning-enabled text-based clinical decision support systems. These systems rely
extensively on text and patient representations, and integrating discrete and latent
representations enhances their ability to construct a comprehensive patient model.
Complementary combinations increase the accuracy and helpfulness of the system.
We divide this general problem into the following four research questions (RQ):

RQ1: Is the Open Information Extraction Paradigm Suitable for Clinical Text
Understanding? Extracting relations between entities such as clinical concepts
is a central task in Information Extraction. Classical approaches require specifying
relations a priory and often rely on specifically designed extraction rules. The
ever-growing number of medical documents and the Zipfian nature of text pro-
hibits expensive human-curated adaption of these rules. The Open Information
Extraction paradigm aims to resolve the requirement of a priory specified rela-
tion schemata. Nevertheless, when comparing the extraction result mentioned
earlier, "(Metformin, cimetidine, can compete for, elimination)", with the
originating sentence by Triplitt, 2006: "Metformin and cimetidine, both cationic
(positively charged) drugs, can compete for elimination through kidneys by renal
tubular secretion." it becomes clear that OIE systems might lose important context
information. The dependence of most OIE methods on intermediate syntactic
representations is an additional challenge when confronted with clinical narratives
(Starlinger et al., 2017).

Text representations for CDSS require that rare entities and their relations
are extracted with high recall and without the loss of context. Clinical concepts
and assertive modifiers must be recognized accurately. As a result, we aim to
investigate the applicability of OIE systems in text-based clinical decision support
systems.

RQ2: Can Neural Text Representations aid Text-based Clinical Decision Sup-
port Systems? Neural Text Understanding Models commonly rely on distributed
text representations learned using pretraining tasks on large, diverse datasets
often taken from the web. The most common approach to obtain such text repre-
sentations is to train deep neural networks on unsupervised language generation
tasks. These neural text representations are helpful in downstream applications
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to capture the semantics of words in their context. By the nature of the widely
used language modeling pretraining task, these representations focus on local
context. A crucial capability is to capture the global context describing a patient’s
situation. Therefore, a clinical text representation must be able to identify coher-
ent passages in medical texts, recognize their topical facet, and capture single
sentences’ meaning given the context of the entire document.
Which type of representation is best suited to provide knowledge from EHRs

and medical literature, capturing both local and global context, is unclear.

RQ3: Are Text Representations Trained with Differing Pretraining Goals
Complementary? Language Modeling is a frequent pretraining task for text
representations used as a foundation in transfer learning settings. Other pretrain-
ing tasks, such as topic modeling or entity linking, require the model to focus on
different aspects of a text. Therefore, they capture varying granularity, context
size, and modality information. It is mandatory for text understanding models to
capture the meaning of clinical narratives and medical research text as completely
as possible to achieve the best result as a part of a patient representation. Iden-
tifying and combining complementary text representations can lead to holistic
representations that improve text-based clinical decision support systems. Whether
combining multiple generic and specialized text representations benefits CDSS is
an open question.

RQ4: How Effective are Deep Learning Enhanced Medical Information Seek-
ing Processes? The differential diagnosis process supports medical practitioners
in finding the most effective clinical pathway. We expect this process to be en-
hanced further by adding additional signals collected from hospital archives and
medical literature. Therefore, we design a Deep Learning enabled differential
diagnosis framework. This framework allows employing Deep Learning models
for typical tasks in the process, assisting medical practitioners. A prototypical
implementation of this framework should receive positive feedback when used by
medical practitioners.
Medical literature is another valuable source for supporting doctors in their

day-to-day work. Doctors might consult medical literature databases such as
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PubMed1 when searching for additional information regarding a complicated
case. However, even with PubMed’s filter capabilities, sorting, selecting, and
skimming the relevant literature is still time-consuming (Vibert et al., 2009; Yoo
and Mosa, 2015). A paragraph answer retrieval system that selects and ranks
topically coherent passages from medical literature could reduce the time spent on
literature research (Sarrouti and Ouatik El Alaoui, 2017). Such a system requires
a model to identify semantically coherent and relevant passages. Typical tasks
of neural topic models involve segmenting texts and assigning topical labels to
those passages. The intermediate distributed text representation such models
create in their hidden layers must represent this information to solve segmentation
and topic classification tasks. Therefore, this intermediate representation might
pre-cluster texts and adequately represent passage retrieval.

1.4.2. Contributions

The main contribution of this thesis is the design and application of the deep-
learning-enabled differential diagnosis process. This thesis will focus on three main
aspects of text-based clinical decision support systems: first discrete information
extraction and representation; second neural information representation; third,
the design and application of the deep-learning-enabled differential diagnosis
process. We investigate these aspects with respect to the research objectives stated
in Section 1.4.1. We summarize our work accordingly and provide insights into
our theoretical, practical, and empirical contributions:

Analyzing discrete information extraction and representation based on OIE

• We analyze OIE systems on multiple datasets and reveal a lack of stringent
task formulation and annotation policies. We observe that syntactic taggers
are a frequent error source that propagates errors down to the OIE system.
(Section 3.2.6)

• We find that the analyzed OIE systems often extract unnormalized and
over-specific relation tuples. (Section 3.2.6)

1https://pubmed.ncbi.nlm.nih.gov/
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• We argue that the reviewed OIE systems, which are already overfitting and
struggling with news datasets, are not suitable for application in clinical
narratives. (Section 3.2.6)

• We present RelVis, the first integrated benchmarking system for quantitative
and qualitative evaluation of OIE systems. (Section 3.2.5)

• We present a novel OIE system based on an in-memory database and report
execution times on large datasets in seconds and easy integration with
relational data. (Section 3.1.4 & Section 3.1.5)

Neural Text Representations for Clinical Applications

• We introduce PubMedSection, a novel dataset for medical topic segmentation
and classification. (Section 4.3)

• We extend the "senteval" benchmark (Conneau and Kiela, 2018) with Wiki-
Section (Arnold, Schneider, et al., 2019) and PubMedSection. (Section
4.4.2)

• We compare specialized text embeddings with general-purpose embeddings.
We report that language models lack topical information. (Section 4.4)

• We identify effective embedding combinations that yield holistic text rep-
resentations and achieve new state-of-the-art results in senteval. (Section
4.4.3)

Deep Learning enabled Clinical Decision Support

• We demonstrate that neural clinical concept recognition and topic segmen-
tation enable clinicians to search for topical facets of diseases. Furthermore,
we show that neural topic models such as SECTOR (Arnold, Schneider, et al.,
2019) allow selecting relevant answer passages. (Section 5.1.2)

• We propose the deep-learning enabled differential diagnosis process as
a framework to formalize and implement differential diagnosis support
systems. (Section 5.2.2)
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• We present results from our qualitative and observation studies involving
five clinicians that validate the deep-learning enabled differential diagnosis
process. (Section 5.2.4 & Section 5.2.5.1)

• We identify seven design challenges crucial for research and practical appli-
cation of text-based clinical decision support systems. (Section 5.2.5.2)

In addition to this thesis’s main contributions, we provided open-source im-
plementations of our work and contributed to open-source frameworks such as
OpenNLP1 and DeepLearning4j2. In this context, we have supervised theses that
explore additional lines of thought, recreate experiments from related literature,
and verify our work in practical applications. See Appendix A for details.

1.4.3. Limitations

Some approaches to designing text-based CDSS focus on specific auxiliary tasks,
such as clinical concept linking, assertion detection, or medical question answering.
Many CDSS are specialized, for example, on the properties of a specific disease.
In this thesis, we do not address the challenges that arise when focussing on a
specific disease or auxiliary task.

We do not discuss every aspect of the clinical decision-support process, as shown
in figure 1.1. We limit our scope to text data in this thesis and do not discuss the
problem of integrating latent text, image, and time-series representations into
a combined multi-modal patient representation. Also, we use for the candidate
retrieval (3) and clinical pathway prediction step (4) baseline models. Instead, we
focus on evaluating and designing clinical language understanding models that
are efficient in the clinical domain. Moreover, a clinical study on the effectiveness
of our proposed framework, extending the results of our preliminary user study, is
beyond the scope of this thesis.

1.5. Thesis Outline

We structure this thesis along the vision of the Deep Learning enabled differential
diagnosis process and three main topics exploring text representations for text-

1https://opennlp.apache.org/
2https://deeplearning4j.konduit.ai/
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based clinical decision support systems.

Chapter 1 - Introduction. We introduce the vision of the Deep Learning enabled
differential diagnosis process and motivate the need for robust, efficient text-
based clinical decision support systems. We discuss the challenges in medical text
understanding. We divide the main problem into three topics and motivate five
related research questions, which we explore in this thesis.

Chapter 2 - Background. We discuss the existing literature regarding text-based
clinical decision support and medical text understanding. We review the concept
of discrete text representation using features extracted with OIE methods. We
further summarize the idea of latent distributed language representations, which
pose a fundamental groundwork for Deep Learning based language understanding
models. Moreover, we relate the idea of neural text representations with patient
representation models based on related literature.

Chapter 3 - Analysing Open Information Extraction. Text-based CDSS require
high robustness, recall and, fast execution times from OIE systems to be useful.
Therefore, we create a benchmark to compare approaches to Open Information
Extractions. We analyze errors and complete error classes described in the litera-
ture with our results. We design RelVis, a benchmarking and error analysis tool
for open information extraction systems, to perform this analysis. Additionally, we
explore integrating OIE methods in a main-memory database system to increase
execution performance.

Chapter 4 - Neural Text Representations for Clinical Applications. We ex-
plore neural network-based latent text representations for medical use-cases. We
observe that medical literature, as well as clinical narratives, are structured with
topical coherent passages. Identifying locally dominant topics and their bound-
aries results in a valuable signal for medical text understanding models. We
engaged this challenge in-depth in Arnold, Schneider, et al., 2019. We analyze
and benchmark the resulting latent neural text representation and compare it to
other specialized and general purpose text representations. Moreover, we show
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that our model encodes knowledge that language modeling-based approaches,
such as ELMo (M. E. Peters et al., 2018) and BERT (Devlin et al., 2019), miss.

Chapter 5 - Deep Learning enabled Clinical Decision Support. We design the
Deep Learning enabled differential diagnosis support process to assist medical
practitioners in their day-to-day work. We analyze the steps necessary and model
each step as problems solvable with statistical and deep learning methods. We
identify medical passage retrieval and clinical pathway recommendation as core
problems. We solve both challenges in prototypes building upon our analyzes and
models. Furthermore, we validate the Deep Learning enabled differential diagnosis
process with a user study conducted on the clinical pathway recommendation
prototype.

Chapter 6 - Conclusion and Future Work. Finally, we conclude this thesis. We
discuss our results regarding the research objective formulated in section 1.4.1.
In addition, we present possible business perspectives that arise from the Deep
Learning enabled differential diagnosis support process.
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Background

In this chapter, we discuss the theoretical background of this thesis. First, we
discuss the field of computer-aided clinical decision support in Section 2.1. We
review text-based clinical decision support methods and common tasks such as
clinical concept recognition, clinical concept linking, cohort identification, and
clinical pathway recommendation. In section 2.2, we introduce the concept of open
information extraction. Following this, we discuss in section 2.3 the foundations of
distributed language representations, such as the Vector Space Model, language
models, topic models, and neural word embeddings. Finally, we discuss in section
2.4 how this thesis relates to the aforementioned related literature.

2.1. Clinical Decision Support Systems

Clinical Decision Support Systems (CDSS) intend to improve healthcare delivery by
enhancing medical decisions with targeted clinical knowledge, patient information,
and other health information (R. T. Sutton et al., 2020). Traditional CDSS gather
patient-specific characteristics andmatch them to amedical knowledge base. Based
on that, the system recommends clinical actions, diagnoses, or clinical pathways
to the clinician. Typical tasks of CDSS are disease-specific diagnostic support,
such as cancer detection on medical imaging, patient trajectory modeling, cohort
selection, and general-purpose clinical outcome prediction. Computer-aided CDSS
have been in the focus of research for multiple decades until now.
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Electronic Health Records (EHR) have been adopted widely (84% of US hos-
pitals in 2018) (Shickel et al., 2018) and pose a new clinical knowledge source for
decision support systems. EHR systems store data associated with each patient en-
counter. On the one hand, this data includes structured data such as demographic
information, diagnoses, performed laboratory tests and results, and prescriptions.
On the other hand, from an information systems perspective, unstructured data
such as medical images, diagnostics reports, clinical notes, and other clinical narra-
tives. The free-form text reports, notes, and letters are essential to communication
between medical practitioners. They provide detailed information about a patient’s
situation and crucial context to each EHR (Shickel et al., 2018; R. T. Sutton et al.,
2020).

The primary purpose of EHRs is internal hospital tasks such as administration,
billing, archiving medical data, and communication between medical practitioners.
Therefore, the data is often linked with medical classification schemas, controlled
vocabularies, and knowledge bases. Some examples include diagnosis codes
such as the International Statistical Classification of Diseases and Related Health
Problems (ICD), procedure codes such as the Current Procedural Terminology
(CPT), laboratory observations such as the Logical Observation Identifiers Names
and Codes (LOINC), and medication codes such as RxNorm (Shickel et al., 2018).
EHRs at hospitals and clinics can improve patient care by minimizing errors,
increasing efficiency, and improving care coordination while providing a rich data
source for researchers (Knake et al., 2016; Shickel et al., 2018). Many studies
report that EHRs are valuable knowledge sources for clinical decision support
systems (Shickel et al., 2018; R. T. Sutton et al., 2020).

Clinical decision support systems can aid in various tasks, such as patient pheno-
typing (Sharafoddini, Dubin, and J. Lee, 2017) and disease subtyping (L. Li et al.,
2015).We focus on the most crucial tasks for the differential diagnosis process.

2.1.1. Clinical Pathway Prediction

A clinical pathway is a set of therapy and treatment activities required to achieve
a specific treatment objective. A clinical pathway often involves several multi-
disciplinary treatment activities from admission to discharge and is founded on
evidence-based medical observations (Z. Huang, Dong, et al., 2014; Kinsman et al.,
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2010).
Clinical Pathway Prediction is the task of assessing the patient’s current situation,

providing recommendations on diagnostic or treatment steps, and predicting the
likelihood of clinical outcomes (Aspland, Gartner, and Harper, 2021; van Aken,
Papaioannou, et al., 2021). Therefore, the CDSS needs an in-depth understand-
ing of the patient’s situation and access to medical knowledge such as clinical
guidelines, medical literature, or clinical archives to derive best practices into
recommendations and predictions (Aspland, Gartner, and Harper, 2021; Z. Huang,
Dong, et al., 2014; Z. Huang, Z. Ge, et al., 2018; R. Liu et al., 2014).

2.1.2. Cohort Modeling

is the task of identifying patients that meet selection criteria to fit into a specified
cohort, e.g., patients with type 2 diabetes (Cui, Bozorgi, et al., 2012; L. Li et
al., 2015). Selecting these cohorts is essential for clinical research. Moreover, a
group of similar patients is also valuable in assessing a patient’s trajectory and
phenotype and deciding clinical pathways (Sharafoddini, Dubin, and J. Lee, 2017).
Recent studies explore the application of cohort modeling methods to discover
comorbidity clusters in autism spectrum disorders (Doshi-Velez, Y. Ge, and Kohane,
2014), personalized clinical decision-making (Bellazzi, Ferrazzi, and Sacchi, 2011;
Landi et al., 2020), and improvements in recruiting patients for clinical trials
(Cui, Bozorgi, et al., 2012; Miotto, L. Li, et al., 2016; Sarmiento and Dernoncourt,
2016).

2.1.3. Types of Clinical Decision Support Systems

R. T. Sutton et al., 2020 performed a meta-analysis of the benefits, risks, and
success strategies of CDSS ranging from 1980 until 2018. Thereby they categorize
the approaches by scope, for example, Patient Safety (Eslami et al., 2012; Mahoney
et al., 2007; McEvoy et al., 2017), Clinical Management (McMullin et al., 2004
Sep-Oct; Salem et al., 2018), Diagnostic Support (Cui, Bozorgi, et al., 2012; De
Fauw et al., 2018; Ronicke et al., 2019) or Patient Decision Support (Jungmann et
al., 2019). Besides this, they categorize the literature into rule-based (Cui, Bozorgi,
et al., 2012) or trained models (Arandjelović, 2015; Bakator and Radosav, 2018;
Miotto, F. Wang, et al., 2018). We extend this classification system by shedding
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light on the modality of the used data. Clinical decision support systems rely on
structured features, medical imaging, or text data. We will describe each data
modality in the following sections.

2.1.3.1. Medical Imaging-based CDSS

Medical Imaging-based CDSS approaches analyze unstructured medical images
in the medical modalities of radiology, nuclear medicine, and ultrasound (Born
et al., 2021; Gamble et al., 2021; Jadhav et al., 2020; Oakden-Rayner et al., 2017).
Most recent approaches to this task rely on deep-learning-based CNN (LeCun and
Bengio, 1995) and GAN (Goodfellow et al., 2014) models that emerged from the
field of computer vision. As a result, a substantial part of these approaches focuses
on disease-specific diagnosis support due to the task’s visual pattern-recognition
nature. For example, such models recognize breast cancer markers (Gamble et al.,
2021) or assess cardiac problems (Esteva et al., 2021; Georgiou et al., 2011;
Giardino et al., 2017; N. Zhang et al., 2019)

2.1.3.2. Structured Features-based CDSS

Structured Features-based CDSS examine structured and semi-structured data,
such as ICD-10 codes (Glicksberg, Miotto, et al., 2018; Landi et al., 2020), labora-
tory results (L. Li et al., 2015; W. T. Li et al., 2020; J. Sun et al., 2012), or time
series (Cui, Bozorgi, et al., 2012). The proposed methods use the structured data
as discrete input for classification or clustering methods (Cui, Bozorgi, et al., 2012;
L. Li et al., 2015) or convert them into a latent representation beforehand (Landi
et al., 2020; Miotto, L. Li, et al., 2016). In contrast to medical imaging-based
approaches, structured feature-based approaches apply to various tasks such as
selecting patients into relevant cohorts for research (Landi et al., 2020; L. Li et al.,
2015), precision medicine or modeling the patient trajectory (Miotto, L. Li, et al.,
2016).

2.1.3.3. Text-based CDSS

Text-based CDSS use the crucial context information recorded in free-text clinical
narratives to make predictions. These systems aim to capture patients’ clinical
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observations recorded as narrative text, including radiology reports, operative
notes, and discharge summaries, which comprise a significant portion of a patient’s
EHR (Demner-Fushman, Chapman, and McDonald, 2009). For example, Rajkomar
et al., 2018 create neural embedding vectors for clinical free-text as additional
input for predictive models. van Aken, Papaioannou, et al., 2021 follow a similar
approach using BioBERT (J. Lee, Yoon, et al., 2019) as a foundation. Ronicke et al.,
2019 propose a system that uses physicians’ free-text input to assist in diagnosing
rare diseases. Other approaches use clinical narratives for clinical information
retrieval (Koopman, Cripwell, and Zuccon, 2017), cohort selection (Sarmiento and
Dernoncourt, 2016; Sharafoddini, Dubin, and J. Lee, 2017; Zhu et al., 2014) or,
medical coding assistance (Bell, Jalali, and Mensah, 2013; Catling, Spithourakis,
and Riedel, 2018; Shi, 2017). A crucial clinical task that can benefit from the
analysis of EHRs is differential diagnosis. This task involves critically exploring
the patient’s history and physical examination and carefully reviewing the data
obtained in laboratories and diagnostic image settings (Altkorn, 2020; Croskerry,
2009).

2.1.3.4. Summary

An ideal clinical decision support system should examine all modalities to make its
predictions. This challenge is often not addressed and remains primarily unsolved
due to the complexity of each data modality. Much related work focuses on a
specific disease (De Fauw et al., 2018; Goldenberg, Nir, and Salcudean, 2019;
D. Jiang et al., 2020). We aim for a generally applicable system that uses machine
learning models.

2.2. Information Extraction

Information extraction methods capture knowledge from free-form text resources.
Commonly, they are used to extend or construct knowledge bases1 and databases,
or as a preparatory step in more complex text understanding applications. For
example, in: ‘An MRI revealed a C5-6 disc herniation with cord compression...’ such
a system should extract the following two relations (Q. Wei et al., 2020):

1https://tac.nist.gov/tracks/index.html
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1. TestRevealsProblem(MRI, C5-6 disc herniation)
2. TestRevealsProblem(MRI, cord compression)

Often, those methods require multiple pre-processing steps such as tokenization,
part-of-speech tagging, dependency parsing, and recognition and linking of entities,
which we briefly discuss in the following paragraphs.

2.2.1. Tokenization

Tokenization is the task of segmenting a sequence of characters into a semanti-
cally useful sequence of characters called tokens (C. D. Manning, Raghavan, and
Schütze, 2008). C. D. Manning, Raghavan, and Schütze, 2008 elaborate that "a
token is an instance of a sequence of characters in some particular document that
are grouped together as a useful semantic unit for processing." Tokens can be
whole words adhering to the Penn Treebank standard (Marcus, Santorini, and
Marcinkiewicz, 1993) or subword-oriented (Devlin et al., 2019; Jurafsky and
James, 2021; Sennrich, Haddow, and Birch, 2016; Y. Wu, Schuster, et al., 2016).
Tokenizers need to be efficient since tokenization is usually the most basic pre-
processing step applied to all NLP tasks. A word-oriented tokenizer has to handle
punctuation, special characters, and the ambiguity of words correctly. On the
contrary, trained tokenizers such as Byte-Pair-Encoding (Sennrich, Haddow, and
Birch, 2016), SentencePiece (Kudo and Richardson, 2018), or WordPiece (Y. Wu,
Schuster, et al., 2016) split a text into units best suited for their downstream
application.

2.2.2. Part-Of-Speech Tagging

Part-Of-Speech (POS) Tagging is the process of assigning a part-of-speech tag to
each word in a text (Jurafsky and James, 2021). The task of a POS tagger is to
disambiguate words using their context so that the correct POS tag is applied.
For example, "book" can be a verb (book that flight) or a noun (hand me that
book) (Jurafsky and James, 2021). The tagger, for example, has to decide which
of the 45 tags in the English-specific Penn Treebank tagset (Marcus, Santorini,
and Marcinkiewicz, 1993) is correct.

22 2 | Background



2.2.3. Dependency Parsing

Dependency Parsing aims to determine grammatical relations between words in a
sentence. These relations are usually binary and consist of a head and a dependent.
The parser assigns to the edge created between the words a dependency relation
type such as nominal subject (NSUBJ), direct object (DOBJ), or others provided
by, for example, the Universal Dependency typeset (De Marneffe et al., 2014;
Nivre et al., 2016). The resulting dependency tree provides valuable information
for many applications, such as clinical concept recognition, open information
extraction, or question answering.

2.2.4. Named Entity Recognition

Named Entity Recognition (NER) is the task of identifying words mentioning
real-world instances of, e.g., persons, organizations, or locations. A standard
approach is formulating entity recognition as a span detection problem addressed
by sequence labeling (Jurafsky and James, 2021). A specific case of NER is Clinical
Concept Recognition, which specializes in identifying words that mention clinical
concepts in a text (Jauregi Unanue, Zare Borzeshi, and Piccardi, 2017; Si et al.,
2019; Y. Wu, M. Jiang, et al., 2018). For example, in ‘The patient reports a history
of cancer in her family.’ an NER model recognizes the term cancer, but this term is
ambiguous and may refer to multiple concepts such as ‘breast cancer’ or ‘colon
cancer’ (Jurafsky and James, 2021; Schumacher, Mulyar, and Dredze, 2020).
Therefore, the found concept mention needs to be disambiguated and associated
with unique identifiers in standardized ontologies, such as UMLS (Bodenreider,
2004). This task is known as named entity linking and, in this specialized case,
called clinical concept linking (Aronson and Lang, 2010 May-Jun; Fu et al., 2020).

2.2.5. Classical Information Extraction

Classical Information and Relation Extraction Methods apply extraction rules rely-
ing on the aforementioned intermediate structures to transform the unstructured
free-form text into predefined schemas (Kilias, Löser, and Andritsos, 2015; Kr-
ishnamurthy et al., 2009). These approaches are easy to debug, permit the user
a high level of direct control over the extraction process and can outperform
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machine-learning based models (Chiticariu, Y. Li, and Reiss, 2013). This method
requires multiple NLP system passes over the target text. Moreover, it assumes all
relations’ schema and extraction rules are known a priori. As a consequence, many
information extraction systems are domain-dependent. Worse, the Zipfian nature
of natural language (C. Manning and Schutze, 1999) causes this approach to lose
significant amounts of recall. These two problems negatively affect downstream
applications (Etzioni et al., 2011; Pink, Nothman, and Curran, 2014).

2.2.6. The Open Information Extraction Paradigm

The Open Information Extraction (OIE) Paradigm aims to solve these problems
by capturing all relations from heterogeneous texts in a single pass without pre-
specifying which schemata or special extraction rules (Banko et al., 2007; Etzioni
et al., 2011). Subsequently, OIE strives for the three following goals: (1) domain
independence, (2) unsupervised extraction, and (3) scalability to large amounts of
text (Del Corro and Gemulla, 2013; Niklaus, Cetto, et al., 2018). OIE modifies the
relation extraction task to achieve these goals. Instead of matching a predefined
schema, OIE systems search for relational predicates and extract n associated
arguments (Akbik and Löser, 2012; Del Corro and Gemulla, 2013; M. Mausam,
2016). Some task formulations include extracting additional semantic features,
such as the subject of the relation, clausal modifiers, or attributions (Gashteovski,
2020; M. Mausam, 2016; Stanovsky, J. Michael, et al., 2018). For example, for
the sentence: ‘Since then, she had a "massive headache", which did not resolve with
Tylenol.’ the model of Stanovsky, J. Michael, et al., 2018 yields the following
relations:

1. had(Since then [argm-tmp], she [subject], a "massive headache" which did
not resolve with Tylenol)

2. resolve(a "massive headache" [subject], which [R-subject], not [argm-neg],
with Tylenol)

Researchers explore the capabilities of the open information extraction paradigm
and the resulting intermediate structure in numerous downstream tasks, including
question-answering (Fader, Zettlemoyer, and Etzioni, 2013; Khot, Sabharwal,
and Clark, 2017; Z. Yan et al., 2018), information retrieval (Boden et al., 2011;
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Kadry and Dietz, 2017), slot filling (Angeli, Premkumar, and C.D. Manning,
2015; Soderland et al., 2013; D. Yu, L. Huang, and H. Ji, 2017), knowledge
base population (Lin et al., 2020; Wolfe, Dredze, and Van Durme, 2017), clinical
concept linking (X. Wang et al., 2018), biomedical literature search (Q. Li et
al., 2018; X. Wang et al., 2018), and biomedical knowledge graph construction
(Finlayson, LePendu, and Shah, 2014).

2.2.6.1. Rule-based Open Information Extraction

Rule-based OIE Methods rely on extraction rules handcrafted by experts. These
rules rely on semantic and syntactic annotations provided by NLP systems such
as POS taggers or Dependency parsers. For example, ReVerb (Fader, Soderland,
and Etzioni, 2011) uses POS-based regular expressions to describe its extraction
rules. Other approaches (Akbik and Bross, 2009; Akbik and Löser, 2012; Angeli,
Premkumar, and C.D. Manning, 2015; Christensen, Soderland, Etzioni, et al.,
2011; Etzioni et al., 2011; Fader, Soderland, and Etzioni, 2011; Gashteovski,
Gemulla, and del Corro, 2017; M. Mausam, 2016; Niklaus, Bermeitinger, et al.,
2016; Niklaus, Cetto, et al., 2018; Pal and Mausam, 2016; Saha, 2018; Stanovsky,
Dagan, andMausam, 2015) such as ClausIE (Del Corro and Gemulla, 2013), utilize
grammatical knowledge to formulate extraction patterns based on dependency
parses. While delivering high precision and domain independence, covering all
relevant extraction rules to achieve high recall is labor-intensive. Systems like OllIE
(Mausam et al., 2012) or WOEparse (F. Wu and Weld, 2010) use bootstrapping
methods to learn extraction patterns, starting with handcrafted seed rules, in a
semi-supervised manner (Del Corro, 2016; Gashteovski, 2020; Niklaus, Cetto,
et al., 2018). Since these approaches rely on an NLP pipeline, they suffer from
recall loss similar to NEL systems, as stated in the analysis of Pink, Nothman, and
Curran, 2014.

2.2.6.2. Deep-learning-based Open Information Extraction

Deep-learning-based Methods vastly increase the capability of OIE systems. The
recent successes in transfer learning using word embeddings (Mikolov, K. Chen,
et al., 2013; Pennington, Socher, and C. Manning, 2014) and transformer-based
language representations, such as BERT (Devlin et al., 2019), are valuable foun-
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dations for deep-learning-based OIE systems (Kolluru, Adlakha, et al., 2020;
Kolluru, Aggarwal, et al., 2020). Recent literature explores three variations of
the formulation of OIE as a deep-learning task (Kolluru, Aggarwal, et al., 2020).
Sequence-labeling-based approaches such as RnnOIE (Stanovsky, J. Michael, et al.,
2018) and SenseOIE (Roy et al., 2019) assign a label to every token in a sentence
based on the previous decisions and input. Cui, F. Wei, and Zhou, 2018, and
M. Sun et al., 2019 formulate OIE as a text generation problem and use sequence-
to-sequence learning to solve it. Zhan and H. Zhao, 2020 and T. Jiang, T. Zhao,
et al., 2020 formulate OIE as a span selection problem:

1. Their model predicts the position of the predicate span begin and end.
2. They generate possible spans for arguments of the relations.
3. They filter the arguments by constraints and assign each remaining argument

to a relation.

As for many NLP tasks, deep-learning-based approaches are becoming the de
facto standard for state-of-the-art OIE models. The generalizability and advances
in transfer learning allow such models to exploit knowledge captured in pretraining
tasks, for example, language modeling. We will discuss the fundamentals and
capabilities of such neural text representations in more detail in Section 2.3.

2.3. Neural Text Representation

Representing natural language text for machine learning models is a non-trivial
task. Text representations need to be computationally efficient yet cover all
relevant aspects of language, such as semantics, syntax, global context, and local
context. In this section, we first revisit the distributional hypothesis, which forms
the theoretical foundation of this research branch. Next, we describe attempts
at discrete and latent text representations. Subsequently, we discuss the impact
of contextualized text representations such as Elmo (M. E. Peters et al., 2018),
BERT (Devlin et al., 2019), and GPT (Brown et al., 2020). The biomedical domain
provides unique challenges for text representations, which we discuss next. We
also revisit text representation approaches specific to the biomedical domain. After
presenting benchmarks and probing tasks, we investigate alternative pretraining
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tasks to learn powerful text representations covering diverse textual modalities.
Next, we discuss methods to combine differing text representations. Finally, we
show recent applications of neural text representations and summarize the relevant
related work.

2.3.1. Distributional Hypothesis

Capturing the meaning of words in an efficient representation is crucial for any
language processing method. Current statistical and machine learning approaches
rely on the idea that its co-occurrences in a text collection can capture the meaning
of a word (Harris, 1954). Firth, 1957; Firth, 1961 formulated the distributional
hypothesis in 1957 as: "a word is characterized by the company it keeps." Many
researchers picked this concept up, reformulated it slightly, and found empirical
proof (Rubenstein and Goodenough, 1965; Schütze and Pedersen, 1995) that
there is a correlation between distributional similarity and meaning similarity
(Sahlgren, 2008). This correlation allows utilizing the distributional similarity to
estimate the meaning of words (Sahlgren, 2008).

Sahlgren, 2008 embeds the empirical distributional hypothesis into the theoret-
ical framework of linguistic structuralism. Therefore, he introduces syntagmatic
and paradigmatic relations between words that de Saussure et al., 1983 initially
formulated:

Syntagmatic Relations concern positioning and relate entities that co-occur in
a text. Syntagmatic relations are combinatorial relations, meaning that words
that enter into such relations can be combined. A syntagm is such an ordered
combination of linguistic entities. For example, written words are syntagms of
letters, sentences are syntagms of words, and paragraphs are syntagms of sentences
(Sahlgren, 2008).

Paradigmatic Relations concern substitution and relate entities that do not
co-occur in the text. Paradigmatic relations are substitutional relations, which
means that linguistic entities have a paradigmatic relation when the choice of
one excludes the choice of another. A paradigm is thus a set of such substitutable
linguistic entities (Sahlgren, 2008).
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Sahlgren, 2008 concludes that distributional approaches to meaning acquisi-
tion rely on syntagmatic and paradigmatic relations between words. Finally, he
formulates the refined distributional hypothesis:

"A distributional model accumulated from co-occurrence information
contains syntagmatic relations between words, while a distributional
model accumulated from information about shared neighbors contains
paradigmatic relations between words." (Sahlgren, 2008)

We will briefly examine models that build upon the refined distributional hypoth-
esis in the following. Furthermore, we will discuss discrete statistical models, the
first approaches to applying the distributional hypothesis. With the reemergence
of neural network-based models, these statistical models laid the groundwork
for neural natural language models, an essential building block for many NLP
systems.

2.3.2. Statistical Text Representations

Researchers based the first attempts to capture the meaning of words on co-
occurrence statistics. A simple model of this type is the bag of words (Harris,
1954; Sahlgren, 2008). It holds word occurrence counts inside a context window
and represents present words with a non-negative integer. A word-document
matrix can describe this representation where each row represents a word and
each column a document in which it occurs. Bag of words is a simple method to
capture syntagmatic relationships between words (Sahlgren, 2008) using discrete
features. The vector space resulting from the word-document matrix can determine
the similarity between words and documents using a distance function, e.g., the
inner product (Salton, Wong, and C.-S. Yang, 1975; Salton, C.-S. Yang, and C. T. Yu,
1975). When the occurrence counts for two vectors are identical, the angle will
be zero, producing a maximum similarity measure (Salton, Wong, and C.-S. Yang,
1975; Salton, C.-S. Yang, and C. T. Yu, 1975).

tf(t, d) =
ft,d
∑︁

t ′∈d ft ′,d
(2.1)
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IDF (qi) = ln
�

N − n (qi) + 0.5
n (qi) + 0.5

+ 1
�

(2.2)

score(D,Q) = tf(t, d) · IDF (qi) (2.3)

Salton, Wong, and C.-S. Yang, 1975; Salton, C.-S. Yang, and C. T. Yu, 1975,
improve this simple model by adding weighting terms based on term frequency
(Equation 2.1) and the inverse document frequency (Equation 2.2). The TF-IDF
weighting term enriched the captured document-local context information with
corpus-wide observations, helping to find discriminative terms (Equation 2.3).
A notable downside of this approach is the generated vector space model’s

sparseness and inability to capture words’ meaning adequately.
Statistical language models represent language by the conditional probability

of the next word given all the previous ones in a context window (Equation 2.4).
Discrete statistical language models often aim to capture the meaning of single
words in the vocabulary (Bengio et al., 2003).

2.3.3. Distributed Text Representations

Vector spaces resulting from discrete statistical language models are often sparse.
Worse, when the number of values each discrete variable can take is extensive,
most observed objects are almost maximally far from each other in the hamming
distance (Bengio et al., 2003). Therefore, Bengio et al., 2003 propose a neural
language model that uses neural networks to learn a smooth distribution function
of word sequences. They associate a learned continuous real-valued vector with
each word in a lookup table to represent word similarity. In contrast to "bag of
words" models, this feature vector is often much smaller and independent of the
vocabulary size. Bengio et al., 2003 use a neural network model that maximizes
the parameter theta for the log-likelihood of co-occurring words (w) in the training
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data to learn these feature vectors (Equation 2.4).

L =
1
T

∑︂

t

log f (wt , wt−1, · · · , wt−n+1;θ ) + R(θ ) (2.4)

The neural language modeling paradigm allows a high level of generalization
(Bengio et al., 2003; Bojanowski et al., 2017; Brown et al., 2020; Devlin et
al., 2019; M. Peters et al., 2017), capturing meaningful syntactic and semantic
regularities (Mikolov, Yih, and Zweig, 2013; van Aken, B. Winter, et al., 2019).
Building on this model, Mikolov, K. Chen, et al., 2013 propose the continuous bag
of words (CBOW) and skip-gram training regimes for their word2vec model:

CBOW , unlike the standard bag-of-words model, uses a continuous distributed
representation of the context of a word. The CBOW model trains to predict a
word given a context window. The correct words for similar contexts probably
differ in an extensive training data set, emphasizing the paradigmatic relationship
between words.

The Skip-gram Regime trains to predict a word based on another word in the
same sentence and emphasizes syntagmatic relations between words. The model
uses each current word as an input to a log-linear classifier with a continuous
projection layer and predicts words within a specific range before and after the
current word.
Le and Mikolov, 2014 extend the word2vec framework to represent sentences

and paragraphs with their paragraph vectors model. Pennington, Socher, and
C. Manning, 2014 present a similar approach for capturing meaningful semantic
and syntactic information about words with GLOVE. Bojanowski et al., 2017
extend word2vecs’ skip-gram model with character n-grams to enable the model
to capture the internal structure of words. Therefore, they represent each word
as a bag of character n-grams and calculate the final word vector by summing
over all bag elements. Introducing sub-word units into the neural language model
paradigm was crucial for handling rare words and out-of-vocabulary situations.
Moreover, the captured morphological properties of words are beneficial when
handling morphological-rich languages (Bojanowski et al., 2017) or biomedical
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texts (J. Lee, Yoon, et al., 2019; Y. Zhang et al., 2019). Another approach to
deal with out-of-vocabulary words is to learn a subword representation in a data-
driven way. For example, WordPiece (Y. Wu, Schuster, et al., 2016) and Byte Pair
Encoding (Sennrich, Haddow, and Birch, 2016) learn subword representations
that segment words using a set of character sequences of variable size. These
representations learn to minimize the vocabulary size while maintaining a high
language-model likelihood of the training data. This method balances characters’
flexibility and the efficiency of words (Y. Wu, Schuster, et al., 2016).

2.3.4. Contextualized Distributed Text Representations

A significant drawback of the approaches mentioned earlier to text representation
is their lookup table-like nature. In those approaches, every word has a single
vector representing it without considering the context of the current text. For
example, in the following sentences, the word "system" is associated with the same
word vector regardless of the context it appears in:

"The lymphatic system, [...] is an organ system."1

"A clinical decision support system can help medical professionals."

Consequently, this single-word vector must capture all the different meanings of
the word "system," leading to non-optimal performance. However, high-quality
text representation should ideally model both complex characteristics of words
(e.g., syntax and semantics) and how these characteristics vary across different
syntagmatic and paradigmatic contexts (M. E. Peters et al., 2018). M. E. Peters
et al., 2018 shifted the paradigm of obtaining word vectors from learned lookup
tables towards assigning each token a representation that is a function of the
entire input sentence. This approach is comparable to the Skip-Thought sentence
representation proposed by Kiros et al., 2015. Many researchers (Brown et al.,
2020; Devlin et al., 2019; Gu et al., 2021; Radford, J. Wu, Child, et al., 2019; Raffel
et al., 2020) follow this idea with slight variations to create high-performing base
models using unsupervised pretraining objectives. The resulting models deliver
text understanding capabilities that transfer-learning methods, such as model
fine-tuning (Devlin et al., 2019), can transform into classification performance.

1Wikipedia, Lympathic system: https://en.wikipedia.org/wiki/Lymphatic_system
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The transformer architecture has recently become widespread and successfully
applied for large pre-trained language models (Vaswani et al., 2017). Contrary
to the approach of M. E. Peters et al., 2018; M. Peters et al., 2017 and Kiros
et al., 2015, who use (bi-directional) LSTMs (Z. Huang, W. Xu, and K. Yu, 2015))
with forget gates (Gers, J. A. Schmidhuber, and Cummins, 2000). Despite the
widespread success of large language models in generalizing various text-related
tasks (A. Wang, Pruksachatkun, et al., 2019; A. Wang, Singh, et al., 2018), re-
searchers still observe a domain dependence (Gu et al., 2021; Peng, S. Yan, and
Lu, 2019). Consequently, researchers propose domain-specialized pre-trained
language models, e.g., biomedical texts (Gu et al., 2021; J. Lee, Yoon, et al., 2019;
Peng, S. Yan, and Lu, 2019). These domain-specialized models often perform
better in handling biomedical entities or dealing with the characteristics of clinical
narratives. As reported by Devlin et al., 2019; Mikolov, K. Chen, et al., 2013;
M. E. Peters et al., 2018; M. Peters et al., 2017; Sahlgren, 2008, the information
captured about words by a text representation highly depends on the pretrain-
ing task. Mikolov, K. Chen, et al., 2013 Skipgram-based model focuses more on
paradigmatic relationships, while their CBOW training goal emphasizes learning
syntagmatic relations. M. E. Peters et al., 2018; M. Peters et al., 2017 note the
shortcomings of context in text representations and propose the bi-directional
language model pretraining goal. Here, a model learns to take a larger context
window into account and condition the vectors of a token on past and future words.
Devlin et al., 2019 propose masked language modeling as an alternative. In this
setting, a model needs to predict a masked word given future and past tokens.
Additionally, they note that models often lack to learn multiple sentences spanning
relationships. To combat this problem, they suggest next-sentence prediction as
an additional simultaneously learned pretraining task.

2.3.5. Specialized Text Representations

While the approaches mentioned earlier focus on variations of the language model-
ing pretraining goals, other researchers explore task-specific text representations.
These alternatives capture different textual modalities since they need a different
focus to capture the information required to solve their pretraining task.
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2.3.5.1. Topic Modeling

Topic Modeling is the task of discovering the discussed topic in documents or
other granularities. Commonly, this task was accomplished using probabilistic
models, such as Latent Dirichlet Allocation (LDA) (Blei, 2012; Blei, A. Y. Ng, and
Jordan, 2003). This model spans a latent vector space in which topically similar
portions of text form topical clusters. Building on the idea of latent word and
document vectors, J. Liu et al., 2016 represent documents with vectors of closely
related domain keyphrases. Bhatia, Lau, and Baldwin, 2016; Dieng et al., 2017
propose neural networks for topic-modeling-inspired tasks to obtain neural topic
embeddings. Inherently, these models focus on the aboutness of a textual unit and
need to focus on more extended contexts.

2.3.5.2. Entity Modeling

Entity Modeling is the process of representing entities or concepts in a text. The
resulting representation helps disambiguate entity or concept mentions, e.g., med-
ical conditions in clinical narratives (Choi, Chiu, and Sontag, 2016; Schumacher
and Dredze, 2019; Schumacher, Mulyar, and Dredze, 2020). Kiela, C. Wang, and
Cho, 2018 use latent entity representation for record linkage. Y. Ji et al., 2017
enrich the neural language model with an entity prediction training goal. This
task formulation requires the neural network to condition entity vectors on the
current textual context. It, therefore, emphasizes the model to capture additional
paradigmatic relations in the resulting entity vector space. Similarly, Ling et al.,
2020 propose to use the masked language modeling training goal to learn long-
range paradigmatic relations. M. Chen et al., 2019 propose EntEval, a specialized
benchmark for entity focus text-representations.

2.3.6. Holistically Capturing Textual Modalities

It is ongoing research to benchmark neural text representations for their general
performance on natural language understanding tasks (M. Chen et al., 2019;
A. Wang, Pruksachatkun, et al., 2019; A. Wang, Singh, et al., 2018), captured
linguistic properties (Conneau, Kruszewski, et al., 2018; Ethayarajh, 2019; Köhn,
2015), and domain specificity/generality (Gu et al., 2021; Peng, S. Yan, and Lu,
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2019). To excel in all these benchmarks is the goal of holistic text representations,
which would allow a general base model for all text-related machine-learning
tasks. Multiple branches of research investigate methods to achieve this goal. We
categorize these branches into three categories: implicit learning, explicit learning,
and explicit combination.

Implicit Learning is the idea that a model, often a language model, will learn
a holistic text representation solely by observing enough text examples. Many
large language models such as BERT (Devlin et al., 2019), ELMo (M. E. Peters
et al., 2018), T5 (Raffel et al., 2020), GPT2 (Radford, Narasimhan, et al., 2018),
and GPT3 (Brown et al., 2020) fall into this category. While implicit learning
approaches have advanced the boundaries for many language understanding tasks,
work in the explicit learning category reports some shortcomings.

Explicit Learning formulates specific pretraining tasks intending to enable the
model to capture the information required to solve various tasks, which might
require focusing on grammatical structure, local entity contexts, or document-
wide context. Often this is done in multi-task learning (Sanh et al., 2022; J. Wei
et al., 2022) settings. A downside of this approach is that a reasonable amount
of training data for the specific pretraining tasks needs to be available, which is
contrary to the self-supervised language modeling task or explicit combination
approaches.

Explicit Combination of text representations aims to apply a combining function
on two or more learned text representations that preserve each base representa-
tion’s properties. This line of research is inspired by multi-modal representations
such as image-text embeddings (Balaneshin-kordan and Kotov, 2018; Jain et al.,
2021; Mroueh, Marcheret, and Goel, 2015). Building on the hypothesis that
differing pretraining goals and data requires the model to capture differing text
modalities, researchers aim to combine complementary text embedding to achieve
a holistic representation (Coates and Bollegala, 2018; Kiela, C. Wang, and Cho,
2018; Muromägi, Sirts, and Laur, 2017; Rettig, Audiffren, and Cudré-Mauroux,
2019; L. Wu et al., 2018; Yin and Schütze, 2015).
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2.4. Discussion

In this chapter, we have discussed clinical decision support systems. We have
investigated typical tasks, challenges, and approaches of text-based CDSS. To be
successful in supporting medical professionals, a text-based CDSS needs to capture
a broad understanding of the case at hand and might exploit clinical archives as a
knowledge base.

Traditional information extraction methods like the Open Information Extraction
paradigm, often rely on discrete syntactic and semantic processing combined
with expert-written extraction rules. These approaches might deliver valuable
knowledge representations given the large scale of typical clinical archives.
Another approach to dealing with the challenges of clinical text is neural text

representation. Unlike traditional information extraction methods, these latent
text representations enable decision-making models to access a broader scope
regarding information density and context information. Furthermore, we argue
that neural text representations can be a valuable building block in holistic multi-
modal neural patient representations that enable clinical decision support as an
end-to-end task.

In the scope of this thesis, we follow the traditional approaches to information
extraction and clinical decision support. We evaluate the suitability of the discrete
information extraction methods in the differential diagnosis process (Figure 1.1).
Moreover, we design neural text representations to capture topical information that
language modeling-based approaches often miss. Since a holistic understanding of
a medical case is crucial for CDSS, we investigate which combination of specialized
neural text representations is most beneficial. We understand these informa-
tion extraction and representation methods as enablers for a holistic end-to-end
differential diagnosis support system.
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Analysing Open Information
Extraction

Deriving clinical situation awareness from EHRs requires adaptable and scalable
approaches to generate actionable insights from clinical notes and other written
medical reports. The Open Information Extraction paradigm allows extracting
relational information between entities, concepts, and events without a predefined
schema.

In this chapter1, we approach RQ1: "Is the Open Information Extraction Paradigm
Suitable for Clinical Text Understanding?" We investigate this question in a two-
fold way. First, we implement an In-Database Open Information Extraction system
aiming for fast execution times and integration with additional structured knowl-
edge sources. Therefore, we implement an OIE system in the Exasol Main Memory
Database System2 (Section 3.1). We investigate the runtime performance of this

1This chapter was published in the following articles:
R. Schneider, C. Guder, T. Kilias, A. Löser, J. Graupmann, and O. Kozachuk (2016). ‘Interactive
Relation Extraction in Main Memory Database Systems’. In: Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: System Demonstrations. Vol. 26. Systems
Demonstrations, pp. 103–106. (Visited on 01/03/2017)
R. Schneider, T. Oberhauser, T. Klatt, F. A. Gers, and A. Löser (2017a). ‘Analysing Errors of Open
Information Extraction Systems’. In: Building Linguistically Generalizable NLP Systems.
Copenhagen, Denmark
R. Schneider, T. Oberhauser, T. Klatt, F. A. Gers, and A. Löser (2017b). ‘RelVis: Benchmarking
OpenIE Systems.’ In: International Semantic Web Conference (Posters, Demos & Industry Tracks)

2https://www.exasol.com/
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system. Moreover, we demonstrate its capabilities to combine existing structured
knowledge sources with extracted relational tuples.

Secondly, we analyze the quality of Open Information Extraction Systems in an
integrated benchmark (Section 3.2). We create a conclusive benchmark using four1
publicly available datasets (Section 3.2). We base our evaluation use cases on news
analytics and supply chain risk management due to a lack of annotated datasets
at the time of writing. (Section 3.2.2) We perform a quantitative evaluation using
automated measurements and a manual qualitative analysis. (Section 3.2.3) We
report scores for commonly known error classes and introduce "Out of Scope"
as an additional error class (Section 3.2.4). In Section 3.2.5, we introduce our
benchmarking toolkit and give insights on the system design and a walkthrough of
our evaluation procedure. Finally, conclude this chapter in section 3.3 and review
the posed research question.

3.1. Open Information Extraction in Main-Memory Database
Systems

We present INDREX-MM, a main-memory database system for interactively ex-
ecuting two inter-woven tasks: declarative relation extraction (Krishnamurthy
et al., 2009) from text and their and downstream analysis with SQL. INDREX-MM
simplifies these tasks for the user with powerful SQL extensions, executing open
information extraction and integrating relation candidates with domain-specific
data. We demonstrate these functions on 800k documents from Reuters RCV1
with more than a billion linguistic annotations and report execution times in the
order of seconds.

3.1.1. Introduction

Relation Extraction (RE) is the task of extracting semantic relations between two
or more entities from text as defined in Section 2.2.5. The resulting relations are
often loaded into a relational database system for further processing.

1Which were available at the time of publication. After publishing this chapter, the research
community published new annotated datasets (T. Jiang, Zeng, et al., 2021; Kuebler, Tong, and
M. Jiang, 2021; Stanovsky and Dagan, 2016).
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Figure 3.1.: C4 Container diagram1 illustrating the architecture of INDREX-MM.

Use Case and Task Description: While browsing news, a supply chain analyst
researches product recalls of suppliers of a car rental company. She desires to
complement an existing table productrecall(supplier, product) with relations ex-
tracted from news text. Currently, the user performs these tasks with two separate
systems: a system for extracting a relation productrecall(supplier, product), such
as described by Krishnamurthy et al., 2009, and a relational database manage-
ment system (RDBMS) for joining, grouping, aggregating and ordering. In a
typical workflow, the user ships existing tables from the RDBMS to bootstrap text
extraction systems and returns extracted relations to the RDBMS for analytical
queries. This costly workflow is iterated until an analytical query reveals the
desired insights. Moreover, the user must learn to manage both systems.

System Description. Ideally, users could execute analytical and relation extrac-
tion tasks in a single database system and leverage built-in query optimizations.
Another crucial requirement is interactive query execution, particularly for extract-
ing rare relation types with high recall and precision. We demonstrate INDREX-MM,
a Main-Memory Relational Database System (MM-RDBMS) that permits this func-
tionality as a fast backend for interactive relation extraction applications, such as
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Figure 3.2.: Relation Extraction process using Open Information Extraction in
INDREX-MM.

in (T. Michael and Akbik, 2015), clinical decision support systems like (Schmidt
et al., 2021) or on the command line.
INDREX-MM provides broad and powerful SQL-based query operators for re-

lation extraction. These include query predicates for detecting span proximity,
predicates for testing overlapping spans or span containment, scalar functions
for returning the context of a span, or user-defined table-generating functions for
consolidating spans. Further, the system supports executing regular expressions
and built-in operators from the RDBMS, such as joins, unions, or aggregation func-
tions. These additional operators permit the user basic operations for looking up
words in sentences describing entities or other potential relation arguments. The
system also supports the user learning about potential open relation candidates
where these words appear or about distributions of potential synonymous relation
names. Finally, we support the user in investigating new relations. We follow the
data structure design concepts of Kilias, Löser, and Andritsos, 2015, who discuss
details in-depth and report extensive performance evaluations.

INDREX-MM relies on EXASOL1, a parallel main-memory and column-oriented
database. It permits integration via standard interfaces, such as JDBC, or business
intelligence tools, like Tableau. The high-level system architecture is shown in
Figure 3.1.

3.1.2. System Initialization

We demonstrate how INDREX-MM supports the user in three elementary steps
during the declarative relation extraction process, for which figure 3.1.2 gives a
high-level overview. Each of these steps ’filters out’ irrelevant sentences and only
keeps sentences containing relations of the type productrecall(supplier, product).

1https://www.exasol.com/
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Batch Loading. First, the analyst loads base annotations in a flat, sparse, and
cache affine data structure. Text mining workloads rarely require full scans of
all table data but do often require full scans of a small subset of the columns.
Our base table layout from (Kilias, Löser, and Andritsos, 2015) supports such
workflows. This schema partitions data per (document, span); we denote a span
with its beginning and ending characters. Many operations on text are ’local’ on
a single document. Hence, our partition scheme permits an MM-RDBMS to ship
data for a single document ’close’ to the CPU and in orders of magnitude faster
cache structures. We provide additional attributes denoting annotation types for
each span, such as tokenization, sentence recognition, part-of-speech tagging,
named entity recognition, user-defined types, dependency tagging, or noun- and
verb-phrase chunking. We add attributes for referencing spans to containment
relations in the same document. For example, a span for a sentence may contain
additional spans denoting organizations. Such a flat and sparse table layout pre-
joins data already at data loading time and avoids most joins at query execution
time. Because of the columnar table layout in an MM-RDBMS, NULL values in
attributes do not harm query execution time.

3.1.3. Filtering Relation Candidates with Open Information Extraction.

From a database perspective, we understand Open Information Extraction (OIE)
(See Section 2.2) as selective filters connecting arguments in sentences. Recent
work in clause-based OIE (Del Corro and Gemulla, 2013) shows effective filters
for n-ary relations. INDREX-MM supports OIE as a black box or as customizable
and debuggable database views: One approach is executing OIE outside an MM-
RDBMS as a black box, loading results into an OIE table, and reference spans to
the annotation table. We noticed that such black boxes are difficult to debug and
break with the programming paradigm of the database, and if the code does not
match the corpus requirements of the user, she must wait for an update of the OIE
system. On the contrary, we provide the user in INDREX-MM a set of ’ ready-to-use
OIE filters in SQL as views and user defined functions, as shown in Figure 3.3.
The user can add SQL predicates from additional OIE approaches, as proposed by
Angeli, Premkumar, and C. D. Manning, 2015, and can debug directly on her text
corpus while the MM-RDBMS handles optimizing the execution.
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(a) Extraction query and result example.

(b) Dependency parse and phrase chunks used in extractor query.

Figure 3.3.: Query example of an Open Information Extraction pattern.
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3.1.4. Joining OIE Relations with Domain Data

After the first step, relations connect two or more relation arguments. However,
we need to filter out irrelevant relations and keep relations of our desired type
productrecall. For example, we keep relations connecting a company with pred-
icates, such as ’recalls’ and ’withdraws,’ and discard relations with ’sold’ or ’has
refused.’ For executing this task and similar to universal schemas (Riedel et al.,
2013), we join arguments of OIE relations with in-house domain-specific relations
representing the same semantic type, such as a table describing product recalls of a
company’s suppliers. As a result, our universal schema represents relations, mainly
candidate patterns of our desired relation type and a few patterns for other types
(see Figure 3.4a). The fast execution performance of INDREX-MM permits the
user to manually filter out these irrelevant patterns. For example, she aggregates,
groups, and counts patterns with standard SQL, orders patterns by frequency,
and marks unsuitable patterns (see Figure 3.4). For spotting additional semantic
patterns, we provide synonyms from Wordnet (Fellbaum, 1998). INDREX-MM
also supports loading existing lexical patterns from the literature in a table, such
as Hearst patterns (Hearst, 1992) or patterns from ConceptNet (Speer, Chin, and
Havasi, 2017). The user can execute a join and utilize these patterns as additional
filters for OIE candidates (see also Akbik and Löser, 2012).

Selectional Restrictions and Enhancing Recall. For further enhancing recall,
the user keeps lexical patterns for predicates from the last step but applies various
selectional restrictions to arguments. INDREX-MM supports selectional restrictions
to one or many argument types. For example, the user may keep the company
name of relations from the second step but relax the second argument. As a
result, she may spot new relations of productrecall(supplier, product), in particular
relations between previously known companies and previously unknown products.
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(a) Joining the Union OIE table with in-house data regarding known product recalls of the
company’s suppliers.

(b) Relation candidates grouped, counted, and ordered by pattern and verb. The most
frequent combination is OIE-pattern four and the verb "recall."

Figure 3.4.: Use of in-house data to spot patterns of product recall mentions in the OIE schema.
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3.1.5. Discussion

INDREX-MM analyzes a Billion Annotations in Seconds. We measure the re-
lation extraction process from above in INDREX-MM on Reuters RCV1 with 800k
documents and 1.2 billion annotations. For each of the four steps mentioned above,
we report the execution time and how selective each filtering step prunes sentences
in Table 3.1. To evaluate the accuracy, we asked two independent students to
randomly draw a sample of 100 sentences after each step and count the number
of correct relations for our desired type (RL-100). Additionally to our product
recall (PR) example, we report results on where a supply chain analyst wants to
spot alliances (AL) and acquisitions (AC) related to a company’s suppliers. We
accordingly repeat the same analysis steps for these cases.
Table 3.1 shows our measurements and example sentences. One-time batch

loading (BL) takes roughly 180 minutes, because the MM-RDBMS executes com-
pressions and builds index structures before we can run queries. In a streaming
scenario, the MM-RDBMS uses delta indexing techniques and permits hitting
queries while new data is inserted. INDREX-MM exploits data locality and lever-
ages multi-core shared memory architectures. Declarative relation extraction
systems, such as SystemT (Krishnamurthy et al., 2009) or GATE41, need to con-
duct expensive data shipping between different NLP components and databases.
Such data shipping is a major performance bottleneck. Contrary, INDREX-MM
avoids data shipping, instead brings functionality to data, and even leverages
multiple built-in optimizations of main memory RDBMSs, such as massive paral-
lel execution with multi-cores, compression techniques, and column-based table
layouts, cache affine data structures, single instruction multiple data (SIMD) or
result materializations.

1https://gate4.com/
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Step Time Relations RL100 Example
BL 180m 15.785.155 0 -
1 OIE 9,9s 13.695.006 10 All OIE patterns(Mitsubishi, raised its production plan, October)
2 PR 49ms 134 31 Product recall(GM, recalls, 1,400 1997 Corvettes)
3 PR 619ms 921 91 Product recall(Tensor, recalls, halogen bulbs)
2 AL 16,64s 662 35 Alliance(LUKoil, signed, a $2-billion deal, with SOCAR)
3 AL 2,505s 3.265 91 Alliance(Xillix, signed, an agreement, with Olympus)
2 AC 5,643s 112 41 Acquisition(Quaker, reviews, Snapple)
3 AC 7,031s 1654 73 Acquisition(Quaker, acquired, Snapple, for, $1.8 billion)

Table 3.1.: Performance for each step. After phase BL, we loaded 15.7 Mio sentences and estimated one relation per
sentence. In step 1, we extract OIE relations from sentences using the seven basic patterns from ClausIE,
resulting in slightly fewer OIE relations than sentences. For phases 2 and 3, we show results for the
relations productrecall(supplier, product) (PR), alliance(company, company) (AL) , and acquisition(company,
company) (AC). We count correct relations on a randomly taken sample of 100 sentences (RL100).
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3.2. Analysing Errors of Open Information Extraction Systems

We report results on benchmarking Open Information Extraction systems using
RelVis, a toolkit for benchmarking Open Information Extraction systems. Our
comprehensive benchmark contains three data sets from the news domain and
one data set from Wikipedia with an overall of 4522 labeled sentences and 11243
binary or n-ary OIE relations. In our analysis using these data sets, we compared
the performance of four popular OIE systems: ClausIE, OpenIE 4.2, Stanford
OpenIE, and PredPatt. In addition, we evaluated the impact of six common error
classes on a subset of 749 n-ary tuples. Our deep analysis reveals important
research directions for the next generation of OIE systems.

3.2.1. Introduction

Open Information Extraction (OIE) (See Section 2.2) system users often desire to
select a suitable OIE system for their specific application domain. Making the right
choice is a challenging task. Unfortunately, there is surprisingly little work on
evaluating and comparing results among different OIE systems. Worse, most OIE
methods utilize proprietary and unpublished data sets. In most cases, users can
only rely on publications and need to download, compile, and evaluate existing
systems on proprietary data sets.

Ideally, one could compare different OIE systems with a unified benchmarking
suite. As a result, a user could identify "sweet spots" of each system but also
weaknesses for common error classes. The benchmarking suite should feature
diverse gold annotations with several thousands of annotated sentences. By
exploring results and errors, the user can learn how to design the next generation
of OIE systems or combine several systems into an ensemble.
First, We report the results of a quantitative analysis of four commonly used

OIE systems: Stanford OpenIE (SIE) (Angeli, Premkumar, and C.D. Manning,
2015), OpenIE 4.2 (OIE)1, ClausIE (CIE) (Del Corro and Gemulla, 2013), and
PredPat (PP) (A. S. White et al., 2016). We omit INDREX-MM in this selection
since its extraction patterns are similar to ClausIE, and we expect the results to
be comparable. We evaluate the selected systems on 4522 sentences and 11243

1https://github.com/allenai/openie-standalone

3.2 | Analysing Errors of Open Information Extraction Systems 47

https://github.com/allenai/openie-standalone


Name Type Domain Sent. # Tuple
NYT-222 n-ary News 222 222
WEB-500 binary Web/News 500 461
PENN-100 binary Mixed 100 51
OIE2016 n-ary Wiki 3200 10359

Table 3.2.: Data sets in RelVis

n-ary gold standard tuples.
Second, We share in-depth insights on a qualitative error analysis of 749 n-ary

tuples in 68 sentences from four gold standard data sets annotated by all four OIE
systems.
Third, We design RelVis, an integrated benchmarking system for OIE systems

consisting of three news data sets: NYT-222, WEB-500 (Mesquita, Schmidek, and
Barbosa, 2013), PENN-100 (Y. Xu et al., 2013), and a large OIE benchmark from
Newswire and Wikipedia (Stanovsky and Dagan, 2016).

3.2.2. Data Sets

Our evaluation process for Open Information Extraction systems should be con-
venient and comparable. To meet this goal, we design a unified data model that
enables the user to perform quantitative comparisons and extensive analyses on
widely used data sets. We used in our experiments four data sets, see Table 3.2, of
which two feature only binary relations with two arguments. Data sets NYT-222
and OIE2016 also contain n-ary relations. These labeled data sets originate from
Mesquita, Schmidek, and Barbosa, 2013 and Stanovsky and Dagan, 2016.

3.2.3. Measuring OIE Systems

A naive way to match a tuple to a gold standard is an equal match. The equal
match strategy requires the boundaries of all arguments and the predicate to be
equal with the gold standard annotations. The number of arguments must match
as well. This approach delivers exact results for computing precision. However, it
penalizes other, potentially correct, boundary definitions beyond the gold standard.
Dealing with multiple OIE systems and their different annotation styles requires a

48 3 | Analysing Open Information Extraction



less restrictive matching strategy.
A second strategy is a containment match, where an argument or predicate is

considered correct if it contains a gold standard annotation. Hence, spans from
the gold standard must be fully contained inside the OIE systems’ annotation
spans. The number of arguments must still concur with the gold standard. This
strategy may label over-specific tuples as correct. However, it is still penalizing
binary systems on n-ary data sets.
Therefore, we introduce a relaxed containment strategy which removes a

penalty for wrong boundaries especially for over-specific extractions. This strategy
counts an extraction correctly, even when the number of arguments does not
match the gold standard. For example, Stanford OIE, which only returns binary
OIE tuples, performs well on NYT-nary (b), an n-ary data set, and yields large
parts of relatively short sentences as one argument. With the relaxed matching
strategy, Stanford OIEs’ binary extractions are counted correctly as long as they
contain all gold standard arguments.

The approach of Mesquita, Schmidek, and Barbosa, 2013 has simplified the task
by replacing all entities in the test set with the words "Europe" and "Asia." In our
opinion, this decision is contrary to the definition of OpenIE given by Banko et al.,
2007 which describes OIE as "domain-independent discovery of relations extracted
from text and readily scales to the diversity and size of the Web corpus." and may
hide or even cause problems in the analyzed systems.

Measurements. Our quantitative evaluation calculates precision, recall, and F2

at the sentence level. Following Pink, Nothman, and Curran, 2014, we choose F2

instead of F1 because it gives the recall a larger impact. The basic intuition is that
a high recall of an OIE system is critical to the performance of any downstream
application that can apply additional filters.

3.2.4. Common Error Classes

Authors of OIE systems distinguish among six major error classes. Table 3.4 reports
errors for the four surveyed OIE systems. In the following sections, we describe
each error class in detail.
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3.2.4.1. Wrong Boundaries

Banko et al., 2007 describe the "Wrong Boundaries" error as too large or too
small boundaries for an argument or predicate of an OIE extraction. Errors in
used intermediate structures, such as dependency parses or overestimation of
boundaries, might cause this. Incorrect boundaries for relation arguments can
prohibit fusing, linking, or aggregating tuples for the same predicate. Consequently,
an additional systemmust filter out incorrect boundaries, whichmay cause a drastic
recall loss.
A solution proposed in the literature is to ‘wait’ until intermediate systems,

such as dependency parser, POS tagger etc., provide an improved generalization.
However, this may not always be the case for niche domains, such as medical text or
text in enterprise scenarios, where often no labeled corpora exist for intermediate
systems.

Example. Consider the following example sentence: "DENVER BRONCOS signed
LB Kenny Jackson, DT Garrett Johnson and CB Sam Young." An OIE system might
emit the binary relation signed(DENVER BRONCOS, LB Kenny Jackson, DT Garrett
Johnson and CB Sam Young). At the same time, the gold standard data set expects
the more granular n-ary relation tuple signed(DENVER BRONCOS, Kenny Jackson,
Garrett Johnson, Sam Young). Accordingly, we count the extraction as wrong and
as a boundary error.

3.2.4.2. Redundant Extraction

Without a schema, OIE systems output redundant extractions for the same sentence,
such as for the same subject-predicate structure. For example, in the sentence
"Additionally, we included some other relevant results from the 2005 survey in
Antwerp." SIE yields two times the tuple (we, included, other relevant results).
These OIE systems are tuned towards high recall and leave the decision to filter
out redundant tuples to a downstream application (Del Corro and Gemulla, 2013).

Example. For the sentence, "However, they had a significantly (P < 0.01) lower
percentage bone in the carcass (Additional file 3)." we observe the follwing two
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nearly identical extractions had(they, significantly (P < 0.01) lower percentage
bone) and had(they, P < 0.01) lower percentage bone).

3.2.4.3. Uninformative Extraction

Fader, Soderland, and Etzioni, 2011 define uninformative extractions as OIE results
omitting critical information. This error can be caused by improper handling of
relation phrases that combine verbs with nouns, such as light verb constructions.
Adding syntactic and lexical constraints may solve this problem to a certain extent.

Example. We observed that some systems emit for the sentence “At least one
potential GEC partner, Matra, insists it isn’t interested in Ferranti.” uninformative
relation tuples such as is_not(it, interested in Ferranti). The systems fail to resolve
the co-reference and choose a wrong relation predicate due to boundary detection
errors.

3.2.4.4. Missing Extraction - False Negatives

Missing extractions describe relations that were not found by a particular system.
According to Fader, Soderland, and Etzioni, 2011, missing extractions are often
caused by argument-finding heuristics, choosing the wrong arguments, or failing
to extract all possible arguments. One example is the case of coordinating con-
junctions. Other sources of this error are lexical constraints filtering out a valid
relation phrase. Another source is errors in dependency parsing.

Example. Given the sentence "Following an i.t. delivery, the incision was closed
with metal clips." a system might fail to produce the relation expected by the gold
standard: was_closed(the incision, Following an i.t. delivery, with metal clips).

3.2.4.5. Wrong Extraction

Stanovsky and Dagan, 2016 consider a tuple as correct as long as it shares a
specified threshold of characters with a gold annotation. However, this policy may
emit large parts of a sentence as one argument and pose additional computation
effort to a downstream application. We focus on sentence-level correctness (Angeli,
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Premkumar, and C.D. Manning, 2015; Mesquita, Schmidek, and Barbosa, 2013)
and define a tuple as correct if the following conditions are met:

1. The selected matching strategy yields a match for the predicate.
2. The number of arguments aligns with the gold standard.
3. The selected matching strategy yields a match for all arguments.

This error class is critical since it is impossible to recover from an error of this
class, and it emits a wrong signal, which might trigger additional errors in down-
stream tasks. In extreme cases, a system might emit extractions contradicting the
originating sentence.

Example. Consider the following sentence: "In 1987, he and his wife, Pamela,
moved to Mollusk, Virginia, where they ran a bed and breakfast inn at Greenvale
Manor."We observed the following extractionmoved(he, his wife) which is factually
wrong.

3.2.4.6. Out-of-Scope

We observe in Table 3.4 that the selected OIE systems yield more correct extractions
as recognized by authors of gold data sets. For these additional annotations, we
introduce an out-of-scope category. This label does not indicate an error but helps
us distinguish errors of gold labels and additional annotations of a particular OIE
system that are not present in the gold standard. Our two judges marked an
annotation in the qualitative evaluation as out of scope if it is valid and provides
an information gain. No other error category is applied to the extraction if marked
as out of scope.

3.2.5. The RelVis Benchmarking System

We demonstrate RelVis, a web-based OIE benchmarking suite, which supports
evaluating the four selected OIE systems. RelVis also permits users to benchmark
additional OIE systems via standardized interfaces. Its integrated benchmark
covers all data sets mentioned earlier in this chapter. The system permits in-depth
analysis of six error classes using the introduced matching strategies and standard
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Figure 3.5.: Sentence selection view of RelVis.(1) For each sentence in the docu-
ment, we show text and the number of extractions by each system.
(2) Denotes various OIE systems with different colors. (3) The lower
right-hand side visualizes error evaluation statistics.

quality measures, such as F -measure, precision, and recall. We used RelVis to
perform all our experiments.

Startup. On system initialization, RelVis reads gold annotations and performs a
quantitative evaluation. Next, the system stores extraction- and gold annotations
in an RDBMS.

Dashboards for exploring annotations. Now, the user can start exploring re-
sults and understanding the behavior of each system. Figure 3.5 visualizes in
a web-based dashboard sentences, precision, recall, and F scores for each OIE
system and each error class.
RelVis plots error distributions as a Kiviat diagram and draws bar charts for

comparing error class impacts for each OIE system. In addition, the user can
export results as tables and CSV files from the database.

Managing Annotations. RelVis visualizes OIE extractions at sentence-level gran-
ularity. For each extracted relation by a system, the user can drill down into a

3.2 | Analysing Errors of Open Information Extraction Systems 53



Figure 3.6.: Specifying correctness (1), error (3), and commenting on a cause (2).

single sentence and understand extraction predicates in green or arguments in
blue, as shown in Figure 3.6.
Next, she can dive down into correct or incorrect annotations, add labels for

error classes of incorrect annotations, or leave a comment, see also Figure 3.6. We
permit the user to apply multiple error classes to each subpart of an annotation.
Next, she can focus on a sentence of interest and compare extractions between
different OIE systems.

The user can create them using RelVis if no gold annotations are available. Such
a process is also feasible with standard annotation tools like BRAT (Stenetorp et al.,
2012). However, in practice, we noted that such standard tools require many
configuration steps to adapt to OIE relations. The user selects a sentence and starts
with the first annotation by clicking the "Add new OIE Relation" button. Next, she
marks the predicate and arguments in the sentence for her first annotation by
selecting them with the cursor.

3.2.6. Experiment Results

We report precision, recall, and F2 scores on all four data sets in a quantitative
evaluation. Table 3.3 reports overall results for four OIE systems on all four data
sets, with the limitation that only a subset of OIE2016, containing 1768 sentences,
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Figure 3.7.: Error occurrence of all OIE systems on 68 sentences of four data sets.
Error categories described in Section 3.2.4 are plotted along five axes.
The system with the smallest covered area makes the least errors. We
crop the diagram at 70 occurrences for easier interpretation. SIE hits
131 times in total the Wrong Boundaries category.

was available to us. We conduct our experiments with an exact (a) and relaxed
(b) containment match strategy.

We execute four OIE systems for the qualitative evaluation of 17 sentences of
each data set. These experiments resulted in 749 predicted extractions, which
we evaluate and classify into error categories by two human judges, as shown in
Table 3.4. Additionally, Figure 3.7 gives an overview of the general performance
of all tools over all data sets. We apply a strict containment match strategy in this
evaluation. Observing that multiple errors can happen to a single extraction, we
assign more than one error category in these cases.
Note, we configure system CIE to binary extraction mode for binary data sets

and otherwise in n-ary mode for both experiments.
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Dataset ClausIE (%) OpenIE 4.2 (%) Stanford OIE (%) PredPatt (%)
P R F2 P R F2 P R F2 P R F2

PENN-100 (a) 4.00 21.15 11.39 12.41 36.54 26.31 14.85 57.69 36.58 6.83 42.30 20.75
PENN-100 (b) 4.00 21.15 11.39 13.07 38.46 27.70 14.85 57.69 36.59 7.76 48.08 23.58
WEB-500 (a) 16.33 46.70 34.03 12.83 19.62 17.74 13.65 40.72 29.16 5.18 13.43 10.19
WEB-500 (b) 16.33 46.70 34.03 13.39 20.47 18.51 13.65 40.72 29.16 6.09 15.78 11.97
NYT-222 (a) 1.64 5.85 3.87 2.86 7.66 5.73 0 0 0 2.22 13.51 6.71
NYT-222 (b) 4.69 16.67 11.03 11.28 30.18 22.60 13.37 73.87 38.77 8.47 51.35 25.51
OIE2016 (a) 14.81 13.67 13.89 24.85 18.69 19.67 0.80 1.49 1.27 7.26 12.39 10.86
OIE2016 (b) 20.38 18.81 19.10 39.58 29.76 31.31 3.83 7.10 6.07 13.52 23.09 20.23

Table 3.3.: Quantitative Evaluation. The (b) variant are results with relaxed containment match strategy and (a) are those with the
strict containment strategy.

Dataset NYT-222 (n-ary) OIE2016 (n-ary) PENN-100 (binary) WEB-500 (binary)
# Relations 17 29 17 17

CIE OIE PP SIE CIE OIE PP SIE CIE OIE PP SIE CIE OIE PP SIE
# Predicted 42 35 68 74 28 30 57 91 63 34 61 49 33 22 24 38
# Correct 2 1 6 0 8 12 6 5 4 8 10 11 5 4 3 10

# Redundant 0 0 0 5 0 0 0 18 1 0 0 4 2 0 0 0
# Uninformative 4 2 8 0 2 0 6 1 9 3 9 4 0 0 0 3
# Boundaries 11 17 18 39 11 11 21 69 14 5 9 14 8 9 9 9
# Wrong 2 1 3 5 1 1 6 3 3 1 10 4 1 2 2 2
# Out of Scope 24 17 34 30 7 6 21 13 33 17 31 18 19 8 12 14
# Missed 4 1 5 5 8 4 7 12 14 6 6 7 8 3 11 6

Table 3.4.: Occurrences of extraction errors found in the qualitative analysis of four OIE systems on 17 sentences drawn from
four gold standard datasets. 749 predicted extractions were evaluated in total. Note: multiple errors per predicted
extraction are possible, and that number of missed extractions is naturally not contained in # Predicted.
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We observe no clear overall winner: Each OIE system works best on a particular
data set, and no OIE system significantly outperforms on two or more data sets.

Boundary Errors. We observe wrong boundaries for at least one-third of the
results in the four OIE systems. This result indicates that OIE systems often fail
in generalizing to unseen word distributions. We observe that an OIE system
causes boundary errors often by over- or under-specific argument spans. The
systems emit wrong predicate spans in less frequent cases, while most are related
to argument spans. Wrong intermediate structures can cause both argument and
predicate-related errors. Another source of the problem could be the argument
candidate generation, which overestimates the size of an argument span so that
it envelops multiple distinct arguments. Further causes for a boundary error are
different annotation styles, which appear among systems and gold standard data
sets.
As one possible source for the overall bad results on the NYT-222 dataset, we

pinpoint the differing styles of conjunction extraction. Consider a gold standard
that expects a single extraction with multiple arguments for the sentence: "DENVER
BRONCOS signed LB Kenny Jackson, DT Garrett Johnson and CB Sam Young." e.g.,
signed(DENVER BRONCOS; Kenny Jackson; Garrett Johnson; Sam Young). Systems
CIE and OIE yield persons and their positions as one large argument in a binary
relation: signed(DENVER BRONCOS; LB Kenny Jackson, DT Garrett Johnson and CB
Sam Young.). On the contrary, System PP implements another style, extracting
every person of the sample sentence in its own binary relation.
SIE, a binary extraction system, performs surprisingly well on this data set

with the relaxed containment match strategy and on NYT-222 (b). With a strict
containment match strategy, NYT-222 (a), the system was not able to find a
correct extraction because the data set does not contain binary relations. Using a
relaxed containment match strategy, system SIE outperforms all other systems by
extracting large, over-specific arguments. This behavior shifts additional effort for
further processing toward downstream applications and shows the importance of
considering boundaries in an evaluation. However, system SIE fails to perform
on OIE2016, which contains more complex sentences, including numerical values
and multiple gold annotations, compared to NYT-222.
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Missed Extractions. Noisy text, wrong intermediate structures, and different
annotation styles among gold data sets often trigger this error. We report a
significant drop in recall for all systems on the WEB-500 dataset compared to
PENN-100, except for CIE, see Table 3.3, even though both data sets show a similar
annotation style. However, theWEB-500 data set is quite noisy and contains HTML-
character encodings, unfinished sentences, or headlines with special characters.
Those artifacts cause errors in intermediate structures, like dependency parses or
POS tags, which causes the systems to fail. In particular, the n-ary systems OIE or
PP do not seem to be robust to such noisy data.

Another source for missed relations is a mismatch between annotation styles. For
example, system CIE shows a different style as the gold annotation in PENN-100,
NYT-222, andWEB-500 data sets. A closer inspection reveals that CIE’s verb-centric
extraction behavior handles nominal or adjectival-triggered relations (Peng, Torii,
et al., 2014) in a different style than the gold standard data set. Its design triggers
inserting an artificial predicate (Del Corro and Gemulla, 2013) which can cause
many missed annotations in our evaluation. Consider the following sentence: “At
least one potential GEC partner, Matra, insists it isn’t interested in Ferranti.” System
CIE extracts the tuple: is(one potential GEC partner; Matra), but the style of the
gold standard expects partner(GEC; Matra). We explain the increase of all scores
of system CIE by the larger number of gold annotations compared to PENN-100,
which does not interfere with the annotation style of system CIE.

Overall, we observe a trade-off among OIE systems between utilizing lexical
constraints for filtering out uninformative tuples and creating false negatives. Our
results indicate that system OIE handles this trade-off better than other systems.

Wrong Extractions. Wrong extraction errors are often complex and caused by
other errors. For example, a boundary error often leads to missing essential
information like a negation. Furthermore, we observe problems in the predicate
candidate selection process for unary extractions, leading to wrong extractions.

Uninformative Extractions. Systems CIE and PP mostly yield uninformative ex-
tractions. These errors are often triggered in possessive relations without resolved
co-references or relations with adjectival triggers. To overcome these problems, we
suggest improving filtering for uninformative unary relations, supplying additional
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checks for missed negations or important arguments, and integrating co-reference
resolution components into next-generation OIE systems.

Redundant Extractions. exclusively occur in systems SIE and CIE1. In extreme
cases, the OIE system SIE returns up to 140 tuples for the same sentence. Our
results indicate that this error class has been mainly resolved in most systems by
filtering and aggregating results from multiple similar extraction rules.

OIE Systems Are still Designed Towards Binary Tuples. The very first OIE
systems had been designed to emit binary OIE tuples. Therefore, we observe that
all systems achieve a better recall score on the binary data sets when the strict
containment strategy is used. A larger number of possible errors in an n-ary task
causes this—additionally, inconsistent extraction styles for n-ary relations in both
systems and gold standards cause errors.

Out of Scope. The PENN-100 data set supplies for every sentence just one gold
standard extraction. In most cases, it represents a non-verb-triggered relation.
Since most systems perform well in extracting relations triggered by verbs, this
leads to many out-of-scope extractions. Every surveyed OIE system yields out-of-
scope extractions, particularly on the NYT-222 data set, which shows that the gold
annotations in this data set do not cover the capabilities of modern OIE systems.
Evaluating the OIE2016 dataset results in the lowest number of out-of-scope

extractions overall. It provides multiple gold annotations per sentence and covers
a wide variety of extractions, starting with unary up to 7-ary tuples. System PP
yields non-verb-triggered unary extractions more often than other systems, which
is the reason for its steady high number of out-of-scope extractions.

1in binary extraction mode
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3.3. Conclusion

In this chapter, we have approached RQ1, analyzing the suitability of Open In-
formation Extraction systems for challenging domains such as clinical text (See
Section 1.2). We presented INDREX-MM, a fast in-database open information
extraction system. INDREX-MM enables executing Open Information Extraction at
the scale of hundreds of thousands of documents with execution times in the order
of seconds. We showed that such a system could efficiently integrate pre-existing
knowledge with insights from text.
While Clinical use-cases require high scalability in runtime, it is also crucial

to maintain high precision and recall. Therefore, we designed RelVis, a compre-
hensive benchmarking tool to assess the quality of OIE systems. RelVis was the
first benchmark that combined four labeled datasets and supported the five most
recent1 OIE systems. RelVis allows performing both qualitative and quantitative
analyses.

Using the RelVis benchmark, we revealed a lack of stringent annotation policies,
making a comparative analysis and design of OIE systems challenging. Moreover,
we observed that each tested OIE system depends on syntactic taggers that often
propagate errors toward the logic for extracting OIE tuples. Generally, we find
that systems make more errors when extracting n-ary relations. The benchmarked
systems often extract unnormalized relation tuples that do not leverage the well-
researched concept of "normal forms" in database theory (Codd, 1970).
Concludingly, we find that the surveyed OIE systems lack benchmarks on a

wide variety of datasets and rely heavily on discrete linguistic features. Our target
domain is clinical narratives, often containing lexical and grammatical errors
and requiring vast semantic domain adaption (Leaman, Khare, and Lu, 2015;
Starlinger et al., 2017). As a result, we argue that the reviewed OIE systems,
already overfitting and struggling with news datasets, will likely surface additional
issues for application in idiosyncratic domains such as clinical narratives.

1At the time of writing of (Schneider, Oberhauser, Klatt, et al., 2017a; Schneider, Oberhauser,
Klatt, et al., 2017b)
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Neural Text Representations for
Clinical Applications

Text-based Clinical Decision Support Systems need to capture local and global
contexts to bridge the gap between text understanding and patient representation.
The preceding chapter concluded that discrete text representations using the OIE
paradigm have issues with achieving this goal (RQ1). Therefore, we survey the
capabilities of distributed neural text representations in this chapter1 by address-
ing RQ2: "Can neural text representations aid text-based clinical decision support
systems?" and RQ3: "Are text representations trained with differing pretraining goals
complementary?".
We study if universal language modeling-based and "specialized" text repre-

sentations complement each other. Addressing RQ3 and RQ2, we benchmark
the capabilities of combined and individual text representations in section 4.1,
focusing on medical tasks. Subsequently, we demonstrate which combinations
form a holistic relationship and improve benchmark results. We employ SentEval
(Conneau and Kiela, 2018), a comprehensive benchmarking suite for comparing
text embeddings, to conduct our study.

1This chapter was published in the following article:
R. Schneider, T. Oberhauser, P. Grundmann, F. A. Gers, A. Loeser, and S. Staab (May 2020). ‘Is
Language Modeling Enough? Evaluating Effective Embedding Combinations’. In: Proceedings of
the 12th Language Resources and Evaluation Conference. Vol. 12. Marseille, France: European
Language Resources Association, pp. 4741–4750
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This chapter is structured as follows: First, we discuss RQ3 in section 4.1.
We start by giving a high-level overview in section 4.1. Next, we introduce the
PubmedSection dataset to address RQ2 and discuss its design in section 4.3. In
section 4.4, we present our experiment methodology and analyze and discuss
results from the experiments. Finally, we conclude this chapter in section 4.5.
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4.1. Introduction

Universal embeddings, such as BERT (Devlin et al., 2019) or ELMo (M. E. Peters
et al., 2018), are useful for a broad set of natural language processing tasks like
text classification or sentiment analysis. Moreover, specialized embeddings also
exist for tasks like topic modeling or named entity disambiguation. We study if
we can complement these universal embeddings with specialized embeddings. We
conduct an in-depth evaluation of nine well-known natural language understand-
ing tasks with SentEval (Conneau and Kiela, 2018). Also, we extend SentEval with
two additional tasks to the medical domain. We present PubMedSection, a novel
topic classification dataset focussed on the biomedical domain. Our comprehensive
analysis covers 11 tasks and combinations of six embeddings. We report that com-
bined embeddings outperform state-of-the-art universal embeddings without any
embedding fine-tuning. We observe that adding topic-model-based embeddings
helps for most tasks and that differing pre-training tasks encode complementary
features. Moreover, we present new state-of-the-art results on the MPQA and SUBJ
tasks in SentEval.
Universal embeddings, such as BERT (Devlin et al., 2019) or ELMo (M. E. Pe-

ters et al., 2018), are an effective text representation (Conneau and Kiela, 2018;
Nguyen et al., 2016). Often, they are trained on hundreds of millions of docu-
ments with a language modeling objective and contain millions to even billions of
parameters. These pre-trained vectors lead to significant increases in performance
in various downstream natural language processing tasks (Akbik, Blythe, and
Vollgraf, 2018; Joulin et al., 2017; Mikolov, K. Chen, et al., 2013; M. E. Peters et al.,
2018; Radford, Narasimhan, et al., 2018). Contrary to universal embeddings,
specialized embeddings for tasks like entity linking (Gillick et al., 2019; Pappu
et al., 2017) or paragraph classification (Arnold, Schneider, et al., 2019) exist.
Often, specialized embeddings are trained with objectives and training datasets
different from universal embeddings. This circumstance raises the question of
whether universal embeddings capture all useful features for downstream tasks or
if specialized embeddings may provide complementary features.
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Example: Clinical Decision Support Systems. Medical literature databases,
such as PubMed1 or UpToDate2, help doctors answer their questions. These
systems benefit from methods that enrich texts with semantic concepts, like en-
tity recognition, sentence classification, topic classification, or relation extraction
(Berner, 2007; Demner-Fushman, Chapman, and McDonald, 2009). Medical lan-
guage is highly specialized and often ambiguous in clinical documents (Leaman,
Khare, and Lu, 2015). Documents, such as medical research papers, doctors’
letters, or clinical notes, are heterogeneous in structure, vocabulary, or grammat-
ical correctness (Starlinger et al., 2017). We propose complementing universal
embeddings with specialized embeddings to execute common downstream tasks
for clinical decision support systems. (See Section 1.2 and 2.1) Examples are
paragraph classification, subjectivity classification, question type classification,
sentiment analysis, and textual similarity.

Problem Definition. We hypothesize that specialized neural text representations
may complement universal embeddings. Given is a set of both universal and
specialized embeddings with different pre-training tasks for the English language
(see Table 4.1). These embeddings encode words, entities, or topics. Using the
SentEval3 (Conneau and Kiela, 2018) benchmark, we study which combination
of embeddings is complementary. Thus, we investigate if universal embeddings
capture the same features as specialized embeddings.

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.uptodate.com/
3https://github.com/facebookresearch/SentEval
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Name Pre-Training Task Domain Publication Class
ELMo (EL) Language Modeling Web M. E. Peters et al., 2018 Universal
BERT (BE) Language Modeling Web Devlin et al., 2019 Universal
FastText (FT) Language Modeling Web Mikolov, Grave, et al., 2018 Universal
Pappu (PA) Entity Linking Wikipedia Pappu et al., 2017 Specialized
SECTOR (Wikipedia) (SW) Neural Topic Modeling Wikipedia Arnold, Schneider, et al., 2019 Specialized
SECTOR (PubMed) (SP) Neural Topic Modeling Medical Schneider, Oberhauser, Grundmann, et al., 2020 Specialized

Table 4.1.: Comparison of neural text embeddings.

4.1
|Introduction

65



Probing Embeddings with SentEval. We probe single embeddings and com-
binations with SentEval in a transfer-learning setting on nine different tasks.
SentEval focuses on news and customer reviews. The language in these domains
differs vastly from the medical domain. Moreover, SentEval concentrates on single-
sentence evaluation, which does not fully utilize the capabilities of contextualized
embedding models (Arnold, Schneider, et al., 2019; Devlin et al., 2019; M. E. Pe-
ters et al., 2018).

Novel Datasets. We tackle the shortcomings of SentEval by integrating the
WikiSection-Diseases1 (Arnold, Schneider, et al., 2019) dataset into the SentE-
val framework. WikiSection also enables an in-depth evaluation of contextualized
embeddings since its paragraph classification task is multi-sentence based. As
the language in CDSS resources (e.g., PubMed) differs from the Wikipedia-based
WikiSection dataset, we propose the PubMedSection2 dataset. PubMedSection is
a novel medical topic classification dataset created with a method inspired by
distant supervision.

In-depth Experimental Evaluations on 11 Tasks. We study the properties of
single and combined text embeddings and their performance on the nine tasks
from SentEval and the two medical datasets, WikiSection and PubMedSection.
We examine the differences between universal and specialized embeddings and
effective embedding combinations.

4.2. Types of Text Embeddings

In the following, we investigate universal and specialized embeddings shown in
Table 4.1 and discuss methods for combining embeddings.

4.2.1. Universal Text Embeddings

Recently, researchers have explored universal text embeddings trained on extensive
Web corpora, such as the Common Crawl3 (Mikolov, Grave, et al., 2018; Radford,

1https://github.com/sebastianarnold/WikiSection
2https://pubmedsection.demo.datexis.com
3https://commoncrawl.org/
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J. Wu, Child, et al., 2019), the billion word benchmark (Chelba, 2010; M. E. Peters
et al., 2018) and Wikipedia (Bojanowski et al., 2017). Universal text embeddings
often perform language modeling tasks where the model is asked to predict a
missing word given a small window of neighboring words (Joulin et al., 2017;
Mikolov, Grave, et al., 2018; Mikolov, Sutskever, et al., 2013; Pennington, Socher,
and C. Manning, 2014). Another common task is to predict the next or masked
word of a sentence given previously predicted words as context (Devlin et al.,
2019; M. E. Peters et al., 2018; Radford, J. Wu, Child, et al., 2019). For the
encoder-decoder architecture, Kiros et al., 2015 propose an encoder network
that encodes a sequence of words in such a way that the decoder can predict the
previous and the next sentence given the encoder’s vector representation.
Universal embeddings vary in their granularity at the sub-word, word, or sen-

tence level. For example, Bojanowski et al., 2017 improved the model of Mikolov,
Sutskever, et al., 2013 by adding sub-word information to handle ambiguous
spelling or typos. This sub-word embedding takes advantage of the fact that
similarly spelled words often have similar meanings.

Universal text embeddings encode the meaning of frequent words (Devlin et al.,
2019; M. E. Peters et al., 2018; Radford, J. Wu, Child, et al., 2019). However, they
performworse than domain-adapted representations in specialized domains (J. Lee,
Yoon, et al., 2019; Sheikhshabbafghi, Birol, and Sarkar, 2018). Furthermore,
universal text embeddings might miss essential aspects of named entities. The
reason is that most training methods are based on the co-occurrence of words in
relatively short local contexts. This approach hinders the models from capturing
more global features of texts such as genre, topic, receiver, the authors’ intention,
or they miss to learn the precise meaning of a word in special domains such as
medicine (J. Lee, Yoon, et al., 2019; Sheikhshabbafghi, Birol, and Sarkar, 2018).

Also, computing embedding models for highly regulated domains is often hard
and not feasible due to the lack of training data (Berner, 2007; Starlinger et al.,
2017) or high computational costs (Schwartz et al., 2020).

4.2.2. Specialized Text Embeddings

Neural Topic Modeling. Arnold, Schneider, et al., 2019 introduce a specialized
embedding using a coherent topic modeling task for pre-training. This model en-
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codes both structural and topical facets of documents (see work of MacAvaney et al.,
2018) and assigns each sentence in a document a dense distributed representation
of occurring latent topics (Blei, 2012). For this purpose, the model consolidates
the topical structure and context over the entire document. It leverages sequence
information on the granularity of paragraphs and sentences using a Bidirectional
LSTM architecture (Graves, 2012) with forget gates (Gers, J. A. Schmidhuber, and
Cummins, 2000). In addition, this model captures long-range topical information.
However, it does not focus on disambiguating single words. Therefore, we suggest
complementing universal text embeddings (disambiguation task) with neural topic
models (paragraph classification task).

Neural Entity Embeddings. Pappu et al., 2017 and Gillick et al., 2019 encode
meanings of entities for entity candidate retrieval and entity disambiguation tasks.
The model of Pappu et al., 2017 builds on ideas of Le and Mikolov, 2014 and
models an entity using local token context. It generalizes over multiple documents
and co-occurrences of entities in a document with a shared neural representation.
This joint approach enables the model to capture knowledge regarding entities
from training data (Pappu et al., 2017). This approach delivers a vector repre-
sentation for each entity mention, encodes its relatedness to other entities, and
considers local context. However, such entity embeddings capture facets of named
entities but might fail to encode topical structure or non-entity words. Hence,
we hypothesize that entity embeddings might benefit from combining topical
embeddings.

Biomedical Domain Specialization. Sheikhshabbafghi, Birol, and Sarkar, 2018
show a domain-adapted version of ELMo (M. E. Peters et al., 2018). Their con-
textualized word representation performs better than a general-purpose variant,
even with a smaller training set. However, this model cannot generalize to out-of-
domain contexts. Therefore, J. Lee, Yoon, et al., 2019 propose BioBERT, which is
a BERT model adapted to the biomedical domain. They initialize this model with
pre-trained weights of the original BERT. This method prevents the shortcomings
of Sheikhshabbafghi, Birol, and Sarkar, 2018 approach and preserves the ability
to generalize to domains other than biomedical text.
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4.2.3. Combining Embeddings

Multi-modal Combinations. Previous research reports that combining embed-
dings with differing training objectives is effective, such as combining data repre-
sentations with different modalities into a single shared vector space. For example,
Heinz, Bracher, and Vollgraf, 2017 integrate customer and image data in a shared
vector space and show its effectiveness for recommending products. L. Wang,
S. Li, et al., 2017 combine text and image embeddings in the field of computer
vision. They employ a neighborhood-preserving ranking loss to learn a non-linear
mapping between image and word embeddings for image captioning tasks.

Combining Neural Text Embeddings. To the best of our knowledge, we are
the first to investigate effective combinations of universal with specialized text
embeddings in an extensive study on 11 tasks. In contrast, most related work
focuses on novel combination methods.
Kiela, C. Wang, and Cho, 2018 and Rettig, Audiffren, and Cudré-Mauroux,

2019 study methods to automatically select universal purpose word embeddings
that are best suited for a particular task. Kiela, C. Wang, and Cho, 2018 use an
attention mechanism to learn a task-specific mixture mapping between multiple
word embeddings dynamically. In contrast, Rettig, Audiffren, and Cudré-Mauroux,
2019 report a method to compare and rank word embeddings regarding their
relevance to a given domain. Muromägi, Sirts, and Laur, 2017 learn a linear
mapping to combine various word embeddings trained on the same dataset with
the same method but with different random initialization into an ensemble. They
use the ordinary least squares problem and the orthogonal Procrustes problem in their
objective function. The method of Yin and Schütze, 2015 is similar to Muromägi,
Sirts, and Laur, 2017 but employs no orthogonality constraint on the objective
function. Bollegala, Hayashi, and Kawarabayashi, 2018 introduce a local linear
mapping method that takes local neighborhoods into account when projecting
source embeddings into a combined vector space. This method has similarities
to the work of L. Wang, S. Li, et al., 2017. Coates and Bollegala, 2018 present a
surprisingly effective method to combine universal embeddings by averaging word
vectors and padding themwith zeros to compensate for dimensionality mismatches.
However, our focus lies in studying effective embedding combinations for medical
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documents.

4.3. PubMedSection a Medical Topic Classification Dataset

The capabilities of contextualized embeddings cannot be measured with the Sen-
tEval framework because all its natural language understanding tasks are single-
sentence-based. None of the tasks in SentEval evaluates the domain independence
of the tested embeddings. To measure such embeddings and their combinations,
we extend SentEval with tasks requiring tracking contexts spanning multiple sen-
tences. Detecting coherent topics in document passages is a challenging task that
requires keeping track of the overall context of a paragraph or even the whole
document.

4.3.1. The WikiSection Dataset

The WikiSection dataset (Arnold, Schneider, et al., 2019) consists of 38k com-
prehensively annotated Wikipedia articles D = (S, L, H) with section and topic
labels L and naturally contained headings H with respect to all of its sentences
S. The dataset covers up to 30 topics about diseases (e.g., symptoms, treatments,
diagnosis) or cities (e.g., history, politics, economy, climate). The task is to split
Wikipedia articles dw into a sequence of distinct topic sections L = [l1, ..., ln], so that
each predicted section ln = (Sk, t j, hi) contains a sequence of coherent sentences
Sk = s1, ..., sm, and is associated to a heading hi, and a topic label t j that describes
the common topic in these sentences.

4.3.2. Creating the PubMedSection Dataset

We introduce PubMedSection, a topic classification dataset based on medical re-
search articles. This task requires detecting and classifying structural topic facets
in plain text and is inspired by the WikiSection dataset The PubMedSection dataset
consists of 51,500 PubMed articles section-wise annotated with topic labels. We
construct PubMedSection similar to the WikiSection dataset. We focus on the
disease subset of WikiSection with section-wise annotated medical topics, which
we aim to transfer to PubMed articles. Our initial PubMed collection consists
of 2,142,050 articles with 29,522,566 headings. Creating the dataset includes
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learning a classifier for detecting articles in PubMed similar to WikiSection and
assigning labels.

Learning to Classify Relevant Articles. Labeling such a large dataset is time-
consuming and costly. Following this, we annotate the PubMedSection articles
using distant supervision (Mintz et al., 2009; Morgan et al., 2004) withWikiSection
as ground truth. For this purpose, we filter the open-access subset of PubMed1

Dp for articles that exhibit high textual similarity to WikiSection for a successful
label transfer. We model a neural network-based non-linear binary classifier for
this task2.

First, we encode all headlines of theWikiSection diseases subset Hw = {hw1, ..., hwn}
as well as the headlines of the PubMed articles Hp = {hp1, ..., hpn} with a fastText
(Mikolov, Grave, et al., 2018) embedding model. For this step, we train a domain-
specific fastText model on the full corpus of the open-access subset of PubMed.
Next, we use concatenated fastText encoded word vectors of each article’s head-
lines Hw, Hp as input for our model. We choose a one-layer neural network with
ReLu activation (Glorot, Bordes, and Bengio, 2011) and softmax output over more
complex architectures to minimize computational complexity. We train on 3200
human-labeled examples for the headline structure similarity task. We use the
Xavier weight initialization (Glorot and Bengio, 2010), and employ Adam (Kingma
and Ba, 2015) with stochastic gradient descent as an optimizer and a multi-class
cross-entropy loss.
Our hyperparameter search suggests an L2 regularization (A. Y. Ng, 2004) of

10−4, a learning rate of 10−5, a batch size of 128, and we set the training duration
to 60 epochs.

Assigning WikiSection Labels to PubMedSection. After training, we sample
the top 51,500 articles by their similarity score from the filtered PubMed col-
lection. Next, we calculate the cosine similarity between every headline of each
article set (Dp, Dw) to estimate the probability that a topic label for the PubMed
headline could be generated from the WikiSection labels. Next, we transfer the
best-fitting topic labels from the best-matching headline’s section in WikiSection

1https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
2https://github.com/DATEXIS/pubmedsection
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Headline Transferred Label
Abstract disease.other
Disease name and synonyms disease.etymology
Definition and diagnostic criteria disease.diagnosis
Epidemiology disease.epidemiology
Clinical description disease.symptom
Etiology disease.other
Diagnostic methods disease.diagnosis
Differential diagnosis disease.diagnosis
Genetic counseling disease.management
Antenatal diagnosis disease.diagnosis
Management including treatment disease.management
Unresolved questions disease.other
Psycho social concerns disease.other
Conclusion disease.other

Table 4.2.: This table shows the result of the label transfer process applied to
(Connor and Thiagarajan, 2007). Headlines follow the order of the
original article. The "Transferred Labels" column shows labels assigned
using our structure similarity model.

to the sampled PubMed article’s corresponding section (See Table 4.2). That way,
every section of a Pubmed article gets labeled with ’SectionAnnotations.’ These
annotations have the following attributes: begin, end, sectionHeading, and section-
Label. Begin and end refer to the covered characters’ span in the overall document.
sectionHeading contains the heading of the section at hand, and sectionLabel is
one of the WikiSection.disease classes. For example, the section "Disease name
and synonyms" in (Connor and Thiagarajan, 2007) results in the following sec-
tionAnnotation: "{begin: "2345", end: "2517", sectionHeading: "Disease name and
synonyms", sectionLabel: "disease.etymology"}." Finally, we split the dataset into a
training subset with 50.000, a validation subset with 1000, and a test subset with
500 labeled articles.

4.4. Evaluating Embedding Combinations

We evaluate the performance of embeddings as well as their combinations. Our
methodology follows the paradigm of probing tasks (van Aken, B. Winter, et
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Name Embedding A Embedding B
FT+PA fastText Pappu
FT+SW fastText SECTOR (Wikipedia)
FT+SP fastText SECTOR (PubMed)
EL+FT ELMo fastText
EL+PA ELMo Pappu
EL+SW ELMo SECTOR (Wikipedia)
EL+SP ELMo SECTOR (PubMed)
SW+PA SECTOR (Wikipedia) Pappu
SP+PA SECTOR (PubMed) Pappu

Table 4.3.: Surveyed embedding combinations.

al., 2019; Weston et al., 2016): We test combined embeddings on nine natural
language understanding tasks and data sets from SentEval as well as two tasks
from the WikiSection and the PubMedSection dataset. For probing these eleven
tasks, we train a linear classifier with single or combined embeddings as input and
observe the properties of different embedding types and their combinations. As the
combination method, we chose concatenation. Despite its simplicity, concatenating
embeddings is a strong baseline (Coates and Bollegala, 2018; Kiela, C. Wang, and
Cho, 2018; Rettig, Audiffren, and Cudré-Mauroux, 2019; Yin and Schütze, 2015).
Other combination methods are subject to our future research.

4.4.1. Surveyed Text Embeddings and Combinations

We select a variety of universal and specialized embeddings, as shown in Table
4.1 for our experiments. Our evaluation setting is sentence-based. Some of the
surveyed embeddings are word vector-oriented. Therefore, we follow Arora, Liang,
and Ma, 2017 and Perone, Silveira, and Paula, 2018 and average word vectors in
a sentence for each of those word embeddings to obtain a sentence embedding
vector. The embeddings employed are:

Random (RND) As a baseline, we compute random vectors.

fastText (FT) (Mikolov, Grave, et al., 2018) is word vector-oriented and trained
on a language modeling task with word and sub-word tokens.
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ELMo (EL) (M. E. Peters et al., 2018) train a bi-directional language modeling
task with two stacked LSTMs that use a Character-CNN to capture sub-word
information.

BERT (BE) (Devlin et al., 2019) builds on the transformer architecture (Vaswani
et al., 2017) and masked language modeling task pre-training.

Entity embedding (PA) proposed by Pappu et al., 2017 is training an embedding
for a named entity disambiguation task with a knowledge base as the target, like
Wikidata1 or UMLS2.

SECTOR Wikipedia (SW) Arnold, Schneider, et al., 2019 propose a contextual
topic embedding trained with section headings from Wikipedia articles. They
show that the latent topic information contained in their SECTOR embedding can
be utilized to segment documents and classify these segments into up to 30 topics.

SECTOR PubMed (SP) Same as above but trained on our novel PubMedSection
dataset.

Embedding Combinations. We choose the combinations of embeddings pre-
sented in Table 4.3 for our experiments. We assume the most compelling improve-
ments are obtained when combining specialized with universal text embeddings.
We verify this assumption by evaluating if combining the two universal embeddings
ELMo and fastText is as effective as combinations with specialized embeddings. Ad-
ditionally, we conduct experiments with the combination of the entity embedding
with both SECTOR models.

Embedding Models. We evaluate the following models as provided by their
authors: BERT Large (BE), ELMo Original 5.5B (EL), fastText crawl-300d-2M-
subword (FT), Pappu (PA) and SECTOR SEC>H+emb@fullwiki (SW). These models
cover a wide variety of domains and topics. In contrast to our SECTOR PubMed
(SP) model, we train exclusively on medical research articles.

1https://www.wikidata.org
2https://www.nlm.nih.gov/research/umls/index.html
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4.4.2. Tasks and Parameters

We use SentEval (Conneau and Kiela, 2018) to perform an analysis of the effec-
tiveness of each embedding combination of natural language understanding tasks.
We integrate the WikiSection diseases and PubMedSection tasks into SentEval1 to
obtain comparable results for our evaluation.
We conducted our survey on the following nine plus two medical tasks: Wiki-

Section and PubMedSection with ten-fold cross-validation.

Textual Similarity: MRPC Paraphrase detection (Dolan, Quirk, and Brockett,
2004) on the Microsoft Research Paraphrase Corpus, which consists of sentences
pair extracted from news sources, is a binary classification task of deciding whether
a sentence paraphrases another or not.

Textual Similarity: SICK-E Sentences Involving Compositional Knowledge En-
tailment (Marelli et al., 2014) is a 3-class natural language inference classification
task based on sentences collected from Flickr image captions and the Microsoft
Research Video Description Corpus.

Sentiment Analysis: MPQA Multi-Perspective Question Answering (Wiebe,
T. Wilson, and Cardie, 2005) is a binary sentiment classification task on a news
dataset from the world press.

Sentiment Analysis: SST-2 Stanford Sentiment Analysis (Socher et al., 2013)
is a binary sentiment classification task on a movie review data set.

Sentiment Analysis: SST-5 Stanford Sentiment Analysis (Socher et al., 2013)
is a fine-grained 5-class sentiment analysis task based on the same corpus as SST-2
(movie review).

Sentiment Analysis: CR Customer Reviews (Hu and B. Liu, 2004) is a binary
sentiment analysis task based on product reviews.

1https://github.com/DATEXIS/SentEval-k8s
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Parameter Value
KFOLD 10
CLASSIFIER_NHID 0
CLASSIFIER_OPTIM Adam
CLASSIFIER_BATCHSIZE 64
CLASSIFIER_TENACITY 5
CLASSIFIER_EPOCHSIZE 4
CLASSIFIER_DROPOUT 0

Table 4.4.: Parameters used in evaluation with SentEval as suggested by Conneau
and Kiela, 2018.

Sentiment Analysis: MR Movie Reviews (Pang and L. Lee, 2005) is a binary
sentiment analysis data set on movie reviews.

Classification: SUBJ Subjectivity vs. Objectivity (Pang and L. Lee, 2004) is a
classification task of subjectivity and objectivity in movie reviews.

Classification: TREC Text Retrieval Conference Question Answering (Voorhees
and Tice, 2000) 6 class question type classification. The corpus consists mostly of
newswire and newspaper articles.

Coherent Topic Classification: WikS WikiSection diseases (Arnold, Schneider,
et al., 2019) is a 27-class topic classification task sourced from the medical subset
of Wikipedia.

Coherent Topic Classification: PubS PubMedSection is a novel 27-class topic
classification task based on medical research articles from PubMed. We randomly
sample the PubMedSection training set down to 2200 articles since evaluating the
whole training set is prohibitively time-consuming.

Evaluation Parameters. We use the parameters provided by Conneau and Kiela,
2018, as shown in Table 4.4.
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Model Strong + Minor + Minor - Strong -

Language Model combined with Topic Model
EL+SW 7 2 1 1
EL+SP 5 3 2 1
FT+SW 6 3 0 2
FT+SP 7 2 2 0
Language Model combined with Entity Embedding

EL+PA 0 6 4 1
FT+PA 6 5 0 0
Topic Model combined with Entity Embedding

SW+PA 5 2 1 3
SP+PA 6 4 0 1
Language Model + Contextualized Language Model

EL+FT 0 8 3 0

Table 4.5.: This table shows the effectiveness classification in tasks for each sur-
veyed embedding combination. We count a model combination as
"Strong+" if it advances in more than one percentage point in accuracy
compared to both of its base models. Accordingly, we count a result
as "Minor+" if the improvement is smaller than one percentage point.
"Minor-" and "Strong-" are similarly defined for performance decreases.

4.4.3. Experiment Results

Table 4.5 overviews the results of seven single embeddings as well as nine embed-
ding combinations on eleven evaluation tasks. Table 4.6 shows accuracy scores for
single model performance and combined embedding models. Finally, Table 4.7
reveals the delta of each surveyed embedding combinations’ score regarding their
source embedding scores.
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Textual Similarity Sentiment Analysis Classification
Model MRPC SICK-E MPQA SST-2 SST-5 CR MR SUBJ TREC WikS PubS
RND 66.49 56.69 68.77 49.92 23.39 63.76 49.48 49.60 20.60 15.24 24.99
FT 69.86 74.35 86.69 78.69 39.68 72.00 74.68 90.22 76.00 39.11 28.15
PA 72.17 76.62 85.31 77.43 40.00 74.09 72.90 89.65 78.80 39.84 28.04
SW 67.71 67.30 84.30 65.68 34.80 80.34 77.56 97.84 69.60 29.82 29.27
SP 67.19 56.48 96.85 71.28 37.65 76.19 82.91 95.61 66.20 46.84 39.43
BE 69.16 75.75 86.91 89.57 49.37 90.07 84.84 95.83 93.20 44.94 31.12
EL 73.68 79.54 90.00 85.01 47.19 83.39 80.66 94.56 92.40 43.09 30.85
Language Model combined with Topic Model

EL+SW 73.86 79.48 92.58 85.34 49.59 87.23 86.25 99.17 88.60 45.05 32.11
EL+SP 74.61 78.87 96.14 86.66 45.57 84.53 87.03 97.26 92.80 50.86 39.76
FT+SW 70.78 74.51 90.35 76.28 40.18 82.91 83.49 98.13 73.60 42.64 31.24
FT+SP 70.96 74.33 97.34 77.81 43.71 80.69 87.11 97.27 78.60 49.60 39.85
Language Model combined with Entity Embedding

EL+PA 73.45 79.81 90.27 85.94 45.97 83.47 80.91 94.40 92.80 42.67 30.70
FT+PA 72.99 79.07 87.03 81.11 41.95 76.42 75.54 91.17 84.80 41.36 28.78
Topic Model combined with Entity Embedding

SW+PA 71.65 74.79 89.92 75.40 40.68 82.89 83.60 98.43 77.60 43.18 31.16
SP+PA 72.70 77.15 97.16 75.95 44.34 81.14 87.05 97.36 85.80 50.13 39.63
Language Model combined with Contextualized Language Model

EL+FT 73.33 79.91 90.19 85.78 46.65 83.76 80.79 94.46 93.00 43.24 30.97
SOTA 93.00c 87.80d 93.30b 96.80c 64.40e 87.45a 96.21c 95.70f 98.07a 56.70g -

Table 4.6.: This table shows the accuracy score of single model approaches and the best embedding combinations for each task. We
highlight the overall best score with bold numbers while numbers in italic denote the best single model results. Additionally,
we gathered recent results on our surveys tasks in the SOTA row, which are reported by the following publications: (Cer
et al., 2018)a, (H. Zhao, Lu, and Poupart, 2015)b, (Z. Yang et al., 2019)c, (Subramanian et al., 2018)d, (Patro et al., 2018)e,
(S. Tang and de Sa, 2018)f and (Arnold, Schneider, et al., 2019)g on section-wide topic classification. We do not take SOTA
results into account when highlighting the best results since they are obtained with specialized models.
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Textual Similarity Sentiment Analysis Classification
Comb. ∆ MRPC SICK-E MPQA SST-2 SST-5 CR MR SUBJ TREC WikiS PubS
Language Model combined with Topic Model

EL+SW∆EL 0.18 -0.06 2.58 0.33 2.40 3.84 5.59 4.61 -3.80 1.96 1.26
EL+SW∆SW 6.15 12.18 8.28 19.66 14.79 6.89 8.69 1.33 19.00 15.23 2.84
EL+SP∆EL 0.93 -0.67 6.14 1.65 -1.62 1.14 6.37 2.70 0.40 7.77 8.91
EL+SP∆SP 7.42 22.39 -0.71 15.38 7.92 8.34 4.12 1.65 26.60 4.02 0.33
FT+SW∆FT 0.92 0.16 3.66 -2.41 0.50 10.91 8.81 7.91 -2.40 3.53 3.09
FT+SW∆SW 6.15 12.18 8.28 19.66 14.79 6.89 8.69 1.33 19.00 15.23 2.84
FT+SP∆FT 1.10 -0.02 10.65 -0.88 4.03 8.69 12.43 7.05 2.60 10.49 11.70
FT+SP∆SP 3.77 17.85 0.49 6.53 6.06 4.50 4.20 1.66 12.40 2.76 0.42
Language Model combined with Entity Embedding

FT+PA∆FT 3.13 4.72 0.34 2.42 2.27 4.42 0.86 0.95 8.80 2.25 0.63
FT+PA∆PA 0.82 2.45 1.72 3.68 1.95 2.33 2.64 1.52 6.00 1.52 0.74
EL+PA∆EL -0.23 0.27 0.27 0.93 -1.22 0.08 0.25 -0.16 0.40 -0.42 -0.15
EL+PA∆PA 1.28 3.19 4.96 8.51 5.97 9.38 8.01 4.75 14.00 2.83 2.66
Topic Model combined with Entity Embedding

SW+PA∆SW 3.94 7.49 5.62 9.72 5.88 2.55 6.04 0.59 8.00 13.36 1.89
SW+PA∆PA -0.52 -1.83 4.61 -2.03 0.68 8.80 10.70 8.78 -1.20 3.34 3.12
SP+PA∆SP 5.51 20.67 0.31 4.67 6.69 4.95 4.14 1.75 19.60 3.29 0.20
SP+PA∆PA 0.53 0.53 11.85 -1.48 4.34 7.05 14.15 7.71 7.00 10.29 11.59
Language Model combined with Contextualized Language Model

EL+FT∆EL -0.35 0.37 0.19 0.77 -0.54 0.37 0.13 -0.10 0.60 0.15 0.12
EL+FT∆FT 3.47 5.56 3.50 7.09 6.97 11.76 6.11 4.24 17.00 4.13 2.82

Table 4.7.: This table shows the delta in the accuracy score of each model combination with respect to the respective single model
accuracy score. We highlight numbers in green if an embedding combination yields improved scores compared to both
source embeddings.
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4.4.3.1. Language Models plus Topic Models

We observe a significant increase in accuracy scores in 35 out of 44 experiments (see
Table 4.5), which qualify in 25 cases for the "Strong+" category when combining
a language modeling-based embedding with a topic embedding. Moreover, we
report EL+SP as the overall best-performing model with a macro accuracy across
all tasks of 75.83. We conclude that language modeling and topic modeling
pre-training tasks capture complementary information.

ELMo Plus SECTOR Yields a Substantial Increase in Accuracy. Combining of
EL and SW yields "Strong+" results (see Table 4.5) for 7 of the 11 downstream
tasks. We observe only a considerable performance loss of 3.8 percentage points for
the TREC task. For the three other measurements of this model, the performance
increases slightly for two tasks by less than 0.33 accuracy points and decreases for
the SICK-E task by 0.06 accuracy points (see also Table 4.7). EL and SP also yield
strong results, with five tasks for which the source models encode complementary
information. We observe only one "Strong-" loss in performance of the SST-5 task
of 1.62 and report for all remaining tasks a fluctuation in performance between
"Minor+" and "Minor-."

Models fastText and SECTOR Encode Complementary Features. Results for
fastText plus SECTOR are nearly analog to ELMo, except that we observe an even
higher performance increase on average, as shown in Table 4.7. We note that tasks
MRPC, SICK-E, and SST-2 do not benefit from the features captured in SW and SP.
Surprisingly, the situation for the fine-grained sentiment classification task SST-5
is different compared the results of the binary sentiment analysis task SST-2. We
observe a considerable accuracy increase for the model combination EL+SW and
FT+SP, a small increase for FT+SW, and a performance decrease for EL+SP.

EL+SP Outperforms EL+SW in the Medical Domain. Corresponding to the
differing training domains of the SW and SP model, we can observe a more
substantial increase in performance for the combination of EL and SP in both
medical tasks WikiSection-Diseases and PubMedSection compared to combining
EL and SW. Likewise, we observe a similar situation for the combination of fastText
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(FT) with SW and SP. We explain this result by the fact that SP is trained with
medical research articles and closer to the target domain than SW.

New SOTA for MPQA and SUBJ Tasks. Table 4.6 shows that embedding com-
binations EL+SP (96.14 acc) and FT+SP (97.34 acc) outperform the current
state-of-the-art in the MPQA task (see (H. Zhao, Lu, and Poupart, 2015) 93.30
acc). Similarly, EL+SW drastically outperforms the current state-of-the-art (see
(S. Tang and de Sa, 2018) 95.70 acc) in the SUBJ task with 99.17 accuracy
measure. Following this result, we conclude that the differing pre-training task
captures complementary features that lead to improved evaluation results.

Different Pre-Training Tasks Capture Complementary Features. We verify
the complementary nature of the pre-training tasks with an additional experiment.
We re-evaluate the SUBJ task with a fastText model similar to SW, exclusively
trained on Wikipedia (Bojanowski et al., 2017). With this setting, we control
if the objective writing style in Wikipedia is the cause of our good results. We
observe only a small increase in accuracy for the Wikipedia-based model (90.98
Acc) compared to the FastText model trained on the Common Crawl (90.22 Acc).
Following this result, we conclude that different pre-training tasks of FT and SW
capture complementary features that lead to improved evaluation results. We
explain the complementary nature of these combinations with the document-wide
context that topic models encode. Topic models need to keep track of the context
coherently over whole documents while respecting local topic shifts. Contrary to
language modeling-based embeddings that often focus mainly on local context
spanning nearby sentences.

4.4.3.2. Combinations with Entity Embeddings

Table 4.5 shows "Strong+" increases in accuracy for 17 out of 44 experiments for
embedding combinations that include the surveyed entity embedding (PA).

Topic Plus Entity Embeddings Outperform. We examine the combination of
the topic (SW, SP) and entity embeddings (PA) in Tables 4.5 and 4.7. Intuitively, it
seems reasonable to assume that topic embeddings focus more on structure than
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on the meaning of single words and, therefore, capture complementary knowledge.
Our results prove this assumption, with 17 out of 22 experiments showing an in-
crease in performance and 11 scores qualifying as "Strong+." Similar to the results
when combining topic and language models, we explain the performance gains
with the complementary nature of the entity disambiguation and topic modeling
pre-training tasks. Additionally, we note that PA does not encode any contextual
information at prediction time, while SW and SP do. Following this, it is reasonable
to assume that SP+PA and SW+PA are generally beneficial combinations.

Combining fastText and Pappu is Beneficial. For 6 out of 11 tasks is our com-
plementary constraint in Table 4.5 fulfilled, the remaining tasks have a "Minor+"
accuracy increase, lower than one percentage point. We observe that FT+PA is a
beneficial combination since no task has a drop in accuracy.

ELMo Already Captures Features Encoded by Pappu. On the contrary, we
observe no accuracy gain over one percentage point for EL+PA. We observe six
times a minor increase, four times a minor decrease and one time a strong decrease.
As reported in Table 4.7 this strong decrease is accounted to the SST-5 task with a
loss of 1.22 percentage point compared to the single model result of EL. Overall,
we observe that this combination yields results comparable to the single model
performance of EL (see Table 4.6). This result suggests that the contextualized
nature of EL already captures the features encoded by PA.

4.4.3.3. Baseline and Domain Transfer

To validate our results, we survey if adding more semantically meaningful dimen-
sions to a vector is sufficient to obtain results comparable to our experiments.
Therefore, we evaluate combining a contextualized (ELMo) with a traditional lan-
guage model (fastText). Next, we report the results of the single model evaluation
of contextualized and traditional language models onWikiSection and PubMedSec-
tion. Finally, we survey if we can enrich a universal embedding (ELMo or fastText)
with domain-specific features (SP) without losing its domain independence.
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ELMo Plus fastText has no Effect. We report no result which qualifies as either
"Strong+" or "Strong-" in Table 4.5 for EL+FT. We observe a slight increase in
accuracy in six out of nine cases, and in three cases, minor decreases. Intuitively,
it is sound to assume that contextualized embeddings (EL) should not benefit
from static word embedding (FT) methods. Correspondingly, we evaluate, on
the one hand, the combination EL+FT in order to investigate this intuition and,
on the other hand, to obtain a baseline. Consequently, we conclude that adding
semantically meaningful dimensions to text representations alone is insufficient
to achieve good results comparable to the other surveyed combinations.

Classical Embeddings Perform Surprisingly well inMulti-sentence Tasks. Ta-
ble 4.6 reports surprisingly good results for non-contextualized embeddings (FT
and PA) in the WikiSection and PubMedSection tasks. Their best results on
WikiSection (39.84 acc) and PubMedSection (28.15 acc) are quite close to the con-
textualized universal embeddings BE and EL (WikS: 44.94 acc, PubS: 30.85 acc).
These results contradict our initial assumption that the contextualized embeddings
would vastly outperform FT and PA on multi-sentence-based tasks.

Domain Specificity. We observed 18 times a "Strong+" increase in accuracy for
the 33 experiments that involve SP, which is trained on PubMed abstracts (see
Table 4.7 and Table 4.5). Therefore, we can confirm the observation of J. Lee, Yoon,
et al., 2019 and Sheikhshabbafghi, Birol, and Sarkar, 2018 that in-domain text
representations perform better on biomedical texts than universal representations.
Moreover, we can show that it is possible to transfer the domain adaption into a
combined embedding without experiencing catastrophic forgetting since we only
observe three out of the 18 "Strong+" increases in the medical tasks (WikS, PubS).
For example, as shown in Table 4.6 the combinations of EL+SP and SP+PA deliver
the best results in our evaluation for the WikiSection disease task while being in
the top three surveyed embedding combinations.

4.4.4. Discussion

Adding Topic Models Helps for Most Tasks. Our results suggest that adding
topic models to either language models or entity embeddings is beneficial for the
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overall performance of most investigated classification tasks. This observation can
be explained by the topical and structural information captured in these models.
Moreover, these topical models capture the coherent flow of topics across long-
range dependencies while considering local topic shifts. Therefore, neurons in
these models may be able to capture long-range dependencies from long docu-
ments. This information seems complementary to information from universal text
embeddings or entity embeddings, with a comparably short context window.

Textual Similarity Tasks Do Not Benefit Much. We observe for textual similar-
ity tasks only for very few scenarios a "Strong+" improvement when combining
embeddings. We argue that existing universal embeddings, such as ELMo or fast-
Text, already represent sufficient features from local features close to the target
word.

Concatenation is Simple but Easily Interpretable. Our study is limited to con-
catenation as the operator for combining embeddings. This simple operator has a
significant disadvantage in raising the dimensionality. Additionally, it does not
leverage the originating correlations in combined embedding spaces. However, de-
spite these shortcomings, this operator permits surveying for effective embedding
combinations in an explainable manner.

Different Pre-Training Tasks Encode Different Features. Our study confirms
that embeddings trained with different pre-training tasks can encode complemen-
tary features. Combinations of specialized and universal embeddings often result
in domain-independent performance increases.

4.5. Conclusion

This chapter surveyed neural text representations for their capabilities supporting
text-based clinical decision support systems. First, We addressed RQ2 by evaluating
neural text representations on our newly introduced dataset "PubmedSection,"
and on the "Wikisection.diseases" dataset for medical topic segmentations in
German and English.
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Second, we investigated if text representations with differing pretraining tasks
are complementary and can yield a holistic text representation when combined
(RQ3). We analyzed and identified effective combinations of universal and special-
ized text embeddings in an extensive study on 11 tasks. We extended SentEval
to the medical domain by integrating the WikiSection.diseases and the Pub-
MedSection task. Our comprehensive analysis shows that combining universal
and specialized embeddings, such as Elmo + SECTOR, yields vastly improved
results in many downstream tasks. Furthermore, we showed that complementary
combinations yield holistic text representations that achieve a new state-of-the-art
for two tasks in SentEval.

Overall, we conclude that the SECTOR model is a robust and extensible building
block representing clinical narratives that captures features complementary to
language models.
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Deep Learning Enabled Clinical
Decision Support

Clinicians often have busy schedules and have limited time to research complicated
cases in medical publications and guidelines or to consult colleagues on similar
cases. A large part of the information clinicians seek is available as more, e.g.,
guidelines and research papers, or less, e.g., clinical notes and nursing notes in
EHRs structured text data. Deep learning-enabled text-based clinical decision sup-
port systems have the potential to reduce the needed effort drastically. Following
this idea, we approach RQ4: "How Effective are Deep Learning Enhanced Medical
Information Seeking Processes?" in this chapter1.

Based on our previous chapters’ findings, we present Smart-MD: IR and Smart-
MD: DDx to address RQ4. Smart-MD: IR focuses on the external information-
seeking process of clinicians. We design a process that enables medical pro-
fessionals to search for topical queries of the form [disease, topic]. Founded in
this process, we draft and implement a paragraph retrieval system based on the
SECTOR (Arnold, Schneider, et al., 2019) model.

1This chapter was published in the following articles:
R. Schneider, S. Arnold, T. Oberhauser, T. Klatt, T. Steffek, and A. Löser (2018). ‘Smart-MD:
Neural Paragraph Retrieval of Medical Topics’. In: Companion of the The Web Conference 2018 on
The Web Conference 2018. Lyon, France: International World Wide Web Conferences Steering
Committee, pp. 203–206
R. Schneider, M. Mayrdorfer, H. Schmidt, K. Budde, F. A. Gers, and S. Staab (2022). ‘SmartMD:
Deep Learning Enabled Differential Diagnosis’. In: To Appear, p. 20
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In Smart-MD: DDx, we focus on the differential diagnosis process. We formalize
the differential diagnosis process and operationalize its core tasks. Accordingly,
we abstract this process with high-level information system operations that enable
implementation using classical and deep learning-based models for information
retrieval and text understanding. We design and implement the Smart-MD: DDx
system based on this process. In a qualitative evaluation with clinicians, we
validate the deep learning-enabled differential diagnosis process and reveal design
challenges for text-based clinical decision support systems.

This chapter is structured as follows: First, we discuss the medical information-
seeking process on external sources, such as PubMed, in Section 5.1. We introduce
an exemplary scenario as a running example in Section 5.1.1. Section 5.1.2
describes employing a topic classification model such as SECTOR and a named
entity recognition model such as Tasty (Arnold, Dziuba, and Löser, 2016; Arnold,
Gers, et al., 2016) for medical information-seeking tasks. Section 5.1.3 discusses,
based on our running example, how a paragraph retrieval system can aid medical
information retrieval.

Secondly, we focus in Section 5.2 on the differential diagnosis process, which we
briefly introduce in Section 5.2.1. In Section 5.2.2, we design the deep learning-
enabled differential diagnosis process. Section 5.2.3 operationalizes each process
step and describes which models and methods we use. Next, describe our qualita-
tive evaluation and observation study in Section 5.2.4. We discuss our results in
Section 5.2.5 and present design challenges for clinical decision support systems.
Section 5.2.6 provides additional context to our work.

Finally, we conclude this chapter in Section 5.3.

5.1. Neural Paragraph Retrieval of Medical Topics

We demonstrate Smart-MD: IR, an information retrieval system for medical pro-
fessionals. The system supports topical queries in the form [disease topic], such as
["lyme disease", treatments]. In contrast to document-oriented retrieval systems,
Smart-MD: IR retrieves relevant paragraphs and drastically reduces a medical
doctor’s reading load. We recognize diseases and topical aspects with a novel
paragraph retrieval method based on bidirectional LSTM (Gers, Pérez-Ortiz, et al.,
2002; Hochreiter and J. Schmidhuber, 1997) neural networks. We demonstrate
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Smart-MD: IR on a dataset that contains 3,469 diseases from the English language
part of Wikipedia and 6,876 distinct medical aspects extracted from Wikipedia
headlines.

5.1.1. Introduction

Medical doctors, particularly in emergencies, often need to make fast decisions
without thoroughly studying the latest research results from journals. In particular,
less experienced doctors might overlook alternative treatments or therapies and
often fall back to potentially less effective standard procedures known from their
academic studies. Even though most queries of doctors are of informational intent
(R.W. White and Horvitz, 2014; Yoo and Mosa, 2015), standard medical search
engines, like PubMed1, still focus on filtering documents for a keyword query.
Ideally, a doctor could use an effective search engine for retrieving diverse and
potentially unknown results from the latest literature about symptoms, therapies,
medications, treatments, or other often requested aspects during the anamnesis.

Scenario: Consider the case of a doctor searching for treatments for Lyme disease,
an infectious disease caused by bacteria of the Borrelia type which is mainly spread
by ticks.She will study essential articles and find the transmission of ticks from
birds to humans as the main cause. While she knows from her academic studies
that antibiotics such as doxycycline will help most patients, she might oversee that
certain patients with cardiac diseases will likely suffer from this treatment and
should rather be treated with ceftriaxone-based antibiotics. Ideally, the system
would retrieve all treatments for Lyme disease and display an aggregated overview
of different treatments, including some paragraphs of text explaining infrequent
edge cases.
We demonstrate Smart-MD: IR, an information retrieval system that provides

such a functionality for medical professionals. It takes as input diseases and a list
of optional topical aspects and returns paragraphs about the given diseases in the
context of the given aspects. Moreover, it recognizes and aggregates important
facets in these paragraphs, such as correlatingmedical terms or topics, and provides
the user with these facets for query refinement. Figure 5.1 shows a typical result

1https://www.ncbi.nlm.nih.gov/pubmed/
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Figure 5.1.: Screenshot of the Smart-MD: IR user interface. The search bar (1)
shows current query terms and offers an auto-completion based on
the neural entity and topic extractors. The fact distribution chart (3)
and the topic tag bar (2) offer visual navigation components to allow
the user to refine the search direction. Smart-MD: IR groups search
results by their topics in result cards with a generated title and short
description (4). Those can be unfolded using the arrow button (5).
The view button (6) opens a full-text view of the document as shown
in Figure 5.2.

for the query ‘lyme treatment’. Given the query (1), the system retrieves two
highly relevant paragraphs about treatments from two articles on Lyme disease (4)
or on Borrelia. The user is able to refine the query with topical aspects that appear
in the context of these documents (2). Next, Smart-MD: IR shows a distribution
of treatments (3), and the user can narrow the query to a particular novel and
previously unknown treatment. Finally, the user may click on an interesting
paragraph to inspect the context of the entire document. Thereby, the system
highlights the topic of each relevant paragraph (6). In particular, with long
documents, this fine granularity at the paragraph level permits the reader to skip
many irrelevant passages.

90 5 | Deep Learning Enabled Clinical Decision Support



Figure 5.2.: Visualization of the neural topic classification for an example docu-
ment (excerpt). Smart-MD: IR assigns coherent topic labels ’preven-
tion’ and ’treatment’ to sentences. The shading of colors visualizes
the confidence of the best-scored class from the prediction; numbers
in brackets depict the average confidence per paragraph.

5.1.2. Paragraph Retrieval

Smart-MD: IR is built upon two neural information extractors that process the
dataset at load time. The topic extractor assigns a distribution of topics to each
sentence in the dataset. The entity extractor recognizes named entities in these
sentences. Both models are trained end-to-end with data from the medical domain,
in particular for the disease scenario. We store all extractions in an index and
retrieve them at query time to return relevant paragraphs. In this section, we
describe these steps briefly.

5.1.2.1. Sequential Topic Classification

The topic extractor’s goal is to assign a coherent distribution of topics over all
positions in a document. In contrast to traditional probabilistic topic models such
as LDA (Blei, A. Y. Ng, and Jordan, 2003), which describe topic distributions at
the document level, we approach capturing topics on the sentence level. One
possible solution is Paragraph Vectors (Le and Mikolov, 2014), which treats all
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Figure 5.3.: Neural network architectures of our section classification model. It
classifies a sequence of sentences st to their corresponding section
labels lt . We employ bidirectional LSTM layers, which respect the
long-range dependencies of sentences st inside a document.

paragraphs (or sentences) independently. However, to achieve a coherent sequence
of topics, e.g., to spot adjacent sentences that express treatments of a disease, we
need to respect the sequential order and long-range dependencies of sentences in
the document. Our approach uses a Long Short-Term Memory (LSTM) network
(Hochreiter and J. Schmidhuber, 1997) for classification.

Definition of Topics from Wikipedia Section Headlines. We utilize section
and subsection headlines from Wikipedia documents to define possible topics. For
example, we observe 6,876 distinct headlines from 3,469 Wikipedia pages on
diseases1. Table 5.2 shows the distribution of observed topics among articles. A
closer inspection reveals that this distribution is heavily skewed, e.g., the top 20
topics cover more than 90% of all paragraphs. We therefore chose 20 representative
topic labels for training and assign the label ‘other’ to the remainder. A detailed
overview of the topic distribution is shown in Table 5.1.

1taken from the 20170320 Wikipedia dump
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topic freq F1 topic freq F1

abstract 14.35% 82.40 classification 2.29% 37.78
treatment 12.59% 70.55 genotype 2.13% 49.60
symptom 11.99% 65.59 prevention 1.69% 68.07
diagnosis 11.62% 73.43 culture 1.58% 50.24
cause 10.05% 48.98 research 1.33% 60.09
other 7.20% 23.17 animal 0.66% 50.25
mechanism 6.28% 58.05 transmission 0.63% 0.00
management 4.09% 37.78 risk 0.37% 0.00
epidemiology 4.00% 75.08 complication 0.13% 4.65
history 3.82% 66.19 screening 0.11% 0.00
prognosis 3.08% 62.80

Table 5.1.: Distribution of covered sentences by topics in the Wikipedia dump,
which was used to train the topic extractor. F1 scores are evaluated on
a test set of n=32,045 sentences.

Sequential Classification using BLSTM Networks. We utilize the LSTM model
with forget gates (Gers, J. A. Schmidhuber, and Cummins, 2000) and bidirectional
layers (Graves, 2012) to predict for each sentence st a probability distribution
yt for its topic label Tlt =max(yt). The BLSTM is configured using forward and
backward layers with input nodes g⃗ t , input gates i⃗ t , forget gate f⃗ t , output gate o⃗t

and internal state s⃗t . We encode hidden states h⃗t (forward layer) and z t⃗ (backward
layer) for every time step t. We generate the output layer yt by summing h⃗t and
z t⃗ .

g⃗ t = φ(W⃗ g x x t + W⃗ ghh⃗t−1 + b⃗g)

i⃗ t = σ(W⃗ i x x t + W⃗ ihh⃗t−1 + b⃗i)

f⃗ t = σ(W⃗ f x x t + W⃗ f hh⃗t−1 + b⃗ f )

o⃗t = σ(W⃗ ox x t + W⃗ ohh⃗t−1 + b⃗o)

s⃗t = φ( g⃗ t ⊙ i⃗ t + s⃗t−1 ⊙ f⃗ t)

h⃗t = s t⃗ ⊙ o t⃗ / z t⃗ = s t⃗ ⊙ o t⃗

yt = φ(W⃗ yhh⃗t +W y⃗zz t⃗ + by)

(5.1)
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Our network architecture is shown in Figure 5.3. We use n-hot bag of words
vectors as input features, i.e., x t =

∑︁

w∈st
iw with indicator iw ∈ {0,1}|Vw| over a fixed

vocabulary Vw. We implement our BLSTMmodel with 300 cells, sigmoid activation,
0.5 dropout, and a softmax output layer. It is trained document-wise using stochas-
tic gradient descent with ADAM (Kingma and Ba, 2015), L2 regularization, and
cross entropy-loss using a learning rate of 10−3 and backpropagation-through-time
(Werbos, 1990). The network classifies a complete document per iteration and is
only reset in between documents. We segment the document into paragraphs by
splitting it at positions where the topic label changes. The outcome of our method
is visualized in Figure 5.2.

5.1.2.2. Medical Named Entity Recognition (NER)

The entity extractor’s goal is to recognize medical named entities, such as diseases
or medications in the documents. This task is often difficult since only sparse
training data exists for this specialized task, and recall suffers (Pink, Nothman, and
Curran, 2014). We utilize previous work on TASTY1 (Arnold, Dziuba, and Löser,
2016), a generic and robust approach for high-recall named entity recognition
and linking in many languages and with sparse training data. TASTY offers
strong generalization over domain-specific languages, such as in biomedical text
(e.g., Medline, PubMed, or Wikipedia articles), and can be trained with only a
few hundred labeled sentences to achieve F1 scores in the range of 84–94% on
standard datasets.

Robust recognition using character n-gram embeddings. Similar to the topic
extractor, the architecture of our entity extractor utilizes a BLSTM architecture.
The model’s objective is to assign BIOES entity labels Elt =max(yt) to all words
in a sentence (Ratinov and Roth, 2009). To achieve a robust classifier, we encode
words as bag of letter-trigrams as input features, i.e., x t =

∑︁

tri∈wt
itri. This allows

us to train a character embedding that is able to recognize typical syllables in a
word (Arnold, Gers, et al., 2016). We extract possible diseases and other medical
entities and store them in the index for query completion and paragraph retrieval.

1Demo available at http://demo.datexis.com/tasty/
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5.1.2.3. Query Processing and Paragraph Scoring

Smart-MD: IR executes queries of the form [disease, topic] as follows: First,
the user matches ambiguous disease and topic names using autocomplete. It
maps a variety of notations from Wikipedia headlines to well-defined classes. We
then conduct a conjunctive boolean search and retrieve documents containing
a single document’s disease name and topic ID. Finally, we score the candidate
paragraphs. Our scoring approach builds on the assumption that paragraphs
likely contain medical entities mutually related to the paragraph’s topic and the
requested disease. Moreover, we would like to retrieve low-frequency events that
are probably unknown to the doctor. We measure for each paragraph, proximity
between the requested topic and co-occurring entities with normalized pointwise
mutual information (Bouma, 2009) (nPMI):

nPMI(entity, topic) =
ln P(entity,topic)

P(entity)P(topic)

−ln P(entity, topic)
(5.2)

P(entity) denotes the probability that retrieved paragraphs contain the entity,
P(topic) the probability that the topic is discussed in the retrieved paragraphs
and P(entity, topic) denotes the probability that an entity appears in any retrieved
paragraph that discusses the topic. Hence we assign to low frequency events
relatively high scores.

5.1.3. Demonstration Outline

We demonstrate Smart-MD: IR in a live demonstration and with a video1 that
shows the case for our query from this chapters introduction ["lyme disease",
treatments].

Initial Search Query. While she is typing the query, the system auto-completes
terms against words in the index of diseases or topics. Next, the system retrieves
documents, filters, scores, and displays top-ranked paragraphs. Now, she can skim
the results to get an overview. The system supports her with a short description of
the relevant paragraphs of the documents. All sources claiming the same fact are

1https://www.youtube.com/watch?v=kcDi7qQxpBo
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no. headline topic freq H

0 Abstract abstract 3,453 0.03
1 Diagnosis diagnosis 2,795 0.49
2 Treatment treatment 2,789 0.49
3 Signs and

Symptoms
symptom 1,921 0.69

4 Causes cause 1,531 0.69
. . .

14 Symptoms symptom 339 0.32
15 Types classification 329 0.31
16 Research research 312 0.30
17 Society and

Culture
culture 310 0.30

18 Mechanism mechanism 224 0.24
. . .

6,873 Fungal
Meningitis

other 1 0.00

6,874 Location and
Symptoms

symptom 1 0.00

6,875 Molecular Basis
of Disease

other 1 0.00

Table 5.2.: Frequency and entropy (H) of top-5 head and randomly selected torso
and tail headings for 3,469 diseases and 6,876 distinct headlines in
the English Wikipedia.

aggregated and can be unfolded by a click on the arrow icon. This representation
allows her to overview and skip irrelevant content fast until she reaches interesting
treatments.

Query Refinement. Smart-MD: IR ranks co-occurring entities and topics in a pie-
chart or respectively in the topic bar by their frequency. If the resulting paragraphs
are still too broad, she can click on topics in the topic bar to refine the query and
search for rare facts. Alternatively, she can visit the entity navigation chart on the
right that shows a frequency distribution of entities in paragraphs. For accessing
less frequent but relevant entities that co-occur with the search query, she clicks on
a pie in the chart. This excludes the more frequent entities from the visualization
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and allows her to inspect the results in the ’long tail’ of search results.

Inspecting the Context of a Paragraph. Finally, she can drill down into the
context of interesting facts by clicking on the text that opens the corresponding
document. Next, the system displays the entire document. Like hand-written
notes at the margins of a textbook, Smart-MD: IR shows an assigned topic for each
paragraph. She can now read these pre-labeled topics and skip topics fast until
she reaches an important part. She can now drill down further or start over again.
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5.2. Deep-Learning-enabled Differential Diagnosis

By its nature, the differential diagnosis process benefits from 1000s of cases an
experienced doctor has seen after many years of practice. On the other hand, DDx
poses a challenging situation for an inexperienced doctor at the beginning of her
career. Especially, but not exclusively for their support, we propose a differential
diagnosis support system called SmartMD. We argue that recommendations by
this system can help less experienced medical professionals to improve treatment
quality and optimize diagnostics usage. Primarily, it can be valuable for a doctor
to obtain complementary hypotheses regarding possible diagnoses or subsequent
clinical actions based on cases from the clinical archive (see Figure 5.4).

5.2.1. Introduction

In the last years, neural networks outperformed in diverse natural language pro-
cessing (A. Wang, Pruksachatkun, et al., 2019) or computer vision tasks (Jia
et al., 2021). Several authors investigate whether they can transfer these suc-
cesses into clinical decision support systems. Such systems should assist medical
professionals in their day-to-day work, including assessing a patient’s situation,
hypothesizing diagnoses, and planning diagnostics and treatments (R. T. Sutton
et al., 2020). Successful examples are clinical support system approaches, such as
cohort modeling (Glicksberg, Miotto, et al., 2018), outcome prediction (van Aken,
Papaioannou, et al., 2021), clinical coding (Schumacher, Mulyar, and Dredze,
2020), and medical image processing (Oakden-Rayner et al., 2017).

Differential Diagnosis Process (DDx). At a high-level abstraction, DDx is a
complex process of integrating symptoms, lab and vital data, and many more
signals into a patient representation created in the doctor’s mind. The doctor also
compares this representation with similar cohorts from her experience. Thereby,
she tries to spot from these’ archived’ cases recommendations on diagnostics
that can exclude or confirm potentially severe conditions and treatments for the
remaining most likely diagnoses (see Figure 5.4).

DDx: Integrate, Retrieve/Filter, Predict. Ideally, such a system solves a broad
set of tasks and situations medical professionals face daily (Miotto, F. Wang, et al.,
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Figure 5.4.: Example of how SmartMD integrates into the clinical process. A
Medical doctor examines a new patient. She further investigates the
case and forms hypotheses regarding possible diagnoses and clinical
pathways. To ensure that the patient gets the best possible care, she
consults SmartMD to obtain complementary hypotheses.

2018; Sharafoddini, Dubin, and J. Lee, 2017; R. S. Sutton and Barto, 2016). We
abstract this process with high-level information system operations. First, a system
would need to integrate various signals from electronic health records (EHR) into a
patient representation. EHRs typically include text, lab data, medical imaging, and
other data describing the patient’s situation. Next, the system retrieves and filters
cases similar to the current patient from a clinical archive and groups them into
cohorts. We design this process as highly interactive to incorporate the doctor’s
expertise. The doctor might include or exclude several aspects until retrieved
cohorts match their assessment, the domain of the medical application, and the
current patients’ situation. Finally, the system needs to conduct classification
and outcome prediction tasks, including subsequent diagnostics, diagnoses, and
recommending effective treatments.

Contribution

Building such a DDx system is a complex undertaking. Together with a large
university hospital in Germany and the DATEXIS research group, we designed and
evaluated essential components of this system over the last years (See: (Arnold,
Gers, et al., 2016; Arnold, Schneider, et al., 2019; Schneider, Arnold, et al., 2018;
Schneider, Oberhauser, Grundmann, et al., 2020; van Aken, Papaioannou, et al.,
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2021)). We combine individual contributions into a single system and evaluate it
with medical doctors. We believe that the novelty of our integrated system and
the focus on deep learning for text data could become a blueprint for the design
of future DDx Systems. We discuss the following contributions in this chapter:

Abstraction of Six Core Tasks. We formalize DDx into a process comprising six
tasks and three feedback loops following Altkorn, 2020; Croskerry, 2009. This
framework enables us to combine the power of predictive models with the expertise
and background knowledge of medical professionals as proposed by J. Sun et al.,
2012.

Deep Learning & Statistical Models For DDx. We design and implement the
DDx process with models for information extraction, cohort modeling, diagno-
sis prediction, and clinical action recommendation in an integrated system. For
example, Smart-MD: DDx analyzes medical records using clinical concept recog-
nition and links the extracted mentions toward the Unified Medical Language
System (UMLS) (Bodenreider, 2004). Furthermore, we employ a transformer-
based (Vaswani et al., 2017) negation detection method (van Aken, Trajanovska, et
al., 2021) to determine if, e.g., a disease was excluded or diagnosed. Additionally,
we publish the source code of SmartMD under an open-source license1.

Evaluation with Medical Doctors. The third contribution is an in-depth quali-
tative evaluation of our method. The goal is to understand how our approach can
be beneficial to medical professionals in their day-to-day work. We conduct the
evaluation process through a multi-faceted user study. Therefore, we ask medical
professionals to work with the system on randomly drawn cases from MIMIC-III
(Johnson et al., 2016) coupled with observing and analyzing their usage patterns.
This analysis provides insights into how a system like SmartMD can aid daily
clinical work and stimulate further research and improvements.

Identify Challenges for Clinical Decision Support Systems. Fourth, we derive
design challenges for CDSS based on our results and insights.

1https://github.com/DATEXIS/smartmd-backend
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5.2.2. The Differential Diagnosis Process

We identify in the medical diagnosis process described by Altkorn, 2020; Croskerry,
2009 six data integration, retrieval, or prediction tasks for a DDx system (Figure
5.5). First, the physician needs to assess all available information regarding a
patient, such as electronic health record entries, laboratory results, or medical
images (section 5.2.2.1). Next, she needs to organize helpful resources for similar
case data (section 5.2.2.2). Following this, she explores the data (section 5.2.2.3)
and selects the most similar and relevant recorded cases (section 5.2.2.4). She has
now formed a hypothesis regarding suitable clinical pathways and diagnoses for
the patient. Now, she can additionally consult the most recent medical literature
to narrow down, rank, and finally, choose the most probable clinical pathway for
the patient (section 5.2.2.5). The corresponding clinical actions (section 5.2.2.6)
follow this and lead to a clinical endpoint or new insights in the case at hand. Now
she can start over the process with the new information.

Figure 5.5.: The Differential Diagnosis Process. We condense the steps of the
differential diagnosis into six steps. (1) Based on data from the
patient’s Electronic Health Record, we frame and identify the patient’s
current situation. Next (2), we model and organize similar cases from
clinical archives into cohorts. Following this, the system takes feedback
on the selected cohorts’ relevance from the medical expert (3). She
can now limit (4) the selection by adding or removing clinical concepts
from the patients’ situation representation X . SmartMD recommends
(5) complementary or additional hypotheses regarding the diagnosis
or clinical pathways. Finally, (6) the medical doctor can validate the
recommendations and add new gained input to X .
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5.2.2.1. Frame and Identify

In the first step, the medical doctor needs to assess all information available
regarding the patient. She visits laboratory results, medical images , and prior
assessment notes in the EHR. In doing so, she determines which medical concepts,
described in medical ontologies, like UMLS, and coding systems, such as ICD-10
or SNOMED, apply to the patient. Finally, she ends up with a set of concepts that
describe the patient.

5.2.2.2. Organize

Next, the physician needs to retrieve records of patients that are similar to the
patient at hand in the organize step (2). She does this by searching for patients that
match the patient at hand in clinical concepts and demographics. Additionally, she
might formulate further restrictions on the search based on her clinical experience
and intuition. Now, she groups the retrieved patients into cohorts based on how
well they fit the patient.

5.2.2.3. Explore

The explore step (3) allows the medical doctor to assess, compare, and drill down
into the assembled cohorts. As a result of this, she can determine if a cohort is
relevant to the differential diagnosis process.

5.2.2.4. Limit

She might add additional limitations to the query in the limit step (4). This refine-
ment is necessary if she is not satisfied with the overall results of the "organize"
step or spots interesting details while drilling down into patients.

5.2.2.5. Rank

The rank step (5) proposes complementary diagnoses or clinical pathways to the
medical expert. She can now investigate multiple hypotheses and choose to take
them into account when treating the patient. Since medical professionals know
how to deal with a large variety of cases, a supporting system must aim to point
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out rare but relevant diagnoses. Moreover, it must help her to take the best course
of action to confirm a diagnosis and finally treat it.

5.2.2.6. Validate

Finally, she might decide to carry out the suggested clinical action. Doing so,
she gains new insights, e.g., if a treatment is effective or diagnostic results are
available. She can now update the system with new data, such as lab results,
medical images, or clinical observations, and evaluate the new situation. This step
influences all ’priors’ of our model so that it can provide new insights.

5.2.3. Models and Methods

Our thoughtful analysis from the last section ’translates’ core medical tasks into
common data integration and machine learning tasks. In this section, we discuss
important properties and formalize each task. Next, we integrate our recent work
into an integrated system for DDx on the MIMIC-III dataset and the UMLS concept
hierarchy. In particular, we focus on deep neural natural language processing
models for clinical concept recognition and linking, negation detection, or to frame
and identify a patient’s situation. We model SmartMD using the microservice
architecture paradigm (Sill, 2016) to scale up to tens of thousands of patients
and deliver fast results. Finally, we visualize the results for doctors with Sankey
diagrams.

5.2.3.1. Representing Patients from Clinical Text

Our focus is on free-form texts in EHRs. These texts contain information from the
doctors’ perception, which is often complementary to more structured data, such
as vital- or lab data or other forms of diagnostics. Our interviews with clinical
doctors and a deep manual analysis of many hundred clinical notes unrevealed at
least three core tasks: clinical concept recognition, clinical concept linking, and
negation detection for representing text in archives’ records. Our models take
advantage of deep learning models (Gu et al., 2021; A. Wang, Pruksachatkun,
et al., 2019; A. Wang, Singh, et al., 2018) and transfer learning (Brown et al.,
2020; J. Lee, Yoon, et al., 2019; M. E. Peters et al., 2018) to outperform in high
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dimensional spaces. This is necessary since typical clinical notes often include
typos, abbreviations, idiosyncratic language, other ’previously unseen’ vocabulary,
and bullet points instead of well-formed sentences (Leaman, Khare, and Lu, 2015).

Clinical Concept Recognition. Clinical Concept Recognition is the task of iden-
tifying words mentioning a clinical concept in a text and assigning those mentions
to concept identifiers (Jauregi Unanue, Zare Borzeshi, and Piccardi, 2017; Si et al.,
2019; Y. Wu, M. Jiang, et al., 2018). Deep Neural networks have shown to be
effective in this task, especially in generalizing to examples not seen at training
time (Arnold, Gers, et al., 2016; Y. Wu, M. Jiang, et al., 2018). For example, the
methods of (Arnold, Gers, et al., 2016) and (Jauregi Unanue, Zare Borzeshi, and
Piccardi, 2017) can adapt and scale to unseen inputs with just a few thousand
training examples. We follow (Arnold, Gers, et al., 2016) and (Jauregi Unanue,
Zare Borzeshi, and Piccardi, 2017) and formulate clinical concept recognition
as a sequence tagging problem. We apply the widely used (Arnold, Gers, et al.,
2016; B. Tang et al., 2013) BIOES tagging scheme, an extension of the BIO scheme
(Ramshaw and Marcus, 1995). Thus, the model needs to assign the correct tag
class out of {B, I , O, E, S} to every token in a clinical note. We use sub-word embed-
dings (Bojanowski et al., 2017; Y. Wu, Schuster, et al., 2016) to ensure robustness
when facing noise typical in clinical narratives such as misspellings, acronyms, or
clinic-specific jargon (Chapman, Nadkarni, et al., 2011 Sep-Oct; Leaman, Khare,
and Lu, 2015).

Training on MedMentions and Wikipedia. The MedMentions dataset (Mohan
and D. Li, 2019) consists of 4,392 PubMed abstracts annotated by professional
annotators with UMLS concepts. We chose the ST21pv training subset for training
our model. The ST21pv subset covers less but clinically relevant UMLS concepts
(25,419) than the full MedMentions dataset (34,724). Heilman and West, 2015
survey the quality of Wikipedia’s medical section and conclude that it is a sound
source on medical topics. Therefore, we use the medical part of Wikipedia as
an additional training resource as originally proposed by (Bunescu and Paşca,
2006). Consequently, we download a dump of Wikipedia and filter it for pages
on medical topics. Next, we query Wikidata (Vrandečić and Krötzsch, 2014) for
medical concepts such as diseases or medications and all available synonyms or
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alternative names. Following this, we use the work of Mandel, 2019 to annotate
additional relevant medical concept mentions in the Wikipedia dump.

Clinical Concept Linker. This task normalizes each medical concept from the
recognizer and assigns a unique identifier from a controlled vocabulary or ontology
(Fu et al., 2020; Tseytlin et al., 2016). Covering most internationally used medical
coding systems, the unified medical language system (UMLS) (Bodenreider, 2004)
serves as our ontology. Every concept has a Concept Unique Identifier (CUI)
associated with multiple names or mentions in the UMLS. For example, common
cold and head cold refer to the same CUI C0009443.
We index all 10,406,797 English concept names and their 4,413,092 concept

identifiers. Therefore, we rely on full-text indexes provided by Elasticsearch
(Elasticsearch 2021). For every English concept name in the UMLS, we create an
entry consisting of its CUI, name, description, and semantic type. We analyze the
name and the description using tokenization (Webster and Kit, 1992) and stopword
removal. Additionally, we perform 3-gram-subword-tokenization (Bojanowski et
al., 2017) for the concept names to be robust for spelling errors. Furthermore, this
pre-processing allows serving an interactive search-as-you-type scenario proposed
by Arnold, Dziuba, and Löser, 2016 and used in Section 5.2.3.4.

link(C , M) = rescore(BM25(C , mngram), d)

rescore(C , d) = γ · (BM25(C , d) + BM25(C , m))
(5.3)

Next, we model clinical concept linking similar to (Schumacher, Mulyar, and
Dredze, 2020) as a ranking scenario. Likewise, the linker needs to rank all
candidate concepts Ccui given a mention M , which consists of the text of the
mention m and its context d.

BM25(C ,Q) =
n
∑︂

i=1

IDF (qi)
f (qi , C) (k1 + 1)

f (qi , C) + k1

�

1− b+ b |C |avgcl

�

IDF (qi) = ln
�

N − n (qi) + 0.5
n (qi) + 0.5

+ 1
�

(5.4)

We employ BM25 ranking (5.4) with character-n-gram matching and context-
based reranking (Rajani, Bornea, and Barker, 2017) in Equation 5.3, where γ is a
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scaling factor. We use the top one candidate as the predicted concept.

UMLS Semantic Type → SmartMD Medical Type
Clinical Drug Medication
Pharmacologic Substance Medication
Antibiotic Medication
Sign or Symptom Symptom
Laboratory or Test Result Symptom
Clinical Attribute Symptom
Hazardous or Poisonous Substance Symptom
Disease or Syndrome Symptom
Bacterium Symptom
Virus Symptom
Fungus Symptom
Eukaryote Symptom
Finding Symptom
Mental or Behavioral Dysfunction Symptom
Neoplastic Process Symptom
Cell or Molecular Dysfunction Symptom
Injury or Poisoning Symptom
Therapeutic or Preventive Procedure Therapy
Diagnostic Procedure Diagnostic
Laboratory Procedure Diagnostic

Table 5.3.: Mapping of relevant UMLS semantic type names to clinical types used
in SmartMD. We assign any UMLS semantic type names not contained
in this table to the "Other" class.

Clinical Type Classification. The linked concepts refer to a semantic type within
the UMLS. The UMLS organizes these fine-grained types in a hierarchy containing
91 types. To support medical professionals’ focus on the differential diagnosis
process, we condense this typing system down into five classes: "Medication,"
"Symptom," "Diagnostic," "Therapy," and "Other." Accordingly, we use a handcrafted
dictionary for this normalization step, as shown in Table 5.3. As a result, our clinical
concept linker yields triples of the form (mention, cui, medical type).
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Assertion Detection with fine-tuned BERT. Clinical narratives often contain
words modifying the presence, absence, or possibility of clinical concepts. For
example, a report in an EHR might state, "The patient denied any shortness of
breath." Consequently, our system must mark "shortness of breath" as absent in the
patient representation.
Especially, detecting the often vaguely expressed "possible" class is challeng-

ing. van Aken, Papaioannou, et al., 2021 discuss the helpfulness of pre-trained
language models to tackle this problem. They show that BERT-based models
significantly increased scores in the often underrepresented "possible" class of
0.786 F1. Therefore, we follow their recommendation to use the BERT-based
(Vaswani et al., 2017) approach of Alsentzer et al., 2019. They solve the task of
entity-specific Assertion Detection by fine-tuning (Howard and Ruder, 2018) BERT
on biomedical paper abstracts and discharge summaries. Consequently, we can
profit from BERTs’ vast language understanding and generalization capabilities.

G (αi | BERT,θ ) = softmax
�

BERT · V T
�

=
exp (P (αi | BERT,θ ))
∑︁α

j=1 exp
�

P
�

α j | BERT,θ
��

(5.5)

Following Alsentzer et al., 2019; van Aken, Trajanovska, et al., 2021, we model
assertion detection as a three-class classification problem where we aim to predict
the likelihood of each of the three classes present, absent, or possible. Accordingly,
we approximate the probability of each class (α = {present,absent,possible})
given the BERT model and all trainable parameters θ as illustrated in Equation
5.5. To do so, we apply the fine-tuned BERT model on the input vector V and
calculate the final result using the softmax function. V is a sequence of words
surrounding the concept mention in the clinical narrative. Finally, we use the class
with the highest probability and assign it to the corresponding clinical concept C .

5.2.3.2. Cohort Retrieval and Clustering

Selecting patients for cohort identification is an elementary task in clinical
research. For this purpose, it is necessary to define the similarity of patients
to model helpful cohorts. We focus our cohort modeling method on patient
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Figure 5.6.: Cohort Modeling Process in SmartMD. (1) A medical doctor formu-
lates a query that describes the situation of a patient and her first
assessment of the case. (2) Next, the system retrieves candidates Â
from the clinical archive A using scoring function S(Q, A). (3) Follow-
ing this, SmartMD aggregates the candidates into cohorts κ using our
aggregation function f (q,ψp).

characteristics derived from free-text reports, similar to Glicksberg, Miotto, et
al., 2018; Glicksberg, Oskotsky, et al., 2019; J. Lee, Maslove, and Dubin, 2015;
Sarmiento and Dernoncourt, 2016. Following J. Sun et al., 2012, we use medical
experts’ knowledge in our model. In particular, the SmartMD system enables
medical professionals to choose the best-fitting features extracted from text to
form a query against the patient archive. Our interviews with doctors revealed
several types of results from a cohort search. First, doctors desire cohorts that
ideally match their query. Moreover, doctors are interested in additional cohorts
that share important query predicates and share common anomalies not requested
explicitly in the query. As an illustration, assume that a medical doctor queries
SmartMD for our running example. This results in the best matching cohort
matching all query criteria; second, a cohort with no renal transplantation; third,
another cohort with patients who commonly suffer from diarrhea. In the following
and Figure 5.6, we describe candidate retrieval and cohort clustering.

Candidate Retrieval & Query Types. SmartMD supports boolean conjunctions
of predicates, including polarities and negations, such as "include all patients with
Type 2 Diabetes, who have undergone renal transplantation and exclude all patients
with present Diarrhea." Figure 5.7 provides an overview of possible expressions.
The system permits clinical archive A with selected concept names ψ= {c1, ..., ci}
to obtain candidates Â. Additional query parameters consist of predicates that
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Figure 5.7.: This figure shows possible query predicates supported by the cohort
modeling service of SmartMD. A query predicate can either be of the
query predicate type include or exclude. Combining this with the
feature polarity results in query predicates that express the shown
textual examples, e.g., for diabetes.

either include ρ j = 1 or exclude ρ j = −1 a patients’ concepts. Consequently, Q is
a set of the tuples of all included or excluded concepts Q = {(φ1,ρ1), ..., (φn,ρn)}
and Φ= {φ1, ...,φM} is the set of all concept names in Q.

S(x ,Q) =
|Φ|
∑︂

j

|Ψ |
∑︂

i

�

BM25(ci,φ j) ·max(vi ·ρ j, 0)
�

Â= {x |x ∈ Aand S(x ,Q)> T}

(5.6)

We index the electronic health records together with their features from our
patient representation step. Next, we apply the BM25-based scoring function S
to find similar patients based on the concept names in Equation 5.6. To consider
negations, we filter candidates’ concepts by calculating the maximum between the
product of its polarity vi, and the queried concepts predicate ρ j and zero. This
filter removes the BM25 score of every concept that does not match the queries’
required polarity from the candidate’s score. Subsequently, we use function S
to build a set of cohort candidates Â = {x1̂, ..., x p̂} that surpass the threshold T .
Finally, we use Â as input for the cohort aggregation step.
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Cohort Clustering. We cluster the cohort candidates Â into the final cohorts κ.
Remember, we seek one best cluster of patients with best-fitting query predicates
and additional clusters that match parts of the query but share other commonalities.
Our aggregation function in equation 5.7 organizes retrieved patient candidates
into the best-fitting cohort.

κl = ar gmaxq∈Ω(Φ)( f (q,ψp))

f (q,ψp) =
ex p(J(q,ψp))
∑︁

q∈Ω(Φ) ex p(J(q,ψp))

(5.7)

We calculate the probability that a candidate at index p belongs to a cohort q
for every possible cohort. For this purpose, we define the set of all cohorts as the
power set of all concept names in the query (κ = Ω(Φ)). Next, we approximate
the probability of exclusive cohort membership for each candidate by calculating
the argmax of the scoring function f and the softmax of the patient similarity
function J to obtain a distinctive score.

Candidate Similarity. We model the similarity between retrieved patient candi-
dates and a cohort as the distance function J . It takes the candidate’s set of medical
concepts ψp and concepts of the current cohort q as arguments. Subsequently, we
employ the Jaccard distance (Levandowsky and D. Winter, 1971) in Equation 5.8
to estimate the candidate’s similarity.

J(q,ψp) =
|q ∪ψp| − |q ∩ψp|
|q ∪ψp|

(5.8)

In essence, we model the probability that a candidate belongs to a cohort by
the number of medical concepts that match the cohort. This method is easily
transferable to determine the similarity between patients.

5.2.3.3. Predicting Clinical Actions

A complex web of interactions underlies the associations between diseases. This is
particularly the case for the modern diseases of the developed world (Arandjelović,
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Correlation Type Medical Type
Source Target

Symptoms-Treatment Symptom Therapy, Medication
Symptoms-Diagnostics Symptom Diagnostic
Diagnosis Symptom Symptom

Table 5.4.: Correlation types supported by SmartMD

2015). Observing, analyzing, and understanding these dependencies between
medical concepts in cohorts is a common method in medical research. For example,
Arandjelović, 2015 and Landi et al., 2020 analyze past hospital admissions. We
follow this idea and enable SmartMD to recommend clinical actions and propose
diagnoses based on correlations observed in the hospital archives data. Therefore,
we take the previously selected cohorts of historical cases into account and enable
clinicians to perform such analyses in their day-to-day work.

It is crucial for such a system to carefully model the relevance of clinical actions
such as diagnostics, treatments, or diagnoses and minimize the number of irrele-
vant suggestions to win the users’ trust (R. T. Sutton et al., 2020). Therefore, we
follow Watford et al., 2018, Miotto, F. Wang, et al., 2018 and Landi et al., 2020
and base, as in our previous work (Schneider, Arnold, et al., 2018) the recom-
mendations of SmartMD on correlations between medical concepts observed in
expert-selected documents such as EHRs. Thereby, we differentiate between the
three correlation types: Symptoms-Treatment, Symptoms-Diagnostics, and "Diag-
nosis." Table 5.4 gives a detailed overview of them and their respective medical
types. Resultantly, we define a correlation type C T as a tuple of medical source
Ms and target Mt types. Thus, we formulate the clinical action recommendation as
a distribution of correlation values between the source and target medical types
of a given type with respect to the selected cohorts κ.

Ranking Clinical Actions. We use a relational database1 to enable cohort-based
clinical action recommendation at scale. Thereby, we can support recommen-
dations based on cohorts of thousands of relevant patients and their respective
clinical concepts. Accordingly, we transform the encoded EHR data into a rela-

1We use PostgreSQL 12 https://www.postgresql.org/
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tional database schema (Codd, 1970). Thus, we arrange all clinical concepts in
relation F as shown in Equation 5.9 and group every concept’s name and polarity
by the document id. As a result, we obtain distinct tuples of concept name and
polarity.

F(id,doc_id, text,polarity, type) (5.9)

Filtering Clinical Concepts. Next, we query the database for clinical concepts
that belong to the patients in the selected cohorts κ. We filter the two projections
of F , F1, and F2 for the queries’ correlation type by matching the concept’s medical
type (Equation 5.10). We filter F1 for Ms and F2 for Mt . We exclude all clinical
concepts that are stated as absent since we want to recommend only relevant
concepts.

F1 := σpolarity ̸=ABSENT
∧type=Ms
∧d_id∈κ

(F)

F2 := σpolarity ̸=ABSENT
∧type=Mt
∧d_id∈κ

(F)
(5.10)

Approximating Probability of Concepts in Cohorts. As the next step, we count
and group the occurrence of every remaining clinical concept in Equation 5.11.
We use the concept names as grouping keys. Following, we divide the counts
by the number of patients in the selected cohorts |κ|. As a result, we obtain the
relations Ps and Pt , which approximate the likelihood of the respective clinical
concepts. Eventually, we join the probabilities Ps and Pt with the remaining data
in the relations F1 and F2 by using the concept name as the join condition.

Ps := textG count(text)
|κ|
(F1)

F1 := F1 ▷◁F1.text=Ps .text Ps

Pt := textG count(text)
|κ|
(F2)

F2 := F2 ▷◁F2.text=Pt .text Pt

(5.11)
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Next, we join in Equation 5.12, the source concepts relation F1 with the target
concepts relation F2 based on the respective Patient. As a result, we obtain every
existing combination of co-occurring clinical concepts F1_2 within the selected
cohorts κ coupled with their single probability.

F1_2 := F1 ▷◁F1.d_id=F2.d_id F2 (5.12)

As the next step, we obtain F1_2B as a projection of F1_2. Similar to the single
probabilities Ps and Pt , we calculate the joint probability of their co-occurrences
Ps,t in Equation 5.13. Additionally, we compute their absolute occurrences. Lastly,
we join Ps,t to F1_2 on the source and target concept names so that we end up with
the single probabilities and the probability of every co-occurring pair of source
and target concepts in relation F1_2.

F1_2B :=ΠtextF1
,textF2

(F1_2)

Ps,t := textF1
textF2

G count(textF1 ,textF2 )

|κ| ,count(textF1
,textF2

)
(F1_2B)

F1_2 := F1_2 ▷◁ F1_2.textF1
=Px ,y .textF1

∧F1_2.textF2
=Px ,y .textF2

Ps,t

(5.13)

Scoring Clinical Concepts. Once we obtain all co-occurring clinical concepts in
our selected cohorts, we need to model their relevance. We follow Watford et al.,
2018 and the approach of our previous work (Schneider, Arnold, et al., 2018)
and use point-wise mutual information (PMI) to measure the association of the
observed co-occurrences. (Equation 5.14).

pmi(x; y) = log
p(x , y)

p(x)p(y)
(5.14)

For better interpretability, we follow Bouma, 2009 and divide the PMI by the
informed self-information h(x , y) in Equation 5.15 to introduce upper- (1) and
lower-bounds (-1) to the measure. This results in the property that a value of 1
can be interpreted as a perfect correlation, 0 as independence, and a value of -1
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as a contradiction.

npmi(x; y)≡ npmi(P(x , y), P(x), P(y))

=
pmi(x; y)

h(x , y)

=
�

log
p(x , y)

p(x)p(y)

�Á

− log p(x , y)

(5.15)

A flaw of NPMI is its bias towards low-frequency co-occurrences, resulting in
unrealistically high association values for rare concept combinations (Bouma, 2009;
Watford et al., 2018). Worse, we observe that this causes upstream extraction errors
and other noise to receive high scores. Consequently, we filter all recommendations
by their absolute number of occurrences with the threshold T to counteract this
problem. Empirically,. we have determined that a value of T = 3 serves good
results without discarding interesting rare concept combinations.

ΠtextF1,textF2,npmi(Px ,y ,Px ,Py )(θ npmi≥0
∧ count>T

(F1_2)) (5.16)

Next, we calculate the NPMI for every pair of source and target clinical concepts.
Remember, our goal is to recommend clinical actions. Hence, we filter the results
to contain only values with an NPMI value of at least zero. Identically, we apply the
Threshold T as a filter. After these filtering steps, we calculate the final projection
containing the source and target concept names and their NPMI in Equation 5.16.

5.2.3.4. Interactive Feedback from Medical Experts

SmartMD offers easy-to-use interfaces to our previously defined clinical operators.
We aim to ease the day-to-day work of medical professionals. Therefore, SmartMD
offers a web-based front-end supported by most modern web browsers. To offer
interfaces with low visual complexity (Miniukovich, Sulpizio, and De Angeli,
2018), we follow the design guidelines of material design1. Following Eiband
et al., 2018 and Dudley and Kristensson, 2018, we aim for transparency of the

1https://material.io/

114 5 | Deep Learning Enabled Clinical Decision Support

https://material.io/


deep learning and statistical methods. Consequently, SmartMD provides multiple
feedback loops and high-level abstractions of the system’s state to the user.

Modeling the Index Patient. We enable the user to provide feedback to the
system at any time. For example, when analyzing a patient’s clinical notes, the
Smart MD: DDx offers a top-down view of the found and linked concepts, as
shown in Figure 5.8. The medical professional can now select which detected
clinical concepts are relevant for further investigation in the differential diagnosis
process. If the system misses a concept or a new relevant comes to the physician’s
mind, she can enter it in an auto-completed text field. The medical professional
can assign the clinical features to one of the query predicates Present, Possible,
Present / Possible, Excluded, or Not Mentioned. We visualize these predicates using
color coding and icons from the iconify1 collection. Moreover, the physician can
determine if a clinical feature is absent or present in the patient at hand. SmartMD
uses this input to build a query according to the query type definitions in section
5.2.3.2 and Figure 5.7.

Interactive Cohort Modeling. SmartMD shows in the next step the cohort mod-
eling interface, see Figure 5.6. We use a data table2 to show high-level information
on the found cohorts, like how well they match the query or which points differ.
The physician can drill down into the cohorts and inspect the EHR of every patient.
This enables medical professionals to perform cohort analysis at scale and in their
day-to-day work. Consequently, she can now include cohorts for further analysis
or go back to the patient modeling step to refine her query.

Explaining Complimentary Recommendations. To visualize the results of the
correlation analysis, we use Sankey diagrams3 (Figure 5.10) as Ronicke et al.,
2019 have shown their effectiveness in comprehending medical causalities and
correlations. The diagram shows the relationship between, for example, symptoms
and diagnostic measures. The size of the connecting line determines how much a

1https://iconify.design/
2https://material.io/components/data-tables
3https://github.com/d3/d3-sankey
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Figure 5.8.: Screenshot of the patient modeling view. SmartMD provides a high-
level overview of the found concepts and information regarding the
case at hand. This view lists all patient features and offers the ability
to filter them. The middle part of the view is the filter query area.
All selected features that should contribute to the cohort modeling
process are listed and color-coded about the applied query predicate.
SmartMD offers an additional auto-complete field to filter queries
based on patient features that are not present in the case at hand.
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Figure 5.9.: Screenshot of the cohort modeling interface. We organize the re-
trieved candidate cohorts in a sortable data table. This table enables
the medical professional to select cohorts relevant to the clinical action
proposal step. Along with that, the color and icon coded difference
between the query and any candidate cohort are made transparent.
To reduce the cognitive load of the user, we additionally show the
executed query.

symptom and a diagnostic action are associated. Additionally, we provide the NPMI
score and the absolute co-occurrence values while mousing over a connecting line.

Transparently Recommending Clinical Actions at Scale. Considering all these
steps, SmartMD enables clinicians to obtain complimentary recommendations for
clinical actions and diagnoses based on in-depth cohort analyses from EHR text
data at scale. The system explains its recommendations transparently in all steps
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Figure 5.10.: Screenshot of the correlation visualization. We use a Sankey dia-
gram to visualize co-occurring clinical concepts. This visualization
supports three modes for every supported correlation type (Table
5.4).

by providing easy access to the plain text EHR and visualizing the used data.

5.2.4. Evaluation

We evaluate the differential diagnosis process implemented by SmartMD in two
detailed steps. We ask medical experts to use the system to assess two cases in the
MIMIC-III (Johnson et al., 2016) dataset. We collect observational data during
this experiment and perform a structured interview with the medical experts
afterward.

5.2.4.1. The MIMIC-III Dataset

MIMIC-III is an electronic health record dataset that is publicly available for
researchers. The data describes ICU patients at Beth Israel Deaconess Medical
Center in Boston, US. We chose MIMIC III for our evaluation for two reasons. First,
there is a lack of publicly available data that can be used in research and permits
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Property Value
Patients 33.204
ICU visits 44.026
Unique diseases 6.184
Diseases with only 1 occurrence 1.355
Total disease mentions 521.786
Unique medications 3.725
Medications with only 1 occurrence 315
Total medication mentions 1.885.865
Unique procedures 1.947
Procedures with only 1 occurrence 366
Total procedure mentions 210.376

Table 5.5.: Statistical analysis of the MIMIC-III data set.

the reproduction of experiments. Second, is the large amount of data generated
at ICUs and the necessity for proactive, precise, and personalized care strong
indicators that the processes here could vastly profit from computerized CDSS
(Sharafoddini, Dubin, and J. Lee, 2017).

MIMIC-III consists of 53,423 distinct admission records between 2001 and
2012 that contain free-text reports and structured data. We aim with SmartMD
to provide a generally applicable decision support system, which is also suitable
to other medical domains that profit from digital decision support systems, e.g.,
chronic disease treatment (Cui, Bozorgi, et al., 2012; Sharafoddini, Dubin, and
J. Lee, 2017). For this reason, we focus our evaluation on the free text reports,
which are often less incomplete in non-ICU settings (Sarmiento and Dernoncourt,
2016). For illustration purposes, we create an artificial example case similar to
MIMIC-III:

The patient is a [age] year old gentleman with a history of hyper-
tension and known aortic aneurysm. He was being followed by [**
medical professional 123 **]. He presented to [**Hospital 1 **] with
worsening abdominal and back pain. Pain began about a day prior to
admission and gradually worsened. It is not associated with food. No
vomiting, no chest pain, shortness of breath. At [**Hospital 2 **], the
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patient underwent abdominal CT scan which did not show a ruptured
aneurysm. The patient was transferred to [**Hospital 1 **] for further
management.
MEDICAL HISTORY: Significant for hypertension; aortic aneurysm;
gout;.
MEDICATION ON ADMISSION:
ALLERGIES: Amoxicillin
PHYSICAL EXAM:
FAMILY HISTORY:
SOCIAL HISTORY:

Additionally, table 5.5 provides statistical insights on the data.
We randomly draw 2 cases from the MIMIC-III-based dataset of van Aken,

Papaioannou, et al., 2021 for manual evaluation involving medical experts for our
experiments.

5.2.4.2. Qualitative Evaluation

To verify our approach’s effectiveness, we ask five medical experts (Table 5.7) to
work on two randomly drawn cases and recommend treatments, diagnostics, and
diagnoses that apply to the cases. Accordingly, we present the experts similar to
the evaluation of van Aken, Papaioannou, et al., 2021 each case’s admission notes.
They can now use the SmartMD system to work on the cases. Next, we invite them
for a structured interview. Correspondingly, we formulate hypotheses and related
interview questions. Finally, we analyze and interpret the answers.

Hypotheses & Interview Questions. We aim to assess the correctness, help-
fulness, and complementariness of our system and process. Moreover, we aim
to discover challenges in designing and implementing the deep learning-aided
differential diagnosis process. For this motivation, we formulate the following
hypotheses:

• H1 SmartMD delivers complementary medical hypotheses
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• H2 SmartMD’s recommendations are medically sound.
• H3 SmartMD is helpful for medical professionals.
• H4 SmartMD’s recommendations are comprehensible.
• H5 SmartMD explains how it arrives at conclusions.

We categorize and group the interview questions in Table 5.6. We sort questions
by each hypothesis that we want to survey. Moreover, we assign "open" or "range" to
every question as a question type. Following Likert, 1932, we ask the participants
how much they agree with the statements of range-type questions on a scale from
1 (Strongly disagree) to 5 (Strongly agree).
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Id Question / Statement Type Range

P Preface
P1 What is your highest medical-related degree? open n/a
P2 How many times have you used SmartMD? (single occasions, e.g., 0-3) open n/a
P3 How old are you? open n/a
H1 SmartMD delivers complementary medical hypotheses.
H1.1 The system recommended a treatment that I hadn’t thought of beforehand. range 1 - 5
H1.2 The system recommended a diagnostic that I hadn’t thought of beforehand. range 1 - 5
H1.3 The system recommended a diagnosis that I hadn’t thought of beforehand. range 1 - 5
H2 SmartMD’s recommendations are medically sound.
H2.1 The proposed treatments, diagnoses, and diagnostic procedures are medically sound. range 1 - 5
H2.2 The predicted diagnoses were correct. range 1 - 5
H3 SmartMD is helpful for medical professionals.
H3.1 SmartMD is helpful to get an overview of similar cases. range 1 - 5
H3.2 The recommended treatments were helpful. range 1 - 5
H3.3 The recommended diagnostics were helpful. range 1 - 5
H3.4 I would be interested in working with the system in the future. range 1 - 5
H4 SmartMD’s recommendations are comprehensible.
H4.1 I had trouble comprehending the system’s recommendations. range 1 - 5
H4.2 The system’s reasoning for its recommendations was comprehensible. range 1 - 5
H5 SmartMD explains how it arrives at conclusions.
H5.1 I was able to retrace the system’s decision-making process. range 1 - 5
H5.2 The decision-making process was transparent and understandable. range 1 - 5

Table 5.6.: Interview questions and hypotheses
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Participant #1 #2 #3 #4 #5

P1 Staatsexamen Dr. med. MD MD PD
P2 2 3 1 1 1
P3 32 27 29 28 30

Table 5.7.: Self-reported demographic features of experiment participants.

Results. Table 5.7 presents self-reported demographics based on our preface
questions P1 - P3. We observe that the participants’ age ranges from 27 to 32 years.
The medical degrees range from entry-level ("Staatsexamen") to professorship level
(PD - "Privatdozent"). Two participants reported that they used earlier versions of
SmartMD before the experiment.

We report the results of the hypothesis-oriented questions H1.1 - H5.2 in Table
5.8. We group the results of each question by its associated hypothesis. Likewise,
we group reported agreement values into three categories: negative (values< 3),
neural (values= 3), and positive (values> 3). We observe the following results,
which section 5.2.5 discusses in detail:

• Hypothesis 1: two positives, two neutral, and 11 negative values of 15
reported values.

• Hypothesis 2: no positives, two neutral, and eight negative values of 10
reported values.

• Hypothesis 3: four positives, seven neutral, and nine negative values of 20
reported values.

• Hypothesis 4: three positives, six neutral, and one negative value of 10
reported values. Please note that question H4.1 asks for a negative experience.
Accordingly, we interpret reported values< 3 as positive and > 3 as negative
results for this question.

• Hypothesis 5: two positives, five neutral, and three negative values of 10
reported values.
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Question Id / Participant #1 #2 #3 #4 #5

H1.1 1 2 2 2 4
H1.2 4 2 2 2 2
H1.3 2 3 2 3 2
H2.1 3 3 1 2 2
H2.2 2 2 2 2 2
H3.1 1 4 2 3 4
H3.2 2 3 1 3 2
H3.3 3 3 2 3 2
H3.4 3 2 2 4 4
H4.1 5 2 3 3 1
H4.2 3 3 3 3 4
H5.1 2 3 3 4 3
H5.2 2 3 2 3 4

Table 5.8.: Results of the structured interview.

5.2.4.3. User Observation Study

Understanding medical experts’ "information needs" is crucial in designing clinical
decision support systems and processes. We designed and implemented the deep
learning-aided differential diagnosis process based on preliminary observations
collected using our previous work in (Schneider, Arnold, et al., 2018). Our goal is
to verify and refine our assumptions that lead to the presented DDx process.
Therefore, we collect usage data during our experiments and record every

click taken. Specifically, we record interaction events for every worked case in
the experiment. These events contain a session identifier, the current URL, the
Referring URL, and the used UI element’s identifier. The resulting dataset allows
us to model the user’s paths and the differential diagnosis process through the
system. For this purpose, we assign and categorize each observable event to a step
in the differential diagnosis process described in section 5.2.2, and Figure 5.5.

Results. Collecting interaction events during our experiments enables us to
aggregate single events across participants and visualize this data in a user journey
map. Figure 5.11 shows all data collected during our experiment. We present all
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Figure 5.11.: User journey in the SmartMD Prototype. This diagram shows the
path taken by the medical experts through the differential diagnosis
process when working on the cases of our evaluation.

actions taken in the system but do not visualize the endpoints of single sessions.
Thus, the numbers attached to process step transitions might not add up since the
participant might interrupt and return the experiment session at any time or use
their web browser’s functions to navigate the application.
We indicate the main process flow using red color, and it follows the intended

flow as suggested in section 5.2.2. We observe that the participants make just a few
iterations in the Frame & Identify phase and move forward to Organize quite fast.
We could only observe four self-reflexive iterations for Frame & Identify, which is a
small number of steps compared to 138 iterations in the Organize phase. Likewise
to the organize phase, we observe many (137) iterations within the Explore and
Limit phases. Contrary to phases 2, 3, and 4, the number of self-reflexive iterations
decreases for steps Rank and Refine.
Interestingly, in practice, we do not observe iterations that span the whole

process, going back from step 5 to step 1. Likewise, we register not a single
iteration back from the rank phase to frame and identify. Different from this
observation, we see 13 instances where participants looped back from the ranking
phase to explore most likely to refine the selection criteria for cohorts. Moreover,
we observe four actions of moving from the explore phase back to frame and
identify. In 13 cases, the participants moved from the explore stage back to
organize.
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5.2.5. Discussion

In this section, we discuss our results, present our findings, and describe design
challenges for text-based CDSS.

5.2.5.1. Findings

SmartMD occasionally Recommends Complementary Treatments and Diag-
nostics. We report that two participants received complimentary recommenda-
tions from the SmartMD system. Two other participants report a neutral sentiment
regarding recommended diagnoses. Some participants observed unhelpful recom-
mendations. Overall, we conclude that hypothesis H1 requires further research
to explore error sources and improve the helpfulness of the system.

Additional Medical Data is Required. Our experiment setup is limited to the
MIMIC-III dataset as a single data source. Thus, the system needs to extract all
medical knowledge from this rather small data set. Correspondingly, participants
reported low scores regarding medical soundness. Thus, we need to reject hy-
pothesis H2 and conclude that SmartMDs recommendations are not medically
sound and need improvement. The system lacks information stored in medical
knowledge bases, like UMLS, research papers, and medical textbooks. Moreover,
the data in MIMIC-III is biased by its nature of covering ICU cases exclusively.
Incorporating these multi-modal data sources poses an interesting challenge for
future work.

SmartMD can be Helpful to Obtain an Overview of Similar Cases. Two par-
ticipants reported that SmartMD was helpful for them to get an overview of similar
cases. Three participants would like to work with SmartMD in the future.

SmartMDs Recommendations are Comprehensible. Most participants reported
that the recommendations of SmartMD were comprehensible, and they were often
able to understand systems decisions. In conclusion, we confirm hypothesis H4
and H5.
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Experts are committed to the selected index patient once cohorts are se-
lected. We observe that medical doctors perform many refinement and explo-
ration steps during our experiments, sometimes cycling back to earlier process
stages. (See Figure 5.11) Contrary to this, we observe no direct cycle back to
Frame & Identify or Organize. Alongside this, we see that most of the refinement
actions take place in the Organize, Explore, and Limit phases. Moreover, we see
here more steps back to earlier process steps.

Better Medical Language Understanding Models are Required. We observe
shortcomings in language understanding and imagine that amore refined language
model can help here. So far, no large language model is publicly available that
includes EHR-style text in its training dataset.

Classic Ranking & Recommendation Approaches Fail. Designing and imple-
menting a CDSS process is a complex task. Therefore, we choose well-known
classical methods for cohort selection and recommendation ranking. Our results
show that these methods sometimes deliver unsatisfying results.

Overall. We conclude that the deep learning-enabled DDx process is generally
applicable and leads to an understandable and transparent system that helps
clinicians obtain a better situation understanding. Medical practitioners want
to work with the system in the future and report that the system made helpful
recommendations and enabled better situation awareness. Thus, we conclude that
Hypothesis H3 is confirmed. In essence, we validate the proposed DDx process.

5.2.5.2. Design Challenges for Text-based CDSS

We identify the following challenges for designing and implementing a text-based
DDx process based on our observations.

System Success is Bound to Understandable User Experience Design. User
experience design, medical domain expertise, natural language process, and deep
learning proficiency are the primary building blocks for a successful text-based
CDSS. Consequently, even research prototypes need to deliver good results for all
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three of these building blocks to obtain valuable evaluation data. Failing at one of
these key components can lead to unusable observations and results.

Users Require a Transparent and Comprehensible Recommendation Process
to Trust. Understanding the reasoning of a CDSS is essential to many clinicians
to build trust in the process and system. Fulfilling this requirement becomes more
challenging with model complexity. Our experiment outlined the need for better
models, such as deep learning-based approaches. Deep learning models’ reasoning
is hard to interpret, which characterizes a future research opportunity.

Lack of Large-scale Clinical Language Understanding Models for Research.
Many language understanding tasks benefit from large language models, such as
GPT-3 (Brown et al., 2020) or BERT (Devlin et al., 2019). Gu et al., 2021 have
shown that language models trained on in-domain data work better for biomedical
topics than general-purpose models. However, the publicly available biomedical
language models (Gu et al., 2021; J. Lee, Yoon, et al., 2019; Peng, S. Yan, and Lu,
2019) are trained on research papers taken from PubMed. Therefore they are still
out-of-domain for clinical texts.

Lack of Universal Applicable Time-aware Patient Representations for Research.
Language understanding alone is not enough to obtain a holistic patient repre-
sentation. EHRs consist of time-bound medical events and actions (Glicksberg,
Miotto, et al., 2018; Miotto, L. Li, et al., 2016). This property is not accounted
for when using a language model alone for patient representation. Landi et al.,
2020; Miotto, L. Li, et al., 2016; Miotto, F. Wang, et al., 2018 proposed models
to counteract this shortcoming, but still, those models are not freely available for
researchers.

Incorporating Medical Knowledge from Multi-modal Sources is Unsolved.
For a comprehensive representation of a patient situation, it is necessary to in-
corporate information from clinical language understanding models working on
EHRs, time-aware patient representation models, and knowledge from external
sources such as knowledge bases (UMLS), textbooks, and research papers. Tack-
ling this challenge will increase the soundness of recommended clinical action
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vastly. However, it is still unclear how this diverse information set can be effectively
combined and used in deep learning-based recommendation models.

No Large-scale Datasets are Available for Research. One of the most signifi-
cant challenges is the lack of large-scale data. The amount of datasets available
for research in CDSS is minimal. The available datasets are rather small and focus
on medical subfields such as intensive care (Johnson et al., 2016) or oncology
(Borchert et al., 2020).

No Standardized Evaluation Framework for CDSS and DDx Systems. Defin-
ing standards for language understanding capabilities, the resulting tasks, and
their evaluation have considerably amplified research on language understand-
ing (A. Wang, Pruksachatkun, et al., 2019; A. Wang, Singh, et al., 2018). For
CDSS, there exist no standard processes, a definition of capabilities, or commonly
occurring tasks. Lately, there has been some work on creating biomedical text
understanding benchmarks (Gu et al., 2021; Peng, S. Yan, and Lu, 2019), but
those lack a focus on clinically relevant applications. We encourage the community
to develop an openly available, standardized evaluation framework for text-based
CDSS to enable comparability and more rapid advancement of the field.

5.2.5.3. Limitations

Given the setup of our study, we report the following limitations. We conducted
our experiments using the relatively small ICU dataset MIMIC-III as a single
source of knowledge. The complete hospital archive would be available to the
SmartMD system in an ideal real-world application. Moreover, medical experts
would perform diagnostics to refine their understanding of the patient’s situation.

Clinicians often have busy schedules. Therefore, we were only able to recruit five
participants for our experiments. We found that the participants disagreed in some
aspects, limiting our findings’ generality. As a result, our qualitative investigations
pose valuable groundwork for more extensive empirical studies and to further
improve the Deep Learning-aided DDx process.
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5.2.6. Background

Computer-aided CDSS have been in the focus of research for multiple decades
until now. R. T. Sutton et al., 2020 performed a meta-analysis of their benefits,
risks, and success strategies from 1980 until 2018. Thereby they categorize the
approaches by scope, for example, Patient Safety (Eslami et al., 2012; Mahoney
et al., 2007; McEvoy et al., 2017), Clinical Management (McMullin et al., 2004
Sep-Oct; Salem et al., 2018), Diagnostic Support (Cui, Bozorgi, et al., 2012; De
Fauw et al., 2018; Ronicke et al., 2019) or Patient Decision Support (Jungmann
et al., 2019) and method into rule-based (Cui, Bozorgi, et al., 2012) or trained
models (Arandjelović, 2015; Bakator and Radosav, 2018; Miotto, F. Wang, et al.,
2018). Much related work focuses on a specific disease (De Fauw et al., 2018;
Goldenberg, Nir, and Salcudean, 2019; D. Jiang et al., 2020; Y. Liu et al., 2019)
while we aim for a generally applicable system that uses trained models.

5.2.6.1. Text-based Clinical Decision Support Systems

A branch of Clinical Decision Support systems exploits text data stored in EHRs
(Shickel et al., 2018). Common tasks that benefit from this data are clinical
outcome prediction (J. Lee, Maslove, and Dubin, 2015; van Aken, Papaioannou,
et al., 2021), medical coding assistance (Bell, Jalali, and Mensah, 2013; Catling,
Spithourakis, and Riedel, 2018; Shi, 2017) or discovering disease subtypes (L. Li
et al., 2015). The task of clinical reasoning, especially the differential diagnosis
process, can benefit from the analysis of EHRs. Differential diagnosis involves
critical exploration of patient history, physical examination, and careful review of
the data obtained in laboratories and diagnostic image settings (Altkorn, 2020;
Croskerry, 2009).

5.2.6.2. Clinical Natural Language Understanding

For text-based CDSS, such as SmartMD, is language understanding an important
prerequisite and often consists of multiple pre-processing steps, such as clinical
concept recognition, clinical concept linking, and negation detection.
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Clinical Concept Recognition & Linking. Clinical Concept Recognition is the
task of identifying words that mention a clinical concept in a text (Jauregi Unanue,
Zare Borzeshi, and Piccardi, 2017; Si et al., 2019; Y. Wu, M. Jiang, et al., 2018).
Assigning those mentions to concept identifiers in standardized ontologies, such
as UMLS (Bodenreider, 2004), is the task of clinical concept linking (Aronson
and Lang, 2010 May-Jun; Fu et al., 2020). Both concept recognition and linking
models have to deal with a broad set of challenges arising from the clinical setting.
For example, clinical notes in EHRs are often taken with pressing time constraints
and come with special challenges such as flexible formatting, atypical grammar,
misspellings, and ad-hoc abbreviations, which also tend to be specific to hospital
departments (Leaman, Khare, and Lu, 2015). As a consequence, the literature
proposes a wide variety of methods comprising linguistically motivated, rule-
based approaches (Aronson and Lang, 2010 May-Jun; Tseytlin et al., 2016),
compositional mixture-of-experts-like (Yuksel, J. N. Wilson, and Gader, 2012)
approaches (D’Souza and V. Ng, 2015; Rajani, Bornea, and Barker, 2017), as well
as shallow (Leaman and Lu, 2016) and deep learning (Choi, Chiu, and Sontag,
2016; Jauregi Unanue, Zare Borzeshi, and Piccardi, 2017; Mueller and Durrett,
2018; Schumacher and Dredze, 2019; Schumacher, Mulyar, and Dredze, 2020;
Y. Wu, M. Jiang, et al., 2018) models (Fu et al., 2020). In this work, we use an
LSTM-based concept recognition system proposed by (Arnold, Gers, et al., 2016).

Negation Detection. The meaning of clinical concepts is heavily affected by
modifiers such as negation or uncertainty (Mehrabi et al., 2015; Uzuner et al.,
2011). Accordingly, is negation detection a complex task that requires a vast
understanding of the context in which a clinical concept appears to extract action-
able knowledge from clinical text (Chapman, Bridewell, et al., 2001; Cotik et al.,
2016). One of the earliest approaches to Assertion Detection is NegEx (Chapman,
Bridewell, et al., 2001), which used handcrafted extraction patterns to recognize
the absent class. Recently, neural network architectures have been applied to solve
this problem. For example, Qian et al., 2016 approach this challenge Convolu-
tional Neural Networks (Lecun et al., 1998), while Sergeeva et al., 2019 propose a
model based on Long-Short Term Memory (Hochreiter and J. Schmidhuber, 1997)
with forget gates (Gers, J. A. Schmidhuber, and Cummins, 2000). Most recently,
van Aken, Trajanovska, et al., 2021 and Alsentzer et al., 2019 explored also the
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capabilities of transformer-based (Vaswani et al., 2017) architectures.

Cohort Modeling. Modeling and retrieving cohorts is commonly performed in
clinical research to find a group of patients that share a set of discriminative
features. Consequently, the literature proposes a wide variety of patient char-
acteristics, such as symptoms, comorbidities, demographics, and treatments, to
represent the patients’ condition for particular applications (Cui, Bozorgi, et al.,
2012; L. Li et al., 2015; Sharafoddini, Dubin, and J. Lee, 2017). Aiming to au-
tomate the cohort selection process, approaches reported in the literature date
back to 1989, as reported by Sharafoddini, Dubin, and J. Lee, 2017. In addition
to clinical research, using cohorts of similar patients to recommend personalized
treatments, diagnoses or diagnostics has become an emerging topic in recent re-
search (Sharafoddini, Dubin, and J. Lee, 2017). For example, Cui, Bozorgi, et al.,
2012 construct cohorts for epilepsy research based on clinical concepts extracted
from EHRs and hand-crafted extraction rules. J. Lee, Maslove, and Dubin, 2015
show that outcome prediction models perform better when trained on relevant
cohorts. To do so, they calculate a cosine-distance-based measure on manually
crafted feature vectors. Glicksberg, Miotto, et al., 2018 propose a semi-supervised
approach to compute a word2vec-based (Mikolov, K. Chen, et al., 2013; Mikolov,
Sutskever, et al., 2013) clinical concept embedding to group patients into cohorts.
Following this idea, Miotto, L. Li, et al., 2016 and Landi et al., 2020 propose
a scalable unsupervised patient representation based on autoencoders (Kramer,
1991) and convolutional neural networks (Lecun et al., 1998) that enables the
clustering of patients into cohorts by latent clinical features.

5.3. Conclusion

This chapter addressed RQ4: "How Effective are Deep Learning Enhanced Medical
Information Seeking Processes?" by investigating two typical medical processes
enhanced with deep learning models. First, we presented neural entity recog-
nition and topic classification models for medical passage retrieval (SmartMD:
IR). Second, we designed the deep learning-enabled differential diagnosis process
(SmartMD: DDx).

We demonstrated that neural topic models combined with entity recognition
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models enable clinicians to search for topical facets of diseases. Using deep-
learning-based models to retrieve the most relevant paragraphs for clinicians can
reduce the time needed for research by selecting coherent passages. Furthermore,
neural topic models such as SECTOR enable clinical decision support systems to
select answer passages based on semantic similarity without being restricted to
lexical features.

We presented "SmartMD: DDx," a text-based clinical decision support system. We
designed a deep learning-aided differential diagnosis process implemented in the
SmartMD system. We utilize deep learning models for text understanding, classical
methods for clinical action recommendation, and cohort selection techniques that
incorporate clinicians’ input.

Our study with fivemedical professionals validates the deep-learning-enabled dif-
ferential diagnosis process. The participants worked on two randomly drawn cases
from the MIMIC-III dataset using the SmartMD: DDx system. Our experiments re-
vealed seven significant design challenges for clinical decision support systems on
this foundation. Especially the need for a benchmark on a standardized set of capa-
bilities focused on CDSS arose as a valuable asset for future research. Our results
show that deep learning models can benefit text-based clinical decision support
systems. Particularly abstracting, operationalizing, and standardizing well-known
clinical processes can result in beneficial outcomes, as our deep-learning-enabled
differential diagnosis process shows.
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Conclusion and Future Work

This thesis analyzed the suitability of discrete and neural text representations in
text-based clinical decision support systems. We have designed the deep learning-
enabled differential diagnosis process as an exemplary clinical application of
machine reading models. Accordingly, we contributed and evaluated the SmartMD:
IR and SmartMD: DDx systems that implement this process.

Based on this deep learning-enabled differential diagnosis process, we derived
requirements for neural text representation to be suitable for application in CDSS.
During the design process, we have explored the properties of Open Information
Extraction systems. Therefore, we created the RelVis benchmark and used it to
show the shortcomings of Open Information Extraction systems that interfere
with their application in CDSS. As an alternative, we proposed and investigated
neural text representations. Alongside, we created in Arnold, Schneider, et al.,
2019 SECTOR, a neural topic model that can extract coherent passages from long
documents in a medical literature search.

The deep learning-enabled differential diagnosis process requires text represen-
tations to capture a holistic understanding of clinical documents, such as EHRs
and medical literature. Fulfilling this requirement mandates focusing on multi-
ple textual modalities, such as topic, local context, global context, and medical
concept resolution. Therefore, we evaluated the compositionality of neural text
embeddings and found that differing pretraining goals lead to complementary
text representations.

135



This chapter reviews our contributions regarding the desired properties of the
deep learning-enabled differential diagnosis process (Section 6.1). In Section 6.2,
we review the research questions and our answers. Next, we describe our prior
assumptions and limitations of our work in Section 6.3. Section 6.4 summarizes our
work from the perspective of business opportunities. Finally, we discuss research
questions revealed by our work in Section 6.5.

6.1. Contributions

We introduced central challenges for text-based clinical decision support systems
in Section 1.4. We designed the Deep Learning enabled Differential Diagnosis
Process to provide an overarching application scenario with those challenges in
mind. Accordingly, we designed and evaluated possible solutions for subtasks in
this framework. In the following, we discuss our contributions and findings:

Deep Learning enabled Differential Diagnosis Process. We approach the broad
field of text-based clinical decision support systems by focusing on Differential
Diagnosis support. Therefore, we design the Deep Learning enabled Differential
Diagnosis Process by abstracting the clinical process. (Section 5.2.2) All six steps
of this process formalization can be solved using statistical and machine learning
models. We design and implement SmartMD: IR (Section 5.1), a medical passage
retrieval system, and SmartMD: DDx (Section 5.2), a differential diagnosis support
system, accordingly.

In-depth Analysis of Open Information Extraction Systems. Clinical use cases
require high scalability in runtime, and it is also crucial to maintain high precision
and recall. An inherent property of the Open Information Extraction paradigm is
its scalability to large amounts of text data. We have advanced this property by
integrating the OIE paradigm in a fast in-memory database system and reporting
execution times in seconds. (Section 3.1) Our system can efficiently integrate
pre-existing knowledge held in a database with insights from text. (Section 3.1.4)

Our in-depth analysis of OIE Systems (Section 3.2) revealed a lack of stringent
annotation policies, making a comparative analysis and design of OIE systems
challenging. Moreover, we have observed that each tested OIE system depends
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on syntactic taggers that often propagate errors down to the logic for extracting
OIE tuples. The benchmarked systems often extract unnormalized relation tuples
that do not leverage the well-researched concept of "normal forms" in database
theory. We have further found that the reviewed OIE systems, which are already
overfitting and struggling with news datasets, will likely have issues achieving the
needs for application in idiosyncratic domains such as clinical narratives. (Section
3.2.6)

Open Information Extraction Benchmark. We have created RelVis a bench-
mark suite to overcome the challenges in evaluating the quality of OIE Systems.
(Section 3.2.5) RelVis was the first benchmark that combined four labeled datasets
and supported the five most recent1 OIE systems. RelVis allows performing both
qualitative and quantitative analyses.

Coherent Medical Topic Segmentation. We have introduced the new "Pubmed-
Section," dataset (Section 4.3) for evaluating coherent topic segmentation models
on medical texts. Accordingly, we have adapted the SECTOR model to capture
medical information using the PubmedSection dataset. (Section 4.4)

Holistic Text Representations for Medical Applications. We have identified
effective combinations of universal and specialized text embeddings in an extensive
study on 11 tasks. (Section 4.1) We have extended SentEval to the medical
domain by integrating the "WikiSection.diseases" and the "PubMedSection" task.
(Section 4.3) Our comprehensive analysis reports that combining universal and
specialized embeddings, such as ELMo + SECTOR, yields improved results in
many downstream tasks. (Section 4.4) Furthermore, combining complementary
embedding combinations yield holistic text representations that achieve a new
state-of-the-art for two tasks in SentEval. (Section 4.4.2)

Medical Literature Search System. We have demonstrated that neural topic
models combined with entity recognition models enable clinicians to search for
topical facets of diseases. Furthermore, we report that neural topic models such as

1At the time of writing of (Schneider, Oberhauser, Klatt, et al., 2017a; Schneider, Oberhauser,
Klatt, et al., 2017b)
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SECTOR enable clinical decision support systems to select answer passages based
on textual semantic similarity without being restricted to lexical features. (Section
5.1)

6.2. Review of Research Questions

RQ1: Is the Open Information Extraction Paradigm Suitable for Clinical Text
Understanding? Clinical decision support systems require text understanding
systems to deliver representations of clinical concepts with high recall, especially
when encountering rare concepts. Moreover, these representations must handle
syntactic and semantic errors in texts while being adaptable and scaleable to new
concepts and large volumes of documents. First, we identified the scalability of
the Open Information Extraction paradigm as a central property to be successfully
applied in clinical settings. We designed INDREX-MM, an Open Information
Extraction system that combines the scalability of in-memory database systems
with the high-recall focused relation extraction capabilities of OIE systems. We have
shown that INDREX-MM performs relation extraction within seconds of execution
time on 800.000 documents. Another essential advantage of INDREX-MM is
straightforward integration with existing knowledge bases using SQL statements.
Secondly, we tackled the lack of integrated benchmarks for OIE systems, posing
a significant challenge when comparing OIE systems. We designed RelVis, the
first benchmarking system for OIE that incorporates four well-known datasets and
supports four OIE systems. RelVis supports exact and weak match strategies on
the annotation level to compare OIE systems with differing annotation styles. Our
system allows quantitative automated and manual qualitative evaluations and
supports human judges by classifying errors.
Third, we evaluated four OIE systems using RelVis. We discovered that OIE

systems have diverging annotation styles. Thus, there is disagreement within
the research community on a clear task definition. Moreover, we revealed that
the surveyed systems tend to overfit specific data sets within the general news
domain. None of the evaluated systems uses the well-researched "normal forms"
from database theory which often leads to ambiguous extraction, especially for
n-ary relations. Most surveyed systems depend on linguistic features obtained
in a preprocessing stage. Errors in this stage propagate downstream, which is a
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considerable disadvantage in clinical documents that often contain writing errors.
Following our experiments, we conclude that the surveyed OIE systems must
overcome these issues to be suitable for clinical applications.

RQ2: Can Neural Text Representations aid Text-based Clinical Decision Sup-
port Systems? An essential capability of clinical text representations is to capture
the global context describing a patient’s situation. A clinical text representation
must be able to identify coherent passages in medical texts, recognize their topical
facet, and capture a single sentence’s meaning given the context of the entire
document. We designed in Arnold, Schneider, et al., 2019 the coherent medical
topic segmentation task to address this challenge with a measurable target. We
designed the novel "PubmedSection" dataset accordingly and benchmarked the
SECTOR model. Overall, we conclude that the SECTOR model is a robust and
extensible building block representing medical texts.

RQ3: Are Text Representations Trained with Differing Pretraining Goals
Complementary? Identifying and combining complementary text representa-
tions can lead to holistic representations that improve medical language under-
standing systems. We investigated if and how text representations with differ-
ing pretraining, such as Language Modeling, Topic Modeling, or Entity Linking
tasks, differ in their capabilities. We identified complementary pairings of general-
purpose and specialized text representations. Our comprehensive analysis resulted
that combining universal and specialized embeddings, such as ELMo + SECTOR,
yields considerably improved results in many downstream tasks. Furthermore, we
showed that complementary combinations yield holistic text representations that
achieve a new state-of-the-art for two tasks in SentEval.

RQ4: How Effective Are Deep Learning Enhanced Medical Information Seek-
ing Processes? Clinicians need to access state-of-the-art medical literature and
medical experience gained over the years. These time-consuming tasks bene-
fit from clinical decision support systems, which incorporate the experiences of
medical personnel in the clinic collected in EHRs and the most recent literature.
We presented SmartMD:IR, a medical passage retrieval system. SmartMD:IR

combines neural topic models with entity recognition models and enables clinicians
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to search for topical facets of diseases. We designed a deep learning-aided differ-
ential diagnosis process implemented in the SmartMD: DDx system. SmartMD:
DDx utilizes deep learning models for text understanding and classical clinical
action recommendation and cohort selection methods that incorporate clinicians’
input.
Our two-fold experiment with five medical professionals validates the deep-

learning-enabled differential diagnosis process and evaluates our proof of concept
implementation. Our user observation study and a structured interview validate
the effectiveness of the deep-learning-enabled differential diagnosis process. More-
over, we have revealed seven significant design challenges for clinical decision
support systems. Subsequently, we conclude that text-based clinical decision
support systems can benefit from deep learning models.

6.3. Limitations

We have presented clinical text-understanding methods and deep learning-aided
text-based differential diagnosis support systems. Driven by confining factors and
resources, our work focuses on applicability in European countries. Therefore, our
approach is subject to limitations that the future work could approach.

Limited Evaluation Datasets. We evaluated our methods on a manifold of
datasets, some out of the medical domain. This evaluation regime allowed us
to prove the transferability of our developed models, circumventing the lack of
publically available clinical datasets. Our evaluation of the medical domain often
used medical literature as a surrogate for clinical texts. Unfortunately, we could
only evaluate our methods using one clinical dataset, MIMIC-III. Due to strict data
protection laws, MIMIC-III is the only available research dataset featuring complete
EHRs. Therefore, we could not validate the transferability of our methods to other
clinics, medical subjects, or languages that MIMIC-III does not include.

Digital Text in EHRs Required. Our methods assume that health records are
digitally available. Many hospitals have implemented EHRs by now, but non-digital
data can not be handled by our methods without prior digitalization steps, such
as optical character recognition.
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Focusing on Text-Representations. We aimed to create medical text represen-
tations that capture multiple textual modalities as a building block for a patient
representation. However, a holistic patient representation demands time-aware
multi-modal representations that incorporate text, structured data, and medical
imaging. Accordingly, are the models proposed in this thesis a building block in
the direction of a holistic patient representation.

Model Drift and Continuous Learning. Clinical decision support systems need
to address the newest insights on diseases, diagnostics, treatments, and therapies.
Therefore, model drift has to be expected over time and compensated. In our
work, we described methods to train models initially. However, it can be beneficial
to train models in an iterative human-in-the-loop manner based on user feedback.
We have not focussed on this topic and leave it open for future work.

6.4. Business Perspectives

Deep Learning-based clinical text understanding methods open up a broad range
of Business Opportunities. Due to the text-based nature of medical documenta-
tion, note-taking, and research publication, it is imperative to develop systems
that help medical professionals manage the growing amount of medical texts.
Methods developed for Text-based clinical decision support systems apply to a
wide range of medical business cases. Indeed, the broad adoption of EHRs and
the collection of structured measurements together with unstructured clinical
narratives and medical imaging was a big step forward to improving treatment
quality and optimizing processes. However, important information collected in
clinical narratives is still unused. For example, medical professionals could provide
more effective and efficient care if a clinical support system provides insights based
on experience from similar cases documented in a hospital’s archive. Moreover,
connecting archival data with clinical process coordination could improve clinical
pathways, enrich patient triage, and increase revenue via clinical coding assistance
systems.
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6.4.1. Clinical Action Recommendation

Identifying a Patient’s situation and trajectory is a central task for medical profes-
sionals. This complex process requires medical professionals to pay attention to
many textual sources, including doctors’ letters, existing medical and nursing notes,
and medical literature. Connecting knowledge stored in textual data to clinical
decision-making can improve treatment quality and the efficiency and effectiveness
of clinical pathways. The central point is to provide medical practitioners with a
context-aware recommendation regarding which literature to read and action to
take given a patient’s situation, predicted trajectory, and cohort affiliation. Neural
text representations are an essential building block to make information stored in
EHRs accessible for further processing. CDSS can use the resulting enriched EHRs
to perform context-sensitive literature searches or recommend clinical pathways.
The required neural text representation models can obtain general language

understanding knowledge on public data and transfer it to the clinical domain
by finetuning the model on smaller datasets of clinical archives. The resulting
models enable CDSS to search and cluster medical narratives and build a strong
foundation for downstream classification and recommendation models. Clinical
neural text representations open the opportunity to connect unused clinical data
directly with medical decision-making and clinical pathway optimization.

6.4.2. Clinical Coding

Besides supporting medical doctors and caretakers, clinical text understanding
models can also assist clinical coders in their day-to-day work. Clinical coding
involves understanding clinical narratives to issue correct bills for medical care
compensation. This task requires highly trained professionals to read and under-
stand many multi-document EHRs to select the correct billing codes. Accordingly,
this task is time-consuming and error-prone. A neural clinical text representation
model could assist in predicting billable clinical codes. These can be applied
automatically for straightforward situations and direct medical coders’ attention
to complex cases. In such situations, a deep learning-based model can support
clinical coders by gathering details that might span multiple documents. As a
result, such models can reduce errors and time needed per document and increase
the recall of billable codes. Accordingly, coding assistance systems can increase
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revenue while increasing efficiency per clinical coder.

6.5. Future Work

Our research on deep learning-based clinical language understanding for differ-
ential diagnosis support revealed questions and perspectives for future research.
Further, we identified research problems that we considered out of focus for this
Thesis. We discuss in this section the three most important of those questions as a
possible direction for future research.

Holistic Combination of Text Representations with Differing Modality

Universal text representations, such as ELMo (M. E. Peters et al., 2018), BERT
(Devlin et al., 2019), or GPT (Radford, J. Wu, Amodei, et al., 2019; Radford,
J. Wu, Child, et al., 2019), rely for training on variations of the neural probabilistic
language model (Bengio et al., 2003). Specialized embeddings, such as presented
by Arnold, Schneider, et al., 2019; Arnold, van Aken, et al., 2020, Pappu et al.,
2017, M. Chen et al., 2019 and Landi et al., 2020 use specialized pretraining goals
to obtain text representations focused on selected properties. Our work has shown
that universal text representations miss details expressed in the encoded text that
specialized representations can capture.

From this observation arises the desire to understand how these representations
differ and the root cause of the differences. Understanding these aspects might
improve text representations vastly. Naturally, the follow-up is how we can obtain
holistic text representations. Naive approaches to this problem do not deliver
satisfying results. Concatenating text representation vectors leads to an increase
in dimensions and, therefore, additional computational complexity. Coates and
Bollegala, 2018 propose averaging source representations that work surprisingly
well for a few representations but lose information at scale. We observe three
lines of research in this direction. First, Pfeiffer et al., 2021 approach this problem
by augmenting large language models using adapters as plug-in components.
Secondly, intrinsic learning by multi-task pretraining (Raffel et al., 2020). Third,
extrinsic learning by meta-learning (Bollegala, Hayashi, and Kawarabayashi, 2018;
Kiela, C. Wang, and Cho, 2018; Rettig, Audiffren, and Cudré-Mauroux, 2019;
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L. Wang, Y. Li, and Lazebnik, 2016).

Time-Aware Multi-Modal Patient Representations

Incorporating textual information from EHRs, time-aware patient representation
models, and knowledge from external sources such as knowledge bases (UMLS),
textbooks, and research papers is crucial to obtain a text-based patient represen-
tation. Language understanding alone is not enough to obtain a holistic patient
representation. EHRs consist of time-bound medical events and actions. This
property is not accounted for when using a text representation alone. Landi et al.,
2020; Miotto, L. Li, et al., 2016; Miotto, F. Wang, et al., 2018 proposed models
to counteract this shortcoming. However, this representation still does not depict
imaging results, medical signals, and structured data. There is research on each
modality independently (Miotto, F. Wang, et al., 2018), but we still lack a multi-
modal, time-aware patient representation. Moreover, it is unclear how to combine
these independent representations efficiently to serve as a unified foundation for
clinical decision-support models.

Interdisciplinary Evaluation of the Deep Learning Aided DDx Process

Generating value with data products is a complex and demanding endeavor.
Verifying the effectiveness of deep learning-aided DDx systems requires similar
steps. It is crucial to evaluate DDx systems in end-to-end tests in a clinical study
to verify their effectiveness. Bernardi, Mavridis, and Estevez, 2019 have shown
that model quality does not linearly translate into increased KPIs. Moreover, we
have seen in our evaluation that UX design influences the perceived model and
process performance to a large extent which was also described by Smith et al.,
2018. As a result, we raise the need for an interdisciplinary end-to-end evaluation
of the Deep Learning aided DDx process involving researchers from the fields of
user experience design, deep learning, and medical research.

Opportunities for Large Language Models in CDSS

Incorporating large language models (LLMs) such as PaLM 2 (Anil et al., 2023) or
med-palm (Singhal et al., 2023) into the healthcare system can unlock gains in
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efficiency and patient engagement. LLM-based tools are proficient at interpreting
and generating natural language, opening up many opportunities to enhance the
delivery of medical care.
In medical research, LLM-based chatbots can be used to condense the latest

medical research. Especially in combination with retrieval augmented generation
methods (Borgeaud et al., 2022), these systems can distill complex scientific
papers into summaries, recommend papers to read, and answer questions. These
systems can reduce the time healthcare professionals require to access the latest
research.

Training LLMs to anonymize sensitive data and to replace personal identifiers in
medical documents with pseudonyms to protect patient confidentiality can enable
data sharing between actors in the healthcare system at a large scale. As a result,
researchers can access more relevant data to design the next generation of CDSS.

Patients can benefit from specialized LLM models that break down the barriers
to information by translating medical "doctor language" into straightforward
terms, allowing patients to gain more detailed insights into their health conditions.
Furthermore, LLM-based chatbots can operate as symptom-collection systems.
Those systems could employ a methodical approach to asking patients for their
medical history in natural language. This comprehensive, streamlined approach to
data collection can augment the patient’s health profile, ensuring clinicians have a
detailed understanding upon which to base their diagnosis and treatment plans.

Another promising application of LLMs lies in their ability to efficiently summa-
rize and extract pertinent information that is spread across multiple EHR entries
and documents. Allergies, past medical histories, and current medications can
be quickly identified, ensuring that doctors have immediate access to crucial
health information. Additionally, LLM writing assistants have the potential to
code clinical narratives on the fly into standardized medical formats like ICD or
FHIR, promoting seamless integration and improving interoperability across the
healthcare landscape.
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Related Contributions

We explored applications of our methods, recreated experiments from the litera-
ture, and created open-source implementations as additional practical contribu-
tions to the central part of this thesis.

A.1. Open Source Contributions

• TeXoo: https://github.com/sebastianarnold/TeXoo
• TeXooPy: https://github.com/DATEXIS/TeXooPy
• PubMedSection: https://github.com/DATEXIS/pubmedsection
• UMLS Parser: https://github.com/DATEXIS/UMLSParser
• SentEval k8s: https://github.com/DATEXIS/SentEval-k8s
• OpenNLP: https://github.com/apache/opennlp/pull/337
• SmartMD DDx: https://github.com/DATEXIS/smartmd-backend
• Discovered and assisted resolving multiple bugs in DeepLearning4J

– https://github.com/eclipse/deeplearning4j/issues/7125

– https://github.com/eclipse/deeplearning4j/issues/7120

– https://github.com/eclipse/deeplearning4j/issues/7001
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A.2. Supervised Theses

We supervised the following selected bachelor’s and master’s theses in context to
this thesis. They cover applications of our methods, provide additional experiments
and explore related work by recreating experiments.

• T. Klatt, "Benchmarking Transformers for Biomedical Text Understanding",
Masters Thesis, Beuth University of Applied Sciences, Berlin, Germany, 2022.

• T. Steffek, “Neural Facet Detection on Medical Resources,” Bachelor Thesis,
Beuth University of Applied Sciences, Berlin, Germany, 2019.

• T. Oberhauser, “Neural Information Retrieval with Vector Space Queries,”
Master Thesis, Beuth University of Applied Sciences, Berlin, Germany, 2019

• T. Schilling, “Information Retrieval mit Satz- und Wortembeddings,” Master
Thesis, Beuth University of Applied Sciences, Berlin, Germany, 2018.

• T. Klatt, “A Graphical Training Interface for Named Entity Recognition,”
Bachelor Thesis, Beuth University of Applied Sciences, Berlin, Germany,
2018.
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