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Abstract

As service robots become more prevalent in social settings, there is a growing imperative for
research in the realm of social behavior development for these machines. An essential aspect of
attaining autonomy in mobile service robots is their capacity to perceive and understand their
surroundings effectively.

Despite being a formidable challenge, researchers have developed numerous solutions to empower
robots with the ability to engage with and gain a deeper understanding of their environment. This
enhanced capability endows robots with the intelligence required to make informed decisions by
harnessing the knowledge they have accumulated.

In our research study, we have deployed a robotic system equipped with an autonomy solution
that seamlessly incorporates human intentions via effective human-robot interactions. To be more
precise, we utilize vision-based human pose estimation to identify gestures indicative of human
intentions. Subsequently, these intentions are translated into predefined commands, facilitating the
autonomous scheduling of tasks for the robotic system.

Our research provides a comprehensive overview of an autonomy solution tailored for mobile robots.
It elaborates our approach to Gesture-based Robot Control and Navigation operations, leveraging
human posture knowledge. Our key focus areas of emphasis encompass diverse techniques for
acquiring knowledge, managing decisions, enhancing situational awareness, facilitating human-
robot interaction, and strategic planning. Additionally, we present the findings derived from the
experimental phase of physically implementing the robot.
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1 Introduction

The concept of our society transitioning into a “robot society” is gaining traction. The New York
Times’ video series “Robotica” further showcased the diverse applications of robots in daily life,
shedding light on both their potential and limitations, thereby emphasizing the necessity for a deeper
comprehension. This growing public interest is paralleled by an increasing number of policy reports
and scientific articles, indicating the imminent integration of robots into labor and everyday life.
As early as 1996, Japanese scientist Masakasu Ejiri delved into the future of robotics [31]. He
asserted that many experts in the field believe autonomous robots will wield significant influence
in our forthcoming society. Ejiri, associated with the renowned Hitachi Lab, specifically focused
on scenarios where robots are prevalent in work settings. He proposed that forthcoming technical
advancements in robot mobility, motion control, energy storage, and battery technology will largely
address the challenges associated with robots.

The “social” dimensions concept arises from the interaction between workers and robots in industrial
settings, encompassing aspects of safety, control systems, and interface ergonomics. These factors
are becoming increasingly vital not only in the realm of Worker-Robot Interaction (WRI) but also
in the broader context of HRI. HRI is applicable across various domains, including service robotics
and manufacturing processes. Within this framework, HRI encompasses traditional elements of
Human-Machine Interaction (HMI), such as communication with machines, mediation between
humans and objects, the necessity for anticipation, simulation, and more. Consequently, there is
a growing recognition among system integrators, robot manufacturers, and companies about the
significance of considering “social” aspects beyond just ergonomic and safety concerns. The term
“social” dimensions here encompasses not only physical factors but also new qualifications, technical
competences, and organizational skills. These encompass working team dynamics, communication
proficiencies, and decision-making processes within workflows. These considerations are pivotal
when designing systems that facilitate interactions between humans and robots. Addressing these
aspects often requires a sociological perspective [31].

Beyond serving as a mere remote-controlled device, telepresence robots hold a more profound
significance. The Institute for Architecture of Application Systems (IAAS) laboratory features a
cutting-edge telepresence robot [38] specifically designed by OhmniLabs, a Silicon Valley company
established in 2015. The particular variant in use revolutionizes interpersonal connections by
virtually placing individuals in remote settings. The Ohmni Telepresence Robot, which we refer
to as the ’Butler’ 1.1, this robot is exceptionally suited for office environments. Operating as a
mobile wheeled device, the telepresence robot is equipped with wireless internet connectivity. It
can be easily maneuvered using a computer, tablet, or smartphone. This interaction facilitates a
comprehensive exchange between users and the robot operator by enabling them to simultaneously
observe and hear the operator via their display screen. We leverage the developer edition of the
Ohmni Telepresence Robot, which empowers users to enhance and extend its functionalities.
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1 Introduction

This thesis is dedicated to exploring the domain of robotic visual perception, with the overarching
objective of designing a comprehensive robot architecture. This architecture aims to empower
the robot not only to achieve high-level goals but also to navigate the complexities of its dynamic
environment by acquiring and processing information. The central ambition of this work revolves
around creating an intelligent mobile robot capable of deciphering the intricate semantics inherent
in human environments. This involves a deep understanding of the spatial relationships that exist
between humans and their surroundings. This, in turn, leads to the development of a heightened
sense of robotic awareness. To realize this ambition, we have selected the ROS as our middleware
framework. This choice affords us the advantages of a publish-subscribe communication paradigm,
alongside the incorporation of services and actions. Moreover, ROS provides a robust mechanism
for managing concurrent processes or nodes, enabling seamless coordination within the system.

Figure 1.1: Butler Robot
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1.1 Motivation

1.1 Motivation

Endowing service robots with the capacity to comprehend their surroundings stands as a pivotal
element, particularly in settings focused on human presence like residences and workplaces. The
ultimate objective of a service robot resides in acquiring, comprehending, and proficiently carrying
out tasks that might pose challenges for humans. Typically, individuals undertake actions grounded
in their perception of circumstances and the environment, leveraging their acquired knowledge
pertaining to the assorted elements within the surroundings. While this cognitive process comes
instinctively to humans, robots lack the inherent capacity required for decision-making and action
execution. Consequently, the integration of environmental awareness and situational understanding
becomes imperative for robots. The acquisition of knowledge can be delineated as a robot’s
capability to gather and retain information regarding its operational world. Planning and reasoning
systems are harnessed to process this acquired knowledge, enabling robots to proficiently execute
tasks.

The environment encompasses the entirety of the area within which a robot functions, encompassing
all the entities situated therein. A situation is a limited segment of the environment, relevant to a
specific task and time-frame. Equipping robots to acquire knowledge from interactions and grasp
semantic relations helps them understand various situations and respond suitably. However, this
is intricate, as robots can’t naturally introspect. Artificial Intelligence (AI) offers tools, yet with
constraints. Also, robots must prioritize human safety, interpret intentions, and anticipate outcomes.
These complexities underscore the challenge of knowledge acquisition and reasoning in service
robotics. Contemporary approaches often assume the human brain holds either innate knowledge
triggered by stimuli or a mechanism to gather knowledge from related experiences. In service
robotics, knowledge systems are segregated into domains like encyclopedic, common sense, and
domain-specific knowledge. The robot’s surroundings encompass diverse entities physical objects,
human actions, articulated movements, among others. Acquiring these knowledge types is vital for
robots to emulate human capabilities [42].

This Thesis aims to enhance the Ohmni telepresence robot, enabling it to effectively engage and
assist people in their daily routines. The focus goes beyond conventional robotics aspects like
motion planning and navigation, encompassing human interaction abilities. Notably, the project
centers on telepresence robot adept at coexisting with humans, offering diverse levels of interaction
with one or multiple users.

1.2 Problem Statement

As discussed in preceding sections, a significant contemporary robotics challenge revolves around
the development of service robots capable of accomplishing diverse tasks while in the company
of humans. The principal goal of this thesis is to devise a robot framework that facilitates the
attainment of advanced objectives amidst complex and ever-shifting surroundings. Specifically, the
Ohmni telepresence robot at the Service Computing Lab of IAAS department must proficiently
engage in tasks such as environmental perception, navigation, and human interaction, all in a
simultaneous manner. This entails the creation of specialized structures adept at harmoniously
orchestrating multiple tasks, often operating in parallel and seamless coordination.
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1 Introduction

Building upon the previously stated assumption, this research addresses to tackle the following
questions:

• Research Question 1: How does the incorporation of vision-based perception into robotics
play a critical role, and to what extent can camera sensors effectively meet the demands of
tasks such as autonomous navigation, human-robot interaction, and collaboration?

• Research Question 2: What range of decisions can an autonomous robot effectively
undertake through the utilization of camera sensors, which are pivotal in vision-guided
systems, and what distinct benefits arise from the decisions enabled by a camera endowed
with depth and motion sensing capabilities?

• Research Question 3: How do you propose to enable an autonomous robot to perform
real-time detection, recognition, and classification of human skeletal frames, while also
conducting pose estimation through knowledge-based reasoning, especially when faced with
such scenarios while pursuing its objectives?

1.3 Research Methodology

The research endeavor aims to investigate the application of the Openpose software framework
in conjunction with a non-odometric approach utilizing Hector Simultaneous Localization and
Mapping (SLAM) for path planning and navigation, within the ROS framework. This study
represents a notable progression within the field of HRI and perception, offering the prospect
of significant advancements in this domain. The core focus of this research is dedicated to the
comprehensive assessment of outcomes and the meticulous execution of a performance analysis,
which pertains to the development and seamless integration of a diverse suite of modules. These
encompass the critical domains of image analysis, decision-making processes, HRI capabilities,
and autonomous navigation systems, all of which collectively constitute the essential facets of this
multifaceted inquiry.

The subsequent methodology was employed to address the aforementioned research inquiries:

• In the realm of real-time 2D pose estimation, a substantial body of literature and research
exists, reflecting its prominence in computer vision and robotics. Consequently, it becomes
imperative to leverage the knowledge and insights from prior research endeavors that have
employed 2D pose estimation in analogous scenarios or with similar objectives.

Similarly, in the domain of robotics and autonomous navigation, Simultaneous Localization
and Mapping (SLAM) has achieved significant milestones and attracted extensive research
attention. It is essential to delve into and harness insights and methodologies from previous
research efforts that have employed SLAM on differential drive robots or in analogous
environments.

This strategic utilization of existing research not only facilitates the adoption of a more suitable
and informed methodology but also offers valuable insights into the strengths and limitations
of current research within this specific domain. This, in turn, enhances the credibility and
relevance of our ongoing work.
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1.3 Research Methodology

• Our formal work began with a thorough investigation into two essential areas: the ROS
Framework and Docker technology. Notably, the Ohmni Developer Edition includes a
powerful Docker virtualization layer, which is a valuable tool for ROS developers. This
allows ROS developers to easily use the ROS framework on the Ohmni Operating System.
This combination provides an effective platform for deploying and using ROS applications
within the Ohmni ecosystem Ohmni Developer [39].

• The process of system design is a fundamental and critical aspect of development work,
as it involves the meticulous definition of both hardware and software components. A
system, in this context, represents a sophisticated framework characterized by the organized
collaboration of various component groups, all united in the pursuit of a common goal.
Thoroughly breaking down the system into its individual parts is a crucial step in revealing
the complex connections and interdependencies among these components. Furthermore, this
analytical approach sheds light on potential failure points that may materialize should certain
constituent parts cease to function. Consequently, this systematic breakdown serves as a
means to enhance work quality and substantially mitigate the occurrence of errors.

• Following the development of the system architecture, the next critical step involved setting up
the necessary hardware components. It was essential to meticulously evaluate the needs of the
tasks earmarked for computerization, encompassing the selection of an appropriate operating
system to support development, the choice of a middleware framework for algorithm execution,
and the establishment of a virtualization environment to enhance simulation efficiency.

• After finalizing the architectural framework, the subsequent phase entailed the development
of the software program and the meticulous selection of appropriate ROS algorithms and
software packages for each specific use case. An imperative aspect of this process involved
ensuring seamless integration between the newly introduced software components and the
pre-existing ones already installed within the system.

• During the course of our developmental process, we adopted a systematic approach in which
we decomposed the primary features into smaller, manageable tasks, addressing each use
case sequentially. Initially, our focus was on the successful realization of a Custom Docker
Image for Openpose. Subsequently, we advanced to the task of enabling the control of a
telepresence robot through gestures, leveraging the outcomes of the previous phase.

Following this, our attention turned to the development of an algorithm capable of accurately
determining human posture, a critical component in our project. Concurrently, we laid the
groundwork for the integration of Gesture and Navigation functionalities, necessitating the
creation of an environmental map, the configuration of the robot’s navigation stack, and the
enhancement of dynamic obstacle avoidance capabilities, surpassing the effectiveness of
prior implementations.

Ultimately, our efforts culminated in the successful achievement of Gesture-controlled
Navigation for the telepresence robot, thereby synergizing our diverse use cases and achieving
a comprehensive and cohesive solution.
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1.4 Document Structure

The document is organized into several chapters as follows:

• Chapter 2 provides essential background information on key robotics technologies. It
introduces the ROS and Docker, discusses Openpose, Lidar SLAM principles, and AMCL.
This foundation sets the stage for deeper discussions in subsequent chapters.

• Chapter 3 explains the state-of-the-art technologies and the existing relevant work related to
this thesis. Further, based on the evaluation, three specific research questions are formulated
concerning Human Context-Awareness and its Application in a Service-Oriented Robotic
System.

• Chapter 4 primarily focuses on delineating the hardware setup designed for the gesture
and posture detection solution, incorporating social rules. Additionally, it presents a
comprehensive design solution for enabling autonomous navigation of Butler Bot through
gestures.

• Chapter 5 thoroughly explores the implementation of the solution, providing a detailed
explanation of the process involved in communicating with Butler Bot and effectively
executing Gesture-Based Bot Control. This chapter also delves into Gesture-Based Bot
Navigation, where the system possesses an understanding of human posture, all while ensuring
that machine timing remains synchronized with each other.

• Chapter 6 centers on evaluating the solution’s performance, assessing posture and gesture
accuracy for robot control and navigation, and addressing the optimization of robot perfor-
mance by managing GPU utilization and computational overheads. This chapter is pivotal in
determining the practicality and efficiency of the solution.

• Chapter 7 serves as the conclusion of the work and outlines potential avenues for future
research and development.
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2 Background Information

2.1 Robot Operating System - ROS

2.1.1 Introduction

• What is ROS?

ROS, which stands for Robot Operating System, is an open-source and versatile meta-operating
system designed to cater to the intricate needs of robotic systems. This sophisticated platform
offers a wide array of services akin to those provided by conventional operating systems.
These encompass hardware abstraction, precise control of low-level devices, the realization
of frequently used functionalities, seamless message exchange among processes, and efficient
package management. Additionally, ROS equips developers with a rich set of tools and
libraries essential for acquiring, compiling, authoring, and executing code seamlessly across
multiple computational nodes. ROS, as a system, does not inherently operate in real-time.
Nevertheless, it is conceivable to integrate ROS with real-time code to achieve temporal
precision and responsiveness.

• Goals

The primary objective of ROS is to facilitate the reutilization of code within the realm of
robotics research and development. ROS embodies a distributed framework composed of
processes, also referred to as Nodes, which afford the capability for individual executables
to be meticulously crafted and loosely interconnected during runtime. These processes
can be logically organized into Packages and Stacks, thereby simplifying the sharing and
dissemination of robotic software components.

ROS is deliberately engineered to maintain a minimalistic footprint, refraining from encapsu-
lating the main() function, thereby enabling seamless integration of code developed for ROS
with other robot software frameworks.

Moreover, ROS advocates the development of ROS-agnostic libraries with well-defined
and clean functional interfaces, thus promoting modularity and code reusability. Language
agnosticism is another prominent feature of ROS, as it is designed to be effortlessly imple-
mented in various modern programming languages. This versatility is evidenced by existing
implementations in Python, C++, and Lisp, with ongoing experimental endeavors to introduce
libraries in Java and Lua.
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• Operating Systems

ROS is presently exclusively compatible with Unix-based operating systems. The software
designed for ROS is predominantly validated on Ubuntu and Mac OS X environments,
although the ROS community actively engages in efforts to extend support to additional
Linux platforms such as Fedora, Gentoo, and Arch Linux.

It is worth noting that while the prospect of porting ROS to Microsoft Windows remains a
possibility, it remains an area that has not been comprehensively investigated or implemented
at this juncture [55].

2.1.2 Concepts

• ROS Filesystem Level

Filesystem-level concepts in the Robot Operating System (ROS) primarily encompass various
resources encountered on the system’s disk. These resources serve as fundamental components
within ROS, facilitating the organization and management of robotic software. Key elements
within this framework include:

1. Packages: At the core of ROS’s software organization, packages are the fundamental
building blocks. Each package can encompass a range of components, such as
ROS runtime processes (referred to as nodes), ROS-dependent libraries, datasets,
configuration files, or any other elements that are logically grouped together. Packages
are the smallest, indivisible units for both building and releasing software in ROS.
Consequently, packages represent the most granular entities that can be constructed and
distributed.

2. Metapackages: Metapackages serve as specialized packages designed to group and
represent collections of related packages. Typically, metapackages are employed as
placeholders for maintaining backward compatibility when transitioning from the older
rosbuild Stacks system. They facilitate the management of interconnected packages
within ROS.

3. Repositories: Repositories are repositories of packages that share a common Version
Control System (VCS). Packages within the same repository are typically maintained at
the same version and can be collectively released using automated tools like catkin’s
release automation tool, bloom. These repositories often align with converted rosbuild
Stacks, and it is worth noting that a repository can house either a single package or
multiple related ones.

4. Message (msg) Types: Message types play a crucial role in defining the data structures
used for messages exchanged within ROS. These descriptions are stored in specific
directories, such as my_package/msg/MyMessageType.msg. Message types facilitate
the communication of data between different components of a robotic system, allowing
for the transmission of information in a standardized format.
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5. Service (srv) Types: Service types, my_package/srv/MyServiceType.srv, define the
structures for requests and responses in ROS services. These descriptions outline the
data formats and parameters required when interacting with ROS services, enabling the
seamless exchange of information between nodes in a robotic system.

• ROS Computation Graph Level

The Computation Graph in ROS represents a peer-to-peer network of interconnected ROS
processes collaborating to process data. Within this framework, several fundamental concepts
play crucial roles in facilitating data exchange and computation. These core Computation
Graph concepts are implemented within the ros_comm repository. They include:

1. Nodes: Nodes are individual processes responsible for carrying out computation tasks.
ROS embraces a modular approach, and a typical robot control system comprises multiple
nodes. These nodes have diverse functionalities, such as controlling sensors (e.g., laser
range-finders), managing actuators (e.g., wheel motors), executing localization and path
planning, offering graphical system views, and more. Nodes are created using ROS
client libraries like roscpp or rospy.

2. Master: The ROS Master serves as a vital component, providing name registration and
lookup services to the entire Computation Graph. It is the linchpin that enables nodes
to discover one another, exchange messages, and invoke services. Without the Master,
the collaborative network of nodes would not function.

3. Parameter Server: The Parameter Server serves as a centralized repository for storing
data, which can be accessed via unique keys. Currently integrated with the Master, it
offers a convenient means to manage and share configuration parameters across nodes.

4. Messages: Communication between nodes occurs through the exchange of messages.
Messages are essentially structured data entities, consisting of typed fields. They support
standard primitive data types (e.g., integers, floating-point numbers, booleans) and
arrays of these types. Messages can also include nested structures and arrays, much like
C structs, enabling flexible data representation.

5. Topics: Messages are transmitted within the Computation Graph using a publish-
subscribe mechanism. A node sends a message by publishing it to a specific topic,
identified by a name. Nodes interested in particular data subscribe to relevant topics.
Multiple publishers and subscribers can coexist for a single topic, and nodes can engage
with multiple topics simultaneously. This design decouples data production from
consumption, forming a type-safe message bus.

6. Services: While the publish-subscribe model suits many scenarios, it doesn’t align
well with request-reply interactions essential in distributed systems. Services address
this need, utilizing pairs of message structures: one for the request and one for the
reply. Nodes offering services expose them under specific names, while clients use
these services by sending requests and awaiting responses. ROS client libraries often
present this interaction in a manner akin to remote procedure calls (RPC). [55]
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2.1.3 Client Libraries

A ROS client library constitutes a comprehensive codebase that simplifies the tasks of ROS
programmers by providing programmatic access to key ROS concepts. These libraries abstract
complex ROS functionalities into programming constructs, enabling developers to seamlessly create
ROS nodes, engage in topic publication and subscription, implement and invoke services, and utilize
the Parameter Server. While these libraries can be implemented in various programming languages,
the current emphasis is on delivering robust support for both C++ and Python. Specifically, two
prominent ROS client libraries are noteworthy:

1. roscpp: roscpp stands as the C++ client library of choice within the ROS ecosystem. It holds
the distinction of being the most widely adopted ROS client library, designed with a focus on
high-performance operation. This library empowers developers to harness the full capabilities
of ROS through C++ code, making it ideal for resource-intensive ROS applications.

2. rospy: rospy, on the other hand, is the Python-based client library for ROS. It has been
crafted to leverage the advantages of an object-oriented scripting language in the context of
ROS. rospy’s design prioritizes rapid implementation and testing of algorithms, making it
an excellent choice for quickly prototyping ROS applications and non-critical code sections.
Additionally, rospy’s type introspection capabilities are beneficial for a range of tasks. Notably,
several essential ROS tools, including the ROS Master and roslaunch, are developed using
rospy, underscoring Python as a core dependency in the ROS ecosystem. [55]

2.1.4 ROS commands

Below is a list of commonly employed command-line tools for orchestrating ROS within the context
of our research endeavors:

• roscore:This tool constitutes an ensemble of nodes and programs that are indispensable
for the seamless operation of a ROS-based system. Upon execution, it initializes critical
components including the ROS master, ROS parameter server, and the rosout logging node.

• roslaunch: Roslaunch is an invaluable utility designed for the systematic initiation of a
collection of nodes, sparing the necessity of manual invocation for each node. It operates on
’.launch’ files, which encapsulate configurations of nodes and facilitate topic remapping.

• rosrun: Rosrun provides an expedient method for locating and executing packages within
the file system. Notably, it obviates the need for explicit knowledge of the package path,
streamlining the execution process.

• rostopic: This tool furnishes the capability to inspect and display messages transmitted
across ROS topics, as well as furnish real-time insights into the status and dynamics of topics.

• rosnode: Rosnode serves as a diagnostic tool, offering detailed insights into ROS nodes. It
provides information pertaining to node connections, publications, and subscriptions, which
is indispensable for debugging and analysis.

The ROS cheatsheet’s provenance encompasses a comprehensive array of ROS commands [50].
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2.2 Docker

Docker represents a suite of Platform as a Service (PaaS) offerings that leverage the concept of
Operating System-level virtualization to facilitate the deployment of software within encapsulated
units referred to as containers. These containers are characterized by their inherent isolation
from one another and their self-contained provisions of software, libraries, and configuration files.
Furthermore, containers establish intercommunication through clearly defined channels. Notably,
all containers are executed under a unified operating system kernel, thereby achieving resource
efficiency superior to that of virtual machines [Docker Inroduction] [14].

Important Terminologies in Docker

1. Docker Image: A Docker image is a composite entity composed of multiple layers, serving
as the blueprint for the execution of code within a Docker container. Docker images consist
of a series of instructions that are employed to instantiate Docker containers.

2. Docker Container: A Docker container is a live runtime instance derived from a Docker
image. These containers empower developers to encapsulate applications along with their
requisite components, encompassing libraries and dependencies.

3. Dockerfile: A Dockerfile represents a textual document housing imperative commands that,
upon execution, facilitate the construction of a Docker Image. Docker images are synthesized
using the directives prescribed within a Dockerfile.

4. Docker Engine: Docker Engine denotes the foundational software responsible for orches-
trating and managing containers. This software operates within a client-server paradigm,
comprising three primary constituents:

• Server: The server component, referred to as a daemon process, undertakes the role of
generating and overseeing Docker images, containers, networks, and storage volumes.

• REST API: The REST API outlines the interface through which external applications
can interact with the Docker Server, issuing instructions for various operations.

• Client: The Client manifests as the Docker command-line interface (CLI), serving as
a conduit for users to engage with Docker through a repertoire of command-driven
actions.

5. Docker Hub: Docker Hub stands as the official online repository where an extensive
catalog of Docker Images is hosted and made available for utilization. It streamlines the
process of discovering, managing, and sharing container images, enhancing collaboration
and accessibility among the Docker community.
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2.3 Ohmni Docker

The Ohmni Developer Edition is equipped with a robust Docker virtualization layer, enabling the
execution of various Ubuntu versions within the Ohmni platform.

By default, the command ’dockerenv’ can be executed from either an adb or ssh shell. This command
initiates the retrieval of the ’ohmnilabs/ohmnidev’ image from our Docker Hub repository. This
image serves as a foundation, featuring Ubuntu 18.04 as its base, supplemented with a selection of
additional tools [Ohmni Docker - Overview] [36].

2.3.1 Creating a Robotics Application Using ROS

The Ohmni Developer Edition incorporates a robust Docker virtualization layer, offering ROS
developers the opportunity to leverage it for running the ROS framework seamlessly on the Ohmni
platform. In addition to the default ohmnilabs/ohmnidev image, an additional docker image,
tb_control, has been introduced to streamline the development process.

This ROS software driver node serves as a crucial component for controlling various actuators on
Ohmnilabs robots, including wheels and the neck, while also facilitating sensor feedback acquisition,
such as wheel encoder data, neck position, battery voltage, and docking status.

A prerequisite for utilizing this ROS software driver is the possession of an Ohmni Developer
Edition robot [13]. For a comprehensive understanding of the Ohmni Developer Edition, please
refer to the detailed information provided on this webpage: Develop Robotics application with
ROS

2.4 Openpose

2.4.1 Introduction

One crucial element in achieving a comprehensive comprehension of individuals depicted in images
and videos involves the process of human 2D pose estimation. This process centers on the task of
precisely localizing anatomical keypoints or “parts” of the human body. Traditionally, human pose
estimation efforts have primarily concentrated on identifying and tracking body parts for single
individuals. However, when it comes to inferring the poses of multiple individuals within the same
image, a distinct and intricate set of challenges emerges.

The task of inferring human poses from images presents several significant challenges. Firstly, each
image can potentially feature an unpredictable and varying number of individuals, each appearing
at different positions and scales. Secondly, the presence of multiple individuals in an image gives
rise to intricate spatial interferences, stemming from factors such as physical contact, occlusion,
and the articulation of limbs, making it challenging to accurately associate body parts. Lastly,
the computational demands during runtime tend to increase with the number of individuals in the
image, posing a formidable challenge for achieving real-time performance [9].
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Within the confines of this research paper, the Cao et al. [7] introduce an efficient approach to
multiperson pose estimation, which demonstrates competitive performance across various publicly
available benchmarks. The paper introduces a novel concept: the first-ever bottom-up representation
of association scores through Part Affinity Fields (PAFs). These PAFs consist of 2D vector fields
that encode both the position and orientation of limbs throughout the image domain.

The paper proceeds to establish that concurrently inferring these bottom-up representations,
encompassing detection and association, provides ample global context for a greedy parsing strategy
to yield high-quality results. Remarkably, this is accomplished while significantly reducing the
computational overhead, thereby offering an approach that is both effective and computationally
economical.

2.4.2 Method

Figure 2.1: Overall pipeline.

(a) The method takes the entire image as the input for a CNN to jointly predict (b) confidence maps
for body part detection and (c) PAFs for part association. (d) The parsing step performs a set of
bipartite matchings to associate body part candidates. (e) Finally assemble them into full body
poses for all people in the image [7].

Figure 2.1 illustrates the comprehensive workflow of Openpose method. It commences with the
input of a color image with dimensions F × ℎ (depicted in Figure 2.1a), ultimately resulting in
the determination of 2D anatomical keypoints for each individual within the image (depicted in
Figure 2.1e). Initially, a feedforward neural network is employed to make predictions. Specifically,
it generates a collection of 2D confidence maps denoted as S, which correspond to the spatial
locations of body parts (as depicted in Figure 2.1b). Additionally, the network produces a set of 2D
vector fields referred to as L, representing Part Affinity Fields (PAFs). These PAFs encapsulate
information regarding the extent of association between different body parts (as shown in Figure
2.1). Finally, the confidence maps and the PAFs are parsed by greedy inference (Figure 2.1 d) to
output the 2D keypoints for all people in the image.

2.4.2.1 Network Architecture

The architectural framework, as illustrated in Figure 2.2, follows an iterative approach for the
prediction of affinity fields, denoting part-to-part associations (depicted in blue), and detection
confidence maps (displayed in beige). This iterative prediction paradigm progressively enhances
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Figure 2.2: Architecture of the multi-stage CNN [7].

the quality of predictions across consecutive stages denoted by the parameter C ∈ {1, . . . , )}.
Importantly, intermediate supervision is applied at each of these stages to guide and refine the
prediction process.

In the original architectural configuration, the neural network comprised multiple 7×7 convolutional
layers. In the current model iteration, the receptive field’s size is maintained while substantially
curtailing computational demands. This reduction in computational load is achieved by substituting
each 7 × 7 convolutional kernel with a sequence of three consecutive 3 × 3 kernels. Notably, the
computational operations required for the former approach amount to 2 × 72 − 1 = 97, equating to
97 operations. In contrast, the latter method demands a significantly lower computational load of
only 51 operations. Furthermore, a novel modification involves the concatenation of the output
from each of these three convolutional kernels, drawing inspiration from the principles of DenseNet.
This augmentation results in a threefold increase in the number of non-linearity layers, enabling the
network to effectively preserve both lower-level and higher-level features.

2.4.2.2 Simultaneous Detection and Association

The input image undergoes an initial analysis through a Convolutional Neural Network (CNN)
architecture, which is initialized using the first 10 layers of the VGG-19 model and subsequently
fine-tuned for the task at hand. This CNN analysis yields a set of feature maps denoted as F, which
serves as input to the first stage of our network. In this initial stage, the network generates a set of
part affinity fields (PAFs), !1 = q1(�)

In each subsequent stage of the network, a refined set of predictions is produced. This process
leverages the predictions obtained in the previous stage, as well as the original image features F.
The key to this refinement lies in concatenating these two sources of information and utilizing them
to generate more accurate and improved predictions.

LC = (qC ) (F,LC−1),∀2 ≤ C ≤ )%
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The symbol qC denotes the specific Convolutional Neural Networks (CNNs) employed for inference
at Stage C, and )% represents the total number of stages dedicated to processing PAFs. This
iterative process continues for )% iterations. Subsequently, the procedure extends to the detection
of confidence maps, commencing with the most up-to-date PAF predictions.

where qC refers to the CNNs for inference at Stage C, and )% to the number of total PAFs stages.
After )% iterations, the process is repeated for the confidence maps detection, starting in the most
updated PAFs prediction,

S)% = dC
(
F,L)%

)
,∀C = )%,

SC = dC
(
F,L)% , SC−1

)
,∀)% < C ≤ )% + )� ,

where dC refers to the CNNs for inference at Stage C, and )� to the number of total confidence map
stages.

In order to guide the iterative prediction process, where the network sequentially estimates PAFs for
anatomical body parts in the primary branch and confidence maps in the secondary branch, a loss
function is systematically applied at the termination of each stage. This loss function is rooted in
the !2 norm, serving as a quantitative measure of the disparity between the network’s predictions
and the groundtruth representations encoded within the maps and fields. The utilization of a mask
plays a pivotal role in training, serving the purpose of preventing the imposition of penalties on
genuinely positive predictions. Furthermore, the incorporation of intermediate supervision at each
stage serves as an effective strategy for mitigating the vanishing gradient problem, as it periodically
replenishes the gradient Cao et al. [7].

2.4.2.3 Confidence Maps for Part Detection

Every confidence map constitutes a 2D representation conveying the degree of certainty regarding
the presence of a specific body part at any given pixel location. In an ideal scenario, when a solitary
individual is present within the image, each confidence map should exhibit a singular peak for every
discernible body part. Conversely, in situations involving multiple individuals within the image, the
expectation is for multiple peaks to manifest in each confidence map, each peak corresponding to a
visible body part for each distinct person.

The selection of the maximum value from the confidence maps is favored over averaging to ensure
that the precision of neighboring peaks retains its distinctiveness, as visually depicted in the right
figure. During the testing phase, the prediction of confidence maps is executed, and the identification
of potential body part candidates is achieved through the application of a non-maximum suppression
technique.

2.4.2.4 Part Affinity Fields for Part Association

In the context of the available set of identified body parts, illustrated as the red and blue data
points in Figure 2.3a, the challenge lies in the task of assembling these individual body parts into
complete full-body poses for an unspecified number of individuals. A fundamental requirement is
the establishment of a confidence metric to assess the association between pairs of detected body
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parts, thereby determining whether they pertain to the same individual. One plausible approach
to gauge this association involves the detection of intermediary points positioned between each
pair of body parts along a limb, as exemplified in Figure 2.3b. However, in densely populated
scenarios where individuals congregate closely, these intermediate points are susceptible to yielding
erroneous associations, illustrated as the green lines in Figure 2.3b.

Figure 2.3: Part association strategies.[7].

These erroneous associations stem from two inherent limitations in the representation:

• It solely encodes the positional information of each limb segment while neglecting their
orientation.

• It condenses the region of limb support into a singular point, limiting its effectiveness.

To address these limitations, PAFs are introduced. PAFs offer a solution by preserving both the
positional and orientational characteristics of limb segments across their entire support regions,
as depicted in Figure 2.3c. In essence, each PAFs manifests as a two-dimensional vector field
corresponding to a specific limb type, as illustrated in Figure 2.1d. Within the region attributed to
a particular limb, these 2D vectors encode the directional information, indicating the orientation
from one end of the limb to the other. Consequently, each distinct limb type is associated with a
specific PAFs that bridges the two corresponding body parts, enhancing the accuracy of association
determination.

2.4.3 System

OpenPose addresses several limitations present in existing 2D body pose estimation libraries like
Mask R-CNN and Alpha-Pose. These libraries often require users to develop their own components,
such as frame readers, result visualization tools, and output file generators. Moreover, they lack
integration between facial and body keypoint detection, necessitating the use of multiple separate
libraries.
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OpenPose offers a comprehensive solution to these challenges. It boasts platform versatility,
supporting Ubuntu, Windows, Mac OSX, and even embedded systems like Nvidia Tegra TX2.
Additionally, it is compatible with various hardware configurations, including CUDA GPUs,
OpenCL GPUs, and CPU-only devices. OpenPose comprises three essential components: body and
foot detection, hand detection, and face detection, with the core component being the combined
body and foot keypoint detector.

Notably, OpenPose delivers exceptional inference performance, surpassing state-of-the-art methods
while maintaining high-quality results. On a Nvidia GTX 1080 Ti-equipped machine, it achieves an
impressive frame rate of approximately 22 FPS, all while preserving accuracy. Researchers have
already harnessed OpenPose for a wide array of applications, including person re-identification,
GAN-based video manipulation of human faces and bodies, Human-Computer Interaction, 3D pose
estimation, and 3D human mesh model generation.

2.4.4 Evaluation

2.4.4.1 Inference Runtime Analysis

This study conducts a comparative analysis among three prominent and widely adopted multi-person
pose estimation libraries: OpenPose, Mask R-CNN, and Alpha-Pose. Figure 2.4 illustrates the
inference runtime performance of these methods. Notably, the Megvii (Face++) and MSRA GitHub
repositories lack information on their person detectors and solely provide pose estimation results
for cropped persons, precluding a precise assessment of the runtime performance, rendering their
exclusion from this analysis.

Figure 2.4: Inference time comparison between OpenPose, Mask R-CNN, and Alpha-Pose [7].
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Mask R-CNN exclusively operates with Nvidia graphics cards, and the analysis is conducted on
a system featuring an NVIDIA 1080 Ti. As top-down approaches, the inference times of Mask
R-CNN, Alpha-Pose, Megvii, and MSRA are generally proportional to the number of individuals
present in the image, specifically corresponding to the number of proposals generated by their
respective person detectors. In stark contrast, the bottom-up approach’s inference time remains
invariant with respect to the number of people in the image.

The runtime of OpenPose comprises two primary components: (1) CNN processing time, character-
ized by $ (=1) complexity, remaining constant regardless of the number of people; (2) multi-person
parsing time, characterized by$ (=2) complexity, where ’n’ signifies the number of people. However,
it’s noteworthy that the parsing time is two orders of magnitude shorter than the CNN processing
time. For example, parsing requires 0.58 ms for 9 people, whereas CNN processing takes 36 ms.

2.4.4.2 Trade-off between Speed and Accuracy

In the realm of object detection, it is evident that region-proposed methods, exemplified by Faster
R-CNN, excel in achieving superior accuracy. Conversely, single-shot methods such as YOLO and
SSD exhibit enhanced runtime performance. Similarly, in the context of human pose estimation,
a parallel trend emerges, with top-down approaches demonstrating higher accuracy but slower
processing speeds when compared to bottom-up methods, particularly in scenarios involving
multiple individuals. To offer a comprehensive comparison, this study presents both speed and
accuracy metrics for the leading entries in the COCO Challenge, as depicted in Figure 2.5.

Figure 2.5: Trade-off between speed and accuracy for the main entries of the COCO Challenge [7].

The principal factor contributing to the diminished accuracy of bottom-up approaches is the inherent
limitation in resolution. While top-down methods independently extract and process each detected
person within their networks, bottom-up techniques necessitate simultaneous processing of the
entire image, resulting in reduced resolution per individual. In summary, top-down methodologies,
such as AlphaPose, yield superior results in scenarios with a limited number of individuals, albeit
experiencing a notable decrease in processing speed when handling images containing a larger
number of people.
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Furthermore, it’s worth noting that accuracy metrics may potentially be misleading. Nevertheless,
the multi-scale approach concurrently delivers both improved speed and accuracy when compared
to the versions for which runtime results are reported.

2.5 Lidar SLAM

LiDAR SLAM, is a sophisticated procedure employed by robots and autonomous systems to
construct a comprehensive map of an unfamiliar environment while concurrently determining
their precise position within said map. This technological methodology is underpinned by LiDAR
sensors, which emit laser pulses and meticulously measure the time elapsed from pulse emission
to its return after encountering objects in the sensor’s line of sight. Through an in-depth analysis
of the received laser signals, LiDAR SLAM systems adeptly generate intricate 3D point cloud
representations that faithfully depict the surrounding environment. Subsequently, this wealth of
spatial information is leveraged to precisely gauge the robot’s spatial coordinates and orientation
relative to the generated map.

The acronym SLAM, which stands for Simultaneous Localization and Mapping, succinctly
encapsulates the dual core functions of this process. Localization denotes the pivotal task of
pinpointing the precise position and orientation of the robot within the constructed map, while
mapping entails the creation of a geometrically accurate representation of the environment. Lidar
SLAM systems have gained prominence and garnered considerable attention due to their inherent
capacity to deliver exceptionally precise maps in real-time, making them indispensable in a
multitude of applications spanning autonomous vehicles, mobile robotics, and indoor mapping,
thereby facilitating navigation and asset tracking endeavors [28].

2.5.1 Operational principles of Lidar SLAM

• Principles of Simultaneous Localization and Mapping

The fundamental premise of SLAM revolves around enabling a robotic or autonomous
system to concurrently navigate through an unexplored environment and construct a spatial
representation while accurately ascertaining its own positional coordinates within that
map. This is achieved by amalgamating data from diverse sensors like Lidar, cameras, and
inertial measurement units (IMUs), collectively aiding in trajectory estimation and landmark
localization.

SLAM algorithms typically comprise two essential components: the prediction step, respon-
sible for updating the robot’s position based on past position and sensor-derived motion
data, and the correction step, which refines the predicted position using measurements from
environmental cues, such as distances to landmarks sensed by Lidar.

Through iterative execution of prediction and correction steps, SLAM algorithms iteratively
refine the robot’s position and the environment map. The resulting map can take various forms,
including occupancy grids, point clouds, or graphs, encapsulating the spatial relationships
among detected landmarks.
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• Role of Lidar Sensors in SLAM

Lidar sensors assume a pivotal role within SLAM systems by furnishing precise and high-
resolution environmental data. These sensors emit laser pulses, which subsequently rebound
off objects and return to the sensor, facilitating distance measurements based on pulse travel
time. Lidar sensors excel in generating dense point clouds, comprising 3D spatial points that
delineate object surfaces within the environment.

The point cloud data gleaned from Lidar sensors serve as valuable resources for identifying
and tracking landmarks, such as walls, corners, or other distinctive environmental features.
These landmarks hold paramount significance for SLAM algorithms, as they furnish vital
information to refine the robot’s estimated position and orientation. Additionally, Lidar data
can be harnessed for obstacle detection and avoidance, rendering it especially invaluable for
autonomous navigation and ensuring safe operation.

• Map Generation and Pose Estimation

LiDAR SLAM is fundamentally concerned with two core tasks: the creation of detailed maps
using Lidar data and the concurrent estimation of the robot’s position within these maps.
Maps can be represented in various formats, such as occupancy grids or point clouds.

To estimate the robot’s position, SLAM algorithms employ Lidar data to identify and track
environmental landmarks. By comparing observed landmarks to those stored in the map,
the algorithm deduces the robot’s position and orientation relative to the map. This involves
finding the optimal transformation that aligns the observed Lidar data with the map, often
achieved through techniques like iterative closest point (ICP) or optimization algorithms.

As the robot explores its surroundings and collects new Lidar data, the map undergoes
continuous updates, thereby refining the robot’s pose. This iterative process empowers Lidar
SLAM systems to generate accurate maps and provide real-time localization, serving various
applications, including autonomous vehicles, mobile robotics, and indoor mapping [28].

2.5.2 Hector SLAM

Hector SLAM is a Lidar-based Simultaneous Localization and Mapping (SLAM) algorithm notable
for its independence from odometry data, rendering it suitable for platforms lacking wheel encoders
or motion sensors. This algorithm relies on a grid map representation and employs a multi-resolution
approach to process Lidar data at varying resolutions, facilitating efficient navigation in expansive
environments [19].

At the heart of Hector SLAM lies a rapid scan matching technique, aligning consecutive Lidar scans
to estimate the robot’s motion accurately. To mitigate accumulated pose estimation errors over time,
the algorithm incorporates loop closure detection and optimization mechanisms. Hector SLAM
has demonstrated successful applications across diverse platforms, encompassing aerial vehicles,
ground-based robots, and even handheld Lidar scanners [28] [2].
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2.6 Localization - AMCL

• Particle Filter

In the context of particle filters, a substantial quantity of particles spanning the entire state-
space is employed to establish the filtering process. With an accumulation of additional data,
predictions and measurement updates are iteratively performed, resulting in the emergence
of a multi-modal posterior distribution for the robot’s state. This approach stands in stark
contrast to the Kalman Filter, which approximates the posterior distribution as Gaussian and
converges towards a single state-space value after several iterations.

The particle filter methodology involves the following key steps:

1. Re-sampling: This step entails drawing random samples from the existing set of particles,
allowing replacement. The selection of particles is influenced by their associated importance
weights. Particles with higher weights are favored and drawn more frequently, while those
with lower weights may be drawn minimally or not at all. Subsequently, all particles are
assigned equal weightage post-re-sampling.

2. Sampling: To sample from the distribution characterizing the system’s dynamics, past
beliefs and control information are taken into account. The current belief is represented by
the density obtained through the product of the distribution and a prior belief instance. This
density serves as the basis for the proposal distribution in the subsequent stage.

3. Importance Sampling: In this phase, each sample is weighted by its importance weight,
which corresponds to the likelihood of the sample given the measurement. This step effectively
incorporates the measurement information into the belief update process.

Through these three sequential procedures, samples are generated to represent the posterior
belief in each iteration. Furthermore, the relevance weights of the data are periodically
adjusted after ’n’ repetitions to ensure that they collectively sum to 1 [AMCL] [47].

• Adaptive Particle Filter for Robot Localization

Particle filters struggle with random particle distribution, especially in high-dimensional
problems. Adaptive particle filters outperform standard ones by approximating the true
posterior with a piecewise constant distribution, reducing inaccuracies. The number of
particles needed is inversely related to a specified accuracy threshold.

For localization, adaptive particle filters begin with an environment map. The robot is placed
manually or starts with no initial estimate. It predicts its position with new samples after each
motion, integrates sensor readings, and benefits from randomly added samples for recovery.
Symmetry-induced map ambiguities lead to a multi-modal posterior, requiring numerous
sensor readings for convergence [2].
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Our objective is to craft a software architecture comprising interconnected modules for enhancing
the navigation capabilities of our Ohmni telepresence robot within indoor environments, enabling
seamless execution of complex tasks. The focal point of the Master’s Thesis revolves around the
development and integration of diverse modules encompassing image analysis, decision-making,
human-robot interaction, and autonomous navigation. These individual modules necessitate precise
orchestration to form a cohesive and comprehensive architecture. With this objective in mind, we
examined prior implementations across different robotic platforms. The goal was to assimilate
these concepts and tailor them to suit the unique characteristics of the Ohmni telepresence robot.

3.1 Environmental Awareness in Mobile Service Robots

Comprehending the environment stands as a pivotal capability for mobile service robots in
their journey towards autonomy. Despite its inherent difficulty, researchers have devised an
array of solutions aimed at empowering robots to engage with and gain insights into their
surrounding environment. Prasad and Ertel [42] provides an in-depth review of contemporary
artificial intelligence methodologies employed by researchers. These methodologies are focused on
facilitating robots in the acquisition and processing of knowledge pertaining to their environment and
contextual circumstances, thereby fostering a sense of awareness in robotics. Jumel et al. [22] delves
into a comprehensive discussion regarding the fundamental capabilities expected from a humanoid
service robot. This discussion revolves around the utilization of contemporary methodologies
associated with social navigation and deep learning to construct these capabilities. The paper
presents a meticulous architectural framework that elucidates the interconnection between high-level
functionalities and their underlying low-level sub-functions Robinson et al. [44].

The article Moniz and Krings [31], undertakes an examination of two hypotheses. The first
hypothesis centers on the identification of pertinent research inquiries that pertain to the potential
integration of robotic systems within various modes of work organization on the manufacturing
shop-floor level. The second hypothesis involves a comprehensive discussion regarding the
conceptualization of past organizational challenges related to HRI. Within this framework, the
article contemplates the limitations posed by cognitive and perceptual workloads for robot operators
functioning within complex operational systems.

3.2 Elevating Human-Robot Interaction

Enabling machines to develop an understanding of individuals in images and videos hinges on
the real-time estimation of multi-person 2D poses. This study Cao et al. [8] presents an approach
designed for real-time detection of the 2D poses of multiple individuals within images. The method
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in question utilizes a nonparametric representation referred to as PAFs to establish associations
between body parts and individuals depicted in the images. Operating on a bottom-up methodology,
this system achieves both high accuracy and real-time performance, regardless of the number of
individuals present in the images.

The integration of the OpenPose software framework with the ROS signifies a significant advance-
ment in the field of human-robot interaction and perception. This amalgamation effectively merges
the advanced human pose estimation capabilities of OpenPose with the extensive robotic functional-
ities provided by ROS. Through the incorporation of ROS and OpenPose, the robot’s perceptual
abilities are greatly enhanced, opening the door to a wide range of applications, including but not
limited to, human-robot collaboration, assistive robotics, interactive entertainment, and healthcare
support. Joshi et al. [21] thoroughly elucidates the intricacies involved in integrating OpenPose
with ROS, emphasizing the seamless interoperability achieved, and explores the consequential
implications for elevating the overall quality of the human-robot interaction experience.

The approach presented by Martinelli et al. [29], in this context offers a solution by utilizing
computer vision techniques to create a gesture control interface. While the field of mobile robotics
predominantly advances through autonomous systems, there are situations where this strategy
is impractical [27], [43]. In these instances, non-autonomous robots must be operated using
human-machine interfaces, often relying on costly industrial equipment. The utilization of fixed
control mechanisms to govern robot actions restricts operators to the machinery [62], resulting in
reduced mobility and agility. Furthermore, these methods often lead to a lack of control precision.
De Assis Moura Pimentel and Aquino [12] addresses the ongoing challenge of enabling social
navigation in service robots. It provides a comprehensive review of the latest social navigation
models while introducing an innovative approach—a novel social navigation model that integrates
context extraction from ontologies. This advancement is anticipated to enhance not only the robot’s
authenticity and sociability but also to improve the overall comfort of human-robot interactions.

3.3 Human-Robot Synergy for Enhanced Exploration

Xia et al. [65] outlines a mobile robot system meticulously designed to collaboratively explore
previously uncharted environments in the company of humans. This feat is achieved through a
seamless integration of simultaneous localization and mapping SLAM techniques, strategic motion
planning, and accurate human recognition capabilities. Moreover, the system ensures that the robot
exhibits a heightened awareness of human presence, thereby maintaining a behavior that is attuned to
human safety, individual preferences, and interactive dynamics throughout the exploration process
[58]. The system demonstrates the ability to simultaneously accomplish essential tasks such as
robot localization, mapping, and human tracking [5].

Yuan et al. [72] aims to present a viable approach for the integration of these three facets, culminating
in a navigation system that embodies consciousness, safety, accuracy, robustness, and efficiency. The
navigation challenges pertaining to mobile service robots are distilled into three key components: 1.
Human detection, 2. Real-time robot localization, and 3. Robot motion planning. Furthermore,
Miller et al. [30] provides an all-encompassing overview of an autonomy solution designed for
mobile robots. It expounds upon an approach aimed at enhancing human-following operations and
delves into an investigation of a strategy for automated decision-making in parking scenarios.
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The thorough examination of existing literature has equipped the author with crucial insights to
initiate their work, while also facilitating a comprehensive understanding of how research in this
field has evolved from its foundational principles to the present. Moreover, these literature surveys
have played a pivotal role in shaping the research methodology and strengthening the concepts
intended for implementation in the Master’s Thesis. The unresolved issues highlighted as limitations
or drawbacks in prior research endeavors now serve as potential focal points for the Master’s Thesis.
A profound grasp of the preceding work in this domain was indispensable, as progressing with the
research would have been unfeasible without it.
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4.1 Hardware Setup

The hardware configuration is elucidated comprehensively through the illustrative representation
provided in the Figure 1.1.

4.1.1 Microsoft Kinect RGB-D Camera v1

• Camera(RGB) Specifications:The Kinect camera is classified as an RGB (Red-Green-Blue)
device with a resolution of 640×480 pixels and a color range encompassing 24 bits. Operating
at a frame capture rate of 30 frames per second (fps), this camera is analogous to conventional
webcams or the sensors commonly found in digital cameras, rendering it quite ordinary in
most aspects.

While the camera possesses the capability to capture imagery at a higher resolution of
1280×960 pixels, it becomes apparent that the maximum attainable frame rate at this elevated
definition is approximately 15fps. Conversely, faster frame rates can be achieved by reducing
the camera’s resolution.

The operational scope of the Kinect sensor is confined to a specified distance range, spanning
from 1.2 to 3.5 meters. Its horizontal field of view spans 57 degrees, signifying that at its
maximum range, it can scan a scene with a width of 3.8 meters.

The sensor boasts a vertical field of view measuring 43 degrees, equivalent to 63 centimeters
(25 inches) in physical dimensions. This field of view can be further augmented by utilizing
the vertical pivot system, which permits the sensor to tilt up or down by a maximum of 27
degrees in either direction [60].

Figure 4.1: Kinect RGB
Camera [60]

Figure 4.2: Kinect IR
Camera [60]

Figure 4.3: Kinect IR
Projector [60]
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• IR Depth Sensor Specifications:The Kinect’s depth measurement capabilities are attributed
to the presence of an infrared (IR) emitter and an IR depth sensor. The emitter projects
infrared light beams, and the depth sensor subsequently records the reflected IR beams.
These reflected beams are then transformed into depth information, effectively quantifying
the spatial gap between an object and the sensor. This pivotal process enables the acquisition
of depth images.

The depth sensor system is comprised of an infrared projector and a monochrome CMOS
sensor, positioned on either side of the RGB camera. Notably, the depth sensor exhibits a
resolution of 640×480 pixels and is endowed with 16-bit sensitivity. In practical terms, this
equates to an ability to discern approximately 65,000 distinct shades of gray.

Similar to the RGB camera, the depth sensor is also capable of capturing video at a consistent
rate of 30 frames per second. However, it is worth noting that frame drops may occur
contingent upon the specific hardware and computational demands associated with the task
being performed [60].

Some rough estimates of the accuracy of the depth sensor:
Range: 50 cm to 5 m. Can get closer (40 cm) in parts, but can’t have the full view be < 50 cm.
Horizontal Resolution: 640 x 480 and 45 degrees vertical Field of View (FOV) and 58
degrees horizontal FOV. Simple geometry shows this equates to about 0.75 mm per pixel x
by y at 50 cm, and 3 mm per pixel x by y at 2 m.
Depth resolution: 1.5 mm at 50 cm. About 5 cm at 5 m.
Noise: About +-1 Depth Noise (DN) at all depths, but DN to depth is non-linear. This means
+-1 mm close, and +- 5 cm far [60].

• Camera Portability Modification: In order to adapt the Kinect Camera for our specific
use case, it necessitates hardware modifications to enhance its portability and versatility. A
comprehensive explanation of these modifications can be found in a YouTube video presented
by Mr. Nasiru Aboki Kinect XBOX 360 Custom Mobile Adapter [24].

4.1.2 YD LiDAR X4

The YDLIDAR X4 represents an affordable 2D LiDAR solution boasting a 360-degree scanning
range, retailing at a mere $99. In the realm of cost-effective LiDARs, only a select few, such as the
RPLidar A1M8, can rival its economic appeal. A compelling reason to opt for the YDLIDAR X4
lies in its seamless compatibility with the Robot Operating System (ROS) and the Ohmni robot
platform.

To establish a functional connection, one should initiate the assembly process by interconnecting the
adapter board with the YDLIDAR X4. Subsequently, the Universal Serial Bus (USB) cord should
be affixed to the USB port on the adapter board, which is then connected to a Personal Computer
(PC). Notably, the USB interface’s Micro interface must be linked to the USB DATA port on the
USB adapter [68].

Upon activation, the YDLIDAR X4 enters an idle state, wherein its motor remains stationary.
However, it is imperative to acknowledge that some development platforms or PC USB interfaces
may not provide adequate drive current for the YDLIDAR X4’s optimal operation. To rectify this, it
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Figure 4.4: YDLIDAR X4 Development Kit

becomes necessary to supply the LiDAR with an auxiliary +5V power source. In such scenarios,
the USB-PWR pin emerges as a viable means to deliver the requisite power supply X4 User Manual
[70].

It is worth noting that when connecting the YDLIDAR X4 to the local host system or laptop, only
the utilization of the USB DATA connection point is necessary to establish a functional link X4
Development Manual [69].

4.1.3 System Hardware Specifications

The local host machine under consideration for this research exhibits a noteworthy hardware
configuration. It boasts a total system memory (RAM) capacity of 7.2 gibibytes (GiB), providing
ample resources for data-intensive computational tasks. Powering the system is the AMD®
Ryzen 5 4600H processor, a formidable choice featuring 12 processing cores that contribute to
enhanced computational efficiency. In terms of storage capacity, the local host machine offers an
expansive 512.1 gibibytes (GB) of disk space, ensuring ample room for data storage and retrieval.
Graphics processing capabilities are reinforced by the presence of the NVIDIA GeForce GTX 1650
graphics processor, which offers substantial support for graphical tasks. Notably, the local host
machine allocates 3911 megabytes (MB) of dedicated memory for graphics processing tasks, further
enhancing its ability to handle graphical workloads. This hardware configuration is well-suited for a
range of scientific and computational applications, making it an ideal choice for research endeavors
that demand substantial computational power and storage capacity.

4.2 Towards seamless HRI

The General Behavior Manager in Figure 4.5 functions as an orchestrator, facilitating communication
among various modules to accomplish high-level tasks. These modules collaborate to achieve
complex objectives, as elaborated below.

The Movement Module in Figure 4.5 assumes responsibility for robot localization and dynamic
navigation, including obstacle avoidance. It leverages two sub-functions, namely, the ROS
Navigation layer and the ROS Mapping layer, to execute these tasks effectively.
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Figure 4.5: Software Architecture Overview

The Perception Module in Figure 4.5 specializes in 3D Human pose estimation, employing Openpose
technology. This capability enables the estimation of human postures and gestures with precision.

All data processing occurs on our local host machine. The Interaction Module in Figure 4.5 plays a
pivotal role in guiding the robot’s decision-making process in diverse scenarios and conditions, all
while maintaining an acute awareness of its surroundings.

It is noteworthy that these modules operate seamlessly within the ROS (Robot Operating System)
environment.

4.2.1 Perception

The pivotal perceptual elements within the software stack encompass pose estimation, SLAM, and
localization AMCL.

• Openpose

The process of pose estimation and human skeletal frame detection is executed through
the utilization of the Openpose library, which serves as a critical component within the
software framework. This intricate procedure involves the extraction of both 2D and 3D
coordinates corresponding to key human joint pixels, directly derived from images. These
extracted coordinates provide a comprehensive representation of the human posture and
skeletal structure.

By harnessing this rich data, the system achieves a remarkable level of sophistication in
recognizing various human poses. These poses encompass a wide spectrum, ranging from
fundamental states such as sitting and standing, to more nuanced orientations in relation to
the robot’s position, which includes facing towards, sideways, and even backward.
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Moreover, the system extends its capabilities beyond mere pose recognition. It leverages hand
gestures as a means of controlling the robot’s movements. These gestures enable the robot to
execute actions such as moving forward, reversing, and performing turns. This integration of
gesture control adds a layer of intuitive and interactive functionality to the system.

A notable application of this technology is its integration with a navigation stack as discussed in
section 4.2.1 SLAM and Localization. In this context, human posture and gesture information
harmoniously interface with the robot’s navigation system. This synergy empowers the robot
to autonomously navigate within a mapped environment, responding to high-level commands
and user intentions. Consequently, the robot can seamlessly move towards predefined
destinations, offering a sophisticated and adaptable solution for real-world scenarios where
human-robot interaction is essential.

• SLAM and Localization

Within the software stack, the intricate process of Simultaneous Localization and Mapping
(SLAM) is realized through the utilization of the Hector SLAM algorithm, a robust technique
that produces a 2D occupancy grid map. This map serves as a foundational representation
of the environment, enabling the robot to discern its position and surroundings with high
precision. Following the generation of this map, localization tasks are seamlessly performed
using the Adaptive Monte Carlo Localization (AMCL) algorithm. AMCL [47] integrates
sensor data and effectively localizes the robot within the 2D occupancy grid, enhancing the
robot’s situational awareness and navigation capabilities.

The software stack’s planning functionalities encompass two fundamental components:
obstacle detection and global path planning. Obstacle detection leverages data acquired from
the 2D Lidar sensor, allowing for the creation of a 2D occupancy grid costmap through
the costmap_2d [51] ROS package. This costmap meticulously captures information about
obstacles in the robot’s vicinity, facilitating obstacle avoidance and safe navigation.

Global path planning, a critical aspect of autonomous navigation, is orchestrated by the
global_planner [53] ROS package. This planning module undertakes the intricate task of
charting a global trajectory for the robot. It calculates a path from the robot’s current position
to its designated goal while judiciously considering the presence of static obstacles within the
environment. This ensures that the robot can plan and execute safe and efficient routes to its
destinations.

In the domain of control, the software stack incorporates two pivotal components: a local path
planner and a low-level controller, both skillfully executed through the dwa_local_planner [52]
ROS package. The local path planner plays a pivotal role in generating dynamic trajectories
that align with the global trajectory. Importantly, it adapts to the presence of dynamic
obstacles, allowing the robot to make real-time adjustments to its path to avoid collisions.

Concurrently, the low-level controller employs a Dynamic Window Approach to sample
and execute collision-free velocity commands. This approach leverages sensor data and the
current state of the robot to make rapid and precise control decisions. It ensures that the
robot’s movements are not only responsive but also safe, enabling it to navigate through
complex and dynamic environments with agility and reliability.
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4.3 Gesture and Posture Detection

The research presents a novel approach to HRI based on human gestures and postures for task
assignment to the robot. The primary emphasis lies in the seamless integration of gestures and
postures into the issuance of task commands.

Figure 4.6: Output from OpenPose.

The numbered coordinates correspond to the following joint positions: 0 - Nose, 1 - Neck, 2 - Right
Shoulder, 3 - Right Elbow, 4 - Right Wrist, 5 - Left Shoulder, 6 - Left Elbow, 7 - Left Wrist, 8 -
MidHip, 9 - Right Hip, 10 - Right Knee, 11 - Right Ankle, 12 - Left Hip, 13 - Left Knee, 14 - Left
Ankle, 15 - Right Eye, 16 - Left Eye, 17 - Right Ear, 18 - Left Ear, 19 - Left Big Toe, 20 - Left Small
Toe, 21 - Left Heel, 22 - Right Big Toe, 23 - Right Small Toe, 24 - Right Heel, 25 - Background

4.3.1 Gesture Estimation from Pose Implementation

In our research, static gestures are determined through camera-based pose estimation. When
provided with an image of a human subject, the OpenPose library [21] furnishes estimates for the
pixel coordinates of each joint in both 2D and 3D dimensions within the image. The Figure 4.6
presented illustrates the labels assigned to these joint coordinates as generated by OpenPose. Each
joint label is associated with estimated pixel coordinates denoted as ’x’ and ’y,’ with the origin
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set at the upper left pixel, as depicted in the Figure 4.6. It is crucial to note that both ’x’ and ’y’
coordinates exclusively hold positive values. Subsequently, gestures are inferred by analyzing the
geometric relationships among specific body joints.

We have established a set of eight distinct gestures represented as Boolean values, wherein each
specific gesture is assigned a value of 1 when actively executed and 0 when not in use. It is
important to note that this research primarily concentrates on arm gestures, despite the existence of
numerous potential static gestures. The following gestures, each with its respective function, have
been implemented on the Butler Robot:

• obey_gesture: This gesture serves as a signal to instruct the robot to respond to the user’s
commands conveyed through gestures.

• disobey_gesture: This particular gesture conveys to the robot the instruction to disregard the
commands issued by the user through gestures.

• go_forward_gesture: Directs the robot to move forward.

• go_backward_gesture: Commands the robot to move in reverse.

• go_right_gesture: Instructs the robot to make a right turn.

• go_left_gesture: Directs the robot to make a left turn.

• go_forward_with_right_turn: Combines forward movement with a right turn.

• go_forward_with_left_turn: Combines forward movement with a left turn.

The smooth functioning of controlling the robot with gestures is facilitated by a set of defined
mathematical equations corresponding to each of the aforementioned gestures.

For the sake of simplicity and precision in scientific communication, it is essential to establish a set
of variables with clear and distinct representations. Herein, we introduce the following symbolic
definitions:

• “L” shall be utilized to represent the left side of the Human.

• “R” shall be designated for the right side of the Human.

• “W” shall denote the wrist of the Human under consideration.

• “S” shall be indicative of the shoulder.

• “E” shall specifically refer to the elbow.

• “H” shall signify the hip.

• “A” shall be employed to represent the ankle.

• “K” shall be reserved for the knee joint.

• “x” shall serve as the variable denoting the horizontal x-coordinate.

• “y” shall be used to signify the vertical y-coordinate.

45



4 Design of Solution

By adhering to these carefully defined symbols, we can enhance the precision and clarity of scientific
discourse, promoting effective communication within the scientific community.

To illustrate this concept further, consider the following instances: !(G signifies the x-coordinate
corresponding to the left shoulder of a detected human, while '�H designates the y-coordinate
pertaining to the right hip of a detected individual.

Images depicting various poses accompany each mathematical equation, enhancing the comprehen-
sion of the mathematical expressions through visual gestures.

(4.1) obey_gesture = ((!(H > !,H) ∨ ('(H > ',H))

,where the Figure 4.7 serves as a representation of the Obey gesture.

Figure 4.7: Obey Gesture

In order to enhance the readability of the lengthy Gesture equations, we will break them down into
smaller components to facilitate comprehension.

(4.2) disobey_gesture = (Component_A)∧(Component_B)∧(Component_C)∧(Component_D)

In the provided equation (4.2), the components are delineated as follows, where the Figure 4.8
serves as a representation of the Disobey gesture.

Component_A = ('�H > '(H > 0) ∧ ('�H > ',H > 0)
Component_B = ( |'(G − ',G | < 50) ∧ (|'�H − ',H | < 50)
Component_C = (!�H > !(H > 0) ∧ (!�H > !,H > 0)
Component_D = (!,G − ',G) > (!(H − '(G) ∧ (!,G > #42:G > ',G)
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Figure 4.8: Disobey Gesture

(4.3) go_forward = (Component_A) ∧ (Component_B) ∧ (Component_C) ∧ (Component_D)

representing the “go_forward_gesture” as simply “go_forward”

In the provided equation (4.3), the components are delineated as follows, where the Figure’s 4.9 and
4.10 serves as a representation of the Go forward gesture.

Component_A = ((!(H > !,H > 0) ∨ ('(H > ',H > 0)) ∧ ¬((!(H > !,H > 0) ∧ ('(H > ',H > 0))
Component_B = ('(G > ',G > 0) ∨ (!,G > !(G > 0)
Component_C = ( |',G − '�G | < 100) ∨ (|!,G − !�G | < 100)
Component_D = ( |',H − '�H | < 100) ∨ (|!,H − !�H | < 100)

Figure 4.9: Go forward gesture with left hand Figure 4.10: Go forward gesture with right hand
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(4.4) go_backward = (Component_A) ∧ (Component_B) ∧ (Component_C) ∧ (Component_D)

representing the “go_backward_gesture” as simply “go_backward”

In the provided equation (4.4), the components are delineated as follows, where the Figure 4.11
serves as a representation of the Go backward gesture.

Component_A = (('�H > '(H > 0) ∧ ('�H > ',H > 0))
Component_B = ((!,G > #42:G > ',G) ∧ (!�H > !(H > 0))
Component_C = (!�H > !,H > 0)
Component_D = (!,G − ',G) < (!(G − '(G)

Figure 4.11: Go backward gesture

(4.5) go_right_gesture = (Component_A) ∧ (Component_B)

In the provided equation (4.5), the components are delineated as follows, where the Figure 4.12
serves as a representation of the Go right gesture.

Component_A = (0 < #42:G < ',G) ∧ (0 < !(G < !�G < !,G)
Component_B = (0 < !(H < !,H) ∧ (0 < '(H < ',H)
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Figure 4.12: Go right gesture

(4.6) go_left_gesture = (Component_A) ∧ (Component_B)

In the provided equation (4.6), the components are delineated as follows, where the Figure 4.13
serves as a representation of the Go left gesture.

Component_A = (0 < !,G < #42:G) ∧ (0 < ',G < '�G < '(G)
Component_B = (0 < !(H < !,H) ∧ (0 < '(H < ',H)

Figure 4.13: Go left gesture

(4.7) forward_right = (0 < '(H < #42:H < !(H) ∧ (0 < '�G < '(G) ∧ (0 < !�G < #42:G)

representing the “go_forward_with_right_turn” as simply “forward_right”, where the Figure 4.14
serves as a representation of the Go forward with right turn gesture.
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Figure 4.14: Go forward with right turn gesture

(4.8) forward_left = (0 < !(H < #42:H < '(H) ∧ (0 < !(G < !�G) ∧ (0 < #42:G < '�G)

representing the “go_forward_with_left_turn” as simply “forward_left”, where the Figure 4.15
serves as a representation of the Go forward with left turn gesture.

Figure 4.15: Go forward with left turn gesture

To govern the robot’s motion, we employ the publication of linear and angular velocity commands
via the ’/tb_cmd_vel’ ROS topic. As an illustrative scenario with python script, consider the task
of directing the robot to move forward while simultaneously executing a left turn.

def forward_left_turn(self):

twist = Twist()

twist.linear.x = max_linear_vel

twist.linear.y = 0

twist.angular.z = max_angular_vel

self.pub.publish(twist)
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In this script, the code initializes a ROS publisher named ’self.pub’ with the topic ’/tb_cmd_vel’
and a message type of ’Twist’. Publishers are used to send messages to specific topics in the ROS
ecosystem. The ’queue_size’ parameter specifies the maximum number of messages that can be
stored in the publisher’s outgoing message queue. A ’Twist’ message is then created and configured
with values for linear and angular velocity. The ’twist.linear.x’ attribute is set to ’max_linear_vel =
0.2’ and ’twist.angular.z’ is set to ’max_angular_vel = 0.2’. These values likely represent the desired
linear and angular velocities for a robot. Finally, the ’publish’ method is called on the ’self.pub’
publisher object to send the ’twist’ message to the ’/tb_cmd_vel’ topic, effectively instructing a
robot or another ROS node to move with the specified linear and angular velocities.

4.3.2 Posture Estimation from Pose Implementation

In a manner similar to how static gestures are estimated, we utilize camera-based pose estimation
to discern various human postures. When presented with an image of a human subject, the
OpenPose library [21] provides estimations for the pixel coordinates of each joint in both 2D and
3D dimensions within the image. The accompanying Figure 4.6 illustrates the labels assigned to
these joint coordinates as generated by OpenPose. Each joint label is associated with estimated
pixel coordinates represented as ’x’ and ’y.’

We have defined a set of five distinct postures, each represented by Boolean values. In this scheme,
each specific posture is assigned a value of 1 when actively performed by the user and 0 when the
user is not in that specific posture.

To ensure the smooth operation of controlling the robot using the navigation stack, it is essential to
incorporate postures as one of the input parameters. To facilitate this, we have developed a series of
mathematical equations, with each equation corresponding to one of the aforementioned postures.

The following postures, each with its respective function precisely defined with mathematical
equation, have been implemented on the Butler Robot:

• Facing Towards: The individual directs their full attention to the robot while maintaining a
forward-facing position.

• Facing Backwards: The person is oriented in the opposite direction, showing no attention or
awareness towards the robot.

• Facing Sideways: The individual is positioned in a manner where they may or may not be
aware of the robot, as they are not directly facing it.

• Sitting: The person is seated.

• Standing: The individual is in an upright, standing position.

Complementing these mathematical expressions are accompanying images that depict various poses,
enhancing comprehension through visual aids.

51



4 Design of Solution

(4.9) facing_towards = ((#>B4G) × (!�H4G) × ('�H4G) × ('�0AG) × (!�0AG))! = 0

The critical observation to highlight is that when specific coordinates possess a value of zero, it
signifies the absence or non-visibility of a particular keypoint on the human subject. This principle
underpins the formulation presented above. In the context of this formula, the absence of any
coordinate, specifically focusing on the x-coordinate of the Nose and Ear keypoints, indicates that
the individual is not directing their full attention towards the robot.

The provided Figure 4.16 offers valuable insights into the subject matter, providing a comprehensive
visual representation of the concept.

Figure 4.16: Facing towards Robot

(4.10) facing_backwards = ((#>B4G = 0) ∧ (!�H4G = 0) ∧ ('�H4G = 0))

If either the x or y coordinate value for the Nose, Left Eye, and Right Eye keypoints is zero, it
signifies that the individual is oriented in the opposite direction with respect to the Robot.

The Figure 4.17 provides a comprehensive and visually informative illustration of the concept.

Figure 4.17: Facing backwards w.r.t Robot
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(4.11) facing_sideways = (Component_A) ∨ (Component_B)

Component_A = (('�0AG = 0) ∧ (!�0A� >= )ℎ�))
Component_B = ((!�0AG = 0) ∧ ('�0A� >= )ℎ�))

The Openpose library additionally provides a confidence parameter denoted as�D<0=_ 4H?>8=C�
in above equations, serving as an indicator of the degree to which the respective intent has been
accurately assigned to the human keypoints. Leveraging this parameter, we have adopted a selective
approach, considering a specific keypoint only when its confidence level surpasses a predetermined
threshold. This threshold, denoted as )ℎ� , has been set at 0.6 in our software implementation,
enhancing the determinism of our actions when interacting with the robot. Figure’s 4.18 and 4.19
gives a detailed and visually explanatory depiction of the concept.

Figure 4.18: Facing sideways 1BC Posture Figure 4.19: Facing sideways 2=3 Posture

(4.12) sitting_posture = (first_criteria) ∨ (second_criteria)

We have established two criteria for determining a sitting posture, each leading to a Boolean output
of either one or zero, depending on whether the criteria are met:

• The first criterion involves the orientation of the individual relative to the robot. Specifically,
when the person is facing sideways with respect to the robot, we assess the angle formed
between the mid-hip and ankle in relation to the knee joint. In the given scenario, we define
two slopes:

1. “m1” represents the slope of the first line formed by connecting the hip and knee.

2. “m2” denotes the slope of the second line formed by connecting the knee and ankle.

3. To ensure that we measure the angle in a positive manner, we utilize the absolute value
function, represented as “abs()”. This is crucial in calculating the angle accurately.
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4. We then employ the arctangent function, denoted as “arctan()”, to compute the angle in
radians.

5. The resulting angle, denoted as \ signifies the measurement between these two lines
and is expressed in degrees.

\ = arctan
(
|<2−<1 |
1+<1·<2

)
When the resultant angle, denoted as \, attains a value equal to or exceeding 45◦, it fulfills
the first criterion, classifying the specific human posture as sitting.

Figure 4.20: First Criteria : Representation of \

The diagram 4.20 provides a conceptual representation of a mathematical expression, while
the accompanying Figures 4.21 and 4.22 serve to illustrate specific postures or configurations
associated with the concept.

Figure 4.21: Sitting 1BC Posture Figure 4.22: Sitting 2=3 Posture
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• The second criterion pertains to the person facing away from the robot. In this scenario, we
examine the distance between the hip and knee joints. In our effort to compute the hip-to-knee
distance, we have opted to exclusively take into account the vertical (y) coordinates. After
conducting a series of iterative experiments at varying distances from the camera, we have
ascertained that the distance in question must not exceed 15 units.

right_side_difference = | ('�8?H − ' =44H) | × 100
left_side_difference = | (!�8?H − ! =44H) | × 100

(4.13) (right_side_difference) <= 15 and (right_side_difference) <= 15

Figure 4.23 gives a detailed and visually explanatory depiction of the concept.

Figure 4.23: Sitting 3A3 Posture

If either of these criteria is satisfied, the human’s posture is classified as sitting, resulting in a
Boolean value of one otherwise, it remains at zero.

(4.14) standing_posture = ¬(standing_posture)

For the sake of simplicity, we adopt the presumption that if a person does not meet the criteria for a
sitting posture, then he or she is considered to be in a standing position by default.
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4.3.3 Custom ROS message

In our implementation, it is imperative to incorporate gesture and posture information into the
ROS environment. This objective is met by publishing a ROS topic through the use of a custom
ROS message. Within the context of our specific use case, we have harnessed this functionality
to define a ROS topic known as “/pose_face”. This abbreviated term encapsulates the concept of
human posture and facing orientation. The creation of this ROS topic is achieved by implementing
a custom ROS message, as outlined in the table 4.1:

Table 4.1: PostureGesture.msg ROS Custom Message Structure
Field Description

person_id An integer representing the person’s ID
pose A string describing the Human pose

facing A string describing the Human facing direction
gesture A string describing the Human gesture

4.4 Social Rule’s

We have established several safety criteria crucial for Human-Robot Interaction HRI.

• Firstly, we have delineated two distinct categories of gestures. These gestures serve as cues
for the robot to discern whether it should comply with or disregard human directives. This
categorization enhances the robot’s capacity to interpret human actions and remain acutely
attuned to its surrounding environment.

• The second criterion pertains to the maintenance of a safe separation distance between the
human and the robot. This prescribed distance ranges from one meter to less than five meters.
When the human approaches too closely to the robot, the latter refrains from responding to
any human gestures. This safety measure ensures that the robot maintains a buffer zone to
mitigate potential physical contact.

• The third criterion necessitates the entire human body to be within the camera frame for the
robot to engage with user gestures effectively. Until the entirety of the user’s body is visible
within the frame, the robot refrains from responding. This prerequisite ensures that the robot
possesses a comprehensive view of the scenario, allowing it to act in accordance with a better
understanding of the situation.

• The fourth and final criterion mandates that the human should be oriented toward the
robot. Specifically, the robot will only execute user commands when the human is directing
their full attention towards it. In situations where the human’s focus is divided, the robot
remains in a state of readiness, awaiting undivided attention from the human to ensure that it
responds accurately to their actions. This criterion underscores the importance of the human’s
undivided attention for effective HRI.
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4.5 Autonomous Navigation

Our initial concept for our use case involved the control of robot movement through gestures.
However, an additional challenge we faced was the need for dynamic obstacle avoidance, which we
recognized could be achieved by integrating SLAM with a Navigation stack. Initially, we explored
two primary ideas.

• The first idea centered on utilizing depth information from the camera to facilitate obstacle
avoidance by providing appropriate velocity and angular commands to the robot.

• The second idea involved the implementation of one of the BUG algorithms, specifically
choosing from BUG0, BUG1, and BUG2. However, upon closer examination, both of these
approaches were found to be lacking in efficiency and robustness.

Another important factor to note is that the camera was not affixed to the robot itself, which introduced
a degree of complexity to the implementation of the aforementioned concepts. Subsequently,
we shifted our focus towards creating an environment map with Hector SLAM and refining the
navigation stack to enhance the overall robustness and efficiency of our system.

Numerous changes and enhancements have been implemented in comparison to the previous efforts
by Arfa [2] and Avinash Kangare [3]. These alterations have significantly bolstered the robot’s
navigation capabilities and dynamic obstacle avoidance, rendering them markedly more robust and
efficient.

4.5.1 Environment Mapping - Hector SLAM

The necessity arose to create a fresh environmental map due to substantial alterations in the office
layout, which introduced new obstacles into the environment. When considering the creation of
an environment map for our research, we encountered two viable options. The first option was
to utilize Hector SLAM, which had previously been implemented and was readily available as a
base. The second option involved the implementation of a more efficient SLAM algorithm, namely
Cartographer SLAM. However, due to the constraints imposed by limited time and the inherent
complexity of Cartographer SLAM [25], its practical implementation posed a significant challenge
[66].

To make an informed decision, we conducted thorough research to compare various SLAM
implementations, weighing their respective advantages and disadvantages [17]. Following a
comprehensive analysis and considering the time factor, we ultimately opted to proceed with Hector
SLAM. This choice was driven by the fact that Hector SLAM consistently provided accurate
mapping results, particularly well-suited for indoor environments - a crucial aspect of our research’s
requirements [34].

The earlier implementations carried out by Arfa [2] and Avinash Kangare [3] provide comprehensive
insights and concepts related to Hector SLAM. However, in this research study, our focus is
directed solely towards highlighting the critical parameters that have significantly enhanced the
implementation’s efficiency and robustness.

The key subtle refinements made were as follows:
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• The repositioning of the Lidar sensor on Robot to optimize obstacle detection by utilizing a
2D Lidar system, thereby enhancing its scanning plane coverage.

• These modifications were also synchronized with adjustments in the URDF file, ensuring the
accurate placement of the Lidar sensor. This rectification effectively resolved a previously
unresolved issue that had persisted in earlier implementations. The Figure 4.25, along with the
modification in the URDF file 4.24, effectively communicates the essence of the significant
alteration.

Figure 4.24: Ohmni Robot URDF file. Figure 4.25: Position of LiDAR in
URDF file.

We embarked on the task of implementing environment mapping from the ground up, taking the time
to grasp the underlying concepts and applying them practically. Several changes were introduced in
the software launch files to facilitate this process, drawing insights from the [56]:

• In SLAM_ws/src/hector_slam/hector_mapping/launch/mapping_default.launch:

1. A node was incorporated to handle static data transformation:

<node pkg="tf" type="static_transform_publisher"

name="base_to_laser_broadcaster" args="0 0 0 0 0 0 base_link laser 100"/>

2. An argument for specifying the base frame was included:

<arg name="base_frame" default="base_link"/>

3. An argument for specifying the base frame was included:

<arg name="odom_frame" default="base_link"/>
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• In SLAM_ws/src/hector_slam/hector_slam_launch/launch/tutorial.launch:

1. An inclusion of a ROS driver for YD Lidar was added, which is launched using the
following line::

<include file="$(find ydlidar_ros_driver)/launch/ydlidar.launch"/>

2. The parameter for using simulated time was set to ’false’:

<param name="/use_sim_time" value="false"/>

These changes serve to enhance the functionality and accuracy of the environment mapping
implementation, ensuring that the necessary components and configurations are in place for
successful execution.

Within the launch file of the YD Lidar ROS driver, a significant modification was made concerning
the region considered during the creation of the environmental map. Specifically, only the plane
directly in front of the robot was taken into account. This decision was informed by the author’s
positioning behind the robot to facilitate its movement within the environment while simultaneously
mapping it. Notably, since Hector SLAM operates independently of the /odom frame, the mapping
process was executed without necessitating the consideration of tf (transform) data from the robot.
In this scenario, the Lidar was powered and positioned on the robot during the mapping of the
environment.

• In SLAM_ws/src/ydlidar_ros_driver/launch/ydlidar.launch:

<param name="angle_min" type="double" value="-120" />

<param name="angle_max" type="double" value="120" />

The adjustments reflect a narrower angle range considered during the mapping process, which
spans from -120 degrees to 120 degrees.

Figure 4.26: YDLIDAR X4 coordinates definition
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The Figure 4.26 provides insight into the angles taken into account during the environment mapping
process, spanning from -120 to 120 degrees.

After launching the required files and preserving the map 4.27 generated by Hector SLAM, we
successfully generated the following representation of the environment.

Figure 4.27: Map generated by Hector SLAM

4.5.2 Navigation Stack - Butler

Obtaining a thorough understanding of the human follower use case, where the navigation stack
played a crucial role, was imperative. We referenced [3] and consulted pertinent papers to gain
valuable insights into its implementation [4] [71]. Now, our research efforts were primarily centered
on the field of path planning and its significance within the realm of HRI. Path planning constitutes a
foundational element of autonomous navigation, a fundamental aspect of HRI systems. By carefully
examining the methodologies and findings presented in various research studies [58], our aim
was to acquire a profound comprehension of effective path planning strategies and their practical
applications in HRI scenarios Aboki et al. [1]. The knowledge acquired through this extensive
research laid a solid foundation for our research and also equipped us with the necessary insights
to begin our collaboration with the Butler Robot [30]. It allowed us to approach the integration
of our use case with a robust and informed perspective, optimizing the chances of a successful
implementation [65].

Managing a robot’s Navigation Stack poses a considerable challenge. Given our limited time-frame,
conducting an exhaustive examination of each parameter was not feasible. Although the navigation
stack had been previously implemented by our colleagues, it lacked the robustness and efficiency
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required for seamless integration with our Gesture and Posture research. It’s essential to emphasize
that each parameter, both in the configuration files and various launch files of the navigation stack,
plays a pivotal role and has a substantial impact on the success of autonomous navigation.

Recognizing the complexity of previous implementations, we made the deliberate choice to adopt a
simpler and more methodical approach, starting from the basics to ensure a better understanding.
Our work with the navigation stack commenced with the imperative need to acquaint ourselves
with its detail workings. This involved studying comprehensive documentation and reviewing its
practical application on other robotic platforms. To establish a solid foundation, we turned to ROS
tutorials Navigation Stack Setup [33] and ROS Navigation Stack [54], which provided essential
insights into the fundamentals of the Navigation Stack. Additionally, these tutorials served as a
valuable reference for fine-tuning the navigation stack parameters. In our pursuit of a more profound
understanding of the navigation stack, Zheng [73] authored navigation guide assumed a crucial role.
It served as an good resource, shedding light on the significance of diverse parameters and their
vital interactions within the navigation system, thereby enhancing our knowledge substantially. For
a practical, step-by-step implementation of the setup, the Husarion [20] tutorials proved to be an
invaluable resource. Their clear explanations and systematic approach aided in a seamless setup
process. It’s worth noting that the work carried out by emanual robotis [45] exerted a significant
influence on our own efforts. Their contributions served as a source of inspiration and guidance
throughout our research.

Several noteworthy changes have been implemented in our current research compared to previous
implementations:

• Enhancements to File Structure: Significant improvements were made to the file structure,
resulting in a more organized and readable workflow.

• Parameter Refinement: Corrected misdefined parameters and eliminated unnecessary ones,
optimizing the overall configuration.

• Navigation Stack Cleanup: Removed redundant YAML files and selected ROS packages
that were no longer required, streamlining the Navigation Stack.

The primary objective was to assess and experiment with various navigation stacks on the
Butler Robot, drawing insights from their successful implementation on other robotic platforms.
This approach was underpinned by a solid understanding of the robot’s specific requirements,
purpose, and utility. Through a process of trial and error, coupled with strategic adjustments, we
arrived at an optimal set of parameters for our navigation stack. These refinements significantly
enhanced the capabilities of navigation and dynamic obstacle avoidance in comparison to previous
implementations. Notably, the navigation parameters employed in the Turtle Bot framework
“Turtle Bot - Nav parameters [61]” proved invaluable, streamlining our efforts and expediting the
navigation stack setup a critical time-saving factor.

The navigation stack relies on a specific robot configuration for its operation. The diagram 4.28
depicted above offers an overview of this requisite setup. In the diagram, the white components
represent mandatory elements that have already been implemented, the gray components denote
optional elements that are also already in place, and the blue components signify the necessity
to create custom components tailored to each robot platform. The sections below provide a
comprehensive outline of the prerequisites for the navigation stack, accompanied by detailed
instructions on how to meet each requirement.
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Figure 4.28: Navigation Stack Setup [ROS WiKi] [33]

Moving forward, our focus will be on the pivotal parameters outlined in the configuration files, as
well as key components featured in select launch files. These adjustments collectively contribute to
an impressive realization of autonomous navigation.

4.5.2.1 ohmni_2dnav Package

We’ve developed a dedicated ROS package to house and manage all the configuration and launch
files associated with the navigation stack. This package relies on the move_base package, which
provides the high-level interface for the navigation stack.

4.5.2.2 Butler Configration Launch File

The ohmni_bring_up.launch is a roslaunch file responsible for initializing all the necessary
hardware components and publishing the required transforms for the robot’s operation.

Figure 4.29: ohmni_bring_up.launch file

Launch file snippet 4.29 serves the purpose of configuring several essential components for the
robot’s hardware setup. It encompasses tasks such as initializing the YD Lidar sensor, defining the
robot’s URDF model, and launching crucial nodes responsible for joint state publication and the
transformation of the robot’s state information.
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4.5.2.3 Costmap Configuration

The navigation stack employs two distinct costmaps to retain information concerning obstacles
within the robot’s environment. One costmap serves the purpose of global planning, facilitating the
creation of long-term plans across the entire spatial domain. The other is dedicated to local planning
and real-time obstacle avoidance. To address the configuration needs effectively, we categorize
them into three sections: common configuration options, which apply universally to both costmaps,
global configuration options specific to the global planning costmap, and local configuration options
tailored to the local planning and obstacle avoidance costmap. This approach ensures precise
configuration control for each costmap while accommodating shared settings when necessary
[Navigation Stack Setup] [46]. To access comprehensive documentation encompassing the entire
spectrum of available options, we recommend referring to the costmap_2d [46] documentation.

1. Common Configuration: The navigation stack utilizes costmaps as foundational data
structures for the storage and organization of obstacle-related information within the robot’s
operational surroundings. These costmaps adopt a grid-based representation of the environ-
ment, wherein each grid cell contains pertinent data regarding the navigational cost linked
to its particular location. As crucial elements in the robot’s decision-making framework,
these costmaps furnish vital spatial information that proves instrumental in tasks such as path
planning, localization, and obstacle avoidance.

Figure 4.30: Common configuration file

2. Global Configuration: Global Configuration parameters are essential for configuring the
global costmap used in robot navigation, with details about update frequencies, reference
frames, and whether the map is considered static or not.

Figure 4.31: Global costmap parameters configuration file
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“global_frame” sets the reference frame for this costmap as “map”, and “robot_base_frame”
defines the robot’s base frame. We control the update and publication frequencies with
“update_frequency” and “publish_frequency” both set to 10 Hz. To ensure accurate frame
transformations, we use “transform_tolerance” with a tolerance of 0.5 seconds. Finally, by
setting “static_map” to true, we indicate that the global map remains unchanged during
navigation, assuming a static environment.

3. Local Configuration: These parameters pertain to the local costmap configuration for robot
navigation. The “local_costmap” section specifies settings related to short-term path planning.
“global_frame” sets the reference frame for this costmap as “odom”, and “robot_base_frame”
defines the robot’s footprint frame. The update and publication frequencies are controlled
by “update_frequency” and “publish_frequency”, both set to 10 Hz. “transform_tolerance”
determines the allowed latency in published transformations, with a threshold of 0.5 seconds.
The “static_map” parameter is set to “false”, indicating that the map can change over time.
“rolling_window” is set to “true”, enabling the costmap to move with the robot’s position.
Lastly, “width”, “height”, and “resolution” define the size and granularity of the costmap in
meters. These parameters collectively configure the local costmap for agile and responsive
robot navigation.

Figure 4.32: Local costmap parameters configuration file

4. DWA Local Planner Configuration: The robot’s velocity limits are set using parameters
like “max_vel_x” and “min_vel_x” for forward and backward motion, “max_vel_theta”
and “min_vel_theta” for rotational motion, and “max_vel_trans” and “min_vel_trans” for
straight-line movement. Additionally, acceleration limits are specified with “acc_lim_x”
and “acc_lim_theta”. Goal tolerance parameters, such as “xy_goal_tolerance” and
“yaw_goal_tolerance”, determine how close the robot needs to be to its target pose to
consider it reached. The configuration also defines parameters related to trajectory scoring,
such as how the planner weights sticking to the global path (“path_distance_bias”) and
avoiding obstacles (“occdist_scale”). Parameters like “forward_point_distance” and “scal-
ing_speed” influence the robot’s behavior when following trajectories. To prevent oscillations,
the planner uses “oscillation_reset_dist” to reset flags when the robot travels a certain distance
without significant progress. Finally, for debugging purposes, it can publish trajectory and
cost grid information. These parameters collectively tailor the DWAPlannerROS to the
specific dynamics and goals of the robot, ensuring effective navigation while adhering to
velocity and acceleration constraints, avoiding obstacles, and reaching the desired target pose.
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Figure 4.33: DWA Local Planner parameters configuration file

5. Move Base Configuration: In the Figure 4.34, you will find additional parameters specified
within the move_base configuration file. The comments provided within the configuration
file offer comprehensive explanations for each of these parameters.

Figure 4.34: Move Base parameters configuration file

6. AMCL Configuration: In this context, it is worth noting that the initial pose of the robot on
the map can be specified within the AMCL launch file by utilizing parameters, as illustrated
in Figure 4.35. For a comprehensive understanding of each parameter’s intricacies, we
recommend consulting the ROS documentation available for reference [AMCL] [47].

7. Launch File for the Navigation Stack: The provided ROS launch file snippet 4.36
plays a crucial role in orchestrating the navigation stack for a mobile robot. It begins by
including the ‘ohmni_bring_up.launch‘ file, which is responsible for initializing the robot’s
essential components, including hardware drivers, sensors, and communication interfaces.
Following that, an argument named ‘map_file‘ is defined, pointing to a YAML map file
(‘lab_map_2.yaml‘) in the ‘ohmni_2dnav‘ package, which serves as the representation of
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Figure 4.35: AMCL configuration parameters

the robot’s environment. The next step involves starting the ‘map_server‘ node from the
‘map_server‘ package, which provides map data to the navigation system using the specified
‘map_file‘ argument. Additionally, the launch file includes ‘amcl.launch‘, configuring and
launching the AMCL (Adaptive Monte Carlo Localization) package for accurate localization
within the map. Finally, it includes ‘move_base.launch‘, which sets up the critical ‘move_base‘
package responsible for path planning and obstacle avoidance during the robot’s navigation
tasks. Altogether, this launch file streamlines the setup and coordination of essential
components, enabling the robot to navigate autonomously within its environment.

Figure 4.36: Launch File for the Navigation Stack
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5.1 ROS Driver for Kinect Depth Camera

In our research project, we utilized two distinct ROS drivers for the Kinect Xbox Camera: namely,
openni_launch and freenect_launch. Both of these ROS drivers exhibited seamless compatibility
when operating within the Ubuntu 20.04 LTS Operating System and the ROS Noetic Distribution.
However, it’s noteworthy that our Docker image, which has been specifically configured for use with
the Ubuntu 18.04 LTS Operating System and the Melodic ROS distribution, exclusively supports
the freenect_launch driver [49] [48].

Comprehensive documentation is readily accessible on the following websites,

1. openni_launch camera ROS driver [49]

2. freenect_launch camera ROS driver [48]

providing detailed instructions on the utilization of the ROS driver, complete with tutorials and
clear explanations of the arguments employed in the launch file.

In our study, we exclusively employed the freenect_launch ROS driver, which can be initiated using
the following command:

roslaunch freenect_launch freenect.launch

freenect_launch camera ROS driver provides access to several key ROS topics, which include:

• /camera/rgb/image_raw: This topic offers the RGB image data captured by the Kinect
Camera.

• /camera/depth_registered/image_raw: It provides access to the depth image information
obtained from the Kinect Camera.

• /camera/rgb/camera_info: This topic is essential for retrieving the camera’s calibration
parameters.

• camera_depth_optical_frame: This topic specifies the tf frame ID associated with the IR
camera.
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5.1.1 Camera Calibration

In the calibration process for the Kinect camera, we followed a calibration procedure for both the
RGB camera and the IR camera responsible for providing depth information. While the RGB
camera calibration was successfully completed, we encountered challenges during the calibration
of the IR camera, encountering a similar issue as previously encountered Problem with IR image.
The camera calibration process was conducted by following the tutorial - Calibration of the Kinect
camera [6]

The following commands were employed for the camera calibration process:

• RGB Camera :

rosrun camera_calibration cameracalibrator.py image:=/camera/rgb/image_raw

camera:=/camera/rgb --size 10x7 --square 0.024

• IR Camera :

rosrun camera_calibration cameracalibrator.py image:=/camera/ir/image_raw camera:=/camera/ir

--size 10x7 --square 0.024

As the issue remained unresolved despite our efforts, we opted to utilize the default camera
calibration intrinsic parameters. Through experimentation, we determined that the error in the
depth information was negligible under these default settings.

5.2 Docker Image - Openpose Library

We encountered numerous challenges while attempting to build the Openpose library Openpose
library [7] on an Ubuntu 20.04 LTS operating system. Even after successfully compiling the library,
we encountered integration issues when incorporating it into the Openpose ROS wrapper ROS
Openpose Wrapper [21]. Consequently, we devised a solution involving the utilization of Docker
for our implementation and proceeded with this approach. Extensive research revealed that the
Openpose library has undergone more rigorous testing on hardware running Ubuntu 18.04 LTS. As
a result, we made the strategic decision to utilize Ubuntu 18.04 as the base image for our Docker
container. This image was thoughtfully configured to include the ROS Melodic distribution, the
Openpose library, and all essential dependencies, including CUDA and CuDNN. The resulting
Docker image was meticulously built and proved to be a highly functional environment, where
both the Openpose library and ROS Melodic Distribution operated seamlessly within the container
instance [15].

5.2.1 NVIDIA Container Toolkit and Configuring Docker.

Prior to commencing work with the Openpose Docker Image, it is imperative to emphasize
the significance of installing the NVIDIA Container Toolkit and Configuring Docker. This
toolkit enables the Docker container to effectively utilize NVIDIA GPUs, enhancing computational
capabilities and performance. For the installation process, the following link provides comprehensive
guidance Installing the NVIDIA Container Toolkit and Configuring Docker [35].
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5.2 Docker Image - Openpose Library

5.2.2 Openpose Docker file

The provided snippet furnishes insight into the content encapsulated within our Docker file. It offers
a preview of the Docker file’s composition and the elements it contains. Here is the GitHub link to
access the Docker file : Openpose Docker file

Figure 5.1: Openpose Docker file

Within the Docker image instance, we initiated our work by incorporating supplementary software
components, notably the ROS Openpose wrapper, a crucial element for seamless integration of the
Openpose library within the ROS environment, and a ROS camera driver. To ensure the proper
functioning of these components, necessary modifications were meticulously applied to the launch
files of the ROS Openpose wrapper. These adjustments were executed with precision, resulting
in the successful compilation and execution of the ROS Openpose wrapper within the Docker
container. As a result, we achieved the capability to obtain precise 3D human poses, comprising 25
key body keypoints, a significant milestone in our research’s development.
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The Docker image instance, containing all locally applied modifications, was uploaded to the
Docker Hub. This process involved the creation of an image encapsulating all the updates and
installations performed on the local system within the Docker image instance. Subsequently,
rigorous testing was conducted on various hardware platforms to validate the portability and
universal compatibility of our Docker image. This comprehensive testing ensures that the Docker
image is deployable and functional for users across diverse Linux systems, regardless of their
specific hardware configurations. Here is the ultimate Docker image : Openpose Docker Hub Image
Patil [40]

To interact with the Docker image, the initial step involves creating an instance that functions as a
container. The following command is employed to retrieve the image from a local repository and
execute it as a container:

localhost@shell:~$ sudo xhost +si:localuser:root

localhost@shell:~$ docker run --gpus all -e DISPLAY=$DISPLAY --env NVIDIA_VISIBLE_DEVICES=all

--env NVIDIA_DRIVER_CAPABILITIES=all --env DISPLAY --env QT_X11_NO_MITSHM=1

-v /tmp/.X11-unix:/tmp/.X11-unix -v /dev:/dev --net=host --privileged

--device=/dev/video0:/dev/video0 -it vin8/openpose_vin:final /bin/bash

Here is the explanation of arguments used in the above docker run command,

• The sudo xhost +si:localuser:root command allows the root user to access the current
user’s X11 display, which is necessary when running certain GUI applications with elevated
privileges.

• The -v option is used to make directories or files from the host machine available inside the
container.

• docker run is used to start a new Docker container from an image.

• --gpus all is used to make all available NVIDIA GPUs on the host machine accessible to
the container.

• -e DISPLAY=$DISPLAY sets an environment variable in the container to the value of the $DISPLAY

environment variable on the host machine. This is necessary to allow the container to display
graphical output on the host machine’s X11 display server.

• --env NVIDIA_VISIBLE_DEVICES=all sets an environment variable in the container to make all
NVIDIA GPUs visible to OpenPose.

• --env NVIDIA_DRIVER_CAPABILITIES=all sets an environment variable in the container to
specify that all driver capabilities are available.

• --env DISPLAY sets the DISPLAY environment variable in the container.

• -v /tmp/.X11-unix:/tmp/.X11-unix mounts the X11 UNIX socket directory on the host
machine to the same directory in the container, which allows the container to access the host
machine’s X11 display server.
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• -v /dev:/dev mounts the /dev directory on the host machine to the same directory in the
container, which allows the container to access the host machine’s devices.

• --net=host sets the network mode of the container to "host,"which allows the container to
access the host machine’s network interfaces.

• --privileged gives the container full access to the host machine’s system resources.

• --device=/dev/video0:/dev/video0 allows the container to access the host machine’s video
capture device /dev/video0. --device=/dev/video0 will share the first video device with the
container.

• -it openpose_vin:final /bin/bash starts a Bash shell in the container for interactive use.

After locally obtaining the Docker image, you have the capability to instantiate multiple instances
of this image.

The most frequently utilized commands for managing Docker containers include:

• docker ps -a: This command provides a comprehensive list of all Docker containers,
including both running and stopped containers, along with relevant details.

• docker ps: Executing this command gives you an overview of the currently running Docker
containers, displaying key information about the status of each container.

• docker start container_name: Use this command to initiate a stopped Docker container by
specifying its name, making it operational.

• docker attach container_name: This command allows you to attach your terminal session to
a specific running Docker container, facilitating interactive interaction with its processes and
content.

In this context, the term container_name refers to the specific name assigned to an instance of
a Docker image, which is essentially a running container.

5.2.3 ROS - Openpose v1.7.0

Moving forward, our discussions will exclusively focus on the significant modifications made within
the ROS wrapper’s launch files inside with Docker image instance to ensure seamless compatibility
with the Openpose library. We will be closely examining a set of crucial launch files in the following
sections, delving deeply into their contents and significance.

• In /openpose_ros/src/ros_openpose/launch folder:

openpose_docker@shell:~/openpose_ros/src/ros_openpose/launch# ls

config_kinect.launch config_kinectxbox.launch config_nodepth.launch core.launch run.launch

config_kinectxbox.launch

core.launch

run.launch

71



5 Realization of Solution

The primary launch file is run.launch responsible for initiating the integration of the openpose
library with ROS by launching three additional files sequentially.

A key parameter of interest within this launch file is a specific command line containing a series
of arguments. This command line allows us to customize various aspects of our implementation,
including the choice of the model to be utilized (currently set to BODY_25), the desired resolution,
and whether to include hand and face keypoints or not.

<!-- full path to the model dir of openpose -->

<arg name="openpose_args" value="--net_resolution 128x96 --model_folder /openpose/models/"/>

Within the run.launch file, we initiate the launch of the config_kinectxbox.launch file. All the
parameters contained within this file hold significant importance. The snippet of the launch file
5.2 includes self-explanatory comments that provide a clear understanding of the purpose and
functionality of these parameters.

• ROS command to launch Openpose library

openpose_docker@shell:~# roslaunch ros_openpose run.launch

Figure 5.2: config_kinectxbox_launch file
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Within the config_kinectxbox.launch file, we trigger the launch of the Camera ROS driver Freenect
and the core.launch file. Our intention is to exclude any RVIZ visualization, so we’ve simply
commented out the RVIZ visualizer node in the core.launch file.

The ROS topic of utmost significance in our context is the /frame ROS topic. Our entire research
effort revolves around this particular topic, as it furnishes all the requisite information for Human
Gesture and Posture estimation.

Table 5.1: Frame.msg ROS Custom Message Structure
Field Description
header Standard ROS message header
persons[] Array of persons
bodyParts[] Array of body parts
leftHandParts[] Array of left hand parts
rightHandParts[] Array of right hand parts
faceParts[] Array of face parts
score 32-bit floating-point score
pixel Pixel information
point 2D point coordinates
x 32-bit floating-point x-coordinate
y 32-bit floating-point y-coordinate

We have defined two ROS nodes. The first one, named gesture_ctrl.py (Gestures-based Control
Algorithm 5.1), is responsible for controlling the robot’s movements through gestures. The second
one, posture_detection.py (Posture and Facing Detection Algorithm 5.2), is dedicated to estimating
human posture. Notably, we have merged the functionalities of these two nodes into a single node,
which plays a central role in our Gesture Control Navigation Stack. This unified node is identified
as set_goal.py.

During the course of our implementation, we encountered certain issues that were subsequently
raised on GitHub. You can gain valuable insights into these issues by following this link REQUIRED
process [rosOpenpose-2] has died! #88.

5.3 Communication with Butler

Establishing communication with the Butler Bot is crucial for controlling the robot using gestures
and effectively utilizing the Navigation stack. Several essential ROS topics are associated with the
robot, including /tb_cmd_vel, /tf, /tf_static, and /tb_control/wheel_odom. These topics play
a pivotal role in enabling seamless interaction and control of the robot’s movements and sensor
data.

Initially, access the Ohmni Telepresence robot’s shell through the Ohmni app’s settings button, found
on the blue screen GUI of the robot’s interactive screen. Subsequently, perform a sequence of seven
taps on the “Version Name” item within the settings menu. This action unveils previously concealed
features and options. At the bottom of the menu, locate the “Enable Android Debug Bridge (ADB)”
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Algorithm 5.1 Gestures-based Control Algorithm
ROS Node : gesture_ctrl.py
Input data : 3D and 2D Human Pose
Output data : Butler Robot Actions

while (obey_me) {

if (Full Attention) {

if (Target Person Selection Depending upon Distance) {

if (Gesture Recognition) {

if (go_forward_gesture(person)) {

// Move robot forward

Execute "GO Forward!"

robot_movement.forward_movement()

} else if (disobey_gesture(person)) {

// Stop obeying

Execute "DontObey"

obey_me = False

} else if (go_right_gesture(person)) {

// Turn right

Execute "GO Right!"

robot_movement.turn_right()

} else if (go_left_gesture(person)) {

// Turn left

Execute "GO Left"

robot_movement.turn_left()

} else if (go_backward_gesture(person)) {

// Move backward

Execute "GO Backward"

robot_movement.backward_movement()

} else if (go_forward_with_right_turn(person)) {

// Move forward with right turn

Execute "forward with right turn"

robot_movement.forward_right_turn()

} else if (go_forward_with_left_turn(person)) {

// Move forward with left turn

Execute "forward with left turn"

robot_movement.forward_left_turn()

} else {

// No recognized gesture

Execute "NoGesture"

robot_movement.stop()

}

}

}

}

}
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Algorithm 5.2 Posture and Facing Detection Algorithm
ROS Node : posture_detection.py
Input data : 2D Human Pose
Output data : Publish posture and facing messages, increment person counter.

1. Check if whole person is in camera frame

2. If the condition in step 1 is met:

- Check if the person's posture is facing away using posture.facing_away(person).

- If true:

- Log "Person is facing away!"

- Set pose_face_msg.facing to 'FacingSideways'.

- If false, proceed to the next step.

- Check if the person's posture is facing back using posture.facing_back(person).

- If true:

- Log "Person is facing backward!"

- Set pose_face_msg.facing to 'FacingBackwards'.

- If false, proceed to the next step.

- If neither of the above conditions is met:

- Log "Person is facing towards!"

- Set pose_face_msg.facing to 'FacingTowards'.

3. Check if the person's posture is sitting using posture.sitting(person).

- If true:

- Log "Person is sitting!"

- Set pose_face_msg.pose to 'Sitting'.

- If false:

- Log "Person is standing!"

- Set pose_face_msg.pose to 'Standing'.

4. If the condition in step 1 is not met:

- Log "Whole person is not in the frame!"

- Set pose_face_msg.pose to 'NoPose'.

- Set pose_face_msg.facing to 'NoFace'.

5. Publish the pose_face_msg.

6. Increment person_counter.
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option. Activating this option initiates the ADB daemon, granting the capability to establish a
connection from the local network. This crucial process enables seamless communication with the
robot, enhancing control and interaction.

On your local system, you should execute the following commands [Detailed Explanation] [37]:

IP address localhost : 129.69.207.127

IP address ButlerBot : 129.69.207.64

localhost@shell:~$ adb connect 129.69.207.64

localhost@shell:~$ adb shell

ButlerBot@shell:~$ su

ButlerBot@shell:~$ setprop ctl.stop tb-node

//Start the Docker Container

ButlerBot@shell:~$ docker start vibrant_chaum; docker attach vibrant_chaum

ButlerBot_docker@shell:~#

To connect multiple devices to the same ROS Master, please adhere to the following steps:

• Set the ROS_IP environment variable to specify the machine’s IP address in the ROS network.

localhost@shell:~$ export ROS_IP=129.69.207.127

• Set the ROS_MASTER_URI environment variable to specify the URI of the ROS Master.

localhost@shell:~$ export ROS_MASTER_URI=http://129.69.207.64:11311

Explanation :
- ROS_IP is used to define the machine’s IP address in the ROS network.
- ROS_MASTER_URI specifies the URI of the ROS Master, which manages ROS communication.

5.4 Gesture Navigation - Butler

5.4.1 Efficient Methodical Approach to Environment Mapping

Mapping the environment is a meticulous and patient process, necessitating a deliberate pace
when maneuvering the robot through its surroundings. Sudden changes in orientation or rapid
robot movements can introduce errors in the map formation. Additionally, it’s crucial to exercise
caution when encountering transparent glass surfaces, as they can distort the map and contribute to
inaccuracies in the mapping process.

To initiate the mapping of the environment, we commence by launching the tutorial launch file. The
following launch file snippet 5.3provides a concise overview of this procedure.

• ROS command to launch Hector SLAM
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Figure 5.3: Hector SLAM launch file

localhost@shell:~$ roslaunch hector_slam_launch tutorial.launch

The significance of this launch file lies in its pivotal role in configuring and initiating critical
components within a robotic system operating on the ROS. Its functionality commences by
incorporating configuration files for the YDLidar sensor driver while also establishing default paths
for geotiff maps. Furthermore, it defines a ROS parameter to govern the utilization of simulated
time by the system.

The launch file proceeds to initiate the ROS Visualization (RVIZ) tool, employing a specialized
configuration tailored for the visualization of mapping data. Additionally, it encompasses configura-
tion files for Hector Mapping, a widely utilized ROS package for SLAM tasks. It also incorporates
configuration settings for geotiff mapping, which is instrumental in the creation of georeferenced
maps. Collectively, these amalgamated configurations build’s a comprehensive ROS environment
that encompasses mapping, visualization, and map generation functionalities. This environment
plays an indispensable role in ensuring the smooth operation of the robotic system.

Once the environment mapping process is complete, preserving the map can be accomplished
using the map_saver tool, which is part of the map_server package. Importantly, this operation
should be executed without the need to terminate the Hector SLAM node. When this action is
performed, the map is saved under a specified name, generating both a name_of_the_map.pgm file
and a corresponding name_of_the_map.yaml file.

• ROS command to save Environment Map

localhost@shell:~$ rosrun map_server map_saver -f name_of_the_map

The Portable Gray Map (PGM) file functions as a repository for the map image itself, while the
Yet Another Markup Language (YAML) file serves as a repository for crucial map metadata. This
combined approach ensures the seamless preservation and management of mapping data without
interrupting the ongoing Hector SLAM node operation.
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5.4.2 Effective Navigation Stack Implementation

By executing the command rqt_reconfigure, you can access the Graphical User Interface (GUI)
known as rqt_reconfigure. This interface facilitates the interactive adjustment of parameters
associated with your ROS nodes. This capability proves exceptionally valuable when it comes to
refining the performance of your robotic systems or other ROS-dependent applications, all without
the need to halt and reboot them.

localhost@shell:~$ rosrun rqt_reconfigure rqt_reconfigure

• ROS command to launch Navigation stack and AMCL package

localhost@shell:~$ roslaunch ohmni_2dnav ohmni_nav.launch

Figure 5.4: Navigation Map Visualization

Initially, we established the robot’s initial position on the map using the RVIZ 2D pose estimate
feature. Subsequently, we provided the initial pose via the AMCL package, as previously discussed.
To gain insight into the robot’s self-perception within its environment, we executed the command
rosrun tf tf_echo /map /base_link. This command activates the tf_echo node from the tf

package, allowing us to observe the transformation data, including translation and rotation, between
the /map frame and the /base_link frame within the robot’s tf tree. This information plays a crucial
role in debugging and ensuring the robot’s accurate understanding of its position and orientation in
the world, which is fundamental to our task.
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localhost@shell:~$ rosrun tf tf_echo /map /base_link

At time 1691404176.315

- Translation: [-0.173, 0.630, 0.000]

- Rotation: in Quaternion [0.000, 0.000, 0.997, -0.080]

in RPY (radian) [0.000, -0.000, -2.982]

in RPY (degree) [0.000, -0.000, -170.845]

The robot’s destination can be specified through two methods: using the RVIZ feature of 2D Nav
Goal or by utilizing the ROS node 2d_point_nav.py.

• ROS command to run 2d_point_nav.py node

localhost@shell:~$ rosrun ohmni_2dnav 2d_point_nav.py

5.4.2.1 Gestures-based Navigation

Some modifications have been made to the gesture definitions as depicted in the accompanying
Figures.

Figure 5.5: Obey Gesture Figure 5.6: Disobey Gesture

Figure 5.7: Go to Location A Figure 5.8: Go to Location B
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To initiate gesture-based navigation, you need to execute the ROS node named gesture_goal_nav.py

(Gestures-based Navigation Algorithm 5.3).

• ROS command to run gesture_goal_nav.py node

localhost@shell:~$ rosrun ohmni_2dnav gesture_goal_nav.py

Gestures play a pivotal role in the realm of non-verbal HRI and Human-Robot Collaboration (HRC).
These non-verbal cues carry substantial importance in facilitating effective communication between
human and Butler robot. One particularly noteworthy application of gesture-based commands
within this context is their utilization in guiding and instructing Butler robot to achieve navigation
objectives. Upon receiving these gesture-based commands, the Butler robot leverages its autonomous
capabilities to carry out a series of complex tasks.

• Goal Interpretation: The robot’s onboard software first interprets the received gestures,
translating it into actionable task.

• Path Planning: Once the robot comprehends the user’s goal via gesture, it proceeds to plan a
suitable path to reach the designated destination.

• Obstacle Avoidance: During the execution of the planned path, the robot continually scans
its environment for dynamic obstacles or unexpected changes. It adjusts its trajectory in
real-time to avoid collisions or disruptions, prioritizing safety and adaptability.

• Autonomous Navigation: The robot relies on its autonomous navigation system to traverse
the environment, making course adjustments as needed while adhering to the prescribed path.

• Goal Achievement: Ultimately, the robot’s autonomous movements lead it to the predefined
destination, successfully completing the assigned task.

In essence, the integration of gesture-based commands into HRI and HRC scenarios empowers
Butler to understand and respond to human intentions with remarkable precision. By using
gestures to convey goals and instructions, humans can harness the full potential of robots while
simplifying the communication process and reducing the need for explicit verbal commands.
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Algorithm 5.3 Gestures-based Navigation Algorithm
ROS Node : gesture_goal_nav.py
Input data : Human Gestures
Output data : Butler Robot Actions

1. Initialize global variables:

- LocationA True

- LocationB False

2. Check conditions:

a. Is `obeyHuman` True?

b. Is `person_facing` 'FacingTowards'?

c. Is `person_pose` 'Standing'?

3. If all conditions in step 2 are met:

a. Check if `person_gesture` is 'DeskA' and `LocationA` is True:

i. If both conditions are met:

- Move the robot to location (A_x, A_y, A_yaw)

- Log: "Goal given by person personID"

- Check if goal reached (result == True):

- If it was not reached:

- Log error: "Error: Goal not reached, going back to initial position"

- Send robot back to initial position (init_x, init_y, init_yaw)

- If it was reached successfully:

- Log: "Goal A reached successfully"

- Update global variables:

- Set LocationA False

- Set LocationB True

b. Check if `person_gesture` is 'DeskB' and `LocationB` is True:

i. If both conditions are met:

- Move the robot to location (B_x, B_y, B_yaw)

- Log: "Goal given by person personID"

- Check if goal reached (result == True):

- If it was not reached:

- Log error: "Error: Goal not reached, going back to initial position"

- Send robot back to initial position (init_x, init_y, init_yaw)

- If it was reached successfully:

- Log: "Goal B reached successfully"

- Update global variables:

- Set LocationA True

- Set LocationB False
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5.5 Time synchronization on Multiple Machine’s

Initially, there was a time difference of approximately 2 hours between the Robot Machine and the
Local System. To address this, both systems were adjusted to be in the same time zone. However,
despite this synchronization, a persistent time asynchrony issue remained, resulting in a delay of
about 3-4 seconds. This delay had significant implications, leading to two critical problems:

• The timely update of Lidar Scan data within the Map environment was hindered. Consequently,
the entire navigation of the robot and the Navigation stack were adversely affected.

• The SLAM algorithm interpreted the incoming data from the Robot machine as outdated
TF (Transform) data. This exacerbation of the situation created further complications in the
robot’s navigation Error: TF_OLD_DATA.

To resolve the issue of time asynchrony, we leveraged the assistance of the chrony tool. Here is
some pertinent information about Chrony [10]:

Chrony is a highly versatile implementation of the Network Time Protocol (NTP), renowned for its
ability to synchronize system clocks with precision. It accomplishes this synchronization through
various means, including NTP servers, reference clocks such as GPS receivers, and manual inputs
facilitated by both wristwatches and keyboard commands.

In terms of time accuracy, Chrony consistently delivers impressive results. When synchronizing
two machines over the Internet, it typically achieves synchronization within just a few milliseconds,
demonstrating its reliability for remote timekeeping. In the context of a Local Area Network (LAN),
Chrony attains accuracy levels typically in the range of tens of microseconds, ensuring precision
for internal network synchronization. For even higher levels of accuracy, the use of hardware
timestamping or a hardware reference clock with Chrony may make sub-microsecond precision
feasible.

In a server-client configuration, the client system is configured to adhere to the time settings of the
server, ensuring synchronized timekeeping across both machines. To achieve this synchronization
between the local system and the robot machine, specific adjustments were made within the
’/etc/chrony/chrony.conf’ file on both devices.

• Chrony Confg file on Host machine : Server

#by default its acting as cilent so we have to make it Server

local stratum 8

# allowed clients

allow 129.69.0.0/16

# This directive specify the location of the file containing ID/key pairs for

# NTP authentication.

keyfile /etc/chrony/chrony.keys

# This directive specify the file into which chronyd will store the rate

# information.

driftfile /var/lib/chrony/chrony.drift
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# Log files location.

logdir /var/log/chrony

# Stop bad estimates upsetting machine clock.

maxupdateskew 100.0

# This directive enables kernel synchronisation (every 11 minutes) of the

# real-time clock. Note that it can’t be used along with the 'rtcfile' directive.

rtcsync

# Step the system clock instead of slewing it if the adjustment is larger than

# one second, but only in the first three clock updates.

makestep 1 3

• Chrony Confg file on Butler machine : CLIENT

server 129.69.207.127 ibur

# This directive specify the location of the file containing ID/key pairs for

# NTP authentication.

keyfile /etc/chrony/chrony.keys

# This directive specify the file into which chronyd will store the rate

# information.

driftfile /var/lib/chrony/chrony.drift

# Uncomment the following line to turn logging on.

#log tracking measurements statistics

# Log files location.

logdir /var/log/chrony

# Stop bad estimates upsetting machine clock.

maxupdateskew 100.0

# This directive enables kernel synchronisation (every 11 minutes) of the

# real-time clock. Note that it can’t be used along with the 'rtcfile' directive.

rtcsync

#Step the system clock instead of slewing it if the adjustment is larger than

# one second, but only in the first three clock updates.

makestep 1 3

Following the modifications to the file, the respective machines’ terminals were utilized to execute
the following commands:
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# commands on local system

localhost@shell:~$ sudo systemctl restart chrony

localhost@shell:~$ sudo systemctl status chrony

localhost@shell:~$ sudo systemctl enable chrony

# commands on robot machine

ButlerBot_docker@shell:~# sudo /etc/init.d/chrony restart

ButlerBot_docker@shell:~# sudo systemctl enable chrony

These are crucial links that were referenced to address the time asynchrony issue:

• ROS Timestamps

• Tf timeout with multiple machines

• Use chrony to synchronize timestamp on two machines
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6 Evaluation of Solution

6.1 Assessing Posture and Gesture Accuracy for Robot Control

Gesture accuracy is assessed through a series of tests involving the execution of 8 gestures, and
the subsequent measurement of their success rates. These tests were carried out with a human
positioned approximately 2 meters in front of a robot equipped with a Kinect camera. Each specific
gesture and posture was meticulously performed and repeated 50 times, totaling 50 trials for each
gesture and posture.

Gesture Number of times identified Accuracy (%)
obey_gesture 50 100%

disobey_gesture 50 100%
go_forward_gesture 50 100%

go_backward_gesture 50 100%
go_right_gesture 46 92%
go_left_gesture 45 90%

go_forward_with_right_turn 44 88%
go_forward_with_left_turn 45 90%

Table 6.1: Gesture Detection Results

The precision of postures is assessed through the execution of specific postures and the subsequent
measurement of their success rates. These evaluations are conducted with a human positioned at a
variable distance, typically ranging from 2 to 6 meters, in front of a robot equipped with a Kinect
camera.

Posture Number of times identified Accuracy (%)
Facing Towards 50 100%

Facing Backwards 50 100%
Facing Sideways 50 100%

Sitting (Facing Towards Robot) 46 92%
Sitting (Facing Sideways w.r.t Robot) 50 100%

Standing 48 96%

Table 6.2: Posture Detection Results
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The pose estimation was accomplished using the Openpose library, facilitated by a ROS wrapper,
operating at an impressive frame rate of nearly 30 frames per second and at a resolution of 160x160
pixels. The primary objective of these tests was to evaluate the feasibility of controlling the robot’s
movements through gesture recognition.

6.2 Assessing Posture and Gesture Accuracy for Robot Navigation

The accuracy of gesture-based robot navigation remains consistently at 100% for the following
gestures: Obey Gesture, Disobey Gesture, Go to Location A, and Go to Location B. These accuracy
assessments were conducted through a series of tests involving the execution of these four gestures,
with a focus on evaluating their success rate. During these tests, the distance between the human
operator and the robot was approximately 4 meters.

For the purpose of pose estimation, we employed the Openpose library, integrated within a ROS
wrapper. This system operated at an frame rate of approximately 21 frames per second, utilizing a
resolution of 128x96 pixels. The primary objective of these tests was to assess the feasibility of
controlling the robot’s autonomous navigation through gesture recognition.

To ensure robust testing, each specific gesture was performed and repeated 20 times, resulting in a
total of 20 trials for each gesture and corresponding posture. It’s worth noting that we had to lower
the resolution during these experiments, as the frame rate experienced a significant drop when both
the Navigation Stack and Localization package were running simultaneously.

In the course of conducting 20 trials, we computed the discrepancies between the actual and desired
coordinates (both in terms of x and y) as well as the robot’s orientation. Notably, the initial location
and Location A were separated by a distance of 3 meters, while the initial position and Location B
were separated by a distance of 6 meters.

Robot’s Movement Average Percentage Error for Average Percentage Error for
(x, y) Coordinates orientation \

Initial location to Location A 4.4% 4.1%
Initial location to Location B 9.7% 6.9%

Table 6.3: Robot Position Deviation and Error Percentages

6.3 Enhancing Robot Performance: Balancing GPU Utilization and
Computational Overheads

• Our diligent efforts have been focused on preserving our hardware’s longevity during prolonged
usage, while also ensuring the real-time capability of our implementation by consistently
maintaining Graphics Processing Unit (GPU) utilization within the 80-90% range. When
both the Openpose and Navigation Stack are running simultaneously, Central Processing Unit
(CPU) utilization rarely exceeds 60%. Notably, the Navigation Stack minimally utilizes the
GPU for its execution. To monitor GPU utilization, we have implemented a check by adjusting
the image resolution provided to the Openpose library, with a compromise on accuracy.
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6.3 Enhancing Robot Performance: Balancing GPU Utilization and Computational Overheads

Decreasing the resolution adversely impacts the accuracy of the Openpose algorithm. The
highest workable resolution with these algorithms is 256x256; beyond this, the frame rate
drops to 6-8 FPS, and GPU utilization spikes up to 93%.

• Incorporating hand keypoint detection into the Openpose algorithm introduces significant
computational overhead, resulting in a reduced FPS of 7 with a 256x256 resolution and
approximately 91% GPU utilization. This leads to the introduction of an additional 42
keypoints, bringing the total number of keypoints to 67 (25 keypoints of Body part plus 42
keypoints of Hands). Consequently, this results in an elevation of computational complexity.
Consequently, this configuration has seen limited use in our research work [Hand Output
Format] [18].

• We’ve witnessed impressive improvements in the robot’s response to dynamic obstacles
following necessary adjustments to the navigation stack.

• Additionally, it’s worth noting two crucial considerations:

– The strength and reliability of the local network, and

– Ensuring the robot is fully charged, or at least above 80%, to ensure smooth operation.

87

https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#hand-output-format
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#hand-output-format




7 Conclusion

7.1 Summary

The research study explores Gesture and Posture recognition as a means of facilitating communication
and control between humans and Butler robot. This involves the translation of human poses into
command signals, actions to trigger state changes, and initiation of information exchange with the
robot. Utilizing a custom Docker image for Openpose, a successful implementation of gesture-based
control for the Butler Robot’s movement, coupled with the accurate determination of human posture
within the frame, has been achieved. To prioritize safety, crucial social rules have been embedded
to ensure secure interactions between humans and robots.

The robot captures visual data through its camera system, enabling informed decisions to be made,
as well as the identification and classification of human movements. Activity recognition, aimed
at understanding human movements, empowers robots to anticipate and identify human actions
within their environment. This, in turn, enables the robot to offer valuable information, guidance, or
assistance across various contexts.

An adaptation of the Hector SLAM algorithm was necessary due to changes in the office environment,
resulting in impressive map creation results. The navigation stack setup was meticulously redefined,
making subtle yet significant adjustments that greatly impacted the robot’s navigation. The simplicity
and organized structure of the navigation stack played a pivotal role in achieving these remarkable
outcomes. Despite a limited time-frame for improvement, the results achieved in the autonomous
navigation of the Butler Robot are truly impressive compared to previous work [2] and [3].

The successful implementation of gesture-based navigation for the robot involved integrating
Openpose’s custom Docker image with the Navigation Stack. Notably, the Navigation Stack and
Localization algorithm utilize the CPU, while the Openpose algorithm significantly leverages the
GPU. A direct relationship between frame resolution and the accuracy of human keypoint detection
is evident. Higher frame resolution enhances accuracy but demands greater computational power,
resulting in reduced Frames Per Second (FPS) and hindering real-time functionality. Striking a
well-balanced compromise between frame resolution, accuracy, and FPS allowed the objectives of
the thesis to be successfully realized, creating a real-time implementation.
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7 Conclusion

7.2 Future Work

The thesis work presents several potential avenues for improvement and extension, which are
outlined as follows:

• Enhancing Camera Placement: One avenue for improvement involves optimizing the Microsoft
Kinect RGB-D Camera’s placement on the robot and implementing the Real-Time Appearance-
Based Mapping (RTAB-Map), an RGB-D Graph SLAM approach. This enhancement would
empower the robot to detect obstacles in 3D space, thereby enhancing the system’s overall
efficiency.

• Human Tracking or Sorting: Another promising direction for further development is the
implementation of a sorting technique or human tracking system. This addition would enable
the robot to selectively respond to specific human commands while disregarding others
present in the image frame, enhancing the robot’s responsiveness in dynamic environments.

• Dynamic Gesture Recognition: To expand the scope of the research, there is the opportunity to
transition from static gestures to dynamic gestures for controlling robot actions. This extension
would involve defining a wider range of gestures and improving the logic, particularly for
recognizing sitting postures, thereby increasing the versatility and adaptability of the gesture
control system.
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