
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Risk-aware HTN Planning for
Agricultural Tasks

Jan Adomat

Course of Study: Informatik

Examiner: Dr. Ilche Georgievski

Supervisor: Ebaa Alnazer, M.Sc.

Commenced: May 5, 2023

Completed: November 6, 2023

Abstract

Agriculture faces unprecedented challenges in a rapidly evolving world, defined by expanding
global populations and climatic uncertainties. This necessitates the maximisation of yields, while
remaining as environmentally friendly as possible. In addressing these complex obstacles, the
implementation of AI within the agricultural domain has emerged as a pivotal factor. One approach
is to utilise AIs capacity to handle large volumes of data and generate plans that achieve specific
objectives based on multiple factors. HTN planning, a well-established AI planning technique,
proves effective in generating efficient plans for real-world situations. This study commences
with systematical analysing the domain of agriculture, by looking at irrigation, fertilizing and pest
management. We explore how uncertainty, in the form of weather events, affects the irrigation
planning. To implement this uncertainty, we use risk-aware HTN planning, which enables decision
making based on a probability distribution of the cost of a action and a given risk attitude. We
implement our model in JSHOP2 and evaluate it in terms of correctness, scalability and precision.
The result is a model, that plans according to a given risk attitude in an efficient and sustainable
way, by only using as much water as necessary to maximize the yield of a plant. Furthermore, it
establishes a good foundation to expand upon it, with integrating multiple sources of uncertainty in
the future.

3

Kurzfassung

Die Landwirtschaft steht in einer sich rasch entwickelnden Welt, die von einer wachsenden
Weltbevölkerung und klimatischen Unwägbarkeiten geprägt ist, vor noch nie dagewesenen Heraus-
forderungen. Daher müssen die Erträge maximiert und gleichzeitig die Umwelt so weit wie möglich
geschont werden. Bei der Bewältigung dieser komplexen Hindernisse hat sich der Einsatz von KI in
der Landwirtschaft als entscheidender Faktor erwiesen. Eine Art der Verwendung von KI besteht
darin, große Datenmengen zu verarbeiten und Pläne zu erstellen, die auf der Grundlage mehrerer
Faktoren bestimmte Ziele erreichen. Die HTN-Planung, eine gut etablierte KI-Planungstechnik,
erweist sich als effektiv bei der Erstellung effizienter Pläne für reale Situationen. Diese Studie
beginnt mit einer systematischen Analyse des Bereichs der Landwirtschaft, indem Bewässerung,
Düngung und Schädlingsbekämpfung untersucht werden. Wir untersuchen, wie die Unsicherheit
in Form von Wetterereignissen die Bewässerungsplanung beeinflusst. Um diese Ungewissheit zu
implementieren, verwenden wir eine risikobewusste HTN-Planung, die eine Entscheidungsfindung
auf der Grundlage einer Wahrscheinlichkeitsverteilung der Kosten einer Maßnahme und einer
bestimmten Risikoeinstellung ermöglicht. Wir implementieren unser Modell in JSHOP2 und
bewerten es im Hinblick auf Korrektheit, Skalierbarkeit und Präzision. Das Ergebnis ist ein Modell,
das entsprechend einer gegebenen Risikoeinstellung auf effiziente und nachhaltige Weise plant,
indem es nur so viel Wasser wie nötig einsetzt, um den Ertrag einer Pflanze zu maximieren.
Darüber hinaus schafft es eine gute Grundlage, um es in Zukunft durch die Integration mehrerer
Unsicherheitsquellen zu erweitern.

5

Contents

1 Introduction 17

2 Background 19
2.1 Automated Planning . 19
2.2 HTN Planning . 20
2.3 Considering Risk in HTN planning . 24
2.4 Precision Agriculture . 26

3 Agricultural HTN planning domain with risk 33
3.1 Knowledge Acquisition . 33
3.2 Analysing the Domain Requirements . 40
3.3 Modelling the Domain . 42
3.4 Incorporating Risk . 47

4 Implementation 49
4.1 Choosing the Right Planner . 49
4.2 Implementing our Domain Model . 49
4.3 Uncertainty in JSHOP2 . 51

5 Evaluation 55
5.1 Demonstration . 55
5.2 Quantitative Evaluation . 63
5.3 Qualitative Evaluation . 64

6 Related Work 67

7 Conclusion and Outlook 69

Bibliography 71

A Predicates 75

B Domain Model 77

C Problem Descriptions for Evaluation 87

7

List of Figures

2.1 Simple Example for an HTN model . 21
2.2 Generalized Reflectance curves from Louis E. Keiner - Coastal Carolina University

[Kei] for plants under various environmental stress levels 29

3.1 Phases of solving a problem with automated planning 33
3.2 Hierarchy of dimension for ubiquitous computing environment adapted from [GA16] 34
3.3 Cost distribution depending on available moisture 42
3.4 Visualization of a cell in our domain . 43
3.5 Simplified representation of our domain model 46
3.6 Incorporating Uncertainty in our domain model 48

5.1 Hierarchy of Interpretation with its sub dimensions 55
5.2 Risk seeking utility functions . 57
5.3 Risk averse utility function with 𝛼=1 . 58
5.4 Risk averse utility function with 𝛼=0.1 . 59
5.5 Risk seeking EU for 𝛼=0.1 with varying probabilities and cost in missing %nFK . 60
5.6 Risk averse EU for 𝛼=0.1 with varying probabilities and cost in missing %nFK . 61
5.7 Risk seeking EU for 𝛼=0.1 with varying probabilities, cost in missing %nFK and

the cost for overwatering visualized . 62
5.8 Risk averse EU for 𝛼=0.1 with varying probabilities, cost in missing %nFK and the

cost for overwatering visualized . 63
5.9 Planning time depending on the amount of cells 64

B.1 Part 1 of the domain model . 77
B.2 Part 2 of the domain model . 79
B.3 Part 3 of the domain model . 80
B.4 Part 4 of the domain model . 80
B.5 Part 5 of the domain model . 81

C.1 Risk Averse utility function, with 𝛼 = 1 . 89
C.2 Risk Averse utility function, with 𝛼 = 0.3 . 89
C.3 Risk Averse utility function, with 𝛼 = 0.2 . 90
C.4 Risk Averse utility function, with 𝛼 = 0.1 . 90
C.5 Risk Averse utility function, with 𝛼 = 0.08 . 91
C.6 Risk Averse utility function, with 𝛼 = 0.05 . 91

9

List of Tables

3.1 Knowledge Acquisition . 40
3.2 Classes of soil moisture . 41

5.1 EU cost for risk seeking and risk averse planning in the case of rainfall and just
below optimal moisture levels . 60

5.2 EU cost for risk seeking and risk averse planning in the case of rainfall and just
below optimal moisture levels . 62

5.3 Downfall and usable field capacity Source: Deutscher Wetterdienst 64

11

List of Listings

4.1 Small part of our Domain Model as an example 51
4.2 Precalculation of the EU for both waiting and watering 52
4.3 Irrigation compound task to decide if to water or not 53
4.4 Weather representation in our implementation 53
B.1 First part of the Planning Domain . 78
B.2 Second part of the Planning Domain . 82
B.3 Third part of the Planning Domain . 83
B.4 Fourth part of the Planning Domain . 84
B.5 Fifth part of the Planning Domain . 85
C.1 Problem definition for testing one cell as an Example 87
C.2 Problem definition for testing multiple Cells as an Example 88
C.3 Python Script to create a variable amount of cells to test for our planner 92

13

List of Algorithms

15

1 Introduction

Throughout history, technological advancements, especially in domains like farming systems, have
consistently yielded favorable outcomes [FAO22]. These outcomes include increased productivity,
higher incomes, and improved overall human well-being . In our present-day world, the necessity
for technological innovations has never been more pressing. We are confronted with the challenge
of feeding a rapidly growing global population, while dealing with constraints like the scarcity of
agricultural land, unsustainable depletion of natural resources, and the escalating impact of various
disruptions, notably climate change. Furthermore, persistent labor shortage in the agricultural
sector continues to aggravate the issue [Aha23].

These innovative solutions are paramount for enhancing the effectiveness and long-term sustainability
of agriculture, with the overarching goal of augmenting productivity within farming systems . In
response to these challenges, there has been a significant shift away from traditional agricultural
practices towards the integration of technology within the agricultural sector. These new technologies
offer the potential for further enhancing productivity and environmental sustainability, through their
integration with automated planning.

Hierarchical Task Network (HTN) planning, a systematic and hierarchical approach to task planning
[GNT04], has proven to be particularly valuable in addressing real-world problems across different
domains. Its capacity to break down complex tasks into a hierarchy of sub-tasks makes resource
and operation allocation more efficient and flexible, making it well-suited for the agricultural sector.
Agriculture encompasses various levels of granularity, and farmers must adapt to frequent changes.
Using HTN planning to integrate this granularity with compound tasks, which can be decomposed
into further compound or primitive tasks, is a logical approach. This decomposition enables the
creation of expandable models, that can be further extended with additional decompositions to
achieve finer granularity.

Uncertainty is another prevalent aspect of the agricultural domain, often stemming from unpredictable
weather conditions or pest-related concerns. As a result, it is imperative to account for these
uncertainties. One efficient approach is by utilizing risk-aware HTN planning, that can factor in these
uncertainties, ultimately leading to more resilient and adaptive agricultural systems. Risk-aware
HTN planning uses utility, as defined by Utility theory [AGA22], to make better informed decision
depending on the expected utility of a task. The utility describes profit, but it can also be used as a
way of ensuring that we use as few resources as possible. Therefore, in a system where our cost
could be water, pesticide and fertilizer usage, using as little as possible leads to better environmental
sustainability. Furthermore, by using different values for our variables in the utility functions, we
can simulate different risk attitudes, where some might prefer taking risks for bigger gains or always
opting for the safe choice.

The structure of this thesis is as follows. We begin with a background chapter, aimed at providing
the essential context required to comprehend the subsequent content. This background chapter
encompasses a spectrum of topics, from an introduction to automated planning to fundamental

17

1 Introduction

agricultural domain knowledge. Following this, in Chapter 3, we delve into the methodological
process of acquiring and categorizing knowledge specific to the agricultural domain. This serves as
an important foundation for our subsequent modeling of our domain, particularly in the context
of incorporating uncertainty into our model. In Chapter 4, we go over our chosen planner with
which we implement our model and provide an in-depth exploration of the models design and
structure. Subsequently, we methodically evaluate our implemented model, considering various
categories outlined by the used evaluation framework. To conclude our thesis, we present a thorough
analysis of relevant literature, followed by a concluding section that summarises our findings and
insights. Additionally, we offer an outlook on the potential future expansions and applications of
our model.

18

2 Background

In this chapter, we discuss the necessary background information to understand this study and
realize its merits. Beginning with defining what automated planning is which HTN planning is a
part of. After that we take a look at risk-awareness in HTN planning, which is the focus of this
study, and present how it helps us refine an HTN model to make even better decisions. Finally, we
provide a short introduction into the domain of agriculture, by going over Irrigation, Fertilizer and
Pesticides.

2.1 Automated Planning

Planning is a process of deliberation that seeks to identify and organise a series of actions, with
an estimate of their expected outcomes, in order to achieve defined objectives [GNT04]. The true
benefits of planning are realised when complex tasks and goals must be achieved, rather than simple,
familiar everyday tasks where planning occurs implicitly and unconsciously. These complex tasks
and goals are present in many systems. For example, if we have many actors inside a system like a
warehouse where multiple robots move boxes, we would not want them acting without a concrete
plan, otherwise crashes or missing boxes could be a result. One way to solve the need for plans
efficiently is automated planning [GNT04], meaning we let an AI decide for us a course of action to
reach a predefined goal.

To be more precise, automated planning, which is a sub area of Artificial Intelligence (AI) and
stands as one of its cornerstones, deals with orchestrating strategies and actions to achieve a pre
defined goal in a satisfactory and autonomous way. This involves abstract, explicit reasoning that
selects and organises actions by anticipating their expected outcomes which results in a concrete
plan [GNT04].

To create such a Plan for a specific problem, we need to use a so called planner. This Planner uses a
Planning Domain and Planning Problem, which contains information about the initial state and a
goal state, as an Input [GA16]. The starting point of every planning problem is called the initial
state, it describes the state in which the world exists when we start acting upon our designed plan.
The goal state is our target, it describes how the world should be after we finished following the
actions outlined by our plan. To get to this goal state from our initial state, we have to use a set of
actions. Actions change the world state through effects and can be used depending on a number of
prerequisites, so its up to our planner to find a sequence of actions that will change the world state
from out initial state to our goal state.

19

2 Background

For example, if we look at our warehouse robots again, the initial state could be the position of
every robot when our planner is invoked and the goal state would be to move each robot to its
designated box, moving the shortest path possible without crashing. The actions in this example
could be, picking up a box or turning the robot to a new direction, which we could let our Planner
string into a sequence of actions which would be the Plan we get as a Output.

Automated planning should only be employed in scenarios, where a straightforward list of actions to
achieve a goal cannot be created with basic reasoning, as it is a resource-intensive process. Instead,
it should be employed only when computational power is necessary to expose all conceivable
solutions and find the optimal one.

2.2 HTN Planning

Hierarchical Task Network (HTN) planning is an artificial intelligence planning technique that
operates under the same general concept discussed in the preceding section. Consequently, it
utilises the same building blocks. The fundamental concepts of this technique comprise an initial
state description, an initial task network serving as the primary objective, and domain knowledge
consisting of networks of primitive and compound tasks [GA15]. We will now discuss in more detail,
the different parts of HTN and their usage, and finish with a list of definitions, which summarize
our explanations.

A Task Network comprises a hierarchy of tasks that may be primitive or compound. Primitive
tasks can be executed directly, while compound tasks must first be decomposed into subtasks using
methods. The initial task network includes the goal tasks that requires completion. Breaking down
the initial task network, is the preliminary stage in the planning process. This continues until all
compound tasks are decomposed, and an appropriate solution is obtained. The solution comprises a
sequence of primitive tasks, that can be executed in the initial state of the world and achieve the
initial task network.

If we take our warehouse example, then a compound task could be MoveBoxes which consists of
PickUpBox and then MoveBoxToTarget as possible primitive tasks of our Plan, as can be seen in
Figure 2.1.

Obviously, for a successful execution of the PickUpBox task, checking for the presence of a box is
essential to create a correct plan in this instance, otherwise, the Robot will not be able to perform
the task accurately.

In order to facilitate communication regarding feasible and unfeasible actions, it is necessary to
record the world state in a manner that is capable of processing. To accomplish this task, HTN
and other AI planning techniques, such as classical planning, utilise preconditions. Precondition
describe a particular state, that is either true or false, like being in the right position to pick up
an existing box. Each Precondition consists of predicates, particularly ground predicates, which
represent a specific type of predicate. According to [GA15], a predicate is made up of a name and an
ordered list of terms, which can be either constants or variables. The result of a predicate can only
be true or false, for instance, if a specific box is missing, a predicate describing its presence would
return false. However, this could change in the future if the box is moved to the desired location,

20

2.2 HTN Planning

MoveBox

Method

Precondition: Box Present

MoveBoxToTargetPickUpBox
Primitive

Tasks

Compound
Task

Figure 2.1: Simple Example for an HTN model

where it can be picked up. A ground predicate is a type of predicate that does not include variables,
but instead only includes constants, such as a specific location for a box instead of multiple variable
location options.

Now that we have learned how to convey information about the condition of our environment, the
next step is to determine how to achieve the various compound tasks in our task network. HTN
makes use of Methods to achieve this, wherein a Method decomposes a compound task into different
types of tasks, which can be a list of primitive or compound tasks, if its preconditions are met.

After continuously selecting the appropriate method to decompose all the present compound tasks
in the task network, based on the present world state conveyed through Predicates, we are left with a
list of primitive tasks. This list of primitive task each have operators that executes them, achieving
our initial task network.

For instance, we could have the primitive task PickUpBox, which requires a box to be present and
for us to be in a position to pick it up. If the preconditions are met, we will execute the operator
PickUp, which simply picks up the box without checking it or dealing with any consequences. The
effects are handled by the primitive tasks, which modify the world state depending on the impact
subsequent to the completion of our operator.

Now that we have established the fundamental elements, we shall proceed to discussing the kinds of
HTN planners. HTN planners come in various types, dependent on their search space, but for this
thesis, we will concentrate on state-based planners. This will allow for a comprehensive explanation
of their characteristics. A state-based planner is searching for a state that can achieve the goal task
network from the initial state. This is accomplished through decomposing compound tasks until it
is no longer possible to decompose further, resulting in a failure to find a solution, or we are left
with primitive tasks that form a primitive task network.

21

2 Background

If we take a look again at Figure 2.1, an initial task network could be MoveBox(robot, box, target),
which our planner would then try to decompose. Assume we have the Predicate BoxPresent(box,
true), then the planer would decompose MoveBox(robot, box, target) with the Method to the
task network PickUpBox(robot, box) and MoveBoxToTarget(robot, box, target). Now that we
decomposed all the compound tasks of our initial task network and the resulting task networks, we
are left with the solution to our primary objective.

To formalise the concepts discussed in this chapter, here are definitions from [GNT04] and [GA15]
that provide a more formal perspective.

Definition 2.2.1 (Predicate)
A predicate p is defined as p = ⟨𝑛𝑎𝑚𝑒(𝑝), 𝑡𝑒𝑟𝑚𝑠(𝑝)⟩, where:

• name(p) is the predicates name.

• terms(p) = ⟨𝜏1, ..., 𝜏𝑛⟩ is an ordered sequence of terms, for which applies: ∀𝑖 ∈ {1, .., 𝑛} :
𝜏𝑖 ∈ 𝐶 ∪𝑉 . C represents the set of constants, while V represents the set of variables.

A predicate can only evaluate to the values true and false.

Definition 2.2.2 (Ground Predicate)
A ground predicate is a predicate in which all of the terms are constants, meaning a ground predicate p
is defined as: 𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑝), 𝑡𝑒𝑟𝑚𝑠(𝑝)⟩, where 𝑡𝑒𝑟𝑚𝑠(𝑝) = ⟨𝜏1, ..., 𝜏𝑛⟩ and∀𝑖 ∈ {1, .., 𝑛} : 𝜏𝑖 ∈ 𝐶

Definition 2.2.3 (State)
A state s is a set of ground predicates 𝑝𝑖 , where 𝑠 = ⟨𝑝1, 𝑝2, ..., 𝑝𝑛⟩

Definition 2.2.4 (Primitive Task)
A primitive task 𝑡𝑃 ∈ 𝑇𝑝 is defined as: 𝑡𝑝 = ⟨𝑛𝑎𝑚𝑒(𝑡𝑝), 𝑡𝑒𝑟𝑚𝑠(𝑡𝑝)⟩ , where:

• name(𝑡𝑝) is the predicates name

• 𝑡𝑒𝑟𝑚𝑠(𝑡𝑝) = ⟨𝜏1, ..., 𝜏𝑛⟩ is an ordered sequence of terms.

Definition 2.2.5 (Compound Task)
A compound task 𝑡𝑐 ∈ 𝑇𝑐 is defined as: 𝑡𝑐 = ⟨𝑛𝑎𝑚𝑒(𝑡𝑐), 𝑡𝑒𝑟𝑚𝑠(𝑡𝑐)⟩

The various components hold an equivalent definition as for primitive tasks.

Definition 2.2.6 (Task Network)
A task network is defined as 𝑡𝑛 = ⟨𝑇𝑛, 𝐶⟩, where:

• 𝑇 = 𝑇𝑝 ∪ 𝑇𝑐, meaning T is the finite set of all the primitive and compound tasks

• C is a set of constraints that must be satisfied by the tasks in T

For this thesis, we will solely utilise the precedence constraint, which utilises an expression in the
form of 𝑢 ≺ 𝑣, in which ’u’ and ’v’ refer to tasks. The expression 𝑢 ≺ 𝑣 means that we have to finish
with u before we can start with v.

22

2.2 HTN Planning

Definition 2.2.7 (Predicate Evaluation)
Evaluating a predicate p in a state s is done in the following way:

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑠) =
{

true, if 𝑝 ∈ 𝑠,
false, else

Definition 2.2.8 (Operator)
An Operator o is defined as 𝑜 = ⟨𝑡𝑝 (𝑜), 𝑝𝑟𝑒(𝑜), 𝑒 𝑓 𝑓 (𝑜), 𝑐(𝑜)⟩, 𝑤ℎ𝑒𝑟𝑒 :

• 𝑡𝑝 (𝑜) is a primitive task associated with the operator

• pre(o) are Preconditions which in turn are a collection of predicates that must be true in the
current environment to execute the operator:

– ∀𝑝 ∈ 𝑝𝑟𝑒(𝑜)∧ s is a state ∧𝐵𝑜𝑜𝑙 = ⟨𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒⟩ : 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝, 𝑠) ∈ 𝐵𝑜𝑜𝑙

• 𝑒 𝑓 𝑓 (𝑜) = ⟨𝑒 𝑓 𝑓 −(𝑜), 𝑒 𝑓 𝑓 +(𝑜)⟩ is the effect the operator has on the world state if its executed,
this effect is shown in the predicates where some are deleted or turned false while others are
added or turned true depending on the operator. Predicates deleted/turned false are denoted
by 𝑒 𝑓 𝑓 −(𝑜) and predicates added/turned true are denoted by 𝑒 𝑓 𝑓 +(𝑜), thus we can define the
new state s’ after using the operator o starting from state s with 𝑠′ = (𝑠 \ 𝑒 𝑓 𝑓 −(𝑜)) ∪ 𝑒 𝑓 𝑓 +(𝑜)

Definition 2.2.9 (Method)
A method 𝑚 ∈ 𝑀 is defined as 𝑚 = ⟨𝑡𝑐 (𝑚), 𝑝𝑟𝑒(𝑚), 𝑡𝑛 (𝑚), where:

• M is a set of methods

• 𝑡𝑐 (𝑚) is the compound task which the method decomposes

• pre(m) are preconditions as defined in Operator

• 𝑡𝑛 is the resulting task network we get by decomposing the compound task 𝑡𝑐 with the method
m

Definition 2.2.10 (HTN planning Domain)
An HTN planning domain d is defined as 𝑑 = ⟨𝑂, 𝑀⟩, where:

• O is a set of operators

• M is a set of methods

Definition 2.2.11 (HTN planning Problem)
An HTN planning problem P is defined as 𝑃 = ⟨𝑠0, 𝑡𝑛0 , 𝑑⟩, where:

• 𝑠0 is the initial state of the environment

• 𝑡𝑛0 is the initial task network

• d is the HTN planning domain

Definition 2.2.12 (Solution)
A sequence of operators 𝑜1, ..., 𝑜𝑛 can be executed in a state s if there is a sequence of states
𝑠0, ..., 𝑠𝑛 (also known as a trajectory), where:

• 𝑠0 = 𝑠 and 𝑜𝑖 is applicable in 𝑠𝑖−1

23

2 Background

• ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑠𝑖−1(𝑜𝑖) = 𝑠𝑖 meaning if we execute operator 𝑜𝑖 in state 𝑠𝑖−1 we end up in state
𝑠𝑖

A solution 𝜋 of an HTN planning problem P is a sequence of operators 𝑜1, 𝑜2, ..., 𝑜𝑛 which are
executable in 𝑠0 by decomposing 𝑡𝑛0 .

2.3 Considering Risk in HTN planning

What we observed in the preceding sections were decisions that were binary, as to whether a box
was present or not. However, we did not consider the broader implications of our decisions, such as
the potential for delays in delivering other boxes and subsequent ripple effects if we pick up an extra
box. Thus, we did not evaluate the risks associated with our decisions. Risk must be considered
in specific domains where the quality of plans are important [AGA22], particularly in agriculture
where it is ever-present due to factors such as weather and pests. Therefore, it is crucial to include
risk assessment and management in agricultural planning. Risk can be defined as:

Definition 2.3.1 (Risk [AGA22])
Risk is a decision-making situation in which either all outcomes and their probability of occurrence
are known a priori or the probability distribution of outcomes is unknown but can be deduced using
statistical inference.

For this thesis, the suggested solution cited from [AGA22] implementing the expected utility
theory will be used. This decision theory model is chosen as it allows for the selection of actions
while taking into account their potential costs probability and a risk attitude expressed via a utility
function.

In decision theory, individuals assess options using expected utility, a measure that combines the
desirability of potential outcomes (utility) and their likelihood of occurring (probability). The
framework enables rational decision-making despite uncertainty, as individuals strive to maximise
their expected satisfaction or desirability.

The origin of risk arises from operators that induce risk. For instance, when striving to efficiently
water plants without overusing resources, one must consider the risk of rainfall as well. The watering
operator is expected to result in costs, be it in terms of monetary expenses or environmental damage.
In order to avoid wasting resources, it is necessary to minimize these costs but with the potential for
rain, the cost of the watering operator becomes uncertain. Therefore, we will adopt cost-variable
operators to determine the most cost-effective plan, even amid uncertainty.

Cost-variable operators mean that operator costs are modelled as a probability distribution, rather
than having a static cost. For instance, watering can incur multiple potential costs, each with a
distinct likelihood of occurrence. This means that an operator can have various potential costs,
depending on the probability distribution. Nonetheless, it is crucial to choose the appropriate cost,
regardless of it being the highest. Highest, as the costs are denoted by negative values, hence larger
values are preferred.

24

2.3 Considering Risk in HTN planning

Definition 2.3.2 (Cost-Variable Operator [AGA22])
A cost-variable operator o is defined as a tuple 𝑜 = ⟨𝑡𝑝 (𝑜), 𝑝𝑟𝑒(𝑜), 𝑒 𝑓 𝑓 (𝑜), 𝑐(𝑜)⟩, where 𝑡𝑝 (𝑜),
and pre(o) are defined as before, and eff(o), and c(o) are tuples that represent the effects and the
costs of the operator, respectively and are defined as follows:

• 𝑒 𝑓 𝑓 (𝑜) = ⟨(𝑝1(𝑜), 𝑒 𝑓 𝑓1(𝑜)), (𝑝2(𝑜), 𝑒 𝑓 𝑓2(𝑜)), ..., (𝑝𝑛 (𝑜), 𝑒 𝑓 𝑓𝑛 (𝑜))⟩

• 𝑐(𝑜) = ⟨(𝑝1(𝑜), 𝑐1(𝑜)), (𝑝2(𝑜), 𝑐2(𝑜)), ..., (𝑝𝑛 (𝑜), 𝑐𝑛 (𝑜))⟩

such that eff(o) are the variable effects of the operator and c(o) is the variable costs of the operator.
Furthermore the following conditions need to be fulfilled :

• 𝑒 𝑓 𝑓𝑖 (𝑜) and 𝑐𝑖 (𝑜) are the ith effect with its corresponding cost, respectively

• ∀𝑛 > 0∀𝑖 ∈ [1, 𝑛], 0 < 𝑝𝑖 (𝑜) < 1

•
∑𝑛
𝑖=1 𝑝𝑖 (𝑜) = 1

• 𝑐𝑖 (𝑜) < 0

There are two risk-sensitive attitudes, risk-seeking and risk-averse [AGA22]. Risk seeking might
involve refraining from insurance if the risk is low, since it could be cheaper to go without it.
Conversely, risk-averse individuals may opt for the safest option to decrease potential damage, even
if it requires more resources, such as additional insurance premiums or taking a longer but safer
route. Risk attitudes may impact how individuals evaluate the utility and probability of potential
outcomes to optimize their expected utility.

These two attitudes can be further divided between static and dynamic risk attitudes. For this work
we use static risk attitudes, meaning the the attitude does not change during planning. The utility
function transforms a operator cost into a value for the utility of this operator.

Definition 2.3.3 (Utility function for static risk attitude)
We define the utility function 𝑢 for an operator o with the cost c(o) as:

𝑢(𝑐(𝑜)) =
{
𝑐(𝑜) if neutral
𝑎 (𝑒𝑎𝛼𝑐 (𝑜)−1)

𝛼
else

where:

• a is an attitude-determinant coefficient

• 𝛼 is a curving coefficient changing the shape of the utility function

• the (-1) is added to normalize the function

This value changes depending on the risk attitude, with a>0 describing a risk-seeking attitude while
a<0 representing a risk-averse attitude. In the case of risk-averse, negative costs are way bigger
compared to risk-seeking. With 𝛼 we can control the intensity of the specific attitude, meaning
how extreme they act like their given attitude. For risk-averse with 𝛼 = 1, we weigh negative costs
extremely low, while with 𝛼 = 0.05 we still value them way worse than risk-seeking would, however
it is more moderate. For risk-seeking we do not fear negative costs as much, in the case for 𝛼 = 1
we even weigh them all the same after a certain negative cost.

25

2 Background

With the utility function defined, we can now define the Expected utility, which additionally takes
the probability of each utility into account.

Definition 2.3.4 (Expected Utility for one cost-variable operator)
We define the expected utility 𝐸𝑈 (𝑜) for an operator o with the costs 𝑐1(𝑜) and 𝑐2(𝑜) and their
probabilities 𝑝1 and 𝑝2 as:

𝐸𝑈 (𝑜) = 𝑝1 ∗ 𝑎 (𝑒𝛼𝑐1 (𝑜))
𝛼

+ 𝑝2 ∗ 𝑎 (𝑒𝛼𝑐2 (𝑜))
𝛼

A planner would calculate the EU for each probability from the given probability distribution,
considering its associated cost. For instance, suppose we have an operator for watering that has a
probability distribution indicating the cost of watering for forecasted rainfall. The cost for each
scenario in the probability distribution is derived by calculating it or it could be given. For instance,
the negative cost will be close to zero when rainfall is not predicted and the plant is in need of water.
Using the given costs and their corresponding probabilities, we compute the expected utility (EU)
of irrigating. We obtain multiple EU values equivalent to the number of cases in our probability
distribution. The option with the highest expected utility is selected as the optimum course of
action.

This all leads us to the definition of Risk-aware HTN Planning, which we use in this work:

Definition 2.3.5 (Risk-aware HTN Planning [AGA22])
A risk-aware HTN planning problem is a 4-tuple 𝑃𝑟 = ⟨𝑠0, 𝑡𝑛0 , 𝐷,𝑈⟩, where 𝑠0 is the initial state,
𝑡𝑛0 is the initial task network, 𝐷 = ⟨𝑂, 𝑀⟩ is a risk-involving planning domain consisting of
cost-variable operators O and a set of methods M, and U is a utility function that expresses a certain
attitude ATT by evaluating the operator costs. A plan 𝜋 is a solution to 𝑃𝑟 if and only if 𝜋 has a
maximum expected utility 𝐸𝑈 (𝜋) that reflects the chosen attitude ATT.

2.4 Precision Agriculture

There are a multitude of definitions what exactly precision agriculture is. However the International
Society of Precision Agriculture defined in 2021 as following:

Precision Agriculture is a management strategy that gathers, processes and analyzes
temporal, spatial and individual data and combines it with other information to support
management decisions according to estimated variability for improved resource
use efficiency, productivity, quality, profitability and sustainability of agricultural
production [ISP].

It is evident from the definition, that technology is utilized for information gathering and processing
to optimize the utilization of resources. However, before acting upon the gathered information, we
must first specify the data that needs to be collected and how to obtain it. In the ensuing sections,
we will accomplish this by examining irrigation, fertilization, and pest management and detailing
the types of information we need to collect.

26

2.4 Precision Agriculture

2.4.1 Understanding Soil Moisture

Effective agriculture and plant management rely on a comprehensive understanding of soil moisture.
Soil moisture, defined as the amount of water in the soil, has a critical impact on plant growth, soil
temperature, chemical transport, and groundwater recharge [DTS17]. This subsection examines the
key parameters used to measure soil water content, including volumetric water content and soil
matric potential, highlighting their relevance in agricultural and irrigation practices. In order to
determine the most effective irrigation strategies, it is essential to investigate essential soil moisture
thresholds, including saturation, field capacity, and the permanent wilting point. These key concepts
serve as the basis for our analysis of usable field capacity, which is essential for proper management
of soil moisture to achieve successful crop cultivation.

We will begin with a description what soil is, specifically the soil matrix. The term soil matrix
typically refers to the solid component of the soil, which consists of mineral particles, organic
matter, and various microorganisms [BS00]. It is the non-fluid portion of the soil that provides
structural support and forms the framework within which water and air are distributed in the soil.
The soil matrix consists of various soil particles, including sand, silt, and clay, along with organic
material like decayed plant and animal matter. The interplay between the soil matrix and the pore
spaces containing air and water is crucial to grasp soil functioning and its ramifications for plant
well-being.

Now with a basic grasp on the soil matrix, we can take a look at how water interacts with the soil
matrix. For that we will use following definitions from [DTS17].

Two widely used parameters for the quantification of soil water content are volumetric water content,
and soil matric potential. The volumetric water content(VWC) refers to the proportion of water
volume to soil volume. It can be denoted as a ratio, percentage or depth of water per unit soil depth
(assuming a uniform surface area). Soil matric potential (SMP), also known as soil suction or
soil water tension, describes the forces that keep water molecules bound to solid particles and to
one another in soil pores. This has implications for plant growth and survival, since it limits the
movement of water throughout the soil matrix. A force greater than the SMP is necessary to extract
water from it. As water is extracted from the soil, the remaining water is held more tightly, thus
increasing the difficulty of water absorption by plants through their roots. Therefore SMP rises as
water is extracted from the root region of the plant.

Soil moisture thresholds indicate specific levels of water availability for plant growth. These
thresholds are utilised to determine the appropriate quantity and timing of irrigation.

Saturation refers to the point at which all pore spaces, located between soil particles, are saturated
with water. The volumetric water content (VWC) at this threshold varies from 30 percent in sandy
soil to 60 percent in clay soil. The soil moisture potential (SMP) at saturation is less dependent on
soil texture and is close to zero. This indicates that there is a minimal hindrance to the movement of
water, enabling plant roots to easily access water from the soil with little energy expenditure.

Field capacity (FC) is the point, at which larger pores have drained out water due to the force of
gravity. It is not desirable to irrigate when the soil moisture goes beyond the FC threshold, as the
extra water will seep down to lower layers and will not be accessible by plant roots. At field capacity,
the moisture content of the soil is deemed to be optimal for crop growth. Therefore, it is typically
regarded as the upper limit for irrigation management. At this threshold, the typical volumetric
water content varies from 20 per cent in sandy soils to 40 per cent in clay soils.

27

2 Background

The Permanent Wilting Point (PWP) represents the level where plants are unable to extract water at
a sufficient rate to match their water requirement. Soil particles hold the water so tightly at PWP that
it becomes problematic for roots to access it. At this threshold, plant transpiration and subsequent
processes are impacted. The reduction in water uptake by plants, leads to a near standstill of other
processes essential for plant survival, resulting in a considerable decrease in crop growth and yield.
If soil moisture remains below the permanent wilting point (PWP) for an extended period, the
plant will eventually perish. Therefore, irrigation should be applied well before soil moisture starts
approaching the PWP. The PWP value varies depending on the plant type, soil, and climate. When
presented as VWC values they range from 7% in sandy soils to 24% in clay soils.

These different variables are needed to calculate the usable field capacity 𝑛𝐹𝐾 [Wet], which we
will later use as our current and ideal soil moisture value. It can be defined as following:

Definition 2.4.1 (Usable Field Capacity)
The usable field capacity (𝑛𝐹𝐾) describes the current soil moisture SM as:

• 𝑛𝐹𝐾 = (𝑆𝑀 − 𝑃𝑊𝑃)/(𝐹𝐶 − 𝑃𝑊𝑃)

The values for 𝑛𝐹𝐾 range from 0-100%, with values going above 100% in the case that SM is above
FC.

Another important aspect of understanding soil moisture, is how the soil looses moisture. This process
is called Evapotranspiration, which is the combination of two processes, namely evaporation and
transpiration [APRS+98]. Evaporation describes the water lost through the process of vaporization,
meaning liquid water gets converted into water vapour and is therefore removed from the soil.
Transpiration is the process in which liquid water present in plant tissues, vaporizes and is
subsequently released into the atmosphere. The primary route for water loss in most crops occurs
through the stomata, which are tiny openings on the surface of plant leaves that allow for the
exchange of gases and water vapor.

2.4.2 Plant Nutrition: Understanding and Assessing Nutritional Needs

A substance essential for the growth and reproduction of plants is referred to as a plant nutrient
[BP15]. It is crucial for producing healthy crops and supporting the plants physiological functions.
It is important to note that plant nutrients can be obtained from a variety of sources, including
soil, fertilisers, and organic matter. Thus, the proper management of plant nutrients is necessary to
maintain soil fertility and ensure sustainable agricultural practices.

There are Seventeen elements which can be classified as essential plant nutrients. Three of these
elements are obtained from air or water, specifically Carbon, Hydrogen, and Oxygen. The remaining
elements are acquired from the soil or nutrient solutions. One of these elements and the first to
be classified as essential, is nitrogen which we will take as an example for the remaining section.
Nitrogen plays a crucial role in multiple phases of a plants metabolism and can be mostly found
nitrogen-containing proteins [BP15].

28

2.4 Precision Agriculture

Figure 2.2: Generalized Reflectance curves from Louis E. Keiner - Coastal Carolina University
[Kei] for plants under various environmental stress levels

To determine whether a plant is suffering from nitrogen deficiency or excess, one can observe its
appearance. Metabolic disruptions due to nutrient deficiencies establish connections between the
function of an element and the manifestation of a particular visible anomaly in plants. Disorders’
symptoms offer guidance to recognize nutritional deficiencies in vegetation. A generalized example
can be seen in Figure 2.2.

For example, nitrogen is essential for the production of proteins and chlorophyll. Interference with
these processes leads to symptoms such as pale green or yellow leaves that start at the bottom and
spread upwards or occasionally cover the entire plant, indicating a shortage of nitrogen.

29

2 Background

Other visual cues for symptoms of a nutritional deficiency can be spotted depending on the type
of element missing, like necrosis or stunted growth [Ben93]. However, the absence of essential
elements can result in various symptoms [BP15]. Therefore, it is imperative to employ tools to
analyse and identify the missing elements.

2.4.3 Pests and Pesticide

Pesticides play a crucial role in modern agriculture, aiming to prevent, destroy, repel, or mitigate
various pests that threaten crop yields and, consequently, food production. The term pesticide
encompasses a wide range of chemical compounds or combinations used for this purpose, as
highlighted by Bernardes in a study from 2015 [BPPD+15].

Categorizing pesticides becomes essential for efficient pest management, and this categorization is
typically based on the type of pests they target. Among the various categories, three stand out as
the most common:

• Insecticide: These are designed to combat insects, inhibiting their growth or survival. Insect
pests can be particularly damaging to crops and, therefore, necessitate effective control
measures.

• Herbicide: Targeting weeds, plants, and grasses, herbicides serve as a vital tool for maintaining
crop health. Unchecked, these undesired plant growths can choke out cultivated crops.

• Fungicide: Fungi, while not as visible as insects or weeds, can wreak havoc on crops.
Fungicides are crucial for protecting plants against fungal infections.

However, it is worth noting that the label pest can be somewhat subjective and lacks ecological
authenticity, as highlighted by Metcalf in a 1994 publication [ML94]. In certain ecological contexts,
some insects can even provide benefits, while in others, they prove to be troublesome pests. The key
determinant often lies in competition for resources. When an insect competes with humans for a
resource and exists in abundance, it is usually considered a pest.

The scale of the pest problem is significant, as illustrated by the Food and Agriculture Organization
(FAO), which estimates that pests are responsible for destroying up to 40% of the worlds crops and
causing staggering losses, totaling $220 billion[FAOa]. This highlights the critical importance of
effective pest management to ensure efficient resource usage and maximize agricultural yields, a
point emphasized in a study by Pereira in 2016 [PCM+16].

However, the widespread and sometimes indiscriminate use of pesticides, has led to several
concerning consequences, including the emergence of pesticide-resistant pests and environmental
damage, as underscored in studies like Zelayas work in 2007 [ZOV07]. Consequently, it is imperative
to seek alternative approaches to pest management that minimize reliance on traditional pesticides.
One such approach is integrated pest management (IPM), a system outlined by Metcalf in his
1994 publication [ML94]. Numerous interpretations of IPM exist within the academic discourse.
However, for the purpose of this discussion, the definition offered by Kogan , shall serve as our
point of reference:

30

2.4 Precision Agriculture

IPM is a decision support system for the selection and use of pest control tactics,
singly or harmoniously coordinated into a management strategy, based on cost/benefit
analyses that take into account the interests of and impacts on producers, society, and
the environment [Kog98].

The Principles of IPM can be defined as following[FAOb]:

• Ecosystem Approach: Utilise natural predators and sustainable practices to prevent and tackle
pest problems. Introduce approaches such as utilising a wide range of crop varieties, crop
rotation techniques, and field cleanliness measures.

• Contingency Planning: Use pesticides only when they are necessary. Invest in crop varieties
that are resistant to pests and monitor the use of pesticides carefully.

• Cause Analysis: To achieve effective pest management, it is essential to objectively analyse
pest outbreaks, prioritise sustainable methods, and carefully consider the use of biological
controls or pest campaigns.

• Surveillance and Response: Implement real-time pest monitoring, establish tracking systems,
and develop warning and diagnosis systems to ensure rapid responses.

31

3 Agricultural HTN planning domain with risk

Now that a foundational comprehension of HTN planning and Precision farming has been established,
it is prudent to explore the potential integration of these domains in order to model the precision
farming task as a risk-aware HTN planning problem. To solve a problem with automated planning,
several phases must be undertaken, as illustrated in Figure 3.1. We will start by acquiring
knowledge, followed by analysing the domain requirements. Next, we will model our domain before
implementing and evaluating our model.

3.1 Knowledge Acquisition

The knowledge acquisition phase involves acquiring information about the domain we are modelling.
To achieve this, we must adhere to a selected framework in order to familiarize ourselves with the
domains specifics and the way in which it operates. Since we will work with precision farming as
our foundation, we use a lot of embedded information gathering through different kinds of sensors.
Furthermore we have a predefined area in which we operate through different autonomous actors
like an automatic drip irrigation. All this combined results in a system that is gathering and acting
upon knowledge in an autonomous way. This seamless coordinating and communicating leads to
a ubiquitous computing environment [Kru18]. That is why we choose the conceptual framework
for knowledge acquisition, as detailed by Georgievsky and Aiello [GA16], for this study, which is
depicted in Figure 3.2.

This framework divides the knowledge about the domain into four categories, each containing
sub-categories, as defined below:

• Behavioural Input is the information that represents a persons preferences for how a ubiquitous
computing environment should behave. Depending on whether the satisfaction of ones wishes
is necessary or desirable but not necessary, we distinguish two sub-dimensions of behavioural
inputs:

– Requests are examples of desired outcomes that are made in order to enforce obligatory
behaviour, change the environment or organise settings. Declarative goals, which
explicitly express the states of the environments to be created, are a type of request
model. They are concerned with what needs to be achieved in a particular situation.

Figure 3.1: Phases of solving a problem with automated planning

33

3 Agricultural HTN planning domain with risk

Figure 3.2: Hierarchy of dimension for ubiquitous computing environment adapted from [GA16]

Procedural goals are another type of requirement model that outlines a series of actions
that must be taken to fulfil requirements. These goals have to do with how to get
something done in a particular situation.

– The preferences sub-dimension includes a persons attitudes towards behaviour in relation
to the environment. Although preferences are not mandatory, they will be met as far
as possible. Preferences are thought of as soft constraints on plans, and their quality
increases as more constraints are satisfied.

• Behavioural Outputs are defined as actions carried out in ubiquitous computing environments
that alter the status of the environments. These actions can be executed by a range of physical
objects, including devices, robots, software components, and humans.

• Situations in ubiquitous computing settings possess physical properties in terms of both space
and time. These physical characteristics serve as bridges connecting individuals, objects, and
the surrounding environment. The spatial properties determine the correlations between the
entities and their environment. The temporal features define the interaction of entities with
time.

• Uncertainty in ubiquitous computing environments stems from the dynamic nature of these
settings, resulting in unreliable and uncertain information about the current state. This
dynamism encompasses various and ongoing events, unpredictability of behavioural output,
and partial observability, collectively defining three sub-dimensions of uncertainty.

34

3.1 Knowledge Acquisition

– Unexpected events are occurrences that take place in highly unusual and entirely
unanticipated circumstances, significantly diverging from the norm and manifesting
unexpectedly.

– Action contingencies represent circumstances during actions where execution does
not proceed as planned. These contingencies may consist of instances of failures or
timeouts.

– Partial observability relates to the imperfections and incompleteness inherent in our
knowledge of environmental states. State elements, such as variables, can assume various
potential actual values, some of which may remain entirely unknown. Consequently,
the determinants of behavioural outputs stop relying directly on these uncertain states.

Now that we have a fundamental understanding of the framework, let us assess how these categories
align with the three key pillars of our model: irrigation, fertilisation and pesticide application. For
this, we will provide a more detailed overview of each of the key pillars and afterwards categorise
them using the predetermined categories. The resulting table can be found in Table 3.1.

3.1.1 Declarative Goals

There are various declarative goals that could express the desired state of our environment.
Depending on our primary focus, be it economy, ecology or time, different goals can be established.
In this thesis, the emphasis will be placed on plant wellness to attain optimal crop yield whilst
maximizing resource efficiency. Plant wellness is composed of the plants need for adequate moisture,
nutrition, and health. Therefore we try to satisfy each of these needs with using as little resources
as possible. For example, by reducing the usage of pesticides, we can enhance our environmental
sustainability. Additionally, by creating an optimal environment for plant growth, we can achieve
the maximum harvest and profit possible. This can further be maximized by using fewer resources,
such as water, fertilizer, and pesticides which all incur costs.

3.1.2 Procedural Goals

To effectively manage the plant wellness, clear procedural goals must be established. These goals
outline the specific actions and routines necessary for tasks like watering, fertilizing, and pesticide
application. By defining these procedural goals, a strong foundation is laid for comprehensive plant
care strategies, addressing other considerations like behavioural outputs.

When contemplating irrigation as a procedural goal in an agricultural HTN planning domain, several
crucial factors arise. Efficient irrigation strategies rely on a blend of factors, including acquiring
the current moisture levels, the particular soil quality or type, the growth stages of the plants in
question, monitoring for water stress, and the utilization of varied watering techniques [Bre21;
DTS17; NBE+73; OOST14].

Successful fertilisation strategies depend on a precise interplay of numerous factors. This comprises
evaluating the current levels of soil nutrients, identifying the characteristics of the soil, considering
the developmental stage of the crops being cultivated, being constantly aware of potential nutrient
deficiencies, and utilising a wide range of fertilisation methods [BP15; ERB+20; WS87].

35

3 Agricultural HTN planning domain with risk

For effective and environmental sustainable pest management we use the principles of IPM [FAOb].
Therefore the use of pesticides is a last resort and in the case it is needed, should be used as
efficiently as possible. For that we need ways to implement pest monitoring and ways to apply only
the necessary amount of pesticides if its needed.

By delving into each of these elements in the following categories, we can establish a well-
rounded approach to achieving optimal plant wellness through proper hydration, nutrition and pest
management.

3.1.3 Unexpected Events

For starters we need to think about the factors that are inherently uncertain and therefore more
difficult to manage. There are several factors to consider during the knowledge acquisition phase for
uncertainty, such as market fluctuations and natural disasters. However, this thesis will only examine
the weather-related sources of uncertainty, specifically rainfall. Rainfall affects the current soil
moisture which, if ignored, may result in waterlogging. Waterlogging describes the saturation of
the soil with water, which can for example lead to decreased oxygen supply for plants and seriously
hinder their growth and development [PCB+08]. Therefore, we need to take this uncertainty into
account in our domain model to maximise plant wellness.

3.1.4 Information Services

Next we will talk about the Information Services, we will use for our model. Information services are
knowledgeable behaviours that are developed through the collection, management, and application
of logic to data that could be distributed across various locations [GA16].

Because weather, as previously mentioned, is inherently uncertain, we need to collect data and
then make decisions based on that data, so we estimate how much rainfall will cause what kind of
moisture and how that will affect our irrigation management. When examining the irrigation aspect
of our model, it is essential to forecast the required amount of water for our plants in the upcoming
days. Various elements have an impact on the available moisture for our vegetation, for example
how much water stays in the soil from rainfall and how much we loose through evapotranspiration.
For this type of information, we utilise the Deutscher Wetterdienst 1 2 as an application service, as
it provides the anticipated precipitation, evapotranspiration and soil moisture retention rates for
various soil types. However we will only use the anticipated precipitation and evapotranspiration
but use our own simplified versions to calculate soil moisture retention rates. The reason is that
we otherwise would need way more information about our field. For example the exact locations
of different soil types with various depths, location of hills or slopes, daily temperature, wind
speed, etc. [Pen48]. Therefore we use our own simplified version to predict the soil water retention
which can be seen in Definition 3.2.1. We then make prognosis from the information delivered and
calculated about the expected moisture available in the coming days.

1Precipitation: https://www.dwd.de/DE/leistungen/niederschlag24wt/niederschlag24wt.html#buehneTop
2Soil Moisture Information: https://www.dwd.de/DE/leistungen/bodenfeuchte/bodenfeuchte.html#buehneTop

36

https://www.dwd.de/DE/leistungen/niederschlag24wt/niederschlag24wt.html#buehneTop
https://www.dwd.de/DE/leistungen/bodenfeuchte/bodenfeuchte.html#buehneTop

3.1 Knowledge Acquisition

3.1.5 Application Services

Application services control the deliberate actions of software installed on computers situated
within ubiquitous computing environments [GA16]. Application systems within our domain can
take many forms, such as software for managing the various valves within a drip irrigation system,
GPS tracking for VRT sprayers/sprinklers or the software required to read sensor values.

We will not go into specifics pertaining the software for our variable rate technologies or managing
various valves. However, we now present the different software solutions we use as potential
application services, which provide the information needed for other categories like our information
services. We will not actually execute them inside our planner but use sample values from these
sources.

Obtaining information about the current soil moisture is crucial for achieving optimal plant wellness.
One potential approach for acquiring the requisite information is to use a variety of sensors. These
can range from using Neutron Probes or to measure the soil dielectric permittivity through methods
like Time-Domain Reflectometry or Frequency Domain Reflectometry [CE12]. The issue with
sensors is that they are only precise within their immediate vicinity, despite their accuracy [Rap14].
Since we work with large fields in agriculture, outfitting them with enough sensors to get correct
data is way too expensive in terms of acquiring and maintaining the sensors, simulation models can
aid in comprehending and investigating the connection between the demand for crop water and the
availability of soil water [CEK23]. This is accomplished by forecasting the soil water content in
the root zone based on weather predictions. This offers visibility into the forthcoming changes in
water availability and can be utilized by us in decision-making when the next irrigation event for a
particular field is required. There are a multitude of different models which can achieve this, however
for our work we choose the model AMBAV [Löp83] as an example, since its data describes the soil
moisture in Germany. The AMBAV model computes both potential and actual evapotranspiration,
as well as the soil water balance, for various crop types [FL07]. This is accomplished through
simulating the water balance in the crop-soil system on an hourly basis using the Penman-Monteith
equation. The Penman-Monteith equation is a comprehensive model used to calculate potential
evapotranspiration, taking into account factors like sunshine, temperature, humidity and wind speed
[APRS+98]. The mechanistic model based on the Richards equation is used to simulate soil water
dynamics.

Next, we shall discuss the DRIS fertilization software, which we presume deals with identifying
and computing the amount of absent nutrients.

The Diagnosis and Recommendation Integrated System (DRIS), a commonly utilized plant analysis
tool, assesses the ratios of analyzed element concentrations to determine which nutrients are likely
to be lacking [Bev+91; TL+84]. It establishes values that assist in identifying such deficiencies.
The aim of the DRIS is to assess plant nutrition without influence from plant type, age, or the
position of its leaves [Sum77; Sum79]. Since our focus lies in the irrigation process, we will not
go into more details here, since we will not use precise values for nutrition values. However the
domain model could be expanded with this system to incorporate the values to identify and correct
different deficiencies.

37

3 Agricultural HTN planning domain with risk

3.1.6 Human Services

We try to minimise human intervention as much as possible, so we would only use human intervention
if a system cannot repair itself or needs maintenance in a way that it cannot do itself. However, we
do not distinguish between an autonomous fix and a human fix, we just assume that if we get to a
point where we need to fix something, it will get fixed.

3.1.7 Robot and Device Services

Since we try to minimise human interventions, we need to make use of other actors in our domain.
For example, for our procedural goal of Irrigation, we use the following irrigation techniques, which
we consider as device services.

Our first irrigation method of choice is the sprinkler irrigation. Sprinkler irrigation is a versatile
method that mimics natural rainfall by dispersing water through a network of pipes and nozzles.
Water is evenly sprayed over the crop area, forming a fine mist that gently falls onto the plants below.
This method is commonly employed in a variety of crops, from field agriculture to landscaping
[BPKH88]. It is particularly beneficial for cooling crops in hot climates and preventing frost damage
in cold regions. Sprinkler systems are relatively easy to install, and they can cover large areas
efficiently [Pai69].

Drip irrigation, also referred to as trickle irrigation, involves slowly delivering water onto the soil
at extremely low rates, usually between 2 and 20 litres per hour [BPKH88]. A series of slim
plastic pipes fitted with small outlets, known as emitters or drippers, accomplish this. The water is
carefully dispensed near the plants, guaranteeing that only the area where the roots are situated
receives moisture. This is in contrast to surface and sprinkler irrigation, which typically saturate the
entire soil profile. Drip irrigation requires more frequent water applications, usually every 1 to 3
days compared to other irrigation techniques. This frequent application schedule helps maintain a
consistently high level of moisture in the soil, thus creating an ideal environment for plant growth
and flourishing.

We use these two irrigation techniques separately, meaning we either have a sprinkler or drip
irrigation installed. This choice is defined at the beginning and does not change while running our
planner.

For fertilization, we will not differentiate between different types of fertiliser application or the
different types of fertilizer. The reason we differentiate the type of application for watering is that
we can combine watering and fertilising, if we have a drip irrigation system installed. This process
is called Fertigation and it allows us to supply essential nutrients simultaneously with the irrigation
process [HL95]. In order to ensure the plant receives the necessary nutrients, precise control over
the amount of water it receives is required. Therefore, a precise irrigation system such as drip
irrigation is necessary for proper function. The concentration of nutrients provided can be regulated
by adjusting the concentration of the irrigation water.

38

3.1 Knowledge Acquisition

In the case we only need to fertilize or have a sprinkler installed, we will use a Variable Rate
Technology (VRT), without specifying which concrete technology is used. Since we are using a very
simplified view of nutrition and pest status, it does not matter how we apply it. We introduce the
following technologies only to demonstrate that there are multiple resource-efficient applications,
such as various methods for applying fertilizer through variable rate fertilizing.

Variable Rate (VR) spreaders allow farmers to tailor fertiliser application to specific field conditions
and crop requirements [CZC+14]. VR spreaders use advanced technology to adjust the rate of
fertiliser application as the machine travels across the field. They are equipped with GPS and
software that can produce prescription maps for precise application. These maps take into account
factors such as soil type, nutrient levels and historical yield data to determine the ideal fertiliser rate
for each location within the field. This means that different areas of a field can receive different
amounts of fertiliser, optimising the use of resources and increasing crop yields.

Another option is the usage of drones to apply fertilizer, similar to map-based VRT like VR spreaders
with prescription maps [FAO22]. However as the recent report ’The State of Food and Agriculture
2022’ of the FAO indicates, this technology is not yet fully established, with the commercialization
only just beginning for small farms.

For Pest management, as with Fertilizing, we will assume the usage of some kind of variable rate
technology. The variable rate technology available is similar to the ones used in fertilizing. For
example VR sprayers use technology to adjust the pesticide application rate throughout the field
[ERP+13], similar to their fertilizer-spreading counterparts. As with the use of drones for fertilising,
the same problems exist for the use of drones for pesticides.

3.1.8 Temporal and Spatial Properties

A field can be viewed as a single entity, but this would be inefficient as there are many factors, like
we explained in the background chapter, from the soil type and quality that are not homogeneous but
do affect our plants well being. To counter that we work with cells, the exact size can be adjusted
but for now we will use a cell which encloses one plant with a depth of 10 cm. Each cell will have
its moisture, ideal moisture, nutrition amount,ideal nutrition and if pest are active saved in some
form which we define later in Section 3.3.1. For temporal properties, we could have a schedule
for the different Behavioural outputs, so we for example do not send multiple sprayers out at once.
However since, as already mentioned, we do not go into much detail pertaining the implementation
of the pest and fertilizing part, we do not implement a scheduler. For the irrigation part, there is no
explicit need for a schedule therefore we omit the exact details how all the Behavioural outputs
work together in the case we have a field with multiple cells.

3.1.9 Action Contingencies

As we work with different forms of autonomous actors, actions can be blocked by external
interference. For example, in our drip irrigation systems, dirt could block the various valves and
prevent us from delivering the calculated amount of moisture to our plants. Another example would
be that our storage of fertilizer is empty and we therefore can not apply them if needed.

39

3 Agricultural HTN planning domain with risk

Category Resulting Knowledge

Declarative Goals Maximum crop yield, reduce resource usage like pesticides, fertil-
izer, water and other chemicals

Procedural Goals Irrigation, Fertilization and Pest management
Information Services Estimations about expected soil moisture for the coming days
Application Services Deutscher Wetterdienst prognosis, DRIS, farm management sys-

tems, crop monitoring, disease detection, variable rate fertilizing
and pest control

Human Actions Maintenance, repair
Robot Actions Drones for crop monitoring, weed detection, autonomous vehicles

with VRT equipped
Device Operation Sprinkler and drip irrigation, VR spreaders, VR sprayers

Temporal Properties Automatic scheduling for the different machinery
Spatial Properties Divided Field into cells which all have different needs for the

amount of resources/help needed
Unexpected Events Rainfall

Action Contingencies Valves blocked, Fertilizer empty, machinery in need of repair
Partial Observability Amount of rainfall, expected soil moisture

Table 3.1: Acquired Knowledge for the Agricultural HTN planning domain

3.1.10 Partial Observability

Partial observability describes the incompleteness and imperfection of data on environmental
conditions [GA16]. Since many of our actions depend on making predictions based on calculations,
we cannot be sure that the predicted state will actually be achieved. For example we work with
probability distributions for the amount of rainfall we can expect in the coming days and calculate
the needed moisture now. Furthermore, as already discussed, soil moisture sensors are not really
accurate outside of their immediate vicinity, so the German Weather Service uses equations to
calculate the expected soil moisture. But still, for our model and in general, these calculations are
accurate enough, so we will not go into this further.

3.2 Analysing the Domain Requirements

To implement our model, we must identify credible sources that provide the necessary empirical
data for our planner. This involves two crucial elements, first is acquiring a source for ideal moisture
levels. Secondly, acquiring an equation that enables us to calculate the cost of operators. This
equation should take into account the available moisture be it from current soil moisture or moisture
supplied by weather, and the optimal moisture we would like to achieve.

For the first crucial element we will use the Deutscher Wetterdienst [Wet], the used values can be
seen in Table 3.2. They describe the wellness state of the plant depending on the nFK. For example
if we reach over 100% nFK, that means the soil is over saturated and the plant can suffer under lack

40

3.2 Analysing the Domain Requirements

% nFK Plant stage

<30 Plant is suffering under water stress, high chance for reduced yield
30 - 50 enough water for plant development
50 - 80 optimal moisture level
80 - 100 Beginning of oversupply of water, potential lack of oxygen
> 100 Oversupply and lack of oxygen

Table 3.2: Classes of soil Moisture in nFK, values from [Wet]

of oxygen. These values are general guidelines and do not target a specific plant. However with
these values we can get a general grasp how the different thresholds could look like. Furthermore
since we know this value can change depending on the plants type and age, we should implement it
in a way that makes it part of the world state [DTS17].

For the second element, we decided to implement our own simple version of an equation that
calculates the amount of missing nFK as the cost of our operators.

Definition 3.2.1 (Equation for missing nFK)
The cost of the missing % nFK for a cell c with available moisture a is defined as:

• 𝑎 = 𝑚 + ((∑5
𝑗=0 𝑤 𝑗) − 𝑗 ∗ 𝑒) + 𝑖

• 𝑐𝑜𝑠𝑡 (𝑐) =

𝑎 − 𝑜𝑚 if a < om
−𝑎 − 5 if om < a < (100 - om)
−∞ 𝑒𝑙𝑠𝑒

where we used:

• moisture m

• optimal moisture om

• the nFK added by irrigation i

• the amount of nFK supplied by weather 𝑤 𝑗 on day j

• the static evapotranspiration e

A graph of cost(c) for optimal moisture 70% nFK can be seen in Figure 3.3.

This equation provides an estimate of the missing nFK in the soil, as well as the distance from ideal
moisture. The weather forecast also plays a role, if there is no rainfall predicted in the upcoming
days, then the sum of (∑5

𝑗=0 𝑤 𝑗) − 𝑗 ∗ 𝑒 will be negative. Consequently, nFK is reduced and watering
is necessary if the current moisture is below optimal levels. With this cost calculation we can
compare different situations and make the correct decision. For example the situation where the
current soil moisture is 50% and our optimal moisture is 70%. If we now look at the cost of adding
10% nFK to the current soil moisture through irrigation compared to keeping the 50% through
waiting, the cost would be higher than waiting if we do not expect any rainfall. That is because
the closer we get to the optimal moisture, the higher our cost becomes, and since it is a negative

41

3 Agricultural HTN planning domain with risk

Figure 3.3: Cost distribution depending on available moisture

cost this means it is a better choice than a lower cost. So if we look at the example again where
have to choose between 50% and 60% nFK we choose 60% nFK, since its cost is higher with our
equation.

As the optimal level of moisture exists on a spectrum, exceeding this level slightly is preferable
to having low moisture. Thus, we only assign a cost of watering of −∞ if watering would lead to
exceeding 100% nFK and causing damage to the plants. However, we consider going above the
optimum by a certain amount to be worse than going below it by that amount. This is because we
can always water the plants later when a new plan is created by our planner in case of insufficient
moisture. In the event of overwatering, we must wait for the water to either runoff or be used up
through evapotranspiration.

3.3 Modelling the Domain

In this section, we detail how the results from our knowledge acquisition are applied to acquire a
HTN model. Firstly we start by defining the possible states that describe our world state. Afterwards
we go over the different operators that affect these predicates and can change their values. Next, we

42

3.3 Modelling the Domain

Figure 3.4: Visualization of a cell in our domain

have a look at the sequence in which the previously defined operators will be executed. Finally,
we use the possible situations in which we may find ourselves to help us achieve the remaining
Model.

3.3.1 Predicates

Beginning with our field, we need to decide how to model its characteristics in a way that makes
planning efficient and precise. From our knowledge acquisition phase, we can deduce various
information we need to acquire, for example the current moisture. Therefore we define a cell with
the following Information in the form of predicates that describe our world state:

• (cell-type ?cell ?irrigation-type)

• (moisture-cell ?cell ?moisture)

• (optimal-moisture-cell ?cell ?optimal-moisture)

• (nutrition-cell ?cell ?nutrition-status)

• (pest-cell ?cell ?pest-status)

As we described in the category Device Services, we use two types of irrigation techniques. However
since we do not have them both installed at once in a cell, we need to create a predicate that saves
if we have a drip or sprinkler installed. For that we use the predicate cell-type, which describes
what kind of irrigation system ?irrigation-type is installed in a cell ?cell. For example, if we have a
drip irrigation d1 installed in a cell c1 we would have (cell-type c1 d1), the same can be done for
sprinkler.

43

3 Agricultural HTN planning domain with risk

The current moisture is another crucial element, like we explained in our procedural goals. Therefore
we use (moisture-cell ?cell ?moisture), where ?moisture describes the moisture in %nFK for the
cell ?cell. Another important factor that we described in our procedural goals is the optimal
moisture ?optimal-moisture. The values for the optimal moisture range are acquired as explained in
Section 3.2 and are saved for each cell ?cell.

The last two goals, from our procedural goals, describe a need for a way to track the current status
of our plants health and nutrition. For that, we have nutrition-cell and pest-cell to track the current
status, which we simplify, meaning we only have two states for each. If the status is 0, the plant
needs tending for the specific need, if it is 1 the plant is content. For example, (pest-cell c1 0) would
describe that we have a pest problem in cell c1.

An illustration, how a cell could look like can can be seen in Figure 3.4. It shows the just
discussed predicates, like ?drip or ?current-moisture, in combination with the rest of the discussed
predicates.

We continue with our procedural goal of irrigation. Their predicates can be defined as:

• (cell ?cell-id)

• (drip ?drip-id)

• (sprinkler ?sprinkler-id)

• (cell-type ?cell ?irrigation-id)

• (irrigation-step ?irrigation-type ?step-size)

• (drip-functional ?drip ?functional)

• (storage ?status)

The goal of irrigation employs various components from the previously defined categories. The
key factors are sprinkler and drip irrigation, which impact the moisture-cell predicate. Since we
can have multiple cells, we need a way to differentiate them and their equipment, that is why we
use (sprinkler ?sprinkler-id), (drip ?drip-id) and (cell ?cell-id). Furthermore, we must distinguish
between the accuracy of the method of irrigation employed. Drip irrigation permits one to finely
regulate the quantity of moisture, that is desired to be added effectively. Therefore we add a new
Predicate, named irrigation-step, to specify the varying levels of moisture that can be delivered to
the cell. For example, drip irrigation has the predicate (irrigation-step ?drip 5) meaning we can add
moisture in steps of 5% to the nFK.

As described in the Action Contingencies category, we also need to watch our for any malfunction
of our equipment. For that, we also add the Predicate drip-functional, that describes if our various
valves have a blockade. For example, (drip-functional d1 1) would describe a functional drip. In the
Action Contingencies category, we identified another scenario where our fertilizer storage may be
empty. To account for this possibility, we include (storage ?status) to verify if we have enough or if
it is empty.

44

3.3 Modelling the Domain

3.3.2 Operators

Now that we have established our Predicates, we can proceed to define the operators which can alter
their respective values. To achieve this, we shall assess our procedural goals once again and directly
translate each of them into an operator.

• (!activate-irrigation ?cell)

• (!apply-pesticide ?cell)

• (!apply-fertilizer ?cell)

• (!apply-fertigation ?cell)

• (!wait ?cell)

For irrigation, regardless of irrigation technique, we use (!activate-irrigation c1) which increases
the current-moisture of cell c1 by a specific amount. The amount, with which we can increase
the current-moisture depends on the step size in (irrigation-step ?irrigation-type ?step-size) as
explained earlier. In the case we have (cell-type c1 drip) and (nutrition-cell c1 0), we can use
(!apply-fertigation c1) which increases the moisture and restores the nutrition. Since watering
depends on the uncertain factor of weather in combination with the current moisture and optimal
moisture, we also need the possibility to skip watering by waiting. That is why we also need the
operator (!wait ?cell), which does not change the current moisture. To change the values of the
predicates (nutrition-cell ?cell ?nutrition-status) and (pest-cell ?cell ?pest-status) from 0 to 1, we
use (!apply-pesticide ?cell) and (!apply-fertilizer ?cell). The only thing missing for now, are the
Operators that deal with our Action Contingencies.

• (!repair ?cell ?drip)

• (!refill ?cell)

If our drip irrigation is not functional, the (!repair c1 d1) operator changes the value of (drip-
functional d1 0) to 1. The same can be said about our storage, if is empty, (!refill ?cell) changes
(storage 0) to 1.

In the case, where our cell is in need of assistance pertaining each procedural goal, we need to
decide a order of tasks. For that, we look at each pair and decide which one should come first,
beginning with irrigation and fertilization. In this case we start by watering the plant before we use
our fertilizer. The reason is, that watering affects how much fertilizer stays in the soil [BP09]. This
is especially true for nitrogen, which is especially susceptible to leaching loss if combined with
watering. Contrary, fertilizing does not affect how much moisture stays in the soil, therefore it is
safe to apply afterwards [ZNY+19][BP09].

Next, we will examine the relationship between watering and pesticide application. Considering
that pesticide leaching into the groundwater is already a concern in systems without combining it
with irrigation, we have decided to prioritise irrigation before pesticide application [Flu96].

45

3 Agricultural HTN planning domain with risk

Figure 3.5: Simplified representation of our domain model

3.3.3 Methods and Compound Tasks

Now that we have established our operators and predicates we need to define the situations in
which they can occur. First of all, since we want to be able to use irrigation, fertilization and pest
management all together, we need a domain structure that allows this. Therefore, we decided to use
a kind of binary tree structure for our domain. A simplified version to represent the structure can be
seen in Figure 3.5 and a more elaborate can be found in Appendix B.

At the start, we decompose the main compound task that stands at the top, by checking if the cell is
watered by a drip or sprinkler. We verify this by looking at the predicate (cell-type ?cell ?irrigation),
where ?irrigation is either a drip or sprinkler. In the case that we have a drip irrigation installed, we
decompose the main compound task into the compound tasks maintenance and check-nutrition-drip.
Otherwise we only decompose it into check-nutrition-sprinkler, since we assume the sprinkler, in
the case we want to use it, is functional.

Maintenance checks if the drip is functional, this is getting tested by two methods that check the
predicate (drip-functional ?d ?status). In the case status is 1, the resulting task network is empty, if
it is 0 we call the operator (!repair ?cell ?d).

Both compound tasks, check-nutrition-drip and check-nutrition-sprinkler, are getting decomposed
depending on their nutrition status. In the case that the nutrition-status of predicate (nutrition-cell
?cell ?nutrition-status) is 1, both get decomposed into check-pest-default. If nutrition-status is 0, they
get decomposed into the compound task check-storage and check-pest-drip or check-pest-sprinkler

46

3.4 Incorporating Risk

depending on the irrigation type. The reason both get decomposed into check-pest-default, in the
case of status = 1, is because the reason why we even differentiate them in the first place is missing,
meaning the possibility to use fertigation.

Check-storage has the same structure as maintenance, meaning we check the predicate (storage
?status) and depending on the value, call (!refill ?cell) or do nothing.

Next up is checking the pest status of the cell in question. This is achieved by decomposing
one of the specific compound tasks check-pest-drip/sprinkler/default, depending on the value of
(pest-cell ?cell ?pest-status). As before ?pest-status is either 1 or 0 and depending on the value,
we decompose into the compound task irrigation/fertigation and number a of primitive tasks
depending on which check-pest we decompose. For example, check-pest-drip decomposes into the
compound task Fertigation and depending on ?pest-status, the primitive task (!apply-pesticide ?cell).
Check-pest-sprinkler on the contrary, decomposes into the compound task Irrigation, primitive task
(!apply-fertilizer ?cell) and again depending on the ?pest-status, primitive task (!apply-pesticide
?cell). Check-pest-default, behaves like check-pest-drip with the contrast being that the compound
task is not Fertigation but Irrigation.

Finally, we need to verify the extent to which the plants moisture requirements have been met.
However since this is depending on two cost-variable operators,(!activate-irrigation/fertigation
?cell) and (!wait ?cell), the methods that decide if we should water or wait need a different form.
That is why, we go over this part in the next section in more detail.

3.4 Incorporating Risk

As described before, our cost variable operators are in the lowest possible leaf. This is illustrated
in Figure 3.6, where we have progressed through each layer, as outlined in Section 3.3.3 At this
juncture, we must determine whether to irrigate or to wait.

To incorporate risk awareness, we need to decide between the Now and Wait method depending on
the EU of their respective task networks. This is achieved by calculating the EU of watering and
waiting beforehand. For that we use the operators (!calc-water-cost ?cell) and (!calc-wait-cost ?cell).
They both need to calculate the EU depending on the cost associated with each operator, if we would
choose this particular operator. The results are then saved in the Predicates (irrigation-cost ?cell
?irrigation-technique ?EU) and (wait-cost ?cell ?EU). Afterwards we decompose the compound
task irrigation and select the appropriate method based on which has a higher EU. The reason why
we designed our model in this way and why we need to pre calculate the EU, is explained in the
next chapter.

What we do not incorporate into our model, but still use for the calculations are the weather forecasts.
We chose not to incorporate them into the model, since they have to be acquired through some form
of external calls.

47

3 Agricultural HTN planning domain with risk

Figure 3.6: Incorporating Uncertainty in our domain model

48

4 Implementation

4.1 Choosing the Right Planner

To implement the domain model that we have devised, we need to select a planner that enables us to
put it into effect. Since not all planners are equal and some have different additional features, this
decision is crucial because it can impact the feasibility of our model or necessitate modifications for
compatibility. For our model we have opted to utilise Java Simple Hierachical Ordered Planner
2 (JSHOP2) which is a domain-independent planning system [Ilg06]. JSHOP2 has the ability
to recognize the present state of the world in every step, hence it follows a state-based planning
methodology. Furthermore it possesses substantial expressive power, enabling the execution of
external program calls within the preconditions of operators and methods. We use this possibility
for calling external functionalities, to calculate the costs of our cost-variable operators. Moreover,
JSHOP2 offers the capability to craft highly efficient, domain-specific planning algorithms. The
efficiency can be seen later in the Evaluation Chapter, where we test the performance of the planner
handling our domain for large problems. Additionally, JSHOP2 seamlessly incorporates multiple
features from the Planning Domain Definition Language (PDDL), such as support for quantifiers
and conditional effects in methods and operators. These features enhance its adaptability and the
modeling and resolution of complex planning problems.

4.2 Implementing our Domain Model

Before we implement our Domain, we firstly define the Syntax of JSHOP2.

• Symbols can be one of the following:

– Variable symbols are all symbols that start with a ? for example ?cell.

– Primitive task symbols are all symbols that start with a ! for example !activate-irrigation

– Compound task, predicate and constant symbols are all symbols that start with a letter
or an underline

– Function symbols are all valid Java identifier

• Terms can be described as one of the following

– Variable symbol

– Constant symbol

– Call term, which is of the form (call f 𝑡1 ... 𝑡𝑛) where f is a function symbol for calling
external functionalities or a built-in function.

49

4 Implementation

• Predicates are defined as (p 𝑡1 ... 𝑡𝑛) where p is the predicate symbol and 𝑡𝑖 is a term

• Operators are defined as (:operator h P D A [c]) where:

– h is the operators head and is a primitive task atom

– P is the logical precondition of the operator

– D is the delete list, which describes the predicates from h or P to be deleted

– A is the add list, which is similar to D but adds predicates

– c is the cost of the operator and is optional, the default value is 1.

• Methods are defines as (method h L T) where:

– h is the methods head, which is the compound task the method decomposes

– L is a logical precondition

– T is the task list that the method decomposes h into.

Now that we have defined the Syntax, we continue with the Requirements to run the Planner.
JSHOP2 requires two files to be able to run and create a plan.

• The planning domain is defined as (defdomain domain-name (𝑑1𝑑2...𝑑𝑛))

• The planning problem is defined as (defproblem problem-name domain-name ([𝑎1𝑎2...𝑎𝑛])
T), where:

– problem-name and domain-name are symbols, most of the time they are just the name
of the files

– 𝑎𝑖 are the predicates that describe the initial state

– T is a task list that acts as the goal

Now that the necessary information for implementing our domain model has been established, we
can proceed with the concrete implementation. For that, we only look at one example now, since
we already explained the structure of our model and the syntax of JSHOP2. The entirety of the
implemented domain model can be found in Appendix B.

For now, we present how an operator, method and compound task from our domain model is
transformed into JSHOP2 code. In Listing 4.1 we see the operator (!repair ?cell ?drip), that changes
the predicate (drip-functional ?drip ?status). As explained earlier, JSHOP2 operators are defined as
(:operator h P D A [c]). Therefore (!repair ?cell ?drip) describes the head h of the operator by which
it can be called from some kind of method. The initial (functioning drip ?drip 0) is a precondition
for the operator, indicating that the drip must be non-functional to carry out repairs. The second
(drip-functional ?drip 0) is included in the list of operators to be deleted, which means that if the
operator is called and its precondition is satisfied, it will delete this predicate. After deleting the
predicates in the delete list, it adds the elements from the third entry, in this case (drip-functional
?drip 1), as a predicate to the world state.

50

4.3 Uncertainty in JSHOP2

Listing 4.1 Small part of our Domain Model as an example

(:operator (!repair ?cell ?drip)

((drip-functional ?drip 0))

((drip-functional ?drip 0))

((drip-functional ?drip 1))

-1

)

(:method

(maintenance ?cell ?d)

((cell ?cell)(cell-type ?cell ?d)(drip ?d)(drip-functional ?d 0))

((!repair ?cell ?d))

)

Methods are defined as (method h L T), meaning in this case the head of the method is (maintenance
?cell ?d), which describes the compound task this method decomposes. L is the precondition of this
method and in this case, we check if the cell has a drip installed and if it is non-functional. If the
preconditions are met, we decompose (maintenance ?cell ?d) into the operator (!repair ?cell ?d).

The reason why we check (drip-functional ?drip 0) in the method and in the operator, is because to
decide if we need to repair, we need to check it in the method first. However for the operator to be
able to change the predicate, it must be part of its precondition, as was described in the definition of
Operators before. Therefore we need it in both cases as a precondition, first to find out if we need to
repair through the method and then to be able to change the predicate.

4.3 Uncertainty in JSHOP2

In previous chapters, we have outlined the necessity of employing a cost-variable operator for
watering operations to enable risk awareness in instances of uncertainty. For this, additional
functionalities are required, as we are unable to integrate these calculations into our domain model.
JSHOP2 has the capability to execute external functions via its Calculate Interface, which we must
implement in order to compute the cost of our cost-variable operators.

One issue is that when there are two applicable methods, JSHOP2 always selects the first one,
which presents issues for implementing risk awareness. This is because when both methods contain
cost variable operators somewhere in their respective task network, we would like to calculate the
expected utility (EU) for each methods task network and select the one with the higher EU.

One option would be to modify JSHOP2 to enable comparison with EU task networks as a whole.
Nevertheless, we chose to develop our model in a way that integrates risk awareness without
requiring a major overhaul. Since the rest of our methods are deterministic, the only method affected
by the cost variable operators would be the methods Now and Wait. Therefore, the decision to turn
the irrigation system on or keep it off, is located at the lowest level of our Domain model. This is
done to avoid factoring in the costs from other operators in the plan, when we calculate the expected
utility of these two cost variable operators.

51

4 Implementation

Listing 4.2 Precalculation of the EU for both waiting and watering

(:operator (!calc-water-cost ?cell)

((irrigation-cost ?cell ?irrigation ?old-cost)(cell-type ?cell ?irrigation)(moisture-

cell ?cell ?moist)(optimal-moisture-cell ?cell ?optmoist)(irrigation-step ?irrigation ?water))

((irrigation-cost ?cell ?irrigation ?old-cost))

((irrigation-cost ?cell ?irrigation (call CalculatePlantWellness ?optmoist ?moist ?

water)))

0

)

(:operator (!calc-wait-cost ?cell)

((wait-cost ?cell ?old-cost)(cell-type ?cell ?irrigation)(moisture-cell ?cell ?moist)(

optimal-moisture-cell ?cell ?optmoist))

((wait-cost ?cell ?old-cost))

((wait-cost ?cell (call CalculatePlantWellness ?optmoist ?moist 0)))

0

)

Now, let us look at how exactly our program implements risk awareness for the decision between
!activate-irrigation/fertigation and !wait. For that we use the possibility to call external functionalities
with (call CalculatePlantWellness ?optmoist ?moist ?cost), which calculates the EU depending
on the ?cost. As was described earlier, we pre calculate the EU by calling the two operators
(!calc-water-cost ?cell) and (!calc-wait-cost ?cell), which can be seen in Listing 4.2. What we can
see in the listing is, that we delete the old value ?old-cost with (irrigation-cost ?cell ?irrigation
?old-cost) and add the calculated value from (call CalculatePlantWellness ?optmoist ?moist (?water
or 0)) as the new cost. In this case we called the external function with:

• the optimal moisture ?optmoist from (optimal-moisture-cell ?cell ?optmoist)

• the current moisture ?moist from (moisture-cell ?cell ?moist)

• the varying levels of moisture ?water that can be delivered from (irrigation-step ?irrigation
?water). In the case of waiting, since we do not add any moisture, the value is 0 instead of
?water.

What is also observable is that we gave these two operators the cost of 0. The reason is, since
we only pre calculate these values because there was no easy way to implement risk awareness in
JSHOP2, we decided that they should not cost anything. This way, we should have the same plan
cost as we would have, if we did not have to resort to simplification to implement risk awareness.

After calculating and saving the EU for both operators, we select the appropriate method based
on which has a higher EU, which can be seen in Listing 4.3. For the selection, we use the built-in
function calls < and >=, which make it possible for us to compare two values as a precondition.
In the case of (call >= ?water ?wait), we would check the condition if ?water >= ?wait, which
would return true or false. This way, we can compare the pre calculated EU and choose the correct
operator, depending which one is larger.

To obtain the EU, we use the equation from Definition 2.3.4 and compute the EU for both irrigation
and waiting. The equation needs a probability and the cost of a operator.

52

4.3 Uncertainty in JSHOP2

Listing 4.3 Irrigation compound task to decide if to water or not

(:method (irrigation ?cell)

((irrigation-cost ?cell ?irrigation ?water)(wait-cost ?cell ?wait)(call >= ?water ?wait))

((!activate-irrigation ?cell))

)

(:method (irrigation ?cell)

((irrigation-cost ?cell ?irrigation ?water)(wait-cost ?cell ?wait)(call < ?water ?wait))

((!wait ?cell))

)

Listing 4.4 Weather representation in our implementation

double p1 = 1.3 ; //equals 70%

double[] weather_1= {10.0, 0.0, 5.0, 10.0, 8.0}; //Values are in % nFK

double p2 = 1.7 ; //equals 30%

double[] weather_2= {0.0, 3.0, 0.0, 0.0, 0.0} ; //Values are in %nFK

The probability is presented through two different weather forecasts 𝑤𝑒𝑎𝑡ℎ𝑒𝑟1 and 𝑤𝑒𝑎𝑡ℎ𝑒𝑟2 that
our program acquires. Both weather forecasts have the expected rainfall for the next 5 days, including
the day of planning. They each also have a probability 𝑝1 and 𝑝2 for this specific prediction to
occur, the implementation can be seen in Listing 4.4.

Using these forecasts, we can calculate the cost of both irrigation and waiting based on the provided
predictions. To do so, we employ the equation outlined in Definition 3.2.1 to determine the missing
nFK which is our domain models cost representation. These calculations provide us with the cost
of the operators and combined with the probability of this cost, we can now calculate the EU for
both irrigation and waiting.

What is important to note is that since we use negative numbers and care about the differences
between costs, we do not use, for example 0.7, as a probability but 1.3 . With this we make the
value smaller by the margin it would have been made smaller if the number was positive. Therefore
the differences stay the same for our comparison between costs. This transformed probability
representation can be defined as:

Definition 4.3.1 (Probability transformation for our Costs)
A probability for positive numbers 𝑝𝑝 can be transformed to a probability for negative numbers 𝑝𝑛:

𝑝𝑛 = 2 − 𝑝𝑝
where, 0 < 𝑝𝑝 ≤ 1 and 1 ≤ 𝑝𝑛 < 2. This leads to the same difference d, which can be shown with
the following formula:

𝑑 = 𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝑡 ∗ 𝑝

If take an example with cost of 10 and -10 and the probability of 0.8 and 1.2, we get:

• 𝑑 = 10 − 10 ∗ 0.8 = 2

• 𝑑 = 10 − (−10) ∗ 1.2 = 2

53

4 Implementation

Therefore we have the same difference, and consequently can still compare our operator costs even
if they have negative costs.

54

5 Evaluation

In this chapter, we thoroughly evaluate our domain model. For this purpose, we employ the identical
framework as we did for our knowledge acquisition process [GA16]. While for our knowledge
acquisition, we used the Environment dimension, for our Evaluation we use the Interpretation
dimension. The Interpretation dimension, is used to provide insights into our domain model,
meaning how it works in different situations. These different situations can be divided as shown in
Figure 5.1. Firstly, we will explore the Demonstrations sub dimension, that can be divided into
Examples or Scenarios. Subsequently, we will conduct a Quantitative Evaluation to appraise how
well our domain model functions in case we plan for a whole field, with hundreds of cells. Lastly, a
Qualitative Evaluation will be carried out to assess the quality of our plan in terms of a specific
parameter.

5.1 Demonstration

As mentioned, Demonstrations can be divided into Examples and Scenarios. Examples are an
effective means of enhancing the clarity and comprehension of concepts being introduced. They
can be presented as descriptive text or via a chosen syntax, where they may include excerpts from
state representations, goal illustrations, domain knowledge segments, and plan samples. In the
field of ubiquitous computing, examples are a preferred method for illustrating planning challenges
[GA16].

Figure 5.1: Hierarchy of Interpretation with its sub dimensions

55

5 Evaluation

Scenarios describe the potential situations or contexts, that a system or plan is expected to operate
in. They provide a broad context for understanding how an automated planning system should
behave, under different conditions. Scenarios assist in defining the problem space and the range of
possible situations, that require consideration in the planning process.

5.1.1 Scenario with one cell

We begin with creating a scenario, from which two specific situations will be used as an example.
Let us consider a small farm, with one field that grows one type of plant. The soil type is exactly the
same for the whole field and there are no slopes or hills present in the field. The field is equipped
with a functional drip irrigation system and uses sensors to acquire the current soil moisture. The
optimal soil moisture, for this specific plant, at its current growth stage is 70% nFK. Pest are not
present and the nutrition is on an optimal level, therefore we only look at the moisture. For this
scenario, one cell represents the whole field. Lastly there is no rainfall predicted, we only work with
the current moisture and the moisture we loose over the coming days. The problem definition used
for the following examples, can be found in Listing C.1, which describes the explained scenario.

We begin with a straightforward example, to demonstrate how our domain model addresses the
most frequent situations for one cell, where the solution to the problem is evident. For this purpose,
we will test it once with arid soil and soil moisture considerably exceeding our optimal moisture
level. The distinction among the two examples we will examine, lies in the line "(moisture-cell c1
X)", wherein X is the variable we will modify depending on the example presented.

For our straightforward Examples, we will use values of X=0 and X=71 for the current moisture, and
the results align with expectations. When the current moisture is 0 % nFK, the planner determines
that we should activate our irrigation system, while for 71 % nFK, it advises us to wait. These
results happen for both risk attitudes, risk seeking and risk averse.

5.1.2 Scenario with multiple cells

The following scenario is equal to the previous one, yet this time the field possesses slight variation
in soil type at every position. As a result, the optimal nFK will depend on the position for each
cell, which now encompasses only a single plant. Therefore we now have as many cells, as there
are plants in the field. For the sake of clarity, the following example will only look at the result of
three plants, but it should be noted that the number of cells can be expanded, as demonstrated in
Section 5.2. As before the problem description can be found in Listing C.2.

In this example, as opposed to before, we give each plant its custom value for current and optimal
moisture. Each plant is more or less around its optimal moisture level however, since the values
differ, the EU of irrigation or waiting does differ too. For cell 0, we are a little bit below its optimal
level, cell 1 is slightly above and cell 2 is at its optimal level. The resulting plan chose to activate
irrigation for cell 0 and cell 2 and wait for cell 1. The reason for activating the irrigation for cell 1,
even if we are at the optimal moisture, is because we predict a loss of moisture each day. Therefore,
to counter this loss, we water cell 1 with the smallest amount we can supply.

56

5.1 Demonstration

Figure 5.2: Risk seeking utility functions

5.1.3 Scenario with rainfall

Before we look at a concrete example, let us first take a look at how our cost graph, seen in Figure 3.3,
is transformed via the utility function from Definition 2.3.3. The resulting graph for risk seeking
can be seen in Figure 5.2 and the one for risk averse can be found in Figure 5.3 and Figure 5.4.
What we can see in Figure 5.2, is that a risk seeking attitude values low nFK, meaning high cost,
the same after a certain point. This point depends on the value for 𝛼 and gets pushed pack further
the lower 𝛼 becomes. For example we can see that for 𝛼 = 1, the utility stays more or less the same
after a cost of -15% nFK. What is missing in these figures is the utility for overwatering, which
follows the same curve and therefore we put it in an extra figure, which we will talk about later.

Next we examine the graphs for a risk averse attitude, for that we only look at the cases where 𝛼=1
in Figure 5.3 or 𝛼=0.05 in Figure 5.4. The whole spectrum can be found in Appendix C. Compared
to the risk seeking, we can observe that a risk averse attitude values low % nFK as way worse than
being close to the optimum. If we look at the cost axis, the costs explode in their negative value.
This is especially evident in the case for 𝛼=1, which would be a very extreme risk averse attitude.

Next we examine how the probability affects these utility graphs. However, for that we only examine
the graphs for 𝛼=0.1, since it represents a moderate version of the specific attitude. Beginning with
risk seeking, which we can see in Figure 5.5.

57

5 Evaluation

Figure 5.3: Risk averse utility function with 𝛼=1

It is evident that the lower the probability, the lower the cost, which should not be surprising since
the EU just multiplies the utility with the probability. The graph for risk averse can be seen in
Figure 5.6, where we can observe the same effect. As a reminder our probability used for the
calculations is defined as described in Definition 4.3.1, however we use the normal probability in
our graphs to make it easier to understand.

Looking at the difference between the various curves, we can see a strong contrast between
risk-seeking and risk-averse. Whereas for risk seeking, the values for each specific cost do not differ
much, for risk averse the costs differ by a larger margin. This reflects the expected attitude, where
with a risk-averse attitude we rate low-chance operators much lower than risk-seekers.

Now if we look at how overwatering is modeled, we can see that the cost for overwatering follows the
same curve as can be seen in Figure 5.7 and Figure 5.8. However it has a lower starting point than
the end point of the curve for being below optimal levels. While the curve pre optimal converges
against zero, the curve for overwatering cuts the last part before zero out. This means, in the case
where we are 5 %nFK below optimal, we have a higher cost depending on how worse we want to
value overwatering, compared to overwatering by 5%. With this we can see the difference between
risk averse and risk seeking clearly.

58

5.1 Demonstration

Figure 5.4: Risk averse utility function with 𝛼=0.1

For now, we go over different examples to show how the attitudes differ in the decision they make.
An important note is that the differences only occur at around the optimal moisture value. The
reason is that this is the only point where the answer is not as clear as before. Before we can present
our examples, we define a new scenario. In this scenario, we investigate how our model deals with
rainfall. Our analysis focuses on objectively evaluating the models performance in handling this
new variable. We utilise the same scenario as was described in Section 5.1.1, but with the addition
of rainfall and 𝛼 = 0.1. That means the cell does not need tending in any other way and the optimal
moisture is 70% nFK.

For the first example in this scenario, we consider a situation where the soil moisture level is just
below the optimal level. The problem can be seen in Listing C.1, where the value for X would be
65 in this example, meaning 65% nFK current moisture. Our Rainfall prediction looks like this:

• 20% : ⟨20, 0, 0, 0, 0⟩ rainfall in % nFK

• 80% : ⟨0, 0, 0, 0, 0⟩ rainfall in % nFK

Consequently, we observe two different outcomes, the risk-averse strategy opts for patience with a
plan cost of -74.71, whereas the risk-seeking approach favours activating the irrigation systems
with a plan cost of -18.75. The alternative plan cost for risk averse was -156.18 and -21.4 for risk
seeking . In Table 5.1 we can observe the calculated EU for each case, highlighting a significant

59

5 Evaluation

Figure 5.5: Risk seeking EU for 𝛼=0.1 with varying probabilities and cost in missing %nFK

Risk Seeking Risk Averse

Action Rainfall No Rainfall Rainfall No Rainfall

Watering −16.1 −2.65 −152.77 −3.4
Waiting −12.84 −8.56 −44.82 −29.88

Table 5.1: EU cost for risk seeking and risk averse planning in the case of rainfall and just below
optimal moisture levels

contrast in the calculated values, particularly in the context of risk-averse planning. This result is
in line with our expectations, since a risk-averse mindset gives significantly more weight to the
potential negative consequences of decisions, especially when compared to risk-seeking strategies.
Therefore, the sub-optimal choice of irrigating when sufficient rainfall is expected, carries a greater
penalty in the context of risk-averse decision making.

For the second example in this scenario, where the value for the current moisture is 60 %nFK with
the following rainfall prediction: Our Rainfall prediction looks like this:

• 80% : ⟨30, 0, 0, 0, 0⟩ rainfall in % nFK

60

5.1 Demonstration

Figure 5.6: Risk averse EU for 𝛼=0.1 with varying probabilities and cost in missing %nFK

• 20% : ⟨0, 0, 0, 0, 0⟩ rainfall in % nFK

The resulting plan for risk seeking decides to water with the plan cost of -20.73 , while risk averse
waits with a plan cost of -142.64. It appears that the values have increased compared to the initial
example, with the risk-averse seeing a greater discrepancy. This is to be expected, as we are dealing
with a more critical situation compared to before, where the difference is not just being slightly
above or below the optimal moisture. In this example, we are either within an acceptable range but
below optimal, or at the initial stage of water oversupply in case of the predicted rainfall. If we look
at Table 5.2, we see that watering in the case of no rainfall would be the best decision. Risk averse
values this case with -20.1 and risk seeking with -9.49, however we see a strong contrast for the cost
of watering in the high chance that it rains. This adequately represents the two attitudes, since risk
averse does not choose the best decision but chooses the safest bet, while risk seeking goes with the
risky choice in hopes for the best case.

61

5 Evaluation

Figure 5.7: Risk seeking EU for 𝛼=0.1 with varying probabilities, cost in missing %nFK and the
cost for overwatering visualized

Risk Seeking Risk Averse

Action Rainfall No Rainfall Rainfall No Rainfall

Watering −11.23 −9.49 −175.71 −20.1
Waiting −9.91 −14.87 −57.05 −85.58

Table 5.2: EU cost for risk seeking and risk averse planning in the case of rainfall and just below
optimal moisture levels

62

5.2 Quantitative Evaluation

Figure 5.8: Risk averse EU for 𝛼=0.1 with varying probabilities, cost in missing %nFK and the
cost for overwatering visualized

5.2 Quantitative Evaluation

In our quantitative analysis, we evaluate the time our planner needs for planning in relation to the
number of cells used. To create the problem file, a simple Python script is used to generate the
problem description in a text file. The code can be viewed in Listing C.3. It is noteworthy that the
problem scenario is designed to illustrate the most demanding circumstances for every cell. This
indicates that the every cells plants experience malnutrition, pest infestation, and other adverse
conditions. Furthermore, it should be mentioned that JSHOP2 might face constraints when handling
over 130 cells. The results can be seen in Figure 5.9.

As evident from the data, the planning time exhibits a linear increase in proportion to the number of
cells. This observation is logical, as individual cells do not exert an influence on one another. This
finding aligns seamlessly with one of our objectives, the scalability, meaning in the case we have a
big field and decide that each plant has its own cell, the planner is still efficient in its planning time.
This approach harmonizes with the principles of precision farming, where we cater to the precise
requirements of individual plants.

63

5 Evaluation

0 20 40 60 80 100 120 140
0.5

1

1.5

2

2.5

·10−2

Amount of Cells

Pl
an

ni
ng

Ti
m

e

Figure 5.9: Planning time depending on the amount of cells

Days Downfall in mm % nFK for 10 cm soil depth

21.10. 0 79
22.10. 0 77
24.10. 10.8 67
25.10. 6.7 81

Table 5.3: Downfall and usable field capacity Source: Deutscher Wetterdienst

5.3 Qualitative Evaluation

Our qualitative evaluation aims to asses the precision of our model, for predicting the current soil
moisture. To do this, we will analyze two sets of weather forecasts and evaluate how closely our
predictions align with the values calculated by the Deutscher Wetterdienst.

To make this comparison, we first need to establish a way to equate precipitation in millimeters to
usable field capacity (nFK), which is the metric we employ in our model. We can achieve this by
converting nFK to millimeters using the formula:

𝑛𝐹𝐾𝑚𝑚 = (𝑛𝐹𝐾%
100)∗ Gesamtdicke der Bodenschicht (in mm) [Wet].

For instance, if nFK is 10% and the soil depth is 10 cm, this conversion would result in 10mm of
available water. With this conversion in mind, we are now in a position to compare the predictions
from our model with the data in Table 5.3, obtained from the Deutscher Wetterdienst for two date
ranges: the 21st to 22nd October 2023 and the 24th to 25th October 2023.

We can see that there was no downfall on our first pair of days and that the nFK went down by 2%.
In comparison to our model where we predict a static reduction in nFK of 1.5% per day through
evapotranspiration. Since on some days the evapotranspiration is below 1% we choose the static
value of 1.5% meaning we are not that far off with our prediction.

64

5.3 Qualitative Evaluation

On days with downfall, as described in our second pair of days, our model predicts a nFK of 76%
instead of the measured 81% which also is not that far off considering we use our own simplified
version of calculating the water retention.

65

6 Related Work

In recent years, the application of AI planning techniques in agriculture has received considerable
attention due to its potential to increase productivity, optimise resource use and address various
challenges in the agricultural sector [FAO22].

A study focusing on fertilisation rather than irrigation is [FPG+21]. They describe the requirements
for designing an application that provides recommendations for decisions related to fertiliser use,
such as type of fertiliser, frequency, amount of fertiliser and when to apply it. However, as they
do not select a specific type of AI planning, their framework could be implemented with HTN
planning. It could also be incorporated into our own domain model as they only focused on gaining
knowledge and presenting how a system could be built.

A different system, which is also similar to our work here are agricultural decision support systems.
An agricultural decision support system (ADSS) is a human-computer system that utilises data from
various sources to provide farmers with advisory recommendations to aid their decision-making in
different situations [ZMBM20]. This is similar to our model as we also utilize various information
sources to offer a plan that can be viewed solely as a recommendation.

There are many ADSSs, for example the Watson Decision Platform for Agriculture developed
by IBM Watson and The Weather Company. The Watson Decision Platform for Agriculture
utilises artificial intelligence, machine learning, and advanced analytics to analyse Essential Field
Relevant (EFR) data, extracting valuable insights and providing automated guidance for making
more informed decisions. It provides a unified dashboard that permits growers to visualise vital
information, such as weather forecasts, soil conditions, evapotranspiration rates, and crop stress
alerts. The platform employs AI-based visual recognition of drone-acquired footage to automatically
identify distinct categories and levels of pest and disease harm.

Another decision support system with a focus on irrigation, is DSIRR [Baz05]. DSIRR, a Decision
Support System (DSS) tailored for assessing the economic and environmental aspects of agricultural
activities, with a primary focus on irrigation, is designed to cater to both public and private sector
requirements. This software simulates the economically motivated decision-making processes
of farmers, enabling a precise representation of production and irrigation practices in terms of
technology and agronomics. It supports the execution of both short-term and long-term analyses,
with the latter incorporating inherent investment options. Solutions are derived through the
application of multicriterial mathematical programming techniques. The constructed farm models
allow users to quantify the consumption of water, labor, and machinery by different farm types,
while considering various factors such as soil types, irrigation systems, water-yield functions, and
seasonality.

In summary, numerous similar initiatives aim to generate recommendations based on available data
to enhance optimal agricultural practices. These efforts collectively play a vital role in accelerating
the progress of Agriculture 4.0.

67

7 Conclusion and Outlook

In this thesis, we set out to explore the integration of risk-aware HTN planning in the agricultural
field. Our study led us through a diverse cast of topics encompassing automated planning, domain
modelling, and the pressing need for risk awareness in the ever-evolving agricultural sector. We
began with forming a foundational understanding of HTN planning, setting the stage for the
subsequent incorporation of risk-awareness into HTN planning. Afterwards we examined the unique
intricacies of agriculture and the way in which its characteristics are quantified. One of the central
achievements of this research is the development of a risk-aware HTN planning model tailored
to the agricultural sector with a focus on irrigation. This model offers a structured approach for
considering and addressing uncertainties, like weather-related fluctuations, in the decision-making
process. The implementation of this model allowed us to create theoretical situations, to test how
capable our model is in addressing real-world agricultural challenges. By methodically evaluating
our model across diverse categories, we gained valuable insights into its effectiveness and robustness.
What we found was, that our model can correctly predict soil water retention in an acceptable range
and is scalable to work with hundreds of cells. It also creates correct plans for both risk attitudes,
with choosing the safest route with a risk averse attitude while taking risk with a risk seeking attitude.
Therefore, we think that our model has the potential to empower farmers and decision-makers with
the tools they need, to navigate complex agricultural scenarios, while mitigating risk.

Outlook

Our research has laid the foundation for future work in several areas, as we believe that our domain
model can be extended and refined to more fully address the complexities of risk-aware HTN
planning for farming tasks. Furthermore, given the lack of a state-based risk-aware planner, we
recognise the need for further development in this area.

Our current domain model serves as a basic starting point. It provides a simplified representation of
the risk-aware HTN planning problem, which is valuable for initial exploration. However, future
work should focus on making it more robust and applicable to a wider range of scenarios.

For example, we could extend our domain model to include multiple cost variable operators. This
would allow us to see an even greater difference in the choices made by the planner. To do this, we
would also have to change the way we calculate our costs, i.e. they could consist of a score that we
give according to how close a crop is to its ideal state. This ideal state could be constructed from
three sources, one could be our current missing moisture cost transformed into a value from 0-100
where 100 could be the optimal state. The second could be, how close a plant is to its optimal
nutrition and the last could be the plants health, in the form of pest damage or risk of damage.

69

7 Conclusion and Outlook

Let us assume we add a cost variable operator for applying pesticides, which depends on a probability
distribution of the occurrence of pests. However, we cannot apply pesticides and activate our
irrigation system at the same time, so we would have to choose between watering and applying
pesticides. In this situation we would have the pairs (wait-water, apply-pesticide) or (apply-water,
wait-pesticide). Now the planner would have to calculate the EU of these two operators and compare
them to choose the right pair. If not applying pesticide will cause serious damage, therefore the cost
of waiting to apply pesticide is high, the risk-averse planner would prefer to apply pesticide rather
than water. If keeping the crop at the optimum moisture level will significantly increase yield and
therefore has a chance of achieving a really good ’cost’, the risk-seeking planner would take the risk
of not applying pesticide.

Another way of extending the system could be to schedule the different actors. For example, if we
decide to use drones for fertilisation and pesticide application, we would need to schedule their
flight when we have multiple cells. Otherwise there could be crashes or multiple drones trying to
tend to one field.

Furthermore it could be possible to look into performance enhancing algorithms, that would try
and minimize the application of big machinery, like a VR spreader, by grouping cells in need of
assistance. Then the planner would have to decide between the cost of fertilising versus the cost of
keeping plants in a state of malnutrition. This also could be affected by risk, since the lower the
nutrition, the higher the risk for permanent damage [Ben93; BP15], which would also make for an
interesting avenue of expansion.

70

Bibliography

[AGA22] E. Alnazer, I. Georgievski, M. Aiello. “Risk Awareness in HTN Planning”. In: arXiv
preprint arXiv:2204.10669 (2022) (cit. on pp. 17, 24–26).

[Aha23] T. Ahamed. IoT and AI in Agriculture: Self-sufficiency in Food Production to Achieve
Society 5.0 and SDG’s Globally. Springer Nature, 2023 (cit. on p. 17).

[APRS+98] R. G. Allen, L. S. Pereira, D. Raes, M. Smith, et al. “Crop evapotranspiration-
Guidelines for computing crop water requirements-FAO Irrigation and drainage paper
56”. In: Fao, Rome 300.9 (1998), p. D05109 (cit. on pp. 28, 37).

[Baz05] G. M. Bazzani. “An integrated decision support system for irrigation and water policy
design: DSIRR”. In: Environmental Modelling & Software 20.2 (2005), pp. 153–163
(cit. on p. 67).

[Ben93] W. Bennett. “Plant nutrient utilization and diagnostic plant symptoms”. In: Nutrient
deficiencies and toxicities in crop plants 1 (1993) (cit. on pp. 30, 70).

[Bev+91] R. B. Beverly et al. A practical guide to the Diagnosis and Recommendation Integrated
System (DRIS). Micro-Macro Publishing, Inc., 1991 (cit. on p. 37).

[BP09] S. Behera, R. Panda. “Effect of fertilization and irrigation schedule on water and
fertilizer solute transport for wheat crop in a sub-humid sub-tropical region”. In:
Agriculture, ecosystems & environment 130.3-4 (2009), pp. 141–155 (cit. on p. 45).

[BP15] A. V. Barker, D. J. Pilbeam. Handbook of plant nutrition. CRC press, 2015 (cit. on
pp. 28, 30, 35, 70).

[BPKH88] C. Brouwer, K. Prins, M. Kay, M. Heibloem. “Irrigation water management: irrigation
methods”. In: Training manual 9.5 (1988), pp. 5–7 (cit. on p. 38).

[BPPD+15] M. F. F. Bernardes, M. Pazin, L. C. Pereira, D. J. Dorta, et al. “Impact of pesticides on
environmental and human health”. In: Toxicology studies-cells, drugs and environment
(2015), pp. 195–233 (cit. on p. 30).

[Bre21] O. Brendel. “The relationship between plant growth and water consumption: a history
from the classical four elements to modern stable isotopes”. In: Annals of Forest
Science 78.2 (2021), pp. 1–16 (cit. on p. 35).

[BS00] J. Baldock, J. Skjemstad. “Role of the soil matrix and minerals in protecting natural
organic materials against biological attack”. In: Organic geochemistry 31.7-8 (2000),
pp. 697–710 (cit. on p. 27).

[CE12] J. L. Chávez, S. R. Evett. “Using soil water sensors to improve irrigation management”.
In: Proceedings of the 2012 Central Plains irrigation conference, Colby, Kansas,
February 21-22. Colorado State University. Libraries. 2012 (cit. on p. 37).

[CEK23] D. Cammarano, F. K. van Evert, C. Kempenaar. Precision Agriculture: Modelling.
Springer Nature, 2023 (cit. on p. 37).

71

Bibliography

[CZC+14] H. S. Chattha, Q. U. Zaman, Y. K. Chang, S. Read, A. W. Schumann, G. R. Brewster,
A. A. Farooque. “Variable rate spreader for real-time spot-application of granular
fertilizer in wild blueberry”. In: Computers and Electronics in Agriculture 100 (2014),
pp. 70–78 (cit. on p. 39).

[DTS17] S. Datta, S. Taghvaeian, J. Stivers. Understanding soil water content and thresholds
for irrigation management. Tech. rep. Oklahoma Cooperative Extension Service,
2017 (cit. on pp. 27, 35, 41).

[ERB+20] A. Erler, D. Riebe, T. Beitz, H.-G. Löhmannsröben, R. Gebbers. “Soil nutrient detec-
tion for precision agriculture using handheld laser-induced breakdown spectroscopy
(LIBS) and multivariate regression methods (PLSR, Lasso and GPR)”. In: Sensors
20.2 (2020), p. 418 (cit. on p. 35).

[ERP+13] A. Escolà, J. Rosell-Polo, S. Planas, E. Gil, J. Pomar, F. Camp, J. Llorens, F. Solanelles.
“Variable rate sprayer. Part 1–Orchard prototype: Design, implementation and
validation”. In: Computers and electronics in agriculture 95 (2013), pp. 122–135
(cit. on p. 39).

[FAOa] FAO. Climate change fans spread of pests and threatens plants and crops, new FAO
study. url: https://www.fao.org/news/story/en/item/1402920/icode/ (visited on
10/20/2023) (cit. on p. 30).

[FAOb] FAO. Pest and Pesticide Management - Inegrated Pest Management - Principles
and practices. url: https://www.fao.org/pest-and-pesticide-management/ipm/
principles-and-practices/en/ (visited on 10/21/2023) (cit. on pp. 31, 36).

[FAO22] FAO. The State of Food and Agriculture 2022. Leveraging automation in agriculture
for transforming agrifood systems. Tech. rep. Rome, Italy: FAO, 2022 (cit. on pp. 17,
39, 67).

[FL07] H. Friesland, F.-J. Löpmeier. “The performance of the model AMBAV for evapotran-
spiration and soil moisture on Müncheberg data”. In: Modelling water and nutrient
dynamics in soil–crop systems: Proceedings of the workshop on “Modelling water
and nutrient dynamics in soil–crop systems” held on 14–16 June 2004 in Müncheberg,
Germany. Springer. 2007, pp. 19–26 (cit. on p. 37).

[Flu96] M. Flury. “Experimental evidence of transport of pesticides through field soils—a
review”. In: Journal of environmental quality 25.1 (1996), pp. 25–45 (cit. on p. 45).

[FPG+21] E. Firmansyah, B. Pardamean, C. Ginting, H. G. Mawandha, D. P. Putra, T. Su-
paryanto. “Development of artificial intelligence for variable rate application based
oil palm fertilization recommendation system”. In: 2021 International Conference on
Information Management and Technology (ICIMTech). Vol. 1. IEEE. 2021, pp. 6–11
(cit. on p. 67).

[GA15] I. Georgievski, M. Aiello. “HTN planning: Overview, comparison, and beyond”. In:
Artificial Intelligence 222 (2015), pp. 124–156 (cit. on pp. 20, 22).

[GA16] I. Georgievski, M. Aiello. “Automated planning for ubiquitous computing”. In: ACM
Computing Surveys (CSUR) 49.4 (2016), pp. 1–46 (cit. on pp. 19, 33, 34, 36, 37, 40,
55).

[GNT04] M. Ghallab, D. Nau, P. Traverso. Automated Planning: theory and practice. Elsevier,
2004 (cit. on pp. 17, 19, 22).

72

https://www.fao.org/news/story/en/item/1402920/icode/
https://www.fao.org/pest-and-pesticide-management/ipm/principles-and-practices/en/
https://www.fao.org/pest-and-pesticide-management/ipm/principles-and-practices/en/

Bibliography

[HL95] J. Hagin, A. Lowengart. “Fertigation for minimizing environmental pollution by
fertilizers”. In: Fertilizer research 43 (1995), pp. 5–7 (cit. on p. 38).

[Ilg06] O. Ilghami. “Documentation for JSHOP2”. In: Department of Computer Science,
University of Maryland, Tech. Rep (2006), pp. 41–42 (cit. on p. 49).

[ISP] ISPA. Precision Ag Definition. url: https://www.ispag.org/about/definition
(visited on 10/31/2023) (cit. on p. 26).

[Kei] L. Keiner. Physical Oceanography Animations-Other Resources. url: https://ci.
coastal.edu/~lkeiner/Animations/ (visited on 10/22/2023) (cit. on p. 29).

[Kog98] M. Kogan. “Integrated pest management: historical perspectives and contemporary
developments”. In: Annual review of entomology 43.1 (1998), pp. 243–270 (cit. on
p. 31).

[Kru18] J. Krumm. Ubiquitous computing fundamentals. CRC Press, 2018 (cit. on p. 33).

[Löp83] F.-J. Löpmeier. Agrarmeteorologisches Modell zur Berechnung der aktuellen Verdun-
stung (AMBAV). Dt. Wetterdienst, Zentrale Agrarmeteorologische Forschungsstelle . . .,
1983 (cit. on p. 37).

[ML94] R. L. Metcalf, W. H. Luckmann. Introduction to insect pest management. Vol. 101.
John Wiley & Sons, 1994 (cit. on p. 30).

[NBE+73] D. R. Nielsen, J. W. Biggar, K. T. Erh, et al. “Spatial variability of field-measured
soil-water properties”. In: (1973) (cit. on p. 35).

[OOST14] Y. Osakabe, K. Osakabe, K. Shinozaki, L.-S. P. Tran. “Response of plants to water
stress”. In: Frontiers in plant science 5 (2014), p. 86 (cit. on p. 35).

[Pai69] C. H. Pair. Sprinkler irrigation. Sprinkler Irrigation Association, 1969 (cit. on p. 38).

[PCB+08] C. Parent, N. Capelli, A. Berger, M. Crèvecoeur, J. F. Dat. “An overview of plant
responses to soil waterlogging”. In: Plant stress 2.1 (2008), pp. 20–27 (cit. on p. 36).

[PCM+16] V. J. Pereira, J. P. A. R. da Cunha, T. P. de Morais, J. P. Ribeiro-Oliveira, J. B. de Morais,
et al. “Physical-chemical properties of pesticides: concepts, applications, and interac-
tions with the environment.” In: Bioscience Journal 32.3 (2016), pp. 627–641 (cit. on
p. 30).

[Pen48] H. L. Penman. “Natural evaporation from open water, bare soil and grass”. In:
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences 193.1032 (1948), pp. 120–145 (cit. on p. 36).

[Rap14] T. B. Raper. In-season drought monitoring: Testing instrumentation and developing
methods of measurement analysis. University of Arkansas, 2014 (cit. on p. 37).

[Sum77] M. E. Sumner. “Preliminary N, P, and K Foliar Diagnostic Norms for Soybeans 1”.
In: Agronomy Journal 69.2 (1977), pp. 226–230 (cit. on p. 37).

[Sum79] M. Sumner. “Interpretation of Foliar Analyses for Diagnostic Purposes 1”. In:
Agronomy Journal 71.2 (1979), pp. 343–348 (cit. on p. 37).

[TL+84] P. B. Tinker, A. Läuchli, et al. “Advances in plant nutrition.” In: Advances in Plant
Nutrition 1 (1984) (cit. on p. 37).

73

https://www.ispag.org/about/definition
https://ci.coastal.edu/~lkeiner/Animations/
https://ci.coastal.edu/~lkeiner/Animations/

Bibliography

[Wet] D. Wetterdienst. Erlaeuterungen zur nutzbaren Feldkapazitaet. url: https : / /

www.dwd.de/DE/fachnutzer/landwirtschaft/dokumentationen/allgemein/bf_

erlaeuterungen.pdf?__blob=publicationFile&v=7 (visited on 10/19/2023) (cit. on
pp. 28, 40, 41, 64).

[WS87] J. Walworth, M. Sumner. “The Diagnosis and Recommendation Integrated System
(DRIS)”. In: vol. 6. Jan. 1987, pp. 149–188. isbn: 978-1-4612-9112-1. doi: 10.1007/
978-1-4612-4682-4_4 (cit. on p. 35).

[ZMBM20] Z. Zhai, J. F. Martinez, V. Beltran, N. L. Martinez. “Decision support systems for
agriculture 4.0: Survey and challenges”. In: Computers and Electronics in Agriculture
170 (2020), p. 105256 (cit. on p. 67).

[ZNY+19] H. Zhou, X. Niu, H. Yan, N. Zhao, F. Zhang, L. Wu, D. Yin, R. Kjelgren. “Interactive
effects of water and fertilizer on yield, soil water and nitrate dynamics of young apple
tree in semiarid region of northwest China”. In: Agronomy 9.7 (2019), p. 360 (cit. on
p. 45).

[ZOV07] I. A. Zelaya, M. D. Owen, M. J. VanGessel. “Transfer of glyphosate resistance:
evidence of hybridization in Conyza (Asteraceae)”. In: American Journal of Botany
94.4 (2007), pp. 660–673 (cit. on p. 30).

All links were last followed on August 17, 2023.

74

https://www.dwd.de/DE/fachnutzer/landwirtschaft/dokumentationen/allgemein/bf_erlaeuterungen.pdf?__blob=publicationFile&v=7
https://www.dwd.de/DE/fachnutzer/landwirtschaft/dokumentationen/allgemein/bf_erlaeuterungen.pdf?__blob=publicationFile&v=7
https://www.dwd.de/DE/fachnutzer/landwirtschaft/dokumentationen/allgemein/bf_erlaeuterungen.pdf?__blob=publicationFile&v=7
https://doi.org/10.1007/978-1-4612-4682-4_4
https://doi.org/10.1007/978-1-4612-4682-4_4

A Predicates

General Predicates

• (storage ?status)

Cell equipment and identification

• (cell ?cell-id)

• (drip ?drip-id) or (sprinkler ?sprinkler-id)

• (cell-type ?cell ?drip) or (cell-type ?cell ?sprinkler)

For decision making, if we should water or not

• (irrigation-cost ?cell ?irrigation-technique ?cost)

• (wait-cost ?cell ?cost)

Precision of our irrigation technique, describes step size for added moisture in nFK

• (irrigation-step d1 10)

Initial state

• (moisture-cell ?cell ?current-moisture)

• (optimal-moisture-cell ?cell ?optimal-moisture)

• (nutrition-cell ?cell ?status)

• (pest-cell ?cell ?status)

• (drip-functional ?cell ?status)

75

B Domain Model

Figure B.1: Part 1 of the domain model

77

B Domain Model

Listing B.1 First part of the Planning Domain

;;------------------------Watering

(:operator (!calc-water-cost ?cell)

((irrigation-cost ?cell ?irrigation ?old-cost)(cell-type ?cell ?irrigation)(moisture-

cell ?cell ?moist)(optimal-moisture-cell ?cell ?optmoist)(irrigation-step ?irrigation ?water))

((irrigation-cost ?cell ?irrigation ?old-cost))

((irrigation-cost ?cell ?irrigation (call CalculatePlantWellness ?optmoist ?moist ?

water)))

0

)

(:operator (!calc-wait-cost ?cell)

((wait-cost ?cell ?old-cost)(cell-type ?cell ?irrigation)(moisture-cell ?cell ?moist)(

optimal-moisture-cell ?cell ?optmoist))

((wait-cost ?cell ?old-cost))

((wait-cost ?cell (call CalculatePlantWellness ?optmoist ?moist 0)))

0

)

(:operator (!activate-fertigation ?cell)

((moisture-cell ?cell ?moist)(nutrition-cell ?cell 0)(cell-type ?cell ?irrigation)(drip

?irrigation)(optimal-moisture-cell ?cell ?optmoist)(irrigation-step ?irrigation ?water))

((moisture-cell ?cell ?moist)(nutrition-cell ?cell 0))

((moisture-cell ?cell ?optmoist)(nutrition-cell ?cell 1))

(call CalculatePlantWellness ?optmoist ?moist ?water)

)

;;could update new moisture with watering cost since it represents how much water we add in a

way?

;;

(:operator (!activate-irrigation ?cell)

((moisture-cell ?cell ?moist)(cell-type ?cell ?irrigation)(optimal-moisture-cell ?cell

?optmoist)(irrigation-step ?irrigation ?water))

((moisture-cell ?cell ?moist))

((moisture-cell ?cell ?optmoist))

(call CalculatePlantWellness ?optmoist ?moist ?water)

)

(:operator (!wait ?cell)

((moisture-cell ?cell ?moist)(optimal-moisture-cell ?cell ?optmoist))

()

()

(call CalculatePlantWellness ?optmoist ?moist 0)

)

78

Figure B.2: Part 2 of the domain model

79

B Domain Model

Figure B.3: Part 3 of the domain model

Figure B.4: Part 4 of the domain model

80

Figure B.5: Part 5 of the domain model

81

B Domain Model

Listing B.2 Second part of the Planning Domain

;;--------Maintenance

(:operator (!repair ?cell ?drip)

((drip-functional ?drip 0))

((drip-functional ?drip 0))

((drip-functional ?drip 1))

-1

)

;;--------Refilling Storage

(:operator (!refill ?cell)

((storage 0))

((storage 0))

((storage 1))

-1

)

;;------------------------Pest/Fertilization

(:operator (!apply-pesticide ?cell)

((pest-cell ?cell 0))

((pest-cell ?cell 0))

((pest-cell ?cell 1))

-1

)

(:operator (!apply-fertilizer ?cell)

((nutrition-cell ?cell 0))

((nutrition-cell ?cell 0))

((nutrition-cell ?cell 1))

-1

)

82

Listing B.3 Third part of the Planning Domain

;;--------Main

(:method

(plan-main ?cell)

((cell ?cell)(cell-type ?cell ?irrigation)(drip ?irrigation))

((maintenance ?cell ?irrigation)(check-nutrition-drip ?cell))

)

(:method

(plan-main ?cell)

((cell ?cell)(cell-type ?cell ?irrigation)(sprinkler ?irrigation))

((check-nutrition-sprinkler ?cell))

)

;;--------Check Nutrition

;;missing nutrition

(:method

(check-nutrition-drip ?cell)

((cell ?cell)(nutrition-cell ?cell 0))

((check-storage ?cell)(check-pest-drip ?cell))

)

;;nutrition good

(:method

(check-nutrition-drip ?cell)

((cell ?cell)(nutrition-cell ?cell 1))

((check-pest-default ?cell))

)

;;missing nutrition

(:method

(check-nutrition-sprinkler ?cell)

((cell ?cell)(nutrition-cell ?cell 0))

((check-storage ?cell)(check-pest-sprinkler ?cell))

)

;;nutrition good

(:method

(check-nutrition-sprinkler ?cell)

((cell ?cell)(nutrition-cell ?cell 1))

((check-pest-default ?cell))

)

83

B Domain Model

Listing B.4 Fourth part of the Planning Domain

;;--------Check Pest

;;pest alarm

(:method

(check-pest-drip ?cell)

((cell ?cell)(pest-cell ?cell 0))

((!calc-water-cost ?cell)(!calc-wait-cost ?cell)(fertigation ?cell)(!apply-pesticide ?cell))

)

;;no pest

(:method

(check-pest-drip ?cell)

((cell ?cell)(pest-cell ?cell 1))

((!calc-water-cost ?cell)(!calc-wait-cost ?cell)(fertigation ?cell))

)

;;pest alarm

(:method

(check-pest-sprinkler ?cell)

((cell ?cell)(pest-cell ?cell 0))

((!calc-water-cost ?cell)(!calc-wait-cost ?cell)(irrigation ?cell)(!apply-fertilizer ?cell)(!

apply-pesticide ?cell))

)

;;no pest

(:method

(check-pest-sprinkler ?cell)

((cell ?cell)(pest-cell ?cell 1))

((!calc-water-cost ?cell)(!calc-wait-cost ?cell)(irrigation ?cell)(!apply-fertilizer ?cell))

)

;;pest alarm

(:method

(check-pest-default ?cell)

((cell ?cell)(pest-cell ?cell 0))

((!calc-water-cost ?cell)(!calc-wait-cost ?cell)(irrigation ?cell)(!apply-pesticide ?cell))

)

;;no pest

(:method

(check-pest-default ?cell)

((cell ?cell)(pest-cell ?cell 1))

((!calc-water-cost ?cell)(!calc-wait-cost ?cell)(irrigation ?cell))

)

;;--------Checking Storage

(:method

(check-storage ?cell)

((cell ?cell)(storage 0))

((!refill ?cell))

)

(:method

(check-storage ?cell)

(storage 1)

()

)
84

Listing B.5 Fifth part of the Planning Domain

;;--------Maintenance

(:method

(maintenance ?cell ?d)

((cell ?cell)(cell-type ?cell ?d)(drip ?d)(drip-functional ?d 0))

((!repair ?cell ?d))

)

(:method

(maintenance ?cell ?d)

(drip-functional ?d 1)

()

)

;;------------------------Watering

;;--------deciding if to water or not

(:method (fertigation ?cell)

((cell-type ?cell ?irrigation)(drip ?irrigation)(irrigation-cost ?cell ?irrigation ?water)(

wait-cost ?cell ?wait)(call >= ?water ?wait))

((!activate-fertigation ?cell))

)

(:method (fertigation ?cell)

((cell-type ?cell ?irrigation)(drip ?irrigation)(irrigation-cost ?cell ?irrigation ?water)(

wait-cost ?cell ?wait)(call < ?water ?wait))

((!wait ?cell))

)

(:method (irrigation ?cell)

((irrigation-cost ?cell ?irrigation ?water)(wait-cost ?cell ?wait)(call >= ?water ?wait))

((!activate-irrigation ?cell))

)

(:method (irrigation ?cell)

((irrigation-cost ?cell ?irrigation ?water)(wait-cost ?cell ?wait)(call < ?water ?wait))

((!wait ?cell))

)

85

C Problem Descriptions for Evaluation

Listing C.1 Problem definition for testing one cell as an Example

(defproblem problem agriculture

(

;;general

(storage 1)

;;cell 1

(cell c1)

(drip d1)

;;for the decision if we should water or not

(irrigation-cost c1 d1 0)

(wait-cost c1 0)

;;how precise our irrigation is

;;10 means we can provide moisture in steps of 10 %nFK

(irrigation-step d1 10)

;;initial state

(cell-type c1 d1)

(moisture-cell c1 X) <--- X value that differs

(optimal-moisture-cell c1 70)

(nutrition-cell c1 1)

(pest-cell c1 1)

(drip-functional d1 1)

)

(

;;goals

(plan-main c1)

)

)

Listing C.2 Problem definition for testing multiple Cells as an Example

(defproblem problem agriculture

(

(storage 1)

;;cell 0

(cell c0)

(drip d0)

(irrigation-cost c0 d0 0)

(wait-cost c0 0)

(irrigation-step d0 10)

(cell-type c0 d0)

(moisture-cell c0 55) <---Current

(optimal-moisture-cell c0 61) <---Optimal

(nutrition-cell c0 1)

(pest-cell c0 1)

(drip-functional d0 1)

;;cell 1

(cell c1)

(drip d1)

(irrigation-cost c1 d1 0)

(wait-cost c1 0)

(irrigation-step d1 10)

(cell-type c1 d1)

(moisture-cell c1 65) <---Current

(optimal-moisture-cell c1 59) <---Optimal

(nutrition-cell c1 1)

(pest-cell c1 1)

(drip-functional d1 1)

;;cell 2

(cell c2)

(drip d2)

(irrigation-cost c2 d2 0)

(wait-cost c2 0)

(irrigation-step d2 10)

(cell-type c2 d2)

(moisture-cell c2 60) <---Current

(optimal-moisture-cell c2 60) <---Optimal

(nutrition-cell c2 1)

(pest-cell c2 1)

(drip-functional d2 1)

...

)

(

(plan-main c0)

(plan-main c1)

(plan-main c2)

...

)

)

Figure C.1: Risk Averse utility function, with 𝛼 = 1

Figure C.2: Risk Averse utility function, with 𝛼 = 0.3

Figure C.3: Risk Averse utility function, with 𝛼 = 0.2

Figure C.4: Risk Averse utility function, with 𝛼 = 0.1

Figure C.5: Risk Averse utility function, with 𝛼 = 0.08

Figure C.6: Risk Averse utility function, with 𝛼 = 0.05

Listing C.3 Python Script to create a variable amount of cells to test for our planner

cell = """;;cell x

(cell c0)

(drip d0)

(irrigation-cost c0 d0 0)

(wait-cost c0 0)

(irrigation-step d0 10)

(cell-type c0 d0)

(moisture-cell c0 20)

(optimal-moisture-cell c0 70)

(nutrition-cell c0 0)

(pest-cell c0 0)

(drip-functional d0 0)\n"""

temp_cell= cell

#amount of cells we want to test

X = 100

for i in range(X):

new_index = i+1

temp_cell= temp_cell.replace('c'+str(i), 'c'+str(new_index))

temp_cell= temp_cell.replace('d'+str(i), 'd'+str(new_index))

cell = cell +temp_cell

goals = '(plan-main c0)\n'

temp_goals = goals

for i in range(X):

new_index = i+1

temp_goals= temp_goals.replace('c'+str(i), 'c'+str(new_index))

goals = goals +temp_goals

problem = "(defproblem problem agriculture \n (\n (storage 1)\n"+cell+"\n) \n (\n"+goals+"\n

) \n)"

with open('problem.txt', 'w') as file:

file.write(problem)

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

Vaihingen, 06.11.2023,

	1 Introduction
	2 Background
	2.1 Automated Planning
	2.2 HTN Planning
	2.3 Considering Risk in HTN planning
	2.4 Precision Agriculture

	3 Agricultural HTN planning domain with risk
	3.1 Knowledge Acquisition
	3.2 Analysing the Domain Requirements
	3.3 Modelling the Domain
	3.4 Incorporating Risk

	4 Implementation
	4.1 Choosing the Right Planner
	4.2 Implementing our Domain Model
	4.3 Uncertainty in JSHOP2

	5 Evaluation
	5.1 Demonstration
	5.2 Quantitative Evaluation
	5.3 Qualitative Evaluation

	6 Related Work
	7 Conclusion and Outlook
	Bibliography
	A Predicates
	B Domain Model
	C Problem Descriptions for Evaluation

