
University of Stuttgart

Quantum Algorithms and Quantum
Machine Learning for Differential

Equations

Author: Niclas Schillo

Revised edition of the master’s thesis of the same name at the Institute for Functional
Matter and Quantum Technologies supervised by Jun.-Prof. Dr. Sungkun Hong and
co-supervised by Dr. Andreas Sturm; submitted in October 2023.

Abstract I

Abstract

The fast and accurate solution of differential equations is a highly researched topic.
Classical methods are able to solve very large systems, however, this can require high-
performance computers and very long computational times. Since quantum comput-
ers promise significant advantages over classical computers, quantum algorithms for
the solution of differential equations have received a lot of attention. Particularly
interesting are algorithms that are relevant in the current Noisy-Intermediate-Scale-
Quantum (NISQ) era, characterized by small and error-prone systems. In this context,
promising candidates are variational quantum algorithms which are hybrid quantum-
classical algorithms where only a part of the algorithm is executed on the quantum
computer. Thus, they typically require fewer qubits and qubit gates and can tolerate
the errors stemming from an imperfect quantum computer.
One important example of variational quantum algorithms is the so-called quantum
circuit learning (QCL) algorithm, which can be used to approximate functions. Here,
an ansatz function is formed with a data encoding layer, subsequently transformed by
a shallow parameterized circuit and finally the measurement of an expectation value
defines the function value.
In this thesis, this method is investigated in great detail, developing new and improved
circuit designs and comparing their usefulness in approximating different functions.
The method is also tested on a real quantum computer, which has not been reported
in literature yet. For this purpose, the algorithm is executed on the superconducting
quantum computer IBM Quantum System One in Ehningen to investigate its appli-
cability in the NISQ era.
The concept of QCL can be combined with the parameter shift rule to determine
derivatives. This enables the solution of nonlinear differential equations. This pro-
cedure is subjected to thorough testing across a multitude of differential equations
while being compared to other quantum algorithms for solving differential equations.
The strengths of this algorithm are shown but also the weaknesses are analyzed. Go-
ing beyond the current state of research, the method is extended to solve coupled
differential equations with a single circuit, significantly reducing the computational
effort. Lastly, a differential equation is successfully solved on the quantum computer
IBM Quantum System One in Ehningen.

Contents III

Contents

Abstract . I
Contents . III
1 Introduction . 1
2 Introduction to Quantum Computing . 5

2.1 Quantum States . 5
2.2 Measurement and Expectation Value 6
2.3 Quantum Gates . 7
2.4 Multi Qubit Systems . 8
2.5 Density Matrices . 10
2.6 Parameter Shift Rule . 11

3 Quantum Hardware . 13
3.1 Introduction to Superconducting Qubits 13
3.2 IBM Quantum System One Ehningen 16
3.3 Noisy-Intermediate-Scale-Quantum Era 17

4 Quantum Circuit Learning . 19
4.1 Introduction to Variational Quantum Algorithms 19
4.2 Quantum Circuit Learning . 20

5 Function Approximation: Simulations . 25
5.1 Different Data Encoding Schemes 27
5.2 Multi Qubit Measurements . 30

6 Expressibility . 33
7 Function Approximation: Real Quantum Computer 37
8 Parameter Shift Rule . 39
9 Differential Equations: Simulations . 43

9.1 Logistic Differential Equation . 43
9.2 Harmonic Oscillator . 45
9.3 Damped Harmonic Oscillator . 49
9.4 Coupled Harmonic Oscillator . 53

10 Differential Equations: Real Quantum Computer 57
11 Conclusions . 59

11.1 Summary . 59
11.2 Outlook . 60

IV Contents

Bibliography . 61
Appendix A Appendix: Number of Parameters A-1
Appendix B Appendix: Least Square Method B-1
Appendix C Appendix: Hadamard Test . C-1

1 Introduction 1

1 Introduction

Differential equations play a key role in science and engineering by providing the math-
ematical framework for countless natural phenomena [1]. Hence, their efficient and
accurate solution is highly relevant in numerous scientific fields and also in various
branches of industry. However, many differential equations are very hard to simulate
e.g. due to their high degree of non-linearities or numerical instability. Thus, classical
numerical methods for solving differential equations are a broad field of investigation.
One commonly used approach is the finite difference method, where differential op-
erators are replaced by discrete counterparts defined on a grid of the domain of the
differential equation [2, 3]. In order to obtain an accurate solution a very fine grid is
often required, which leads to a very high computational cost.
Another approach are spectral methods, where the solution of a differential equation
is represented via a set of global basis functions. Here, for example, Fourier series or
Chebyshev polynomials can be chosen as model functions. This ansatz transforms the
problem into finding optimal free parameters to match the solution of the differential
equation as closely as possible [4]. This method is also associated with great chal-
lenges: For complicated problems, a high number of basis functions must be selected
and the process becomes very computationally expensive.
It is known that quantum algorithms can achieve a significant computational speedup
for certain problems. One of two very well-known examples is Shor’s algorithm [5],
which can factorize numbers in polynomial time, while the best classical algorithms
need subexponential time. The other notable example is Grover’s search algorithm
[6], where the quantum algorithm exhibits a quadratic speedup compared to the best-
known classical algorithm.
Because of this potential advantage, a lot of research revolves around solving dif-
ferential equations with the help of quantum algorithms in the hope of finding new
techniques. For example, in the last few years, several quantum algorithms for solving
differential equations have been proposed, which heavily rely on classical computation
and only use quantum algorithms as a subroutine [7–11]. They share a commonality
by utilizing quantum phase estimation [12] as the core element in their quantum com-
ponent. Additionally, they employ oracle-based approaches for data access and rely
on amplitude-encoded states. This comes with several caveats, such as the input and
output problem [13], as well as significant computational overheads in constructing

2 1 Introduction

quantum oracles. Especially for nonlinear differential equations quantum algorithms
are sparse, with only a few notable examples [14].
It is important to note that the execution of all these algorithms requires a fault-
tolerant quantum computer. However, current and near-future quantum computers
have high error rates and few qubits. The intermediate phase is called the Noisy-
Intermediate-Scale-Quantum (NISQ) era [15]. This makes the implementation of
algorithms for large-scale fault-tolerant quantum computers unfeasible in the near fu-
ture. Therefore, particularly intriguing are algorithms that are relevant in the context
of the NISQ era.
Variational quantum algorithms use parameterized quantum circuits combined with a
classical optimizer to tackle a multitude of problems. This makes variational quantum
algorithms especially interesting in the context of the NISQ era since they typically
need fewer qubits and qubit gates and work with higher error rates. Applications
of this particular subfield of quantum algorithms have been explored in recent years
for various problems. This development started in quantum chemistry with the rise
of the variational quantum eigensolver (VQE) [16], which can be used to find the
ground state of a given physical system. Promising applications of variational quan-
tum algorithms now exist in many other areas such as optimization problems with
the quantum approximate optimization algorithm (QAOA) [17] or generic machine
learning tasks like image recognition [18, 19].
In this work, we consider a particular class of variational quantum algorithms, namely
quantum circuit learning (QCL) [20]. This approach involves using variational quan-
tum algorithms to approximate functions. Here, an ansatz function is formed by
encoding the variable of a function into the qubit states. This step is called data
encoding. Subsequently, a shallow parameterized circuit with entangling gates trans-
forms these states. Finally, the value of the function is defined by a measurement of
an expectation value.
Building upon this idea, it is possible to use QCL in combination with the parameter
shift rule to solve differential equations [21]. The parameter shift rule is a mathemat-
ical approach to obtain gradients of a parameterized quantum circuit. This approach,
which will be thoroughly investigated in this thesis, enables the solution of nonlinear
differential equations using very shallow circuits with low qubit numbers making it
suitable for the NISQ era.
This thesis is organized as follows: Chapter 2 introduces the basics of quantum
computing and the parameter shift rule is derived in detail. Next, in Chapter 3, cur-
rent quantum hardware is explained using the example of the real superconducting
quantum computer IBM Quantum System One in Ehningen. In particular, the charac-
teristics of NISQ computers are discussed with this example. Afterwards, variational
quantum algorithms are explained in Chapter 4 and their relevance in the NISQ era

1 Introduction 3

is discussed. Moreover, a comprehensive explanation of the QCL method explored in
this thesis is provided in this chapter. Following this, Chapter 5 delves deeper into
the method of function approximation with QCL, exploring various circuit designs
and comparing their efficiency in approximating different functions. The theory be-
hind QCL is investigated in depth in Chapter 6 and illuminated to gain transferable
knowledge for other algorithms. With this new knowledge, the complexity of these
circuits is reduced to a necessary level while still maintaining the same functionality
to ensure their executability on current and near-future devices. To investigate its
applicability in the NISQ era, in Chapter 7, the method is tested on the real super-
conducting quantum computer IBM Quantum System One in Ehningen. In Chapter
8, the parameter shift rule is investigated in more detail and also tested on the IBM
Quantum System One. Following this, in Chapter 9, the method of solving differen-
tial equations with the parameter shift rule is subjected to thorough testing across a
multitude of differential equations, while also being compared to other quantum algo-
rithms. The purpose of this comparison is to examine the strengths and weaknesses,
particularly in the context of the NISQ era. Furthermore, the method is extended to
solve coupled differential equations with a single circuit which significantly reduces
the computational effort. Lastly, a differential equation is solved on the quantum
computer IBM Quantum System One in Ehningen.

2 Introduction to Quantum Computing 5

2 Introduction to Quantum Computing

In this chapter, we present the fundamental principles and techniques of quantum
computing and introduce a universal language for describing quantum computations.
For more information, we recommend [22], which this chapter is loosely based on.

2.1 Quantum States

In classical computing, information is represented by bits, which can assume the values
0 or 1. In quantum information, the fundamental unit is not the bit but the so-called
quantum bit which is usually abbreviated as qubit. Analogous to a classical bit, a
qubit consists of two distinguishable quantum states. Those states can be described
with the two orthogonal vectors

|0⟩ =

(︃
1

0

)︃
and |1⟩ =

(︃
0

1

)︃
.

However, unlike classical discrete states, a qubit exhibits a continuous nature, making
it possible to be in any superposition of those two states. This means that every
qubit state can be described as a linear combination

|𝜓⟩ = 𝑎 |0⟩+ 𝑏 |1⟩ ,

where 𝑎, 𝑏 ∈ C are complex numbers that satisfy the normalization condition

|𝑎|2 + |𝑏|2 = 1 . (2.1)

The inner product space of the quantum states is called Hilbert space.
Because of condition (2.1), the state of a qubit can be rewritten as

|𝜓⟩ = 𝑒𝑖𝜙1 cos

(︂
𝜃

2

)︂
|0⟩+ 𝑒𝑖𝜙2 sin

(︂
𝜃

2

)︂
|1⟩ ,

with 𝜃 ∈ [0, 𝜋] and 𝜙𝑖 ∈ [0, 2𝜋). Since the global phase of a qubit state cannot be
measured, it is irrelevant in the context of quantum computing. The state is therefore

6 2 Introduction to Quantum Computing

simplified to only include a relative phase 𝜙 between |0⟩ and |1⟩. This results in the
expression

|𝜓⟩ = cos

(︂
𝜃

2

)︂
|0⟩+ 𝑒𝑖𝜙 sin

(︂
𝜃

2

)︂
|1⟩ ,

with 𝜙 ∈ [0, 2𝜋). The state can now be displayed on a sphere when the parameters
𝜃 and 𝜙 are re-interpreted as spherical coordinates. This sphere is called the Bloch
sphere [23]. The state vector of an arbitrary qubit state |𝜓⟩ on the Bloch sphere is
shown in Figure 1.

𝜙

𝜃

�̂�

𝑦

𝑧 = |0⟩

−𝑧 = |1⟩

|𝜓⟩

Figure 1: Bloch sphere with the state vector of an arbitrary state |𝜓⟩.

2.2 Measurement and Expectation Value

When we measure the state of a qubit in the standard computational basis {|0⟩ , |1⟩},
the probability of the outcome |0⟩ is |𝑎|2 and the probability of the outcome |1⟩ is
|𝑏|2. Because the absolute squares of the amplitudes are probabilities, condition (2.1)
can be explained.
After a measurement, the system collapses into the measured state and thus the
operation is irreversible. As a consequence, it is not possible to determine the exact
state, because the qubit is always in the state |0⟩ or |1⟩ after a measurement in
the computational basis. Only by doing many measurements of identical states, the
probability amplitudes 𝑎 and 𝑏 can be estimated and the state can be reconstructed.
These multiple measurements are called shots and the associated statistical error is
called shot noise. The shot noise decreases with the square root of the number of
shots.
A measurable property and its associated operator acting in Hilbert space is called
observable. An important metric in quantum information theory is the expectation
value with respect to an observable 𝐴. The expectation value gives the average of

2 Introduction to Quantum Computing 7

all the possible outcomes of a measurement depending on their probabilities. The
expectation value for an arbitrary quantum state |𝜓⟩ can be expressed as

⟨𝐴⟩ = ⟨𝜓|𝐴|𝜓⟩ ,

where ⟨𝜓| = |𝜓⟩† is the conjugate transpose (or Hermitian adjoint) of the vector
|𝜓⟩.

2.3 Quantum Gates

Qubit states can be manipulated by applying quantum gates to them. Such trans-
formations have to be described by a unitary matrix 𝑈 . A unitary matrix is defined
as

𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 ,

where 𝐼 is the identity matrix and 𝑈 † is the conjugate transpose of the matrix 𝑈 .
Three commonly used operators in quantum computing are the so-called Pauli oper-
ators. They are denoted as

𝑋 =

(︃
0 1

1 0

)︃
, 𝑌 =

(︃
0 −𝑖
𝑖 0

)︃
and 𝑍 =

(︃
1 0

0 −1

)︃
.

The Pauli-𝑋 operator expresses a bit-flip, the Pauli-𝑍 operator a phase-flip and the
Pauli-𝑌 operator a bit- and phase-flip. Because of this fundamental property, Pauli
operators occupy a key role in quantum information.
The Pauli operators can be used to obtain three additional very useful unitary matrices
when they are exponentiated. These are the rotational operators 𝑅𝑋(𝜃), 𝑅𝑌 (𝜃) and
𝑅𝑍(𝜃) which rotate the state around the corresponding axes on the Bloch sphere.
They are defined as

𝑅𝑋(𝜃) = 𝑒−𝑖𝜃𝑋/2 =

(︃
cos 𝜃

2
−𝑖 sin 𝜃

2

−𝑖 sin 𝜃
2

cos 𝜃
2

)︃
,

𝑅𝑌 (𝜃) = 𝑒−𝑖𝜃𝑌/2 =

(︃
cos 𝜃

2
− sin 𝜃

2

sin 𝜃
2

cos 𝜃
2

)︃
and

𝑅𝑍(𝜃) = 𝑒−𝑖𝜃𝑍/2 =

(︃
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

)︃
.

8 2 Introduction to Quantum Computing

Another important quantum gate is the Hadamard gate which is defined by the ma-
trix

𝐻 =
1√
2

(︃
1 1

1 −1

)︃
.

This gate creates an equal superposition state if applied to the computational basis
states

𝐻 |0⟩ = |0⟩+ |1⟩√
2

and 𝐻 |1⟩ = |0⟩ − |1⟩√
2

.

If we consider the Bloch sphere, the Hadamard gate performs a 𝜋 rotation around
the (�̂�+ 𝑧)/

√
2 axis.

2.4 Multi Qubit Systems

For multiple qubits, the system can be described with the help of the tensor product.
The tensor product for two vectors �⃗� = (𝑣1, 𝑣2, ..., 𝑣𝐾)

𝑇 and �⃗� = (𝑤1, 𝑤2, ..., 𝑤𝐿)
𝑇

results in a 𝐾 × 𝐿-matrix defined as

(�⃗� ⊗ �⃗�)𝑖𝑗 = 𝑣𝑖𝑤𝑗 ,

where ⊗ denotes the tensor product. It is a way of combining vector spaces of the
individual qubits to form a larger Hilbert space. A system of𝑁 qubits is represented by
a 2𝑁 -dimensional Hilbert space whose basis states can be written as tensor products
of the single qubit states. We first consider a system consisting of two qubits. The
four computational basis states are

|0⟩ ⊗ |0⟩ = |00⟩ , |0⟩ ⊗ |1⟩ = |01⟩ , |1⟩ ⊗ |0⟩ = |10⟩ and |1⟩ ⊗ |1⟩ = |11⟩ .

An arbitrary two-qubit state has the form

|𝜓⟩ = 𝑎00 |00⟩+ 𝑎01 |01⟩+ 𝑎10 |10⟩+ 𝑎11 |11⟩ ,

with 𝑎𝑖𝑗 ∈ C. Here, the probability of measuring a basis state |𝑖𝑗⟩ is |𝑎𝑖𝑗|2. Hence,
similar to the single-qubit case, the condition

|𝑎00|2 + |𝑎01|2 + |𝑎10|2 + |𝑎11|2 = 1

has to be fulfilled. A fundamental characteristic of multi-qubit states is that entan-
glement can exist. Entanglement means that several qubits share a state without
the possibility of assigning well-defined states to the individual qubits. An entangled

2 Introduction to Quantum Computing 9

two-qubit state can not be expressed as a product state of the form

|𝜓⟩𝑞1 |𝜑⟩𝑞2

where |𝜓⟩𝑞1 and |𝜑⟩𝑞2 are states of the first qubit and the second qubit, respectively.
Hence, entangled qubit states can not be described independently of the state of the
other qubit.
Next, we focus on multi-qubit gates. One of the most important multi-qubit gates is
the controlled NOT gate or CNOT gate which is defined by the matrix

𝐶𝑁𝑂𝑇 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠ .

This gate has two input qubits: the control qubit and the target qubit. If the control
qubit is set to |0⟩, the target qubit remains unchanged. If the control qubit is set to
|1⟩, the target qubit is flipped. Applying the gate to the computational basis states,
it maps the states

|00⟩ → |00⟩ , |01⟩ → |01⟩ , |10⟩ → |11⟩ and |11⟩ → |10⟩ .

With the implementation of controlled NOT gates and single-qubit gates, all conceiv-
able unitary operations can be performed. This is called a universal gate set.
Another very relevant gate is the SWAP gate. This gate swaps the state and there-
fore the information of the two qubits involved in the operation. It is defined by the
matrix

𝑆𝑊𝐴𝑃 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ .

This gate becomes especially important when we want to realize multi-qubit gates on
hardware platforms where not all physical qubits are connected. Then separate qubits
can be swapped, making multi-qubit operations possible between all qubits.
Collections of quantum gates interconnected by quantum wires are called quantum
circuits. Quantum wires do not represent physical wires but indicate that an operation
is applied to the same qubit at a later time. A simple example with two qubits is
shown in Figure 2.

10 2 Introduction to Quantum Computing

|0⟩ 𝑋 𝐻

|0⟩

Figure 2: An example of a quantum circuit with an X gate followed by a controlled
NOT gate and a Hadamard gate. In the end, both states are measured in
the computational basis.

Quantum circuits can visualize complex algorithms in a manageable way and thus
they will be heavily used in this work.

2.5 Density Matrices

Density matrices or density operators are a powerful generalization of the state vectors
to describe quantum states. For a state |𝜓⟩, the density matrix is defined as

𝜌 = |𝜓⟩ ⟨𝜓| .

Quantum states that can be expressed with a state vector |𝜓⟩ are called pure states.
Those states lie on the surface of the Bloch sphere. Due to interactions with the
environment, noise and decoherence, it is possible that a qubit is in a so-called mixed
state. This is a statistical combination of different pure states. A density matrix can
represent such states and indicate the probability of a system being in a particular
pure state. For an ensemble of pure states, the density matrix is defined as

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖| ,

where 𝑝𝑖 is the probability of measuring state |𝜓𝑖⟩. Mixed states can be represented
by points inside the Bloch sphere. An expression that nicely shows this behavior is

𝜌 = 1
2
(𝐼 + 𝑥𝑋 + 𝑦𝑌 + 𝑧𝑍) ,

where 𝑋, 𝑌 and 𝑍 are the Pauli operators and 𝑥, 𝑦, 𝑧 ∈ R are the coordinates of the
Bloch sphere. For a pure state the condition

𝑥2 + 𝑦2 + 𝑧2 = 1

2 Introduction to Quantum Computing 11

has to be true and for a mixed state

𝑥2 + 𝑦2 + 𝑧2 < 1 .

All the expressions we introduced for state vectors can be reformulated for density
matrices. For instance, if a unitary operator 𝑈 acts on the system we obtain the new
density matrix

𝜌′ = 𝑈𝜌𝑈 † .

Measurements can also be written in the density matrix formalism. If we measure in
a certain basis {|𝜓⟩ , |𝜓⟩⊥}, the probability of measuring the state |𝜓⟩ is defined by

Prob(|𝜓⟩) = ⟨𝜓|𝜌|𝜓⟩ .

The expectation value of a given observable 𝐴 can be calculated by

⟨𝐴⟩ = tr(𝜌𝐴) ,

where tr() indicates the trace of the matrix. We consider the special case where the
observable 𝐴 is a Pauli operator 𝑃 . Then we obtain

⟨𝑃 ⟩ = tr(𝜌𝑃) = 𝑝 with (𝑝, 𝑃) ∈ {(𝑥,𝑋), (𝑦, 𝑌), (𝑧, 𝑍)} .

Due to the special formalism of density matrices, it can also be advantageous to
represent pure states as density matrices, which will be applied in the course of this
work.

2.6 Parameter Shift Rule

The parameter shift rule is a method to determine the derivative of a parameter-
ized circuit [20, 24]. We consider a circuit that depends on the parameter 𝑥. The
expectation value 𝑦(𝑥) regarding an observable �̂� can be expressed as

𝑦(𝑥) = ⟨𝜓|𝑈 †
𝑃 (𝑥)�̂�𝑈𝑃 (𝑥)|𝜓⟩ ,

where 𝑈𝑃 (𝑥) = 𝑒−𝑖
𝑥
2
𝑃 with 𝑃 ∈ {𝑋, 𝑌, 𝑍}. The gradient of 𝑈𝑃 (𝑥) is given by

𝑑

𝑑𝑥
𝑈𝑃 (𝑥) = − 𝑖

2
𝑃𝑒−𝑖

𝑥
2
𝑃 = − 𝑖

2
𝑃𝑈𝑃 (𝑥) . (2.2)

12 2 Introduction to Quantum Computing

Using the product rule and (2.2), the derivative of 𝑦(𝑥) can be written as

𝑦′(𝑥) =
𝑖

2
⟨𝜓|𝑈 †

𝑃 (𝑃�̂� − �̂�𝑃)𝑈𝑃 |𝜓⟩ =
𝑖

2
⟨𝜓|𝑈 †

𝑃 [𝑃, �̂�]𝑈𝑃 |𝜓⟩ , (2.3)

where [𝑃, �̂�] = 𝑃�̂� − �̂�𝑃 is the commutator. For the unitary operator 𝑈𝑃 (𝑥) we
get the expression

𝑈𝑃

(︁
𝑥 = ±𝜋

2

)︁
= cos

(︁𝜋
4

)︁
𝐼 ∓ 𝑖 sin

(︁𝜋
4

)︁
𝑃 =

1√
2
(𝐼 ∓ 𝑖𝑃) .

Together with
𝑈 †
𝑃 (𝑥) = 𝑈𝑃 (−𝑥)

the mathematical identity

[𝑃,𝐵] = −𝑖
(︁
𝑈 †
𝑃

(︁𝜋
2

)︁
�̂�𝑈𝑃

(︁𝜋
2

)︁
− 𝑈 †

𝑃

(︁
−𝜋
2

)︁
�̂�𝑈𝑃

(︁
−𝜋
2

)︁)︁
can be derived. We combine this identity with Equation (2.3) to obtain

𝑦′(𝑥) =
1

2

(︁
⟨𝜓|𝑈 †

𝑃

(︁
𝑥+

𝜋

2

)︁
�̂�𝑈𝑃

(︁
𝑥+

𝜋

2

)︁
|𝜓⟩

− ⟨𝜓|𝑈 †
𝑃

(︁
𝑥− 𝜋

2

)︁
�̂�𝑈𝑃

(︁
𝑥− 𝜋

2

)︁
|𝜓⟩
)︁

=
1

2

(︁
𝑦
(︁
𝑥+

𝜋

2

)︁
− 𝑦

(︁
𝑥− 𝜋

2

)︁)︁
.

Here, we have found a method of determining the derivative of the expectation value
with respect to the parameter 𝑥. Only a few generalizations need to be made at this
point. So far, we have considered the simple case where 𝑥 occurs only at one place
in the quantum circuit. However, the parameter 𝑥 can also occur several times in
different gates in the same circuit. If we want to determine the total derivative of
𝑥, we have to include a sum according to the product rule. The total derivative is
described by the sum

𝑦′(𝑥) =
1

2

∑︁
𝑗

(︁
𝑦𝑗

(︁
𝑥+

𝜋

2

)︁
− 𝑦𝑗

(︁
𝑥− 𝜋

2

)︁)︁
,

where 𝑗 indicates the different gates where the parameter 𝑥 is included.
This parameter can additionally be embedded in an inner function 𝜙(𝑥). This inner
function must be considered according to the chain rule. The resulting derivative can
be expressed as

𝑦′(𝑥) =
1

2

∑︁
𝑗

(︁
𝑦𝑗

(︁
𝜙(𝑥) +

𝜋

2

)︁
− 𝑦𝑗

(︁
𝜙(𝑥)− 𝜋

2

)︁)︁
· 𝜙′(𝑥) .

3 Quantum Hardware 13

3 Quantum Hardware

Before discussing how qubits can be constructed, we review the general requirements
necessary to build a qubit. Most importantly, we need a physical system with two
distinguishable configurations corresponding to the computational states |0⟩ and |1⟩.
In the case of an atom, this is usually the ground state and the first excited state of
a valence electron. We can reliably distinguish these states because the ground state
and the excited state have two different energy values and therefore can be identified
with a measurement. Secondly, these states must be quantum mechanical in nature,
i.e., they must be quantum states expressing phenomena such as superposition and
entanglement. Finally, we need to consider that most quantum systems have more
states than just the two previously mentioned. Atoms, for example, have an infinite
number of energy states. However, we do not want our system to be in any of the
other states. To avoid this, we must have a system with non-uniform spacing between
energy levels. Thus, if we restrict ourselves to only interacting with the system with
the energy Δ𝐸 between our two chosen states, we will not go beyond the states that
define our qubit. In atoms, the non-uniform energy spacing is already inherent. In
other systems, such as superconducting qubits, this must be actively considered.

3.1 Introduction to Superconducting Qubits

One of the most widely used and well-researched approaches for building quantum
computers is the construction of superconducting qubits. This technology has pro-
gressed to the point where it has already entered the industry and many companies
have begun building superconducting quantum computers, as we will see later in the
example of IBM.
The fundamental effect that enables the construction of superconducting qubits is, as
the name suggests, superconductivity. This is a quantum phenomenon where below
a certain critical temperature the material transitions into a thermodynamic phase
where the electrical resistance disappears completely. Some electrical circuits with
superconducting wires cooled to temperatures of about 10 mK exhibit discrete energy

14 3 Quantum Hardware

levels, similar to the energy levels in atoms. The simplest way to construct an electri-
cal circuit that exhibits discrete energy levels is to combine a capacitor of capacitance
𝐶 and an inductor of inductance 𝐿, as shown in Figure 3.

𝐶 𝐿

Figure 3: Circuit diagram of an LC circuit with a capacitor of capacitance 𝐶 and an
inductor of inductance 𝐿.

This so-called LC circuit is an electrical circuit with an oscillating current at the
frequency

𝜔2 =
1

𝐿𝐶
.

This circuit has great importance in the classical world and is found in a great number
of technical devices from antennas to induction heaters. When this circuit is cooled
to a very low temperature with superconducting wires, this oscillation has discrete
energy levels, similar to the states in an atom. Unlike atoms, however, the energy
gaps between the different states are constant, which means that it is not possible to
address only two states. Fortunately, we can change this by integrating a Josephson
junction. A Josephson junction consists of a very thin piece of insulating material
between two superconducting metals. Electrons can tunnel through this junction
which reduces the current. If we replace the inductor with such a junction, the
energy levels of the superconducting circuit become unevenly spaced. Now, we have
a behavior similar to atomic states, which is ideal for the construction of a qubit.
Another requirement for a quantum computer is a controlled interaction with the
qubits. This can be realized by adding an additional gate capacitor with capacitance
𝐶𝑔 to the circuit, so that it can receive external signals. The circuit is shown in Figure
4.

3 Quantum Hardware 15

𝐶 Josephson

junction

𝐶𝑔

Figure 4: Circuit diagram of a superconducting qubit with an additional gate capacitor
with capacitance 𝐶𝑔 which is used to interact with the qubit.

To avoid disturbing the uneven energy spacing the capacitances 𝐶 and 𝐶𝑔 must be
fine-tuned. The regime that has been found to be ideal is called the transmon regime
and qubits in this regime are called transmon qubits or transmon in short. For these
qubits, we can use wavelengths in the microwave range to interact with the qubits
and implement single-qubit gates using finely adjusted microwave pulses.
Another challenge is the implementation of two-qubit gates. To obtain two two-qubit
gates, a coupling capacitor with capacitance 𝐶𝑐 connects two transmons. A schematic
illustration is shown in Figure 5.

𝐶𝑐

Transmon Transmon

Figure 5: Illustration of a coupling capacitor with capacitance 𝐶𝑐 between two trans-
mon qubits.

With this approach, we can implement two-qubit gates by applying microwave pulses
depending on the capacitance of the coupling capacitor.

16 3 Quantum Hardware

3.2 IBM Quantum System One Ehningen

The Ehningen-based IBM quantum computer is a System One device. Those devices
are the world’s first commercial, universal quantum computers. The quantum chip in
Ehningen is based on transmon qubits and is part of the chip-series called "Falcon".
The quantum device in Ehningen is reserved exclusively for utilization by the Fraun-
hofer Society and its collaborating partners. Its design is characterized by a modular,
compact structure optimized for stability and automatic calibration with the goal of
providing uninterrupted service.
The quantum computer is located in a 2.7m by 2.7m airtight enclosure crafted from
1.27-centimeter thick borosilicate glass. Independent aluminum and steel frames are
used to decouple the cryostat, control electronics and outer casing, which enhances
the system’s performance by reducing noise. The technical specifications for the
quantum system in Ehningen are shown in Table 1.

IBM Quantum System One Ehningen

Processor type Falcon r5.11

Basis Gates CX, ID, RZ, SX, X

Qubit number 27

Coherence time ≈ 150 us

Single qubit gate error ≈ 0.025%

Two qubit gate error ≈ 0.8%

Readout error ≈ 1%

CNOT gate time ≈ 300 ns

Quantum Volume 64

Table 1: Technical specifications of IBM Quantum System One Ehningen.

The times and error rates can vary and depend on the exact qubits on the chip. It
should also be noted that this chip, like all others in this series, does not have all-to-all
connectivity but only certain qubits are connected to each other and form a ring-like
structure. The exact structure of the connections is called a coupling map. The
coupling map for the IBM Quantum System One Ehningen is shown in Figure 6.

3 Quantum Hardware 17

0 1 4 7 10 12 15 18

6 17

21

2

3 5

13

23

24

26252219

209

1614118

Figure 6: Coupling map of IBM Quantum System One Ehningen.

However, all qubits can still be entangled with each other by applying additional
SWAP gates. Because these lead to additional errors, the exact choice of the qubits
is very important.

3.3 Noisy-Intermediate-Scale-Quantum Era

As can be seen in the previous example of the IBM Quantum System One, the current
state of quantum computing is defined by error-prone quantum processors of under
1000 qubits. This is the case not only for superconducting quantum computers but
also for all other existing technologies such as trapped-ion quantum computers [25].
To realize fault-tolerant quantum computers, error correction algorithms have to be
implemented. In these, several physical qubits are used to build a so-called logical
qubit. Those algorithms protect the logical qubits from any errors that occur in
the physical qubits. In order to implement qubit error correction, the errors of the
physical qubits have to be below a certain threshold. This property is described by
the threshold theorem [26].
However, the current processors are susceptible to environmental effects, have low
coherence times and high gate errors and therefore lack the ability to apply the
required quantum error correction algorithms. Those types of quantum computers
that have not yet reached a level of development suitable for fault tolerance can be
evaluated by their so-called quantum volume. It gives an overview of the number of
qubits and the fidelity of the gates [27]. John Preskill introduced the term Noisy-
Intermediate-Scale-Quantum (NISQ) era in 2018 to describe this transitional period
until fault-tolerant quantum computers can be constructed [15]. In recent years, there
has therefore been an increased search for algorithms that bring a quantum advantage
despite these limitations. There are strong indications that NISQ computers can
become useful [28]. However, much research is still needed in this area. Some
promising algorithms are described in the following chapter.

4 Quantum Circuit Learning 19

4 Quantum Circuit Learning

In this chapter, we will explain quantum circuit learning which is the main algorithm
for this work. This algorithm belongs to the class of variational quantum algorithms
which will be introduced first.

4.1 Introduction to Variational Quantum Algorithms

In recent years, much effort has been put into the development of suitable algorithms
for NISQ systems, with prominent candidates like the variational quantum eigen-
solver (VQE) [16] and the quantum approximate optimization algorithm (QAOA)
[17]. These algorithms and many more are so-called variational quantum algorithms
which are hybrid quantum-classical algorithms. In those algorithms, a cost function
of a parameterized quantum circuit is evaluated and the parameters of this circuit
are updated using classical optimizers to minimize the cost function. This process is
illustrated in Figure 7.

Output
𝑦(𝑥, 𝜃) =

⟨𝑥|𝑈†
2 (𝜃)�̂�𝑈2(𝜃))|𝑥⟩

Update
𝜃 → 𝜃′

𝑈2(𝜃)𝑈1(𝑥)

Quantum Classical

Variational CircuitState Preparation

Cost Function
𝐿(𝑦(𝑥, 𝜃))

Figure 7: Example of a quantum variational algorithm consisting of state preparation
𝑈1(𝑥) to initialize the state |𝑥⟩, the parameterized quantum circuit 𝑈2(𝜃),
measurement regarding some observable �̂�, classical processing and the
updating of the variational parameters. This cycle is repeated until a desired
accuracy is achieved.

20 4 Quantum Circuit Learning

As shown in Figure 7, a state preparation 𝑈1(𝑥) is performed to initialize a desired
state |𝑥⟩. This state can be problem-specific or it is the same for a specific algorithm.
Next, a parameterized quantum circuit 𝑈2(𝜃) is applied to the state. This can have
a variety of different architectures. Finally, an expectation value of this new state
⟨𝑥|𝑈 †

2(𝜃)�̂�𝑈2(𝜃)|𝑥⟩ = 𝑦(𝑥, 𝜃) is measured and processed classically. The state is
evaluated using a problem-specific cost function 𝐿(𝑦(𝑥, 𝜃)) and the variational pa-
rameters are adjusted accordingly to minimize its value.
As we have discussed in Chapter 3.3, NISQ computers are very prone to errors and
noise, which heavily affects the computations. Variational quantum algorithms can
adapt to these perturbations by optimizing parameters to achieve the most accurate
results possible, thus accounting for systematic errors. In addition, NISQ computers
have very limited qubit numbers and limited coherence times. As described previ-
ously, variational quantum algorithms are mostly based on hybrid approaches, com-
bining classical and quantum-based computations. Thus only smaller problems are
computed on the quantum computer which typically require fewer qubits and qubit
gates and can tolerate errors stemming from NISQ computers. Hence, variational
quantum algorithms are suited to efficiently use the limited resources to perform
useful computations. They are capable of solving complex problems with compact
circuits.

4.2 Quantum Circuit Learning

The quantum variational algorithm that will be investigated in this work is quantum
circuit learning (QCL) [20]. This algorithm can be applied to approximate functions.
The underlying idea is to encode a variable, which we call 𝑥, into the circuit. This
step is called data encoding and can take different forms. After the information about
the 𝑥-value is included in the circuit, a parameterized part is added as a next step
and then a measurement of an expectation value is performed. The expectation value
defines the function value 𝑦(𝑥).
To understand how specific functions 𝑓(𝑥) can be approximated so that the expecta-
tion value 𝑦(𝑥) ≈ 𝑓(𝑥), we focus on the example of a polynomial function. To start
with, we look at a simple example of a density matrix. As presented in Chapter 2.5,
the density matrix for the state |0⟩ can be expressed as

𝜌 = |0⟩ ⟨0| =

(︃
1 0

0 0

)︃
=

1

2

(︃
1 0

0 1

)︃
+

1

2

(︃
1 0

0 −1

)︃
=

1

2
(𝐼 + 𝑍) .

4 Quantum Circuit Learning 21

For our consideration, it makes sense to represent the density matrices with Pauli
operators. Now, we add a rotation around the y-axis

𝑅𝑌 (𝜃) =

(︃
cos 𝜃

2
− sin 𝜃

2

sin 𝜃
2

cos 𝜃
2

)︃
= cos

(︂
𝜃

2

)︂
𝐼 − 𝑖 · sin

(︂
𝜃

2

)︂
𝑌 .

The density matrix of the resulting state can be described as

𝜌′(𝜃) = 𝑅𝑌 (𝜃) · 𝜌 ·𝑅𝑌 (𝜃)
†

=
1

2
(𝐼 + sin(𝜃)𝑋 + cos(𝜃)𝑍)

=
1

2

(︂
𝐼 + sin(𝜃)𝑋 +

√︁
1− sin2(𝜃)𝑍

)︂
.

We choose 𝜃 = arcsin(𝑥) to eliminate the trigonometric parts of the function and
obtain

𝜌 = 𝜌′(arcsin(𝑥)) =
1

2

(︁
𝐼 + 𝑥𝑋 +

√
1− 𝑥2𝑍

)︁
. (4.1)

This results in the variable 𝑥 occurring in polynomial terms with an additional
√
1− 𝑥2-

term. With this, we have already completed a simple form of data encoding and the
𝑥-value is included in the quantum state. Up until now, we only regarded a single
qubit. However, it is possible to use multiple qubits to achieve functions with higher
orders.
Let us consider a system with 𝑁 qubits with the data encoding in (4.1) on every
qubit. With this, we obtain a tensor product of density matrices of the form

𝜌(𝑥) =
1

2𝑁

𝑁⨂︁
𝑖=1

(︁
𝐼 + 𝑥𝑋 +

√
1− 𝑥2𝑍

)︁
. (4.2)

To understand how we can use this expression to reach higher-order polynomials, we
write the density matrix for the case of 𝑁 = 2

𝜌(𝑥) =
1

4

2⨂︁
𝑖=1

(︁
𝐼 + 𝑥𝑋 +

√
1− 𝑥2𝑍

)︁
=

1

4

(︁
(𝐼 ⊗ 𝐼) +

√
1− 𝑥2(𝐼 ⊗ 𝑍) + 𝑥(𝐼 ⊗𝑋)

+
√
1− 𝑥2(𝑍 ⊗ 𝐼) + (1− 𝑥2)(𝑍 ⊗ 𝑍) + 𝑥

√
1− 𝑥2(𝑍 ⊗𝑋)

+ 𝑥(𝑋 ⊗ 𝐼) + 𝑥
√
1− 𝑥2(𝑋 ⊗ 𝑍) + 𝑥2(𝑋 ⊗𝑋)

)︁
=

1

4

(︁
(𝐼 ⊗𝑋 +𝑋 ⊗ 𝐼) 𝑥 + (𝐼 ⊗ 𝑍 + 𝑍 ⊗ 𝐼)

√
1− 𝑥2

+ (𝑋 ⊗𝑋 − 𝑍 ⊗ 𝑍) 𝑥2 + (𝑍 ⊗𝑋 +𝑋 ⊗ 𝑍) 𝑥
√
1− 𝑥2

+ (𝐼 ⊗ 𝐼 + 𝑍 ⊗ 𝑍)
)︁
.

22 4 Quantum Circuit Learning

We see that the tensor product creates a polynomial function with additional
√
1− 𝑥2-

terms up to the order of 𝑥𝑁 . To make use of the higher orders, we want to be able to
also measure them. For this purpose, we perform a measurement of the expectation
value

⟨𝐴⟩ = tr(𝜌(𝑥)𝐴) = 𝑦(𝑥) ,

with respect to an observable 𝐴. In the case of 𝑁 = 2, all functions 𝑦(𝑥) can be
described by the function

𝜉𝛼(𝑥) = 𝛼0 · 𝑥 + 𝛼1 ·
√
1− 𝑥2 + 𝛼2 · 𝑥2 + 𝛼3 · 𝑥 ·

√
1− 𝑥2 + 𝛼4 , (4.3)

with 𝜉𝛼(𝑥) ∈ [−1, 1]. This means that the expectation value 𝑦(𝑥) is a subset of
𝜉𝛼(𝑥). The function 𝜉𝛼(𝑥) will be called the "ansatz function".
In the end, we want the higher orders to be obtainable from the 𝑍 expectation value
of a single qubit. To make this possible, we need to perform additional operations
before the measurement. For this purpose, we implement multi-qubit gates. Those
multi-qubit gates introduce entanglement, which is necessary for the higher-order
terms to be transferred into a single-qubit observable. This means that if we entangle
all qubits, the higher orders of Equation (4.2) can be transferred to a single qubit
state.
For this reason, entangling gates in the form of controlled NOT gates are introduced.
The two-qubit case is shown in Figure 8.

|0⟩ 𝑅𝑌 (arcsin(𝑥))

|0⟩ 𝑅𝑌 (arcsin(𝑥))

Figure 8: Two-qubit circuit with 𝑅𝑌 (arcsin(𝑥))-encoding followed by a controlled
NOT gate.

In this work, circular entanglement is applied for more than two qubits, which can be
achieved with a linear chain of entanglement gates and an additional entanglement
gate between the first and the last qubit. In general, a variety of different entangle-
ment methods are possible. For example, the time evolution of an Ising Hamiltonian
can be used to create a highly entangled state [20]. However, in a large number of
experiments we have found that controlled NOT gates give good results. Addition-
ally, controlled NOT gates are part of the physical gate set (basis gates) of the IBM
Quantum System One Ehningen, where this algorithm will be tested on. Therefore,
this work does not focus on the analysis of different entanglement methods.

4 Quantum Circuit Learning 23

Next, we want to approximate specific functions 𝑓(𝑥). For this purpose, parameter-
ized rotational gates are introduced. This changes the states in such a way that the
expectation value 𝑦(𝑥), measured in the end, matches the desired function 𝑓(𝑥). The
structure of this parameterized part and how the parameters are determined will be
described in the following.
The parameterized part consists of a series of 𝜃-parameterized rotational gates, with
𝜃 = (𝜃0, 𝜃1, ..., 𝜃3𝑁−1)

𝑇 . The variational parameters are introduced to reach as much
of the functional space of Equation (4.3) as possible. The resulting circuit for two
qubits can be seen in Figure 9.

⟨𝑍⟩
|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2)

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5)

Figure 9: Two-qubit circuit with 𝑅𝑌 (arcsin(𝑥))-encoding followed by a controlled
NOT gate and 𝜃-parameterized x-, y- and z-rotations.

On each qubit, the 𝜃-parameterized part consists of a parameterized x-, y- and z-
rotation with 𝜃𝑖 ∈ [0, 2𝜋), which is sufficient to achieve any unitary single-qubit
operation apart from a global phase [22]. The specific choice of the rotational gates
allows multiple possibilities with the same effect. It is also possible to use an x-, z- and
additional x-rotation [20]. However, the arrangement described above has produced
the best results.
The first qubit’s 𝑍 expectation value is measured, defining the function value 𝑦(𝑥).
The selection of the qubit is arbitrary and does not affect the performance of the
algorithm. The goal is to obtain different expectation values 𝑦(𝑥) ∈ [−1, 1] for
𝑥 ∈ (−1, 1) of the form of (4.3) by changing 𝜃:

𝑦(𝑥) = 𝛼0(𝜃) · 𝑥+ 𝛼1(𝜃) ·
√
1− 𝑥2 + 𝛼2(𝜃) · 𝑥2 + 𝛼3(𝜃) · 𝑥 ·

√
1− 𝑥2 + 𝛼4(𝜃)

However, for the shallow circuit in Figure 9, it is not possible to achieve many varia-
tions of (4.3). This will be discussed in depth in Chapter 6.
To improve the ability to reach arbitrary functions, the entangling gates and the 𝜃-
parameterized gates are repeated multiple times up to a certain depth 𝐷. This is
shown in Figure 10.

24 4 Quantum Circuit Learning

𝐷 = 1 𝐷 = 2

. . .

. . .

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2)

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5)

Figure 10: Two-qubit circuit with 𝑅𝑌 (arcsin(𝑥))-encoding followed by blocks of a
controlled NOT gate and 𝜃-parameterized x-, y- and z-rotations. The
number of those blocks is defined as the depth 𝐷.

The same parameters 𝜃 are repeated with every block, therefore the number of pa-
rameters stays the same and depends only on the qubit number. The effect of the
depth is thoroughly discussed in Chapter 6.
To approximate a given function 𝑓(𝑥), the parameters 𝜃 have to be chosen accordingly.
However, the circuits are much too complicated to define the parameters analytically.
Therefore, they are determined with the help of a classical optimizer. For this pur-
pose, a cost function is defined, which is then minimized with the classical optimizer.
This process is called training. The cost function is evaluated at several points of the
function 𝑓(𝑥). These points are called training points. Up to a certain number, more
training points lead to a more accurate result but also to more computational effort.
The cost function that has shown to be the best suited for approximating functions
is

𝐿 =
∑︁
𝑖

||𝑓(𝑥𝑖)− 𝑦(𝑥𝑖)||2 , (4.4)

where 𝑦(𝑥) is the 𝑍 expectation value of the first qubit and
∑︀

𝑖 sums over a number
of training points. In such optimizations, random training points are often chosen
to prevent unwanted periodicity in the result. Aside from that, especially for poly-
nomials, the so-called Chebyshev nodes are a suitable choice for the position of the
training points because the resulting approximation minimizes the effect of Runge’s
phenomenon [29].
We have now described the process by which arbitrary functions can be approximated.
In the following chapter, function approximation with QCL will be tested with the help
of simulators.

5 Function Approximation: Simulations 25

5 Function Approximation: Simulations

The QCL method explained in Chapter 4.2 is the basis for approximating functions
with a polynomial ansatz. In the following, we consider simple examples, to test the
algorithm. Unwanted periodicity does not play a significant role here. Hence, for the
sake of simplicity, 20 equidistant training points are chosen. The starting parameters
for the classical optimizer are chosen randomly. Three simple examples with the
three-qubit circuit in Figure 10 with a depth 𝐷 = 3 and the cost function (4.4) on an
error-free simulator without shot noise (exact simulator) are shown in Figure 11.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
Training Points
Final Function

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
Training Points
Final Function

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
Training Points
Final Function

(c)

−1 −0.5 0 0.5 1

0

0.1

0.2

0.3

x

Er
ro

r

(d)

−1 −0.5 0 0.5 1

0

0.1

0.2

0.3

x

Er
ro

r

(e)

−1 −0.5 0 0.5 1

0

0.1

0.2

0.3

x

Er
ro

r

(f)

Figure 11: Function approximation on an exact simulator using 𝑅𝑌 (arcsin(𝑥)) data
encoding with a qubit number 𝑁 = 3 and a depth 𝐷 = 3 with 𝑓(𝑥) = 𝑥3

(a), 𝑓(𝑥) = 𝑥3 − 𝑥2 +1 (b) and 𝑓(𝑥) = sin(2𝑥) (c). The cost function is
evaluated on 20 equidistant training points and is minimized using SLSQP.
The initial function shows the circuit output with the randomly chosen
starting parameters. Additionally, in (d)-(f) the absolute values of the
respective errors are plotted.

The cost function is classically minimized using Sequential Least Squares Program-
ming (SLSQP) [30]. It can be seen that it is possible to approximate functions with

26 5 Function Approximation: Simulations

the QCL method. However, for more complex functions, there are strong deviations,
which become evident in the error plots. To improve the approximation, a classical
parameter 𝜎0 is introduced

𝐿 =
∑︁
𝑖

||𝑓(𝑥𝑖)− 𝑦(𝑥𝑖) · 𝜎0||2 . (5.1)

As an additional classical post-processing step, this parameter is multiplied by the z
expectation value 𝑦(𝑥). In addition to improving the results, the classical parameter
changes the value range to 𝑦(𝑥) · 𝜎0 ∈ R and the approximations are no longer
limited to functions with 𝑓(𝑥) ∈ [−1, 1]. The same functions from Figure 11 are
approximated with the new classical parameter 𝜎0. The resulting plots are shown in
Figure 12.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Final Function
Initial Function
Training Points

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Final Function
Initial Function
Training Points

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Final Function
Initial Function
Training Points

(c)

−1 −0.5 0 0.5 1

0

1

2

3

4

·10−2

x

Er
ro

r

(d)

−1 −0.5 0 0.5 1

0

1

2

3

4

·10−2

x

Er
ro

r

(e)

−1 −0.5 0 0.5 1

0

1

2

3

4

·10−2

x

Er
ro

r

(f)

Figure 12: Function approximation on an exact simulator with a classical parameter
𝜎0 using 𝑅𝑌 (arcsin(𝑥)) data encoding with a qubit number 𝑁 = 3 and a
depth 𝐷 = 3 with 𝑓(𝑥) = 𝑥3 (a), 𝑓(𝑥) = 𝑥3 − 𝑥2 + 1 (b) and 𝑓(𝑥) =
sin(2𝑥) (c). The cost function is evaluated on 20 equidistant training
points and is minimized using SLSQP. The initial function shows the circuit
output with the randomly chosen starting parameters. Additionally, in (d)-
(f) the absolute values of the respective errors are plotted.

This significantly improves the ability to approximate more complicated functions.
The errors are considerably reduced. The reasons for this improvement are discussed
in more detail in Chapter 6. The magnitude of the errors is so small, that in the case
of an execution on a real quantum computer, shot noise would far overshadow these

5 Function Approximation: Simulations 27

errors. Thus, the goal of this algorithm is to approximate the qualitative behavior of
the functions and not to achieve an accuracy that comes close to classical methods.

5.1 Different Data Encoding Schemes

Up until this point, we only looked at the data encoding scheme in the form of
𝑅𝑌 (arcsin(𝑥)) rotations to generate a polynomial ansatz function with additional√
1− 𝑥2-terms [20]. This data encoding scheme is therefore also best suited to

approximate polynomial functions.
Different circuits that generate different ansatz functions can be implemented, making
them better suited for certain problems. Very complex approaches are possible, such
as Chebyshev feature maps [21], which form a complete set of independent functions
and make it possible to approximate a large number of functions with a relatively
small number of qubits. Due to this high complexity, however, such functions can
lead to overfitting, especially if noise is introduced. Overfitting is an undesirable
behavior in variational algorithms that occurs when the algorithm provides accurate
predictions for training data but not for new data. In the case of QCL, it means that
the function approximation matches very well at the position of the training points,
but deviates significantly from the desired function between those points. In addition,
the optimization process for very complicated ansatz functions like Chebyshev feature
maps takes notably longer. We therefore focus on simpler data encoding schemes like
the 𝑅𝑌 (arcsin(𝑥)) rotations explained before.
Another very simple example, which we have not considered so far, can be seen in
Figure 13.

. . .

. . .

|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2)

|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5)

Figure 13: Two-qubit circuit with 𝑅𝑌 (𝑥)-encoding followed by a controlled NOT gate
and 𝜃-parameterized x-, y- and z-rotations.

Here, the data encoding consists of just y-rotations according to the 𝑥-value and no
function 𝜙(𝑥) is included. Analogous to the explanation in Chapter 4.2, by introducing
multiple qubits, the tensor product results in a higher-order ansatz function. For the
example of two qubits the ansatz function can be expressed as

𝜉𝛽(𝑥) = 𝛽0 + 𝛽1 · sin(𝑥) + 𝛽2 · cos(𝑥) + 𝛽3 · sin(2𝑥) + 𝛽4 · cos(2𝑥) , (5.2)

28 5 Function Approximation: Simulations

with 𝜉𝛽(𝑥) ∈ [−1, 1]. Again, the first qubit’s 𝑍 expectation value 𝑦(𝑥) is a subset of
𝜉𝛽(𝑥).
The variational part allows us to get arbitrary functions 𝑦(𝑥) ∈ [−1, 1] with 𝑥 ∈ R
of the form of (5.2). Like before, a classical parameter 𝜎0 as introduced in (5.1) is
multiplied by 𝑦(𝑥), which changes the value range to 𝑦(𝑥) · 𝜎0 ∈ R. Due to the
trigonometric ansatz function, this circuit is expected to perform better in approxi-
mating trigonometric functions. Three simple examples with a qubit number 𝑁 = 3

and a depth 𝐷 = 3 are shown in Figure 14.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
Training Points
Final Function

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
Training Points
Final Function

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
Training Points
Final Function

(c)

−1 −0.5 0 0.5 1

0

1

2

3

·10−2

x

Er
ro

r

(d)

−1 −0.5 0 0.5 1

0

1

2

3

·10−2

x

Er
ro

r

(e)

−1 −0.5 0 0.5 1

0

1

2

3

·10−2

x

Er
ro

r

(f)

Figure 14: Function approximation on an exact simulator using 𝑅𝑌 (𝑥) data encoding
with a qubit number 𝑁 = 3 and a depth 𝐷 = 3 with 𝑓(𝑥) = 𝑥3 (a),
𝑓(𝑥) = 𝑥3 − 𝑥2 +1 (b) and 𝑓(𝑥) = sin(2𝑥) (c) with a classical parameter
𝜎0. The cost function is evaluated on 20 equidistant training points and
is minimized using SLSQP. The initial function shows the circuit output
with the randomly chosen starting parameters. Additionally, in (d)-(f) the
absolute values of the respective errors are plotted.

It can be seen that this ansatz is indeed more suited for trigonometric functions which
results in lower errors.
In general, arbitrary encoding schemes can be used. Those encoding schemes can be
tailored to specific problems. For example, a polynomial ansatz and a trigonometric
ansatz can be combined to obtain a combination of polynomial and trigonometric
ansatz functions. Such a circuit can be seen in Figure 15.

5 Function Approximation: Simulations 29

. . .

. . .

|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(arcsin(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2)

|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(arcsin(𝑥)) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5)

Figure 15: Two-qubit circuit with 𝑅𝑌 (𝑥)- and 𝑅𝑋(arcsin(𝑥))-encoding followed by a
controlled NOT gate and 𝜃-parameterized x-, y- and z-rotations.

This example can be advantageous for more complex functions without having an
overcomplicated ansatz and being prone to overfitting. An exemplary function, where
this ansatz is advantageous, is the solution of a damped harmonic oscillator. This
differential equation will be solved later in Chapter 9.3. For now, we only focus on the
solution. With the conditions defined in Chapter 9.3, the solution of the differential
equation is

𝑓(𝑥) = cos(6𝑥)𝑒−𝑥 . (5.3)

The approximated function with 𝑁 = 4 and 𝐷 = 4 can be seen for different data
encoding schemes in Figure 16. The number of training points is chosen to be 20.

−0.5 0 0.5
−2

−1

0

1

2

3

x

f(
x)

Initial Function
Training Points
Final Function

(a)

−0.5 0 0.5
−2

−1

0

1

2

3

x

f(
x)

Initial Function
Training Points
Final Function

(b)

−0.5 0 0.5
−2

−1

0

1

2

3

x

f(
x)

Initial Function
Training Points
Final Function

(c)

−0.5 0 0.5

0

0.1

0.2

x

Er
ro

r

(d)

−0.5 0 0.5

0

0.1

0.2

x

Er
ro

r

(e)

−0.5 0 0.5

0

0.1

0.2

x

Er
ro

r

(f)

Figure 16: Function approximation of 𝑓(𝑥) given in (5.3) on an exact simulator us-
ing 𝑅𝑌 (arcsin(𝑥)) rotations (a), 𝑅𝑌 (𝑥) rotations (b) and 𝑅𝑌 (𝑥) and
𝑅𝑋(arcsin(𝑥)) rotations (c) with a qubit number 𝑁 = 4 and a depth
𝐷 = 4. The cost function is evaluated on 20 equidistant training points
and is classically minimized using SLSQP. Additionally, in (d)-(f) the ab-
solute values of the respective errors are plotted.

For the previously described combination of 𝑅𝑌 (𝑥) and 𝑅𝑋(arcsin(𝑥)) rotations, the

30 5 Function Approximation: Simulations

lowest error is observed. This is because both rotations play an important role here.
The trigonometric part of the ansatz function can approximate the cosine well and
the polynomial part of the ansatz function is better suited to model the exponential
decay.

5.2 Multi Qubit Measurements

Until now, we have only used the 𝑍 expectation value of the first qubit to approximate
one function. However, we found that it is possible to use the expectation values of
different qubits to train different functions on the same circuit. Until now, this area
was unexplored, lacking any existing literature addressing this possibility. Simulations
are shown in Figure 17 for different functions on a circuit with a qubit number of
𝑁 = 3, a depth of 𝐷 = 3 and 30 equidistant training points.

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

x

f(
x)

Training Points 𝑓1(𝑥)
Training Points 𝑓2(𝑥)
Final Function Qubit 0
Final Function Qubit 1

(a)

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

x

f(
x)

Training Points 𝑓3(𝑥)
Training Points 𝑓4(𝑥)
Final Function Qubit 0
Final Function Qubit 1

(b)

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

x

f(
x)

Training Points 𝑓5(𝑥)
Training Points 𝑓6(𝑥)
Final Function Qubit 0
Final Function Qubit 1

(c)

−1 −0.5 0 0.5 1

0

0.02

0.04

0.06

x

Er
ro

r

Error Qubit 0
Error Qubit 1

(d)

−1 −0.5 0 0.5 1

0

0.02

0.04

0.06

x

Er
ro

r

Error Qubit 0
Error Qubit 1

(e)

−1 −0.5 0 0.5 1

0

0.02

0.04

0.06

x

Er
ro

r

Error Qubit 0
Error Qubit 1

(f)

Figure 17: Function approximation of two different functions on an exact simulator
using 𝑅𝑌 (arcsin𝑥) data encoding with a qubit number 𝑁 = 3 and a depth
𝐷 = 3 with 𝑓1(𝑥) = 𝑥 and 𝑓2(𝑥) = 𝑥2 (a), 𝑓3(𝑥) = 𝑥2 and 𝑓4(𝑥) = 𝑥3

(b) and 𝑓5(𝑥) = 𝑥3−𝑥2+1 and 𝑓6(𝑥) = 𝑥3 (c) with a classical parameter
𝜎0. The cost function is evaluated on 30 equidistant training points and
is minimized using SLSQP. Additionally, in (d)-(f) the absolute values of
the respective errors are plotted.

Important conclusions can be drawn from these results. They indicate that we have
sufficient variational parameters to approximate multiple functions simultaneously.
However, it should be noted that in variational algorithms, an unnecessarily large

5 Function Approximation: Simulations 31

number of variational parameters is usually undesirable, as the optimization with a
larger number of variational parameters becomes more computationally expensive. In
this particular quantum algorithm, however, reducing the number of variational pa-
rameters turns out to be difficult, since these parameters are necessary to approximate
complicated functions. Nevertheless, the ability to approximate multiple polynomials
opens up potentially important applications. This effect will be revisited in Chapter
9.4 to successfully solve coupled differential equations with a single circuit.

6 Expressibility 33

6 Expressibility

To understand what expressibility means in the context of function approximations,
we look again at the ansatz function

𝜉𝛼(𝑥) = 𝛼0 · 𝑥+ 𝛼1 ·
√
1− 𝑥2 + 𝛼2 · 𝑥2 + 𝛼3 · 𝑥 ·

√
1− 𝑥2 + 𝛼4 (6.1)

introduced in Chapter 4.2 for 𝑅𝑌 (arcsin(𝑥)) data encoding. This function is con-
strained by

𝜉𝛼(𝑥) ∈ [−1, 1]. (6.2)

The expressibility, as we define it, describes which part of the functional space of
𝜉𝛼(𝑥) can be reached with the first qubit’s 𝑍 expectation value 𝑦(𝑥) of a certain
parameterized circuit. As mentioned before, this depends strongly on the depth 𝐷,
but additional factors also play an important role. We will now implement a method
that can be used to estimate the expressibility of small circuits.
Randomly chosen parameters 𝜃 result in a random function of the form of the ansatz
function (6.1). Those randomly generated functions can be subsequently fitted with
this ansatz function using the least square method which is explained in Appendix
B. With this approach, it is possible to compare different circuits in their ability to
approximate as many different functions as possible.
To visualize the expressibility, the correlations of the fit parameters 𝛼0-𝛼4 are plotted.
The parameter correlations for the example of 𝑅𝑌 (arcsin(𝑥)) data encoding can be
seen for𝑁 = 2 and different depths𝐷 in Figure 18. To make the graph more readable,
the density of 1000 random parameter correlations is plotted. It is expected that the
parameter correlations are limited because of the condition in (6.2) alone. However,
the plots clearly show that many parameter correlations are limited beyond that.
Thus, only a small part of the possible functions in Equation (6.1) can be obtained
with a measurement. This improves, however, when the depth is increased. A depth
of about 𝐷 = 4 seems to be ideal since a further increase only slightly enhances
the expressibility. This also shows why it is so important to add another classical
parameter, as shown in Equation (5.1). This parameter gives another degree of
freedom, allowing all combinations for a depth greater than 𝐷 = 2. However, certain
combinations are still difficult to obtain and require many optimization steps. To
understand why it can be very difficult to achieve certain functions with these circuits,

34 6 Expressibility

one must look at the influence of the variational parameters. Consider the example in
Figure 10, where we have already introduced the ansatz function in (4.3). Here, the
observed behavior stems from the fact that each of these function parameters 𝛼0 to
𝛼4, depends on a large number of variational parameters 𝜃 in the circuit. To change
a single one of the function parameters 𝛼0 to 𝛼4, many variational parameters 𝜃 must
be changed, which in turn changes all other function parameters. It is therefore this
complicated interplay of parameters, that makes the optimization so computationally
expensive.
This behavior also explains the nature of the error plots. Due to the previously
described behavior of the parameters, it is very unlikely to end up with only the
desired function even for a simple function like 𝑓(𝑥) = 𝑥3, as seen in Figure 12 (d).
There will always remain small proportions of different functions that lead to the
unique structures of the error plots. It is important to take into consideration that
the execution of this algorithm on a real quantum computer inevitably introduces
shot noise, effectively overshadowing these minor errors. Hence, it is crucial to not
overemphasize the significance of these errors.
Next, we look at another data encoding scheme. For the circuit in Figure 13, 𝑅𝑌 (𝑥)

is used for data encoding. For this example, as introduced in Chapter 5.1, the ansatz
function can be expressed as

𝜉𝛽(𝑥) = 𝛽0 · sin(𝑥) + 𝛽1 · cos(𝑥) + 𝛽2 · sin(2𝑥) + 𝛽3 · cos(2𝑥) + 𝛽4 , (6.3)

with
𝜉𝛼(𝑥) ∈ [−1, 1].

Here, the same procedure as described in the previous example is applied and the
parameter correlations for a qubit number 𝑁 = 2 and a depth of 𝐷 = 4 are shown
in Figure 19. Analogous to before, the plots show that many parameter correlations
are limited. This means that in the case of 𝑅𝑌 (𝑥) data encoding, it is also important
to add a classical parameter 𝜎0. Looking at this figure and Figure 18, a pattern
emerges. It seems that higher frequencies or higher-order polynomials are harder to
achieve. This behavior ensures that this algorithm does not tend to overfit since
overfitting is mostly due to unwanted higher orders/frequencies, which are suppressed
here. Whether this effect leads to an advantage in more complex problems cannot be
answered in general.
In this work, we only considered repeating parameters in the form of three different
parameterized rotations. In Appendix A alternative methods are discussed.

6 Expressibility 35

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(a) 𝐷 = 1

high density

low density

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(b) 𝐷 = 2

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(c) 𝐷 = 3

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(d) 𝐷 = 4

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(e) 𝐷 = 5

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(f) 𝐷 = 10

Figure 18: Parameter correlations of the circuit in Figure 10 with a qubit number
𝑁 = 2 and different depths 𝐷 after fitting the 𝑍 expectation value 𝑦(𝑥)
with the function given in (6.1) for 1000 random parameters 𝜃 using the
least square method. For readability, one-dimensional lines are slightly
broadened to be visible in the plots.

36 6 Expressibility

high density

low density

−1

−0.5

0

0.5

1

𝛽1

−1

−0.5

0

0.5

1

𝛽2

−1

−0.5

0

0.5

1

𝛽3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛽0

𝛽4

−1−0.5 0 0.5 1

𝛽1
−1−0.5 0 0.5 1

𝛽2
−1−0.5 0 0.5 1

𝛽3

Figure 19: Parameter correlations of the circuit in Figure 13 with a qubit number
𝑁 = 2 and a depth of 𝐷 = 4 after fitting the 𝑍 expectation value 𝑦(𝑥)
with the function given in (6.3) for 1000 random parameters 𝜃 using the
least square method.

7 Function Approximation: Real Quantum Computer 37

7 Function Approximation: Real Quantum Computer

The function approximation is now also performed on the quantum computer "IBM
Quantum System One Ehningen" which was introduced in Chapter 3.2. In the liter-
ature so far, the algorithm was executed with an exact simulator and the circuit with
the final parameters was run on a real quantum computer [31]. In this work, for the
first time, not one circuit with the final parameters but the full algorithm is executed
on a real quantum computer. This means that every circuit evaluation is run on a real
quantum computer. The previously utilized optimizer SLSQP is deliberately not used
here, since the calculation of the gradient, inherent to the SLSQP optimizer, becomes
too inaccurate with shot noise. For this application, Constrained Optimization BY
Linear Approximation (COBYLA) [32] proves to be the most suitable. The results
for the same functions used in Figure 12 are shown in Figure 20 on the IBM Quan-
tum System One Ehningen. It is evident that the approximation can be successfully
performed on a real quantum computer. In this example, the method succeeds in ap-
proximating the two polynomials very precisely. Hence, it is not necessary to let the
optimization process continue since the error prevailing at the end is primarily due to
the shot noise. In the case of the sine function, the approximation obtained is subject
to greater inaccuracies since this function is not easily represented by polynomials.
Nevertheless, it is possible to determine the qualitative behavior of the sine function
on the quantum computer. This result can theoretically be improved by a higher shot
number, which, however, prolongs the optimization. The algorithm already takes a
long time with the chosen shot number of 2000. Although the number of function
evaluations is very small, the execution of the examples shown here takes several hours
(e.g. ≈ 7 h for 𝑓1(𝑥)). A large part of this is due to the classical optimization, but
the execution on the quantum computer also takes a long time. The results shown
here are still very promising since it has been demonstrated for the first time that this
algorithm can be executed on today’s quantum computers and is thus highly relevant
for the NISQ era.

38 7 Function Approximation: Real Quantum Computer

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
𝑓1(𝑥)
Final Function

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
𝑓2(𝑥)
Final Function

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

Initial Function
𝑓3(𝑥)
Final Function

(c)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

(d)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

(e)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

(f)

0 20 40 60

10−2

10−1

100

101

Cost Function Evaluations

To
ta

lC
os

t

(g)

0 10 20 30 40 50 60

10−2

10−1

100

101

Cost Function Evaluations

To
ta

lC
os

t

(h)

0 10 20 30 40

10−2

10−1

100

101

Cost Function Evaluations

To
ta

lC
os

t

(i)

Figure 20: Function approximation on the IBM Quantum System One Ehningen of
𝑓1(𝑥) = 𝑥3 (a), 𝑓2(𝑥) = 𝑥3 − 𝑥2 + 1 (b) and 𝑓3(𝑥) = sin(2𝑥) (c) with
𝑅𝑌 (arcsin(𝑥)) rotations for data encoding, a qubit number of 𝑁 = 3, 10
equidistant training points and 2000 shots. The parameters are classically
optimized with COBYLA. The depth is chosen to be 𝐷 = 2 for 𝑓1(𝑥) and
𝐷 = 3 for 𝑓2(𝑥) and 𝑓3(𝑥). Additionally, in (d)-(f) the absolute values of
the respective errors are plotted and in (g)-(i) the respective values of the
cost function versus the number of cost function evaluations are shown.

8 Parameter Shift Rule 39

8 Parameter Shift Rule

As derived in Chapter 2.6 the parameter shift rule is described by

𝑦′(𝑥) =
1

2

∑︁
𝑗

(︁
𝑦𝑗

(︁
𝜙(𝑥) +

𝜋

2

)︁
− 𝑦𝑗

(︁
𝜙(𝑥)− 𝜋

2

)︁)︁
· 𝜙′(𝑥)

and can be used to calculate the derivative of the expectation value 𝑦(𝑥) of any
parameterized circuit, where 𝜙(𝑥) is the inner function that encodes the 𝑥-values
in the circuit and 𝑗 indicates the different gates with the parameter 𝑥. A simple
three-qubit circuit is depicted in Figure 21.

. . .

. . .

. . .

|0⟩ 𝑅𝑌 (𝜙(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2)

|0⟩ 𝑅𝑌 (𝜙(𝑥)) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5)

|0⟩ 𝑅𝑌 (𝜙(𝑥)) 𝑅𝑋(𝜃6) 𝑅𝑌 (𝜃7) 𝑅𝑍(𝜃8)

Figure 21: Three-qubit circuit with 𝑅𝑌 (𝜙(𝑥))-encoding followed by three controlled
NOT gates to achieve circular entanglement and 𝜃-parameterized x-, y-
and z-rotations.

The parameter shift rule can also be used to determine the derivative of the 𝑍

expectation value 𝑦(𝑥) of the first qubit, which is the basis for the algorithm in this
work. To determine the derivative of this circuit, six additional circuit evaluations are
needed. The full derivative can be expressed as

𝜕𝑦(𝑥)

𝜕𝑥
=

1

2
(𝑦𝑞0(𝜙(𝑥) +

𝜋
2
)− 𝑦𝑞0(𝜙(𝑥)− 𝜋

2
)

+ 𝑦𝑞1(𝜙(𝑥) +
𝜋
2
)− 𝑦𝑞1(𝜙(𝑥)− 𝜋

2
)

+ 𝑦𝑞2(𝜙(𝑥) +
𝜋
2
)− 𝑦𝑞2(𝜙(𝑥)− 𝜋

2
)) · 𝜙′(𝑥) ,

where 𝑦𝑞𝑖(𝜙(𝑥) ± 𝜋
2
) represents the 𝑍 expectation value 𝑦(𝑥) with the input of the

data encoding gate of the 𝑖th qubit being shifted by ±𝜋
2
. The data encoding layers

of those six additional circuit evaluations are shown in Figure 22.

40 8 Parameter Shift Rule

. . .

. . .

. . .

. . .

. . .

. . .

|0⟩ 𝑅𝑌

(︀
𝜙(𝑥) + 𝜋

2

)︀
|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌

(︀
𝜙(𝑥)− 𝜋

2

)︀
|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌 (𝜙(𝑥))

. . .

. . .

. . .

. . .

. . .

. . .

|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌

(︀
𝜙(𝑥) + 𝜋

2

)︀
|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌

(︀
𝜙(𝑥)− 𝜋

2

)︀
|0⟩ 𝑅𝑌 (𝜙(𝑥))

. . .

. . .

. . .

. . .

. . .

. . .

|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌

(︀
𝜙(𝑥) + 𝜋

2

)︀

|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌 (𝜙(𝑥))

|0⟩ 𝑅𝑌

(︀
𝜙(𝑥)− 𝜋

2

)︀
Figure 22: The data encoding layers of the six additional circuit evaluations required

for the parameter shift rule of the example in Figure 21.

In general, the calculation of the first derivative requires 2𝑀 circuit evaluations,
where 𝑀 is the number of gates with the variable 𝑥. The second derivative can be
determined by a further parameter shift on all gates. Therefore, the second derivative
requires 4𝑀2− 2𝑀 circuit evaluations. This means that for the example in Figure 9,
the second derivative would require 4𝑀2 − 2𝑀 = 4𝑁2 − 2𝑁 = 30 additional circuit
evaluations. One powerful aspect of employing the parameter shift rule for these
derivatives is that it yields the exact derivative and not an approximation like many
classical methods do. An example with 𝜙(𝑥) = arcsin(𝑥) on an exact simulator can be
seen in Figure 23. Here the optimized parameters from the example shown in Figure
12 (a) are employed. Since the derivative of the inner function 𝜙(𝑥) = arcsin(𝑥) is
needed, which diverges for 𝑥 = −1 and 𝑥 = 1, a value range of 𝑥 ∈ [-0.9,0.9] is
chosen in this example.

8 Parameter Shift Rule 41

−0.5 0 0.5

−1

−0.5

0

0.5

1

x

f(
x)

f(x)
Final Function

(a)

−0.5 0 0.5

0

1

2

3

x

f(
x)

f ’(x)
First Derivative

(b)

−0.5 0 0.5

−5

0

5

x

f(
x)

f”(x)
Second Derivative

(c)

−0.5 0 0.5

0

0.02

0.04

0.06

0.08

x

Er
ro

r

(d)

−0.5 0 0.5

0

0.02

0.04

0.06

0.08

x

Er
ro

r

(e)

−0.5 0 0.5

0

0.02

0.04

0.06

0.08

x

Er
ro

r

(f)

Figure 23: Derivatives obtained with the parameter shift rule on an exact simulator
using the first example from Figure 12 (a) with the function 𝑓(𝑥) = 𝑥3 (a),
the first derivative 𝑓 ′(𝑥) = 3𝑥2 (b) and the second derivative 𝑓 ′′(𝑥) = 6𝑥
(c). Additionally, in (d)-(f) the absolute values of the respective errors are
plotted.

With this procedure, arbitrary derivatives can be calculated. The figure shows in-
creased errors for the derivatives. However, this is not due to an error caused by the
differentiation, since the parameter shift rule yields the exact derivative, but due to
inaccuracies of the original function approximation in the example from Figure 12 (a).
However, the increased circuit evaluations on a real quantum computer lead to in-
creased errors. Figure 24 shows the results of the IBM quantum computer in Ehnin-
gen. Again, the parameters obtained with an exact simulation in the example from
Figure 12 (a) are used and the circuit is evaluated on 10 points. It can be seen
that although the qualitative behavior of the derivatives can be determined, there
are very significant differences, especially in the areas close to 𝑥 = −1 and 𝑥 = 1.
When we go into the realm of differential equations, these derivatives become very
important. Solving these differential equations on a real quantum computer therefore
involves large errors. Hence, in the following chapters, we will focus more on exact
simulations.

42 8 Parameter Shift Rule

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f(
x)

f(x)
Final Function

(a)

−1 −0.5 0 0.5 1

0

1

2

3

x

f(
x)

f ’(x)
First Derivative

(b)

−1 −0.5 0 0.5 1

−5

0

5

x

f(
x)

f”(x)
Second Derivative

(c)

-1 -0.5 0 0.5 1
0

1

2

x

Er
ro

r

(d)

-1 -0.5 0 0.5 1
0

1

2

x

Er
ro

r

(e)

-1 -0.5 0 0.5 1
0

1

2

x

Er
ro

r

(f)

Figure 24: Derivatives obtained with the parameter shift rule on the real IBM quantum
computer in Ehningen with 1024 shots using the first example from Figure
12 with the function 𝑓(𝑥) = 𝑥3 (a), the first derivative 𝑓 ′(𝑥) = 3𝑥2 (b)
and the second derivative 𝑓 ′′(𝑥) = 6𝑥 (c). Additionally, in (d)-(f) the
absolute values of the respective errors are plotted.

9 Differential Equations: Simulations 43

9 Differential Equations: Simulations

The previously explained parameter shift rule allows us to determine arbitrary deriva-
tives of the expectation value 𝑦(𝑥). Instead of using it to obtain the derivative of
an already trained function, the derivative terms can also be integrated directly into
the cost function. This capacity to include derivatives into the cost function opens
up the potential for solving differential equations. These circuits were coined as dif-
ferentiable quantum circuits (DQCs) [21]. In this chapter, we delve deeper into this
methodology, improving it through insights gathered in the earlier chapters. Fur-
thermore, we conduct a comprehensive comparison of this approach against different
quantum algorithms for solving differential equations, providing a thorough discussion
of its strengths and weaknesses. First, however, we focus on a simple example to
understand how DQCs work.

9.1 Logistic Differential Equation

A simple example of a differential equation is the so-called logistic differential equa-
tion ⎧⎨⎩𝑢

′(𝑥) = 𝑘 · 𝑢(𝑥)(𝐺− 𝑢(𝑥)) ,

𝑢(0) = 𝑢0 ,
(9.1)

where 𝑘 is the growth constant and 𝐺 is the limit for the function value. The solution
is the logistic function

𝑢(𝑥) = 𝐺 · 1

1 + 𝑒−𝑘𝐺𝑥(𝐺
𝑢0

− 1)
.

This function describes a representation of saturation processes and has a multitude
of applications in many fields of science. To be able to solve the logistic differential
equation with DQCs the cost function

𝐿 =
∑︁
𝑖

(︁
|𝑢′(𝑥𝑖)− 𝑘𝑢(𝑥𝑖)(𝐺− 𝑢(𝑥𝑖))|2 + 𝜇 · |𝑢(0)− 𝑢0|2

)︁
is defined, where 𝑖 sums over the training points 𝜇 is a problem specific weight factor
and 𝑢(𝑥𝑖) = 𝑦(𝑥𝑖) · 𝜎0. As described in Chapter 4.2, 𝑦(𝑥𝑖) is the z expectation value

44 9 Differential Equations: Simulations

of the first qubit.
The weight factor 𝜇 penalizes any deviation from the boundary condition in the
cost function 𝐿. The advantage here is that any number of arbitrary boundary
conditions can be included. A disadvantage is that the optimal weight factor 𝜇
is problem-specific and must be found by trial and error for every new problem.
Another possibility is the so-called floating boundary handling [21]. Here the boundary
condition is not included as a penalty term in the cost function, but the whole function
is shifted along the y-axis after the measurement so that the boundary condition is
fulfilled. This has the great advantage that the boundary condition is always exactly
matched. Additionally, no suitable weight factor must be determined. However,
with this method, it is only possible to consider one boundary condition of the form
𝑢(𝑥0) = 𝑢0. Multiple boundary conditions or boundary conditions that apply to a
derivative are not implementable. Therefore, the method described first is applied in
this work.
To solve the logistic differential equation a circuit with 𝑁 = 4 and 𝐷 = 4 is used.
Here, a combination of 𝑅𝑌 (𝑥)- and 𝑅𝑋(arcsin(𝑥))-encoding is used, as introduced
in Figure 15. This circuit can be seen in Figure 25.

4×

⟨𝑍⟩
|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(arcsin(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2)

|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(arcsin(𝑥)) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5)

|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(arcsin(𝑥)) 𝑅𝑋(𝜃6) 𝑅𝑌 (𝜃7) 𝑅𝑍(𝜃8)

|0⟩ 𝑅𝑌 (𝑥) 𝑅𝑋(arcsin(𝑥)) 𝑅𝑋(𝜃9) 𝑅𝑌 (𝜃10) 𝑅𝑍(𝜃11)

Figure 25: Four-qubit DQC with 𝑅𝑌 (𝑥)- and 𝑅𝑋(arcsin(𝑥))-encoding and a mea-
surement of the 𝑍 expectation value of the first qubit.

Since the derivative is obtained with the parameter shift rule, the circuit must be
executed several times with shifts in the data encoding, as explained in Chapter 8.
We use this circuit to solve the logistic differential equation for 𝐺 = 1, 𝑘 = 5 and
the boundary condition 𝑢0 = 1

2
. The result for a weight factor 𝜇 = 10 and 20

equidistant training points is shown in Figure 26. The 𝑥-value range is chosen to be
𝑥 ∈ [−0.9, 0.9] because the derivative of 𝜙(𝑥) = arcsin(𝑥) is not differentiable at
𝑥 = −1 and 𝑥 = 1.

9 Differential Equations: Simulations 45

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

u(
x)

Initial Function
Training Points
Final Function

(a)

−0.5 0 0.5

0

2

4

6
·10−3

x

Er
ro

r

(b)

0 400 800 1200

10−1

101

103

105

107

109

1011

Cost Function Evaluations

To
ta

lC
os

t

(c)

Figure 26: (a) Solution of the differential Equation (9.1) with 𝜇 = 10, 𝑁 = 4,
𝐷 = 4 and 20 equidistant training points using DQCs with 𝑅𝑌 (𝑥) and
𝑅𝑋(arcsin(𝑥)) rotations for data encoding. (b) The absolute values of the
error. (c) Values of the cost function versus the number of cost function
evaluations.

The final result matches the solution very well with a very small error. However, a
lot of function evaluations are necessary to arrive at this solution. It also needs to
be considered that because of the parameter shift rule, each function evaluation is
translated into several circuit evaluations for each training point. This means in this
example, where the first derivative has to be determined and where the variable 𝑥
appears in 6 different gates, that for each function evaluation and for each training
point 17 circuit evaluations must be performed. This does not include the shot
number.

9.2 Harmonic Oscillator

The harmonic oscillator is a central concept in physics to describe many natural
phenomena. It serves as a fundamental model for understanding oscillating motion
and periodic behavior in a wide variety of physical systems, from a swing pendulum
to the propagation of light. Therefore, the mathematical description of harmonic
oscillation is ubiquitous in science and engineering, making it an interesting example
problem. The differential equation is described by⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢′′(𝑡) + 𝜔2
0𝑢(𝑡) = 0 ,

𝑢(𝑡 = 0) = 𝑢0 ,

𝑢′(𝑡 = 0) = 𝑢′0 ,

(9.2)

where 𝜔0 is the circular frequency.
The parameter shift rule can also calculate the second derivative as explained in
Chapter 8. This makes it possible to solve the differential equation in (9.2). Since

46 9 Differential Equations: Simulations

the harmonic oscillator usually describes an evolution in time, the variable 𝑥 is named
𝑡 in this section. From this differential equation, the cost function

𝐿 =
∑︁
𝑖

(︁⃒⃒
𝑢′′(𝑡𝑖) + 𝜔2

0𝑢(𝑡𝑖)
⃒⃒2
+ 𝜇

(︁
|𝑢(0)− 𝑢0|2 + |𝑢′(0)− 𝑢′0|

2
)︁)︁

can be formed. For this example, we choose the initial conditions 𝑢0 = 1 and 𝑢′0 = 0.
This results in the solution

𝑢(𝑡) = cos(𝜔0𝑡) .

The differential equation for 𝜔0 = 2 is now solved with DQCs. The result obtained
with a circuit with 𝑁 = 3, 𝐷 = 3, a weight factor 𝜇 = 20 and 20 equidistant training
points is shown in Figure 27. A 𝑅𝑌 (𝑡)-encoding is used, because it is better suited for
trigonometric functions. In this example, we consider the time interval 𝑡 ∈ [−𝜋, 𝜋].

−3 −2 −1 0 1 2 3

−1

0

1

t

u(
t)

Initial Function
Training Points
Final Function

(a)

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

·10−5

t

Er
ro

r

(b)

0 100 200 300 400

10−6

10−4

10−2

100

102

104

106

108

Cost Function Evaluations

To
ta

lC
os

t

(c)

Figure 27: (a) Solution of the differential Equation (9.2) with 𝜇 = 20, 𝑁 = 3 and
𝐷 = 3 using DQCs with 𝑅𝑌 (𝑡) rotations for data encoding. (b) The
absolute values of the error. (c) Values of the cost function versus the
number of cost function evaluations.

As expected, the solution which consists of only one cosine term, can be matched
very well. Since the solution of the differential equation, just like the rotational gate
𝑅𝑌 (𝑡), is 2𝜋-periodic, the circuit gives accurate results for 𝑡 ∈ R. Analogous to
before, a lot of cost function evaluations are needed. Since the cost function involves
the second derivative, each cost function evaluation requires many circuit evaluations.
In fact, 36 evaluations are needed for every training point.

Comparison to non-variational algorithm

The differential equation for a harmonic oscillator is a second-order differential equa-
tion. One way to solve a harmonic oscillator with a non-variational algorithm is to
transform the higher-order differential equation into a first-order system, which can
then be solved on a quantum computer. As we will discuss, this is only possible for

9 Differential Equations: Simulations 47

this very simple example and is not transferable to general differential equations. To
achieve this, we formulate the system in the form⎧⎨⎩�⃗�

′ = 𝐴�⃗� ,

�⃗�(0) = �⃗�0 .
(9.3)

Once we have expressed the system in this form, the solution is given by

�⃗�(𝑡) = 𝑒𝑡𝐴�⃗�0 . (9.4)

Now, we transform the differential equation in (9.2) into a first-order system by
defining

�⃗� =

(︃
𝑢

𝑢′

)︃
and 𝐴 =

(︃
0 1

−𝜔2
0 0

)︃
.

However, the matrix 𝐴 is not skew-symmetric, which results in the problem that 𝑒𝑡𝐴 in
(9.7) is not a unitary operator and is therefore not executable on a quantum computer.
To circumvent this problem, we define the modified vector and the modified matrix

�⃗� =

(︃
𝜔0𝑢

𝑢′

)︃
and 𝑆 =

(︃
0 𝜔0

−𝜔0 0

)︃
= 𝑖𝜔𝑌.

For this newly defined system ⎧⎨⎩�⃗�
′ = 𝑆�⃗� ,

�⃗�(0) = �⃗�0

is fulfilled and the matrix 𝑆 is skew-symmetric. This expression is analogous to (9.3)
and because 𝑆 is skew-symmetric, 𝑒𝑡𝑆 is a unitary matrix that can be executed on a
quantum computer. Finally, the time evolution can be expressed as

�⃗�(𝑡) = 𝑒𝑡𝑆 �⃗�0 = 𝑒𝑖𝜔0𝑡𝑌 �⃗�0 = 𝑅𝑌 (−2𝜔0𝑡)⃗𝑎0

with

�⃗�0 =

(︃
𝜔0𝑢0

𝑢′0

)︃
.

To obtain the solution on a quantum computer, it is necessary to prepare the initial
state which contains the initial conditions. The initial state which corresponds to �⃗�0
is

|𝑎0⟩ =
1

||⃗𝑎0||
(𝜔0𝑢0 |0⟩+ 𝑢′0 |1⟩) .

48 9 Differential Equations: Simulations

Following this, the 𝑅𝑌 (−2𝜔0𝑡)-rotation is applied to this state which results in the
state

|𝑎(𝑡)⟩ = 𝑅𝑌 (−2𝜔0𝑡) |𝑎0⟩ =
1

||⃗𝑎0||
(𝜔0𝑢(𝑡) |0⟩+ 𝑢′(𝑡) |1⟩) . (9.5)

Now, we want to obtain 𝑢(𝑡) with a measurement. We see from (9.5) that

𝜔0𝑢(𝑡)

||⃗𝑎0||
= ⟨0|𝑎(𝑡)⟩ = ⟨0|𝑈(𝑡)|0⟩ ,

where 𝑈(𝑡) is the combination of the state preparation and the 𝑅𝑌 (−2𝜔0𝑡)-rotation

𝑈(𝑡) = 𝑅𝑌 (−2𝜔0𝑡) · 𝑈state-prep .

From this follows that we can obtain 𝑢(𝑡) with

𝑢(𝑡) =
||⃗𝑎0||
𝜔0

⟨0|𝑈(𝑡)|0⟩ .

For this purpose, the Hadamard test is implemented, which is explained in Appendix C.
At its core, the Hadamard test can be used to obtain the expectation value ⟨𝜓|𝑈 |𝜓⟩.
Here, |𝜓⟩ = |0⟩ and 𝑈 = 𝑈(𝑡). With the values 𝜔0 = 2, 𝑥(0) = 1 and �̇�(0) = 0 from
before, the state to prepare is |0⟩, which makes the addition of a state preparation
obsolete. The final circuit of 𝑈(𝑡) can be seen in Figure 28.

⟨𝑍⟩
|0⟩ 𝐻 𝐻

|0⟩ 𝑅𝑌 (−4𝑡)

Figure 28: Circuit to simulate a harmonic oscillator with 𝜔0 = 2, 𝑥(0) = 1 and
�̇�(0) = 0.

As expected, using an exact simulator results in the exact solution of the harmonic
oscillator without any errors, as shown in Figure 29.

9 Differential Equations: Simulations 49

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

t

u(
t)

Circuit Output

Figure 29: First qubit’s 𝑍 expectation value of the circuit in Figure 28 for 𝑡 ∈ [−𝜋, 𝜋].

It is clear, that in this simple case, the non-variational method is superior. The
solution can be determined exactly with a much simpler circuit and without the need
to optimize it classically. However, it should be noted that for general initial values
a state preparation is necessary for the non-variational algorithm, which can be very
costly and which is not necessary for DQCs. Besides that, controlled U gates have
to be implemented, which cannot be executed directly on a quantum computer and
have to be translated into controlled NOT gates and single-qubit rotations. For this
simple example, this circuit can be seen in Figure 30.

⟨𝑍⟩
|0⟩ 𝐻 𝐻

|0⟩ 𝑅𝑌 (−2𝑡) 𝑅𝑌 (2𝑡)

Figure 30: Circuit in Figure 28 without the controlled rotational gate.

Overall, the non-variational circuit is the method of choice for this simple example.
In the further course of this chapter, we will investigate more complex differential
equations where the advantages of DQCs come to light.

9.3 Damped Harmonic Oscillator

A damped harmonic oscillator is an important concept in physics and engineering, that
describes the behavior of a system that performs an oscillation while losing energy
to its surroundings. This phenomenon occurs in a variety of natural and engineered
systems, such as a swinging pendulum that gradually loses energy due to friction.

50 9 Differential Equations: Simulations

The damped harmonic oscillator can be described by a differential equation of the
form ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢′′(𝑡) + 2𝛾𝑢′(𝑡) + 𝜔2
0𝑢(𝑡) = 0 ,

𝑢(0) = 𝑢0 ,

𝑢′(0) = 𝑢′0 ,

(9.6)

where 𝜔0 is the undamped angular frequency of the oscillator and 𝛾 is the damping
coefficient. From this differential equation, we can define the cost function

𝐿 =
∑︁
𝑖

(︁⃒⃒
𝑢′′(𝑡𝑖) + 2𝛾𝑢′(𝑡𝑖) + 𝜔2

0𝑢(𝑡𝑖)
⃒⃒2

+ 𝜇 |𝑢(0)− 𝑢0|2 + |𝑢′(0)− 𝑢′0|
2
)︁
.

For the case 𝛾 = 1, 𝜔2
0 = 37 with 𝑢0 = 1 and 𝑢′0 = −1 the solution of the differential

equation is given by
𝑢(𝑡) = cos(6𝑡)𝑒−𝑡 .

We insert the selected initial conditions into the cost function and solve the system
with DQCs. The result obtained with a circuit with 𝑁 = 4, 𝐷 = 4, a weight
factor of 𝜇 = 100 and 20 equidistant training points is shown in Figure 31. Here, a
combination of 𝑅𝑌 (𝑡)- and 𝑅𝑋(arcsin(𝑡))-encoding is used because it is well suited for
this function, as shown in Figure 16. The time interval is chosen to be 𝑡 ∈ [−1, 1].

−0.5 0 0.5
−2

−1

0

1

2

t

u(
t)

Initial Function
Training Points
Final Function

(a)

−0.5 0 0.5

0

1

2

3

4

·10−3

t

Er
ro

r

(b)

0 2,000 4,000 6,000

100

102

104

106

108

1010

Cost Function Evaluations

To
ta

lC
os

t

(c)

Figure 31: (a) Solution of the differential Equation (9.6) with 𝜇 = 100, 𝑁 = 4 and
𝐷 = 4 using DQCs with 𝑅𝑌 (𝑡) and 𝑅𝑋(arcsin(𝑡)) data encoding. (b)
The absolute values of the error. (c) Values of the cost function versus
the number of cost function evaluations.

We get a result with very high accuracy. However, many function evaluations are
necessary as seen in Figure 31 (c). In the following, we will discuss why other, non-
variational methods are also associated with great difficulties.

9 Differential Equations: Simulations 51

Comparison to non-variational algorithm

We formulate the system (9.6) in the form of⎧⎨⎩�⃗�
′ = 𝐴�⃗� ,

�⃗�(0) = �⃗�0 ,

for which the solution is given by

�⃗�(𝑡) = 𝑒𝑡𝐴�⃗�0 . (9.7)

For this we define

�⃗� =

(︃
𝑢

𝑢′

)︃
and 𝐴 =

(︃
0 1

−𝜔2
0 −2𝛾

)︃
.

However, this system cannot be solved on a quantum computer because 𝑒𝑡𝐴 is not a
unitary operator. To make this possible, we define the vector

�⃗� =

(︃
𝜔0𝑢

𝑢′

)︃

and the matrix

𝑆 =

(︃
0 𝜔0

−𝜔0 −2𝛾

)︃
=

(︃
0 𝜔0

−𝜔0 0

)︃
+

(︃
0 0

0 −2𝛾

)︃

where ⎧⎨⎩�⃗�
′ = 𝑆�⃗� ,

�⃗�(0) = �⃗�0

is fulfilled. Now, 𝑆 consists of a skew-symmetric part

𝑆1 =

(︃
0 𝜔0

−𝜔0 0

)︃
= 𝑖𝜔𝑌

and a symmetric part

𝑆2 =

(︃
0 0

0 −2𝛾

)︃
.

To obtain the solution of the differential equation, we can use the approximation

�⃗�(𝑡) = 𝑒𝑆𝑡�⃗�0 ≈ 𝑒𝑆1𝑡 · 𝑒𝑆2𝑡�⃗�0 . (9.8)

52 9 Differential Equations: Simulations

However, we have the problem that the matrix

𝑒𝑆2𝑡 =

(︃
1 0

0 𝑒−2𝛾𝑡

)︃

is still non-unitary. Non-unitary operations can not be directly applied on a quantum
computer. One approach to implementing them on a quantum computer is, for
example, utilizing probabilistic post-processing.
Before that, we have to initialize the state in

|𝑎0⟩ =
1

||⃗𝑎0||
(𝜔0𝑢0 |0⟩+ 𝑢′0 |1⟩) .

With the boundary conditions from above, we get the state

|𝑎0⟩ =
1√
38

(
√
37 |0⟩ − |1⟩).

This time we have to apply a state preparation. The state can be initialized with

|𝑎0⟩ = 𝑈state-prep |0⟩

with the unitary operation

𝑈state-prep =

⎛⎝√︁37
38

1√
38

− 1√
38

√︁
37
38

⎞⎠ = 𝑅𝑦

(︃
−2 arccos

(︃√︂
37

38

)︃)︃
.

The final circuit is shown in Figure 32.

⟨𝑍⟩
|0⟩ 𝑅𝑦

(︁
−2 arccos

(︁√︁
37
38

)︁)︁
𝑅𝑌 (−2

√
37𝑡) post-processing

Figure 32: Circuit to simulate a damped harmonic oscillator with 𝜔2
0 = 37, 𝛾 = 1

𝑥(0) = 1 and �̇�(0) = −1.

We do not implement the Hadamard test in this example because it is not easily
applicable due to the post-selection. The consequence of this is that only the squared
function can be obtained by measuring the probability of state |0⟩. This can be seen
together with the exact solution in Figure 33.

9 Differential Equations: Simulations 53

−1 −0.5 0 0.5 1

−4

−2

0

2

4

6

t

u(
t)

(sin(6𝑡)𝑒−𝑡)
2

Circuit Output

Figure 33: Damped harmonic oscillator solved with the circuit in Figure 32 (red line)
together with the exact solution (green line).

Since the solution is only an approximation around the zero point, it diverges signifi-
cantly in the other areas. So this approach alone is not sufficient for a useful solution.
Because the approximation in (9.8) is only accurate for small 𝑡, time-stepping (Lie
product formula) is usually applied to significantly increase the accuracy for different
times. This process is called trotterization [33, 34]. Time stepping is implemented
by repeating (9.8) multiple times

�⃗�(𝑡) ≈
(︁
𝑒𝑆1

𝑡
𝑟 · 𝑒𝑆2

𝑡
𝑟

)︁𝑟
�⃗�0 ,

where 𝑡/𝑟 defines the size of the time steps. The time steps should be as small as
possible for a close approximation. However, the non-unitary operation now occurs
𝑟 times in the circuit, which makes probabilistic post-processing unfeasible. Hence,
for this problem, we have only marginally succeeded in solving a damped harmonic
oscillator with a non-variational algorithm. However, there are no easily implementable
algorithms to solve a damped harmonic oscillator.
In general, it is possible to embed non-unitary matrices in larger unitary matrices
by adding ancillary qubits [35]. This is called block encoding [36]. This method
has received a lot of attention in recent years, as it can solve a number of previously
inaccessible problems. However, it requires very deep circuits with many ancilla qubits,
which makes them unattractive in the context of the NISQ era and is therefore ruled
out as a meaningful comparison and is not discussed in more detail in this thesis.

9.4 Coupled Harmonic Oscillator

The coupled harmonic oscillator is the mathematical formulation of a physical system
that describes the motion of multiple oscillating and interacting systems. Here, a
complex energy transfer between the systems takes place which we will solve using

54 9 Differential Equations: Simulations

DQCs.
We consider a coupled harmonic oscillator with two masses 𝑚, two springs of spring
strength 𝑘 and one spring of spring strength 𝑠. The arrangement can be seen in
Figure 34.

𝑢1(𝑡)time 𝑢2(𝑡)

𝑘 𝑚 𝑚𝑠 𝑘

Figure 34: Structure of the coupled harmonic oscillator.

This system can be described with the two coupled differential equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢′′1(𝑡) = − 𝑘

𝑚
𝑢1(𝑡) +

𝑠

𝑚
(𝑢2(𝑡)− 𝑢1(𝑡)) ,

𝑢1(0) = 𝑢1,0 ,

𝑢′1(0) = 𝑢′1,0

(9.9)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢′′2(𝑡) = − 𝑘

𝑚
𝑢2(𝑡)−

𝑠

𝑚
(𝑢2(𝑡)− 𝑢1(𝑡)) ,

𝑢2(0) = 𝑢2,0 ,

𝑢′2(0) = 𝑢′2,0 .

(9.10)

For the following, we choose the initial conditions 𝑢1,0 = 1, 𝑢′1,0 = 0, 𝑢2,0 = 0 and
𝑢′2,0 = 0. This results in the solutions

𝑢1(𝑡) =
1

2
(cos(𝜔0𝑡)− cos(𝜔1𝑡))

𝑢2(𝑡) =
1

2
(cos(𝜔0𝑡) + cos(𝜔1𝑡)) ,

with the frequencies 𝜔2
0 = 𝑘/𝑚 and 𝜔2

1 = 𝑘/𝑚+ 2𝑠/𝑚.
A coupled differential equation can be solved with DQCs using a designated circuit for
each equation [21]. We want to build upon this idea and solve a coupled differential
equation with only one circuit. We already saw in Figure 17 that it is possible to
approximate different functions with the same circuit. We now employ this concept
for coupled differential equations. For this, we utilize the circuit shown in Figure

9 Differential Equations: Simulations 55

35.

4×

⟨𝑍⟩

⟨𝑍⟩

|0⟩ 𝑅𝑌 (𝑡) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2)

|0⟩ 𝑅𝑌 (𝑡) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5)

|0⟩ 𝑅𝑌 (𝑡) 𝑅𝑋(𝜃6) 𝑅𝑌 (𝜃7) 𝑅𝑍(𝜃8)

|0⟩ 𝑅𝑌 (𝑡) 𝑅𝑋(𝜃9) 𝑅𝑌 (𝜃10) 𝑅𝑍(𝜃11)

Figure 35: Four-qubit DQC with 𝑅𝑌 (𝑡)-encoding where the first and the second qubit
are measured.

In this circuit, the first and second qubit is measured. Apart from that, the process
is the same as described in the previous examples. The coupled harmonic oscillator
with the chosen initial conditions can be translated into the cost function

𝐿 =
∑︁
𝑖

(︂⃒⃒⃒⃒
𝑢′′1(𝑡𝑖) +

𝑘

𝑚
𝑢1(𝑡𝑖)−

𝑠

𝑚
(𝑢2(𝑡𝑖)− 𝑢1(𝑡𝑖))

⃒⃒⃒⃒2
+

⃒⃒⃒⃒
𝑢′′2(𝑡𝑖) +

𝑘

𝑚
𝑢2(𝑡𝑖) +

𝑠

𝑚
(𝑢2(𝑡𝑖)− 𝑢1(𝑡𝑖))

⃒⃒⃒⃒2
+ 𝜇

(︁
|𝑢1,0 − 1|2 + |𝑢2,0|2 +

⃒⃒
𝑢′1,0
⃒⃒2
+
⃒⃒
𝑢′2,0
⃒⃒2)︁)︂

,

where 𝑢1 = 𝑦Qubit1(𝑡) · 𝜎1 and 𝑢2 = 𝑦Qubit2(𝑡) · 𝜎2 are the 𝑍 expectations values of
the first and second qubit, multiplied by the classical factors 𝜎1 and 𝜎2, respectively.
The solved coupled harmonic oscillator for 𝜔2

0 = 1 and 𝜔2
1 = 16 and 30 equidistant

training points is shown in Figure 36.

56 9 Differential Equations: Simulations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

t

u(
t)

Training Points 𝑢1(𝑡)
Training Points 𝑢2(𝑡)
Final Function Qubit 1
Final Function Qubit 2

(a)

−1 −0.5 0 0.5 1

0

2

4

6

8
·10−3

t

Er
ro

r

Error Qubit 1
Error Qubit 2

(b)

0 2000 4000 6000

100

102

104

106

108

Loss Function Evaluations

To
ta

lL
os

s

(c)

Figure 36: (a) Solution of the differential equations (9.9) and (9.10) with 𝜇 = 20,
𝑁 = 4 and 𝐷 = 4 using DQCs with 𝑅𝑌 (𝑡) rotations for data encoding.
The parameters are classically optimized with COBYLA. (b) The absolute
values of the error. (c) Values of the cost function versus the number of
cost function evaluations.

We can see that it is possible to solve a coupled differential equation with only one
circuit. The counter-phase oscillatory behavior, which is to be expected with the
selected initial conditions, can be nicely observed. The advantage of using only one
circuit is that the total number of circuit evaluations is halved since it is not necessary
for two different circuits to be evaluated. In addition, the variational parameters in
both circuits would have to be optimized and thus the entire algorithm would be more
computationally intensive in terms of the classical optimization. Thus, this is a useful
simplification of the algorithm, which could significantly reduce the computational
effort, especially for very complicated systems with even more coupled equations.

10 Differential Equations: Real Quantum Computer 57

10 Differential Equations: Real Quantum Computer

So far, we have successfully simulated differential equations with DQCs on exact
simulators. The goal of this chapter is to show that it is possible to solve differential
equations with DQCs on a real quantum computer. For this purpose, a very simple
example of a differential equation is considered in order to minimize the computation
time, which is limited on the IBM Quantum System One Ehningen. We focus on the
differentiation equation ⎧⎨⎩𝑢

′(𝑥) = 3𝑥2 ,

𝑢(0) = 𝑢0 .
(10.1)

The solution of this differential equation is

𝑢(𝑥) = 𝑥3 + 𝑢0 .

To be able to solve it with DQCs, we use Equation (10.1) to form the cost function

𝐿 =
∑︁
𝑖

(︁⃒⃒
𝑢′(𝑥𝑖)− 3𝑥2𝑖

⃒⃒2
+ 𝜇 · |𝑢(0)− 𝑢0|2

)︁
,

where 𝜇 is a problem individual weight factor.
We solve the differential equation for 𝑢0 = 0. The result for a circuit with 𝑁 = 3,
𝐷 = 3, a weight factor 𝜇 = 10, 10 equidistant training points and 2000 shots
is shown in Figure 37. The value range is chosen to be 𝑥 ∈ [−0.9, 0.9] because
𝑅𝑋(arcsin(𝑥))-encoding is used.

58 10 Differential Equations: Real Quantum Computer

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

u(
x)

f(x)
Final Function

(a)

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

x

Er
ro

r
(b)

0 20 40 60

100

101

Cost Function Evaluations

To
ta

lC
os

t

(c)

Figure 37: (a) Solution of the differential Equation (10.1) on the IBM Quantum Sys-
tem One Ehningen with 𝜇 = 10, 𝑁 = 3, 𝐷 = 3, 10 equidistant training
points and 2000 shots using DQCs with 𝑅𝑌 (arcsin(𝑥)) rotations for data
encoding. (b) The absolute values of the error. (c) Values of the cost
function versus the number of cost function evaluations.

It can be seen that the differential equation is solvable on the real quantum computer.
The qualitative behavior can be observed well. The errors here are slightly higher than
in the case of function approximations on the IBM Quantum System One Ehningen
in Figure 20. This is because the derivatives are included in the cost function which
results in higher errors as observed in Figure 24. In addition, with a direct function
approximation, as seen in Figure 20, systematic errors can be compensated as ex-
plained in Chapter 4.1. That is not the case here, since only the derivative of the
circuit is optimized.

11 Conclusions 59

11 Conclusions

11.1 Summary

In this work we conducted a comprehensive investigation of quantum circuit learning
(QCL), wherein we thoroughly compared different circuit designs and evaluated their
effectiveness in approximating specific functions. Here, efficient circuit designs could
be developed for certain problems and multiple functions could be approximated with
small errors. Especially the combination of 𝑅𝑦(𝑥) and 𝑅𝑥(arcsin(𝑥)) rotations has
proven to be a very good encoding method to approximate complicated functions
without choosing a too complex ansatz function, which can result in overfitting. The
basic principles of this method were investigated in depth and conclusions could be
drawn, which are relevant for a great number of variational quantum algorithms. For
example, we analyzed how the depth of the circuit and the number of parameterized
gates affect the expressibility and thus the resulting function approximation. A design
of three parameterized rotations followed by circular entanglement, where the same
parameters are repeated, proved to be the most effective. In addition, the importance
of a classical parameter was shown, which greatly enhances the ability to approxi-
mate a large set of functions. Circuits designed with this newly gained knowledge
were tested on the IBM Quantum System One in Ehningen. Here, promising results
could be obtained. For a number of functions, the qualitative behavior could be ap-
proximated with good accuracy and relatively few function evaluations. The fact that
the algorithm can already be executed on today’s quantum computers shows that it
is highly relevant in the current NISQ era.
Building upon this work, we investigated QCL in combination with the parameter shift
rule to solve differential equations, coined as differentiable quantum circuits (DQCs).
With the previously gained knowledge on function approximations, these circuits were
also improved and the method was subjected to thorough testing across a multitude
of differential equations. It has been shown that this method is able to solve a wide
range of differential equations with high accuracy. The ability to solve nonlinear dif-
ferential equations is particularly intriguing because there are few available quantum
algorithms for this purpose. Here, a nonlinear differential equation could be solved.
Additionally, a damped harmonic oscillator was solved, which causes problems with
conventional solution methods. Subsequently, the differential equation of a coupled

60 11 Conclusions

harmonic oscillator could be solved by using only a single circuit, which reduced the
number of circuit evaluations and the number of variational parameters.
However, it was also found that this algorithm requires many circuit evaluations,
especially for high-order derivatives. This makes the classical optimization very com-
putationally expensive. The comparison to different quantum algorithms for solving
differential equations reinforces this impression. The strength of DQCs lies in the
ability to solve differential equations that pose significant challenges for alternative
algorithms. Moreover, they remain very NISQ-friendly even for complicated differen-
tial equations. This is, among other factors, because there is no input and output
problem for this algorithm and the circuits remain very shallow even for large prob-
lems. On top of that, there is no need to create a quantum oracle, which would
involve considerable computational effort. However, due to the expensive classical
computational part and the large number of circuit evaluations, no quantum advan-
tage is foreseeable for the simple problems presented in this work. This may change
for more complex problems like a large number of coupled differential equations.

11.2 Outlook

The method described in this work has a lot of potential due to the combination of
easy-to-generate ansatz functions and the exact differentiability with the parameter
shift rule. However, the high classical computational effort due to the optimization
of the parameters must be considered. This is a common problem that applies not
only to this algorithm but to all variational quantum algorithms. Therefore, a lot of
research focuses on this problem, for example in the expansion and development of
more suitable classical optimizers [37]. Such methods could result in a significant
reduction of computation time and make the algorithm even more relevant.
The algorithm can also be combined and extended with various common methods
from quantum machine learning. For example, quantum kernels can be used, which
are routinely applied to classify data in supervised quantum machine learning [38].
This could accelerate the algorithm and among other benefits, increase the noise re-
sistance [39].
Moreover, the algorithm could offer significant advantages when applied to data that
intrinsically embodies quantum mechanical properties. This is where the greatest
advantages in quantum machine learning can be observed [40]. A similar advantage
could also be observable for function approximations. However, proving such reason-
ing and finding suitable problems in the real world is very difficult and the existence
of a potential quantum advantage is an open question.

Bibliography 61

Bibliography

[1] George Finlay Simmons. Differential equations with applications and historical
notes. International series in pure and applied mathematics. New York: McGraw-
Hill, 1972. isbn: 0070573751.

[2] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Meth-
ods. Vol. 22. Springer eBook Collection Mathematics and Statistics. New York,
NY: Springer, 1995. isbn: 978-1-4419-3105-4. doi: 10.1007/978-1-4899-
7278-1.

[3] Ivan Dimov, István Faragó, and Lubin Vulkov, eds. Finite Difference Methods.
Theory and Applications: 7th International Conference, FDM 2018, Lozenetz,
Bulgaria, June 11-16, 2018, Revised Selected Papers. Vol. 11386. Springer-
Link Bücher. Cham: Springer International Publishing, 2019. isbn: 978-3-030-
11538-8. doi: 10.1007/978-3-030-11539-5.

[4] John Boyd, To Marilyn, and Paraphrasing Eliot. “Chebyshev and Fourier Spec-
tral Methods”. In: (2000).

[5] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”. In: SIAM Journal on Computing
26.5 (1997), pp. 1484–1509. issn: 0097-5397. doi: 10.1137/S009753979529
3172.

[6] Lov K. Grover. “A fast quantum mechanical algorithm for database search”.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing - STOC ’96. Ed. by Gary L. Miller. New York, New York, USA: ACM
Press, 1996, pp. 212–219. isbn: 0897917855. doi: 10.1145/237814.237866.

[7] Dominic W. Berry. “High-order quantum algorithm for solving linear differen-
tial equations”. In: Journal of Physics A: Mathematical and Theoretical 47.10
(2014), p. 105301. issn: 1751-8113. doi: 10.1088/1751- 8113/47/10/
105301.

[8] Ashley Montanaro and Sam Pallister. “Quantum algorithms and the finite el-
ement method”. In: Physical Review A 93.3 (2016). issn: 2469-9926. doi:
10.1103/PhysRevA.93.032324.

[9] Dominic W. Berry et al. “Quantum Algorithm for Linear Differential Equations
with Exponentially Improved Dependence on Precision”. In: Communications
in Mathematical Physics 356.3 (2017), pp. 1057–1081. issn: 0010-3616. doi:
10.1007/s00220-017-3002-y.

https://doi.org/10.1007/978-1-4899-7278-1
https://doi.org/10.1007/978-1-4899-7278-1
https://doi.org/10.1007/978-3-030-11539-5
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/237814.237866
https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1007/s00220-017-3002-y

62 Bibliography

[10] Frank Gaitan. “Finding flows of a Navier–Stokes fluid through quantum com-
puting”. In: npj Quantum Information 6.1 (2020). doi: 10.1038/s41534-020-
00291-0.

[11] Bolesław Kacewicz. “Almost optimal solution of initial-value problems by ran-
domized and quantum algorithms”. In: Journal of Complexity 22.5 (2006),
pp. 676–690. issn: 0885064X. doi: 10.1016/j.jco.2006.03.001.

[12] Alexei Y. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem”.
In: Electron. Colloquium Comput. Complex. TR96 (1995). url: https://api.
semanticscholar.org/CorpusID:17023060.

[13] Jacob Biamonte et al. “Quantum machine learning”. In: Nature 549.7671 (2017),
pp. 195–202. doi: 10.1038/nature23474.

[14] Seth Lloyd et al. Quantum algorithm for nonlinear differential equations. 2020.
doi: 10.48550/arXiv.2011.06571.

[15] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum
2 (2018), p. 79. doi: 10.22331/q-2018-08-06-79.

[16] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum
processor”. In: Nature communications 5 (2014), p. 4213. doi: 10.1038/
ncomms5213.

[17] Nikolaj Moll et al. “Quantum optimization using variational algorithms on near-
term quantum devices”. In: Quantum Science and Technology 3.3 (2018),
p. 030503. doi: 10.1088/2058-9565/aab822.

[18] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. “An introduction to
quantum machine learning”. In: Contemporary Physics 56.2 (2015), pp. 172–
185. issn: 0010-7514. doi: 10.1080/00107514.2014.964942.

[19] Maxwell Henderson et al. “Quanvolutional neural networks: powering image
recognition with quantum circuits”. In: Quantum Machine Intelligence 2.1 (2020).
issn: 2524-4906. doi: 10.1007/s42484-020-00012-y.

[20] K. Mitarai et al. “Quantum circuit learning”. In: Physical Review A 98.3 (2018).
issn: 2469-9926. doi: 10.1103/PhysRevA.98.032309.

[21] Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving. “Solving nonlinear
differential equations with differentiable quantum circuits”. In: Physical Review
A 103.5 (2021). issn: 2469-9926. doi: 10.1103/PhysRevA.103.052416.

[22] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. 10th anniversary ed. Cambridge: Cambridge Univ. Press, 2010.
isbn: 978-1-107-00217-3. url: https://ebookcentral.proquest.com/
lib/subhh/detail.action?docID=647366.

[23] F. T. Arecchi et al. “Atomic Coherent States in Quantum Optics”. In: Physical
Review A 6.6 (1972), pp. 2211–2237. issn: 2469-9926. doi: 10.1103/PhysR
evA.6.2211.

https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.1016/j.jco.2006.03.001
https://api.semanticscholar.org/CorpusID:17023060
https://api.semanticscholar.org/CorpusID:17023060
https://doi.org/10.1038/nature23474
https://doi.org/10.48550/arXiv.2011.06571
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.103.052416
https://ebookcentral.proquest.com/lib/subhh/detail.action?docID=647366
https://ebookcentral.proquest.com/lib/subhh/detail.action?docID=647366
https://doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1103/PhysRevA.6.2211

Bibliography 63

[24] Maria Schuld et al. “Evaluating analytic gradients on quantum hardware”. In:
Physical Review A 99 (2019). issn: 2469-9926. doi: 10.1103/PhysRevA.99.
032331.

[25] Gavin N. Nop, Durga Paudyal, and Jonathan D. H. Smith. “Ytterbium ion trap
quantum computing: The current state-of-the-art”. In: AVS Quantum Science
3.4 (2021), p. 044101. doi: 10.1116/5.0065951.

[26] Dorit Aharonov and Michael Ben-Or. “Fault-Tolerant Quantum Computation
with Constant Error Rate”. In: SIAM Journal on Computing 38.4 (2008),
pp. 1207–1282. issn: 0097-5397. doi: 10.1137/S0097539799359385.

[27] Andrew W. Cross et al. “Validating quantum computers using randomized
model circuits”. In: Physical Review A 100.3 (2019). issn: 2469-9926. doi:
10.1103/PhysRevA.100.032328.

[28] Youngseok Kim et al. “Evidence for the utility of quantum computing before
fault tolerance”. In: Nature 618.7965 (2023), pp. 500–505. doi: 10.1038/
s41586-023-06096-3.

[29] J. H. Mathews and K. D. Fink. Numerical Methods Using MATLAB. Pearson
Education. Prentice Hall, 1999. isbn: 9780132700429. url: https://books.
google.de/books?id=F1sZAQAAIAAJ.

[30] D. Kraft. A Software Package for Sequential Quadratic Programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungs-
bericht. Wiss. Berichtswesen d. DFVLR, 1988. url: https://books.google.
de/books?id=4rKaGwAACAAJ.

[31] Kan Hatakeyama-Sato et al. Quantum circuit learning as a potential algorithm
to predict experimental chemical properties. 2022. doi: 10.26434/chemrxiv-
2022-cz7wr-v2.

[32] M. J. D. Powell. “A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation”. In: Advances in
Optimization and Numerical Analysis. Ed. by Susana Gomez and Jean-Pierre
Hennart. Dordrecht: Springer Netherlands, 1994, pp. 51–67. isbn: 978-90-481-
4358-0. doi: 10.1007/978-94-015-8330-5{\textunderscore}4.

[33] H. F. Trotter. “On the Product of Semi-Groups of Operators”. In: Proceedings
of the American Mathematical Society 10.4 (1959), p. 545. issn: 00029939.
doi: 10.2307/2033649.

[34] Masuo Suzuki. “Generalized Trotter’s formula and systematic approximants of
exponential operators and inner derivations with applications to many-body
problems”. In: Communications in Mathematical Physics 51.2 (1976), pp. 183–
190. issn: 0010-3616. doi: 10.1007/BF01609348.

[35] Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by Qubitiza-
tion”. In: Quantum 3 (2019), p. 163. doi: 10.22331/q-2019-07-12-163.

[36] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery, eds. The Power
of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster

https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1116/5.0065951
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://books.google.de/books?id=F1sZAQAAIAAJ
https://books.google.de/books?id=F1sZAQAAIAAJ
https://books.google.de/books?id=4rKaGwAACAAJ
https://books.google.de/books?id=4rKaGwAACAAJ
https://doi.org/10.26434/chemrxiv-2022-cz7wr-v2
https://doi.org/10.26434/chemrxiv-2022-cz7wr-v2
https://doi.org/10.1007/978-94-015-8330-5{\textunderscore }4
https://doi.org/10.2307/2033649
https://doi.org/10.1007/BF01609348
https://doi.org/10.22331/q-2019-07-12-163

64 Bibliography

Hamiltonian Simulation: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
GmbH, Wadern/Saarbruecken, Germany. 2019. doi: 10.4230/LIPIcs.ICALP.
2019.33.

[37] Marco Wiedmann et al. An Empirical Comparison of Optimizers for Quantum
Machine Learning with SPSA-based Gradients. 2023. doi: 10.48550/arXiv.
2305.00224.

[38] Vojtech Havlicek et al. “Supervised learning with quantum enhanced feature
spaces”. In: (2018). doi: 10.48550/arXiv.1804.11326.

[39] Valentin Heyraud et al. “Noisy quantum kernel machines”. In: Physical Review
A 106.5 (2022). issn: 2469-9926. doi: 10.1103/PhysRevA.106.052421.

[40] Frank Arute et al. “Quantum supremacy using a programmable superconducting
processor”. In: Nature 574.7779 (2019), pp. 505–510. doi: 10.1038/s41586-
019-1666-5.

[41] R. Cleve et al. “Quantum algorithms revisited”. In: Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences
454.1969 (1998), pp. 339–354. issn: 1364-5021. doi: 10.1098/rspa.1998.
0164.

https://doi.org/10.4230/LIPIcs.ICALP.2019.33
https://doi.org/10.4230/LIPIcs.ICALP.2019.33
https://doi.org/10.48550/arXiv.2305.00224
https://doi.org/10.48550/arXiv.2305.00224
https://doi.org/10.48550/arXiv.1804.11326
https://doi.org/10.1103/PhysRevA.106.052421
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164

A Appendix: Number of Parameters A-1

A Appendix: Number of Parameters

In the main part of the work, only repeating parameters, in the form of three parame-
terized rotations were considered. Here, we briefly discuss different possibilities. The
parameter correlations can also be used to assess whether it makes sense to repeat the
parameters according to the depth, as explained in Chapter 4.2, instead of selecting
new parameters for every layer. A circuit with new parameters is shown in Figure
38.

𝐷 = 1 𝐷 = 2

. . .

. . .

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑌 (𝜃1) 𝑅𝑍(𝜃2) 𝑅𝑋(𝜃6) 𝑅𝑌 (𝜃7) 𝑅𝑍(𝜃8)

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃3) 𝑅𝑌 (𝜃4) 𝑅𝑍(𝜃5) 𝑅𝑋(𝜃9) 𝑅𝑌 (𝜃10) 𝑅𝑍(𝜃11)

Figure 38: Two-qubit circuit with 𝑅𝑌 (arcsin(𝑥))-encoding with new parameters for
each repeated block for depth 𝐷.

Figure 41 shows the parameter correlations for this case. There, we can see that
non-repeating parameters lead to a slight improvement in expressibility compared
to Figure 10. With the significantly higher number of parameters, the complexity
and thus the duration of the classical optimization would increase significantly in
the case of function approximations. Since the classical optimization is already very
computationally intensive, this trade-off does not make sense. So it seems to be most
reasonable to use the former method of repetitive parameters.
The number and type of rotations also leave room for investigation. In the previous
part, we worked with three rotations that together can represent any unitary operation.
However, instead of three rotations per qubit, only two rotations can be used, as shown
in Figure 39.

𝐷 = 1 𝐷 = 2

. . .

. . .

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑍(𝜃1) 𝑅𝑋(𝜃0) 𝑅𝑍(𝜃1)

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃2) 𝑅𝑍(𝜃3) 𝑅𝑋(𝜃2) 𝑅𝑍(𝜃3)

Figure 39: Two-qubit circuit with 𝑅𝑌 (arcsin(𝑥))-encoding followed by blocks of a
controlled NOT gate and 𝜃-parameterized y- and z-rotations.

A-2 A Appendix: Number of Parameters

The corresponding parameter correlations can be seen in Figure 42. The expressibility
is significantly lower than before, and even with high depths, the expressibility does
not approach that in Figure 18. Numerous simulations, which will not be included
here, have shown that the reduced number of parameters and the slightly lower depth
of the circuit are not worth this drop in expressibility. Analogous to before, new
parameters can be used for each block, as shown in Figure 40.

𝐷 = 1 𝐷 = 2

. . .

. . .

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃0) 𝑅𝑍(𝜃1) 𝑅𝑋(𝜃4) 𝑅𝑍(𝜃5)

|0⟩ 𝑅𝑌 (arcsin(𝑥)) 𝑅𝑋(𝜃2) 𝑅𝑍(𝜃3) 𝑅𝑋(𝜃6) 𝑅𝑍(𝜃7)

Figure 40: Two-qubit circuit with 𝑅𝑌 (arcsin(𝑥))-encoding followed by blocks of a
controlled NOT gate and 𝜃-parameterized y- and z-rotations with new
parameters for each repeated block.

The parameter correlations can be seen in Figure 43. Contrary to before, a significant
improvement can be observed here. Overall, however, no notable enhancement can
be seen in comparison to the example of three parameters in Figure 18, which means
that this setup is also not useful. In conclusion, it seems that two parameters are not
sufficient for an efficient function approximation.

A Appendix: Number of Parameters A-3

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(a) 𝐷 = 1

high density

low density

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(b) 𝐷 = 2

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(c) 𝐷 = 3

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(d) 𝐷 = 4

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(e) 𝐷 = 5

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(f) 𝐷 = 10

Figure 41: Parameter correlations of the circuit in Figure 38 with a qubit number
𝑁 = 2 and different depths 𝐷 after fitting the 𝑍 expectation value 𝑦(𝑥)
with the function given in (4.3) for 1000 random sets of parameters 𝜃 using
the least square method. For readability, one-dimensional lines are slightly
broadened to be visible in the plots.

A-4 A Appendix: Number of Parameters

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(a) 𝐷 = 1

high density

low density

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(b) 𝐷 = 2

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(c) 𝐷 = 3

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(d) 𝐷 = 4

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(e) 𝐷 = 5

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(f) 𝐷 = 10

Figure 42: Parameter correlations of the circuit in Figure 39 with a qubit number
𝑁 = 2 and different depths 𝐷 after fitting the 𝑍 expectation value 𝑦(𝑥)
with the function given in (4.3) for 1000 random sets of parameters 𝜃 using
the least square method. For readability, one-dimensional lines are slightly
broadened to be visible in the plots.

A Appendix: Number of Parameters A-5

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(a) 𝐷 = 1

high density

low density

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(b) 𝐷 = 2

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(c) 𝐷 = 3

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(d) 𝐷 = 4

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(e) 𝐷 = 5

−1

−0.5

0

0.5

1

𝛼1

−1

−0.5

0

0.5

1

𝛼2

−1

−0.5

0

0.5

1

𝛼3

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

𝛼0

𝛼4

−1−0.5 0 0.5 1
𝛼1

−1−0.5 0 0.5 1
𝛼2

−1−0.5 0 0.5 1
𝛼3

(f) 𝐷 = 10

Figure 43: Parameter correlations of the circuit in Figure 40 with a qubit number
𝑁 = 2 and different depths 𝐷 after fitting the 𝑍 expectation value 𝑦(𝑥)
with the function given in (4.3) for 1000 random sets of parameters 𝜃 using
the least square method. For readability, one-dimensional lines are slightly
broadened to be visible in the plots.

B Appendix: Least Square Method B-1

B Appendix: Least Square Method

The least squares method is a classical procedure for determining the best fit for a set
of data points. The method works by minimizing the sum of the offsets (residuals)
of the points of a curve. The goal is to fit the parameters of a model function to
match the data. A simple data set of a two-dimensional function consists of 𝑛 pairs
(𝑥𝑖, 𝑦𝑖) with 𝑖 = 1, ..., 𝑛, where 𝑥𝑖 is an independent variable and 𝑦𝑖 is a dependent
variable. The value of the dependent variable is determined by observation and we
want to describe the behavior of the data points with a model function. The model
function is of the form 𝑓(𝑥, �⃗�), where �⃗� consists of 𝑚 free parameters. The goal is to
find the parameter values so that the model function best describes the data. How
good a particular parameter choice is, can be measured by the residual of the data
points, which is defined as the difference between the observed value of the dependent
variable and the predicted value of the model

𝑟𝑖(⃗𝑎) = 𝑦𝑖 − 𝑓(𝑥𝑖, �⃗�) .

Here, the model function can have any form. The optimal parameter values are
determined by minimizing the sum of squared residuals. In the case of a linear function
of the form

𝑓(𝑥, �⃗�) =
𝑚∑︁
𝑗=1

𝑎𝑗𝜑𝑗(𝑥) ,

where the function 𝜑𝑗 is a function of 𝑥, we can solve the problem by writing it the
form of matrices. We define

𝑋𝑖𝑗 = 𝜑𝑗(𝑥𝑖)

and form the vector �⃗� with the dependant variables 𝑦𝑖. Now, the sum of residuals
can be calculated as

𝐿(⃗𝑎) = ||�⃗� −𝑋�⃗�||2 = (�⃗� −𝑋�⃗�)⊺(�⃗� −𝑋�⃗�)

= �⃗� ⊺�⃗� − �⃗� ⊺𝑋�⃗�− �⃗� ⊺𝑋⊺�⃗� + �⃗� ⊺𝑋⊺𝑋�⃗� .

B-2 B Appendix: Least Square Method

To solve the least square problem, 𝐿(⃗𝑎) is minimized so that the gradient becomes
zero. The gradient can be expressed as

𝜕𝐿(�⃗�, �⃗�, �⃗�)

𝜕�⃗�
= −2𝑋⊺�⃗� + 2𝑋⊺𝑋�⃗� .

Setting the gradient to zero and solving for �⃗� we obtain

�⃗� = (𝑋⊺𝑋)−1𝑋⊺�⃗� .

This means that the parameters of the model function can now be determined so that
the function best describes the data points.

C Appendix: Hadamard Test C-1

C Appendix: Hadamard Test

We consider an arbitrary state |𝜓⟩ and a unitary operator 𝑈 acting on this state. The
Hadamard test [41] is a commonly used part of quantum algorithms with the purpose
of generating a qubit state whose 𝑍 expectation value is equal to the real part of
⟨𝜓|𝑈 |𝜓⟩. The circuit of the Hadamard test is shown in Figure 44.

⟨𝑍⟩
|0⟩ 𝐻 𝐻

|𝜓⟩ 𝑈

Figure 44: Circuit of the Hadamard test for an arbitrary state |𝜓⟩.

To understand the Hadamard test, we will look at the development of the state. The
first Hadamard gate creates the state

1√
2
(|0⟩+ |1⟩)⊗ |𝜓⟩ .

Following this, the unitary operator 𝑈 is applied on the state |𝜓⟩, conditioned on the
first qubit. This results in the state

1√
2
(|0⟩ ⊗ |𝜓⟩+ |1⟩ ⊗ 𝑈 |𝜓⟩) .

After applying the second Hadamard gate, the final state is

1

2
(|0⟩ ⊗ (𝐼 + 𝑈) |𝜓⟩+ |1⟩ ⊗ (𝐼 − 𝑈) |𝜓⟩) .

This means that the probability of measuring the state |0⟩ and |1⟩ on the first qubit
is

𝑃 (|0⟩) = 1

4
⟨𝜓|(𝐼 + 𝑈 †)(𝐼 + 𝑈)|𝜓⟩

C-2 C Appendix: Hadamard Test

and
𝑃 (|1⟩) = 1

4
⟨𝜓|(𝐼 − 𝑈 †)(𝐼 − 𝑈)|𝜓⟩ ,

respectively. If we now calculate the 𝑍 expectation value of the first qubit with this
knowledge, we obtain

⟨𝑍⟩ = 𝑃 (|0⟩)− 𝑃 (|1⟩) = 1

2
⟨𝜓|𝑈 † + 𝑈 |𝜓⟩ ,

which is equivalent to ℜ(⟨𝜓|𝑈 |𝜓⟩).

	Abstract
	Contents
	1 Introduction
	2 Introduction to Quantum Computing
	2.1 Quantum States
	2.2 Measurement and Expectation Value
	2.3 Quantum Gates
	2.4 Multi Qubit Systems
	2.5 Density Matrices
	2.6 Parameter Shift Rule

	3 Quantum Hardware
	3.1 Introduction to Superconducting Qubits
	3.2 IBM Quantum System One Ehningen
	3.3 Noisy-Intermediate-Scale-Quantum Era

	4 Quantum Circuit Learning
	4.1 Introduction to Variational Quantum Algorithms
	4.2 Quantum Circuit Learning

	5 Function Approximation: Simulations
	5.1 Different Data Encoding Schemes
	5.2 Multi Qubit Measurements

	6 Expressibility
	7 Function Approximation: Real Quantum Computer
	8 Parameter Shift Rule
	9 Differential Equations: Simulations
	9.1 Logistic Differential Equation
	9.2 Harmonic Oscillator
	9.3 Damped Harmonic Oscillator
	9.4 Coupled Harmonic Oscillator

	10 Differential Equations: Real Quantum Computer
	11 Conclusions
	11.1 Summary
	11.2 Outlook

	Bibliography
	Appendix A Appendix: Number of Parameters
	Appendix B Appendix: Least Square Method
	Appendix C Appendix: Hadamard Test

