
IAAS Service Computing Department

Masterarbeit

A Proof of Concept for Risk-aware
Plan-based HTN Planning

Tobias Hirzel

Course of Study: Software-Engineering

Examiner: Dr. Ilche Georgievski

Supervisor: Ebaa Alnazer, M.Sc.

Commenced: April 26, 2023

Completed: October 26, 2023

Abstract

With the rise of automation comes the need for automated decision-making. Real-world domains
of business and industry often utilize automated agents, like robots, to perform various tasks.
Automated agents rely on decision-making software to decide on a course of action to complete
such tasks. When decision-making software chooses a sequence of actions for an automated agent
to perform, a plan is created. This process of planning as well as decision-making software are
subjects of study in the research field of Automated Planning, where a decision-making software is
referred to as AI Planner. The manner in which an AI Planner conducts planning depends on the
planning technique employed. One of the more widely used planning techniques is Hierarchical
Task Network (HTN) planning, which composes available actions of a domain into a hierarchy, to
allow for planning, resembling the way a human individual would conduct planning. A crucial
factor in human planning is the notion of risk, since, in real-world domains, actions frequently lead
to one of many possible results. Often there is no guarantee for a particular result, and some results
might be undesirable. Therefore, when an individual performs planning, they take risk into account,
as the individual stands to lose a certain amount of resource, such as money or time. The way an
individual approaches planning with risk in mind, shows an attitude towards risk. An individual,
avoiding risk bearing actions, shows a risk averse attitude, while an individual, taking risks, shows
a risk seeking attitude. If no risk consideration is made, the individual shows a risk neutral attitude.
For particular real-world domains, a reasonable individual would show a specific risk attitude out
of necessity. Consider aviation, for example, where many would agree, that risk avoiding actions
should be chosen. When risk bearing actions are chosen in such high stakes domains, undesirable
results can include the loss of human lives. Therefore, dealing with risk by showing the appropriate
risk attitude, is especially important in such domains. Since automated agents are often employed in
those domains, AI Planners should be aware of risk and factor risk into planning. Furthermore, AI
Planners should be able to perform planning according to an appropriate risk attitude, so automated
agents can act according to this risk attitude. However, as far as we know, a risk-aware AI Planner
is a rarity in the research field of Automated Planning. To contribute towards risk-aware planning,
we present a proof of concept for an approach to risk-aware HTN planning. The approach employs
utility functions to heuristically guide planning towards plans, that adhere to a specified risk attitude.
The proof of concept comes in the form of Risk Aware PANDA3 (RAPANDA3), an extension to
the AI Planner: Planning and Acting in a Network Decomposition Architecture 3 (PANDA3). On
top of that, we propose an addition to an HTN input language, which allows the modelling of risk
for actions. Furthermore, we provide multiple self designed HTN domains, which use this addition.
With these domains, we conduct an evaluation of RAPANDA3, to scrutinize the implemented
approach to risk-aware HTN planning, and to show, that this approach results in plans, adhering to a
specified risk attitude.

3

Kurzfassung

Mit zunehmender Automatisierung steigt die Notwendigkeit einer automatisierten Entscheidungs-
findung. In realen Domänen (domains) des Geschäfts- und Industriebereichs werden häufig
automatisierte Akteure (agents) wie Roboter eingesetzt, um verschiedenste Aufgaben auszuführen.
Automatisierte Akteure verlassen sich auf Entscheidungssoftware, um über eine Vorgehensweise
zur Erledigung solcher Aufgaben zu entscheiden. Wenn Entscheidungssoftware eine Abfolge
von Aktionen (actions) auswählt, die ein automatisierter Akteur ausführen soll, erstellt sie einen
Plan. Dieser Prozess der Planung (planning) sowie Entscheidungssoftware sind Gegenstand der
Untersuchung im Forschungsfeld des Automated Planning, in dem Entscheidungssoftware als AI
Planner bezeichnet wird. Die Art und Weise, wie ein AI Planner die Planung durchführt, hängt
von der verwendeten Planungstechnik (planning technique) ab. Eine der am weitesten verbreiteten
Planungstechniken ist die Hierarchical Task Network (HTN) Planung, welche verfügbare Aktionen
einer Domäne in einer Hierarchie zusammenfasst, um eine Planung zu ermöglichen, die der
Art und Weise ähnelt, wie ein menschliches Individuum eine Planung durchführen würde. Ein
entscheidender Faktor bei der menschlichen Planung ist Risiko, da Aktionen in der realen Welt
häufig zu einem von vielen möglichen Ergebnissen führen. Oft gibt es keine Garantie für ein
bestimmtes Ergebnis und manche Ergebnisse können unerwünscht sein. Daher wird Risiko von
einer Person berücksichtigt, die sich im Planungsprozess befindet, da die Person Gefahr läuft,
eine bestimmte Menge an Ressourcen wie Geld oder Zeit zu verlieren. Die Art und Weise,
wie eine Person Risiko in ihre Planung einfließen lässt, zeigt eine Einstellung zum Risiko. Ein
Individuum, das risikobehaftete Aktionen vermeidet, zeigt eine risikoscheue Einstellung (risk
averse attitude), während ein Individuum, das Risiken eingeht, eine risikofreudige Einstellung (risk
seeking attitude) zeigt. Erfolgt keine Risikoabwägung, zeigt das Individuum eine risikoneutrale
Einstellung (risk neutral attitude). In bestimmten Domänen der realen Welt zeigt ein vernünftiges
Individuum eine bestimmte Risikoeinstellung aus Notwendigkeit. Zum Beispiel in der Domäne
der Luftfahrt, wo viele zustimmen würden, dass Risiko vermeidende Aktionen gewählt werden
sollten. Wenn risikobehaftete Aktionen in solch Hochrisiko Domänen gewählt werden, können die
möglichen unerwünschten Ergebnisse den Verlust von Menschenleben nach sich ziehen. Dadurch
ist in solchen Domänen der Umgang mit Risiko durch eine passende Risikoeinstellung besonders
wichtig. Da in diesen Domänen häufig automatisierte Akteure eingesetzt werden, sollten Ai
Planner Risiko bewusst planen. Darüber hinaus sollten AI Planner in der Lage sein, die Planung
entsprechend einer angemessenen Risikoeinstellung durchzuführen, sodass automatisierte Akteure
gemäß dieser Risikoeinstellung handeln können. Jedoch, soweit wir wissen, ist ein risikobewusster
AI Planner im Forschungsfeld des Automated Planning eine Seltenheit. Um zu risikobewusster
Planung beizutragen, präsentieren wir einen Proof of Concept für ein Vorgehen der risikobewussten
HTN Planung (risk-aware HTN planning). Das Vorgehen verwendet Nutzenfunktionen (utility
functions), um Planung heuristisch auf Pläne auszurichten, die einer bestimmten Risikoeinstellung
entsprechen. Der Proof of Concept kommt in der Form von Risk Aware PANDA3 (RAPANDA3),
eine Erweiterung des AI Planner: Planning and Acting in a Network Decomposition Architecture
3 (PANDA3). Darüber hinaus schlagen wir eine Ergänzung zu einer HTN Eingabesprache vor,
welche die Modellierung von Risiken für Aktionen ermöglicht. Weiterhin stellen wir mehrere
selbst gestaltete HTN Domänen zur Verfügung, die diese Ergänzung nutzen. Mit diesen Domänen
führen wir eine Evaluierung von RAPANDA3 durch, um das Vorgehen der risikobewussten HTN
Planung zu überprüfen und zu zeigen, dass dieses Vorgehen zu Plänen führt, die einer bestimmten
Risikohaltung entsprechen.

4

Contents

1 Introduction 17

2 Background 21
2.1 Automated Planning . 21
2.2 HTN Planning . 22
2.3 Heuristics . 28

3 Risk-aware Plan-based HTN Planning 33
3.1 Risk attitudes . 33
3.2 Expected Utility . 36

4 Implementation 41
4.1 Overview . 41
4.2 Parsing Phase . 42
4.3 Preprocessing Phase . 45
4.4 Search Phase . 46

5 Evaluation 51
5.1 Robot Domain . 51
5.2 Satellite Domain . 57
5.3 Transport Domain . 63
5.4 Car-Fleet-RA Domain . 68

6 Related Work 75

7 Conclusion and Outlook 77

A Appendix 79
A.1 Robot-RA . 79
A.2 Satellite . 80
A.3 Transport-RA . 81
A.4 Car-Fleet-RA . 82

Bibliography 83

5

List of Figures

2.1 A diagram, depicting the TDG for our example domain satellite_simple listed in
Listing 2.1. Grey ovals represent methods, light blue rectangles primitive tasks and
dark blue rectangles compound tasks. 26

2.2 A diagram, depicting the TDG for our sample domain satellite_lessSimple. Grey
ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks. 29

3.1 A diagram, depicting the TDG for our sample domain satellite_lessSimpleRiskAware.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks. 34

3.2 A depiction of the exponential utility functions, employed in this work. The blue
function has 𝛼 = 0.1 and the red function has 𝛼 = 0.3. 35

4.1 A class diagram of classes in PANDA3, taking part in the parsing phase. Only
classes relevant to our proof of concept for risk-aware plan-based HTN planning
are depicted. All classes, not marked with stereotypes containing “Scala”, are Java
classes. All parameters are assumed to be in-parameters, unless marked otherwise.
The lists of methods and attributes are abbreviated and therefore not exhaustive,
since we would exceed available space otherwise. However, the most important
attributes and methods, to understand the relation between classes and the process
of parsing in PANDA3, are present. 43

4.2 A class diagram of classes in PANDA3, taking part in the search phase. Only
classes relevant to our proof of concept for risk-aware plan-based HTN planning
are depicted. All classes, not marked with stereotypes containing “Scala”, are Java
classes. All parameters are assumed to be in-parameters, unless marked otherwise.
The lists of methods and attributes are abbreviated and therefore not exhaustive,
since we would exceed available space otherwise. However, the most important
attributes and methods, to understand the relation between classes in the search
phase, are present. 47

5.1 A diagram, illustrating the relations of methods and tasks in the Robot-RA domain.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks. Green borders indicate additions to the original domain,
and red borders indicate removals from the original domain. 52

5.2 A diagram, illustrating the relations of methods and tasks in the Satellite-RA domain.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks. Green borders indicate additions to Satellite-RA. . . 58

7

5.3 A diagram, illustrating the relations of methods and tasks in the Transport-RA
domain. Grey ovals represent methods, light blue rectangles primitive tasks and
dark blue rectangles compound tasks. Green borders indicate added content as part
of the risk-aware adaption. 65

5.4 A diagram, illustrating the relations of methods and tasks in the Car-Fleet-RA
domain. Grey ovals represent methods, light blue rectangles primitive tasks and
dark blue rectangles compound tasks. 69

8

List of Tables

5.1 The results of running plan computation for the listed problem instances with
RAPANDA3 in the Robot-RA domain. A row refers to one problem instance and
has three sub-rows associated, each referring to plan computation with the listed
risk attitude. Solution length (SL) refers to the amount of plan steps the solution
holds, with one plan step being a primitive task. Exp. cost displays the sum of
expected costs of the plan steps. Exp. utility depicts the solution’s expected utility
rounded to two decimal points, and the time column holds the planning time for
RAPANDA3 to compute the solution in seconds, rounded to two decimal points.
Any computation that exceeded 15 minutes was aborted, and the cells are marked
with -, for the problem instance exceeded our planning time limit. 56

5.2 The results of running plan computation for the listed problem instances with
RAPANDA3 in the Satellite-RA domain. A row refers to one problem instance and
has three sub-rows associated, each referring to plan computation with the listed risk
attitude. Solution length (SL) refers to the amount of plan steps the solution holds,
with one plan step being a primitive task. Exp. cost displays the sum of individual
expected costs of the plan steps. Exp. utility depicts the solution’s expected utility,
rounded to two decimal points, and the time column holds the planning time for the
planner to compute the solution in seconds, rounded to two decimal points. Any
computation that exceeded 15 minutes was aborted, and the cells are marked with -,
for the problem instance exceeded our planning time limit. 62

5.3 The results of running plan computation for the listed problem instances with
RAPANDA3 in the Transport-RA domain. A row refers to one problem instance
and has three sub-rows associated, each referring to plan computation with the listed
risk attitude. Solution length (SL) refers to the amount of plan steps the solution
holds, with one plan step being a primitive task. Solutions in this domain might
include noop tasks. We list Solution length including noop tasks in parentheses.
Exp. cost displays the sum of individual expected costs of the plan steps. Exp.
utility depicts the solution’s expected utility, rounded to two decimal points, and
the time column holds the planning time for the planner to compute the solution
in seconds, rounded to two decimal points. Any computation that exceeded 15
minutes was aborted, and the cells are marked with -, for the problem instance
exceeded our planning time limit. 68

9

5.4 The results of running plan computation for the listed problem instances with
RAPANDA3 in the Car-Fleet-RA domain. A row refers to one problem instance
and has three sub-rows associated, each referring to plan computation with the
listed risk attitude. Solution length refers to the amount of plan steps the solution
holds, with one plan step being a primitive task. Solutions in this domain might
include do_nothing tasks. We list solution length (SL) including do_nothing tasks
in parentheses. Exp. cost displays the sum of individual expected costs of the plan
steps. Exp. utility depicts the solution’s expected utility, rounded to two decimal
points, and the time column holds the planning time for RAPANDA3 to compute
the solution in seconds, rounded to two decimal points. Any computation that
exceeded 15 minutes was aborted, and the cells are marked with -, for the problem
instance exceeded our planning time limit. 73

10

List of Listings

2.1 This listing contains satellite_simple, an example domain in Hierarchical Domain
Definition Language (HDDL) format. It depicts satellites getting instruments loaded
and initialized. A small part is omitted for the sake of brevity. 23

2.2 The sample problem instance p_example for the satellite_simple domain, shown in
Listing 2.1. 24

4.1 An example for a primitive task with our newly conceived costdist section. This
costdist section defines a probability distribution with a 30% chance of getInstr
costing ten units and a 70% chance of costing 20 units. 42

4.2 An example output of RAPANDA3, which shows a solution with primitive tasks
above root 10. 49

5.1 The available lifted predicates in the Robot and Robot-RA domain. 53
5.2 The primitive task sequences of three computed plans by RAPAND3 in the Robot-RA

domain. All plans are solutions for our self designed problem instance pfile_RA01
and each solution is computed with a different risk attitude. 55

5.3 The available lifted predicates in the Satellite-RA domain. 59
5.4 The primitive task sequences of three computed plans by RAPAND3 in the Satellite-

RA domain. All plans are solutions for the problem instance 3obs-1sat-3mod, and
each solution is computed with a different risk attitude. 61

5.5 The available lifted predicates in the Transport-RA domain. 64
5.6 The primitive task sequences of three computed plans by RAPAND3 in the

Transport-RA domain. All plans are solutions for the self created problem in-
stance RA-3loc-2pack-1truck-speed01 derived from an IPC 2020 provided problem
instance, and each solution is computed with a different risk attitude. 66

5.7 The available lifted predicates in the Car-Fleet-RA domain. 70
5.8 The primitive task sequences of three computed plans by RAPAND3 in our self

designed Car-Fleet-RA domain. All plans are solutions for the problem RA-a1-
car2-dep3, and each solution is computed with a different risk attitude. 72

11

List of Algorithms

2.1 The algorithm of plan-based HTN planning, details could be different for individual
implementations. 28

4.1 The algorithm of plan-based HTN planning in PANDA3, encapsulated in Heuris-
ticSearch.scala. 49

13

Acronyms

ANTLR Another Tool for Language Recognition. 41

DNBs dynamic Bayesian networks. 76

FAPE Flexible Acting and Planning Environment. 18

GPS General Problem Solver. 21

HDDL Hierarchical Domain Definition Language. 11

HTN Hierarchical Task Network. 18

IPC International Planning Competition. 51

LCFR Least-Cost Flaw-Repair. 46

MDP Markov decision process. 75

NOAH Nets of Action Hierarchies. 21

PANDA3 Planning and Acting in a Network Decomposition Architecture 3. 18

RAPANDA3 Risk Aware PANDA3. 18

SHOP2 Simple Hierarchical Ordered Planner. 18

SHPE Simple Hierarchical Planning Engine. 18

STRIPS Stanford Research Institute Problem Solver. 21

TDG Task Decomposition Graph. 25

15

1 Introduction

Risk is ubiquitous in real-world domains. Due to its non-deterministic nature, reality is laden with
risk and particular outcomes are rarely guaranteed. Therefore, many actions are risk bearing, as
they might not yield the desired outcome. An everyday example is the action of buying over the
internet, which could save time but risks receiving a product, that is not as advertised. Any action is
performed with a goal in mind, and often the goal requires multiple actions to reach. When multiple
actions are chained together, for the purpose of reaching a goal, a plan is formed. Since many
actions are risk bearing, plans are similarly risk laden and in most cases the individual, conducting
the planning, stands to lose a certain amount of resource, such as money. Resource losses can
amount to significant values in high stakes domains, therefore, dealing with risk while planning is
prudent. Domains in business and Industry are often considered high stakes, and frequently rely on
automated agents, such as robots or autonomous cars. Automated agents, similar to human agents,
require plans to fulfil goals. Therefore, automated agents are in need of automated planning. As
risk is an important factor for planning in high stakes domains, automated planning should consider
risk.

Planning for automated agents is a subject of study in the research field of Automated Planning,
where planners are employed to conduct planning for automated agents. A plan is a sequence of
actions, performable in the real-world domain the automated agent acts in. A planner receives a
formal representation of the real-world domain, presenting the set of performable actions, with which
the planner can decide on a plan. Since planners are tasked with choosing actions for automated
agents in high stakes domains, they should be aware of risk and factor risk into decision-making.
However, we found it to be rare to come across a planner that is risk-aware. Moreover, the formal
representations of the domains to plan in, often do not have the necessary formalisms in place to
allow for risk-aware planning. Therefore, we present a risk-aware planner as proof of concept for
an approach to risk-aware planning. On top of that, we propose a formalism that allows domain
representations to accommodate risk awareness.

To achieve risk-aware planning, we observe human behaviour when confronted with risk and
recognize three risk attitudes: risk neutral, risk seeking and risk averse. When faced with a decision
between multiple actions, a risk neutral agent chooses the action, with the lowest expected cost.
While this can be a sensible way to deal with risk, human agents rarely act this way, and for good
reason. Depending on the personality and the domain they act in, human agents tend to embrace or
avoid risk. In Space programs, buying cheaper, low quality rocket parts might reduce expected cost
for a rocket. However, it seems much more reasonable to avoid low quality parts, as human lives
and a loss of public trust are at stake. If the potential loss is catastrophic, human agents most likely
show a risk averse attitude. In contrast, human agents in a casino could conceivably exhibit a risk
seeking attitude, enjoying the thrill of betting a large sum on a single die roll.

17

1 Introduction

Utility functions are commonly employed to model risk attitudes mathematically, since they provide
a mapping from objective cost to subjective cost [ZZY+14]. In Alnazer, Georgievski, and Aiello
[AGA22b], the authors propose to introduce risk attitudes, and therefore risk awareness, to planning
by usage of utility functions. We follow up on this, by providing a means with which a planner can
make use of utility functions to create plans expressing a risk attitude. This comes in the form of a
heuristic that guides planning to adhere to a risk attitude.

The risk-aware planning approach, we describe in this work, is an extension to the framework of
Hierarchical Task Network (HTN) planning, a widely used Automated Planning technique. HTN
planning is utilized in multiple fields of science and industry, such as web service composition,
medicine, robotics, video games and smart buildings [GNN+17; GTFM13; KBK+07; KBK08;
MAMO18; SPW+04]. HTN planning uses a hierarchical structure to formalize real-world domains,
which is intuitive for users taking part in the planning process, as it closely resembles the way
humans organize problems. Furthermore, the hierarchy uniquely allows for the expression of
useful constraints on what plans can be considered solutions [BBHB17]. There are many already
established planner that implement HTN planning, such as Simple Hierarchical Ordered Planner
(SHOP2), Simple Hierarchical Planning Engine (SHPE), Flexible Acting and Planning Environment
(FAPE) and Planning and Acting in a Network Decomposition Architecture 3 (PANDA3) [DBIG14;
HBBB21; MJC14; NAI+03]. To realize our proof of concept of risk-aware HTN planning, we
modify PANDA3 to obtain Risk Aware PANDA3 (RAPANDA3).

The contributions of our work are the following:

• We present risk-aware plan-based HTN planning, an approach to HTN planning that employs
utility functions to guide planning towards plans that adhere to a risk attitude.

• We provide an in-depth look at the PANDA3 source code and by which means PANDA3
conducts plan-based planning.

• We introduce RAPANDA3, a proof of concept for risk-aware plan-based HTN planning, build
on top of plan-based HTN planning of PANDA3.

• We propose an extension of one HTN input language to accommodate risk awareness. Even
though the input language we extend is a general input language for HTN planning, the
extended parser is integrated with RAPANDA3. Therefore, this contribution is specific to
RAPANDA3. However, it is easily portable to similar parser used in other planners.

• We provide several HTN Domains, created with risk awareness in mind.

• An evaluation of RAPANDA3 is conducted, against the newly created HTN domains, to
examine risk-aware plan-based HTN planning. The results of this evaluation are presented
and discussed.

Following the introduction, Chapter 2 elaborates on planning in general and plan-based HTN
planning in detail. Additionally, we discuss heuristics and how heuristics are used to inform
planning. Chapter 3 contains our description of risk-aware plan-based HTN planning. In Chapter 4,
we present an in-depth look at how PANDA3 conducts plan-based HTN planning, by means of UML
diagrams and description. Following this, we elaborate on the changes made to obtain RAPANDA3.
Chapter 5 introduces our benchmark domains, describes our evaluation of RAPANDA3, and

18

discusses the results of the evaluation. Chapter 6 houses a discussion about scientific works, related
to our work. Finally, in Chapter 7, we provide a summary of our findings and present suggestions
for next steps.

19

2 Background

Chapter 2 starts with a brief history overview of the Automated Planning research field. This
includes a short introduction to Classical Planning and HTN Planning. Afterwards, HTN Planning
is elaborated on by defining several relevant terms and concepts. We additionally introduce HDDL,
an input language for HTN Planning. On top of that, simple examples of HDDL files are presented
to illustrate the HTN method and HDDL language. Following after, is an explanation of the role of
heuristics in HTN Planning and a description of a cost aware heuristic.

2.1 Automated Planning

The research field of Automated Planning has its roots in psychology, with the first ever introduced
planner being General Problem Solver (GPS), aiming to simulate human thought processes [NS61].
From there, various other planners followed, such as Stanford Research Institute Problem Solver
(STRIPS) [FN93] and WARPLAN [War76], all building on top of a similar technique to planning.
This technique was later coined Classical Planning, when Automated Planning became more
diverse in its approaches. The notion of hierarchy was first introduced to Automated Planning with
Nets of Action Hierarchies (NOAH)[GA15], the first planner to implement Hierarchical Planning.
While there are multiple approaches for incorporating hierarchies into planning [BAH19], our work
is only concerned with HTN Planning.

Planning entails finding a sequence of actions to achieve a desired goal, limited to the possible
actions, set by the environment, the planning is conducted in. Classical Planning captures this
by defining a state and a set of actions that manipulate the state. Moreover, the environment is
depicted by a domain, which holds the possible actions. A problem instance sets forth an initial
state and a set of goal states. The planning challenge consists of finding a sequence of actions, that
is applicable to the initial state and leads to one of the goal states. For an action to be applicable,
its preconditions need to be met by the state. Additionally, actions exert effects, which leave the
state modified after execution of the action. In consequence, every action can be viewed as a state
transition between a precondition fulfilling state and an effects bearing state. A chain of state
transitions constitutes a plan. If this chain reaches a goal state from the initial state, it is called a
solution to the given problem instance. While HTN Planning approaches can differ from approaches
of Classical Planning significantly, having an understanding of the just roughly described method,
is helpful to grasp HTN Planning approaches.

21

2 Background

2.2 HTN Planning

Planning is conducted in a certain environment, formally defined by a domain 𝐷. A problem
instance 𝑃𝐼, provides the challenge a plan has to be created for and is closely associated with a
domain. We provide the satellite_simple domain in Listing 2.1, with a corresponding problem
instance in Listing 2.2. The format for these examples is HDDL, an input language recently proposed
for HTN Planning [HBB+19]. HDDL consists of sections. A section is prefixed with a colon
and section name and holds entities1, performing the role for the domain or problem instance, the
section name suggests. Entities a section holds are bordered with parentheses, with the opening
parenthesis starting before the section colon. For instance, the (:types satellite instrument) section
includes the entities “satellite” and “instrument”, indicating that available types in the domain are
satellite and instrument. Sections can encapsulate subsections, in this case the subsection specifies
roles for the parent section. For instance, (:task loadInstr :parameters (?i - instrument ?s - satellite))
specifies that, ?i - instrument and ?s - satellite are parameters of loadInstr. For the rest of this work,
we use HDDL for domain and problem instance description. The examples are provided to support
the explanations in this chapter while simultaneously introducing the HDDL language.

Hierarchy composition In HTN planning, domain actions are often called tasks and for the sake
of consistency, we will use this term from here on out. Domain tasks have an underlying hierarchy,
which is composed by an interplay between compound tasks, primitive tasks and methods.

Definition 2.2.1 (Task)
A Task 𝑡 represents an action that can be performed in a Domain 𝐷. A Task can either be primitive
or compound. We denote primitive tasks with 𝑡 𝑝 and compound tasks with 𝑡𝑐.

Definition 2.2.2 (Task network)
Any finite sequence of tasks is called a task network 𝑇𝑛.

Primitive tasks represent the leaves of the domain hierarchy and the atomic building block of a plan
𝑃. Primitive tasks can be executed directly, and a plan only consists of primitive tasks. We call the
primitive tasks in a plan, plan steps.

Definition 2.2.3 (Plan)
A plan 𝑃 in a domain 𝐷 is a task network 𝑇𝑛 comprised solely of primitive tasks, which are
performable in the domain 𝐷.

Our sample domain, in Listing 2.1, supplies three primitive tasks, getInstr, initializeInstr and
calibrateInstr. A primitive task is specified with the :action section in HDDL. In contrast to
primitive tasks, Compound tasks are at least one level above the lowest level in the hierarchy and
cannot be executed directly.

Definition 2.2.4 (Partial plan)
A task network containing at least one compound task is not executable, we call such a task network
a partial plan 𝑃𝐴𝑅.

1We call them entities for the sake of explanation, however that is not an official HDDL term.

22

2.2 HTN Planning

Listing 2.1 This listing contains satellite_simple, an example domain in HDDL format. It depicts
satellites getting instruments loaded and initialized. A small part is omitted for the sake of brevity.

(define (domain satellite_simple)

;---- omission

;---------------- types and predicates -----------------------

(:types satellite instrument)

(:predicates

(onBoard ?i - instrument ?s - satellite) (initialized ?i - instrument) (calibrated ?i -

instrument)

)

;---------------- compound tasks -----------------------

(:task loadInstr

:parameters (?i - instrument ?s - satellite))

(:task prepareInstr

:parameters (?i - instrument ?s - satellite))

;---------------- methods -----------------------

(:method m_loadInstr

:parameters (?i - instrument ?s - satellite)

:task (loadInstr ?i ?s)

:precondition()

:ordered-subtasks (and (getInstr ?i ?s) (prepareInstr ?i)))

(:method m_prepareInstr

:parameters (?i - instrument ?s - satellite)

:task (prepareInstr ?i ?s)

:precondition()

:ordered-subtasks (and (initializeInstr ?i ?s) (calibrateInstr ?i ?s)))

;---------------- primitive tasks -----------------------

(:action getInstr

:parameters (?i - instrument ?s - satellite)

:precondition (not (onBoard ?i ?s))

:effect (onBoard ?i ?s))

(:action initializeInstr

:parameters (?i - instrument ?s - satellite)

:precondition (and (not (initialized ?i)) (onBoard ?i ?s))

:effect (initialized ?i))

(:action calibrateInstr

:parameters (?i - instrument ?s - satellite)

:precondition (and (not (calibrated ?i)) (onBoard ?i ?s))

:effect (calibrated ?i))

)

23

2 Background

Listing 2.2 The sample problem instance p_example for the satellite_simple domain, shown in
Listing 2.1.

(define (problem p_example)

(:domain satellite_simple)

;---------------- constants -----------------------

(:objects

satellite0 - satellite

instrument0 - instrument

satellite1 - satellite

instrument1 - instrument

)

;--------------- initial task network -----------------

(:htn :parameters () :ordered-subtasks

(task1 (loadInstr instrument1 satellite1))

)

;--------------- initial State -----------------

(:init

(onBoard instrument0 satellite0)

)

)

Two compound tasks are supplied in satellite_simple, namely loadInstr and prepareInstr. While
compound tasks can not be carried out directly, they are the target for decomposition by methods.

Definition 2.2.5 (Method)
A method 𝑀 consists of a pair ((𝑡𝑐(𝑀)), (𝑇𝑛(𝑀))), where 𝑡𝑐(𝑀) denotes the compound task that
can be decomposed and 𝑇𝑛(𝑀) specifies a task network which we call subtasks of 𝑀 .

We have two methods in satellite_simple, called m_loadInstr and m_prepareInstr. A method can
only decompose one compound task, yet a compound task can be the target for multiple methods.
The decomposition target of a method can be identified by looking at the :task section of the method
in question. In the satellite_simple domain, m_loadInstr can decompose loadInstr for example.
Methods posses subtasks, which is a task network that can contain primitive or compound tasks. By
decomposing a compound task in a task network, the compound task is substituted by the subtasks
of the decomposing method.

Definition 2.2.6 (Decomposition)
A method 𝑀 decomposes 𝑡𝑐 in a task network 𝑇𝑛, if 𝑡𝑐 = 𝑡𝑐(𝑀). Decomposing a compound task
𝑡𝑐 with 𝑀 replaces 𝑡𝑐 with the subtasks 𝑇𝑛(𝑀) in 𝑇𝑛, which results in 𝑇𝑛𝑛𝑒𝑤 . We call 𝑇𝑛𝑛𝑒𝑤 an
evolution of 𝑇𝑛. For decomposition, we also say: a compound task 𝑡𝑐 decomposes into the subtasks
𝑇𝑛(𝑀), for method 𝑀 .

Which subtasks a method possesses are denoted by the :ordered-subtasks section. For example, in
satellite_simple, the method m_loadInstr has the tasks getInstr and prepareInstr as subtasks. The
section is called :ordered-subtasks, as there are three approaches to decomposition. Totally ordered,
partially ordered and unordered decomposition. When replacing a compound task in a task network

24

2.2 HTN Planning

with subtasks, the totally ordered approach preserves the subtasks’ order and the subtasks are placed
at the position of the replaced compound task, with respect to the rest of the tasks in the task network.
HTN Planning using this approach is often labelled as totally ordered HTN Planning and for the
rest of our work, all decompositions are assumed to utilize the totally ordered approach.[GA15].

Definition 2.2.7 (Totally ordered HTN Planning)
HTN planning is totally ordered, if every decomposition in every given task network preserves the
order of the subtasks 𝑇𝑛(𝑀) and the order of all other tasks in the task network.

Task Decomposition Graph A common graphical representation of the underlying hierarchy
in a domain is the so called Task Decomposition Graph (TDG), which shows a task network’s
possible decompositions [EBSB12]. Creating a TDG for our example domain in Listing 2.1 yields
the graph depicted in Figure 2.1 and provides an overview over the underlying hierarchy. The
highest level compound task is loadInstr, which is decomposed by the method m_loadInstr. The
ordered subtasks of method m_loadInstr are getInstr and prepareInstr. Since getInstr is primitive,
there is no method targeting it. However, prepareInstr is a compound task, and thus it can be
decomposed by a method, in this case m_prepareInstr. The method m_prepareInstr decomposes
into the primitive tasks initializeInstr and calibrateInstr. A more formal definition is provided in
Definition 2.2.8, which is adapted from [BBHB17].

Definition 2.2.8 (Task Decomposition Graph (TDG))
A TDG is a bipartite graph 𝐺 = (𝑉𝑇 , 𝑉𝑀 , 𝐸𝑇→𝑀 , 𝐸𝑀→𝑇), with 𝑉𝑇 representing task vertices,
𝑣𝑡 ∈ 𝑉𝑇 , 𝑉𝑀 representing method vertices 𝑣𝑚 ∈ 𝑉𝑀 , 𝐸𝑇→𝑀 representing edges from task vertices
to method vertices, (𝑣𝑡 , 𝑣𝑚) ∈ 𝐸𝑇→𝑀 , and 𝐸𝑀→𝑇 representing edges from method vertices to task
vertices, (𝑣𝑚, 𝑣𝑡) ∈ 𝐸𝑀→𝑇 . A method vertex represents the method it is named after, and a task
vertex represent the task it is named after.

State and predicates A crucial part of planning is to bring constants into a desired condition.
The condition of a constant is stored in the state 𝑆. The state consists of multiple predicates, with
one predicate 𝑝 describing a condition of a constant or a relation between constants. We denote the
set of all predicates as 𝑄. Predicates can either be false or true, and if a predicate does not exist in the
state, it is automatically false. A type is a variable constant, with a constant being a concretization of
one type. Consequently, every constant is of one type, however a constant can have multiple types
if the concretized type extends another type, e.g. car extends vehicle. The example domain and
problem instance, given in Listing 2.1 and Listing 2.2, exemplify this relationship between types,
constants and predicates. Our example domain satellite_simple provides two types, satellite and
instrument, through the :types section. In our problem instance p_example, one can identify four
constants, with their types suffixed. One example is satellite0 - satellite, which defines a constant,
identified as satellite0, being of the type satellite. Looking back to the satellite_simple domain,
several predicates are given through the :predicates section and the first predicate is (onBoard ?i -
instrument ?s - satellite). This predicate is in the so-called lifted notation, since it has at least one
unbound variable as a parameter variable. Analogously to constants, unbound parameter variables
are of a type. For the predicate (onBoard ?i - instrument ?s - satellite) the unbound parameter
variables are ?i of type instrument and ?s of type satellite. Binding both those parameter variables
to constants of the same type is called instantiating and allows for the inclusion of a predicate

25

2 Background

Figure 2.1: A diagram, depicting the TDG for our example domain satellite_simple listed in
Listing 2.1. Grey ovals represent methods, light blue rectangles primitive tasks and
dark blue rectangles compound tasks.

instance into the state. An instance is given, only if all parameter variables are bound. For example,
the initial state of our example problem p_example consists of the predicate (onBoard instrument0
satellite0), which is an instance of (onBoard ?i - instrument ?s - satellite), describing a relation
between concrete constant instrument0 and concrete constant satellite0.

Preconditions and effects Predicates, and therefore the state, can be manipulated by the effects
of operators. Operators are wrappers around primitive tasks, that define preconditions and effects.

Definition 2.2.9 (Operator)
An operator 𝑜 is related to exactly one primitive task 𝑡 𝑝 and defines its preconditions and effects
with the triple (𝑡 𝑝(𝑜), 𝑝𝑟𝑒(𝑜), 𝑒 𝑓 𝑓 (𝑜)) with 𝑝𝑟𝑒(𝑜) ∈ 2𝑄 and 𝑒 𝑓 𝑓 (𝑜) ∈ 2𝑄.

We assume a primitive task having exactly one operator and so, for the sake of brevity, it is convenient
to attribute the preconditions and effects of an operator to the primitive task the operator wraps,
therefore we will mention operators explicitly only if necessary. Preconditions and effects are each a
list of predicates. A primitive task is applicable if the preconditions match the predicates in the state.
The effects of a primitive task are introduced into the state, when the primitive task is executed.
Analogously to predicates, a primitive task has parameter variables, thus it can be instantiated
as well. In HDDL, the :parameters section holds the parameter variables of a primitive task.
When inspecting our example domain in Listing 2.1, the primitive task getInstr has :parameters
(?i - instrument ?s - satellite) as parameter section, providing ?i - instrument and ?s - satellite as
parameter variables. Furthermore, its effects are defined in the :effect section as (onBoard ?i ?s), a
version of the lifted predicate (onBoard ?i - instrument ?s - satellite) without type indication. With
this, the effects of getInstr introduce an instance of (onBoard ?i - instrument ?s - satellite) to the

26

2.2 HTN Planning

state, with the parameter variables of onBoard bound to the constants the parameter variables in the
:parameters section are bound to. This works equivalently for the preconditions of the primitive task
getInstr, which are supplied by the :precondition section, except the predicate instances do not get
introduced into the state, instead they need to be present already. Looking at our example domain
satellite_simple, one can observe that methods and compound tasks posses parameter variables
similar to primitive tasks. Consequently, methods and compound tasks can be instantiated or lifted
as well. When decomposing a compound task instance, constants bound to parameter variables
are used to instantiate the subtasks. If any structure consisting of tasks and methods only contains
instances, we call it ground or grounded, for example a task network made up entirely of instances
of tasks is a grounded task network.

Planning starts with the initial task network representing the problem instance’s goal.

Definition 2.2.10 (Initial task network)
An initial task network 𝑇𝑛0 is the entry point to planning for problem instance 𝑃𝐼 and domain 𝐷.

In our example problem instance listed in Listing 2.2, the initial task network is a partial plan
consisting of the compound task instance: (loadInstr instrument1 satellite1). A plan can now be
computed by decomposing compound tasks of partial plans until only primitive tasks are present.
A plan is a solution if its sequence of primitive tasks is applicable to the initial state, and every
primitive task is applicable to the state created by its predecessor’s execution. [GA15].

Definition 2.2.11 (Solution)
A plan 𝑃 is a solution 𝑆 to a problem instance 𝑃𝐼, if it depicts an ordered sequence of primitive
tasks, that is decomposable from the problem instance’s initial task network and is applicable to the
initial state of the problem instance and every primitive task is applicable to the state created by its
predecessor’s execution.

Plan-based HTN planning HTN planning can roughly be divided into two approaches, plan-
based HTN planning and state based HTN planning. They differ in planning execution and the
information stored in the search space. The term search space describes temporary information
necessary for planning. In state based HTN planning, the search space is a subset of the state
space, induced by the domain and problem instance. It contains snapshots of the state for different
planning phases. Whenever a decomposition results in a primitive task, this task is added to the
plan and the planning progresses into a new phase, by applying the effects of the just added task to
the old state snapshot and continuing on with the newly formed state snapshot [GA15]. In contrast,
the search space in plan-based HTN planning contains plans and partial plans, thus we will call it
plan space from here on out.

Definition 2.2.12 (Plan space)
A plan space 𝑃𝑆 is a temporary data structure, persisting through one plan-based HTN planning.
𝑃𝑆 contains all task networks that have not been evolved (term is explained shortly) yet. Additionally,
𝑃𝑆 contains task networks that are plans and not checked for being a solution yet.

An outline of the general approach of plan-based HTN planning is provided in Algorithm 2.1. This
approach is explained in the following. At the start of planning, only the initial task network is
in the plan space. From there, the algorithm processes task networks iteratively. From the plan
space, a task network is chosen to be evolved and deleted from the plan space. The task network to

27

2 Background

Algorithm 2.1 The algorithm of plan-based HTN planning, details could be different for individual
implementations.

procedure plan-based HTN planning(𝐷,𝑃𝐼)
PS← Tn0 ∈ 𝑃𝐼
while PS != ∅ do

Tnevolving ← chooseAndDelTn(PS)
if isSolution(Tnevolving) then

return Tnevolving
end if
compTaskToDecompose← chooseCompTask(Tnevolving)
for all (method M ∈ D with tc(M) = compTaskToDecompose do

Tnnew ← M.decompose(Tnevolving, compTaskToDecompose)
PS.add(Tnnew)

end for
end while
return unsolvable

end procedure

evolve is checked for being a solution. If it is a solution, without the loss of generality, we assume
the task network to evolve is returned and planning stops. If the evolving task network is not a
solution, a compound task is chosen. How this compound task is chosen depends on the specific
implementation of plan-based HTN planning. For every method targeting this chosen compound
task, a decomposition is conducted. One decomposition evolves the task network to evolve, by
substitution of the chosen compound task, with the subtasks of the decomposing method. This
newly evolved task network is added to the plan space. Now, the next task network in the plan space
is assigned to be evolved, and the loop starts anew. We provide no algorithm for state-based HTN
planning, since our work revolves around plan-based HTN planning.

2.3 Heuristics

Our sample domain in Listing 2.1 is simple enough to compute to only one possible solution for a
given problem instance. However, more intricate domains might have several possible solutions,
which beckons the question for a quality solution. For quality to exist, there must be at least one
quality criterion. We propose the intuitive criterion task cost, or just cost, also denoted as 𝑐(𝑡 𝑝),
which describes the cost of the execution of a primitive task measured in abstract units. The cost of
a solution is the sum over all task costs, and the optimal solution is the one with the lowest cost.

A common way for several possible solutions to arise is having multiple different methods targeting
the same compound task, since different methods decompose to different sets of subtasks. This
challenges a planner to make a choice between those methods. However, making a choice between
methods, in the context of plan-based HTN planning, does not equate to the planner actually
choosing a method at the moment of decomposition. When looking at Algorithm 2.1, one can
observe that the task network to evolve is evolved into several evolutions by all methods targeting
the compound task. Nevertheless, a planner commits to a past method choice when it commits to a
solution. That is because a solution represents a path of evolutions of task networks, starting from

28

2.3 Heuristics

Figure 2.2: A diagram, depicting the TDG for our sample domain satellite_lessSimple. Grey
ovals represent methods, light blue rectangles primitive tasks and dark blue rectangles
compound tasks.

the initial one, and an evolution encompasses exactly one decomposition by one method. Hence,
the planner chose a method for every evolution, on the way to the solution, the moment the solution
is committed.

To obtain a domain with choice, we extend our sample domain satellite_simple to create the more
complex domain satellite_lessSimple, which has task costs associated. satellite_lessSimple is only
illustrated by the TDG in Figure 2.2, preconditions and effects are the same as in satellite_simple.

Sample domain satellite_lessSimple presents a choice, between m_loadInstr_0 and m_loadInstr_1,
for compound task loadInstr. Decomposing with method m_loadInstr_1 evolves into a partial
plan that equates to getting an instrument by buying it from a third party and letting this third
party prepare the instrument. For this, the task prepareInstr_thirdParty is only decomposable into
third party related primitive tasks, with the method m_prepareInstr_thirdParty. Effectively, buying
from the third party forces the tasks initializeInstr_thirdParty and calibrateInstr_thirdParty into a
solution. Deciding to rely on the own stock, with method m_loadInstr_0 works exactly the other
way around.

One can observe, that choosing the third party solution will yield lower cost than choosing
the own stock solution. The sum of costs for the own stock solution: (getInstr_ownStock,
initializeInstr_self, calibrateInstr_self) is 16 and thus higher than the cost of 14 for the third party
solution: (getInstr_thirdParty, initializeInstr_thirdParty, calibrateInstr_thirdParty). However, a
planner does not know that. After evolving loadInstr there are two partial plans in the plan space,
namely (getInstr_ownStock, perpareInstr_self) and (getInstr_thirdParty, perpareInstr_thirdParty)
Now evolving (getInstr_ownStock, perpareInstr_self) would commit to a suboptimal solution, as
this would evolve into a solution and the first solution found is returned. This shows the importance

29

2 Background

of choosing the most promising task network to evolve next in every iteration of plan-based planning,
since the wrong choice could lead to a suboptimal plan. The most promising network being the one
that eventually can evolve into the most cost-efficient solution. To choose the most promising task
network to evolve, the planner needs a way to rank task networks, based on the costs of plans they
potentially can evolve into in the future. For this, a heuristic is commonly employed in plan-based
HTN planning to inform or guide the planner.

The authors of Bercher, Behnke, Höller, and Biundo [BBHB17] propose a cost aware heuristic for
plan-based HTN planning, called TDGc. TDGc is based on the TDG and calculates TDGc cost
estimates for methods and compound tasks, if task costs are attached to primitive tasks. We denote
TDGc cost estimates with ℎ𝑡 for tasks and ℎ𝑚 for methods. TDGc can either be only precalculated
or also recalculated in between planning iterations, however we only work with the precalculated
version. The manner in which TDGc calculates cost estimates is conveniently explained when
considering our example domain in Figure 2.2. Primitive tasks have a TDGc cost estimate equal
to their cost. The TDGc cost estimate for a method is calculated by summing up the TDGc cost
estimates for the method’s subtasks. For instance, m_prepareInstr_thirdParty has a TDGc cost
estimate of four, while m_prepareInstr_self has ten. For compound tasks, the TDGc cost estimate is
the minimum cost of all methods targeting this task, so prepareInstr_thirdParty has a cost estimate
of four and prepareInstr_self has a cost estimate of ten. This calculation is repeated until all
methods and tasks have TDGc cost estimates. The cost estimate calculation is formally depicted in
Definition 2.3.1 and is adapted from [BBHB17].

With these TDGc cost estimates, a TDGc heuristic value can be calculated for a task network,
which can inform a plan-based planner of how promising a partial plan is. The TDGc heuristic
value of a task network, is the sum of all TDGc cost estimates of its tasks, formally defined in
Definition 2.3.2. Now, with the TDGc heuristic value informing a planner, it knows to evolve the
partial plan: getInstr_thirdParty, perpareInstr_thirdParty first, as it has a cost estimate of 14, while
getInstr_ownStock, perpareInstr_self has a cost estimate of 16.

Definition 2.3.1 (TDGc cost estimate)
Let 𝐺 = (𝑉𝑇 , 𝑉𝑀 , 𝐸𝑇→𝑀 , 𝐸𝑀→𝑇) be a TDG.
For a task vertex, we set:

ℎ𝑡 (𝑣𝑡) :=

{
task cost of 𝑣𝑡 if 𝑣𝑡 is a vertex of a primtive task
min(𝑣𝑡 ,𝑣𝑚) ∈𝐸𝑇→𝑀

ℎ𝑚(𝑣𝑚) else

For a method vertex, we set:

ℎ𝑚(𝑣𝑚) :=
∑︁

(𝑣𝑚,𝑣𝑡) ∈𝐸𝑀→𝑇

ℎ𝑡 (𝑣𝑡)

Definition 2.3.2 (TDGc heuristic value)
We define the heuristic value of a task network 𝑇𝑛 as:

ℎ𝑡𝑛 (𝑇𝑛) :=
∑︁
𝑣𝑡 ∈𝑇𝑛

(ℎ𝑡 (𝑣𝑡))

30

2.3 Heuristics

31

3 Risk-aware Plan-based HTN Planning

After discussing the fundamentals of plan-based HTN planning in the previous chapter, we move
on to describing the approach to risk-aware plan-based HTN planning. For this, we introduce risk
attitudes and how they can be described with utility functions. Afterwards, we show how to use
utility functions to achieve risk-aware plan-based HTN planning. This approach is proposed by
Alnazer et al. [AGA22b], therefore, the theoretical fundamentals discussed here are based on their
work.

Risk can only be a factor in planning, if an action has multiple potential outcomes with varying
desirability. To achieve this Alnazer et al. [AGA22b] extends the HTN planning framework, by
assigning multiple outcomes to primitive tasks, with different costs. We assume costs to denote
desirability, with higher cost being less desirable. We additionally assume, that all outcomes of
a task have the same effect, they only differ in cost. The TDG in Figure 3.1 depicts the domain
satellite_lessSimpleRiskAware and is an adaption of Figure 2.2 to exemplify this extension, where
primitive tasks now have multiple possible costs. For this example domain, the third party is known
for sometimes taking a long time to finish their work. This is reflected by calibrateInstr_thirdParty
and initializeInstr_thirdParty having a probability distribution of 𝑝(2) = 0.7, 𝑝(15) = 0.3, which
represents a 30% chance of the third party taking longer than desired and thus costing more
time. We denote one of the possible costs associated with a primitive task 𝑡 𝑝 as 𝑐𝑖 (𝑡 𝑝), such
that 𝑐0(calibrateInstr_thirdParty) = 2 and 𝑐1(calibrateInstr_thirdParty) = 15. In contrast to the
third party, the own mechanics are known to be consistent, equally reflected in the probability
distributions of primitive tasks related to them. One can observe, that choosing the third party
solution is risk bearing. However, we are yet to make a planner able to decide on a solution, based
on that fact.

3.1 Risk attitudes

A risk attitude represents the willingness of an agent to take risks. Alnazer et al. [AGA22b] defines
three risk attitudes, namely risk averse, risk neutral and risk seeking. Risk neutral represents an
indifferent stance towards risk. As the names of the other attitudes suggest, an agent with a risk
averse attitude avoids risk, while a risk seeking agent is inclined to take risks. An agent with a risk
seeking attitude will therefore prefer probability distributions over possible costs, that provide a
chance for low costs, even if there is the risk for high costs. In contrast, a risk averse agent prefers
probability distributions with low differences between costs. For that reason, a risk attitude implies
a subjective cost for an agent, where a risk seeking agent attaches lower subjective costs to high
objective costs than the risk averse agent. To model this behaviour of subjective cost calculation,
we employ utility functions.

33

3 Risk-aware Plan-based HTN Planning

Figure 3.1: A diagram, depicting the TDG for our sample domain satellite_lessSimpleRiskAware.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks.

Utility functions are commonly used to describe agents’ risk attitudes, since they provide a mapping
between objective cost and subjective cost [WK15]. The subjective cost these functions provide is
the utility of an objective cost. We employ an exponential utility function, shown in Definition 3.1.1.
The parameters 𝑎 and 𝛼 allow us to employ a wide range of utility functions, depending on the
parameter’s values. The parameter 𝑎 denotes the risk attitude and can either have a value of one or
minus one, with 𝑎 = 1 representing the risk seeking attitude and 𝑎 = −1 the risk averse attitude.
The risk neutral attitude is indifferent towards risk, and therefore we do not need a mapping to
subjective costs, to describe this attitude as we can just consider the objective costs. The parameter
𝛼 is the curving coefficient of the utility function. We also call this the intensity.

Figure 3.2 illustrates examples of utility functions to describe the behaviour of the utility functions
we employ. It should be noted, that we assume cost to be a negative value, for the purpose of utility
calculation. As can be seen, the utility for the risk seeking attitude decreases far slower than the
utility for the risk averse attitude, making it, so the subjective cost of an objective high cost is lower
for risk seeking agents. One can observe, that the intensity impacts the rate at which the utility
decreases with cost, which leads to a stronger bias towards solutions, expressing the given risk
attitude.

34

3.1 Risk attitudes

Definition 3.1.1 (Static exponential utility function)
Let 𝑐𝑖 (𝑡 𝑝) be a possible cost of 𝑡 𝑝
For the utility, we set:

𝑈𝑐 (𝑐𝑖 (𝑡 𝑝)) =
{
𝑐𝑖 (𝑡 𝑝) if risk attitude is neutral
𝑎 (𝑒𝑎𝛼𝑐𝑖 (𝑡 𝑝))

𝛼
else

−20 −15 −10 −5 0

2

4

6

8

10

𝑐𝑜𝑠𝑡 𝑐

𝑈
(𝑐
)

(a) Utility functions for the risk seeking attitude.

−20 −15 −10 −5 0

−1,200

−1,000

−800

−600

−400

−200

𝑐𝑜𝑠𝑡 𝑐

𝑈
(𝑐
)

(b) Utility functions for the risk averse attitude.

Figure 3.2: A depiction of the exponential utility functions, employed in this work. The blue
function has 𝛼 = 0.1 and the red function has 𝛼 = 0.3.

35

3 Risk-aware Plan-based HTN Planning

3.2 Expected Utility

With utility functions, representing risk attitudes, we can define a heuristic that relies on these utility
functions to guide planning towards solutions, that adhere to a specified risk attitude. Utilizing this
heuristic, together with plan-based planning, achieves risk-aware plan-based planning.

When faced with the decision between multiple probability distributions of costs, it is intuitive to
prefer the distribution, which yields the lowest expected cost. In our case, this represents a risk
neutral attitude, as this disregards risk. To factor risk consideration into this decision between
probability distributions of costs, we can apply a utility function to each cost and so obtain the
expected utility for each distribution. The decision between probability distributions of costs is then
made, according to the risk attitude, the applied utility function represents. Since one probability
distribution of costs is attached to one primitive task, this decision equates to choosing a primitive
task. We calculate the expected utility of a primitive task 𝑡 𝑝 as defined in Definition 3.2.1. The
expected utility for a risk neutral attitude is calculated analogously to how expected cost would be
calculated. As we assume costs to be always negative, we multiply the absolute value of the cost
with minus one.
Definition 3.2.1 (Expected utility of a primitive task)
for a primitive task 𝑡 𝑝, we set:

𝐸𝑈 (𝑡 𝑝) =𝑝(𝑐0(𝑡 𝑝)) ∗𝑈𝑐 (|𝑐0(𝑡 𝑝) | ∗ (−1)) if risk attitude is neutral
+ 𝑝(𝑐1(𝑡 𝑝)) ∗𝑈𝑐 (|𝑐1(𝑡 𝑝) | ∗ (−1))
+ ...
+ 𝑝(𝑐𝑛 (𝑡 𝑝)) ∗𝑈𝑐 (|𝑐𝑛 (𝑡 𝑝) | ∗ (−1))

𝐸𝑈 (𝑡 𝑝) = log10(| (𝑝(𝑐0(𝑡 𝑝)) ∗𝑈𝑐 (|𝑐0(𝑡 𝑝) | ∗ (−1)) else
+ 𝑝(𝑐1(𝑡 𝑝)) ∗𝑈𝑐 (|𝑐1(𝑡 𝑝) | ∗ (−1))
+ ...
+ 𝑝(𝑐𝑛 (𝑡 𝑝)) ∗𝑈𝑐 (|𝑐𝑛 (𝑡 𝑝) | ∗ (−1))) | ∗ 𝛼) ∗ 𝑎

With the expected utility, a solution of primitive tasks can be chosen depending on risk attitude.
However, a plan-based HTN planner does not know a solution’s utility in advance when planning,
so, we are in the same position as we were in Section 2.3, and thus need a heuristic. For this, we
follow the example of the TDGc heuristic and calculate estimated utilities for compound tasks and
methods. The calculation can be described with Definition 3.2.2 and utilizes the TDG just like the
heuristic in Definition 2.3.1. Here, we maximize over all methods that decompose a compound
task, to obtain the estimated utility of this compound task. This can lead to an infinite calculation
if a domain is cyclic, meaning if there is a compound task 𝑡𝑐 that is decomposed by a method,
with subtasks that eventually will be decomposed to 𝑡𝑐. The infinite calculation occurs in the
maximization over methods and if positive expected utilities are given, as the estimated utility of 𝑡𝑐
is as sum, calculated over itself and additional subtasks’ estimated utilities. For negative expected
utilities, cycles are not problematic, since calculating the sum over negative values, with one of
the values being the sum itself, will never lead to a higher value. Therefore, as long as costs for
probability distributions of primitive tasks are in a value range that leads to negative expected
utilities, cycles do not lead to infinite calculation loops.

36

3.2 Expected Utility

Definition 3.2.2 (Estimated utility)
Let 𝐺 = (𝑉𝑇 , 𝑉𝑀 , 𝐸𝑇→𝑀 , 𝐸𝑀→𝑇) be a TDG.
For a task vertex, we set:

𝐸𝑆𝑈 (𝑣𝑡) :=

{
𝐸𝑈 (𝑣𝑡) if 𝑣𝑡 is a vertex of a primtive task
max(𝑣𝑡 ,𝑣𝑚) ∈𝐸𝑇→𝑀

𝐸𝑆𝑈 (𝑣𝑚) else

For a method vertex, we set:

𝐸𝑆𝑈 (𝑣𝑚) :=
∑︁

(𝑣𝑚,𝑣𝑡) ∈𝐸𝑀→𝑇

𝐸𝑆𝑈 (𝑣𝑡)

We are interested in the highest expected utility solution, since this solution expresses the risk
attitude most accurately. That is because a utility function is a mapping from objective value to
subjective value, and a rational agent will maximize subjective value. To obtain the expected utility
of a task network and, therefore, of a solution, we sum up the estimated utilities of all tasks in
the task network as described in Definition 3.2.3. With this, we have a heuristic that will never
underestimate the cost of a task network. This is the case, as we maximize over methods for
compound tasks and calculate a sum for methods. If the A* search algorithm is paired with an
admissible heuristic, it is guaranteed to return the lowest possible cost to reach a node. This is also
the case for finding the highest possible cost [SKP+14]. A* is related to pathfinding problems,
and one might ask how this relates to plan-based HTN planning. This is answered by looking at
Algorithm 2.1 and considering task network evolution. One can equate every possible evolution of
task networks, to a node in a graph. The edges of the graph represent the methods, evolving the task
networks. We utilize pathfinding to find the longest path (highest expected utility path), from the
initial task network to a solution task network in this graph. Every node has a heuristic value, which
is the expected utility of the task network of that node, and the plan space can be viewed as the open
list. Now consider that A* searches for the next node to expand like this: 𝑓 (𝑥) = 𝑔(𝑥) + ℎ(𝑥). In
our case, 𝑔(𝑥) is the expected utility of the task network currently getting evolved and ℎ(𝑥) is the
lowest expected utility of all task networks that can be reached via one decomposition. Therefore,
pairing the expected utility heuristic with plan-based HTN planning will always lead to the highest
utility solution.

Definition 3.2.3 (Expected utility of a task network)
Let 𝐺 = (𝑉𝑇 , 𝑉𝑀 , 𝐸𝑇→𝑀 , 𝐸𝑀→𝑇) be a TDG.
For any 𝑇𝑛 consisting of tasks, represented by task vertices (𝑣𝑡0, ..., 𝑣𝑡𝑛), we set:

𝐸𝑈𝑇𝑛 (𝑇𝑛) := 𝐸𝑆𝑈 (𝑣𝑡0) + 𝐸𝑆𝑈 (𝑣𝑡1) + ... 𝐸𝑆𝑈 (𝑣𝑡𝑛)

With this expected utility for a task network, we inform plan-based HTN planning so that it yields
the solution, most representative of the chosen risk attitude. To show this, let’s consider our example
domain in Figure 3.1. Suppose we run planning with an intensity of 0.5 (𝛼 = 0.5) and with the risk

37

3 Risk-aware Plan-based HTN Planning

seeking attitude, which means we set 𝑎 = 1. Calculating the expected utility for primitive tasks,
yields: (numbers are rounded to six decimal points)

(3.1)
𝐸𝑈 (initializeInstr_self) = log10((|0.9 ∗ (

1(𝑒1∗0.5∗−5)
0.5

) + 0.1 ∗ (1(𝑒
1∗0.5∗−7)
0.5

) |) ∗ 0.5) ∗ 1

= log10((|0.147753 + 0.006039|) ∗ 0.5) ∗ 1
= log10((0.076896) = −1.114096 = 𝐸𝑈 (calibrateInstr_self)

(3.2)

𝐸𝑈 (initializeInstr_thirdParty) = log10((|0.7 ∗ (
1(𝑒1∗0.5∗−2)

0.5
) + 0.3 ∗ (1(𝑒

1∗0.5∗−15)
0.5

) |) ∗ 0.5) ∗ 1

= log10((|0.515031 + 0.00033|) ∗ 0.5) ∗ 1
= log10(0.257681) = −0.588917 = 𝐸𝑈 (calibrateInstr_thirdParty)

(3.3)
𝐸𝑈 (getInstr_ownStock) = log10((|1 ∗ (

1(𝑒1∗0.5∗−6)
0.5

) |) ∗ 0.5) ∗ 1

= log10((|0.099574|) ∗ 0.5) ∗ 1
= −1.302884

(3.4)

𝐸𝑈 (getInstr_thirdParty) = log10((|1 ∗ (
1(𝑒1∗0.5∗−10)

0.5
) |) ∗ 0.5) ∗ 1

= log10((|0.013476|) ∗ 0.5) ∗ 1
= −2.171469

Now we can calculate the utility estimates for methods:

(3.5)
𝐸𝑆𝑈 (m_prepareInstr_thirdParty) = 𝐸𝑆𝑈 (initializeInstr_thirdParty)

+ 𝐸𝑆𝑈 (calibrateInstr_thirdParty) = −0.588917 + −0.588917 = −1.177834

(3.6)
𝐸𝑆𝑈 (m_prepareInstr_self) = 𝐸𝑆𝑈 (initializeInstr_self)

+ 𝐸𝑆𝑈 (calibrateInstr_self) = −1.114096 + −1.114096 = −2.228192

38

3.2 Expected Utility

Which also tells us the utility estimates for compound tasks prepareInstr_thirdParty and pre-
pareInstr_self, since they only have one method targeting them and the utility estimate of a
compound task is the maximum estimated utility of all methods targeting the compound task. Hence,
𝐸𝑆𝑈 (prepareInstr_thirdParty) = −1.177834 and 𝐸𝑆𝑈 (m_prepareInstr_self) = −2.228192.

Having these estimated utilities allows the calculation of the expected utility for task networks.
This enables informing the planner of how promising a task network for evolution is, with a task
network having a higher utility being more promising. Remember that there are two possible
solutions in Figure 3.1, the own stock solution and the third party solution and the third party
solution is the more risk laden, as the primitive tasks in the third party solution have a considerable
chance for high costs. On top of that, remember that a plan-based planner will evolve the initial
task network into two task networks: 𝑇𝑛1 = (getInstr_ownStock, perpareInstr_self) and 𝑇𝑛2 =
(getInstr_thirdParty, perpareInstr_thirdParty). The choice of which task network to evolve next is
crucial, since the evolution will be either the own stock solution or the third party solution. To inform
the planner of which task network is more promising, the expected utility dictates that 𝐸𝑈𝑇𝑛 (𝑇𝑛1) =
𝐸𝑆𝑈 (getInstr_ownStock) + 𝐸𝑆𝑈 (perpareInstr_self) = −1.302884 + −2.228192 = −3.531076
and 𝐸𝑈𝑇𝑛 (𝑇𝑛2) = 𝐸𝑆𝑈 (getInstr_thirdParty) + 𝐸𝑆𝑈 (perpareInstr_thirdParty) = −2.171469 +
−1.177834 = −3.349303. Since −3.349303 > −3.531076. Expected utility, informs the planner to
choose𝑇𝑛2 to evolve next, which leads to the solution: (getInstr_thirdParty, initializeInstr_thirdParty,
calibrateInstr_thirdParty). This third party related solution is the more risk bearing one, and thus
the expected utility informed the plan-based HTN planner in a way that resulted in the solution that
expresses a risk seeking attitude. With that, we achieved risk-aware plan-based HTN planning.

The risk neutral attitude represents the absence of subjective risk consideration. Therefore, expected
utility for a task network is calculated as the sum of expected costs of tasks. Effectively, the expected
utility of a task network for the risk neutral attitude is the expected cost of the task network. With
that, risk-aware planning with the risk neutral attitude, informs a planner so that planning leads to
the solution with the lowest expected cost and therefore to the expected cost optimal solution. This
expected cost optimal solution can be argued to be the objectively optimal solution, as it considers
the objective costs, without mapping to subjective costs. In contrast, risk-aware planning with the
other two risk attitudes, leads to a solution that deviates from the expected cost optimal solution.
The planner accepts an amount of additional expected cost to adhere to the given risk attitude.
However, there is a maximum of additional expected cost a risk-aware planner is willing to accept.
This maximum is increased and decreased with the increasing and decreasing of the intensity 𝛼.
With this in mind, we can validate the correctness of this approach of risk-aware HTN planning, by
observing if different risk attitudes lead to different solutions, and by investigating the difference in
expected cost of these solutions.

39

4 Implementation

RAPANDA3 is a proof of concept for the risk-aware plan-based HTN planning approach, discussed
in the last chapter. RAPANDA3 is build on top of the PANDA31 planner. For this reason, chapter
four contains a detailed look at PANDA3’s source code classes relevant to plan-based HTN planning.
Additionally, we introduce the changes we made to these classes, as part of our risk aware adaption,
to realize risk-aware plan-based HTN planning. On top of that, we show the format of the output
one can expect to receive, when planning with RAPANDA3.

4.1 Overview

PANDA3 is a command line tool for AI planning. It is capable of multiple planning approaches,
including state-based HTN planning [HBBB21], however we will only cover plan-based HTN
planning, since our risk-aware adaption is based on the plan-based approach. PANDA3 is mainly
written in Java and Scala and developed first and foremost by Gregor Behnke, Pascal Bercher and
Daniel Höller [PANDA23]. Additional contributions were made on GitHub by a user with the
username “ziggystar” and a user named “Kristof Mickeleit”. The last changes were committed two
years ago and since then, PANDA3 was abandoned.

In PANDA3, the planning with plan-based HTN planning can be roughly divided into three phases,
parsing phase, precomputation phase and search phase. The parsing phase marks the start of
planning, where a problem instance file and a domain file are committed to PANDA3 in a valid
format, such as HDDL. Parsing is conducted with the Another Tool for Language Recognition
(ANTLR) runtime version 4.x, where a lexer and parser translate the problem instance and domain
files into data structures, that allow the rest of PANDA3’s classes access to the information in
the domain and problem instance. In the following phase, the precomputation phase, all lifted
tasks methods and predicates in the domain are instantiated. This process is also called grounding.
The internal domain representation, containing these instances, is then pruned with the usage of a
reachability analysis. Lastly, in the search phase, a heuristic computes estimates for methods and
tasks, in our case estimated utilities based on a TDG, as discussed in Section 3.1. Afterwards, an
algorithm similar to Algorithm 2.1, evolves task networks, starting from the initial one defined in
the problem instance input file, until a solution is found.

1 The source code of the PANDA3 version we are using is found here: https://github.com/galvusdamor/panda3core

41

4 Implementation

Listing 4.1 An example for a primitive task with our newly conceived costdist section. This costdist
section defines a probability distribution with a 30% chance of getInstr costing ten units and a 70%
chance of costing 20 units.

;---------------- a primitive task with new costdist section -----------------------

(:action getInstr

:parameters (?i - instrument ?s - satellite)

:precondition (not (onBoard ?i ?s))

:effect (onBoard ?i ?s)

:costdist (or (0.3(10)) (0.7(20))) ;<--------- new in RAPANDA3

)

4.2 Parsing Phase

In the following paragraph, we elaborate on the interactions between classes in the parsing phase,
which provides insight on how PANDA3 starts its planning process. Mentioned classes are
illustrated in the class diagram Figure 4.1, which provides a graphical overview for the following
explanations. Before executing PANDA3 for the first time, it is required to auto generate the classes
antlrHDDLLexer.java and antlrHDDLParser.java from antlrHDDL.g4, with the ANTLR 4 runtime.
The main entry point of PANDA3 is the main method in the Scala object Main. Main has the case
class RunConfiguration as a subclass, and the main method instantiates RunConfiguration, which
also instantiates PlanningConfiguration.scala, since an instance of PlanningConfiguration.scala is
part of the constructor of RunConfiguration. The main method calls the method RunConfigura-
tion.processCommandLineArguments(), with the command line string, containing command line
arguments, as parameter, and the resulting planning parameters2 are saved in the associated instance
of PlanningConfiguration.scala. Examples for planning parameters are: location of the input files,
the format of the input files and maximum allowed execution time. We assume the input domain and
problem instance files to be in HDDL format, for which parsing begins after the configuration has
been processed. To this end, the file antlrHDDL.g4 contains grammatical expressions, that allow
antlrHDDLLexer.java and antlrHDDLParser.java to parse HDDL files. In particular, the class
antlrHDDLParser.java contains subclasses like antlrHDDLParser.Task_defContext, to allow access
to the information of input HDDL files. With multiple of these subclasses instantiated, the class
hddlPanda3Visitor.java enables its instances to extract all information, related to the input files,
from the parser. The class hddlPanda3Visitor.java is instantiated in parseDomainAndProblem(), a
method of HDDLParser.scala, which passes the file content of the input domain and input problem
instance to the hddlPanda3Visitor.java instance, for information extraction. The actual calling of
parseDomainAndProblem() is run by PlanningConfiguration.scala, in the method runParsing().
The case class PlanningConfiguration.scala knows what kind of parser to instantiate, thanks to
the information encapsulated in the case class ParsingConfiguration.scala. With runParsing(),
the parsedDomainAndProblem tuple is produced, which now can be used in the two following
phases, precomputation phase and search phase. Besides calling parseDomainAndProblem(), the

2We call them like so, this is not a term in the PANDA3 source code.

42

4.2 Parsing Phase

Figure 4.1: A class diagram of classes in PANDA3, taking part in the parsing phase. Only classes
relevant to our proof of concept for risk-aware plan-based HTN planning are depicted.
All classes, not marked with stereotypes containing “Scala”, are Java classes. All
parameters are assumed to be in-parameters, unless marked otherwise. The lists of
methods and attributes are abbreviated and therefore not exhaustive, since we would
exceed available space otherwise. However, the most important attributes and methods,
to understand the relation between classes and the process of parsing in PANDA3, are
present.

43

4 Implementation

case class PlanningConfiguration.scala is additionally responsible for calling the methods that start
the precomputation phase and search phase, therefore this case class is effectively the entry point
for these phases.

4.2.1 Modifications

For RAPANDA3, we make the following modifications. The modifications are not reflected in
Figure 4.1. We implement several new options for planning parameters (command line arguments)
in PlanningConfiguration.scala, so that risk-aware plan-based HTN planning can be specified. The
new options are:

-riskattitude “averse”|“neutral”|“seeking”
-coefficient a double type
-parser “hddlr”
-searchAlgorithm “astar-r”
-heuristic “tdg-r”

The command line argument -riskattitude allows setting the risk attitude for planning, while
-coefficient sets the intensity of our employed utility function. The command line argument -parser
is already present in PANDA3, and we add the option “hddlr” to enable parsing of risk-aware
domains. Likewise, The command line argument -searchAlgorithm exists already and has its
options expanded with “astar-r”, which specifies the usage of A* to find the highest expected
utility. Lastly, the command line argument -heuristic receives the “tdg-r” option, that specifies the
calculation of utility estimates.

An additional change we implement to this phase is located in antlrHDDL.g4, the grammar file for
the HDDL input parsing. Here we extend the grammar to make parsing of a new HDDL section
possible. The section is called costdist and is responsible for representing the cost distribution of a
primitive task. The section :costdist (or (0.3(10)) (0.7(20))) equates to a probability distribution of
𝑝(10) = 0.3, 𝑝(20) = 0.7 for the cost of a primitive task, possessing this section. Even though, for
the purpose of utility calculation, we assume cost to be a negative value, the values passed to the
costdist section need to be positive, as we think that to be more user-friendly. Cost is measured in
abstract units, and what resource is actually consumed is domain dependent. An example usage
of costdist is found in Listing 4.1. We call domains, with actions that posses this costdist section,
risk-aware domains.

Our next modification to the parsing phase is located in the file hddlPanda3Visitor.java, where we
implement expected utility calculation. The exact location, in which the changes lie, is visitTaskDef(),
the method responsible for parsing tasks of the domain file. In this method, for primitive tasks, the
costdist section is interpreted as a probability distribution and computed into the expected utility, as
described in Section 3.1. Afterwards, this expected utility is added to a hash map, with a reference
to the primitive task it belongs to. This hash map is used later in the search phase, to read the
expected utility for a primitive task.

44

4.3 Preprocessing Phase

4.3 Preprocessing Phase

We did not need to make modifications to classes in the preprocessing phase, nonetheless the
procedures in this phase are relevant to our risk-aware adaption. The preprocessing phase consists of
grounding the domain and reachability analysis. Usually, planning requires a grounded representation
of the domain [BHBB19]. A grounded or ground domain is present, if all lifted methods, tasks
and predicates are instantiated. As can be seen in the example domain 2.1, domains are commonly
described in a lifted fashion for a more compact representation. Grounding is the process called to
ground a domain. Grounding can naively be performed by instantiating all lifted methods, tasks and
predicates with all possible combinations of constant bindings for parameter variables. This leads
to a sizeable grounded representation of the domain, which usually includes many method, task and
predicate instances that will never be relevant in planning for the current problem instance. To prune
this grounded representation, reachability analysis is conducted. PANDA3 performs reachability
analysis by creating a grounded TDG, with the root vertex being the initial task network of the
current problem instance. With this TDG, not reachable instances can be identified and pruned.
In addition to the just described one, PANDA3 employs several more preprocessing techniques.
These are elaborated on by Behnke et al. [BHBB19]. These techniques induce multiple stages of
reachability analysis, including stages for the lifted domain.

45

4 Implementation

4.4 Search Phase

In the search phase, heuristic estimates are calculated, and a solution is computed. We already
discussed in Section 4.2 how the Main Scala object instantiates an instance of PlanningConfigura-
tion.scala, which calls all three phases. Therefore, in Figure 4.2, that illustrates the relations of
classes in the search phase, we do not include the main entry point of PANDA3. For the following
explanations, we assume that the TDGc heuristic is specified in the planning parameters, so that
TDGc is informing the planning. We additionally assume that only one heuristic is informing the
planning.

The instance of PlanningConfiguration.scala creates an PreComputingLiftedMinimumAction-
Count.scala instance, a class that has all the methods and attributes necessary to heuristically
inform planning. That is, because it inherits from multiple Scala traits, providing these methods
and attributes. One of the Scala traits from which PreComputingLiftedMinimumActionCount.scala
inherits is PreComputationTSTGHeuristic.scala, which in turn inherits from TSTGHeuristic.scala.
TSTGHeuristic.scala has an instance of IntegerAntOrGraph.scala as argumentRelaxedTDG at-
tribute, which is a data structure, representing the heuristically estimated costs for methods and
tasks. Since we assume TDGc as heuristic, these estimated costs are calculated as described in
Definition 2.3.1. The moment the instance of PlanningConfiguration.scala instantiates PreComput-
ingLiftedMinimumActionCount.scala, the method minSumTraversalMap() in AndOrGraph.scala,
calculates the cost estimates. The instance of PlanningConfiguration.scala creates an instance of
HeuristicSearch.scala and hands the instance of PreComputingLiftedMinimumActionCount.scala to
the HeuristicSearch.scala instance, where it is stored in the heuristic attribute array at the first index.
In the same manner as just described, PlanningConfiguration.scala can feasibly create multiple
instances of EfficientHeuristic.scala, that inform the planning with a heuristic. This is why the
heuristic attribute of HeuristicSearch.scala is an array.

The instance of HeuristicSearch.scala calls its method startSearch(), to start the A* search.
StartSearch() uses the Scala native data structure PriorityQueue, which holds all task networks yet
to be evolved. Therefore, PriorityQueue represent the plan space in PANDA3 for plan-based HTN
planning. These partial plans are represented by instances of EfficientSearchNode.scala, which
encapsulate instances of EfficientPlan.scala, with instances of EfficientPlan.scala being the actual
partial plans. The way HeuristicSearch.scala implements plan-based HTN planning in cooperation
with EfficientSearchNode.scala and PreComputingLiftedMinimumActionCount.scala is depicted
in Algorithm 4.1. This algorithm is similar to Algorithm 2.1. However, in Algorithm 4.1, partial
plans have flaws to be resolved instead of compound tasks to be decomposed. Since PANDA3
implements more Automated Planning approaches than only plan-based HTN planning, it has to
provide different manners, with which to evolve a plan. Since plan-based HTN planning evolves
plans by decomposition, a flaw equates to a compound task. The manner in which a flaw to resolve
is chosen, is defined by the planning parameters. We assume the flaw choosing algorithm to be
Least-Cost Flaw-Repair (LCFR), which chooses the compound task that results in the least amount
of evolutions.

After decomposition, the new partial plan is encapsulated in an EfficientSearchNode instance.
The newPlanHeuristicValue, which is computed by heuristic.computeHeuristic(), is stored in the
heuristic attribute of this new EfficientSearchNode instance. Since it is feasible that an array of
heuristics is informing the planning, the heuristic attribute of EfficientSearchNode is an array as
well. We assume there to be a single heuristic, hence, newPlanHeuristicValue is stored at the first

46

4.4 Search Phase

Figure 4.2: A class diagram of classes in PANDA3, taking part in the search phase. Only classes
relevant to our proof of concept for risk-aware plan-based HTN planning are depicted.
All classes, not marked with stereotypes containing “Scala”, are Java classes. All
parameters are assumed to be in-parameters, unless marked otherwise. The lists of
methods and attributes are abbreviated and therefore not exhaustive, since we would
exceed available space otherwise. However, the most important attributes and methods,
to understand the relation between classes in the search phase, are present.

47

4 Implementation

index of the heuristic attribute array. The method computeHeuristic() is called by an instance of
PreComputingLiftedMinimumActionCount.scala and computes the TDGc heuristic value, based on
the TDGc cost estimates, as described in Definition 2.3.2. Afterwards, this new EfficientSearchNode
is added to the PriorityQueue, which then reshuffles all instances of EfficientSearchNode in itself.
This reshuffle is based on an ordering the compare() method of EfficientSearchNode dictates. The
ordering ensures that the EfficientSearchNode instance, with the lowest value in the heuristic
attribute array at the first index, is brought to the front of the PriorityQueue and assigned to
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑃𝑙𝑎𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in the next iteration. This is the TDGc heuristic, informing the plan-based
planning of the most promising task network to evolve next, as discussed in Section 2.3. If multiple
values are present in the heuristic array, then these are used for tie-braking.

4.4.1 Modifications

Our changes to the search phase, to obtain RAPANDA3, are explained in the following and not de-
picted in Figure 4.2. The classes that provide HeuristicSearch.scala with the possibility to calculate
TDGc heuristic values are: PreComputingLiftedMinimumActionCount.scala, TSTGHeuristic.scala,
PreComputationTSTGHeuristic.scala and LiftedMinimumActionCount.scala. We follow the exam-
ple set by these classes and implement classes that mirror their functionality, except they provide
the possibility to calculate expected utility for task networks as described in Definition 3.2.3. The
classes we implement are: PreComputingLiftedMaxUtil.scala, TSTGRHeuristic.scala, PreCompu-
tationTSTGRHeuristic.scala and LiftedMaxUtil.scala. To achieve the calculation of expected utility,
we have the estimated utilities calculated by a function we implement, called maxProductTraver-
salMap(), located in IntegerAntOrGraph.scala, just underneath the method minSumTraversalMap().
MaxProductTraversalMap() calculates estimated utilities as described in Definition 3.2.2 and stores
them in the argumentRelaxedTDG attribute in the class TSTGRHeuristic.scala.

Another change we undertake is introducing parameters to several classes and methods so that the
compare() method of EfficientSearchNode.scala forces the EfficientSearchNode.scala instance with
the highest expected utility in front of the PriorityQueue. With this, the chosen risk attitude informs
the planner of the most promising partial plan to evolve next.

4.4.2 Output

The output of PANDA3, and therefore RAPAND3, is displayed on the command line and amounts
to a list of tasks and methods. This list is the solution RAPAND3 suggests. An example is shown in
Listing 4.2, where one can observe that the numbered list has two parts, a part above root 10 and a
part below. The part below describes what methods decomposed what compound task to get to the
solution. The numbers behind a method name indicate the numbers of the list lines, that resulted
from this decomposition. However, we are only interested in the solution, which is the part above
root. Here, one can observe the plan steps, that comprise the solution. These are mostly instances of
primitive tasks, like reload car0 depot0 reloading0, however there are plan steps present, prefixed
with “__method_precondition”. These are pseudo tasks to model method preconditions, thus we
ignore them when examining solutions.

48

4.4 Search Phase

Listing 4.2 An example output of RAPANDA3, which shows a solution with primitive tasks above
root 10.

0 do_nothing car0

1 reload car0 depot0 reloading0

2 __method_precondition_m_change_depot_2_10_precondition car0

3 exit_depot depot0 car0

4 __method_precondition_m_change_depot_0_8_precondition car0

5 enter_depot depot2 car0

6 maintain car0 depot2 maintaining0

7 __method_precondition_m_change_depot_2_10_precondition car0

8 exit_depot depot2 car0

9 departure_no_clean car0 a0

root 10

10 do_assignment a0 -> <m_do_assignment;prepare_car[car0];m_prepare_car_1;0;-1,1> 12 11

11 depart car0 a0 -> m_depart_1 9

12 reload_car car0 reloading0 -> m_reload_car_1 14 1 13 15

13 change_depot car0 -> m_change_depot_2 2 3

14 change_depot car0 -> m_change_depot_3 0

15 maintain_car car0 maintaining0 -> m_maintain_car_0 17 6 16

16 change_depot car0 -> m_change_depot_2 7 8

17 change_depot car0 -> m_change_depot_0 4 5

Algorithm 4.1 The algorithm of plan-based HTN planning in PANDA3, encapsulated in Heuristic-
Search.scala.

procedure StartSearch(EfficientPlan initial, PreComputingLiftedMinimumActionCount heuris-
tic)

initialPlanHeuristic← heuristic.computeHeuristic(initial)
PriorityQueue← newEfficientSearchNode(initial, initialPlanHeuristicValue)
return heuristicSearch()

end procedure
procedure heuristicSearch()

while PriorityQueue != ∅ do
partialPlancurrent ← PriorityQueue.getAndDel(0)
if hasNoFlaws(partialPlancurrent) then

return partialPlancurrent
end if
flawToResolve← chooseFlaw(partialPlancurrent.flaws) // a compound task is a flaw
for all modifications m resolving flawToResolve do // e.g. methods

partialPlannew ← partialPlancurrent.modify(m) // decompose
newPlanHeuristicValue← heuristic.computeHeuristic(partialPlannew)
PriorityQueue.add(newEfficientSearchNode(partialPlannew, newPlanHeuristicValue))
PriorityQueue.reshuffle // based on EfficientSearchNode.compare

end for
end while
return unsolvable

end procedure

49

5 Evaluation

After implementing risk-aware plan-based HTN planning in RAPANDA3, we design several
risk-aware domains with according problem instances in HDDL format1. By experimenting on
RAPANDA3 with these problem instances and risk-aware domains, we examine the implemented
approach. Some of the risk-aware domains are based on International Planning Competition (IPC)
2020 benchmark domains or predecessors of those [IPCa]. Since benchmark domains of IPC 2020
are not risk aware and often do not have high freedom of choice when it comes to methods, we
had to design risk-aware domains ourselves. For every risk-aware domain that is a derivative, we
firstly introduce the original domain, followed by a description of the changes we made to obtain a
risk-aware version of the domain. The name of the risk-aware version of the domain is suffixed
with “-RA”. For our completely self-designed domain, we only provide an introduction. After the
description of the changes to a domain, we present the results of our experiments with the risk-aware
domain version, elaborating on the influence of risk attitudes to planning.

The experimental settings are as follows: The experiments are conducted with 28 GB RAM
maximum Java heap space and with an AMD Ryzen 7 processor, boasting 8 cores, each having
3600 MHz. For every plan computation, we set a planning time limit of 15 minutes, since most
plan computations, taking longer than 15 minutes, overburden the Java heap space such that the
computation crashes. Experiments are conducted with a utility function, having an intensity of
𝛼 = 0.5, unless stated otherwise. Intensity is described in Section 3.1.

We run plan computation for the risk-aware domains and problem instances to compare risk attitudes
on solution length, expected cost, expected utility and planning time2. Seeing as RAPANDA3 is
resource intensive, plan computation for many complex problem instances exceed our planning
time limit of 15 minutes. Exploring the limit of complexity, induced by that fact, is one of the goals
of this evaluation. The information gleamed from an´experiment is specific to the domain it is
conducted with and only holds true there, unless stated otherwise.

5.1 Robot Domain

A totally ordered benchmark domain of IPC 2020, depicting one robot picking up and delivering
packages from room to room. The robot has a current room it is located in and can traverse to a
different room through a door. A door connects exactly two rooms and can either be closed or open.

1The domains and problem instances can be requested at the IAAS Service Computing Department; university Stuttgart
2 Some computations take several minutes, which makes it not feasible to run these ten to 20 times to calculate an

average planning time. Consequently, such computations are only run once.

51

5 Evaluation

Figure 5.1: A diagram, illustrating the relations of methods and tasks in the Robot-RA domain.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks. Green borders indicate additions to the original domain,
and red borders indicate removals from the original domain.52

5.1 Robot Domain

Listing 5.1 The available lifted predicates in the Robot and Robot-RA domain.

(:predicates

(armempty)

(rloc ?loc - ROOM)

(in ?obj - PACKAGE ?loc - ROOM)

(holding ?obj - PACKAGE)

(closed ?d - ROOMDOOR)

(door ?loc1 - ROOM ?loc2 - ROOM ?d - ROOMDOOR)

(goal_in ?obj - PACKAGE ?loc - ROOM)

)

The robot can open a door if the door connects the robot’s current room, however it cannot close a
door. The robot can pick up or drop a package and can only carry one package at a time. A package
has a current room it is located in and a goal room, the robot has to deliver the package to.

The lifted predicates portray packages in a room network by offering the types PACKAGE, ROOM
and ROOMDOOR, which is shown in Listing 5.1. Since there is only one robot, it is implicitly
given without a type. The robot is supposed to carry only one package at a time, ensured by the
armempty predicate, which needs to be true for the robot to pick up a package. What package
is currently carried is stored in the holding predicate. The predicate rloc represents the current
location of the robot. The ROOMDOOR type connects two ROOM types via the predicate door
and is either closed or open, depending on the predicate closed. A package is initially located in a
ROOM and has a goal ROOM to be delivered to, represented by predicates in and goal_in.

Figure 5.1 illustrates the relation between tasks and methods in the robot domain. The following
paragraph elaborates on this further. For the sake of explanation we divide the decomposition
methods into three equivalence classes, recursive methods, abstract methods and goal methods. All
recursive methods decompose either the achieve-goals or release compound task. The subtasks
of these methods are always a pair of compound tasks, including achieve-goals or release as the
second task, enabling recursion. The first task of the pair is decomposable by exactly one abstract
method. Abstract methods always decompose into exactly one primitive task from a compound
task, named after the primitive task. Achieve-goals can only be decomposed to release with the
method achieve-goals-pickup, which introduces the compound task pickup_abstract, forcing the
injection of the pickup primitive task into the solution. From release to achieve-goals works the
other way around, with the difference of injecting the putdown primitive task. This gives a planner
two recursion tracks to follow, the achieve-goals-track and the release-track Thanks to this recursion,
an arbitrary number of compound tasks, only decomposable by abstract methods, can be chained.
Since abstract methods all decompose to exactly one primitive task, this is effectively chaining
primitive tasks. Goal methods only include the finished method, which posses no subtasks, ending
the chaining process if applied. Only achieve-goals is decomposable by finished, which makes it so
the release-putdown_abstract method has to be applied at some point, forcing the planner to have
the putdown task before finishing, thus having an empty arm for the robot.

To achieve risk awareness, we design the Robot-RA domain, which makes the following changes
to the above described original. A new primitive task is introduced open_not_armempty only
applicable if the robot’s arm is not empty, representing the robot opening a door while carrying
a package. The original primitive task for opening doors is changed to open_armempty only

53

5 Evaluation

applicable if the robot has its arm empty. Furthermore, a new method responsible for decomposing
into open_not_armempty was added, while the equivalent one was analogously changed to
decompose into open_armempty. With this, a planner has a choice between open_not_armempty
and open_armempty when decomposing open_abstract. The intent here is to make a planner
consider if it wants to take the safe option of having the robot’s arm empty when opening doors,
wasting time backtracking afterwards to get a package, or taking the risk of opening with a package
in arm. To depict this risk, all primitive tasks receive the costdist section, with a distribution of
(1(15)), representing a 100% chance that the robot takes 15 seconds to perform the respective task.
The only exception being the risk bearing task open_not_armempty, which received a distribution
of ((0.99(15)) (0.01(100))), depicting the risk of the robot needing 100 seconds to open a door, due
to having its arm full.

5.1.1 Experiment

We designed the HDDL problem instance pfile_RA013, which places four connected rooms c, r1,
r2, r3, with one closed door d23 between r2 and r3, and two packages o1 and o2, o1 being right
where the robot starts in room c. The name of a door denotes the rooms it connects. The rooms
are connected, so that the whole room network results in one straight corridor, meaning c is only
connected to r1, r1 is only connected to r2 and r2 is only connected to r3. The goal of this problem
instance is to have the packages’ locations be r3 and r1 for o1 and o2, respectively.

In Listing 5.2 three solutions to this problem instance are presented, each of them computed with
a different risk attitude, which allows for a direct comparison. A difference in solution can be
observed in the first step already. While the risk averse planning goes out of its way to open closed
door d23 with an empty arm, shown in step two, the risk neutral and risk seeking planning pick up
package o1 immediately in step zero and open the door the risky way in step four. This results in
the risk averse solution being longer and having a higher expected cost, since the robot has to go
back for package o1 in step eight, showing the risk averse attitude avoiding risk even if expected
value suggests otherwise.

For further experimentation, we create three more problem instances, each modifying pfile_RA01 in
a distinct way. pfile_RA01_more_closed_00 modifies pfile_RA01, through closing the door
between rooms r1 and r2, adding one more closed door the robot encounters. To obtain
pfile_RA01_more_rooms_00, we add one additional room r4 to pfile_RA01, connected to r3 with one
open door, resulting in a longer corridor of rooms with only one closed door. Furthermore, package
o1 now has to be delivered to the last room r4. For the problem pfile_RA01_more_packages_00,
we modify pfile_RA01 by adding two more packages o3 and o4 that need delivery, increasing the
amount of back and forth routing for the robot. Another three problem instances are created through
modification of the just introduced problems instances. We create pfile_RA01_more_closed_01,
by removing package o2 from pfile_RA01_more_closed_00, simplifying the problem. With this,
the robot still encounters two locked doors, but has to deliver only one package. The problem
instance pfile_RA01_more_rooms_01 is conceived, by opening the one closed door d23. For

3Our self designed problem instance can be viewed in the Appendix A.1

54

5.1 Robot Domain

Listing 5.2 The primitive task sequences of three computed plans by RAPAND3 in the Robot-RA
domain. All plans are solutions for our self designed problem instance pfile_RA01 and each solution
is computed with a different risk attitude.

;; risk averse attitude, expected cost: 180, expected utility: -10^{39.09}

0 move c r1 d01

1 move r1 r2 d12

2 open_armempty r2 r3 d23

3 __method_precondition_achieve-goals-pickup_3_precondition r2 o2

4 pickup o2 r2

5 move r2 r1 d12

6 __method_precondition_release-putdown_abstract_0_precondition r1 o2

7 putdown o2 r1

8 move r1 c d01

9 __method_precondition_achieve-goals-pickup_3_precondition c o1

10 pickup o1 c

11 move c r1 d01

12 move r1 r2 d12

13 move r2 r3 d23

14 __method_precondition_release-putdown_abstract_0_precondition r3 o1

15 putdown o1 r3

;; risk neutral attitude, expected cost: 150.85, expected utility: -150.85

0 __method_precondition_achieve-goals-pickup_3_precondition c o1

1 pickup o1 c

2 move c r1 d01

3 move r1 r2 d12

4 open_not_armempty r2 r3 d23

5 move r2 r3 d23

6 __method_precondition_release-putdown_abstract_0_precondition r3 o1

7 putdown o1 r3

8 move r3 r2 d23

9 __method_precondition_achieve-goals-pickup_3_precondition r2 o2

10 pickup o2 r2

11 move r2 r1 d12

12 __method_precondition_release-putdown_abstract_0_precondition r1 o2

13 putdown o2 r1

;; risk seeking attitude, expected cost: 150.85, expected utility: 10^{-32.58}

0 __method_precondition_achieve-goals-pickup_3_precondition c o1

1 pickup o1 c

2 move c r1 d01

3 move r1 r2 d12

4 open_not_armempty r2 r3 d23

5 move r2 r3 d23

6 __method_precondition_release-putdown_abstract_0_precondition r3 o1

7 putdown o1 r3

8 move r3 r2 d23

9 __method_precondition_achieve-goals-pickup_3_precondition r2 o2

10 pickup o2 r2

11 move r2 r1 d12

12 __method_precondition_release-putdown_abstract_0_precondition r1 o2

13 putdown o2 r1

55

5 Evaluation

Risk attitude SL Exp. cost Exp. utility Time

pfile_RA01
Risk averse 12 180.00 −1039.09 181.12s
Risk neutral 10 150.85 −150.85 9.40s
Risk seeking 10 150.85 10−32.58 10.70s

pfile_RA01_more_closed_00
Risk averse - − − -
Risk neutral 11 166.70 −166.70 55.91s
Risk seeking 11 166.70 10−35.84 57.41s

pfile_RA01_more_closed_01
Risk averse 11 165.00 −1035.83 103.10s
Risk neutral 10 150.85 −150.85 21.64s
Risk seeking 10 150.85 10−32.58 19.68s

pfile_RA01_more_rooms_00
Risk averse - − − -
Risk neutral - − − -
Risk seeking - − − -

pfile_RA01_more_rooms_01
Risk averse 11 165.00 −1035.83 91.74s
Risk neutral 11 165.00 −165.00 92.69s
Risk seeking 11 165.00 10−35.83 96.66s

pfile_RA01_more_rooms_02
Risk averse - − − -
Risk neutral - − − -
Risk seeking - − − -

pfile_RA01_more_packages_00
Risk averse - − − -
Risk neutral - − − -
Risk seeking - − − -

pfile_RA01_more_packages_01
Risk averse - − − -
Risk neutral 13 195.85 −195.85 137.24s
Risk seeking 13 195.85 10−42.35 122.91s

Table 5.1: The results of running plan computation for the listed problem instances with RAPANDA3
in the Robot-RA domain. A row refers to one problem instance and has three sub-rows
associated, each referring to plan computation with the listed risk attitude. Solution
length (SL) refers to the amount of plan steps the solution holds, with one plan step
being a primitive task. Exp. cost displays the sum of expected costs of the plan steps.
Exp. utility depicts the solution’s expected utility rounded to two decimal points, and
the time column holds the planning time for RAPANDA3 to compute the solution in
seconds, rounded to two decimal points. Any computation that exceeded 15 minutes
was aborted, and the cells are marked with -, for the problem instance exceeded our
planning time limit.

pfile_RA01_more_packages_01 we remove package o4 from pfile_RA01_more_packages_00 to sim-
plify the problem. Lastly, we create pfile_RA01_more_rooms_02 out of pfile_RA01_more_rooms_01
by adding one more room to the corridor and requiring the robot to deliver to this last room.

56

5.2 Satellite Domain

The results of our experiments are compiled into Table 5.1, where many computations can be
observed that exceeded our planning time limit, indicating that the showcased problem instance
pfile_RA01 was close to the limit of problem instance complexity we want to explore. Where
this limit lies, is indicated in detail by the following observations. Adding one more room is only
computable if we simplify, for instance by opening all doors. Adding two rooms oversteps the limit,
regardless of opened or closed doors. At maximum, one more package can be included, although
this results in a planning time, exceeding 15 minutes, for risk aversion. Similarly, for one additional
closed door, risk aversion exceeds our planning time limit, while other attitudes do not. Only after
simplifying the problem instance pfile_RA01_more_closed_00, by removing one package, does
risk aversion generate a solution in time. Planning with risk aversion exceeding 15 minutes is an
observable trend in line with solution length tending to be larger for risk averse solutions. On
top of that, risk aversion results in a significantly longer planning time, if it does not exceed 15
minutes. This is likely due to the risk laden primitive task open_armempty constituting a shortcut
for solution length and risk aversion staying away from this risk. Risk neutrality computes the same
solutions as the risk seeking attitude, which makes sense if one keeps in mind, that this domain
offers effectively two choices for planning: take the risky approach, opening doors with a full arm,
or the safe approach. There is no middle ground for risk neutrality to take, so it sides with one of
the other attitudes. With which attitude it sides depends on the expected cost of the distribution
induced by the costdist section for the risky primitive task open_not_armempty and the amount
of plan steps the risk seeking solution saves compared to the risk avoiding one. Every plan step,
except open_not_armempty, costs 15 seconds, meaning open_armempty must have an expected
cost lower than 15 multiplied with the amount of plan steps saved by using open_not_armempty for
risk neutrality to side with risk aversion. This however seems to only be the case for the problem
instance pfile_RA01_more_rooms_01, where solution lengths do not differ. In fact, all the solutions
seem to be the same for this problem instance. Since for all the other problem instances, where
solution length differs, risk aversion leads to a higher expected cost, it can be assumed that risk
neutrality will always side with the risk seeking attitude. So the question becomes how much more
expected cost is risk averse computation willing to take to stay safe. This not only depends on the
cost values of the costdist section but also on the intensity of the utility function.

5.2 Satellite Domain

This totally ordered domain is not featured in the [IPCa] and taken from [BBHB17]. It depicts
satellites, adjusting directions and switching through instruments to take images of celestial
phenomenons. To take an image of a celestial phenomenon, a satellite must point to the direction
the phenomenon is in. Additionally, the satellite, must have an instrument on board that supports
the mode, with which the image has to be taken. Lastly, the instrument needs to be switched on and
calibrated before taking the image. Calibration is done after pointing the satellite in the calibration
direction, as dictated by the instrument.

The predicates are listed in 5.3, showing six types, direction, calib_direction an extension of
direction, image_direction an extension of direction, instrument, mode and satellite. We made
additions to obtain Satellite-RA, which are already shown in the listing and marked accordingly, the
original Satellite domain does not have these predicates.

57

5 Evaluation

Figure 5.2: A diagram, illustrating the relations of methods and tasks in the Satellite-RA domain.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks. Green borders indicate additions to Satellite-RA.

58

5.2 Satellite Domain

Listing 5.3 The available lifted predicates in the Satellite-RA domain.

(:predicates

(calibrated ?arg0 - instrument)

(calibration_target ?arg0 - instrument ?arg1 - calib_direction)

(have_image ?arg0 - image_direction ?arg1 - mode)

(on_board ?arg0 - instrument ?arg1 - satellite)

(pointing ?arg0 - satellite ?arg1 - direction)

(power_avail ?arg0 - satellite)

(power_on ?arg0 - instrument)

(supports ?arg0 - instrument ?arg1 - mode)

;; risk-aware addition below

(overloads ?arg0 - instrument ?arg1 - satellite)

(overloaded ?arg1 - satellite)

(superloads ?arg0 - instrument ?arg1 - satellite)

(superloaded ?arg1 - satellite)

)

Multiple do_observation compound tasks usually comprises the initial task network of problem
instances, associated with this domain. Do_observation has two parameter variables of the types
image_direction and mode, mode being, for instance, infrared. To do an observation, a satellite
needs to be pointing to the image_direction. In what direction a satellite is currently pointing is
represented by pointing. Additionally, an instrument supporting the required mode needs to be on
board, powered and calibrated. An instrument can support modes through the predicate supports
and is on board if the predicate on_board holds true for a satellite and instrument. Instruments
are powered with the predicate power_on, however only one power source per satellite is available,
denoted by power_avail. The predicate calibrated depicts if an instrument is calibrated. For
calibration, an instrument has a calib_direction represented by calibration_target. A satellite has to
point to this direction before calibrating the instrument.

Figure 5.2 depicts the hierarchy present in the Satellite-RA domain. The highest order compound
task is do_observation, passing along an image_direction and mode for the image that has to be
taken. The planner has four methods to decompose do_observation, all of which are alternatives
to each other. The adequate choice depends on the current state, as every method decomposes to
tasks that might need to be accomplished first before a picture can be taken. For example, method0
decomposes into tasks that will eventually lead to turning the satellite and activating and calibrating
the appropriate instrument, while method3 leads to only the primitive task of take_image, skipping
all preliminary tasks. A satellite can have multiple instruments on board, but only one can be
powered at once. The compound task activate_instrument is decomposable into tasks that deal with
this restriction, namely the primitive tasks: switch_off and switch_on, allowing the redistribution
of power. Every time an instrument is switched back on, it needs to be calibrated again, which
is depicted by the auto_calibrate compound task, that decomposes into either the primitive task:
calibrate, or the pair of primitive tasks: (turn_to,calibrate) and the pair might be necessary, if the
solution requires turning to the calibration_target first.

Our changes to obtain Satellite-RA, enables satellites to power additional instruments, under the
risk of a power failure, after which, time is wasted as the satellite has to be made operational
again. To this end, we introduce two primitive tasks overload and switch_off_overload, with the

59

5 Evaluation

former being similar to the switch_on task, but allowing the setting of the power_on predicate for
an instrument even if the power_avail predicate is not true for the according satellite. We assume
the power_avail predicate represents a restriction of maximum power for safety purposes that can
be ignored. For this to work as intended, we additionally introduce the predicates (overloaded
?arg1 - satellite) and (overloads ?arg0 - instrument ?arg1 - satellite), which denote if a satellite has
currently a second instrument powered and what instrument is powered for a satellite. The task
switch_off_overload, switches the overload using instrument and the normal power using instrument
off. To give the planner the choice of using overload, we introduce two methods method4_overload
and method5_overload, both resembling the similarly named methods method4 and method5, with
the difference of incorporating overload. With this, method5_overload represents an alternative to
method4. Instead of turning an instrument off to power a different one, method5_overload allows
the use of the overloaded predicate to achieve the same effect. However, this is the risk bearing
choice. The task switch_off_overload turns power off for both instruments at the same cost as
switch_off switching off one instrument, saving 15 seconds by skipping a plan step. On top of that,
we introduce superload which is equivalent to overload, with all the same additional methods, tasks
and predicates as overload, except it allows a third instrument to be activated after overload under
the immense risk of inducing a prolonged power failure. With these changes, the planner can decide
to cycle through instruments as originally intended, by switching power off and on every time, or
skip switch_off tasks by using overload and superload, and eventually switching off power for all
instruments at once.

5.2.1 Experiment

For the Satellite-RA domain, we present the influence of risk attitudes with the problem 3obs-
1sat-3mod4. This problem expects one satellite satellite0 with three instruments instrument01,
instrument02 and instrument03 to do one observation in each of the three directions Phenomenon4,
star0 and Phenomenon6. On top of that, each observation is to be made with a different mode
of either thermograph, x_ray or hd_video and one instrument supports only one mode, making
activation of all three instruments a necessity. All primitive tasks of the Satellite-RA domain have
the costdist section attached, with a distribution of (1(15)), that guarantees a cost of 15 units.
Exceptions are the overload and superload primitive tasks, which have distributions of (0.99(15)
0.01(100)) and (0.95(15)) (0.05(400)) respectively. With that, superload is riskier than overload,
since the undesirable outcome costs more time and has a higher chance of occurrence.

The three primitive task sequences in Listing 5.4 represent the solution for each risk attitude.
Comparison of these solutions yields a difference in the course of action between all risk attitudes.
The planning with risk averse attitude results in a solution, without using overload or superload,
while the risk neutral attitude results in the usage of only overload and the risk seeking attitude in
usage of both. The amount of plan steps differ for each risk attitude as well, with 17, 16 and 15 for
the risk averse, neutral and seeking attitudes, respectively. Exact differences can be observed in
plan step five, where the risk neutral and seeking solutions embrace the risk overload brings, while
the risk averse solution avoids it. Another difference is identifiable in plan step ten, where the risk
neutral and risk averse solutions avoid superload while the risk seeking solution embraces it. With

4This problem instance can be viewed in the Appendix A.2

60

5.2 Satellite Domain

Listing 5.4 The primitive task sequences of three computed plans by RAPAND3 in the Satellite-RA
domain. All plans are solutions for the problem instance 3obs-1sat-3mod, and each solution is
computed with a different risk attitude.

;; risk averse attitude, expected cost: 255; expected utility: -10^{9.78}

0 switch_on instrument03 satellite0

1 turn_to satellite0 GroundStation0 Phenomenon6

2 calibrate satellite0 instrument03 GroundStation0

3 turn_to satellite0 Phenomenon6 GroundStation0

4 take_image satellite0 Phenomenon6 instrument03 hd_video

5 switch_off instrument03 satellite0

6 switch_on instrument02 satellite0

7 turn_to satellite0 GroundStation0 Phenomenon6

8 calibrate satellite0 instrument02 GroundStation0

9 turn_to satellite0 Star5 GroundStation0

10 take_image satellite0 Star5 instrument02 x_ray

11 switch_off instrument02 satellite0

12 switch_on instrument01 satellite0

13 turn_to satellite0 GroundStation0 Star5

14 calibrate satellite0 instrument01 GroundStation0

15 turn_to satellite0 Phenomenon4 GroundStation0

16 take_image satellite0 Phenomenon4 instrument01 thermograph

;; risk neutral attitude, expected cost: 240.85, expected utility: -240.85

0 switch_on instrument03 satellite0

1 turn_to satellite0 GroundStation0 Phenomenon6

2 calibrate satellite0 instrument03 GroundStation0

3 turn_to satellite0 Phenomenon6 GroundStation0

4 take_image satellite0 Phenomenon6 instrument03 hd_video

5 overload instrument02 satellite0

6 turn_to satellite0 GroundStation0 Phenomenon6

7 calibrate satellite0 instrument02 GroundStation0

8 turn_to satellite0 Star5 GroundStation0

9 take_image satellite0 Star5 instrument02 x_ray

10 switch_off_overload instrument02 instrument02 satellite0

11 switch_on instrument01 satellite0

12 turn_to satellite0 GroundStation0 Star5

13 calibrate satellite0 instrument01 GroundStation0

14 turn_to satellite0 Phenomenon4 GroundStation0

15 take_image satellite0 Phenomenon4 instrument01 thermograph

;; risk seeking attitude, expected cost: 245.1, expected utility: 10^{-48.89}

0 switch_on instrument03 satellite0

1 turn_to satellite0 GroundStation0 Phenomenon6

2 calibrate satellite0 instrument03 GroundStation0

3 turn_to satellite0 Phenomenon6 GroundStation0

4 take_image satellite0 Phenomenon6 instrument03 hd_video

5 overload instrument02 satellite0

6 turn_to satellite0 GroundStation0 Phenomenon6

7 calibrate satellite0 instrument02 GroundStation0

8 turn_to satellite0 Star5 GroundStation0

9 take_image satellite0 Star5 instrument02 x_ray

10 superload instrument01 satellite0

11 turn_to satellite0 GroundStation0 Star5

12 calibrate satellite0 instrument01 GroundStation0

13 turn_to satellite0 Phenomenon4 GroundStation0

14 take_image satellite0 Phenomenon4 instrument01 thermograph

61

5 Evaluation

Risk attitude SL Exp. cost Exp. utility Time

3obs-1sat-3mod
Risk averse 17 255.00 −109.77 3.76s
Risk neutral 16 240.85 −150.85 3.94s
Risk seeking 15 245.10 10−48.88 3.26s

RA-4obs-1sat-3mod
Risk averse 23 345.00 −1074.91 3.88s
Risk neutral 18 270.85 −270.85 3.76s
Risk seeking 17 275.10 10−55.40 3.44s

RA-5obs-1sat-3mod
Risk averse 29 435.00 −1094.46 6.89s
Risk neutral 19 305.10 −305.10 5.82s
Risk seeking 19 305.10 10−61.91 5.55s

RA-6obs-1sat-3mod
Risk averse - − − -
Risk neutral - − − -
Risk seeking - − − -

RA-6obs-2sat-3mod
Risk averse 26 390.00 −1084.69 2.91s
Risk neutral 21 315.85 −315.85 3.01s
Risk seeking 21 315.85 10−68.41 3.00s

RA-4obs-1sat-4mod
Risk averse 23 345.00 −1074.92 4.34s
Risk neutral 21 316.70 −316.70 6.19s
Risk seeking 21 316.70 10−68.41 6.60s

RA-5obs-1sat-5mod
Risk averse - − − -
Risk neutral - − − -
Risk seeking - − − -

RA-5obs-2sat-5mod
Risk averse 28 420.00 −1091.20 3.32s
Risk neutral 26 391.70 −391.70 5.83s
Risk seeking 25 395.95 10−81.46 5.04s

Table 5.2: The results of running plan computation for the listed problem instances with RAPANDA3
in the Satellite-RA domain. A row refers to one problem instance and has three sub-rows
associated, each referring to plan computation with the listed risk attitude. Solution
length (SL) refers to the amount of plan steps the solution holds, with one plan step
being a primitive task. Exp. cost displays the sum of individual expected costs of the
plan steps. Exp. utility depicts the solution’s expected utility, rounded to two decimal
points, and the time column holds the planning time for the planner to compute the
solution in seconds, rounded to two decimal points. Any computation that exceeded 15
minutes was aborted, and the cells are marked with -, for the problem instance exceeded
our planning time limit.

this, the risk averse solution accepts a longer plan and a higher expected cost to minimize the risk it
has to take. The risk seeking solution takes a chance at using superload, even though the expected
cost advises against it.

62

5.3 Transport Domain

We create additional problem instances, by increasing the scope and complexity of the showcased
problem instance 3obs-1sat-3mod in three different fashions. We increment the number of mandatory
observations, the number of different modes available and the number of available satellites. The
naming scheme of problem instances reveals the content of one instance, for example 3obs-1sat-
3mod reveals, that there are three observations needed, with one satellite and each observation is
made with one of three different modes. Consequently, 5obs-2sat-4mod means five observations
are conducted with 2 satellites and at least two observations are made with the same mode. All
satellites point initially in the same direction. What mode is necessary for what observation exactly
can only be gleamed from looking at the problem instance file, which is too large to show here.

The results of our experiments are compiled into Table 5.2, where it appears as having six or more
observations makes the plan computation overstep our time limit of 15 minutes. The same is true for
having five or more different modes. Increasing the number of available satellites seems to relax the
computational demand. The risk averse solution always possesses the most plan steps, due to how
this domain is set up, with risky options being shortcuts. In contrast to the Robot-RA experiment,
the risk neutral attitude’s solution is not equal to the risk seeking solution for all problem instances,
in terms of solution length and expected cost. That is a result of this domain providing effectively
three choices when planning. Fully safe, not using overload or superload. Risky, using overload,
but not superload. Extremely risky, using both overload and superload. With this, the risk neutral
solution can take a middle ground and risk averse and risk seeking solutions may stray from this,
depending on the intensity of the utility curve and the values of costdist sections. Consequently,
the expected costs of risk seeking and risk averse solutions often differ from the optimal expected
cost of the risk neutral attitude’s solution. Interesting to examine are the problem instances in
which the risk seeking solution agrees with the risk neutral one. It appears as that is the case,
if the number of observations relative to the number of modes increases, which is likely due to
the potential gains of superload becoming less relevant overall to the expected cost. However,
RA-4obs-1sat-4mod presents an exception to our just mentioned statement. Most likely, a result
of specific mathematical properties leading to almost no gain when choosing superload. Having
four modes on four instruments means, four instruments need to be powered. In this case, choosing
superload does not save a plan step as opposed to choosing overload. Using overload allows two
instruments to be powered, and using superload allows three. Choosing either will lead to having to
switch_on or overload another instrument, and the gain of using switch_on instead of overload is far
outweighed by the loss of using superload instead of overload.

An additional interesting observation to make is that planning time does not differ much between risk
attitudes, and a longer planning time does not seem to correlate with a longer solution. We believe
that is the case since Satellite-RA problem instances set forth an initial task network consisting
out of separately decomposable compound tasks, in contrast to the Robot-RA domain’s problem
instances.

5.3 Transport Domain

The Transport domain models a set of transporters taking various roads to pick up and unload
packages at different locations.

63

5 Evaluation

Listing 5.5 The available lifted predicates in the Transport-RA domain.

(:predicates

(road ?arg0 - location ?arg1 - location)

(at ?arg0 - locatable ?arg1 - location)

(in ?arg0 - package ?arg1 - vehicle)

(capacity ?arg0 - vehicle ?arg1 - capacity_number)

(capacity_predecessor ?arg0 - capacity_number ?arg1 - capacity_number)

;; risk-aware additions below

(speedway ?arg0 - location ?arg1 - location)

)

The predicates in Listing 5.5 reveal the following types: location, locatable, package, capac-
ity_number, target, vehicle, with vehicle and package being extensions of the locatable type. A pair
of location can be connected via the road predicate, and every locatable can be associated with a
location. Additionally, a package type is eligible to be in a vehicle through the predicate in. For our
risk-aware addition, we introduce the speedway predicate, that connects two locations just like road.
The vehicle type has a capacity_number, which can have multiple capacity_predecessor, repre-
senting available capacity in a vehicle. Every time a vehicle picks up a package, the preconditions
check if there is a predecessor for the current capacity_number, allowing the pickup and setting the
current capacity_number to the predecessor, if true. Unloading works the other way around.

The following paragraph is a description of the task hierarchy in the Transport domain, for which
Figure 5.3 is an accompanying illustration. The domain possesses four compound tasks, deliver,
load, unload and get_to. Deliver is the highest order task, representing one whole delivery. Problem
instances usually have multiple deliver instances as initial task network. Consequently, deliver
is decomposed into the rest of the abstract tasks in the sequence of get_to, load, get_to, unload.
Load and unload have exactly one decomposition method each, resulting in the primitive tasks
pick_up and drop, respectively, leaving no alternatives to a planner. In contrast, get_to has
three alternatives. The first being m_i_am_there_ordering_0, which decomposes into the noop
primitive task, an abbreviation for no operation and used if the planner decomposes into get_to if
the vehicle is already at a desired location, for example if the truck is at the location of pickup but
deliver has not been decomposed yet. The other two alternatives are m_drive_to_ordering_0 and
m_drive_to_via_ordering_0, with both decomposing into the same drive primitive task, although
the latter additionally results in another get_to compound task, permitting recursion as a result. The
drive task allows a vehicle to traverse one road, and with the recursive method, multiple roads to far
away locations can be traversed.

To obtain Transport-RA from the Transport domain, we introduce two new methods,
m_drive_to_ordering_0_fast and m_drive_to_via_ordering_0_fast, indicated through green bor-
ders in Figure 5.3. These new methods present a fast alternative to m_drive_to_ordering_0 and
m_drive_to_via_ordering_0, however, only locations connected via the speedway predicate allow
for the fast alternative. In our problem instances, normal roads connect all locations in a corridor,
while there is only one speedway connecting two locations. However, the speedway firstly leads
to the speedway intersection, a special location that needs to be visited before the other speedway
connected location can be reached. With this, the speedway constitutes a less direct way to desired
locations, essentially giving a planner a choice of taking a risky, potentially faster but possibly

64

5.3 Transport Domain

Figure 5.3: A diagram, illustrating the relations of methods and tasks in the Transport-RA domain.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks. Green borders indicate added content as part of the
risk-aware adaption.

slower route. The new methods decompose into our new primitive task drive_fast and to reflect
the risky but potentially faster route, this task receives the costdist section with a distribution of
((0.98(5)) (0.02(200))). All other primitive tasks likewise receive costdist, with a distribution of
(1(15)), guaranteeing a 15 unit cost. The exception to this is the noop primitive task, which costs
nothing, since it represents doing nothing.

5.3.1 Experiment

We show the influence of risk attitudes by planning for the problem instance RA-3loc-2pack-1truck-
speed015 in the Transport-RA domain. The problem instance is a derivate of instance pfile01, a
problem instance of the original domain. It is of similar nature, with the difference of including a

5The file can be viewed in the Appendix A.3

65

5 Evaluation

Listing 5.6 The primitive task sequences of three computed plans by RAPAND3 in the Transport-RA
domain. All plans are solutions for the self created problem instance RA-3loc-2pack-1truck-speed01
derived from an IPC 2020 provided problem instance, and each solution is computed with a different
risk attitude.

;; risk averse attitude, expected cost: 120; expected utility: -10^{24.85}

0 noop truck_0 loc_2

1 drive truck_0 loc_2 loc_1

2 pick_up truck_0 loc_1 package_0 capacity_0 capacity_1

3 noop truck_0 loc_1

4 drive truck_0 loc_1 loc_0

5 drop truck_0 loc_0 package_0 capacity_0 capacity_1

6 noop truck_0 loc_0

7 drive truck_0 loc_0 loc_1

8 pick_up truck_0 loc_1 package_1 capacity_0 capacity_1

9 noop truck_0 loc_1

10 drive truck_0 loc_1 loc_2

11 drop truck_0 loc_2 package_1 capacity_0 capacity_1

;; risk neutral attitude, expected cost: 120; expected utility: -120

0 drive truck_0 loc_2 loc_1

1 pick_up truck_0 loc_1 package_0 capacity_0 capacity_1

2 drive truck_0 loc_1 loc_0

3 drop truck_0 loc_0 package_0 capacity_0 capacity_1

4 drive truck_0 loc_0 loc_1

5 pick_up truck_0 loc_1 package_1 capacity_0 capacity_1

6 drive truck_0 loc_1 loc_2

7 drop truck_0 loc_2 package_1 capacity_0 capacity_1

;; risk seeking attitude, expected cost: 125.6; expected utility: 10^{-23.92}

0 drive truck_0 loc_2 loc_1

1 pick_up truck_0 loc_1 package_0 capacity_0 capacity_1

2 drive_fast truck_0 loc_1 speedwayInters

3 drive_fast truck_0 speedwayInters loc_0

4 drop truck_0 loc_0 package_0 capacity_0 capacity_1

5 drive_fast truck_0 loc_0 speedwayInters

6 drive_fast truck_0 speedwayInters loc_1

7 pick_up truck_0 loc_1 package_1 capacity_0 capacity_1

8 drive truck_0 loc_1 loc_2

9 drop truck_0 loc_2 package_1 capacity_0 capacity_1

66

5.3 Transport Domain

speedway between loc_0 and loc_1. The problem presents one truck truck_0, three locations loc_0,
loc_1 and loc_2, two packages package_0 and package_1, with truck_0 having a capacity of one
package. Both packages are situated at loc_1 and package_0 has to be delivered to loc_0, while
package_1 needs to end up in loc_2. Driving from loc_0 to loc_1, presents the choice of taking the
speedway, which results in a longer solution and holds high risk for potential high gains.

Shown in Listing 5.6 are three solutions computed for problem instance RA-3loc-2pack-1truck-
speed01. The risk averse solution does not incorporate drive_fast at all. Additionally, it has the
lowest expected cost, on par with the risk neutral solution. The risk seeking solution ends up having
the highest expected cost, as it hopes to gain from driving fast on the speedway in plan steps two,
three, five and six. This shows the planner embracing risk at higher expected cost, if informed by
expected utility, derived from a risk seeking attitude’s utility function. Interestingly, the risk averse
solution is the same as the risk neutral one, except it incorporates the noop primitive task, which
seems pointless, since noop costs nothing and does nothing. Consequently, this behaviour has no
impact on risk consideration and noop tasks receive special treatment in following statistics by
presenting the solution length with and without noop tasks.

For further experimentation, we designed additional problem instances by making various minor
changes to RA-3loc-2pack-1truck-speed01. The naming scheme reveals the content of a problem
instance. For example, RA-3loc-2pack-1truck-speed01 expresses three locations, with two packages
that need delivery, with one truck, making the deliveries. The first package always needs to be
delivered to the last location, and all locations are connected via roads in a corridor. The string
“speed” denotes the existence of a speedway between the location numbers, following the string.
More detailed information about a problem instance, such as the starting location of trucks, is not
included in this scheme.

The results of our experiments are compiled into Table 5.3. Looking at the table, it becomes
clear that the showcased problem instance is already close to exceeding the complexity limit,
induced by our planning time limit. Increasing the amount of locations by one, already makes risk
seeking attitude’s planning exceed our time limit. Relaxing the problem instance, by removing
the second package, solves that. However, adding another location leads to the exceeding of our
planning time limit by the risk seeking attitude’s planning. Adding a conveniently placed truck to
the RA-4loc-2pack-1truck-speed12 problem instance, relaxes the problem enough for risk seeking
attitude’s computation to stay in time bounds, but adding another location results in the computation,
exceeding our time limit again.

What can be discerned are the generally longer risk seeking solutions and the tendency of their
computations to exceed our time limit of 15 minutes. This is not unexpected, since the domain is
set up to allow for a choice between a longer and potentially less costing solution and a shorter,
invariably costed solution. The risk seeking solution includes the speedway with the drive_fast
primitive task, which requires an additional plan step compared to taking the road, prolonging
computation as a result. In contrast to the Robot-RA domain, discussed in Section 5.1, this leads
to the expected cost being in favour for the risk averse solution. Looking at solution length and
expected cost, the risk neutral solution always seems to be the same as the risk averse one, if noop
tasks are ignored. This is a result of the domain only offering two risk related choices. It becomes a
question of how much expected cost is the risk seeking attitude willing to accept, for the chance of
gains, from taking the longer speedway path. This depends on the specific values of the costdist
section and the intensity of the utility function.

67

5 Evaluation

Risk attitude SL Exp. cost Exp. utility Time

RA-3loc-2pack-1truck-speed01
Risk averse 8 (12) 120.00 −1024.85 1.98s
Risk neutral 8 120.00 −120.00 2.32s
Risk seeking 10 125.60 10−23.92 25.14s

RA-4loc-2pack-1truck-speed12
Risk averse 9 (13) 135.00 −1028.11 2.61s
Risk neutral 9 135.00 −135.00 2.32s
Risk seeking - − − -

RA-4loc-1pack-1truck-speed12
Risk averse 5 (7) 75.00 −1015.68 2.34s
Risk neutral 5 75.00 −75.00 2.39s
Risk seeking 7 80.60 10−14.15 2.36s

RA-5loc-1pack-1truck-speed12
Risk averse 7 (9) 105.00 −1022.20 2.60s
Risk neutral 7 105.00 −105.00 14.87s
Risk seeking - − − -

RA-4loc-2pack-2truck-speed12
Risk averse 8 (12) 120.00 −1024.85 2.07s
Risk neutral 8 (9) 120.00 −120.00 4.91s
Risk seeking 11 140.60 10−24.22 17.04s

RA-5loc-2pack-2truck-speed12
Risk averse 9 (13) 135.00 −1028.11 2.75s
Risk neutral 9 (10) 135.00 −135.00 63.77s
Risk seeking - − − -

Table 5.3: The results of running plan computation for the listed problem instances with RAPANDA3
in the Transport-RA domain. A row refers to one problem instance and has three sub-rows
associated, each referring to plan computation with the listed risk attitude. Solution
length (SL) refers to the amount of plan steps the solution holds, with one plan step
being a primitive task. Solutions in this domain might include noop tasks. We list
Solution length including noop tasks in parentheses. Exp. cost displays the sum of
individual expected costs of the plan steps. Exp. utility depicts the solution’s expected
utility, rounded to two decimal points, and the time column holds the planning time for
the planner to compute the solution in seconds, rounded to two decimal points. Any
computation that exceeded 15 minutes was aborted, and the cells are marked with -, for
the problem instance exceeded our planning time limit.

5.4 Car-Fleet-RA Domain

Car-Fleet-RA is as cycle free, totally ordered domain and is fully self-designed for this work. It
depicts an autonomous vehicle fleet, getting electric cars ready for their assignments, while dealing
with limited space and equipment.

Looking at the predicates in Listing 5.7, four types are discernible, car, depot, equipment and
assignment. Additional types are: cleaning-equip, maintaining-equip and reloading-equip, with
all being extensions of equipment. The predicate awaits-collection is one of many predicates that

68

5.4 Car-Fleet-RA Domain

Figure 5.4: A diagram, illustrating the relations of methods and tasks in the Car-Fleet-RA domain.
Grey ovals represent methods, light blue rectangles primitive tasks and dark blue
rectangles compound tasks.

69

5 Evaluation

Listing 5.7 The available lifted predicates in the Car-Fleet-RA domain.

(:predicates

(awaits-collection ?c - car)

(on-staging-area ?c - car)

(in-depot ?c - car)

(departed ?c - car)

(depot-free ?d - depot)

(staging-area-free)

(staging-area-content ?c - car)

(car-in ?d - depot ?c - car)

(has-equipment ?d - depot ?g - equipment)

(assignment-done ?a - assignment)

(car-clean ?c - car)

(car-maintained ?c - car)

(car-loaded ?c - car)

)

allow a car to be in various conditions, for example it can be waiting to be collected by the car fleet
AI agent, or be clean or loaded, represented by car-clean and car-loaded, respectively. On top
of that, with the predicates depot-free and has-equipment, a depot can hold exactly one or no car
and posses zero or multiple equipment, needed for cleaning, maintaining or loading a car. Cars
can only be maintained, cleaned or loaded in depots, possessing the matching equipment. All cars
departing for assignments or changing depots have to go through the staging area. There can be
only one car at once on the staging area. The predicate staging-area-free models this restriction.
The ultimate goal of this domain is to compute a plan, with multiple do_assignment compound
tasks in the initial task network. Do_assignment starts the process of preparing a car and making it
depart for assignment. Preparing a car includes loading, maintaining and cleaning it. Any car can
be sent on any assignment, as long as it is at least loaded. Maintaining and cleaning is optional for
risk demonstration purposes, enabling a planner to decide to forgo preparation steps under risk of
high cost. Higher cost outcomes represent the chance of dissatisfaction on the customer side due to
the lack of cleanliness, or the chance of a failure of operation due to skipping maintenance.

Figure 5.4 shows the task hierarchy in the Car-Fleet domain and is reference for the explanation
in the following paragraph. The initial task network consists of one or multiple do_assignment
compound tasks, which are decomposed to prepare_car and depart. The task prepare_car can either
be decomposed to collect and reload_car or only reload_car, with the latter option reflecting the car
being on the premise already and not in need of collection, therefore there is no alternative present,
the method selection solely depends on the predicate awaits-collection. The compound tasks
reload_car, maintain_car and clean_car share several similarities and represent the preparation
steps of a car. They all decompose into the corresponding primitive task, such as reload, flanked by
change_Depot. The tasks reload_car and maintain_car additionally induce a choice between two
alternatives. Decomposition of both can either include or omit the next preparation compound task,
giving the planner the choice to either commit to one more preparation step or to stop preparation
now. This choice is where risk is portrayed in this domain. Fully preparing is more expensive, but
leads to less risk later in the car’s departure. It should be noted, that a car can not be unmaintained
but clean, due to how the chain of preparation compound tasks is set up. Flanking the preparation
primitive tasks with change_depot compound tasks leads to a high number of said compound tasks.

70

5.4 Car-Fleet-RA Domain

Having many change_Depot tasks in partial plans gives a planner the necessary opportunity to
rearrange the location of the car being prepared, with an appropriate binding of the parameter
variables, since not all depots are free or equipped adequately. This is achieved by decomposing
the change_depot into four optional task sequences, with some being alternatives to each other.
The options include the primitive tasks enter_depot, exit_depot and do_nothing in several forms.
Despite that, these do not relate to risk and only serve to get the cars to an appropriate depot.
Finally, the depart compound task is decomposed into a primitive task representing the state of the
car depending on the preparations made. If the predicates indicate, that for a given car cleaning
and maintaining was skipped, then the planner has to decompose into departure_no_clean_maint,
which has the highest risk associated but fulfils the assignment predicate nevertheless. This works
analogously for the two other options, departure_no_clean and departure.

5.4.1 Experiment

Computing solutions for problem instance RA-a1-car2-dep36, illustrates how risk attitudes affect
planning, as can be seen in Listing 5.8. The problem defines one assignment a0, two cars car0
car1 and three depots depot0, depot1 and depot2, with depot0 containing reloading equipment,
depot1 cleaning equipment and depot2 maintaining equipment. Additionally, car0 is stationed in
depot0 and car1 is not on the premise and awaits collection. All primitive tasks are guaranteed
to cost 15 units, possessing the costdist section, with a distribution of (1(15)). There are three
exceptions, however. The task do_nothing has no cost, while the task departure_no_clean and
departure_no_clean_maint have risk associated, with distributions of ((0.5(15)) (0.5(100))) and
(0.45(15)) (0.5(100)) (0.05(1000))) respectively. A solution for each risk attitude is shown in
Listing 5.8, where striking differences are noticeable. The risk averse planning produced a solution,
that makes the car depart with cleanliness and maintenance even though, as shown by the risk
neutral solution, this is not the expected cost optimal plan. While risk neutrality makes a car depart
without cleaning, risk aversion avoids this risk as expected. Detailed comparison between the
risk averse and neutral solutions show differences in length and the neutral solution not using the
clean task. The risk neutral solution also differs from the risk seeking one, where the risk seeking
solution lets a car depart with no maintenance and cleaning. Since this leads to a higher expected
cost compared to risk neutrality, the risk seeking attitude takes a risk, even if one could argue for its
inadvisability.

We incrementally made various minor changes to RA-a1-car2-dep3, resulting in additional problem
instances for us to run on RAPANDA3. The naming scheme reveals the content of the problem
instance. For example, RA-a1-car2-dep3 denotes that there is one assignment to fulfil, with two
cars and three depots available. The equipment of the depots is not shown by the naming scheme,
but it can be assumed that each of the three equipment types is present at least once. Unless stated
otherwise, the initial position of cars is always not on site awaiting to be collected except for car0
which is stationed in depot0.

The results of our experiments are compiled into Table 5.4. There are not many entries, since the
domain is rather intricate, and expanding the original problem instance quickly leads to overstepping
our planning time limit. From what we have, one can observe increasing the number of assignments

6The problem instance can be viewed in the Appendix A.4

71

5 Evaluation

Listing 5.8 The primitive task sequences of three computed plans by RAPAND3 in our self designed
Car-Fleet-RA domain. All plans are solutions for the problem RA-a1-car2-dep3, and each solution
is computed with a different risk attitude.

;; risk averse attitude, expected cost: 135; expected utility: -10^{28.41}

0 do_nothing car0

1 reload car0 depot0 reloading0

2 __method_precondition_m_change_depot_1_9_precondition car0 depot2

3 exit_depot depot0 car0

4 enter_depot depot2 car0

5 do_nothing car0

6 maintain car0 depot2 maintaining0

7 do_nothing car0

8 __method_precondition_m_change_depot_1_9_precondition car0 depot1

9 exit_depot depot2 car0

10 enter_depot depot1 car0

11 clean car0 depot1 cleaning0

12 __method_precondition_m_change_depot_2_10_precondition car0

13 exit_depot depot1 car0

14 departure car0 a0

;; risk neutral attitude, expected cost: 132.5; expected utility: -132.5

0 do_nothing car0

1 reload car0 depot0 reloading0

2 __method_precondition_m_change_depot_2_10_precondition car0

3 exit_depot depot0 car0

4 __method_precondition_m_change_depot_0_8_precondition car0

5 enter_depot depot2 car0

6 maintain car0 depot2 maintaining0

7 __method_precondition_m_change_depot_2_10_precondition car0

8 exit_depot depot2 car0

9 departure_no_clean car0 a0

;; risk seeking attitude, expected cost: 136.75; expected utility: 10^{-10.42}

0 do_nothing car0

1 reload car0 depot0 reloading0

2 __method_precondition_m_change_depot_2_10_precondition car0

3 exit_depot depot0 car0

4 departure_no_clean_maint car0 a0

to three or higher is making risk averse and risk neutral computation overstep our time limit. Even
after simplifying the problem, with RA-a3-car3-dep3-moreEquip giving more depots a greater
variety of equipment, no solution under 15 minutes is found. Risk averse and neutral computation
being the once that fail is likely a result of generally longer solutions for these attitudes, as taking risk
in this domain is about generating a shorter solution by skipping either maintenance or maintenance
and cleaning. In this domain, risk neutrality can take a middle ground, computing to a solution
which is a compromise between risk averse and seeking. This can be observed in Listing 5.8 and
Table 5.4, by considering the differences in solution lengths.

72

5.4 Car-Fleet-RA Domain

Risk attitude SL Exp. cost Exp. utility time

RA-a1-car2-dep3
Risk averse 9 (12) 135.00 −1028.41 2.34s
Risk neutral 6 (7) 132.50 −132.50 2.08s
Risk seeking 3 (4) 136.75 10−10.42 1.96s

RA-a2-car2-dep3
Risk averse 20 (25) 300.00 −1063.64 46.6s
Risk neutral 14 (16) 295.00 −295.00 34.47s
Risk seeking 8 (9) 303.50 10−27.05 2.24s

RA-a3-car3-dep3
Risk averse - − − -
Risk neutral - − − -
Risk seeking 13 (14) 470.25 10−43.69 2.24s

RA-a3-car3-dep3-moreEquip
Risk averse - − − -
Risk neutral - − − -
Risk seeking 13 (14) 470.25 10−43.69 17.98s

Table 5.4: The results of running plan computation for the listed problem instances with RAPANDA3
in the Car-Fleet-RA domain. A row refers to one problem instance and has three sub-rows
associated, each referring to plan computation with the listed risk attitude. Solution
length refers to the amount of plan steps the solution holds, with one plan step being a
primitive task. Solutions in this domain might include do_nothing tasks. We list solution
length (SL) including do_nothing tasks in parentheses. Exp. cost displays the sum of
individual expected costs of the plan steps. Exp. utility depicts the solution’s expected
utility, rounded to two decimal points, and the time column holds the planning time for
RAPANDA3 to compute the solution in seconds, rounded to two decimal points. Any
computation that exceeded 15 minutes was aborted, and the cells are marked with -, for
the problem instance exceeded our planning time limit.

73

6 Related Work

This work draws inspiration from [AGA22b], where risk-aware plan-based HTN planning has been
proposed. Similar to the approach examined in our work, the authors assume multiple possible costs
for a primitive task. Furthermore, they employ utility functions based on risk attitudes to heuristically
guide planning, although the functions differ somewhat to the functions we use. Another difference
is that we provide an implementation and experimental evaluation of the theoretical approach. Such
an experimental evaluation is conducted in [Smi23] as well, providing an outlook on the effects of
Risk-aware HTN planning for a risk aware domain. Similar to our work, utilities representing risk
attitudes are calculated to be used as heuristic for HTN planning. An implementation of risk-aware
HTN planning is provided and examined with an HTN domain. However, the authors propose a
state-based risk-aware HTN planning approach, while we describe a plan-based risk-aware HTN
planning approach.

In Bercher, Behnke, Höller et al. [BBHB17], the authors introduce two heuristics for HTN planning,
namely TDGc and TDGm, both relying on the TDG induced by HTN domains. While the admissible
heuristic TDGc guides the planning computation by minimizing over summed up task costs, TDGm
aggregates the number of decompositions and causal link insertions needed and minimizes over these.
TDGc is similar to the risk-aware plan-based HTN approach we implement, since it associates tasks
with costs and exploits the TDG to compute cost estimates of compound tasks and decomposition
methods. Even so, their work only considers single task costs, which makes the proposed heuristics
only applicable to deterministic domains. In contrast, risk-aware plan-based HNT planning assigns
variable task costs, to model non-deterministic domains. Providing guidance in non-deterministic
domains is possible in [TMSP11] through usage of Markov decision process (MDP). The Authors
propose a method for converting HTNs to Earley graphs, which then can be evaluated, similarly to
MDP, to obtain the optimal plan by calculating maximum expected utility, with utility defined as the
maximum expected reward from MDP. This approach annotates methods with probabilities, while
our approach undertakes this for primitive tasks. On top of that, our work implements a heuristic in
a proof of concept, with which the heuristic is tested.

We provide various probabilistic domains, which model different outcomes of primitive tasks by
means of a probability distribution over possible costs. Multiple other works concern themselves
with similar probabilistic domains. The work in [HKM09] deals with the problem of inaccurate
probabilities for outcomes, by proposing a learning approach to the creation of HTN domains. A
learning system is provided, which creates domain knowledge for HTN domains with multiple
outcomes. While parts of our work deal with transforming deterministic domains into non-
deterministic ones, our added domain knowledge is handwritten and not learned by means of an
algorithm. Furthermore, the authors of Hogg, Kuter, and Munoz-Avila [HKM09] do not implement
their own heuristic and changes to an existing planner, rather they experiment with an already
existing one.

75

6 Related Work

In [LCKY09], techniques of plan recognition are applied to learn and model user preferences on
plans, where probabilities are associated with decomposition methods. Similarly, our work concerns
itself with user preferences, however these are expressed through utility functions. On top of that,
we associate probabilities with primitive tasks instead of methods.

The authors of Mugan and Kuipers [MK11] present an approach to allow agents to solve problems
by observing their real life environment. This utilizes dynamic Bayesian networks (DNBs) to
capture possible contingencies of real life variables as actions, which results in learning a hierarchy
of actions, which is comparable to HTNs used in our work, if one considers actions as tasks. In their
approach, actions posses a reliability, denoting the chance of successful execution, thus depicting
probability in a similar vain to our work. Yet, we do not consider success or failure as possible
outcomes, rather we associate varying costs to primitive tasks.

The work of Morisset and Ghallab [MG08] defines HTNs as skills for a robot to overcome high
level problems. Primitive tasks in this case are the most basic motor functions of the robot. Each
problem has multiple possible skills for solving. The choice on which skill to use is made by
taking environmental variables into account as state space in an MDP, while the skills constitute the
action space. This induces a stochastic mapping from environmental variables to skills, effectively
associating probabilities to HTNs, reflecting their suitability for the current environment. HTNs
are chosen by the MDP optimization objective, seeking to maximize some cumulative function
of rewards. Since HTNs are usually comprised of one high level compound task, the approach of
Morisset and Ghallab [MG08] associates probabilities to these tasks similar to our work, except
we associate with primitive tasks. Furthermore, we employ maximization of an expected function
value as well, albeit utility instead of reward.

As we enrich domains with variable action costs and choice to examine RAPANDA3, we bring
them closer to authentically representing non-deterministic real-world domains. With the same goal
in mind, the authors of Alnazer, Georgievski, and Aiello [AGA22a] examine HTN domains and
problems used in IPC 2020, in terms of realism by use of multiple criteria referred to as realistic
domain aspects. One aspect being the number and types of method choices presented in a domain.
The authors modify two ICP 2020 domains, bringing them closer to represent realistic domain
aspects. Analogous to their work, modifications to ICP 2020 domains are designed in our work,
with the different intention of using them as benchmark, but a similar result.

76

7 Conclusion and Outlook

We showed an approach to risk-aware plan-based HTN planning, which employs utility functions
to heuristically guide plan-based HTN planning towards solutions, that adhere to a specified risk
attitude. In the form of RAPANDA3, we implemented a proof of concept to this approach. We
showed in an experimental setting, that RAPANDA3 indeed chooses a different solution for different
risk attitudes, with the solution, adhering to a specified risk attitude. Additionally, we discussed how
specific domain properties impact the risk attitudes’ solutions. However, we discovered that planning
with intricate problem instances on RAPANDA3 is resource demanding. So much so, that we could
not get results with many IPC 2020 benchmark problem instances. After consulting with developers
of PANDA3, Gregor Behnke and Pascal Bercher, we believe the reasons for these performance
issues being the following. PANDA3 itself is resource intensive, and plan-based HTN planning in
general is resource intensive. We believe PANDA3 is an issue, as the original developers moved on
from PANDA3 two years ago and so PANDA3 has not received implementations of advancements
in pruning techniques that speed up planning. We believe plan-based HTN planning to be an issue,
since in IPC 2023, PYHIPOP, the only competing plan-based HTN planner, performed considerably
worse than all other participants [IPCb; LA21]. Without performance improvements, risk-aware
plan-based HTN planning is not suitable for industry. To move away from plan-based HTN planning
could improve performance, however, this would require a completely different approach than
risk-aware plan-based HTN planning. When moving away from plan-based HTN planning, we
think it advisable to implement risk-aware planning on a newer planner, such as participants of IPC
2023.

The risk-aware plan-based HTN planning approach relies on a probability distribution over costs for
different outcomes of primitive tasks. We assume that different outcomes always have the same
effect, however it is plausible to have different effects for different outcomes as well. In future work,
this could be addressed by finding a way to have the state change, depending on outcome.

Besides implementing RAPANDA3, we proposed the costdist section for the HDDL language
definition, which allows representing a probability distribution over costs for a primitive task. The
necessary grammar and parsing, for the costdist section to be recognized correctly, is implemented
in RAPANDA3. The costdist section only models cost and probability for lifted primitive tasks. A
way to enhance the costdist section, is to make it applicable to instances of tasks as well. Currently,
regardless of the constants bound to the parameter variables of a task, a task always has the same
probability distribution of costs. Imagine a domain with a road type and multiple road constants.
Having the ability to attach costdist to a road constant, which in turn imposes this probability
distribution on task instances, having said road bound to one of its parameter variables, allows for a
convenient way to define roads of varying risks, without having to define multiple primitive tasks.

Lastly, we introduced multiple new HTN domains and problem instances, in the HDDL language
format. Three of these domains are based on already existing ones and one is fully original.
They all share the attribute of being risk-aware, meaning they use the costdist section to have a

77

7 Conclusion and Outlook

probability distribution over costs for primitive tasks. On top of that, these domains are designed
to create freedom of choice for planners, so that risk is able of being taken in the first place. A
reasonable avenue for future work, concerning risk-aware plan-based HTN planning, is the creation
of additional risk-aware domains and corresponding problem instances.

78

A Appendix

A.1 Robot-RA

(define

(problem pfile_RA01)

(:domain robot)

(:objects o1 o2 - PACKAGE c r1 r2 r3 - ROOM d01 d12 d23 - ROOMDOOR)

(:htn

:ordered-tasks (and

(task0 (achieve-goals))

)

)

(:init

(rloc c)

(armempty)

(door c r1 d01)

(door r1 r2 d12)

(door r2 r3 d23)

(door r1 c d01)

(door r2 r1 d12)

(door r3 r2 d23)

(closed d23)

(in o1 c)

(in o2 r2)

(goal_in o1 r3) (goal_in o2 r1))

(:goal (and

(in o1 r3)

(in o2 r1)

))

)

Listing A.1: The HDDL file of the problem instance pfile_RA01

79

A Appendix

A.2 Satellite

(define

(problem p3obs_1sat_3mod)

(:domain satellite2)

(:objects

GroundStation0 - calib_direction

Phenomenon7 - image_direction

Star5 - image_direction

Phenomenon4 - image_direction

Phenomenon8 - image_direction

Phenomenon6 - image_direction

instrument01 - instrument

instrument02 - instrument

instrument03 - instrument

thermograph - mode

x_ray - mode

hd_video - mode

satellite0 - satellite

)

(:htn

:parameters ()

:subtasks (and

(task0 (do_observation Phenomenon4 thermograph))

(task1 (do_observation Star5 x_ray))

(task2 (do_observation Phenomenon6 hd_video))

)

:ordering (and

(task1 < task0)

(task2 < task1)

)

)

(:init

(on_board instrument01 satellite0)

(supports instrument01 thermograph)

(calibration_target instrument01 GroundStation0)

(on_board instrument02 satellite0)

(supports instrument02 x_ray)

(calibration_target instrument02 GroundStation0)

(on_board instrument03 satellite0)

(supports instrument03 hd_video)

(calibration_target instrument03 GroundStation0)

(power_avail satellite0)

(pointing satellite0 Phenomenon6)

)

)

Listing A.2: The HDDL file of the problem instance 3obs-1sat-3mod

80

A.3 Transport-RA

A.3 Transport-RA

(define

(problem RA-3loc-2pack-1truck-speed01)

(:domain Transport-RA)

(:objects

package_0 - package

package_1 - package

capacity_0 - capacity_number

capacity_1 - capacity_number

loc_0 - location

loc_1 - location

loc_2 - location

speedwayInters - location

truck_0 - vehicle

)

(:htn

:parameters ()

:subtasks (and

(task0 (deliver package_0 loc_0))

(task1 (deliver package_1 loc_2))

)

:ordering (and

(< task0 task1)

)

)

(:init

(capacity_predecessor capacity_0 capacity_1)

(road loc_0 loc_1)

(road loc_1 loc_0)

(road loc_1 loc_2)

(road loc_2 loc_1)

(speedway loc_0 speedwayInters)

(speedway speedwayInters loc_0)

(speedway loc_1 speedwayInters)

(speedway speedwayInters loc_1)

(at package_0 loc_1)

(at package_1 loc_1)

(at truck_0 loc_2)

(capacity truck_0 capacity_1)

)

)

Listing A.3: The HDDL file of the problem instance RA-3loc-2pack-1truck-speed01

81

A Appendix

A.4 Car-Fleet-RA

(define

(problem RA-a1-car2-dep3)

(:domain Car-Fleet)

;---------------- Facts -----------------------

(:objects

a0 - assignment

car0 - car

car1 - car

depot0 - depot

depot1 - depot

depot2 - depot

reloading0 - reloading-equip

cleaning0 - cleaning-equip

maintaining0 - maintaining-equip

)

;--------------- Initial State -----------------

(:htn

:parameters ()

:ordered-subtasks (and

(task1 (do_assignment a0))

)

)

(:init

(in-depot car0)

(awaits-collection car1)

(staging-area-free)

(car-in depot0 car0)

(depot-free depot1)

(depot-free depot2)

(has-equipment depot0 reloading0)

(has-equipment depot1 cleaning0)

(has-equipment depot2 maintaining0)

)

(:goal (and

(assignment-done a0)

)

)

)

Listing A.4: The HDDL file of the problem instance RA-a1-car2-dep3

82

Bibliography

[AGA22a] E. Alnazer, I. Georgievski, M. Aiello. “On bringing HTN domains closer to reality-
the case of satellite and rover domains”. In: International Conference on Automated
Planning Systems (ICAPS) Workshop on Scheduling and Planning Applications
(SPARK). 2022 (cit. on p. 76).

[AGA22b] E. Alnazer, I. Georgievski, M. Aiello. Risk Awareness in HTN Planning. 2022. arXiv:
2204.10669 [cs.AI] (cit. on pp. 18, 33, 75).

[BAH19] P. Bercher, R. Alford, D. Höller. “A Survey on Hierarchical Planning-One Abstract
Idea, Many Concrete Realizations.” In: ĲCAI. 2019, pp. 6267–6275 (cit. on p. 21).

[BBHB17] P. Bercher, G. Behnke, D. Höller, S. Biundo. “An Admissible HTN Planning
Heuristic.” In: ĲCAI. 2017, pp. 480–488 (cit. on pp. 18, 25, 30, 57, 75).

[BHBB19] G. Behnke, D. Höller, P. Bercher, S. Biundo. “More Succinct Grounding of HTN
Planning Problems–Preliminary Results”. In: (2019) (cit. on p. 45).

[DBIG14] F. Dvorak, A. Bit-Monnot, F. Ingrand, M. Ghallab. “A flexible ANML actor and
planner in robotics”. In: Planning and Robotics (PlanRob) Workshop (ICAPS). 2014
(cit. on p. 18).

[EBSB12] M. Elkawkagy, P. Bercher, B. Schattenberg, S. Biundo. “Improving hierarchical
planning performance by the use of landmarks”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 26. 1. 2012, pp. 1763–1769 (cit. on p. 25).

[FN93] R. E. Fikes, N. J. Nilsson. “STRIPS, a retrospective”. In: Artificial intelligence 59.1-2
(1993), pp. 227–232 (cit. on p. 21).

[GA15] I. Georgievski, M. Aiello. “HTN planning: Overview, comparison, and beyond”. In:
Artificial Intelligence 222 (2015), pp. 124–156 (cit. on pp. 21, 25, 27).

[GNN+17] I. Georgievski, T. A. Nguyen, F. Nizamic, B. Setz, A. Lazovik, M. Aiello. “Plan-
ning meets activity recognition: Service coordination for intelligent buildings”. In:
Pervasive and Mobile Computing 38 (2017), pp. 110–139 (cit. on p. 18).

[GTFM13] A. González-Ferrer, A. Ten Teĳe, J. Fdez-Olivares, K. Milian. “Automated generation
of patient-tailored electronic care pathways by translating computer-interpretable
guidelines into hierarchical task networks”. In: Artificial intelligence in medicine
57.2 (2013), pp. 91–109 (cit. on p. 18).

[HBB+19] D. Höller, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier, R. Alford.
“HDDL–A Language to Describe Hierarchical Planning Problems”. In: arXiv
preprint arXiv:1911.05499 (2019) (cit. on p. 22).

[HBBB21] D. Höller, G. Behnke, P. Bercher, S. Biundo. “The PANDA framework for hierarchical
planning”. In: KI-Künstliche Intelligenz (2021), pp. 1–6 (cit. on pp. 18, 41).

[HKM09] C. Hogg, U. Kuter, H. Munoz-Avila. “Learning Hierarchical Task Networks for
Nondeterministic Planning Domains.” In: ĲCAI. 2009, pp. 1708–1714 (cit. on p. 75).

83

https://arxiv.org/abs/2204.10669

Bibliography

[IPCa] International Planning Competition (IPC) on HTN Planning. url: https://ipc2020.
hierarchical-task.net/ (cit. on pp. 51, 57).

[IPCb] Results of the International Planning Competition (IPC) on HTN Planning in 2020.
url: https://ipc2020.hierarchical-task.net/results/results (cit. on p. 77).

[KBK+07] J.-P. Kelly, A. Botea, S. Koenig, et al. “Planning with hierarchical task networks in
video games”. In: Proceedings of the ICAPS-07 Workshop on Planning in Games.
Citeseer. 2007 (cit. on p. 18).

[KBK08] J.-P. Kelly, A. Botea, S. Koenig. “Offline planning with hierarchical task networks
in video games”. In: Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment. Vol. 4. 1. 2008, pp. 60–65 (cit. on p. 18).

[LA21] C. Lesire, A. Albore. “PYHIPOP-Hierarchical Partial-Order Planner”. In: Workshop
on the International Planning Competition. 2021 (cit. on p. 77).

[LCKY09] N. Li, W. Cushing, S. Kambhampati, S. Yoon. “Learning user plan preferences
obfuscated by feasibility constraints”. In: Proceedings of the International Conference
on Automated Planning and Scheduling. Vol. 19. 2009, pp. 370–373 (cit. on p. 76).

[MAMO18] J. Munoz-Morera, F. Alarcon, I. Maza, A. Ollero. “Combining a hierarchical task
network planner with a constraint satisfaction solver for assembly operations involving
routing problems in a multi-robot context”. In: International Journal of Advanced
Robotic Systems 15.3 (2018), p. 1729881418782088 (cit. on p. 18).

[MG08] B. Morisset, M. Ghallab. “Learning how to combine sensory-motor functions into
a robust behavior”. In: Artificial intelligence 172.4-5 (2008), pp. 392–412 (cit. on
p. 76).

[MJC14] A. Menif, É. Jacopin, T. Cazenave. “SHPE: HTN Planning for Video Games”. In:
CGW@ECAI. 2014. url: https://api.semanticscholar.org/CorpusID:8224598
(cit. on p. 18).

[MK11] J. Mugan, B. Kuipers. “Autonomous learning of high-level states and actions in con-
tinuous environments”. In: IEEE Transactions on Autonomous Mental Development
4.1 (2011), pp. 70–86 (cit. on p. 76).

[NAI+03] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, F. Yaman. “SHOP2:
An HTN planning system”. In: Journal of artificial intelligence research 20 (2003),
pp. 379–404 (cit. on p. 18).

[NS61] A. Newell, H. A. Simon. “GPS, a program that simulates human thought”. In: (1961)
(cit. on p. 21).

[PANDA23] PANDA Description. 2023. url: https://panda-planner-dev.github.io/ (cit. on
p. 41).

[SKP+14] R. Stern, S. Kiesel, R. Puzis, A. Felner, W. Ruml. “Max is more than min: Solving
maximization problems with heuristic search”. In: Proceedings of the International
Symposium on Combinatorial Search. Vol. 5. 1. 2014, pp. 148–156 (cit. on p. 37).

[Smi23] R. Smith. “Risk awareness in poker planning agents”. B.S. thesis. 2023 (cit. on
p. 75).

[SPW+04] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau. “HTN planning for web service
composition using SHOP2”. In: Journal of Web Semantics 1.4 (2004), pp. 377–396
(cit. on p. 18).

84

https://ipc2020.hierarchical-task.net/
https://ipc2020.hierarchical-task.net/
https://ipc2020.hierarchical-task.net/results/results
https://api.semanticscholar.org/CorpusID:8224598
https://panda-planner-dev.github.io/

[TMSP11] Y. Tang, F. Meneguzzi, K. Sycara, S. Parsons. “Probabilistic hierarchical planning
over MDPs”. In: The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 3. 2011, pp. 1143–1144 (cit. on p. 75).

[War76] D. H. Warren. “Generating conditional plans and programs”. In: Proceedings of
the 2nd Summer Conference on Artificial Intelligence and Simulation of Behaviour.
1976, pp. 344–354 (cit. on p. 21).

[WK15] D. A. Wood, R. Khosravanian. “Exponential utility functions aid upstream decision
making”. In: Journal of Natural Gas Science and Engineering 27 (2015), pp. 1482–
1494 (cit. on p. 34).

[ZZY+14] W. Zeng, H. Zhou, M. You, et al. “Risk-sensitive multiagent decision-theoretic
planning based on MDP and one-switch utility functions”. In: Mathematical Problems
in Engineering 2014 (2014) (cit. on p. 18).

All links were last followed on October 26, 2023.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

Fellbach, 26.10.2023,

	1 Introduction
	2 Background
	2.1 Automated Planning
	2.2 HTN Planning
	2.3 Heuristics

	3 Risk-aware Plan-based HTN Planning
	3.1 Risk attitudes
	3.2 Expected Utility

	4 Implementation
	4.1 Overview
	4.2 Parsing Phase
	4.3 Preprocessing Phase
	4.4 Search Phase

	5 Evaluation
	5.1 Robot Domain
	5.2 Satellite Domain
	5.3 Transport Domain
	5.4 Car-Fleet-RA Domain

	6 Related Work
	7 Conclusion and Outlook
	A Appendix
	A.1 Robot-RA
	A.2 Satellite
	A.3 Transport-RA
	A.4 Car-Fleet-RA

	Bibliography

