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Abstract

With the advancement of connected vehicles in the automotive domain, data collection and sharing
between vehicles or between vehicles and manufacturers reaches considerable proportions. The
excellent possibilities of utilizing this data for product improvement are restrained by the fact that
vehicle data contains personal information about drivers. Privacy-preserving technologies have
been subject to research in various fields, but not as much in the automotive domain. Consequently,
metrics evaluating the privacy and data quality provided by these technologies also remain scarce
in this field. In this work, we apply different anonymization approaches to real-world vehicle
data. We assess the performance of the approaches using a selection of metrics from the literature.
Additionally, two domain-specific demonstrators are designed and implemented to analyze the
privacy and data utility the approaches provide. The results show that privacy protection for vehicle
data poses new challenges. We motivate the introduction of domain-specific metrics to evaluate the
privacy and data quality of anonymization approaches in a useful way.
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1 Introduction

Data generation, collection, and usage are omnipresent in every aspect of technology in the
modern world. Businesses, organizations, and governments rely on data to improve products,
make informed business decisions, and advance technologies. The automotive industry is not
exempt from this development. Modern vehicles are getting smarter and more connected with
every new model [CM16]. Consequently, the amount of data collected and shared by a vehicle
grows considerably. The vast amounts of data enable car manufacturers to improve their vehicles,
diagnose anomalies and technical faults faster, provide up-to-date navigation services, train Machine
Learning models for autonomous driving, and much more [FHS+23].

These outstanding prospects are dampened by the fact that data collected in vehicles contains
sensitive information about the drivers, like their position or driving behavior. Protecting the privacy
of drivers is integral for car manufacturers to foster customer trust and adhere to legal regulations.
However, privacy protection measures could not keep up with the rapid growth of data collection in
the automotive field. A recent article published by the Mozilla Foundation finds that none of the 25
car brands they have researched adequately protects user privacy [JMZ23]. Therefore, measures of
proper privacy protection in the automotive field are urgently needed.

Privacy protection is not a new topic, and data anonymization techniques have been around for
over 20 years [Swe02b]. It is common knowledge in the field that the mere removal of identifying
values, like names, addresses, or social security numbers, from the data does not suffice to
protect the disclosure of sensitive information from the data to unauthorized third parties. In
fact, Sweeney [Swe00] reports that about half of the U.S. population will likely be uniquely identified
by a combination of their 5-digit ZIP code, gender, and date of birth. Literature in the field of
anonymization is vast and spans privacy protection methods for text data, graph data, images,
audio, and many more. Numerous anonymization approaches and privacy models exist. These
approaches transform or distort the raw data to protect the privacy of the individuals, losing data
quality in the process. Dwork [Dwo06] shows that “any statistical database with any non-trivial
utility compromises a natural definition of privacy” [Dwo08]. Therefore, anonymization techniques
have to balance a trade-off between the privacy protection of individuals in the data and the utility
of the anonymized data for further processing. To this end, many different metrics have been
proposed throughout the years to assess the utility and privacy guaranteed by anonymized data.
Often, new metrics are introduced in correspondence with a novel anonymization approach, making
them tailored to that specific approach and not applicable universally. Also, research in the field of
anonymization for vehicle data remains sparse. These data show a variety of peculiarities, resulting
in emerging challenges for anonymization.

This work aims to contribute to privacy preservation for vehicle data. The research question
we address is the following: “What metrics exist that allow a comparison between different
anonymization approaches on vehicle data?” To this end, we implement different anonymization
approaches on real-world vehicle data collected by a large German car manufacturer. We identify
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1 Introduction

issues and challenges that arise when known approaches are applied to this data. We employ a
selection of metrics from the literature to evaluate the utility and privacy the approaches provide.
Additionally, a Utility Demonstrator and Privacy Demonstrator simulate a domain-specific data
use case and adversarial attack on the anonymized data. We conduct experiments that evaluate the
anonymization approaches using the metrics and demonstrators. The results of these experiments
are discussed, and key takeaways are presented that suggest the usage of domain-specific measures
to assess the quality of the anonymization of vehicle data.

This thesis is structured as follows. Chapter 2 outlines related work for this thesis. Chapter 3
introduces the basics and fundamental concepts of data anonymization. Chapter 4 presents the
contribution of this work. Section 4.1 outlines peculiarities and challenges for data anonymization
in the automotive domain. The selection of metrics for the experiments is presented in Section 4.2.
The experiment design is illustrated in Section 4.3 and the implementation in Section 4.4. The
results of the experiments are discussed in Section 4.5. Chapter 5 concludes this thesis and outlines
future work. Additionally, Appendix A lists metrics encountered during the literature research but
not selected for the experiments and an overview of existing software and tools for anonymization
(Appendices A.1 and A.2, respectively).
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2 Related Work

In this work, we evaluate anonymization techniques and metrics for privacy preservation in
the automotive field. Related work is, therefore, comprised of (1) works in the field of privacy
preservation for vehicle data, (2) works that list and evaluate metrics in the field of data anonymization,
and (3) works that compare different data anonymization approaches. In the following, we present
literature in the field for each of the abovementioned directions and motivate the scope of our work.

There is not much literature concerning privacy preservation in the automotive field. Coppola and
Morisio [CM16] list upcoming issues with the emergence of connected vehicles. They stress the
importance of privacy preservation but give no technical details or advice. Ghane et al. [GJK+21]
address the topic of communication between multiple vehicles and potentially untrusted parties,
where the communicated data contains sensitive information, like the velocity of the car or location
data. The authors propose a framework that adds noise to the data on the vehicle level before
communication. The work of Li et al. [LHSM23] addresses privacy protection for connected
vehicles with a novel framework that allows drivers to set individual and situation-aware privacy
demands. Drivers may wish to set different privacy regulations depending on the app they are
using or their situation. Lastly, Fieschi et al. [FHS+23] explain different data use cases for product
improvement in the automotive field. The authors characterize the different use cases according to
their implications for privacy preservation. However, to the best of our knowledge, no work has
been done on anonymizing real-world vehicle data containing information from multiple vehicles
and utilizing metrics to evaluate the effectiveness of the anonymization approach.

Literature in the field of data anonymization presents a significant number of metrics that evaluate the
utility and privacy of the anonymized data. Often, works present a novel approach to anonymization
and define new metrics used to assess the effectiveness of the proposed approach. Studies that collect
metrics and evaluate their expressiveness and applicability to different anonymization approaches are
much scarcer. A quick literature research using the scientific platform Scopus [BV] yielded a mere 15
results when querying “anonymization AND metric AND survey” (effective 11 of November 2023).
Of these 15, only three are relevant as related work. Kelly et al. [KRG+08] survey state-of-the-art
metrics for network data. The authors compare ten different metrics regarding their applicability,
complexity, and generality. However, the metrics are not tested in a practical experiment. Silva
et al. [SMS21] provide an extensive survey of privacy concepts, privacy-enhancing algorithms and
models, and privacy metrics in a cloud environment. Again, the metric properties are analyzed only
theoretically. The same holds for the work of Majeed and Lee [ML21], who present anonymization
approaches and metrics for tabular and graph data. An evaluation of these metrics concerning their
expressiveness and performance on anonymized data remains an open topic.

Lastly, we turn our attention to works that evaluate different anonymization approaches. We
again have the works of Silva et al. [SMS21] and Majeed and Lee [ML21] discussing different
approaches only in theory. Ayala-Rivera et al. [AMCM14] present three anonymization approaches
for 𝑘-anonymity and measure their efficiency concerning resource usage and effectiveness with
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2 Related Work

regard to data utility. The utility of the anonymized data is examined using three metrics. No metrics
are considered that evaluate the privacy that the anonymized data guarantees. They conclude that
multiple factors influence the best-performing approach, so there is no best-choice approach per
se. Clifton and Tassa [CT13] discusses properties, advantages, and disadvantages of Differential
Privacy and syntactic privacy theoretically. They conclude that both types of models have their
place and that the two paradigms are not necessarily mutually exclusive. A paper by Soria-Comas
et al. [SDSM14] shows that a synergy between 𝑘-anonymity and Differential Privacy can improve
the data utility of the results of differentially private queries. This is because the noise that has to be
applied to the result of a query in order to satisfy Differential Privacy can be significantly reduced if
the query is executed on a 𝑘-anonymous dataset.

Some works in the literature aim to relate different privacy models directly through mathematical
analysis. Ekenstedt et al. [EOL+22] show how Differential Privacy relates to 𝑡-closeness and
vice-versa. They introduce an extension of the 𝑡-closeness model and a generalization of Differential
Privacy to connect the two. Domingo-Ferrer and Soria-Comas [DS15] also relate 𝑡-closeness and
Differential Privacy. They show that 𝑡-closeness implies Differential Privacy and that Differential
Privacy implies a stochastic version of 𝑡-closeness. Other works that aim to compare different privacy
models perform empirical evaluations of the anonymized datasets generated by the approaches.
Sadhya and Chakraborty [SC22] perform experiments on real-world personal data using 𝑘-anonymity,
𝑙-diversity, and 𝑡-closeness as privacy models. The authors introduce a metric that consolidates
utility and privacy into a normalized value to evaluate the results of the approaches. The experiments
show that the 𝑡-closeness model performs well regarding the metric score. Cormode et al. [CPE+13]
address the risk-utility trade-off between different privacy models with different parameters. The
authors measure privacy empirically based on the posterior beliefs of an adversary. They evaluate
data utility based on a workload of COUNT queries run on the anonymized data. This allowed the
comparison of 𝑘-anonymity, 𝑙-diversity, 𝑡-closeness, and Differential Privacy with regard to the
privacy/utility trade-off on the same scale. They conclude that the difference between Differential
Privacy and syntactic models like 𝑘-anonymity is less dramatic than initially thought, although they
find clear domination relations between them. The work by Almasi et al. [ASMH16] also aims
to compare the privacy/utility trade-off of 𝑘-anonymity, 𝑙-diversity, 𝑡-closeness, and Differential
Privacy on the same scale. They use multiple metrics to evaluate the trade-off, while [CPE+13]
use only one evaluation metric for privacy and data utility, respectively. They observe that both
𝑡-closeness and Differential Privacy provide high utility while maintaining high privacy. In
contrast to [CPE+13], they conclude that there are differences regarding the privacy guarantees the
models make.

We conclude that a literature gap exists regarding the anonymization of datasets containing sensitive
data in the automotive field. Furthermore, works that evaluate the applicability and expressiveness
of metrics lack a practical realization of their analyses. Lastly, we observe that efforts regarding
the comparison of different anonymization approaches lack a representative quantity of metrics for
evaluation and are not present for vehicle data.
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3 Fundamental Concepts

This chapter introduces fundamental concepts required for a discussion in the field of anonymization.
Section 3.1 introduces important terminology required to discuss the existing techniques for privacy
preservation presented in Section 3.2.

3.1 Terminology

Various terms that describe the privacy protection of individuals in data can be found in the literature.
One of the most common ones throughout the years is “Statistical Disclosure Control”. The term
refers to the general goal of preventing third parties working with personal data from recognizing
individuals in the data and learning private information [BL20; HDF+12; Tem17; WD01]. One
aspect of Statistical Disclosure Control is exposing database access to third parties for data analysis,
termed Privacy Preserving Data Analysis (PPDA) [DR13; Dwo06]. Another aspect is the process of
publishing data while protecting the privacy of the respondents in the data, which is termed Privacy
Preserving Data Publishing (PPDP) in the literature [CKLM09; ML21]. This is usually where the
notion of “anonymization” is encountered.

The terms “anonymization” and “anonymized” appear in various fields of daily life. Whether
it is software asking for permission to gather anonymized usage data, a survey collecting the
results of participants anonymously, or anonymously browsing the internet using VPNs and onion
routing. However, a technical definition of what it means to be anonymous is difficult to come
by. One reason is that the definition of anonymity changes depending on the situation. Being
anonymous in a network communication context means something different than being anonymous
in a dataset [KRG+08]. This work addresses the anonymization of data. A common consensus is
that data anonymization is irreversible, distinguishing it from approaches such as pseudonymization
and encryption, where the raw data can be unveiled using external information (the mapping table
of the pseudonyms and the encryption key, respectively). Pfitzmann and Köhntopp [PK01] define
anonymity to be “the state of being not identifiable within a set of subjects, the anonymity set”. A
handout for the European General Data Protection Regulation (GDPR) defines anonymous data as
“information which does not relate to an identified or identifiable natural person” [AEP23]. The
concept of identifying an individual in a dataset is integral to many definitions of anonymization.
These definitions extend to preserving privacy for companies, organizations, etc. For simplicity, we
use the term “individual” in the remainder of this work for any entity that contributed to a dataset.

Information identifies an individual when it points to this and only this unique individual. Consider
the raw medical data in Figure 3.1a. The name “Bob” uniquely identifies his entry in the table and
allows anyone to conclude that Bob suffers from Apnea. Uniquely identifying an individual in a
dataset is termed “identity disclosure” in the literature [LLV07]. Attributes in a dataset that clearly
identify individuals are labeled explicit identifiers. Examples include social security numbers,
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3 Fundamental Concepts

names, or addresses. Quasi-identifying attributes (or quasi-identifiers) can identify an individual
when used in conjunction. These attributes appear benign in isolation but can single out individuals
because their combination creates unique specifications. Considering Figure 3.1a once again,
the attributes “Age” and “ZIP Code” (and their conjunction) can identify an individual in the
data. Therefore, they are the quasi-identifiers of this dataset. An Equivalence Class (EC) in an
anonymized table is a set of records with the same values for all quasi-identifiers, meaning they can
not be distinguished using quasi-identifying values. Lastly, sensitive attributes contain non-public,
private values. In the example table, “Condition” constitutes a sensitive attribute. The goal of
anonymization for tabular data is to prevent the disclosure of the individuals’ sensitive values.

3.2 Privacy-preserving Techniques

This section introduces prominent techniques for the privacy protection of tabular data. Some of
the explained concepts are not direct approaches per se but privacy models that can be achieved
using different methods.

3.2.1 𝑘-anonymity

𝑘-anonymity is a privacy model introduced by Sweeney [Swe02b]. The motivation behind 𝑘-
anonymity is that even after removing explicit identifiers from a dataset, quasi-identifier values can
still be combined with external data to identify an individual uniquely. To prevent this identity
disclosure, 𝑘-anonymity demands that each record in a dataset is indistinguishable from at least
𝑘 − 1 other records with respect to the quasi-identifier values. In other words, each Equivalence
Class in the dataset needs to be of size ≥ 𝑘 . Figure 3.1b shows a table satisfying 𝑘-anonymity for
𝑘 = 2. The records in the ECs can not be distinguished using quasi-identifier values.

Although 𝑘-anonymity protects against identity disclosure, attribute disclosure is possible due
to homogeneity attacks on the anonymized data. A homogeneity attack exploits the fact that all
sensitive values in an EC are identical, which is the case for the second EC in the example table.
These groups leak information because of the lack of diversity in the sensitive attribute. An attacker
who knows David’s age and ZIP code can identify the EC that must contain him. Although there is
no way of telling exactly which entry is David’s, the attacker can conclude that he was diagnosed
with insomnia.

Name Age ZIP Code Condition
Alice 25 10203 Gastritis
Bob 27 10204 Apnea

Charlotte 34 10701 Insomnia
David 45 10711 Insomnia

(a) The raw medical data.

Age ZIP Code Condition
[20, 29] 1020* Gastritis
[20, 29] 1020* Apnea
[30, 49] 107** Insomnia
[30, 49] 107** Insomnia

(b) The 2-anonymous release.

Figure 3.1: Two tables containing personalized medical information. The left table shows the
raw data. The right table shows a 2-anonymous transformation of the raw data using
generalization of attribute values.

18



3.2 Privacy-preserving Techniques

Achieving 𝑘-anonymity

The main idea behind methods that achieve 𝑘-anonymity is transforming records such that groups
of similar data points are created. Consequently, individual data points lose their uniqueness
and identifiability in the data set, increasing the anonymity of respondents who contributed data.
Another way of looking at these methods is as techniques that aim to bring together data points
scattered in the quasi-identifier space [BF19]. However, this increase in privacy comes at the cost
of a loss of precision, as data points have to be mutated to make them similar to each other.

Generalization One prominent way of achieving 𝑘-anonymity is through the generalization of
quasi-identifier values. Generalization substitutes the precise attribute values with more general
ones. For example, to generalize the dates of birth in a dataset, one could omit the day and month
of the birthday and keep only the year, thus making the information less specific. Another example
is a numerical value, such as a person’s age, which can be generalized by bucketing it into an
interval of values. An age of 22 could be generalized to the interval [20, 25] or [0, 50], for example.
This process increases the ambiguity between records in the data set at the cost of data precision.
One important property of generalization is that it is faithful, meaning any statement about the
transformed data is also true about the raw data. The generalization of attribute values is done
according to a predefined Value Generalization Hierarchy (VGH) [Sam01]. A VGH defines a
generalization strategy for all values of an attribute. One example of such a hierarchy is shown in
Figure 3.2 for the attribute “Marital Status”. The topmost element in a VGH is the generalization of
every element in the domain of the attribute and often denoted with ∗. There are two approaches
to the generalization (or recoding) of attribute values [AMCM14]. Global recoding defines one
generalized value for each original value in the attribute domain and applies this recoding to every
record in the dataset. Local recoding generalizes the attribute values on a tuple by tuple basis. This
means that the same original value can be recoded differently for two records.

*

Married Not Married

Divorced Single Widowed

Figure 3.2: An example Value Generalization Hierarchy of the attribute “Marital Status”.

Suppression 𝑘-anonymity can be achieved using solely generalization, but there exist cases
where a few outlier tuples may require a high degree of generalization to achieve 𝑘-anonymity.
In these cases, Samarati and Sweeney [SS98] suggest removing (or suppressing) these tuples to
achieve 𝑘-anonymity with fewer sacrifices to data precision at the loss of completeness. Combining
both provides a fitting means for using the minimal alteration of the data to achieve k-anonymity.
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3 Fundamental Concepts

Clustering Clustering is introduced as a method to find suitable ECs for 𝑘-anonymity [BKBL07;
LWFP06]. A clustering algorithm can group similar data points into clusters such that each
cluster contains at least 𝑘 elements. When the data points have been organized into clusters, their
quasi-identifier values will be modified such that 𝑘-anonymity is achieved. To minimize information
loss, the data points in one cluster should be as similar as possible.

Microaggregation The basic principle of microaggregation is the substitution of individual
entries with entries computed on small aggregates (microaggregates) [DM02]. The approach is
comprised of two steps [VFLS23]. First, records in the original data are partitioned into groups of
at least 𝑘 using a clustering approach. Then, an aggregation operator is applied to all records in
one group. The operator summarizes the tuples in one cluster into an aggregated output, which
then replaces the tuples in the respective cluster. The choice of the aggregation function depends
on the data type of the values that are combined. Numerical values can be combined using the
average or mean. For categorical values, one option is the group’s most frequent value (mode).
Another option is choosing the median of the values, which requires that an ordering is defined on
the attribute. When microaggregation is performed on the quasi-identifiers, the resulting dataset is
𝑘-anonymous [SDSM14].

3.2.2 𝑙-diversity

Machanavajjhala et al. [MGKV06] introduce 𝑙-diversity as an extension of 𝑘-anonymity that
addresses the shortcomings of the privacy model regarding the possibility of attribute disclosure.
𝑙-diversity demands that the distribution of a sensitive attribute in each EC has at least 𝑙 “well-
represented” values. The paper gives different definitions that adhere to the demand “well-
represented”. A simple one is that at least 𝑙 different values of the sensitive attribute must be present
in each EC. The first EC in Figure 3.1b satisfies 2-diversity, but the overall table satisfies only
1-diversity because of the second EC.

𝑙-diversity prevents an attacker from learning the precise sensitive attribute value of a specific record.
However, there is still the possibility that an attacker can gain significant knowledge regarding
the sensitive value for a tuple [BS08]. Suppose a table contains a tiny percentage of records that
have the sensitive value 𝑆. Let an EC contain 𝑙 different values of the sensitive attribute, where a
significantly higher percentage has the sensitive value 𝑆. Any individual in this Equivalence Class
will have a much higher probability of having value 𝐴 than any other individual in the dataset,
which is an information gain for an attacker.

3.2.3 𝑡-closeness

Li et al. [LLV07] propose the 𝑡-closeness requirement as another improvement in data anonymization
by grouping. This requirement aims to prevent the shortcoming of 𝑙-diversity that allows attackers
to make probabilistic inferences on the sensitive attributes of tuples. The authors assume that there
is always some base knowledge that an adversary has regarding the distribution of sensitive values
in the table. As most generalization approaches do not alter the sensitive values in the table, the
adversary will always know the probability distribution of sensitive values across the entire table,
regardless of how strongly the quasi-identifier values have been changed in the anonymization
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process. The rationale behind 𝑡-closeness is that the distribution of sensitive values in an EC should
be “close” to this base knowledge of the adversary. If this is not the case, the adversary gains
probabilistic information about the sensitive values of all individuals in this EC. Formally, an EC
provides 𝑡-closeness if the difference between the distribution of sensitive values in this EC and the
distribution across the entire table is at most 𝑡. A table provides 𝑡-closeness if every EC provides
𝑡-closeness. Li et al. [LLV07] use the Earth Mover’s Distance (EMD) to calculate the difference
between probability distributions. This measurement will be discussed in detail in Section 4.2.9.

3.2.4 Differential Privacy

Differential Privacy (DP) is a privacy model introduced by Dwork [Dwo06] that applies to algorithms
on datasets rather than the datasets themselves. Roughly, an algorithm satisfies Differential Privacy
if an observer seeing its output cannot tell whether a particular individual’s information was used in
the computation or not. The implication is that any harm done to an individual by an adversary
observing the output of a function on the dataset is essentially the same whether the individual joins
or refrains from joining the dataset. The formal definition of Differential Privacy operates on a
stochastic function K on datasets, an 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(K), and two neighboring datasets 𝐷1 and 𝐷2.
Neighboring datasets are defined as two datasets that differ in the data of only one individual.

𝑃𝑟 [𝑀 (𝐷1) ∈ 𝑆] ≤ 𝑒𝜖 𝑃𝑟 [𝑀 (𝐷2) ∈ 𝑆]

The probability in the definition is taken over the randomness of the algorithm K. The privacy
parameter 𝜖 is also referred to as the privacy budget in the literature [ZLZY17]. The lower the
budget, the stronger is the guarantee on privacy. One key feature of Differential Privacy (DP) is
that it does not restrict the knowledge of a possible adversary. The mathematical property holds
regardless of how strong the attacker is.

Achieving Differential Privacy

Dwork and Roth [DR13] give various approaches achieving DP on query functions. Randomized
response is a mechanism that protects privacy by providing deniability of the result. For a given
query that asks a yes or no question, flip a coin. If it lands on tails, respond truthfully. If it
lands on heads, flip a second coin and respond with “Yes” if heads and “No” if tails. Wang
et al. [WWH16] use the randomized response mechanism for differentially private data collection.
Another established approach is the Laplace mechanism. This mechanism adds noise sampled from
a Laplace distribution to the true value of the query result. The magnitude of the noise applied is
controlled by the privacy parameter 𝜖 . As a final example, the exponential mechanism guarantees
DP for queries where the output is associated with a “utility”. It is used in settings where adding
noise directly to the result would destroy its value, like auction prices. Therefore, the approach
outputs query results with respect to a utility function that assigns each database/output pair a
score [DR13].

Later works attempt to develop techniques that satisfy DP for Privacy Preserving Data Publish-
ing [ZLZY17]. Some techniques perform multidimensional partitioning of the data to provide
histograms describing the sensitive values [CPS+12; XXY10]. Bild et al. [BKP18] present a data

21



3 Fundamental Concepts

publishing algorithm that randomly draws samples from the raw data, which are then generalized to
achieve 𝑘-anonymity. Bowen and Liu [BL20] present a study of data synthesis approaches that
satisfy Differential Privacy.

3.2.5 Value Perturbation

Adding noise to perturb true results is applied at different stages of the data pipeline in the
literature [CKLM09]. Evfimievski et al. [EGS03] apply perturbation for privacy-preserving mining
of association rules. Blum et al. [BDMN05] propose a system that introduces noise to query
responses in order to maintain privacy for the individuals in the dataset. The direct perturbation
of attribute values is another approach to privacy protection for table-based data [HDF+12]. An
anonymized attribute can be obtained by adding noise sampled from a normal distribution to the
attribute values [DMB20].

3.2.6 Federated Learning

The idea of Federated Learning (FL) is that many devices contribute to the training of a central
inference model. Each device performs local model training on its raw data and then transmits its
trained model to a central server [BTM+20; KMA+21]. The server then aggregates the different
models sent from the devices to obtain one model trained on all data held by the devices. This
federated way of training a model improves privacy by default because the server never sees
any raw data the devices hold. FL is different from traditional distributed learning, which is the
parallelization of computing power to train a single model on multiple servers. In a Federated
Learning environment, the training data on the devices may be imbalanced and of different sizes.
In contrast, data are usually balanced and equally spread among compute nodes in a distributed
learning scenario.

It should be noted, however, that FL on its own does not automatically guarantee that there is no
information leakage. While it is true that the server never actually encounters any sensitive data,
the trained model surprisingly can leak information. Shokri et al. [SSSS17] show that Machine
Learning (ML) models are susceptible to membership attacks which, given a data record and
access to a (black-box) ML model, were able to determine whether said data record was included
in the model’s training set. The authors furthermore note that Differential Privacy on the model
training would, by construction, not be susceptible to the membership attack. This is because
a specific output of any model training that uses a particular data point would be nearly equally
probable as the same output without this data point in the training set. Because of this, recent
work has integrated Differential Privacy in their FL approaches to provide an extra layer of privacy
protection [BKMR21].

3.2.7 Data Synthesis

One approach to protecting the privacy of individuals in a dataset is to synthesize completely
new data based on the original data [BL20; FWFY10]. For example, one could build a statistical
model based on the original data and then sample synthetical data points from that model. The
resulting synthetic dataset should show similar statistical properties to the original data. Similar to
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the problem of ML models leaking information discussed in Section 3.2.6, it is essential to note
that synthetic data is not automatically anonymous simply because it is not “real data”. Generative
Adversarial Networks can be used for data generation where the generative network tries to fake
data that shows the same characteristics as the original data [PMG+18].
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4 Evaluation of Anonymization Techniques in
the Automotive Domain

This chapter presents the main work of this thesis. We begin by discussing the emerging issues in
data anonymization in the vehicle domain in Section 4.1. The selection of metrics used to evaluate
the anonymization approaches is presented in Section 4.2. In Section 4.3, we introduce the data,
the anonymization approaches, and the demonstrators for the experiments. Section 4.4 provides
implementation details of the metrics and approaches. Finally, Section 4.5 presents the results of
the experiments and a discussion of the findings.

4.1 Challenges and Peculiarities in the Automotive Field

The previous sections consider the problem of PPDP from a general viewpoint, agnostic of specific
data domains. Since this thesis aims to contribute to the automotive field, we now focus on the
characteristics and challenges of the automotive domain. In the following, we discuss why data is
gathered in the automotive domain, what motivation there is to apply anonymization techniques to
the collected data, what special characteristics data in the automotive field have, and finally, what
challenges arise in the domain of anonymization for vehicle data.

Motivation for Data Collection Not only in the automotive domain but in general, data is mainly
gathered to extract patterns and insights for product improvement. In the automotive domain, the
collection and processing of vehicle information has been picking up speed with the emergence of
connected vehicles. A connected car is capable of accessing the Internet, communicating with other
smart devices, and leveraging vehicle-to-vehicle communication technologies [CM16]. Fieschi
et al. [FHS+23] list some of the many data use cases done by a large German car manufacturer
and classify them according to their requirements and challenges for anonymization. The use
cases presented range from battery lifetime improvement over live traffic to Machine Learning
for autonomous driving. These applications require vehicle data collected while the car is being
driven. Because individual people drive cars, these data may contain sensitive information that the
driver does not wish to be disclosed to unauthorized entities. While the data required for a battery
lifetime improvement use case may not contain heavily personalized data, applications such as live
traffic analysis already require accurate GPS locations of the drivers, a highly sensitive piece of
information. Apart from information about the vehicle state, audiovisual data about the drivers
themselves is also collected in the field of connected vehicles [LHSM23].
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Motivation for Data Protection The motivation behind data protection in the automotive domain
is twofold. Firstly, protecting the privacy of individuals in the data has marketing benefits. A
company can use the confidence in its data protection capabilities to communicate this to potential
customers openly. If the promise of excellent data protection stands the test of time, this company
will profit from customer trust and a good image regarding the privacy protection of customer data.
This goal is desirable for any company that collects and processes customer data. Secondly, the
most forcing factor for data protection in any domain are regulations on the federal or supranational
level. The GDPR is a data protection and privacy regulation enacted in the European Union.
The regulation demands that “the principles of data protection should apply to any information
concerning an identified or identifiable natural person” [EC16]. The regulation also notes that
data that has undergone pseudonymization is not exempt from requiring data protection because
it can be linked to a natural person with external information, i.e., the pseudonymization table.
Anonymous information, on the other hand, is explicitly exempt from this regulation. The GDPR
defines anonymous information as “information which does not relate to an identified or identifiable
natural person” or as data where “the data subject is not or no longer identifiable”. While this
definition is intuitive, the weaknesses of some privacy models introduced in Section 3.2 show that
seemingly anonymized data can still allow an adversary to identify an individual. The regulation
lacks a technical definition of anonymity.

4.1.1 Data Characteristics and Emerging Challenges

Data in the automotive domain show several peculiarities compared to other fields. Firstly, there
is a vast realm of data sources in the field. As mentioned, the data collected can take many
forms, from GPS information over vehicle speed values and other sensory data to audiovisual data,
including image, audio, and video material. The different data types require different approaches to
anonymization to protect privacy. A consequence is that individuals are associated with many pieces
of information in the raw data. This creates a detailed portrait of the individuals, which may contain
considerable amounts of sensitive info. Different data sources can be joined to make statements like:
Driver 𝐷 was at position 𝑋 at time 𝑇 , going 𝑆 kilometers per hour with a destination of 𝑍 while
listening to artist 𝐴. The prevention of linking this information to an individual is ultimately the
goal of anonymization of these data. Related to the issue of having different data types associated
with an individual is the peculiarity of having multiple entries of the same data type associated
with one individual. A vehicle picks up a variety of different sensor events throughout one trip,
which are all associated with the same driver. As another example, an in-car passenger monitoring
system for drowsiness detection collects multiple images or videos of the same driver. There exist
works addressing the topic of privacy preservation for multiple records per person. Still, most of
the literature assumes a one-to-one relationship between records and individuals [UKLU20].

Another issue in the field is that there are different stages in the data pipeline where data protection
mechanisms may be employed. The vehicle data is generated in the car itself and may be transferred
to the database of the car manufacturer, other IoT devices, or even surrounding cars and infrastructure.
Data protection can be implemented at the vehicle level or when the data originating from multiple
vehicles is consolidated in the database of the manufacturer. Federated Learning as introduced in
section Section 3.2.6 is an interesting approach for data protection on the vehicle level because
the notion of distributed clients contributing (sensitive) data to a central server is intrinsic to the
modern automotive world. Each vehicle could train a statistical model on its data that is then sent to
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and aggregated on a central server. The server will have a statistical model fitted on data that the
server never had to see. Of course, this will only work for a use case that involves fitting a statistical
model and is not a general approach to anonymization. On the other hand, perturbation-based
anonymization approaches are a natural pick for privacy protection on the vehicle level. The car
can apply noise to any data before sending it to a different entity. Of course, perturbation-based
approaches (see Section 3.2.5) are also an option on the database level, along with grouping-based
approaches. Data Synthesis (see Section 3.2.7) can also be performed on a server to generate
anonymous vehicle data. However, the statistical model that is fitted and provides the samples to
synthesize new data would have to allow the addition of new samples in the training process. A
different point of application is the interaction of a data scientist with the database. The queries
on the database available to the data scientist can be implemented in a privacy-preserving manner.
This approach is referred to as Privacy-Preserving Data Analysis in the literature [ZLZY17].

Lastly, the dynamic nature of vehicle data is a significant factor in preserving privacy. Since vehicle
data is collected continuously, the associated datasets will change continually. This means that new
records will be added that require anonymization. The problem of sequentially publishing a dataset
after it has been updated with insertions or deletions is named Privacy Preserving Dynamic Data
Publishing (PPDDP) in the literature [ML21]. The difference between PPDDP and a one-time
release of the dataset is that subsequent releases of data, although privacy-preserving on their own,
may leak information when combined. As a straightforward example, imagine that a second data
release contains only one more record than the first. An adversary that knows the first release can
quickly determine which record has been added in the second release by comparing the two and can,
therefore, learn sensitive information about the added individual. As a concrete example, consider a
hospital that would like to release anonymous patient information every 6 months. The releases
contain patient information spanning one year. Figure 4.1 shows two exemplary releases of data by
the hospital. Alice and Bob form one EC in the first release, and Bob and Charlotte form one EC in
the second release. Alice’s stay at the hospital was already more than one year ago at the time of the
second release, so she does not show up in the data. Imagine an attacker knows that Bob has to
appear in both releases and knows Bob’s Age and Zip Code. This attacker can easily identify Bob’s
EC in both tables and conclude from the first release that Bob has either Gastritis or Apnea and
from the second release that he has either Apnea or Insomnia. Therefore, the attacker concludes
that Bob suffers from Apnea, which would not have been possible by considering only one of the
releases [XT07]. Literature in the field of PPDDP aims to provide models that guarantee privacy
even for sequential data releases. Xiao and Tao [XT07] introduce the 𝑚-invariance model, which
requires that the ECs containing a record in multiple releases must all contain the same sensitive
values. The authors accomplish this by introducing counterfeit tuples into the data release.

Besides the discussed privacy issues of releasing continuous data, technical problems arise when
handling sequential updates. Suppose a dataset of personalized data gathered from vehicles is
transformed to satisfy 𝑘-anonymity. During the anonymization process, data quality is lost, and the
raw data has been discarded due to data protection regulations. Integrating new records into the
anonymized dataset poses some problems because it is not clear how they are incorporated with the
others. One strategy is to add a new record to the EC that is “closest” to this entry. But after many
iterations of extending the dataset with new data, we could have heavily skewed sizes of ECs. This
problem would not emerge if the raw data could be considered as a whole again and anonymized to
satisfy 𝑘-anonymity.
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Name Age Zip Condition
. . . . . .

Alice [20, 30] 123* Gastritis
Bob [20, 30] 123* Apnea
. . . . . .

(a) First 2-diverse, 2-anonymous release

Name Age Zip Condition
. . . . . .
Bob [20, 30] 123* Apnea

Charlotte [20, 30] 123* Insomnia
. . . . . .

(b) Second 2-diverse, 2-anonymous release

Figure 4.1: Two releases of the same data that on their own satisfy 2-diversity and 2-anonymity but
leak sensitive information when combined.

4.2 Selection of Metrics for Evaluation

This section presents the selection of metrics used in the experiments. Apart from choosing eleven
metrics from existing literature, we define a handful of soft metrics introduced in Section 4.2.1.
Table 4.1 gives an overview of the metrics presented in this section and their characteristics. The
characteristics highlighted in the table are further explained in the following paragraphs.

The “Type” of a metric has one of four values. Syntactic metrics measure the structural properties
of a dataset. These metrics do not consider the attribute values in the dataset at all, which is
why they evaluate syntactic properties, not semantic ones. Metrics in this category can usually
be calculated straightforwardly with low computational costs. Distance-based metrics measure a
notion of distance between records or cell values. Distribution-based metrics are semantic measures.
In contrast to syntactic metrics that focus on the structure of the anonymized table (for example,
the sizes of ECs), these metrics consider the values and distributions of these values in the table.
Adversarial metrics aim to model an adversarial attack by including hypothetical adversarial actions
like the act of guessing the most probable value in an EC to be the sensitive value for an individual.

The property “Measure” indicates what aspect of the anonymized data is considered by the metric.
Metrics that evaluate the performance of any given anonymization approach in the literature mainly
examine data utility and privacy. Data utility relates to the ability to learn aggregate statistics about
large groups of individuals. Privacy relates to the ability to extract information about specific
individuals in the data [CPE+13; LL09].

The “Granularity” indicates how detailed the metric considers the individual entries in the table.
Metrics that operate on a cell level consider the individual attribute values in the table, while
record-based metrics operate on a tuple-by-tuple basis.

“Relative” indicates whether the metric outputs a score relative to a baseline dataset. Metrics that
measure utility can incorporate the utility of the raw data in their calculation to capture information
loss due to anonymization. Metris that measure privacy can incorporate the privacy of the trivially
anonymized dataset, where all quasi-identifier values are removed [LL09]. Relative metrics can
convey more information. For example, if the utility of the raw data is low, it will consequently also
be low in the anonymized data. A relative metric, in contrast to an absolute one, can recognize that
the utility of the anonymized data is not low because the anonymization approach destroyed it.
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Year Type Measure Granularity Relative Normalized
Suppression Ratio 1998 Syntactic P + U Record Y Y

Minimum 𝑘 2002 Syntactic P + U Record N N
Minimum 𝑙 2006 Syntactic P Cell N N

Average Equivalence Class Size 2006 Syntactic P + U Record N N
Discernibility Penalty 2005 Syntactic P + U Record N N
In-Data Precision Loss 2002 (2006) Distance P + U Cell N Y

Cross-Data Precision Loss 2015 Distance P + U Cell Y Y
Earth Mover’s Distance 2007 Distribution P Cell Y Y

𝑔-balance 2020 Distribution P Record N Y
ℎ-affiliation 2020 Distribution P Record N Y

Adversarial Knowledge Gain 2008 Adversarial P Cell Y Y

Table 4.1: Overview of the selected metrics and their characteristics.

Lastly, “Normalized” indicates whether the metric values are adjusted to allow a comparison
between different datasets. For example, removing five records from a dataset containing ten entries
is a more significant loss of information than removing five records from a dataset containing 1000
entries. Normalization scales the raw value to allow a fair comparison.

Notation

This paragraph presents the mathematical notation used in the following chapters to ensure notational
consistency in the remainder of this work. The notation is mostly consistent with the one that can
be found in the literature, but some adjustments and harmonizations have been made.

# Name Age Occupation
1 John Doe 26 Dentist
2 Alice Doe 26 Dentist
3 Eve Parker 31 Computer Scientist

Table 4.2: An example table with 3 attributes and 3 tuples

We define a table 𝑇 with attribute set 𝐴 = {𝐴1, . . . , 𝐴𝑚} to be a collection of records (or tuples)
𝑡1, . . . , 𝑡𝑛 and |𝑇 | = 𝑛 denoting the cardinality of 𝑇 , meaning the number of tuples in 𝑇 . The
value of tuple 𝑡 ∈ 𝑇 under attribute 𝐴𝑖 ∈ 𝐴 is denoted by 𝑡 [𝐴𝑖]. Note that the term value in this
context includes numerical values, categorical values, and even value intervals, which arise from
the generalization of attributes. We use the term interval to describe a set of values such as [2, 5]
for example, and the term range to describe the difference between the largest and smallest value in
the interval, which is 3 in this case. We define a quasi-identifier 𝑄𝐼 ⊆ 𝐴 to be a set of attributes
𝑄𝐼1, . . . , 𝑄𝐼𝑘 [Dal86; SS98]. The function 𝐸𝐶 (𝑇) returns all Equivalence Classes of table 𝑇 as a
set of sets of tuples. We also define 𝐸𝐶 (𝑡𝑖) to return the Equivalence Class that contains tuple 𝑡𝑖 as
a set of tuples.
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Table 4.2 shows an example table 𝑇 = {𝑡1, 𝑡2, 𝑡3} with |𝑇 | = 3 numbered records and attribute
set 𝐴 = {𝑁𝑎𝑚𝑒, 𝐴𝑔𝑒, 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛}. Let 𝑄𝐼 = {𝐴𝑔𝑒, 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛} be the quasi-identifier.
We have

𝑡1 [𝑁𝑎𝑚𝑒] = 𝐽𝑜ℎ𝑛 𝐷𝑜𝑒
𝐸𝐶 (𝑇) = {{𝑡1, 𝑡2}, {𝑡3}}
𝐸𝐶 (𝑡1) = {𝑡1, 𝑡2}

Throughout the explanation of the metrics, we set 𝑇 to be the original table of microdata and 𝑇 ′ to
be the table that results from anonymizing 𝑇 . We also refer to 𝑇 ′ as the transformed table.

4.2.1 Soft Metrics

The first metrics we introduce are not mathematic measurements that output a specific number but
high-level evaluations of the anonymization approaches. These soft metrics can be used as first
considerations when deciding on a fitting anonymization approach.

Raw Data Permanence Some techniques for privacy preservation require permanent access
to the raw, personalized data, which can pose problems regarding legal regulations. For example,
techniques for Privacy Preserving Data Analysis tend to require permanent access to the raw
data. As a reminder, these approaches often expose privacy-preserving interfaces to a database
containing personal data. There exist approaches in the literature that allow a Machine Learning
classifier training with DP [ACG+16]. If the data is intended for classification, a model can be
trained on the raw data with guarantees of privacy preservation, and the raw sensitive data can be
discarded afterward.

Required Amount of Data Preprocessing If an anonymization approach has strict requirements
regarding the structure of data it expects, preprocessing the raw data may be a substantial task. The
transformation of the raw data may introduce human error or result in information loss.

Data Use Case Flexibility Approaches for PPDP release an anonymized dataset to allow a wide
range of data use cases. On the other hand, techniques for PPDA target very specific data use cases.
This makes the usability of their individual outputs narrow but allows tailoring the mechanism
exactly to a given use case. The selection of a fitting anonymization approach may be influenced by
assessing whether the data will have broad or specific uses.

Intuitiveness of Privacy Effect Effective communication regarding the privacy measures taken
to protect customer data greatly benefits companies. Customers who understand how their private
data is managed build trust in the company. On the other hand, effective communication allows fast
resolution of any inquiries coming from legal institutions. This metric captures how intuitive the
privacy mechanism is to a non-specialist.
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Required Amount of Domain Knowledge This soft metric assesses the difficulty level involved
in implementing one of the anonymization approaches by someone unfamiliar with the data domain.
A low requirement indicates that a data engineer can apply an anonymization approach to different
types of data without the need to invest time to understand the semantics and structure of the data.

Suitability for on-line Data Collection Often, new data arrive continuously, and anonymization
approaches should be able to handle the steady stream of new data. This metric assesses the ability
of an anonymization approach to anonymize new data efficiently and effectively.

4.2.2 Suppression Ratio

One of the earliest metrics proposed is measuring the amount of suppressed tuples in the output of
an anonymization algorithm [SS98]. This count can be normalized by dividing the result by the
number of records in the input dataset.

𝑀𝑆𝑅 (𝑇,𝑇 ′) = |𝑇 | − |𝑇 ′ |
|𝑇 | = 1 − |𝑇 ′ |

|𝑇 |

Summary The Suppression Ratio is a syntactic, record-based measurement that considers both
the original and the anonymized table to generate a normalized value in [0, 1]. Suppressing a
record takes away utility from the data but also protects the privacy of the individual whose data
is removed. Therefore, it is a metric that measures utility and privacy. Low values indicate that
little utility is lost while little privacy is gained, and high values indicate high utility loss and high
privacy gain. Although a basic metric, it can be found in more recent work [KYH+16].

4.2.3 Minimum 𝑘

The value 𝑘 for which an anonymized table satisfies 𝑘-anonymity can be considered as a basic
metric to evaluate the privacy as well as the utility of table 𝑇 ′ [Swe02b].

𝑀𝑘 (𝑇 ′) = min
𝑒∈𝐸𝐶 (𝑇 ′ )

|𝑒 |

Summary The minimum 𝑘 in an anonymized table is a syntactic, record-based measurement that
only operates on the anonymized table. The value lies in [1, |𝑇 ′ |]. Lower values indicate higher
utility and lower privacy. Consider a dataset transformed to satisfy 𝑘-anonymity with a certain
utility. This transformation automatically satisfies (𝑘 −1)-anonymity with the same utility. However,
there could exist a different transformation of the original dataset satisfying (𝑘 − 1)-anonymity with
a higher utility. Thus, lower values of 𝑘 are to be preferred regarding the utility of the dataset.
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4.2.4 Minimum 𝑙

The 𝑙 for which an anonymized table satisfies 𝑙-diversity can act as a measurement of privacy.
Machanavajjhala et al. [MGKV06] present 𝑙-diversity as a privacy model that prevents homogeneity
attacks. We use distinct 𝑙-diversity, which means that 𝑙 for an EC is the number of distinct sensitive
attributes in the group. Let 𝑆𝑉 (𝑒) return the set of unique sensitive values in EC 𝑒.

𝑀𝑙 (𝑇 ′) = min
𝑒∈𝐸𝐶 (𝑇 ′ )

|𝑆𝑉 (𝑒) |

Summary The minimum 𝑙 over all ECs in an anonymized table is a syntactic, cell-based privacy
metric operating on the anonymized data. The value has a lower bound of 1 and an upper bound of
the number of distinct sensitive values in the table.

4.2.5 Average Equivalence Class Size

Machanavajjhala et al. [MGKV06] propose the average EC size as a metric to get an intuition about
how big the groups created by anonymization are.

𝑀𝐸𝐶 (𝑇 ′) = |𝑇 ′ |
|𝐸𝐶 (𝑇 ′) |

LeFevre et al. [LDR06] aim to add a normalizing factor to the metric calculation by dividing the
value by 𝑘 .

𝑀𝑁𝐸𝐶 (𝑇 ′) = 𝑀𝐸𝐶 (𝑇 ′)
𝑘

=
|𝑇 ′ |

|𝐸𝐶 (𝑇 ′) | · 𝑘

This division does not normalize the values into the range [0, 1] but signifies the factor by which
the average EC is bigger than 𝑘 .

Summary The Average Equivalence Classes Size is a syntactic, record-based metric only
operating on the anonymized table. It outputs values in [1, |𝑇 ′ |] for the originally proposed version
and values between [1, |𝑇 ′ |/𝑘] for the version that incorporates the normalization factor. The
authors introduce it as a cost metric on data utility, so smaller values signify higher utility. However,
smaller values also indicate lower privacy.

4.2.6 Discernibility Penalty

Using the discernibility (distinctiveness) of tuples in the anonymized table as a metric of information
loss is proposed by Bayardo and Agrawal [BA05]. The authors introduce the Discernibility Penalty,
assigning a penalty to each tuple. This penalty is determined by the number of tuples in the
transformed table that are identical to it. A suppressed tuple is assigned a penalty of |𝑇 |, the size of
the input dataset. An unsuppressed tuple contributes a penalty that is as big as the size of its EC.

𝑀𝐷 (𝑇,𝑇 ′) =
∑︁
𝑡∈𝑇 ′

|𝐸𝐶 (𝑡) | + |𝑇 | · ( |𝑇 | − |𝑇 ′ |)
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The first summand accounts for all unsuppressed tuples, and the second computes the penalty for
all suppressed tuples. If the discernibility of tuples in a table is low, the Discernibility Penalty
is high.

Summary The Discernibility Penalty is a syntactic, record-based metric that operates on the
anonymized table. The lowest penalty possible for a table satisfying 𝑘-anonymity is 𝑘2 times the
number of ECs in the table. This is because each tuple contributes at least a penalty of 𝑘 to the total
value, and there need to be at least 𝑘 tuples in any EC. The maximum value of the metric is |𝑇 |2. A
lower penalty means that fewer tuples are indistinguishable from each other, suggesting there is also
less information loss and less privacy protection. The Discernibility Penalty is used in many works
in the field [LDR06; NAC07; XWP+06].

4.2.7 In-Data Precision Loss

There are many uses of measuring in-data loss due to generalization in the literature, with one
of the first ones being the “General Loss Metric” introduced by Iyengar [Iye02]. With the term
“in-data”, we mean that the metric operates only on the anonymized data, ignoring the original data.
We consolidate the various approaches in the literature with this metric. A normalization term is
introduced by Nergiz and Clifton [NC06], which we also adopt. This makes the metric expressive
when comparing different anonymized datasets. Let 𝑡′ ∈ 𝑇 ′ be the generalization of tuple 𝑡 ∈ 𝑇 .

𝑀𝐼𝑃𝐿 (𝑇,𝑇 ′) = 1
|𝑇 | · 𝑚

∑︁
𝑡∈𝑇

𝑚∑︁
𝑖=1

𝐼𝑃𝐿𝐴𝑖
(𝑡′)

It is possible to assign different weights to the losses, depending on how important an attribute
is deemed. One would then multiply 𝐼𝑃𝐿𝐴𝑖

(𝑡′) by 𝑤𝑖, where 𝑤𝑖 is the weight that is assigned
to the respective attribute 𝐴𝑖. It should be noted, however, that the normalization term needs to
be adjusted should any weights be ≠ 1. The precision loss is calculated over the attributes in the
quasi-identifier, and 𝐼𝑃𝐿𝐴𝑖

(𝑡′) is assigned the maximum loss of 1 if 𝑡′ is suppressed. A distinction
is made between calculating the loss for numerical and categorical attributes.

Numerical Attributes Given a generalized tuple 𝑡′, an attribute 𝐴𝑖 , and the interval 𝑡 [𝐴𝑖] = [𝑦, 𝑧],
the loss is

𝐼𝑃𝐿𝐴𝑖
(𝑡′) = 𝑧 − 𝑦

|𝐴𝑖 |
,

where |𝐴𝑖 | = 𝑚𝑎𝑥𝑡∈𝑇 𝑡 [𝐴𝑖] − 𝑚𝑖𝑛𝑡∈𝑇 𝑡 [𝐴𝑖] is the range of attribute 𝐴𝑖 over all tuples in the
original table.

Categorical Attributes There are different approaches to calculating the loss for categorical
attributes. A straightforward approach is mapping the categorical attribute values to integers and
proceeding with the formula for numerical attributes [AMCM14]. Another option is defining the
distance between any two different categorical values to be equal to 1. However, both of these
approaches disregard any semantic relations between categorical values. Iyengar [Iye02] propose a
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mapping that captures more aspects of the semantics of the values. Given a taxonomy tree like the
one in Figure 3.2 and 𝑡′ [𝐴𝑖] taking the value of node 𝑃 in the tree, the loss is

𝐼𝑃𝐿𝐴𝑖
(𝑡′) = 𝑀𝑃 − 1

𝑀 − 1
∈ [0, 1] [Iye02]

Here, 𝑀 is the total number of leaf nodes in the taxonomy tree, and 𝑀𝑃 is the number of leaf nodes
rooted at node 𝑃. This approach is similar to the one introduced by Loukides and Shao [LS07], who
count the number of distinct values covered by 𝑡′ [𝐴𝑖] and divide this value by the total number of
distinct values in the domain of attribute 𝐴𝑖 . The distinct values of an attribute are equivalent to the
leaf nodes of the taxonomy tree. The only difference is that Iyengar [Iye02] subtract one from the
numerator and denominator such that the value 0 indicating no loss at all is theoretically possible.
Another variant is proposed by Sweeney [Swe02a] and also found in Byun et al. [BKBL07]. They
calculate the loss of categorical values using the height of the taxonomy tree 𝐺.

𝐼𝑃𝐿𝐴𝑖
(𝑡′) = 𝐻 (�̂�)

𝐻 (𝐺) ∈ (0, 1] [BKBL07; Swe02a]

𝐻 (𝐺) denotes the height of the full taxonomy tree, and 𝐻 (�̂�) denotes the height of the subtree that
is rooted at 𝑡′ [𝐴𝑖]. Considering the attribute taxonomy shown in Figure 3.2, the previous approaches
assume that values are generalized to non-leaf nodes in the tree. For example, “Divorced” is
generalized to “Not Married”. Xu et al. [XWP+06] extend this taxonomy-based approach by allowing
a generalization to an arbitrary set of the tree’s leaf nodes. This would allow the generalization of
“Divorced” to the set of values {“Divorced”, “Single”}. They define the notion of a closest common
ancestor. Let 𝑉 = {𝑣1, . . . , 𝑣𝑙} be a set of nodes in the hierarchy. A node 𝑢 is the closest common
ancestor of 𝑉 if 𝑢 is an ancestor of every node in 𝑉 and no descendant of 𝑢 is also an ancestor of all
nodes in 𝑉 . In Figure 3.2, the closest common ancestor of Divorced and Single is Not Married and
the closest common ancestor of Married and Widowed is *. A different loss 𝐼𝑃𝐿𝐴𝑖

(𝑡′) of tuple 𝑡′
under attribute 𝐴𝑖 can be specified using this definition.

𝐼𝑃𝐿𝐴𝑖
(𝑡′) = 𝑠𝑖𝑧𝑒(𝑢)

|𝐴𝑖 |
∈ [0, 1] [XWP+06]

Here, |𝐴𝑖 | is the number of distinct values of the attribute 𝐴𝑖 , 𝑢 is the closest common ancestor of
𝑡′ [𝐴𝑖], and 𝑠𝑖𝑧𝑒(𝑢) is the number of leaf nodes that are descendants of 𝑢.

Summary The In-Data Loss is a distance-based, cell-based metric that measures the information
loss resulting from generalization. It only applies to data that were transformed using generalization
and suppression. The output value of the metric lies either in [0, 1] or (0, 1], depending on the chosen
loss calculation. A low value means there is little data transformation, while a value of 1 indicates
that the values are maximally imprecise. On the other hand, imprecise quasi-identifier values
provide better privacy. The in-data precision loss is adopted frequently in the literature [AMCM14;
NAC07; XWP+06], and Poulis et al. [PGL+15] use it as a metric to evaluate the anonymizations
done by their tool SECRETA [USD23].
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4.2.8 Cross-Data Precision Loss

In contrast to in-data, “cross-data” loss measures the decrease in precision compared to the original
data. The value is computed by summing up the loss for every record 𝑡 ∈ 𝑇 and its transformed
counterpart 𝑡′ ∈ 𝑇 ′ and then normalizing over the number of attributes and the table size.

𝑀𝐶𝑃𝐿 (𝑇,𝑇 ′) = 1
|𝑇 | · 𝑚

∑︁
𝑡∈𝑇

𝑚∑︁
𝑖=1

𝐶𝑃𝐿𝐴𝑖
(𝑡, 𝑡′)

Again, the losses can be multiplied by weights to assign a stronger impact on important attributes.
Similar to the in-data metrics, the exact way of calculating𝐶𝑃𝐿𝐴𝑖

(𝑡, 𝑡′) varies in the literature. Soria-
Comas et al. [SDSM15] use the squared distance between the transformed and the original value.

𝐶𝑃𝐿𝐴𝑖
(𝑡, 𝑡′) = (𝑡 [𝐴𝑖] − 𝑡′ [𝐴𝑖])2 [SDSM15]

Kikuchi et al. [KYH+16] measure the absolute distance between the original and transformed val-
ues.

𝐶𝑃𝐿𝐴𝑖
(𝑡, 𝑡′) = |𝑡 [𝐴𝑖] − 𝑡′ [𝐴𝑖] | [KYH+16]

The difference is taken for sensitive attribute values in the paper, but the metric can also be evaluated
on the quasi-identifier attributes. The loss that suppressed tuples contribute is not specified explicitly
in either approach. It is also not apparent how the distance between categorical values is defined.
Again, a basic mapping of categorical values to integers can solve the issue but loses the possible
semantic meaning of the values. There is the possibility of using the definition of the closest
common ancestor explained in Section 4.2.7. Let 𝑢 be the closest common ancestor of 𝑡 [𝐴𝑖] and
𝑡′ [𝐴𝑖], then we can again apply the formula provided by Xu et al. [XWP+06].

𝐶𝑃𝐿𝐴𝑖
(𝑡, 𝑡′) = 𝑠𝑖𝑧𝑒(𝑢)

|𝐴𝑖 |
[XWP+06]

It should be noted that this approach requires an attribute taxonomy. Also, note that 𝑡′ does not
necessarily need to be a tuple transformed by generalization in this case. For example, the values in
𝑡′ may be generated using noise or microaggregation.

Summary The Cross-Data Precision Loss is a distance-based, cell-based metric that measures the
information loss resulting from a dataset transformation. The output is normalized to lie between 0
and 1. A requirement for the metric is the existence of a mapping between the original and the
transformed records.

4.2.9 Earth Mover’s Distance (𝑡-closeness)

The EMD is a measure used by Li et al. [LLV07] to calculate the value of 𝑡 in the 𝑡-closeness privacy
model. As a reminder, a table that provides 𝑡-closeness guarantees that the distance between the
distribution of sensitive values in an EC and the distribution of sensitive values in the entire table is
no more than 𝑡 for all ECs in the table.

𝑀𝐸𝑀𝐷 (𝑇 ′) = max
𝑒∈𝐸𝐶 (𝑇 ′ )

𝐸𝑀𝐷 (𝑃𝑒, 𝑄𝑇 ′)
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In the above equation, 𝑃𝑒 is the distribution of sensitive values in EC 𝑒, and 𝑄𝑇 ′ is the distribution
of sensitive values over the entire table 𝑇 ′. Since sensitive attributes can be numerical (like a salary)
or categorical (like a medical condition), there is one explicit formula to calculate the EMD for
each case.

Numerical Attributes Given a sensitive numerical attribute with domain {𝑣1, 𝑣2, . . . , 𝑣𝑚} where
𝑣𝑖 is the 𝑖th smallest value, the Earth Mover’s Distance between two distributions 𝑃 and 𝑄 on this
domain is

𝐸𝑀𝐷 (𝑃,𝑄) = 1
𝑚 − 1

𝑚∑︁
𝑖=1

���� 𝑖∑︁
𝑗=1

𝑝 𝑗 − 𝑞 𝑗
����

Here, 𝑝 𝑗 is the probability of the 𝑗 th element in the domain according to the distribution 𝑃, and 𝑞 𝑗
is the probability of the 𝑗 th element according to 𝑄. As an example, let the values in distribution
𝑃1 be {3𝑘, 4𝑘, 5𝑘} and those in 𝑄 be {3𝑘, 4𝑘, 5𝑘, 6𝑘, 7𝑘, 8𝑘, 9𝑘, 10𝑘, 11𝑘} and all values in one
distribution independent and identically distributed (i.i.d.), we have that 𝐶𝐸𝑀𝐷 (𝑃1, 𝑄) = 0.375.
On the other hand, if 𝑃2 contains the values {6𝑘, 8𝑘, 11𝑘} (i.i.d.), then 𝐶𝐸𝑀𝐷 (𝑃2, 𝑄) = 0.167. The
latter score is lower because EMD does not simply see the values as different points in the space,
but assigns them a semantic meaning. Intuitively, 𝑃2 is closer to 𝑄 because its values are more
evenly distributed in the domain than 𝑃1.

Categorical Attributes The authors propose two distance measures for categorical attributes.
The equal distance measure is oblivious to any semantic relationships on attribute values and defines
the distance between any two values to be 1. For two distributions 𝑃 and 𝑄 of a sensitive attribute
with 𝑚 distinct values, we have

𝐸𝑀𝐷 (𝑃,𝑄) = 1
2

𝑚∑︁
𝑖=1

|𝑝𝑖 − 𝑞𝑖 |

The hierarchical distance considers the attribute domain hierarchies by defining the distance of any
two values in the hierarchy to be based on their closest common ancestor, a concept that was also
employed in the in-data precision loss metric introduced in Section 4.2.7. As a short reminder, the
closest common ancestor of two nodes is the lowest node in the hierarchy to which these two nodes
generalize. Now, the distance between any two nodes 𝑣1 and 𝑣2 in the hierarchy is defined to be
𝑙𝑒𝑣𝑒𝑙 (𝑐𝑐𝑎(𝑣1, 𝑣2))/𝐻, where 𝑐𝑐𝑎(·, ·) returns the closest common ancestor of the two input nodes,
𝑙𝑒𝑣𝑒𝑙 (·) returns the height of an input node, and 𝐻 is the total height of the domain generalization
hierarchy. The distance between two distributions 𝑃 and 𝑄 is then

𝐸𝑀𝐷 (𝑃,𝑄) =
∑︁
𝑁

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑁)
𝐻

min(𝑝𝑜𝑠_𝑒𝑥𝑡𝑟𝑎(𝑁), 𝑛𝑒𝑔_𝑒𝑥𝑡𝑟𝑎(𝑁))
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where

𝑝𝑜𝑠_𝑒𝑥𝑡𝑟𝑎(𝑁) =
∑︁

𝐶∈𝑐ℎ𝑖𝑙𝑑 (𝑁 )∧𝑒𝑥𝑡𝑟𝑎 (𝐶 )>0

|𝑒𝑥𝑡𝑟𝑎(𝐶) |

𝑛𝑒𝑔_𝑒𝑥𝑡𝑟𝑎(𝑁) =
∑︁

𝐶∈𝑐ℎ𝑖𝑙𝑑 (𝑁 )∧𝑒𝑥𝑡𝑟𝑎 (𝐶 )<0

|𝑒𝑥𝑡𝑟𝑎(𝐶) |

𝑒𝑥𝑡𝑟𝑎(𝑁) =
{
𝑝𝑖 − 𝑞𝑖 N is leaf∑
𝐶∈𝑐ℎ𝑖𝑙𝑑 (𝑁 ) 𝑒𝑥𝑡𝑟𝑎(𝐶) otherwise

𝑁 denotes a non-leaf node in the hierarchy, and 𝑐ℎ𝑖𝑙𝑑 (𝑁) returns the set of all leaf nodes for the
subtree rooted at 𝑁 .

Summary The Earth Mover’s Distance is a distribution-based, cell-based metric that evaluates
the difference between the distribution of sensitive values in an EC and the distribution of sensitive
values across the entire table. The lowest value, 0, indicates that both distributions are equal. If
the difference between the distributions is large, there is a large information gain regarding the
sensitive value of a tuple in such an EC. Therefore, a metric that evaluates the privacy of any
anonymization that groups tuples into Equivalence Classes. The authors mention that EMD is not
a perfect distance measure. The EMD between the distributions (0.01, 0.99) and (0.11, 0.89) is
|0.01− 0.11| + |(0.01− 0.11) + (0.99− 0.89) | = 0.1, and the EMD between (0.4, 0.6) and (0.5, 0.5)
is also |0.4 − 0.5| + |(0.4 − 0.5) + (0.6 − 0.5) | = 0.1. One could argue that the difference between
the first pair is bigger because the probability of the first value increases more than tenfold, while it
only increases by 25% in the second pair. Therefore, the authors note that the relationship between
the value 𝑡 and information gain is unclear.

4.2.10 𝑔-balance

University of Illinois at Springfield, USA et al. [UKLU20] present a measure suited specifically for
data with multiple records per individual. The 𝑔-balance is a generalization of 𝑘-anonymity and
measures the balance of the individuals in one Equivalence Class 𝐸𝐶. Let 𝑛𝑡 be the number of
individuals in the EC, which is not equal to the size of the EC if individuals have multiple records.
Let 𝑐𝑖 be the number of occurrences of the 𝑖th individual in the EC.

𝑀𝐺𝐵 (𝑇 ′) = min
𝑒∈𝐸𝐶 (𝑇 ′ )

𝐺𝐵(𝑒)

where

𝐺𝐵(𝑒) = 1 −
𝑛𝑡∑︁
𝑖=1

( 𝑐𝑖∑𝑛𝑡
𝑗=1 𝑐 𝑗

)2
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Summary 𝑔-balance is a metric suited to evaluate the distribution of individuals in an EC if the
data contains multiple records for each individual. Similar to 𝑘-anonymity, 𝑔 acts as a lower bound
for all ECs in the data. The value is 0 if all records in an EC belong to the same individual, i.e.,
𝑛𝑡 = 1. Higher values indicate a better distribution of individuals in the EC, reducing the possibility
of identifying individuals in the group.

4.2.11 ℎ-affiliation

The second metric presented by University of Illinois at Springfield, USA et al. [UKLU20] for data
with multiple records for an individual is ℎ-affiliation. Again, let 𝐸𝐶 be an Equivalence Class, 𝑛𝑡
the number of individuals in 𝐸𝐶, and 𝑛 𝑗 the number of individuals in 𝐸𝐶 associated with the 𝑗 th
sensitive value.

𝑀𝐻𝐴(𝑇 ′) = max
𝑒∈𝐸𝐶 (𝑇 ′ )

𝐻𝐴(𝑒)

where

𝐻𝐴(𝑒) = max
𝑗

𝑛 𝑗

𝑛𝑡

Summary ℎ-affiliation measures how well the sensitive values in an EC are distributed over the
individuals in the EC. The maximum value 1 indicates that one specific sensitive value occurs
for every group member, making a homogeneity attack possible. In general, higher values of ℎ
indicate a higher disclosure risk of the sensitive value. The minimum value of 1/𝑛𝑡 is reached if no
individuals in the EC share a common sensitive value. The maximum value over all ECs in the
table acts as an upper bound on the disclosure risk for the complete table.

4.2.12 Adversarial Knowledge Gain

Brickell and Shmatikov [BS08] introduce a metric that measures the information gain of an adversary
due to the disclosure of the anonymized data. An adversary’s base knowledge is the distribution
of sensitive values in the original table, regardless of the degree of generalization applied. This
is because even a trivial anonymization that would suppress the values of all attributes in the
quasi-identifier would reveal the distribution of sensitive values in the table. The adversary’s
knowledge gain is the amount they learn from the generalized table compared to his base knowledge.
Let 𝐸𝐶 be the set of all Equivalence Classes, then

𝑀𝐴_𝑔𝑎𝑖𝑛 =
1
|𝑇 ′ |

∑︁
𝑒∈𝐸𝐶 (𝑇 ′ )

|𝑒 | · A𝑑𝑖 𝑓 𝑓 (𝑒)
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So, the adversarial knowledge gain is the normalized knowledge difference of the adversary over all
tuples in the table due to them knowing the Equivalence Classes of tuples. The authors give two
ways to calculate the value of A𝑑𝑖 𝑓 𝑓 , one measured additively, the other measured multiplicatively.
For every EC 𝑒 and sensitive attribute 𝑆 ∈ 𝐴, the knowledge gain of the adversary is

A𝑑𝑖 𝑓 𝑓 _𝑎𝑑𝑑 (𝑒) =
1
2

∑︁
𝑣∈𝑆

|𝑝(𝑇, 𝑣) − 𝑝(𝑒, 𝑣) |

A𝑑𝑖 𝑓 𝑓 _𝑚𝑢𝑙𝑡 (𝑒) =
∑︁
𝑣∈𝑆

���� log
𝑝(𝑒, 𝑣)
𝑝(𝑇, 𝑣)

����
Using the multiplicative calculation A𝑑𝑖 𝑓 𝑓 _𝑚𝑢𝑙𝑡 requires that there are no missing sensitive values in
an equivalence class. Otherwise, the log and, therefore, the entire metric value becomes undefined.
Alternatively, log 0 = 0 can be fixed to calculate this metric.

Summary The Adversarial Knowledge Gain metric measures the amount of information an
adversary gains by observing the anonymized dataset compared to the trivially anonymized dataset.
This gain emerges through different distributions of sensitive values in the ECs compared to the
overall table. For an EC with a distribution differing greatly, the adversary learns new information
about the individuals in this Equivalence Class. The Adversarial Knowledge Gain is 0 if there is no
difference in the distribution of sensitive values. Greater values indicate higher information gain.
As with the Earth Mover’s Distance, assigning an intuitive semantic meaning to the metric values
is difficult. This measurement is also applied by Cormode et al. [CPE+13], where it is used to
empirically measure privacy to compare different privacy models with each other.

4.3 Experiment Design

This section presents the setup for the experiments. We first introduce the vehicle dataset that is
subject to anonymization. Then, we explain the Privacy and Utility Demonstrator we use to evaluate
the metrics. Lastly, we present the anonymization approaches used in the experiments.

4.3.1 Data

In this work, we apply a selection of anonymization methods and evaluate their results on vehicle
sensor data. The raw dataset consists of signals transferred by the car to the cloud. The data have
been collected from 15 different vehicles. Each vehicle contributes a different number of trips to
the data, such that the data is comprised of around 5,500 trips in total. The distribution of trips over
the drivers is shown in Figure 4.2. Each trip contains many sensor events, totaling over 60 million
individual records in the data. The data is given in a tabular form, where each record corresponds
to one signal collected by a vehicle on a trip. Table 4.3 lists all relevant attributes in the dataset
along with their descriptions.
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Figure 4.2: The number of trips per vehicle in the raw data.

Attribute Description
VIN A unique vehicle identifier

TripID A unique trip identifier
Timestamp Timestamp of the signal event
Event Name Name of the signal event

Event Payload Any additional data associated with the event

Table 4.3: The attributes of each record in the data.

The Vehicle Identification Number (VIN) is a standardized unique identifier for a vehicle made up
of 17 digits and letters [37709]. Among other information, it encodes the vehicle’s specifications,
model, and manufacturer and includes a serial number allowing unique vehicle identification. A
short explanation of an example VIN is displayed in Figure 4.3. The data contains hundreds of
different events, covering a wide variety of incidents in vehicles. Some examples include the
position information of the vehicle, speed information of the vehicle, the currently activated driving
mode, the switching from radio to Bluetooth, and many more. The specific payloads for these
events should be classified as sensitive information about an individual.

WDCGG8HB0︸             ︷︷             ︸
Information on manufacturer and vehicle specification

AF462890︸      ︷︷      ︸
Serial number assigned by the manufacturer

Figure 4.3: Deconstruction of the Vehicle Identification Number WDCGG8HB0AF462890
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Considerations for Privacy Preservation

The goal of anonymization for this dataset is to protect the privacy of the individuals who contributed
their data. Although there is no direct information about any individual in the raw data, meaning
no names, addresses, ages, or gender values, an individual can be identified using the VIN. A
VIN technically identifies vehicles and not drivers, but it can identify individuals using external
data. For example, combined with a car sales database of the manufacturer, a VIN can be linked
to the individual who bought the vehicle. Therefore, the VIN is an identifying attribute, and data
protection becomes necessary. We use the terms driver and individual interchangeably in the
remainder of this work. Using the VIN directly is not the only way of identifying an individual in
the data. If Eve knows that Bob drives to work regularly, she could search for the GPS information
of Bob’s trip to work in the data. If the search is successful, Eve also finds all of Bob’s other trips
because they are linked by the VIN. Another attack could consider the timestamps of the events. If
Eve knows at which time Bob usually drives to work, she can look for trips in the data that start
at the time Bob gets in his car and end when he arrives at work. Again, finding one (or more) of
Bob’s trips means that all other trips are found too. These kinds of attacks need to be studied and
prevented but are out of scope for this work. We focus on reducing the risk of identification through
direct usage of the VIN.

The raw data show some peculiarities of the automotive field discussed in Section 4.1. Table 4.4
presents exemplary data points illustrating the existence of multiple records per trip and individual.
The methods and models introduced in the previous chapters assume that only one record in the
dataset corresponds to any individual data giver. Another property of the data is that there is no
single sensitive attribute but events carrying sensitive information in their payloads.

VIN TripID Timestamp Event Name
XYZ 1 123 average energy consumption changed
XYZ 1 124 speed changed
XYZ 1 128 average energy consumption changed
XYZ 2 234 reverse gear active
XYZ 2 245 location changed

Table 4.4: Exemplary records for two trips of the same driver show the time series nature of the
raw data. Events that can be classified as sensitive are displayed in bold font.

4.3.2 Privacy & Utility Demonstrators

We implement two demonstrators that aim to provide a realistic assessment of the selected
anonymization approaches. The demonstrators are specifically designed with the automotive
domain and the data at hand in mind. The Utility Demonstrator (UD) exemplifies a data use case
for product improvement in the automotive domain. The Privacy Demonstrator (PD) simulates an
adversary using the anonymized data to obtain sensitive information about the individuals in the
dataset. We apply the demonstrators to the outputs of the anonymization approaches and investigate
the results. We then assess how well the evaluations of the metrics on the anonymization approaches
and the evaluations of the demonstrators on these approaches match.
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Utility Demonstrator

The automotive industry shows a wide variety of domain-specific data use cases. For this
demonstrator, we implement the calculation of KPIs. We choose a KPI that addresses the following
question: “What is the percentage of trips where the touchscreen in the car was used?”. Calculating
the percentage of trips where a certain event occurred is a frequently used measure in the automotive
domain. Among other uses, this kind of KPI can be used to evaluate design decisions in the car. For
example, consider the removal of a hard key from one position in the cockpit to place it in a different
position. Comparing the percentage of trips where the key was pressed before and after transferring
it could indicate whether it is used less because its position is inconvenient. We calculate the
percentage of trips over all vehicles and per engine type, so the question becomes: “What is the
percentage of trips of vehicles with engine 𝑌 where the touchscreen in the car was used?”.

Privacy Demonstrator

The GPS locations contained in the trip data may point to the drivers’ homes, workplaces, or
other places that should not be disclosed. This demonstrator simulates an adversary trying to
extract sensitive position info from the anonymized data using a homogeneity attack as introduced
in Section 3.2.1. As a short recap, the homogeneity attack on anonymized data is possible if
a group of records in the anonymized data share the same sensitive information. If an attacker
knows that a target individual is contained in such a group, they learn sensitive information about
this individual without the need for exact identification of the individual in the anonymized data.
In this demonstrator, we assume that the adversary knows all individuals who participate in the
raw data. For each driver in the raw data, the adversary looks for fitting candidate drivers in the
anonymized data. Then, the adversary intersects the GPS information contained in the trips of the
candidate drivers. The result of this intersection is a set of GPS locations shared by each driver.
These locations constitute the adversary’s guess. We investigate how successful the adversary is in
extracting GPS information with this strategy.

4.3.3 Selection of Approaches

We select 4 different approaches for anonymization, chosen to cover different strategies. The ap-
proaches are introduced in the following. The detailed implementation is explained in Section 4.4.

𝑘-anonymity through Generalization Achieving 𝑘-anonymity through generalization is the
only truthful approach that we use. Truthful means that any statement about the anonymized output
is also true about the input data, so there is no perturbation or synthesis of values. This approach is
often found in the literature and is a popular pick for the experiments in the papers. We perform
generalization using local recoding and suppression.
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𝑘-anonymity through Microaggregation Another possibility to achieve 𝑘-anonymity is mi-
croaggregation. This approach clusters the raw data points together and reduces their uniqueness
in the clusters. Different functions exist that achieve this reduction of uniqueness. We choose the
mode as the aggregation function. This means that, for each attribute, the values in one cluster are
replaced by the most common value in that cluster.

Data Synthesis Data Synthesis differs greatly from approaches that group records into ECs. We
choose an approach proposed by Bowen and Liu [BL20] for synthesizing categorical data. The
synthetic data is created by sampling from the cross-tabulation of the dataset. The cross-tabulation
counts the number of occurrences in the data for each combination of quasi-identifier values. For
our data, we create the cross-tabulation for the quasi-identifier and sample new values according to
these counts. This data synthesis can satisfy DP if the counts in the cross-tabulation are perturbed
with noise before sampling [BL20]. We implement the approach without DP and with DP.

Differential Privacy on Queries This last approach does not quite fit the topic of PPDP. Instead
of creating a privacy-preserving dataset from the raw data, this approach allows arbitrary queries
to be run on the raw data and reports the query results privately. We implement differentially
private query calculation using the Laplace mechanism as explained in [DR13]. The true query
result is calculated on the raw data and then randomized by adding noise sampled from a Laplace
distribution. This approach is use case-bound because it requires that a query function on the data
is defined beforehand. We apply this approach only to the Utility Demonstrator (UD) because its
output is a single, randomized value, not a transformed table. This does not allow the evaluation
using the selected metrics or the Privacy Demonstrator (PD).

4.4 Implementation

This section describes implementation details and decisions made during the implementation
process. We first introduce the software and tools used in the experiments. Then, we explain the
preparations and prerequisites for applying the anonymization approaches. We continue with the
implementation details of the anonymization approaches and, lastly, describe the implementation of
the Utility and Privacy Demonstrator.

4.4.1 Software & Tools

Due to the many existing anonymization scenarios, use cases, and techniques, different tools provide
implementations of anonymization algorithms and metrics for evaluation. These implementations
range from small codebases to fully-fledged anonymization suites that support many different
models and metrics. In the following, we introduce the software we use for the experiments. The
full list of software and tools that were considered is given in Appendix A.2. Our criteria for
selecting software include the requirement for it to be free and open-source software.
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ARX Anonymizer

ARX is an open-source tool for data anonymization [PES+20; PK15]. The software provides
various privacy models, quality models, and methods for data anonymization. It support 𝑘-
anonymity, 𝑙-diversity, 𝑡-closeness, DP, and many more. The data quality models are split into three
categories: cell-oriented, attribute-oriented, and record-oriented. Cell-oriented models measure the
precision loss of attribute values, attribute-oriented models measure the distance of attribute value
distributions from the original to the anonymized dataset, and record-oriented models measure
syntactic properties, such as the Discernibility (Section 4.2.6) or the Average Equivalence Class
(EC) Size. We choose ARX because it implements all necessary privacy and transformation models
for the experiments, is actively maintained, and recent research papers explain the software’s
implementation details [PES+20].

ARX also implements an algorithm for differentially private data publishing, which we did not
see done by many tools that we considered. The algorithm is called SafePub [BKP18]. SafePub
is a truthful algorithm, which means that the output dataset will contain transformed values that
are consistent with the original ones. The algorithm does not add noise to the values to satisfy
DP. Instead, SafePub first randomly draws records from the original dataset. Then, the uniqueness
of these samples is reduced to attain a transformed dataset that protects privacy. We mention the
implementation of this algorithm by ARX here because it was a candidate for the selection of
anonymization approaches in this work. However, we could not produce meaningful outputs with
the software because the execution did not terminate within a reasonable time. Therefore, we leave
the investigation of this anonymization approach with ARX to future work.

ARX is implemented in Java and is available as Desktop Software for Windows, Mac, and Linux,
as runnable JAR files, and as a Java library [PK]. Therefore, it can easily be integrated into
existing software. ARX uses a dedicated anonymization algorithm named Flash [KPE+12], which
outperforms well-established existing algorithms like Mondrian [LDR06] or Incognito [LDR05].
The ARX version used for this work is release 3.9.1.

Diffprivlib

Diffprivlib is a repository hosted on GitHub and maintained by IBM that implements different
mechanisms, models, and tools for Differential Privacy in Python [HBML19; IBM23]. The library
provides mechanisms that act as basic building blocks to achieve DP, such as the Laplace mechanism.
But there are also implementations of ready-to-use, differentially private ML models like Linear
and Logistic Regression and Naive Bayes. The library is actively maintained, provides good
documentation, and can easily be installed using the Python package manager pip. We use version
0.6 for the experiments.

4.4.2 Prerequisites for Anonymization

To apply the anonymization approaches and metrics in the experiments, some prerequisites and data
preparations are required. 𝑘-anonymity requires attributes that make up a quasi-identifier in the
data. 𝑙-diversity and many metrics, especially ones that measure privacy, like EMD, require that a
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sensitive attribute is specified. Furthermore, we implement the differentially private data synthesis
and the differentially private query calculation using the Laplace mechanism, which will also be
discussed in the following.

Choosing the Quasi-Identifier and Sensitive Attribute

It is customary to remove direct identifiers from the data before proceeding with anonymization [SS98;
Swe02b]. However, removing the entire VIN is a huge loss of information. Because of this, we
choose to replace the VIN with the vehicle information that it encodes. Of the many encoded
vehicle properties, we select three as an illustration. The engine has three possible values: EV,
Gas, and Hybrid. EV indicates an electric vehicle. The body of a vehicle also has three possible
values: Sedan, Long Sedan, and SUV. Lastly, the number of seats has four different values: 2, 4, 5,
and 7. We set the quasi-identifier for the data to be {𝐸𝑛𝑔𝑖𝑛𝑒, 𝐵𝑜𝑑𝑦, 𝑆𝑒𝑎𝑡𝑠}. Table 4.5 shows the
combinations of the quasi-identifier values occurring in the data and the number of vehicles and
trips that match the specifications. Some combinations can identify individuals in the data because
they occur only for one driver. Because the VIN is replaced by the quasi-identifier, we lose the

Engine Body Seats Vehicle Count Trip Count
EV Sedan 2 4 2,028
EV SUV 4 1 59
EV SUV 5 2 828
EV SUV 7 1 128
Gas Sedan 2 2 826
Gas Long Sedan 2 2 701
Gas Long Sedan 4 1 736
Gas Long Sedan 5 1 178

Hybrid Long Sedan 5 1 72
15 5,556

Table 4.5: Combinations of quasi-identifier values in the data and the number of vehicles and trips
with these specifications

possibility of recognizing trips belonging to the same driver. In the original data, trips belong to
exactly one driver, indicated by the VIN. Now, the trips of many drivers are combined under the
same quasi-identifier values. Consider, for example, the quasi-identifier values {𝐸𝑉, 𝑆𝑒𝑑𝑎𝑛, 2},
which combine the trips of four different drivers. The inability to link different trips to the same
driver is a loss of information that is undesirable for some use cases. A data analyst might want
to examine the usage of a certain functionality on a driver basis, not a trip basis. Therefore, we
introduce a DriverID that indicates the trips belonging to the same driver. For simplicity in the
implementation, this DriverID is an integer from 1 to 15, one for each driver. Table 4.6 shows an
exemplary data snippet that includes the DriverID. We will see in the results of the experiments that
this DriverID has some implications regarding the privacy of the drivers.

Lastly, a sensitive attribute is required by some of the selected metrics. We select one signal event
as a representative and aggregate the event data such that each trip is assigned a sensitive value.
The GPS information contained in the trips is very delicate information, but there is no apparent
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way to combine the many positions in a trip into one value for each trip. Therefore, we choose
the most played music artist during the trip as the sensitive attribute. Although not as delicate
as GPS positions, it is arguably a piece of information that could reveal personal background or
political orientation. The data contain sensor events that indicate a change in the current song for
driver-controlled media input like Bluetooth or AUX input. We extract the artist from the payload
of each event and set the favorite artist to be the one that occurs the most in each trip. There are
several trips where no song change event is registered because these events are not fired when the
current song played by a radio station changes. We assign these trips the sensitive value “Radio”.
As a result, the raw data contain more than 600 different artists in total. Table 4.6 shows how the
sensitive attribute “Artist” is represented in the data.

Engine Body Seats DriverID TripID Artist
EV Sedan 2 1 M Kid Cudi
EV Sedan 2 1 N Radio
EV Sedan 2 2 O Radio
EV Sedan 2 3 P Paul Kalkbrenner
EV Sedan 2 4 Q BLACKPINK
EV SUV 4 5 R Taylor Swift
EV SUV 4 5 S Radio
EV SUV 4 6 T Taylor Swift

Table 4.6: An exemplary snippet of trips belonging to different drivers. The DriverID allows
associating different trips with the same driver. Each trip has a sensitive value associated
with it.

The Laplace mechanism

Both Data Synthesis and differentially private queries use Laplace noise to satisfy Differential
Privacy. We use this paragraph to give an introduction to the concept and the implementation
that we use. The Laplace mechanism adds noise to the true result of a function 𝑓 : 𝑋 → R𝑘 to
achieve DP [DMNS06; DR13]. The noise is sampled from a Laplace distribution, which has two
parameters. ` is a location parameter and 𝑏 is a scale parameter. The probability density functions
of some Laplace distributions for different parameters are shown in Figure 4.4. The noise applied to
the true result is unbiased, so ` = 0. The scale parameter 𝑏 depends on the privacy parameter 𝜖 and
the 𝑙1-sensitivity Δ 𝑓 of the function 𝑓 . In simple terms, the 𝑙1-sensitivity Δ 𝑓 of a function 𝑓 is the
maximum amount of change in the output that the presence of an individual entry in the input can
have. More precisely,

Δ 𝑓 = max
𝐷, 𝐷

′
| | 𝑓 (𝐷) − 𝑓 (𝐷 ′) | |1

for two databases 𝐷 and 𝐷 ′ where |𝐷 | − |𝐷 ′ | = 1, meaning they differ in one element [DR13]. The
second parameter is now fixed to 𝑏 = Δ 𝑓 /𝜖 . For function 𝑓 and input 𝑥, the Laplace mechanism
calculates 𝑓 (𝑥) + (𝑌1, . . . , 𝑌𝑘), where all 𝑌𝑖 are drawn i.i.d. from Laplace(0,Δ 𝑓 /𝜖). As shown in
Figure 4.4, larger values of the parameter 𝑏 tend to flatten out the probability density function,
hence increasing the standard deviation of the added noise. Increasing 𝜖 (softening the privacy
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Figure 4.4: Probability density functions for Laplace distributions of different values for parameters
` and 𝑏.

claim) decreases the magnitude of the added noise. On the other hand, increased sensitivity of the
function 𝑓 results in a higher magnitude of noise values. In practice, the only adjustable parameter
is 𝜖 , as the function 𝑓 fixes the sensitivity. Diffprivlib provides the implementation that we use for
randomizing the true results of function 𝑓 with the Laplace mechanism.

4.4.3 Implementation of Approaches

With the prerequisites settled, the following sections describe the implementation details of the
anonymization approaches.

𝑘-anonymity through Generalization

We perform generalization using the Desktop version of the ARX anonymizer. There are two
variants of applying 𝑘-anonymity to our dataset. The parameter 𝑘 can refer to the trips or the drivers
in the data. Since 𝑘-anonymity is designed to guarantee that the information for one individual
can not be distinguished from the information of at least 𝑘 − 1 other individuals in the data, we
apply 𝑘-anonymity on the drivers. Therefore, the input dataset only contains the 15 drivers with
their respective quasi-identifier values. The anonymization procedure then generalizes the attribute
values or suppresses entire drivers. To receive the full anonymized dataset, we remove the trips of
all drivers that have been suppressed and replace the quasi-identifier values of the other drivers with
their generalizations. The anonymized dataset will also satisfy 𝑘-anonymity on the drivers, as any
drivers in the same EC in the output will also be in the same EC in the anonymized dataset.
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In the GUI of ARX, we set the types of the “Engine”, “Body”, and “Seats” attributes to be
“Quasi-identifying” and define their Value Generalization Hierarchies in accordance with the
ones shown in Figure 4.5. The transformation operation for all quasi-identifier attributes is set
to “Generalization”. We set 𝑘-anonymity as the privacy model and perform anonymization with
𝑘 = 2, 5, 10. The suppression limit is set to 100%, which would theoretically allow the tool to
suppress every tuple. In practice, however, we find that ARX only suppresses outlier values that
would have forced a heavy generalization on all other records. For each anonymization, we set the
search strategy to “Optimal” and set the transformation model to be local transformation with 100
iterations. We use the preset configuration for all other options. The output table is exported to a
CSV file for further processing.

?

Gas With E

EV Hybrid

(a) Value Generalization Hierar-
chy of the attribute “Engine”.

?

SUV Sedan (All)

Sedan Long Sedan

(b) Value Generalization Hierar-
chy of the attribute “Body”.

?

2 4 or 5

4 5

7

(c) Value Generalization Hierar-
chy of the attribute “Seats”.

Figure 4.5: The Value Generalization Hierarchies for the attributes in the quasi-identifier.

𝑘-anonymity through Microaggregation

For this approach, we also define 𝑘-anonymity on the drivers for the same reasoning as in the
generalization approach. Therefore, the input dataset again only contains the 15 drivers and
their quasi-identifier values. We use the same procedure and set the same configurations as
for generalization in the ARX GUI, with the following exceptions. The transformation type
for the attributes in the quasi-identifier is set to “Clustering and microaggregation”, and the
microaggregation function is set to “Mode”. To receive the full anonymized dataset, we again
discard the trips of every driver that has been suppressed by the anonymization procedure and replace
the quasi-identifier values of the remaining drivers with those generated by the procedure. Again,
𝑘-anonymity on the output of the procedure implies 𝑘-anonymity on the full anonymized dataset.

Data Synthesis

This approach operates by replacing the quasi-identifier values of the records by sampling new
values. The sampling is done according to the counts in a contingency table over the quasi-identifier.
Table 4.5 is a contingency table that is missing all other possible combinations of quasi-identifier
values, which have a driver and trip count of 0. Now, it is possible to replace the quasi-identifier
values on a driver or a trip basis. Sampling on a driver basis means that new values are sampled
according to the driver counts and assigned to each driver, such that all trips of one driver receive
the same new quasi-identifier values. Sampling on a trip basis, on the other hand, means that each
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trip receives new quasi-identifier values according to the trip counts in the contingency table. This
destroys the connection between trips belonging to the same driver. We choose to sample on a
driver basis to keep trips done by the same driver still connected under the same new quasi-identifier
values after sampling. The anonymization proceeds by sampling 15 quasi-identifier combinations
with replacement according to the trip counts in the contingency table. To receive the anonymized
dataset, the true quasi-identifier values of the drivers are replaced by the sampled values.

The data synthesis can satisfy DP if Laplace noise is applied to the counts in the contingency
table [BL20]. Every count 𝑛 in the table is then replaced by 𝑛 + 𝑒, where 𝑒 ∼ Laplace(0,Δ 𝑓 /𝜖). If
the creation of the contingency table satisfies DP, then any sampling from this contingency table
will also satisfy DP for the same 𝜖 due to the post-processing property of DP [DR13]. Δ 𝑓 denotes
the sensitivity of the count function, which is the maximum amount of change in the counts due to a
driver joining or leaving the dataset. If one driver is removed or added to the data, the trip counts
change by the number of trips done by this driver. Therefore, the sensitivity of the count function
is the maximum number of trips over all drivers in the data. The added Laplace noise can be
significant depending on 𝜖 , which could lead to undesirable negative perturbed counts. Therefore,
we use the truncated Laplace mechanism provided by Diffprivlib and set a lower bound of 0 for the
noisy values. Table 4.7 shows the contingency table for the data and exemplary noisy counts. The
table shows that the original counts are completely distorted for small 𝜖 .

Sampling from these perturbed counts may lead to quasi-identifier combinations that are impossible
in practice. For example, an electric SUV with two seats could be sampled for 𝜖 = 1, although no car
with these specifications is built. In our implementation, we avoid the additional overhead of filtering
out infeasible quasi-identifier values because the experiments do not profit from this measure.

Engine Body Seats Vehicle Count Noisy Vehicle Count
𝜖 = 10 𝜖 = 1 𝜖 = 0.1

EV SUV 2 0 0 0.25 0
EV SUV 4 1 1.01 1.59 0
EV SUV 5 2 1.73 4.63 16.85
EV SUV 7 1 0.93 1.88 0
EV Sedan 2 4 4.05 4.48 31.39
EV Sedan 4 0 0 1.09 0.72
EV Sedan 5 0 0.03 0.2 0
EV Sedan 7 0 0.03 0 0

. . .

Table 4.7: An excerpt of the contingency table that is used as a base for synthesizing new quasi-
identifier values. The rightmost columns show exemplary noisy counts generated by the
truncated Laplace mechanism for different 𝜖 . Values are rounded to two decimal places.

Differential Privacy on Queries

This approach guarantees DP on the calculation of a query function 𝑓 by using the Laplace
mechanism to perturb the true result of the query on the data. The sensitivity of the function 𝑓 is the
maximum change on the query result that the absence or addition of one individual can have. This
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Figure 4.6: Probability density function of the Laplace mechanism on the KPI over all drivers for
𝜖 = 0.1 and 𝜖 = 1. The dashed black line indicates the true value.

is dependent on the query function 𝑓 . Since we apply the procedure on the Utility Demonstrator,
the function 𝑓 is the KPI calculation. The exact query function and, therefore, the sensitivity
will differ depending on whether the KPI is calculated over all vehicles or per engine type. We
compute the sensitivities of a KPI by first calculating the true result over the entire dataset. Then,
for every driver, we calculate the KPI again, omitting all trips of this driver from the calculation.
The sensitivity of the KPI is then the maximum difference between the true result and the result
with a driver omitted, over all drivers. Figure 4.6 shows the distribution of noisy values generated
by the Laplace mechanism on the KPI over all drivers for two values of 𝜖 . The sensitivity of the
query lies at around 0.031, so the scale parameter of the Laplace distributions is 𝑏 ≈ 0.031/𝜖 .

The output values of the mechanism are almost guaranteed to lie between 0 and 1 for 𝜖 = 1, but
this is not generally guaranteed. A smaller 𝜖 flattens out the distribution, and a different true value
shifts the distribution to the left or right. The Laplace mechanism may then output values < 0 or
> 1, which are invalid results for a function that measures the ratio of drivers. Therefore, we again
use the truncated Laplace mechanism provided by Diffprivlib, setting the lower bound to 0 and the
upper bound to 1.

4.4.4 Implementation of the Demonstrators

Utility Demonstrator

To calculate the KPI, we divide the number of trips where the event occurred by the total number of
trips in the data. For a specific engine, we divide the number of trips done by cars with this engine
type where the event occurred by the total number of trips done by vehicles with this engine type.
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In the experiments, we report the actual result of the KPI calculations on the anonymized data and
the relative error compared to the true result. Let 𝑦 be the true value calculated on the raw data and
𝑦′ the value calculated on the anonymized data. We report 𝑦′ and the relative error |𝑦 − 𝑦′ |/𝑦.

Privacy Demonstrator

The PD models an adversary that tries to find Areas of Interest (AOIs) of the individuals participating
in the dataset. We now explain the concrete implementation of the attack with Figure 4.7 as a
running example. First, the true AOIs for each individual in the raw data are extracted. Some events
in the data log the driver’s position, which is given as latitude and longitude values in degrees. We
crop the values after the fourth decimal place, so 12.123456 becomes 12.1234. This essentially
creates GPS areas that span a 10,000th degree of latitude and longitude, such that GPS positions
lying in one area are all mapped to the “root” point of that area. Cropping the values after the fourth
decimal results in areas that are about as big as a standard house in the part of the globe where the
data is from. We then collect the areas in one trip into a set without duplicates. In the example, the
areas of the first trip of Driver 1 are {(0, 1), (1, 1), (2, 1)}. For each driver, we unify the sets of
areas for all trips to receive a set of AOIs for this driver. In the example, the AOIs for Driver 1 are
{(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}.

The adversary now proceeds as follows. For each driver 𝐷 in the input dataset (which we assume
they know), they search for candidates in the anonymized dataset according to the quasi-identifier
values. In the running example, assume that Driver 1 and Driver 2 are grouped into the same EC
in the anonymized data. This would mean that the adversary’s candidate drivers for Driver 1 are
Driver 1 and Driver 2 in the anonymized dataset. The adversary might not find any candidates for
𝐷 if the trips of this driver were suppressed during anonymization or if the exact quasi-identifier
values are not present in the synthetic dataset. Now, the adversary extracts the AOIs associated with
each candidate driver using the approach explained above. The intersection of the AOIs for each
candidate driver is then the adversary’s guess. In the example, areas (1, 0) and (2, 0) make up the
adversary’s guesses because both drivers have trips going through these areas. The adversary’s
recall for driver 𝐷 is the ratio of true AOIs of 𝐷 that are part of the adversary’s guess. In the example,
the recall for Driver 1 is 2/3 as 2 out of 3 AOIs of the driver are contained in the adversary’s guess.
The recall for Driver 2 is 2/5. If the anonymization groups all drivers in the example into one EC,
then there are no possible guesses for the adversary because no area is visited by all drivers. The
adversary’s recall in this case is 0%. In the experiments, we report the maximum and average recall
over all drivers as well as the ratio of compromised drivers, which is the fraction of drivers for
whom the adversary guesses at least one correct AOI. The fraction of compromised drivers in the
example is 2/3. Unfortunately, two drivers do not have position information associated with them
on any of their trips, so we consider the remaining 13 drivers only for this Demonstrator.

It is worth noting that this kind of attack depends on the availability of a DriverID, allowing the
adversary to group trips coming from the same driver. If the DriverID is omitted, 𝑛 trips in an EC
could come from only 1 driver or 𝑛 drivers. The adversary’s best guess is then the areas that appear
in every trip, but intersecting all trips will return no common areas in practice with areas that have
the size of a standard house. For our data, intersecting all trips of just one driver yields no common
areas, which makes the attack infeasible without a DriverID.
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Figure 4.7: Example trips of two different drivers. Each trip has some latitude and longitude values
associated with it. The grid drawn in grey represents the GPS areas.

4.4.5 Implementation of the Metrics

In this section, we explain the implementation of the metrics on the anonymized datasets. Most
of the metrics introduced in Section 4.2 are defined for datasets containing only one record per
individual. Because our data contains many records per individual, we specify how the metrics
are applied in our case. Some metrics do not output a normalized value, which reduces their
expressiveness. We scale the outputs of these metrics using a min-max scaler in the presentation
of the experiment results. The min-max scaler calculates a normalized value according to the
following formula.

𝑚 − 𝑚𝑚𝑖𝑛
𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛

Here, 𝑚 denotes the actual value computed by the metric, 𝑚𝑚𝑖𝑛 denotes the lower bound, and
𝑚𝑚𝑎𝑥 denotes the upper bound for the metric value. The values used as 𝑚𝑚𝑖𝑛 and 𝑚𝑚𝑎𝑥 for the
respective metrics are specified below. The effect of min-max-scaling the metric values is converting
the absolute measurement to a relative one. It should be noted that this assigns the metrics an
expressiveness they did not have before. We use a running example, shown in Table 4.8, to illustrate
an anonymized dataset and give example results for the metrics applied on this dataset.

Suppression Ratio This metric counts the number of suppressed records in the dataset and
divides the value by the number of records in the input dataset. The Suppression Ratio for the
running example is 2/10.
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Engine Body Seats DriverID TripID Artist
? Sedan 2 1 M Kid Cudi
? Sedan 2 1 N Radio
? Sedan 2 2 O Radio
? Sedan 2 3 P Paul Kalkbrenner
? Sedan 2 4 Q BLACKPINK

Hybrid SUV 4 or 5 5 R Taylor Swift
Hybrid SUV 4 or 5 5 S Radio
Hybrid SUV 4 or 5 6 T Taylor Swift

*
*

Table 4.8: An example anonymization of a dataset containing 10 trips. Some quasi-identifier values
are generalized. A row containing a * indicates that this trip is suppressed.

Minimum 𝑘 Because we define 𝑘-anonymity on the drivers, this metric reports the minimum
number of drivers over all ECs in the dataset. In the example, we have a minimum 𝑘 of 2 because
the second EC holds two drivers while the first holds 4. We scale this value using the Minimum
𝑘 of the input dataset as 𝑚𝑚𝑖𝑛 and the number of drivers in the output dataset as 𝑚𝑚𝑎𝑥 . Because
our data contains vehicles with unique quasi-identifier values in the dataset, 𝑚𝑚𝑖𝑛 is 1. The scaled
metric value for the example table is (2 − 1)/(6 − 1) = 1/5.

Minimum 𝑙 The sensitive value is set for each trip in the data. Therefore, with Minimum 𝑙, we
measure the minimum number of distinct sensitive values over all ECs. The Minimum 𝑙 in the
example table is 2 due to the second EC only holding two distinct sensitive values. Similar to the
Minimum 𝑘 metric, we min-max scale the result of this metric. We set the Minimum 𝑙 of the input
dataset as 𝑚𝑚𝑖𝑛 and the number of distinct sensitive values in the output dataset as 𝑚𝑚𝑎𝑥 . In the
example, we arrive at the scaled value (2 − 1)/(5 − 1) = 1/4.

Average Equivalence Class Size Similar to Minimum 𝑘 , we calculate the Average Equivalence
Class Size on the drivers. We do not include the normalization term described in Section 4.2.5. In
the example, we have (4 + 2)/2 = 3. We again scale the value using the Average Equivalence Class
Size of the input dataset as 𝑚𝑚𝑖𝑛 and the number of drivers in the output dataset as 𝑚𝑚𝑎𝑥 .

Discernibility Penalty The Discernibility Penalty measures the discernibility of records in the
dataset, which is why we apply it to the trips. In the example, we have 5 · 5 + 3 · 3 = 34 for the ECs
and 2 · 10 = 20 for the suppressed trips, so 54 in total for the example data. It is difficult to assign
the standalone value of this metric a semantic meaning, which is why we again apply a min-max
scaling. We choose the Discernibility Penalty of the input dataset as 𝑚𝑚𝑖𝑛. 𝑚𝑚𝑎𝑥 is set to the
highest possible penalty for the output table as described in Section 4.2.6, which is the number of
trips in the input squared.
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In-Data Precision Loss We calculate the precision loss on a trip basis. Our data only contains
categorical quasi-identifier attributes, for which we use the loss proposed by Iyengar [Iye02]
described in Section 4.2.7. We have (5 + 3/2 + 6)/(10 · 3) = 12.5/30 ≈ 0.42. The normalization
factor is the size of the input dataset times the number of attributes in the quasi-identifier. The
penalty over the records in the first EC is 5 due to the engine values being generalized completely.
The penalty incurred by the second EC is 3 · 1/2 as the penalty for generalization to the value “4 or
5” is 1/2. The suppressed records contribute a penalty of 2 · 3.

Cross-Data Precision Loss The Cross-Data Precision Loss is also calculated on a trip level.
We use the approach based on the closest common ancestor described in Section 4.2.8 to calculate
the penalty for each cell. The metric value for the example data equals the In-Data Precision Loss if
the anonymized dataset was generated using generalization or microaggregation. Consider the first
Equivalence Class. The penalty incurred by each generalization to the value “?” is 1. In the second
EC, the penalty for the value “4 or 5” is 1/2 regardless of whether the value before generalization
was 4 or 5. Thus, we have a total penalty that is equal to the In-Data Precision Loss. This is not true
for Data Synthesis, where the In-Data Precision Loss is always 0, but the Cross-Data Precision Loss
may be greater than 0 because of the creation of new values.

Earth Mover’s Distance We use the formula for categorical attributes to calculate the Earth
Mover’s Distance because the sensitive attribute “Artist” is categorical. For the example ta-
ble, we have probabilities 𝑃𝑄 (Kid Cudi) = 1/8, 𝑃𝑄 (Radio) = 3/8, 𝑃𝑄 (Paul Kalkbrenner) =

1/8, 𝑃𝑄 (BLACKPINK) = 1/8, 𝑃𝑄 (Taylor Swift) = 2/8. The Earth Mover’s Distance for the first
EC is

1
2
· ( |1

5
− 1

8
| + |2

5
− 3

8
| + |1

5
− 1

8
| + | 1

5
− 1

8
| + |0 − 2

8
|) = 1

4
= 0.25

The Earth Mover’s Distance for the second EC is

1
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8
| + |1

3
− 3

8
| + |0 − 1

8
| + |0 − 1

8
| + | 2

3
− 2

8
|) = 5

12
≈ 0.42

The metric result is the maximum Earth Mover’s Distance over all ECs, which is 5/12 for the
example.

𝑔-balance The 𝑔-balance does not need to be adjusted as it already is defined on data with
multiple records per individual. For the example, we have:

1 − ((2
5
)2 + (1

5
)2 + (1

5
)2 + (1

5
)2) = 18

25
= 0.72 for the first EC

1 − ((2
3
)2 + (1

3
)2) = 4

9
≈ 0.44 for the second EC

The 𝑔-balance for the data is the minimum of the two values, so 4/9.
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ℎ-affiliation Similar to the 𝑔-balance, no adjustments are needed for this metric. For the ℎ-
affiliation, we have 2/4 for the first EC because two out of 4 individuals have the sensitive value
“Radio”. For the second EC, we have a value of 1 because both drivers share a sensitive value.
The ℎ-affiliation is the maximum value over all ECs and, in this case, also the highest possible
value, 1. We adjust the implementation of the ℎ-affiliation for our data to ignore the sensitive value
“Radio”. This is because every driver in the data has at least one trip with this value associated
with it. In the experiments, all selected approaches create at least one EC where the value “Radio”
occurs for every driver. Therefore, the ℎ-affiliation is 1 for all experiment evaluations. Note that this
should not be understood as a weakness of the metric. Rather, we make this adjustment to obtain
informative results in the experiments.

Adversarial Knowledge Gain To calculate the Adversarial Knowledge Gain, we use the additive
difference to calculate the knowledge gain for each EC. The additive difference variant calculates
the value for an EC similarly to the Earth Mover’s Distance, which allows reusing the probabilities
for the example dataset.

1
8
(5 · 1

4
+ 3 · 5

12
) = 5

16
= 0.3125

4.5 Results & Discussion

This section presents and discusses the results of the experiments. We first present an analysis of the
applicability of the metrics to the approaches. Then, we present the results of applying the metrics,
the Utility Demonstrator, and the Privacy Demonstrator on the data generated by the anonymization
approaches. The section concludes with a discussion of these results and a consolidating evaluation
of the selected metrics.

4.5.1 Applicability of Metrics

Table 4.9 shows the results of an applicability analysis of metrics on approaches. We omit the
Differential Privacy on Queries approach because none of the selected metrics can be applied to it.
All selected metrics can be applied to the 𝑘-anonymity through Generalization and 𝑘-anonymity
through Microaggregation approaches. However, there is one detail. The In-Data Precision Loss
is a metric that measures the uncertainty of attribute values in the anonymized data. Because the
microaggregation function used for the approaches is the mode function, no uncertainty is present in
the transformed values. The metric will only incorporate suppressed records in the calculation and,
therefore, lose expressiveness when applied to this approach. However, it can still be applied, which
we indicate with the parentheses in Table 4.9. The remaining metrics preserve full significance
when applied on 𝑘-anonymity through Microaggregation.

Turning to Data Synthesis, we observe that the expressiveness of many metrics on this approach is
limited. For example, the Suppression Ratio will always be 0 because no records are lost during
anonymization. The syntactic metrics that evaluate the uniqueness of drivers in the ECs, i.e.,
Minimum 𝑘 , Average Equivalence Class Size, and Discernibility Penalty, all lose expressiveness
for the same reason. The quasi-identifier values are artificially created in this approach, so the
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search for an individual in the anonymized data based on the quasi-identifier values might return the
records of a different person or no records at all because the values are not present in the data. Even
if there is only one driver in a given EC, their quasi-identifier values might not be accurate such that
a direct identification using these values is not reliable. Metrics that measure the uniqueness of
drivers in the EC as an indication of privacy are, therefore, not as expressive. A similar argument
applies to the Minimum 𝑙 metric. Similar values of the sensitive attribute in one EC lose their
detriment to privacy if there is no reliable way of telling whether an individual is part of an EC. A
similar argumentation can be applied to the Earth Mover’s Distance, 𝑔-balance, ℎ-affiliation, and
the Adversarial Knowledge Gain. Because the rationale behind these metrics is that an adversary
can dependably assert that an individual is part of an EC to extract meaningful information, they
lose expressiveness. An argument can be made that an adversary is also not able to reliably find
individuals in anonymized data generated by the 𝑘-anonymity through Microaggregation approach
because raw values are replaced by the mode of the EC. However, as the mode are the values that
appear most often in the EC, every group will have drivers that have their raw quasi-identifier values
associated. Lastly, the In-Data Precision Loss is always 0 for the synthetic datasets because no
records are suppressed, and there is no precision loss in the quasi-identifier values. The only metric
that keeps its expressiveness for all approaches is the Cross-Data Precision Loss. The change in
the quasi-identifier values from the raw to the anonymized data for each record in the data retains
its meaning.

𝑘-anonymity through
Generalization

𝑘-anonymity through
Microaggregation

Data Synthesis

Suppression Ratio x x (x)
Minimum 𝑘 x x (x)
Minimum 𝑙 x x (x)
Average Equivalence
Class Size

x x (x)

Discernibility Penalty x x (x)
In-Data Precision
Loss

x (x) (x)

Cross-Data Precision
Loss

x x x

Earth Mover’s Dis-
tance

x x (x)

𝑔-balance x x (x)
ℎ-affiliation x x (x)
Adversarial Knowl-
edge Gain

x x (x)

Table 4.9: Theoretical applicability of metrics on methods. We omit the Differential Privacy on
Queries approach because no metrics can be applied to it. The parentheses indicate that
the metric loses expressiveness in combination with the approach.
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4.5.2 Evaluation of Soft Metrics

This section presents the evaluation of the soft metrics introduced in Section 4.2.1. The results are
displayed in Figure 4.8. We order the approaches relative to each other on scales from “Low” to
“High” for each metric. The Suitability for on-line Data Collection is not evaluated because the
approaches are not applied to data streams.

Raw Data Permanence Differential Privacy on Queries is the only approach that requires the
raw data to be always available. The other three approaches need the raw data only once to create
an anonymized dataset. The raw data can then be discarded.

Required Amount of Data Preprocessing Differential Privacy on Queries is an approach that
requires no data preprocessing because the queries can be executed directly on the raw data. Data
Synthesis, on the other hand, requires preprocessing such that a contingency table for providing the
sampling probabilities can be computed. In our case, however, this preprocessing was minimal.
Achieving 𝑘-anonymity requires data preparation such that each record corresponds to one individual.
Furthermore, all quasi-identifiers must be explicitly present in the table structure as attributes. These
approaches, therefore, require the highest amount of preprocessing.

Data Use Case Flexibility Differential Privacy on Queries outputs values that are exactly
tailored to one query function. However, the approach can guarantee privacy for every real-valued
query [DR13], making it highly flexible. This property is common for approaches from the PPDA
field. On the other hand, the tables generated by the remaining approaches are useful for various data
use cases, which is a common property of approaches in the PPDP field. However, the experiment
results presented in Section 4.5.3 show that some data use cases are not realizable anymore on the
anonymized data. Differential Privacy on Queries is more flexible for our specific use cases but
can, for example, not be used to train a statistical classifier, which is possible using the anonymized
datasets created by the other approaches. Therefore, we evaluate all approaches equally concerning
the data use case flexibility. Further investigation is needed to assess this aspect more precisely.

Intuitiveness of Privacy Effect The approaches utilizing 𝑘-anonymity provide a very intuitive
notion of privacy protection. The data of an individual will be hidden between at least 𝑘 − 1
other people. This definition of anonymity is easy to grasp and easy to trust, especially for high
𝑘 . For the Data Synthesis approach, it is understood that the quasi-identifier values are artificially
generated, but the anonymized data still contain very specific information, although it is likely, not
true information. The promise that DP makes is that any potential bad outcome for an individual is
not influenced by the fact that this individual was part of the data. This notion of privacy is strong,
but processing the meaning of this guarantee is more complex than the guarantees of the syntactic
models. Furthermore, the privacy that the parameter 𝜖 provides is not easily comprehended because
its impact on the privacy guarantee is abstract and technical.
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Required Amount of Domain Knowledge We assign Differential Privacy on Queries the lowest
score of the approaches because it is very generic for any given query function. Calculating the
sensitivity of the function and applying noise to the true result does not require domain knowledge.
However, the mechanism may output infeasible values as described in Section 4.4.3. Truncating
out-of-bounds values requires some domain knowledge. The Data Synthesis approach is scored
slightly higher, as some domain knowledge may be required to filter out infeasible combinations
of synthetic quasi-identifier values sampled from the perturbed counts. For 𝑘-anonymity through
Microaggregation, identification of quasi-identifiers requires some domain knowledge. Furthermore,
choosing a fitting aggregation function depends on the specific data at hand. 𝑘-anonymity through
Generalization requires the highest amount of domain knowledge. Additionally to defining quasi-
identifiers, the data engineer needs to specify Value Generalization Hierarchies, which require a
significant understanding of the underlying data and the semantics of the attribute values.

4.5.3 Experiment Results

This section shows the evaluation of the metrics and demonstrators on the anonymization approaches.
Table 4.10 shows the scores of the raw data, and Tables 4.11 to 4.14 show the evaluation of the
anonymization approaches. For metric values that receive a scaling, we report the min-max scaled
metric value first and the unscaled value in parentheses. Values are rounded to two decimal places,
with exceptions for values that would round down to 0 or round up to one.

Raw Data

Table 4.10 shows the results of the metrics and demonstrators on the raw data. All min-max scaled
metric values are naturally 0 because the respective 𝑚𝑚𝑖𝑛 values used for scaling are also calculated
on the raw data. The Suppression Ratio, In-Data Precision Loss, and Cross-Data Precision Loss are
also trivially 0 as no records are suppressed and no quasi-identifier values transformed. We have a
𝑔-balance of 0 because there are ECs in the raw data that only contain the trips of a single driver.
The ℎ-affiliation is 1 as there again are drivers with unique quasi-identifier values that make up their
own EC. All drivers in these ECs trivially share one sensitive value. The Earth Mover’s Distance
and Adversarial Knowledge Gain are both values that incorporate the difference in the distribution
of sensitive values between the ECs and the entire table. Their values are not easily assigned an
intuitive meaning but allow comparisons between the approaches.

The performance values on the UD are the true values of the KPI calculations.

The PD shows that the raw data is heavily prone to homogeneity attacks. The attack compromises all
drivers, although some drivers are not alone in an EC due to their quasi-identifier values not being
unique. Furthermore, the maximum recall over all drivers is 100%, which means that the adversary
could extract all existing location information of at least one driver. This is not astonishing, as
single-driver ECs automatically allow an adversary to have full recall. On average, the adversary
can extract around 35% of AOIs over all drivers

58



4.5 Results & Discussion

Low High

D
P

on
Q

ue
rie

s

𝑘
-a

no
ny

m
ity

th
ro

ug
h

G
en

.
𝑘
-a

no
ny

m
ity

th
ro

ug
h

M
A

D
at

a
Sy

nt
he

si
s

(a) Raw Data Permanence.

Low High

D
P

on
Q

ue
rie

s

D
at

a
Sy

nt
he

si
s

𝑘
-a

no
ny

m
ity

th
ro

ug
h

G
en

.

𝑘
-a

no
ny

m
ity

th
ro

ug
h

M
A

(b) Required Amount of Data Preprocess-
ing.

Low High

𝑘
-a

no
ny

m
ity

th
ro

ug
h

G
en

.
𝑘
-a

no
ny

m
ity

th
ro

ug
h

M
A

D
at

a
Sy

nt
he

si
s

D
P

on
Q

ue
rie

s

(c) Data Use Case Flexibility.

Low High

D
P

on
Q

ue
rie

s

D
at

a
Sy

nt
he

si
s

𝑘
-a

no
ny

m
ity

th
ro

ug
h

G
en

.

𝑘
-a

no
ny

m
ity

th
ro

ug
h

M
A

(d) Intuitiveness of Privacy Effect.

Low High

D
P

on
Q

ue
rie

s

D
at

a
Sy

nt
he

si
s

𝑘
-a

no
ny

m
ity

th
ro

ug
h

M
A

𝑘
-a

no
ny

m
ity

th
ro

ug
h

G
en

.

(e) Required Amount of Domain Knowl-
edge.

Figure 4.8: The evaluation of the soft metrics on the approaches. We rank the approaches on a
scale from “Low” to “High” for each metric.
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Raw Data

Metric

Suppression Ratio 0
Minimum 𝑘 0 (1)
Minimum 𝑙 0 (1)

Average Equivalence Class Size 0 (1.67)
Discernibility Penalty 0 (6.6 · 106)
In-Data Precision Loss 0

Cross-Data Precision Loss 0
Earth Mover’s Distance 0.42

𝑔-balance 0
ℎ-affiliation 1

Adversarial Knowledge Gain 0.21

UD

KPI Overall 42.15%
KPI Electric 38.05%

KPI Gas 47.36%
KPI Hybrid 38.89%

PD
Compromised Drivers 100% (13/13)

Maximum Recall 100%
Average Recall 34.67%

Table 4.10: Metric and demonstrator evaluation on the raw data. The values in parentheses for the
metrics are the raw, unnormalized values.

𝑘-anonymity through Generalization

Table 4.11 shows the evaluation of the metrics and demonstrators to the 𝑘-anonymity through
Generalization approach for different privacy parameters 𝑘 . Because this method employs
suppression, we observe that the Suppression Ratio is greater than 0 and grows with rising 𝑘 to
fulfill the size requirement of the ECs. The Minimum 𝑘 and Average Equivalence Class Size
values indicate that all drivers are grouped into one EC for 𝑘 = 10. As expected, the Discernibility
Penalty grows with bigger values of 𝑘 because fewer trips in the data are indistinguishable. Both
distance-based metric values match for anonymized datasets created by generalization, as explained
in Section 4.4.5. The values show a significant jump between the different values of 𝑘 for two
main reasons. Firstly, the number of suppressed trips increases from 𝑘 = 2 to 𝑘 = 5. Secondly,
quasi-identifier attribute values are generalized heavily to group the drivers into EC of sufficient size.
The Earth Mover’s Distance reduces significantly for 𝑘 = 2 and is 0 for 𝑘 = 10 because the entire
anonymized table comprises only one EC. 𝑔-balance increases for 𝑘 > 1 as one EC is guaranteed to
contain the trips of at least two drivers. The jump from 𝑘 = 2 to 𝑘 = 5 is more significant than
the last jump to 𝑘 = 10. The ℎ-affiliation is 1 for 𝑘 = 2, meaning there is at least one EC where
all drivers share the same sensitive value. The value is halved for 𝑘 = 5 and approximately halved
again for 𝑘 = 10. Lastly, the Adversarial Knowledge Gain knowledge gain does not change by much
for 𝑘 = 2. Similar to the Earth Mover’s Distance, the metric value for 𝑘 = 10 is 0 because the only
EC spans the entire table.
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𝑘-anonymity through Generalization
𝑘 = 2 𝑘 = 5 𝑘 = 10

Metric

Suppression Ratio 0.01 0.18 0.18
Minimum 𝑘 0.08 (2) 0.4 (5) 1 (11)
Minimum 𝑙 0.01 (8) 0.24 (136) 1 (575)

Average Equivalence Class Size 0.05 (2.33) 0.41 (5.5) 1 (11)
Discernibility Penalty 0.03 (7.2 · 106) 0.41 (1.7 · 107) 0.81 (2.6 · 107)
In-Data Precision Loss 0.05 0.56 0.91

Cross-Data Precision Loss 0.05 0.56 0.91
Earth Mover’s Distance 0.29 0.18 0

𝑔-balance 0.31 0.71 0.87
ℎ-affiliation 1 0.5 0.27

Adversarial Knowledge Gain 0.2 0.13 0

UD

KPI Overall 0.001 (42.2%) 0.03 (40.89%) 0.03 (40.89%)
KPI Electric 0 0.07 (40.89%)! 0.07 (40.89%)!

KPI Gas 0 0.14 (40.89%)! 0.14 (40.89%)!
KPI Hybrid - 0.05 (40.89%)! 0.05 (40.89%)!

PD
Compromised Drivers 100% (13/13) 76.92% (10/13) 0% (0/13)

Maximum Recall 100% 50% 0%
Average Recall 21.92% 3.94% 0%

Table 4.11: The evaluation of the 𝑘-anonymity through Generalization approach. For the metrics,
we report the raw, unnormalized value in parentheses. For the Utility Demonstrator,
we report the relative error and the raw KPI output in parentheses. The entries are
suffixed with a “!” if the exact value can not be calculated due to generalization.

The 𝑘-anonymity through Generalization approach shows some interesting characteristics when
considering the evaluation of the UD. Firstly, there is a minimal error on the KPI calculation over
all drivers in the data, although almost 20% trips are suppressed for 𝑘 = 5 and 𝑘 = 10. We presume
that the reason for this is that the usage of the feature does not fluctuate heavily from driver to
driver. However, the KPI calculation by engine type shows the impact of generalization eminently.
Calculating the KPI values for 𝑘 = 2 shows no error on engine types “Electric” and “Gas”, but is
not possible for type “Hybrid”. The reason is that the anonymization suppresses the only driver
with a hybrid vehicle. It is, therefore, not possible to calculate the KPI for this engine type. The
anonymized data for 𝑘 = 5 and 𝑘 = 10 show an emerging problem with value generalization. We
are not able to calculate the KPI values for the engine types precisely. The reason for this is the
generalization of the engine types. If “EV” and “Hybrid” are generalized into the value “With
E”, problems arise for the calculation of the KPI for the engine types. We choose to include the
trips with generalized engine values in the calculations. So, trips with engine type “?” or “With
E” are included in the KPI calculation for engine type “Hybrid” or “EV”. The relaxation of the
calculation is indicated in the table with a “!” after the entry. For 𝑘 = 10, all trips are included for
each calculation of the KPI, which is why the percentages given are equal.

The evaluation of the Privacy Demonstrator for 𝑘-anonymity through Generalization shows that
anonymization with 𝑘 = 2 shows almost no improvement concerning an adversarial attack for our
data. Although the average recall value of the adversary drops, all drivers are compromised, and the
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adversary can extract all AOIs for at least one driver. The success of an adversarial attack starts to
decrease significantly for 𝑘 = 5. The number of compromised drivers drops from 13 to 10, and the
maximum recall from 100% to 50%. The anonymized data satisfying 10-anonymity prevents all
position disclosure because there are no AOIs shared by all 11 drivers in the dataset.

𝑘-anonymity through Microaggregation

𝑘-anonymity through Microaggregation
𝑘 = 2 𝑘 = 5 𝑘 = 10

Metric

Suppression Ratio 0.01 0.18 0.18
Minimum 𝑘 0.08 (2) 0.4 (5) 1 (11)
Minimum 𝑙 0.01 (8) 0.24 (136) 1 (575)

Average Equivalence Class Size 0.05 (2.33) 0.41 (5.5) 1 (11)
Discernibility Penalty 0.03 (7.2 · 106) 0.41 (1.7 · 107) 0.81 (2.6 · 107)
In-Data Precision Loss 0.01 0.18 0.18

Cross-Data Precision Loss 0.04 0.3 0.44
Earth Mover’s Distance 0.29 0.18 0

𝑔-balance 0.31 0.71 0.87
ℎ-affiliation 1 0.5 0.27

Adversarial Knowledge Gain 0.2 0.13 0

UD

KPI Overall 0.001 (42.2%) 0.03 (40.89%) 0.03 (40.89%)
KPI Electric 0 0.04 (36.55%) -

KPI Gas 0 0.02 (48.25%) 0.14 (40.89%)
KPI Hybrid - - -

PD
Compromised Drivers 84.62% (11/13) 46.15% (6/13) 0% (0/13)

Maximum Recall 100% 50% 0%
Average Recall 12.81% 3.85% 0%

Table 4.12: The evaluation of the 𝑘-anonymity through Microaggregation approach. For the metrics,
we report the raw, unnormalized value in parentheses. For the Utility Demonstrator,
we report the relative error and the raw KPI output in parentheses.

Table 4.12 shows the experiment evaluation of the 𝑘-anonymity through Microaggregation approach.
The metric values for the syntactic values match the results for 𝑘-anonymity through Generalization
because the algorithm creates the same ECs for both approaches. However, the distance-based
metrics now show a difference between the two approaches. For one, we observe that the In-Data
Precision Loss values match those of the Suppression Ratio. Because the loss due to generalization
captured by the In-Data Precision Loss is 0 for data transformed by microaggregation, the result
only captures the loss for suppressed trips, which is equal to the Suppression Ratio. The Cross-Data
Precision Loss, on the other hand, captures the change in attribute values due to their replacement
by the mode in the EC. We observe that the metric value is relatively moderate, even for 𝑘 = 10.
All distribution-based metrics and the Adversarial Knowledge Gain show the same metric values as
for 𝑘-anonymity through Generalization.
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However, the evaluation of the UD shows some differences. Firstly, the overall errors are equal
to the ones for 𝑘-anonymity through Generalization for all 𝑘 . The table also shows that the KPI
for engine type “Hybrid” can not be calculated for any 𝑘 . The reason for this is that the trips with
this engine type are suppressed for every 𝑘 , and the absence of generalized values does not allow a
relaxed calculation like the one used for 𝑘-anonymity through Generalization. Also, observe that
the KPI for engine type “Electric” and 𝑘 = 10 can not be calculated because all engine values in the
only EC have been aggregated to “Gas”.

𝑘-anonymity through Microaggregation performs better on the Privacy Demonstrator because the
aggregation of values hampers an attacker from linking quasi-identifier values of the drivers in the
raw data to trips in the anonymized data. Therefore, the number of compromised drivers drops
already for 𝑘 = 2, which is not observed for the 𝑘-anonymity through Generalization approach. The
attack is again fully thwarted for 𝑘 = 10.

Data Synthesis

Data Synthesis
- 𝜖 = 10 𝜖 = 1 𝜖 = 0.1

Metric

Suppression Ratio 0 0 0 0
Minimum 𝑘 0.001 (1.02) 0.001 (1.01) 0.0003 (1.004) 0.0006 (1.008)
Minimum 𝑙 0.02 (13.58) 0.02 (11.65) 0.005 (4.27) 0.008 (6.4)

Average Equivalence Class Size 0.04 (2.26) 0.03 (2.01) -0.001 (1.65) 0.01 (1.84)
Discernibility Penalty 0.03 (7.2 · 106) -0.001 (6.5 · 106) -0.06 (5.2 · 106) -0.02 (6.1 · 106)
In-Data Precision Loss 0 0 0 0

Cross-Data Precision Loss 0.53 0.54 0.59 0.62
Earth Mover’s Distance 0.4 0.43 0.46 0.45

𝑔-balance 0.004 0.003 0.002 0.002
ℎ-affiliation 0.99 0.99 0.999 0.998

Adversarial Knowledge Gain 0.21 0.22 0.24 0.23

UD

KPI Overall 0 0 0 0
KPI Electric 0.13 0.13 0.16 0.19

KPI Gas 0.13 0.13 0.15 0.18
KPI Hybrid 0.53 0.47 0.25 0.19

PD
Compromised Drivers 70.29% (9.14/13) 68.65% (8.93/13) 53.04% (6.9/13) 24.37% (3.17/13)

Maximum Recall 56.91% 52.78% 50.3% 30.67%
Average Recall 8.26% 7.85% 7.33% 3.7%

Table 4.13: The evaluation of the Data Synthesis approach for no Differential Privacy and for
Differential Privacy with 𝜖 = 10, 1, 0.1. The calculations for the metrics were repeated
over 250 runs and averaged. For the metrics, we report the raw, unnormalized value in
parentheses. The evaluation for the Utility Demonstrator and Privacy Demonstrator
was repeated 1000 times, and the results averaged. For the Utility Demonstrator, we
report the relative error.

Table 4.13 shows the experiment results for the Data Synthesis approach. The calculations for the
metrics are executed 250 times and averaged. The evaluation of the UD and PD are averaged over
1000 runs. Should a certain engine type not be present in the anonymized data, we set the full
relative error of 1 for the KPI calculation of this engine type. The Suppression Ratio is 0 for all
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possible synthetic datasets because no trips are lost during anonymization. The In-Data Precision
Loss is also 0 for every synthetic dataset because the quasi-identifier values are not generalized, and
there is no suppression of trips. For the other syntactic metrics, the values show little derivation
from the raw data. Some entries are negative because the sampling process may create tables where
the Average Equivalence Class Size or the Discernibility Penalty are lower than for the raw data.
The numerator of the normalization term will be < 0 in these cases. The Earth Mover’s Distance
lingers at a relatively high value for all Data Synthesis variants. The low expected amount of drivers
in an EC leads to big differences between the distribution of sensitive values of ECs and the entire
table. 𝑔-balance values are close to 0 also because ECs are expected to contain few drivers. The
ℎ-affiliation is almost 1 across the board because the probability of an EC with only one driver is
very high in the synthetic data. The Adversarial Knowledge Gain is at a value comparable to the
raw data for each variant of the approach. The values are consistently high for the same reason that
the Earth Mover’s Distance values are high.

The evaluation of the UD shows 0 error for the KPI calculation over all vehicles. Again, this is
because the anonymized data contains all drivers and trips of the raw data. The errors on the KPI
calculation by engine type, however, are comparatively high. Especially the KPI for hybrid vehicles
suffers from the fact that this engine type is underrepresented in the raw data. This results in a
low sampling probability for the engine type and, thus, a high error because a non-existence of the
engine type is penalized with the full error. As the values of 𝜖 grow, this underrepresentation gets
compensated more and more through the applied noise, and the error goes down.

The results on the Privacy Demonstrator show that the attack is still possible even if finding
candidate drivers in the anonymized data for a target driver is hampered due to the sampling of
new quasi-identifier values. If drivers are assigned the same quasi-identifier values by chance, they
become very prone to the attack. Therefore, it may be advisable to prevent assigning the same
quasi-identifier values to a driver in the anonymized dataset. However, it should be noted that this
impacts the data utility negatively.

Differential Privacy on Queries

Table 4.14 shows the evaluation of the Differential Privacy on Queries approach on the Utility
Demonstrator. We report the sensitivity of each KPI calculation and the mean relative error of the
output over 100, 000 runs. For each KPI calculation, the error for the privacy setting 𝜖 = 0.1 is
too high to output useful values. The reason for this is the high sensitivity of the KPI functions on
the data. Because the data is comprised of only 15 drivers, the removal or addition of one driver
impacts the KPI result noticeably. This becomes especially evident when considering the errors of
the KPI on hybrid vehicles. The dataset only contains one hybrid vehicle, so the sensitivity of this
KPI is exactly the KPI result.
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Differential Privacy on Queries
Sensitivity 𝜖 = 10 𝜖 = 1 𝜖 = 0.1

UD

KPI Overall 3% 0.007 0.07 0.57
KPI Electric 4.66% 0.01 0.12 0.79

KPI Gas 4.96% 0.01 0.1 0.66
KPI Hybrid 38.89% 0.1 0.71 1.2

Table 4.14: The evaluation of the Differential Privacy on Queries approach for 𝜖 = 10, 1, 0.1. We
report the KPI sensitivity and the mean relative error over 100, 000 runs.

4.5.4 Discussion

In this section, we process the results of the experiments, point out the strengths and weaknesses
of the anonymization approaches and metrics, and outline the conclusions drawn. The cho-
sen anonymization approaches employ different data transformation techniques to generate the
anonymized data. Each technique has implications for the utility and privacy of the output dataset
and the meaningfulness of applying metrics to the output.

𝑘-anonymity through Generalization shows good preservation of data utility in our experiments as
the generalization of values is truthful, such that queries operating on the quasi-identifier values
can still be executed with some relaxations. However, outlier tuples are suppressed to avoid heavy
generalization of the remaining records. This leads to utility loss that can render certain data use
cases unrealizable. The utility metrics all indicate the loss of information for growing 𝑘 and assign
a very high penalty to 𝑘 = 10. The In-Data Precision Loss is specifically designed to measure the
information loss due to generalization.

The Privacy Demonstrator results show considerable information leakage even for moderate values
of the privacy parameter 𝑘 . The possibility of homogeneity attacks on data that satisfies 𝑘-anonymity
for a low value of 𝑘 should not be underestimated. Therefore, we suggest that this attack is considered
when choosing the parameter 𝑘 with this anonymization approach. A high value of 𝑘 completely
prevents any sensitive GPS disclosure due to the attack without an increase in the error for the Utility
Demonstrator. The Earth Mover’s Distance, ℎ-affiliation, and Adversarial Knowledge Gain also
indicate the decreasing information gain on the sensitive attribute for higher values of 𝑘 . The value
1 of the ℎ-affiliation for 𝑘 = 2 indicates that at least one EC is prone to a homogeneity attack on
the sensitive value. The probability of a matching artist between drivers may appear slim because
hundreds of artists are in the data. However, the circumstance that drivers have multiple trips with
possibly different artists associated with them is a significant booster to this probability.

𝑘-anonymity through Microaggregation suffers from the same drawbacks as 𝑘-anonymity through
Generalization concerning the suppression of tuples. Some data use cases can not be performed on
the anonymized data. The approach additionally suffers from the substitution of values by their
mode. For 𝑘 = 10, there is only one EC in the entire table. We can only calculate the KPI for the
specific engine value present in this EC, while the other KPI calculations are not doable. This
issue becomes less significant if the size of the raw data grows as the anonymized data will likely
contain more ECs. However, 𝑘-anonymity through Microaggregation performs better regarding the
Privacy Demonstrator. Although both approaches group the same records together into an EC, the
substitution of the true quasi-identifier values reduces an adversary’s chances of finding candidate
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drivers in the anonymized data. Thus, we see a lower percentage of compromised drivers, and the
average recall of the adversary drops for 𝑘 = 2. The ratio of compromised drivers is still lower for
𝑘 = 5, and both approaches prevent the attack for 𝑘 = 10. Despite this, we do not see a reduction
in the maximum recall, which means that the maximum amount of position disclosure for one
individual does not change between the approaches.

The information loss introduced by anonymization through Data Synthesis is not captured at all
by the syntactic metrics. The Cross-Data Precision Loss, on the other hand, captures the loss of
introducing new quasi-identifier values better. The values for this metric are high throughout all
variants of the approach and even grow for larger values of 𝜖 . In general, the experiments back
up the theoretical analysis of the applicability of the metrics in that the Cross-Data Precision Loss
is the only metric that keeps its expressiveness for each of the anonymization approaches. The
performance on the Utility Demonstrator matches the metric values. The errors are high even
for no perturbation of the sampling probabilities. We, therefore, conclude that data synthesis
incurs the highest utility loss of all approaches tested. Interestingly enough, attacks on individuals’
sensitive data are still possible with considerable recall values. Even for the strongest privacy
guarantee 𝜖 = 0.1, the maximum recall lies at around 30%, a remarkable value. The approaches
on 𝑘-anonymity can prevent an attack when 𝑘 is strict enough. The Earth Mover’s Distance and
ℎ-affiliation suggest that the data is prone to the disclosure of sensitive values, but as explained
in Appendix A.1, these metrics lose expressiveness when applied to synthetic data.

Differential Privacy on Queries is the approach that reacts most drastically to privacy parameter
changes. The error on the Utility Demonstrator increases rapidly with stricter privacy guarantees.
The reason for this is arguably the sensitivity of the KPIs. With data that contains a small number
of individuals, removing or adding an individual to the data results in a noticeable change, hence a
high sensitivity. This is especially noticeable for underrepresented records, which in our case is the
one individual driving a hybrid. With a higher number of drivers, sensitivity decreases, and the
accuracy of the approach becomes acceptable even for low values of 𝜖 . Therefore, we conclude that
approaches fulfilling Differential Privacy should be applied when there is a great amount of data.

One last remark added is found in the work of Brickell and Shmatikov [BS08]. They point out that
it is imperative to evaluate the data utility of the trivially anonymized dataset, denoted with U𝑏𝑎𝑠𝑒,
and the utility of the raw, unsanitized dataset, denoted with U𝑚𝑎𝑥 . The trivially anonymized dataset
has all its quasi-identifier values suppressed. If U𝑠𝑎𝑛, the utility of the sanitized dataset is close
to U𝑏𝑎𝑠𝑒, it may not be worth taking the privacy risk that a release of the sanitized table would
mean. Instead, a release of the trivially anonymized dataset should be considered, which would
maximize privacy. Should U𝑚𝑎𝑥 , which is an upper bound on the utility of this specific dataset, be
very low, there may be a need to reconsider using this specific workload to measure utility because
it performs poorly even on the raw data. Their suggestion can be transferred to our experiments.
Consider the results of 𝑘-anonymity through Generalization for 𝑘 = 5 and for 𝑘 = 10. The Utility
Demonstrator shows that both approaches perform equally on the KPIs. The Privacy Demonstrator
indicates that the dataset with 𝑘 = 5 leaks sensitive information such that the majority of drivers are
compromised. Considering the data use cases modeled by the UD, publishing the dataset for 𝑘 = 10
is preferable because the utility remains unchanged while the privacy is massively improved.
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Key Takeaways In general, we observe that approaches working with the suppression of tuples
may pose problems regarding the feasibility of certain data use cases. The reason for the suppression
of records in our experiments is an underrepresentation of the quasi-identifier values of some
entries. However, these rare entries may be important for certain data analysis scenarios. The ability
to investigate and work with data of seldomly sold goods is still essential for any manufacturer
interested in product improvement. Next, the Cross-Data Precision Loss appears to capture the
notion of information loss measured by the UD best out of the utility metrics. It is also the
only metric that outputs meaningful values for the Data Synthesis approach. The most important
takeaway, however, is the necessity of concrete demonstrators that evaluate the utility and privacy
protection of the anonymized data. The Utility Demonstrator shows that some approaches limit
the variety of data analysis tasks that can be performed on the data. This fact is only explicitly
shown by the demonstrator evaluation because no metrics can capture it. The Privacy Demonstrator
shows that sensitive information can be extracted from the anonymized data on an unexpected scale.
These demonstrators need to incorporate the specifications and peculiarities of the data to provide
meaningful results. The selected metrics are (naturally) defined in a more general-purpose manner.
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5 Conclusion & Outlook

This thesis evaluates metrics on different anonymization approaches for vehicle data. The challenges
and peculiarities of data in the automotive field are presented and discussed. Metrics that evaluate the
utility and privacy of anonymized data in the literature are collected and introduced. We select eleven
metrics to assess four anonymization approaches applied to real-world vehicle data. Furthermore, a
selection of soft metrics that assess high-level characteristics of the anonymization approaches is
proposed. We explain the adjustments made to the existing approaches and metrics to apply them on
the given vehicle data We define a Utility Demonstrator that evaluates the utility of the anonymized
data for a practical use case in the automotive field. Analogously, a Privacy Demonstrator simulates
an adversary trying to extract sensitive GPS information of the individuals in the data. Experiments
that apply the metrics, Utility Demonstrator, and Privacy Demonstrator to the anonymization
approaches show that few metrics provide expressive results for each approach. Furthermore, the
importance of assessing the data utility and privacy with domain-specific demonstrators becomes
imminent when anonymized data are shown to leak sensitive information and fail to allow the
realization of the chosen data analyses.

Outlook

The field of metrics for the evaluation of anonymization approaches is vast, and many metrics have
been proposed. Appendix A.1 list a considerable amount of additional metrics that were encountered
during research for this thesis. We do not claim that the list is comprehensive and, therefore,
leave an extensive literature review of metrics for future work. Furthermore, implementing all
metrics presented in the appendix was out of scope for this work. Future work can use the metrics
listed in Appendix A.1 as a starting point for further investigation regarding their applicability.
The experiments show that domain-specific evaluations of the anonymized data can capture more
meaningful aspects of data utility and privacy, so creating these domain-specific measures is also
open for research.

The data used in the experiments contain the trips of a comparatively small amount of 15 drivers.
In production, the fleet of connected vehicles is magnitudes more extensive. Our experiments show
that some approaches incur a loss of information because underrepresented vehicle specifications
are not handled adequately.

Another topic of research is further investigation of the challenges and peculiarities of data in
the vehicle domain. The anonymization of the data used in this work required some adjustments
to the approaches because of the data characteristics. Future work can investigate different
anonymization techniques specifically suited to the data. These techniques include anonymizing
data containing sensitive GPS signals, anonymizing data containing multiple records per individual,
and anonymizing data containing multiple types of sensitive values. Additionally, researching
approaches operating on streaming vehicle data is a field that remains open for contribution.
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A Appendix

A.1 Pool of Metrics

This section lists all metrics encountered during the making of this work. It includes the metrics
that were selected and implemented for the experiments and those that were considered but not
selected. The metrics are grouped by their types for a better overview.

A.1.1 Syntactic Metrics

Suppression Ratio

See Section 4.2.2.

𝑘-anonymity

See Section 4.2.3.

𝑙-diversity

See Section 4.2.4.

Average Equivalence Class Size

See Section 4.2.5.

Discernibility Penalty

See Section 4.2.6.

A.1.2 Metrics on Attribute Value Distance

In-Data Precision Loss

See Section 4.2.7.
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Cross-Data Precision Loss

See Section 4.2.8.

Sum of Squares

This metric is common to measure homogeneity in clustering approaches and is used in the literature
to evaluate anonymization using microaggregation [DM02; LWHC10]. Let 𝑇 be an input table
grouped into 𝑔 groups where group 𝑖 contains 𝑛𝑖 entries. With 𝑡𝑖 𝑗 , we denote the 𝑗-th vector in the
𝑖-th group. The normalized information loss induced by microaggregation is the within-groups sum
of squares loss 𝑆𝑆𝐸 divided by the total sum of squares loss 𝑆𝑆𝑇 .

𝑀𝑆𝑆 =
𝑆𝑆𝐸

𝑆𝑆𝑇

𝑆𝑆𝐸 =

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑡𝑖 𝑗 − 𝑡𝑖)2

𝑆𝑆𝑇 =

𝑔∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑡𝑖 𝑗 − 𝑡)2

Here, 𝑡𝑖 denotes the average tuple in the group 𝑖, and 𝑡 denotes the average tuple over the entire
table. Note that 𝑆𝑆𝑇 is constant for a fixed table regardless of the groupings chosen. Although the
authors define the metric using the average as the aggregation function, it can be extended to work
for different aggregation functions. To this end, 𝑡𝑖 denotes the output of the aggregation function
over group 𝑖, and 𝑡 denotes the output of the aggregation function over the entire table.

A.1.3 Metrics on Attribute Value Distributions

Earth Mover’s Distance

See Section 4.2.9.

𝑔-balance

See Section 4.2.10.

ℎ-affiliation

See Section 4.2.11.
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Non-Uniform Entropy

The non-uniform entropy measures information loss due to generalization [GT09a]. Given a table
𝑇 = {𝑡1, . . . , 𝑡𝑛} and its generalization 𝑇 ′ = {𝑡′1, . . . , 𝑡

′
𝑛}, the loss of information according to the

non-uniform entropy over attributes 𝐴 = {𝐴1, . . . , 𝐴𝑚} is:

𝑀𝑁𝑈𝐸 (𝑇,𝑇 ′) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

− log 𝑃(𝑡𝑖 [𝐴 𝑗] | 𝑡′𝑖 [𝐴 𝑗])

For the value 𝑣 of attribute 𝐴 𝑗 and its generalization 𝑣′, the probability 𝑃(𝑣 |𝑣′) is:

𝑃(𝑣 |𝑣′) =
|{𝑡 ∈ 𝑇 | 𝑡 [𝐴 𝑗] = 𝑣}|
|{𝑡 ∈ 𝑇 | 𝑡 [𝐴 𝑗] ∈ 𝑣′}|

The metric is also used by Bild et al. [BKP18].

Entropy

One basic measure of the distribution of sensitive values is Entropy. Simply put, Entropy measures
the amount of information inherent in a distribution. If the distribution heavily favors one specific
outcome, the information content is not as high compared to a scenario where all outcomes are
equally likely. The entropy over a distribution X is defined as:

𝑀𝐻 (𝑃) = −
∑︁
𝑥∈X

𝑝(𝑥) · log 𝑝(𝑥)

Entropy is a basic way to measure the diversity of sensitive values in an EC. The value for an
entire data set could be the minimum value over all ECs, the average value, or another kind of
value aggregation over ECs. The higher the entropy, the higher the diversity of sensitive values.
Therefore, the harder it is for an adversary to assign a value to an individual in an EC with high
probability. A distribution that always returns the same value when sampled will have an Entropy
of 0, the lowest possible value. Entropy in this form is only applied to the anonymized table, so
there is no way to capture the change in the entropy value due to the anonymization process. Works
in the literature usually assume that an adversary knows the distribution of sensitive values over
the original table and, therefore, also its Entropy [BS08]. Because of this, an adversary could gain
information from lower Entropy values in the anonymized table compared to the Entropy over all
sensitive values, while the data holder that releases the anonymized data stays oblivious to the
disclosure of information. Of course, a simple comparison between the Entropy before and after
anonymization will reveal the information gained by an adversary to the data holder. Entropy is
employed throughout the literature, ranging from early works like the introduction of 𝑙-diversity
by Machanavajjhala et al. [MGKV06] to more recent ones [WBWA19].

Information Loss based on Entropy

Introduced by Wan et al. [WVX+15], this metric measures information loss using Entropy over the
attribute values. The metric is applied to the generalized values of the quasi-identifier attributes in
the paper. Given a tuple 𝑡 and a generalized entry 𝑡 [𝐴𝑖] under attribute 𝐴𝑖 , the authors assume that
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the original value is uniformly distributed among the values covered by 𝑡 [𝐴𝑖]. They define the loss
on the anonymized table to be:

𝑀𝐼𝐿𝐸 (𝑇) =
∑︁
𝑡∈𝑇

𝑚∑︁
𝑖=1

− log
1

𝑟𝑎𝑛𝑔𝑒(𝑡 [𝐴𝑖])

Here, 𝑟𝑎𝑛𝑔𝑒(𝑡 [𝐴𝑖]) returns the number of distinct values covered by the tuple 𝑡 under attribute 𝐴𝑖
in the transformed table. The authors also give a way to normalize the value by dividing it by its
maximum value 𝐼𝐿𝐸𝑚𝑎𝑥 (𝑇).

𝐼𝐿𝐸𝑚𝑎𝑥 (𝑇) =
∑︁
𝑡∈𝑇

𝑚∑︁
𝑖=1

− log
1

𝑟𝑎𝑛𝑔𝑒(𝐴𝑖)

Here, 𝑟𝑎𝑛𝑔𝑒(𝐴𝑖) returns the total number of distinct values of attribute 𝐴𝑖 .

KL-divergence

Kifer and Gehrke [KG06] use the Kullback-Leibler divergence (KL-divergence) between the original
data and the anonymized data to measure the loss of information due to anonymization. Their
approach involves releasing anonymized marginals, which are summaries of the original table
providing frequency counts for fixed attribute combinations. The authors compute a maximum
entropy distribution from the marginals because the two distributions that are compared with the
KL-divergence need to be defined on the same sample space. The KL-divergence between two
distributions 𝑃 and 𝑄 defined over the same sample space X is

𝑀𝐾𝐿 (𝑃,𝑄) =
∑︁
𝑥∈X

𝑃(𝑥) log
𝑃(𝑥)
𝑄(𝑥)

A higher cost means that the two distributions are more different, which means that information from
the original data is lost. There are many possibilities to apply this metric to measure information loss.
Almasi et al. [ASMH16] use KL-divergence to measure the difference between the distribution of
sensitive values in an EC in the sanitized dataset and the total distribution in the original dataset. The
metric can also be seen as one for privacy: the higher the value, the more different the anonymized
data and, therefore, safer.

𝐿1-norm

The 𝐿1-norm provides another measurement to quantify the difference between two distributions.
Coull et al. [CWK+08] use it to quantify the anonymity of network data, while Agrawal and Aggarwal
[AA01] use it as a measure of information loss in an adjusted form. They assume anonymization by
perturbation and define a metric that measures the difference between the distribution of values in
the original data and the estimated distribution of the original values by a reconstruction algorithm.
The reconstructed distribution is the output of an Expectation Maximization algorithm applied to
the perturbed dataset. We consider the simple definition of the 𝐿1-norm between two distributions
𝑋 and 𝑌 over domains X and Y, respectively.

𝑀𝐿1 (𝑋,𝑌 ) =
∑︁

𝑧∈X∪Y
|𝑃(𝑋 = 𝑧) − 𝑃(𝑌 = 𝑧) |
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The values range from 0, which indicates identical distributions, to 1, indicating completely disjoint
distribution spaces. Whether the measure quantifies anonymity or information loss depends on the
distributions to which it is applied. One could apply the metric to the distributions of sensitive
values to measure how they change due to anonymization.

𝛿-disclosure privacy

In addition to the total value of the adversarial knowledge gain over the entire table, Brickell and
Shmatikov [BS08] propose the notion of 𝛿-disclosure privacy. The concept is similar to 𝑡-closeness
in that there is a threshold 𝛿 on the difference between the sensitive value distribution in Equivalence
Classes vs. the entire table. The authors define that a table is 𝛿-disclosure private if for every
equivalence class 𝑒 and sensitive value 𝑣 ∈ 𝑆 we have:���� log

𝑝(𝑒, 𝑣)
𝑝(𝑇, 𝑣)

���� < 𝛿
Intuitively, this privacy definition places an upper bound on the adversarial knowledge gain.
The value of 𝛿 can be used as a metric value, where lower values of 𝛿 indicate better privacy.
In Section 4.2.9, it was noted that the relationship between the parameter 𝑡 in the 𝑡-closeness concept,
which is calculated using EMD, and information gain is unclear. This was shown using two pairs of
distributions assigned an equal distance by EMD but intuitively showed an unequal information
gain. If we want to find bounds 𝛿 for these distributions, we find that for the first pair, (0.01, 0.99)
and (0.11, 0.89), we have | log 0.01

0.11 | ≈ 1.04 and | log 0.99
0.89 | ≈ 0.05. For the second pair, (0.4, 0.6)

and (0.5, 0.5), we have | log 0.4
0.5 | ≈ 0.1 and | log 0.6

0.5 | ≈ 0.08. The second pair easily satisfies
0.2-disclosure privacy, while the first pair is far from it due to the relatively large information gained
on the first sensitive value. We can, therefore, conclude that the parameter 𝛿 captures the notion of
information gain better than the parameter 𝑡 in 𝑡-closeness. Another difference between the two
parameters is how missing sensitive values in ECs are evaluated. The authors do not specify how
to calculate 𝛿 for missing sensitive values in the ECs. A missing sensitive value in an EC would
require | log 0

𝑝 (𝑇,𝑣) | to be calculated, but because log 0 is undefined, there can be no possible bound
𝛿 set on the value. Missing sensitive values are a significant information gain for an adversary, so
they should not be ignored and are therefore not allowed in the context of 𝛿-disclosure privacy. The
EMD does allow missing sensitive values. They simply increase the value of 𝑡. We omit this metric
from our experiments, as the number of sensitive values in the data is very high, which results in
many ECs in the anonymized data not containing every sensitive value.

A.1.4 Metrics that Consider Adversarial Knowledge

Adversarial Prediction of Sensitive Values

See Section 4.2.12.
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Adversarial Accuracy Gain

Many works in the literature model an adversary that uses the quasi-identifier values to predict
the sensitive value of an individual. The guessing strategy of an adversary can be implemented in
several ways. A naïve Bayes classifier is one option that can be found in the literature [CPE+13;
Kif09]. A simpler way is guessing the sensitive value corresponding to the majority in the respective
EC, which is what Brickell and Shmatikov [BS08] use to measure the privacy that an anonymized
table provides. Let 𝑠𝑚𝑎𝑥 (T ) be the most common sensitive value in a given set of tuples T , and let
𝑝(T , 𝑣) return the fraction of tuples in T that have sensitive value 𝑣.

𝑀𝐴_𝑝𝑟𝑒𝑑 (𝑇 ′, 𝑇∗) =
(

1
|𝑇 ′ |

∑︁
𝑒∈𝐸𝐶 (𝑇 ′ )

|𝑒 | · 𝑝(𝑒, 𝑠𝑚𝑎𝑥 (𝑒))
)
− 𝑝(𝑇∗, 𝑠𝑚𝑎𝑥 (𝑇∗))

The metric measures the difference between the adversary’s base prediction accuracy and the
adversary’s accuracy on the anonymized dataset. The dataset𝑇∗ is the table𝑇 with all quasi-identifier
values suppressed, creating one EC containing all tuples in the table. Therefore, an attacker’s base
accuracy on guessing the correct sensitive value is simply the probability of the most common
sensitive value in the original data. The authors argue that this base knowledge will always be
available to the attacker, even if all quasi-identifier values are suppressed. A value of 0 indicates that
the adversary learns nothing when observing the anonymized table compared to his base knowledge.
Higher values indicate distributions of the sensitive values in ECs that deviate from the overall
distribution. The authors note that the metric underestimates the amount of information leaked by
the anonymized data because the metric ignores shifts in the distribution of sensitive values that are
not the majority.

Min-Entropy Leakage

Alvim et al. [AAC+12] propose the Min-Entropy Leakage as a measure of the information that an
attacker can learn about a dataset by observing the output of a query. We consider a differentially
private function from X to Z, where X is the set of all databases, and Z is the image of the
function. The input and output of the function are modeled by the probability distributions 𝑋 and
𝑍 , respectively.

𝑀𝑀𝐸𝐿 (𝑋, 𝑍) = 𝐻∞(𝑋) − 𝐻∞(𝑋 |𝑍)
𝐻∞(𝑋) = − log2 max

𝑥∈𝑋
𝑝(𝑥)

𝐻∞(𝑋 |𝑍) = − log2

∑︁
𝑧∈𝑍

𝑝(𝑧) max
𝑥∈𝑋

𝑝(𝑥 |𝑧)

The authors impose a bound on the leakage for an algorithm that provides 𝜖-differential privacy.
The algorithm operates on a dataset that contains 𝑢 individuals that participate in the dataset.
Furthermore, they fix the number of sensitive attribute values of each individual to be 𝑣, where
𝑣 ≥ 2.

𝑀𝑀𝐸𝐿 (𝑋, 𝑍) ≤ 𝑢 log2
𝑣𝑒𝜖

𝑣 − 1 + 𝑒𝜖
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The right side of the inequality becomes 0 if 𝜖 = 0. It is also shown in the paper that the bound
is tight.

Global Utility based on information gain

Introduced by Alvim et al. [AAC+12] and used by Ekenstedt et al. [EOL+22]. Consider a privacy
mechanism 𝑝𝑍 |𝑌 (·|·) that is applied to a random variable (our original dataset) 𝑌 to create the
random variable (our transformed dataset) 𝑍 . We assume a user observes 𝑍 and tries to make a
guess 𝑌 that is as close as possible to the original data 𝑌 .

𝑀𝐺𝑈 (𝑌, 𝑍) =
∑︁
𝑦

𝑝𝑦 (𝑦)
∑̂︁
𝑦

𝑝( �̂� |𝑦)𝑔(𝑦, �̂�)

where 𝑔(𝑦, �̂�) is a gain function that measures how useful it is to guess �̂� when the actual value is 𝑦.
𝑝(𝑦) is the prior probability of real answer 𝑦, and 𝑝( �̂� |𝑦) is the probability of the user guessing �̂�
when the real answer is 𝑦. There is a special case where the gain function is binary, meaning all
guesses are useless except the correct one. The formula then simplifies to:

𝑀𝐺𝑈 (𝑌, 𝑍) =
∑︁
𝑧

max
𝑦
𝑝(𝑦, 𝑧)

In [EOL+22], they furthermore define the metric for their use-case, which is the 𝜖-LDP mechanism.
Alvim et al. [AAC+12] also derive a bound on the utility of a privacy mechanism that satisfies
𝜖-differential privacy.

Worst-Case Privacy Loss

Li and Li [LL09] propose a metric that measures privacy loss in an anonymized table by comparing
an adversary’s prior knowledge about the sensitive attribute of a tuple to the adversary’s posterior
knowledge. Let 𝑄 be the distribution of the sensitive attributes of the overall population in the
entire table. This distribution 𝑄 is the adversary’s prior knowledge of the data because it will
always be available after the anonymized table is published, even if all quasi-identifier attributes
are suppressed. Of course, the values of the sensitive attributes must not be changed during
anonymization. Observing the anonymized table, the adversary receives an update on their
knowledge about the distribution of sensitive values for tuple 𝑡′, which is now reduced to the EC
that contains 𝑡′. This posterior knowledge will be denoted with 𝑃(𝑡′) and describes the distribution
of sensitive values in the EC that contains 𝑡′. The worst-case privacy loss is then given by

𝑀𝑃𝑙𝑜𝑠𝑠 = max
𝑡 ′∈𝑇 ′

𝑃𝑙𝑜𝑠𝑠 (𝑡′) where

𝑃𝑙𝑜𝑠𝑠 (𝑡′) =
1
2
[𝐾𝐿 (𝑄, 𝑀) + 𝐾𝐿 (𝑃(𝑡′), 𝑀)] and

𝑀 =
1
2
(𝑄 + 𝑃(𝑡′)) and

𝐾𝐿 (𝑄, 𝑃) =
∑︁
𝑖

𝑞𝑖 log
𝑞𝑖

𝑝𝑖
is the Kullback-Leibler divergence
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As the KL-divergence measures the difference between two probability distributions, a higher value
means a bigger disagreement between the distributions and therefore higher privacy loss. The lowest
value is 0 and occurs when the published table has all the quasi-identifier attributes suppressed such
that there is only one EC, which is the entire table and therefore 𝑄 = 𝑃(𝑡) for any tuple 𝑡.

A.1.5 Metrics of Other Types

The metrics listed in this section do not fit any of the types that we set, so we collect them under
this title.

Ambiguity Metric

Nergiz and Clifton [NC06] use a metric that, for each tuple in the generalized table, sums up the
number of theoretically possible combinations of input tuples it can represent. The penalty for a
transformed table 𝑇 ′ is calculated as follows.

𝑀𝐴𝑀 (𝑇 ′) = 1
|𝑇 ′ |

∑︁
𝑡 ′∈𝑇 ′

𝑚∏
𝑖=1

𝑟𝑎𝑛𝑔𝑒(𝑡′ [𝐴𝑖]),

where 𝑟𝑎𝑛𝑔𝑒(𝑡′ [𝐴𝑖]) returns the number of distinct values covered by the value of tuple 𝑡′ under
attribute 𝐴𝑖. For example, consider the generalized attribute values of the attribute age. Then
𝑟𝑎𝑛𝑔𝑒( [3, 5]) = 3, as the interval covers three age values.

Evaluation of Query-answering accuracy

Many anonymization approaches in the literature are evaluated by running aggregation queries on
the anonymized data and evaluating the accuracy of the results [CPE+13; LDR06; LL09; RHS07;
XT06; ZKSY07]. These works usually do not introduce this evaluation as a specific metric but use
it to assess the data quality that their proposed anonymization algorithms provide in experiments,
therefore using different approaches from paper to paper. The aggregate queries often follow a
schema like “SELECT <operator> FROM <table> WHERE <pred(𝐴1)> AND . . . <pred(𝐴𝑚)>”,
where “operator” is an aggregation like SUM, COUNT, AVG, etc., and “pred(𝐴𝑖)” is a predicate
on attribute 𝐴𝑖, for example “Age > 30”. There are different ways of evaluating the accuracy of
the query results. One of the most popular ones is reporting the relative error between running the
query on the original data and on the anonymized data. LeFevre et al. [LDR06] report the mean
and standard deviation of the absolute error over their set of counting queries. The relative error of
a query 𝑞, the original table 𝑇 and the anonymized table 𝑇 ′ is:

𝑀𝐸𝑟𝑒𝑙
(𝑇,𝑇 ′, 𝑞) = |𝑞(𝑇) − 𝑞(𝑇 ′) |

𝑞(𝑇)

Cormode et al. [CPE+13] run a set of COUNT queries on the anonymized data and measure the
relative error compared to running the queries on the original data. The authors report the median
relative error for a given query workload in the paper. The reciprocal of this value then corresponds
to the empirical utility of the anonymized dataset.
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The accuracy of aggregate queries can be a useful measure to evaluate an intuitive notion of the
utility of anonymized data. In combination with a comparison of the accuracy of the queries on the
original data, it is a suitable metric to measure information loss due to the anonymization process.
In the literature, many works use this metric, but there is no fixed definition of what these aggregate
queries look like and how the accuracies of the anonymized and original data are compared. The
query performances allow useful comparisons between anonymizations of different tables if the
values are normalized by using the relative error, for example.

Classification Metric

Iyengar [Iye02] introduce a usage-based metric, which evaluates the anonymization by assuming
that the data are used for a classification task. The Classification Metric supposes that one of the
attributes in the anonymized table is a class label that is the target of some classification model.
Since 𝑘-anonymity requires that the records in one EC are indistinguishable from each other with
regards to the quasi-identifier, a classification model would not be able to discriminate them if
there were more than one class label in the group. Therefore, the metric penalizes ECs that contain
rows with different labels. Note that the data may have non-identifying attributes that could have
predictive capabilities. The author leaves the consideration of these attributes in the transformation
process to future work. Given the anonymized table 𝑇 ′, the function 𝑐𝑙𝑎𝑠𝑠(𝑡) that returns the class
label of tuple 𝑡, and function 𝑚𝑎 𝑗𝑜𝑟𝑖𝑡𝑦, which outputs the majority class label of the EC that is
given as argument, the penalty is calculated as follows:

𝑀𝐶𝑀 =
1
|𝑇 ′ |

∑︁
𝑡 ′∈𝑇 ′

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑡′), where

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑡′) =


1 if 𝑡′ is suppressed
1 if 𝑐𝑙𝑎𝑠𝑠(𝑡′) ≠ 𝑚𝑎 𝑗𝑜𝑟𝑖𝑡𝑦(𝐸𝐶 (𝑡′))
0 otherwise

The Classification Metric penalizes ECs that contain multiple class labels. It is also stated that
the metric can be extended to incorporate different costs for the 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 function. This can, for
example, be achieved by defining a cost matrix that specifies the cost of misclassifying a row from
its true class to the majority class of its EC. The loss is normalized over the entire table, which
makes this metric suitable for a comparison of anonymizations of different tables. Bayardo and
Agrawal [BA05] use the metric to evaluate the performance of their 𝑘-optimize procedure. The
author notes that using this metric in combination with 𝑘-anonymity may dramatically increase the
risk of attribute disclosure through homogeneity attacks. Imagine choosing a sensitive attribute
to be the class label for this metric, then “a good” transformation of the table would contain ECs
whose sensitive values are mostly homogenous, making the data prone to homogeneity attacks. It is,
therefore, advisable not to use a sensitive attribute as the class label or use a more advanced privacy
requirement like 𝑙-diversity, which prevents homogeneity attacks.
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Classifier Accuracy

Due to the increasing interest in using Machine Learning models to extract meaningful information
from data, training classifiers is a huge part of (big) data analysis. Comparing the accuracy that a
classifier achieves on the anonymized data vs. what the classifier achieves on the original data is
an intuitive way of measuring one aspect of information loss due to anonymization. The specific
classification algorithm used for the evaluation is not set in stone, but Support Vector Machines are
among the most used classifiers in the literature. Shan et al. [SLZ20] use Bayes, Support Vector
Machines, and Decision Trees as classifiers to assess the data utility. Fung et al. [FWY05] use the
C4.5 classifier and the Naive Bayes classifier. Different measures can evaluate the performance of
a classifier.

Accuracy The accuracy of a classifier is given by

𝑀𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁
𝑃 + 𝑁 ,

where 𝑇𝑃 is the number of correctly labeled true positives, 𝑇𝑁 is the number of correctly labeled
true negatives, 𝑃 is the total number of positive tuples, and 𝑁 is the number of negative tuples.

𝐹1-score The 𝐹1-score, or F-measure is another way to evaluate the performance of a classifier.

𝑀𝐹1 =
2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Although both of these measures are here defined on a binary classification task, they can be extended
to work on multiple classes by calculating a score for each class in a “one vs. rest”-manner.

Training classifiers on the anonymized data gives a measure of the usefulness of the data for a
specific data use case. However, if the base performance of a classifier on the original data is
low, it might be pointless to release an anonymized version of this data, as the risk of privacy
breaches might be too high compared to the low use for classification of the anonymized data. It
might also be valuable to evaluate a classifier on the trivially sanitized data (data where either all
quasi-identifiers or all sensitive attributes are suppressed). If the performance of classifiers on
the trivially sanitized data is approximately equal to that of the anonymized data, then non-trivial
sanitation might be pointless.

A.1.6 Honorable Mentions

In this section, we mention metrics that were encountered during the research for this work but not
investigated thoroughly.
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𝛽-likeness Similar to the parameter 𝑡 in the 𝑡-closeness privacy model, 𝛽-likeness places an
upper bound on the distribution of sensitive values in each EC in the anonymized table [CK12]. In
contrast to 𝑡-closeness, this metric places a bound on the frequency of each sensitive value in an EC,
and not on the overall distribution of sensitive values.

𝛿-presence Nergiz et al. [NAC07] introduce 𝛿-presence as a metric to evaluate the risk of an
individual in a table being identified using an external public table.

Probabilistic Anonymity This metric is proposed by Yang and Qiao [YQ10] and also used
by Eyupoglu et al. [EAZS18] and measures the inability of an attacker to link quasi-identifier
values to sensitive attributes when the quasi-identifier values have been randomly changed to
achieve anonymity. For each tuple, the anonymization approach randomly picks an attribute of the
quasi-identifier and exchanges the value of this attribute and tuple by sampling a new value from
the distribution of values of the selected quasi-identifier attribute.

Mutual Information Goldberger and Tassa [GT09b] present a metric that enhances the correlation
between the generalized public data and the private data. It measures utility content in the
anonymized data over utility loss.

Minimum absolute distance Samarati [Sam01] provide one of the first algorithms achieving
𝑘-anonymity that minimizes a metric score. The paper outlines a handful of measures that can be
used to guide the algorithm in finding an optimal transformation. Although not explicitly denoted as
metrics in the paper, these measures can be used as such. There are some caveats, however, in that
some measures require a Value Generalization Hierarchy and therefore assume that data have been
generalized using global recoding as introduced in Section 3.2.1. The original algorithm minimizes
the “minimum absolute distance”. The value of this metric is the total number of generalization
steps across the Value Generalization Hierarchy of all attributes. All steps contribute a value of 1 to
the total amount.

Minimum relative distance Another metric proposed by Samarati [Sam01] sums up the ratios of
generalizations done across the hierarchies. It can already be found in an earlier work by Samarati
and Sweeney [SS98] on 𝑘-anonymity. The amount of generalization steps is divided by the height
of the respective VGH to produce a relative value.

Maximum distribution This is the last metric proposed by Samarati [Sam01] that we discuss in
this section. The metric sums up the number of distinct tuples in the anonymized dataset. Since the
tuples in one EC are indistinguishable from each other, the value of this metric can be simplified to
the number of ECs in the anonymized table. These straightforward metrics were initially meant to
be used as preference policies for the anonymization algorithm, and some of them are, therefore,
very specific to one anonymization approach. It may, therefore, be sensible to combine some of
these measures into a more powerful metric. The measure of minimum absolute distance is trivially
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optimized by not generalizing any values and suppressing all records (the same applies to the
minimum relative distance). To prevent suppression of the entire table, Samarati [Sam01] impose a
hard limit on the total number of suppressed tuples considered acceptable.

Sadhya and Chakraborty [SC22] propose the Sanitization Degree, consolidating the data privacy
and utility aspect into one value in [0, 1].

Kikuchi et al. [KYH+16] hold a competition of two players, one trying to anonymize a dataset
as securely as possible, the other trying to estimate the anonymization method and re-identify
records in the anonymized data. They assume a worst-case attacker who knows the original dataset
and tries to map the anonymized records to the original ones. This attacker model is introduced
by Domingo-Ferrer et al. [DRS15] with the idea that anonymization that protects against the
worst-case attacker also protects against all other attackers. The model only considers the risk of
Identity Disclosure. Still, the authors note that it is also possible to assess the risk of attribute
disclosure by excluding one attribute of the original dataset from the attacker’s knowledge.

Wang et al. [WFY05] propose an anonymization approach whose aim is to preserve the classification
value of the data while eliminating possible sensitive inferences. To eliminate these inferences, the
data owner defines a set of inference templates. Each template specifies an inference from a set of
attributes to some sensitive attribute and a maximum allowed confidence for this inference. Starting
with the original table and every attribute value suppressed, their algorithm progressively discloses
single attribute values according to a priority metric while ensuring no inference templates are
violated. This metric calculates the ratio of information gain divided by privacy loss due to the
disclosure of the attribute value.

Evfimievski et al. [EGS03] give metrics for the analysis of privacy preserved by randomization.
They show that using the measure based on mutual information introduced in Agrawal and Aggarwal
[AA01] has limitations. Therefore, the authors define “worst case information” as a bound on
“upward privacy breaches”.

Nergiz et al. [NCN09] consider anonymization of data with multiple relations. This means that
information about an entity is contained in multiple tables and not easily represented in a single table.
The authors adjust the General Loss Metric [Iye02] and Discernibility Penalty (see Section 4.2.6)
for this scenario.

Park and Shim [PS07] use the number of suppressions, which was allegedly proposed by Meyerson
and Williams [MW04].

Xiao and Tao [XT06] propose a reconstruction error based on the actual pdf and the approximate
pdf of the data.

Nergiz et al. [NAC07] give a metric that focuses on the risk of membership disclosure of an
individual in a data set.

Agrawal and Srikant [AS00] provide a privacy metric that measures how well the original values of a
perturbed table can be estimated. They use the confidence that the original value of a perturbed value
lies in a certain interval as a privacy measure. Agrawal and Aggarwal [AA01] show weaknesses of
this metric and additionally introduce a general-purpose metric for information loss based on the
L1-norm.
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A.2 Existing Software for Anonymization

In the following, we introduce all existing software investigated for usage in the experiments for
this work. The software mentioned has been found using web searches for data anonymization
tools, investigating papers in the field that use existing software to conduct their experiments, and
searching for collections of anonymization tools presented in the literature like the work by Silva
et al. [SMS21].

Desktop Applications

Amnesia is a desktop software for anonymization but also provides source code allowing users
to set up their own instances [Dim]. The software allows users to upload their own data and
have it anonymized. It provides five different privacy models, two of which are achieved using
pseudonymization. Another privacy model is 𝑘-anonymity, and the two remaining ones are weaker
forms of 𝑘-anonymity. Amnesia takes an arbitrary dataset as its input and produces an anonymized
output that can be exported from the tool. The user can define their own Value Generalization
Hierarchies or have them automatically generated by the tool. After creating all the necessary
hierarchies, the user can select the parameter 𝑘 and have the tool produce a new dataset that satisfies
𝑘-anonymity according to the given 𝑘 and the specified VGHs.

TIAMAT is a tool for analyzing anonymization techniques [DGB+09]. The software compares
anonymization quality and runtime efficiency between various methods that implement 𝑘-anonymity.
The metrics it uses to compare the quality of the anonymized data are the Certainty Penalty Xu et al.
[XWP+06] and the Classification Metric [Iye02].

SECRETA is an anonymization tool that also allows the evaluation and comparison of different
anonymization approaches [PGL+13; PGL+15]. The tool supports anonymization of relational,
transactional, and relational-transactional data. The metrics used to evaluate the anonymization
methods for relational data are the Certainty Penalty [XWP+06] and the average relative error
that a workload of COUNT queries shows on the anonymized data compared to the original data.
For transactional data, the software uses the Utility Loss metric as introduced by Loukides et al.
[LGM11], and the aforementioned average relative error, as it works on both data types. This
relative error metric is also used by LeFevre et al. [LDR06].

The Cornell Anonymization Toolkit (CAT) provides many different methods for PPDP [guo14]. CAT
implements the Incognito algorithm [LDR05] and the 𝑙-diversity privacy model. The anonymized
data is then analyzed in terms of privacy based on user-specified assumptions about the background
knowledge of an adversary.

ARX is the tool selected for our experiments. It is introduced in Section 4.4.1.

`-ARGUS and 𝜏-ARGUS are software programs developed partly under funding from the European
Union [AAR21; PAJJ20]. They provide multiple ways to anonymize microdata using global
recoding, suppression, micro-aggregation, and also synthetic data generation. 𝜏-ARGUS directs its
focus on privacy preservation for tables and `-ARGUS on general microdata. The two tools are
similar in many ways, but their main difference is that `-ARGUS will only process microdata given
as Action Script files (.asc) while 𝜏-ARGUS will take Action Script files, Comma Separated Values
(.csv) or Tab Separated Values (.tab).
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Free and open-source software libraries

The implementations listed in this section are free and openly available libraries or programming
frameworks.

Implementations of Grouping-based approaches There exists a GitHub repository that
implements five different algorithms to achieve 𝑘-anonymity on the anonymized dataset [Pha23].
The anonymized datasets can be evaluated using the EC size metric (Section 4.2.5), the Discernibility
Metric (Section 4.2.6), and the Certainty Penalty [XWP+06]. Furthermore, the authors implement
three different classification models for further evaluation of data utility. However, the software
is not designed to work on arbitrary datasets. Instead, five commonly used benchmark datasets
are included in the repository, and the instructions show only how to apply the algorithms to the
included datasets.

crowds is a Python module that implements 𝑘-anonymity using the Optimal Lattice Anonymization
(OLA) algorithm [Maz23]. OLA was introduced by El Emam et al. [EDI+09] and transforms a
dataset to satisfy 𝑘-anonymity via single-dimensional global recoding. Apart from generalization
strategies, the algorithm requires an information loss function that is minimized during the
anonymization process.

[Pra23] implements 𝑘-anonymity, 𝑙-diversity, and 𝑡-closeness using the Mondrian algo-
rithm [LDR06]. This algorithm partitions the original data set into smaller and smaller groups
using the median of values along one attribute in a group. After the dataset has been partitioned, the
partitions need to be recoded to reduce the uniqueness of the tuples they contain. This can be done
in different ways, where one is to replace all tuples with the median tuple in that group, similar to
microaggregation. The algorithm requires that the span of attribute values be defined. This is trivial
for numerical values, as their span will be the difference between the maximal and minimal value
for the attribute. Calculating the span of a categorical attribute is trickier, as categorical values often
have semantic meaning, and distance may not be well-defined between them. One possibility would
be to assign each value an integer, starting with 1 and then counting up until the number of distinct
values is reached. This can potentially assign very different semantic meanings to the differences
between two values. Furthermore, the algorithm only supports a single sensitive attribute.

Implementations of Differential Privacy Ektelo is a programming framework for writing
differentially private computations [ZMK+18]. It provides functionality to implement privacy
algorithms through the use of powerful operators. The framework is based on an article by Zhang
et al. [ZMK+18].

Google maintains a repository implementing various library functions to generate differentially
private statistics over datasets [Goo23].

GUPT is a data mining platform that guarantees that any output of data analyses performed by the
tool satisfies Differential Privacy [Moh23].

TensorFlow Privacy is a Python library that implements differentially private training of ML models
with TensorFlow optimizers [McK]. The team of TensorFlow themselves maintains it.
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Lillelund [Lil23] maintain a repository implements the differentially private Stochastic Gradient
Descent for ML that was proposed by Abadi et al. [ACG+16].

Diffprivlib is the second software selected for our experiments. It is introduced in Section 4.4.1.

The Differentially Private Convex Optimization Benchmark is a repository that implements a new
algorithm by Iyengar et al. [INS+19] and empirical evaluations for this algorithm and several
previous approaches on real data [sun23]. They provide model implementations for Logistic
Regression and Support Vector Machines that are fitted using differentially private optimization
algorithms.

Implementations for Federated Learning Flower is a framework that provides an infrastructure
to execute Federated Learning tasks. The framework supports many different ML models and
programming languages [Aut]. Simple Flower projects can be set up quickly thanks to its
comprehensive documentation. The framework is presented in the work of Beutel et al. [BTM+20].

Implementations for Data Synthesis In 2018, the National Institute of Standards and Technol-
ogy (NIST) of the United States of America hosted a “Differential Privacy Synthetic Data Challenge”,
which produced various promising solutions to differentially private data synthesis [AS19; Gar19;
LZW19; McK]. The overarching aim of the challenge was to produce algorithms that retain as
much useful information as possible about the original data.

Other Implementations

The “Privacy Protection Application (PPA)” is a tool that provides functionality for the anonymization
of vehicle trip data [USD23]. The implemented algorithm works by suppressing sensitive location
information.

OpenAnonymizer implements 𝑘-anonymity and 𝑙-diversity in Java [Sta15].

There also exist various implementations of anonymization methods that work on different data types.
SecGraph [JLM+15] implements many anonymization algorithms, metrics, and de-anonymization
attacks on graph data.

sdcMicro is an open-source package for the programming language R that implements methods of
statistical disclosure control [TMK+23]. The theoretical basis for the implementation is the work
of Templ [Tem17]. They include all methods that are also present in `-ARGUS and additional ones.
In contrast to `-ARGUS, which is a desktop application, it is possible to use the package from other
software in a flexible way.

Anonimatron is a free and extendable data anonymization tool [rea23]. The overarching goal of
the developers is to provide a tool that supports workers on a software project in safeguarding
sensitive production data if that data is used locally to find a bug, for example. The software works
by replacing sensitive values in a dataset with synonyms generated by the tool and maintaining a
mapping table that translates between original and synonymous values.
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