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Inhaltsangabe

4d und 5d Übergangsmetall basierte Mott-Isolatoren mit beträchtlicher Spin-Bahn Kop-
plung waren im Fokus wissenschaftlicher Forschung der letzten Jahre. Dies ist der Fall,
da sie Kandidaten für interessante Grundzustandseigenschaften, wie z.B. exzitonischer
Magnetismus, Quantenspinflüssigkeiten sind. Der Grund dafür, dass diese Materialien
solche ungewöhnlichen Grundzustände beherbergen, ist die komplexe Wechselwirkung
zwischen starken Korrelationen, Spin-Bahn Kopplung und anderen Effekten wie z.B.
der Kristallfeldaufspaltung. Um diese Materialien von einem theoretischen Standpunkt
aus untersuchen zu können, ist es oft notwendig den Hamiltonian mit einem effektiven
Modell zu approximieren, da eine exakte Beschreibung oft nicht möglich ist. Ziel dieser
effektiven Modelle ist es, wichtige physikalische Eigenschaften zu erfassen und akkurate
Vorhersagen für Experimente zu treffen. Eines der bedeutendsten Modelle im Kontext
von stark korrelierten Mott-Isolatoren ist das Kugel-Khomskii Modell, welches Spin- und
Orbitalinteraktionen lokalisierter Elektronen störungstheoretisch beschreibt. Allerdings
beschreibt dieses Modell nicht den Einfluss der Spin-Bahn-Kopplung, welche Spin- und
Orbitalfreiheitsgrade verknüpft. Diese ist ein entscheidender Faktor für die Entstehung
von spezifischen Interaktionen, die z.B. notwendig zur Realisierung einer Quantenspin-
flüssigkeit sind. Die allgemeine Herangehensweise für die in dieser Thesis diskutierten
Materialien ist daher zuerst ein effektives Kugel-Khomskii Modell herzuleiten und da-
raufhin die Spin-Bahn Kopplung zu berücksichtigen.

Im Kontext der d5 Materialien, die in dieser Thesis untersucht werden, wurden bere-
its sowohl das effektive Spin-Bahn-Modell als auch der Einfluss der Spin-Bahn Kop-
plung exzessiv untersucht. Dies führte u.a. zum bekannten Kitaev-Heisenberg Modell,
welches Interaktionen beherbergt, die eine Quantenspinflüssigkeit realisieren können.
Der Vorschlag von Khaliullin und Jackeli [1], dass dieses Modell in Festkörpern real-
isierbar sein könnte, führte zu einer Welle an theoretischen und experimentellen Stu-
dien [2, 3], mit dem Ziel ein Material zu finden, was ebenjene Quantenspinflüssigkeit
als Grundzustand realisiert. Bisher zeigten allerdings nur wenige Materialien Signa-
turen einer Quantenspinflüssigkeit [2, 4] und alle in dieser Thesis untersuchten Mate-
rialien zeigen magnetische Ordnung bei niedrigen Temperaturen. Ein Fokus aktueller
Forschung liegt daher darauf, Materialien, die Kandidaten für ein Kitaev-Modell sind,
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so zu manipulieren, dass sie eine Quantenspinflüssigkeit realisieren. In dieser Thesis
wollen wir die Möglichkeit diskutieren Materialien, im speziellen α-RuCl3, mit einem
zeitperiodischen Lichtfeld so zu manipulieren, dass die Kitaev Interaktionen signifikant
verstärkt werden. Der Einfluss solcher Lichtfelder kann mithilfe des Floquet Formalismus
beschrieben werden, welcher einen zeitunabhängigen Hamiltonian liefert, der den Ein-
fluss des Lichts auf die Interaktionen beschreibt. Mit diesem Ansatz ist es uns möglich
ein Kitaev-Heisenberg-Modell herzuleiten, in dem die Interaktionen von der Polarisa-
tion, Stärke, und Frequenz des externen Lichtfelds abhängen. Nach unserem Wissen ist
unser Modell das erste, welches sowohl den Einfluss beliebiger Polarisationen als auch
alle essenziellen Störterme im Kugel-Khomskii-Modell berücksichtigt. In unserer Studie
finden wir neuartige Interaktionen, die polarisationsabhängig sind, sowie die Möglichkeit
Kitaev Interaktionen signifikant zu verstärken.

Im Gegensatz zur d5 Familie ist die Wechselwirkung von Spin-Bahn Kopplung, Kugel-
Khomskii Interaktionen, und Kristallfeld in der Familie der d4 Quadratgittermateri-
alien, die wir in dieser Thesis untersuchen, noch nicht vollständig geklärt. Im Speziellen
das Material Ca2RuO4 war Gegenstand von Diskussionen aufgrund des ungeklärten Ur-
sprungs seines magnetischen Grundzustands. Für signifikante Spin-Bahn Kopplung wäre
die intuitive Vermutung, dass der Grundzustand nicht magnetisch ist, da Spin- S = 1
und Orbitalfreiheitsgrade L = 1 zu einem Gesamtdrehimpuls J = 0 koppeln sollten.
In Ca2RuO4 wurde jedoch, für niedrige Temperaturen, eine antiferromagnetische Ord-
nung, die in der Ebene orientiert ist, gemessen. Da der Ursprung ebenjener magnetis-
chen Ordnung nicht vollständig geklärt ist, leiten wir ein effektives Kugel-Khomskii-
Modell her, welches bestimmte t42g Quadratgitter Mott-Isolatoren, wie z.B. Ca2RuO4,
beschreibt. Mit diesem Modell ist es uns möglich ein Phasendiagramm in Abhängigkeit
von der Spin-Bahn Kopplung und Kristallfeldaufspaltung zu skizzieren, und in diesem
Ca2RuO4 zu lokalisieren. Des Weiteren untersuchen wir den Einfluss von Kristallfel-
daufspaltung und Spin-Bahn Kopplung auf die Spin-Dynamiken des Systems, um die
Natur des Grundzustands zu klären. Die Resultate unserer Studie zeigen eine exzellente
Übereinstimmung mit inelastischen Neutronenstreuungs-Experimenten [5]. Um unser
Modell weiter zu validieren, untersuchen wir zudem die Néel Temperatur von Ca2RuO4,
um diese mit experimentellen Daten zu vergleichen. Zudem untersuchen wir den Einfluss
der Kristallfeldaufspaltung und Spin-Bahn-Kopplung auf die Néel Temperatur. Erneut
finden wir eine qualitativ gute Übereinstimmung mit experimentellen Ergebnissen, was
unser effektives Kugel-Khomskii-Modell zu einem vielversprechenden Startpunkt für Ma-
terialien mit ähnlichen Eigenschaften wie Ca2RuO4 machen könnte.
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Abstract

4d and 5d transition-metal-based Mott insulators with sizable spin-orbit coupling have
been focal points of scientific research over the last decade because they might host in-
teresting ground state properties such as excitonic magnetism and quantum spin liquids.
The reason for unique phases arising in these materials is the intricate interplay between
strong correlations, spin-orbit coupling, and other effects, such as crystal field. To make
these materials accessible from a theoretical point of view it can be advisable to derive
effective models simplifying the Hamiltonian because an exact description is often impos-
sible. These effective models should capture relevant physical properties well and give
accurate predictions concerning experiments. A hallmark effective model in the context
of strongly correlated Mott insulators is the Kugel-Khomskii model, which describes
spin and orbital interactions of the located electrons via perturbation theory. However,
this model does not capture the effect of spin-orbit coupling, which intertwines spin and
orbital degrees of freedom and is an essential factor for unique interactions realizing,
e.g., quantum spin liquids. The general approach in describing the materials discussed
in this thesis thus is to derive an effective Kugel-Khomskii model and then consider the
spin-orbit coupling.

In the context of d5 honeycomb materials studied in this thesis, the effective spin-orbit
model and the influence of spin-orbit coupling yield the famous Kitaev-Heisenberg model.
This model includes Kitaev interactions, which, on its own, would lead to an exactly
solvable quantum spin liquid ground state. The proposal of Khaliullin and Jackeli [1]
that this model could find realization in condensed matter caused a surge of theoretical
and experimental work [2,3] to find a material realizing this quantum spin liquid ground
state. However, until today only a few of the materials show signatures of a quantum
spin liquid [2, 4], while the materials considered in this thesis all order magnetically at
low temperatures. Hence, focus turned to manipulating promising candidate materials
so they realize a quantum spin liquid. In this thesis, we want to discuss the possibility
of tuning candidate materials via a time-periodic light field to significantly enhance
Kitaev interactions. We capture the influence of time-periodic light fields via the Floquet
formalism, which yields a time-independent Hamiltonian describing the influence of the
light on the interactions. With this approach, we can derive a Kitaev-Heisenberg model
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dependent on polarization, strength, and frequency of the external light field. To our
knowledge, this is the first model that captures the influence of all possible Lissajous
polarizations and includes all essential interactions in the Kugel-Khomskii model. In
our study, we find new polarization-dependent interactions arising and the possibility of
significantly enhancing Kitaev interactions.

In contrast to the d5 family, for the family of d4 materials considered in this thesis,
especially Ca2RuO4, the interplay of spin-orbit coupling, Kugel-Khomskii type interac-
tions, and crystal field is not completely clarified yet. The d4 square lattice compound
Ca2RuO4 has been the center of discussion due to the origin of its magnetic ground
state. For sizable spin-orbit coupling one would assume a nonmagnetic ground state,
because, in principle, the spin S = 1 and orbital L = 1 degrees of freedom should couple
to a total angular momentum of J = 0. However, Ca2RuO4 orders antiferromagnetically
in-plane at low temperatures. Since the origin of this order is yet not completely solved,
we derive an effective Kugel-Khomskii model for t42g square lattice Mott insulators, like
Ca2RuO4. We can derive a phase diagram in dependence of crystal field and spin-orbit
coupling, in which we locate Ca2RuO4. In addition, we investigate the influence of spin-
orbit coupling and crystal field on the dynamics to clarify the nature of the ground state.
Our results of the dynamics show excellent agreement with inelastic neutron scattering
measurements. To further validate our model we compare finite temperature properties,
especially the Néel temperature, of Ca2RuO4 with experimental data. Additionally, we
elaborate on the influence of crystal field and spin-orbit coupling on the Néel tempera-
ture. Again, we find a qualitative good agreement with theory and experiment, which
makes the Kugel-Khomskii model a promising starting point for materials with similar
properties as Ca2RuO4.
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1Introduction

The family of strongly correlated transition metal compounds, especially Mott insula-
tors, have shown to host a variety of intriguing properties, ranging from spin liquids
and excitonic magnetism to superconductivity. Since an exact theoretical description
of these models is almost always impossible, one often has to work with effective mod-
els, which simplify the theoretical description but yield reliable predictions comparable
with experimental data. A hallmark model in the context of Mott insulators is the
Kugel-Khomskii model, treating the electron hopping as a perturbation, which yields an
effective interaction between located electrons and reduces the respective Hilbert space.
This concept is the foundation of this thesis, as we investigate Mott insulating transition
metal compounds argued to realize excitonic magnetism or quantum spin liquids. We
want to derive models for these materials, which give realistic predictions of ground state
properties and excitations.

1.1 Floquet engineering in candidate d5 Kitaev-Heisenberg materials

The Kitaev model [6] has been a focal point of solid-state physics research in the past
decade due to its capability to realize an exactly solvable quantum spin liquid ground
state. Ever since Jackeli and Khaliullin proposed that such a model could be realized in
Mott insulators with five electrons in the d-shell and strong spin-orbit coupling (SOC) [1],
attention has been drawn to models with such properties. Interest was first mainly in
iridates like Na2IrO3 [7] and α-LiIrO3 [8], but after experiments suggested that these
systems realize a zig-zag [9–11] and incomensurate [12] ordered ground state respectively,
focus has turned to ruthenates like α-RuCl3 [13]. While α-RuCl3 also does not show
a Kitaev spin liquid (KSL) ground state, in the presence of a magnetic field, there are
arguably indicators for a quantum spin liquid [14,15]. That leads to the conclusion that
α-RuCl3 might be close to the KSL, making it one of the more promising materials in this
context. Since, to our knowledge, in none of the materials considered in this thesis, the
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KSL arises naturally, there have been multiple attempts to drive the considered materials
into the much desired quantum spin liquid state. The most promising pathway up to
date, as mentioned, is applying an external magnetic field [16–20], but there have been
also studies about applying pressure [21–23] and doping [24–26].

One yet relatively undiscovered pathway is the possibility of tuning these strongly
correlated materials with light periodic in time. In a time-periodic system, the Floquet
theorem applies and one can describe the system via a time-independent effective Floquet
Hamiltonian. This Hamiltonian is valid for a short but experimental accessible time
span [27–29], after which heating becomes a decisive factor. Tuning with light gives a
variety of possibilities to alter system properties, e.g., via light frequency, amplitude,
and polarization.

In this thesis, we investigate the most promising ways to tune Kitaev candidate
materials via light. First, we derive an effective Floquet Hamiltonian for the well-known
Kitaev-Heisenberg model and show that the Kitaev, Heisenberg, and Γ interactions
depend on the light angle, amplitude, and frequency. This procedure is supported by
the results of multiple publications [30–32]. We start our analysis by considering linear
polarization (LP). Here, we only consider perturbation theory up to the second order
as suggested by [30].

After choosing appropriate frequencies we show that we can alter the sign and mag-
nitude of the interactions via the light amplitude in all considered materials. We observe
that the Heisenberg interaction here takes a unique role because amplitude and frequency
dependency are fundamentally different from the other interactions. Additionally, we
show that system intrinsic anisotropies can be enhanced or suppressed via the angle of
the LP. Turning to circular polarization (CP), we show that it is possible to suppress
the third nearest neighbor Heisenberg interactions, which arguably are a factor in favor
of the measured zig-zag phase [33].

Recent studies [31,32] have shown that for CP novel effects like the inverse Faraday
effect arise, if one calculates third-order terms in perturbation theory explicitly instead
of implicitly including them in second-order like previously done. To build upon these
reports we derive an effective Kugel-Khomskii model in fourth-order perturbation theory
for arbitrary polarization (AP). The inclusion of terms up to the fourth order is manda-
tory to capture all interactions present in the simplified second-order model [34], which
implicitly includes third and fourth-order terms. With a Hamiltonian for AP, we are ca-
pable of connecting the limiting cases CP and LP, evaluating crucial differences between
the limiting cases. We derive such an effective model by replacing the CP/LP ansatz
with a Lissajous figure ansatz, which has already been done for different systems [35–38].
With this novel effective model we can showcase the importance of fourth order terms
for CP, yielding far better agreement with numerical results than previous third-order
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results. Additionally, we can also study the limiting case of LP. The comparison of
fourth-order results with the second-order results showed us that including higher-order
terms also has a tremendous effect on LP, as it introduces two completely novel inter-
actions inducing spatial anisotropies. From there, we can, in principle, cover the whole
phase space of polarization possibilities. We show exemplary results for elliptical as well
as more complicated Lissajous figures.

1.2 Effective model and parameter studies of the d4 compound Ca2RuO4

The second main building block of this thesis is the study of ground state properties of t42g

Mott insulating square lattice transition metal compounds with sizable SOC, especially
Ca2RuO4. Ca2RuO4 will be the focal point of our studies because of the controversies
surrounding its magnetic ground state.

While for sizable SOC one would expect a non-magnetic ground state due to SOC
combining spin S = 1 and orbital degrees of freedom L = 1 to a total angular momentum
of J = 0, the superexchange mechanism present in these materials drives a transition
between the non-magnetic J = 0 and the magnetic states J = 1. This mechanism,
known as excitonic magnetism [39], leads to a magnetic ground state. However, there
has also been another explanation for the ground state properties [40,41], claiming that
SOC is not large enough to justify an effective J model. In this case, a S = 1 model
would describe the system, intuitively leading to a magnetic ground state, with SOC
just correcting excitation properties.

To shine a light on this discussion, we derive a general Kugel-Khomskii model for
t42g Mott insulators with square lattice geometry. Our model is distinct from previously
derived similar models [39], taking into account anisotropic hoppings and Hund’s cou-
pling JH. Since experimental data suggest that anisotropic hoppings and sizable Hund’s
coupling are present in Ca2RuO4, we expect our model to be more accurate than pre-
vious ones. To interpret the nature of the magnetism of Ca2RuO4, we obtain a phase
diagram in dependency of crystal field and SOC, in which we can locate Ca2RuO4. With
that, we can qualitatively determine the stability of magnetism in Ca2RuO4 and explore
phases in proximity to Ca2RuO4. Furthermore, we investigate dynamics and compare
these with experimental neutron scattering results [5]. Last but not least, we measure
the distribution of the two holes in the three d orbitals, indicating whether SOC justifies
an effective J model. Our results lead us to believe that the magnetic ground state is
excitonic.

Ca2RuO4 has a phase transition from an in-plane antiferromagnet to a paramagnetic
ground state at TN ≈ 113 K [42,43]. We can capture this phase transition, with a semi-
classical Monte Carlo analysis. Our results show a qualitatively good agreement of the
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Néel temperature. Furthermore, we investigate the influence of SOC and crystal field
(CF) on the Néel temperature.

1.3 Outline

In Chap. 2 we discuss the underlying models and methods essential for this thesis. Here
we introduce the Kugel-Khomskii model, the Kitaev-Heisenberg model, and the Floquet
formalism. Additionally, we discuss the, for this thesis relevant, physical background
like transition metals, excitonic magnetism, and spin liquids. Last but not least we
introduce the numerical methods used in this thesis.

We divide the remainder of the thesis into the two main topics, I discussing possibili-
ties of Floquet engineering in Kitaev candidate materials (Chap. 3-5) and II Investigating
the possible phases arising in materials like Ca2RuO4 and their origin (Chap. 6-8).

We start part I in Chap. 3 by obtaining the second-order effective model for Kitaev-
Heisenberg models under the influence of LP periodic in time. In Chap. 4, we analyze
the model obtained in Chap. 3. Here, we discuss the influence of light angle, frequency,
and amplitude and consider LP and CP. Chap. 5 extends the model introduced in
Chap. 3 to an effective model up to fourth order in perturbation theory. Additionally,
we introduce AP in the form of Lissajous figures, to capture the effects more complex
polarizations have on the system’s intrinsic interactions and bridge the gap between CP
and LP.

In Chap. 6, we start our analysis of the d4 square lattice, by deriving an effective
Kugel-Khomskii model via second-order perturbation theory, including Hund’s coupling
and anisotropic hoppings. We proceed by calculating ground state properties of the in
Chap. 6 introduced model, for varied SOC and crystal field, via exact diagonalization
(ED). This leads to a phase diagram including Ca2RuO4 presented in Chap. 7. To
confirm the phase diagram, we analyze the same model via semi-classical Monte Carlo
and an effective triplon model via ED. With the help of these methods, we complete
our findings and derive a more sufficient phase diagram. Additionally, we also study
dynamics for several parameter settings and compare them with experimental results
from [5].

Extending our studies of the model with Monte-Carlo to finite temperatures in
Chap. 8 gives us a pathway to study the effect of SOC and crystal field on the Néel
temperature. We compare the Néel temperature of our effective model for Ca2RuO4

with experimental results.
In Chap. 9, we conclude this thesis and give an outlook on interesting future studies.
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2Basics

In this chapter, we want to discuss the basics that lay the foundation of this thesis.
We introduce the physical motivation behind this thesis and the tools required to obtain
realistic results. As for tools, we mainly focus on mathematical approaches to describe
effective models. Additionally, we introduce numerical methods to solve these. These two,
together with the physical motivation, are the three pillars of this thesis, and likewise for
most theoretical studies.

2.1 Transition metal compounds

In this thesis, we focus on transition metal compounds with non-filled valence bands
and strong Coulomb repulsion. The latter can lead to a localization of itinerant elec-
trons, causing an insulating behavior. This "unexpected" insulator arising due to strong
electron-electron correlations, originally found by Mott [44, 45], is called a Mott insu-
lator. In the family of Mott insulators, we are interested in materials with a d-valence
band occupied by four and five electrons respectively. Here, we mainly focus on layered
systems with weak interlayer interaction thus realizing a quasi 2D system.

2.1.1 d5 materials

In this section, we are mainly focusing on transition metal compounds with five electrons
residing in the valence d-shell (d5 configuration), e.g., oxides like NaIrO3 or chlorides
like α-RuCl3, which form a hexagonal lattice. These materials have been extensively
investigated due to the possibility of realizing a KSL ground state [2, 3]. In the men-
tioned materials, the ligand atoms form an octahedron around the transition metal
(Fig. 2.1). These octahedra arrange edge-sharing, resulting in a hexagonal arrangement
of the transition metals.



6 Basics

Figure 2.1: Sketch of transition metals with edge-sharing octahedra building a honey-
comb lattice. Dark blue spheres depict the transition metals forming the hexagonal
lattice. Light blue spheres depict the ligands forming octahedra around the transition
metals. Materials with this geometry are, e.g., Na2IrO3, α-Li2IrO3, and α-RuCl3.
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Figure 2.2: Octahedral CF splitting of the d orbitals. The fivefold degeneracy of the d
orbitals, from the considered transition metal, gets lifted due to the CF of the ligands
forming an octahedra around it. This splitting gives rise to a two-fold degenerated
eg level consisting of the dx2−y2 and dz2 orbital and a three-fold degenerated t2g level
consisting of the dxy, dyz, and dxz orbital.

The ligand atoms cause an octahedral CF, which lifts the five-fold degenerated d-shell
of the transition metal compound. dxy, dyz, and dzx orbitals get energetically lowered
and build the new threefold degenerated t2g manifold, while dz2 and dx2−y2 levels get
energetically raised and form the eg manifold. Since we consider materials, where the
octahedral CF is significantly larger than the Hund’s coupling JH, the five electrons
all reside in the energetically favored t2g manifold, Fig. 2.2. Instead of considering five
electrons in the t2g shell, we can also consider the remaining hole in this manifold.
Therefore, we can reduce our five-particle system to a one-hole system via particle-
hole transformation. From now we only consider the hole in the t2g manifold, i.e., the
operators introduced are hole operators instead of electron operators.

Since the d5 materials considered in this thesis have a relatively high atomic number,
SOC couples spin and orbital degrees of freedom to a total angular momentum J = 1/2
(see Sec. 2.2.3 for more details).

2.1.2 d4 materials

As the name suggests, d4 materials have four electrons which reside in the t2g manifold
introduced in Sec. 2.1.1. The focal point in this thesis will be the material Ca2RuO4,
which has gathered significant interest because of its yet not entirely resolved ground
state properties.

In Ca2RuO4 the ligand oxygen atoms form an octahedra around the transition metal
compound Ru, comparable to the considered d5 materials discussed in Sec. 2.1.1. How-
ever, contrary to the d5 materials that we consider in this thesis, Ca2RuO4 does not
arrange in a honeycomb structure but forms a square lattice structure (see Fig. 2.3).
This square lattice consists of ruthenium-oxygen octahedra that arrange in a corner-
sharing manner (Fig. 2.3), while in the materials discussed in Sec. 2.1.1, octahedra ar-
range edge-sharing (Fig. 2.1). As previously discussed, the ligand atoms cause a splitting
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Figure 2.3: Crystal structure of Ca2RuO4. Oxygen ligand atoms (light blue) form an
octahedron (grey-shaded) around the Ru transition metal (dark blue). The octahedra
arrange in a corner-sharing manner in the x-y-plane, which leads to a square lattice
formed by the Ru atoms. The x-y layers stack with an offset displayed in the figure.

of the five-fold degenerated d orbitals into a three-fold degenerated t2g and a two-fold
degenerated eg manifold, see Sec. 2.1.1. In Ca2RuO4, four electrons reside within the
t2g manifold. Like in Sec. 2.1.1, we change to the hole picture yielding two holes in the
t2g orbitals. This makes Ca2RuO4 an effective S = 1, L = 1 system, where the three t2g

orbitals yield the L = 1 nature, as explained in [1], and the two holes with S = 1/2 give
rise to total spin of S = 1. Here, we are working under the assumption that the octahe-
dral field splitting is large enough to localize the holes in the t2g manifold. Besides the
square lattice structure, this is the second distinction from the considered d5 materials.

The effect of SOC in Ca2RuO4 is yet not fully resolved. As a starting point, one
can recapture the scenario of Kitaev materials, i.e., sizable SOC, where S = 1/2 and
L = 1 coupled to a total angular momentum J = 1/2, one would naively expect that an
effective J = 0 model captures Ca2RuO4. This would mean the ground state of Ca2RuO4

is non-magnetic. However, experimental measurements [40, 46–48] have revealed that
the ground state of Ca2RuO4 is an in-plane antiferromagnet (AFM). This means the
assumption of a J = 0 ground state does not hold. The explanation for the magnetic
ground state in Ca2RuO4 has been the subject of controversies lately.

Some believe [40, 41] the root of magnetism is mainly attributed to the presence
of a strong CF splitting, arising from a quenching of the octahedra in z direction (see
Sec. 2.2.4 for further details). This CF lifts the degeneracy of the t2g manifold, increasing
the energy of the dxz and dyz orbital. This would lead to an orbitally ordered ground
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state with holes that reside in the dxy orbitals. The effect of spin-orbit coupling here
would have a minor influence that alters only excitations [40, 41]. Therefore, the J = 0
picture would not be feasible. Others [5, 47] state that SOC is dominant and that the
total angular moment J picture is valid. The explanation for the observed magnetism is
the fact that the superexchange on the square lattice can mix J = 0 and J = 1, leading
to an effective magnetization, also known as excitonic magnetism [39]. The current
assumption is that the truth probably lies somewhere in between, which makes the two
scenarios "two sides of the same coin" [49], with both CF and spin-orbit coupling having
a sizable effect.

Above the Néel temperature of TN = 110 K Ca2RuO4 loses the magnetic order [50].
However, orbital order can still prevail above TN as has been shown by [51]. Additionally,
Ca2RuO4 has a metal-insulator transition at TMIT ≈ 360 K [43], up to which the material
is in a Mott insulating state. A description within an effective Kugel-Khomskii model [52]
(see Sec. 2.3.1) appears to be feasible at low temperatures up to the Néel temperature.

2.2 Interactions

After discussing the lattice structure and electron configuration of t52g and t42g materials
investigated in this thesis, we introduce the interactions present in these materials. A
few of them were already discussed qualitatively in Sec. 2.1, like CF and SOC, and we
will discuss them in more detail in this section. We divide the relevant interactions in
these systems into on-site and inter-site interactions.

2.2.1 Inter-site interactions

The inter-site interactions, i.e., hopping from a hole between sites, can be expressed via
the Hubbard model

Hkin =
∑
i,j

∑
σ

∑
α,β

(
tα,βc

†
i,α,σcj,β,σ + h.c.

)
, (2.1)

with hole creation (annihilation) operators c† (c), spin σ, hopping strength tα,β, orbitals
α and β, and lattice sites i and j. The general form of the Hubbard model holds for
both t42g and t52g materials. However, due to the distinct lattice geometry, the hopping
strength between the orbitals α and β varies drastically.

We first consider t52g materials with edge-sharing octahedra. Looking at the bond
geometry (Fig. 2.4) between two transition metal atoms and their possible orbital config-
urations, one can identify four different possible types of hopping. First, there is hopping
between orbitals lying in bond directions, mediated through an "overlap" of the orbitals,
and from here on referred to as a direct exchange, t3 in Fig. 2.4(iv). Additionally, hop-
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(i) t2 (ii) t1 (iii) t4 (iv) t3

Figure 2.4: Possible hoppings present in edge-shared octahedra. Transition metal d
orbitals are dark blue, and ligand atom p orbitals are light blue. (i) Superexchange
t2 = t2pdπ/∆pd + (tddπ − tddδ)/2 mediated through mainly ligand atoms between dxz and
dyz orbitals. (ii) Orbital preserving hopping t1 = (tddπ + tddδ)/2 between dxz or dyz

orbitals. (iii) Hopping t4 = tddδ between dxy and either dxz or dyz. (iv) Direct exchange
t3 = (3tddσ + tddδ)/4 between dxy and dxy orbitals. tpdπ, tddδ, tddσ, and tddπ are Slater-
Koster parameters from [53] and ∆pd is the charge transfer gap between d and p orbitals.

(i) txz/tyz (ii) txy (iii) txy,3

Figure 2.5: Possible hoppings present in a corner shared octahedra. Transition metal d
orbitals are dark blue, and ligand atom p orbitals are light blue. The active orbitals on a
given nearest neighbor (NN) bond lie in the bond direction. These are either, depending
on the bond direction, dxz or dyz orbitals on both sites (i) and the dxy orbital (ii). For
second nearest neighbor (NN)’s, there is a significant contribution arising from the dxy

overlap (iii) comparable to the direct exchange in Fig. 2.4(iv).
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ping can be mediated through the p-ligand atoms between orbitals pointing towards the
same ligand atom, t2 in Fig. 2.4(i). Furthermore, non-vanishing hopping strengths occur
between orbitals in bond direction and orbitals lying in ligand direction, t1 in Fig. 2.4(ii),
as well as orbitals not pointing in bond direction and towards different ligand atoms,
t4 in Fig. 2.4(iii). While for an ideal geometry, these hoppings would be zero, lattice
distortions arising in realistic materials can lead to non-vanishing contributions of these
hoppings.

For the t42g compounds, we consider the hoppings displayed in Fig. 2.5. Here, the p
orbital lies between the transition metal compounds due to the corner-sharing arrange-
ment. In a square lattice, only two different nearest neighbor (NN) bond types in x

and y directions exist. Both bonds have a sizable hopping strengths txy arising from
an overlap of the dxy orbitals on adjacent sites with the py/px oxygen atom in-between,
Fig. 2.5(ii). The other t2g orbitals, dyz and dzx, only have significant contributions for
y and x bonds respectively. For an x bond, Fig. 2.5(i), dzx orbitals point in the bond
direction and have a significant overlap mediated by the pz oxygen ligand atom. These
are typically all considered NN interactions [1, 54]. However, we do consider one next
nearest neighbor (NNN) interaction displayed in Fig. 2.5(iii), arising from the direct
overlap of dxy orbitals similar to the case in Fig. 2.4(iv), with the difference that the
spatial distance is decisively larger and txy,3 much weaker because of that.

2.2.2 Kanamori interaction

In addition to kinetic interactions, introduced in Sec. 2.2.1, the considered transition
metals typically have strong on-site interactions. In this thesis, we focus on three types
of on-site interactions. Kanamori interactions and spin-orbit coupling are present in
both t42g and t52g as well as CF splitting, only discussed for t42g materials. As described
in Sec. 2.1, the reason for the insulating behavior of the considered transition metals is
the strong Coulomb repulsion in these materials. The Kanamori-Hamiltonian [55]

Hint =U
∑
i,α

niα↑niα↓ + U ′∑
i,σ

∑
α<β

niασniβ −σ

+ (U ′ − JH)
∑
i,σ

∑
α<β

niασniβσ

− JH
∑

i,α ̸=β

(c†
iα↑ciα↓c

†
iβ↓ciβ↑ − c†

iα↑c
†
iα↓ciβ↓ciβ↑), (2.2)

with intraorbital Hubbard interaction U , interorbital U ′ = U−2JH and Hund’s coupling
JH describes the Coulomb repulsion. Here we set U ′ = U − 2JH, because we consider
the holes to only reside in the t2g orbitals [56]. Hund’s coupling favors a parallel spin
alignment with electrons residing in different orbitals according to Hund’s rules, while
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f E2,f |Ψ2,f⟩

1 U − 3JH EP
|σ, σ, 0⟩

2 U − 3JH 1/
√

2 (|↑, ↓, 0⟩ + |↓, ↑, 0⟩)
3 U − JH ED

1/
√

2 (|↑, ↓, 0⟩ − |↓, ↑, 0⟩)
4 U − JH 1/

√
2 (|↑↓, 0, 0⟩ − |0, ↑↓, 0⟩)

5 U + 2JH ES 1/
√

3 (|↑↓, 0, 0⟩ + |0, ↑↓, 0⟩ + |0, 0, ↑↓⟩)
Table 2.1: Eigenstates and eigenergies of the Kanamori-Hamiltonian for two holes on
one site, with σ the spin of the hole and α, β, γ ∈ [dxz, dxy, dyz] the orbital flavor of the
corresponding hole.

f E3,f |Ψ3,f⟩

1 3U − 4JH 1/
√

2 (|↑↓, ↑, 0⟩ + |0, ↑, ↑↓⟩)
2 3U − 6JH 1/

√
2 (|↑↓, ↑, 0⟩ − |0, ↑, ↑↓⟩)

3 3U − 9JH 1/
√

3 (|↑, ↓, ↑⟩ + |↓, ↑, ↑⟩ + |↑, ↑, ↓⟩)
4 3U − 6JH 1/

√
2 (− |↑, ↑, ↓⟩ + |↓, ↑, ↑⟩)

5 3U − 6JH 1/
√

6 (|↑, ↑, ↓⟩ + |↓, ↑, ↑⟩ − 2 |↑, ↓, ↑⟩)
6 3U − 9JH |σ, σ, σ⟩

Table 2.2: Eigenstates and eigenergies of the Kanamori-Hamiltonian for three holes on
one site, with σ the spin of the hole and α, β, γ ∈ [dxz, dxy, dyz] the orbital flavor of the
corresponding hole.

Coulomb repulsion taxes the placement of two electrons on one site with the energy U .
In the case of t52g materials, we are mainly interested in the interaction energy for

two holes on one site, because we want to calculate the energy cost of an electron tem-
porarily occupying an adjacent site. The eigenstates and eigenergies of the Kanamori-
Hamiltonian for this subspace are given in Tab. 2.1 [57]. For one hole on one site, one
intuitively obtains E1 = 0.

For the t42g compounds, we are interested in the eigenstates of three holes residing on
one site in addition to the scenarios discussed for t52g. This is the case because moving an
electron to an adjacent site in these compounds results in a d3d1 configuration. App. C
derives these energies in detail. Tab. 2.2 shows the results for three electrons.

2.2.3 Spin-orbit coupling

Spin-orbit coupling is a relativistic effect that couples the spin and orbital degrees of
freedom of an electron (hole). The coupling strength increases with the atomic number
∝ Z2 [58, 59]. Since the materials considered in this thesis have, in general, relatively
high atomic numbers (e.g., Ru Z = 44) and nonvanishing orbital and spin moments, we
have to consider this effect. In this work we only consider the case JH ≫ λ, where the
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Russell-Saunders coupling

HSOC = λ
∑

j

SjLj, (2.3)

with lattice sites j, is a valid description. Here, we work under the assumption that
spin and orbital momenta si and li of the single electrons (holes) i couple to a total spin
and orbital momentum S = ∑

i si and L = ∑
i li, which then couple to a total angular

momentum J = S+L via (2.3). In the considered systems, SOC tends to be strong and
we can express the Hamiltonian in the basis of eigenstates of the SOC Hamiltonian. For
the transition metals in question, we have three t2g orbitals, i.e., we can write them in an
effective Leff = 1 basis, which only differs from the conventional angular momentum by
negative sign [2, 60], i.e.,

[
Lα

eff , L
β
eff

]
= −iϵα,β,γL

γ
eff with α, β, γ ∈ [x, y, z] and Lα

eff given
in (2.7). From now we will refer to this effective angular momentum as L for simplicity
reasons. The effective angular momentum expressed in the orbital basis then reads

|L = 1,mL = ±1⟩ = − 1√
2

(i |dxz⟩ ± |dyz⟩)

|L = 1,mL = 0⟩ = |dxy⟩ . (2.4)

SOC couples this effective angular momentum L = 1 with the spin S = 1/2. Therefore,
the eigenstates of HSOC become

|J = 1/2,mJ = ±1/2⟩ = 1√
3

|L = 1,mL = 0, S = 1/2,mS = ±1/2⟩

−
√

2
3 |L = 1,mL = ±1, S = 1/2,mS = ∓1/2⟩

|J = 3/2,mJ = ±1/2⟩ =
√

2
3 |L = 1,mL = 0, S = 1/2,mS = ±1/2⟩

+ 1√
3

|L = 1,mL = ±1, S = 1/2,mS = ∓1/2⟩

|J = 3/2,mJ = ±3/2⟩ = |L = 1,mL = ±1, S = 1/2,mS = ±1/2⟩ . (2.5)

The eigenvalues of the two distinct J values are EJ=3/2 = −λ/2 and EJ=1/2 = λ, meaning
SOC lifts the degeneracy of the three-fold degenerated t2g level into a J = 1/2 and two
J = 3/2 levels. Since there are five electrons residing in the t2g manifold, there is a fully
occupied J = 3/2 with one electron and one hole remaining in the J = 1/2 manifold
(see Fig. 2.6). Thus, we can describe the hole in the J = 1/2 via an effective spin-1/2
model.

For the t42g compounds, the influence of SOC becomes a little bit more intricate
than for the case of t52g configurations. Since we are only considering SOC decisively
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Figure 2.6: Splitting of the t2g level due to SOC. The threefold degeneracy gets lifted
into a twofold degenerated J = 3/2 level at −λ/2 and a J = 1/2 level at λ. In the
considered systems five electrons reside in the t2g manifold thus, there is a fully occupied
J = 3/2 level with one electron remaining in the J = 1/2 level. Since we perform a
particle-hole transformation, i.e., considering the physics of the one hole in the system
instead of the five electrons, the level structure gets inverted and we obtain a pseudospin
1/2 system for the hole.

smaller than Hund’s coupling JH and U , we first have to consider the splitting of the t42g

according to the Kanamori Hamiltonian. We did not discuss this for the t52g because one
hole per site does not experience an energy correction from Hint. The eigenvalues and
eigenstates for two holes on one site, see Tab. 2.1. We observe a splitting of the t42g into
three distinct levels with L = 1, S = 1 (EP = U − 3JH), L = 2, S = 0 (ED = U − JH),
and L = 0, S = 0 (ES = U + 2JH) see Fig. 2.7. Since we consider materials with
sizable Hund’s coupling it is feasible to assume that the ground state is firmly in the
L = 1, S = 1 manifold. This manifold consists of nine distinct states (Tab. 2.1). A
finite spin orbit coupling 0 < λ ≪ JH splits this manifold into the J = 0, J = 1, and
J = 2 level with an energy splitting of λ/2 and λ see Fig. 2.7. The lowest energy level
considering Kanamori interactions and SOC would be the J = 0 state. However, as we
will see, this changes with inclusion of kinetic terms and the on-site CF.

2.2.4 Crystal field

At the metal-insulator transition, Ca2RuO4 also undergoes a structural transition [61,62]
leading to octahedra with compressed z axis, see Fig. 2.6. This leads to an effective
tetragonal CF acting on the t2g orbitals of the transition metal compound [48,63]

HCF = ∆
∑

i

Lz 2
i = ∆

∑
i

(|zx⟩i ⟨zx|i + |yz⟩i ⟨yz|i). (2.6)
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λ/2

λL=1,S=1

L=2,S=0

L=2,S=0

J=1

J=0

J=2

Figure 2.7: Splitting of the t42g level due to SOC. Sizable Hund’s coupling lifts the
degeneracy of the t42g level into the |L = 1, S = 1⟩, |L = 2, S = 0⟩, and |L = 0, S = 0⟩.
SOC then splits the |L = 1, S = 1⟩ manifold in to the |J = 0⟩, |J = 1⟩, and the |J = 2⟩
level.

dxz dyzdxy dxy

dxz dyz

Figure 2.8: CF splitting of the t2g manifold in Ca2RuO4. The octahedra of Ca2RuO4
are quenched in z direction, leading to a splitting that favors the dxy orbital over the
dxz and dyz orbital.
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α β
(i) Ed,1

α β
(ii) Ed,2, Ed,3

α β
(iii) Ed,4, Ed,5

Figure 2.9: Possible energies of the doublon excitations. There are three different kinds
of double occupations. Same spin different orbitals which only has an overlap with the
Kanamori eigenstate [55] with Em = U − 3JH (i), different spins different orbitals with
possible energies Em = U − 3JH or Em = U − JH (ii), same orbital different spins with
Em = U + 2JH or Em = U − JH (iii).

Here, we used the definition of the effective angular momentum operators [39,64]

Lx = i(|xy⟩ ⟨zx| − |zx⟩ ⟨xy|)
Ly = i(|yz⟩ ⟨xy| − |xy⟩ ⟨yz|)
Lz = i(|zx⟩ ⟨yz| − |yz⟩ ⟨zx|). (2.7)

HCF lifts the degeneracy of the t2g manifold, where dyz and dzx orbital get energetically
lifted by the strength of the tetragonal CF ∆ compared to the dxy orbital, see Fig. 2.8.
We notice that tetragonal CF ∆ and spin-orbit coupling λ are competing entities. While
CF favors an orbital polarization so that just the dxy orbital has a double occupancy,
spin-orbit coupling favors the J = 0 state, which has an equal occupation of dxy, dyz,
and dzx orbital. This makes the hole density in the dxy orbital a quantity, which can
determine whether one is in the dxy polarized or the J = 0 limit.

2.3 Models

2.3.1 Kugel-Khomskii model

In Mott insulators strong, Coulomb repulsion suppresses the hopping of holes. This
means that t ≪ U and we can treat the kinetic part of the Hamiltonian via second-order
perturbation theory

Hi,j
eff =

∑
l,n̸=m

|Ψg,l⟩ ⟨Ψg,l|Hkin |Ψm⟩ ⟨Ψm| Hi,j
kin |Ψg,n⟩ ⟨Ψg,n|

Eg − Em

, (2.8)

where |Ψg⟩ describes the ground state manifold of the Kanamori Hamiltonian HK with
ground state energy Eg. As we see in Sec. 2.2.2, the ground state manifold differs for the
t42g and t52g materials. |Ψm⟩ is the eigenstate manifold of HK with energy Em accessible
through application of Hi,j

kin, i.e., the movement of a hole from site i to site j. This
treatment of the kinetic Hamiltonian in degenerate second-order perturbation theory
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leads to an effective Hamiltonian, also known as the Kugel-Khomskii type Hamiltonian.
In the following, we discuss the derivation of the Kugel-Khomskii type Hamiltonian for
both t42g and t52g materials.

For t52g materials, the hopping from a hole to an adjacent state via Hkin gives rise
to a d2d0 configuration. We can distinguish between three different kinds of double
occupations: Distinct orbital same spin, distinct orbital distinct spin, and same orbital
distinct spin. The first scenario only has an overlap with states |ψ2,1⟩ (Tab. 2.1) thus it
yields an excitation energy of U − 3JH. For the second case the resulting state Hkin |Ψ1⟩
has overlap with both |ψ2,2⟩ and |Ψ2,3⟩, leading to interaction terms ∝ −1/(U − 3JH)
and ∝ −1/(U − JH). Lastly for the double occupation of one orbital we get a nonzero
overlap with |Ψd,4⟩ and |Ψd,5⟩, yielding intermediate energies of U−JH and U+2JH. We
summarize the possible configurations with their possible excitation energies in Fig. 2.7.
Considering the four distinct hoppings of Hkin, introduced in Sec. 2.2.1, we can distin-
guish three fundamental virtual hopping processes. First, there is the direct exchange
where both hopping processes are orbital preserving, i.e., of kind t1 and t3 see Fig. 2.10.
Second, there is the virtual hopping where both processes are of orbital changing na-
ture, i.e., t2 and t4. Here, virtual interactions that preserve the initial orbital occupation
and interactions that change the orbital flavor exist. Lastly, we have a mixed exchange,
where one hopping process is orbital preserving, and the other changes the orbital flavor.
In this case, the virtual hopping process changes the orbital flavor.

Summarizing all these interactions leads to a Kugel-Khomskii-type Hamiltonian,
which we write in the basis of creation/annihilation operators introduced in (2.1). Since
the ground state manifold for d5 materials consists of S = 1/2, L = 1 states, we can
project the Hamiltonian into the spin-orbit basis

HSL
KK =

∑
ml,m

′
l

∑
ms,m′

s

|ms,ml⟩ ⟨ms,ml|HKK |m′
s,m

′
l⟩ ⟨m′

s,m
′
l| , (2.9)

with ms = ±1/2 and ml = −1, 0, 1 as introduced in (2.4). This procedure has proven
itself to be useful in multi-orbital models with a sizable Coulomb repulsion compared to
the hopping strength, especially Mott insulators [65–67].

Like for the t52g materials, one can derive an effective Kugel-Khomskii Hamiltonian for
t42g materials treating the kinetic Hamiltonian as a perturbation, with the unperturbed
Hamiltonian being the Kanamori Hamiltonian of [55]. However, there are some intricate
but decisive differences in the derivation of the effective Hamiltonian for, e.g., Ca2RuO4.
First, the lattice geometry gives rise to different hopping processes than the honeycomb
lattice (Fig. 2.5). Second, due to the d4 occupation of each site, on-site energies Eg

change as well as the excitation energies Em arising from a d1d3 configuration. Here
the d3 eigenstates of the Kanamori Hamiltonian were introduced in Tab. 2.2. Last but
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β
α

α

α
β

Figure 2.10: Possible virtual hopping processes for d5 materials. Light and dark blue
display the different orbitals α and β. The top sketch shows orbital preserving hopping
processes possible for two holes with opposite spins. The middle sketch displays a
hopping where both holes change the orbital flavor, mediated via hoppings t2 and t4,
which are orbital flipping (see Sec. 2.2.1). Lastly, we have hopping processes where
one hopping process flips the orbital flavor while the other preserves the orbital flavor,
resulting in a virtual process where only one site changes the orbital flavor.

not least, because Hund’s coupling is sizable, the spin-orbital model only considers the
S = 1, L = 1 subspace depicted in Fig. 2.7 (see App.C). We give the detailed derivation
of the effective Hamiltonian in Chap. 6 and App.C.

2.3.2 Kitaev-Heisenberg model

As discussed in Sec. 2.2.2, SOC in t52g compounds leads to a splitting of the Kanamori
ground state manifold into a J = 1/2 and J = 3/2 level, with the hole residing in
the J = 1/2. Therefore, it is feasible to project the Kugel-Khomskii Hamiltonian into
the basis of the SOC ground state manifold, i.e., into the |J = 1/2,mJ = 1/2⟩ and
|J = 1/2,mJ = −1/2⟩ basis. This reduces the degrees of freedom per site from six,
three orbital and two spin, to two degrees of freedom. Since this makes the system an
effective spin-1/2 model, we will from now refer to J = 1/2 operators as spin operators.
This model is intuitively easier to solve numerically than the complete Kugel-Khomskii
model. In the new basis, the effective model then becomes

H̄eff =
∑

⟨ij⟩∈αβ(γ)

[
JγSiSj +KγSγ

i S
γ
j + Γγ(Sα

i S
β
j + Sβ

i S
α
j )

+ Γ′γ(Sα
i S

γ
j + Sγ

i S
α
j + Sβ

i S
γ
j + Sγ

i S
β
j )
]
, (2.10)

with α, β, γ ∈ [x, y, z] the three distinct bond directions in a honeycomb lattice, pseu-
dospin operators Sα

i , and the interaction strengths J , K, Γ and Γ′. We divide the four
interactions into two subgroups, the bond-independent Heisenberg interaction J and the
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bond-dependent Kitaev, Γ, and Γ′ interaction. The striking feature is the presence of
Kitaev interactions on a honeycomb lattice, which, if all other interactions are absent,
leads to an exactly solvable Kitaev spin liquid ground state [6]. The parameters J , K, Γ,
and Γ′ arise from the virtual hopping processes calculated via second-order perturbation
theory (Sec. 2.3.1). As shown in [34] we can write these interactions in terms of hopping
tα,β, Coulomb interaction U , and Hund’s coupling JH

Jγ = 4
27

{ [
−9tγ 2

4 + 2(tγ1 − tγ3)2
] ( 1

U − 3JH
− 1
U − JH

)

+ (2tγ1 + tγ3)2
( 1
U + 2JH

+ 2
U − 3JH

)}
, (2.11)

Kγ =4
9
[
(tγ1 − tγ3)2 − 3(tγ 2

2 − tγ 2
4 )
] ( 1

U − 3JH
− 1
U − JH

)
, (2.12)

Γγ =4
9
[
3tγ 2

4 + 2tγ2(tγ1 − tγ3)
] ( 1

U − 3JH
− 1
U − JH

)
, (2.13)

Γ′γ = − 4
9t

γ
4 (tγ1 − tγ3 − 3tγ2)

( 1
U − 3JH

− 1
U − JH

)
, (2.14)

meaning the strength of the different hopping processes introduced in Sec. 2.2.1 has a
significant influence on the relative strength of the interactions.

One of the first proposed materials to potentially realize such a KSL was the iridate
Na2IrO3 [9, 10, 68], which has dominant t2 interactions. However, experiments showed
that Na2IrO3 has a zig-zag ground state. Other iridate compounds like Li2IrO3 also
showed a non-Kitaev ground state. Up to date one material that is arguably close to
the KSL ground state is the ruthenate α-RuCl3 [69, 70]. However, the ground state
in α-RuCl3 is still a magnetic ordered zig-zag state. One pathway beyond others (e.g.,
applying a magnetic field, substituting interlayer atoms, etc.) for Kitaev-Heisenberg ma-
terials is to manipulate the interaction strength so that the considered material realizes
a KSL.

2.3.3 Triplon model

Like for t52g, we can project the spin-orbital model for t42g materials into the basis of the
SOC Hamiltonian. In the t42g materials we consider in this thesis, SOC is not strong
enough to allow for a projection in just the J = 0 level (Fig. 2.7). To derive an effective
model, it has been shown [39] that it is possible to describe Ca2RuO4 via a projection
into the J = 0 and J = 1 manifold. This projection still reduces the degrees of freedom
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per site from nine to four. Only considering the J = 0 and J = 1 states

|J = 0,mJ = 0⟩ = 1√
3

(|mS = 1,mL = −1⟩ + |−1, 1⟩ − |0, 0⟩)

|J = 1,mJ = 1⟩ = 1√
2

(|1, 0⟩ − |0, 1⟩) = |T1⟩

|J = 1,mJ = 0⟩ = 1√
2

(|1,−1⟩ − |−1, 1⟩) = |T0⟩

|J = 1,mJ = −1⟩ = 1√
2

(|−1, 0⟩ − |0,−1⟩) = |T−1⟩ , (2.15)

and neglecting J = 2 states, one obtains an effective Hamiltonian in the J basis. Instead
of introducing pseudospin 1/2 operators like for the Kitaev-Heisenberg model, one intro-
duces triplon operators T †

−1/0/1 (T−1/0/1) which create (annihilate) the respective J = 1
triplet and annihilate (create) the J = 0 state. From there, one can define [39]

Tx = − i√
2

(T1 − T−1)

Ty = 1√
2

(T1 + T−1)

Tz = iT0, (2.16)

and with that T = (Tx, Ty, Tz), analogue to spin and orbital vectors. We can project the
spin-orbit Hamiltonian into the triplon basis (2.15) and rewrite it in form of the operators
T = (Tx, Ty, Tz), i.e., H(S,L) → H(T ). Our model reduces to an effective singlet-triplet
model because we only consider J = 0 and J = 1. The detailed derivation of this
Hamiltonian can be found for isotropic hopping and JH = 0 in [39]. It has been shown
that in this Hamiltonian terms, which create (annihilate) triplons occur [39, 71]. These
terms couple the J = 0 and J = 1 states, so the ground state becomes a superposition
of J = 1 and J = 0 states, which leads to a nonzero magnetization. Khalliulin first
discovered this effect in [39], also known as excitonic magnetism.

2.3.4 Floquet formalism

For a Hamiltonian periodic in time

H(τ) = H(τ + T ), (2.17)

it has been shown [27] that physics for short times can be accessed via a time-independent
effective Hamiltonian. This assumption is also known as Floquet’s theorem. The rea-
soning is similar to Bloch’s theorem, which is valid for periodic lattices. Like in the case
of Bloch’s theorem, we first can assume that the eigenstates of H(τ) also obey a time
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periodicity, and therefore Floquet’s theorem states that one can write eigenstates of the
system as

Ψn(τ) = un(τ)e−iϵnτ , (2.18)

where Ψn(τ) is the eigenstate of H(τ), un(τ) is a function periodic in time, i.e., un(τ) =
un(τ + T ), ϵn are the so called Floquet quasi-energies, and ℏ = 1. Since Ψn(τ) also has
to be periodic in time, for the Floquet energies

ϵn = n
2π
T

= nω n ∈ N (2.19)

has to hold. In this thesis, we investigate the interaction with a periodic light field.
Therefore, we can interpret (2.19) as the energy provided by the absorption (emission)
of n photons in the system. We see that without loss of generality, we can insert an
additional 1 = eimωτe−imωτ with m ∈ N,

Ψn(τ) = un(τ)eimωτe−imωτe−iϵnτ = unm(t)e−i(ϵn+mω)τ . (2.20)

Plugging this ansatz into the time-dependent Schrödinger equation yields

H(τ)Ψn(τ) = i∂τ Ψn(τ)
= i

[
(∂τunm(τ))e−i(ϵn+mω)τ − i (ϵn +mω)unm(τ)e−i(ϵn+mω)τ

]
. (2.21)

We can rewrite this expression in the form of a time-independent Schrödinger equation

H(τ) − i∂τ︸ ︷︷ ︸
H̄(τ)

unm(τ) = (ϵn +mω)unm(τ), (2.22)

with the difference being that H̄(τ) is defined in the extended Hilbert space F = H ⊗
LT [72,73], with H being the Hilbert space of H(t) and LT the space of square-integrable
time periodic functions. States in F can be expressed as |α(r)⟩ ⊗ |β(τ)⟩ with the scalar
product defined as in [73]

⟨α(r)|α(r)⟩ ⊗ ⟨β(τ)|β(τ)⟩ = ⟨α(r)|α(r)⟩ ⊗ 1
T

∫ T

0
β∗(τ)β(τ)dτ. (2.23)

A complete orthonormal basis of LT is given by β(τ) = eimωτ with m ∈ N the photon
number in the system. Therefore, we will refer to the basis states of LT as |m⟩ and the
basis states of F as |α,m⟩ = |α(r)⟩ ⊗ |m⟩. With this, we can write the Hamiltonian



22 Basics

H̄(τ) in the basis of the extended Hilbert space F . This yields

⟨α′,m′| H̄(τ) |α,m⟩ = ⟨α′| 1
T

∫ T

0
e−im′ωτ (H(τ) − iℏ∂τ ) eimωτ dτ |α⟩

= 1
T

⟨α′|
∫ T

0
(H(τ) + ℏmω)ei(m−m′)ωτ dτ |α⟩

= ⟨α′| 1
T

∫ T

0
H(τ)ei(m−m′)ωτ dτ |α⟩ + δα,α′δm,m′ℏmω. (2.24)

The first part of the expectation value describes the emission/absorption of ∆m photons

H∆m = 1
T

∫ T

0
H(t)ei∆mωτ dτ, (2.25)

with ∆m = m − m′. This part yields both diagonal and off-diagonal elements. The
second part only has diagonal contributions due to the Kronecker-δ’s. In total, the
Hamiltonian in the α⊗ β basis can be written as

H̄ =



. . .
...

...
...

... . .
.

. . . Hαα
0 + 2ω Hαα

1 Hαα
2 Hαα

3 . . .

. . . Hαα
−1 Hαα

0 + ω Hαα
1 Hαα

2 . . .

. . . Hαα
−2 Hαα

−1 Hαα
0 Hαα

1 . . .

. . . Hαα
−3 Hαα

−2 Hαα
−1 Hαα

0 − ω . . .

. .
. ...

...
...

...
. . .


, (2.26)

where the displayed block is for elements |α⟩ = |α′⟩. We can dissect H̄ into a diagonal
part H̄D describing the energy of the system with m photons in the system and a non-
diagonal part describing the absorption/emission of m photons.

In our case, the Hamiltonian with a periodic time dependence is Hkin → Hkin(τ),
as introduced in Sec. 2.2. With this the time dependence total Hamiltonian becomes
H(t) = HK +Hkin(τ). Choosing |α⟩ to be the eigenstates of HK, we see that the diagonal
elements Hαα

0 yield the eigenergies of the Kanamori Hamiltonian Eα
K . The off-diagonal

elements have only nonzero contributions from the kinetic Hamiltonian Hα′α
kin,m = Hα′α

m .
Therefore, we can rewrite (2.26) to

H̄ =



. . .
...

...
...

... . .
.

. . . Eα′
K + 2ω 0 Hα′α

2 0 . . .

. . . 0 Eα′
K + ω Hα′α

1 0 . . .

. . . Hαα′
−2 Hαα′

−1 Eα
K Hα′α

1 . . .

. . . 0 0 Hαα′
−1 Eα′

K − ω . . .

. .
. ...

...
...

...
. . .


. (2.27)
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Like in the time-independent case, if the energy splitting between the ground state
manifold |α, 0⟩ and the excited states |α′,m⟩ is significantly larger than the energy scale
of Hm, in our case hopping strength t, we can treat Hm in a perturbative manner.
This yields an effective Floquet-Hamiltonian of Kugel-Khomskii type in second-order
perturbation theory

H̄eff =
∑
α′′,α

∑
α′ ̸=α′′,α

∑
m

|α′′, 0⟩
Hα′′α′

−m Hα′α
m

Eα
K − (Eα′

K +mω) ⟨α, 0| , (2.28)

with |α⟩ and |α′′⟩ states from the ground state manifold of HK , and |α′⟩ element of the
excited state manifold of HK . The derivation of this effective Floquet Hamiltonian is
a high-frequency expansion like discussed in [72], with the distinction that Hα′α

m does
not just change the number of photons in the system but also causes an excitation in
the form of hopping from an electron to an adjacent site |α⟩ → |α′⟩. Therefore we
demand Eα

K − (Eα′
K +mω) ≫ t instead of ω ≫ t, which is assumed in the high frequency

expansion.
To derive the effective Floquet-Hamiltonian, one could also perform a time-dependent

perturbation theory for the Hamiltonian to arrive at a time-dependent effective Hamil-
tonian. Since this Hamiltonian is still periodic in time, one can then apply Floquet’s
theorem to derive the desired result. While this approach is convenient for low orders, it
becomes cumbersome for orders ∝ tγ 3 thus we believe that the approach introduced in
this section is, in general, favorable. We showcase the derivation of the effective Floquet-
Hamiltonian via time-dependent perturbation theory in Sec. 3.3. It is important to note
that the order in which one applies perturbation theory and Floquet’s theorem is arbi-
trary and the effective Hamiltonian derived is equivalent.

2.4 Numerics

Deriving effective models describing complex materials (Sec. 2.3) and capturing ground
state properties is one side of the coin. However, there are rarely analytical solutions for
these models. Therefore, a numerical approach is often mandatory to make meaningful
predictions for analytically derived models. In this thesis, we use two of the most used
numerical methods of solving these problems, ED and Monte Carlo (MC), which we will
briefly discuss in the following sections.

2.4.1 Exact diagonalization

Most experimental samples of transition metal compounds are macroscopic. Therefore,
theoretical models should ideally work in the thermodynamic limit to be comparable
to experimental measurements. However, this means one has to describe a model with
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N → ∞ particles causing an infinite dimensional Hilbert space, which is not solvable
numerically. The basic concept behind ED is that a suitable finite system [74] can
mimic the physical properties of the thermodynamic limit. In the case of transition
metal compounds, Sec. 2.1, this finite system manifests itself as a cluster of transition
metal atoms. The determination of a suitable cluster is the cornerstone of every ED
approach. To find the ideal cluster, one has to find the largest common denominator
between physical value and hardware limitations. On one hand, the cluster should
capture the lattice geometry and the most prominent magnetic and orbital orderings.
On the other hand, the computational cost of determining physical properties should
come at an acceptable price. Since the Hilbert space increases exponentially with the
cluster size N , the number of realizable clusters that have physical value is sparse.

As an example, we want to consider the d4 compound Ca2RuO4, introduced in
Sec. 2.1. The degrees of freedom per site is f =

(
6
2

)
= 15, resulting in a Hilbert

space dimension of 15N . However, because neither Hkin (2.1) nor Hint (2.2) change
the total spin, we can dissect our Hilbert space into three independent subspaces with
Stot = 1, 0,−1, which one can solve separately. The sector with the largest Hilbert space
is then the Stot = 0 sector with dim(H) = 9N .

For our calculations we use an eight site cluster with
√

8×
√

8 geometry and periodic
boundary conditions (Fig. 7.1). The Kitaev-Heisenberg model describing α-RuCl3 has
only f = 2 per site, which means larger clusters up to at least N = 24 are possible. The
first step of ED is to find a finite system compatible with the computational capabilities
describing magnetic order and excitations in the thermodynamic limit reasonably well.

After defining the finite system, we can use the fact that, in second quantization, the
Schrödinger equation becomes an algebraic eigenvalue problem. The Lanczos method is
a fast and efficient method to determine the lowest eigenvalues and the corresponding
states. In the following, we give a short overview of the Lanczos algorithm. A detailed
explanation can, e.g., be found in [74]. The base premise of the Lanczos method is to
tridiagonalize the Hamiltonian via a basis transformation to speed up the diagonaliza-
tion process. The Krylov space, where the Hamiltonian takes a tridiagonal form, is an
orthonormal basis spanned by

|v0⟩ , H |v0⟩ , H2 |v0⟩ , ..., HL |v0⟩, (2.29)

with an arbitrary starting vector |v0⟩ [74]. One constructs the orthonormal basis vectors
iteratively. Starting with applying H once on |v0⟩ we obtain

|v1⟩ ⟨v1|H |v0⟩︸ ︷︷ ︸
b1

= |ṽ1⟩ = H |v0⟩ − |v0⟩ ⟨v0|H |v0⟩︸ ︷︷ ︸
a0

, (2.30)
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where b1 = ⟨v1|H |v0⟩ normalizes |ṽ1⟩ and a0 ensures that |v1⟩ is orthogonal to |v0⟩.
With |v1⟩ we can construct the next basis vector |v2⟩ via

b2 |v2⟩ = |ṽ2⟩ = H |v1⟩ −
1∑

i=0
|vi⟩ ⟨vi|H |v1⟩ = H |v1⟩ − a1 |v1⟩ − b1 |v0⟩ , (2.31)

where a1 = ⟨v1|H |v1⟩. Like in (2.30), the sum guarantees the orthogonality and b2 the
normalization. In general to determine |vn+1⟩ we have to calculate

bn+1 |vn+1⟩ = H |vn⟩ −
n∑

i=0
|vi⟩ ⟨vi|H |vn⟩ . (2.32)

At first glance, it is not obvious that H expressed in this basis becomes tridiagonal.
However, looking at n+ 1 = 3 we obtain

b3 |v3⟩ = H |v2⟩ − a2 |v2⟩ − b2 |v1⟩ − |v0⟩ ⟨v0|H |v2⟩︸ ︷︷ ︸
=0

, (2.33)

where the last matrix element vanishes due to (2.31). Therefore, (2.32) can be simplified
to

H |vn⟩ = an |vn⟩ + bn+1 |vn+1⟩ + bn |vn−1⟩ , (2.34)

with bn = ⟨vn|H |vn−1⟩ and an = ⟨vn|H |vn⟩. This has a tridiagonal form



a0 b1 0 0 0 0
b1 a1 b2 0 . . . 0 0
0 b2 a2 b3 0 0
0 0 b3 a3 0 0

...
. . .

...

0 0 0 0 . . . an − 1 bn

0 0 0 0 bn an


. (2.35)

It has been shown [74] that determining the lowest eigenvalue of this matrix is a good
approximation of the ground state energy E0 of H. Since, in this thesis, we are mainly in-
terested in ground state properties and low excitation energies, the Lanczos method [75]
is suitable for the considered models.

2.4.2 Semi-classical MC

The second numerical method used in this thesis is the semi-classical MC approach. In
the classical approach, one treats spins (and orbital momentum if present) as classical
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vectors with a fixed length, e.g., S = 1 for the spin vector in Ca2RuO4. The ground
state is then found by minimizing the energy functional

E (|ψ⟩) = ⟨ψ| Ĥ |ψ⟩ . (2.36)

One achieves the minimization via the Markov Chain, where one starts at a random
initial state Ψin with Ein = E (|Ψin⟩). From there one constructs a new state Ψnew with
Enew = E (|ψnew⟩). We determine this new state by rotating the spin of a random site i
by a random angle Φ. Acceptance of this state as the new initial state has the probability

P =

1 Ein > Enew

e−β(Enew−Ein) Enew ≥ Ein

, (2.37)

where β = 1/kBT . Repeating this process, one reaches the global minimum of the energy
functional Emin. This method is very efficient in determining ground state properties for
system sizes decisively larger than the typical system sizes of the ED method.

However, this method has two issues considering Ca2RuO4. First, for Ca2RuO4, we
are interested in the ground state properties for T → 0. This causes an exceedingly
large β and a low probability of accepting a new state with higher energy. Therefore,
the energy functional is more likely to get stuck in local minima. Hence, MC can
have problems finding the ground state. A solution to this problem is the parallel
tempering MC method proposed by [76]. Sec. 8.3 discusses parallel tempering Monte-
Carlo (PTMC) in more detail.

The second issue of the classical MC approach is the approximation of the quantum
mechanical spin as a classical object. To calculate the accurate ground state of Ca2RuO4,
this is not sufficient because the real scalar nature of the vector components of S can’t
capture the behavior of an operator Ŝi with i ∈ [x, y, z]. To address this issue, we use
the semi-classical MC approach [77], which is comparable to the approach of [78]. Here
we define the trial wavefunctions |ΨT⟩ in direct product form

|ΨT⟩ =
⊗

i

(|Si⟩ ⊗ |Li⟩) (2.38)

and are thus entanglement-free. Here, i indicates the lattice site and we define spin
(angular) momentum operators as a linear superposition of the Sz

i (Lz
i ) eigenvalues. In

the case of Ca2RuO4 where Li = 1 and Si = 1 this yields

|Si⟩ = µi,1 |mSi
= 1⟩ + µi,0 |mSi

= 0⟩ + µi,−1 |mSi
= −1⟩ , (2.39)

where µ = (µi,1, µi,0, µi,−1) is an arbitrary complex three dimensional vector. Therefore,
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for each spin/orbital momentum, we have five degrees of freedom, contrary to the two
degrees of freedom for the classical approach. With these classical complex vectors, we
then can calculate the energy functional (2.36) and minimize it via the Markov chain
approach of the classical Metropolis algorithm.

This method has proven successful for S = 1 problems where the classical approach
has failed [78, 79]. Therefore, we believe this method is superior to the classical MC
approach for our S = 1, L = 1 problem. Like classical MC, the computational cost of
the semi-classical MC is minute compared to the ED approach and therefore provides
the opportunity to investigate larger cluster sizes.

Last but not least, MC gives rise to the ground state properties for arbitrary tem-
peratures and, for this reason, access to finite temperature properties like the specific
heat CT and susceptibility χ. Both of these quantities can be directly compared to ex-
perimental results and can yield qualitative information on the dependence of the Néel
temperature on properties such as CF and SOC.

2.5 Summary

In Fig. 2.10, we summarize the introduced models (light blue), numerical methods (grey),
and the physical concepts (dark blue) lying below these. This mind map is supposed
to give a review of this thesis. All materials considered in this thesis are transition
metal compounds (Sec. 2.1) and fall under the category of Mott insulators. A powerful
method to describe Mott insulators are Kugel-Khomskii type models (Sec. 2.3.1), which
all Hamiltonians considered in this thesis are. In particular we focus on Mott insulators
with a d5 (Sec. 2.1.1) [80] and a d4 configuration (Sec. 2.1.2) [63,77].

For d5 materials (I), we are interested in Kitaev-Heisenberg models (Sec. 2.3.2) arising
for materials with strong spin-orbit coupling. Here, our focal point is tuning candidate
Kitaev materials into the Kitaev spin liquid via time-periodic driving with a light beam.
We can obtain the effective model, which describes the influence of light, via the Floquet
formalism Sec. 2.3.4.

In II, we investigate d4 materials similar to Ca2RuO4. Here, we study the phase
diagram for the ground state at T = 0 for varied CF and SOC (Sec. 2.2.2) via exact
diagonalization (Sec. 2.4.1) and, supporting ED, semi-classical MC (Sec. 2.4.2). We also
investigate the behavior of d4 compounds for strong SOC, where we can simplify the
Kugel-Khomskii model to an effective triplon model (Sec. 2.3.3). Last but not least,
we explore finite temperature properties, like susceptibility and specific heat, via semi-
classical MC.
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Figure 2.11: Overview of the structure of this thesis. Light blue depicts the models
introduced in Sec. 2.3, dark blue the physical concepts, and dark grey the numerical
methods. The number in the box denotes the part of this thesis where we discuss these
topics.
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3Second order Floquet Hamiltonian

In this chapter we derive the effective Floquet Kitaev-Heisenberg Hamiltonian for d5

honeycomb materials such as iridates and ruthenates [68, 69, 81], which is capable of
describing light-matter interaction for a light field periodic in time. We consider second-
order perturbation theory as a starting point for light-matter interactions in Kitaev-
Heisenberg materials. Within this framework, we discuss different polarizations and the
influence of heating effects.

3.1 Candidate Materials

Most of the more promising candidates to realize the KSL appear to have a magnetically
ordered ground state. From applying a magnetic field [16–20], chemical doping [24–
26], graphene substrates [82], and applying pressure [21–23] there have been multiple
approaches to drive these materials from the magnetically ordered into the Kitaev spin
liquid ground state.

A yet relatively unexploited method is to drive candidate materials via light-matter
interactions periodic in time [83–85]. As we have shown in Sec. 2.3.4, one then can
describe the system via a time-independent effective Floquet Hamiltonian [86–89], which
should be valid at short but accessible time scales [27]. One can estimate a lower limit
for these timescales via formula (15) of [27]. In our case, the shortest timescales are in
the range of a few fs, which could be experimentally realizable [90]. In this chapter, we
will focus on the derivation of such an effective Floquet Hamiltonian for d5 transition
metals with honeycomb lattices.



32 Second order Floquet Hamiltonian

LP CP AP
Ax(τ) Ex/ω sin(ωτ) Ex/ω sin(ωτ) Ex/ω sin(ωτ)
Ay(τ) Ey/ω sin(ωτ) Ey/ω cos(ωτ) Ey/ω sin(Nωτ + ϵ)

Table 3.1: Vector potential A(τ) for LP, CP, and AP with the driving frequency ω,
electric field E, time τ , frequency ratio N , and phase shift ϵ.

3.2 Peierl’s substitution

One can capture the effect of a time-periodic light field on the kinetic Hamilton via the
Peierls substitution [91,92], where the hopping amplitude becomes time dependent such
that Hkin reads

Hkin(τ) = −
∑
α,β

∑
γ,σ

⟨ij⟩γ

ei(rj−ri)A(τ)tγα,βc
†
i,α,σcj,β,σ

= −
∑
γ,σ

⟨ij⟩γ

ei(rj−ri)A(τ)︸ ︷︷ ︸
Ω(t)

c†
i,σTγci,σ︸ ︷︷ ︸

v̂ij

, (3.1)

with the bond direction γ, the orbital flavor α, β ∈ [xy, yz, zx], and the vector of anni-
hilation operators ci = (ci,xy,σ, ci,yz,σ, ci,zx,σ) (2.1).

Since in the honeycomb lattice each of the three orbitals is pointing in one of the
bond directions of the lattice Fig. 3.2(ii), we label the orbital flavor according to the
corresponding bond direction (yz → x etc.) as introduced in [34]. The bond-dependent
hopping matrices Tγ are

Tz =


tz1 tz2 tz4

tz2 tz1 tz4

tz4 tz4 tz3

 , Tx =


tx3 tx4 tx4

tx4 tx1 tx2

tx4 tx2 tx1

 , Ty =


ty1 ty4 ty2

ty4 ty3 ty4

ty2 ty4 ty1

 , (3.2)

with the four distinct hopping procceses introduced in Sec. 2.2.1 labeled according to [33].
A(τ) describes the vector-potential of the light field. The expressions for A(τ) are

listed in Tab. 3.1 for LP, CP and AP. For AP N describes the frequency ratio and
ϵ the phase difference between x and y polarized light. CP and LP therefore are the
limiting cases N = 1, ϵ = π/2 and n = 1, ϵ = 0 of AP. We display the lowest orders of
the Lissajous figures in Fig. 3.1 to give a rough impression of how Lissajous figures can
look. ri,j = rj − ri denotes the vector between sites i and j, which in polar coordinates
becomes ri,j = ri,j [cos(ϕ), sin(ϕ)].
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Figure 3.1: The lowest three orders of Lissajous figures are displayed for a phase shift
of ϵ = 0 and ϵ = π/2. For the lowest order N = 1, the Lissajous figures for ϵ = 0
and ϵ = π/2 become LP and CP respectively. With the definition of Tab. 3.1, it is, in
principle, possible to describe arbitrary polarization.

For CP we set Ex = Ey = E0 and the hopping term becomes

t(τ)αβ = tαβe
i(rj−ri)A(t) = tαβe

i
E0
ω

ri,j [cos(ϕ) sin(ωτ)+sin(ϕ) cos(ωτ)] = tαβe
i

E0
ω

ri,j sin(ϕ+ωτ). (3.3)

As we will see in Sec. 3.3.2 this results in an ϕ independent effective Hamiltonian. Hence,
light influences each bond direction in the same manner. We can rewrite the expression
in (3.3) with the help of the Jacobi-Anger expansion to

tα,β(τ) = tα,β

∞∑
l=−∞

J−l(uC
ij)e−i l(ωτ+ϕ), (3.4)

where uC
ij(rij, E0, ω) = E0/ωri,j and Jn(uC

ij) the n−th Bessel function of the first kind.
The uij term here carries the information of the light frequency ω and amplitude E0.
Additionally, this expression for CP depends on the distance to the nearest neighbor (or
further nearest neighbor) and not the direction of the respective neighbor.

For LP, such a simplification is impossible and the light has a distinct influence on
different bond directions. If we use the Jacobi-anger expansion for the time-dependent
hopping parameters t(τ), we obtain, for LP with Ex = E0 cos(φ) and Ey = E0 sin(φ)

eiuL
ijsin(ωτ) =

∞∑
l=−∞

J−l(uL
ij)e−i lωτ , (3.5)
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Figure 3.2: (i) The frequency dependence of the hopping for linear polarized light uij,γ

is plotted in dependence of the light angle φ for the three distinct bond directions. The
white dots denote the scenarios where two bond directions have the same ω dependence.
The black dots denote light angles where one bond direction decouples from the light
field and, because of that, does not depend on the frequency and amplitude of the light.
(ii) Displayed are the three different bond directions present in the honeycomb lattice
x (light blue), y (blue), and z (anthracite) in the honeycomb lattice. dxy (anthracite),
dyz (light blue), and dzx orbital (blue) are colored according to the corresponding bond
direction.

with

uL
ij(r

γ
ij, φ, E0, ω) = E0

ω
rγ

ij

cos(φ)
sin(φ)

 . (3.6)

We observe that, contrary to uC
ij, uL

ij depends on the light angle φ as well as on the
direction of rγ

ij. For the Honeycomb lattice we therefore obtain distinct uL
ij for the three

different bond directions present (see Fig. 3.2)

uij,x = a
E0

ω

[
−1

2 cos(φ) +
√

3
2 sin(φ)

]
(3.7)

uij,y = a
E0

ω

[
−1

2 cos(φ) −
√

3
2 sin(φ)

]
(3.8)

uij,z = a
E0

ω
cos(φ), (3.9)

with a = |rij| the distance between site i and j. As we can see in Fig. 3.2, we can
tune (3.7)-(3.9) in such a manner that two bond interactions have the same E0 and ω

dependency (white dots) or one bond direction completely decouples from E0 and ω,
i.e., uL

ij,γ = 0 (black dots).
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3.3 Time dependent second order perturbation theory

Experiments have shown that all materials considered in this thesis, i.e., Na2IrO3, α-
Li2IrO3, and α-RuCl3, are in a Mott insulating phase at low temperatures [7, 8, 13].
Therefore, the electron number per site is fixed and one can treat the kinetic part of the
Hamiltonian via perturbation theory, see Sec. 2.3.1. As a starting point, we consider just
second-order perturbation theory, which has proven successful for the time-independent
case. Through the course of this thesis, we will build up on the findings of this section
and expand the model to higher orders.

The periodic time dependence in the kinetic Hamiltonian enters through the Peierls
substitution introduced in (3.1). We could proceed like in Sec. 2.3.4, but in this section,
we want to highlight a different approach to deriving the effective Floquet Hamilto-
nian. Instead of time averaging over Hkin(τ) before performing perturbation theory,
we consider time-dependent perturbation theory to obtain the effective time-dependent
Hamiltonian, averaging over time yields the effective Floquet Hamiltonian. In our opin-
ion, this procedure showcases the origin of the propagation operator, which propagates
the doublon-holon excitation (d2d0) through the lattice conveniently. As we will see in
Sec. 3.5, the propagator of a relevant quantity near resonances, i.e., the denominator in
(2.28) does not fulfill the condition Eα

K − (Eα′
K + mω) ≫ t anymore. We again want to

emphasize that both approaches lead to the same effective Hamiltonian.
The time-dependent perturbation theory approach has been already used for LaTiO3

and YTiO3 [86,93]. As in [93], we start by considering the time-dependent Schrödinger
equations

iδτ |Φ1(τ)⟩ = Ĥint |Φ1(τ)⟩ +
∑

f

P̂1Ĥkin(τ) |Φf (τ)⟩ (3.10)

iδτ |Φf (τ)⟩ = P̂fĤkin(τ) |Φ1(τ)⟩ + P̂f

(
Ĥkin(τ) + Ĥint

)
|Φf (τ)⟩ , (3.11)

where we only considered the subspace with zero excited holes and the subspace where
one hole has moved to another site. That means, in the latter case, we have one doublon-
holon pair in the system. |Φ1⟩ is defined in the Hilbert space H1 spanned by the states
with exactly one hole per site. The energy for these states is E1 = 0.

Analogously |Φf⟩ is defined in the Hilbert space Hf spanned by the states with one
doublon-holon pair with flavor f at adjacent sites i and j in the lattice. The flavor f
(see Tab. 2.1) denotes the possible eigenstates |Ψ2,f⟩ with two holes. For the remainder
of this chapter we define |df⟩i = |Ψ2,f⟩i as the doublon state with flavor f .

The operators P̂f and P̂1 projects on the states spanning Hf and H1 respectively.
K̂f (τ) = P̂fĤkin(τ)P̂f describes the propagation of the doublon-holon pair within the
subspace with energy Ef . Ĥkin(τ) and Hint are the Hamiltonians defined in Sec. 2.2.1 and
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Sec. 2.2.2. It is of note that in this thesis we only consider propagations that preserve the
"flavor" f of the doublon |df⟩j, i.e., we neglect propagations of the type |df⟩j → |df ′⟩j−1.

It has been shown [93] that the propagation operator within the |Φf⟩ subspace can
be described approximately by its time average K̂f = 1/T

∫ T
0 K̂f (τ). Therefore, we can

rewrite the Schrödinger equation of the one doublon-holon space to

(iδτ − K̂f − Ĥint) |Φf (τ)⟩ = P̂fĤkin(τ) |Φ1(τ)⟩
e−i(K̂f +Ĥint)tiδτe

i(K̂f +Hint)τ |Φf (τ)⟩ = P̂fĤkin(τ) |Φ1(τ)⟩
iδτe

i(K̂f +Ĥint)τ |Φf (τ)⟩ = ei(K̂f +Ĥint)τ P̂fĤkin(τ) |Φ1(τ)⟩ . (3.12)

Integrating (3.12) over time then yields an expression for |Φf (τ)⟩

|Φf (τ)⟩ = −ie−i(K̂f +Ĥint)τ
∫

dτ ′ei(K̂f +Ĥint)τ ′
P̂fĤkin(τ ′) |Φ1(τ ′)⟩ . (3.13)

The expression (3.13) can then be plugged into (3.10) to obtain an effective Hamiltonian
for H1 of the form

iδτ |Φ1(τ)⟩ = Heff(τ) |Φ1(τ)⟩ . (3.14)

In the following section, we will discuss the derivation of Heff(τ) for different polariza-
tions.

3.3.1 Linear polarized light

We start our derivation of the time-independent effective Floquet Hamiltonian for LP
and discuss the differences to arbitrary and circular polarization introduced in Sec. 3.2.
Plugging the definition of the time-dependent kinetic Hamiltonian for linear polarized
light from (3.5) into (3.13), we obtain

|Φf (τ)⟩ = −
∞∑

l=−∞
ie−i(K̂f +Ef )τ J−l(uL

ij)
∫

τ
ei(K̂f +Ef −lω)τ ′

v̂f,1
ij |Φ1(τ ′)⟩ dτ ′, (3.15)

with v̂f,1
ij = P̂f v̂ijP̂1. Integrating this expression by parts then yields

|Ψf (τ)⟩ = −
∞∑

l=−∞
J−l(uc

ij)
1

K̂f + Ef − lω
v̂f,1

ij e
−ilωτ |Φ1(τ)⟩ + O(t/U2), (3.16)
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where terms of order O(t/U2) are negligible due to the condition t ≪ U for Mott
insulators. We can plug the expression for |Φf (τ)⟩ into (3.10) to obtain

iδτ |Φ1(τ)⟩ = −
∑

f

∞∑
l=−∞

P̂1ĤintP̂f
1

K̂f + Ef − lω
e−ilωτ J−l(uL

ij)v̂
f,1
ij |Ψ1(τ)⟩

= −
∑

f

∞∑
l,k=−∞

ei(k−l)ωτ Jk(uL
ji)J−l(uL

ij)v̂
1,f
ji

1
K̂f + Ef − lω

v̂f,1
ij︸ ︷︷ ︸

Heff(τ)

|Φ1(τ)⟩ (3.17)

Since Heff(τ) is periodic in time with T = 2π/ω we can apply Floquet’s theorem intro-
duced in Sec. 2.3.4. If we average over time, we obtain

HF
eff = 1

T

∫ T

0
Heff(τ)dτ

= −
∑

f

v̂1,f
ji

1
K̂f + Ef − lω

v̂f,1
ij

∞∑
l,k=−∞

Jk(uL
ji)J−l(uL

ij)δk,l

= −
∑

f

v̂1,f
ji

1
K̂f + Ef − lω

v̂f,1
ij

∞∑
l=−∞

Jl(uL
ji)2. (3.18)

Here we used the hermiticity condition uij = −uji as well as the condition J−l(x) =
Jl(−x) for Bessel functions. This is the time-independent effective Floquet Hamiltonian,
describing the system at short time scales. HF

eff is very similar to the time-independent
case, with the difference that hopping parameters depend on the frequency and ampli-
tude of the light. This yields the opportunity to modify hopping parameters via the
light field.

3.3.2 Circular polarized light

In case we use CP instead of LP the kinetic Hamiltonian becomes (see [31])

Hkin(τ) =
∞∑

l=−∞
J (uC

ij)e−il(ωτ+ϕ)v̂ij. (3.19)

With this, we can derive the effective Floquet Hamiltonian for CP in the same manner
as LP. We end up with the effective time-dependent Floquet Hamiltonian

Heff(τ) = −
∑

f

∞∑
l,k=−∞

ei(k−l)(ωτ+ϕ)Jk(uC
ji)v

1,f
ji

1
K̂f + Ef − lω

J−l(uC
ij)v

f,1
ij . (3.20)
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Averaging over time then yields

HF
eff = −

∑
f

1
T

∫ T

0

∞∑
l,k=−∞

ei(k−l)(ωτ+ϕ)Jk(uC
ji)v

1,f
ji

1
K̂f + Ef − lω

J−l(uC
ij)v

f,1
ij

= −
∑

f

∑
l,k

v1,f
ji

1
K̂f + Ef − lω

vf,1
ij δk,lJk(uC

ji)J−l(uC
ji)ei(k−l)ϕ

= −
∑

f

∞∑
l=−∞

v1,f
ji

1
K̂f + Ef − lω

vf,1
ij Jl(uC

ji)2. (3.21)

At first glance, this seems equivalent to the LP case. However, it is important to
highlight that uC

ij does not depend on the bond direction, while uL
ij does. The only ϕ

dependence in the circularly polarized light Hamiltonian vanishes due to averaging over
time. Therefore, all bond directions have the same E0 and ω dependence.

3.3.3 Lissajous figures

Lissajous figures are a convenient way to describe arbitrary polarizations via the, in
Tab. 3.1 introduced, parameters N and ϵ. One main aspect is that in the Lissajous
formalism it is possible to continuously connect LP and CP by just varying ϵ, which
are commonly discussed unique cases in Floquet engineering [30–32, 80, 89, 94]. For
arbitrary polarization, the derivation via time-dependent perturbation theory, as intro-
duced in [86], is quite cumbersome. Therefore, we derive the effective Hamiltonian like
in Sec. 2.3.4 [89, 95]. We neglected the propagator K̂m intentionally because in the
frequency regimes we study for AP, the propagator is negligible, see Sec. 3.5.1. This
procedure reverses the order of applying Floquet’s theorem and perturbation theory,
which is valid because both Hkin and the effective time-dependent Hamiltonian derived
in [80] are periodic in time. As discussed in Sec. 2.3.4, this approach yields the same
results as Sec. 3.3. For arbitrary polarization (2.25) becomes

HF
l = 1

T

∫ T

0
v̂f,1

ij e
iE0(cos(φ) sin(ωτ)+sin(φ) sin(Nωτ+ϵ))eilωτdτ

= 1
T

∫ T

0
v̂f,1

ij

∞∑
l1,l2=−∞

Jl1(E0 cos(φ))Jl2(E0 sin(φ))eil1ωτeil2(Nω+ϵ)τeilωτdτ

= v̂f,1
ij

∞∑
l1,l2=−∞

Jl1(E0 cos(φ))Jl2(E0 sin(φ))eil2ϵδl1+Nl2,−l

= v̂f,1
ij

∞∑
l2=−∞

J−l−Nl2(E0 cos(φ))Jl2(E0 sin(φ))(cos(l2ϵ) + i sin(l2ϵ))︸ ︷︷ ︸
Bl(E0,ω,N,ϵ,φ)

, (3.22)
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where l1, l2 sums over all n Bessel functions, like l in (3.4). Plugging this into the
second-order perturbation theory we obtain

HF
eff = −

∑
f

∞∑
l=−∞

v1,f
ji v

f,1
ij

Ef − lω
B−lBl

= −
∑

f

∞∑
l=−∞

v1,f
ji v

f,1
ij

Ef − lω


∑

l2

J−l−Nl2(E0 cos(θ))Jl2(E0 sin(θ)) cos(l2ϵ)
2

+
∑

l2

J−l−Nl2(E0 cos(θ))Jl2(E0 sin(θ)) sin(l2ϵ)
2, (3.23)

here we used that B−l = B∗
l . The effective Hamiltonian has the same form as in [31]

with the distinction that the Bessel functions get replaced by the Bl functions. With
this effective Floquet Hamiltonian, we can capture the influence of arbitrary light and
bridge the gap between the limiting cases CP and LP.

3.4 Projection in the j = 1/2 picture

In the 4d and 5d materials we are investigating, namely iridates and ruthenates, SOC
λ is expected to be dominant due to a high atomic number Z and λ ∝ Z2 [96]. As we
showed in Sec. 2.3.2, the materials can be projected into the effective j = 1/2 picture
in the non-driven case, giving rise to an effective Kitaev-Heisenberg model. One can do
the same for the effective Floquet Hamiltonian. If we consider that the influence of the
light field only enters as a prefactor in HF

eff , the derivation of the spin-orbit model is
completely analog to the non-driven scenario in the second order. The only difference
from the non-driven model is a dressing of the already defined interactions. If we perform
the calculation and projection into the j = 1/2, we end up with a Kitaev-Heisenberg
model of the form

HF
eff =

∑
⟨ij⟩∈αβ(γ)

[
Jγ(ω,E0, ϵ, N)SiSj +Kγ(ω,E0, ϵ, N)Sγ

i S
γ
j + Γγ(ω,E0, ϵ, N)

× (Sα
i S

β
j + Sβ

i S
α
j ) + Γ′γ(ω,E0, ϵ, N)(Sα

i S
γ
j + Sγ

i S
α
j + Sβ

i S
γ
j + Sγ

i S
β
j )
]
. (3.24)

Here, the frequency and amplitude of the light as well as the Lissajous parameters
N and ϵ alter the magnitude of the Heisenberg J , Kitaev K, Γ, and Γ′ interaction.
Except for CP, interactions additionally depend on the bond direction γ. While the
Kitaev-Heisenberg model arguably has bond-independent interaction strengths under
ideal circumstances (e.g., Kx = Ky = Kz), we can induce a bond anisotropy via light.
This anisotropy is independent of external effects arising in experiments (like distortions,
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impurities, etc.). If we write down the single interaction terms, we obtain

Jγ =
∞∑

l=−∞
J 2

l (uγ
ij)

4
27

{ [
−9tγ 2

4 + 2(tγ1 − tγ3)2
]

× Al(ω, U, JH) + (2tγ1 + tγ3)2Bl(ω, U, JH)
}
, (3.25)

Kγ =
∞∑

l=−∞
J 2

l (uγ
ij)

4
9
[
(tγ1 − tγ3)2 − 3(tγ 2

2 − tγ 2
4 )
]

Al(ω, U, JH), (3.26)

Γγ =
∞∑

l=−∞
J 2

l (uγ
ij)

4
9
[
3tγ 2

4 + 2tγ2(tγ1 − tγ3)
]

Al(ω, U, JH), (3.27)

Γ′γ = −
∞∑

n=−∞
J 2

n (uγ
ij)

4
9t

γ
4 (tγ1 − tγ3 − 3tγ2) Al(ω, U, JH), (3.28)

where γ denotes the bond directions and

Al(ω, U, JH) = gdh(U − 3JH − lω) − gdh(U − JH − lω) (3.29)
Bl(ω, U, JH) = gdh(U + 2JH − lω) + 2gdh(U − 3JH − lω). (3.30)

Here we introduce the doublon-holon Green’s functions for flavor f as

gdh,f =
〈

Φf

∣∣∣∣∣ 1
Ef − lω + K̂f

∣∣∣∣∣Φf

〉
, (3.31)

which can be directly inferred from (3.21) and (3.18). In (3.30)-(3.25), we assumed
that the Green’s functions for all states with the same energy Ef are identical, i.e.
gdh,f = gdh,f ′ = gdh(Ef − lω) if Ef = Ef ′ . This allows for an expression of (3.30)-(3.25)
with just three distinct Green’s functions for ES, EP , and ED. We are aware that this is a
simplification, but we believe that we can still describe the behavior close to resonances
qualitatively well within this approximation, which is the goal of this thesis.

We note that the anisotropy of the interactions (3.30)-(3.25) can enter either via the
Bessel functions via uij(ω,E0, φγ) → uγ

ij or through the hopping parameters tγ. The
influence of the light field causes the former, while the latter is a product of external
effects, e.g., lattice distortions.

Heisenberg interactions experience a unique influence of the light field as it is the only
interaction depending on (3.30). Therefore, tuning of Heisenberg interactions respective
to the remaining interactions is feasible. This is a promising sign because Heisenberg
interactions prevent a KSL ground state [97].

It becomes evident that gdh replaces the 1/∆E-terms of the non-driven Kitaev-
Heisenberg model [34]. We can attribute this change to the introduction of the doublon-
holon propagator K̂m in Sec. 3.3. It is crucial to find a reasonable approximation of gdh
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lω lω
Figure 3.3: Virtual hopping process of holes, depicted in white, under the influence of
a light field. Like for time-independent perturbation theory, the kinetic Hamiltonian
drives the excitation from a d5d5 into a d4d6 excitation on sites i and j. However,
because the energy gap between those states is significantly larger than the hopping
amplitude tγ the hole immediately hops back to its initial site, which results in a virtual
d5d5 → d4d6 → d5d5 excitation. The influence of a light field periodic in time alters the
hopping amplitude tγ and the energy gap. Since the energy gap is now dependent on
the driving frequency, the condition tγ ≪ Ef − lω does not hold for arbitrary ω, see [86].

to understand the Floquet-Kitaev-Heisenberg model and its limitations.

3.5 Approximations of the doublon-holon Green’s function

An exact evaluation of the propagator K̂f in the denominator of gdh is impossible. In
this section, we want to look at two approximations for K̂f , making gdh analyzable.

3.5.1 Off resonance approximation

Considering only the fraction of gdh, for Ef ≈ lω, the propagator becomes the dominant
part of the denominator. In this regime, the light field causes a resonant excitation of
doublon-holon pairs. Vice versa for a off-resonant light field |Ef −lω| ≫ 0, the propagator
becomes negligible and we obtain

gdh =
〈

Φf

∣∣∣∣∣ 1
Ef − lω

∣∣∣∣∣Ψf

〉
≈ 1

Ef − lω
= 1
ϵ
, (3.32)

where we introduce ϵ = ϵf,l(ω) = ∆Ef − lω in order to simplify further calculations.
In this approximation, gdh becomes equivalent to the time-independent perturbation
theory result (2.8). The distinct feature here is the ω dependency, describing the ab-
sorption/emission of l photons with energy ω (with ℏ = 1). Evidently (3.31), an external
light field modifies the energy gap from the ground to the first excited state. However,
as long as ω is off-resonant, the energy gap is still large enough to justify a perturbative
treatment of Hkin without considering doublon-holon propagation. From now we refer
to this approach as off resonance approximation (ORA). We display the light-mediated
virtual hopping process for the ORA in Fig. 3.3. The strength of this virtual hopping
process is affected by both frequency ω and amplitude E0, while the denominator is just
modified by ω.
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lω lω

Figure 3.4: Displayed is the virtual hopping, with the consideration of retractable
doublon-holon propagation within the excited subspace. The left-hand side displays
the excitation of a doublon-holon pair mediated through the kinetic Hamiltonian in
combination with the influence of the light. In the middle (gray shaded area), contrary
to Fig. 3.3, we now consider possible propagations of the doublon/holon through the
lattice. Here, we restrict ourselves to paths with the same starting and end point that
do not form a closed loop. The restriction to these retractable paths has first been sug-
gested by [98]. On the right-hand side, we depict the de-excitation of the doublon-holon
pair back into the ground state mediated through the kinetic Hamiltonian and the light
field.

3.5.2 Retractable path approximation

The |ϵ| ≫ 0 limitation of the ORA raises the questions "What happens at resonance?"
and "What is off-resonance?". To tackle these problems, we consider the retractable
path approximation (RPA) able to capture the interaction at/near resonance. With this
approximation, we can also quantify the term "off-resonance". This approximation was
first introduced by Brinkmann [98] in the context of NiO, dioxides, and sesquioxides.
The RPA has already found application for LaTiO3 and YTiO3 [99]. In this thesis, we
consider the RPA for d5 transition materials. In the RPA, we can describe the parameter
regime |ϵ| ≈ 0. In this case, the propagator is not negligible anymore, and we have to
consider doublon-holon propagation within the excited subspace.

The base premise of the RPA is that the most dominant contribution to the propa-
gation arises from paths of the doublon/holon ending up in the same state as the initial
excited state with the same way away then back, see Fig. 3.4. If we assume an un-
correlated movement of doublons and holons, we can separate gdh into a holon gh and
a doublon gd function [93]. One can connect these two functions via the convolution
integral

gdh(ϵ) = − i
∫ dΩ

2π ⟨h|j
1

Ω + K̂f

|h⟩j︸ ︷︷ ︸
gh(Ω)

⟨df |i
1

ϵ− Ω + K̂f

|df⟩i︸ ︷︷ ︸
gd(ϵ−Ω)

. (3.33)

The problem then reduces to a separate solution for the Green’s functions for the holon
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and the doublon. Henceforth, we only consider the holon Green’s function. The solution
of the doublon Green’s function can be derived completely analogue. As a first step we
expand gh(Ω) in powers of K̂f , which gives rise to

gh(Ω) = 1
Ω ⟨Ψ0| c†

jβσ

1 +
(

−K̂f

Ω

)
+
(

−K̂f

Ω

)2

+
(

−K̂f

Ω

)3

+ ...

 cjβσ |Ψ0⟩ . (3.34)

Since we only consider retractable paths, all odd-order terms in (3.34) can be neglected.
This yields

gh(Ω) = 1
Ω ⟨h|j

1 +
(

−K̂f

Ω

)2

+ ...

 |h⟩j . (3.35)

As mentioned in [93,98], one can solve this series via an ansatz of the form

gh(Ω) = 1
Ω(1 − Σ(Ω)) , (3.36)

where Σ(Ω) represents the self-energy. The derivation of the self-energy is then com-
pletely analogue to [98]. We start with the just considering paths going to the nearest
neighbors and back, for this Σ(Ω) trivially becomes Σ(1)(Ω) = (zt2h)/(Ω). Here, z is the
coordination number of the lattice, which counts the number of nearest neighbors, and
th describes the hopping strength of the holon. In our case, we have z = 3 because
we consider a hexagonal lattice. Here we make yet another simplification, namely that
we assume the same hopping strength th for the propagation of holons and all different
doublon flavors. This might be a significant restriction at first glance, but if we set
th to the maximum value of all propagations, we simply overestimate heating effects.
This is not dramatic because we want to identify frequencies where heating is, without a
doubt, absent and the ORA is valid. To estimate the maximal th, for which heating-free
driving is possible, we will keep th as a free parameter in our later calculations. For the
self-energy describing all paths, which include the next nearest neighbors, we have to
modify the denominator of Σ(1)(Ω) (see [98]). We then obtain the self-energy

Σ(2)(Ω) = zt2h

Ω2
(

1 − (z−1)t2
h

Ω2

) , (3.37)

where the factor (z − 1) arises because we only consider paths going away from the
starting point. Therefore, the self energy formula, obtained in [98], for the nth nearest
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neighbor becomes

Σ(n) = z

(z − 1)
(z − 1)t2h

Ω2

(
1 − (z−1)t2

h

Ω2

(
1−

(z−1)t2
h

Ω2

(
1−

(z−1)t2
h

Ω2 ···︸ ︷︷ ︸
ΣA(Ω)

, (3.38)

where we can define ΣA(Ω) in a self-consistent manner

ΣA(Ω) = (z − 1)t2h
Ω2(1 − ΣA(Ω)) . (3.39)

Solving (3.39) yields an exact expression for the self-energy

ΣA(Ω) = 1
2

1 ±
√

1 − 4(z − 1) t
2
h

Ω2

 , (3.40)

which we can plug into the holon Green’s function,

gh(Ω) = 1

Ω
(

1 − z
z−1

1
2

[
1 ±

√
1 − 4(z − 1) t2

h

Ω2

]) . (3.41)

As we have sown in Sec. 3.5.1, for large values of Ω the function should become gh(Ω) =
1/Ω. With this at hand, the relevant solution of (3.41) has to be the one with the
negative sign. If we assume that the doublon-holon Green’s function can derived in the
same manner, we can write the convolution integral as

gdh(ϵ) = − i
∫ dΩ

2π
16(

Ω + 3
√

Ω2 − 8t2h
) 1(

(ϵ− Ω) + 3
√

(ϵ− Ω)2 − 8t2h
) . (3.42)

Due to the square roots in the denominator of the second term, we have two branch
cuts in the complex Ω-plane, as shown in Fig. 3.5. If we use Cauchy’s theorem, we can
deform the contour (−∞,∞) into a contour around the −η < Ω < η branch cut, with
η =

√
8th.

We have to distinguish the calculation of the integral around the branch cut for four
different scenarios. In the first scenario, all values of the branch cut centered around
ϵ (branch cut II) are strictly smaller than the ones of the branch cut centered around
0 (branch cut I) [Fig. 3.5(i)]. For the second case, displayed in Fig. 3.5 (ii), all values
of branch cut II are strictly larger than the ones of branch cut I. In the other two
cases, branch cut II overlaps with branch cut I. Here, we distinguish the cases displayed
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η

ε 0

η

(i) ϵ < −2η

ε0

η η

(ii) ϵ > 2η

ε 0

η η

(iii) −2η < ϵ < 0

ε0

ηη

(iv) 0 < ϵ < 2η

Figure 3.5: The two branch cuts arising in the doublon-holon Green’s function gdh are
displayed for the four different scenarios that can arise. (i) The driving frequency is
significantly larger than the energy difference between the ground state and doublon-
holon excitation. In this case, the holon (light blue) and doublon (dark blue) branch
cut do not overlap, the Green’s function becomes real, and the RPA is comparable to
the ORA. (ii) The energy gap Ef is significantly larger than the driving frequency,
which leads to a scenario where the branch cuts do not overlap, and we thus obtain
a real Green’s function. (iii) and (iv) display the scenario where the energy gap and
driving frequency are of comparable magnitude, with the driving frequency being slightly
larger/smaller respectively. In this case, the holon and doublon branch cuts overlap,
which leads to a complex contribution to gdh. This imaginary part displays the heating
due to doublon-holon propagation. In this range, the ORA is invalid and the description
with the RPA becomes mandatory.

in Fig. 3.5(iii) and Fig. 3.5(iv). This approach was introduced in the supplemental
material of [93], and we proceed in the same manner, with the only exception that we
use z = 3 as well as omitting the introduction of the dimensionless energy Ẽ. The
convolution integral (3.42) for the four different cases becomes

g
(i)
dh(ϵ) =

η∫
−η

dΩ f(Ω)
ϵ− Ω − 3

∣∣∣√(ϵ− Ω)2 − η2
∣∣∣ (3.43)

g
(ii)
dh (ϵ) =

η∫
−η

d Ωf(Ω)
ϵ− Ω + 3

∣∣∣√(ϵ− Ω)2 − η2
∣∣∣ (3.44)

g
(iii)
dh (ϵ) =

ϵ+η∫
−η

dΩ f(Ω)
ϵ− Ω − 3

∣∣∣√(ϵ− Ω)2 − η2
∣∣∣ +

η∫
ϵ+η

d Ωf(Ω)
ϵ− Ω − 3i

∣∣∣√η2 − (ϵ− Ω)2
∣∣∣ (3.45)

g
(iv)
dh (ϵ) =

ϵ−η∫
−η

d Ωf(Ω)
ϵ− Ω + 3

∣∣∣√(ϵ− Ω)2 − η2
∣∣∣ +

η∫
ϵ−η

d Ωf(Ω)
ϵ− Ω + 3i

∣∣∣√η2 − (ϵ− Ω)2
∣∣∣ (3.46)

where we used f(Ω) = 3
√
η2 − Ω2/[π(9t2h − Ω2)] and the indices i-iv denote the cases

discussed in Fig. 3.5. Scenarios (iii) and (iv) have imaginary contributions. That means if
the branch cuts have an overlap, the Green’s function becomes imaginary. The imaginary
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part of gdh is an indicator for heating arising through doublon-holon propagation in the
system. As we see, the condition for nonvanishing heating is |ϵ| < η. This mainly
depends on the strength of doublon-holon propagation in the excited subspace and the
ratio of Ef and lω. Close to/at resonance gdh(ϵ) thus has major non-real contributions,
indicating that for resonant driving, the system tends to heat up and lead to a breakdown
of the Floquet formalism [93]. The advantage of the RPA is the capability to capture
physics near the resonance and estimate criteria for the ORA. If one can determine th,
it is consequently easy to conclude a strict condition for frequency ranges that do not
lead to heating. Since the determination of th is not straightforward in the considered
materials and exceeds the content of this thesis, we only treat it as a free parameter
and evaluate it qualitatively. The RPA is a good starting point to determine frequency
ranges where the ORA, which is easier and faster to evaluate, is a valid description.
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4Tuning possibilities in the J-K-Γ-Γ′

model

In this chapter we study the influence of linear and circular polarized light on Kitaev-
Heisenberg candidate materials. We consider both the RPA and ORA to derive an ef-
fective Floquet-Kitaev-Heisenberg Hamiltonian, introduced in Chap. 3. Via the RPA, we
try to capture heating effects to obtain values for the frequency and amplitude of the light
where driving with negligible heating is feasible. In these areas, we expect the ORA to
be valid. Here, we analyze some of the most prominent materials α-RuCL3, Na2IrO3,
and α-Li2IrO3, with ab-initio parameters obtained from [33]. First, we focus only on
the influence of linear polarized light with both fixed and arbitrary light angles. Here,
we are mainly interested in the distinct influence of the light field on the three bond
directions [80, 94]. Afterward, we study the influence of CP, where we primarily con-
sider further NN interactions. Between further and NN interactions we expect a relative
tunability for CP.

4.1 Heating

The RPA, introduced in Sec. 3.5.2, can capture heating effects at resonances arising due
to doublon-holon propagation. Therefore, we can use this method to determine frequency
and amplitude ranges where heating is negligible in the considered material. As potential
candidates for the KSL, we focus on α-RuCL3, Na2IrO3, and α-Li2IrO3. For these
materials, there have been a multitude of ab initio studies that calculate the necessary
parameters for our analysis. We take the hopping parameters tγ from [33] and onsite
parameters, U and JH, for iridates and ruthenates from [100] and [69] respectively. We
list the relevant parameters for this section in Tab. 4.1. For the RPA, the holon/doublon
propagation th is kept as a free parameter.
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Material Na2IrO3 α-Li2IrO3 α-RuCl3
U [eV] 1.7 1.7 3.0
JH [eV] 0.3 0.3 0.6
tz1 [meV] 33.1 55.0 50.9
tz2 [meV] 264.3 219.0 158.2
tz3 [meV] 26.6 -175.1 -154.0
tz4 [meV] -11.8 -124.5 -20.2
t
x/y
1 [meV] 38.8 76.3 45.4
t
x/y
2 [meV] 269.3 252.7 162.2
t
x/y
3 [meV] -19.4 -108.8 -103.1
t
x/y
4 [meV] -23.4 -9.3 -13.0

Table 4.1: Parameters for Na2IrO3, α-Li2IrO3, and α-RuCL3. NN hopping parameters
in meV are taken from [33]. Coulomb repulsion U and Hund’s coupling in eV are taken
from [100] for iridates and [69] for ruthenates.

ωl
P ωl

D ωl
S

(U − 3JH) /l (U − JH) /l (U + 2JH) /l
Table 4.2: Resonances for driven d5 materials, in dependence of Hund’s coupling JH
and Coulomb repulsion U . l denotes the number of absorbed (emitted) photons in the
virtual hopping process.

With all parameters at hand we can now calculate Heisenberg J , Kitaev K, Γ, and
Γ′ interactions numerically [(3.25)-(3.28)]. We determine the imaginary and real inter-
action parts in dependency of the light frequency ω and amplitude E0. As explained in
Sec. 3.5.2, a nonzero imaginary part denotes heating arising from doublon-holon propa-
gation. We expect heating around the resonances, arising from the possible excitation
energies ES, EP , and ED (Tab. 2.1). Possible resonances (Tab. 4.2) then depend on
Coulomb repulsion U , Hund’s coupling JH and the number of emitted (absorbed) pho-
tons l [see (2.28)]. Therefore, for different materials, we expect different regions where
heating is present. In addition to this, we observe that regardless of the material the
Heisenberg interaction takes a unique role due to its dependence on (3.29) and (3.30).
Other interactions just depend on (3.29) and will, from now on, be referred to as A-
interactions. Last but not least we want to stress that due to the 1/l dependency in ωl

f ,
with f ∈ {P,D, S} and the fact that the sum in (3.25)-(3.28) goes over l ∈ Z, resonance
frequencies condense at low ω. Therefore, we expect heating-free driving to be feasible
at higher frequencies, where resonances are separated.

We start our analysis with fixed amplitudes at E0 = 7.5 eV/(ed) and LP parallel to
the z-axis for the three candidate materials. It is of note that in this section we focus
mainly on the behavior of the imaginary part and not so much on the ratio between the
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ξ

(i) Heisenberg interactions
ξ

(ii) Kitaev interactions

Figure 4.1: Difference between the real part of RPA and ORA (blue) and imaginary
part of the RPA (orange) as indicator for heating effects displayed for Na2IrO3 at E0 =
7.5 eV/(ed). Considered are the z bond Heisenberg (i) and Kitaev (ii) interactions.

single interaction terms, which we will discuss in more detail in Sec. 4.2. The imaginary
part represents the heating effects that arise due to resonant driving. The investigation
of these heating effects lays the foundation of the discussions in the following sections,
as it yields information on how to choose heating-free driving frequencies.

4.1.1 Iridates

For both iridates, resonances are identical because Coulomb repulsion U and Hund’s
coupling JH have the same magnitude (see Tab. 4.1). We display the results of the
Heisenberg and the Kitaev interaction, representative for the A-interactions, in z direc-
tion in Fig. 4.1 and Fig. 4.2. Here, we showcase the difference between the real part of
the RPA and the ORA ξ as well as the absolute of the imaginary part. We find frequen-
cies between the resonances ω1

P = 0.8 eV and ω1
D = 1.4 eV that yield heating-free driving

for A-interactions. From now on, we refer to this frequency range as driving corridor.
However, it becomes obvious that due to the additional resonance at ωl

S in the Heisen-
berg interaction, there is a resonance arising at ω2

S = 1.15 eV in between ω1
P and ω1

D,
see, e.g., Fig. 4.1(i). This narrows down the driving corridor, where heating-free driving
frequencies can be found, to a range of 0.8 eV < ω < 1.15 eV. Because the ORA neglects
the doublon-holon propagation, the results diverge at the resonance points, causing a
divergence in ξ. To evaluate where the ORA is valid we have to find areas where ξ

is relatively small, which can be found within the driving corridor. Additionally, we
also find a good agreement above the ω1

D resonance. From now on, these are the two
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ξ

(i) Heisenberg interactions

ξ

(ii) Kitaev interactions

Figure 4.2: Difference between the real part of RPA and ORA (blue) and imaginary
part of the RPA (orange) as indicator for heating effects displayed for α-Li2IrO3 at
E0 = 7.5 eV/(ed). Considered are the z bond Heisenberg (i) and Kitaev (ii) interactions.

frequency ranges we focus on.

4.1.2 Ruthenates

For the ruthenate compound α-RuCl3 Coulomb repulsion U and Hund’s Coupling JH

are significantly larger than in the iridate compound (Tab. 4.1). An increase of Coulomb
repulsion U leads to a shift of the resonances to higher frequencies, while the increase
of Hund’s coupling JH yields a larger separation of the three resonance peaks (Fig. 4.3).
This enhanced resonance splitting causes a broadening of the driving corridor, where
the ORA can be valid. Like in iridates, the Heisenberg interaction has an additional
resonance within the driving corridor, which arises at ω2

3 = 2.1 eV.
For the ruthenate, we define the driving corridor between ω = 1.2 eV and ω = 2.1 eV,

which is significantly larger than the driving corridor in iridates. We conclude that
driving without heating in ruthenates appears more promising than in iridates due to
the larger Hund’s coupling JH. Again, it is also possible to drive without heating above
ω1

D = 2.4 eV. This gives us two possible windows for Floquet engineering like in iridates.

4.1.3 Heating for arbitrary amplitudes

In the previous sections Sec. 4.1.1 and Sec. 4.1.2 we focused on heating effects for a fixed
light amplitude E0 = 7.5 eV/(ed). In this section, we want to extend our investigations
to arbitrary driving amplitudes E0. To capture the most important findings we focus
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ξ

(i) Heisenberg interaction
ξ

(ii) Kitaev interaction

Figure 4.3: Difference between the real part of RPA and ORA (blue) and imaginary
part of the RPA (orange) as indicator for heating effects displayed for α-RuCl3 at E0 =
7.5 eV/(ed). Considered are the z bond Heisenberg (i) and Kitaev (ii) interactions.

(i) Im(Jz) in Na2IrO3 (ii) Im(Kz) in Na2IrO3

(iii) Im(Jz) in α-RuCL3 (iv) Im(Kz) in α-RuCL3

Figure 4.4: The absolute of the imaginary part, representative for the heating due
doublon-holon propagation, calculated via the RPA is displayed for Na2IrO3 [(i) and
(ii)] and α-RuCl3 [(iii) and (iv)]. We present the z bond Heisenberg interactions in (i)
and (iii). The z bond Kitaev interactions interactions, representative for all interactions
∝ A, are displayed in (ii) and (iv).
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on z bond interactions, which have the strongest contributions of the ω2
S peak. This

peak, as mentioned, plays a decisive role in determining regions where the ORA is valid
because it narrows down the driving corridor. Additionally, we do not study Li2IrO3,
because heating in iridates is very similar.

In Fig. 4.4 |Im(Kz)|, representative for the A-interactions, is displayed for Na2IrO3

(ii) and α-RuCl3 (iv). We observe that throughout the whole parameter range of E0,
there is no ω2

S-heating peak, which arises from (3.30). The different width of the driving
corridor for Kitaev interactions in ruthenates and iridates becomes obvious if we compare
Fig. 4.4 (ii) and (iv). While in iridates with th = 0.04 eV we obtain a driving corridor
of ≈ 0.2 eV, for ruthenates we get ≈ 0.8 eV. We want to stress that in our calculation
the doublon/holon propagation rate th is kept as a free parameter, and th = 0.04 eV
is the upper limit for th so that there is a nonzero driving corridor in all materials.
Since th = 0.04 eV has a comparable magnitude as the hopping parameters (Tab. 4.1),
we assume that a nonvanishing driving corridor should be feasible in all considered
materials.

Looking at the Heisenberg interactions for iridates and ruthenates [Fig. 4.4(i) and
(iii)], we observe the emergence of the ω2

S-peak. As mentioned in Sec. 4.1.1 this narrows
down the driving corridor to ≈ 0.04 eV and ≈ 0.6 eV in iridates and ruthenates respec-
tively. Therefore, we set the frequencies where we apply the ORA to ω = 1.1 eV and
ω = 1.6 eV for iridates and ruthenates.

With increasing E0 the imaginary parts show an oscillating behavior, due to the
dependence of the interactions on Bessel functions (3.4). The oscillation of the interac-
tions (3.25)-(3.28) decreases with increasing driving frequency ω. One can explain this
behavior with the 1/ω dependence of the Bessel function. Since the driving corridor of
iridates arises at lower driving frequencies due to smaller Coulomb repulsion present in
these materials than in ruthenates, we expect a higher interaction frequency ν in iri-
dates. As for the scenario with fixed E0, heating is ubiquitous at low driving frequencies
ω. Because of this, heating-free driving in this area is unreasonable independent of the
driving amplitude E0.

4.1.4 Influence of U and JH

In this section, we explored the impact of Hund’s coupling JH and Coulomb repulsion
U on the driving corridor. On the one hand, Hund’s coupling determines the width of
the driving corridor, i.e., the region where ORA can be valid. This is the case because
JH is responsible for the energy splitting of the excitation energies ES, EP, and ED (see
Tab. 2.1), which determine the possible resonance frequencies. Strong Hund’s coupling
causes a broadening of the driving corridor and, because of this, is a desirable feature for
experiments. Therefore, α-RuCl3 seems more suitable for Floquet engineering than the
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(i) ω = 1.1 eV

(ii) ω = 1.91 eV

Figure 4.5: J , K, Γ, and Γ′ interactions for Na2IrO3 in dependence of the driving
amplitude E0 between ω1

P and ω1
D (i) and above ω1

D (ii). Displayed are the results from
the ORA (solid line) and the RPA (dashed line) for the three distinct bond directions.

investigated iridate compounds, if one desires to perform Floquet engineering between
resonances. On the other hand, Coulomb repulsion U determines the location of the
driving corridor. With increasing Coulomb repulsion the driving corridor gets shifted to
higher driving frequencies. We will discuss the consequence of this shift in Sec. 4.2.

4.2 Linear Polarized light

In Sec. 4.1, we determined driving frequencies where the ORA can be valid. We found
that for iridates ω = 1.1 eV is suitable, while for the ruthenate compound we obtained
ω = 1.6 eV. In this section, we study the behavior of the interactions relative to each
other in more detail. To do so, we set the angle of the light parallel to the z bond and
then investigate the interactions as functions of driving amplitude E0.

4.2.1 Na2IrO3

The results for Na2IrO3 at ω = 1.1 eV are displayed in Fig. 4.5(i). We observe that all
interactions on each bond oscillate with varying E0 due to the dependency on the Bessel
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functions in (3.4). Furthermore, we notice that the z bond has a distinct E0 dependency
than the x and y bonds. This is due to the light angle, which enforces a faster oscillation
of z bond interactions, i.e., E0 dependency of interactions strongly depends on the light
angle. If we look at the magnitude of the interactions, we observe dominant Kitaev
interactions with significantly smaller J , Γ, and Γ′ interactions. We note that with
increasing E0 one can switch the sign of all interactions. As a result of this, the ground
state properties change. While a global change of sign is possible, a tuning relative in
magnitude for the x and y bonds is possible for the Heisenberg interaction J , see inset
Fig. 4.5(i). The reason for that is the contributions from the B-term in the Heisenberg
interaction, which has a ω dependence distinct from A-terms. However, the B-term
contributions are small for these bond directions, due to the parameter setting of t1 and
t3, see Tab. 4.1.

As we can see in (3.25) the strength of B is determined by (2t1 + t3), which is
almost zero for the x and y direction. Therefore, we observe a shift to J ≥ 0 within
the considered parameter range arising from the B-term. The E0 dependency of J also
shows slightly distinct behavior than the A-interactions.

This effect is far more prominent for the z bond as becomes evident in the inset of
Fig. 4.5(i). Here t1 and t3 lead to a non-negligible contribution of B, which consequently
leads to tunability of the Heisenberg interaction relative to the other interactions. As we
see in the inset of Fig. 4.5(i), this means that the Heisenberg interactions can be turned
off, with the other interactions prevailing.

We, therefore, conclude that tuning of the Heisenberg interaction relative to the other
interactions is, in principle, possible with hopping parameters optimized to enhance the
unique feature of J , the B-interaction (3.30). A global change of the sign and a change
in magnitude is, in general, possible for all interactions when changing E0.

After investigating the behavior within the driving corridor, we are now interested in
the behavior of the interactions above the ω1

2-resonance. We display the results for ω =
1.91 eV in Fig. 4.5(ii). Due to the 1/ω-dependence of the Bessel functions, interactions
no longer show oscillations and are strongly suppressed with increasing E0. As a result of
this, we can not switch the sign for all bonds within the considered parameter range. For
the z bond we again observe a distinct behavior for Heisenberg interactions. As becomes
evident in the insets of Fig. 4.5(ii) the Heisenberg interaction is far more responsive to E0

than the other interactions, meaning that for 0 eV/(ed) < E0 < 5 eV/(ed) one can alter
J while the other interactions remain almost constant. It is even possible to suppress
J to such a degree that it is smaller than Γ and Γ′ interactions. In addition to the
distinct behavior on the z bond, we also observe that on the x and y bonds the B-
term induces a sign change. Hence, for frequencies above ω1

2 in Na2IrO3 B-terms have
a more pronounced effect than within the driving corridor. We still observe a more
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(i) ω = 1.1 eV

(ii) ω = 1.91 eV

Figure 4.6: J , K, Γ, and Γ′ interactions for α-Li2IrO3 in dependence of the driving
amplitude E0 between ω1

P and ω1
D (i) and above ω1

D (ii). Displayed are the results from
the ORA (solid line) and the RPA (dashed line) for the three distinct bond directions.

noticeable effect of B on the z bond than on the x and y bonds. At E0 ≈ 4 eV/(ed),
Heisenberg interactions on the x and y bonds vanish, while on the z bond J is strongly
suppressed. This yields the possibility of almost turning off Heisenberg interactions in
all bond directions via Floquet engineering. It is also notable that the difference E0

dependence between z, x and y bonds at ω = 1.91 eV is strongly reduced compared to
the case within the driving corridor at ω = 1.1 eV.

Summarizing, we found that in Na2IrO3 we can tune both the magnitude and sign of
the interactions present. If one is interested in changing the global sign of the interactions
tuning within the driving corridor is suitable, with the drawback that the driving corridor
in iridates might be hard to access experimentally. We also showed that the Heisenberg
interaction takes a unique role in Floquet engineering because we can change it relative
to the other interactions. For a bond-independent suppression of J interactions a driving
frequency above ω1

2 is desirable.
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4.2.2 α-Li2IrO3

After investigating Na2IrO3, in this section, we study the other iridate candidate material
α-Li2IrO3. Since Coulomb repulsion U and Hund’s coupling JH are expected to be the
same as in Na2IrO3, we again investigate the E0 dependency of the interactions at driving
frequencies ω = 1.1 eV and ω = 1.91 eV.

The results for ω = 1.1 eV are displayed in Fig. 4.6(i). Contrary to Na2IrO3 the bond
anisotropy is sizable in α-Li2IrO3. While on the x and y bonds the Kitaev interactions
are dominant, on the z bond the Γ interaction becomes dominant. We also note that,
while Kitaev interactions are the strongest interactions on the x and y bonds, the Γ and
J interactions are significantly larger than in Na2IrO3. Additionally, all interactions are
almost perfectly in phase, including the Heisenberg interaction. Again, we can explain
this by taking a look at t1 and t3, which in α-Li2IrO3 lead to a strong suppression of
the B contributions. Therefore, tuning of the J interactions relative to the remaining
interactions is impossible, and one is limited to switching signs via Floquet engineering.
Like in Na2IrO3, with increasing E0 we observe a decrease of interaction strength.

At ω = 1.91 eV [Fig. 4.6(ii)], we find a scenario comparable to Na2IrO3, where the
oscillations of the interactions are suppressed to a point where none of the interac-
tions change the sign. For the x and y bonds, all interactions remain constant up to
E0 ≈ 4 eV/(e · d) and decrease in strength afterward. The important distinction to
Na2IrO3 is, that the J interaction shows the same behavior as the A-interactions. This
makes suppression of J impossible. The orbital preserving hopping parameters t1 and
t3 therefore play a crucial role in whether a material is susceptible to J suppression via
Floquet engineering.

4.2.3 α-RuCl3

In the ruthenate compound α-RuCl3 the frequency within the driving corridor is chosen
to ω = 1.6 eV and the frequency above ω1

2 is set to ω = 2.9 eV, due to larger Coulomb
repulsion U and Hund’s coupling JH present in ruthenates (see Fig. 4.3).

In the case of driving within the driving corridor of α-RuCl3 [Fig. 4.7(i)] the results
are qualitatively comparable to α-Li2IrO3. Like for α-Li2IrO3 on the x and y bonds the
Kitaev interaction is the strongest, closely followed by the Γ interaction with Heisenberg
and Γ′ interactions significantly weaker. For the z bond, the Kitaev interaction has the
same magnitude as the Heisenberg interaction, both considerably smaller than the Γ
interaction. This means that α-RuCl3, like α-Li2IrO3, has strongly anisotropic lattice
interactions. However, there are also clear distinctions to the iridate compounds. The
Γ interaction is even stronger than in α-Li2IrO3, locating α-RuCl3 even further away
from the KSL in the J-K-Γ phase diagram. Furthermore, the higher driving frequency
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(i) ω = 1.6 eV

(ii) ω = 2.9 eV

Figure 4.7: J , K, Γ, and Γ′ interactions for α-RuCl3 in dependence of the driving
amplitude E0 between ω1

P and ω1
D (i) and above ω1

D (ii). Displayed are the results from
the ORA (solid line) and the RPA (dashed line) for the three distinct bond directions.
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Material Na2IrO3 α-Li2IrO3 α-RuCl3
U [eV] 1.7 1.7 2.0
JH [eV] 0.3 0.3 0.6
tz1 [meV] -9.3 -6.4 -8.2
tz2 [meV] -13.8 -13.5 -7.4
tz3 [meV] -36.8 -33.3 -39.5
tz4 [meV] 16.6 16.6 11.7
t
x/y
1 [meV] -8.4 -6.3 -7.7
t
x/y
2 [meV] -12.7 -13.4 -7.8
t
x/y
3 [meV] -35.3 -33.0 -41.4
t
x/y
4 [meV] 16.0 15.8 11.7

Table 4.3: Parameters for Na2IrO3, α-Li2IrO3, and α -RuCL3. Third nearest neighbor
(TNN) hopping parameters in meV are taken from [33]. Coulomb repulsion U and
Hund’s coupling JH in eV taken from [100] for iridates and [69] for ruthenates.

at ω = 1.6 eV, causes a slower oscillation of the interactions (see Sec. 4.1.3). Last but
not least, if we look at the RPA results (dashed lines in Fig. 4.7), it becomes evident
that the agreement between in ORA and RPA is far superior in the ruthenate than in
the iridate compounds. The reason for that is, as mentioned in Sec. 4.1.2, the broader
driving corridor. While in iridates the driving corridor is so narrow that, while heating-
free driving is possible, a perfect agreement between ORA and RPA is impossible, in the
ruthenate compound we can obtain almost identical results within the driving corridor.
This is one of the main reasons ruthenates should be experimentally more suitable for
Floquet engineering. Similar to α-Li2IrO3, the Heisenberg interaction can not be tuned
concerning the other interactions, see Fig. 4.7.

Above the ω1
D-resonance [Fig. 4.7(ii)] at ω = 2.9 eV we observe an enhancement

of all interactions for 0 eV/(ed) < E0 < 8 eV/(ed) for the x and y bonds and up to
E0 ≈ 4 eV/(ed) for the z bond. This is in contrast to the results of the iridates where
the interaction strength stayed constant for small amplitudes E0 instead of increasing. In
ruthenates, one can increase the magnitude of all interactions compared to the starting
interactions without a change of sign, throughout the considered parameter range. We
therefore conclude that with Floquet engineering it is possible to increase the absolute
magnitude of all interactions with changing sign (driving corridor) and without changing
sign (above ED).

4.3 Circular polarized light

In Sec. 4.2 we focused on tuning NN interactions with LP and a fixed light angle parallel
to the z bond. However, it has been shown [33] that further interactions than NN can
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(i) Na2IrO3 (ii) α-Li2IrO3 (iii) α-RuCL3

Figure 4.8: NN non-Heisenberg interactions A (blue) and TNN Heisenberg interactions
J3, normalized with their respective maximal value, are depicted for Na2IrO3 (i), α-
Li2IrO3 (ii), and α-RuCl3 (iii). For the iridates the driving frequency is set to ω = 1.1 eV,
for α-RuCl3 to ω = 1.6 eV.

play a decisive role in the nature of the ground state. In particular third nearest neighbor
(TNN) Heisenberg interactions have been argued to be a major factor in forming the zig-
zag ground state observed in the considered materials [101]. Therefore, in this section,
we want to focus on Floquet engineering of the TNN Heisenberg interactions J3.

Since we want to compare TNN and NN interactions, LP is not suitable due to
its distinct effect on different bond directions. Hence, we need a polarization whose
influence on the interactions is bond-independent. Hence, we consider CP, where, as
shown in Sec. 3.3.2, the Bessel functions just depend on the absolute distance between
the considered sites. The NNN hopping terms are obtained from [33], and summarized
for all materials in Tab. 4.3. Recalling the condition for a tunability of the J3 interactions
concerning A-interactions, i.e., a nonvanishing (2t1 +t3)2, we see (Tab. 4.3) that a tuning
in all materials should be possible. We show the results for all considered materials
in Fig. 4.8. Here, we consider the NN A-interactions, normalized with the respective
absolute maximum in the considered parameter range (blue). The reason why we just
investigate NN A-interactions in this discussion is that the effect of B-interactions for
NN is rather small. The TNN Heisenberg interactions, normalized with their maximum
value, are depicted in orange. For all materials, we set the driving frequency within
the driving corridor, i.e., ω = 1.1 eV for iridates and ω = 1.6 eV for ruthenates. For
all materials a strong suppression of the J3 interactions compared to the A-interactions
is noticeable. This effect is particularly strong in the ruthenate compound, where J3

interactions almost vanish even for weak amplitudes E0. One can attribute the distinct
E0 behavior to the different absolute distances of NN and TNN, which consequently
change the argument of the Bessel functions. As we can see, from (3.4) and Fig. 4.8,
a higher distance increases the oscillation. It is important to note that because we are
using CP, the influence on all bonds is equal, and therefore Heisenberg interactions get
suppressed uniformly in all bond directions.
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(i) Na2IrO3 (ii) α-Li2IrO3 (iii) α-RuCL3

Figure 4.9: NN non-Heisenberg interactions A (blue) and TNN Heisenberg interactions
J3, normalized with their respective maximal value, are depicted for Na2IrO3 (i), α-
Li2IrO3 (ii), and α-RuCl3 (iii). For the iridates the driving frequency is set to ω =
1.91 eV, for α-RuCl3 to ω = 2.9 eV.

Like in Sec. 4.2, we also consider frequencies above the U − JH resonance, again we
choose ω = 1.91 eV for iridates and ω = 2.9 eV for α-RuCL3, see Fig. 4.9. We observe
that above ω1

D the suppression of J3 is even stronger than within the driving corridor.
For the iridates, the A interactions stay constant for small E0, like already shown in
Sec. 4.2.1. Meanwhile, we see a considerable decrease of J3 even for small E0. For
iridates, we can turn off J3 interactions while keeping the NN A-interactions at their
initial value. For α-RuCl3 the suppression of J3 is accompanied by an enhancement of
A-interactions, like shown in Fig. 4.9. This makes the suppression of J3-interactions in
ruthenates even more pronounced than in iridates.

In this section, we showed that a suppression of TNN Heisenberg interactions is
possible via Floquet engineering. This is a significant step in driving the system into a
KSL because J3 interactions are a hindering factor for the KSL in these materials. The
reason for this tunability is rooted in the hopping parameters, where the direct hoppings
t1 and t3 cause sizable B contributions for J3 interactions.

4.4 Tuning with the light angle

Going back to LP, we want to investigate the influence of the polarization angle on the
interaction parameters. In Sec. 4.2, we focused on the interactions for a fixed light angle
at φ = 0, i.e., parallel to the z bond. Starting from there, we vary the light angle between
0 ≤ φ ≤ π for all considered materials and bond directions. We restrict ourselves to
this parameter range because the dependence of the interactions on φ is π-periodic, see
Fig. 3.2. This intuitively makes sense because a light angle of φ = π describes essentially
the same polarization as φ = 0. Again, we focus on the frequencies within the driving
corridor, introduced in Sec. 4.1.3. The results for Na2IrO3, α-Li2IrO3, and α-RuCl3 are
displayed in Fig. 4.10, Fig. 4.11, and Fig. 4.12 respectively. We can identify two special
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types of light angles for all materials.
First, each bond has a light angle, where the associated interactions decouple from the

light field. At these light angles, the light angle is perpendicular to the bond direction,
i.e., φ = 5π/6, φ = π/6, and φ = π/2 for the x, y, and z bond respectively. This
decoupling consequently means that we can tune the remaining two bond interactions
relative to the initial value of the decoupled bond. Therefore, it is possible to decrease the
anisotropy in these materials via Floquet engineering. We can observe this, especially
in α-RuCl3 at φ = π/2, where we can manipulate x and y bonds K interactions in
such a manner that they have the same strength as the formerly distinct z bond. It is
important to clarify that increasing the isotropy of all interaction types simultaneously
is not necessarily possible. As we see in Fig. 4.12, it is impossible to increase the
isotropy of the Γ interaction in ruthenate. The reason for this is that, at φ = π/2, Γz

is initially larger than Γx/y and we can not increase Γx/y in the considered parameter
range. Following the rule of thumb that the initial z-interaction has to be smaller than
the initial x/y-interaction to increase the isotropy, we see that for α-RuCl3 we are just
able to increase the isotropy of the K interaction at φ = π/2. Turning to iridates we
observe that for Na2IrO3 a reduction of anisotropy is possible for Γ- and Γ′-interactions
at φ = π/2. Meanwhile, the K interaction intrinsically is almost isotropic and Floquet
engineering increases anisotropy. For α-Li2IrO3 (Fig. 4.11), the behavior is comparable
to α-RuCl3, where we are just able to decrease anisotropy of the K interactions.

The second type of unique light angle has a polarization parallel to one of the bond
directions. This is, e.g., the light angle φ = 0, extensively discussed in Sec. 4.2. Here, the
influence of the light is equal on the two bond directions not parallel to the polarization
direction, with a distinct influence on the bond direction parallel to the polarization.

4.5 Tuning Kiteav interactions via light angle

As we have seen in the previous section the anisotropy of the interactions can be de-
creased with the help of Floquet engineering. In particular, the Kitaev interactions
appear susceptible in α-Li2IrO3 and α-RuCl3. To further investigate this effect, in this
section, we focus on the ideal case that just Kitaev interactions are present in the materi-
als, i.e., all materials are already in the KSL. To do so, we set all remaining interactions
to zero and just study the Kitaev interactions. We then want to investigate the possi-
bilities of Floquet engineering within the KSL phase.

The ground state of the pure Kitaev model can, in general, be divided into a gapped
and gapless KSL [6]. The nature of the ground state strongly depends on the ratio
of Kx, Ky, and Kz with the criterion for a gapped KSL |Kα| + |Kβ| > |Kγ|, with
α, β, γ ∈ [x, y, z]. Since this criterion strongly depends on the degree of anisotropy from
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(i) Heisenberg interactions (ii) Kitaev interactions

(iii) Γ interactions (iv) Γ′ interactions

Figure 4.10: J , K, Γ, and Γ′ interactions for Na2IrO3 for varied light angle φ and
amplitude E0. Driving frequency is fixed to ω = 1.1 eV.



Tuning Kiteav interactions via light angle 63

(i) Heisenberg interactions (ii) Kitaev interactions

(iii) Γ interactions (iv) Γ′ interactions

Figure 4.11: J , K, Γ, and Γ′ interactions for α-Li2IrO3 for varied light angle φ and
amplitude E0. Driving frequency is fixed to ω = 1.1 eV.
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(i) Heisenberg interactions (ii) Kitaev interactions

(iii) Γ interactions (iv) Γ′ interactions

Figure 4.12: J , K, Γ, and Γ′ interactions for α-RuCl3 for varied light angle φ and
amplitude E0. Driving frequency is fixed to ω = 1.6 eV.
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the Kitaev interactions, one can easily imagine that a transition from a gapped to gapless
KSL mediated by Floquet engineering and vice versa is possible. Additionally we also
introduce a criterion for a gapless KSL with isotropic interactions |Kα −Kβ| < 10−3 eV.
Applying these conditions to the Kitaev interactions in dependency of the light angle and
amplitude from Sec. 4.4, we obtain a phase diagram for all considered materials. The
results are displayed in Fig. 4.13 for Na2IrO3, α-Li2IrO3, and α-RuCl3. Considering the
idealized case of just Kitaev interactions being present, all materials start in a gapless
KSL. However, already for small amplitudes, gapped regions arise for all materials.
Especially the idealized α-Li2IrO3 has large regions where a gapped KSL could arise.

For Na2IrO3 one observes that for φ = π/6, π/2, 5π/6 the gapless KSL is more
prevalent throughout the considered parameter range of E0. The phase diagram obeys
almost perfect π/3-periodicity in φ, due to the low anisotropy of Kitaev interactions in
Na2IrO3. An increase of isotropy up to an isotropic interaction is impossible, as stated
in Sec. 4.4. We observe that with increasing amplitude the areas for a gapless phase
become narrower and it becomes more difficult to be in a "robust" gapless or gapped
phase. This means that when probing this tuning experimentally smaller amplitudes
would be advisable because here we expect broad areas of gapped and gapless KSLs.

For α-Li2IrO3 and α-RuCl3 the π/3-periodicity reduces to a π periodicity due to the
increased anisotropy in Kitaev interactions for these materials. We observe that for both
materials the light angle where the gapless phase is relatively robust respective to E0 is
φ = π/2, i.e., orthogonal to the z-axis. This is a result of the findings in Sec. 4.4, namely
that we can decrease the anisotropy of the Kitaev interactions if the light field decouples
from the light field (Fig. 4.13). In α-RuCl3 a decrease of the intrinsic anisotropy up to
an isotropic phase [purple region in Fig. 4.13 (i)] is possible.

In conclusion, we found that Floquet engineering in a pure Kitaev model can change
the ground state properties of the considered model by decreasing or increasing the
anisotropy of the system. This opens up the possibility of driving systems formerly
considered to be gapless KSL into a gapped KSL and vice versa. On the other hand, for
materials already considered to be isotropic like, e.g., Na2IrO3, one has to pay special
attention to amplitude E0 and light angle φ to preserve the desired ground state.
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(i) Na2IrO3 (ii) α-Li2IrO3 (iii) α-RuCl3

Figure 4.13: KSL phase diagram of Na2IrO3 (i), α-LiIrO3 (ii) , and α-RuCl3 (iii). Phases
are determined with the criteria in the text (Sec. 4.5), under the assumption that just
Kitaev interactions are present in the considered materials. The gapped KSL is depicted
in green while the gapless and the isotropic KSL are depicted in brown and purple
respectively.
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5High order effective
Floquet-Hamiltonian

Chap. 3 and 4 solely focused on second-order perturbation theory. However, it has been
shown that including ligand-mediated processes explicitly via higher-order perturbation
theory can have a significant impact in Floquet engineering [31, 32, 89]. Therefore, in
this chapter, we introduce ligand-mediated third and fourth-order terms for AP. We
start by motivating the necessity of contributions up to the third and fourth order and
derive an effective Floquet-Hamiltonian. In this process, we discuss new interactions
arising from the inclusion of these high-order terms. Combining these results with the
second-order results yields interaction terms, which include all important virtual hopping
processes explicitly. We analyze these terms in dependency of ω, E0, and ϵ for elliptical
Lissajous figures. Last but not least, we extend or research to N > 1 to see whether the
frequency multiplicity N changes interaction terms.

5.1 Why consider ligand contributions explicitly?

Conventionally, the Kitaev-Heisenberg model is derived with second-order perturbation
theory in the hopping parameters introduced in Fig. 2.4 (see [1, 3, 34, 97] and Chap. 3).
As we have already seen in Sec. 2.2, the t2 hopping is distinct from the other hoppings
as it is the only one including hopping processes via the p ligand atoms. Both the ligand
hopping process t2pd/∆pd, with the charge transfer gap ∆pd, as well as the direct d-d
hopping (tddπ − tddδ)/2 ≡ tdd,2 describe an effective hopping between the dxz and the
dyz orbital [Fig.5.1(i)]. While it is valid to express these two processes as one effective
process t2 in the model without a light field, this is no longer applicable in the light-driven
case. The reason for this is that each hopping process now picks up a complex phase
[Fig. 5.1(ii)], which depends on the direction of the bond. Therefore, each bond (d-d and
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tpd tpd

t2,dd t2

(i) Hopping processes between the dxz and the dyz orbital in the absence of a light field.
Hopping via ligands (light blue arrows) and direct hopping (dark blue arrows) can be combined
into one effective hopping process t2 (light and dark blue arrows).

lω lω

φ2eitpd tpde
iφ3

?t2,dde
iφ1

(ii) Hopping processes between the dxz and the dyz orbital in the presence of a light field
(orange arrow). Each hopping process picks up a distinct phase φi. An expression of the
ligand (light blue) and direct hopping (dark blue) processes via one effective hopping is no
longer possible.

Figure 5.1: Ligand and direct hopping between adjacent dxz and the dyz orbitals in the
absence (i) and presence (ii) of a light field.
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Figure 5.2: Possible hopping process between NN sites including ligands explicitly. Sec-
ond order hopping d → d → d (i), third order ligand hopping d → p → d → d (ii),
fourth order ligand hopping d → p → d → p → d (iii). Depicted third and fourth-order
processes are examples of the respective process.
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p-d) has a distinct dependence on the light field, which makes an explicit treatment of
the ligand hopping process mandatory. Intuitively, this extends the spin-orbital model
to third and fourth-order processes, which becomes evident if one inserts the explicit
expression of t2 in (3.26) yielding

(t2)2 = (tdd,2 +
t2pd

∆pd

)2 = t2dd,2︸︷︷︸
O(t2)

+ 2tdd,2
t2pd

∆pd︸ ︷︷ ︸
O(t3)

+
t4pd

∆2
pd︸ ︷︷ ︸

O(t4)

. (5.1)

Possible hoppings are either d → d → d [Fig. 5.2(i)], d → p → d → d [Fig. 5.2(ii)], or
d → p → d → p → d [Fig. 5.2(iii)]. It is important to note that the ligand-mediated
hopping process t2pd/∆pd can be of comparable magnitude or even stronger than the direct
hoppping processes t1, tdd,2, t3, t4. Therefore, there are significant third and fourth-order
contributions to the Kitaev-Heisenberg interactions.

The consequence of including third-order terms explicitly is an inverse Faraday effect
inducing an effective magnetic field within the model [31,32,102]. However, these results
only consider a CP, and we thus want to extend these results to AP. With a general
model, we then can study the fallout for both LP and CP and analyze the changes third-
order terms induce for both limiting cases. In addition, we can investigate whether a
more unconventional polarization leads to interesting interactions within the Kitaev-
Heisenberg model.

Already in the absence of a light field, fourth-order ligand hopping processes are
implicitly included in the Kitaev term (3.26) via t2, see (5.1). That means a neglection
of fourth-order terms, like in [31], does not yield an accurate Kitaev interaction strength.
Therefore, it is crucial to include these terms in the calculations. In this chapter, we
derive fourth-order terms under the influence of a light field. Combining these results
with the lower-order terms, we can capture all significant light-induced effects in the
Kitaev-Heisenberg model.

5.2 Third order effective Floquet-Hamiltonian

To derive third-order terms, we have to perform perturbation theory of the form

HF
eff =

∑
l,m

∑
β,α

H−l−m
kin |Ψd

α⟩ ⟨Ψd
α|Hm

kin |Ψp
β⟩ ⟨Ψp

β|H l
kin

(Eα + (m+ l)ω) (∆pd + lω) , (5.2)

where l is the number of photons absorbed in the first hopping process and m in the
second hopping process similar to (2.28). Since at the end of the virtual process, no
photons are allowed the third process has to emit the photons absorbed in the first two
processes H−l−m

kin . Two different processes can have the same denominator. The first one



70 High order effective Floquet-Hamiltonian

absorbs l photons in the d → p and m photons in the p → d process and emits m + l

photons in the d → d process. The second one absorbs m+ l in the d → d process, emits
m photons in the d → p, and l photons in the p → d process. Both of these virtual
hoppings lead to intermediate energies of Eα + (m+ l)ω and ∆pd + lω.

We can decompose the kinetic Hamiltonian in a part, which describes from Ru-
atoms to the ligand O-atoms, and a part, which captures the hopping between Ru-atoms
Hkin = Hdd +Hpd. With these considerations we can rewrite (5.2) to

HF
eff =

∑
l,m

∑
β,α

(
H−l−m

dd Pd,αH
m
pdPp,βH

l
pd

)
+
(
H−l

pdPp,αH
−m
pd Pd,βH

l+m
dd

)
Eα

l+m(ω)E∆pd

l (ω)
, (5.3)

with Eα
l (ω) = Eα + lω, E∆pd

l (ω) = ∆pd + lω, and the projectors P on the subspaces |Ψd
α⟩

and |Ψp
β⟩. The formula used in [31] to determine third-order terms neglects hoppings of

the form d → d → p → d. That leads to significant changes in the interaction terms
derived. Using the projection onto j = 1/2 from [31], we obtain the following matrix
elements

J = 2 Re
(〈1

2 ,−
1
2

∣∣∣∣Heff

∣∣∣∣−1
2 ,

1
2

〉)
(5.4)

D = 2 Im
(〈1

2 ,−
1
2

∣∣∣∣Heff

∣∣∣∣−1
2 ,

1
2

〉)
(5.5)

h = 1
2

(〈1
2 ,

1
2

∣∣∣∣Heff

∣∣∣∣12 , 1
2

〉
−
〈

−1
2 ,−

1
2

∣∣∣∣Heff

∣∣∣∣−1
2 ,−

1
2

〉)
(5.6)

K =
〈1

2 ,
1
2

∣∣∣∣Heff

∣∣∣∣12 , 1
2

〉
+
〈

−1
2 ,−

1
2

∣∣∣∣Heff

∣∣∣∣−1
2 ,−

1
2

〉
− 2

〈
−1

2 ,
1
2

∣∣∣∣Heff

∣∣∣∣−1
2 ,

1
2

〉
− J (5.7)

Γ = −2 Im
(〈1

2 ,
1
2

∣∣∣∣Heff

∣∣∣∣−1
2 ,−

1
2

〉)
(5.8)

µ = 2 Re
(〈1

2 ,
1
2

∣∣∣∣Heff

∣∣∣∣−1
2 ,−

1
2

〉)
. (5.9)

As expected, there are finite contributions for a magnetic field h arising from the inverse
Faraday effect [103] and contributions for J , K, and Γ. However, we find two new
interactions, distinct from the former interactions, which we define as D and µ. As we
will see later, these interactions vanish in the limes of CP, which is why they have not
been reported yet. Calculating these matrix elements then yields the effective extended
Kitaev-Heisenberg Hamiltonian

H3
eff =

∑
γ,⟨i,j⟩γ

J3
γ SiSj +K3

γS
γ
i S

γ
j + Γ3

γ

(
Sα

i S
β
j + Sβ

i S
α
j

)
+D3

γeγ (Si × Sj) + µ3
γ

(
Sα

i S
α
j − Sβ

i S
β
j

)
+ h3

γ

(
Sγ

i + Sγ
j

)
(5.10)

which in addition to the Kitaev-Heisenberg interactions (KHI) J , K, and Γ has light
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induced interactions (LI) h, D and µ. The physical interpretation of D and µ in (5.10)
arises from a projection of the respective matrix element into the spin-1/2 basis

1
2i
(
S−

i S
+
j − S+

i S
−
j

)
= (Si × Sj)z = Sx

i S
y
j − Sy

i S
x
j (5.11)

1
2
(
S+

i S
+
j + S−

i S
−
j

)
= Sx

i S
x
j − Sy

i S
y
j . (5.12)

D (5.11) has a Dzyaloshinskii–Moriya form and breaks inversion symmetry while µ (5.12)
induces further anisotropies. Both these interactions preserve time-reversal symmetry.
That is the opposite behavior of h, which breaks time-reversal symmetry (but keeps
inversion symmetry intact). Since we know that CP preserves inversion symmetry, we
expect µ and D to vanish for CP. With this, we can now derive the expression for
the interaction terms in (5.10) expressed as functions of Coulomb repulsion U , Hund’s
coupling JH , hopping strengths, and excitation energies Eα introduced in Tab. 2.1. The
terms for the z-bond are

K3
z =

∑
m,l

t2pd

E∆pd
m (ω)

[
Re

(
B3

l,m + B3
m,l

) 12
9

(
t2

ED
l+m(ω) − t2

EP
l+m(ω)

)

+ Im
(
B3

l,m − B3
m,l

) 8
27

(
t1 − t3

ED
l+m(ω) + 2t1 + t3

ES
l+m(ω) + 6t2

EP
l+m(ω)

)]
(5.13)

Γ3 =
∑
m,l

t2pd

E∆pd
m (ω)

Re
(
B3

l,m + B3
l,m

) 4
9

(
t1 − t3

EP
l+m(ω) − t1 − t3

ED
l+m(ω)

)
(5.14)

µ3
z =

∑
m,l

−t2pd

E∆pd
m (ω)

Re
(
B3

l,m − B3
m,l

) 4
9

(
t2

EP
l+m(ω) + t2

ED
l+m(ω)

)
(5.15)

D3
z =

∑
m,l

t2pd

E∆pd
m (ω)

Re
(
B3

l,m − B3
m,l

) 8
27

(
2t1 + t3
ES

l+m(ω) + t1 − t3
ED

l+m(ω) + 3(t1 + t3)
EP

l+m(ω)

)
(5.16)

h3
z =

∑
m,l

−t2pd

E∆pd
m (ω)

Im
(
B3

l,m − B3
m,l

) 2
9

(
t1 − t3

ED
l+m(ω) + t1 − t3

EP
l+m(ω)

)
, (5.17)

with

B3
l,m =B−l−m (0,A) B∗

−l

(
π/4,A/

√
2
)

B∗
−m

(
−π/4,A/

√
2
)
, (5.18)

and B(ϑ,A) introduced in (3.22). We again emphasize that the distinct calculation in
(5.3) leads to considerably different interaction terms than in [31]. That is especially true
for the Heisenberg interaction, which does not have third-order contributions, contrary
to the statement of [31]. We observe that for CP, i.e. B3

m,l = B3∗
l,m, both D and µ indeed

vanish.
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5.3 Fourth order effective Floquet-Hamiltonian

As mentioned in Sec. 5.1 fourth-order terms might have significant contributions to
Kitaev interactions, which is why, in this section, we want to derive the contributions
to the Kitaev-Heisenberg model within fourth-order perturbation theory. We proceed
in the same way as in the previous section, i.e., we calculate the matrix elements (5.4)-
(5.9), with the distinction that we now use the effective Hamiltonian arising for fourth-
order perturbation theory. We find that three different interactions have non-vanishing
contributions in the fourth-order

J4 =
∑

n,l,m,k

t4pd δn,−l−k−m

E∆pd

l+k+m(ω)E∆pd
m (ω)

2
27
(
B4

n,l − B4
l,n

) (
B4 ∗

−m,−k − B4 ∗
−k,−m

)

×
(

1
ED

l+m(ω) + 3
EP

l+m(ω) + 2
ES

l+m(ω)

)
(5.19)

K4 =
∑

n,l,m,k

t4pd δn,−l−k−m

E∆pd

l+k+m(ω)E∆pd
m (ω)

[
2
3
(
B4

l,nB
4 ∗
−m,−k + B4

n,lB
4 ∗
−k,−m

)

×
(

1
EP

l+m(ω) − 1
ED
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)
− 2

27
(
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) (
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−k,−m

)
×
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2
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l+m(ω) + 3
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l+m(ω) + 4
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(5.20)

µ4 =
∑

n,l,m,k

t4pd δn,−l−k−m

E∆pd

l+k+m(ω)E∆pd
m (ω)

2
18
(
B4

n,lB
4 ∗
−m,−k − B4

l,nB
4 ∗
−k,−m

)

×
(

1
ED

l+m(ω) − 1
EP

l+m(ω)

)
, (5.21)

where l,m, k are the photons absorbed and emitted in the virtual hopping process, and
the fourth-order equivalent of (5.18) is given as

B4
n,l =Bn

(
π/4,A/

√
2
)

Bl

(
−π/4,A

√
2
)
, (5.22)

with Bl(ϑ,A) defined in (3.22). Both Heisenberg and µ-interactions vanish for E0 =
0 eV/(ed), i.e., in the absence of light. That is expected, due to the absence of fourth-
order contributions in the Heisenberg term and no reported µ terms in the conventional
Kitaev-Heisenberg model. However, the Kitaev term has significant contributions at
E0 = 0 eV/(ed), which is expected due to the reasons explained in Sec. 5.1. For a light
field with finite amplitude, i.e., E0 > 0 eV/(ed), and CP both Heisenberg and Kitaev
interactions have contributions, while µ-interactions, as for third order, vanish. However,
for non-CP, µ can have non-vanishing contributions. To obtain the complete effective
Floquet-Kitaev-Heisenberg Hamiltonian we have to add up the results of the second



Parameters 73

t1 t2 t3 tpd ∆pd U JH

0.044 eV 0.08 eV −0.109 eV −0.8 eV 5.0 eV 3.0 eV 0.45 eV
Table 5.1: Hopping strengths for α-RuCl3 obtained via density functional theory
(DFT) [104] and photoemission measurements [105].

(App.B), third (Sec. 5.2), and fourth-order (Sec. 5.3), which yields, for the z-bond

HF
eff =(J2

z + J4
z )SiSj + (K2

z +K3
z +K4

z )Sz
i S

z
j + (Γ2

z + Γ3
z)(Sx

i S
y
j + Sy

i S
x
j )

+ (µ3
z + µ4

z)(Sx
i S

x
j − Sy

j S
y
j ) +D3

zez(Si × Sj) + h3
z(Sz

i + Sz
j ). (5.23)

5.4 Parameters

In this chapter, we use the same hopping parameters [104], Coloumb repulsion and
Hund’s coupling [105] as in [31], to compare our extended fourth-order effective model
with the existing third-order results, see Tab. 5.1. Contrary to the parameters in Chap.4,
the initial hopping parameters are isotropic. We want to emphasize that, in principle,
the model obtained in Sec. 5.1-5.3 can also capture anisotropic hopping parameters.

5.5 Special cases of elliptical Lissajous figures

We start our analysis of the high-order Floquet Kitaev-Heisenberg model for the limiting
cases ϵ = π/2 and ϵ = 0. Especially LP was discussed extensively in Sec. 4.2, while CP
has been discussed in [31, 32]. Therefore, it is convenient, to begin with these cases to
elaborate changes third and fourth order induce.

5.5.1 Linear polarized light

As discussed in Sec. 4.2 for second-order perturbation theory, we find that LP has an
anisotropic influence on the three different bond types in the honeycomb lattice. It
was argued that with the change of the light angle, one can change the influence on
the distinct bonds, including a possible decoupling of the light from one bond. The
explicit inclusion of third and fourth-order terms introduces new bonds, namely the
ones connecting d and p atoms (see Fig. 5.3). Therefore, one can deduce that a complete
decoupling from light is impossible for linear polarization if there are contributions from
higher-order terms.

As an example, we set the light angle to the z bond φ = π/2, which causes a
decoupling from the d-d bond. However, there are still contributions depending on E0

and ω arising from the d-p bonds belonging to the z bond, enclosing an angle of π/4
and −π/4 with the light, see Fig. 5.3(ii).
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Figure 5.3: Different polarizations discussed in the text. For LP (i) and (ii), there is
the possibility of light decoupling from a certain bond direction (dashed lines), and the
influence on the bonds is, in general, strongly anisotropic. CP (iii) has an isotropic
influence on all bonds.

Figure 5.4: J , K, Γ, D, µ, and h interactions in x, y, and z direction in dependency
of light amplitude E0 for ω = 12.0 eV. We display the results for frequency multiplicity
N = 1 and LP with φ = π/4 (see inset).
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Figure 5.5: Comparison of the model for CP (dashed lines) with the second-order results
for AP, calculated like in (B.6), in the limit of N = 1 and ϵ = π/2 (solid lines) for
ω = 12.0 eV.

For the remainder of the chapter, we set the light angle to π/4 [see Fig. 5.3(i)],
i.e. Ex = Ey = E0. The results for all interaction parameters obtained in Tab. 5.1 at
driving frequency ω = 12.0 eV are depicted in Fig. 5.4. As for the second-order results,
the influence on the bond directions x, y, and z is strongly anisotropic. As expected,
there is no induced magnetic field for LP (Fig. 5.4) due to the absence of time-reversal
symmetry breaking. However, contributions from the inversion symmetry-breaking term
D and the term µ (Fig. 5.4) exist, which both induce anisotropies. We can attribute this
induced anisotropy to the fact that, for LP, it makes a difference if the hopping path
goes over the "upper" d-p-d connection or the "lower" one Fig. 5.3. These two connections
have inverted angles between light polarization and bond directions for the absorption
of m and n photons.

for the former m photons get absorbed for light angle φ1 and n photons for φ2

while for the latter one it is exactly inverse. Last but not least, we observe that, due
to third-order contributions, the E0 dependency for the KHI is no longer perfectly in
phase. That arises from (5.13)-(5.17) in addition to the fact that there are no third-
order contributions for J . Therefore, tuning the different parameters relative to each
other seems possible even for LP. These newly discovered properties make the explicit
inclusion of third and fourth order mandatory for LP.
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Figure 5.6: Comparison of the third- (mauve) and fourth-order model (dark green) for
Kitaev interactions, at N = 1 for ω = 12.0 eV, in dependency of E0.

5.5.2 Circular polarized light

The influence of CP has been heavily discussed in the context of the inverse Faraday
effect [103]. To compare the results of our extended model in the limit of ϵ = π/2 with
the third order results of [31], we set the driving frequency to ω = 12.0 eV, which is the
only frequency where both analytical and numerical results exist [31]. We depict the
results from our model in Fig. 5.7. As predicted from second-order results Sec. 4.3, all
bond directions experience the same modulation. However, like for LP, we note that
K and Γ are not in phase anymore, giving the possibility of relative tuning between
KHI (as already discussed in [31,80]). We also note that there is a nonzero contribution
to h for E0 > 0 eV/(ed), which is a result of broken time-reversal symmetry. Both D

and µ vanish due to the preservation of space isotropy. Comparing our results with
the results of [31], we notice that the results of our extended model fit the numerical
results far better. Especially the behavior of the Kitaev interaction with a maximum
at E0 ≈ 40 ev/(ed), which is not reproduced by the analytic results of [31] shows good
agreement with our analytic results. The reason for that is most likely the negligence of
fourth-order terms and alternative hopping paths, discussed in Sec. 5.2, in third-order
terms. We attribute the minor difference between numerical and our analytic results to
a different sign in the Bessel functions used for the ED calculations in [31]. While this
results in a minor difference far from resonances, the effect might be more pronounced
closer to the resonances. We, therefore, emphasize the importance of the index signs
chosen in (5.18) of Sec. 5.2, which we believe to be the correct ones. Still, the relatively
good agreement with the numerical results at ω = 12.0 eV encourages the validity of our
extended model.
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Figure 5.7: J , K, Γ, D, µ, and h interactions in x, y, and z direction in dependency
of light amplitude E0 for ω = 12.0 eV. We display the results for frequency multiplicity
N=1 and CP (see inset).

To further confirm the model for AP, we want to compare the results from second-
order perturbation theory for CP with our model at ϵ = π/2, see Fig. 5.5. We observe
that the CP model agrees with the AP model at ϵ = π/2. Like for LP, inclusion of third-
order correction terms is crucial for CP because second-order perturbation theory can
not capture the induced magnetic field. Since we want to obtain the correct magnitudes
for the interactions and capture a realistic influence of E0, inclusion of fourth-order terms
is mandatory, as they can have significant contributions. That is especially true for the
Kitaev interaction see Fig. 5.6. With our model, we can capture all relevant effects for
both LP and CP and are also able to continuously vary ϵ as discussed in Sec. 3.3.3.

5.6 Elliptical Lissajous figures

5.6.1 Above resonances

The main advantage of the Lissajous model derived in Sec. 5.3 is its capability to capture
the E0 and ω dependency for AP. That means we are no longer limited to the cases
of CP and LP but can extend our research to more exotic polarization cases. In this
section, we explore the influence of the parameter ϵ, which changes the phase between x
and y polarized light (see Sec. 3.3.3), on the high-order Kitaev-Heisenberg interactions.
We start our analysis with a fixed driving frequency set above resonances at ω = 12.0 eV.

As discussed in Sec. 5.5, for driving frequencies above all resonances, we generally
expect a considerable suppression of KHI with increasing E0. The results for all interac-
tions with 0 < ϵ < π are displayed in Fig. 5.8. We observe that J , K, and Γ interactions
get strongly suppressed for E0 > 70 eV/(ed) [Fig. 5.8(i)]. While the suppression of Γ is



78 High order effective Floquet-Hamiltonian

(i) KHI J , K, and Γ

(ii) LI D, µ, and h

Figure 5.8: Interactions in x, y, and z direction in dependency of light amplitude E0 and
phase shift ϵ for ω = 12.0 eV. Displayed are the results for frequency multiplicity N=1.
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sizable, Kitaev and Heisenberg interaction have considerable contributions for finite E0,
compared to their values at E0 = 0 eV/(ed). That is especially true for CP, where the
Heisenberg interaction experiences an increase before getting suppressed for large E0.
We also observe a change in a sign for Kitaev interaction at E0 ≈ 40 eV/(ed), switch-
ing from a negative to a positive sign. For LP, we a suppression of both effects. The
transition between LP and CP appears smooth with no significant new properties. We
observe that z is symmetric around π/2, and the results for x at ϵ and y at ϵ + π are
the same.

The results for LI h, D, and µ at ω = 12.0 eV are showcased in Fig. 5.8(ii). As
expected at E0 = 0 all interactions vanish for arbitrary ϵ. The induced magnetic field
h arises for finite E0 and ϵ ̸= nπ with n ∈ N. At ϵ = π/2 contributions are isotropic,
which is analogous to a magnetic field pointing in the n = (1, 1, 1) direction, as predicted
by [32]. If we move away from ϵ = π/2, contributions become anisotropic, which causes
a change in the direction of the induced magnetic field. In addition, the maximal x
and y contributions of h are between CP and LP. Therefore, with more unconventional
Lissajous figures, we can manipulate the direction and strength of the induced magnetic
field. For D and µ we observe finite contributions at E0 > 0 and non-CP. Contrary to
the previously discussed interactions, D and µ do not obey the symmetry rules as the
KHI. As we see z-interactions are antisymmetric around ϵ = π/2, while x-interactions
at ϵ coincide with y-interactions at ϵ + π multiplied with a factor of −1. We can
attribute this antisymmetric behavior of all bonds to the fact that both D and µ break
the interaction isotropy [(5.10) in Sec. 5.2]. Otherwise, D and µ behave similarly, with
µ having significantly stronger contributions. The contributions of both interactions
are relatively weak compared to the symmetric interactions, which are approximately a
magnitude stronger.

5.6.2 In-between resonances

After discussing driving above resonances in Sec. 5.6.1, in this section, we focus on driv-
ing in-between resonances. That is motivated by the second-order results of Sec. 4.2,
as well as the numerical results of [30, 31, 94], which both show a significant enhance-
ment of interactions at finite E0, which is desirable because ideally we want to increase
Kitaev interactions significantly. We choose a driving frequency of ω = 2.1 eV which
is between the resonances at ES/2, ED, and ∆pd/2. Since the ED and ∆pd/2 resonance
almost coincide, we expect quite significant heating effects, discussed in Sec. 4.1, close
to these resonances, while heating effects close to ES/2 are likely to be less pronounced.
Therefore, we choose the driving frequency closer to ES/2 instead of a driving frequency
exactly between the resonances.

We start our analysis with the KHI J , K, and Γ, displayed in Fig. 5.9(i). First,
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(i) KHI J , K, and Γ

(ii) LI D, µ, and h

Figure 5.9: Interactions in x, y, and z direction in dependency of light amplitude E0 and
phase shift ϵ for ω = 2.1 eV. Displayed are the results for frequency multiplicity N=1.
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we note that, compared to Fig. 5.8, all interactions increase significantly for finite E0.
That was already reported for second-order results (Sec. 4.2). However, the ϵ and E0

dependency becomes far more intricate if we include third and fourth-order terms. We
especially want to point out the Kitaev interactions, which have maximal x and y con-
tributions between CP and LP. That is in strong contrast to the results of ω = 12.0 eV,
where maximal contributions (outside of E0 = 0) are at ϵ = π/2. Therefore, a significant
change in the driving frequency changes the interaction properties on top of the overall
interaction magnitude. We want to emphasize that values of the interactions at E0 = 0
have to be the same as for ω = 12.0 eV.

The LI interactions are displayed in Fig. 5.9(ii). D and µ interactions vanish at
ϵ = π/2, while the induced magnetic field vanishes at ϵ = 0 and ϵ = π. We observe
that the strength of the anisotropic interactions is increased significantly from ∝ 10−4

to ∝ 10−2, making them comparable in magnitude to the KHI interactions. We again
observe the typical antisymmetric behavior for D and µ in dependency of ϵ, as explained
in Sec. 5.6.1. Interactions appear to be stronger in-plane. Maxima at ϵ = 0 and ϵ = π

can be found at E0 ≈ 8.0 eV/(ed) for µ and E0 ≈ 12.0 eV/(ed) for D. We also note
that D and µ are of comparable magnitude, contrary to ω = 12.0 eV. Meanwhile h has
the same magnitude (∝ 10−3) as driving above resonances. Therefore, a change of the
frequency to ω = 2.1 eV reduces the overall influence of the magnetic field because all
other interactions increase significantly. The overall maximum of h is, like ω = 12.0 eV,
in-between CP and LP. This maximum for x and y interactions, in combination with
relatively weak contributions from the z direction, results in an induced magnetic field
mainly pointing in the x and y directions.

5.7 N > 1 Lissajous figures

We want to focus on the frequency multiplicity N , which we fixed to N = 1 in the
previous sections. N describes the ratio of frequencies of light polarized in x and y

direction in the Lissajous figures (see Tab. 3.1). Since driving in-between resonances
has proven to enhance KHI interactions in this section we use the driving frequency
ω = 2.1 eV as in Sec. 5.6.2.

We start our analysis with N = 2 Lissajous figures (Fig. 5.10). The KHI interactions
again show a sizable increase from their starting value at E0 = 0 eV/(ed) [Fig. 5.10(i)].
Comparing these results to the results of Sec. 5.6, we notice some qualitative changes.
The z interactions show a weak dependence on ϵ in Fig. 5.10, while in Fig. 5.9 the
influence of ϵ appears to be far more pronounced. This trend is also visible for x and y

interactions. We want to instance the behavior of Kx at E0 = 6.0 eV/(ed) with changing
ϵ. For N = 1 we observe multiple changes of sign and magnitude with changing ϵ
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(i) KHI J , K and Γ

(ii) LI D, µ, and h

Figure 5.10: Interactions in x, y, and z direction in dependency of light amplitude E0
and phase shift ϵ for ω = 2.1 eV. Displayed are the results for frequency multiplicity
N=2.
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(i) N = 1, E0 = 6 eV/(ed) (ii) N = 2, E0 = 6 eV/(ed)

Figure 5.11: x, y, and z bond Kitaev interactions in dependency of the Lissajous phase
shift ϵ for ω = 2.1 eV and E0 = 6.0 eV/(ed). We display the results for N = 1 (i) and
N = 2 (ii).

from 0 to π [Fig. 5.11(i)]. Meanwhile, for N = 2 there is just one sign change, and the
magnitude stays relatively unaffected [Fig. 5.11(ii)]. In addition, the sign at ϵ = 0 differs
from the one at ϵ = π for N = 2. With this, we can switch signs of Kitaev interactions
in x and y interactions while preserving z interactions. In Fig. 5.11(ii), it also becomes
obvious that N = 2 interactions are not isotropic for finite E0 regardless of ϵ. That is
intuitively the case because, for N = 2, there is no pendant to CP of the N = 1 Lissajous
figures.

For the LI, we notice that D and µ have finite contributions at ϵ = π/2 for x
and y bonds. Again, the reason for these contributions is that the N = 2, ϵ = π/2
polarization no longer preserves the isotropy [see Fig. 5.10(ii)] of the system and therefore
allows finite D and µ interactions. z interactions still vanish for ϵ = π/2, due to the
antisymmetric behavior of D and µ. For the induced magnetic field, we do not observe
significant changes in the z interaction. On the other hand, x and y interactions show
some significant changes, most prominently the change of sign of the global extremum.
That means that the in-plane magnetic field discussed in [31, 32, 102] changes direction
with the change from N = 1 to N = 2. Like for N = 1, the magnetic field still vanishes
at ϵ = 0 and ϵ = π.

In principle, there is an infinite number of distinct Lissajous figures due to N ∈ N.
However, if N becomes sufficiently large we do not expect a significant change in the
resulting interactions. The reason is that with increasing frequency multiplicity N the
phase shift ϵ becomes less important, see Tab. 3.1. To explore the behavior for these
large N Lissajous figures, we set N = 5, which is, as we will see in the remainder of
the chapter, a decent representative for limN→∞ Lissajous figures. The KHI and LI are
shown in Fig. 5.12(i) and Fig. 5.12(ii) respectively.

All KHI interactions decouple almost completely from ϵ, with isotropic x and y in-
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(i) KHI J , K, and Γ

(ii) LI D, µ, and h

Figure 5.12: Interactions in x, y, and z direction in dependency of light amplitude E0
and phase shift ϵ for ω = 2.1 eV. Displayed are the results for frequency multiplicity
N=5.
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teractions and a distinct z interaction. While the Heisenberg interaction has dominant
x and y contributions, Kitaev interactions are dominant in the z direction with compa-
rably weak contributions for the x and y directions. Last but least, Γ interactions are
comparable in magnitude for all bond directions.

While for KHI, all interactions show a quasi-decoupling from ϵ, this is not the case for
the LI. For D and µ, z interactions still switch sign at ϵ = π/2, with a weak ϵ dependence
for x and y interactions. Last but not least, the magnetic field vanishes at ϵ = 0 and
ϵ = π, like in Sec. 5.6 and 5.7, for all bond directions. That makes high-order Lissajous
figures a promising playground for manipulating the magnetic field because changing
ϵ only affects the z components of D and µ interactions. Therefore, one can finetune
the induced magnetic field while keeping KHI interactions intact. The direction of the
magnetic field also does not change significantly with changing ϵ pointing approximately
in the n direction for E0 ≈ 14 eV/(ed).
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6Kugel-Khomskii model

In this chapter we derive an effective spin-orbit model for t42g square lattice compounds
with sizable Hund’s coupling JH, which can be applied to the debated compound Ca2RuO4.
In our derivation, we include anisotropic hopping processes, Hund’s coupling JH and fur-
ther neighbor interactions. This model is the foundation for the discussions in Chap. 7.

6.1 Motivation

As mentioned in Sec. 1.2, the nature of the paramagnetic ground state in Ca2RuO4

is, up until now, still not entirely explained. To shine light on this topic, we want to
derive an effective spin-orbit Hamiltonian following the approach of Sec. 2.3.1, giving
us the possibility to explore the ground state properties of Ca2RuO4. There have been
derivations of effective spin-orbit models for Ca2RuO4 [39, 71]. However, they do not
consider anisotropic hopping processes or Hund’s coupling JH . Density functional theory
(DFT) calculations imply that the hopping processes in Ca2RuO4 have distinct strength
with regards to the orbital flavor, Tab. 6.1. The convention for the hopping parameters
used from here on is tα,m with α the orbital flavor and m the bond type, see also Tab. 6.1.
In addition to that x-ray scattering results have shown sizable Hund’s coupling, meaning
that we must not neglect it in the derivation. In the following, we will discuss the

tα,m txy,1 txy,2 txy,3 tzx,1 tzx,2 tzx,3 tyz,1 tyz,2 tyz,3

txy txy tNNN tzx 0 0 0 tyz 0
[eV] 0.2 0.2 0.1 0.137 0 0 0 0.137 0

Table 6.1: Hopping strengths for Ca2RuO4 obtained via density functional theory (DFT)
from [106]. Here, we set the labels of the hopping parameters according to Fig. 6.1.
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Figure 6.1: Possible hopping paths on the square lattice. dyz and dzx orbital are just
active on bond 1 and 2 respectively and do not show significant hopping amplitudes
further than NN interactions. The dxy orbital is active on both NN bonds 1 and 2, and
furthermore has a non negligible hopping amplitude on the NNN bond 3.

derivation of the model qualitatively and focus on the discussion of the single interaction
terms arising in perturbation theory. For a detailed derivation, we want to point the
interested reader to App.C.

6.2 Derivation

The kinetic Hamiltonian for Ca2RuO4 is given in (2.1). However, the hopping processes
possible on the square lattice are distinct from the processes on the hexagonal lattice
(Tab. 4.1), as discussed in Sec. 2.2.1. Fig. 6.1 illustrates the significant NN and NNN
hopping processes in Ca2RuO4. For NN interactions, we observe that the xy orbital is
active in both bond directions, while the xz and yz orbital are just active on bond 1 and
2 respectively. In addition to NN, the xy orbital also has non-zero NNN interactions,
denoted by 3 in Fig. 6.1. These are the hoppings possible in a square lattice of t42g atoms
see Fig. 2.5(iii).

The on-site Hamiltonian is, as introduced in Chap. 2, given by the Kanamori Hamil-
tonian (2.2). In the Mott insulating phase, the number of holes is fixed to two holes per
site. In addition, because Hund’s coupling is large, of the possible states with two holes
per site, we only consider those where holes occupy different orbitals and the total spin is
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(i) ∆E1, ∆E2 (ii) ∆E2, ∆E3 (iii) ∆E3

Figure 6.2: Possible energy differences for the d4d4 → d3d5 excitation. One can in
general distinct between three different d3 configurations: One double occupation with
the remaining electron residing in a distinct orbital having an overlap with f = 1 and 2
of Tab. 2.2, all particles in different orbital and two having the same spin with the last
spin in opposite direction having an overlap with f = 3, 4, and 5 of Tab. 2.2, and lastly
three particles in distinct orbitals with spins aligned in the same direction, referring to
f = 6 of Tab. 2.2.

maximized. This restriction decreases the Hilbert space to three possible states per site,
which are the states with EP see Tab. 2.1. The three triplet spin states have one orbital
occupied by two electrons (indicated by 0 in Tab.2.1). Therefore, these states have three
different orbital configurations, with the double electron configuration residing in one
of the T2g orbitals. If we combine orbital and spin degrees of freedom we obtain nine
possible degenerated initial states. We name the orbital configurations according to the
orbital with the double electron occupation and can map the orbital configurations to a
pseudo angular momentum with

Lx = Lyz = i(|xy⟩ ⟨zx| − |zx⟩ ⟨xy|)
Ly = Lxz = i(|yz⟩ ⟨xy| − |xy⟩ ⟨yz|)
Lz = Lxy = i(|zx⟩ ⟨yz| − |yz⟩ ⟨zx|). (6.1)

Here, Lα is a convenient labeling for the effective spin-orbit Hamiltonian, and Lα is the
conventional notation in the framework of the angular momentum L.

The effective spin-orbit Hamiltonian can then be obtained via second-order pertur-
bation theory, describing the virtual d2d2 → d3d1 → d2d2 hopping processes, see App.C.
For this, we need the possible excitation energies and states of the d3d1 configuration.
Tab. 2.2 lists the d3 states with corresponding energies, while the on-site energies for
one hole per site d1 are 0. The energy difference in the denominator of (2.8) can be
calculated via ∆Ef = 2EP − E3,f .

6.2.1 Kanamori energies

For the d3 states we have to distinguish three different cases. First, there are states with
two holes occupying the same orbital and the remaining one residing in one of the other
two orbitals. In this case the eigenstates of Hint can be symmetric f = 1 in Tab. 2.2
or antisymmetric f = 2. This yields an energy difference of ∆E1 = −(U + 2JH) and
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β

α

γ
Figure 6.3: Example for an orbital preserving hopping process (6.2). The hole in the β
orbital on-site i hops to site j, which causes a double occupation, and then immediately
hops back to site i, which completes the virtual process. Initial and final orbital config-
urations are identical.

β

α

γ
Figure 6.4: Example for an orbital preserving hopping process where the electron double
occupation resides in different orbitals for site i and j. In contrast to Fig. 6.3 all orbitals
can contribute to the hopping process.

∆E2 = −U for f = 1 and f = 2 respectively.
In the second case, all three holes reside in distinct orbitals with their spins combined

to a total spin of Stot = 1/2. Again there are symmetric f = 3 in Tab. 2.2 and
antisymmetric f = 4 and 5 solutions yielding energy differences of ∆E3 = −(U − 3JH)
and ∆E4 = ∆E5 = ∆E2 = −U respectively.

Lastly, three holes in three different orbitals can also form a spin Stot = 3/2 by
aligning their spins all in the same direction f = 6 this like f = 3 yields an energy
difference of ∆E6 = ∆E3 = −(U −3JH). This gives us, in total, three excitation energies
to consider in the perturbation theory, which we summarize in Fig. 6.2. If we perform
the perturbation theory and project the result in the spin-orbit basis, introduced in [39],
we arrive at an effective spin-orbit Hamiltonian. This approach is supported by results
of similar Hamiltonians [65–67].

6.2.2 Effective interactions

In the following, we will discuss the single terms occurring in the Hamiltonian in more
detail, where our calculations yield terms with orbital and spin-orbital interactions. We
separate the Hamiltonian into three different types of interactions. First, some terms
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β

α

γ

On-site interactions

Figure 6.5: Example for a pair flip process (6.3). A hole from site i in the β orbital hops
to site j. On-site Kanamori interactions induce a flip of the double occupation from β
to γ. Subsequently, one of the holes in the γ orbital hops back to site i, which results
in a so-called pair flip, where the two holes formally residing in β orbitals now reside in
the γ orbitals.

β

α

γ
Figure 6.6: Example for the orbital swap process. A hole in the β orbital on-site j hops
to site i, afterward the hole in the γ orbital hops from the site i to j, which results
in a final configuration that has the orbital configurations of β and γ orbital reversed
compared to the initial configuration.

preserve the orbital flavor in the virtual excitation process

HOP =
[
t2γ ̸=(α,β),m

(U + JH)
U(U + 2JH) −

(t2α,m + t2β,m)JH

U(U − 3JH)

]
(SiSj − 1)

(
1 − L2

α

)
i

(
1 − L2

β

)
j

+ t2β,m

U + JH

U(U + 2JH)(SiSj − 1)
(
1 − L2

α

)
i

(
1 − L2

α

)
j
. (6.2)

Here, we can distinguish between a hopping process where the double occupation of
electrons resides in an orbital with the same flavor on both sides (Fig. 6.3) and a scenario
where the double occupations of the two sites reside in orbitals with different flavors
(Fig. 6.4). In the first case, just orbitals with a single occupation can contribute to the
virtual hopping process, while in the second case, all orbitals are involved.

The second type of interactions prevalent in the Hamiltonian are terms that change
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the orbital flavor throughout the virtual excitation

HOF =tα,mtβ,m

U

[
U − JH

U − 3JH

(SiSj + 1)(LβLα)i(LαLβ)j

− JH

U + 2JH

(SiSj − 1)(LβLα)i(LβLα)j

]
. (6.3)

Again, we can distinguish two types of orbital interactions. If the initial configuration
has a double occupation with the same flavor on both sites, virtual hopping, which
changes the orbital flavor, is mediated via on-site interactions (Fig. 6.5). The Kanamori
Hamiltonian (2.2) can change the orbital flavor of a double occupation on-site i, conse-
quently the active orbitals change. In the sketch, we see that first a hole in the β orbital
hops from the site i to j via the kinetic part of the Hamiltonian, the on-site Kanamori
Hamiltonian then flips the orbital flavor of the double occupation on-site i from β to γ.
Subsequently, the active orbital for the hopping back is the γ orbital. In total this causes
a flip of the occupation from β to γ on both sites, which is why we refer to them as
"pair-flip" processes. In the second scenario, the initial setup has double occupations in
different orbitals on the two sites. Here, the hopping process is pretty straightforward,
see Fig. 6.6, leading to a so-called orbital "swap" process. Here, the sites exchange the
flavor of the double occupation.

Last but not least, we have terms with just orbital interactions

HLL = tα,mtβ,m

U − 3JH

2JH

U
(LβLα)i(LαLβ)j −

t2α,m + t2β,m

U − 3JH

(
1 − L2

α

)
i

(
1 − L2

β

)
j
, (6.4)

where the first term is the "flip" process and the second is the orbital preserving term of
Fig. 6.4.

The total effective Hamiltonian is achieved by adding (6.2)-(6.4) and performing the
summation over all bonds and orbital flavors

Heff =
3∑

m=1

∑
⟨i,j⟩m

∑
α ̸=β

(HOF +HOP +HLL) . (6.5)

Plugging in the hoppings from Tab. 6.1, one then derives at the spin-orbit Hamilto-
nian, which applies to Ca2RuO4. Adding SOC (2.3) and CF (2.6) yields the complete
Hamiltonian

H = Heff +HSOC +HCF, (6.6)

which can be analyzed via ED (Sec. 2.4.1) and Monte-Carlo (Sec. 2.4.2) to determine
the ground state properties in dependence of ∆ and λ.
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7∆-λ phase diagram

In this chapter we discuss the influence CF ∆ and SOC λ have in t42g square lattice
transition metal compounds. In particular, we are interested in the compound Ca2RuO4.
We begin the analysis in the limiting cases, i.e., dominant λ, implying Van-Vleck mag-
netism [39], and dominant ∆, supporting a conventional spin-orbit Hamiltonian. From
there, we vary λ and ∆ to obtain a phase diagram, depending on the strength of CF and
SOC. ED on a

√
8 ×

√
8 cluster yields the occurring phases for the entire considered

parameter range. We supplement these results with calculations of the triplon model [39],
for strong SOC, and semi-classical MC analysis, for weak SOC. To compare the theoret-
ical results with the results of inelastic neutron scattering [5], we analyze the dynamics
for the parameters of Ca2RuO4. Last but not least, we study dynamic properties in the
framework of Ca2RuO4 with varied ∆ and λ.

7.1 Parameters

The hopping parameters for Ca2RuO4 are derived via DFT in [106] and given in Tab. 6.1.
As we see the NN interaction hopping parameters have different magnitudes for distinct
orbitals, i.e., txy > tzx = tyz. This makes the derivation of a Kugel-Khomskii type model
with arbitrary hopping amplitudes for different orbitals, as is done in 6.2, mandatory. X-
ray scattering results [107] yield Hund’s coupling JH = 0.34 eV and Coulomb repulsion
U = 2.0 eV. The sizable JH shows the importance of including it in the second-order
perturbation theory in Sec. 6.2, it also justifies the restriction to d2 states with EP . DFT
calculations [106] determined the CF strength to ∆ = 0.25 eV. Lastly SOC λ = 0.065 eV
is obtained from [107]. Since we are mainly interested in the effect of ∆ and λ on
Ca2RuO4, from now we keep them as free parameters to obtain a ∆ − λ phase diagram
in which we can locate Ca2RuO4.
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[eV]

Figure 7.1: Total angular angular momentum J2 of the spin-orbit model and triplon
density nb of the triplon model calculated via ED and plotted as functions of SOC λ.
The dashed vertical line denotes the inflection point of the triplon density nb, which we
interpret as the crossover point into the paramagnet (PM). ∂2nb

∂λ2 = 0 determines the
location of this inflection point. The parameters are set to txy = 0.2 eV, tyz = txz =
0.137 eV, tNNN = 0.1 eV, U = 2 eV, JH = 0.34 eV, and ∆ = 0.1 eV. The inset displays the
cluster geometry of the

√
8 ×

√
8 cluster used for ED.

7.2 Limiting cases

To gain an impression of the influence ∆ and λ have in t42g compounds, we study some
important limiting cases. First, we consider the case of λ ≫ ∆, where we expect the
triplon model [39] to hold Sec. 2.2.3. Afterward, we investigate ground state properties
for either fixed λ or ∆. Since we do not restrict ourselves to λ ≫ ∆, it is mandatory
to work in the framework of the spin-orbital model, with S = 1 and L = 1, see App.
C. Last but not least, we consider weak λ where we can analyze the spin-orbital model
with the semi-classical MC approach. Here, we consider snapshots (fixed ∆ and λ) to
complement the ED spin-orbit results.

7.2.1 ED for the triplon model

For dominant SOC, spin and orbital degree of freedom couple to the total angular
momentum J (Sec. 2.2.3). In case of t42g materials this yields a non-magnetic J = 0
ground state [39]. In the limit of strong SOC, the triplon model introduced in 2.2.3 is
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Γ X M Y M/2
kx 0 π π 0 π

2
ky 0 0 π π π

2

Table 7.1: Possible k vectors on the
√

8 ×
√

8 cluster for exact diagonalization.

valid and one can quantify magnetism of the ground state via the number of triplons
in the system, where the absence of J = 1 triplons points towards paramagnetism
while a high triplon number is an indicator of a magnetic ground state. Mitigating
λ, superexchange, which drives the transition from J = 0 to J = 1 states, becomes
non-negligible. This leads to a condensation of triplons [39] (Sec. 2.3.3), resulting in a
magnetic ground state.

The crossover to the magnetic state can be captured by the triplon number nb in
dependency of λ, calculated via ED for the triplon model [77] on a

√
8 ×

√
8 cluster.

For the calculations we choose a CF of ∆ = 0.1 eV , see Fig. 7.1. To determine the
phase boundary of the paramagnet (PM) ground state, we calculate the inflection point
of nB (λ ≈ 0.07 eV). In addition to the triplon number, we display the expectation value
of ⟨J2⟩ (red) calculated via the spin-orbit model in Fig. 7.1. As we can see, ⟨J2⟩ does
not show any inflection, making it difficult to determine a phase boundary with the
spin-orbit model (Sec. 6.2). The quantifiable phase transition via the inflection point
showcases the advantage of the triplon model for λ ≫ ∆. Therefore, we use the triplon
model to capture physics for dominant λ while the spin-orbit model is applicable for
intermediate values of λ ≈ 0.08 eV.

7.2.2 ED for the spin-orbit model

We analyze ground state properties of the spin-orbit model via the static spin structure
factor (SSF) in momentum space

Sγ(k) =
∑
i,j

eik(ri−rj) ⟨Φ0|Sγ
i S

γ
j |Φ0⟩ , (7.1)

with γ ∈ [x, y, z] and |Φ0⟩ the ground state determined via ED. Like for the triplon
model, we consider a cluster of

√
8 ×

√
8 geometry, which yields five unique possible

values of k listed in Tab. 7.1. We measure both in-plane (γ ∈ [x, y]) and out-of-plane
(γ = z) moments, if both in-plane moments coincide we display just the Sx moment.
One can infer the spin-order of the ground state from the SSF. A strong signal at M
hints an AFM, while a strong signal at X signifies a stripy order with ferromagnet (FM)
order in one bond direction and AFM order in the other one. Last but not least, a strong
signal at Γ implies ferromagnetic order.
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MX M ΓX

[eV]

(i) ∆ = 0 eV

MX M ΓX

(ii) λ = 0 eV
MX M ΓX

(iii) ∆ = 0.25 eV

MX M ΓX

(iv) λ = 0.06 eV

Figure 7.2: in-plane (x) and out-of-plane static spin structure factor (SSF) measured
at Γ, M, and X. Displayed are the scenarios for fixed CF at ∆ = 0.0 eV (i) and
∆ = 0.25 eV (iii) and varied λ as well as scenarios for fixed SOC at λ = 0 eV (ii) and
λ = 0.06 eV (iv). The background is shaded according to the respective phase, i.e.,
out-of-plane AFM (dark orange), in-plane AFM (light orange), stripy (light blue), and
"3-up-1-down" (3U1D) (dark blue).
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We want to analyze the limiting cases of vanishing and dominant ∆, with λ as a free
parameter and vice versa. Fig. 7.2(i)-(iv) displays the results for these cases. At ∆ =
0 eV, we can identify two sharp phase transitions in the considered parameter range. The
dominant signals at X indicate a stripy phase for weak SOC λ < 0.018 eV. An increase
of SOC suppresses the in-plane Ş (red) while strongly enhancing the out-of-plane SSF’s
Γ and M. Since all out-of-plane contributions are of comparable magnitude it is difficult
to unambiguously identify the nature of the ground state in the 0.018 < λ < 0.037 eV
parameter range with ED. We discuss the nature of this phase with FM contributions in
more detail in the context of MC simulations (Sec. 7.2.3). Lastly, increasing SOC up to
λ > 0.037 eV causes yet another phase transition into what appears to be an out-of-plane
AFM, due to the dominant out-of-plane M contributions.

For vanishing SOC λ = 0 eV, Fig. 7.2(ii), we observe three phase transitions in the
considered parameter range. An isotropic AFM arises for −0.5 < ∆ < −0.12 eV. As
we will show later, this phase is continuously connected with the out-of-plane AFM
identified previously (Fig. 7.1). Increasing ∆ yields the yet unidentified phase with
dominant out-of-plane FM contributions in the range of −0.12 < ∆ < −0.02 eV. For
−0.02 < ∆ < 0.23 eV the ground state becomes an isotropic stripy phase in agreement
with the phase identified for small SOC and vanishing ∆ [Fig. 7.2(i)]. In case the CF
gets further enhanced, the ground state is again an isotropic AFM. However, this AFM
state is not continuously connected with the out-of-plane AFM (dark orange in Fig. 7.2),
like for strong negative CF, but appears to be connected with an in-plane AFM for finite
SOC (light orange in Fig. 7.2).

The smooth transition from the isotropic AFM to the in-plane AFM at dominant
CF ∆ = 0.25 eV becomes obvious in Fig. 7.2(iii). Increasing SOC from 0 < λ < 0.06 eV
we observe the suppression of the out-of-plane moment going hand in hand with an
enhancement of the in-plane AFM moment indicating an in-plane AFM for finite values
of SOC.

Last but not least, we study the ground states for strong SOC at λ = 0.06 eV.
As discussed previously, for a negative CF the ground state is an out-of-plane AFM
prevailing up to ∆ ≈ 0.04 eV. The ground state becomes an in-plane AFM for larger
CF’s.

Summarizing, we found that finite SOC and strong CF favor the formation of an
AFM. The orientation of this AFM depends on the sign of ∆, with ∆ ≪ 0 yielding an
out-of-plane and ∆ ≫ 0 an in-plane AFM. For small values of both CF and SOC ED
results yield a stripy phase for ∆ > 0 eV in agreement with [63]. In addition, the ED
calculations gave rise to phase with significant out-of-plane FM contributions for small
∆ < 0 eV, not yet reported.
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7.2.3 MC for the spin-orbit model

If multiple signals have comparable magnitude it is complicated to unambiguously iden-
tify the ground state via ED. Therefore, we supplement ED with MC calculations. We
focus on the phase with FM out-of-plane contributions, which is ambiguous in the ED
analysis.

We perform semi-classical MC calculations on a 4 × 4 square lattice cluster with
periodic boundary conditions. One advantage of MC calculations is the capability of
calculating larger cluster sizes. In addition, our calculations yield a visual picture of the
ground state on the 4 × 4 cluster in position space, which yields a convenient way to
identify magnetic orders. However, MC in the spin-orbit basis has limitations going to
strong SOC, being incapable of capturing the PM observed for strong SOC [77]. MC is
therefore mainly used to confirm the stripy, AFM, and yet undetermined phase arising
for weak SOC. To compare ED and MC results, we take "snapshots" at fixed ∆ and λ

with MC. We choose the values of ∆ and λ for these snapshots, which solidly locates
them in one of the four distinct phases found with ED. Fig. 7.3 shows the four resulting
MC "snapshots" are displayed.

The out-of-plane AFM Fig. 7.3(i), stripy (iii), and in-plane AFM phases are confirmed
by the Monte-Carlo simulations. The spin components in momentum space [lower pic-
tures in Fig. 7.3(i)-(iv)] coincide with the static SSF of the ED calculations. Meanwhile,
the results displayed in the location domain [upper pictures in Fig. 7.3(i)-(iv)] give a
clear impression of the spin patterns. The yet ambiguous phase with FM contributions
can also be put into context with the help of the spatial SSF. As can be seen in Fig. 7.3,
the momentum space spin-components shows finite signals at X, Y, M, and Γ. How-
ever, the spatial SSF makes an interpretation of the results of both ED and MC possible.
The phase arising appears to be a mixture between out-of-plane stripy and AFM phase,
where stripes with FM order alternate with AFM stripes, yielding a spin pattern which
can we describe as "3-up-1-down" (3U1D) on a 2 × 2 cluster. Therefore, with the MC
calculations, we have an interpretation of all four phases arising for small values of SOC
λ.

7.3 Phase diagram

After considering the limiting cases for fixed values of either ∆ or λ and identifying the
five distinct ground states arising within the considered parameter range we now want
to derive a complete ∆-λ phase diagram. To obtain the phase boundaries, we perform
sweeps for multiple values of CF ∆ and SOC λ. To capture both the magnetic phases as
well as the PM, we perform sweeps for both the triplon as well as the spin-orbit model.
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(i) ∆ = −0.2 eV (ii) ∆ = 0.0 eV

(iii) ∆ = 0.125 eV (iv) ∆ = 0.2 eV

Figure 7.3: x and z spin component calculated via semi-classical MC on a 4 × 4 cluster
are displayed in both position and momentum space at λ = 0.01 eV and ∆ = −0.2 eV
(i), 0.0 eV (ii), 0.125 eV (iii), and 0.2 eV (iv). Each plot displays the spin component
with the most dominant spin contribution. The top of (i)-(iv) displays the strength of
the respective spin component on each site of the considered cluster. The bottom plot
displays the spin components for all calculated wave vectors k.
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Figure 7.4: Phase diagram of the triplon model calculated via ED on a
√

8×
√

8 cluster.
Out-of-plane and in-plane AFM phases are colored in dark and light orange respectively.
In addition, we display cartoons of the respective AFM ordering. The PM determined
via the inflection point in the second derivative (see Fig. 7.1) is displayed in grey. The
blue line denotes the parameter setting used for Fig. 7.1. Finally, the fading of all phases
for weak SOC signifies the incapability of the triplon model to capture the correct ground
state in this parameter range.

7.3.1 ED for the triplon model

The triplon model is analyzed via ED and gives rise to the phase transition to the
PM, as described in Sec. 7.2.1. Fig. 7.4 depicts the ∆-λ phase diagram of the triplon
model. While for sizable SOC, the triplon model is feasible and the PM can be identified
via the inflection point (Fig. 7.1), at small SOC the triplon picture breaks down and
results are no longer valid. However, the results for λ > 0.04 eV agree with the findings
of Sec. 7.2.2, that a negative CF induces an out-of-plane AFM while ∆ > 0 favors
an in-plane AFM arrangement. It also becomes obvious that the presence of a CF
counteracts the formation of PM. The phase transition to the PM for ∆ ≈ 0 eV is at
λ ≈ 0.06 eV. Introducing a finite ∆ then increases λ at which the phase transition occurs.
The phase boundary between in-plane and out-of-plane AFM is at ∆ ≈ 0 eV and not
very susceptible to a change of λ. With these results, we can locate the PM within the
spin-orbit model and give a complete phase diagram for sizable λ.
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Figure 7.5: Phase diagram of the spin-orbital model calculated via semi-classical MC
simulations on a 4 × 4 cluster. The four distinct phases found, i.e., out-of-plane AFM,
"3-up1-down", Zig-Zag, and in-plane AFM are displayed in dark orange, dark blue,
light blue, and light orange respectively. Insets show sketches of the ground state spin
arrangements on a 2 × 2 cluster of all phases. The white dots denote the location of the
snapshots taken in Fig. 7.3. The fading for strong SOC, like in Fig. 7.4, displays the
incapability of the MC simulations to correctly predict the ground state properties (see
Sec. 7.3.2).

7.3.2 MC for the spin-orbit model

To analyze the phases arising for small SOC λ we have to analyze the spin-orbit model
introduced in Sec. 6.2. Like for the single sweeps in Sec. 7.2.2, we perform both ED and
semi-classical MC simulations.

Here, we start with the MC analysis, which gives rise to the phase diagram depicted
in Fig. 7.5. The grey grid denotes the ∆-λ parameters used to calculate ground state
properties. The snapshots of Fig. 7.3 are marked with white dots and annotated accord-
ingly. For large SOC, the incapability of MC to calculate the accurate ground state is
denoted with a "?" in Fig. 7.5. For small SOC, we can identify the four distinct phases
found in Sec. 7.2.3. Cartoons of a 2×2 cluster visualize the phases in Fig. 7.5. A sizable
negative CF ∆ < −0.05 eV induces an out-of-plane AFM phase. Increasing λ leads to
an expansion of this phase up to even positive values of ∆. Therefore, strong SOC and
strong negative CF favor the out-of-plane AFM.

In the range of −0.05 < ∆ < 0.03 eV and λ ≈ 0 eV the 3U1D phase arises. Unlike the
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out-of-plane AFM, it gets superseded by an in-plane AFM ordering beyond λ ≈ 0.04 eV.
We observe a similar behavior for the stripy phase arising within 0.03 < ∆ < 0.15 eV and
weak SOC. If we increase SOC, the stripy phase narrows until it vanishes at λ ≈ 0.04 eV.
Both, 3U1D and stripy, are therefore favored by small SOC and CF. Therefore, we can
attribute their origin to the nature of spin-orbit exchange interactions, because these
become dominant for vanishing ∆ and λ.

variational cluster approach (VCA) calculations on a 2 × 2 cluster [63] already doc-
umented the stripy phase. However, there are no reports of the 3U1D phase in the
context of VCA. The reason is that, in VCA, one has to set the order of the potential
ground state. VCA then gives information on whether the chosen order is a good choice.
The 3U1D order was not a candidate order in [63] and was therefore not discussed
as the potential ground state. However, there have been ED calculations on Ca-based
Ru-compounds [108], which also discuss the potential of a 3U1D phase.

Lastly, for large positive CF ∆ > 0.15 eV, the MC simulations give rise to the in-
plane AFM. Like the out-of-plane AFM, the in-plane AFM expands upon increasing
λ and suppresses both the stripy and 3U1D phase beyond λ ≈ 0.04 eV. Therefore, at
λ ≫ 0 eV only AFM phases prevail, with the orientation (in-plane our out-of-plane)
depending on the sign of the CF. That is in agreement with the results of the triplon
model and Fig. 7.2(iv).

7.3.3 ED for spin-orbit model

Up until now, we investigated the phase diagram for strong SOC via ED of the triplon
model and for weak SOC via MC of the spin-orbit model. To piece together these
findings, we analyze the spin-orbit model via ED, which is valid for the entire considered
parameter range of λ. Fig. 7.6 shows the resulting ∆-λ phase diagram. We take the phase
boundaries of the PM from the triplon model Fig. 7.4. We observe a good qualitative
agreement between the ED and MC simulations.

The 3U1D and stripy phase are more expanded concerning ∆ compared to the MC
results. Reasons for this difference can be both the difference in cluster size of the
calculations and quantum fluctuations near orbital degeneracy neglected by the MC
calculations. Like for the MC results a negative CF ∆ favors an out-of-plane AFM
prevailing up to ∆ ≈ −0.12 eV and λ ≈ 0 eV. Upon increasing λ the out-of-plane AFM
phase broadens at the cost of the 3U1D phase. Spatial SSFs hint a 3U1D formation
within −0.12 < ∆ < −0.05 eV. These phase boundaries are significantly different from
the findings of MC calculations. The 3U1D phase shifts to higher CF ∆ ≈ 0 eV for finite
λ. Like in MC, this phase is absent for large SOC λ > 0.04 eV.

The stripy phase arises at −0.05 < ∆ < 0.22 eV, and is, therefore, significantly
broader as in the MC calculations. Increasing SOC narrows down the stripy phase,
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Figure 7.6: λ-∆ phase diagram of the spin-orbit model calculated via ED on a
√

8 ×
√

8
cluster. Color coding of the phases is the same as in Fig. 7.4 and Fig. 7.5. Like in Fig. 7.5,
cartoons of a 2 × 2 illustrate the phases as a cluster spin configuration. The results of
the triplon model yield the PM. White dots denote the snapshots taken to calculate
the dynamic spin structure factor (DSSF) of the four magnetic phases in Fig. 7.7. Grey
dots denote parameters for numerical calculations.
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|∆| ≫ t2/U, λ and ∆ ≫ 0 → in-plane AFM

|∆| ≫ t2/U, λ and ∆ ≪ 0 → out-of-plane AFM

λ ≫ t2/U,∆ → paramagnet

t2/U ≫ λ,∆ and ∆ ≥ −0.02 eV → stripy

t2/U ≫ λ,∆ and ∆ < −0.02 eV → 3-up-1-down
Table 7.2: Ratio of ∆, λ, and t2/U for the five distinct phases found in the ∆-λ phase
diagram. Cartoons show an illustration of the respective phase on a 2 × 2 cluster.

upon λ = 0.04 eV where it completely vanishes.
Between 0.04 < λ < 0.06 eV, the only phases present are the in-plane and out-of-

plane AFM, with the latter expanding to small positive values of ∆. For λ > 0.06 eV
the PM arises at small CF’s broadening further with increasing λ (see also Fig. 7.4).

With the help of ED and MC for the spin-orbit and triplon model, we were able to
arrive at a complete ∆-λ phase diagram capturing physics for both weak and sizable
SOC λ. We found that for dominant CF, the ground state is an AFM arrangement with
either in-plane (∆ > 0) or out-of-plane (∆ < 0) orientation. Spin-orbit coupling favors
the formation of a J = 0 nonmagnetic state, while the superexchange ∝ t2/U favors a
nonzero magnetization. Superexchange favors the stripy phase as the magnetic ground
state. However, this state is highly susceptible to the influence of ∆, e.g., already a weak
negative CF induces the 3U1D phase.

7.4 Dynamics

One of the key questions arising after analyzing the ground state properties theoretically
is how to connect these results with experimental measurements. A common experimen-
tal method to determine ground state properties for the considered material family is
inelastic neutron scattering (INS) [5], which measures magnetic excitations. Therefore
we analyze the dynamic spin structure factor (DSSF)

Oα(k, ω) = − 1
π

Im ⟨ϕ0|Oα(−k) 1
ω −H + i0+O

α(k) |ϕ0⟩ , (7.2)

with O = S and α ∈ {x, y, z}, of all four magnetic phases found. In addition to the
DSSF, with (7.2), we can also calculate the dynamic orbital structure factor (DOSF)
(O = L) and the magnetic structure factor (O = m). We can obtain a frequency-
resolved DSSF Sα(k, ω), which can be compared with the experimental results of INS [5].
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Figure 7.7: Dynamic spin structure factor (DSSF) calculated with ED on a
√

8 ×
√

8
cluster via (7.2). The results for the in-plane AFM (i), out-of-plane AFM (ii), stripy
(iii), and "3-up-1down" (iv) phase are displayed. The parameters used in (i) are expected
for Ca2RuO4 [63] and are in good agreement with the inelastic neutron scattering (INS)
measurements of [5]. The red and blue dashed lines in (i) are a guideline for the in-plane
and out-of-plane transverse modes respectively.
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(i) ∆ = 0.25 eV
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(ii) λ = 0.065 eV

Figure 7.8: Hole density in the dxy orbital nh
xy (red crosses) and excitation energy at the

Γ-point ωΓ (blue dots) in dependency of λ (i) and ∆ (ii). The parameter which is not
varied, ∆ and λ for (i) and (ii) respectively, is fixed at the value of Ca2RuO4 taken from
Sec. 7.1.

To analyze the DSSF, we took snapshots at fixed ∆ and λ, with the results for the four
distinct phases displayed in Fig. 7.7. White dots denote the location of the snapshots
in the phase diagram in Fig. 7.6. In the following, we will analyze the results for
each phase separately, especially focusing on the in-plane AFM snapshot, which is the
expected ground state of Ca2RuO4.

7.4.1 In-plane AFM excitations - Ca2RuO4

To compare the DSSF of ED calculations with INS results, we calculate the DSSF for
realistic values for Ca2RuO4. DFT calculations [106] and X-ray scattering results [107]
yield λ = 0.065 eV and ∆ = 0.25 eV, for SOC and CF. The results for all available
wavevectors k are displayed in Fig. 7.7(i). We can identify an in-plane Goldstone mode
at M. This indicates the presence of an in-plane AFM as found in Fig. 7.6. In addition
to the Goldstone mode, we can extrapolate both the in-plane and out-of-plane transverse
modes, indicated as dashed lines in Fig. 7.7(i). The maximum of the in-plane transverse
mode at Γ is reminiscent of the transverse mode measured in INS experiments [5]. If
we compare the excitation energies measured in experiments with our results, we find a
very good agreement. The maximum at ωΓ = 54 meV is reproduced by our calculations,
which solidifies the validity of the spin-orbit model, derived in Sec. 6.2. This maximum
is indicative of the isotropic in-plane orientation of the magnetic moments.

Hereafter, we want to discuss the connection between ωΓ and the hole density in
the xy orbital nh

xy. The hole density is intertwined with the ratio between ∆ and λ.
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That is the case, because strong SOC favors equal hole distributions in all t2g orbitals,
while ∆ enforces a vanishing nh

xy. This competition of ∆ and λ is the focal point of
the discussions revolving around Ca2RuO4, as explained in Sec. 1.2. Investigating the
behavior of nh

xy might help to clarify the role λ and ∆ play in Ca2RuO4.
Starting from the Ca2RuO4 parameters, we gradually decrease SOC while keeping

the CF fixed Fig. 7.8(i). Decreasing λ reduces the hole density (red crosses) significantly
to a point where nh

xy almost vanishes nh
xy ≈ 0.05 eV. This behavior seems to be closely

connected to the excitation energy ωΓ at Γ, as we observe a drastic decrease of ωΓ.
Starting from the maximum measured in the experiment for λ = 0.065 eV, the excitation
energy turns into a minimum at ωΓ = 20 meV for λ = 0.02 eV, not resembling the
experimental transversal mode anymore. We conclude that nh

xy, and therefore λ, has
a decisive influence on the magnetic excitations observed in Ca2RuO4. Meanwhile, the
value of nh

xy = 0.25 at λ = 0.065 eV, still implies an almost fully occupied xy orbital,
justifying the picture of an orbital ordered ground state.

To complement the results of Fig. 7.8(i), we also increase ∆ [Fig. 7.8(ii)] with a
fixed λ. As expected, we observe a decrease of nh

xy from nh
xy = 0.25 at ∆ = 0.25 eV to

nh
xy ≈ 0.05 eV at ∆ = 0.6 eV. Like for Fig. 7.8(i), this decrease goes hand in hand with

a decrease of the excitation energy, from a maximum at ωΓ = 54 meV to a minimum at
ωΓ ≈ 35 meV. We can conclude that the excitation energy ωΓ is closely connected with
the hole density of the xy orbital nh

xy.
Comparing the influence of ∆ and λ (Fig. 7.8) we see that while the effect on ωΓ is

qualitatively the same, there are also some clear distinctions. In both cases, the hole
density goes to a minimum of nh

xy ≈ 0.05 at λ ≈ 0.02 eV or ∆ ≈ 0.6 eV respectively.
Meanwhile ωΓ differs for small SOC [Fig. 7.8(i)] ωΓ ≈ 20 meV and strong CF [Fig. 7.8(ii)]
ωΓ ≈ 36 meV. From this, we deduce that SOC and CF appear to have a direct influence
on the excitation energy at Γ, in addition to the indirect influence via the hole density.
We conclude that while the ground state is quite robust against perturbations in both
∆ and λ, the excitation spectra are quite sensitive towards these perturbations. With
this knowledge, the good agreement of the excitation spectra in Fig. 7.7(i) with the INS
results appears quite remarkable. These results also imply that both SOC and CF have
a sizable influence on the dynamics in Ca2RuO4.

7.4.2 Excitations for other magnetic orders

In addition to the results of Sec. 7.4.1, we want to analyze the dynamics of the other
magnetic phases found in the ground state analysis of Sec. 7.3.3. We start at a vanishing
CF ∆ = 0.0 eV and finite SOC λ = 0.06 eV. Fig. 7.7(ii) shows the results of the DSSF’s.
The Goldstone mode arising at M has a clear out-of-plane signal. If we increase SOC
to λ = 0.12 eV and keep ∆ = 0.0 eV [Fig. 7.9(i)], a transition into the PM (Sec. 7.3.3)
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Figure 7.9: Dynamic magnetic structure factor mα(k, ω) for significant SOC λ = 0.12 eV
at ∆ = 0.0 eV (i) and ∆ = 0.25 eV (ii). The excitation energy ωM at M is denoted with
a green bar in (i) and (ii) and is indicative of the possibility of triplon condensation.

occurs. Indicative for this is the finite excitation energy ωM ≈ 0.046 eV at M, indicated
with a green bar in Fig. 7.9(i). The absence of a Goldstone mode indicates a lack of
magnetic ordering in the ground state, as predicted by the triplon model (Fig. 7.1).

Increasing CF up to ∆ = 0.25 eV, Fig. 7.9(ii), the excitation energy at M decreases
significantly up to a value of ωM ≈ 0.027 eV, which is in concordance with the fact that
a finite CF favors the condensation of triplons and therefore a magnetic ground state
(Sec. 7.2.1). The importance of a finite CF also becomes evident in the phase diagram
(Fig. 7.6) where Ca2RuO4 would be in the PM ground state if CF would be absent.

The DSSF’s of the other two phases, stripy and 3U1D found in the phase diagram,
Fig. 7.6, are displayed in Fig. 7.7(iii) and (iv) respectively. We take the snapshots at
weak SOC, λ = 0.0 eV (iii) and λ = 0.03 eV (iv), and therefore we find the characteristic
Goldstone modes for these two phases. For the stripy phase, we identify two Goldstone
modes arising at X and Y, yielding a degeneracy between the x and y stripy phase.
Furthermore, these Goldstone modes have equal contributions from x, y, and z DSSF’s,
which indicates an isotropic stripy phase. The 3U1D phase [Fig. 7.7(iv)] shows four
Goldstone modes, which arise at the k vectors previously discussed in Tab. 7.1. In
contrast to the stripy phase, all Goldstone modes have an out-of-plane nature with
dominant Sz(k, ω) contributions.

Last but not least, we want to analyze the DSSF in case of a negative CF, yielding
an out-of-plane checkerboard pattern, discussed in [77]. We set the CF to ∆ = −0.3 eV,
which is sufficient to fix the xy orbital at half filling and a double occupancy in either
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Figure 7.10: DSSF and DOSF at negative CF ∆ = −0.3 eV for λ = 0.2 meV (i)-(ii) and
λ = 0.01 eV (iii)-(iv). We performed calculations with ED. The DOSF is calculated via
(7.2), with O = L.
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the xz or yz orbital at vanishing SOC λ = 0.0 eV. We expect that these two configu-
rations alternate on the lattice in a checkerboard manner, with the same unit cell as
the Heisenberg spin AFM. Fig. 7.10(i) shows the results for almost vanishing SOC at
λ = 20−4 eV. As we see, the small SOC already induces a slight anisotropy in the al-
most isotropic DSSF, yielding that the AFM is only purely isotropic at λ = 0.0 eV. For
the DOSF, which can be obtained similarly as the DSSF setting O = L in (7.2), we
obtain the results shown in Fig. 7.10(ii). The DOSF, in contrast to the DSSF, does
not show any clear ordering preference and remains featureless. While at first glance,
this appears to be contradicting the expected checkerboard pattern expected, we have
to keep in mind that alternating orbital order is quadrupolar, i.e., features would show
up in the (Lx)2 − (Ly)2 ∝ nh

xy − nh
yz channel. Since we do not measure this channel

in our calculations we do not observe any features. The spin isotropy gets completely
lifted for more sizable SOC. As an example, we show the DSSF for λ = 0.01 eV, in
Fig. 7.10(iii), where we observe a pronounced ordered moment along the z-axis with a
significant excitation gap. Furthermore, the orbital order clearly shows dipolar nature
[Fig. 7.10(iv)] with a peak at M. An increase of SOC thus causes coupling between the
spin and orbital sector, which leads to a checkerboard pattern with Lz = 1, Sz = −1 on
one sublattice, and Lz = −1, Sz = 1 on the other. If we compare the influence of SOC
on the magnetic order with the behavior for ∆ > 0, we see that rather than a continuous
transition from the isotropic to the anisotropic AFM, like displayed in Fig. 7.2(iii), the
transition for ∆ < 0 is very sharp.
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8Finite temperature analysis

Chap. 7 solely focuses on the ground state properties and dynamics at T = 0. In this
chapter, we want to investigate the effective model of Chap. 6 for finite temperatures.
With the semiclassical MC method introduced in Sec. 2.4.2, we can capture finite tem-
perature properties such as magnetization M(T ) and heat capacity C(T ). We start our
numerical analysis by investigating the impact of cluster sizes on the Néel temperature
TN. We then introduce the feedback optimized parallel tempering (FOPT) method [109]
to our system to see whether it improves the MC results. Last but not least, we study the
effect of SOC λ and CF ∆ on the Néel temperature determined via M(T ) and C(T ).

8.1 Magnetization and specific heat

The model derived in Chap. 6 can be used to obtain finite temperature results, which can
be compared qualitatively to well-known experimental commodities of Ca2RuO4, such
as the Néel temperature. Ca2RuO4 undergoes a phase transition from a paramagnetic
phase into the ordered in-plane at a Néel temperature of TN ≈ 113 K [42, 43]. This
phase transition manifests itself as a peak in the specific heat C(T ) = ∂T E(T ), with
ground state energy E, as well as the magnetic susceptibility χ(T ) = ∂T M(T ), with
magnetization M(T ). Both χ(T ) and C(T ) can be calculated via the semi-classical MC
approach used for T ≈ 0 in Sec. 7.2.3. A caveat in calculating Néel temperatures via
MC is the finite size of the cluster, which is why one should be cautious comparing TN

from MC quantitatively with experimental results. However, general trends of TN, like,
e.g., dependence on parameters like CF and SOC, should be captured qualitatively well
by the MC simulations.
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(i) Energy (ii) Magnetization

Figure 8.1: Ground state energy E(T ) and specific heat C(T ) as function of the tem-
perature T (i), and magnetization M(T ) and susceptibility χ(T ) as function of T (ii) for
different L×L cluster sizes. The simulations are done for 100 temperatures arranged in
an equidistant manner. The Néel temperature is indicated with grey dots in C(T ) and
χ(T ). The grey line is a guideline for the evolution of TN as a function of cluster size.
We choose parameters according to Tab. 8.2 A.

L 4 6 8 10 12 14 16
C [a.u.] 0.36 0.73 0.99 1.24 1.20 1.35 1.48
TC

N [K] 109.7 113.9 113.9 116.1 118.2 116.1 113.9
χ [a.u.] 322.7 1104.4 2298.9 4009.5 4821.5 7664.9 8578.4
T χ

N [K] 118.1 120.2 120.2 118.1 120.2 120.2 118.1
Table 8.1: Néel temperature TN in dependency of cluster size L2 determined via specific
heat C(T ) and susceptibility χ(T ).
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Figure 8.2: Sketch of the PTMC simulation. Black lines denote replicas with Ti, which
can swap with the replica at Ti−1 at the i-th iteration step of the swap process.

8.2 Finite size scaling of TN

In order to determine the Néel temperature TN for Ca2RuO4 with our effective model
we set λ = 0.065 eV and ∆ = 0.25 eV (see Sec. 8.1). Fig. 8.1 shows the results for χ
and C for different cluster sizes. The Néel temperature is determined as the maximum
of χ (C) and denoted with grey circles in Fig. 8.1 (i) and (ii). With the increase of the
cluster size L2 the maximum in χ (C) gets more pronounced, which is expected [110].
The Néel temperature is almost unaffected by the increase of the cluster from L =
4 to L = 16, see Tab. 8.1. We determine the Néel temperature of Ca2RuO4 on a
16 × 16 cluster to T χ

N = 118.1 K and TC
N = 113.9 K via the maximum in susceptibility

χ and specific heat C respectively. These are both in very good agreement with the
experimental measurements [50]. We again want to stress that finite-size effects could
still play a decisive role in these calculations. Therefore, we do not claim that our model
is appropriate to predict exact TN for real materials. Since the Néel temperature stays
relatively unaffected within the considered cluster sizes, we use a L = 8 cluster for further
calculations in this chapter, keeping in mind that it probably slightly overestimates TN.
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8.3 Parallel tempering Monte Carlo

PTMC has become a reliable numerical method for a multitude of applications [111–113].
The main advantage of PTMC compared to conventional MC is the higher probability
of escaping from local minima at low T . In a conventional Metropolis algorithm, the
probability of accepting a new state at a temperature T is

P = min
{
1, e−∆E/T

}
, (8.1)

where ∆E is the energy difference between the old and new state. It is evident that
for low temperatures the probability of changing configurations decreases if the new
configuration has a higher energy than the old one. This can cause a convergence
towards a local minimum, which is not desired. PTMC attempts to solve this issue by
using m replicas of the system at different temperatures T , which can exchange after a
certain amount of MC steps. This means that copies at low temperatures can move to
higher T , where it is easier to escape local minima. An exchange of temperatures Ti and
Ti−1 is accepted with the probability

Ai = min {1, exp [(βi − βi−1)(Ui − Ui−1)]} (8.2)

with βi = 1/kBTi the inverse temperature and Ui the potential energy of replica i as
introduced in [111]. One then goes iteratively over all replicas i to obtain the setting for
the next MC run see Fig. 8.2. These two steps, Monte Carlo steps and exchange of replica
i and i − 1, are then repeated until convergence. In the end, one obtains the ground
state configuration for m different temperatures, including a replica at T ≈ 0 K, which
we can compare to ED results (like done in Sec. 7.2.3). PTMC is therefore especially
suited for finite temperature analysis.

8.4 Feedback optimized parallel tempering

As we can see in (8.2), the choice of the temperature distribution T = (T1, T2, T3, ..., Tm)
for the m replicas is of crucial importance for the exchange probability. Most commonly
T is either linear in T or β. However, it has been argued [109] that for problems, with
a diverging specific heat, this distribution might not be suitable to guarantee a fast
equilibration of the m replicas [109]. The reason is that the acceptance rate of a swap
process depends on the inverse of the specific heat, i.e., a high specific heat causes a low
acceptance rate A. Therefore, for temperature replicas below TN it is unlikely to swap
with replicas above TN, which is not desirable because the replicas are supposed to cover
a large part of the energy landscape. To circumvent this Katzgraber et al. proposed
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Figure 8.3: Sketch of the FOPT iteration.

the FOPT method, which aims to obtain T with high acceptance rates around the
bottlenecks. As it turns out, this results in a T condensed around TN. That additionally
guarantees a high resolution of the phase transition, so TN can be determined precisely.
Since Ca2RuO4 has a finite temperature of TN ≈ 113 K [42, 43], the FOPT method
should, in theory, be suitable here and lead to faster equilibration. To see whether
FOPT is advantageous for our model, we discuss the implementation of the FOPT and
its application to our problem.

8.4.1 Theory

One can find a detailed description of the FOPT in [109, 114]. In this section, we will
briefly discuss the method and the details important for the implementation of our
problem. One goal of the FOPT is to adjust T to expedite the equilibration time for
all temperature replicas. This is realized by minimizing the time a replica needs to
travel from the minimal temperature Tmin to the maximal temperature Tmax and back
(see Fig. 1 in [109]). This consequently reduces the time of the replica, especially those
with temperatures below TN, to cover the phase space and converge towards the global
minimum. Like in [109], we first introduce u(i) and d(i), which count the number of
replicas at Ti, that have last visited Tmin and Tmax respectively. This is done after a
certain number of Monte-Carlo steps, to guarantee reliable statistics. To obtain reliable
statistics, a sizable number of Monte-Carlo steps is mandatory, so most of the replicas
have either visited Tmin or Tmax. This comes at a high computational cost, the impact
of which we will discuss later. With reliable values for u(i) and d(i) we can define the
flow

fu(i) = u(i)
u(i) + d(i) , (8.3)

describing the fraction of replicas which have visited Tmin most recently. This can be
defined analogous for Tmax as fd(i). In the remainder of this chapter, we consider the
flow coming from Tmin and therefore set fu(i) = f(i).

Contrary to [109], we defined the flow as a function of the index i instead of the
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associated temperature Ti. In our simulations, we found that this approach yields better
results. For Ti = Tmin the flow trivially becomes f(i) = 1, because all replicas traveling
through Tmin most recently have visited Tmin. Vice versa for Ti = Tmax the flow becomes
0 independently of the number of Monte-Carlo steps used to obtain u(i) and d(i). The
density η(Ti), introduced in (5) of [109], in our framework becomes constant η(i) = C,
because all indexes are equidistant with a distance 1 between them. The constant
becomes C = 1/m due to the normalization condition ∑m

i=1 η(i) = 1. The optimized
density distribution can be obtained via η′(i) = C ′

√
∂i f(i) with C ′ guaranteeing the

normalization of η′(i). Similar to (11) in [109], we then can obtain an optimized index
distribution via

m
i∑

j=1
η′(j) = i′, (8.4)

where the sum goes over the initial indexes up to the index of interest i and i′ is the
associated optimized index. With this, we can obtain an optimized index for each replica.
It is of note that i′ is no longer an integer. However, we still can map the set of optimized
indexes i′ = (1′, 2′, 3′, ...,m′) back to a set of temperatures T′ via linear interpolation.
Therefore, we obtain a set of optimized temperatures, which we assign with the original
index set i so that T′ = (T ′

1, T
′
2, ...T

′
m). With T′ we can restart the process of calculating

an improved flow. One repeats this process until the flow function f(i) becomes linear
as a function of the replica index i. A linear f(i) guarantees a minimal time to cover
the phase space. The flowchart in Fig. 8.3 summarizes the FOPT process.

As a criterion for the linearity of f(i), we introduce the deviation from a linear
function

d(n) = 1
m

m∑
i=1

∣∣∣∣(fn(i) − max fn)
(

1 − i

m

)∣∣∣∣ , (8.5)

where the sum goes over the number of the replicas m, and n is the iteration index. As an
abort criterion for the FOPT iterations, we demand d(n) < 0.05 to guarantee a sufficient
T. As mentioned earlier, the FOPT proves to be significantly more efficient and accurate
for the index i instead of the temperature T like in [109] for our implementation.

8.4.2 Ising model

To benchmark the FOPT implementation we start with a toy model introduced in [109],
the ferromagnetic Ising model

H = −J
∑
⟨i,j⟩

SiSj, (8.6)
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Figure 8.4: Temperature distribution T(n) (i) and deviation d(n) (ii) for n = 16 FOPT
iterations and Tβ in the Ising model.
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Figure 8.5: Flow f(i) (i) and replica index i(T ) (ii) for n = 16 FOPT iterations and Tβ

in the Ising model. Iteration step n is indicated by the respective colormap.
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Figure 8.6: Temperature distribution T(n) (i) and deviation d(n) (ii) for n = 7 FOPT
iterations and TT in the Ising model.
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Figure 8.7: Flow f(i) (i) and replica index i(T ) (ii) for n = 7 FOPT iterations and TT
in the Ising model. Iteration step n is indicated by the respective colormap.

with a coupling strength J and ⟨i, j⟩ the NN’s. We perform the calculations of the model
on a L = 12 cluster. The initial T is set to either equidistant for temperatures (TT) or
β = 1/(kBT ) (Tβ).

In Fig. 8.4 and Fig. 8.6 we display the results starting from TT and Tβ respectively.
We display the flow f(i) and the temperature T (i) as functions of the replica index i

in Fig. 8.5 and Fig. 8.7, where the color indicates the FOPT iteration step n. The flow
f(i) shows a fast convergence towards a linear behavior in the case of TT. The results
after n = 7 FOPT iterations fulfill the condition of d(n) see Fig. 8.6(ii). The resulting T
of the n FOPT iterations are displayed in Fig. 8.6(i). Here, we observe a condensation
of replicas around the bottleneck at T = 2.5 (with T in arbitrary units). This is a result
of the linearized flow f(i) but bears additional value because the resolution around TN

gets enhanced with FOPT.
Starting with Tβ [see Fig. 8.4(ii)], we see that the system needs significantly more

iterations (N = 16) to match the criteria of a linearized flow (8.5). The resulting T
is again condensed around the critical temperature and is comparable to the result of
Fig. 8.4(i). For the Ising model TT is superior to Tβ, due to faster convergence towards a
linear flow. The results of the FOPT for the Ising model are indeed promising, especially
the condensation around TN is of note because it reduces the number of replicas required
to get a high resolution around the Néel temperature.

8.4.3 Ca2RuO4

After the successful application to the Ising model, we want to extend our analysis of
the FOPT to the spin-orbit model of Ca2RuO4, introduced in Chap. 6. Again we use TT

and Tβ as starting T. In Fig. 8.9 and Fig. 8.8 we show results of the FOPT iterations
necessary to obtain a suitable T for Tβ and TT respectively. Like for the Ising model,
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flow f(i) as a function of replica index i and n (right-hand side).

we observe a significantly faster convergence of f(i) for TT, with only n = 3 iterations
necessary to obtain an optimized f(i). We also observe a condensation of T around
the Néel temperature TN see Fig. 8.8. The motivation of the FOPT applied to our
effective model was to increase the convergence speed of the MC calculations while
keeping the resolution around TN as high as possible. However, in our implementation
of the FOPT the convergence of the flow, i.e., obtaining a high resolution around TN,
took longer than the convergence of the ground states for T, with PTMC. The reason
is that our problem does not require a linearized flow to converge. This contradicts the
premise of FOPT, which is to tackle complicated problems where a linearized flow would
significantly increase the efficiency of PTMC. In our case, the linearized flow is more of
a neat feature, in the form of a resolution around TN, than an essential part of solving
the problem.

Concluding, while the FOPT method seemed promising for Ca2RuO4, the fast con-
vergence of the initial problem makes our problem a suboptimal candidate for the FOPT.
We found that to guarantee a high resolution around TN, an equidistant temperature
distribution TT with a higher m is sufficient.

8.5 Effect of SOC and CF

To evaluate the stability of the phases determined in [77] towards an increase of tem-
perature we study the behavior of the Néel temperature TN in dependency of the CF ∆
and the magnitude of SOC λ.
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Figure 8.9: FOPT for Ca2RuO4 A (Tab. 8.2) for ∆ = 0.3 eV and Tβ. Displayed are
temperature distribution T as a function of FOPT iteration index n (left-hand side) and
flow f(i) as a function of the replica index i and n (right-hand side).

tz [eV] tx/y[eV] tNNN [eV] U [eV] JH [eV] Section
A 0.2 0.2 0.0 2.5 0.5 8.5.1
B 0.2 0.137 0.1 2.0 0.34 8.5.2

Table 8.2: Parameter sets used for the finite temperature analysis. Parameter set A is
idealized for a faster MC convergence (see Fig. 8.1) and therefore has isotropic hopping
with no NNN interactions. We used set B, obtained via DFT [106], in the T = 0 analysis
(Ch. 7).

Figure 8.10: (i) Néel temperature of Ca2RuO4 (A in Tab. 8.2) calculated via in-plane
magnetization (pink), out-of-plane magnetization (orange), and ground state energy
(blue) for varied ∆ and T at λ = 0.01 eV. In the background, the double-occupation
density in the dxy orbital nxy is displayed (grey colormap). We calculate out-of-plane
(ii) and in-plane (iii) SSF at wave vector Γ, X + Y (superposition of X and Y results),
and M as function of ∆ at the minimal temperature of T.
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Figure 8.11: (i) Néel temperature of Ca2RuO4 (A in Tab. 8.2) calculated via in-plane
magnetization (pink), out-of-plane magnetization (orange), and ground state energy
(blue) for varied ∆ and T at λ = 0.03 eV. In the background, the double-occupation
density in the dxy orbital nxy is displayed (grey colormap).We calculate out-of-plane (ii)
and in-plane (iii) SSF at wave vector Γ, X + Y (superposition of X and Y results), and
M as function of ∆ at the minimal temperature of T.

Figure 8.12: (i) Néel temperature of Ca2RuO4 (A in Tab. 8.2) calculated via in-plane
magnetization (pink), out-of-plane magnetization (orange), and ground state energy
(blue) for varied ∆ and T at λ = 0.06 eV. In the background the double-occupation
density in the dxy orbital nxy is displayed (grey colormap). We calculate out-of-plane
(ii) and in-plane (iii) SSF at wave vector Γ, X + Y (superposition of X and Y results),
and M as function of ∆ at the minimal temperature of T.
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8.5.1 Idealized Parameters

We start our analysis of Ca2RuO4 with idealized hopping parameters (Introduction in
Tab. 8.2). NN hopping is here assumed to be isotropic, NNN hopping is neglected,
and Coulomb repulsion U and Hund’s coupling JH are set to U = 2.5 eV and JH =
0.5 eV respectively. While in Sec. 8.1 this simplification was mainly used to guarantee
convergence for larger cluster sizes, in this section we want to carve out the effect these
simplifications have on ground state properties at T = 0. In addition, we study the
influence of ∆ and λ on the Néel temperature determined in Sec. 8.1.

We present the results for parameter set A (Tab. 8.2) in Fig. 8.10-8.12 for different
values of λ. We determined the Néel temperature via in-plane magnetization Mz⊥ (pink),
out-of-plane magnetization Mz⊥ (orange), and energy (blue) in dependence of the crystal
field within |∆| < 0.3 eV and fixed λ. Furthermore, we showcase the double-occupation
density of electrons in the dxy orbital nxy as a function of ∆ and T indicating orbital
ordering. Fig. 8.10-8.12 (ii) and (iii) displays the in- and out-of-plane SSF for wavevectors
M, X + Y, and Γ (see also Tab. 8.1) as a function of CF ∆. The SSF S(k) is calculated
for the lowest temperature of TT used for the Monte-Carlo simulation.

We observe that for small λ [Fig. 8.10] and large |∆| the system is in a out-of-plane
AFM. The out-of-plane AFM at ∆ ≪ 0 eV agrees with the results found in Sec. 7.3.3.
Meanwhile, the out-of-plane ordering at ∆ ≫ 0 eV arises because for weak SOC in-
and out-of-plane AFM order are quasi-degenerated, and the Monte-Carlo picks one spin
arrangement. This changes if we move to larger values of λ, which prefers an in-plane
AFM ordering. The ED results for more realistic parameters agree with this result.
However, for weak positive CF the ground state properties for the idealized parameter set
A differ drastically from the predicted stripy order, with significant S(k) contributions
at Γ and M leading to an incommensurate spin ordering comparable to the 3U1D phase
found in Fig. 7.3. We attribute this disagreement to the lack of NNN interactions, which
play an important role in the formation of the stripy spin arrangement in Fig. 7.5. We
conclude that, while A comes at a lower computational cost it is mandatory to use a
more realistic parameter set to capture ground state properties accurately. We can also
identify the 3U1D phase at ∆ < 0. However it appears far more extended than in
Fig. 7.5, prevailing up to values of λ = 0.06 eV [Fig. 8.12].

As we can see in Fig. 8.10-8.12 (i), the Néel temperature depends heavily on both
∆ and λ. Starting with the AFM phases at |∆| ≫ 0 we observe that an increase of |∆|
within these phases leads to a saturating increase of TN. Similarly, an increase of λ also
tends to stabilize these phases against temperature fluctuations, which leads to higher
Néel temperatures. We observe a contrary behavior of the two intermediate phases
at weaker CF ∆. Here, an increase of λ leads to a significant decrease in TN, which
makes these phases very susceptible to "thermal" fluctuations and therefore potentially
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unstable.
Last but not least, for nxy, we see a clear dependence on the respective ground state,

while there is only a weak temperature dependence. In particular, at TN, we do not
observe any unconventional behavior, leading to the conclusion that orbital ordering
prevails above TN as was already predicted by [51].

8.5.2 DFT parameters [106]

Since A did not reproduce the ground state properties found in Sec. 7.3.2 correctly, it is
mandatory to use the parameters set used for ED [77] and VCA [63]. Hence, we set the
parameters to B (Tab. 8.2), and evaluate TN in dependence on both ∆ and λ. As we
can see in Fig. 8.13-8.15, the phases found in Sec. 7.3.2 are now correctly reproduced,
emphasizing the importance of the choice of parameters. We observe a relatively narrow
3U1D phase around ∆ ≈ 0 eV, which gets suppressed increasing λ. The phase arising
for weak positive ∆ now shows clear signs of a stripy spin arrangement like predicted
in Sec. 7.3.2. However, it prevails up to λ = 0.06 eV, which disagrees with the results
of the 4 × 4 cluster of Sec. 7.3.2. We attribute this disagreement to the difference in
cluster sizes, as we use a L = 8 cluster for the finite temperature studies. Barring this
discrepancy, it is still obvious that the choice of parameters changes the phase boundaries
and the phases arising drastically. In particular, the lack of the stripy phase, which is
also supported by VCA results [63], makes parameter set A a poor choice.

Like in Sec. 8.5.1, the Néel temperature depends heavily on the respective phase,
with quite sizable Néel temperatures for the 3U1D, in-plane, and out-of-plane AFM
phases. The stripy phase shows an almost vanishing TN. Again, an increase of λ leads to
an increase of TN in the AFM phase. Meanwhile, TN of the stripy phase decreases even
more when increasing λ. As for the 3U1D phase, TN appears unchanged if we change
λ, while at λ = 0.06 eV this phase vanishes entirely as predicted in Sec. 7.3.2. Since
one expects sizable SOC in Ca2RuO4, the stripy phase appears to only exist at very low
temperatures. This would make the stripy phase very hard to realize in experiments. In
addition, we observe that the Néel temperature of Ca2RuO4 predicted by B appears to
be further away from the experiment than the Néel temperature obtained via A, while it
is still at TN ≈ 100 K which is very close to experimental data. Therefore, the anisotropic
effective Hamiltonian (Ch. 6) seems to not only describe results at T = 0 very well but
additionally yields reasonable finite temperature results.

nxy has a similar behavior as observed for A. NNN and anisotropic interactions affect
neither the orbital ordering above TN [51] nor the dependence on the temperature.

In conclusion, choosing the right parameter set is crucial to get the correct T ≈ 0 K
properties and has a noticeable effect on finite temperature properties. However, we
observed a few general trends for both A and B. Increasing λ and ∆ stabilizes AFM
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Figure 8.13: (i) Néel temperature of Ca2RuO4 (B in Tab. 8.2) calculated via in-plane
magnetization (pink), out-of-plane magnetization (orange), and ground state energy
(blue) for varied ∆ and T at λ = 0.01 eV. In the background, the double-occupation
density in the dxy orbital nxy is displayed (grey colormap). We calculate out-of-plane
(ii) and in-plane (iii) SSF at wave vector Γ, X + Y (superposition of X and Y results),
and M as function of ∆ at the minimal temperature of T.

towards the influence of T . Meanwhile, increasing λ destabilizes the stripy phase found
for B. Last but not least, orbital ordering is not affected by the loss of magnetic order
and prevails up to high temperatures.
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Figure 8.14: (i) Néel temperature of Ca2RuO4 (B in Tab. 8.2) calculated via in-plane
magnetization (pink), out-of-plane magnetization (orange), and ground state energy
(blue) for varied ∆ and T at λ = 0.03 eV. In the background, the double-occupation
density in the dxy orbital nxy is displayed (grey colormap). We calculate out-of-plane
(ii) and in-plane (iii) SSF at wave vector Γ, X + Y (superposition of X and Y results),
and M as function of ∆ at the minimal temperature of T.

Figure 8.15: (i) Néel temperature of Ca2RuO4 (B in Tab. 8.2) calculated via in-plane
magnetization (pink), out-of-plane magnetization (orange), and ground state energy
(blue) for varied ∆ and T at λ = 0.06 eV. In the background, the double-occupation
density in the dxy orbital nxy is displayed (grey colormap). We calculate out-of-plane
(ii) and in-plane (iii) SSF at wave vector Γ, X + Y (superposition of X and Y results),
and M as function of ∆ at the minimal temperature of T.
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9Conclusion and Outlook

In this thesis, we derived effective Kugel-Khomskii models for different types of Mott-
insulating transition metal compounds. We focused on d4 and d5 materials with strong
spin-orbit coupling, like Ca2RuO4 and α-RuCl3 respectively. This thesis was divided
into two main parts, discussing the different properties of the Ru t42g and the t52g Kitaev-
Heisenberg compounds.

In the first part, we solely focused on d5 Kitaev-Heisenberg-type materials. Here,
the effective Kugel-Khomskii model is a well-known commodity and yields, for materials
with strong spin-orbit coupling, an effective model with Kitaev-, Heisenberg-, Γ-, and
Γ′-interactions. A large field of research for these materials is concerned with driving
the system into a pure Kitaev material. This is desirable due to the exactly solvable
spin liquid ground state in the Kitaev limit [6]. In this thesis, we took a relatively
unexplored approach to tuning interaction parameters via a light field periodic in time.
Via the Floquet formalism, we found new expressions for the interactions, depending on
frequency and amplitude and the polarization of the incoming light.

We showed that ruthenates like α-RuCl3 are more suited for Floquet engineering
than iridates, both of which are proximate to the Kitaev spin liquid ground state. This
is the case because heating plays a less pronounced role in ruthenates due to stronger
Hund’s coupling JH and Coulomb repulsion U causing a broader range of frequencies
where heating is absent. Within these frequency corridors, the effective Floquet-Kitaev-
Heisenberg model is feasible. Linear polarized light then induces anisotropies in the
interactions, depending on the angle of the light concerning the respective bond. We
argue that this could make linear polarized light a potential tool to tune an already
existing Kitaev spin liquid from a gapped to a gapless ground state and vice versa.

Circular polarized light, on the other hand, preserves the isotropy of the system
but breaks time-reversal symmetry. This leads to the inverse Faraday effect reported
in [31, 32]. One can capture this effect if one considers an effective Floquet-Kitaev-
Heisenberg model, which includes third-order ligand processes explicitly. It is mandatory
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to include explicit fourth-order ligand terms in perturbation theory if one wants to obtain
the accurate magnitudes of the single interactions. The inclusion of third and fourth-
order terms does have a significant impact on circularly and linearly polarized light.
Linear polarization induces two novel terms breaking inversion symmetry absent for
circularly polarized light. Since linear polarization preserves time-reversal symmetry,
the induced magnetic field vanishes and we do not observe an inverse Faraday effect.
We can bridge the gap between linearly and circularly polarized light via Lissajous
figures. In this thesis, we presented an effective Floquet-Heisenberg model for arbitrary
polarization, connecting the limiting cases continuously via elliptical Lissajous figures.
More complex Lissajous figures move away from the conventional limiting cases, linearly
and circularly polarized light. Lissajous figures with a large difference of frequencies in
x and y direction show a decoupling of the Kitaev-Heisenberg interaction parameters
from the relative phase ϵ. However, the induced magnetic field still can be switched on
and off via ϵ. Therefore, one could, in principle, tune the induced magnetic field relative
to the remaining parameters.

The Floquet formalism introduces a plethora of pathways to manipulate the proper-
ties of Kitaev-Heisenberg materials of which we have only scratched the surface in this
thesis. However, our effective model provides a solid foundation to discover more of
these possibilities. The immediate next step could be an implementation of our model
for an optical cavity, which has been discussed in the context of Floquet engineering
recently [115]. In addition, numerical studies of the ground state properties for the
fourth-order model (similar to the second-order model in App.A) could be desirable.
Ground state properties could be dimers, a gapped or gapless quantum spin liquid, or
some of the ordered states discussed in the context of the conventional Kitaev-Heisenberg
model.

The second part of this thesis discussed d4 transition metal Mott insulators in a
square lattice arrangement, in particular Ca2RuO4. Contrary to the Kitaev-Heisenberg
model of part I, the effective Kugel-Khomskii model for these materials is yet relatively
unexplored. In this thesis we present an effective spin-orbit Hamiltonian, considering
Hund’s coupling, anisotropic nearest, and third nearest neighbor interactions, which has
been lacking in the context of Ca2RuO4. With this model a detailed analysis of the
ground state properties via a ∆-λ phase diagram is possible.

We found that a large crystal field induces an antiferromagnetic spin order, with the
orientation changing from in-plane for ∆ ≫ 0 to out-of-plane ∆ ≪ 0 with changing the
sign of the crystal field. Between these two AFM phases, at weak spin-orbit coupling,
a stripy AFM phase arises for a weak positive crystal field. For a weak negative crystal
field and weak spin-orbit coupling, we find a novel phase, which we designate 3U1D.
Like the stripy phase, this phase vanishes for larger values of λ. For large λ, the system
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eventually becomes paramagnetic, where finite ∆ pushes the phase transition to larger
λ. We locate Ca2RuO4 well into the in-plane AFM regime, within this phase diagram,
in agreement with both experimental [5] and VCA results [63].

Concerning dynamics, we found that the results of the dynamical spin structure
factor are in excellent agreement with experimental results of neutron scattering [5],
reproducing signature properties of Ca2RuO4, like the maximum of the transverse mode.
The dynamical properties are susceptible to change in ∆ and λ and appear to depend
strongly on the hole density in the xy orbital. We found that nh

xy has nonvanishing
contributions for Ca2RuO4. That is a signature for a prominent role of SOC in Ca2RuO4.
The strong nh

xy dependence of the dynamics makes the correspondence with experimental
results even more remarkable.

Last but not least, we analyzed finite temperature properties of the effective spin-
orbit model, in particular for Ca2RuO4. Monte-Carlo simulations yield the specific heat
C(T ) and susceptibility χ(T ), which we can qualitatively compare with experimental
measurements. With this, we identified the Néel temperature of Ca2RuO4, signifying
the phase transition from an AFM ordered Mott insulator to a PM Mott insulator. Our
numerical results are in good qualitative agreement with experimental data. The Néel
temperature in Ca2RuO4 appears to be susceptible to changes in ∆ and λ. Meanwhile,
TN increases gradually with increasing λ, changing ∆ induces more abrupt changes in
TN depending on the magnetic order of the ground state. The orbital ordering does not
show significant changes at TN and therefore prevails in the PM Mott insulating phase.

In our attempts to determine the Néel temperature accurately, we explored the pos-
sibilities of applying FOPT. It turned out that our system is not a candidate for FOPT
because it converges fast with PTMC, while FOPT becomes useful for problems that
have long PTMC convergence time. For systems, like ours, we recommend a traditional
parallel tempering approach with a large temperature set.

The effective spin-orbital model for d4 transition metal Mott insulators derived in
this thesis is an excellent starting point for future studies. First, Monte-Carlo results
for the ground state properties could be extended to larger clusters comparable to the
cluster sizes used for finite temperatures, to estimate the influence of finite size effects
on the phase boundaries in Sec. 7.2.3. In addition, like for the Kitaev-Heisenberg model,
a light-matter interaction study via the Floquet formalism would be interesting. Here,
the effect on the interaction parameters in the triplon model, introduced in Sec. 2.3.3,
would be particularly compelling, due to the possibility of enhancing/suppressing triplon
condensation. Furthermore, the model in this thesis might easily be applied to similar
materials like, e.g., vanadates [116]. Here, one would have to adjust the model to three
dimensions to study the influence of ∆ and λ.
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AGround state properties driving with
CP

A.1 Materials

As we have argued in Chap. 4, of the considered materials so far, α-RuCl3 is suited the
best for Floquet engineering, due to the broad driving corridor and the possibility to
strongly decrease the anisotropy of the Kitaev interactions. α-RuCL3 is widely consid-
ered one of the more promising candidate materials to realize the Kitaev spin liquid.
However, recently, studies on ruthenates have been extended to materials with other
ligand atoms, namely iodine and bromine, which both show promising features. While
α-RuBr3 is in a Mott insulating state [118], α-RuI3 appears to be metallic [119, 120].
However, recently it has been shown [121], that the metallic behavior of α-RuI3 is
mainly attributed to impurities of the probe, and pristine samples should be insulat-
ing. We therefore consider both α-RuBr3 and α-RuI3 for Floquet engineering. We use
the second-order Kitaev-Heisenberg model, introduced in Chap. 4, for both materials.
Notably, we did these studies before we derived the fourth-order model, hence we consid-
ered the second-order model. While there are some essential differences, we still feel that
a ground-state analysis yields some useful insight, which is why we discuss the results
in this appendix.

Material α-RuCl3 α-RuBr3 α-RuI3

t1 [eV] 0.035 0.024 0.009
t2 [eV] 0.184 0.169 0.170
t3 [eV] -0.054 -0.030 0.007

Table A.1: Hopping strengths t1, t2, and t3, introduced in Sec. 3.2, for α-RuCl3, α-RuBr3,
and α-RuIr3 obtained from [117]. Like in Sec. 4.1 Coulomb repulsion is U = 3.0 eV and
Hund’s coupling is JH = 0.6 eV.
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Material α-RuCl3 α-RuBr3 α-RuI3

J [eV] −9.1 · 10−4 −2.70 · 10−4 1.76 · 10−4

K [eV] −1.73 · 10−2 −1.53 · 10−2 −1.61 · 10−2

Γ [eV] 6.07 · 10−3 3.38 · 10−3 1.26 · 10−4

Table A.2: J, K, and Γ calculated with the hopping parameters from [117]. Coulomb
repulsion is U = 3.0 eV and Hund’s coupling is JH = 0.6 eV.

In Tab. A.1, we list the DFT hopping parameters for α-RuBr3 and α-RuI3 from [117],
which we used in this thesis. We are well aware that, unlike [33], these parameters
neglect anisotropies and t4 hoppings, but since, to our knowledge, these are the only
DFT results for all three ruthenates, we will use them in this section to compare the
different materials.

As becomes evident in [117] both α-RuBr3 and α-RuI3 show a strong suppression of
J and Γ interactions compared to α-RuCl3, locating these materials closer to the KSL
or even in the KSL [121]. This proximity to the KSL can lead to a distinct phase for a
switched sign of the interactions, which we will discuss in more detail in Sec. A.2. Last
but not least, we observe that changing the material can lead to a change of sign in the
J interaction, as α-RuI3 has AFM Heisenberg interactions while Heisenberg interactions
in α-RuBr3 and α-RuCl3 are FM (Tab. A.2).

A.2 Exact diagonalization

As we have seen previously in Sec. 3.2, Floquet engineering with Lissajous figures can
change the magnitude and sign of all interactions. The effect on the different bond direc-
tions is not uniform for most Lissajous figures. This induces anisotropies, as explained
in Sec. 3.2, which means that the description with an idealized J-K-Γ model is no longer
possible. However, in this section, we want to focus on circularly polarized light, which
keeps the J-K-Γ model intact. We start to locate all three materials in the J-K-Γ model
and determine their initial ground state properties. Thereupon, we introduce a non-zero
light field to investigate the change of ground state properties in dependence of E0.

To study ground state properties of the considered materials we perform exact di-
agonalization on 16 site and 24 site clusters (see Fig. A.1) with periodic boundary
conditions. We use the WEINBE58 package [123,124] to implement the J-K-Γ Hamilto-
nian in Python. We start our analysis with the conventional Kitaev-Heisenberg model
as discussed in [33, 34]. As a benchmark, we calculate Kitaev, non-Kitaev, and tradi-
tional spin structure factors for Γ = 0 like done for a 24-site cluster in [122]. The result
(Fig. A.2) qualitatively shows an overall good agreement with the results of Fig. 5(a)
and Fig. 2(b) in [122]. Like in [122], we are able to identify the distinct phases as AFM
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(i) 16 site cluster (ii) 24 site cluster

Figure A.1: Lattice geometry of α-RuCl3. x, y, and z bonds are colored green, purple,
and brown respectively. Solid lines display the 16 site (i) and 24 site (ii) clusters with
periodic boundary conditions (dashed lines) used for the exact diagonalization calcula-
tions in Sec. A.2.
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Figure A.3: Kitaev (light blue), Heisenberg (anthracite) and Γ (dark blue) correlations
for varied E0 and ω = 1.6 eV. Results for parameters of α-RuCl3 (i), α-RuBr3 (ii), and
α-RuI3 (iii) (obtained from [117]) are displayed.

, KSL, zig-zag, and stripy.
After we confirm that the code is reproducing the J-K-Γ model correctly, we want

to locate the three considered ruthenates within this model. The results for α-RuCl3,
α-RuBr3, α-RuI3 are displayed in Fig. A.3. Here, we calculate the Heisenberg, Kitaev,
and Γ nearest neighbor bond correlations via ED on a 24-site cluster in dependence of
the field strength E0 at ω = 1.6 ev. We average the bond correlations over the cluster.

For small E0 all materials have Kitaev correlations with almost identical strength as
the Heisenberg correlations. This indicates weak Heisenberg interactions and dominant
Kitaev interactions. In addition, we observe weak negative Γ correlations, which hint at
a non-KSL ground state. We observe that Γ interactions become weaker if we change
from Cl to I. Therefore, substituting the ligand atoms pushes the ground state closer to
the KSL found in Fig. A.2 with Γ = 0.

Increasing E0 we observe a relatively sharp phase transition into the AFM phase for
Cl and Br ligands. The AFM is indicated by the Heisenberg correlations at ⟨SiSj⟩ ≈
−0.34. We attribute this phase transition to the change of sign in the interactions
discussed in Sec. 4.2. Meanwhile, for α-RuI3 the phase arising does not show signatures
of an AFM ground state. The fact that Heisenberg and Kitaev interactions coincide and
almost vanishing Γ correlations furthermore hints that the ground state might indeed
be a KSL or at least very close to realizing a KSL. While α-RuI3, in reality, appears
to be metallic and more DFT studies on these materials would be favorable, one can
still infer two meaningful observations from these results. First, a phase transition via
Floquet engineering is possible, due to the global sign flip of all interactions. Second,
it seems possible to drive a system from the AFM into the AFM Kitaev spin liquid in
principle.

As we discussed in Chap. 5, including higher order terms allows for the possibility to
tune K and Γ respective to the other parameters, which would open new pathways in
driving a system towards the KSL. The results of this appendix should thus be viewed
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as a rough starting point in the analysis of ground-state behavior, with the second-order
model.
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B.1 Second order perturbation theory

B.1.1 Circular polarized light

We can simplify the kinetic Hamiltonian for CP via the relation

sin(ϑ) cos(ωt) + cos(ϑ) sin(ωt) = sin(ϑ+ ωt), (B.1)

where ϑ is the bond angle relative to the z-bond (Fig. 5.3). The simplified kinetic
Hamiltonian then reads

Hkin =
∑

n

∑
⟨i,j⟩

∑
α,β

tαβJn(A0)esin(ϑ+ωt)d†
i,αdj,β + h.c., (B.2)

with A0 = E0/ω, α, β the orbital flavor α, β ∈ [xy, yz, xz] and tαβ the associated hopping
strength. The Floquet Hamiltonian describes the absorption of l photons that we can
derive via averaging over time as described in the main text (Sec. 2.3.4). This then
yields

Hl = 1
2π

∫ 2π

0
Hkine

−ilωtdt =
∑
⟨i,j⟩

∑
α,β

tαβ

[
Jl(A0)eilϑd†

i,αdj,β + J−l(A0)eilϑd†
j,αdi,β

]
, (B.3)

as expected.
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B.1.2 Arbitrarily polarized light

For AP the kinetic Hamiltonian becomes more complicated as (B.1) is no longer appli-
cable, therefore it reads

Hkin =
∑
⟨i,j⟩

∑
α,β

tαβexp
[
iA0

(
sin(ωt) cos(α) + 1

N
sin(Nωt+ ϵ) sin(α)

)]
d†

i,αdj,β + h.c..

(B.4)

To derive the Floquet Hamiltonian we proceed as in (B.2), simplifying the Hamiltonian
with the Jacobi-Anger expansion then yields an expression with multiple Bessel functions
J

Hl =
∑
⟨i,j⟩

∑
α,β

∑
n

tαβJn

[
A0

N
sin(α)

] {
Jl−Nn [A0 cos(α)] eiϵnd†

i,αdj,β

+ J−l−Nn [A0 cos(α)] e−iϵnd†
j,αdi,β

}
. (B.5)

To derive the second-order Hamiltonian we have to calculate H−lHl. A general second-
order hopping process including only d-orbitals absorbing and emitting l photons be-
comes

H−lHl =
∑
⟨i,j⟩

∑
α,β

∑
γ,δ

tγδtαβ

(∑
n

J−l−Nn [A0 cos(α)] Jn

[
A0

N
sin(ϑ)

]
cos(ϵn)

)2

+
(∑

n

J−l−Nn [A0 cos(α)] Jn

[
A0

N
sin(ϑ)

]
sin(ϵn)

)2
d†

i,γdj,δd
†
j,αdi,α, (B.6)

with γ, δ the orbital flavor γ, δ ∈ [xy, yz, xz].

B.2 Third order perturbation theory

B.2.1 Circular polarized light

To take into account third-order processes in the effective Hamiltonian we have to include
p-d hopping terms in the kinetic Hamiltonian, which for an arbitrary bond type and CP
reads

Hkin =
∑
⟨i,j⟩

∑
α,β

tαβe
iA0 sin(ϑ+ωt)d†

i,αdj,β

+ tpd

{
e

i
A0√

2
sin(ϑ+ π

4 +ωt)p†
1,⟨i,j⟩ + e

i
A0√

2
sin(ϑ− π

4 +ωt)p†
2,⟨i,j⟩

}
dj,β

+ tpd

{
e

−i
A0√

2
sin(ϑ− π

4 +ωt)p†
1,⟨i,j⟩ + e

−i
A0√

2
sin(ϑ+ π

4 +ωt)p†
2,⟨i,j⟩

}
di,α + h.c., (B.7)
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with p†
1/2,⟨i,j⟩ the creation operators for the p-ligand atoms belonging to the bond ⟨i, j⟩

(see Fig. 5.3). Third-order processes include one hopping process mediated via the
p ligands and one hopping process directly between the d orbital. To understand this
mechanism, we consider a minimal example, where we consider one of the three d orbitals,
which means di,α → di. Here we consider the process d†

2d1d
†
1p1p

†
1d2. We can directly

transfer the prefactor that arises from this hopping process to the multiple orbital model.
We first consider the Floquet Hamiltonians for the three processes, which we can write
as

Hm = 1
T

∫ T

0

∑
n

Jn

(
A0√

2

)
ei(α+ π

4 +ωt)ne−imωtp†
1d2dt = Jm

(
A0√

2

)
eim(α+ π

4 )p†
1d2 (B.8)

Hk = 1
T

∫ T

0

∑
n

Jn

(
A0√

2

)
ei(α− π

4 +ωt)ne−ikωtd†
1p1dt = Jk

(
A0√

2

)
eik(α− π

4 )d†
1p1 (B.9)

H−m−k = 1
T

∫ T

0

∑
n

Jn (A0) e−i(α+ωt)nei(k+m)ωtd†
2d1dt = Jm+k (A0) e−i(k+m)αd†

2d1,

(B.10)

where p-d hopping processes absorb m and k photons which then get emitted in the d-d
hopping. If we combine these processes we obtain the third order process over the p1

ligand

H−m−kHkHm = Jm+k (A0) Jm

(
A0√

2

)
Jk

(
A0√

2

)
e−i(k−m) π

4 . (B.11)

The hopping over the p2 ligand is exactly the complex conjugate.

B.2.2 Hermiticity of Hl

It is important to note that the Floquet Hamiltonian describing the absorption of l
photons is not Hermitian itself. As an example Hl for CP reads

Hl =
(

Jl(A0)d†
1d2 + J−l(A0)d†

2d1 + Jl(A0/
√

2)d†
1p1e

−ilπ/4 + J−l(A0/
√

2)p†
1d1e

−ilπ/4

+ Jl(A0/
√

2))d†
1p2e

ilπ/4 + J−l(A0/
√

2)p†
2d1e

ilπ/4 − Jl(A0/
√

2)p†
1d2e

ilπ/4

− J−l(A0/
√

2)d†
2p1e

ilπ/4 − Jl(A0/
√

2)p†
2d2e

−ilπ/4 − J−l(A0/
√

2)d†
2p2e

−ilπ/4
)

⊗ |n+ l⟩ ⟨n| . (B.12)

Of course, the total Floquet Hamiltonian is again Hermitian. It is important to keep this
property in mind, especially if one wants to calculate the third-order correction terms.
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B.2.3 Reversed path

To obtain an accurate third-order Hamiltonian it is crucial to take into account all
hopping processes with the same intermediate energies. While this is unambiguous for
the second order, for the third order, things become more complicated due to the nature
of the hopping process. For third order, it is essential to be aware that, in principle,
two different processes can lead to the same intermediate energies, which is not the case
for second-order processes. First, there is the process described in Sec. B.2.1, where the
d-p hopping processes absorb m and k photons respectively, which then get emitted in
the d-d process completing the virtual excitation. In the second case, the d-d process
takes place first, absorbing m + k photons, and then the d-p processes emit m and k

photons respectively, which is the reverse of the first process. To obtain the third-order
correction terms one has to calculate

Hα,β
eff = |β⟩ ⟨α| ⊗

∑
l,k,m

∑
δ,γ

⟨β, 0|Hl
|δ,m+ k⟩ ⟨δ,m+ k|

Eδ,m+k

Hk
|γ,m⟩ ⟨γ,m|

Eγ,m

Hm |α, 0⟩

= |β⟩ ⟨α| ⊗
∑

l,k,m

∑
δ,γ

⟨β, 0|
(
Hdd

−m−k

|δ,m+ k⟩ ⟨δ,m+ k|
Eδ,m+k

Hpd
k

|γ,m⟩ ⟨γ,m|
Eγ,m

Hpd
m

+Hpd
−m

|γ,m⟩ ⟨γ,m|
Eγ,m

Hpd
−k

|δ,m+ k⟩ ⟨δ,m+ k|
Eδ,m+k

Hdd
m+k

)
|α, 0⟩ , (B.13)

with δ, β possible intermediate excited states and α, β the possible initial states. Ne-
glecting the reversed path would lead to an incomplete and thus inaccurate effective
Hamiltonian.

B.2.4 Arbitrary polarization

For AP (B.7) has more complicated Peierls terms, which we introduced in (B.4). Again,
we want to consider an exemplary hopping process leading to the prefactors arising from
a coupling to a time-periodic light field. Here, we consider a hopping over the p2 ligand
atom. The three important parts of the kinetic Hamiltonian are

H1 = exp
{

−i A0√
2

[
sin(ωt) cos

(
α + π

4

)
+ 1
N

sin (Nωt+ ϵ) sin
(
α + π

4

)]}
p†

2d1 (B.14)

H2 = exp
{

−i A0√
2

[
sin(ωt) cos

(
α− π

4

)
+ 1
N

sin(Nωt+ ϵ) sin
(
α− π

4

)]}
d†

2p2 (B.15)

H3 = exp
{
iA0

[
sin(ωt) cos(α) + 1

N
sin(Nωt+ ϵ) sin(α)

]}
d†

1d2. (B.16)
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Again, we can use the Jacobi anger expansion in contrast to CP, we have to apply it
twice, which yields

H1 =
∑
m,n

Jm

[
A0√

2
cos(α + π

4 )
]
e−iωtmJn

[
A0√
2N

sin
(
α + π

4

)]
e−i(Nωt+ϵ)np†

2d1 (B.17)

H2 =
∑
m,n

Jm

[
A0√

2
cos(α− π

4 )
]
e−iωtmJn

[
A0√
2N

sin
(
α− π

4

)]
e−i(Nωt+ϵ)nd†

2p2 (B.18)

H3 =
∑
m,n

Jm [A0 cos(α)] eiωtmJn

[
A0

N
sin(α)

]
ei(Nωt+ϵ)nd†

1d2. (B.19)

Averaging over time yet again yields the effective Floquet term

H1
l =

∑
n

Jn

[
A0√
2N

sin(α + π

4 )
]

J−l−Nn

[
A0√

2
cos(α + π

4 )
]
e−iϵnp†

2d1 (B.20)

H2
l =

∑
n

Jn

[
A0√
2N

sin(α− π

4 )
]

J−l−Nn

[
A0√

2
cos(α− π

4 )
]
e−iϵnd†

2p2 (B.21)

H3
l =

∑
n

Jl−Nn [A0 cos(α)] Jn

[
A0

N
sin(α)

]
eiϵnd†

1d2. (B.22)

Combining these hopping processes yields the factor for the virtual third-order hopping
process

B3
l,m =

{∑
n

J−m−k−Nn [A0 cos(α)] Jn

[
A0

N
sin(α)

]
eiϵn

}

×
{∑

n

Jn

[
A0√
2N

sin(α− π

4 )
]

J−k−Nn

[
A0√

2
cos(α− π

4 )
]
e−iϵn

}

×
{∑

n

Jn

[
A0√
2N

sin(α + π

4 )
]

J−m−Nn

[
A0√

2
cos(α + π

4 )
]
e−iϵn

}
. (B.23)

With this, we can calculate the complete effective Hamiltonian, with which we can
determine the Kitaev-Heisenberg interactions introduced in Sec. 2.3.2 to

J =2 Re (⟨↑i↓j|Heff |↓i↑j⟩) (B.24)
D =2Im (⟨↑i↓j|Heff |↓i↑j⟩) (B.25)

h =1
2 (⟨↑i↑j|Heff |↑i↑j⟩ − ⟨↓i↓j|Heff |↓i↓j⟩) (B.26)

K = ⟨↑i↑j|Heff |↑i↑j⟩ + ⟨↓i↓j|Heff |↓i↓j⟩ − 2 ⟨↓i↑j|Heff |↓i↑j⟩ − J (B.27)
Γ = − 2 Im (⟨↑i↑j|Heff |↓i↓j⟩) (B.28)
µ =2 Re (⟨↑i↑j|Heff |↓i↓j⟩) . (B.29)

where ↑, ↓ are the effective j = 1/2 moments. To calculate these matrix elements,
we need to know how the annihilation and creation operators introduced in (B.12) act
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E
S [t 2p

d /(54(∆
p
d +

m
ω)) ]

E
P [t 2p

d /(54(∆
p
d +

m
ω)) ]

E
D [t 2p

d /(54(∆
p
d +

m
ω)) ]

⟨↓
i ↑

j |H
eff |↑

i ↓
j ⟩

4i(2t1 +
t3 )R

e [B
3l,m

−
B

3m
,l ]

12i(t1 +
t3 )R

e [B
3l,m

−
B

3m
,l ]

4i(t1 −
t3 )R

e [B
3l,m

−
A

2 ]
⟨↑

i ↑
j |H

eff |↑
i ↑

j ⟩
0

−
6 ((t1 −

t3 )Im [B
3l,m

−
B

3m
,l ]+

5t2 R
e [B

3l,m
+
B

3m
,l ])

−
6 ((t1 −

t3 )Im [B
3l,m

−
B

3m
,l ]+

t2 R
e [B

3l,m
+
B

3m
,l ])

⟨↓
i ↓

j |H
eff |↓

i ↓
j ⟩

0
6 ((t1 −

t3 )Im [B
3l,m

−
B

3m
,l ]−

5t2 R
e [B

3l,m
+
B

3m
,l ])

6 ((t1 −
t3 )Im [B

3l,m
−
B

3m
,l ]−

t2 R
e [B

3l,m
+
B

3m
,l ])

⟨↓
i ↑

j |H
eff |↓

i ↑
j ⟩

−
4(2t1 +

t3 )Im [B
3l,m

−
B

3m
,l ]

−
6 (4t1 Im [B

3l,m
−
B

3m
,l ]+

2t2 R
e [B

3l,m
+
B

3m
,l ])

−
6 (4t1 Im [B

3l,m
−
B

3m
,l ]+

2t2 R
e [B

3l,m
+
B

3m
,l ])

⟨↑
i ↑

j |H
eff |↓

i ↓
j ⟩

0
−

6 (i(t1 −
t3 )R

e [B
3l,m

+
B

3m
,l ]+

t2 R
e [B

3l,m
−
B

3m
,l ])

6 (i(t1 −
t3 )R

e [B
3l,m

+
B

3m
,l ]−

t2 R
e [B

3l,m
−

B
3m

,l ])
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E
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−
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on the |σi, σj⟩ states. This is well documented in the supplemental material of [31].
With this, we can calculate the desired matrix elements, which include ligand atoms
and the reversed path for each bond. In the calculations we proceed as follows, we
determine contributions to the matrix elements with a virtual excitation energy ES,
EP, and ED separately and then combine them to obtain the interactions (B.24)-(B.29).
We list the results for the different virtual excitations in Tab. B.1. The results in
Tab. B.1 were the first indicator that there have to be interactions beyond the J , K,
and Γ interactions, since contributions for the ⟨↑i↓j|Heff |↓i↑j⟩ are purely imaginary,
while Heisenberg interactions would be completely real. Hence, we can not attribute
these matrix elements to the Heisenberg interaction. This necessitates the introduction
of the new Dzyaloshinskii–Moriya type interaction type D

(Si × Sj)z = Sx
i S

y
j − Sy

i S
x
j = − i

2(S−
i S

+
j − S+

i S
−
j ). (B.30)

Similarly the µ interaction

Sx
i S

x
j − Sy

i S
y
j = 1

2
(
S+

i S
+
j + S−

i S
−
j

)
, (B.31)

arises from the real parts of ⟨↑i↑j|Heff |↓i↓j⟩, where the imaginary part of this matrix
element yields the Γ-interactions. These new interactions vanish for circular polarization,
which is why they have not yet been documented.

It is important to note that the inclusion of the reversed path has a tremendous
effect on the interactions. The omission of the reversed path in [31] yielded non-zero
third-order Heisenberg interactions for CP, which vanish if we take the reversed path into
account. As becomes evident in (B.27), this also has an effect on the Kitaev interactions,
which explains the discrepancy between numerical and analytical results in [31].

B.3 Fourth order

For fourth-order processes, we consider parts of the kinetic Hamiltonian describing a
p-d hopping. As for third-order processes, we evaluate the prefactors arising from the
influence of the light field via a simple example. Here, we consider a hopping from site
1 to site 2 mediated via the p2 ligand and back. This then yields
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B4
−m−l−k,lB

4∗
−m,−k =

{∑
n

Jn

[
A0√
2N

sin(α + π

4 )
]

J−m−l−k−Nn

[
A0√

2
cos(α + π

4 )
]
eiϵn

}

×
{∑

n

Jn

[
A0√
2N

sin(α− π

4 )
]

Jl−Nn

[
A0√

2
cos(α− π

4 )
]
eiϵn

}

×
{∑

n

Jn

[
A0√
2N

sin(α− π

4 )
]

J−k−Nn

[
A0√

2
cos(α− π

4 )
]
e−iϵn

}

×
{∑

n

Jn

[
A0√
2N

sin(α + π

4 )
]

J−m−Nn

[
A0√

2
cos(α + π

4 )
]
e−iϵn

}
(B.32)

as a prefactor for fourth-order virtual excitations. We can then calculate the matrix
elements for the Kitaev-Heisenberg Hamiltonian in the same fashion as in Sec. B.2.4.
Tab. B.2 displays the results for all relevant matrix elements. Combining these results
then yields the interactions (5.19)-(5.21). Again, considering the reverse path is essential
to obtain accurate interaction strengths.



147

CThe Hamiltonian

C.1 Two particle eigenstates of the Kanamori Hamiltonian

Tab. 2.1 lists the possible states for two particles distributed on the three d-orbitals.
Since Hund’s coupling is sizable in Ca2RuO4, we can only consider the states with EP

for the ground state manifold. Therefore, we have three possible states per site labeled
as |T−1⟩, |T0⟩, and |T1⟩ according to their total spin.

C.2 Three particle eigenstates of the Kanamori Hamiltonian

In case of double occupancy in one orbital, the eigenstates are given as Ψ3,1 and Ψ3,2 in
Tab. 2.2, with corresponding eigenenergies E3,1 and E3,2. One can derive these energies
via diagonalization of the Kanamori Hamiltonian Tab. C.1. The hopping processes
including such an intermediate state are either orbital preserving |βiβj⟩ ⟨βiβj| Fig. 6.3
or pair flip |βiβj⟩ ⟨αiαj| Fig. 6.3 processes. Here, βi denotes the orbital with no hole
occupation. For the orbital preserving process, we obtain energy corrections of the form

A = −
( 1
U + 2JH

+ 1
U

)
= −2 U + JH

U(U + 2JH) , (C.1)

where the two energies in the denominator arise from the energy difference between the
triplet state manifold and the excited three-particle states Ψ3,1 and Ψ3,2 respectively.
In the same fashion, we can obtain the energy correction for the pair flip terms, which

|↑α↓α↑β⟩ |↑β↑γ↓γ⟩

⟨↑α↓α↑β| 3U − 5JH JH
⟨↑β↑γ↓γ| JH 3U − 5JH

Table C.1: Matrix elements of the Kanamori Hamiltonian for a three-particle state with
an electron double occupancy.
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|↑α↓β↑γ⟩ |↓α↑β↑γ⟩ |↑α↑β↓γ⟩

⟨↑α↓β↑γ| 3U − 7JH −JH −JH
⟨↓α↑β↑γ| −JH 3U − 7JH −JH
⟨↑α↑β↓γ| −JH −JH 3U − 7JH

Table C.2: Matrix elements of the Kanamori Hamiltonian for a three-particle state with
no electron double occupancy.

include doubly occupied intermediate states

AF = −1
2

( 1
U + 2JH

− 1
U

)
= − −JH

U(U + 2JH) . (C.2)

Hopping processes with an intermediate state with three electrons occupying all three
distinct orbitals can be distinguished into the states with total spin S = 1/2 (|Ψt,3⟩,
|Ψt,4⟩, |Ψt,5⟩) and S = 3/2 states (|ψt,6⟩). We can obtain the former ones via diagonal-
ization of the Kanamori Hamiltonian Tab. C.2. Processes including the intermediate
S = 3/2 state |Ψt,6⟩ yield a energy correction of

B = − 1
U − 3JH

. (C.3)

Hopping processes, which include the S = 1/2 intermediate states, either are spin pre-
serving with a correction term

C = −1
3

1
U − 3JH

− 2
3

1
U

= − (U − 2JH)
U(U − 3JH) , (C.4)

or induce a spin-flip

D = −1
3

1
U − 3JH

+ 1
3

1
U

= − JH

U(U − 3JH) . (C.5)

Again, the energies arising in the denominators of these expressions arise from the energy
difference between the d4 ground state manifold defined in Sec. C.1 and the respective
excited state.

C.3 Initial state |βiβj⟩

To obtain the complete Hamiltonian it is advisable to consider the virtual hopping
processes for different scenarios and then combine them. First, we want to distinguish
between the initial orbital configurations of two d4 sites. We start the analysis of hopping
processes with initial states |βiβj⟩ where the double occupation resides in the same orbital
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|↑α↑γ, ↑α↓γ⟩ |↑α↓γ, ↑α↑γ⟩ |↓α↑γ, ↑α↑γ⟩ |↑α↑γ, ↓α↑γ⟩

⟨↑α↑γ, ↑α↓γ| t2γA −t2γA 0 0
⟨↑α↓γ, ↑α↑γ| −t2γA t2γA 0 0
⟨↓α↑γ, ↑α↑γ| 0 0 t2αA −t2αA
⟨↑α↑γ, ↓α↑γ| 0 0 −t2αA t2αA

Table C.3: Interactions arising through virtual hopping processes in the mS = 1 spin
sector for an initial orbital state |βiβj⟩. We write the interactions in the spin basis.

|↑α↑γ, ↓α↓γ⟩ |↓α↓γ, ↑α↑γ⟩ |↓α↑γ, ↑α↓γ⟩ |↑α↓γ, ↓α↑γ⟩

⟨↑α↑γ, ↓α↓γ| (t2γ + t2α)A 0 −t2γA −t2αA
⟨↓α↓γ, ↑α↑γ| 0 (t2γ + t2α)A −t2αA −t2γA
⟨↓α↑γ, ↑α↓γ| −t2γA −t2αA (t2γ + t2α)A 0
⟨↑α↓γ, ↓α↑γ| −t2αA −t2γA 0 (t2γ + t2α)A

Table C.4: Interactions arising through virtual hopping processes in the mS = 0 spin
sector for an initial orbital state |βiβj⟩. We write the interactions in the spin basis.

on both sites. Since the kinetic Hamiltonian (2.1) preserves the total spin of the two
sites combined we can further dissect the manifold of initial states with |βiβj⟩ into spin
sectors. Since two holes reside on each site, the total magnetic spin quantum number
can take values mS = −2,−1, 0, 1, 2. Hkin has the same hopping amplitudes for ↑ and ↓,
hence ±ms are calculated completely analogous. This reduces the spin sectors we have
to consider to ms = 0, 1, 2.

The initial state with the electron double occupancy in orbital β on both states and
↑ for each hole does not allow for any hopping processes due to the Pauli principle thus,
we obtain H2 = 0. Tab. C.3 and Tab. C.4 display the virtual hopping processes for
the ms = 0, 1 spin sectors. From Tab. C.3 we deduce the Hamiltonian for spin sector
mS = 1

H1
i,j = A

2
(
t2α + t2γ

) (
|T 1

i T
0
j ⟩ ⟨T 1

i T
0
j | − |T 1

i T
0
j ⟩ ⟨T 0

i T
1
j | + |T−1

i T 0
j ⟩ ⟨T−1

i T 0
j |

− |T−1
i T 0

j ⟩ ⟨T 0
i T

−1
j | + i ↔ j

)
⊗ |βiβj⟩ ⟨βiβj| , (C.6)
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where we projected the spin states into the triplet basis via

|↑, ↑⟩ = |T1⟩ (C.7)
|↓, ↓⟩ = |T−1⟩ (C.8)

|↓, ↑⟩ = 1√
2

(|T 0⟩ + |S⟩) (C.9)

|↑, ↓⟩ = 1√
2

(|T 0⟩ − |S⟩). (C.10)

We neglect the singlet states |S⟩ because they are not part of the ground state manifold
EP . In the same fashion, we obtain the effective Hamiltonian for the mS = 0 spin sector

H0
i,j = −

(
t2α + t2γ

) U + JH

U(U + 2JH)
(
2 |T 1

i T
−1
j ⟩ ⟨T 1

i T
−1
j | − |T 1

i T
−1
j ⟩ ⟨T 0

i T
0
j |

− |T 0
i T

0
j ⟩ ⟨T 1

i T
−1
j | + i ↔ j + |T 0

i T
0
j ⟩ ⟨T 0

i T
0
j |
)

⊗ |βiβj⟩ ⟨βiβj| . (C.11)

Combining the results of the different spin sectors and including H−1
i,j , we derive at

the spin-orbit Hamiltonian for orbital preserving hopping processes

HOP
ββ = −

∑
i,j

U + JH

U(U + 2JH)
(
t2α + t2γ

) (
|T 1

i T
0
j ⟩ ⟨T 1

i T
0
j | − |T 1

i T
0
j ⟩ ⟨T 0

i T
1
j |

+ 2 |T 1
i T

−1
j ⟩ ⟨T 1

i T
−1
j | + 1

2 |T 0
i T

0
j ⟩ ⟨T 0

i T
0
j | + |T−1

i T 0
j ⟩ ⟨T−1

i T 0
j | − |T−1

i T 0
j ⟩ ⟨T 0

i T
−1
j |

− |T 1
i T

−1
j ⟩ ⟨T 0

i T
0
j | − |T 0

i T
0
j ⟩ ⟨T 1

i T
−1
j | + i ↔ j

)
⊗ |βiβj⟩ ⟨βiβj| . (C.12)

We now can project the Hamiltonian from the triplet basis into a S = 1 basis via

ni = (|T 1
i ⟩ ⟨T 1

i | + |T−1
i ⟩ ⟨T−1

i | + |T 0
i ⟩ ⟨T 0

i |)
Sz

i = (|T 1
i ⟩ ⟨T 1

i | − |T−1
i ⟩ ⟨T−1

i |)

Sx
i = 1

2(S+
i + S−

i )

Sy
i = i

2(−S+
i + S−

i )

S+
i =

√
2(|T 1

i ⟩ ⟨T 0
i | + |T 0

i ⟩ ⟨T−1
i |)

S−
i =

√
2(|T−1

i ⟩ ⟨T 0
i | + |T 0

i ⟩ ⟨T 1
i |), (C.13)

which yields

HOP
ββ =

∑
i,j

U + JH

U(U + 2JH)
(
t2α + t2γ

)
(SiSj − 1) ⊗ |βiβj⟩ ⟨βiβj| . (C.14)

The orbital flip processes in the |βiβj⟩ manifold can be derived completely analogous to
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|T 1
i T

1
j ⟩ ⊗ |βiγj⟩ |T 1

i T
1
j ⟩ ⊗ |γiβj⟩

⟨βiγj| ⊗ ⟨T 1
i T

1
j | (t2γ + t2β)B −2tγtβB

⟨γiβj| ⊗ ⟨T 1
i T

1
j | −2tγtβB (t2γ + t2β)B

Table C.5: Interactions arising through virtual hopping processes in the mS = 2 spin
sector for an initial orbital state |βiγj⟩. We write the interactions in the triplet basis
defined in Sec. C.1.

the orbital preserving terms yielding

HOF
ββ =

∑
i,j

−JH

U(U + 2JH)tαtβ (SiSj − 1) ⊗ (|αiαj⟩ ⟨βiβj| + |βiβj⟩ ⟨αiαj|) . (C.15)

The total Hamiltonian for the |βiβj⟩ then is Hββ = HOP
ββ +HOF

ββ .

C.4 Initial state |βiγj⟩

We now consider the initial states with the electron double occupations residing in
distinct orbitals for the adjacent sites i and j. Like in Sec. C.3, we consider the three
spin sectors mS = 0, 1, 2. We summarize the virtual hopping processes, projected into
the triplet basis, in Tab. C.5, Tab. C.6, and Tab. C.7. Therefore, we obtain the mS = 2
Hamiltonian

H2 = −
∑
i,j

|T 1
i T

1
j ⟩ ⟨T 1

i T
1
j | ⊗

(
t2γ + t2β
U − 3JH

|βiγj⟩ ⟨βiγj| − 2tγtβ
U − 3JH

|βiγj⟩ ⟨γiβj| + i ↔ j

)
.

(C.16)

The mS = 1 Hamiltonian is given by

H1 =
{ [
t2αA/2 − (t2β + t2γ)D

] (
|T 1

i T
0
j ⟩ ⟨T 1

i T
0
j | − |T 1

i T
0
j ⟩ ⟨T 0

i T
1
j | − |T 0

i T
1
j ⟩ ⟨T 1

i T
0
j |

+ |T 0
i T

1
j ⟩ ⟨T 0

i T
1
j |
)

+ (t2γ + t2β)B
(
|T 1

i T
0
j ⟩ ⟨T 1

i T
0
j | + |T 0

i T
1
j ⟩ ⟨T 0

i T
1
j |
)}

⊗ |βiγj⟩ ⟨βiγj|

+ tγtβ

[
(B − D)

(
|T 1

i T
0
j ⟩ ⟨T 1

i T
0
j | − |T 1

i T
0
j ⟩ ⟨T 0

i T
1
j | − |T 0

i T
1
j ⟩ ⟨T 1

i T
0
j |

+ |T 0
i T

1
j ⟩ ⟨T 0

i T
1
j |
)

− 2B
(
|T 1

i T
0
j ⟩ ⟨T 1

i T
0
j | + |T 0

i T
1
j ⟩ ⟨T 0

i T
1
j |
) ]

⊗ |βiγj⟩ ⟨γiβj| + i ↔ j, (C.17)
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|T
1i
T

0j ⟩⊗
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i γ
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|β

i γ
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|γ

i β
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and last but not least, for mS = 0, we obtain

H0 =
{ [
t2αA/2 − (t2β + t2γ)D

] (
2 |T 1

i T
−1
j ⟩ ⟨T 1

i T
−1
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i T 1
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i T 1
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0
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i T
0
j |
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0
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0
j |
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⊗ |βiγj⟩ ⟨βiγj|
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i T 1
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0
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0
j |
) ]

⊗ |βiγj⟩ ⟨γiβj| + i ↔ j. (C.18)

Again, to obtain the effective Hamiltonian for the |βiγj⟩ manifold, we add up the in-
teractions of the spin sectors. Projecting this into the S = 1, like in Sec. C.3, then
yields

Hβγ =
{ [

(t2β + t2γ)D − t2αA/2
]

(SiSj − 1) + (t2γ + t2β)B
}

⊗ |βiγj⟩ ⟨βiγj|

− tγtβ [(B − D)(SiSj − 1) + 2B] ⊗ |βiγj⟩ ⟨γiβj| . (C.19)

C.5 Complete Hamiltonian

We can obtain the complete effective Hamiltonian by combining the results of Sec. C.3
and Sec. C.4. This yields an effective spin-orbit Hamiltonian including both anisotropic
hopping tα ̸= tβ ̸= tγ as well as finite Hund’s coupling JH

H =Hββ +Hβα

=
∑
α ̸=β

t2β(SiSj − 1) U + JH

U(U + 2JH) ⊗ |αiαj⟩ ⟨αiαj|

− tαtβ(SiSj − 1) JH

U(U + 2JH) ⊗ |αiαj⟩ ⟨βiβj|

+
[
(SiSj − 1)t2γ ̸=(α,β)

(U + JH)
U(U + 2JH) − (SiSj − 1)

(t2α + t2β)JH

U(U − 3JH) −
(t2α + t2β)

(U − 3JH)

]

⊗ |αiβj⟩ ⟨αiβj| + tαtβ
U(U − 3JH) [(U − JH)(SiSj + 1) + 2JH] ⊗ |αiβj⟩ ⟨βiαj| . (C.20)
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The expressions (6.2)-(6.4) in the main text can be derived via the mapping (6.1). To
compare our model with the Hamiltonian of [39] we set JH = 0 and consider isotropic
NN hopping. This then yields for a c bond (like defined in [39])

H = t2

U

[
− (SiSj + 1) ⊗

(
|BiCj⟩ ⟨BiCj| + |CiAj⟩ ⟨CiAj| + |AiBj⟩ ⟨BiAj| + i ↔ j

+ 2 |CiCj⟩ ⟨CiCj| + |BiBj⟩ ⟨BiBj| + |AiAj⟩ ⟨AiAj|
)

+ 3 |BiCj⟩ ⟨BiCj| + 3 |CiAj⟩ ⟨CiAj| + 2 |AiBj⟩ ⟨AiBj| + i ↔ j

+ 4 |CiCj⟩ ⟨CiCj| + 2 |BiBj⟩ ⟨BiBj| + 2 |AiAj⟩ ⟨AiAj|
]

= − t2

U

[
(SiSj + 1) ⊗ Oij + (Lz

i )2 +
(
Lz

j

)2
]
, (C.21)

with

Oij = (Lx
iL

x
j )2 + (Ly

iL
y
j )2 + Lx

iL
y
iL

y
jL

x
j + Ly

iL
x
iL

x
jL

y
j . (C.22)

Here we used the definition Lx
i = −i(|Bi⟩ ⟨Ci| − |Ci⟩ ⟨Bi|), with |Ai⟩ , |Bi⟩, and |Ci⟩

describing an electron double occupancy in the yz, zx, and xy orbital respectively. Since
we chose a specific bond direction, the beforehand general double occupancy states |αi⟩,
|βi⟩, and |γi⟩ now become |Ai⟩ , |Bi⟩, and |Ci⟩. Comparing (C.21) with the result of [39]
[in the text before (1)], we see a perfect agreement solidifying the validity of the model.
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Deutsche Zusammenfassung

In dieser Thesis haben wir effektive Kugel-Khomskii-Modelle für verschiedene Mott-
isolierende Übergangsmetalle hergeleitet und diese analysiert. Hierbei haben wir uns
auf d4 und d5 Materialien mit beträchtlicher Spin-Bahn Kopplung, wie u.a. Ca2RuO4

und α-RuCl3, konzentriert. Diese Thesis war in zwei Hauptsegmente eingeteilt, die die
verschiedenen Eigenschaften von Ru t42g und t52g Kitaev-Heisenberg Materialien disku-
tieren.

Im ersten Teil haben wir lediglich d5 Kitaev-Heisenberg Materialien untersucht. Der
effektive Kugel-Khomskii Hamiltonian für diese ist weitläufig bekannt und liefert, für
starke Spin-Bahn Kopplung, ein Modell mit Kitaev, Heisenberg, Γ und Γ′ Interaktionen.
Ein großes Feld der Forschung für diese Materialien ist darauf ausgerichtet Wege zu
finden diese Materialien in ein pures Kitaev-Modell zu treiben. Dies ist wünschenswert,
da dieses Modell einen exakt lösbaren Grundzustand hat, welcher eine Spinflüssigkeit
beschreibt [6]. In dieser Thesis haben wir einen relativ unerforschten Ansatz, die Bee-
influssung von Interaktionsparametern durch ein zeitperiodisches Lichtfeld, untersucht.
Durch den Floquet Formalismus, haben wir neue Ausdrücke für Interaktionen gefunden,
die von der Frequenz und Amplitude des Lichts abhängen.

Wir haben gezeigt, dass Ruthenate, wie α-RuCl3, geeigneter für Floquet-Engineering
sind als Iridate, welche beide nah am Kitaev Spinflüssigkeitzustand sind. Ruthenate
sind von Vorteil, da das Erhitzen des Materials während des Engineerings eine kleinere
Rolle spielt. Dies ist der Fall, da Hund’s Kopplung JH und Coulomb Abstoßung U

hier einen weiteren Frequenzbereich in dem Erhitzen abwesend ist erlaubt. In diesen
Frequenzbereichen ist das effektive Floquet-Kitaev-Heisenberg-Modell plausibel. Linear
polarisiertes Licht induziert hier Anisotropie in den Interaktionen, welche vom Winkel
des Lichts zur betreffenden Verbindung abhängt. Wir argumentieren, dass dies ein
mögliches Werkzeug sein könnte, welches es uns erlaubt Phasenübergänge innerhalb
einer bestehenden Kitaev Spinflüssigkeit zu induzieren.

Zirkular polarisiertes Licht, auf der anderen Seite, erhält die Isotropie des Sys-
tems, bricht jedoch die Zeitumkehrsymmetrie. Dies führt zu einem inversen Faraday
Effekt [31, 32]. Dieser Effekt kann beobachtet werden, wenn man ein Floquet-Kitaev-
Heisenberg-Modell betrachtet, welches Prozesse dritter Ordnung über die Liganden ex-
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plizit berücksichtigt. Um die akkuraten Stärken der einzelnen Interaktionen zu erhalten,
ist es hierbei auch notwendig Ligandprozesse vierter Ordnung zu inkludieren. Die Inklu-
sion von Prozessen dritter und vierter Ordnung hat nicht nur einen Effekt auf zirkular,
sondern auch linear polarisiertes Licht. Für linear polarisiertes Licht induzieren diese
Terme zwei neue Interaktionen, welche die Inversionssymmetrie des Systems brechen.
Auf der anderen Seite verschwindet das induzierte Magnetfeld für lineare Polarisation,
da die Zeitumkehrinvarianz hier nicht gebrochen wird. Die Lücke zwischen linearer und
zirkularer Polarisation kann mithilfe elliptischer Lissajous Figuren gefüllt werden. In
dieser Thesis haben wir eine effektiven Floquet-Hamiltonian für beliebige Polarisatio-
nen präsentiert, welcher die beiden Grenzfälle verbinden kann. Komplexere Lissajous
Figuren entfernen sich dann weiter von den Grenzfällen, lineare und zirkulare Polarisa-
tion. Lissajous Figuren mit einer großen Frequenzdifferenz in x und y Richtung zeigen
eine Entkopplung der Kitaev-Heisenberg Interaktionen von der relativen Phase ϵ. Das
induzierte Magnetfeld kann jedoch nach wie vor durch ϵ an- und ausgeschaltet wer-
den. Daher könnte man im Prinzip das Magnetfeld relativ zu den anderen Parametern
abstimmen.

Der Floquet Formalismus führt eine Vielzahl an Möglichkeiten ein, Eigenschaften
von Kitaev-Heisenberg Materialien ein, von denen wir lediglich einige wenige betra-
chtet haben. Unser effektives Modell liefert jedoch ein solides Fundament, um weitere
Möglichkeiten zu erkunden. Ein erster nächster Schritt wäre die Implementation unseres
Modells für eine optische Kavität, welche kürzlich im Kontext von Floquet Engineering
diskutiert wurde [115]. Des Weiteren könnte man sich mit numerischen Kalkulationen
zu Grundzustandseigenschaften für das Modell mit Termen vierter Ordnung befassen.
Grundzustände könnten hierbei Dimere, verschiedene Spinflüssigkeiten, sowie einige der
geordneten Zustände, die im Kontext von konventionellen Kitaev-Heisenberg Materialien
diskutiert wurden, sein.

Der zweite Teil dieser Thesis befasste sich mit d4 Übergangsmetall basierter Mott
Isolatoren, welche eine Quadratgitterordnung haben. Besonderer Fokus lag hierbei auf
dem Material Ca2RuO4. Im Gegensatz zu den Kitaev-Heisenberg Materialien im er-
sten Teil sind die Kugel-Khomskii-Modelle hier relativ unerforscht. In dieser Thesis
haben wir einen effektiven Spin-Bahn Hamiltonian präsentiert, welcher Hund’s Kopplung
JH, anisotrope Interaktionen nächster Nachbarn, sowie dritt-nächster Nachbarn berück-
sichtigt. Ein solcher Hamiltonian wurde im Kontext von Ca2RuO4, unseres Wissens,
bisher nicht hergeleitet. Mit diesem Modell war es uns möglich eine detaillierte Analyse
der Grundzustandseigenschaften, in Form eines ∆−λ Phasendiagramms, durchzuführen.

Wir haben festgestellt, dass ein beträchtliches Kristallfeld eine antiferromagnetische
Ordnung induziert. Hierbei ändert sich die Orientierung der Spins von orthogonal zur
Ebene, ∆ ≪ 0, zu in der Ebene ∆ ≫ 0 mit einem Vorzeichenwechsel des Kristallfelds.
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Zwischen diesen beiden antiferromagnetischen Phasen existiert eine stripy Phase, für
schwache Spin-Bahn Kopplung und schwaches positives ∆. Für schwaches negatives
Kristallfeld ∆ und schwache Spin-Bahn Kopplung, haben wir zudem eine neue Phase
gefunden, welche wir mit 3U1D bezeichnet haben. Wie die stripy Phase verschwindet
diese für beträchtliche Spin-Bahn Kopplung. Für sehr starke Spin-Bahn Kopplung wird
das System paramagnetisch, wobei der Phasenübergang hier mit größerem ∆ zu stärk-
erem λ wandert. Wir verordnen Ca2RuO4 eindeutig in der antiferromagnetischen Phase
mit Spinorientierung in der Ebene. Dies ist in Übereinstimmung mit sowohl experi-
mentellen [5] als auch VCA Resultaten [63].

Betreffend Anregungen, haben wir festgestellt, dass die Resultate des dynamische
Spinstrukturfaktors unseres Modells exzellente Übereinstimmung mit experimentellen
Resultaten inelastischer Neutronenstreuung [5] haben. Hierbei konnten wir charakter-
istische Eigenschaften von Ca2RuO4, wie das Maximum der Transversalmode, repro-
duzieren. Die dynamischen Eigenschaften sind sehr empfindlich gegenüber einer Än-
derung in ∆ und λ und scheinen stark von der Lochdichte im xy Orbital nxy abzuhän-
gen. Wir haben festgestellt, dass nxy für Ca2RuO4 einen nichtverschwindenden Beitrag
hat. Dies ist ein klares Indiz, dass Spin-Bahn Kopplung eine relevante Rolle in Ca2RuO4

spielt. Wir schlussfolgern daher, dass der Grundzustand exzitonischer Natur ist. Die
starke Abhängigkeit der dynamischen Eigenschaften von nxy, macht unsere gute Übere-
instimmung mit experimentellen Resultaten bemerkenswert.

Zuletzt haben wir das Verhalten des Spin-Bahn-Modells, im speziellen Ca2RuO4,
für endliche Temperaturen untersucht. Monte-Carlo Simulationen liefern sowohl die
spezifische Wärmekapazität C(T ) als auch die Suszeptibilität χ(T ) welche Qualitativ
mit experimentellen Messungen verglichen werden können. Mit diesen Simulationen
war es uns möglich, die Néel Temperatur von Ca2RuO4 zu identifizieren, welche den
Phasenübergang von einem antiferromagnetischen in einen paramagnetischen Mott Iso-
lator markiert. Unsere numerischen Resultate haben eine gute qualitative Übereinstim-
mung mit dem Experiment gezeigt. Des Weiteren erscheint die Néel Temperatur sehr
sensitiv gegenüber Änderungen in ∆ und λ. Während TN gleichmäßig mit steigendem
λ ansteigt, sind die Änderungen durch ein variierendes ∆ wesentlich abrupter und stark
von der magnetischen Ordnung des Grundzustands abhängig. Die Orbitalordung zeigt
keine signifikante Änderung bei TN.

Im Prozess die Néel Temperatur möglichst genau zu bestimmen, haben wir die Ef-
fizienz der FOPT Methode für unser Modell untersucht. Es hat sich herausgestellt, dass
unser System kein geeigneter Kandidat für FOPT ist, da es bereits relativ schnell mit
PTMC konvergiert, während FOPT besonders für Probleme mit langen PTMC Konver-
genzzeiten geeignet ist. Für Systeme, die unserem ähneln, empfehlen wir daher einen
traditionellen PTMC Ansatz mit einer hohen Anzahl an verschiedenen Temperaturen.
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Das effektive Spin-Bahn-Modell für d4 Übergangsmetall basierte Mott Isolatoren,
welches wir in dieser Thesis hergeleitet haben, ist ein guter Startpunkt für zukünftige
Forschungen. Ein erster Ansatz wäre Monte-Carlo Resultate für Grundzustandseigen-
schaften auf größere Cluster zu erweitern, um somit die Effekte der Clustergröße auf
Phasenübergänge besser abschätzen zu können. Des Weiteren wäre es interessant Licht-
Materie Wechselwirkungen mithilfe des Floquet Formalismus zu untersuchen, wie wir es
bereits für d5 Materialien gemacht haben. Hierbei wäre vor allem das Triplon-Modell für
dominante Spin-Bahn Kopplung von Interesse, um zu untersuchen, ob die Möglichkeit
besteht Triplon Kondensation via Licht zu manipulieren. Zuletzt ist es möglich unser
Modell auf ähnliche Materialien anzuwenden wie z.B. Vanadate [116]. Hier müsste man
das Modell für drei Dimensionen anpassen, um den Einfluss von ∆ und λ zu untersuchen.
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