Synthese und Charakterisierung P-nukleophiler Diorganophosphonite und ihrer Boran-Addukte

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Thomas Daniel Hettich

aus Schramberg

Hauptberichter: Prof. Dr. Dietrich Gudat

Mitberichter: Prof. Dr. Biprajit Sarkar

Prüfungsvorsitzender: Prof. Dr. Michael R. Buchmeiser

Tag der mündlichen Prüfung: 19.09.2023

Institut für Anorganische Chemie der Universität Stuttgart

2023

Synthese und Charakterisierung P-nukleophiler Diorganophosphonite und ihrer Boran-Addukte

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Thomas Daniel Hettich

aus Schramberg

Hauptberichter: Prof. Dr. Dietrich Gudat

Mitberichter: Prof. Dr. Biprajit Sarkar

Prüfungsvorsitzender: Prof. Dr. Michael R. Buchmeiser

Tag der mündlichen Prüfung: 19.09.2023

Institut für Anorganische Chemie der Universität Stuttgart

2023

Erklärung über die Eigenständigkeit der Dissertation

Ich versichere, dass ich die vorliegende Arbeit mit dem Titel

"Synthese und Charakterisierung P-nukleophiler Diorganophosphonite und ihrer Boran-Addukte"

selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe; aus fremden Quellen entnommene Passagen und Gedanken sind als solche kenntlich gemacht.

Declaration of Authorship

I hereby certify that the dissertation entitled

"Synthese und Charakterisierung P-nukleophiler Diorganophosphonite und ihrer Boran-Addukte"

is entirely my own work except where otherwise indicated. Passages and ideas from other sources have been clearly indicated.

Ort/Place, Datum/Date

Thomas Daniel Hettich

Teile der vorliegenden Arbeit wurde in folgender Publikation veröffentlicht:

Thomas D. Hettich, Richard Rudolf, Christoph M. Feil, Nicholas Birchall, Martin Nieger, und Dietrich Gudat. "Synthesis and Ambiphilic Reactivity of Metalated Diorgano-Phosphonite Boranes". *Chemistry – A European Journal* 27, Nr. 17 (2023), pp. 5412–16.

Thomas D. Hettich, Richard Rudolf, Nicholas Birchall, Martin Nieger, und Dietrich Gudat. "Silyland Germyl-substituted Diorganophosphonites". *European Journal of Inorganic Chemistry* 26, Nr. 29 (2023), e202300331. Viele verlieren den Verstand deshalb nicht, weil sie keinen haben. – Arthur Schopenhauer

Danksagung

Mein besonderer Dank gilt Prof. Dr. Dr. h.c. Dietrich Gudat für die Ermöglichung der Forschung in seinem Arbeitskreis auf diesem faszinierenden und vielfältigem Themengebiet, für die Unterstützung durch Gespräche, Ratschläge und konstruktive Anregungen sowie durch spezielle NMR-Messungen und Durchführung der DFT-Rechnungen, die diese Arbeit bereichert haben.

Weiterhin danke ich Prof. Dr. Biprajit Sarkar für die Übernahme des Koreferats.

Prof. Dr. Michael R. Buchmeiser danke ich für die Übernahme des Prüfungsvorsitzes.

Ich danke ferner Dr. Wolfgang Frey für die Messung der Einkristalle, der durch sein filigranes Handwerksgeschick viele in dieser Arbeit vorgestellten Kristallstrukturen ermöglicht hat. Außerdem danke ich hierbei auch Dr. Christoph Feil und Nicholas Birchall für die geduldsame und sorgfältige Lösung der Einkristallstrukturdaten und stetige Bereitschaft zur Hilfe bei der Interpretation dieser.

Mein Dank gilt Benjamin Rau und Barbara Förtsch für die Aufnahme zahlreicher NMR-Spektren und Barbara Förtsch zusätzlich für die Aufnahme der Elementaranalysen. Außerdem danke ich Dr. Simon Suhr und Fridolin Hennhöfer für die Aufnahme von ESR-Spektren.

Der Analytikabteilung des Instituts für Organische Chemie danke ich für die Aufnahme der Massenspektren.

Ich danke meinem Forschungspraktikant Richard Rudolf für die engagierte Arbeit und gute Kollegialität, deren gute Ergebnisse das Produkt waren.

Weiterhin danke ich meinen Bacheloranden Nicholas Travnicek und Johannes Hommel für die gute Zusammenarbeit und geduldiges Bearbeiten der Forschungsthemen.

Ich danke der Deutschen Forschungsgemeinschaft (DFG) für die Finanzierung des Forschungsprojekts und der Gesellschaft deutscher Chemiker (GDCh) für Reisestipendien zu zahlreichen Tagungen.

Dr. Christoph Feil, Carlo Sibold und Thomas Herzog danke ich für das Korrekturlesen der Arbeit.

Den Mitarbeitern des Instituts für Anorganische Chemie danke ich für die Unterstützung.

Mein besonderer Dank gilt allen aktuellen und ehemaligen Mitgliedern des AK Gudat (N. Birchall, M. Blum, M. Christ, M. Cicac-Hudi, T. Dunaj, C. Feil, F. Goerigk, M. Kaaz, M. Papendick, F. Richter, C. Sibold) und den Mitgliedern des AK Kaim und AK Sarkar für ihren kollegialen und freundschaftlichen Umgang, die die Arbeit und Aktivitäten außerhalb des Labors angenehm gestaltet haben.

Ganz speziell, möchte ich meinen Eltern und meinem Bruder, sowie meiner Freundin Ellen für den stetigen Rückhalt und die Unterstützung danken.

Inhaltsverzeichnis

1	Ein	leitung						•••••	1
-	1.1	Gängige	Synthesestrate	egien von Organ	ophosphane	en und -phosp	phoniten		2
-	1.2	P-H Real	ktivität von O-	und N-substituie	rten Phospl	nanen			4
ć	1.3 Subst	Vorarbei ituenten .	iten zur Synt	hese metalliert	er Phospha	an-Borane m	it elektroi	negati	iven 8
-	1.4	Präparat	tive Aspekte su	ıbstituierter Mor	າo-, Di- und	Trisilylphosph	1ane		10
-	1.5	Charakte	erisierung elekt	tronischer und s	terischer Eig	genschaften vo	on Phospha	anen.	13
2	Zie	lsetzung							17
3	Erg	ebnisse u	nd Diskussion						19
3	3.1	Synthese	e von Diorgano	phosphonit-Bor	anen			•••••	19
3	3.2	Metallie	rung von Diorg	anophosphonit-	Boranen			•••••	22
	3.2	.1 Ka	ationeneinfluss	s auf die Stabilitä	it von Dialko	oxyphosphid-I	Boranen		22
	3.2	.2 Se	elbstkondensat	tion von Dialkox	yphosphid-E	Boranen			30
	3.2 Bas	.3 Ri sen bzw. N	eaktivität met Nukleophilen	tallierter Diorga	nophospho	nit-Borane g	egenüber	exter	nen 33
3	3.3	Reaktivit	tät metallierter	r Phosphan-Bora	ne gegenüb	er Elektrophil	len	•••••	36
	3.3	.1 Ti	ransmetallieru	ng von Kalium-D	iethoxypho	sphid-Boran		•••••	37
	3.3	.2 R	eaktivität	metallierter	Diorganopl	nosphonit-Boi	rane g	egenü	iber
	Trit	tyliumque	llen						39
	3.3 sch	.3 Sy wereren	ynthese von Gruppe 14 Hor	Silyl-subsituierte	en Diorgan	ophosphonit-	Borane ur	nd de	eren 46
	3.3	.4 Ei	ntschützung vc	on Tetrel-substitu	uierten Dior	ganophospho	onit-Borane	en	51

	3.3	.5	Versuche	zur Um	setzung	von	Kalium	n-Dietho	oxyphosp	ohid-Bora	n [3b] K	mit
	He	terokur	mulenen									68
	3.4	Reakt	ivität	Tetrel-su	ubstituier	ter	Di	iorganc	phospho	onite	gegeni	über
	Tetra	carbon	ylnickel: Be	stimmun	g von Tol	mans	s elektr	onisch	em Parar	neter (TE	P)	70
	3.5	Seleni	erung Tetre	el-substit	uierter Di	iorga	nopho	sphonit	te			75
4	Zus	samme	nfassung									83
5	Со	nclusio	n									88
6	Exp	perimer	ntalteil									93
	6.1	Allger	neine Arbei	itsbeding	ungen							93
	6.2	Analv	tische Metł	noden	-							93
	63	, DET-B	echnungen									٩Л
	с.л	Cunth	acovarachri	fton								
	6.4	Synth	esevorschri	rten		•••••						96
	6.4	.1	Diisopropy	lphospho	onit-Bora	n [2c	:]BH₃					96
	6.4	.2	Bis(2,6-dii	sopropyl	ohenyl)ph	nospł	nonit-B	oran [2	d] BH₃			97
	6.4	.3	Bis(2,6-dii	sopropyl	ohenyl)ph	nospł	nonit 2 0	d				98
	6.4	.4	4,4,5,5-Te	tramethy	ʻl-1,3,2-di	охар	hospho	olidin-E	oran [2e]BH₃		99
	6.4	.5	S-1,1'-Bina	aphthylph	nosphonit	t-Bor	an [2f]	BH₃				100
	6.4	.6	Lithium-Di	iethoxypł	nosphid-E	Boran	n [3b] Li					101
	6.4	.7	Lithium-Di	iisopropo	xyphospł	nan-E	Boran [3c]Li				102
	6.4	.8	Natrium-D	iethoxyp	hosphid-	Bora	n [3b] N	Va				103
	6.4	.9	Natrium-D	iisoprop	oxyphosp	hid-E	Boran [3c] Na .				104
	6.4	.10	Kalium-Die	ethoxyph	osphid-B	oran	[3b] K .	-				105
	6.4	.11	Kalium-Dii	sopronov	wphosnh	id-Br	oran [3	c] K				106
	с.ч	12	Lithium_1	1 2 2 + 0+			trinhos	nhid 1	7 2_tric b	oran [Ec]	11 i	107
	0.4		Liunum-1,	1,0,0-101	aisohioh	vuny-	uipiius	pinu 1,	∠,ວະແນະ⊾		J ⊏I	TO1

6.4.13	Lithium-1,1,3,3-tetraethoxy-triphosphid-1,3-bis-boran [4b]Li108
6.4.14	Lithium-1,1,3,3-tetraisopropoxy-triphosphid-1,3-bis-boran [4b]Li109
6.4.15	Umsetzung von Lithium-Diethoxyphosphid-Boran [3b]Li mit <i>n</i> -BuLi110
6.4.16	Umsetzung von Diethylphosphonit-Boran [2b]BH ₃ mit Lithium-
diisopropy	ylamid (LDA) zu [3i] Li111
6.4.17	Umsetzung von Lithium-Diethoxyphosphid-Boran [3b]Li mit Lithium-
Diphenylp	hosphid112
6.4.18	Kalium-bis(2,6-diisopropylphenoxy)phosphan-Boran [3d]K113
6.4.19	Kalium-4,4,5,5-tetramethyl-1,3,2-dioxyphospholidin-Boran [3e]K114
6.4.20	Umsetzung von S-1,1'Binapthyl-2,2'-phosphonit-Boran [2f]BH ₃ mit KHMDS
und Chlor	triphenylsilan
6.4.21	Umsetzung der Kalium-Phosphid-Borane [3b-d]K mit Tritylquellen116
6.4.22	Diethyl-trimethylsilylphosphonit-Boran [8b]BH ₃ 119
6.4.23	Bis-(2,6-Diisopropylphenyl)-trimethylsilylphosphonit-Boran [8d]BH ₃ 120
6.4.24	Diethyl-triphenylsilylphosphonit-Boran [9b]BH ₃ 121
6.4.25	Diisopropyl-triphenylsilylphosphonit-Boran [9c]BH ₃ 122
6.4.26	Bis-(2,6-diisopropylphenyl)-triphenylsilylphosphonit-Boran [9d]BH ₃ 123
6.4.27	4,4,5,5-Tetramethyl-1-(triphenylsilyl)-1,3,2-dioxaphospholidin-Boran [9e] BH ₃ 125
6.4.28	Diethyl-triphenylgermylphosphonit-Boran [10b]BH ₃ 126
6.4.29	Diisopropyl-triphenylgermylphosphonit-Boran [10c]BH ₃ 127
6.4.30	Bis-(2,6-diisopropylphenyl)-triphenylgermylphosphonit-Boran [10d]BH ₃ 128
6.4.31	Diethyl-triphenylstannylphosphonit-Boran [11b]BH ₃ 130
6.4.32	Diisopropyl-triphenylstannylphosphonit-Boran [11c]BH ₃ 131
6.4.33	Bis-(2,6-diisopropylphenyl)-triphenylstannylphosphonit-Boran [11d]BH ₃ 132

6.4.34	Kalium-Diethoxyphosphan-Boran-dicarboxylat [21b]BH ₃ 134				
6.4.35	Kalium-Diethoxyphosphan-Boran-dithiocarboxylat [22b]BH ₃ 135				
6.4.36 [3b] Zn	(Diethoxyphosphan-boranyl)-N,N'-tetrametylethylendiamin-Zinkchlorid 136				
6.4.37	bis-(Diethoxyphosphan-boranyl)-N,N'-tetrametylethylendiamin-Zink [3b] ₂ Zn 137				
6.4.38 yliden}-Ku	Diethoxyphosphan-boranyl-{1,3-bis(2,6-diisopropylphenyl)-imidazol-2- pfer(I) [3b] Cu und Oxidation zu [3b] OCu138				
6.4.39	Diethyl-triphenylsilylphosphonit 9b 140				
6.4.40	Diisopropyl-triphenylsilylphosphonit 9c				
6.4.41	Bis-(2,6-diisopropylphenyl)-trimethylsilylphosphonit 8d				
6.4.42	bis-(2,6-Diisopropylphenyl)-triphenylsilylphosphonit 9d				
6.4.43	4,4,5,5-Tetramethyl-1-(triphenylsilyl)-1,3,2-dioxaphospholidin [9e]BH ₃ 144				
6.4.44 Umsetzung von Diethyl-triphenylgermylphosphonit-Boran mit DABCO zum freien Phosphonit 10b					
6.4.45	Umsetzung von Diisopropyl-triphenylgermylphosphonit-Boran mit DABCO				
zum freier	ו Phosphonit 10c 146				
6.4.46	bis-(2,6-diisopropylphenyl)-triphenylgermylphosphonit-Boran 10d				
6.4.47	Umsetzung von Diethyl-triphenylstannylphosphonit-Boran [11b]BH ₃ mit				
DABCO	148				
6.4.48	Umsetzung von Diethyl-triphenylstannylphosphonit-Boran [11b]BH ₃ mit				
DABCO un	d Styrol 150				
6.4.49	Umsetzung von Diethyl-triphenylstannylphosphonit-Boran [11b]BH ₃ mit				
DABCO un	d Tolan				
6.4.50	Umsetzung von Diisopropyl-triphenylstannylphosphonit-Boran mit DABCO 152				

6.4	4.51	Bis-(2,6-diisopropylphenyl)-triphenylstannylphosphonit 11d 153		
6.4	4.52	Allgemeine Vorschrift (AV1) für Phosphonit-Nickeltricarbonyl-Komplexe 154		
6.4	4.53	Allgemeine Vorschrift (AV2) der Umsetzung von Alkyl-		
tri	phenyls	silylphosphoniten mit Selen162		
6.4	4.54	Umsetzung von Bis-2,6-(diisopropylphenyl)-triphenylsilyl-phosphonit mit		
Se	len	164		
6.4	4.55	Umsetzung von 2,6-(Diisopropylphenyl)-triphenylgermyl-phosphonit mit		
Se	len	164		
6.4	4.56	Umsetzung von 2,6-(Diisopropylphenyl)-trimethylsilyl-phosphonit mit Selen		
		165		
Literaturverzeichnis				
Ar	nhang			

7

8

Abkürzungsverzeichnis

ABCO	1-Azabicyclo[2.2.2]oktan
AIBN	Azo-bis-(isobutylonitril)
b	breit
d	Dublett
δ	chemische Verschiebung
DABCO	1,4-Diazabicyclo[2.2.2]oktan
Dipp	2,6-Diisopropylphenyl
EE	Essigsäureethylester
ESR	Elektronenspinresonanz
Et	Ethyl
HMDS	Hexamethyldisilazan
номо	Highest Occupied Molecular Orbital
IDipp	Bis-1,3-(2,6-diisopropylphenyl)-imidizaoyl
<i>i</i> -Pr	iso-Propyl, 2-Propyl
IR	Infrarot
J	skalare Kopplungskonstante in der Kernresonanzspektroskopie [Hz]
KHMDS	Kaliumhexamethyldisilazid
l.p.	lone pair, freies Elektronenpaar
LASER	Light amplification by stimulation of emission of radiation (monochromatische Lichtquelle)
LiHMDS	Lithiumhexamethyldisilazid
LUMO	Lowest Unoccupied Molecular Orbital

m	Multiplett
Μ	Metall
Me	Methyl
Mes	2,4,6-Trimethylphenyl, Mesityl
NaHMDS	Natriumhexamethyldisilazid
<i>n</i> -Bu	<i>n</i> -Butyl
NMR	Nuclear Magnetic Resonance, Kernspinresonanz
NOE	Nuclear Overhauser effect, Kern-Overhauser-Effekt
OTf	Triflat, Trifluormethansulfonat
Ph	Phenyl
ppm	parts per million
Pr	<i>n</i> -Propyl
Pyr	Pyridin
q	Quartett
quint.	Quintett
R	Variabler Substituent
RT	Raumtemperatur
S	Singulett
Sdp.	Siedepunkt
sept.	Septett
t	Triplett
t-Bu	2-Methyl-2-propyl
THF	Tetrahydrofuran

TMEDA N,N,N',N'-Tetramethylethylendiamin

TMS	Trimethylsilyl
-----	----------------

- TMSCI Trimethylsilylchlorid
- UV Ultraviolett
- Xyl 2,6-Diphenyl, 2,6-Xylyl

1 Einleitung

Phosphane (R₃P) sind die von gasförmigem, giftigem Monophosphan (PH₃) abgeleiteten Verbindungen, bei denen die Wasserstoffatome formal durch organische Substituenten ausgetauscht sind. Hierdurch entstehen kondensierte und oftmals weniger giftige Organophosphane, welche beispielsweise als Liganden in Übergangsmetallkomplexen eine essenzielle Rolle in Forschung und Industrie erlangt haben (z.B. Wilkinson-Katalysator (Ph₃P)₃RhCl, I, Schema 1). Organophosphane dienen als Ausgangsverbindungen für Reagenzien, welche zur Übertragung funktioneller Gruppen (z.B. Wittig-Reagenz (II), Horner-Wadsworth-Emmons-Reagenz (HWE-Reagenz, III)^[1–3], Schema 1) Anwendung finden. Phosphetane und ihre Oxide (IV, Schema 1) sind Beispiele für metallfreie, katalytisch aktive Verbindungen^[4–6], die zum Aufbau organischer Verbindungen zunehmende Aufmerksamkeit erfahren, da sie das Potential haben, seltene und teure Übergangsmetallkatalysatoren zu ersetzen.

Schema 1: Aus Phosphanen hergestellte Reagenzien und Katalysatoren. Von links nach rechts: Wilkinson-Katalysator (Olefinhydrogenierung), Wittig-Reagenz (Olefinsynthese aus Aldehyden oder Ketonen), Phosphonatstabilisiertes Carbanion, welches in der Horner-Wadsworth-Emmons-Reaktion angewandt wird (Olefinsynthese aus Aldehyden oder Ketonen), substituiertes Phosphetan (Redox-Katalyse).

Entscheidend für den Erfolg in Anwendungen und Grundlagenforschung ist die leichte Abstimmbarkeit der elektronischen und sterischen Eigenschaften von Phosphanen und anderen Organophosphorverbindungen durch Wahl der Nachbaratome des Phosphors (meist C, N, O) und des umgebenden organischen Molekülgerüsts (z.B. substituierte Aromaten, Alkylketten oder -zyklen). O-substituierte Organophosphorverbindungen werden in Abhängigkeit der Anzahl der P-O-Bindungen als Phosphate (4 P-O Bindungen), Phosphite (3 P-O Bindungen), Phosphonite (2 P-O Bindungen) oder Phosphinite (1 P-O Bindung) bezeichnet. Während die freien Säuren als tetravalente Verbindungen vorliegen, inhibiert die formale Installation organischer Substituenten die Tautomerisierung, sodass trivalente Verbindungen vorliegen. In Abbildung 1, rechts sind das tetravalente Tautomer der Phosphinsäure und im Gegensatz dazu der trivalente Säureester "Diorganophosphonit" dargestellt.

Diorganophosphonite sind also durch den formalen Austausch zweier H-Atome von PH₃ mit Alkoxy- oder Phenoxy erhältlich, welche ebenfalls das "(RO)₂P"-Bindungsmotiv von Organophosphaten und -phosphonaten tragen. Diese sind oftmals biologisch aktiv und beispielsweise an physiologischen Prozessen beteiligt, was in fungiziden oder antibakteriellen Wirkweise resultiert. Neben der großer industrieller Bedeutung als Schädlingsbekämpfungsmittel finden phosphororganische Verbindungen Anwendung als Flotationshilfsmittel, Flammschutzmittel, Stabilisatoren und Schmieröladditive.^[7,8]

Abbildung 1: Abgrenzung und Illustration der strukturellen Verwandtschaft von Phosphanen, Phosphorsäure und Phosphinsäure bzw. dessen Estern (Phosphonite).

Die formale Oxidationsstufe +I des Phosphoratoms von Phosphoniten (H₂PO₂⁻) ermöglicht die Anwendung als Reduktionsmittel. Bei der Reduktion werden die gängigeren Oxidationsstufen +III oder +V (z.B. Phosphorsäure/Phosphate, Abbildung 1, Mitte links) gebildet. Die formale Umwandlung von Phosphinsäure in Diorganophosphonite inhibiert die Tautomerisierung, sodass trivalente Phosphorverbindungen erhältlich sind, welche chemische Modifikation am O-Atom, am freien Elektronenpaar und der P-H Bindung erlauben sollte. Die Reichhaltigkeit chemisch reaktiver Stellen macht Diorganophosphonite vielfältig in der Anwendung, kann jedoch gleichzeitig zu unvorhergesehenen Nebenreaktionen führen.

1.1 Gängige Synthesestrategien von Organophosphanen und -phosphoniten

Die Synthese von Organophosphanen erfolgt üblicherweise durch Austausch von Substituenten an einem dreibindigen P-Atom einer geeignet funktionalisierten Vorstufe. Zur Knüpfung der PC-Bindung werden meistens drei verschiedene Strategien angewandt (Schema 2). Phosphane mit elektronegativen, leicht abspaltbaren Substituenten (z.B. Cl⁻(V), Br⁻, PhO⁻)

können durch Umsetzung mit metallorganischen Nukleophilen (z.B. R-Li, R-MgBr) oder komplexen Hydriden (z.B. LiAlH₄, LiHBEt₃, LiBH₄) zu Organophosphanen **VI** bzw. Hydridophosphanen **VII** umgesetzt werden. Hydridophosphane besitzen azide P-H Bindungen und können daher durch Metallierung mit starken Basen und anschließender Salzmetathese der Phosphide **X** mit organischen Elektrophilen (z.B. R-Cl, R(O)Cl, Me₃Si-Cl) weiter funktionalisiert werden (Schema 2, oben). Ferner kann durch radikalinduzierte^[9] oder katalytische^[10–12] P-H Addition an Alkene und Alkine (Hydrophosphanierung) die Synthese von Phosphanen atomökonomisch durchgeführt werden (Schema 2, unten). Die als Ausgangsverbindungen dienenden Hydridophosphane **VII** werden technisch auch direkt durch Hydrophosphanierung von PH₃ hergestellt. Synthesen von Verbindungen wie **V** erfolgen üblicherweise durch die Funktionalisierung von PCl₃ mit Nukleophilen.^[7,13]

Schema 2: Methoden zur Knüpfung von PC-Bindungen von sekundären Phosphanen VII durch Salzmetathese von Phosphaniden X (oben), nukleophile Substitution von Chlorphosphanen V (Mitte) und radikalinduzierte Hydrophosphanierung (unten).

Die Anwendbarkeit der Synthesestrategien hängt stark von der Art der Kosubsituenten R' ab. Tertiäre Phosphane mit R = Alkyl, Aryl sind grundsätzlich durch Substitution von P-Elektrophilen mit organischen Nukleophilen und durch Umsetzung von P-Nukleophilen mit organischen Elektrophilen leicht zugänglich. Demgegenüber erfolgen bekannte Synthesen von Zielverbindungen R'₂PR mit elektrophilen Kosubstituenten (R' = OR, Cl) praktisch ausschließlich über Substitution von P-Elektrophilen mit nukleophilen Organometallverbindungen.

Die mangelnde Attraktivität der Syntheseroute ist auf die schwierige Handhabbarkeit und Empfindlichkeit sterisch wenig abgeschirmter Dialkylphosphonite zurückzuführen^[14,15]. Arbeiten von Montchamp *et al.*^[16] liefern erste Hinweise auf die Übertragung eines P-nukleophilen Dialkylphosphonit-Synthons auf organische Elektrophile (siehe Kapitel 1.3). Als Ausgangsverbindungen wurden anstelle von Dialkylphosphoniten deren Borankomplexe eingesetzt, was als gangbare Strategie für diese Arbeit identifiziert wurde.

1.2 P-H Reaktivität von O- und N-substituierten Phosphanen

Die Hydrophosphanierung mit Dialkylphosphoniten (Schema 3) funktioniert beim Einsatz von Substraten mit polaren C=X-Doppelbindungen also z.B. bei Aldehyden, Ketonen^[17], Ketenen,^[18] sowie Iminen und Diazoverbindungen.^[19] Die Additionsreaktion an CC-Mehrfachbindungen konnte beispielweise an der polarisierierten CC-Doppelbindung von Ethoxyacetylen durchgeführt werden.

Mechanistisch verlaufen diese Reaktionen über einen nukleophilen Angriff am Kohlenstoff und sukzessive Verschiebung des P-ständigen H-Atoms, wie auch anhand der baseninduzierten Umsetzung von Dialkylphosphoniten mit Säurechloriden aufgezeigt wurde.^[20] Die geringe Nukleophilie von Diorganophosphoniten beschränkt die Substratauswahl auf polarisierte und folglich reaktive Doppelbindungen.

Schema 3: Hydrophosphanierung von Ethoxyacetylen und Aldehyden^[21] und basenassistierte Substitution von Säurechloriden^[18] mit Dibutoxyphosphan zu den Markownikow Produkten. R = Me, *i*-Pr, *t*-Bu, CH₂SiMe₃; R' = *n*-Pr, *i*-Pr, Et, Me.

Im Unterschied zu Diorganophosphoniten reagieren die strukturell verwandten 1,3,2-Diazaphospholene mit Aldehyden und Ketonen unter P-O-Bindungsknüpfung und Hydridübertrag auf das elektrophile Kohlenstoffatom.^[22–24] Der durch diese Reaktion implizierte hydridische Charakter des P-ständigen Wasserstoffatoms wurde durch den Transfer eines H⁻-Fragments auf [Ph₃C⁺BF₄⁻] und die H₂-Freisetzung mit CF₃SO₃H (Schema 4) bestätigt und ist im Einklang mit quantenchemischen Rechnungen. Versuche, sekundäre Diaminophosphane (R₂N)₂PH^[25] oder 1,3,2-Diazaphospholene^[26] mit starken Basen (*n*-BuLi/MeLi/KH) zu deprotonieren, führten entweder zu keiner Reaktion oder verliefen unter unselektiver P-N-Bindungsspaltung (Schema 5). Die Stabilisierung der positiven Ladung von 1,3,2-Diazaphospholeniumionen, welche zur P-H Umpolung führt, erscheint in Anbetracht der elektronegativen N-Substituenten nicht intuitiv, kann jedoch infolge der hohen Stabilität des nach Abspaltung eines Hydridions verbleibenden 1,3,2-Diazaphospholeniumions erklärt werden.^[27]

Schema 4: Illustration der Hydridreaktivität von 1,3,2-Diazaphospholen am Beispiel der Reaktion von **XV** mit Hydridakzeptoren und mit Benzaldehyd zum Anti-Markownikow-Produkt.^[27]

Die weder hydridische noch protische Reaktivität von Diorganophosphoniten kann durch Betrachtung der kanonischen Strukturen (Abbildung 2) rationalisiert werden. Struktur A stellt das Diorganophosphonit mit rein kovalent gebunden Substituenten dar. Struktur C hydridischen Charakter, iedoch durch repräsentiert den welcher schwache π -Wechselwirkungen der O-Atome (Struktur C') und der positiven Formalladung auf dem elektronegativen O-Atom nur geringfügig beiträgt. In Struktur B sind die ionischen Anteile der P-O-Bindung dargestellt, bei welcher, analog zu Struktur C, das positiv geladen P-Atom nur geringfügig stabilisiert wird. Die negative Ladung am nicht kovalent gebundenen O-Atom trägt zur höheren Gewichtung der Resonanzstruktur bei. Die leichte Substituierbarkeit von Alkoxygruppen durch Nukleophile (Schema 5) ist damit im Einklang. Die Phosphid-Struktur D wird durch die elektronegativen O-Atome in Nachbarschaft des P-Atoms stabilisiert, jedoch durch die elektrostatische Abstoßung der freien Elektronenpaare destabilisiert, sodass die Struktur keinen bedeutenden Beitrag liefert. Die P-H Azidität von Diorganophosphoniten ist folglich ausreichend herabgesetzt^[28], um Deprotonierungsreaktionen zu unterbinden und die unzureichende Stabilisierung des Dialkoxyphospheniumions ermöglicht keine hydridische Reaktivität.

Abbildung 2: Grundlegende Resonanzstrukturen für Diorganophosphonite **A**. Strukturen **B** und **B'** repräsentieren die elektrostatische Bindungsanteile zwischen P und O, welche durch schwache Hyperkonjugation entlang der jeweils anderen PO-Bindung stabilisiert wird (**B'**). Die Phosphenium-Struktur **C** wird durch schwache Hyperkonjugation beider O-Atome stabilisiert, jedoch wird das Strukturmotiv durch die Verlagerung der negativen Ladung auf das elektropositivere H-Atom benachteiligt. **D** repräsentiert das Phosphid-artige Strukturmotiv.

azyklische Diaminophosphane Im Einklang mit dieser Analyse reagieren und Dialkylphosphonite nach aktuellem Kenntnisstand weder als Protonendonoren^[9] noch als 5). Versuche, Hydridüberträger (Schema Dialkylphosphonite mit Amidbasen zu deprotonieren, führen stattdessen zur Spaltung der P-O-Bindung und Substitution durch das Amid.^[29,30] Analog erfolgt bei Umsetzung von Dialkylphosphoniten mit *t*-Bu₂PLi die Monosubstitution zum Diphosphan.^[31] Die Reaktion mit *n*-BuLi ist unselektiv und liefert eine 1:1-Mischung aus dem Monosubstitutionsprodukt Alkoxybutylphosphan XIX und dem Disubstitutionsprodukt Dibutylphosphan.^[31] Diese Reaktionen sind Beispiele vieler Pzentrierter Substitutionsreaktionen, bei denen Alkoxide als Abgangsgruppe fungieren.

Schema 5: Reaktion sekundärer O/N-substituierter Phosphane mit Basen bzw. Nukleophilen. R= Me, Et, Pr, Bu, SiMe₃; Base = MNEt₂, MN(*i*-Pr)₂, MNBu₂, MHMDS, *t*-Bu₂PLi, *n*-BuLi; M = Li, Na.

1.3 Vorarbeiten zur Synthese metallierter Phosphan-Borane mit elektronegativen Substituenten

Die Boran-Koordination primärer Phosphane führt zu einer Anhebung der Azidität um einige Größenordnungen.^[32] Darauf aufbauend war es möglich, primäre Phosphan-Borane zur Synthese und Isolation des Phosphandiid-Borans **XXI** (Schema 6) ^[33] einzusetzen, dessen nicht-koordinierter Vertreter bisher nur *in situ* spektroskopisch charakterisiert wurde.^[34,35]

Schema 6: Zweifache Deprotonierung von Phenylphosphan-Boran (XX) und Umsetzung mit TMS-Cl zum Disilylphosphan-Boran XXII.

Ferner wurde gezeigt, dass Reduktion von $(Et_2N)_2P(BH_3)Cl$ mit Li-Naphthalid ein Diaminophosphid-Boran**[3k]**Li^[36,37] liefert (Schema 7), und dass nicht wie im Fall freier Phosphane unter reduktiver Kopplung Diphosphane erhalten werden.^[38–42]

Alternativ zur reduktiven Synthese sind Diaminophosphid-Borane auch durch Deprotonierung sekundärer Diaminophosphane und 1,3,2-Diazaphospholene in ihren (Organo-)Boran-Addukte zugänglich (Schema 7). Die Metallierung mit Alkalimetallamiden erwies sich dabei als breiter anwendbare Syntheseroute als das reduktive Verfahren, das nur im Fall von [1k]BH₃ gute Ergebnisse lieferte. Die spektroskopisch nachweisbaren oder isolierbaren Phosphid-Borane [3j-o]M konnten anschließend durch Reaktion mit Elektrophilen in Phosphan-Borane [3j-o]R' überführt werden.^[37,43,44]

Schema 7: Darstellung metallierter Diaminophosphan-Borane durch Reduktion des Chlorophosphan-Borans **[1k]**BH₃ oder Deprotonierung sekundären Diaminophosphan-Borane **[2j-I]**BH₃ bzw. 1,3,2-Diazaphospholen-Borane **[2m-o]**BH₃ und Einsatz der Produkte als nukleophiles Synthon. R₂N = Me₂N (**j**), Et₂N (**k**), *i*-Pr₂N (**l**); (R₂N)₂ = -N(XyI)CH₂CH₂N(XyI)- (**m**), -N(Dipp)CH₂CH₂N(Dipp)-(**n**), -N(XyI)CH=CHN(XyI)-(**o**); M = Li, Na, K; R= AlkyI, AllyI, BenzyI, AryI; E = -SiMe₂SiMe₂CI, (TMEDA)ZnCI, (IDipp)Cu.

Die gelungene Synthese von Diaminophosphid-Boranen legt nahe, dass auf analoge Weise auch isoelektronische, metallierte Diorganophosphonit-Borane zugänglich sein könnten. Die Synthese PH-funktionalisierter Diorganophosphonit-Borane, die als Ausgangsmaterial für eine Metallierungsreaktion dienen könnten, wurde auf mehreren Wegen beschrieben. Dimethylphosphonit-Boran (**[2a]**BH₃) wurde durch Umsetzung von Dimethylphosphonit (**2a**) mit Diboran oder durch Behandlung von Dimethylchlorophosphit (**1a**) mit LiBH₄ als pyrophore, leicht flüchtige Flüssigkeit isoliert.^[14] Diethylphosphonit-Boran (**[2b]**BH₃) wurde durch Reduktion von Diethylchlorophosphit (**1b**) mit LiBH₄ als luftstabile Flüssigkeit isoliert (Schema 8, oben).^[16]

Silylester (XXIV-SiR₃ bzw. XXIV-Et) sind durch O-Silylierung von Phosphinaten (XXIII) und anschließende Boran-Koordination erhältlich. Hydrolyse von Bis-(trimethylsilyl)phosphonit-Boran (XXIV-SiR₃) in Anwesenheit von Pyridin liefert das Pyridiniumsalz des parenten Phosphonit-Borans (H₂PO₂BH₃⁻) dessen Überführung in gemischte Diester XXVII für den schrittweisen Aufbau von Oligonukleotiden genutzt werden kann (Schema 8).^[45,46] Das luftund wasserstabile Pyridiumsalz stellt hier eine mildere und leichter handhabbare Alternative zu Chlorophosphiten dar. 1.4 Präparative Aspekte substituierter Mono-, Di- und Trisilylphosphane

Schema 8: Synthesemethoden von Dialkoxy- und Disiloxyphosphan-Boranen, *in situ* Deprotonierung und Alkylierung und Anwendung in der Synthese von Oligonukleotidphosphonit-Boranen. ^aN,O-Bis(trimethylsilyl)-Benzamid oder Triisopropylsilylchlorid (TIPS-CI); ^bMe₂S·BH₃ oder THF·BH₃, ^c 1. Stufe: Pivalinsäurechlorid (Piv-CI), *i*-Pr₂NEt, 3-Nitro-1H-1,2,4-triazol (NT), *dann* TEAB-Puffer; 2. Stufe: Bis(2-oxo-3-oxazolidinyl)phosphinsäurechlorid (Boc-CI), 2,2,6,6-Tetramethylpiperidin, *dann* TEAB-Puffer; R = Et, *i*-Pr; R' = Alkyl, Aryl; R'' = 4,4'-Dimethoxytrityl (DMTr), Benzoyl (Bz); Pyr = Pyridin.

Umsetzungen von XXIV-SiR₃ bzw. XXIV-Et mit LiHMDS und organischen Elektrophilen verlaufen im Unterschied zu Reaktionen freier Diorganophosphonite mit Nukleophilen (Schema 5) nicht unter Derivatisierung der P-O-Bindungen, sondern liefern die P-alkylierten Derivate XXV (Schema 8, rechts), deren Bildung im Prinzip durch Deprotonierung der PH-Bindung und anschließende elektrophile Alkylierung des resultierenden Anions erklärt werden kann. Auch wenn keine Untersuchungen von spektroskopischen Eigenschaften und Struktur der Metallierungsprodukte angestellt wurden, gibt die Synthese von XXV doch einen ersten Hinweis darauf, dass die Boran-Koordination auch in Phosphoniten entscheidend zur Steigerung der PH-Azidität beiträgt und ein vielversprechendes Werkzeug zur Synthese und Charakterisierung metallierter Diorganophosphonit-Borane darstellen könnte.

1.4 Präparative Aspekte substituierter Mono-, Di- und Trisilylphosphane

Die hohe Reaktivität von Alkalimetallphosphiden macht diese für manche Anwendungen ungeeignet. In diesem Zusammenhang kann die im Vergleich zu Phosphor geringere Elektronegativität der schweren Gruppe 14-Elementen Si, Ge, Sn, Pb dazu genutzt werden die P-nukleophile Reaktivität nachzuahmen, ohne formal negativ geladene Phosphide verwenden zu müssen. Die am breitesten erforschten Vertreter sind Silylphosphane R₂P-SiR'₃, die sich formal von dem bei der thermischen Zersetzung von Silan in Anwesenheit von Phosphan entstehenden parenten Silylphosphan H₃Si-PH₂ ableiten.^[47] Grundlegende Synthesen einiger Silylphosphane sind in Schema 9 dargestellt. Silylphosphane des Typs R₂P-SiR'₃ werden üblicherweise aus einem nukleophilen [R₂P]⁻Synthon (z.B. [Et₂P]⁻Li⁺, **XXIII**) und einem elektrophilen Chlorsilan R'₃SiCl (R' = z.B. Me, H) dargestellt (Schema 9, (i)), welche infolge der Anwendung relativ reaktionsträger Alkyl- oder Aryl-Substituenten eine glatte Reaktionsführung ermöglichen. Die Synthesestrategie stößt an ihre Grenzen, sobald H-Silane verwendet werden (Schema 9 (iii)-(iv)), da hierbei durch LiH-Abspaltung höher phosphorylierte Produkte entstehen. So lagern sich Silylphosphane H₃SiPEt₂ (**XXXII**) und HSi(PEt₂)₃ (**XXXV**) nach einigen Monaten bei Raumtemperatur zu H₂Si(PEt₂)₂ (**XXXVI**) um (Schema 9, unten), welches unter diesen Bedingungen nicht weiter reagiert.

Schema 9: Reaktionen verschiedener Monochlorsilane mit LiPEt₂. Transmetallierungsreaktionen und folgende Salzmetathese führt bis zu dreifach phosphorylierten Silanen und anschließend zur langsamen Dismutation zum vierfach phosphorylierten Silan **XXXVII**.

Wie in Reaktionen von Dialkylphosphiden mit H-substituierten Silanen können auch bei Verwendung primärer Phosphide bzw. PH₂⁻ infolge von Transmetallierungsreaktionen mehrfach silylierte Produkte entstehen.^[48,49] Durch vielfältige, oftmals gleichzeitig ablaufende Reaktionen, die bei der Verwendung von Verbindungen mit E-H-Bindung beobachtet werden,

werden Untersuchungen der präparativen Eigenschaften der P-Si-Bindung deutlich erschwert. Daher werden in der Regel Triorganoderivate von Gruppe 14 Elementen eingesetzt, um Komplikationen durch Metathese- und Transmetallierungsreaktionen zu vermeiden.

Neben monofunktionalisierten Phosphanen bietet die Einführung mehrerer ER₃-Gruppen (E = Si, Ge, Sn) an einem P-Atom die Möglichkeit, in einfacher Weise auch Analoga höher geladener Phosphidionen herzustellen. So ist Tris(trimethylsilyl)phosphan P(SiMe₃)₃ ein nützliches P³⁻-Synthon für niedervalente Phosphane und eine Alternative zu gasförmigem PH₃. Die Synthese erfolgt durch die Kopplung von TMS-Cl mit einem Alkalimetallphosphid, welches aus weißem^[50,51] oder rotem Phosphor^[52] und dem Alkalimetall *in situ* erzeugt wird. Alternativ dazu kann Dichloro-piperidinylphosphan mit Lithium und Me₃SiCl in THF direkt zum gewünschten Trisilylphosphan P(SiMe₃)₃ umgesetzt werden.^[53]

Eine interessante Klasse von Silylphosphanen und deren Homologen sind Derivate des Typs Y₂PER₃, in denen das zentrale P-Atom gleichzeitig elektronegative (Y = OR, NR₂) und elektropositive (E = Si, Ge, Sn) Substituenten trägt. Die unterschiedliche Polarisierung von P-E und P-Y-Bindungen induziert am P-Atom gleichzeitig elektrophilen und nukleophilen Charakter und lässt daher eine ambiphile Reaktivität erwarten. Dies wurde anhand von Chloro-Silylphosphanen gezeigt, die in Abhängigkeit des organischen Substituenten thermische Kondensation zu höheren Phosphanen zeigen.^[54–56] Neben der gezielten Substitution einer Cl- oder Silyl-Funktionalität können die Verbindungen auch als Transferreagenzien für eine Phosphandiyl-Gruppe eingesetzt werden.

Der Zugang zu Verbindungen, in denen das P-Atom ausschließlich eine Kombination aus elektronegativen Y- und elektropositiven E-Substituenten trägt, ist auf wenige Beispiele mit vorwiegend Aminosubstituenten beschränkt.

Aus $(R_2N)_2P$ -Cl (R=Et (1k), i-Pr (1l)) und Me₃SiCl konnte durch Reduktion mit Lithiumpulver Silylphosphan $(R_2N)_2P$ -SiMe₃ dargestellt werden. Dabei entsteht zwar das entsprechende Diphosphan als Nebenprodukt, jedoch können die Produkte destillativ getrennt werden. ^[57,58] Bereits früher wurden bei der Reaktion von Diethylamin, *n*-BuLi und weißem Phosphor die Bildung der Phosphide $(Et_2N)PLi_2$ und $(Et_2N)_2PLi$ postuliert,^[59] deren Reaktion mit Me₃SiCl neben weiteren Produkten ebenfalls das Silylphosphan **8k** liefert (Schema 10).^[60] Das Aminoiminophosphan **XXXVIII** wurde mit Hg(SiMe₃)₂ in HMPA zum Silylphosphan **8p**

12

umgesetzt.^[61] Die Synthesen O-substituierter Silylphosphane (RO)₂P-SiR₃ und deren Ge- und Sn-Analoga sind in der Literatur unbekannt.

Schema 10: Synthese nicht-koordinierter Diamino-trimethylsilyl-phosphane durch reduktive P-Si Kopplung (*oben*), Salzeliminierung eines *in situ* erzeugten Phosphids (*Mitte*) oder Addition an ein niedervalentes Phosphazen (*unten*).

Tris(trimethylsilyl)phosphan wurde, nachdem die Synthese in großem Maßstab erforscht wurde, als beliebte Ausgangsverbindung für die Funktionalisierung von Phosphanen und der Synthese niedervalenter Phosphane etabliert. Die hohe Reaktivität der P-Si-Bindungen in Verbindung mit der hohen Oxophilie ist die Grundlage des Einsatzes von P(SiMe₃)₃ als vielseitiger Synthesebaustein z.B. zum Aufbau spezifischer P-C-Einfachbindungen (Bildung von Acylphosphanen durch Kondensation mit Säurechloriden)^[62–67] oder Mehrfachbindungen (Bildung von Phosphaalkenen- und Phosphaalkinen durch silatrope Umlagerungen), Synthese von Heterocyclen (Phosphabenzole durch Methatese mit Pyryliumsalzen)^[68] oder stabilisierter und kristallin isolierbarer Alkalimetallphosphide (durch Desilylierung mit Alkoxiden^[69,70] oder BuLi^[71] bzw. MeLi^[50]).

1.5 Charakterisierung elektronischer und sterischer Eigenschaften von Phosphanen

Ligandenstärke und sterischer Anspruch von Phosphanen, die an (Übergangs-) Metallen koordiniert sind, bestimmen deren chemische (ggf. katalytische) und spektroskopische bzw. physikalischen Eigenschaften.^[72,73] Diese Struktur-Eigenschaft-Beziehungen können zur

Vorhersage chemischer Eigenschaften anhand der spektroskopischen Daten herangezogen werden oder zu gezielten chemischen Modifikationen (z.B. Installation von +/-M- oder +/-I-Substituenten) genutzt werden.

Die Ligandeneigenschaften neutraler Phosphane hängen von elektronischen und sterischen Effekten ab. Diese werden in der Regel simultan variiert und können nicht voneinander getrennt werden. Beispielsweise würde der formale Austausch von Substituenten mit unterschiedlicher Elektronegativität gleichzeitig sowohl die Bindungswinkel und -längen als auch die Elektronendichte am koordinierenden P-Atom verändern. Werden Bindungswinkel um ein P-Atom sterisch oder durch Ringschlüsse verändert, hat dies Einfluss auf die Lage der Grenzorbitale.

Die Energie des HOMO (meistens das freie Elektronenpaar) und LUMO (meistens das σ^* -Orbital einer P-X Bindung) können unter anderem die Nukleophilie und Elektrophilie eines Phosphans beeinflussen (unter Nichtbeachtung kinetischer Effekte). Nukleophile und elektrophile Eigenschaften können meistens nicht unabhängig voneinander manipuliert werden, sodass etwa das Einführen eines Cl-Substituenten die Elektrophilie erhöht, aber die Nukleophilie erniedrigt. Phosphortrichlorid (PCl₃) reagiert mit metallorganischen Nukleophilen sehr schnell unter Austausch der Cl-Substituenten.^[7] Die Reaktion mit Ni(CO)₄ liefert die Koordinationsverbindung (Cl₃P)Ni(CO)₃, welche rasch durch Organophosphane unter Abspaltung von PCl₃ substituiert wird.^[74]

Schema 11: Ambiphile Reaktivität von PCl₃ gegenüber Nukleophilen (M-Nu = z.B. R-MgBr, RO-Li, R₂N-Li, mit R = Alkyl, Aryl) und dem Komplex Ni(CO)₄.

Die Modelle zur Erklärung der elektronischen Eigenschaften von Phosphanen sind nicht nur qualitativer Natur, sondern es gibt verschiedene Ansätze zur Aufstellung quantitativer Vergleiche.^[72,75–77] Eine Herangehensweise besteht darin, die Nukleophilie bzw. σ -Donorfähigkeit anhand der Protonenaffinität (Basizität) zu quantifizieren. Die experimentelle Bestimmung von p K_B -Werten ermöglicht zwar aus der P-H Bindungsstärke eines Phosphoniumions [R₃P-H]⁺ Rückschlüsse auf die σ -Donorfähigkeit von Phosphanen zu ziehen, jedoch ist die Bestimmung des p K_B -Werts stark von der eingesetzten Säure und dem Lösungsmittel abhängig.^[78] Einige Phosphane sind gegenüber Brønstedsäuren nicht stabil, was

die direkte Bestimmung des pK_B von vorneherein ausschließt. Wenn das zu untersuchende Phosphan mit zusätzlichen Donorfunktionen ausgestattet ist, können diese anstatt des P-Atoms protoniert werden, sodass die direkte Analyse der Basizität bezogen auf das P-Atom nicht möglich ist.

Der Anwendung von Phosphanen als Liganden in Übergangsmetallkomplexen näher steht die Auswertung der Wellenzahl der totalsymmetrischen CO-Valenzschwingung in R₃P-Ni(CO)₃-Komplexen (Tolmans elektronischer Parameter, TEP). Diese wird als Maß dafür angesehen, wie die Elektronendichte am Metall durch den Phosphanliganden verändert wird und steht in direkter Korrelation mit der Basizität eines Phosphans (Schema 12).^[76,79–81] Der geringe präparative und apparative Aufwand zur Anwendung der Methode und die weitestgehende Unabhängigkeit von sterischen Effekten des Phosphans sind die Vorteile, denen als wesentlicher Nachteil die hohe Toxizität des zur Herstellung der Komplexe benötigten Ni(CO)₄ entgegen steht. Um diesen Nachteil zu umgehen werden heute oft Komplexe des Typs [R₃P-Rh(CO)₂CI] bzw. [R₃P-Ir(CO)₂CI] oder [(R₃P)₂Mo(CO)₄] zur Analyse herangezogen und die für die totalsymmetrischen CO-Moden ermittelten Wellenzahlen mit Hilfe linearer Korrelationen auf die ursprüngliche Skala abgebildet.^[82–84]

Schema 12: *Oben*: Visualisierung der zur Ermittlung des TEP herangezogenen totalsymmetrischen CO-Streckschwingungen (Symmetrierasse A₁) verschiedener Phosphankomplexe. *Unten*: Strukturformel eines Phosphanselenids, dessen ¹*J*_{PSe}-Kopplungskonstante als Maß für die Donoreigenschaften herangezogen werden kann.

Als Alternative zur Bestimmung des TEP wurde auch die Auswertung ³¹P oder ⁷⁷Se-NMRspektroskopisch bestimmter ¹J_{PSe}-Kopplungskonstanten zur Einschätzung des σ -Donorverhaltens verwendet. Je basischer das Phosphan ist, desto geringer ist die Kopplungskonstante.^[77] Der Betrag von ¹J_{PSe} hängt von der Größe der HOMO-LUMO-Energielücke und vom s-Charakter des nicht-oxidierten P-Atoms des Phosphans ab. ^[85–87]

Beide Größen werden allerdings nicht nur durch die elektronischen Eigenschaften der Substituenten^[88], sondern auch vom sterischen Anspruch und daraus folgenden geometrischen Verzerrungen beeinflusst. Dies kann dazu führen, dass auf der Grundlage von TEP und ¹*J*_{PSe} bestimmte Basizitätstrends voneinander abweichen. Beispielsweise steigt aus den Werten der TEP abgeleitete Basizität in der Reihe PPh₃<PMe₃<P(*t*-Bu)₃, während aufgrund der Analyse von ¹*J*_{PSe}-Kopplungen PMe₃ (¹*J*_{PSe} = 684 Hz) eine höhere Basizität zugeschrieben wird als P(*t*-Bu)₃ (¹*J*_{PSe} = 692 Hz).^[77] Der Vorteil der Methode liegt darin, dass für polydentate Phosphane jedes P-Atom anhand der jeweiligen ¹*J*_{PSe}-Parameter individuell analysiert werden kann. Da Phosphane deutlich leichter als andere Donorelemente (z.B. N) oxidiert werden, können Phosphane, die mit zusätzlichen Donoratomen ausgerüstet sind, analysiert werden. Bei der direkten Analyse der Donoreigenschaften anhand von Koordinationsverbindungen würde es üblicherweise zur Bildung von Chelatkomplexen führen. Dadurch würde die Verlässlichkeit, die totalsymmetrischen C-O-Schwingungen als Maß der Donorstärke zu verwenden, von anderen Faktoren (u.a. Geometrie, Isomerie, Symmetrie) gestört werden.

2 Zielsetzung

Das Ziel dieser Arbeit war, zu den kürzlich erschlossenen Diaminophosphid-Boranen isoelektronische Diorganophosphonit-Borane ("Dialkoxyphosphid-Borane") herzustellen, zu charakterisieren, und deren Reaktivität zu untersuchen. Basierend auf dem postulierten Intermediat Lithium-Diethoxyphosphid-Boran wurde als Ausgangspunkt unter der Fragestellung des Einflusses der Base und des Gegenions auf die Stabilität des neu gebildeten Phosphid-Borans die Deprotonierung von Diethylphosphonit-Boran untersucht. (Schema 13).

Ferner sollte die bislang sehr begrenzte Zahl bekannter Diorganophosphonit-Borane um neue Beispiele erweitert werden, und anhand dieser Verbindungen der Einfluss der O-Substituenten auf die Synthese und Deprotonierung der Diorganophosphonit-Borane untersucht werden.

Schema 13: Synthese neuer Phosphonit-Borane und Umsetzung mit Alkalimetall-Basen zu Dialkoxyphosphid-Boranen. R = Et (**b**), *i*-Pr (**c**), Dipp (**d**); (RO)₂ = Pinakolat (**e**), 1,1'-Binaphtolat (**f**); M = Alkalimetall.

Aus der Charakterisierung der erhaltenen Metallierungsprodukte sollte durch spektroskopische Methoden und -idealerweise Einkristallröntgendiffraktometrie- Information über die Konstitution und elektronische Situation abgeleitet werden. Schließlich sollte die Reaktivität gegenüber Elektrophilen anhand stabiler und leicht synthetisierbarer Derivate untersucht werden.

Als interessante Reaktionspartner erschienen elektrophile Verbindungen schwerer Gruppe 14-Elemente (z.B. Halogen-Silane/Germane/Stannane), die nach erfolgter Substitution und Abspaltung der Boran-Schutzgruppe einen Zugang zu Tetrel-funktionalisierten Diorganophosphoniten ermöglichen könnten (Schema 14).

Verbindungen dieses Typs waren bislang unbekannt und könnten als leichter handhabbare Analoga freier Diorganophosphonite für synthetische Anwendungen oder als Liganden in Metallkomplexen von Interesse sein. Vor diesem Hintergrund sollten geeignete Reaktionsbedingungen für die Synthese Borangeschützter und ungeschützter Diorgano-Tetrelphosphonite ausgearbeitet werden.

Schema 14: Synthese neuartiger Diorganophosphonite durch Substitution von Kalium-Dialkoxyphosphid-Boranen und anschließende Abstraktion der Boran-Gruppe. E = Organohauptgruppenverbindung, Übergangsmetall, X = Halogen.

Im letzten Teil der Arbeit sollte die Eignung der neu synthetisierten Diorganophosphonite als Liganden anhand der Darstellung und spektroskopischen Charakterisierung von Nickeltricarbonyl-Komplexen beleuchtet werden, sodass hieraus die TEP ("Tolman Electronic Parameter") bestimmt werden können. Zusätzlich sollte die Oxidation von Diorganophosphoniten exemplarisch mit elementarem Selen untersucht werden. Letztendlich sollte eine Einschätzung der elektronischen Ligandeneigenschaften anhand der Werte von TEPs und ¹J_{P,Se}-Kopplungskonstanten der entsprechenden Selenophosphonate im Vergleich diskutiert werden.

Schema 15: Komplexierung mithilfe von Nickeltetracarbonyl (links) und Oxidation von Diorganophosphoniten mit Selen (rechts).
3 Ergebnisse und Diskussion

3.1 Synthese von Diorganophosphonit-Boranen

Bekannte Synthesen der Boran-Addukte von Diorgano-^[32,89,90] und Diaminophosphiden^[37,43] erfolgen bevorzugt durch Deprotonierung sekundärer (PH-substituierter) Vorläufer. Von den für diese Arbeit relevanten analogen Diorganophosphonit-Boranen waren bisher neben Nukleosidderivaten^[45,46,91–96] und einem heterocyclischen Derivat (5,5-Dimethyl-1,3,6,2dioxazaphosphocan-2,6-Bisboran, **XXXIX**)^[97] nur die beiden einfachsten Alkylderivate **[2a]**BH₃ und **[2b]**BH₃ bekannt. Nukleosidderivate und Verbindung **XXXIX** kommen wegen der Inkompatibilität der vorhandenen Substituenten mit den Reaktionsbedingungen einer Metallierungsreaktion für weitere Untersuchungen kaum in Betracht. Darüber hinaus erscheint **[2a]**BH₃ wegen seiner Instabilität und seines schwierigen Zugangs als ungeeignet für systematische Untersuchungen.

Um die Arbeiten auf eine breite Grundlage zu stellen, sollten neben **2b** weitere Diorganophosphonit-Borane synthetisiert werden, die als thermisch stabile Substrate für die Untersuchung von Metallierungsreaktionen in Frage kommen.

Die bekannten Dialkylphosphonite **[2a]**BH₃ und **[2b]**BH₃ wurden durch die Umsetzung des entsprechenden Chlorophosphits mit LiBH₄ in THF bei -78 °C dargestellt,^[14,16,98] sodass diese Methode für die Synthese neuer Diorganophosphonit-Borane untersucht wurde (Schema 16). Bei der Nacharbeitung der Synthese von **[2b]**BH₃^[16] und der Übertragung des Verfahrens auf die Darstellung des unbekannten **[2c]**BH₃ wurde beobachtet, dass bereits bei tiefer Temperatur nach Zugabe einer THF-Lösung von LiBH₄ zum Chlorophosphit **1b,c** im selben Lösungsmittel eine Überreaktion zu PH₃ stattfindet und eine Rotfärbung der Lösung beobachtet wird. Bei Zugabe von festem LiBH₄ bei tiefer Temperatur (-78 °C) entstanden die gewünschten Dialkylphosphonit-Borane **[2b,c]**BH₃ ohne Bildung größerer Mengen PH₃. Im Fall von **[2d-f]**BH₃ konnte unter ansonsten gleichen Bedingungen mit vorgelöstem LiBH₄ eine glatte Umsetzung beobachtet werden. Die sterische Abschirmung des P-Atoms scheint auf die Labilität der O-Substituenten einen größeren Einfluss zu haben als die verringerte P-O-Bindungsdissoziationsenergien^[99] von Phenoxy-substituierten Phosphorverbindungen und die Tatsache, dass Phenoxygruppen bessere Abgangsgruppen sind. **[2b,c]**BH₃ konnten durch wässrige Aufarbeitung und Säulenchromatographie in hoher Reinheit erhalten werden, während sich **[2d-f]**BH₃ in Gegenwart von Wasser unter heftiger Reaktion zu PH₃, H₂, B(OH)₃ und weiteren, nicht identifizierten Produkten zersetzen. **[2d]**BH₃ und **[2e]**BH₃ konnten durch Filtration über vorgetrocknetes Kieselgel vom Nebenprodukt LiCl abgetrennt werden. Im Fall von **[2f]**BH₃ scheiterte eine analoge Aufarbeitung an der schlechten Löslichkeit in unpolaren Lösungsmitteln und der Zersetzlichkeit auf Kieselgel. Die Darstellung reinen Produkts gelang jedoch durch Umsetzung von **1f** mit NaBH₄ in DME, bei der das Nebenprodukt NaCl leicht durch Filtration abgetrennt wurde.

Schema 16: Synthese der Phosphonit-Borane **[2b-f]**BH₃ aus den entsprechenden Chlorophosphiten und Lithiumbzw. Natriumborhydrid. M¹BH₄ = LiBH₄, NaBH₄, Solvens = THF, DME; X = BH₃, freies Elektronenpaar.

In den ³¹P{¹H}-NMR-Spektren zeigen die Signale der Dialkylphosphonit-Borane **[2b,c,e]**BH₃ die für Phosphan-Borane charakteristische Aufspaltung in 1:1:1:1-Multipletts auf, die auf Spinkopplung mit dem benachbarten ¹¹B-Kern (natürlich Häufigkeit 79.6 %, I = 3/2) zurückgeht. Im ³¹P-NMR Spektrum wird zusätzlich die Kopplung zum direkt gebundenen Wasserstoffatom beobachtet. Die skalaren Kopplungskonstanten sind im erwarteten Bereich (¹J_{PB} = 52-76 Hz, ¹J_{PH} = 395-444 Hz). Im Fall von **[2f]**BH₃ ist das ³¹P-NMR Signal durch Wechselwirkungen zwischen ³¹P und den quadrupolaren ¹⁰B/¹¹B-Kernen so weit verbreitert, dass keine Aufspaltung mehr erkennbar ist bzw. im Fall von **[2e]**BH₃ eine starke Abweichung der erwarteten 1:1:1:1-Intensitätsverteilung vorliegt und die Kopplungskonstante nur noch aus dem ¹¹B{¹H}-NMR-Spektrum zu ermitteln ist. Die Umsetzung von **1d** mit Li[HBEt₃] in THF führte zur Bildung des freien Diorganophosphonits **2d**, welches nach Entfernen der flüchtigen Komponenten und Filtration aus Hexan aus dem Filtrat als farbloser Feststoff erhalten werden konnte. Im Vergleich zum Boran-Addukt **[2d]**BH₃ ($\delta^{31}P = 140.8 \text{ ppm}$) ist eine Hochfrequenzverschiebung zu beobachten ($\delta^{31}P = 180.0 \text{ ppm}$), welche bei elektronegativ substituierten Phosphanen üblicherweise auftritt.^[100]

Die Phosphonit-Borane **[2d]**BH₃ und **[2e]**BH₃ konnten aus gesättigten Lösungen in Hexan bzw. Diethylether einkristallin erhalten werden. **[2e]**BH₃ kristallisiert als nicht-merohedraler Zwilling in der Raumgruppe P2₁/c mit 2 Molekülen in der asymmetrischen Einheit. Anhand der Einkristalldaten wurde ein 3-Komponenten-Zwilling identifiziert und die Struktur nach Reduzieren der gemessenen Friedel-Paare gelöst. Die Molekülstrukturen beider Verbindungen (Abbildung 3) weisen ein verzerrt tetraedrisch umgebenes P-Atom auf. Alle Bindungslängen und -winkel sind im erwarteten Bereich.

Abbildung 3: Molekülstrukturen der Phosphonit-Borane **[2e]**BH₃ (links) und **[2d]**BH₃ (rechts) mit 50 % Aufenthaltswahrscheinlichkeit der Thermalellipsoide. Wasserstoffatome, die nicht an Phosphor oder Bor gebunden sind, sind zur besseren Übersicht nicht dargestellt. **[2e]**BH₃ kristallisiert mit zwei Molekülen in der asymmetrischen Einheit, wovon nur eine dargestellt ist. Ausgewählte Bindungslängen (Å) und -winkel (°): **[2e]**BH₃: P1-O1 1.594(1), P1-O2 1.596(2), P1-B1 1.865(3), P1-H1 1.28(2), P2-O3 1.595(2), P2-O4 1.592(2), P2-B2 1.866(2), P2-H2 1.29(2), O1-P1-O2 98.4(1), O1-P1-B1 115.0(1), O2-P1-B1 117.2(1), O1-P1-H1, 107.2(2(9), O2-P1-H1 102.1(9), B1-P1-H1 114.9(8), O3-P2-O4 98.4(1), O3-P2-B2 115.2(1), O3-P2-H2 105.5(8), O4-P2-B2 117.6(1), O4-P2-H2 104.2. **[2d]**BH₃: P-O2 1.590(1), P-O1 1.599(1), P-B 1.870(1), P-H 1.347(13), O1-P-O2 101.7(1), O1-P-B 117.9(1), O2-P-B 112.7(1), O1-P-H 103.1(6), O2-P-H 107.6(6).

3.2 Metallierung von Diorganophosphonit-Boranen

Die Deprotonierung von Diorganophosphonit-Boranen wurde im Zusammenhang der elektrophilen Substitution von Diethylphosphonit-Boran^[16,93] und der P-Oxidation von Nukleosidderivaten^[45,46] diskutiert, jedoch wurde in keinem Fall über direkte Evidenz für metallierte bzw. deprotonierte Diorganophosphonit-Borane berichtet. Angesichts der Befunde zur Metallierung isoelektronischer Diaminophosphan-Borane^[37,43,101] erscheint die Deprotonierung PH-substituierter Vorläufer vielversprechend und soll auch hier verfolgt werden. Im Hinblick auf die Varianz von Strukturen und Reaktivität bekannter Metallphosphide bzw. deren Borane mit verschiedenen Alkalimetallen^[102–108] soll einer vergleichenden Untersuchung von Produkten mit verschiedenen Alkalimetallen (Li, Na, K) besondere Aufmerksamkeit geschenkt werden.

3.2.1 Kationeneinfluss auf die Stabilität von Dialkoxyphosphid-Boranen

Phosphid-Borane können grundsätzlich über das P-Atom oder die H-Atome der Borangruppe an Metalle koordinieren, wobei "härtere" Alkalimetallionen von den H- und P-Atomen^[106,109] koordiniert werden und "weichere" Übergangsmetallionen (Cu, Zn) bevorzugt vom P-Atom^[43,110–112] koordiniert werden. In kristallinen Alkalimetall-Diaminophosphid-Boranen agieren zusätzlich N-Atome als Donoren.^[37]

Schema 17: Experimentelle Herangehensweise zur Darstellung metallierter Diorganophosphonite. MBase = n-BuLi, LiN(i-Pr)₂, LiHMDS, NaHMDS, KHMDS, Solvens = THF, Et₂O, Toluol, R = Et (**b**), i-Pr (**c**), 2,6-Diisopropylphenyl (**d**), (OR)₂ = 2,3-Dimethyl-2,3-butandiol (**e**), (S)-1,1'-Binapthol (**f**).

Für erste Experimente wurden verschiedene kommerziell erhältliche Basen (*n*-BuLi, (*i*-Pr)₂NLi (LDA), MHMDS (M = Li, Na, K)) auf ihre Reaktivität gegenüber Diorganophosphonit-Boranen am Beispiel von **[2b]**BH₃ untersucht und in den folgenden Abschnitten diskutiert (Schema 17). Li- und Na-Diorganophosphonit-Borane erwiesen sich bei RT als instabil, sodass deren

Charakterisierung nur auf Basis von NMR-Studien möglich war. Die Zersetzungsreaktionen werden in Kapitel 3.2.2 erläutert.

Bei Behandlung von **[2b]**BH₃ mit KHMDS wurde eine glatte Umsetzung zum Phosphanid **[3b]**K beobachtet. Die Salze **[3b]**K und **[3c]**K können auch in einer Mischung aus Hexan und Diethylether hergestellt, direkt gefällt und mittels Filtration in mäßiger Ausbeute als amorphe, feuchtigkeitsempfindliche Feststoffe isoliert werden (55-66 %). Einkristalle eines Kokristallisats **[3b]**K/KHMDS (1:1), welche zur Röntgenstrukturanalyse geeignet waren, wurden aus einer konzentrierten THF-Lösung erhalten (Abbildung 4). Die Struktur besteht aus zwei kristallographisch unabhängigen K⁺-Ionen, die jeweils durch ein THF koordiniert werden, und Amid-sowie Phosphanid-Boran Anionen. Die P-Atome in den Phosphanid-Boran Anionen sind wie erwartet pyramidal koordiniert. Die P-O- und P-B-Bindungen sind im erwarteten Bereich.

Die N-Atome der Amidionen bilden Kontakte zu den beiden K⁺-Ionen aus und erreichen so verzerrt tetraedrische Koordination. Zwar sind die kürzesten Phosphor-Kalium-Kontakte (d(K-P) = 3.528(1) bis 3.788(1) Å) deutlich unter der Summe der van-der-Waals-Radien (4.63Å),^[113] doch ist die relative Orientierung nicht für eine koordinative Interaktion geeignet. Stattdessen interagieren die P-B-Anionen mit den K⁺-Ionen ausschließlich über die O-Atome (d(OK) = 2.705(2) bis 2.746(2) Å) und agostische BH···K Wechselwirkungen. Durch die K···O und K···N Kontakte assoziieren Kationen und Anionen entlang der kristallographischen *b*-Achse zu alternierend angeordneten Ketten, welche über zusätzliche BH···K Wechselwirkungen zu antiparallelen Doppelsträngen verbunden sind. Letztlich werden die K⁺-Ionen durch THF-Moleküle und schwache Wechselwirkungen mit einer Me₃Si-Einheit koordinativ abgesättigt. Basierend auf den strukturellen Daten lässt sich schließen, dass die Wechselwirkung zwischen Phosphid **[3b]**⁻ und K⁺ überwiegend ionischer Natur ist.

Abbildung 4: Ausschnitt des Kokristalls [(**[3b]**K)(KHMDS)THF₂] mit 50 % Aufenthaltswahrscheinlichkeit der Thermalellipsoide. Kohlenstoffatome sind in Drahtdarstellung gezeigt und Wasserstoffatome, die nicht zu einer BH₃-Gruppe gehören, sind zur besseren Übersicht nicht dargestellt. Gestrichelte Bindungen sind Teil der Koordinationsumgebung des K⁺-lons. Ausgewählte Bindungslängen (Å): P1-O1 1.654(2), P1-O2 1.662(2), P1–B1 1.926(2), K1-O2 2.724(2), K1-O4 2.740(2), K1-N1 2.796(2), K2-O3 2.705(2), K2-O1 2.746(2), K2-N1 2.819(2), B1-H1 1.11(2), B1-H2 1.13(2), B1-H3 1.13(2), K1-H3 2.78(2), K1-H2 2.90(2), K2-H2 2.81(2), K2-H3 2.86(2), K1–H1 2.80(2).

[**3b,c**]K weisen im ³¹P- und ¹¹B-NMR-Spektrum im Vergleich zu den protonierten Derivaten [**2b,c**]BH₃ eine Hochfrequenzverschiebung auf. Auch Diaminophosphid-Borane,^[37,43] sowie Phosphinidenoid-Komplexe Li_{solv}[(Me₃Si)₂CH-P(X){M(CO)₅}] (X= Halogen, M = Cr, Mo, W),^[114] die auch als metallierte Phosphane mit einem elektronegativen Substituenten aufgefasst werden können, weisen eine Hochfrequenzverschiebung auf. Im Gegensatz dazu führt die Deprotonierung sekundärer Alkyl- und Arylphosphane typischerweise zu einer Abschirmung des Phosphors und Bors, welche auf die Steigerung der Ladungsdichte am P-Atom zurückgeführt wird. Diese Kontradiktion gegenüber Alkyl-bzw. Arylphosphanen wird durch einen erhöhten paramagnetischen Beitrag des chemischen Abschirmungstensors hervorgerufen, welcher den Effekt der erhöhten Ladungsdichte am P-Atom kompensiert.^[88]

Dieses NMR-spektroskopische Verhalten ist ein Hinweis auf einen verringerten HOMO-LUMO Abstand, welcher anhand von quantenchemischen Rechnungen (Tabelle 1) bestätigt wurde. Der KS-HOMO-KS-LUMO Abstand von **[3b]**⁻ ist um 2.35 eV kleiner als von **[2b]**BH₃. Ein ähnlicher Trend konnte auch beim Vergleich der Modellverbindungen (HO)₂P-H und (HO)₂P-Li festgestellt werden.^[115] Da für Verbindungen mit kleiner HOMO-LUMO-Energielücke ambiphiler Charakter diskutiert wird (z.B. Carbene^[88,116–118], deren Analoga^[119–124] und Trielverbindungen mit konjugierten Doppelbindungen^[125,126]), liefern die berechneten und gemessenen NMR-Daten von **[3b]**⁻ ein erstes Indiz für eine ambiphile Reaktivität metallierter Diorganophosphonit-Borane, die durch weitere Untersuchungen (Kapitel 3.2.2) bestätigt werden konnten.

Verbindung	$\delta(^{31}P)$ experimentell	δ(³¹ P) berechnet	Δ Екs-номо,кs-lumo (eV)	Literatur
[2b] BH ₃ ^[a]	127.3	206.4	8.43	Eigene Arbeit ^[127]
[3b] ^{-[a]}	303.5 ^[c]	316.1	6.08	Eigene Arbeit ^[127]
(HO) ₂ PH ^[b]	-	51.9	12.16	[115]
(HO) ₂ PLi ^[b]	-	172.3	7.17	[115]

Tabelle 1: Vergleich der gemessenen und berechneten ³¹P-NMR chemischen Verschiebungen von (metallierten) Diethylphosphonit-Boranen mit den berechneten KS-HOMO-KS-LUMO Abständen.

^[a] auf PCM-B3LYP-D3BJ/def2-svp bzw. PCM-B3LYP-D3BJ/def2-tzvpp-Niveau, ^[b] auf GIAO/6-311 + G**//MP2(fc)/631 + G**-Niveau, ^[c] Verbindung **[3b]**K.

Für eine sinnvolle Interpretation der Trends chemischer Verschiebungen wären Kenntnisse der genauen Konstitution von **[3b-e]**M in Lösung wünschenswert. Deren Ermittlung wird dadurch erschwert, dass die vorliegenden Strukturen dynamisch sind und sich die Bildung und der Aufbau von Ionenpaaren oder größeren Aggregaten aus Anionen und Kationen zumindest für Verbindungen mit schweren Alkalimetallionen kaum nachweisen lassen. Eine Ausnahme bilden Li-Verbindungen, in denen die interessante Strukturinformation in vielen Fällen aus heteronuklearen NOEs ableitbar ist.^[128,129] Bei -78 °C erwies sich **[3b]**Li als handhabbar, sodass stellvertretend NMR-Experimente an diesem Derivat durchgeführt wurden.

Das bei -78 °C aufgenommene ¹H-⁷Li-HOESY-Spektrum von **[3b]**Li weist Kreuzsignale zwischen dem Lithiumkation und den Ethoxygruppen auf, aber nicht den Wasserstoffatomen der BH₃-Gruppe wie im Fall von ⁶Li-¹H-HOESY-Messungen an Ph₂P(BH₃)Li (**[3s]**Li).^[109] Trotzdem können derartige Wechselwirkungen nicht ausgeschlossen werden, da für BH…Li-Kreuzsignale infolge der großen Linienbreite der BH₃-Signale nur ein extrem geringes Signal-zu-Rausch-Verhältnis zu erwarten ist und sich die Signale daher einer Detektion entziehen. Die Befunde können so interpretiert werden, dass, wie in festem **[3b]**K, eine Assoziation über O…Li-Wechselwirkungen erfolgt; ob zusätzlich auch wie in festem Ar₂P(BH₃)M^[106] eine Assoziation über agostische BH…Li-Wechselwirkungen erfolgt, kann nicht ausgeschlossen werden.

Eine ¹H-DOSY-Messung einer Lösung von **[3b]**Li und $(EtO)_{3}PBH_{3}$ ergab, dass beide Verbindungen vergleichbare Diffusionskoeffizienten besitzen $(D([3b]Li)/D((EtO)_{3}PBH_{3}) = 0.8)$. Dieser Befund spricht dafür, dass **[3b]**Li wie das metallierte Diaminophosphid-Boran **[3k]**Li in Lösung eine monomere Struktur besitzt.^[43]

Die chemischen Verschiebungen der ³¹P- und ¹¹B-NMR-Signale der Kalium-Phosphid-Borane [**3b,c**]K sind höher als die der Natriumverbindungen [**3b,c**]Na und diese wiederum höher als die der Lithiumverbindungen [**3b,c**,]Li (Tabelle 2). Derselbe Trend ist bei Diphenylphosphid-Boranen zu beobachten, während für Diaminophosphid-Borane je nach Substituent unterschiedliche Trends festgestellt wurden.^[37] In der Annahme, dass ein formaler Austausch des Alkalimetalls die in Lösung vorliegende Struktur nicht grundlegend ändert (vgl. Izod et al.^[106]) könnte die entschirmende Wirkung kleinerer Kationen auf ihre stärker polarisierende Wirkung zurückgeführt werden. Die dynamische Struktur in Lösung schränkt jedoch einfache Erklärungen stark ein.

Die Reaktion von [**2d**]BH₃ mit KHMDS in THF verlief unter Gelbfärbung der Reaktionslösung und lieferte neben dem Phosphid [**3d**]K das Diphosphan (DippO)₂P-P(ODipp)₂ **12d** ($\delta^{31}P =$ 203 ppm) und das tertiäre Phosphit (DippO)₃P ($\delta^{31}P =$ 148 ppm) als ungewollte Nebenprodukte. Die Durchführung der Reaktion in Toluol statt THF ergab lediglich das gewünschte Phosphid [**3d**]K.

Das zyklische Phosphid-Boran **[3e]**K ist in Diethylether und Toluol schwer löslich, konnte jedoch in THF-Lösung spektroskopisch charakterisiert werden. Da auch hierbei eine für Nebenreaktionen indikative Gelbfärbung beobachtet werden konnte, wurden Folgereaktionen als Suspension in Toluol durchgeführt (siehe Kapitel 3.3.3).

Der Versuch der Synthese von **[3f]**K aus **[2f]**BH₃ und KHMDS verlief ohne Erfolg. Bei Zugabe einer Lösung von KHMDS zu **[2f]**BH₃ in Toluol bei -78 °C entstand ein farbloser Niederschlag. Die Analyse der Reaktionslösung mithilfe von ³¹P-NMR-Spektroskopie zeigte, dass **[2f]**BH₃ vollständig verbraucht wurde, jedoch waren keine neuen P-haltigen Verbindungen beobachtbar. Der Versuch wurde in Diethylether wiederholt und auch hier wurde ein farbloser Niederschlag beobachtet, während in Lösung spektroskopische Hinweise auf das

26

Triphosphanid **[5f]**K (δ^{31} P = 230 ppm, -107 ppm, ${}^{1}J_{PP}$ = 416 Hz) gefunden wurden. Dies deutete auf zu **[3b]**Li und **[3c]**Li vergleichbare Zersetzungsreaktion hin.

Versuche zum Abfangen des Phosphids mit Ph₃SiCl lieferten ein Produktgemisch, in dem S-2,2'-bis-(Triphenylsilyl)-1,1'-binaphtholether als einziges Produkt in kleiner Menge in kristalliner Form isoliert und sicher identifiziert werden konnte (Abbildung 5).

Abbildung 5: Molekülstruktur von S-2,2'-bis-(Triphenylsilyl)-1,1'-binaphtholether. Wasserstoffatome wurden zur Übersichtlichkeit nicht dargestellt und die dargestellten Thermalellipsoide von Schweratomen entsprechen einer Aufenthaltswahrscheinlichkeit von 50 %. Ausgewählte Bindungslängen (Å): Si1-O1 1.656(4), Si2-O2 1.645(5).

Die NMR-spektroskopischen Daten der synthetisierten Phosphid-Borane sind zusammen mit denen vergleichbarer literaturbekannter Verbindungen in Tabelle 2 aufgeführt. Die Signale der Ethoxyderivate **[3b]**M sind im Vergleich zu dem elektronenreicher substituierten Isopropoxyderivaten **[3c]**M etwas weiter tieffeldverschoben ($\Delta\delta^{31}P = 6.7-12.6 \text{ ppm}$). Die Signale von **[3d]**K und das zyklische Derivat **[3e]**K sind beide hochfrequenzverschoben, und die Verbindungen sind im polaren Lösungsmittel THF nicht beständig. Unter der Annahme, dass die deutliche Entschirmung vor allem durch einen kleinen HOMO-LUMO-Abstand des Phosphids hervorgerufen wird, kann auf qualitativer Ebene mithilfe der ³¹P-NMR-Verschiebung die Reaktivität abgeschätzt werden. Konkret heißt das, dass bei steigender chemischer Verschiebung ein geringerer HOMO-LUMO-Abstand erwartet wird, welcher zu einer stärker ambiphilen Reaktivität führt.

Man erkennt, dass bei formalem, schrittweisem Austausch der O-Substituenten gegen Aminosubstituenten die ³¹P-NMR-Verschiebung um ca. 100 ppm niederfrequenzverschoben

ist. Dies ist zum einen auf die geringere Elektronegativitätsdifferenz zurückzuführen, aber lässt auch auf einen größeren HOMO-LUMO Abstand bei (Di)Aminophosphid-Boranen gegenüber Dialkoxyphosphid-Boranen schließen.

Verbindung	δ(³¹ Ρ) (ppm)		δ(¹¹ B) (ppm)	¹ J _P 11 _B (Hz)	Literatur
[3b] K	303.5		-27.4	37	-
[3b] Na	302.9		n.b.	n.b.	-
[3b] Li	294.5		-33.5	26	-
[3i] Li	195.9		-33.9	39	-
[31] Li	61.8		-32.9	62	[37]
[3c] K	290.9		-30.3	36	-
[3c] Na	289.0		-31.8	33	-
[3c] Li	287.8		-32.8	31	-
[3d] K	325.8 ^[a]		-29.6 ^[a]	27 ^[a]	-
[3e] K	348.8		-26.9	19	-
[4b] Na	185.7 ^[c]	-144.0	-34.6	86	-
[4b] Li	183.7 ^[c]	-144.5	-34.6	80	-
[4c] Na	167.3 ^[c]	-87.6	n.b.	n.a.	-
[5c] Na	177.7 ^[c]	-133.9	n.b.	n.a.	-
[4c] Li	180.2 ^{[b], [c]}	-127.4 ^[b]	-33.2 ^[b]	70 ^[b]	-
[5c] Li	163.2 ^{[b], [c]}	-92.5 ^[b]	-37.0 ^[b]	n.a.	-
Li[Ph ₂ P·BH ₃]	-32.4		-31.6	45	[130]
$Na[Ph_2P \cdot BH_3]$	-31.1		n.b.	n.b.	[131]
K[Ph ₂ P·BH ₃]	-28.2		-30.1	32	[103]

Tabelle 2: NMR-spektroskopische Daten der Alkalimetallphosphide bei RT in THF oder THF-d₈.

^[a] Toluol-d₈, ^[b] C₆D₆, ^[c]terminale (EtO)₂P(BH₃)-Einheit, n.b. = nicht bestimmt, n.a. = nicht aufgelöst; **[3I]**Li = $((i-Pr)_2N)_2P(BH_3)Li$.

3.2.2 Selbstkondensation von Dialkoxyphosphid-Boranen

Die Phosphide **[3b]**Li und **[3c]**Li können, wie in Kapitel 3.2.1 beschrieben, bei tiefer Temperatur hergestellt werden, reagieren aber bei Aufwärmen auf Raumtemperatur unter Abspaltung der Alkoxide zu den Triphosphanid-Boran Addukten **[4b]**Li bzw. **[5c]**Li (Schema 18). Beide Verbindungen konnten nach Entfernen des Lösungsmittels aus Hexan kristallisiert werden und durch spektroskopische Daten und Einkristall-Röntgendiffraktometrie eindeutig identifiziert und charakterisiert werden.

Schema 18: Synthese von Alkalimetall-Dialkylphosphoniten ([3b,c]M) und Kondensation zu den entsprechenden Triphosphanid-Boranen [4b,c]Li,Na, [5c]Li,Na). Die Phosphide [3b]K und [3c]K sind stabile Verbindungen, die bei RT keine Selbstkondensation eingehen. (M = Li, Na, K, R = Et (b), *i*-Pr (c) X = freies Elektronenpaar (4), BH₃ (5)).

Das Triphosphanid **[5c]**Li (Abbildung 6, rechts) ist, anders als das vergleichbare Triphosphanid **[4b]**Li, im Kristall aus einzelnen molekularen Einheiten aufgebaut, in denen das Lithiumatom von den Wasserstoffatomen zweier BH₃-Einheiten und zwei THF-Molekülen koordiniert wird. Das formal negativ geladene zentrale P-Atom wirkt nicht als Donor gegenüber dem Lithiumkation. Die P-B-Bindungen an den terminalen P-Atomen (P3B1 1.902(2), P2-B2 1.910(2) Å) sind deutliche kürzer als die am zentralen P-Atom (P1-B3 1.993(2) Å). Zwar ist das Auftreten langer P-B-Abstände für metallierte Alkyl- und Aryl-Phosphan-Borane^[105,106] sowie (Me₂N)₂P(BH₃)M (M = Na, K) ^[37] und **[3b]**K bekannt, jedoch werden die dort gefundenen typischen Abstände (P-B 1.94-1.97 Å) übertroffen. Eine vergleichbare Bindungslänge wurde bisher nur für das zweifach metallierte Phosphan-Boran Li₂[PhP(BH₃)](DME) beobachtet (P-B 1.996(2) Å). Der große P1-B3-Abstand in **[5c]**Li steht im Einklang mit dem Fehlen einer sichtbaren Signalaufspaltung durch die ¹J_{PB}-Kopplung im ³¹P-NMR Spektrum, sowie der leichten Abspaltung der Boraneinheit nach Zugabe von NEt₃ bei Raumtemperatur.

Im Kristall des Triphosphanid-Bisboranaddukts [**4b**]Li (Abbildung 6, links) liegt ein Koordinationspolymer aus Li-Kationen und Triphosphanid-Anionen vor. Die Hälfte der Li-Ionen liegt auf dem Inversionszentrum der Elementarzelle, und die andere Hälfte ist über zwei Positionen in der Mitte der kristallographischen *ab*-Ebene fehlgeordnet. Jedes Lithiumatom wird von jeweils zwei Sauerstoffatomen (Li2-O3 1.92(1), Li1-O2 2.001(1) Å) unterschiedlicher Triphosphanid-Einheiten koordiniert. Das Li-Ion im Inversionszentrum (Li1) bildet zusätzlich zwei sekundäre Wechselwirkungen zu den zentralen P-atomen (Li1-P1 2.791(1) Å) sowie zwei agostische Wechselwirkungen mit BH₃-Einheiten (Li1-H6 2.91(2) Å) zweier benachbarter Anionen aus, während das Li-Ion auf der kristallographischen ab-Ebene (Li2) ausschließlich durch agostische Wechselwirkungen (Li2-H3 2.39(2), Li2-H4 2.43(2) Å) koordinativ abgesättigt wird. Beide P-P-Bindungen sind sehr kurz (P1-P2 2.136(1), P1-P3 2.121(1) Å). Daraus wird geschlossen, dass die negative Ladung durch Hyperkonjugation in der P3-Einheit stabilisiert wird. Im Vergleich hierzu sind die P-P-Abstände von [5c]Li (P1-P2 2.173(5), P1-P3 2.1822(5) Å) etwas länger. Dies impliziert, dass die zusätzliche Stabilisierung der negativen Ladung durch die Boraneinheit die Hyperkonjugation schwächt. Der stabilisierende Effekt elektronenziehender Substituenten sowie die Blockierung des freien Elektronenpaars scheint den Aufbau von Triphosphanid-Ionen zu vereinfachen, wie bereits für 1,1,3,3-Tetraethoxy-1,3-dioxo-triphosphanide diskutiert wurde.^[132]. Die Triphosphanide [4b,c]M und [5c]M sind strukturell mit Triphospheniumionen [R₃P-P-PR₃]⁺ verwandt. Die P-P Abstände sind auch hier sehr kurz und variieren je nach Gegenion zwischen 2.117(1) Å und 2.132(1) Å, was auf den unterschiedlichen Grad an Hyperkonjugation zurückgeführt wird.^[133,134] Diese geht bei Protonierung des zentralen P-Atoms weitgehend verloren, sodass bei { $[Ph_3P-P(H)-PPh_3][AlCl_4]_2$ } längere Bindungsabstände (d(P-P) = 2.205(1) Å, 2.224(1) Å)^[135] beobachtet werden. Dies ist im Einklang mit den kurzen P-P-Bindungsabständen von [4b]Li und den im Vergleich hierzu längeren P-P-Bindungslängen von [5c]Li.

Abbildung 6: Molekülstruktur von **[5c]**Li-THF₂ im Kristall (*links*) und Ausschnitt aus der Kristallstruktur von **[4b]**Li (*rechts*; das dargestellte Anion und die zwei benachbarten Kationen bilden die Wiederholungseinheit des Koordinationspolymers). Die dargestellten Thermalellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit von 50 %. Kohlenstoffatome sind in Drahtdarstellung gezeigt und Wasserstoffatome, die nicht Teil einer BH₃-Gruppe sind, wurden zur besseren Übersicht nicht dargestellt. Für **[3b]**Li wurde nur eine Besetzung der fehlgeordneten Li-Atome dargestellt. Ausgewählte Bindungslängen (Å): **[4b]**Li : P1-P2 2.136(1), P1-P3 2.121(1), P1-Li1 2.791(1), P2-O1 1.594(1), P2-O2 1.630(1), P2-B2 1.909(2), P3-O4 1.598(1), P3-O3 1.621(1), P3-B3 1.908(2), O2-Li1 2.001(1), O3-Li2 1.92(1), Li1-H6 2.91(2), Li2-H3 2.39(2), Li2-H4 2.43(2); **[5c]**Li·**THF**₂: P1-P2 2.173(5), P1-P3 2.182(1), P1-B3 1.993(2), P2-O3 1.594(1), P2-O4 1.598(1), P2-B2 1.910(2), P3-O1 1.586(1), P3-O2 1.602(1), P3-B1 1.902(2), Li–O2S 1.927(3), Li–O1S 1.945(3), Li-H16 1.96(2), Li-H13 1.97(2), Li-H14 2.15(2).

Bei der Umsetzung des Dialkylphosphonit-Borans **[2b]**BH₃ mit NaHMDS wurde Bildung einer Mischung des Phosphid-Borans **[3b]**Na ($\delta^{31}P = 302.9 \text{ ppm}$) und des Triphosphanid-Borans **[4b]**Na ($\delta^{31}P = 185.7$, -144.0 ppm, ¹J_{PP} = 429 Hz) beobachtet. Bei analoger Umsetzung des Isopropylderivats **[2c]**BH₃ mit NaHMDS wurde spektroskopisch nur das Phosphid-Boran **[3c]**Na ($\delta^{31}P = 289.0 \text{ ppm}$) beobachtet, welches bei RT nach 1 h zu 38 %^a zu Bis bzw. Tris-Boran-Addukten des substituierten Triphosphanids **[4c]**Na ($\delta^{31}P = 167.3$, -87.6, ¹J_{PP} = 278 Hz) und **[5c]**Na (177.7, -133.89, ¹J_{PP} = 422 Hz) kondensierte. Folglich konnte die Isolierung der Natriumphosphide **[3b,c]**Na nicht erreicht werden, und die resultierenden Triphosphanid-Borane wurden spektroskopisch charakterisiert. Die Na-Phosphid-Borane neigen weniger zur Selbstkondensation als die analogen Li-Salze; da sich diese aber nicht vollständig verhindern

^a Durch Integration der Signale im ³¹P-NMR-Spektrum bestimmt.

lässt, sind sie im Unterschied zu den K-Derivaten nicht sinnvoll als Synthesebausteine einsetzbar.

3.2.3 Reaktivität metallierter Diorganophosphonit-Borane gegenüber externen Basen bzw. Nukleophilen

Die Bildung von PP-Bindungen im Zuge der in Kapitel 3.2.2 beschriebenen Bildung von Triphosphanid-Boranen könnte prinzipiell durch einen nukleophilen Angriff eines Diorganophosphonit-Borans auf ein zweites Molekül bzw. ein in einem ersten Kondensationsschritt gebildetes Diphosphanid ablaufen. Alternativ könnte aus dem metallierten Phosphid-Boran ein Alkoxidfragment MOR abgespalten werden. Dadurch entstünde intermediär ein Phosphiniden [ROP(BH₃)], welches als Elektrophil gegenüber einem Phosphid-Fragment [(RO)₂P(BH₃)]⁻ agieren könnte. 2,3-Dimethyl-1,3-butadien ist ein gängiges Reagenz zur Derivatisierung via Cycloaddition von *in situ* generierter Phosphinidene,^[136] jedoch konnte beim Aufwärmen von -78 °C auf RT einer *in situ* generierten THF-Lösung von **[3b]**Li keine Bildung von Abfangprodukten beobachtet werden. Auch die Bildung cyclischer Phosphane (EtOP)_n (n = z.B. 4; 5) durch formale Oligomerisierung kurzlebiger Phosphinidene konnte nicht beobachtet werden. Angesichts dieser Befunde wird davon ausgegangen, dass der Phosphinidenmechanismus nicht plausibel ist.

Die Hypothese, dass die Bildung der Triphosphanide durch einen nukleophilen Angriff auf das P-Atom eines metallierten Diorganophosphonit-Borans eingeleitet wird, inspirierte weitere Untersuchungen der Reaktionen von **[3b]**Li mit starken Nukleophilen wie Butyllithium und Lithiumdiphenylphosphid (Schema 19).

Die Reaktion von **[3b]**Li bei -50 °C mit *n*-BuLi bildete als einzig spektroskopisch beobachtbares Produkt Bu₂P(BH₃)Li **[3t]**Li (δ (³¹P) = -72.1 ppm, ¹J_{P11B} = 37 Hz), welches nach Protonierung mit Methanol als das bekannte Phosphan^[137] Bu₂P(BH₃)H **[2t]**BH₃isoliert werden konnte. Die Umsetzung von **[3b]**Li mit Ph₂PLi führte, analog zur Selbstkondensation von **[3b]**Li, unter zweifacher Substitution des Alkoxysubstituenten zum Triphosphanid-Boran **[6r]**Li. Die Darstellung des freien Triphosphids wurde vorher bereits aus Diphenylphosphid und weißem Phosphor^[138] oder Dicyanphosphid^[139] beschrieben.

Schema 19: Zweifache nukleophile Substitution von **[3b]**Li mit *n*-BuLi und Ph₂PLi und literaturbekannte nukleophile Substitution von (TMSO)₂P-H **(2h)**.

Analoge nukleophile Substitutionen wurden auch für neutrale Phosphonite RO(TMSO)PH (**XXVI**) und (TMSO)₂PH (**2h**) mit Amiden oder Phosphiden beschrieben (Schema 19, unten).^[31] Lithiumdiisopropylamid (LDA) zeigte gegenüber [**2b**]BH₃ bzw. [**3b**]Li in Abhängigkeit von der Stöchiometrie unterschiedliches Verhalten (Schema 20). Bei 1:1-Umsetzung von LDA mit [**2b**]BH₃ wurde, wie bei der analogen Reaktion mit LiHMDS (Kapitel 3.2.1), das Phosphid [**3b**]Li. Wird LDA mit [**2b**]BH₃ im Verhältnis 3:1 umgesetzt, wird spektroskopisch das Alkoxy-aminophosphid-Boran [**3i**]Li (δ (³¹P) = 196.4 ppm, δ (¹¹B) = -34.0 ppm, ¹ J_{P11B} = 41 Hz) als einziges P-haltiges Produkt beobachtet. Der Austausch des zweiten Ethoxysubstituenten zum literaturbekannten Phosphid [**3l**]Li konnte auch nach mehrstündigem Kochen unter Rückfluss in THF nicht beobachtet werden. Wird LDA und [**2b**]BH₃ im stöchiometrisch passenden Verhältnis 2:1 umgesetzt entsteht eine Mischung aus [**3i**]Li und [**4b**]Li im Verhältnis 9:1. Bei nachträglicher Zugabe von LDA ändert sich die Produktzusammensetzung nicht.

Schema 20: Deprotonierung von **[2b]**BH₃ mit LiN(*i*-Pr)₂ (LDA) und *in situ* Umsetzung von **[3b]**Li mit überschüssigem LDA bzw. die in Kapitel 3.2.2 vorgestellte, konkurrierende Selbstkondensation.

Nach Entfernen des Lösungsmittels und des Rückstands mit Hexan konnte aus dem Extrakt ein kristallines Produkt der Zusammensetzung $\text{Li}_6[3i]_2(\text{N}i-\text{Pr}_2)_2(\text{OEt})_2\text{THF}_2\cdot0.5\text{ C}_6\text{H}_{14}$ erhalten werden (Abbildung 7). Da die Verbindung in der zentrosymmetrischen Raumgruppe P $\overline{1}$ kristallisiert, liegt ein Racemat vor. Die asymmetrische Einheit besteht aus zwei Einheiten [3i]Li, deren Lithiumkationen von den jeweiligen OEt-Gruppen und BH₃-Einheit sowie dem N-Atom eines μ_2 -verbrückenden Diisopropylamid verbrückt werden.

Abbildung 7: Ausschnitt der Elementarzelle der Kristallstruktur von {[3i]Li·(*i*-Pr)₂N·[Li₈(OEt)₆THF₂)]}. Die dargestellten Thermalellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit von 50 % und Wasserstoffatome, die nicht Teil einer BH₃-Gruppe sind, wurden nicht dargestellt. In der Elementarzelle ist ein Hexanmolekül enthalten, welches nicht dargestellt ist. Fehlgeordnete Ethyl und Isopropylgruppen wurden nur in einer Besetzung dargestellt. Zur besseren Erkennbarkeit der Molekülfragmente wurden dative Bindungen zu Lithiumatomen, die nicht innerhalb des Li₈(OEt)₆-Clusters sind, gestrichelt dargestellt. Ausgewählte Bindungslängen (Å): P1-N1 1.678(2), P1-O1 1.716(2), P1-B1 1.932(4), P2-N2 1.674(2), P2-O2 1.721(2), P2-B2 1.939(4), O1-Li1 1.923(5), O2-Li2, 1.900(5), N3-Li1 1.947(5), N3-Li1 1.966, Li1-H1 2.17(3), Li1-H3 2.03(3), Li2-H4 2.09, Li2-H5 2.07(3), Li4-H4 2.02(3), Li4-H6 1.99(4), Li5-H1 2.11(3), Li5-H2 1.98(3), Li3-O3 1.939, Li3-O4#1 1.959(5), Li3-O5 1.971(5), Li3-O6 1.974(6), Li4-O4 1.991(4), Li4-O5 1.979(5), Li4-O6 1.955(5), Li5-O4#1 2.013(4), Li5-O5 1.951(5), Li5-O6 1.982(5), Li6-O4 1.897(5), Li6-O5 1.901, Li6-O6#1 1.904(4).

Die Koordination eines Phosphids an ein Lithiumatom kann wegen der langen Bindungsabstände (P1-Li1 2.907(5), P2-Li2 2.889(5)) und der falschen Orientierung ausgeschlossen werden. Die asymmetrische Einheit der Elementarzelle enthält weiterhin ein Fragment der Zusammensetzung {Li₄(OEt)₃THF}⁺, das die Hälfte eines zentrosymmetrischen Clusters der Zusammensetzung {Li₈(OEt)₆THF₂}²⁺ bildet und die negative Ladung des beschriebenen {Li₂[**3i**]₂N*i*-Pr₂}⁻ Aggregats kompensiert. Die Lithiumatome des dikationischen Clusters bilden die Ecken eines leicht verzerrten Würfels. Über dem Zentrum jeder Würfelfläche liegt eine Ethoxygruppe, deren O-Atom verbrückend an alle vier benachbarten Lithiumatome koordiniert. Vier der Lithiumatome werden zusätzlich durch agostische Wechselwirkungen mit BH₃-Einheiten und zwei weitere durch Koordination je eines THF-Moleküls koordinativ abgesättigt. Die beiden restlichen Metallionen werden lediglich durch die O-Atome der drei benachbarten Ethoxygruppen in einer trigonal-pyramidalen Anordnung koordiniert.

Die Reaktionen von **[3b]**Li mit Nukleophilen (*n*-BuLi, Ph₂PLi, LDA) verlaufen unter Bedingungen, wo Konkurrenzreaktionen wie Selbstkondensation oder Protonierung von **[3b]**Li keine Rolle spielen, und sie sind unter den herrschenden Bedingungen anscheinend nicht reversibel. Das legt nahe, dass die Reaktionen über einen nukleophilen Angriff an der metallierten Spezies erfolgt, und dass diese somit elektrophilen Charakter besitzen. Ferner ist **[4b]**Li in der Umsetzung von **[3b]**Li mit LDA kein Intermediat , sondern entsteht in einer Konkurrenzreaktion zur gewünschten Amidierung. Die Reaktion von **[2b]**BH₃ bzw. **[3b]**Li mit Nukleophilen verläuft prinzipiell analog zu den früher beschriebenen nukleophilen Substitutionen (siehe Kapitel 1.2, Schema 5)^[29,30] wie z.B. von RO(TMSO)PH bzw. (TMSO)₂PH **(2h)** mit Amiden oder *t*-Bu₂PLi.^[31] Im Unterschied zu den Substitutionen an den freien Phosphoniten ist in einigen Fällen Zweitsubstitution möglich, und in der Reaktion von **[3b]**Li mit LDA ist eine Konkurrenz zwischen Amidierung und Selbstkondensation zu beobachten. Das kann als Folge eines aktivierenden Einflusses des koordinierten Borans erklärt werden, welches die Elektrophilie am P-Atom erhöht.

3.3 Reaktivität metallierter Phosphan-Borane gegenüber Elektrophilen

Die in Kapitel 3.2.2 beschriebene Selbstkondensation der Phosphide **[3b,c]**Li und **[3b,c]**Na ist ein erstes Beispiel für eine Reaktion, in der das für diese Spezies erwartete nukleophile Verhalten zu Tage tritt. Die gesamte Bandbreite solcher Reaktionen wird im Folgenden anhand der Substitution mit komplexen Übergangsmetallchloriden, Gruppe 14-Halogeniden und Heterokumulenen demonstriert.

3.3.1 Transmetallierung von Kalium-Diethoxyphosphid-Boran

Phosphide sind etablierte Liganden für Übergangsmetall-Komplexe. In den meisten Fällen wird eine μ_2 -verbrückende Koordination bevorzugt^[140–146]. Komplexe mit terminalen Phosphido- oder Phosphido-Boran-Liganden sind demgegenüber relativ selten; eine CSD-Recherche liefert nur 28 Treffer für Komplexe mit einem Mono- oder Diorganophosphid-Boran-Liganden. Da aus den Arbeiten von M. Blum bekannt ist, dass auch Diaminophosphid-Borane zur Bildung von Übergangsmetall-Komplexen in der Lage sind,^[37,43] wurde hier versucht, analoge Komplexe mit Diorganophosphonit-Boranen zu synthetisieren (Schema 21). Die schon von Blum^[43] eingesetzten komplexen Übergangsmetallhalogenide (TMEDA)ZnCl₂ (TMEDA = N,N,N',N'-Tetramethylethylendiamin) und IDippCuCl (IDipp = 1,3-Bis-(2,6-diisopropylphenyl)-imidazol-2-yliden) sind geeignete Ausgangsverbindungen, da sie in wasserfreier Form kommerziell erhältlich oder einfach synthetisierbar^[147] sind. Ferner dienen NHC-koordinierte Kupferphosphid-Komplexe als Präkatalysatoren oder Zwischenstufen in der katalytischen Hydrophosphanierung.^[148]

Schema 21: Salzmetathese von [**3b]**K mit den komplexen Übergangsmetallhalogeniden IDippCuCl (1,3-Bis-(2,6diisopropylphenyl)-imidazoyl-Kupferchlorid) und (TMEDA)ZnCl₂.

Die Umsetzung von **[3b]**K mit (TMEDA)ZnCl₂ und IDippCuCl erfolgten nach ³¹P-NMRspektroskopischen Untersuchungen in glatten Metathesereaktionen unter Erhaltung der Spektatorliganden zu den Übergangsmetallphosphiden **[3b]**Cu ($\delta^{31}P = 225.3 \text{ ppm}$, $\delta^{11}B = 32.4 \text{ ppm}$, ${}^{1}J_{PB} = 61 \text{ Hz}$), **[3b]**Zn ($\delta^{31}P = 199.1 \text{ ppm}$, $\delta^{11}B = 35.1 \text{ ppm}$, ${}^{1}J_{PB} = 60 \text{ Hz}$) und **[3b]**₂Zn ($\delta^{31}P = 206.4 \text{ ppm}$, $\delta^{11}B = -34.4 \text{ ppm}$). Die gezielte Synthese des Monophosphid- (**[3b]**Zn) und Bisphosphido-Zinkkomplexes (**[3b]**₂Zn) gelingt bei Verwendung von einem (**[3b]**Zn) oder zwei Äquivalenten (**[3b]**₂Zn) des Phosphid-Borans **[3b]**K.

Der Zinkkomplex **[3b]**₂Zn wurde nach Aufarbeitung in kristalliner Form isoliert, während **[3b]**Zn und **[3b]**Cu nur als nicht analysenreine Rohprodukte erhalten und durch ihre spektroskopischen Daten identifiziert werden konnten. Der Kupferkomplex **[3b]**Cu erwies sich als empfindlich gegenüber atmosphärischem Sauerstoff und wurde im Verlauf der Aufarbeitung partiell zum Phosphit **[3b]**OCu ($\delta^{31}P = 98.6$ ppm, $\delta^{11}B = -41.6$, ¹*J*_{PB} = 130 Hz) oxidiert. Dieses konnte durch Waschen mit Hexan vom ursprünglichen Produkt **[3b]**Cu abgetrennt und aus der Waschlösung in kristalliner Form isoliert werden.

Bemerkenswert ist, dass der zu **[3b]**₂Zn analoge Diaminophosphido-Komplex [(Et₂N)₂P(BH₃)]₂Zn(TMEDA) **[3k]**₂Zn bislang nicht in reiner Form zugänglich ist^[149]; vermutlich ist die Bildung dieses Produktes durch die höhere sterische Abstoßung zwischen den Diethylamino-Substituenten erschwert.

Alle drei Komplexe **[3b]**Zn, **[3b]**₂Zn und **[3b]**Cu lösen sich im Gegensatz zu **[3b]**K unzersetzt in halogenierten Lösungsmitteln (DCM, CHCl₃), da durch die Koordination an das Übergangsmetallion die nukleophile Reaktivität der Phosphido-Funktion herabgesetzt wird.

Im Vergleich zu den Alkalimetallphoshiden **[3b]**M wurde eine Niederfrequenzverschiebung in den ³¹P- und ¹¹B-NMR-Spektren beobachtet, während die mono- und disubstituierten Zinkphosphide ähnliche chemische Verschiebungen aufweisen. Die Identifikation der Produkte kann trotzdem leicht anhand der Integralverhältnisse im ¹H-NMR-Spektrum getroffen werden.

Die Konstitution von **[3b]**₂Zn und **[3b]**OCu konnte zusätzlich durch Einkristallröntgenstrukturanalyse bestätigt werden (Abbildung 8). Im Fall von **[3b]**₂Zn verhindert die schlechte Qualität des Datensatzes allerdings eine weitergehende Diskussion struktureller Daten. Die molekulare Struktur von **[3b]**OCu zeigt keine Auffälligkeiten der Abstände und Winkel um das P-Atom. Das Kupferion ist, wie für Cu¹ typisch, beinahe linear (C5-Cu-O1 = 175°) koordiniert und weist keine weiteren Kontakte auf.

Abbildung 8: Darstellung der Molekülstrukturen von **[3b]**₂Zn (*links*) und **[3b]**OCu (*rechts*). Die dargestellten Thermalellipsoide von Schweratomen entsprechen einer Aufenthaltswahrscheinlichkeit von 50 %. Wasserstoffatome, die nicht Teil einer BH₃-Gruppe sind, wurden zur Übersichtlichkeit nicht dargestellt und Kohlenstoffatome wurden in Drahtdarstellung gezeigt. Wegen der schlechten Qualtität des Datensatzes werden für **[3b]**₂Zn keine metrischen Parameter angegeben. Bindungslängen (Å) und -winkel (°): **[3b]**OCu (rechts): Cu-O1 1.833(2), Cu-C5 1.854(3), P-O1 1.511(2), P-O2 1.591(2), P-O3 1.615(3), P-B 1.884(4), C5-Cu-O1 175.8(2).

3.3.2 Reaktivität metallierter Diorganophosphonit-Borane gegenüber Trityliumquellen

Metallierte Phosphan-Borane können, wie in den vorangegangenen Kapiteln dargestellt, als Phosphinoboranate (**A**) oder Boran-koordinierte Phosphide (**B**) beschrieben werden (Schema 23). Die Wechselwirkung des Metallkations mit entweder dem P-Atom oder der BH₃-Gruppe führt dazu, dass das jeweils andere Fragment als reaktives Zentrum für die Bindung von Substraten und darauffolgende chemische Reaktionen zugänglich ist. Dies konnte für die Umsetzung von Lithium-Diphenylphosphid-Boran mit Ketonen oder Aldehyden demonstriert werden (Schema 22).^[109] Bei tiefer Temperatur wurde ein P-nukleophiler Angriff an der Carbonylgruppe beobachtet, aus dem nach Protonierung das kinetisch bevorzugte α -Hydroxyphosphan **XLI** entsteht. Beim Erhitzen wandelt sich das Produkt der Phosphanierung unter Hydridmigration in den thermodynamisch bevorzugten primären oder sekundären Alkohol **XLII** um. ¹H-⁶Li-HOESY-Messung an Ph₂P(BH₃)Li⁶ (**[3s]**Li⁶) in THF-d₈ bei -78 °C zeigen den Kontakt der BH₃-Gruppe mit dem Li-Atom. Modellrechnungen an [H₂PBH₃]Li(OMe₂) ergaben, dass eine Struktur, in der das Lithiumion ausschließlich von den H-Atomen der BH₃-Gruppe koordiniert wird, die niedrigste Energie hat und Geometrien, in denen das P-Atom an der Koordination des Lithiumions beteiligt ist, energetisch leicht destabilisiert sind (ΔG = 2.8-5.6 kcal·mol). Basierend auf dieser Datenlage ist davon auszugehen, dass bei tiefen Temperaturen das P-Atom für die Reaktion mit Elektrophilen zur Verfügung steht. Quantenchemische Rechnungen am Modellsystem [H₂PBH₃]Li(OMe₂) + H₂CO , bestätigen diese Struktur-Reaktivitätsbeziehung (Abbildung 9).

Abbildung 9: Auf der Basis von DFT-Rechnungen (B3LYP/6-31++G**) postulierte Reaktionspfade für die Bildung des α-Hydroxyphosphans ("Phosphination") bzw. des Alkohols ("Reduction") in der Modellreaktion zwischen [H₂PBH₃]Li(OMe₂) + H₂CO. Die angegebenen freien Gibbs-Energien sind bezogen auf den Substratkomplex SM1. Durchgezogene Linien stehen für Bindungen, deren Konnektivität bestätigt wurde, und gepunktete Linien stehen für postulierte, sich leicht bildende Bindungen. Entnommen aus Ref.^[109].

Schema 22: Reaktivität von **[3s]**Li mit Carbonylverbindungen und anschließendem Abfangen der Reaktionsprodukte mit Protonenquellen. Bei tiefer Temperatur (*links*) entsteht das kinetisch bevorzugte α -Hydroxyphosphan (Phosphanierung) und bei hoher Temperatur (*rechts*) entsteht der thermodynamisch bevorzugte Alkohol (Reduktion). R₁C(O)R₂ = Benzaldehyd (t = 10 min), *p*-Cyanobenzaldehyd (t = 45 min), Cyclohexanon (t = 60 min), 2-Heptanon (t = 90 min).

Um festzustellen, ob Phosphide **[3b-d]**K eine ähnliche Ditopizität zeigen, wurden Umsetzungen mit Tritylchlorid (Ph₃CCl) und Trityltetrafluoroborat (Ph₃CBF₄) untersucht. Diese Reagenzien sind sowohl gute Elektrophile für eine mögliche P-Substitution als auch exzellente Hydridakzeptoren (Schema 23).^[150] Ferner könnte der Tritylsubstituent durch Lewis-Säuren, Halogene und Halogenwasserstoffe wieder abgespalten werden,^[151] also als Schutzgruppe für Phosphan(id)e dienen.

Schema 23: Grenzstrukturen metallierter Diorganophosphonit-Borane und davon ausgehender, vereinfachter Mechanismus gegenüber Tritylchlorid entweder als P-Nukleophil oder Hydriddonor. X = Cl, BF₄, R = Et, *i*-Pr, Dipp.

Bei Zugabe von Ph₃CCl zu Lösungen der Phosphid-Borane **[3b]**K, **[3c]**K oder **[3d]**K bei -78 °C wurde in allen Fällen ein farbloser Niederschlag und ein Farbumschlag von farblos nach rot und dann nach gelb beobachtet. Die temporäre Rotfärbung könnte auf ein transientes Trityliumkation hinweisen.^[152] Die Reaktionsmischungen wurden auf RT aufgewärmt und NMR-spektroskopisch untersucht. Um festzustellen, ob die zunächst gebildeten Produkte eine thermische Folgereaktion eingehen, wurden die Mischungen erhitzt (18 h, 66 °C (THF)) oder 111 °C (Toluol)) und nach Abkühlen nochmals untersucht. Die überstehende Lösung wurde dekantiert, der farblose Niederschlag mit Aceton gewaschen und anschließend IR-spektroskopisch untersucht.

Die nach Erwärmung auf RT durchgeführten NMR-spektroskopischen Untersuchungen (Tabelle 3) legen nahe, dass in den Reaktionen von **[3b,c]**K als Hauptprodukte die P-Substitutionsprodukte **[7b]**BH₃ ($\delta^{31}P = 139.6 \text{ ppm}$ (THF-d₈), **[7c]**BH₃ ($\delta^{31}P = 136.6 \text{ ppm}$ (thf-d₈)) bzw. **[7d]**BH₃ ($\delta^{31}P = 138 \text{ ppm}$ (Toluol)) gebildet werden. Zusätzlich wurde Ph₃CH anhand der charakteristischen chemischen Verschiebung seiner Methingruppe (($\delta^{1}H = 5.57 \text{ ppm}$ (CDCl₃))^[153] identifiziert (siehe Tabelle 4).

	[7b] BH ₃ ^[a]	[7c] BH₃	[7d] BH₃
δ ³¹ P [ppm]	138 ^[b]	136 ^[c]	138 ^[d]
δ ¹¹ B [ppm]	-42.0 ^[b]	-42.2 ^[c]	-40.2 ^[d]

Tabelle 3: Ausgewählte NMR-Daten der als Tritylphosphonit-Borane **[7b-d]**BH₃ formulierten Produkte der Reaktion von **[3b-d]**K mit Ph₃CX (X = Cl, OTf).

^[a] Nach Filtration aus Petrolether und neu Lösen in CDCl₃, ^[b] CDCl₃, ^[c] THF-d₈, ^[d] Toluol-d₈.

Eine genauere Analyse der zusätzlich entstandenen weiteren Produkte wurde exemplarisch für die Reaktion von **[3c]**K durchgeführt. ³¹P- und ¹¹B-NMR spektroskopisch wurden als weitere phosphorhaltige Nebenprodukte das Boran-Addukt des Phosphorigsäurediesters **[3c]**OK (*i*-PrO)₂P(BH₃)OK ($\delta^{31}P = 91.5$ ppm), das Boran-Addukt (*i*-PrO)₃PBH₃ ($\delta^{31}P = 112$ ppm, $\delta^{11}B = 43.3$ ppm)^[154], sowie Spuren des freien Phosphorigsäuretriesters (*i*-PrO)₃P ($\delta^{31}P = 136$ ppm)^[155] beobachtet.

Nach Erhitzen der Lösung wurde beobachtet, dass die Menge des Tritylphosphonit-Borans **[7c]**BH₃ deutlich abgenommen hat und geringe Mengen mehrerer neue Produkte entstanden waren von denen einzig der Phosphorigsäurediester (*i*-PrO)₂P(O)H (**[2c]**O, $\delta^{31}P = 3.8$ ppm, ¹J_{PH}= 681 Hz)^[156] identifiziert werden konnte. Das ¹¹B{¹H}-NMR-Spektrum dieser Reaktionsmischung enthält neben dem Dublett von (*i*-PrO)₃PBH₃ ($\delta^{11}B = -43.3$ ppm, ¹J_{PB} = 101 Hz)^[154] mehrere Signale im charakteristischen Bereich von Phosphan-Boranen bzw. Phosphino-Boranen ($\delta^{11}B = -40.9$; -41.4; -42.2 ppm), die jedoch aufgrund der Verbreiterung und Überlappung keine Multiplettanalyse und dadurch keine zweifelsfreie Zuordnung zulassen.

Abbildung 10: *In situ* ³¹P{¹H}-NMR Spektrum (162 MHz) der Umsetzung von **[3c]**K mit Ph₃CCl in THF-d₈ direkt nach Vereinigung der Reagenzien bei -78 °C und Aufwärmen auf RT (*unten*) und nach 18 h (*oben*) bei 66 °C. Signale, die mit einem Sternchen (*) versehen sind, konnten nicht zugeordnet werden.

Die IR-spektroskopische Untersuchung des festen Rückstands zeigt Banden von B-H-Valenzschwingungen (\tilde{v} (cm⁻¹) = 2385 (b), 2322 (w)), die BH₂- oder BH₃-Gruppen zugeordnet werden können. Eine NMR-spektroskopische Charakterisierung war aufgrund der geringen Menge und Schwerlöslichkeit nicht möglich.

Die Schwerlöslichkeit und die IR-Daten wären vereinbar mit dem Vorliegen oligo- oder polymerer Phosphinoborane der Zusammensetzung [R₂P-BH₂]_n.

Während analoge oligo- oder polymere Phosphinoborane mit Mono- oder Diorganophosphid-Einheiten $[R(H)P-BH_2]_n$ bzw. $[R_2P-BH_2]_n$ in der Literatur gut dokumentiert sind, ^[89,157–161] sind Informationen über entsprechende P-alkoxyfunktionalisierte Produkte selten. Ein einziges derartiges Derivat wurde von Manners et al.^[98] im Verlauf von Thermolyseexperimenten an Verbindungen Mes*OP(R)H(BH₃) (R = H, Ph) erhalten (Schema 24). Das durch FK-NMR-Spektroskopie nachgewiesene Vorhandensein unterschiedlicher Repetitionseinheiten ist in diesem Fall dadurch zu erklären, dass die zum Kettenaufbau führende Kondensation sowohl unter H₂-Eliminierung als auch unter Abspaltung eines Phenolderivats (Mes*OH) verlaufen kann.

IR-Untersuchungen zeigen, dass die B-H-Streckschwingungen (\tilde{v} (cm⁻¹) = 2384, 2267) bei ähnlichen Wellenzahlen auftreten wie in dem bei Thermolyse von **[7c]**BH₃ erhaltenen Produkt.

Ungeachtet dieser ersten Indizien sind allerdings weitere Untersuchungen notwendig, um zu bestätigen, dass die Thermolyse von **[7c]**BH₃ einen ähnlichen Verlauf wie die der von Manners untersuchten Phosphinite nimmt und gleichfalls oligomere oder polymere Produkte des Typs [(*i*-PrO)₂PBH₂]_n liefert.

Schema 24: Thermolyse von reinem Mes*OPHR(BH₃) (R = H: x = 0.085, y = 0, z = 0.915; R = Ph: x = 0.1, y +z = 0.9; Mes*OH = 2,4,6-Tris-(*tert*-Butyl)-phenol).

Bei der Reaktion zwischen **[7d]**BH₃ und Ph₃CCl wurden, bezogen auf **[7d]**BH₃, zusätzlich drei Äquivalente 2,6-Diisopropylphenol (DippOH)^[162] beobachtet. Daher werden die Experimente des Dipp-substituierten Derivats im späteren Abschnitt diskutiert.

Bei der Umsetzung von **[3d]**K mit Ph₃CCl wurde ³¹P-NMR-spektroskopisch die Bildung der P-Trityl- und PH-substituierten Diorganophosphonit-Borane **[7d]**BH₃ und **[2d]**BH₃ sowie eines weiteren nicht identifizierbaren Produkts ($\delta^{31}P = 190.6$ ppm, s) als P-haltige Hauptprodukte im löslichen Anteil der Reaktionsmischung nachgewiesen. Im ¹H-NMR-Spektrum wurden, bezogen auf **[7d]**BH₃, 0.2 Äquivalente Triphenylmethan und 3.0 Äquivalente DippOH beobachtet. Da als Ursprung für das Phenolderivat nur **[3d]**K in Frage kommt, folgt aus den NMR-Befunden, dass neben DippOH eine beträchtliche Menge P-haltiger Produkte entstanden sein müssen, die im ³¹P-NMR-Spektrum der Lösung nicht mehr sichtbar sind. Wie in den Reaktionen von **[7b,c]**BH₃ und Mes*OP(H)R(BH₃) kann auch hier mit einiger Wahrscheinlichkeit angenommen werden, dass unter P-O-Bindungsspaltung unlösliche Zersetzungsprodukte entstanden sind. Die Herkunft des phenolischen H-Atoms und auch die genaue Zusammensetzung der unlöslichen Produkte bleiben derzeit ungeklärt.

Um den Hydridübertrag von **[3d]**K auf eine Tritylgruppe zu begünstigen, wurde Phosphid-Boran **[3d]**K mit dem im Vergleich zu Ph₃CCl deutlich elektrophileren Ph₃C[BF₄] umgesetzt. Im ¹H-NMR Spektrum des löslichen Anteils der Reaktionsprodukte wurden unter diesen Bedingungen die Bildung von **[7d]**BH₃, Ph₃CH und DippOH im Verhältnis 0.6 : 1.7 : 2.9 beobachtet. Die Arbeitshypothese, dass Phosphid-Boran **[3d]**K mit geeigneten Reaktionspartnern als Hydridübertragungsreagenz agieren kann, wurde dadurch bekräftigt.

Thermolyse eines Reaktionsgemisches von **[3d]**K mit Ph₃CCl bei 105 °C in Toluol-d₈ ergab Hinweise auf die Bildung einer geringen Menge des freien Tritylphosphonits **7d** ($\delta^{31}P =$ 175.9 ppm), das wahrscheinlich durch thermisch induzierte Deboranierung von **[7d]**BH₃ entstand.

Da auch in diesem Fall die Zusammensetzung des unlöslichen Anteils der Reaktionsprodukte nicht zuverlässig aufgeklärt werden konnte, sind über weitere Folgeprozesse keine eindeutigen Aussagen möglich.

Tabelle 4: Ausgewählte Produktverhältnisse der als Tritylphosphonit-Borane [**7b-d**]BH₃ formulierten Produkte der Reaktion von [**3b-d**]K mit Ph₃CX (X = Cl, BF₄).

	[3b] K + Ph₃CCl	[3c] K + Ph₃CCl	[3d] K + Ph₃CCl	[3d] K + Ph₃C[BF₄]
[7b-d] BH ₃ (%) ^[a,b]	76	50	24	24
DippOH (%)	n.b.	n.b.	67	68
n([7b-d]BH₃) n(Ph₃CH)	1.5	1.2	6.1	0.6

^[a] Bestimmung anhand des ¹H-NMR-Spektrums durch Vergleich des CH₂-bzw. CH-Signals aller Alkoxygruppen mit denen von **[7b,c]**BH₃, ^[b] Bestimmung anhand des ¹H-NMR-Spektrums durch Vergleich des CH-Signals aller Dipp-Isopropylgruppen mit denen von **[7d]**BH₃.

Anhand der Integrale der ¹H-NMR Spektren wurden die prozentualen Anteile der Tritylphosphonit-Borane **[7b-d]**BH₃, von Triphenylmethan und von 2,6-Diisopropylphenol (DippOH) bestimmt. Integration der ³¹P-NMR Daten ergab den Anteil des jeweiligen Tritylphosphonit-Borans bezüglich allen P-haltigen Spezies (unter der Annahme, dass jede Phaltige Spezies nur ein P-Atom enthält).

Zusammenfassend konnten anhand der Reaktion mit Trityl-Quellen nur eingeschränkt Rückschlüsse auf die Struktur der Phosphid-Borane **[3b-d]**K in Lösung erhalten werden. Die Hypothese des ditopischen Charakters konnte anhand der Beobachtung von Produktgemischen aus P-Substitutionsprodukt **[7b-d]**BH₃ und Hydridübertragungsprodukt Ph₃CH erhärtet, aber nicht abschließend geklärt werden. Im Unterschied zu den Reaktionen von Ph₂P(BH₃)Li mit Carbonylverbindungen^[109] konnte die Reversibilität der Bildung von P-Substitutionsprodukten im Fall von **[7b,c]**BH₃ nicht bestätigt werden. Die Bildung von DippOH, die bei der Umsetzung von **[3d]**K mit Ph₃CX (X = Cl, BF₄) beobachtet wurde, kann anhand der vorliegenden Daten nicht zufriedenstellend erklärt werden.

3.3.3 Synthese von Silyl-subsituierten Diorganophosphonit-Boranen und deren schwereren Gruppe 14 Homologen

Silylphosphane und ihre schwereren Homologen werden in vielen Fällen wie Alkalimetallphosphide als P-nukleophile Synthesebausteine verwendet. Obwohl ihr nukleophiler Charakter etwas moderater ist, bietet ihr Einsatz eine Reihe praktischer Vorteile. Die Isolation flüchtiger Silylphosphane kann oftmals durch Vakuumdestillation erfolgen. Der molekulare Aufbau bleibt in Lösung erhalten, sodass die Struktur in Lösung als vergleichbar mit der Molekülstruktur im Festkörper angenommen werden kann. Außerdem sind sie in der Regel besser löslich als Alkalimetallphosphide und neigen weniger zu unerwünschten Redoxreaktionen. Beispielsweise ermöglichen Trimethylsilylphosphane Substitutionsreaktionen unter salzfreien Bedingungen, in denen als Nebenprodukt entstehendes Trimethylsilylchlorid aufgrund seiner Flüchtigkeit leicht abgetrennt werden kann.

Neben der Metathese von Alkalimetallphosphiden mit Halogensilanen (siehe Schema 26 und Kapitel 1.4) ist die reduktive Kupplung von Chlorphosphanen mit TMS-Cl eine effiziente Methode zur Darstellung von Trimethylsilylphosphanen, die aufgrund ihrer besonders leichten Umsetzbarkeit häufig angewandt wird.^[163]

Zwar handelt es sich um eine effektive Methode für die Darstellung von Silylphosphanen (siehe Kapitel 1.4) jedoch ist diese nur für Organosilylphosphane R_nP(TMS)_{3-n} etabliert. Für Diamino-substituierte Phosphane wurde lediglich für das Ethylderivat **8k**^[57] und das Isopropylderivat **8I**^[58] eine Synthese durch Reduktion des Chlorophosphans und TMS-Cl beschrieben.

Zur Überprüfung der Praktikabilität reduktiver Kupplungen zur Synthese eines (Trimethylsilyl)-Diorganophosphonits wurde eine Lösung des Chlorophosphits **1d** und Trimethylsilylchlorid mit Mg in THF zur Reaktion gebracht (Schema 25). Es wurde die Bildung des gewünschten Silylphosphans **8d** ($\delta^{31}P = 248.8 \text{ ppm}$, $\delta^{29}Si = 0.3 \text{ ppm}$), neben dem Homokupplungsprodukt **12d** ($\delta^{31}P = 203 \text{ ppm}$) und nicht reagiertem Ausgangsmaterial **1d** beobachtet. Die als Nebenprodukt entstandenen Salze konnten durch Filtration aus Hexan abgereichert werden, aber nicht vollständig abgetrennt werden. Da das gewünschte Produkt weder durch Fällung noch Kristallisation als Reinstoff isoliert werden konnte, wurde diese präparative Herangehensweise nicht weiterverfolgt.

Zur Verringerung der Isolationsprobleme wurde versucht, die Zielverbindung **8d** unter salzfreien Bedingungen herzustellen. Hierzu wurde das Reduktionsmittel bis-1,4- (trimethylsilyl)-1,4-dihydropyrazin (TMS₂Py) eingesetzt, das ein beliebtes Reagenz zur Reduktion von organischen^[164,165] und anorganischen Substraten^[166,167] unter Freisetzung von TMS-Cl oder Erhalt der TMS-Gruppe im Molekül ist.

Die Reduktion von **1d** mit TMS₂Py in THF bei RT oder Siedehitze blieb selbst nach mehreren Tagen Reaktionszeit aus, sodass dieser Reaktionsansatz nicht weiterverfolgt wurde. Das inerte Verhalten könnte möglicherweise darauf zurückzuführen sein, dass das geringe Reduktionsvermögen von TMS₂Py ($E_{1/2}$ = -0.24 V (DCM))^[167] nicht ausreichend ist.

Schema 25: Versuche zur direkten reduktiven Silylierung von **1d** mit TMS₂Py (Bis-1,4-(Trimethylsilyl)-1,4dihydropyrazin) oder TMS-Cl/Mg mit NMR-spektroskopisch bestimmten Umsatz.

Die Salzmetathese metallierter Phosphane mit Chlorsilanen ist die am weitesten verbreitete Methode zur Synthese von Silylphosphanen. Die Ergebnisse der entsprechenden Reaktionen der Kalium-Phosphide **[3b-e]**K mit Chlorsilanen sind in Schema 26 zusammengefasst.

Schema 26: Übersicht der Umsetzung der Phosphide [3b-e]K mit Triorganotetrelhalogeniden bzw. Ph₃SiOTf.

Die Behandlung von **[3d]**K mit TMS-CI in Toluol führte zum erwarteten Produkt **[8d]**BH₃, welches nach Filtration als farbloses Öl isoliert wurde. Nach Ankratzen der Kolbenwand kristallisierte die Verbindung nach einigen Tagen bei RT und konnte mittels Röntgendiffraktometrie untersucht werden (Abbildung 11, unten rechts). Im Gegensatz hierzu lieferte die Zugabe von TMS-CI zu einer THF-Lösung von **[3b]**K eine Mischung des Silylphosphan-Borans **[8b]**BH₃ und Phosphonit-Borans **[2b]**BH₃. Bei Umkehrung der Reaktionsführung, also Zugabe des Phosphids **[3b]**K zu einer Lösung von TMS-CI in THF bildete sich ausschließlich das Silylphosphan **[8b]**BH₃. Der Eintrag von Feuchtigkeit kann als Ursache für die Entstehung von **[2b]**BH₃ ausgeschlossen werden, da TMS-CI vor Verwendung sorgfältig über CaH₂ aufgekocht und destilliert wurde und bei Umkehrung der Reaktionsführung. Stattdessen könnte die Bildung des Nebenprodukts durch eine mit der gewünschten Substitution konkurrierende Dehydrohalogenierung von TMS-CI sein (Schema 27). Das als Produkt der Eliminierung gebildete Silen ist vermutlich nicht stabil, sondern dimerisiert zu einem Disilabutadien.^[168,169]

Schema 27: Postulierter Reaktionsmechanismus Zur Erklärung der Bildung von **[2b]**BH₃ bei Zugabe von TMS-Cl zu einer Lösung aus **[3b]**K und THF.

Die Hypothese zur Erklärung der Bildung von **[2b]**BH₃ wird dadurch bestätigt, dass dieses Produkt in den entsprechenden Umsetzungen von **[3b,c,e]**K mit Ph₃SiCl, das kein α-Proton enthält, nicht auftritt und hier ausschließlich die gewünschten Silylphosphonit-Borane **[9b,c,e]**BH₃ entstehen (Schema 26, unten). Die Verwendung eines sterisch anspruchsvolleren Chlorsilans erleichterte ferner die Isolation der Produkte, da sie nicht wie **[8b]**BH₃ als schwer flüchtige Öl anfielen, sondern durch Kristallisation aus Hexan als farblose Feststoffe erhalten wurden (Molekülstrukturen von **[9b,c]**BH₃, Abbildung 11, oben).

Beim Versuch die analoge Verbindung **[9d]**BH₃ aus dem Phosphid **[3d]**K und Ph₃SiCl darzustellen, konnte kein Umsatz beobachtet werden. Das Produkt ist aber über eine selektiv verlaufende Reaktion von **[3d]**K mit dem stärker elektrophilen Ph₃SiOTf erhältlich und konnte nach Filtration aus Hexan einkristallin erhalten werden (Abbildung 11, unten links). Der Grund für die abweichende Reaktivität von **[3d]**K liegt vermutlich daran, dass die sterisch anspruchsvollen Dipp-Substituenten die Annäherung eines Elektrophils erschweren und eine erfolgreiche Reaktion nur mit hinreichend starken Elektrophilen (Ph₃SiOTf) gelingt.

Die Substitution der Phosphide **[3b-d]**K mit den schwereren Homologen Ph₃GeBr und Ph₃SnCl führte in allen Fällen zur glatten Umsetzung zu den Germyl- bzw. Stannylphosphoniten **[10b-d]**BH₃ bzw. **[11b-d]**BH₃ (Abbildung 12 und Abbildung 14). Die hierzu konkurrierende Redoxreaktion zum entsprechenden Diphosphan und Ph₆Sn₂, die bei Verwendung von Diaminophosphid-Boranen stattfindet,^[149] wurde nicht beobachtet. Die Aufarbeitung erfolgte analog zu **[9b-d]**BH₃ durch die Kristallisation aus Hexan. Mit Ausnahme von **[9e]**BH₃ konnten alle Diorgano-Triphenyltetrelphosphonit-Borane einkristallin erhalten werden. Die Molekülstrukturen werden gemeinsam mit denen der Boran-freien Diorgano-Tetrelphosphonite (**[9d-11d]**) diskutiert (Kapitel 3.3.4).

Eine Übersicht der ³¹P- und ¹¹B-NMR Daten der in diesem Kapitel beschriebenen Tetrelphosphonit-Borane ist in Tabelle 5 dargestellt. Man erkennt, dass bei Bindung eines schweren Tetrel-Atoms an das P-Atom die chemische Verschiebung im ³¹P-NMR Spektrum steigt, und dass dieser Trend auch bei den ¹¹B-NMR Daten festgestellt wird. Trimethylsilylsubstituierte Phosphonit-Borane (**[8]**BH₃) weisen gegenüber den Triphenylsilyl-substituierten Phosphonit-Boranen (**[9]**BH₃) sowohl im ³¹P-NMR als auch im ¹¹B-NMR Spektrum eine geringfügige Hochfrequenzverschiebung auf. Zwischen den chemischen Verschiebungen der azyklischen Dialkylphosphonit-Borane **[9b,c-11b,c]**BH₃ sind nur geringfügige Unterschiede zu erkennen, wobei *i*-Pr substituierte Derivate immer leicht tieffrequenzverschoben sind. Die sterisch anspruchsvolleren Derivate **[8d]**BH₃, **[9d,e]**BH₃ und **[10d,11d]**BH₃ weisen Verschiebungen zu hoher Frequenz auf. Die Ursache könnte eine sterische Verzerrung sein, welche im Kristall ebenfalls beobachtet wurde (siehe Kapitel 3.3.4). Zusätzlich sind die chemischen Verschiebungen im Hochfrequenzbereich, wie die der Phosphid-Borane **[3b,c]**M (Kapitel 3.2), als Konsequenz eines verringerten HOMO-LUMO Abstands zu erklären.

Tabelle 5: ³¹P- und ¹¹B-NMR Daten der Tetrelphosphonit-Borane (RO)₂P(BH₃)ER'₃, **[8b,d]**BH₃, **[9b-e]**BH₃ **[10b-d]**BH₃ und **[11b-d]**BH₃.

R	Et (b)			<i>i</i> -Pr (c)		Dipp (d)			-(CH ₃) ₂ CC(CH ₃) ₂ - (e)			
ER'3	$\delta^{31}P$	$\delta^{11} B$	$^{1}J_{PB}$	$\delta^{31}P$	$\delta^{11} B$	$^{1}J_{PB}$	$\delta^{31} P$	$\delta^{11} B$	$^{1}J_{PB}$	$\delta^{31}P$	$\delta^{11} B$	$^{1}J_{PB}$
SiMe₃	168.5	-38.5	57	-	-	-	184.0	-35.9	-	-	-	-
SiPh₃	162.9	-40.4	50	161.2	-39.4	47	182.3	-34.9	-	194.4	-32.2	39
GePh₃	171.9	-38.6	31	167.5	-38.3	38	187.5	-34.0	-	-	-	-
SnPh₃	182.0	-35.7	40	178.4	-32.4	37	197.9	-32.4	-	-	-	-

3.3.4 Entschützung von Tetrel-substituierten Diorganophosphonit-Boranen

Um die Ligandeneigenschaften von nicht-koordinierten Diorganophosphoniten untersuchen zu können, müssten die ungeschützten Verbindungen verfügbar sein. Phosphanderivate mit dem O₂PE-Substitutionsmuster (E = Si, Ge, Sn) sind unbekannt. Die Erforschung der Ligandeneigenschaften ist daher von grundlegendem Interesse. Zur Synthese dieser Verbindungen wurde die Boran-Abstraktion ("Entschützung") der Phosphan-Borane **[9bd]**BH₃, **[10b-d]**BH₃ und **[11b-d]**BH₃ mit Aminen untersucht (Schema 28).

Die Amin-Basen DABCO (1,4-Diazabicyclo[2.2.2]oktan) und NEt₃ sind dafür gängige Kandidaten. Die Verwendung von DABCO hat den Vorteil, dass die Gleichgewichtskonstante der Entschützungsreaktion (Schema 28) in der Regel größer ist als für andere kommerziell erhältliche Amine,^[170] jedoch wegen der geringen Flüchtigkeit nur für thermisch stabile Diorganophosphonite in Frage käme. Die Verwendung von NEt₃ birgt den Nachteil, dass das Gleichgewicht nicht vollständig auf der Seite des freien Phosphans liegt. Da es sich jedoch um eine flüchtige Flüssigkeit handelt, kann diese gleichzeitig als Lösungsmittel verwendet und nach Abschluss der Reaktion leicht entfernt werden, sodass zufriedenstellend hohe Umsätze erzielt werden können.

Schema 28: Allgemeine Synthese von Phosphanen aus Phosphan-Boranen.

Synthese von Triorganotetrel-2,6-diisopropylphenylphosphoniten **[8d-11d]** durch Boran-Abstraktion

Die Boran-Addukte Dipp-substituierter Triorganotetrel-Phosphonite reagieren bei RT (**[9d-11d]**BH₃) bzw. in Siedehitze (**[8d]**BH₃) mit 10-20 Äquivalenten NEt₃ in Toluol vollständig zu den freien Phosphanen **8d-11d** (Schema 29). Die Abspaltung der Boran-Gruppe konnte leicht anhand des Auftretens scharfer und im Vergleich zu den koordinierten Diorganophosphoniten hochfrequenzverschobener ³¹P-NMR-Signale beobachtet werden (Tabelle 6). Die freien Diarylphosphonite **9d-11d** können durch Kristallisation aus Hexan in

kristalliner Form erhalten werden, während **8d** durch "trap-to-trap"-Destillation als durch **2d** verunreinigtes farbloses Öl isoliert wurde.

Schema 29: Präparativer Zugang zu den Phosphoniten **8-11d** aus den Boran-Addukten und Triethylamin. Die kristallinen Verbindungen **9d-11d** wurden durch Einkristallröntgenstrukturanalyse charakterisiert. Die Molekülstrukturen (Abbildung 13) werden im Folgenden zusammen mit denen der Boran-Addukte (Abbildung 11 und Abbildung 14) diskutiert. Ausgewählte Bindungsabstände und -winkel für Dipp-substituierte Verbindungen sind in Tabelle 6 zusammengefasst.

Es zeigt sich, dass die P-E und P-O-Abstände in **9d-11d** länger als in den jeweiligen Boran-Addukten sind und die Phosphoratome stärker pyramidalisiert sind, was aus der Summe der Bindungswinkel um das P-Atom ersichtlich ist. Die Bindungswinkel am P-Atom sind nicht ähnlich, wie man für trigonale Phosphanderivate erwartet, sondern zeigen deutliche Unterschiede. Mit Ausnahme von **9d** ist dabei ein O-P-E-Winkel immer deutlich größer und der andere deutlich kleiner als der O-P-O-Winkel. In **9d** sind beide O-P-E-Winkel kleiner als der O-P-O-Winkel. Die P-O-Bindungslängen innerhalb eines Moleküls weichen trotz der großen Winkelverzerrung nicht signifikant voneinander ab und sind im selben Bereich wie in Organophosphiten (1.603 Å).^b

Die Winkelverzerrungen sind auf den ersten Blick ungewöhnlich. Angesichts des Substitutionsmusters wäre eine Abweichung von ideal trigonaler Symmetrie zwar nicht unerwartet, jedoch wäre eine Verzerrung in Richtung lokaler C_s-Symmetrie zu erwarten, in der beide O-P-E-Winkel ähnlich bleiben, während der O-P-O-Winkel unter Berücksichtigung von sterischen Effekten und Bents Regel kleiner sein sollte.

^b Ergebnisse einer CSD-Datenbankrecherche

Es gibt einige Beispiele cyclischer Organophosphite mit 7- oder 8-gliedrigen sterisch anspruchsvollen Ringen^[171–174], welche eine starke Bindungswinkelverzerrung im Vergleich zur lokalen C_S-Symmetrie aufweisen. In Anbetracht der Tatsache, dass die großen Substituenten in **9d-11d** und den Boran-Addukten ähnliche Einschränkungen des Konformationsraums bewirken können wie eine cyclische Struktur, könnte man daraus schließen, dass die Winkelverzerrung ebenfalls durch rein sterische und nicht durch elektronische Effekte zu Stande kommt.

Die Kristallstrukturen der Phosphane **9d-11d** (Abbildung 13) weisen längere P-E und P-O -Bindungen als die jeweiligen Boran-Addukte auf, was durch höhere Beiträge der p(P)-Orbitale zur jeweiligen σ -Bindung erklärt werden kann.

Die Bindungswinkel von **[9b]**BH₃ sind im erwarteten Bereich. Die Bindungswinkel der Molekülstrukturen von **[9c]**BH₃ (Abbildung 11), **[10b,c]**BH₃ und **[11b,c]**BH₃ (Abbildung 12) weichen wie die Diarylphosphonite von Trends, die nach Bents Regel erwartet würden, ab. Die Bindungswinkel sind jedoch im normalen Bereich trigonaler Phosphane.

Daraus erschließt sich, dass die sterische Abstoßung die zwischen den EPh₃- bzw. SiMe₃-Gruppen und den Dipp-Substituenten die geometrische Verzerrung am Phosphoratom induziert. Dieser geometrische Effekt wird ebenfalls beim Vergleich der ³¹P-NMR Verschiebungen deutlich, da hierbei die sterisch anspruchsvoll substituierten Derivate stärker hochfrequenzverschoben sind.

Die ³¹P-NMR Verschiebungen von Diorgano-tetrelphosphoniten und ihren Boran-Addukten sind größer als die vergleichbarer Organophosphite ($\delta^{31}P = 138-146 \text{ ppm}$)^[175–177] und H-Diorganophosphonite ($\delta^{31}P = 162-180 \text{ ppm}$).^[178] Zusätzlich wird im Vergleich zur Si-Substitution eine geringere Abschirmung bei Ge-Substitution beobachtet, welche wiederum geringer ist als bei Sn-Substitution. Derselbe Trend innerhalb einer Gruppe wurde auch bei **[3b,c]**M beobachtet (Kapitel 3.2.1). Im Vergleich zu Tris-(trimethyltetrel)-phosphanen ($\delta^{31}P =$ -228 bis -330 ppm)^[179] und TMS₃P(BH₃) ($\delta^{31}P = -193.8 \text{ ppm}$)^[180] sind Diorganotetrelphosphonite und ihre Boran-Addukte um über 475 ppm (für freie Phosphane) bzw. 376 ppm (für Boran-Addukte) hochfrequenzverschoben. Es ist davon auszugehen, dass die chemischen Verschiebungen durch einen geringen HOMO-LUMO-Abstand begründet werden können. Dieser kann durch die Kombination elektropositiver und elektronegativer Substituenten am Phosphor und die infolge der sterischen Abstoßung induzierte verzerrte Geometrie am P-Atom erklärt werden. Stannylphosphonit **11d** und dessen Boran-Addukt weisen im Verglich zu den leichteren Homologen eine Hochfrequenzverschiebung um ca. 21 ppm bzw. ca. 10 ppm auf. Basierend auf diesen spektroskopischen Daten wäre eine ambiphile Reaktivität zu erwarten, welche jedoch in dieser Arbeit nicht näher beleuchtet wurde.

Tabelle 6: Ausgewählte Bindungslängen (Å), -winkel (°), Summe der O-P-O und O-P-E-Bindungswinkel Σ sowie
³¹ P-NMR Daten der Phosphonite [8d]BH ₃ , 9d-11d und ihrer Boran-Addukte. Der jeweils größte Bindungswinkel
ist fett dargestellt, der kleinste kursiv. [8d]BH₃ und 9d kristallisieren mit je zwei Molekülen in der asymmetrischen
Einheit, weswegen Daten doppelt angegeben sind.

Bindung(en)	[8d] BH ₃	9d	[9d] BH₃	10d	[10d] BH ₃	11d	[11d] BH ₃
P-E	2.292(1), 2.291(1)	2.297(2) 2.298(2)	2.305(1)	2.364(1)	2.351(1)	2.571(1)	2.533(1)
P-O _{avg} .	1.625(5), 1.616(3)	1.660(6) 1.661(5)	1.623(8)	1.666(8)	1.621(5)	1.664(5)	1.621(2)
01-P-E	110.6(1), 112.3(1)	96.6(10) 95.8(2)	112.1(1)	102.2(5)	112.6(2)	100.5(1)	113.7(1)
O2-P-E	94.0(1), 94.7(1)	92.6(9) 93.3(2)	93.6(1)	87.8(6)	93.5(5)	85.6(1)	93.2(1)
01-P-02	102.9(1), 103.2(1)	104.6(4) 104.8(2)	104.6(1)	101.6(8)	104.4(1)	102.1(2)	103.5(1)
Σ	307.5(3) 310.2 (3)	293.7(4) 293.9(6)	310.5(3)	291.6(3)	310.5(3)	288.2(4)	310.4(3)
δ(³¹ Ρ) (ppm)	184.0	247.2	182.3	252.1	187.5	273.0	197.9

Abbildung 11: Molekülstrukturen der Silylphosphonit-Borane **[9b]**BH₃ (oben links), **[9c]**BH₃ (oben rechts), **[9d]**BH₃ (unten links) und **[8d]**BH₃ (unten rechts). Die dargestellten Thermalellipsoide von Schweratomen entsprechen einer Aufenthaltswahrscheinlichkeit von 50 % und Wasserstoffatome, die nicht Teil einer BH₃-Gruppe sind, wurden zur Übersicht weggelassen. Verbindungen **[9c]**BH₃ und **[8d]**BH₃ weisen jeweils zwei Moleküle in der asymmetrischen Einheit auf, von denen je eins abgebildet wurde. Ausgewählte Bindungslängen (Å) und -winkel (°): **[9b]**BH₃ P-B 1.895(2), P-Si 2.279(1), P-O1 1.592(2), P-O2 1.602(1), O1-P-O2 103.3(1), O1-P-B 115.0(1), O2-P-B 115.4(1), O1-P-Si 100.25(1), O2-P-Si 105.9(1); **[9c]**BH₃ P1-B1 1.907(2), P2-B2 1.900(2), P1-Si1 2.269(1), P2-Si2 2.273(1), P1-O1 1.598(2), P1-O2 1.597(2), P2-O3 1.598(2), P2-O4 1.597(2), O1-P1-O2 106.7(1), O1-P1-B1 115.0(1), O2-P1-B1 114.2(1), O2-P1-Si1 101.5(6), O3-P2-O4 107.6(1), O3-P2-B2 114.8(2), O4-P2-B2 107.6(1), O3-P2-Si2 101.4(1), O4-P2-Si2 99.2(1); **[9d]**BH₃ P-B 1.884(2), P-Si 2.305(1), P-O1 1.616(1), P-O2 1.629(1), O1-P-O2 104.6(1), O1-P-B 118.8(1), O2-P-B 112.0(1), O1-P-Si 93.5(1), O2-P-Si 112.1(1); **[8d]**BH₃ P1-B1 1.878(2), P1-Si1 2.292(1), P1-O1 1.623(2), P1-O2 1.615(2), P2-B2 1.881(2), P2-Si2 2.291(1), P2-O3 1.628(1), P2-O4 1.616, O1-P1-O2 102.9(1), O1-P1-B1 114.1(1), O2-P1-B1 121.2(1), O1-P1-Si1 110.6(1), O2-P1-Si1 94.0(1), O3-P2-O4 103.2(1), O3-P2-B2 112.9(1), O4-P2-B2 120.9(2), O3-P2-Si2 112.3(1), O4-P2-Si2 94.7(1).

Abbildung 12: Molekülstrukturen der Germyl- und Stannylphosphonit-Borane **[10b]**BH₃ (oben links), **[10c]**BH₃ (oben rechts), **[11b]**BH₃ (unten links) und **[11c]**BH₃ (unten rechts). Die dargestellten Thermalellipsoide von Schweratomen entsprechen einer Aufenthaltswahrscheinlichkeit von 50 % und Wasserstoffatome, die nicht Teil einer BH₃-Einheit sind, wurden zur Übersicht weggelassen. Ausgewählte Bindungslängen (Å) und -winkel (°): **[10b]**BH₃: P-B 1.891(3), P-Ge 2.331(1), P-O1 1.593(2), P-O2 1.585(2), O1-P-O2 108.5(2), O1-P-B 115.4(2), O2-P-B 107.7(2), O1-P-Ge 98.6(1), O2-P-Ge 109.9(1); **[10c]**BH₃ P-B 1.896(2), P-Ge 2.337(1), P-O1 1.597(2), P-O2 1.593(2), O1-P-O2 107.6(1), O1-P-B 115.5(1), O2-P-B 108.5(1), O1-P-Ge 98.1(1), O2-P-Ge 112.3(1); **[11b]**BH₃: P-B 1.889(2), P-Sn 2.532(1), P-O1 1.602(2), P-O2 1.593(2), O1-P-O2 106.7(1), O1-P-B 116.7(1), O2-P-B 109.9(1), O1-P-Sn 100.0(1), O2-P-Sn 109.5(1); **[11c]**BH₃: P-B 1.895(2), P-Sn 2.519(1), P-O1 1.602(1), P-O2 1.595(1), O1-P-O2 107.8(1), O1-P-B 116.0(1), O2-P-B 109.0(1), O1-P-Sn 96.5(1), O2-P-Sn 112.9(1).

Abbildung 13: Molekülstrukturen der Tetrelphosphonite **9d** (oben), **10d** (unten links) und **11d** (unten rechts). Die dargestellten Thermalellipsoide von Schweratomen entsprechen einer Aufenthaltswahrscheinlichkeit von 50 % und Wasserstoffatome wurden zur Übersicht weggelassen. Ausgewählte Bindungslängen (Å) und -winkel (°): **9d** P1-Si1 2.297(2), P2-Si2 2.2978(2), P1-O1 1.658(3), P1-O2 1.659(3), P2-O3 1.659(3), P2-O4 1.663(3), O1-P1-O2 104.4(2), O2-P1-Si1 91.2(2), O3-P2-O4 104.8(2), O3-P2-Si2 93.3(2), O4-P2-Si2 95.8(2); **10d** P-Ge 2.364(1), P-O1 1.672(2), P-O2 1.659(2), O1P-O2 101.6(1), O1-P-Ge 87.8(1), O2-P-Ge 102.2(1); **11d** P-Sn 2.571(1), P-O1 1.667(2), P-O2 1.663(3), O1-P-O2 102.1(2),O1-P-Sn 100.5(1), O2-P-Sn 85.62.

Abbildung 14: Molekülstrukturen von [**10d**]BH₃ (*links*) und [**11d**]BH₃ (*rechts*). Die dargestellten Thermalellipsoide von Schweratomen entsprechen einer Aufenthaltswahrscheinlichkeit von 50 % und Wasserstoffatome, die nicht Teil einer BH₃-Einheit sind, wurden zur Übersicht weggelassen. Ausgewählte Bindungslängen (Å) und -winkel (°): [**10d**]BH₃: P-B 1.879(2), P-Ge 2.351(1), P-O1 1.625(2), P-O2 1.617(2), O1-P-O2 104.4(1), O1-P-B 112.6(1), O2-P-B 119.2(1), O1-P-Ge 112.1(1), O2-P-Ge 93.5(1); [**11b**]BH₃: P-B 1.878(2), P-Sn 2.534(1), P-O1 1.622(1), P-O2 1.620(1), O1-P-O2 103.5(1), O1-P-B 113.6(1), O2-P-B 119.2(1), O1-P-Sn 113.7(1), O2-P-Sn 93.2(1);

Synthese von Dialkyl-triphenylsilylphosphoniten und Dialkyl-triphenylgermylphosphoniten **9b**,**c**,**e** bzw. **10b**,**c** durch Boran-Abstraktion

Die Entschützung der Dialkylphosphonit-Borane **[9b,c]**BH₃ und **[10b,c]**BH₃ wurde exemplarisch für das Derivat **[9b]**BH₃ optimiert und wird im Folgenden diskutiert. Die Umsetzung von **[9b]**BH₃ mit Triethylamin konnte nicht analogerweise zu **[8d]**BH₃ bzw. **[9d]**BH₃ durchgeführt werden, da das Gleichgewicht selbst bei Verwendung von reinem NEt₃ als Lösungsmittel nicht hinreichend weit auf der rechten Seite lag um eine Isolation der freien Diorganophosphonite zu ermöglichen. Die quantitative Entschützung gelang jedoch durch Umsetzung mit einem Überschuss (4 Äquivalente) DABCO in siedendem Toluol oder Hexan, und das Amin-Boran DABCO·BH₃ konnte aufgrund seiner Schwerlöslichkeit in Hexan durch Filtration leicht von den freien Diorganophosphoniten abgetrennt werden.

Schema 30: Entschützung der Dialkoxy-triphenyltetrelphosphonite [9b,c]BH₃, [10b,c]BH₃, [9e] mit DABCO in Hexan.

Die Abtrennung des Überschusses DABCO erwies sich demgegenüber als fordernde Aufgabe. Die vollständige Abtrennung von DABCO durch Kristallisation wurde durch die ähnliche Löslichkeit von **9b,c** und DABCO in unpolaren Lösungsmitteln verhindert. Sublimation von DABCO (50 °C, 0.3 mmHg)^[181] führte unter Gelbfärbung zur Zersetzung des Silylphosphonits. Die Umsetzung eines Reaktionsgemisches aus **9b** und DABCO mit Me-I oder HCl·OEt₂ führte zwar zur erwarteten Fällung von DABCO als (Methyl-)Ammoniumsalz, aber auch zur Substitution des Silylphosphonits unter P-Si-Bindungsspaltung (Schema 31), und bei Einsatz von HCl·OEt₂ im Überschuss wurde die Zersetzung von **9b** unter Bildung eines gelben Niederschlags und (EtO)₂P(O)H beobachtet. Während für die selektive Fällung von DABCO mit Iodmethan und Chlorwasserstoff somit keine brauchbaren Reaktionsbedingungen gefunden werden konnten, gelang die Abtrennung des Amins letztlich durch selektive Komplexierung mit MgBr₂·OEt₂ zu einem in Hexan unlöslichen 1:1-Addukt der Zusammensetzung {[Mg(DABCO)]Br₂}_n.

Die in der Literatur bisher nicht beschriebene Abtrennung von Magnesiumhalogeniden mit DABCO beruht vermutlich auf demselben Prinzip wie die gängige Fällung löslicher Mg-Salze mit Dioxan unter Bildung eines unlöslichen Koordinationspolymers {MgX₂[O(CH₂CH₂)₂O]_n.^[182] Dass DABCO wie Dioxan in der Lage ist, als µ₂-verbrückender Ligand zum Aufbau eines Koordinationspolymers beizutragen, wird durch die Bildung des Zweikernkomplexes [{MgMe₂(THF)}₂(µ-DABCO)] aus MgMe₂ und DABCO in THF gezeigt.^[183] Weiter belegt die Synthese eines Komplexes (ABCO)₂MgMe₂ mit dem zu DABCO isosteren Monoamin 1-Azabicyclo[2.2.2]oktan (ABCO, Chinuclidin) auch die Fähigkeit eines Mg-Zentrums zur Koordination von 2 Amin-Liganden.^[184] Angesichts dieser Befunde erscheint im vorliegenden Fall die Bildung eines Koordinationspolymers^[185] aus alternierenden MgBr₂- und DABCO-Einheiten analog zu [MgBr₂-O(CH₂CH₂)₂O]_n plausibel, wurde jedoch nicht näher untersucht

Selektive N-Koordination Simultane N- und P-Alkylierung bzw. Protonierung

Schema 31: Versuche zur Trennung von Mischungen aus **9b** und DABCO durch selektive Koordination von DABCO mit MgBr₂·OEt₂ oder HCl·OEt₂ bzw. Mel.

Auf die beschriebene Weise konnten die Silylphosphonite **9b** ($\delta^{31}P = 217.7 \text{ ppm}$) und **9c** ($\delta^{31}P = 209.0 \text{ ppm}$) in mäßigen Ausbeuten (20 bzw. 18 %) isoliert werden. Die Germylphosphonite **10b** ($\delta^{31}P = 221.2 \text{ ppm}$) und **10c** ($\delta^{31}P = 214.8 \text{ ppm}$) wurden ebenfalls durch Einwirkung von DABCO aus den entsprechenden Boran-Addukten erzeugt und NMR-spektroskopisch charakterisiert. Das Silylphosphonit **9e** ($\delta^{31}P = 245.9 \text{ ppm}$) konnte durch Umsetzung von [**9e**]BH₃ mit zwei Äquivalenten DABCO in Hexan generiert und durch einfache Kristallisation (eine Fällung des überschüssigen Amins durch Mg-Salze war in diesem Fall nicht nötig) aus demselben Lösungsmittel zu einem amorphen Feststoff aufgereinigt werden.

Die ³¹P-NMR chemischen Verschiebungen der Tetrelphosphonite **8d**, **9b-e**, **10b-d** und **11b-d** sind größer als die entsprechenden Boran-Addukte, was dem gängigen Trend von Phosphanen und ihren Boran-Addukten mit elektronegativen Substituenten am P-Atom entspricht.^[100] Die physikalischen Ursachen hierzu wurden bereits in vorangegangen Kapiteln erläutert (siehe Kapitel 3.2 und 3.3.3).

Dialkyl-triphenylstannylphosphonite: Entschützung, Dismutation und Addition an Doppelbindungen

In Versuchen zur Entschützung der Stannylphosphonite **[11b,c]**BH₃ wurde ein vom Verhalten der leichteren Homologen abweichender Reaktionsverlauf beobachtet. ³¹P- (Abbildung 15) und ¹¹⁹Sn-NMR-spektroskopische Untersuchungen der Reaktion von **[11b]**BH₃ mit DABCO bei

50 °C in Hexan zeigten, dass neben dem erwarteten Stannylphosphonit **11b** auch das Diphosphan **12b**^[186] und das Distannan Ph₆Sn₂^[187] entstehen.

Nachdem 93 % (basierend auf der Integration der ³¹P-NMR-Signale) des Stannylphosphonit-Borans **[11b]**BH₃ verbraucht war, zeigte sich neben dem erwarteten Stannylphosphonit **11b** (71 %, δ^{31} P = 239.0 ppm) die Bildung des Tetraethoxydiphosphans **12b** (22 %, δ^{31} P = 182.9 ppm^[186]), und im ¹¹⁹Sn-NMR-Spektrum wurde das Distannan Ph₆Sn₂ beobachtet.

Diese Befunde legen nahe, dass in Konkurrenz zur gewünschten Entschützung eine Dismutation des Stannylphosphonits **11b** zum Diphosphan **12b** und Distannan stattfindet. Eine Reinisolierung der der Stannylphosphonite **11b** und **11c** aus den anfallenden Produktgemischen war nicht möglich.

Eine ähnliche Reaktion war bereits für Ph₂PSnMe₃ unter photochemischen und thermischen Bedingungen beobachtet worden.^[188] Diese Reaktion, wie auch die unter gleichen Reaktionsbedingungen beschriebene Addition von R₃SnPPh₂ an Alkene und Alkine^[188–190] wurde als Folge von Radikalreaktionen erklärt, die durch eine homolytische P-Sn-Bindungsspaltung initiiert werden. Um zu untersuchen, ob die P-Sn-Dismutation von **11b** einem vergleichbaren Mechanismus folgt, wurden chemische Abfangexperimente und *in situ* EPR-Experimente durchgeführt.

Schema 32: Umsetzung der Stannylphosphonit-Borane **[11b]**BH₃ und **[11c]**BH₃ mit DABCO zu den Stannylphosphonite **11b,c** und subsequente P-Sn Dissoziation und Dismutation zum entsprechenden Diphosphan **12b,c** und Distannan (R = Et, *i*-Pr).

Abbildung 15: Resultate der ³¹P-NMR-spektroskopischen Verfolgung der Reaktion von **[11b]**BH₃ mit DABCO bei 50 °C in C_6D_6 . Nach Integration der Spektren liegt nach 90 Minuten Reaktionszeit ein Produktverhältnis **[11b]**BH₃/**11b**/**12b** von 7/71/22 vor.

Untersuchungen von Reaktionslösungen der Umsetzungen von [11b]BH₃ mit DABCO durch cw-EPR-Spektroskopie zeigt weder bei RT noch 80 °C ein EPR-Signal. Unter Bestrahlung mit einer UV-LED (365 nm) wurde ein wenig intensives EPR-Signal ($A(^{31}P) = 8.0 \text{ mT}, g = 2.0026$) beobachtet, das einem (EtO)₂P·-Radikal zugeordnet wird. Die Hyperfeinkonstante und der g-Wert sind im Bereich phosphorzentrierter Radikale und in Übereinstimmung mit den Daten des in gefrorener Lösung photolytisch generierten (EtO)₂P·-Radikals.^[191,192] Eine Hyperfeinwechselwirkung mit H-Atomen war in keinem Fall beobachtbar. Ein weiteres Signal eines nicht phosphorhaltigen Radikals wurde bei g = 2.0032 (HWB = 0.54 mT) beobachtet und hat einen vergleichbaren g-Wert wie das literaturbekannte, aus der Bestrahlung von Ph₃SnH generierte Ph_3Sn -Radikal (g = 2.0023, HWB = 0.23 T in n-Nonan).^[193] Die Hyperfeinwechselwirkung mit den H-Atomen wurde in beiden Fällen nicht beobachtet, was jedoch durch die erhöhte Halbwertsbreite erklärt werden kann. In der Literatur wurde eine geringere Halbwertsbreite als in diesen Experimenten gefunden werden. Folglich kann das Ph₃Sn⋅-Radikal nicht zweifelsfrei nachgewiesen werden.

Die Bildung des (EtO)₂P·-Radikals könnte auch auf die Dissoziation des Diphosphans **12b** rückgeführt werden, was auf Basis dieser Experimente nicht ausgeschlossen werden kann. Die photolytische Spaltung von Diphosphanen und folglich die Bildung substituierter Phosphanylradikale wurde in der Literatur an verschiedenen Systemen untersucht und anhand kinetischer Untersuchungen^[194] und spektroskopischer Daten^[195] belegt. Die photolytische Bildung und der ESR-spektroskopischer Nachweis von Ph₃Sn·-Radikalen wurde anhand der Bestrahlung von Ph₃SnH erbracht^[193], konnte jedoch nicht durch die Bestrahlung von Ph₆Sn₂ erreicht werden.^[196]

Anhand dieser Untersuchungen kann zunächst nicht zweifelsfrei erklärt werden ob die Dismutation von **11b** über einen radikalischen Mechanismus verläuft, oder ob es sich um eine konzertierte Umlagerung handelt.

Abbildung 16: Unter UV-Strahlung (365 nm) aufgenommenes cw-EPR-Spektrum einer Reaktionslösung **[11b]**BH₃ und DABCO in Toluol (unten) und Resultat einer Simulation (oben). Die äußeren beiden Linien repräsentieren das Radikal (EtO)₂P· (A(³¹P) = 8.0 mT, g = 2.0026) und das Signal in der Mitte (g = 2.0032) konnte keiner Spezies zugeordnet werden.

Zur Verifizierung des Auftretens des Diethoxyphosphanylradikals (EtO)₂P· wurden zusätzlich chemische Abfangexperimente durchgeführt, indem die 1,2-Addition des Stannylphosphonits **11b** an die Mehrfachbindungssysteme Styrol, Phenylacetylen und Diphenylacetylen (Tolan)

untersucht wurden (Schema 33). Mit Phenylacetylen wurde anstelle der 1,2-Addition nur die Bildung des Phosphonits (EtO)₂PH (**2b**) beobachtet, dessen Entstehung durch H-Abstraktion aus dem terminalen Alkin erklärt werden kann.^[188]

Schema 33: Bei der Thermolyse oder Photolyse von **11b** in Gegenwart von Styrol oder Alkinen beobachtete Produktmischungen.

Da sich die Experimente mit Phenylacetylen als unbefriedigend erwiesen haben, wurde Tolan als alternatives Substrat gewählt. Bei der durch UV-Bestrahlung initiierten Umsetzung von **11b** mit 5 Äquivalenten Tolan wird im ³¹P- und ¹¹⁹Sn-NMR-Spektrum die vollständige Umsetzung zu Ph₆Sn₂ und mindestens 4 neuen P-haltigen Produkten beobachtet (Tabelle 7). Die NMR-Signale zweier P-haltiger Spezies erscheinen als Singuletts mit Sn-Satelliten und werden den isomeren 1,2-Additionsprodukten E-**17b** ($\delta^{31}P = 159.2$ ppm, $\delta^{119}Sn = -155.2$ ppm, ${}^{3}J_{P^{119}Sn} =$ 43 Hz) und Z-**17b** ($\delta^{31}P = 164.1$ ppm) zugeschrieben. ¹H-³¹P-HMQC-Analyse bestätigt das intakte (EtO)₂P-Gerüst, und ¹H-¹¹⁹Sn-HMQC Analyse bestätigt die intakte Ph₃Sn-Einheit. Das andere Sn-haltige Nebenprodukt kann Ph₆Sn₂ zugeordnet werden. Die anderen P-haltigen Produkte weisen im ¹H-³¹P-HMQC-Spektrum Kreuzsignale mit den CH₂-Protonen der Ethoxygruppe auf, sodass basierend auf der chemischen Verschiebung die Signale den Bisphosphoniten *E*-**18b** (δ^{31} P = 158.2 ppm) und Z-**18b** (δ^{31} P = 158.8) zugeordnet wird. Die Zuordnung der *E*- bzw. *Z*-Isomere von **17b** und **18b** erfolgt auf der Grundlage früherer Untersuchungen, ^[197,198] nach der *E*-Isomere P-substituierter Alkene in den ³¹P-NMR-Spektren generell kleinere chemische Verschiebungen als die *Z*-Isomere aufweisen.

Tabelle 7: ³¹P-NMR chemische Verschiebungen der Phosphastannylierungsprodukte und Diphosphorylierungsprodukte von Tolan und Isomeren sowie deren Produktverteilung (auf Basis der Integrale von ³¹P-NMR-Spektren).

Verbindung	$\delta^{_{31}}$ P (ppm)	Produktanteil (%)		
E- 17b	159.2	55		
<i>Z</i> - 17b	164.1	5		
<i>E</i> - 18b	158.2	32		
<i>Z</i> - 18b	158.4	8		

Es ist bekannt, dass radikalische Phosphanierung^[38,199,200] und Phosphastannylierung^[188–190] von Dreifachbindungen bevorzugt *E*-konfigurierte Alkene liefert. In Anbetracht dieser Befunde ist die bevorzugte Bildung der *E*-Isomere von **17b** und **18b** gut mit einem Radikalmechanismus vereinbar. Ogawa *et al.* ^[201] fanden, dass das durch photochemisch induzierte Diphosphanierung von 5-Methyl-1-hexin nach 4 h UV-Bestrahlung sich zunächst bevorzugt das *E*-Produkt bildet, aber bei längerer Bestrahlung in das *Z*-Isomer umwandelt. Derartige photochemische Isomerisierungen sind für auch für einfachere Alkene bekannt.^[202,203]

Basierend auf den vielversprechenden Ergebnissen mit Tolan wurden Additionsversuche mit Styrol durchgeführt. Die Reaktion des Stannylphosphonit-Borans **[11b]**BH₃ mit DABCO und Styrol (20 Äquivalente) bei 80 °C führte nach 2 h unter vollständiger Umsetzung von **11b** zu einer Mischung aus Produkten, welche anhand ihrer ¹H- und ³¹P-NMR-Spektren und Massenspektren analysiert wurden. Die Mischung wurde für weitere 16 h erhitzt, worauf sich NMR-spektroskopisch keine Änderung der Zusammensetzung feststellen ließ. Die Produktverteilung blieb trotz fünftägigem Erhitzen unter Verbleib des Diphosphans **12b** und überschüssigem Styrol unverändert, das heißt, dass das Diphosphan **12b** keine Folgereaktion mit Styrol eingeht und dass die Additionsprodukte durch die Umsetzung des Stannylphosphonits **11b** mit Styrol entstanden sein müssen. Eine EI-MS-Analyse lieferte Hinweise auf die Anwesenheit von 1,2-Additionsprodukten (**13b**, *iso*-**13b** (m/z = 576.1245, ber. 576.1241)) und eines Bisphophonits mit C₄-Brücke (**14b**⁴, m/z = 680.1886, ber. 680.1874). Weitere Signale konnten den Phosphonaten [**14b**]O (m/z = 362.1405, ber. 362.1406) bzw. [**14b**]O₂ (m/z = 378.1356, ber. 378.1356) zugeordnet werden, die vermutlich durch, beim Abfüllen der Probe erfolgte, unbeabsichtigte Oxidation an Luft entstanden waren.

Die Dismutationsprodukte [(EtO)₂P]₂ **12b** ($\delta^{31}P = 183.9 \text{ ppm}$)^[186] und Ph₆Sn₂ (δ^{119} Sn = 141.3 ppm)^[187] wurden durch den Vergleich mit bekannten Spektren identifiziert. Das Bisphosphonit **14b** ($\delta^{31}P = 180.6 \text{ ppm}$, 175.2 ppm, ${}^{3}J_{PP} = 12 \text{ Hz}$) wurde anhand des im ${}^{31}P$ -NMR-Spektrum auftretenden AB-Musters und der chemischen Verschiebung identifiziert (vgl. $\delta^{31}P([MeO]_2PCH_2CH_2[OMe]_2) = 185.6 \text{ ppm}$).^[204] Im ${}^{1}H_{-}{}^{31}P$ -HMQC-Spektrum wurden Kreuzsignale zu den Ethoxygruppen und der Ethylenbrücke gefunden, was die Zuordnung manifestiert. Für Signale bei $\delta^{31}P = 176.4 \text{ ppm}$ und $\delta^{31}P = 180.0 \text{ ppm}$ wurden ebenfalls Kreuzsignale im selben Bereich beobachtet. Die Signale weisen 119 Sn-Sateliten auf, und im 119 Sn-Spektrum sind zwei Dubletts zu beobachten (δ^{119} Sn = -98.0 ppm, ${}^{3}J_{PSn} = 164 \text{ Hz}$ bzw. δ^{119} Sn = -114.6 ppm, ${}^{3}J_{PSn} = 106 \text{ Hz}$). Die NMR-aktiven Kerne in α -Position zur Phenylgruppe sind in der Regel schlechter abgeschirmt, sodass die Signalsätze jeweils den 1,2-Additionsprodukte sind etwa im Verhältnis **13b**/*iso*-**13b**=2/1 vorhanden. Weitere ${}^{31}P$ -NMR-Signale konnten nicht zugeordnet werden.

Die Bildung von **13b** und *iso*-**13b** aus **11b** und Styrol ist vereinbar mit den Befunden von Schumann.^[189,190] **14b** könnte durch Diphosphanierung von Styrol mit **12b** entstanden sein, obwohl auch eine Bildung über eine Radikalreaktion zwischen **11b** und Styrol nicht ausgeschlossen werden kann. Diese müsste durch die Homolyse von **11b** oder **12b** initiiert werden, welches durch einen radikalischen Angriff an Styrol das resonanzstabilisierte Intermediat **15b** bildet. Dieses könnte entweder mit einem zweiten Radikal kombinieren oder mit **11b** oder **12b** eine Radikalkettenreaktion eingehen, sodass **13b** bzw. **14b** gebildet werden. Wird die Radikalreaktion durch die Reaktion von Ph₃Sn· mit Styrol initiiert, würde *iso*-**13b** gebildet werden. Das bei längeren Reaktionszeiten beobachtete Ausbleiben einer Reaktion von **12b** und Styrol zu **14b** wäre dann darauf zurückzuführen, dass nach Verbrauch von **11b** kein Radikalstarter mehr verfügbar ist. Die Bildung von **13b'** ist vereinbar damit, dass **11b** wie Ph₂PSnMe₃ auch eine Polymerisation/Oligomerisation von Styrol initiieren kann.^[188]

66

Alternativ zum radikalischen Mechanismus kann die konzertierte 1,2-Addition von **11b** mit Styrol die Bildung der Produkte **13b**, *iso*-**13b** erklären. Im Gegensatz dazu kann die Bildung des Bisphosphonits **14b** nicht durch die Addition von **12b** zu Styrol erklärt werden, da nach Verbrauch von **11b** unter thermischen Bedingungen keine Reaktion zwischen **12b** und Styrol beobachtet wurde. Die Bildung des C₄-verknüpften Bisphosphonits **13b'** kann unter der Annahme einer konzertierten 1,2-Addition nur durch folgende Austausch- oder Umlagerungsreaktionen erklärt werden. Ein damit einhergehender Verbrauch von **13b** oder *iso*-**13b** wurde nicht beobachtet.

3.3.5 Versuche zur Umsetzung von Kalium-Diethoxyphosphid-Boran[3b]K mit Heterokumulenen

Reaktionen von Phosphiden und Amiden mit Heterokumulenen liefern unter Addition der P-M Einheit an eine C=X Doppelbindung zu Phosphacarboxylaten bzw. Carbamaten und deren Homologen. Während Carbamate und deren Ester ("Urethane") ein breites Anwendungsspektrum aufweisen,^[205–208] sind die Eigenschaften von Phosphacarboxylaten und deren Homologen nur vereinzelt untersucht.^[209–212]

Schema 34: Umsetzung von [3b]K mit CO₂ oder CS₂.

Die Reaktion von **[3b]**K mit CS₂ bei -78 °C (Schema 34) verläuft unter unmittelbarer Rotfärbung der Reaktionslösung. Diese Farbe ist typisch für Phospha-dithiocarboxylate.^[149,211,212] Nach Entfernen des Lösungsmittels und Aufarbeitung aus Diethylether konnte ein rot-oranger Feststoff isoliert werden und durch NMR- und IR-Spektroskopie, Elementaranalyse und ESI-MS als das erwartete Boran-Addukt **[22b]**BH₃ ($\delta^{31}P = 108.2 \text{ ppm}$) identifiziert werden. Das Signal des analogen Diaminophosphandithiocarboxylats **[22j]**BH₃^[149] ($\delta^{31}P = 93.4 \text{ ppm}$) ist im ³¹P-NMR-Spektrum zu geringeren Frequenzen verschoben ($\Delta\delta^{31}P = 14.8 \text{ ppm}$), und des von Ph₂PCS₂K ($\delta^{31}P = 41.5 \text{ ppm}$) ist zu noch niedrigeren Frequenzen verschoben. Im Vergleich zu Diethoxymethylphosphan-Boran (**[3b]**Me)^[16] ist eine Niederfrequenzverschiebung zu beobachten.

Versuche zur Synthese von **[21b]**BH₃ durch die Umsetzung von **[3b]**K mit CO₂ in einer Benzol/THF-Mischung (3:1) führte zu einem NMR-spektroskopisch beobachtbaren Produkt (Tabelle 8), welches jedoch nach Entfernen des Lösungsmittelgemischs nicht wieder gelöst werden konnte. Durch IR-spektroskopische Untersuchung des Feststoffs konnte eine Bande bei 1614 cm⁻¹ als Carbonyl-Streckschwingung und eine Bande bei 2366 cm⁻¹ als BH₃-Streckschwinung identifiziert werden. Eine breite Bande im Bereich von 3000-3700 cm⁻¹ weist auf OH-Streckschwingungen hin. Die Linienbreite ist charakteristisch für Hydroxidgruppen, die mit Wasserstoffbrückenbindungen verbunden sind. Die Herkunft der Bande kann auf Feuchtigkeitseintrag während der Reaktion zurückgeführt werden. Die Bildung von H-Brückennetzwerken zwischen dem Carboxylat-Fragment und Wasser könnte auch die geringe Löslichkeit erklären.

Die analoge Umsetzung von **[3b]**K mit Dicyclohexylcarbodiimid in THF bei RT führte nicht zur Bildung eines neuen Produkts. Erhitzen der Lösung führte lediglich zur Zersetzung des Phosphid-Borans.

Tabelle8:NMR-spektroskopischeDatenvonPhosphan-Boran-dithiocarboxylatenundvonDiethoxymethylphosphan-Boran.

Verbindung	Lösungsmittel	δ ³¹ P (ppm)	δ ¹¹ B (ppm)	Literaturstelle
BH ₃ (EtO) ₂ P∕CS ₂ K [22b] BH ₃	THF-d ₈	108.2	-37.7	_
(EtO) ₂ P (EtO) ₂ P (21b] BH ₃	THF	114.6	n.b.ª	-
BH ₃ (Et ₂ N) ₂ P CS ₂ K [22k] BH ₃	C_6D_6	93.4	-34.0	[149]
BH ₃ (EtO) ₂ P∕Me [3b] Me	CDCl₃	149.7	-41.8	[16]
 Ph ₂ P CS ₂ K [22s] BH ₃	THF	41.5	-	[209]

^an.b. = nicht bestimmt.

3.4 Reaktivität Tetrel-substituierter Diorganophosphonite gegenüber Tetracarbonylnickel: Bestimmung von Tolmans elektronischem Parameter (TEP)

Die in Kapitel 3.3.4 vorgestellten Diorgano-tetrelphosphonite repräsentieren eine neue Klasse von Phosphanen mit zwei elektronegativen und einem elektropositiven Substituenten, deren Koordinationschemie bislang unbekannt war. Da IR-Untersuchungen an Ni(CO)₃-Komplexen von Phosphanliganden über die Bestimmung von Tolmans elektronischem Parameter (TEP) eine einfache Charakterisierung der σ -Donoreigenschaften erlauben (siehe Kapitel 1.5), erschien die Untersuchung von Reaktionen der Liganden mit Ni(CO)₄ attraktiv.

Die Phosphonite **2d**, **8d**, **9b-e**, **10d** und **11d** reagieren mit einem deutlichen Überschuss (20 Äquivalente) Ni(CO)₄ in Toluol selektiv zu den jeweiligen Nickeltricarbonyl-Komplexen (Schema 35) und konnten nach Entfernen der flüchtigen Bestandteile NMR- und IRspektroskopisch charakterisiert werden (Tabelle 9). Die Reaktion von **9d-11d** mit stöchiometrischen Mengen Ni(CO)₄ und anschließender Aufarbeitung führten zu einer Mischung aus freiem Liganden und dem Nickeltricarbonylkomplex.

Bei Entfernen des Lösungsmittels verfärbte sich die Reaktionslösung gelb, und im Rückstand konnten schwarze Nickelpartikel beobachtet werden. Diese Befunde legen nahe, dass bei Konzentration der Lösung unter vermindertem Druck die Phosphorliganden abgespalten werden und das Ni(CO)₃-Fragment zu metallischem Nickel und CO umgewandelt wird. Hinweise auf die Substitution von mehr als einem CO-Liganden wurden nicht beobachtet. Die Kristallisation der Verbindungen, welche zur Bestimmung des Tolman-Kegelwinkels bzw. des "buried volume", die den Raumanspruch eines Phosphans quantifizieren, benötigt werden, war daher nicht erfolgreich.

Schema 35: Synthese von Phosphonit-Nickeltricarbonylkomplexen aus den Liganden und Nickelcarbonyl unter CO-Freisetzung (R = Et(b), *i*-Pr(c), Dipp(d), Pin(e), R' = Me, Ph).

Die Komplexierung führt im Vergleich mit bekannten Phosphit- und Phosphan-Nickeltricarbonyl-Komplexen nur zu einer geringfügigen und uncharakteristischen Änderung der im ³¹P-NMR-Spektrum zu beobachteten chemischen Verschiebung ("Koordinationsverschiebung"). Im Fall von **[11d]**Ni(CO)₃ wird die chemische Verschiebung im Vergleich zum freien Liganden deutlich erniedrigt.

Die IR-Spektren von **2d, 8d, 9b-d, 10d, 11d** enthalten wie erwartet zwei CO-Streckschwinungsmoden, die mit einer lokalen C_{3v}-Symmetrie des Ni(CO)₃-Fragments vereinbar sind. Die TEP dieser Organophosphonite sind außer im Fall von **2d** geringer als bei gängigen Organophosphiten (Tabelle 9), was durch elektrostatische Effekte erklärt werden kann. Außerdem sind die TEP von **8d, 9b-d, 10d, 11d** geringer als von P(SiMe₃)₃, was auf einen erhöhten Anteil des s(P)-Orbitals an der σ (P-Ni)-Bindung bei Organophosphoniten hinweist. Dieser Effekt wurde für die anderen Trimethyltetrelphosphane P(GeMe₃)₃ und P(SnMe₃)₃, die wesentlich geringere TEPs aufweisen, ebenfalls diskutiert.^[179] Im Vergleich zu PPh₃ sind die Organophosphonite **2d, 8d-11d** schwächere σ -Donoren und **9c,e** stärkere σ -Donoren. **9b** weist denselben TEP wie PPh₃ auf. Alkylphosphane sind stärkere Donoren als in dieser Arbeit synthetisierte Organophosphonite.

Bestimmung von Tolmans elektronischem Parameter (TEP)

Tabelle 9: Tolmans elektronischer Parameter (TEP als Wellenzahl der A₁-Mode der CO-Valenzschwingungen des Ni(CO)₃-Komplexes in DCM), δ^{31} P-NMR-Verschiebungen (in C₆D₆) und Koordinationsverschiebungen ($\Delta(\delta^{31}$ P)) der untersuchten Nickeltricarbonylkomplexe von Silyl- Germyl- und Stannylphosphonite.

Ligand	A₁ (cm ⁻¹)	δ ³¹ Ρ (ppm)	δ ³¹ Ρ (ppm)	$\Delta(\delta^{31}P)$ (ppm)	Literatur
		Komplex	Ligand		
9b	2069	216.6	217.7	-1.1	-
9с	2068	211.9	209.0	2.9	-
2d	2083	187.2	180.0	7.2	-
8d	2071	244.4	248.0	-3.6	-
9d	2072	248.2	247.2	1.0	-
10d	2073	249.7	252.1	-2.4	-
11d	2073	257.2	273.0	-14.8	-
9e	2068	245.9	253.8	-7.9	-
P(OPh)₃	2085	-	125.5	-	[213]
P(OMe)₃	2080	161.4	141	20.9	[214]
P(OEt)₃	2076	157	140	17	[72,215]
P(O <i>i</i> -Pr)₃	2076	154.1	137.5	16.6	[155,216]
P(SiMe₃)₃	2074	-234	-251	17	[179]
P(GeMe ₃) ₃	2070	-204.7	-228	23.3	[179]
PPh ₃	2069	42.9	-6.6	36.3	[72,215]
P(NMe ₂) ₃	2062	144.7	122.3	22.4	[72,214]
PEt ₃	2061	47.0	19.1	27.9	[72,215]
P(SnMe ₃) ₃	2057	-307.3	330	22.7	[179]
P(<i>t</i> -Bu)₃	2056	91	62.7	28.3	[72,179]

Angesichts des erwiesenen Donorvermögens der untersuchten Tetrelphosphonite kann das offensichtliche Unvermögen von Ni(CO)₄, mit **8d-11d** Reaktionen unter Substitution mehrerer CO-Liganden einzugehen, am ehesten als Folge sterischer Effekte verstanden werden. Um diese Hypothese zu belegen, wurde der sterische Anspruch der Tetrelphosphonite 9b-d, 10b-d, 11b-d mithilfe der Methode des prozentualen abgedeckten Volumens (percent buried volume %V_{bur}., siehe Kapitel 1.5) abgeschätzt. Die notwendigen Berechnungen wurden mit dem SambVca 2.1 Tool^[217] durchgeführt. Die Kennzahl %V_{bur.} gibt an welchem Anteil einer Kugel mit dem Radius 3.5 Å um das Metallzentrum eines (hypothetischen) Komplexes durch den untersuchten Liganden abgedeckt wird. Üblicherweise liegt der Berechnung die Kristallstruktur Koordinationsverbindung einer zugrunde, jedoch konnten die Nickeltricarbonylkomplexe der Diorganophosphonite nicht kristallisiert werden, sodass stattdessen die Kristallstrukturen der Phosphonit-Borane [2d]BH₃, [9b-d]BH₃, [10b-d]BH₃, [11b-d]BH₃ verwendet wurden. Hierbei wurde angenommen, dass das Metallzentrum in einem Abstand von 2.0 Å zum P-Atom auf der P-B-Achse liegt.

Die ermittelten Werte des %V_{bur}. folgt den erwarteten Trends. Das sekundäre Phosphan **2d** weist den geringsten sterischen Anspruch aller hier untersuchten Liganden auf. Der sterische Anspruch eines Liganden des Typs (RO)₂PER'₃ ist erwartungsgemäß generell größer und erhöht sich weiter mit zunehmender Größe der O-ständigen Substituenten (Et<*i*-Pr<Dipp) und abnehmendem Atomradius des Gruppe-14-Elements E, da durch eine kürzere P-E-Bindung die Phenylsubstituenten näher an das Metallzentrum rücken. Der Austausch einer SiPh₃-Gruppe gegen eine SiMe₃-Gruppe verringert das %V_{bur}. um 5 %. Für **9d** wurde das größte "buried Volume" gefunden. Der hohe räumliche Anspruch dokumentierte sich bereits darin, dass die Synthese die Verwendung des sehr reaktiven Ph₃SiOTf bedurfte.

3.4 Reaktivität Tetrel-substituierter Diorganophosphonite gegenüber Tetracarbonylnickel:

Bestimmung von Tolmans elektronischem Parameter (TEP)

Tabelle 10: Raumanspruch ("percent buried volume" %V_{bur}.) des Diorganophosphonits **2d** und der Silyl-, Germylund Stannylphosphonite **8d**, **9b-d**, **10b-d**, **11b-d**. Die Berechnung erfolgte anhand der Einkristallstrukturdaten der entsprechenden Boran-Addukte mit Hilfe des SambVca 2.1-Tools.^[217] Der eingegebene Kugelradius beträgt 3.5 Å, und der M-P Abstand wurde auf 2.0 Å festgelegt.

	Et (b)	<i>i</i> -Pr (c)	Dipp (d)
H (2)			31.7
SiMe ₃ (8)			47.4
SiPh₃ (9)	39.1	42.2	52.3
GePh₃ (10)	37.0	37.5	51.5
SnPh ₃ (11)	33.0	35.5	48.5

Das abgedeckte Volumen von **2d, 8d, 9b-d, 10b-d, 11b-d** liegt jeweils im Bereich der Werte gängiger Organophosphane (Tabelle 11), die für Koordinationsverbindungen eingesetzt werden. Der Raumanspruch der Dialkyl-tetrelphosphonite ist geringer als der des sterisch anspruchsvollen Phosphans P(*t*-Bu)₃ und mit Ausnahme von **11b** größer als der von PPh₃. **10b,c** nehmen ein vergleichbares Volumen wie P(SiMe₃)₃ ein und **11c** weist einen ähnlichen Raumanspruch wie P(OPh)₃ auf. Der Raumanspruch von **8d-11d** liegt zwischen P(*t*-Bu)₃ und PMes₃. Die Werte liegen alle in einem Bereich, wo eine Metallkoordination möglich sein sollte.

Tabelle 11: Raumanspruch ("percent buried volume" $%V_{bur.}$) bekannter, gängiger Phosphane.^[218] Mes = Mesityl-(2,4,6-Trimethylphenyl)

Verbindung	%V _{bur.}		
PPh ₃	34.5		
P(t-Bu)₃	42.4		
PMes ₃	53.1		
P(OPh)₃	35.4		
P(SiMe ₃) ₃	37.9		
P(SiMe ₂)SiPh ₃	46.7		

3.5 Selenierung Tetrel-substituierter Diorganophosphonite

Phosphanselenide und Diselenophosphinate sind als Ausgangsmaterial für Nanomaterialien,^[219–221] in der Koordinationschemie^[222] oder als mögliche Sonden der elektronischen Eigenschaften von Liganden^[77,223–226] von potentiellem Interesse. Selenide tertiärer Phosphane können üblicherweise aus dem Phosphan und elementarem Selen direkt dargestellt werden (Schema 36, oben). Erschöpfende Selenierung von Metallphosphiden ergeben Diselenophosphinate (Schema 36, Mitte). Silylphosphane, die oftmals wie Phosphide reagieren, können ebenfalls zu Diselenophosphinaten oxidiert werden (Schema 36, unten).

Schema 36: Synthesestrategien für Phosphanselenide und Diselenophosphinate.^[219,220,227]

Die vollständige Selenierung von Silylphosphanen erfolgt üblicherweise in mehreren Schritten. Zunächst kommt es zur schnellen Bildung von Insertionsprodukten unter Erhaltung des trivalenten P-Atoms. Sind die Substitutionen sterisch nicht zu anspruchsvoll ist letztendlich eine Oxidation zum Selenophosphat möglich (Schema 37).^[228,229] So reagiert P(TMS)₃ mit Selen bei tiefer Temperatur zunächst zum Triselenophosphit P(SeTMS)₃, das bei RT jedoch in Gegenwart von Selen unter Abspaltung von TMS₂Se zu einem P_xSe_y-Polymer zersetzt wird. Selenide von Trisilylphosphanen werden bei diesen Reaktionen zwar postuliert, können aber spektroskopisch nicht nachgewiesen werden. Beobachtbar sind jedoch strukturell verwandte Tellurverbindungen $(t-Bu)_2P(=Te)EMe_3$ (E=Si, Ge, Sn), die allerdings rasch zu den Insertionsprodukten $(t-Bu)_2P-Te-EMe_3$ isomerisieren.^[230]

Schema 37: Versuche zur Selenierung von Silylphosphanen mit Selen (R = t-Bu, Ph, Me).^[228,229]

Diphosphan-Monochalkogenide sind im Vergleich zu Silylphosphan-Chalkogeniden leichter zugängliche Verbindungen und isomerisieren oftmals erst bei erhöhter Temperatur unter P-P Bindungsspaltung zu Pyrophosphanen bzw. deren schwereren Homologen. Der Mechanismus der Chalkogeninsertion in die P-P-Bindung (Schema 38) konnte somit genauer untersucht werden. Tetraethoxydiphosphansulfid und -selenid **[12b]**Ch isomerisieren über mehrere Stunden bei 100 °C teilweise zum Chalkogendiphosphit (**23b**, **23b**'), für welche Weigand *et al.* einen bimolekularen Mechanismus vorgeschlagen haben (Schema 38). In einem reversiblen, konzertierten Prozess werden P-Ch und P-P Bindungen aufgeweitet und mit dem Nachbarmolekül geknüpft. ^[231]

Schema 38: Isomerisierung von Tetraethoxydiphosphanchalkogenid [12b]Ch (Ch=S, Se) unter thermischen Bedingungen.

Pietschnig *et al.* ^[232] führten Studien zum Chalkogentransfer (Ch = S, Se) von *trans-tert*-Butylsubstituierten Diphospha[2]Ferrocenophanen (**XLIII**) durch. ³¹P-NMR-spektroskopische Reaktionsverfolgungen zeigten während der Isomerisierung die Bildung äquimolarer Mengen des Dichalkogenprodukts ([**XLIV**]Ch) und des Diphospha[2]Ferrocenophans (**XLIII**), welches unter Regeneration des Ausgangsprodukts ([**XLIII**]Ch) zum Insertionsprodukt (**XLIV**) reagiert. Die Umsetzung von ([**XLIV**]Ch) mit (**XLIII**) bestätigte den Reaktionspfad, und quantenchemische Untersuchungen stehen im Einklang mit dem Mechanismus.

Schema 39: Mechanismus der Isomerisierung von Diphosphan[2]Phosphaferrocenophanchalkogeniden (Ch = S, Se) nach Pietschnik *et al.* [232]

Der postulierte Reaktionsweg für Chalkogenierungen von Silylphosphanen^[231,232] und die nachgewiesene Umlagerung von Dialkyl-tetrelphosphantelluriden R₂P(=Te)EMe₃ zu den Insertionsprodukten R₂PTeEMe₃ (R = *t*-Bu; E = Si, Ge, Sn)^[230] werfen die Frage auf, ob Chalkogenierungen der hier untersuchten Tetrelphosphonite einem analogen Reaktionsweg folgen und ob dafür unter Umständen weitere experimentelle Belege gefunden werden können. Zur Klärung wurden Umsetzungen von **8d**, **9b-d**, **10d** mit rotem oder grauem Selen untersucht. Selen wurde als Reagenz ausgewählt, weil mit dem NMR-aktiven ⁷⁷Se-Isotop (natürliche Häufigkeit = 7.6 %, *I* = ½) eine zusätzliche struktursensitive, spektroskopische Sonde zur Verfügung steht, und weil bei Selenierungen trivalenter P-Verbindungen in der Regel leichter zugängliche und stabilere Produkte entstehen als in analogen Umsetzungen mit Tellur.

Die Oxidation der Silylphosphane **9b,c** mit grauem Selen in C₆D₆ führt rasch zur Entstehung von Primärprodukten, die aufgrund des Auftretens von ⁷⁷Se-Satelliten im ³¹P-NMR Spektrum als Se-haltige Verbindungen erkannt und aufgrund der charakteristischen Größe der ¹J_{PSe}-Kopplungen^[77,233,234] (Abbildung 18) als Selenophosphonate **[9b,c]**Se identifiziert werden (NMR-Daten siehe Tabelle 12). Der Erhalt der P-Si-Bindung in diesen Produkten wird durch das Auftreten charakteristischer ¹J_{PSi}-Kopplungen bestätigt. Die Selenophosphonate gehen bei RT eine irreversible Folgereaktion zu Produkten ein, deren NMR-Daten (größere ³¹P-NMR-Verschiebungen, kleinere ¹J_{PSe}-Kopplungen) das Vorliegen von Selenophosphiten **25b,c** nahelegen (Abbildung 17). Diese Verbindungen reagieren mit überschüssigem Selen weiter zu **[25b,c]**Se ($\delta^{31}P = 72.1$ ppm (**b**); 67.2 ppm (**c**)), welche anhand des Vergleichs mit den literaturbekannten Verbindungen **[26b,c]**Se ($\delta^{31}P = 70.3 \text{ ppm}$ (**b**); 65.3 ppm (**c**))^[235] identifiziert wurden. Versuche, die Selenophosphite **25b,c** oder die Selenophosphonate **[9b,c]**Se zu kristallisieren oder isolieren, waren wegen dieses Verhaltens nicht erfolgreich.

Abbildung 17: ³¹P-NMR-Spektren der Umsetzung von **9b** mit grauem Selen nach 15 Minuten (*unten*) und nach 7 h (*oben*) Reaktionszeit.

Schema 40: Selenierung der Organophosphonite **8d**, **9b-d** und **10d** und Folgereaktion zu Selenophosphiten **24d**, **25b-d**, **26d** ("Insertionsprodukte") und Diselenophosphaten [**24d**]Se, **[25b-d**]Se, **[26d**]Se.

Die sterisch anspruchsvollen Organophosphonite **8d-11d** erwiesen sich gegenüber elementarem Selen als sehr reaktionsträge. Die Oxidation von **9d** mit grauem Selen führte innerhalb 4 Wochen direkt zum Insertionsprodukt **25d** ($\delta^{31}P = 226.1$ ppm (Toluol)) und dem überoxidierten Produkt **[25d]**Se ($\delta^{31}P = 73.9$ ppm (Toluol)); daneben war das Auftreten von **[2d]**Se ($\delta^{31}P = 48.8$) zu beobachten. Die Entstehung dieses Produktes kann durch Hydrolyse der Se-Si-Bindung in **25d** oder einer P-Si-Bindung in **9d** unter anschließenden Selenierung des resultierenden **2d** oder einem hypothetischen Intermediat **[9d]**Se erklärt werden. Beim Versuch, die Produkte durch Filtration aus Hexan voneinander zu trennen, färbte sich die Lösung gelb, und das ³¹P-NMR-Signal von **25d** war nicht mehr beobachtbar, sondern nur noch die Signale von **[25d]**Se und **[2d]**Se.

Die Befunde sind damit vereinbar, dass wie im Fall von **9b,c** zunächst eine Oxidation zum Selenophosphonat erfolgt, das dann zum Selenophosphit umlagert. Im Unterschied dazu verläuft der erste Reaktionsschritt wegen des erhöhten sterischen Anspruchs aber deutlich langsamer als die Isomerisierung, sodass das Isomerisierungsprodukt in diesem Fall das erste spektroskopisch detektierbare Produkt ist. Mit überschüssigem Selen kann dieses zum Selenophosphat reagieren. Das Stannylphosphonit **11d** reagierte unter den genannten Bedingungen weder mit grauem Selen noch mit rotem Se oder KSeCN.

R	ER'3	Nr.	δ(³¹ P) des Phosphonits	Nr.	δ(³¹ P) (¹ J _P 77 _{Se}) des Se-Phosphonats	Nr.	δ(³¹ P) (¹ J _P 77 _{Se}) des Se- Phosphits
Et	SiPh₃	9b	217.7	[9b] Se	109.5 (810 Hz)	25b	198.6 (285 Hz)
<i>i</i> -Pr	SiPh₃	9c	209.0	[9c] Se	105.1 (803 Hz)	25c	197.3 (283 Hz)
Dipp	SiMe₃	8d	248.0		n.b.	24d	226.2 ^[a]
Dipp	SiPh₃	9d	247.2		n.b.	25d	226.1 (354 Hz)
Dipp	GePh₃	10d	252.1		n.b.	26d	228.3 (357 Hz)

Tabelle 12: NMR-spektroskopische Daten (C₆D₆) für Selenophosphonate und Selenophosphite.

^{[a] 1}*J*_{PSe} nicht beobachtbar, n.b. = nicht beobachtbar

Da in dieser Studie nur zwei Selenophosphonate **[9b,c]**Se darstellbar waren, kann eine Analyse der Donoreigenschaften anhand der empirisch belegten Korrelation zwischen Lewis-Basizität

und Betrag der ${}^{1}J_{P^{77}Se}$ -Kopplungskonstante ${}^{[77,223-226]}$ nur eingeschränkt durchgeführt werden. In Abbildung 18 erkennt man, dass ${}^{1}J_{PSe}$ in den Verbindungsreihen (RO)_xR_{3-x}PSe bei sukzessivem Austausch von Alkyl- gegen Alkoxy-Substituenten kontinuierlich zunimmt, was mit der allgemein gängigen Auffassung korreliert, dass Alkylgruppen einen höheren Beitrag zur σ -Basizität einer trivalenten Phosphorverbindung liefern als Alkoxygruppen.

Die Variation der Kopplungskonstanten lässt sich auf eine durch elektronegative Substituenten induzierte Änderung der Hybridisierung am P-Atom zurückführen, durch die der s(P)-Charakter der P-Se Bindung erhöht wird. Dieser Effekt in Verbindung mit einer "Rückbindung" eines Se-zentrierten Elektronenpaars in das antibindende σ^* (P-O) Orbital impliziert einen formalen Doppelbindungscharakter^[116,233,234] und damit eine Verkürzung der P-Se Bindung, die wesentlich zur Erhöhung der Kopplungskonstante beiträgt.

Abbildung 18: ¹*J*_P⁷⁷Se Kopplungskonstanten für Selenide der dargestellten trivalenten Phosphorverbindungen.^[77,225,226,234,236]

Die Kopplungskontanten ${}^{1}J_{PSe}$ für die Selenide von **9b,c** liegen zwischen den Werten von Phosphiten und PPh₃ und sind kleiner als die für (RO)₂PRMe/Et. Dies impliziert, dass **9b,c** schwächere Lewisbasen sind als PPh₃ und dass der formale Alkyl/SiPh₃-Austausch erwartungsgemäß eine gesteigerte σ -Basizität bewirkt. Die Kopplungskonstanten ${}^{1}J_{PSe}([\mathbf{9b}]Se) > {}^{1}J_{PSe}([\mathbf{9c}]Se)$ zeigen einen ähnlichen Trend wie in Phosphiten und implizieren steigende Basizität mit wachsender Größe der RO-Gruppe.

Der deutliche Unterschied zwischen den ¹*J*_{PSe}-Kopplungskonstanten von **9b,c** und PPh₃ kontrastiert die Resultate der TEP-Analyse, nach der alle drei Spezies ähnliche Donorstärken

besitzen sollten (siehe Kapitel 3.4). Diese Art von Diskrepanz tritt beispielweise auch für $P(NMe_2)_3$ auf, dessen ${}^{1}J_{PSe}$ eine geringe Donorstärke impliziert, jedoch aufgrund des TEP eine hohe, mit PEt₃ vergleichbare Donorstärke erwarten lässt.

An dreifach subsituierten Phosphanseleniden wurde eine Korrelation zwischen der experimentell bestimmten Kopplungskonstante ¹*J*_{PSe} und der quantenchemisch bestimmten negativen Partialladung des Se-Atoms gefunden. Die resultierende Ladungstrennung führt zu einer Steigerung der Bindungsdissoziationsenergien (BDE) der P-Se-Bindung.^[87] Die Stabilisierung einer partiell positiven Ladung am P-Atom scheint also einen großen Einfluss auf ¹*J*_{PSe} zu haben. Es lässt sich also folgern, dass **9b,c** die positive Partialladung am P-Atom besser stabilisieren als beispielsweise PPh₃ oder (EtO)₂PEt. Dies kann durch Wechselwirkungen der p(O)-Orbitale mit dem P-Atom erklärt werden (vgl. hierzu die Betrachtung der Bindungssituation von (EtO)₂PH (Abbildung 2, Kapitel 1.3).

Der TEP ist ein Maß für die Eigenschaft, Elektronendichte vom Ligand auf ein Metall zu verschieben, was als Summe der σ -Donation und π -Akzeptanz aufgefasst wird.^[85,86] Diese Eigenschaften hängen von der relativen Lage der Grenzorbitale am P-Atom ab, welche durch die Hybridisierung am P-Atom und elektrostatische Effekte der Substituenten zu Stande kommt. Für **9b,c** scheinen diese Effekte sich ähnlich auf die Grenzorbitale des P-Atoms auszuwirken wie bei PPh₃.

Weitere Erklärungen für diese Diskrepanz sind entweder auf die geometrische Verzerrung des Phosphoratoms aufgrund der sterischen Abstoßung von Substituenten, welche den s(P)-Charakter der P-Se Bindung erhöht, oder auf den Einfluss elektronegativer Substituenten zurückgeführt werden, welche denselben Effekt auf die Hybridisierung haben. Die Diskrepanz zwischen beiden Skalen gibt einen Hinweis, dass **9b,c** wie Phosphite signifikante π -Akzeptoreigenschaften besitzen, jedoch erscheint eine genaue Einschätzung der Donoreigenschaften gegenüber Metallen aufgrund der vielen Unwägbarkeiten der verwendeten empirischen Modelle als problematisch.

81

4 Zusammenfassung

In dieser Arbeit sollten Diorganophosphonit-Borane synthetisiert und die vermutete PH-Azidität durch Untersuchungen von Metallierungsreaktionen nachgewiesen werden. Anhand einer Reaktionskaskade aus Metallierung und Salzmetathese sollten hierdurch unter anderem neuartige P-nukleophile Synthesebausteine dargestellt werden.

Ausgangspunkt der Untersuchungen bildete das Konzept, die zur Metallierung von Diaminophosphan-Boranen^[149] erfolgreich eingesetzte Metallierung mit LiHMDS auf Diethylphosphonit-Boran **[2b]**BH₃ zu übertragen. In der Tat konnte die Bildung des Metallierungsprodukts bei tiefer Temperatur NMR-spektroskopisch nachgewiesen werden und so die früher postulierte Beteiligung dieser Spezies als Reaktionsintermediat^[16] erhärtet werden (Schema 41).

Schema 41: Metallierung von [2b]BH₃ mit LiHMDS.

Für eine Untersuchung der Metallierung von Phosphonit-Boranen wurden nach einem gängigen Syntheseschema weitere Verbindungen dieses Typs synthetisiert und vollständig charakterisiert (**[2c-f]**BH₃, Schema 42).

Schema 42: Reaktionsgleichung der Synthese verschiedener Diorganophosphonit-Borane und in dieser Arbeit verwendeten O-Substituenten. M = Li, Na, Solvens = THF, DME.

Zur Optimierung der Metallierungsreaktion wurden Reaktionen von **[2b,c]**BH₃ mit verschiedenen Anionenbasen (*n*-BuLi, LDA, LiHMDS, NaHMDS und KHMDS) eingehender untersucht (Schema 43). Hierbei zeigte sich, dass die Lithium- und Natrium-Phosphid-Borane **[3b,c]**Li,Na bei Raumtemperatur unter Eliminierung von Alkoxid zu Triphosphaniden **[4b,c]**Li,Na bzw. **[5c]**Li,Na kondensieren, von denen **[4b]**Li und **[5c]**Li kristallographisch charakterisiert werden konnten. Die durch diese Reaktion implizierten elektrophilen Eigenschaften der Phosphid-Borane **[3b,c]**Li,Na konnten anhand der Umsetzungen von **[3b]**Li mit *n*-BuLi bzw. LDA zu Bu₂P(BH₃)Li bzw. dem Alkoxy-Aminophosphid-Borane **[3b,c]**K, von denen **[3b]**K als KHMDS-Kokristallisat erhalten und strukturell charakterisiert wurde. Auf dieselbe Weise konnten die Kalium-Phosphid-Borane **[3d,c]**K synthetisiert und spektroskopisch charakterisiert werden. **[3f]**K konnte nicht erhalten werden, da die Selbstkondensation bereits bei niedrigen Temperaturen stattfindet.

Schema 43: Metallierung von Phosphonit-Boranen mit HMDS-Basen und Folgereaktionen unter Selbstkondensation (*oben*), vollständige Substitution mit starken Nukleophilen (*Mitte*) und nukleophile Aminierung (*unten*).

Metathesereaktionen von **[3b]**K mit komplexe Übergangsmetallionen (Cu, Zn) lieferten erste Beispiele dafür, dass metallierte Diorganophosphonit-Borane nicht nur Elektrophile sind, sondern auch als P-nukleophile Synthesebausteine nutzbar sind.

Schema 44: Salzmetathese von **[3b]**K mit den komplexen Übergangsmetallhalogeniden IDippCuCl (N,N'-Bis-(2,6-diisopropylphenyl)-imidazoyl-Kupferchlorid) und (TMEDA)ZnCl₂.

Wie Übergangsmetallhalogenide reagieren Organotetrelverbindungen der Zusammensetzung Ph₃EX (E = Si, Ge, Sn, X = Cl, Br, OTf) und Me₃SiCl mit **[3b-e]**K selektiv unter P-E Bindungsknüpfung zu den substituierten Diorgano-tetrelphosphonit-Boranen (Schema 45), welche vollständig charakterisiert und mit einer Ausnahme einkristallin erhalten wurden. Anhand der Reaktionen zwischen den Phosphid-Boranen **[3b-d]**K und Ph₃CCl wurde festgestellt, dass die Phosphid-Borane prinzipiell sowohl als Hydridüberträger als auch als Nukleophil reagieren können.

Aus den Diorgano-tetrelphosphonit-Boranen kann die Boran-Gruppe mithilfe von tertiären Aminen (NEt₃, DABCO) entfernt werden, sodass die nicht koordinierten Verbindungen erhalten werden. Diese stellen die ersten unkoordinierten, P-nukleophilen Diorganotetrelphosphonite dar.

Schema 45: Elektrophile Substitution von Kalium-Dialkoxyphosphid-Boranen mit Gruppe 14-Elektrophilen und anschließende Abstraktion der Boran-Gruppe zu den freien Diorgano-tetrelphosphoniten.

Die neu synthetisierten Diorgano-tetrelphosphonite wurden mit Ni(CO)₄ zu den Nickeltricarbonyl-Komplexen umgesetzt, welche spektroskopisch charakterisiert wurden (Schema 46). Die aus der IR-spektroskopischen Analyse hervorgehende σ -Donorstärke (Tolmans elektronischer Parameter, TEP) zeigt, dass die Verbindungen stärkere Donor-Liganden als analoge Phosphite (P(OR)₃) sowie als das homoleptische Tris-(trimethylsilyl)phosphan P(SiMe₃)₃ sind.

Schema 46: Komplexierung von Diorganophosphoniten mit Ni(CO)₄ zu den Nickeltricarbonyl-Komplexen, aus denen der TEP bestimmt wurde.

Die Oxidation der Diorgano-silylphosphonite **[9b,c]** mit grauem Selen führt im ersten Schritt zu den Selenophosphonaten **[9b,c]**Se, welche rasch in die Selenophosphite **[25b,c]** umlagern und mit überschüssigem Selen zu **[25b,c]**Se oxidiert werden (Schema 47). Die sterisch anspruchsvolleren Verbindungen **8d-10d** reagieren nur sehr langsam mit Selen, sodass nach mehreren Wochen Reaktionszeit lediglich die Selenophosphite **24d-27d** und Selenophosphate **[24d-27d]**Se beobachtet wurden. Unter der Annahme, dass skalare Kopplungskonstanten ¹*J*_P77_{Se} der Selenierungsprodukte trivalenter P-Verbindungen Aussagen über deren σ -Basizität erlauben, belegen die für **[9b,c]**Se gemessenen Werte, dass die σ -Basizität der Silylphosphonite **9b,c** zwischen vergleichbaren Phosphiten und (RO)₂PR (R = Me, Et) liegt.

Schema 47: Selenierung von Dialkylphosphoniten zu Selenophosphonaten **[9b,c]**Se und Umlagerung zu den Selenophosphiten **25b,c** bzw. Überoxidation zu Diselenophosphaten **[25b,c]**Se. In Reaktionen der sterisch anspruchsvolleren Phosphonite **8d-11d** (mit R = Dipp) konnten lediglich die "Insertionsprodukte" **24d-26d** bzw. deren Oxidationsprodukte beobachtet werden.

5 Conclusion

In this work, diorganophosphonite-boranes were to be synthesized and the presumed PHacidity should be demonstrated by the investigation of metalation reactions. Metalation and consecutive salt metathesis should be applied for the synthesis of novel P-nucleophilic building blocks.

As a starting point we investigated whether the recently developed metalation concept of diaminophosphine-boranes^[149] with LiHMDS can be transferred to diethylphosphoniteborane **[2b]**BH₃. Indeed, the formation of the metalation product could be spectroscopically detected at low temperatures, which confirmed previous studies,^[16] that postulated this species as reaction intermediate (Figure 1).

Figure 1: Metalation of **[2b]**BH₃ with LiHMDS.

Further investigations on the metalation of diorganophosphonite-boranes should be performed for which the common synthesis protocol for diorganophosphonite-boranes was applied (Figure 2). The resulting compounds **[2c-f]**BH₃ were fully characterized.

Figure 2: Reaction equation of the synthesis of various diorganophosphonite boranes and the organic substituents are shown at the bottom. M = Li, Na, solvent = thf, dme

The conditions for the metalation procedure had to be optimized, which we accomplished by investigating the reaction of **[2b,c]**BH₃ with various anionic bases (*n*-BuLi, LDA, LiHMDS, NaHMDS and KHMDS; Figure 3). We found that at room temperature lithium- and sodium-phosphide-boranes **[3b,c]**Li,Na show elimination of alkoxide upon formation of borane adducts of triphosphanides **[4b,c]**Li,Na or **[5c]**Li,Na. **[4b]**Li and **[5c]**Li have been isolated and crystallographically characterized. This reactivity implies electrophilic properties of the phosphide-boranes **[3b,c]**Li,Na, which were confirmed by the reaction of **[3b]**Li with *n*-BuLi or LDA to Bu₂P(BH₃)Li or the alkoxy-aminophosphide-borane **[3i]**Li, respectively. **[3i]**Li has been characterized by X-ray crystallography. Deprotonation of **[2b,c]**BH₃ with KHMDS afforded isolable potassium phosphide boranes **[3b,c]**K, of which **[3b]**K was obtained as co-crystal and was therefore crystallographically characterized. By that method potassium phosphide boranes **[3d,e]**K were synthesized and spectroscopically characterized. **[3f]**K could not be obtained, because self-condensation occurred already at low temperatures.

Figure 3: Metalation of phosphonite boranes with HMDS bases and follow-up reactions upon self-condensation (top), complete substitution with strong nucleophiles (middle) and nucleophilic amination with LDA.

Metathesis of **[3b]**K with complex transition metal salts (Cu, Zn) demonstrated the first examples for the application of diorganophosphonite-boranes as P-nucleophilic building blocks, in addition to their electrophilic properties.

Figure 4: Salt metathesis of **[3b]**K with complex transition metal halides IDippCuCl (N,N'-Bis-(2,6-diisopropylphenyl)-imidazoyl-copper(I) chloride) and (TMEDA)ZnCl₂.
Similar to transition metal halides, organotetrel-compounds composed as Ph_3EX (E = Si, Ge, Sn, X = Cl, Br, OTf) and Me₃SiCl react with **[3b-e]**K selectively upon P-E bond formation to substituted diorgano-tetrelphosphonite boranes (Figure 5), from which every derivative has been fully characterized and, with one exception, obtained as single crystals. Investigating the reaction of **[3b-d]**K and Ph₃CCl, we found that these phosphide-boranes may react as both as hydride transfer agent and nucleophile.

Diorgano-tetrelphosphonite boranes react with amines (NEt₃, DABCO) upon abstraction of the borane moiety to yield the non-coordinated compounds. These compounds represent the first non-coordinated, P-nucleophilic diorgano-tetrelphosphonites.

Novel tetrelphosphonites have been subjected to Ni(CO)₄ to selectively afford nickel tricarbonyl complexes (Figure 6), which have been spectroscopically characterized. By means of IR-spectroscopy, the σ -donor properties (Tolman electronic parameter, TEP) have been derived. We found that the diorgano-tetrelphophonites are better donor ligands than both analogous phosphites (P(OR)₃) and homoleptic tris-(trimethylsilyl)phosphane P(SiMe₃)₃.

RO P ER'3	Ni(CO) ₄ -CO	RO RO RO RO RO ER' ₃
8d. 9b-e.		[8d]NiCO ₃
10d, 11d		[9b-e] NiCO ₃
		[10d] NiCO ₃
		[11d] NiCO ₃

Figure 6: Complexation of diorganosphophonites with Ni(CO)₄ affording the nickel tricarbonyl complexes, which were used to determine the TEP.

The oxidation of diorgano-silylphosphonite **9b,c** with grey selenium leads to the selenophosphonates **[9b,c]**Se, which briskly convert to the selenophophites **25b,c** and react with excess selenium to **[25b,c]**Se (Figure 7).

Sterically demanding compounds **8d-10d** oxidize very slowly with selenium, so we could only observe the selenophosphites **24d-27d** and the over-oxidation products **[24d-27d]**Se. Assuming, that the scalar coupling constant ${}^{1}J_{P77}S_{e}$ of selenation products of trivalent P-compounds provides information on the basicity, we concluded that the values provided for **[9b,c]**Se depict the basicity of silylphosphonites **9b,c** between comparable phosphites and (RO)₂PR (R = Me, Et).

Figure 7: Selenation of dialkylphosphonites to selenophosphonates **[9b,c]**Se and rearrangement to selenophosphites **25b,c** and over-oxidation to diselenophosphates **[25b,c]**Se. The reactions involving sterically demanding phosphonites **8d-11d** (with R = Dipp) lead exclusively to the observation of the "insertion products" **24d-26d** and their oxidation products.

6 Experimentalteil

6.1 Allgemeine Arbeitsbedingungen

Falls nicht anders vermerkt, wurden alle Arbeitsschritte in ausgeheizten Glasgeräten unter Inertgasbedingungen (Argon) durchgeführt. Chlorophosphite 1b,^[175] 1c,^[176] 1d,^[237] 1e,^[238] 1f,^[239] Diethylphosphonit-Boran,^[16] Ph₃SiOTf^[240] und Ph₃GeBr^[241] wurden nach bekannten Vorschriften dargestellt. LiBH₄, LiHBEt₃, Alkalimetal-hexamethyldisilazide (MHMDS, M= Li, Na, K), Ph₃CCl, Ph₃CBF₄, Ph₃SiCl, Ph₃SnCl und 1,4-Diazabicyclo(2.2.2)oktan (DABCO) wurden kommerziell erworben und unter Inertgasbedingungen gelagert. DABCO wurde vor Verwendung sublimiert. Tetrahydrofuran, Diethylether, Hexan, Pentan, Toluol, Benzol und Dichlormethan wurden mehrere Tage über NaK-Legierung (Ether, Kohlenwasserstoffe) bzw. CaH₂ (DCM) unter Rückfluss erhitzt und destilliert. CS₂ wurde vor Verwendung destilliert. Triethylamin wurde über Kalium zum Sieden erhitzt, destilliert und über einem Kaliumspiegel gelagert. Celite wurde vor der Verwendung 1 h bei 450 °C im Vakuum von Feuchtigkeitsrückständen befreit und bei 130 °C gelagert.

6.2 Analytische Methoden

NMR-Spektren wurden mit Bruker Avance 250 (¹H: 250.0 MHz, ⁷Li: 97.2 MHz, ¹¹B: 80.2 MHz, ¹³C: 62.9 MHz, ³¹P: 101.2 MHz, ¹¹⁹Sn: 93.2 MHz) oder Bruker Avance 400 (¹H: 400.1 MHz, ⁷Li: 155.4 MHz, ¹¹B: 128.4 MHz, ¹³C: 100.5 MHz, ³¹P: 161.9 MHz, ¹¹⁹Sn: 149.2 MHz,) NMR-Spektrometern bei 293 K (falls nicht anders vermerkt) aufgenommen. Die Spektren wurden jeweils auf ext. TMS (¹H; ¹³C, Ξ = 25.145020; ²⁹Si, Ξ = 19.867187), 85 % H₃PO₄ (Ξ = 40.480747 MHz, ³¹P), SnMe₄ (Ξ = 37.290655 MHz, ¹¹⁹Sn), BF₃·OEt₂ (Ξ = 32.083974 MHz, ¹¹B) and LiCl (Ξ = 38.863797, ⁷Li) referenziert.^[242] Die ¹H-NMR-Spektren wurden unter Verwendung der ¹H-NMR-Signale der deuterierten Lösungsmittel auf Si(CH₃)₄ referenziert. ²⁹Si-NMR und ¹¹⁹Sn-NMR Spektren wurden mit der DEPT-Pulssequenz aufgenommen. ²⁹Si-NMR-Signale wurden außerdem durch Aufnahme von ¹H-²⁹Si-HSQC oder -HMQC Spektren verifiziert. In Fällen, in denen keine aussagekräftigen ²⁹Si-DEPT-Spektren erhalten werden konnten, wurden die ²⁹Si-NMR-Verschiebungen ebenfalls aus den 2D-Spektren ermittelt. Chemische Verschiebungen δ

sind in ppm angegeben. Die Kopplungskontanten zu Bor-, Silizium-, Selen- und Zinnkernen beziehen sich, falls nicht anders vermerkt, auf ¹¹B, ²⁹Si, ⁷⁷Se und ¹¹⁹Sn. Die Präfixe *i*-, *o*-, *m*-, *p*-bezeichnen die Atompositionen in aromatischen Ringen.

Elementaranalysen wurden auf einem Elementar Micro Cube elemental analyser aufgenommen.

Fourier-transform-infrarot-(FTIR)-Spektren reiner Substanzen wurden auf einem mit einer iD5 attenuated total reflectance (ATR) Einheit ausgestatteten Thermo Scientific/Nicolet iS5 Gerät aufgenommen. Spektren in Lösungen wurden auf demselben Gerät in einer Transmissions (0.1 mm)-CaF₂-Zelle aufgenommen. Es werden nur ausgewählte, charakteristische Banden angegeben.

ESI-Massenspektren wurden mit einem Bruker Daltonics Microtof-Q Massenspektrometer aufgenommen. EI-MS Spektren wurden an einem Exactive GC Orbitrap Massenspektrometer der Firma Thermo Fisher Scientific aufgenommen.

ESR-Spektren wurden bei 298 K mit einem *Benchtop MiniScope MS 5000* X-Band Spektrometer aufgenommen, das mit einer MS5000 UV-Quelle (λ = 365 nm, LED) zur photochemischen Erzeugung von Radikalen ausgestattet ist. Die Auswertung der Spektren erfolge mit dem *Matlab*-Tool *Easyspin*.^[243]

Datensätze der Röntgenstrukturanalysen wurden von Dr. Wolfgang Frey am Institut für Organische Chemie der Universität Stuttgart gemessen. Geeignete Einkristalle wurden in Fomblin Y oder Paraffin (**[3b]**K) ausgewählt und mithilfe einer Nylonschleife im Stickstoffstrom auf einem Bruker AXS Nanostar C Diffraktometer mit einem Kappa Apex II Duo CCD-Detekter und einer KRYO-FLEX Kühlung unter Verwendung von Cu-K_a (λ = 1.54178 Å)- oder Mo-K_a (λ = 1.54178 Å)- Strahlungsquellen vermessen. Die Strukturlösung wurde von Dr. Christoph Feil oder Nicholas Birchall mithilfe der Programmpakete SHELXS, SHELXL und SHELXTL-Plus^[244,245] durchgeführt.

6.3 DFT-Rechnungen

DFT-Rechnungen wurden von Prof. Dr. Dietrich Gudat mit dem Programm Gaussian 16^[246] unter Verwendung der B3LYP-Funktionale,^[247] Basis-Sätzen der def2-Familie von Weigend und Ahlrichs,^[248] und der D3-Version von Grimmes Dispersionskorrektur mit Becke-Johnson

Dämpfung durchgeführt.^[249] Molekülstrukturen wurden durch vollständige Energieoptimisierung auf PCM-B3LYP-D3BJ/def2-svp-Niveau ermittelt und als lokale Minima der Potenzialenergiefläche identifiziert. Magnetische Abschirmungen wurden aus Single-Point Rechnungen auf PCM-B3LYP-D3BJ/def2-tzvpp-Niveau unter Verwendung der optimierten Geometrien ermittelt und mithilfe der Gleichung^[250] $\delta_s = (\sigma_{Ref.}-\sigma_S-266.1)$ in chemische Verschiebungen relativ zu 85 % H₃PO₄ konvertiert. Die magnetische Abschirmungskonstante von PH₃ ($\sigma_{Ref.} = 590.5$ ppm) als Referenz wurde auf demselben Niveau errechnet. NBO-Populationsanalysen wurden mit dem im Gaussian-Packet implementierten NBO-Modul durchgeführt. Die Analyse magnetischer Abschirmungen wurde mit dem Programmpaket NBO6 durchgeführt.^[251].

6.4 Synthesevorschriften

6.4.1 Diisopropylphosphonit-Boran [2c]BH₃

[2c]BH₃

Chlorodiisopropylphosphit **1c** (8.24 g, 4.46 mmol) wurde in THF (80 mL) gelöst und auf -78 °C gekühlt. Festes LiBH₄ (2.90 g, 4.46 mmol) wurde zugegeben, die Mischung 15 Minuten gerührt und dann 1 h bei Zimmertemperatur gerührt. Das Gemisch wurde wiederum auf -78 °C gekühlt und die Reaktion wurde durch langsame Zugabe von Wasser (100 mL) beendet. Das Produkt wurde mit EtOAc (2x 50 mL) und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Nach Aufreinigung mittels Säulenchromatographie (Silika Gel, PE:EE = 8:2) wurde das Produkt als farbloses Öl erhalten (3.36 g, 2.04 mmol, 46 %).

¹H-NMR (CDCl₃): δ = 6.99 (d, ¹J_{PH} = 445 Hz, 1 H, P**H**), 4.58 (dsept., ³J_{PH} = 9.2 Hz, ³J_{HH} = 6.2 Hz, 2 H, OC**H**) 1.33 (d, ³J_{HH} = 6.2 Hz, 12 H, C**H**₃), 0.57 (breites dq, ¹J_{BH} = 96 Hz, ²J_{PH} = 13 Hz, 3 H, B**H**₃).

³¹P-NMR (CDCl₃): δ = 119.3 (bdq, ¹J_{PH} = 444 Hz, ¹J_{PB} = 76 Hz).

¹¹B-NMR (CDCl₃): δ = 41.3 (dq, ¹J_{PB} = 76 Hz, ¹J_{BH} = 96 Hz).

¹³C{¹H}-NMR (CDCl₃): δ = 73.8 (d, ²J_{CP} = 7 Hz, CH), 24.0 (d, ³J_{CP} = 4 Hz, CH₃), 23.7 (d, ³J_{CP} = 3 Hz, CH₃).

IR (cm⁻¹): \tilde{v} = 2393, 2346 (vPH, vBH).

(+)ESI-MS: m/z = 187.1028 (MNa⁺, berechnet: 187.1031).

Elementaranalyse für C₆H₁₈BO₂P (163.99 g·mol⁻¹): Berechnet: C 43.94 H 11.06, gefunden: C 43.66 H 10.85.

6.4.2 Bis(2,6-diisopropylphenyl)phosphonit-Boran [2d]BH₃

[2d]BH₃

Eine Lösung aus Chlor-bis(2,6-diisopropylphenyl)phosphit **1d** (4.18 g, 10.7 mmol) in THF (30 mL) wurde auf -78 °C gekühlt. LiBH₄ (4 M in THF, 2.7 mL, 10.7 mmol) wurde hinzugegeben. Die farblose Lösung wurde auf Raumtemperatur aufgewärmt und CH₂Cl₂ (3 mL) wurde hinzugegeben. Nach 5 Minuten Rühren wurden die flüchtigen Bestandteile unter reduziertem Druck entfernt und der Rückstand mit Hexan (20 mL) versetzt. Die Suspension wurde über getrocknetes Silicagel filtriert und der Filterkuchen mit Hexan (3x20 mL) gewaschen. Das Filtrat wurde auf 5 mL eingeengt und bei -25 °C wurden farblose Kristalle erhalten (1.53 g, 3.83 mmol, 36 %).

¹H NMR (C₆D₆): δ = 7.37 (bd, ¹J_{PH} = 423 Hz, 1 H, P**H**), 7.03-6.98 (m, 6 H, Aryl), 3.40 (sept., ³J_{HH} = 6.0 Hz, 4 H, C**H**), 1.15 (d, ³J_{HH} = 6.7 Hz, 12 H, C**H**₃), 1.14 (d, ³J_{HH} = 6.7 Hz, 12 H, C**H**₃).

³¹P NMR (C₆D₆): δ = 140.8 (bd, ¹J_{PH} = 423 Hz).

¹¹B NMR (C₆D₆): δ = -39.9 (dq, ¹J_{PB} = 52 Hz, ¹J_{BH} = 76 Hz).

¹³C{¹H} NMR (C₆D₆): δ = 148.4 (d, ²J_{PC} = 11 Hz, *i*-Aryl), 140.2 (d, ³J_{PC} = 3 Hz, *o*-Aryl), 126.4 (d, ⁵J_{PC} = 2 Hz, *p*-Aryl), 124.5 (d, ⁴J_{PC} = 2 Hz, *m*-Aryl), 27.5 (s, **C**H), 23.5 (s, **C**H₃), 23.1 (s, **C**H₃).

IR (cm⁻¹): \tilde{v} = 2420 (vPH), 2389, 2344 (vBH).

(+)ESI-MS: m/z 423.26 (MNa⁺, berechnet. 423.2599).

Elementaranalyse für C₂₄H₃₈BO₂P (400.35 g⋅mol⁻¹): Berechnet: C 72.00, H 9.57; gefunden: C 71.70, H 9.50.

6.4.3 Bis(2,6-diisopropylphenyl)phosphonit 2d

Chlor-bis(2,6-diisopropylphenyl)phosphit **1d** (545 mg, 1,40 mmol) wurde in THF (20 mL) gelöst und auf -78 °C gekühlt. Eine Lösung von LiHBEt₃ (1.54 mL, 1.54 mmol, 1 M in THF) wurde langsam zugetropft und 15 Minuten bei gleicher Temperatur gerührt. Die Mischung wurde auf RT aufgewärmt und das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde in Hexan (20 mL) suspendiert und über eine Schicht Celite filtriert. Das Filtrat wurde im Vakuum vom Lösungsmittel befreit und das Produkt als farbloser Feststoff erhalten (149 mg, 0.39 mmol, 45 %).

¹H NMR (C₆D₆): δ = 7.56 (d, ¹J_{PH} = 199 Hz, 1 H, P**H**), 7.08-7.04 (m, 6 H, Aryl), 3.58 (sept., ³J_{HH} = 7.0 Hz, 4 H, C**H**), 1.21 (d, ³J_{HH} = 7.0 Hz, 24 H, C**H**₃).

³¹P NMR (C₆D₆): δ = 180.0 (d, ¹J_{PH} = 199 Hz).

¹³C{¹H} NMR (C₆D₆): δ = 152.5 (d, ²J_{PC} = 4 Hz, *i*-Aryl), 140.1 (d, ³J_{PC} = 3 Hz, *o*-Aryl), 125.0 (d, ⁵J_{PC} = 2 Hz, *p*-Aryl), 124.1 (d, ⁴J_{PC} = 1 Hz, *m*-Aryl), 27.5 (d, ⁴J_{PC} = 3 Hz, **C**H), 23.7 (d, ⁵J_{PC} = 1 Hz **C**H₃), 23.4 (d, ⁵J_{PC} = 1 Hz **C**H₃).

Elementaranalyse für C₂₄H₃₈BO₂P (386.52 g·mol⁻¹): C 74.58, H 9.13; gefunden: C 74.09, H 9.17.

6.4.4 4,4,5,5-Tetramethyl-1,3,2-dioxaphospholidin-Boran [2e]BH₃

[2e]BH₃

2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholidin **1e** (1.77 g, 9.86 mmol) wurde in Et₂O (100 mL) gelöst und auf -78 °C gekühlt. LiBH₄ (11.62 mmol, 2.9 mL, 4 M in THF) wurde langsam zugetropft und die Mischung wurde 1 h bei tiefer Temperatur und dann eine Stunde bei RT gerührt. Die Mischung wurde über ausgeheiztes Silika filtriert und das Filtrat ein Fünftel des Volumens eingeengt, woraufhin das Produkt in Form farbloser Kristalle ausfiel (912 mg, 5.63 mmol, 58 %).

¹H-NMR (C₆D₆): δ = 6.83 (bd, ¹J_{PH} = 395 Hz, 1 H, P**H**), 1.54 (qd, ¹J_{BH} = 99 Hz, ²J_{PH} = 17 Hz, 3 H, B**H**), 0.90 (s, 6 H, C**H**₃), 0.69 (s, 6 H, C**H**₃).

³¹P-NMR (C₆D₆): δ = 137.7 (dqd, ¹J_{PB} = 66 Hz, ¹J_{PH} = 395 Hz, ²J_{PH} = 17 Hz).

¹¹B-NMR (C₆D₆): δ = -38.5 (dq, ¹J_{BH} = 99 Hz, ¹J_{PB} =66 Hz).

¹³C-NMR (C₆D₆): δ = 87.6 (d, ²J_{PC} = 5 Hz, O**C**), 23.6 (d, ³J_{PC} = 4 Hz, **C**H₃), 21.4 (d, ³J_{PC} = 4 Hz, **C**H₃).

IR (cm⁻¹): \tilde{v} = 2365 (vBH), 2345 (vBH).

(+)ESI-MS: m/z 185.0873 (MNa⁺, berechnet. 185.0873).

Elementaranalyse für C₆H₁₆BO₂P (162.98 g·mol⁻¹): Berechnet: C 44.49 H 9.96; gefunden: C 44.16 H 9.65.

6.4.5 S-1,1'-Binaphthylphosphonit-Boran [2f]BH₃

[2f]BH₃

S-(1,1'-Binaphthalin-2,2'-dioxy)chlorophosphan **1f** (1.50 g, 4.28 mmol) wurde in DME (40 mL) gelöst und auf -78 °C gekühlt. Festes NaBH₄ (194 mg, 5.13 mmol) wurde zugegeben. Die Mischung wurde 1 h bei -78 °C gerührt und dann 1 h bei RT gerührt. Dabei ging das NaBH₄ vollständig in Lösung. DME wurde im Vakuum entfernt und der Rückstand mit Diethylether (20 mL) versetzt. Die Suspension wurde filtriert. Das Filtrat wurde erneut über Kieselgel filtriert und der Filterkuchen mit Toluol (20 mL) gewaschen. Nach Entfernen des Lösungsmittels wurde das Produkt als farbloser Feststoff erhalten. Ausbeute: 926 mg, 2.80 mmol, 66 %.

¹H NMR (CDCl₃): δ = 8.06 (d, ³J_{HH} = 9 Hz, 2 H, C³H, 7.98 (d, ³J_{HH} = 9 Hz, 2 H, C³H), 7.68 (d, ¹J_{PH} = 430 Hz, 1 H, PH), 7.59-7.46 (m, 4 H, H_{arom.}), 7.37-7.31 (m,4 H, H_{arom.}), 1.50-(-0.25) (b, 3 H, BH₃).

³¹P NMR (CDCl₃): δ = 153.6 (d, ¹J_{PH} = 430 Hz).

¹¹B{¹H} NMR (CDCl₃): δ = -40.9 (d, ¹J_{PB} = 41 Hz).

IR (cm⁻¹): \tilde{v} = 2402 (vBH), 2361 (vBH).

EI-MS: m/z 330.0972 (MNa⁺, berechnet. 330.0979).

Elementaranalyse für C₂₀H₁₆BO₂P (330.13 g⋅mol⁻¹): C 72.77, H 4.89; gefunden: C 72.71, H 5.56.

6.4.6 Lithium-Diethoxyphosphid-Boran [3b]Li

[3b]Li

LiHMDS (25 mg, 0.15 mmol) wurde in THF-d₈ (0.6 mL) in einem NMR-Rohr gelöst. Die Lösung wurde auf -78 °C gekühlt und **[2b]**BH₃ (20 mg, 0.15 mmol) wurde zugetropft. Die kalte Probe wurde in ein vorgekühltes NMR-Spektrometer transferiert und bei 203 K NMR-spektroskopisch untersucht. Die erhaltenen Spektren belegen die nahezu quantitative (>99 % nach Integration des ³¹P-NMR-Spektrums) Bildung eines Produkts, das als das metallierte Phosphid **[3b]**Li identifiziert wurde.

¹H-NMR (THF-d₈, 203 K): δ = 3.84-3.66 (m, 4 H, OCH₂), 1.12 (t, ³J_{HH} = 7.0 Hz, 6 H, CH₃), 1.00-0.17 (breit, 3 H, BH₃).

³¹P-NMR (THF-d₈, 203 K): δ = 294.5 (b).

¹¹B{¹H}-NMR (THF-d₈, 203 K): δ = -33.5 (b).

¹³C{¹H}-NMR (THF-d₈, 203 K): δ = 64.4 (s, OCH₂), 17.3 (d, ³J_{PC} = 3 Hz, CH₃).

⁷Li-NMR (THF-d₈, 203 K): δ = -0.53 (s).

6.4.7 Lithium-Diisopropoxyphosphan-Boran [3c]Li

[3c]Li

LiHMDS (41 mg, 0.24 mmol) wurde in THF (4 mL) vorgelegt und bei -78 °C **[2c]**BH₃ (40 mg, 0.24 mmol) zugetropft. Es wurden 0.7 mL des Reaktionsvolumens entnommen und unmittelbar NMR-spektroskopisch untersucht. Die erhaltenen Spektren belegen die nahezu quantitative (>99 % nach Integration des ³¹P-NMR-Spektrums) Bildung eines Produkts, das als das metallierte Phosphid **[3c]**Li identifiziert wurde.

³¹P-NMR (THF): δ = 287.8 (q, ¹J_{PB} = 31 Hz).

¹¹B{¹H}-NMR (THF): δ = -32.8 (dq, ¹J_{PB} = 31 Hz, ¹J_{BH} = 87 Hz)).

6.4.8 Natrium-Diethoxyphosphid-Boran [3b]Na

[3b]Na

NaHMDS (20 mg, 0.11 mmol) wurde in THF (2 mL) gelöst und bei -78 °C mit **[2b]**BH₃ (15 mg, 0.11 mmol) versetzt, ein Aliquot (0.7 mL) wurde bei RT NMR-spektroskopisch untersucht. In der Lösung wurden das Phosphid-Boran **[3b]**Na (66 % nach Integration des ³¹P-NMR-Spektrums) und dessen Zersetzungsprodukte **[4b]**Na (17 %) und **[5b]**Na (16 %) beobachtet.

Der Versuch wurde wiederholt, aber die Lösung beim Aufwärmen vom Lösungsmittel befreit, in THF-d₈ erneut aufgelöst und untersucht. Es wurde **[4b]**Na beobachtet.

[3b]Nb

³¹P NMR (THF): δ = 302.9 (b).

[4b]Nb

³¹P-NMR (THF-d₈): δ = 185.7 (bd, ¹J_{PP} = 430 Hz, **P**₂P), -144.0 (t, ¹J_{PP} = 430 Hz, P₂P).

¹¹B-NMR (THF-d₈): δ = -34.6 (dq, ¹J_{PB} = 86 Hz, ¹J_{BH} =90 Hz).

[5b]Nb

³¹P-NMR (THF): δ = 173.2 (bd, ¹*J*_{PP} =291 Hz, **P**₂P), -86.0 (t, ¹*J*_{PP} = 291 Hz, P₂**P**).

6.4.9 Natrium-Diisopropoxyphosphid-Boran [3c]Na

[3c]Na

NaHMDS (17 mg, 19 μ mol) wurde in THF-d₈ (2 mL) gelöst, die Lösung auf -78 °C gekühlt und dann **[2c]**BH₃ (15 mg, 19 μ mol) zugetropft. Ein Aliquot (0.7 mL) wurde entnommen und bei RT NMR-spektroskopisch untersucht. Die erhaltenen Spektren belegen die nahezu quantitative (>99 % nach Integration des ³¹P-NMR-Spektrums) Bildung eines Produkts, das als das metallierte Phosphid **[3c]**Na identifiziert wurde.

¹H-NMR (THF-d₈): δ = 4.03 (dsept., ³J_{PH} = 8 Hz, ³J_{HH} = 6 Hz, 2 H, C**H**), 1.18 (d, ³J_{HH} = 7 Hz, 6 H, C**H**₃), 1.13 (d, ³J_{HH} = 7 Hz, 6 H, C**H**₃).

³¹P-NMR (THF-d₈): δ = (d, ¹J_{PB} = 33 Hz).

¹¹B-NMR (THF-d₈): δ = -31.8 (dq, ¹J_{PB} = 33 Hz, ¹J_{BH} = 89 Hz).

6.4.10 Kalium-Diethoxyphosphid-Boran [3b]K

[3b]K

KHMDS (4.285 g, 21.48 mmol) wurde in einer Mischung aus Hexan (80 mL) und Diethylether (10 mL) gelöst und auf -78 °C gekühlt. **[2b]**BH₃ (2.920 g, 21.48 mmol) wurde zugetropft, woraufhin ein farbloser Feststoff ausfiel. Die Suspension wurde auf RT erwärmt, filtriert und der Feststoff mit Hexan (50 mL) gewaschen. Trocknung des Filterkuchens im Vakuum lieferte **[3b]**K als farblosen Feststoff (2.417 g, 13.89 mmol, 65 %).

¹H-NMR (THF-d₈): δ = 3.95-3.70 (m, 4 H, OCH₂) 1.19 (t, ³J_{PH} = 7.0 Hz, 6 H, CH₃), 0.29 (q, ¹J_{BH} = 88 Hz, 3 H, BH₃).

³¹P-NMR (THF -d₈) δ = 302.3 (q, ¹J_{PB} = 37 Hz).

¹¹B-NMR (THF -d₈) δ = -27.4 (qd, ¹J_{PB} = 37 Hz).

IR (cm⁻¹): \tilde{v} = 2394, 2340 (sh) (vBH).

6.4.11 Kalium-Diisopropoxyphosphid-Boran [3c]K

[3c]K

Analog zur Synthese von **[3b]**K wurde KHMDS (4,087 g, 20.49 mmol) mit **[2d]**BH₃ (3.36 g, 20.49 mmol) umgesetzt. Es wurde ein farbloser Feststoff erhalten (2.303 g, 11.96 mmol, 55 %).

¹H-NMR (THF-d₈): δ = 3.99 (dsept., ³J_{PH} = 8.2 Hz, ³J_{HH} = 6.2 Hz, 2 H, OC**H**), 1.19 (d, ³J_{HH} = 6.0 Hz, 6 H, C**H3**), 0.32 (q, ¹J_{BH} = 88 Hz, 3 H, B**H**₃).

³¹P-NMR (THF-d₈): δ = 290.9 (b)

¹¹B-NMR (THF-d₈): δ = -30.3 (d, ¹J_{PB} = 36 Hz).

¹³C-NMR (THF-d₈): δ = 72.9 (b, OCH), 25.5 (s, CH₃), 25.4 (s, CH₃).

IR (Festkörper): \tilde{v} (cm⁻¹) = 2325, 2279 (vBH).

6.4.12 Lithium-1,1,3,3-tetraisopropoxy-triphosphid 1,2,3-tris-boran [5c]Li

[5c]Li(THF)₂

LiHMDS (153 mg, 0.91 mmol) wurde in THF (4 mL) gelöst und auf -78 °C gekühlt. Phosphonit-Boran **[2c]**BH₃ (150 mg, 0.91 mmol) wurde zugetropft und die Mischung auf RT aufgewärmt. Das Lösungsmittel wurde verdampft und das Rohprodukt in Hexan (1 mL) gelöst. Bei -25 °C wurde **[5c]**Li·THF₂ in Form farbloser Kristalle erhalten (92 mg, 0.18 mmol, 53 %).

¹H-NMR (C_6D_6): δ = 5.09-4.85 (m, 4 H, OCH), 3.54 (m, 6 H, THF), 2.36-1.15 (b, 43 H, BH₃, THF, CH₃).

³¹P{¹H}-NMR (C₆D₆): δ = 163.2 (bd, ¹J_{PP} = 283 Hz, (*i*-PrO)₂PBH₃), -92.5 (t, ¹J_{PP} = 283 Hz, PPP).

¹¹B{¹H}-NMR (C₆D₆): δ = -37.0 (b)

¹³C{¹H}-NMR (C₆D₆): δ = 72.9 (b, OCH), 68.0 (s, THF), 25.1 (s, THF), 24.1 (b, CH₃), 23.8 (b, CH₃).

IR (cm⁻¹): \tilde{v} = 2393, 2351, 2310(sh), 2275 (vBH).

6.4.13 Lithium-1,1,3,3-tetraethoxy-triphosphid-1,3-bis-boran [4b]Li

[4b]Li

LiHMDS (50 mg, 0.30 mmol) wurde in THF (4 mL) gelöst und bei -78 °C wurde Phosphan-Boran **[2b]**BH₃ (40 mg, 0.30 mmol) tropfenweise zugegeben. Die Mischung wurde auf RT aufgewärmt und die flüchtigen Bestandteile im Vakuum entfernt. Der ölige Rückstand wurde mit Hexan (1 mL) und dann so lange mit Et₂O versetzt, bis alles aufgelöst war. Bei -25 °C wurden Einkristalle erhalten, die zur Untersuchung via Röntgenbeugung geeignet waren. NMR-spektroskopische Untersuchungen wurden mit dem öligen Rohprodukt durchgeführt.

¹H-NMR (THF-d₈): δ = 3.54 (b, 4 H, OCH₂), 1.69 (b, 6 H, CH₃), 1.00-0.17 (b, 6 H, BH₃).

³¹P{¹H}-NMR (THF-d₈): δ =183.7 (dq, ¹J_{PP} = 466 Hz, ¹J_{PB} = 85 Hz, (EtO)₂*P*BH₃), -144.5 (t, ¹J_{PP} = 466 Hz, PPP).

¹¹B{¹H}-NMR (THF-d₈): δ =-34.6 (d, ¹J_{PB} = 80 Hz).

⁷Li-NMR (THF-d₈): δ = -0.13 (s).

6.4.14 Lithium-1,1,3,3-tetraisopropoxy-triphosphid-1,3-bis-boran [4b]Li

[4b]Li

[5b]Li (50 mg, 0.10 mmol) wurde in NEt₃ (2 mL) gelöst und für 18 h gerührt. Die flüchtigen Bestandteile wurden unter reduziertem Druck entfernt und der Rückstand in C_6D_6 aufgelöst. In den NMR-Spektren wurde das Vorliegen einer Mischung aus **[4b]**Li und Et₃N·BH₃ (1:1) beobachtet.

¹H-NMR (C₆D₆): δ = 5.05-4.83 (m, 4 H, OCH, **[4b]**Li), 2.34 (q, ³J_{HH} = 7 Hz, 6 H, CH₂, Et₃N·BH₃), 1.32 (d, ³J_{HH} = 6 Hz, 6 H, CH₃, **[4b]**Li), 1.31 (d, ³J_{HH} = 6 Hz, 6 H, CH₃, **[4b]**Li), 0.90 (t, ³J_{HH} = 7 Hz, CH₃, Et₃N·BH₃).

³¹P{¹H}-NMR (C₆D₆): δ = 180.2 (bd, ¹J_{PP} = 449 Hz, (*i*-PrO)₂PBH₃), -127.4 (t, ¹J_{PP} = 449 Hz, PPP).

¹¹B{¹H}-NMR (C₆D₆): δ = -33.2 (d, ¹J_{PB} = 70 Hz, **[4b]**Li), -12.8 (s, Et₃N·BH₃).

¹³C{¹H}-NMR (C₆D₆): δ = 68.7 (m, OCH, **[4b]**Li), 46.4 (s, CH₂, Et₃N·BH₃), 22.1 (d, ³J_{PC} = 4 Hz, CH₃, **[4b]**Li), 22.0 (d, ³J_{PC} = 4 Hz, CH₃, **[4b]**Li), 11.5 (s, CH₃, Et₃N·BH₃).

6.4.15 Umsetzung von Lithium-Diethoxyphosphid-Boran **[3b]**Li mit *n*-BuLi

Zu einer Lösung von LiHMDS (92 mg, 0.55 mmol) in THF (4 mL) wurde bei -78 °C Phosphonit-Boran **[2b]**BH₃ (75 mg, 0.55 mmol) tropfenweise zugegeben und dann 15 Minuten lang gerührt. Zur kalten Lösung wurde *n*-BuLi (1 mL einer 2.5 M Lösung in Hexanen, 2.48 mmol) tropfenweise zugegeben. Ein Aliquot der Reaktionsmischung (0.7 mL) wurden bei -50 °C NMRspektroskopisch untersucht. Es wurden Signale beobachtet, die auf die Bildung von Li[Bu₂P(BH₃)] hinweisen. Die Lösung wurde wieder auf -78 °C gekühlt, und MeOH (1 mL) wurde zugegeben. Die Lösung wurde auf RT gebracht und die flüchtigen Bestandteile unter vermindertem Druck entfernt. Der Rückstand wurde in Petrolether:Ethylacetat (1:1, V:V) aufgenommen und über Silika filtriert. Das Filtrat wurde im Vakuum von den Lösungsmitteln befreit. Dibutylphosphan-Boran wurde als farbloses Öl erhalten (67 mg, 0.42 mmol, 76 %) und anhand seiner bekannten NMR-Daten^[137] identifiziert.

6.4.16 Umsetzung von Diethylphosphonit-Boran **[2b]**BH₃ mit Lithiumdiisopropylamid (LDA) zu **[3i]**Li

[3i]Li

LiN(*i*-Pr)₂ (59 mg, 0.56 mmol) wurde in THF (2 mL) gelöst. Bei -78 °C wurde **[2b]**BH₃ (25 mg, 0.18 mmol) zugegeben. Die Lösung wurde auf RT aufgewärmt und NMR-spektroskopisch untersucht. Es wurde die Bildung eines neuen Produkts beobachtet, das dem Alkoxyaminophosphid **[3i]**Li zugeordnet wird.

Bei Wiederholung des Versuchs mit zwei Äquivalenten LDA (39 mg, 0.37 mmol) unter ansonsten gleichen Bedingungen wurde NMR-spektroskopisch die Bildung einer Mischung aus **[3i]**Li und Triphosphanid **[4b]**Li beobachtet. Die Lösung wurde vom Lösungsmittel befreit, der Rückstand mit Hexan (5 mL) extrahiert und das Hexan bis zur Sättigung verdampft. Lagerung bei -25 °C führte zur Bildung wenigen kristallinen Materials der Zusammensetzung {**[3i]**₂·(*i*-Pr)₂NLi}₂·[Li₈OEt₆THF₂].

³¹P-NMR (THF): δ =196.3 (q, ¹J_{PB} = 39 Hz). ¹¹B-NMR (THF): δ = -33.9 (dq, ¹J_{PB} = 39 Hz, ¹J_{BH} = 87 Hz). IR (Festkörper): $\tilde{\nu}$ (cm⁻¹) = 2345, 2289, 2257 (vBH).

Aufgrund der hohen Empfindlichkeit gegenüber Luft und Feuchtigkeit und da sich nur wenig kristallines Material gebildet hat, konnte keine zufriedenstellende NMR-spektroskopische Untersuchung und Elementaranalyse durchgeführt werden.

6.4.17 Umsetzung von Lithium-Diethoxyphosphid-Boran **[3b]**Li mit Lithium-Diphenylphosphid

[6r]Li

LiHMDS (25 mg, 0.15 mmol) wurde in THF (1 mL) gelöst und die Lösung bei -78 °C mit **[2b]**BH₃ (10 mg, 74 µmol) versetzt. Nach 15 Minuten wurde Ph₂PH (14 mg, 74 µmol) langsam zugetropft. Die Mischung wurde homogenisiert, auf RT aufgewärmt und NMR-spektroskopisch untersucht. Es wurde der vollständige Umsatz des Phosphids **[2b]**BH₃ und die Bildung neuer P-haltiger Produkte beobachtet, die **[6r]**Li zugeordnet wurden. Wegen des kleinen Ansatzes und der hohen Empfindlichkeit des Produkts gegen Luft und Feuchtigkeit konnte die Mischung nicht aufgereinigt werden.

³¹P-NMR (THF): δ = -11.2 (bd, ¹J_{PP} = 239 Hz, Ph₂**P**), -80.3 (tb, ¹J_{PP} = 239 Hz, P₂**P**).

¹¹B-NMR (THF): δ = -34.7 (b).

Ein NMR-Rohr wurde mit **[2d]**BH₃ (40 mg, 50 μ mol) und KHMDS (22 mg, 60 μ mol) versetzt und dann auf -78 °C gekühlt. Toluol-d₈ (0.6 mL) wurde langsam zugegeben, sodass die Temperatur konstant blieb. Die Mischung wurde homogenisiert und NMR-spektroskopisch untersucht. Aufgrund der Zersetzlichkeit von **[3d]**K scheiterte die Aufreinigung analog zu **[3b,c]**K.

¹H-NMR (Toluol-d₈) δ = 7.12-6.86 (m, Aryl-H, 6 H), 3.73 (sept., ³J_{HH} = 6.7 Hz, 4 H, C**H**), 1.26 (d, ³J_{HH} = 7.0 Hz, 12 H, C**H**₃), 1.23 (d, ³J_{HH} = 6.8 Hz, 12 H, C**H**₃).

³¹P-NMR (Toluol-d₈) δ = 325.8 (b).

¹¹B-NMR (Toluol-d₈) δ = -29.6 (d, ¹J_{PH} = 27 Hz).

¹³C-NMR (Toluol-d₈) δ = 159.9 (d, ²*J*_{PC} = 6 Hz, *i*-C), 141.7 (d, ³*J*_{PC} = 2 Hz, *o*-C), 123.9 (s, *m*-C), 123.5 (s, *p*-C), 27.6 (d, ⁴*J*_{PC} = 5 Hz, **C**H), 24.3 (s, **C**H₃), 24.2 (s, **C**H₃).

6.4.19 Kalium-4,4,5,5-tetramethyl-1,3,2-dioxyphospholidin-Boran [3e]K

[2e]K

[**2e**]BH₃ (250 mg, 1.54 mmol) und KHMDS (338 mg, 1.70 mmol) wurden bei -78 °C in THF (15 mL) gelöst. Nach 1 h wurde ein Aliquot (0.7 mL) der trüben, gelben Lösung NMR-spektroskopisch untersucht. Aufgrund der Zersetzlichkeit von [**3e**]K scheiterte die Aufreinigung analog zu [**3b**,c]K.

³¹P-NMR (THF): δ = 348.8 (b)

¹¹B-NMR (THF): δ = -26.9 (dq, ¹J_{PB} = 19 Hz, ¹J_{BH} = 86 Hz).

6.4.20 Umsetzung von S-1,1'Binapthyl-2,2'-phosphonit-Boran **[2f]**BH₃ mit KHMDS und Chlortriphenylsilan

[2f]BH₃ (0.61 mmol, 200 mg) und KHMDS wurden bei -78 °C in Diethylether (15 mL) gelöst und die Lösung 15 Minuten gerührt. Während dieser Zeit bildete sich ein farbloser Niederschlag. Die Lösung wurde entnommen und NMR-spektroskopisch untersucht. Die erhaltenen Daten geben Hinweise auf die Bildung eines Triphosphanids, das als [4f]K formuliert wurde.

³¹P{¹H}-NMR (Et₂O):
$$\delta$$
 = 230.0 (bd, ¹J_{PP} = 416 Hz, **P**₂P), -107.6 (tb, ¹J_{PP} = 416 Hz, P₂**P**).

¹¹B-NMR (Et₂O): δ = -32.5 (b).

Der Versuch wurde in derselben Menge Toluol bei -78 °C wiederholt und die Reaktionsmischung anschließend mit einer Lösung von Chlortriphenylsilan (180 mg, 0.61 mmol) in Toluol (6 mL) versetzt. Die Mischung wurde auf RT aufgewärmt und 16 h lang gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt, der Rückstand in Diethylether (20 mL) aufgenommen und filtriert. Im Filtrat wurde NMR-spektroskopisch als Hauptprodukt S-2,2'-bis-(Triphenylsilyl)-1,1'-binaphtholether nachgewiesen und aus dem Filtrat nach Lagerung bei -25 °C einkristallin isoliert.

¹H-NMR (C₆D₆): δ = 7.73-7.50 (m, 5 H, H_{arom.}), 7.40 (d, ³J_{HH} = 2 Hz, 6 H, *o*-SiPh), 7.36 (d, ³J_{HH} = 2 Hz, 6 H, *o*-SiPh), 7.16 (s, H_{arom.}), 7.14-7.01 (m, 10 H, H_{arom.}), 6.98-6.86 (m, 10 H, H_{arom.}). ²⁹Si-NMR (C₆D₆): δ = -15.0 (s).

6.4.21 Umsetzung der Kalium-Phosphid-Borane **[3b-d]**K mit Tritylquellen

Kaliumphosphide **[3b,c]**K (75 μmol) wurden jeweils in THF-d₈ (1.5 mL) gelöst und bei -78 °C unter Rühren mit festem Ph₃CCl (21 mg, 75 μmol) zersetzt. Darauf färbte sich die Lösung erst rot und dann gelb. Die kalten Lösungen wurden in NMR-Rohre transferiert und unmittelbar NMR-spektroskopisch untersucht.

Umsetzung von [3b]K mit Tritylchlorid

[7b]BH₃

Die aus **[3b]**K und Ph₃CCl erhaltene Reaktionsmischung wurde vom Lösungsmittel befreit, der Rückstand in Petrolether (5 mL) aufgenommen und die erhaltene Suspension filtriert. Einengen des Filtrats im Vakuum lieferte ein gelbes Öl, welches NMR-spektroskopisch als Produktmischung mit Tritylphosphonat **[7b]**BH₃ und Ph₃CH als Hauptkomponenten identifiziert wurde.

¹H-NMR (CDCl₃): δ = 7.34-6-93 (m, 35 H, H_{arom.} (**Pj**₃CH, [**7b**]BH₃)), 5.55 (s, 0.67 H, Ph₃CH), 4.24 (dq, ³J_{PH} = 11 Hz, ³J_{HH} = 7 Hz, 4 H, CH₂), 1.36 (t, ³J_{HH} = 7 Hz, CH₃).

³¹P{¹H}-NMR (CDCl₃): δ = 138.2 (b, **[7b]**BH₃).

¹¹B{¹H}-NMR (CDCl₃): δ = -42.0 (d, ¹J_{PB} = 86 Hz, **[7b]**BH₃).

Umsetzung von [3c]K mit Tritylchlorid

[7c]BH₃

Nachdem die Mischung aus **[3c]**K und Ph₃CCl NMR-spektroskopisch untersucht wurde, wurde sie 18 h lang auf 66 °C erhitzt und dann erneut NMR-spektroskopisch untersucht. Daraufhin wurde eine Steigerung des Verhältnisses von Ph₃C-H zu Tritylphosphonit-Boran **[7c]**BH₃ beobachtet. Die Suspension wurde dekantiert und der übrige Feststoff mit Aceton (2x1 mL) gewaschen, getrocknet und IR-spektroskopisch untersucht.

¹H-NMR (THF-d₈): δ = 7.58-6.62 (m, 26 H, H_{arom.} (**Ph**₃CH, [**7c**]BH₃)), 5.55 (s, 0.81 H, Ph₃CH), 4.79 (b, 2 H, CH), 1.33 (b, 12 H, CH₃)

³¹P{¹H}-NMR (THF-d₈): δ = 136.6 (b, **[7c]**BH₃).

¹¹B{¹H}-NMR (THF-d₈): δ = -42.2 (b, **[7c]**BH₃).

IR (Festkörper): \tilde{v} (cm⁻¹) = 2385 (vBH), 2322 (vBH).

Umsetzung von [3d]K mit Tritylquellen

[7d]BH₃

Kalium-Phosphid-Boran **[3d]**K wurde aus **[2d]**BH₃ (30 mg, 75 μ mol) und KHMDS (16 mg, 82 μ mol) in Toluol-d₈ (1.5 mL) bei -78 °C *in situ* hergestellt und dann bei derselben Temperatur mit Tritylchlorid (23 mg, 82 μ mol) bzw. Trityltetrafluoroborat (27 mg, 82 μ mol) umgesetzt. Je ein Aliquot (0.7 mL) der kalten Lösungen wurden in NMR-Rohre transferiert und

spektroskopisch untersucht. Es wurde 2,6-Diisopropylphenol als Hauptprodukt und **[7d]**BH₃, **[2d]**BH₃ und Ph₃CH als Nebenprodukte beobachtet. Erhitzen der Reaktionslösungen, um mögliche Folgereaktionen zu beobachten, brachte keine verwertbaren Ergebnisse.

¹H-NMR (Toluol-d₈): δ = 7.88-7.77 (m, 6 H, *o*-Ph), 6.96-6.93 (m, 15 H, H_{arom.}, DippOH, **[7d]**BH₃, **[2d]**BH₃), 5.37 (s, 0.2 H, Ph₃CH), 5.17 (s, 3 H, DippOH), 3.58 (sept., ³J_{HH} = 7 Hz, 11 H, CH (DippOH)), 3.47 (sept., ³J_{HH} = 7 Hz, 4 H, CH) 1, 1.31-0.75 (m, 110 H, CH₃ (DippOH, **[7d]**BH₃, **[2d]**BH₃).

³¹P{¹H}-NMR (Toluol-d₈): δ = 141.0 (b, **[2d]**BH₃), 138.3 (b, **[7d]**BH₃).

¹¹B{¹H}-NMR (Toluol-d₈): δ = -40.7 (b).

Im ¹H-NMR-Spektrum konnten Signale im aromatischen Bereich (7.14-6.96) wegen der Überlappung mit Signalen von unvollständig deuteriertem Toluol nicht ausgewertet werden.

6.4.22 Diethyl-trimethylsilylphosphonit-Boran [8b]BH₃

[8b]BH3

TMSCI (375 mg, 3.45 mmol, 0.45 mL) wurde in THF (20 mL) vorgelegt und auf -78 °C gekühlt. Eine auf -78 °C vorgekühlte Lösung aus **[3b]**K (500 mg, 2.87 mmol) und THF (10 mL) wurde langsam zugetropft und die Mischung 15 min bei -78 °C und dann 1 h bei RT gerührt. Die Suspension wurde filtriert und das Filtrat im Vakuum getrocknet. Das Produkt wurde ohne weitere Aufreinigung spektroskopisch charakterisiert. Farbloses Öl, 255 mg, 1.23 mmol, 43 %.

¹H-NMR (C₆D₆): δ = 4.10-3.97 (m, 2 H, CH₂), 3.89-3.78 (m, 2 H, CH₂), 1.72-0.85 (dq, 3 H, ¹J_{BH} = 96 Hz, ²J_{PH} = 9 Hz, BH₃) 1.04 (t, 6 H, ¹J_{HH} = 7.0 Hz, CH₂CH₃), 0.20 (d, 9 H, ³J_{PH} = 7.2 Hz, Si(CH₃)₃).

³¹P-NMR (C₆D₆): δ = 168.5 (q, ¹J_{PB} = 57 Hz).

¹¹B-NMR (C₆D₆): δ = -38.5 (dq, ¹J_{PB} = 57 Hz, ¹J_{BH} = 96 Hz).

¹³C-NMR (C₆D₆): δ = 62.6 (d, ²J_{PC} = 8.0 Hz, CH₂), 15.5 (d, ³J_{PC} = 5.5 Hz, CH₃), -5.5 (d, ²J_{PC} = 12.5 Hz, ¹J_{CSi} = 51.4 Hz, Si(CH₃)₃).

²⁹Si-NMR (C₆D₆): δ = -0.9 (d, ¹J_{PSi} = 89 Hz).

6.4.23 Bis-(2,6-Diisopropylphenyl)-trimethylsilylphosphonit-Boran [8d]BH₃

[2d]BH₃ (950 mg, 2,37 mmol) und KHMDS (520 mg, 2,61 mmol) wurden bei -78 °C in Toluol (50 mL) gelöst und 1 h bei RT gerührt. Die Mischung wurde wieder auf -78 °C gekühlt, TMSCl (309 mg, 2,85 mmol, 360 μ L) zugetropft und 1 h bei RT gerührt. Die Mischung wurde filtriert und das Filtrat wurde im Vakuum vom Lösungsmittel befreit. Es wurde ein farbloses Öl erhalten, das durch Ankratzen nach einigen Tagen bei RT zur Bildung kristallinen Materials führte. (875.6 mg, 1.85 mmol, 78 %).

¹H-NMR (C₆D₆): δ = 7.02 (b, 6 H, OAryl), 3.52 (sept., ³J_{HH} = 7 Hz, 4 H, C**H**), 1,20 (d, ³J_{HH} = 7,0 Hz, 12 H, C**H**₃), 1,17 (d, ³J_{HH} = 7,0 Hz, 12 H), 0,38 (d, ²J_{PH} = 6,2 Hz, 9 H, SiC**H**₃).

³¹P-NMR (C₆D₆): δ = 184.0 (b).

¹¹B-NMR (
$$C_6D_6$$
): δ = -35.9 (b).

¹³C-NMR (C₆D₆): δ = 148.3 (d, ²J_{PC} = 13 Hz, *i*-OAryl), 140.7 (d, ³J_{PC} = 3 Hz, *m*-OAryl), 125.6 (d, ⁵J_{PC} = 2 Hz, *p*-OAryl), 124.1 (d, ⁴J_{PC} = 2 Hz, *o*-OAryl), 27.4 (s, **C**H), 23,6 (s, **C**H₃), 23.2 (s, **C**H₃), -2.5 (d, ²J_{PC} = 10,1 Hz, Si**C**H₃).

²⁹Si-NMR (C₆D₆): δ = 4.4 (d, ¹J_{PSi} = 65 Hz).

IR (Öl): ν̃ (cm⁻¹) = 2424, 2352 (vBH).

Elementaranalyse für C₂₇H₄₆BO₂PSi (472.53 g·mol⁻¹): C 68.63, H 9.81; gefunden: C 67.12, H 9.84.

6.4.24 Diethyl-triphenylsilylphosphonit-Boran [9b]BH₃

[9b]BH₃

[3b]K (500 mg, 2.87 mmol) und Ph₃SiCl (847 mg, 2.87 mmol) wurden bei 0 °C mit Toluol (20 mL) versetzt und die Mischung 20 h bei RT gerührt. Die Suspension wurde über Celite filtriert und mit 10 mL Toluol gewaschen. Das Filtrat wurde vom Lösungsmittel befreit, in 20 mL Pentan suspendiert und erneut filtriert. Das Produkt wurde vom Filterkuchen heruntergewaschen (4x20 mL Pentan), auf 5 mL eingeengt und bei -25 °C gelagert, sodass das Produkt auskristallisiert. Pentan wurde abdekantiert und der übrige Feststoff im Vakuum von Lösungsmittelresten befreit. Es wurde ein farbloser Feststoff erhalten (750 mg, 1.90 mmol, 66 %).

¹H-NMR (CDCl₃): δ = 7.72-7.64 (m, 6 H, H_{ortho}), 7.52-7.32 (m, 9 H, H_{arom}.), 4.16-3.90 (m, 4 H, CH₂CH₃), 1.16 (t, ³J_{HH} = 7.0 Hz, 6 H, CH₂CH₃), 1.51-(-0.10) (b, 3 H, BH₃).

³¹P-NMR (CDCl₃): δ = 162.9 (b).

¹¹B{¹H}-NMR (CDCl₃): δ = -40.4 (d, ¹J_{PB}=50 Hz).

¹³C-NMR (CDCl₃): δ = = 136.6 (d, ³J_{PC} = 2.3 Hz, C_{ortho}), 130.6 (d, ⁵J_{PC} = 1 Hz, C_{para}), 129.4 (d, ²J_{PC} = 13.3 Hz, C_{ipso}) 128.1 (s, C_{meta}), 64.3 (d, ²J_{PC} = 8.2 Hz, CH₂CH₃), 16.7 (d, ³J_{PC} = 5.4 Hz, CH₂CH₃).

²⁹Si{¹H}-NMR (CDCl₃): δ = -19.3 (d, ¹J_{PSi} = 71 Hz).

IR (Festkörper): ν̃ (cm⁻¹) = 2386, 2352 (vBH)

Elementaranalyse für C₂₂H₂₈BO₂PSi (394.33 g·mol⁻¹): C 67.01, H 7.16; gefunden: C 68.48, H 6.87.

6.4.25 Diisopropyl-triphenylsilylphosphonit-Boran [9c]BH₃

[9c]BH₃

[3c]K (500 mg, 2.47 mmol) und Ph₃SiCl (729 mg, 2.47 mmol) wurden bei 0 °C in Toluol (20 mL) gelöst und die Lösung 24 h bei RT gerührt. Ein ausgefallener Feststoff wurde über Celite filtriert und der Filterkuchen einmal mit Toluol (20 mL) gewaschen. Das Filtrat wurde zur Trockene eingeengt, der Rückstand mit Pentan (20 mL) aufgenommen und die erhaltene Suspension filtriert. Der Filterkuchen wurde mit Pentan (5x20 mL) gewaschen und das Filtrat auf 10 mL eingeengt und bei -25 °C gelagert. Es bildeten sich farbloser Kristalle von **[9c]**BH₃, die nach Abnehmen der Mutterlauge im Vakuum getrocknet wurden. Ausbeute: 365 mg, 0.86 mmol, 35 %.

¹H-NMR (C₆D₆): δ = 7.96-7.89 (m, 6 H, H_{ortho}), 7.20-7.15 (m, 9 H, H_{arom}.), 4.74 (dsept., ³J_{PH} = 9.6 Hz, ³J_{HH} = 6.1 Hz, 2 H, C**H**), 1.05 (d, ³J_{HH} = 6.1 Hz, 6 H, C**H**₃), 0.95 (d, ³J_{HH} = 6.1 Hz, 6 H, C**H**₃).

³¹P-NMR (C_6D_6): δ = 161.2 (b).

¹¹B{¹H}-NMR (C₆D₆): δ = -39.4 (d, ¹J_{PB} = 47 Hz).

¹³C{¹H}-NMR (C₆D₆): δ = 136.0 (d, ³J_{PC} = 2 Hz, C_{ortho}), 129.5 (d, ⁵J_{PC} = 1 Hz, C_{para}), 129.2 (d, ²J_{PC} = 13 Hz, C_{ipso}), 127.2 (s, C_{meta}), 71.6 (d, ²J_{PC} = 7.2 Hz, CH), 23.1 (d, ³J_{PC} = 3 Hz, CH₃), 22.7 (d, ³J_{PC} = 5 Hz, CH₃).

²⁹Si-NMR (C₆D₆): δ = -20.2 (¹J_{PSi} = 101 Hz, ³J_{HSi} = 10 Hz). IR (Festkörper): \tilde{v} (cm⁻¹) = 2382 (vBH), 2349 (vBH).

Elementaranalyse für $C_{24}H_{32}BO_2PSi$ (422.39 g·mol⁻¹): C 68.25, H 7.64; gefunden: C 69.11, H 7.31.

6.4.26 Bis-(2,6-diisopropylphenyl)-triphenylsilylphosphonit-Boran [9d]BH₃

[2d]BH₃ (200 mg, 0.50 mmol) und KHMDS (100 mg, 0.50 mmol) wurden bei -78 °C in Toluol (10 mL) gelöst. Eine Lösung von Ph₃SiOTf (204 mg, 0.50 mmol) in Toluol (5 mL) wurde zugetropft. Die Mischung wurde nach 15 min auf RT gebracht und filtriert. Der Filterkuchen wurde mit Toluol (10 mL) nachgewaschen, das resultierende Filtrat im Vakuum vom Lösungsmittel befreit, und einmal mit Pentan (20 mL) gewaschen. Es wurde ein farbloser Feststoff erhalten. Für eine Röntgenstrukturanalyse geeignete Kristalle wurden aus einer konzentrierten Toluol-Lösung erhalten. Ausbeute: 134 mg, 0.20 mmol, 41 %.

¹H-NMR (C₆D₆): δ = 8.08-7.99 (m, 6 H, SiPh_{ortho}), 7.15-7.12 (m, 9 H, SiPh), 6.99 (b, 6 H, OAryl), 3.31 (sept., ³J_{HH} = 6.8 Hz, 4 H, C**H**), 1.05 (d, ³J_{HH} = 6.8 Hz, 12 H, C**H**₃), 0.84 (d, ³J_{HH} = 6.8 Hz, 12 H, C**H**₃).

³¹P-NMR (C_6D_6): δ = 182.3 (b).

¹¹B{¹H}-NMR (C₆D₆): δ = -34.9 (b).

¹³C{¹H}-NMR (C₆D₆): δ =147.4 (d, ²*J*_{PC} = 13 Hz, *i*-OAryl), 141.2 (d, ³*J*_{PC} = 3 Hz, *o*-OAryl), 137.3 (d, ³*J*_{PC} = 2 Hz, *o*-SiPh), 130.6 (s, *p*-SiPh), 130.3 (d, ²*J*_{PC} = 13 Hz, *i*-SiPh), 128.2 (s, *m*-SiPh), 124.5 (d, ⁵*J*_{PC} = 2 Hz, *p*-OAryl), 124.3 (d, ⁴*J*_{PC} = 2 Hz, *m*-OAryl), 27.4 (s, **C**H), 24.0 (s, **C**H₃), 23.4 (s, **C**H₃).

(d, ${}^{3}J_{PC} = 2 \text{ Hz}$, C_{ortho}), (d, ${}^{5}J_{PC} = 1 \text{ Hz}$, C_{para}), (d, ${}^{2}J_{PC} = 13 \text{ Hz}$, C_{ipso}), (s, C_{meta}), (d, ${}^{2}J_{PC} = 7.2 \text{ Hz}$, **C**H), (d, ${}^{3}J_{PC} = 3 \text{ Hz}$, **C**H₃), (d, ${}^{3}J_{PC} = 5 \text{ Hz}$, **C**H₃).

²⁹Si{¹H}-NMR (C₆D₆): δ = -18.3 (d, ¹J_{PSi} = 78 Hz).

IR (Festkörper): \tilde{v} (cm⁻¹) = 2445 (vBH), 2383 (vBH).

Elementaranalyse für C₄₂H₅₂BO₂PSi (658.74 g·mol⁻¹): C 76.58, H 7.96; gefunden: C 76.66, H 7.94.

6.4.27 4,4,5,5-Tetramethyl-1-(triphenylsilyl)-1,3,2dioxaphospholidin-Boran **[9e]**BH₃

[9e]BH₃

[2e]BH₃ (250 mg, 1.54 mol) und KHMDS (339 mg, 1,7 mmol) wurden bei -78 °C in Toluol (15 mL) suspendiert und die Suspension bei dieser Temperatur 1 h lang gerührt. Nach Erwärmen auf 0 °C wurde eine Lösung von Ph₃SiCl (500 mg, 1.70 mmol) in Toluol (5 mL) zugegeben und die Mischung 15 min gerührt. Die Suspension wurde filtriert, das Filtrat im Vakuum vom Lösungsmittel befreit, und in 20 mL Hexan aufgenommen. Die Suspension wurde filtriert, der Filterkuchen mit Hexan (3x20 mL) gewaschen. Der Filterkuchen wurde im Vakuum von Lösungsmittelresten befreit und als erste Produktfraktion identifiziert. Nach Einengen des Filtrats auf 10 mL und Lagerung bei -25 °C wurden farblose Kristalle erhalten. Durch Abnehmen der Lösung und Trocknen des Feststoffs im Vakuum wurde eine zweite Produktfraktion erhalten. Ausbeute insgesamt: 230 mg, 0.76 mmol, 49 %.

¹H-NMR (C₆D₆): δ = 7.95-7.84 (m, 6 H, H_{ortho}), 7.20-7.04 (m, 9 H, H_{arom}), 1.85 (qb, 3 H, ¹J_{BH} = 95 Hz, B**H**), 1.16 (s, C**H**₃), 0.55 (s, C**H**₃).

³¹P-NMR (C_6D_6): $\delta = 194.4$ (b).

¹¹B{¹H}-NMR (C₆D₆): δ = -32.2 (bd, ¹J_{PB} = 39 Hz).

¹³C-NMR (C₆D₆): δ = 137.2 (d, ³J_{PC} = 2 Hz, *o*-Ph), 130.6 (s, *p*-Ph), 129.7 (d, ²J_{PC} = 11 Hz, *i*-Ph), 128.2 (s, *m*-Ph), 87.2 (d, ²J_{PC} = 5 Hz, OC), 25.1 (d, ³J_{PC} = 4 Hz, CH₃), 24.0 (d, ³J_{PC} = 4 Hz, CH₃).

²⁹Si-NMR (C₆D₆): δ = -20:5 (¹J_{PSi} = 36 Hz, ³J_{SiH} = 11 Hz).

Elementaranalyse für $C_{24}H_{30}BO_2PSi$ (420.37 g·mol⁻¹): C 68.57, H 7.19; gefunden: C 69.17, H 7.24.

6.4.28 Diethyl-triphenylgermylphosphonit-Boran [10b]BH₃

[10b]BH3

[3b]K (139 mg, 0.80 mmol) wurde in Toluol (10 mL) gelöst und auf 0 °C gekühlt. Eine Lösung von Ph₃GeBr (309 mg, 0.80 mmol) in Toluol (5 mL) wurde zugetropft und die Reaktionsmischung über Nacht gerührt. Die resultierende Suspension wurde filtriert, das Filtrat im Vakuum vom Lösungsmittel befreit, und mit Hexan (20 mL) aufgenommen. Die Suspension wurde filtriert und der ausgefallene Feststoff mit Hexan (20 mL) gewaschen. Das Filtrat wurde auf 5 mL eingeengt und das Produkt bei -25 °C kristallisiert. Es wurde ein farbloser Feststoff erhalten (145 mg, 0.43 mmol, 53 %).

¹H-NMR (C₆D₆): δ = 7.86-7.79 (m, 6 H, H_{ortho}), 7.19-7.12 (m, 9 H, H_{arom}.), 4.08-3.90 (dq, 2 H, ³J_{HH} = 7.0 Hz, ³J_{PH} = 10 Hz CH₂CH₃), 3.90-3.74 (dq, 2 H, ³J_{HH} = 7.0 Hz, ³J_{PH} = 10 Hz CH₂CH₃), 2.36-0.95 (b, 3 H, BH₃), 0.89 (t, ³J_{HH} = 7.0 Hz, 6 H, CH₂CH₃).

³¹P-NMR (C_6D_6): δ = 171.9 (b).

¹¹B{¹H}-NMR (C₆D₆): δ = -38.6 (d, ¹J_{PB}=31 Hz).

¹³C-NMR (C₆D₆): δ = = 135.7 (d, ³J_{PC} = 2 Hz, C_{ortho}), 133.1 (d, ²J_{PC} = 13 Hz, C_{ipso}), 129.7 (d, ⁵J_{PC} = 1 Hz, C_{para}) 128.5 (s, C_{meta}), 64.3 (d, ²J_{PC} = 8 Hz, **C**H₂CH₃), 16.3 (d, ³J_{PC} = 5 Hz, CH₂**C**H₃).

IR (Festkörper): (cm⁻¹) = 2399 (vBH), 2351 (vBH).

Elementaranalyse für C₂₂H₂₈BGeO₂P (438.88 g·mol⁻¹): C 60.21, H 6.43; gefunden: C 60.19, H 6.40.
6.4.29 Diisopropyl-triphenylgermylphosphonit-Boran [10c]BH₃

[10c]BH₃

[3c]K (70 mg, 0.35 mmol) wurde in Toluol (5 mL) suspendiert und eine Lösung aus Ph₃GeBr (133 mg, 0.35 mmol) in Toluol (5 mL) wurde bei 0 °C zugetropft. Die Mischung wurde über Nacht gerührt, filtriert und das Filtrat im Vakuum von Lösungsmittel entfernt. Der Rückstand wurde mit 10 mL Hexan versetzt, die Lösung der resultierenden Suspension wurde abgenommen und der Feststoff wurde im Vakuum getrocknet. Durch Kühlen der Waschlösung auf -25 °C wurde die Verbindung als farblose Kristalle erhalten (56 mg, 0.12 mmol, 34 %).

¹H-NMR (C₆D₆): δ = 7.87-7.81 (m, 6 H, *o*-Ph), 7.23-7.16 (m, 9 H, Ph), 4.72 (dsept., ³J_{PH} = 9.8 Hz, ³J_{HH} = 6.1 Hz, 2 H, CH), 2.43-1.06 (b, 3 H, BH₃), 1.03 (d, ³J_{HH} = 6.1 Hz, CH₃), 0.96 (d, ³J_{HH} = 6.1 Hz, CH₃).

³¹P{¹H}-NMR (C₆D₆): δ = 167.5 (b).

¹¹B{¹H}-NMR (C₆D₆): δ = -38.3 (d, ¹J_{PB} = 38 Hz).

¹³C{¹H}-NMR (C₆D₆): δ = 135.8 (d, ³J_{PC} = 2 Hz, C_{ortho}), 133.3 (d, ²J_{PC} = 13 Hz, C_{ipso}), 129.6 (d, ⁵J_{PC} = 1 Hz, C_{para}) 128.4 (s, C_{meta}), 72.8 (d, ²J_{PC} = 8 Hz, CH), 23.9 (d, ³J_{PC} = 2 Hz, CH₃), 23.6 (d, ³J_{PC} = 5 Hz, CH₃).

Elementaranalyse für C₂₄H₃₂BGeO₂P (466.93 g·mol⁻¹): C 61.74, H 6.91, gefunden C 61.65, H 6.82.

6.4.30 Bis-(2,6-diisopropylphenyl)-triphenylgermylphosphonit-Boran **[10d]**BH₃

[10d]BH₃

[2d]BH₃ (400 mg, 1.0 mmol) und KHMDS (200 mg, 1.0 mmol) wurden bei -78 °C in Toluol (15 mL) suspendiert und auf RT aufgewärmt, bis eine klare Lösung entstand. Diese wurde wieder auf -78 °C gekühlt und dann mit einer Lösung aus Ph₃GeBr (380 mg, 1 mmol) und Toluol (5 mL) versetzt. Nach 18 h Rühren bei RT wurde die Mischung filtriert und dem Filtrat das Lösungsmittel im Vakuum entzogen. Das Rohprodukt wurde in Hexan (20 mL) suspendiert, filtriert und mit Hexan (3x 20 mL) gewaschen. Der Filterkuchen wurde von Lösungsmittelresten befreit und das Produkt als farbloser Feststoff erhalten. Aus einer gesättigten Hexanlösung wurde [10d]BH₃ einkristallin erhalten (416 mg, 0.59 mmol, 59 %).

¹H-NMR (C₆D₆): δ = 7.98-7.88 (m, 6 H, GePh), 7.15-7.09 (m, 9 H, GePh), 7.06-6.95(m, 6 H, OAryl), 3.36 (sept., ³J_{HH} = 6.7 Hz, 2 H, CH), 2.37.-1.12 (b, 3 H, BH₃, 1.07 (d, ¹J_{HH} = 6.7 Hz, 6 H, CH₃, 0.85 (d, ¹J_{HH} = 6.7 Hz, 6 H, CH₃).

³¹P-NMR (C_6D_6): δ = 187.5 (b)

¹¹B-NMR (C_6D_6): δ = -34.0 (b).

¹³C-NMR (C₆D₆): δ = 147.5 (d, ²J_{PC} = 13.2 Hz, *i*-OAryl) 141.1 (d ³J_{PC} = 3 Hz, *o*-OAryl), 136.0 (d, ³J_{PC} = 2 Hz, *o*-GePh), 133.7 (d, ²J_{PC} = 13 Hz, *i*-GePh), 129.8 (s, *p*-GePh), 128.6(s, *m*-GePh), 125.8 (d, ⁵J_{PC} = 2 Hz, *p*-OAryl) 124.3 (d, ⁴J_{PC} = 2 Hz, *m*-OAryl), 27.5 (s, **C**H(CH₃)₂), 24.0 (s, CH(**C**H₃)₂), 23.2 (s, CH(**C**H₃)₂).

IR (cm⁻¹): \tilde{v} = 2449 (vBH), 2383 (vBH), 2345 (vBH)

(+)ESI-MS: m/z 723.3435 (MNH₄⁺, berechnet 723.3442).

Elementaranalyse für C₄₂H₅₂BGeO₂P (703.29 g·mol⁻¹): C 71.73, H 7.45; gefunden: C 70.27, H 6.55.

6.4.31 Diethyl-triphenylstannylphosphonit-Boran [11b]BH₃

[11b]BH₃

[3b]K (150 mg, 0.866 mmol) und Ph₃SnCl (333 mg, 0.866 mmol) wurden in Toluol (10 mL) gelöst und 1 h gerührt. Die Reaktionsmischung wurde abfiltriert und das Filtrat zur Trockene eingeengt. Das Rohprodukt wurde mit 4 mL Hexan gewaschen die Waschlösung dekantiert und Lösungsmittelreste im Vakuum entfernt. Das Produkt kristallisiert aus der Waschlösung bei -25 °C aus. Ausbeute 160 mg, 0.320 mmol, 37 %.

¹H-NMR (C₆D₆): δ = 7.90-7.69 (m, 6 H, H_{ortho}), 7.27-7.00 (m, 9 H, H_{arom}.), 4.10-3.70 (m, 4 H, CH₂), 2.62-1.05 (b, 3 H, BH₃), 0.89 (t, ³J_{HH} = 7.0 Hz, 6 H, CH₃).

³¹P{¹H}-NMR (C₆D₆): δ = 182.0 (b).

¹¹B{¹H}-NMR (C₆D₆): δ = -35.7 (d, ¹J_{PB}=40 Hz).

¹³C-NMR (C₆D₆): δ = = 137.4 (d, ³J_{PC} = 2 Hz, *o*-Ph), 136.3 (d ²J_{PC} = 13 Hz, *i*-Ph), 129.6 (s, Ph), 128.9 (s, Ph), 64.8 (d, ²J_{PC} = 9 Hz, **C**H₂), 16.2 (d, ²J_{PC} = 3 Hz, **C**H₃).

¹¹⁹Sn{¹H}-NMR (C₆D₆): δ = -183 (d, ¹J_{PSn} = 320 Hz).

IR (cm⁻¹): \tilde{v} = 2397, 2362, 2323(vBH)

Elementaranalyse für C₂₂H₂₈BO₂PSn (484.96 g⋅mol⁻¹): C 54.49, H 5.82; gefunden: C 54.52, H 5.83.

6.4.32 Diisopropyl-triphenylstannylphosphonit-Boran [11c]BH₃

[**11c**]BH₃

[3c]K (175 mg, 0.866 mmol) und Ph₃SnCl (334 mg, 0.866 mmol) wurden in Toluol (10 mL) gelöst und 18 h gerührt. Die Reaktionsmischung wurde abfiltriert und das Filtrat zur Trockene eingeengt. Das Rohprodukt wurde mit Hexan gewaschen die Waschlösung dekantiert und Lösungsmittelreste im Vakuum entfernt. Das Produkt kristallisiert aus der Waschlösung bei -25 °C aus (192 mg, 0.372 mmol) 43 %.

¹H-NMR (C₆D₆): δ = 7.92-7.70 (m, 6H, *o*-Ph), 7.30-7.04 (m, 9 H, Ph_.), 4.72 (dsept., ³J_{HH} = 6 Hz, ³J_{PH} = 10 Hz, 2 H, C**H**), 1.05 (d, ³J_{HH} = 6.2 Hz, 6 H, C**H**₃), 1.02 (d, ³J_{HH} = 6.2 Hz, 6 H, C**H**₃), 0.9 (b, 3 H, B**H**₃).

³¹P{¹H}-NMR (C_6D_6): δ = 178.4 (b)

¹¹B{¹H}-NMR (C₆D₆): δ = -32.4 (d, ¹J_{PB} = 37 Hz).

¹³C-NMR (C₆D₆): δ = 138.0 (d, ³J_{PC} = 2 Hz, *o*-Ph) 137.1 (d ²J_{PC} = 13 Hz, *i*-Ph), 130.1 (s, *p*-Ph) 129.5 (d, ⁴J_{PC} = 1 Hz, *m*-Ph), 74.0 (d, ²J_{PC} = 9 Hz, **C**H), 24.3 (d, ³J_{PC} = 4 Hz, **C**H₃), 24.2 (d, ³J_{PC} = 4 Hz, **C**H₃).

¹¹⁹Sn-NMR (C₆D₆): δ = -183.5 (d, ¹J_{PSn} = 364 Hz).

IR (cm⁻¹): ν̃ = 2388, 2339 (vBH)

(+)ESI-MS: m/z 537.1154 (MNa⁺, berechnet 537.1155), 553.0888 (MK⁺, berechnet 553.0893).

Elementaranalyse für C₂₄H₃₂BO₂PSn (513.01 g·mol⁻¹): C 56.19, H 6.29; gefunden: C 55.38, H 6.08.

6.4.33 Bis-(2,6-diisopropylphenyl)-triphenylstannylphosphonit-Boran **[11d]**BH₃

[11d]BH₃

Phosphonit-Boran **[2d]**BH₃ (250 mg, 0.62 mmol) und KHMDS (125 mg, 0.62 mmol) wurden bei -78 °C in Toluol (12 mL) gelöst, eine Stunde bei dieser Temperatur gerührt und dann auf RT aufwärmen lassen. Die Mischung wurde wieder auf -78 °C gekühlt und dann Ph₃SnCl (241 mg, 0.62 mmol) in Toluol (2 mL) zugegeben. Die Mischung wurde wiederum eine Stunde bei -78 °C und dann eine weitere bei RT gerührt. Die flüchtigen Bestandteile wurden im Vakuum verdampft und der Rückstand mit Hexan (5 mL) versetzt. Die Suspension wurde filtriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Es entstand ein farbloser Feststoff (285 mg, 380 µmol, 60 %). Einkristalle, die sich für Einkristallröntgendiffraktometrie eignen, wurden aus einer konzentrierten Hexan-Lösung bei -25 °C erhalten.

¹H-NMR (C₆D₆): δ = 7.83-7.78 (m, 6 H, H_{arom}), 7.24-7.17 (m, 9 H, H_{arom}), 4.77-4.63 (m, 2H, CH(CH₃)₂), 1.04 (d, ¹J_{HH} = 6 Hz, 6 H, CH(CH₃)₂), 1.02 (d, ¹J_{HH} = 6 Hz, 6 H, CH(CH₃)₂).

³¹P-NMR (C₆D₆): δ = 197.5

¹¹B-NMR (C_6D_6): δ = -31.4 (b).

¹³C-NMR (C₆D₆): δ =148.8 (d, ²J_{PC} = 14 Hz, *i*-OAryl) 141.0 (d, ⁵J_{PC} = 3 Hz, *p*-SnPh), 137.5 (d, ²J_{SnC} = 40 Hz, ³J_{PC} = 2.0 Hz, *o*-SnPh), 136.5 (d ³J_{PC} = 13.6 Hz, *o*-OAryl), 129.6 (s, ⁴J_{SnC} = 12 Hz, *m*-SnPh), 128.9 (s, ¹J_{SnC} = 55 Hz, *i*-SnPh), 126.0 (d, ⁴J_{PC} = 2 Hz, *m*-OAryl), 124.4 (d, ⁵J_{PC} = 2 Hz, *p*-OAryl), 27.9 (s, **C**H), 23.9 (s, **C**H₃), 22.9 (s, **C**H₃).

¹¹⁹Sn-NMR (C₆D₆): δ = -176.2 (d, ¹J_{PSn} = 77 Hz).

Elementaranalyse für C₂₄H₃₂BO₂PSn (749.37 g·mol⁻¹): C 76.32, H 6.99; gefunden: C 67.25, H 7.03.

IR (cm⁻¹): $\tilde{\nu}$ = 2444, 2383 (vBH)

6.4.34 Kalium-Diethoxyphosphan-Boran-dicarboxylat [21b]BH₃

[21b]BH3

[**3b**]K (220 mg, mmol) wurde in Benzol (15 mL) und THF (5 mL) gelöst, bei RT 15 Minuten lang mit einem sanften CO₂-Strom begast und *in situ* NMR-spektroskopisch untersucht. Anschließend wurde das Lösungsmittel und überschüssiges CO₂ im Vakuum verdampft. Das Produkt konnte danach nicht mehr in THF-d₈ gelöst werden und zersetzte sich beim Lösen in D₂O. Die NMR-spektroskopische Untersuchung der Reaktionslösung zeigte vollständigen Verbrauch des Phosphids [**3b**]K und die selektive Bildung eines neuen Produkts, das [**21b**]BH₃ zugeordnet wird. Im IR-Spektrum des unlöslichen Feststoffs wurde eine Bande beobachtet, die im typischen Bereich von Carbonyl-Verbindungen liegt und die Hinweise auf die Identität von [**21b**]BH₃ bekräftigt.

³¹P-NMR (C₆H₆/THF): δ = 114.6 (b). IR (Festkörper): $\tilde{\nu}$ (cm⁻¹) = 2366 (vBH), 1614 (vC=O).

6.4.35 Kalium-Diethoxyphosphan-Boran-dithiocarboxylat [22b]BH₃

[22b]BH₃

Kalium-Diethoxyphosphid-Boran **[3b]**K (250 mg, 1.44 mmol) wurde in THF (15 mL) gelöst und auf -78 °C gekühlt. Die Lösung wurde mit CS₂ (110 mg, 1.44 mmol, 0.09 mL) versetzt worauf sie sich rot verfärbte. Die Reaktionsmischung wurde auf Raumtemperatur aufgewärmt und die flüchtigen Bestandteile unter reduziertem Druck entfernt. Der Rückstand wurde in Ether (3 mL) suspendiert, abfiltriert und mit Hexan (5 mL) nachgewaschen. Der Filterkuchen wurde getrocknet und das Produkt als roter Feststoff erhalten. Ausbeute: 150 mg, 0.60 mmol, 42 %.

¹H-NMR (THF-d₈): δ = 4.12 (dq., 4 H, ³J_{HH} = 6.8 Hz, ³J_{PH} = 6.8 Hz, CH₂), 1.25 (t, 6 H, ³J_{HH} = 6.8 Hz, CH₃), 0.54 (q, 3 H, ¹J_{BH} = 91 Hz, BH₃).

³¹P-NMR (THF-d₈): δ = 108.2 (q, ¹J_{PB} = 76 Hz). ¹¹B-NMR (THF-d₈): δ = -37.7 (dq., ¹J_{PB} = 76 Hz, ¹J_{BH} = 91 Hz). ¹³C-NMR (THF-d₈): δ = 63.5 (d, ²J_{PC} = 7 Hz, **C**H₂), 16.7 (d, ³J_{PC} = 6 Hz, **C**H₃). IR (Festkörper): $\tilde{\nu}$ (cm⁻¹) = 2383 (vBH) (-)ESI-MS: m/z 211.0187 (C₅H₁₃P-O2S₂B⁻, berechnet 211.0183)

Elementaranalyse für C₅H₁₃BKO₂PS₂ (250.16 g·mol⁻¹): C 24.01, H 5.24, S 25.63; gefunden: C 23.84, H 5.22, S 24.58.

6.4.36 (Diethoxyphosphan-boranyl)-N,N'-tetrametylethylendiamin-Zinkchlorid **[3b]**Zn

[3b]Zn

(TMEDA)ZnCl₂ (174 mg, 0.69 mmol) wurde in THF (10 mL) unter Rühren gelöst und auf -78 °C gekühlt. **[3b]**K (120 mg, 0.69 mmol) wurde ebenfalls in THF (10 mL) gelöst und mithilfe eines Tropftrichters langsam zugegeben. Die Mischung wurde über Nacht gerührt und dann filtriert. Dem Filtrat wurde das Lösungsmittel im Vakuum verdampft und der Rückstand wurde in Toluol (20 ml) aufgenommen und filtriert. Das Filtrat wurde auf 2 mL eingeengt und bei -25 °C kristallisiert. Es wurde ein farbloser Feststoff erhalten (49 mg, 0.14 mmol, 20 %).

¹H-NMR (CD₂Cl₂) δ = 4.03 (dq, ³*J*_{PH} = 10 Hz, ³*J*_{HH} = 7 Hz, 4 H, CH₂O), 2.76-2.52 (m, 16 H, NCH₂, NCH₃), 1.26 (t, ³*J*_{HH} = 7 Hz, 6 H, CH₂CH₃), 0.57 (bq, ¹*J*_{BH} = 92 Hz, 3 H, BH₃).

³¹P-NMR (CD₂Cl₂) δ = 199.1 (b). ¹¹B-NMR (CD₂Cl₂) δ =-35.1 (dq, ¹J_{PB} = 60 Hz, ¹J_{BH} = 92 Hz).

¹³C-NMR (CD₂Cl₂) δ = 64.0 (d, ²J_{PC} = 9 Hz, OCH₂), 57.2 (s, NCH₂), 47.9 (s, NCH₂), 16.8 (d, ³J_{PC} = 6 Hz, CH₂CH₃).

Elementaranalyse für C₁₀H₂₉BClN₂O₂PZn (351.97 g⋅mol⁻¹): C 34.13, H 8.31, N 7.96; gefunden: C 31.03, H 7.28, N 6.44.

IR (Festkörper): \tilde{v} (cm⁻¹) = 2355 (vBH).

6.4.37 bis-(Diethoxyphosphan-boranyl)-N,N'tetrametylethylendiamin-Zink **[3b]**₂Zn

[3b]₂Zn

[3b]K (110 mg, 0.63 mmol) wurde in THF (10 mL) gelöst und auf -78 °C gekühlt (TMEDA)ZnCl₂ (73 mg, 0.29 mmol) wurde als Feststoff zugegeben und die Mischung wurde über Nacht aufgetaut. Die Suspension wurde filtriert, das Filtrat vom Lösungsmittel befreit und der Rückstand in Toluol (20 mL) aufgenommen und erneut filtriert. Das Filtrat wurde zur Trockene eingeengt und aus Et₂O heiß umkristallisiert. Es wurde ein farbloser Feststoff erhalten (59 mg, 0.13 mmol, 45 %).

¹H-NMR (C₆D₆): δ = 4.24 (dsept., ³J_{HH} = 7.1 Hz, ³J_{PH} = 10.0 Hz, 4 H, OCH₂), 4.05 (dsept., ³J_{HH} = 7.1 Hz, ³J_{PH} = 10.0 Hz, 4 H, OCH₂), 2.25 (s, 12 H, NCH₃), 1.87 (s, 4 H, NCH₂), 1.21 (t, ³J_{HH} = 7.1 Hz, 12 H, CH₂CH₃).

³¹P-NMR (C_6D_6): δ = 206.4 (b).

¹¹B-NMR (C₆D₆): δ = -34.4 (b).

¹³C-NMR (C₆D₆): δ = 62.9 (d, ²J_{PC} = 5 Hz, OCH₂), 62.8 (d, ²J_{PC} = 5 Hz, OCH₂), 56.3 (s, NCH₂), 47.4 (t, ³J_{PC} = 1 Hz, NCH₃), 16.2 (t, ³J_{PC} = 3 Hz, CH₂CH₃).

IR (Festkörper): \tilde{v} (cm⁻¹) = 2346 (vBH).

(+)ESI-MS: m/z 473.1995 (MNa⁺, berechnet 473.1996), 489.1735 (MK⁺, berechnet 489.1735).

Elementaranalyse für C₁₄H₃₆BClN₂O₂P₂Zn (451.45 g·mol⁻¹): C 39.68, H 8.56, N 6.61; gefunden: C 39.29, H 9.45, N 5.28.

6.4.38 Diethoxyphosphan-boranyl-{1,3-bis(2,6-diisopropylphenyl)imidazol-2-yliden}-Kupfer(I) **[3b]**Cu und Oxidation zu **[3b]**OCu

[**3b**]K (100 mg, 0.575 mmol) wurde in THF (6 mL) gelöst, und die Lösung auf -78 °C gekühlt. IDippCuCl (280 mg, 0.575 mmol) wurde im Argon-Gegenstrom zugegeben. Das Gemisch wurde binnen 2 h unter Rühren auf RT gebracht und dann das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde in Diethylether (50 mL) aufgenommen und filtriert. Das Filtrat wurde wiederum bis zur Trockene eingeengt und mit Hexan (10 mL) versetzt. Die Suspension wurde filtriert und der Filterkuchen als das Produkt **[3b]**Cu identifiziert. Ausbeute 52 mg, 15 %, 0.086 mmol).

Einengen der Hexanlösung zur Sättigung eingeengt Kristallisation bei -25 °C lieferte eine geringe Menge des Oxidationsprodukt **[3b]**OCu einkristallin erhalten (12 mg).

Daten von [3b]Cu

¹H-NMR (C₆D₆): δ = 7.32-7.19 (m, 4 H, H_{arom.}), 7.13 (b, 2 H, H_{arom.}), 6.42 (s, 2 H, CH), 3.84 (sept., ³J_{HH} = 6.7 Hz, 2 H, CH), 3.61 (sept., ³J_{HH} = 6.7 Hz, (CH)₂), 2.81 (b, 4 H, CH₂), 2.08-0.67 (b, 3 H, BH₃), 1.46 (d, ³J_{HH} = 7 Hz, 12 H, CHCH₃), 1.15 (t, ³J_{HH} = 7 Hz, 6 H, CH₂CH₃), 1.13 (d, ³J_{HH} = 7 Hz, 12 H, CHCH₃).

³¹P-NMR (C_6D_6): δ =225.3 (b).

¹¹B-NMR (C₆D₆): δ = -32.4 (d, ¹J_{PB} = 61 Hz).

¹³C-NMR (C₆D₆): δ = 145.6 (s, C_{ipso}), 130.2 (C_{para}), 123.9 (C_{metha}), 122.4 (s, (CH)₂), 63.0 (bd, ²J_{PC} = 9 Hz, CH₂), 28.6 (s, CH), 24.4 (b, CHCH₃), 23.9 (b, CHCH₃), 17.3 (d, ³J_{PC} = 5.4 Hz, CH₂CH₃).

Elementaranalyse für C₃₁H₄₉BCuN₂O₂P (587.07 g·mol⁻¹): C 63.42, H 8.41, N 4.77, gefunden C 58.99, H 7.98, N 4.46.

Daten von [3b]OCu

¹H-NMR (CDCl₃): δ = 7.50 (dd, ³*J*_{HH} =7.0, ³*J*_{HH} = 8.2 Hz, 2 H, *p*-Aryl), 7.30 (d, ³*J*_{HH} = 7.7 Hz, 3 H, *m*-Aryl), 7.14 (s, 2 H, (CH)₂), 3.58 (dq., ³*J*_{HH} = 7.0 Hz, ³*J*_{PH} = 7.0 Hz, 4 H, CH₂CH₃), 2.55 (sept., ³*J*_{HH} = 6.8 Hz, 4 H, CH(CH₃)₂), 1.30 (d, ³*J*_{HH} = 6.8 Hz, 12 H, CH(CH₃)₂), 1.22 (d, ³*J*_{HH} = 6.8 Hz, 12 H, CH(CH₃)₂), 1.02 (t, ³*J*_{HH} = 7.0 Hz, 6 H, CHCH₃), 0.73-(-0.6) (b, 3 H, BH₃).

³¹P-NMR (CDCl₃): δ = 98.6 (q, ¹J_{PB} = 130 Hz). ¹¹B-NMR (CDCl₃): δ = -41.6 (d, ¹J_{PB} = 130 Hz).

¹³C-NMR (CDCl₃): δ = 145.6 (s, *o*-Aryl), 134.4 (s, *i*-Aryl), 130.6 (s, *p*-Aryl), 124.2 (s, *m*-Aryl), 123.3 (s, NCH), 59.1 (d, ²J_{PC} = 4 Hz, CH₂), 28.7 (s, CH(CH₃)₂), 24.7 (s, CHCH₃), 24.0 (s, CHCH₃), 16.5 (d, ³J_{PC} = 4 Hz, CH₂CH₃).

IR (Festkörper): \tilde{v} (cm⁻¹): 2359 (vBH), 2343 (vBH).

Elementaranalyse für C₃₁H₄₉BCuN₂O₃P (603.07 g⋅mol⁻¹): C 61.74 H 8.19 N 4.65, gefunden C 61.35 H 8.29 N 4.52.

6.4.39 Diethyl-triphenylsilylphosphonit 9b

9b

[9b]BH₃ (300 mg, 0.76 mmol) und DABCO (341 mg, 3.04 mmol) wurden in Hexan (20 mL) gelöst und 4 h auf 66 °C gehalten. Währenddessen wurde gelöst. Die Reaktionsmischung wurde auf RT abgekühlt und mit einer Lösung von MgBr₂·OEt₂ (786 mg, 3.94 mmol) in Diethylether (10 mL) versetzt, wobei ein farbloser Niederschlag entstand. Die erhaltene Suspension wurde 1 h bei RT gerührt und dann über Celite filtriert. Der Filterrückstand wurde mit Hexan (2x20 mL) nachgewaschen. Die vereinigten Filtrate wurden vom Lösungsmittel befreit und der Rückstand mit Hexan (20 mL) aufgenommen. Diese Lösung wurde auf 3 mL eingeengt und bei -25 °C gelagert. Der ausgefallene Feststoff wurde von der Mutterlösung getrennt und verworfen. Einengen der Lösung zur Trockene lieferte das Produkt als farblosen Feststoff. Ausbeute: 58 mg, 0.15 mmol, 20 %.

¹H-NMR (C₆D₆): δ = 7.97 (m, 6 H, H_{ortho}), 7.23-7.16 (m, 9H, H_{arom}.), 3.91-3.67 (m, 4 H, CH₂), 0.98 (dt, ³J_{HH} = 7.0 Hz, ⁵J_{PH} = 0.6 Hz, 6H, CH₃).

³¹P-NMR (C₆D₆): δ = 217.7 (quint., ³J_{PH} = 9 Hz)

¹³C{¹H}-NMR (C₆D₆): δ = 136.6 (d, ³J_{PC} = 3 Hz, *o*-Ph), 133.4 (d, ²J_{PC} = 11 Hz, *i*-Ph), 129.6 (d, ⁵J_{PC} = 1 Hz, *p*-Ph), 128.0 (s, *m*-Ph), 69.4 (d, ²J_{PC} = 15 Hz, **C**H₂), 17.0 (d, ³J_{PC} = 5 Hz, **C**H₃).

²⁹Si-NMR (C₆D₆): δ = -23.6 (dd, ¹J_{PSi} = 26 Hz, ³J_{SiH} = 9 Hz).

Elementaranalyse für C₂₂H₂₅O₂PSi (380.14 g·mol⁻¹): C 69.45, H 6.62; gefunden: C 68.94, H 5.36.

6.4.40 Diisopropyl-triphenylsilylphosphonit 9c

9c

[9c]BH₃ (187 mg, 0.44 mmol) wurde mit DABCO (199 mg, 1.76 mmol) analog zu **9b** umgesetzt und aufgearbeitet. Es wurde ein farbloser Feststoff erhalten. Ausbeute: 33 mg, 81 µmol, 18 %.

¹H-NMR (C₆D₆): δ = 7.96-7.88 (m, 6 H, H_{ortho}), 7.23-7.18 (m, 9 H, H_{arom}), 3.79 (dsept., ³J_{PH} = 8.8 Hz, ³J_{HH} = 6.1 Hz, 2 H, CH), 1.14 (d, ³J_{HH} = 6.1 Hz, 6 H, CH₃), 0.99 (d, ³J_{HH} = 6.1 Hz, 6 H, CH₃).

³¹P-NMR (C₆D₆): δ = 209.0 (t, ³J_{PH} = 9 Hz).

¹³C-NMR (C₆D₆): δ = 136.7 (d, ³J_{PC} = 3 Hz, *o*-Ph), 133.4 (d, ²J_{PC} = 11 Hz, *i*-Ph), 129.5 (d, ⁵J_{PC} = 1 Hz, *p*-Ph), 127.9 (s, *m*-Ph), 77.0 (d, ²J_{PC} = 16 Hz, **C**H), 24.3 (d, ³J_{PC} = 3 Hz, **C**H₃), 24.1 (d, ³J_{PC} = 3 Hz, **C**H₃).

²⁹Si{¹H}-NMR (C₆D₆): δ = -22.9 (d, ¹J_{PSi} = 19 Hz).

Elementaranalyse für C₂₄H₂₉O₂PSi (408.55 g·mol⁻¹): C 70.56, H 7.16; gefunden: C 68.06, H 7.61

[2d]BH₃ (550 mg, 1.37 mmol), KHMDS (302 mg, 1.51 mmol) und TMS-Cl (179 mg, 1.65 mol) wurden in Toluol (20 mL), wie in Kapitel 6.4.23 beschrieben, zu [8d]BH₃ umgesetzt. Die durch Filtration von ausgefallenen Salzen befreite Reaktionsmischung wurde mit NEt₃ (1.9 g, 19 mmol, 2.6 mL) versetzt und 2 h unter Rückfluss erhitzt. Nach Abkühlen wurde das Lösungsmittel entfernt, der Rückstand mit Hexan extrahiert und filtriert. Das Filtrat wurde im Vakuum vom Lösungsmittel befreit. Vom Rückstand wurde Et₃NBH₃ (Sdp. 70-110 °C) abdestilliert und verworfen. Eine zweite Destillation ("trap-to-trap") lieferte das Produkt 8d als farbloses Öl (80 mg, 0.17 mmol, 13 %).

¹H-NMR (Toluol-d₈) δ = 7.07-6.97 (m, 6 H, H_{arom}.), 3.43 (dsept., ³J_{HH} = 7 Hz, ⁵J_{PH} = 2 Hz, 4 H, CH(CH₃)), 1.13 (d, ³J_{HH} = 7 Hz, 12 H, CH(CH₃)), 1.08 (d, ³J_{HH} = 7 Hz, 12 H, CH(CH₃), 0.39 (d, ³J_{PH} = 4 Hz, 9 H, Si(CH₃)₃).

³¹P-NMR (Toluol-d₈) δ =248.0 ppm (b).

²⁹Si{¹H}-NMR (Toluol-d₈) δ =-0.34 (d, ¹J_{PSi} = 16 Hz).

¹³C{¹H}-NMR (Toluol-d₈) δ = 151.7 (d, ²*J*_{PC} = 2 Hz, *i*-OAryl), 139.6 (d, ³*J*_{PC} = 2 Hz, *m*-OAryl), 123.9 (d, ⁵*J*_{PC} = 1 Hz, *p*-OAryl), 123.8 (d, ⁴*J*_{PC} = 1 Hz, *o*-OAryl), 27,2 (d, ⁴*J*_{PC} = 7 Hz, **C**H), 23,6 (s, **C**H₃), 23,4 (d, ⁵*J*_{PC} = 1 Hz, **C**H₃), -3.7 (d, ²*J*_{PC} = 10 Hz, Si**C**H₃).

[9d]BH₃ (75 mg, 0.11 mmol) wurde in Toluol (5 mL) gelöst und NEt₃ (230 mg, 2.28 mmol, 0.32 mL) wurde zugegeben. Die Mischung wurde 20 h bei RT gerührt und die flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wurde mit Hexan (10 mL) versetzt, filtriert und mit Hexan (5 mL) nachgewaschen. Das Filtrat wurde auf 3 mL reduziert und dekantiert und der Feststoff im Vakuum getrocknet. Das Produkt **9d** wurde als farbloser Feststoff (57 mg, 0,088 mmol, 80 %) erhalten.

¹H-NMR (C₆D₆): δ = 7.97-6.86 (m, 6 H, *o*-SiPh), 7.15-7.09 (m, 9 H, SiPh), 7.00 (b, 6 H, OAryl), 3.31 (dsept., ³J_{HH} = 7 Hz, ⁵J_{PH} = 2 Hz, CH(CH₃)₂), 0.99 (d, ³J_{HH} = 7 Hz, 12 H, CH₃), 0.95 (d, ³J_{HH} = 7 Hz, 12 H, CH₃).

³¹P-NMR (C₆D₆): δ = 247.2 (s).

¹³C{¹H}-NMR (C₆D₆): δ = 151.1 (d, ²J_{PC} = 2 Hz, *i*-OAryl) 140.3 (d ³J_{PC}= 2 Hz, *m*-OAryl), 136.6 (d, ³J_{PC} = 3 Hz, *o*-SiPh) 132.8 (d, ²J_{PC} = 10 Hz, *i*-SiPh), 129.9 (s, *p*-SiPh), 124.4 (d, ⁴J_{PC}= 1 Hz, *p*-OAryl), 124.1 (d, ⁴J_{PC} = 1 Hz, *m*-OAryl), 27.3 (d, ⁴J_{PC} = 5 Hz, **C**H), 23.9 (d, ⁵J_{PC} = 1 Hz, **C**H₃), 23.4 (d, ⁵J_{PC} = 1 Hz, **C**H₃).

²⁹Si-NMR (C₆D₆): δ = -21.5 (dd, ¹J_{PSi} = 34 Hz, ³J_{SiH} = 10 Hz).

Elementaranalyse für C₂₄H₃₂BO₂PSi (644.91 g·mol⁻¹): C 78.22, H 7.66; gefunden: C 78.37, H 7.87.

6.4.43 4,4,5,5-Tetramethyl-1-(triphenylsilyl)-1,3,2-dioxaphospholidin **[9e]**BH₃

9e

[9e]BH₃ (20 mg, 48 μ mol) und DABCO (10 mg, 96 μ mol) wurden in Hexan (2 mL) über 3 h bei 66 °C erhitzt. Die Reaktionsmischung wurde auf RT abgekühlt und vom ausgefallenen Feststoff abgetrennt. Die Lösung wurde auf -25 °C gekühlt, erneut vom ausgefallenen Feststoff getrennt und dann das Lösungsmittel im Vakuum entfernt, sodass ein farbloser Feststoff entstand. Ausbeute 8 mg, 20 μ mol, 41 %

¹H-NMR (C₆D₆): δ = 7.97-7.91 (m, 6 H, *o*-SiPh), 7.10-6.99 (m, 9 H, SiPh), 1.19 (s, 9 H, C**H**₃), 0.67 (s, 9 H, C**H**₃).

³¹P-NMR (C₆D₆): δ = 245.9 (s).

EI-MS: m/z 406.1511 (M⁺, berechnet 406.1512).

6.4.44 Umsetzung von Diethyl-triphenylgermylphosphonit-Boran mit DABCO zum freien Phosphonit **10b**

10b

[10b]BH₃ (10 mg, 23 μ mol) und DABCO (12 mg, 107 μ mol) wurden in C₆D₆ (0.7 mL) gelöst und bei 80 °C 18 h lang gehalten. Auswertung der NMR-Spektren zeigt quantitativen, selektiven Umsatz zum freien Germylphosphonit **10b**.

¹H-NMR (C₆D₆): δ = 7.84-7.70 (m, 6 H, H_{ortho}), 7.25-7.16 (m, 9 H, H_{arom}.), 3.78 (dq, 4 H, ³J_{HH} = 7.0 Hz, ³J_{PH} = 8.5 Hz CH₂CH₃), 0.97 (t, ³J_{HH} = 7.0 Hz, 6 H, CH₂CH₃).

³¹P{¹H}-NMR (C₆D₆): δ = 221.2 (s).

6.4.45 Umsetzung von Diisopropyl-triphenylgermylphosphonit-Boran mit DABCO zum freien Phosphonit **10c**

10c

[10c]BH₃ (10 mg, 21 μ mol) und DABCO (12 mg, 107 μ mol) wurden in C₆D₆ (0.7 mL) gelöst und bei 80 °C 4 h lang gehalten. Auswertung der NMR-Spektren zeigt quantitativen, selektiven Umsatz zum freien Germylphosphonit **10c**.

¹H-NMR (C₆D₆): δ = 7.83 (d, ³J_{HH} = 7 Hz, 6 H, H_{ortho}), 7.28-7.18 (m, 9 H, H_{arom}.), 4.07-3.94 (m, 4 H, C**H**), 1.11 (d, ³J_{HH} = 6.0 Hz, 6 H, C**H**₃), 1.01 (d, ³J_{HH} = 6.0 Hz, 6 H, C**H**₃).

³¹P-NMR (C₆D₆): δ = 214.8 (t, ³J_{PH} = 9 Hz).

¹³C{¹H}-NMR (C₆D₆): δ = 137.0 (d, ²J_{PC} = 8 Hz, C_{ipso}), 135.8 (d, ³J_{PC} = 2 Hz, C_{ortho}), 128.8 (s, C_{para}), 128.2 (s, C_{metha}), 76.7 (d, ²J_{PC} = 14 Hz, CH), 24.2 (d, ³J_{PC} = 3 Hz, CH₃), 24.1 (d, ³J_{PC} = 2 Hz, CH₃).

6.4.46 bis-(2,6-diisopropylphenyl)-triphenylgermylphosphonit-Boran **10d**

Germylphosphonit **[10d]**BH₃ (195 mg, 0.41 mmol) wurde in Toluol (10 mL) gelöst und dann mit NEt₃ (418 mg, 0.57 mL, 4.1 mmol) versetzt und bei RT 18 h gerührt. Die flüchtigen Bestandteile wurden im Vakuum entfernt und dann mit Hexan (20 mL) versetzt und über ein Celite-Pad filtriert. Das Produkt wurde vom Filterkuchen mit Hexan (2x20 mL) eluiert und das Filtrat unter vermindertem Druck vom Lösungsmittel entfernt. Das Produkt **10d** wurde als farbloser Feststoff (56 mg, 81 µmol, 20 %) isoliert.

¹H-NMR (C₆D₆): δ = 8.02-7.99 (m, 6H, GePh.), 7.33-7.27 (m, 9H, GePh und OAryl.), 3.52 (dsept., ³J_{HH} = 7 Hz, ⁵J_{PH} = 1.5 Hz, 4H, C**H(**CH₃)₂), 1.16 (d, ¹J_{HH} = 7.0 Hz, 12H, CH(C**H**₃)₂), 1.11 (d, ¹J_{HH} = 7.0 Hz, 12H, CH(C**H**₃)₂).

³¹P-NMR (C_6D_6): δ = 252.1.

¹³C-NMR (C₆D₆): δ = 151.0 (d, ²J_{PC} = 2 Hz, *i*-OAryl), 140.4 (d, ³J_{PC} = 3 Hz, *o*-OAryl), 136.5 (d, ²J_{PC} = 7 Hz, *i*-GePh), 135.9 (d, ³J_{PC} = 2 Hz, *o*-GePh), 129.3 (s, *m*-GePh), 128.6 (s, *p*-GePh), 124.7 (d, ⁵J_{PC} = 2 Hz, *p*-OAryl), 124.3 (d, ⁴J_{PC} = 1 Hz, *m*-OAryl), 27.7 (d, ⁴J_{PC} = 5 Hz, **C**H(CH₃)₂), 23.9 (d, ⁵J_{PC} = 1 Hz, CH(**C**H₃)₂), 23.5 (d, ⁵J_{PC} = 1 Hz, CH(**C**H₃)₂).

(+)ESI-MS: m/z 491.1330 (MNa⁺ 491.1346).

Elementaranalyse für C₄₂H₅₂BGeO₂P (689.46 g·mol⁻¹): C 73.17, H 7.16; gefunden: C 72.78, H 7.20.

6.4.47 Umsetzung von Diethyl-triphenylstannylphosphonit-Boran [11b]BH₃ mit DABCO

11b

In einem NMR-Rohr wurden Phosphonit-Boran **[11b]**BH₃ (25 mg, 52 μ mol) und DABCO (27 mg, 258 μ mol) wurden in C₆D₆ (0.7 mL) gelöst. Die Lösung wurde in einem Ölbad auf 50 °C erhitzt und nach 0, 30, 60 und 90 Minuten NMR-Spektren aufgenommen. Die Produkte wurden *in situ* anhand ihrer NMR-Daten identifiziert.

³¹P-NMR (C₆D₆): δ = 239.0 (s, ¹J_{PSn} = 860 Hz, **11b**), 182.9 (s, **12b**).

¹¹B{¹H}-NMR (C₆D₆): δ = -10.2 (s, DABCO·BH₃).

¹¹⁹Sn-NMR (C₆D₆): δ = -198.9 (d, ¹J_{PSn} = 860 Hz, **11b**), -141.3 (s, Sn₂Ph₆).

Tabelle 13: Relative Produktanteile (%) in Abhängigkeit der Dauer der Reaktion von **[11b]**BH₃ mit DABCO.

Reaktionszeit (min)	[11b] BH ₃	11b	12b
0	97	3	0
30	34	59	7
60	18	66	16
90	7	71	22

Abbildung 19: Auftrag der relativen Produktanteile gegen die Dauer der Reaktion von **[11b]**BH₃ mit DABCO.

Der Versuch wurde in einem Schlenkfinger mit der halben Konzentration in Toluol wiederholt und nach 0 und 30 Minuten einige Milliliter in ein Quarz EPR-Rohr transferiert. Die Probe wurde bei gleichzeitiger Bestrahlung (365 nm LED) EPR-spektroskopisch untersucht. Es wurde das Diethoxyphosphanylradikal neben einer nicht identifizierbaren Spezies beobachtet.

 $(EtO)_2 P \cdot A(^{31}P) = 8.0 \text{ mT}, \text{g} = 2.0026$ Nicht-identifizierte Spezies g = 2.0032

6.4.48 Umsetzung von Diethyl-triphenylstannylphosphonit-Boran [11b]BH₃ mit DABCO und Styrol

a) Unter thermischer Aktivierung

In einem NMR-Rohr wurde **[11b]**BH₃ (12 mg, 0.025 mmol) und DABCO (14 mg, 0.124 mmol) in C_6D_6 (0.6 mL) gelöst und mit Styrol (20 Äquivalente) versetzt. Die Lösung wurde bei 80 °C gehalten und nach 16 h, 2 d und 5 d NMR-spektroskopisch untersucht. Es wurden die im Folgenden aufgeführten Additionsprodukte identifiziert deren Produktverteilung sich anhand der NMR-spektroskopischen Verfolgung nicht änderte. Anschließend wurden die Proben massenspektrometrisch untersucht.

EI-MS des Rohprodukts belegt die Anwesenheit von 1:1-Additionsprodukten (m/z = 576.1245 (berechnet $C_{30}H_{33}O_2PSn + 576.1241$), **13b** bzw. *iso*-**13b**) und liefert den Hinweis auf ein 1:2-Additionsprodukt (m/z = 680.1874, berechnet für $C_{38}H_{41}O_2PSn$: M⁺ 680.1864, **13b'**). Es wurden weiterhin Signale detektiert, die auf die Oxidationsprodukte von **14b** hinweisen (m/z = 378.1356 (berechnet für $C_{16}H_{28}O_6P_2^+$ 378.1356, **14b**O₂), 362.1405 (berechnet für $C_{16}H_{28}O_5P_2^+$ 362.1406, **14b**O). Basierend auf den Daten wäre eine Erklärung warum die Oxidationsprodukte von **14b**, aber nicht von **13b** und **13b'**, beobachtet wurden, spekulativ und soll daher hier nicht erfolgen.

	O ^{WVP} X SnPh ₃			
	13b , <i>iso</i> - 13b		14b	
δ ³¹ P{ ¹ H} (ppm)	176.4 (s).	180.0 (s)	180.6 (d), 175 (d)	
δ ¹¹⁹ Sn{ ¹ H} (ppm)	-98.0 (d).	-114.6 (d)		
³ J _{PY} (Hz) ^[a]	164	106	12	

Tabelle 14: NMR-spektroskopische Daten (C₆D₆) der 1:1-Additionsprodukte und des Bisphophosphonits **14b**.

^[a] Y = ¹¹⁹Sn (**13b**, *iso*-**13b**), ³¹P (**14b**)

b) Unter photochemischer Aktivierung

[11b]BH₃ (12 mg, 0.025 mmol) wurde mit DABCO (14 mg, 0.124 mmol) in C_6D_6 30 Minuten lang bei 50 °C gerührt. Die Lösung wurde mit Styrol (51 mg, 0.057 mL, 0.49 mmol) oder mit Tolan versetzt und 30 Minuten bestrahlt (Xe-Bogenlampe). Mit Styrol wurden dieselben Additionsprodukte wie bei der thermischen Umsetzung beobachtet.

6.4.49 Umsetzung von Diethyl-triphenylstannylphosphonit-Boran [11b]BH₃ mit DABCO und Tolan

Die Reaktion von **[11b]**BH₃ mit DABCO und Styrol unter photochemischer Aktivierung (Kapitel 6.4.48, Absatz b)) wurde unter ansonsten gleichen Reaktionsbedingungen mit Tolan (22 mg, 0.124 mmol) anstatt Styrol wiederholt. Das Reaktionsgemisch wurde NMR-spektroskopisch und massenspektrometrisch untersucht.

Die EI-MS-Untersuchung zeigte Signale die den 1:1-Additionsprodukten (m/z = 650.1393 (berechnet $C_{36}H_{35}O_2PSn^+$ 650.1399)) und den Bisphophosphoniten (420.1612 (berechnet $C_{22}H_{30}O_4P_2^+$ 420.1614)) zugeordnet werden können.

Tabelle 15: NMR-spektroskopische Daten (C_6D_6) der 1:1-Additionsprodukte (E/Z)-**17b** und der Bisphosphonite (E/Z)-**18b**.

	EtO ^{WYP} (CPh) ^{SnPh} ₃ EtO		EtO ^{WYP} (CPh) ₂ P///OEt EtO (CPh) ₂ OEt		
	(E/Z)- 17b		(E/Z)- 18b		
δ ³¹ Ρ (ppm)	159.2 (quint.) ^[a]	164.1 (quint.)	158.2 (quint.)	158.4 (quint.)	
δ^{119} Sn{ ¹ H} (ppm)	-155.2 (d)	n.b.	n.b.	n.b.	
³ J _{PH} (Hz)	9	9	4	8	

^{[a] 3} J_{PSn} = 43 Hz, n.b. = nicht bestimmbar

6.4.50 Umsetzung von Diisopropyl-triphenylstannylphosphonit-Boran mit DABCO

11c

Analog zur Synthese von **11b** wurde **[11c]**BH₃ (25 mg, 49 μ mol) mit DABCO (27 mg, 244 μ mol) 90 min lang erhitzt und die Reaktionsprodukte spektroskopisch charakterisiert.

³¹P-NMR (C₆D₆): δ = 231.3 (s, ¹J_{PSn} = 830 Hz, **11c**), 176.7 (s, **12c**).

¹¹B{¹H}-NMR (C₆D₆): δ = -10.2 (s, DABCO·BH₃).

¹¹⁹Sn-NMR (C₆D₆): δ = -197.5 (d, ¹J_{PSn} = 830 Hz, **11c**), -141.3 (s, Sn₂Ph₆).

[11d]BH₃ (50 mg, 67 μ mol) wurde in Toluol (3 mL) gelöst und mit NEt₃ (1.5 mL) versetzt. Die Mischung wurde 16 h gerührt, die flüchtigen Komponenten im Vakuum entfernt und der Rückstand mit Pentan (3 mL) versetzt. Die Suspension wurde filtriert und das Filtrat auf 0.5 mL eingeengt. Lagerung bei -25 °C führte zur Abscheidung farbloser Kristalle von **11d** (40 mg, 54 μ mol, 82 %).

¹H-NMR (C₆D₆): δ = 7.91-7.68 (m, 6 H, SnPh), 7.25-6.99 (m, 15 H, SnPh und OAryl.), 3.45 (sept., ³J_{HH} = 6.8 Hz, 4 H, C**H**), 1.01 (d, ³J_{HH} = 6.8 Hz, 12 H, C**H**₃), 0.97 (d, ³J_{HH} = 6.8 Hz, 12 H, C**H**₃).

³¹P-NMR (C₆D₆): δ = 273.0 (s, ¹J_{PSn} = 770 Hz).

¹¹⁹Sn{¹H}-NMR (C₆D₆): δ = -185.2 (d, ¹J_{PSn} = 770 Hz).

¹³C-NMR (C₆D₆): δ = 152.3 (d, ²*J*_{PC} = 1 Hz, *i*-OAryl) 140.7 (d ³*J*_{PC} = 2 Hz, *m*-OAryl), 139.8 (d, ³*J*_{PC} = 3 Hz, *o*-SnPh) 138.0 (s, ¹*J*_{SnC} = 38 Hz, *i*-SnPh), 129.3 (s, *p*-SnPh), 129.1 (s, *m*-SnPh) 125.2 (d, ⁴*J*_{PC} = 1 Hz, *p*-OAryl), 124.5 (d, ⁴*J*_{PC} = 1 Hz, *m*-OAryl), 28.2 (d, ⁴*J*_{PC} = 6 Hz, **C**H), 24.0 (d, ⁵*J*_{PC} = 1 Hz, **C**H₃), 23.9 (breit, **C**H₃).

(+)ESI-MS: m/z = 775.2123 (MK⁺, Berechnet: 775.2131)

Elementaranalyse für $C_{42}H_{49}O_2PSn$ (735.54 g·mol⁻¹): C 68.58, H 6.72; gefunden: C 68.58, H 6.72.

6.4.52 Allgemeine Vorschrift (AV1) für Phosphonit-Nickeltricarbonyl-Komplexe

Das jeweilige Phosphonit (8.5 µmol) wurde bei RT mit einer Lösung von Ni(CO)₄ (2.0 mL, 0.085 M in Toluol, 0.17 mmol) versetzt und die resultierende Mischung 2 h gerührt. Ein Aliquot (0.6 mL) dieser Lösung wurde in ein NMR-Rohr transferiert und das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde mit C₆D₆ versetzt und die Probe dann NMR-spektroskopisch untersucht. Die restliche Reaktionslösung wurde im Vakuum von Lösungsmittel und überschüssigem Ni(CO)₄ befreit, in DCM (0.3 mL) gelöst und IR-spektroskopisch untersucht. Es wurden folgende Komplexe identifiziert

Diethyl-triphenylsilylphosphonit-tricarbonyl-Nickel [9b]Ni(CO)3

[9b]Ni(CO)3

¹H-NMR (C₆D₆): δ = 7.89 (b, 6 H, *o*-SiPh), 7.19 (b, 9 H, SiPh), 3.72 (b, 4 H, C**H**₂CH₃), 0.92 (b, 6 H, CH₂C**H**₃).

³¹P-NMR (C₆D₆): δ = 216.6 (quint., ³J_{PH} = 10 Hz).

¹³C-NMR (C₆D₆): δ = 136.7 (s, o-SiPh), 135.3 (s, *i*-SiPh), 130.2 (s, *p*-SiPh), 129.8 (s, *m*-SiPh), 65.5 (s, CH₂CH₃), 16.2 (s, CH₂CH₃).

IR (DCM) $\tilde{\nu}$ (cm⁻¹) = 2069 (A₁), 1998 (E).

Diisopropyl-triphenylsilylphosphonit-tricarbonyl-Nickel [9c]Ni(CO)₃

[9c]Ni(CO)3

¹H-NMR (C₆D₆): δ = 7.96-7.87 (m, 6 H, *o*-SiPh), 7.24-7.19 (m, 9 H, SiPh), 4.26 (sept., ³J_{HH} = 6.0 Hz, 2 H, CH(CH₃)₂), 1.09 (d, ³J_{HH} = 6.0 Hz, CH(CH₃)₂), 0.90 (d, ³J_{HH} = 6.0 Hz, CH(CH₃)₂).

³¹P-NMR (C₆D₆): δ = 211.9 (t, ³J_{PH} = 12 Hz).

¹³C{¹H}-NMR (C₆D₆): δ = 196.4 (d, ²J_{PC} = 3 Hz, **C**O), 136.8 (d, ²J_{PC} = 2 Hz, *o*-SiPh), 135.1 (s, *i*-SiPh), 131.2 (s, *p*-SiPh), 130.1 (s, *m*-SiPh), 74.39 (s, **C**H(CH₃)₂), 23.9 (d, ³J_{PC} = 2 Hz, CH(**C**H₃)₂), 23.6 (d, ³J_{PC} = 2 Hz, CH(**C**H₃)₂).

IR (DCM) $\tilde{\nu}$ (cm⁻¹) = 2068 (A₁), 1998 (E).

2,6-(Diisopropylphenyl)-phosphonit-tricarbonyl-Nickel [2d]Ni(CO)₃

[2d]Ni(CO)3

¹H-NMR (C₆D₆): δ = 7.93 (d, ¹J_{PH} = 344.2 Hz, 1 H, P**H**), 7.05 (b, 6 H, OAryl), 3.57 (sept., ³J_{HH} = 6.8 Hz, 4 H, C**H**(CH₃), 1.24 (d ³J_{HH} = 6.8 Hz, CH(C**H**₃), 1.21 (d ³J_{HH} = 6.8 Hz, CH(C**H**₃).

 31 P-NMR (C₆D₆): δ = 187.2 (d, $^{1}J_{PH}$ = 344 Hz)

¹³C{¹H}-NMR (C₆D₆): δ = 193.8 (d, ²J_{PC} = 3 Hz, **C**O), 152.0 (d, ³J_{PC} = 10 Hz, *i*-OAryl), 140.4 (d, ³J_{PC} = 4 Hz, *o*-OAryl), 126.0 (d, ⁵J_{PC} = 2 Hz, *p*-OAryl), 124.4 (d, ⁴J_{PC} = 2 Hz, *m*-OAryl), 27.9 (d, ³J_{PC} = 1 Hz, **C**H(CH₃), 23.7 (s, CH(**C**H₃), 23.0 (s, CH(**C**H₃).

IR (DCM) $\tilde{\nu}$ (cm⁻¹) = 2083 (A₁), 2016 (E).

2,6-(Diisopropylphenyl)-trimethylsilylphosphonit-tricarbonyl-Nickel [8d]Ni(CO)₃

[8d]Ni(CO)₃

³¹P{¹H}-NMR (C₆D₆): δ =244.4 (s). IR (DCM) $\tilde{\nu}$ (cm⁻¹) = 2071 (A₁), 2006 (E). 2,6-(Diisopropylphenyl)-triphenylsilylphosphonit-tricarbonyl-Nickel [9d]Ni(CO)₃

[9d]Ni(CO)3

¹H-NMR (C₆D₆): δ = 8.09-7.98 (m, 6 H, *o*-SiPh), 7.17 (b, 9 H, SiPh), 7.01 (b, 6 H, O-Aryl), 3.40 (sept., 4 H, ³J_{HH} = 6.8 Hz, CH(CH₃)₂), 1.06 (d, 12 H, ³J_{HH} = 6.8 Hz, CH(CH₃)₂), 0.82 (d, 12 H, ³J_{HH} = 6.8 Hz, CH(CH₃)₂).

³¹P{¹H}-NMR (C₆D₆): δ = 248.2 (s).

²⁹Si{¹H}-NMR (C₆D₆): δ = -18.5 (d, ¹J_P²⁹Si = 38 Hz).

¹³C{¹H}-NMR (C₆D₆): δ = 194.6 (d, ²J_{PC} = 5 Hz, **C**O), 149.8 (d, ³J_{PC} = 9 Hz, *i*-OAryl), 141.7 (d, ³J_{PC} = 3 Hz, *o*-OAryl), 137.6 (d, ²J_{PC} = 2 Hz, *o*-SiPh), 135.3 (s, *i*-SiPh), 132.0 (s, *p*-SiPh), 130.3 (s, *m*-SiPh), 125.5 (d, ⁵J_{PC} = 2 Hz, *p*-OAryl), 123.8 (d, ⁴J_{PC} = 2 Hz, *m*-OAryl), 27.9 (d, ³J_{PC} = 1 Hz, **C**H(CH₃), 23.7 (s, CH(**C**H₃), 23.0 (s, CH(**C**H₃).

IR (DCM) $\tilde{\nu}$ (cm⁻¹) = 2072 (A₁), 2005 (E).

2,6-(Diisopropylphenyl)-triphenylgermylphosphonit-tricarbonyl-Nickel

[10d]Ni(CO)₃

[10d]Ni(CO)₃

¹H-NMR (C₆D₆): δ = 8.00-7.87 (m, 6 H, *o*-GePh), 7.06 (b, 6 H, OAryl), 3.46 (sept., ³J_{HH} = 6.4 Hz, 4 H, CH(CH₃), 1.09 (d ³J_{HH} = 6.4 Hz, CH(CH₃), 0.83 (d ³J_{HH} = 6.4 Hz, CH(CH₃).

³¹P-NMR (C_6D_6): δ = 249.7 (s).

¹³C{¹H}-NMR (C₆D₆): δ = 141.6 (d, ³J_{PC} = 3 Hz, *o*-OAryl), 136.4 (d, ²J_{PC} = 2 Hz, *o*-GePh), 135.4 (s, *i*-GePh), 129.6 (s, *m*-GePh), 128.4 (s, *p*-GePh), 125.6 (d, ⁵J_{PC} = 2 Hz, *p*-OAryl), 123.9 (d, ⁴J_{PC} = 2 Hz, *m*-OAryl), 28.2 (d, ³J_{PC} = 1 Hz, **C**H(CH₃), 23.7 (s, CH(**C**H₃), 23.1 (s, CH(**C**H₃).

IR (DCM) \tilde{v} (cm⁻¹) = 2073 (A₁), 2005 (E).

2,6-(Diisopropylphenyl)-triphenylstannylphosphonit-tricarbonyl-Nickel [11d]Ni(CO)₃

[11d]Ni(CO)3

¹H-NMR (C₆D₆): δ = 7.72 -7.62 (m, 6 H, *o*-SnPh), 7.12-7.08 (m, 9 H, SnPh), 7.00 (b, 6 H, OAryl), 3.64 (sept., ³J_{HH} = 7 Hz, 4 H, CH(CH₃), 1.12 (d ³J_{HH} = 7 Hz, CH(CH₃), 0.91 (d ³J_{HH} = 7 Hz, CH(CH₃). ³¹P-NMR (C₆D₆): δ = 257.2 (s).

¹³C{¹H}-NMR (C₆D₆): δ = 141.4 (d, ³*J*_{PC} = 4 Hz, *o*-OAryl), 137.7 (d, ²*J*_{PC} = 1 Hz, *o*-SnPh), 137.5 (s, *i*-SnPh), 129.2 (s, *m*-SnPh), 128.7 (s, *p*-SnPh), 125.9 (s, *p*-OAryl), 124.4 (d, ⁴*J*_{PC} = 2 Hz, *m*-OAryl), 28.5 (s, **C**H(CH₃), 23.6 (s, CH(**C**H₃), 23.1 (s, CH(**C**H₃).

IR (DCM) $\widetilde{\nu}$ (cm^-1) = 2073 (A1), 2007 (E).

2,6-(Diisopropylphenyl)-triphenylstannylphosphonit-tricarbonyl-Nickel

[9e]Ni(CO)₃

[9e]Ni(CO)₃

¹H-NMR (C₆D₆): δ = 7.97-7.90 (m, 6 H, *o*-SiPh), 7.11-6.99 (m, 9 H, SiPh), 1.17 (s, 6 H, C**H**₃), 0.67 (s, 6 H, C**H**₃).

³¹P-NMR (C₆D₆): δ = 245.9 (s).

IR (cm⁻¹): $\tilde{\nu}$ = 2068 (A₁), 1999 (E).

6.4.53 Allgemeine Vorschrift (AV2) der Umsetzung von Alkyltriphenylsilylphosphoniten mit Selen

In einem NMR-Rohr wurden die angegebenen Mengen des Phosphonits und graues Selen vorgelegt. Bei RT wurde mit C₆D₆ (0.6 mL) versetzt und die Probe homogenisiert, bis sich das Phosphonit vollständig gelöst hatte. Die Reaktionslösungen wurden unverzüglich NMR-spektroskopisch untersucht. Die Analyse der Produktverteilungen erfolgte durch Integration der ³¹P-NMR-Spektren. Versuche zur Isolierung der Produkte verliefen ohne Erfolg.

Selenierung von Diethyl-triphenylsilylphosphonit

9b (5 mg, 13 μmol) und graues Selen (2 mg, 25μmol) wurden nach AV2 umgesetzt. Es wurde das Silylphosphonsäureester (EtO)₂P(=Se)SiPh₃ **[9b]**Se als Hauptprodukt (87 %) und **25b** als eins der Nebenprodukte (5 %) identifiziert.

³¹P-NMR (C₆D₆): δ = 109.5 (q, ³J_{PH} = 11 Hz, ¹J_P²⁹Si = 166 Hz, ¹J_P⁷⁷Se = 810 Hz, **[9b]**Se), 198.6 (³J_{PH} = 8 Hz, ¹J_P⁷⁷Se = 285 Hz, **25b**).

⁷⁷Se{¹H}-NMR (C₆D₆): δ = -174.9 (d, ¹J_P⁷⁷Se = 810 Hz, **[9b]**Se)

Selenierung von Diisopropyl-triphenylsilylphosphonit

9c (5 mg, 12 µmol) und graues Selen (2 mg, 25µmol) wurden nach AV2 umgesetzt. Es wurde eine Mischung bestehend aus dem Silylphosphonsäureester (*i*-PrO)₂P(=Se)SiPh₃ **[9c]**BH₃ (77 %), dem Insertionsprodukt (*i*-PrO)₂P-Se-SiPh₃ **25c** (5 %), und dem Startmaterial **9c** (18 %) beobachtet.

³¹P-NMR (C₆D₆): δ = 105.1 (t, ³J_{PH} = 14 Hz, ¹J_P²⁹Si = 173 Hz, ¹J_P⁷⁷Se = 803 Hz, **[9c]**Se), 197.3 (t, ³J_{PH} = 11 Hz, **[25c]**Se), 209.0 (t, ^{.3}J_{PH} = 9 Hz, **9c**).

⁷⁷Se{¹H}-NMR (C₆D₆): δ = -174.3 (d, , ${}^{1}J_{P}{}^{77}Se$ = 803 Hz, [9c]Se).

6.4.54 Umsetzung von Bis-2,6-(diisopropylphenyl)-triphenylsilylphosphonit mit Selen

25d

9d (30 mg, 46.5 μmol) und graues Selen (7 mg, 93.0μmol) wurden in Toluol (2 mL) gelöst und bei RT gerührt. Nach 4 Wochen hatte sich 9c vollständig zum Selenophosphit **25d** umgesetzt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit Hexan (5 mL) aufgenommen, worauf sich die Lösung gelb verfärbte und sich **25d** zu **[25]**Se und weiteren nicht identifizierbaren Produkten zersetzt hat.

³¹P{¹H} (Toluol) δ = 226.1 (s, **25d**), 73.9 (s, ¹*J*_{PSe} = 770 Hz, **[25d]**Se).

6.4.55 Umsetzung von 2,6-(Diisopropylphenyl)-triphenylgermylphosphonit mit Selen

26d

10d (16 mg, 23.3 μ mol) wurde analog zu **9d** mit grauem Selen (4 mg, 50.7 μ mol) in C₆D₆ (1 mL) umgesetzt und die Lösung nach einer Woche Reaktionszeit NMR-spektroskopisch untersucht. Es wurde eine Mischung aus **10d** und **26d** identifiziert

³¹P{¹H} (C₆D₆): δ = 228.3 (s, ¹J_{PSe} = 355 Hz, **26d**), 252.0 (s, **10d**).

6.4.56 Umsetzung von 2,6-(Diisopropylphenyl)-trimethylsilylphosphonit mit Selen

24d

8d (11 mg, 24.0 μ mol) wurde analog zu **9d** mit grauem Selen (4 mg, 50.7 μ mol) in C₆D₆ (1 mL) umgesetzt und NMR-spektroskopisch untersucht. Es wurde eine Mischung aus **24d**, **8d** und dem Hydrolyseprodukt **2d** beobachtet.

³¹P{¹H} (C₆D₆): δ = 226.2 (s, **24d**), 248.0 (s, **8d**), 180.1 (s, **2d**).

7 Literaturverzeichnis

- [1] L. Horner, H. Hoffmann, H. G. Wippel, *Chem. Ber.* **1958**, *91*, 64–67.
- [2] L. Horner, H. Hoffmann, H. G. Wippel, G. Klahre, *Chem. Ber.* **1959**, *92*, 2499–2505.
- [3] W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. **1961**, 83, 1733–1738.
- [4] H. Guo, Y. C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 2018, 118, 10049–10293.
- [5] J. M. Lipshultz, G. Li, A. T. Radosevich, J. Am. Chem. Soc. 2021, 143, 1699–1721.
- [6] L. Longwitz, T. Werner, Angew. Chem. Int. Ed. 2020, 59, 2760–2763.
- [7] C. Janiak, H.-J. Meyer, D. Gudat, P. Kurz, *Riedel Moderne Anorganische Chemie*, De Gruyter, **2018**.
- [8] D. G. Churchill, M. D. Sikirić, B. Čolović, H. F. Milhofer, D. G. Churchill, M. D. Sikirić, B. Čolović, H. F. Milhofer, *Contemporary Topics about Phosphorus in Biology and Materials*, **2020**.
- [9] B. A. Trofimov, S. N. Arbuzova, N. K. Gusarova, Russ. Chem. Rev. 1999, 68, 215–227.
- [10] V. Koshti, S. Gaikwad, S. H. Chikkali, *Coord. Chem. Rev.* 2014, 265, 52–73.
- [11] C. A. Bange, R. Waterman, *Chem. Eur. J.* **2016**, *22*, 12598–12605.
- [12] D. Zhao, R. Wang, Chem. Soc. Rev. 2012, 41, 2095–2108.
- [13] I. Wauters, W. Debrouwer, C. V. Stevens, Beilstein J. Org. Chem. 2014, 10, 1064–1096.
- [14] L. F. Centofanti, *Inorg. Chem.* **1973**, *12*, 1131–1133.
- [15] M. V. Proskurnina, J. Gen. Chem. USSR 1973, 43, 63–65.
- [16] Y. Belabassi, M. I. Antczak, J. Tellez, J.-L. Montchamp, *Tetrahedron* **2008**, *64*, 9181–9190.
- [17] I. Lutsenko, N. Karlstedt, Proskurn.mv, Zh Obshch Khim 1972, 42, 2418–2421.
- [18] M. V. Proskurnina, N. Karlstedt, I. Lutsenko, Zh Obshch Khim 1977, 47, 1244–7.
- [19] I. Lutsenko, M. V. Proskurnina, N. Karlstedt, Zh Obshch Khim **1978**, 48, 765–767.
- [20] I. Lutsenko, M. V. Proskurnina, N. Karlstedt, *α-Ketophosphonites*, **1977**, SU579280.
- [21] I. Lutsenko, M. V. Proskurnina, N. Karlstedt, *Phosphorus Sulfur Silicon Relat Elem* 1973, 3, 55–8.
- [22] A. W. H. Speed, Chem. Soc. Rev. 2020, 49, 8335–8353.
- [23] D. M. C. Ould, R. L. Melen, Chem. Eur. J. 2020, 26, 9835–9845.
- [24] S. Burck, D. Gudat, M. Nieger, W.-W. Du Mont, J. Am. Chem. Soc. 2006, 128, 3946–3955.
- [25] A. H. Cowley, R. A. Kemp, Inorg. Chem. 1983, 22, 547–550.

- [26] A. Haghverdi, Untersuchungen Zur Struktur Und Reaktivität von Diazaphospholen-Derivaten, Universität Bonn, **2000**.
- [27] D. Gudat, A. Haghverdi, M. Nieger, Angew. Chem. Int. Ed. 2000, 39, 3084–3086.
- [28] J.-N. Li, L. Liu, Y. Fu, Q.-X. Guo, Tetrahedron 2006, 62, 4453–4462.
- [29] I. Lutsenko, M. V. Proskurnina, N. Karlstedt, Amidohypophosphite esters, 1976, SU539037.
- [30] N. Karlstedt, T. P. Goranskaya, M. V. Proskurnina, I. Lutsenko, *Khim Elem. Soedin* **1976**, 172–175.
- [31] A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, *Heteroat. Chem.* **2012**, *23*, 138–145.
- [32] M. Hurtado, M. Yánez, R. Herrero, A. Guerrero, J. Z. Dávalos, J.-L. M. Abboud, B. Khater, J.-C. Guillemin, *Chem. Eur. J.* **2009**, *15*, 4622–4629.
- [33] G. B. de Jong, N. Ortega, M. Lutz, K. Lammertsma, J. C. Slootweg, *Chem. Eur. J.* **2020**, *26*, 15944–15952.
- [34] A. Zschunke, M. Riemer, F. Krech, K. Issleib, *Phosphorus Sulfur Relat. Elem.* **1985**, *22*, 349–352.
- [35] I. J. Colquhoun, H. C. E. McFarlane, W. McFarlane, *Phosphorus Sulfur Relat. Elem.* **1983**, *18*, 61–64.
- [36] A. Longeau, P. Knochel, *Tetrahedron Lett.* **1996**, *37*, 6099–6102.
- [37] M. Blum, T. Dunaj, J. A. Knöller, C. M. Feil, M. Nieger, D. Gudat, Chem. Eur. J. 2020, 26, 15190–15199.
- [38] S. Kawaguchi, A. Ogawa, Asian J. Org. Chem. 2019, 8, 1164–1173.
- [39] M. Blum, O. Puntigam, S. Plebst, F. Ehret, J. Bender, M. Nieger, D. Gudat, *Dalton Trans.* 2016, 45, 1987–1997.
- [40] D. M. C. Ould, A. C. Rigby, L. C. Wilkins, S. J. Adams, J. A. Platts, S. J. A. Pope, E. Richards, R. L. Melen, *Organometallics* 2018, *37*, 712–719.
- [41] O. Puntigam, D. Förster, N. A. Giffin, S. Burck, J. Bender, F. Ehret, A. D. Hendsbee, M. Nieger, J. D. Masuda, D. Gudat, *Eur. J. Inorg. Chem.* **2013**, 2013, 2041–2050.
- [42] R. Edge, R. J. Less, E. J. L. McInnes, K. Müther, V. Naseri, J. M. Rawson, D. S. Wright, *Chem. Commun.* 2009, 1691–1693.
- [43] M. Blum, J. Kappler, S. H. Schlindwein, M. Nieger, D. Gudat, *Dalton Trans.* **2018**, *47*, 112–119.
- [44] T. Dunaj, C. M. Feil, M. Nieger, D. Gudat, *Z. Für Anorg. Allg. Chem.* **2022**, *648*, e202200192.
- [45] R. Higashida, N. Oka, T. Kawanaka, T. Wada, Chem. Commun. 2009, 2466–2468.
- [46] S. Uehara, S. Hiura, R. Higashida, N. Oka, T. Wada, J. Org. Chem. **2014**, 79, 3465–3472.
- [47] G. Fritz, Z. Für Naturforschung B **1953**, *8*, 776–777.

- [48] G. Fritz, G. Becker, Z. Für Anorg. Allg. Chem. **1970**, 372, 180–195.
- [49] E. Amberger, H. Boeters, Angew. Chem. **1962**, 74, 32–33.
- [50] G. Becker, H. Schmidt, G. Uhl, W. Uhl, M. Regitz, W. Rösch, U.-J. Vogelbacher, in *Inorg. Synth.* (Ed.: A.P. Ginsberg), John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007, pp. 243–249.
- [51] G. Becker, W. Hölderich, Chem. Ber. 1975, 108, 2484–2485.
- [52] G. P. Weinberger, F. Sommer, A. Torvisco, R. C. Fischer, M. Flock, Eur. J. Inorg. Chem. 2020, 2020, 3778–3785.
- [53] P. D. E. Niecke, H. Westermann, *Synthesis* **1988**, *1988*, 330–330.
- [54] R. Appel, W. Paulen, Angew. Chem. 1981, 93, 902–903.
- [55] R. Streubel, E. Niecke, *Chem. Ber.* **1990**, *123*, 1245–1251.
- [56] A. H. Cowley, T. H. Newman, Organometallics **1982**, *1*, 1412–1413.
- [57] S. Deblon, H. Grützmacher, P. F. Maire, H. Schönberg, *Liganden Zur Anwendung in Katalytischen Prozessen*, **2003**, WO 03/048175 A1.
- [58] H. R. G. Bender, E. Niecke, M. Nieger, H. Westermann, Z. Für Anorg. Allg. Chem. 1994, 620, 1194–1202.
- [59] L. Maier, Verfahren Zur Herstellung von Alkali- Und Erdalkaliaminophosphiden, **1967**, DE1244180.
- [60] D. Kiessling, K.-P. Knackmuss, H. Schicht, F. Winn, R. Schöllner, J. Für Prakt. Chem. 1973, 315, 577–586.
- [61] V. D. Romanenko, V. F. Shul'gin, V. V. Scopenko, L. N. Markovski, J. Chem. Soc. Chem. Commun. **1983**, 808–809.
- [62] J. R. Goerlich, R. Schmutzler, *Phosphorus Sulfur Silicon Relat. Elem.* **1995**, *101*, 245–251.
- [63] K. G. Pearce, V. Simenok, I. R. Crossley, *Dalton Trans.* **2020**, *49*, 5482–5492.
- [64] W. Wolfsberger, J. Bank, H. Werner, Z. Für Naturforschung B **1995**, 50, 1319–1328.
- [65] D. M. Schubert, A. D. Norman, *Inorg. Chem.* **1985**, *24*, 1107–1109.
- [66] J. P. van Linthoudt, E. V. van den Berghe, G. P. van der Kelen, *Spectrochim. Acta Part Mol. Spectrosc.* **1980**, *36*, 17–21.
- [67] G. Becker, O. Mundt, M. Rössler, E. Schneider, Z. Für Anorg. Allg. Chem. 1978, 443, 42– 52.
- [68] G. Märkl, F. Lieb, A. Merz, Angew. Chem. Int. Ed. Engl. 1967, 6, 458–459.
- [69] F. Uhlig, R. Hummeltenberg, J. Organomet. Chem. **1993**, 452, C9–C10.
- [70] U. Englich, K. Hassler, K. Ruhlandt-Senge, F. Uhlig, Inorg. Chem. 1998, 37, 3532–3537.
- [71] G. Fritz, W. Hölderich, Z. Für Anorg. Allg. Chem. **1976**, 422, 104–114.
- [72] C. A. Tolman, Chem. Rev. **1977**, 77, 313–348.

- [73] C. A. Tolman, J. Chem. Educ. 1986, 63, 199.
- [74] L. S. Meriwether, M. L. Fiene, J. Am. Chem. Soc. 1959, 81, 4200–4208.
- [75] W. Strohmeier, F.-J. Müller, *Chem. Ber.* **1967**, *100*, 2812–2821.
- [76] O. Kühl, Coord. Chem. Rev. 2005, 249, 693–704.
- [77] U. Beckmann, D. Süslüyan, P. C. Kunz, *Phosphorus Sulfur Silicon Relat. Elem.* **2011**, *186*, 2061–2070.
- [78] T. Allman, R. G. Goel, Can. J. Chem. 1982, 60, 716–722.
- [79] E. C. Alyea, S. Song, *Comments Inorg. Chem.* **1996**, *18*, 189–221.
- [80] C. H. Suresh, N. Koga, Inorg. Chem. 2002, 41, 1573–1578.
- [81] D. Cremer, E. Kraka, Dalton Trans. 2017, 46, 8323–8338.
- [82] T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940–6952.
- [83] S. Wolf, H. Plenio, J. Organomet. Chem. J ORGANOMET CHEM **2009**, 694, 1487–1492.
- [84] D. R. Anton, R. H. Crabtree, *Organometallics* **1983**, *2*, 621–627.
- [85] P. Kamer, P. W. N. M. van Leeuwen, *Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis*, John Wiley & Sons, Ltd, Chichester, West Sussex, United Kingdom, 2012.
- [86] M. Alcarazo, Acc. Chem. Res. **2016**, 49, 1797–1805.
- [87] S. R. Alvarado, I. A. Shortt, H.-J. Fan, J. Vela, Organometallics **2015**, *34*, 4023–4031.
- [88] C. P. Gordon, C. Copéret, Chim. Int. J. Chem. 2019, 73, 252–256.
- [89] A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023– 4078.
- [90] B. Carboni, L. Monnier, *Tetrahedron* **1999**, 55, 1197–1248.
- [91] R. Higashida, T. Kawanaka, N. Oka, T. Wada, Nucleic Acids Symp. Ser. 2007, 51, 133–134.
- [92] N. Oka, R. Higashida, Y. Takayama, K. Ando, T. Wada, *Nucleic Acids Symp. Ser.* **2009**, *53*, 111–112.
- [93] A. Ferry, G. Malik, P. Retailleau, X. Guinchard, D. Crich, J. Org. Chem. 2013, 78, 6858– 6867.
- [94] K. Sato, H. Imai, T. Shuto, R. I. Hara, T. Wada, J. Org. Chem. 2019, 84, 15032–15041.
- [95] H. Matsuda, H. Ito, Y. Nukaga, S. Uehara, K. Sato, R. I. Hara, T. Wada, *Tetrahedron Lett.* 2021, 87, 153526.
- [96] Y. Takahashi, K. Sato, T. Wada, J. Org. Chem. 2022, 87, 3895–3909.
- [97] D. Houalla, H. Ramdane, R. Wolf, Nouv. J. Chim. 1985, 9, 189.
- [98] E. Rivard, A. J. Lough, I. Manners, J. Chem. Soc. Dalton Trans. **2002**, 2966–2972.

- [99] K. Hemelsoet, F. Van Durme, V. Van Speybroeck, M.-F. Reyniers, M. Waroquier, *J. Phys. Chem. A* **2010**, *114*, 2864–2873.
- [100] A. H. Cowley, M. C. Damasco, J. Am. Chem. Soc. 1971, 93, 6815–6821.
- [101] T. Dunaj, C. M. Feil, M. Nieger, D. Gudat, Z. Für Anorg. Allg. Chem. n.d., n/a, e202200192.
- [102] G. Müller, J. Brand, Organometallics **2003**, 22, 1463–1467.
- [103] F. Dornhaus, M. Bolte, H.-W. Lerner, M. Wagner, Eur. J. Inorg. Chem. 2006, 2006, 5138– 5147.
- [104] K. Izod, J. M. Watson, S. M. El-Hamruni, R. W. Harrington, P. G. Waddell, Organometallics 2017, 36, 2218–2227.
- [105] K. Izod, J. M. Watson, W. Clegg, R. W. Harrington, Inorg. Chem. 2013, 52, 1466–1475.
- [106] K. Izod, A. M. Madlool, A. Craig, P. G. Waddell, Eur. J. Inorg. Chem. 2022, 2022, e202200123.
- [107] V. A. Pollard, A. Young, R. McLellan, A. R. Kennedy, T. Tuttle, R. E. Mulvey, Angew. Chem. Int. Ed. 2019, 58, 12291–12296.
- [108] M. T. Whitelaw, S. Banerjee, A. R. Kennedy, A. van Teijlingen, T. Tuttle, R. E. Mulvey, Cell Rep. Phys. Sci. 2022, 3, 100942.
- [109] G. Barozzino Consiglio, P. Queval, A. Harrison-Marchand, A. Mordini, J.-F. Lohier, O. Delacroix, A.-C. Gaumont, H. Gérard, J. Maddaluno, H. Oulyadi, J. Am. Chem. Soc. 2011, 133, 6472–6480.
- [110] I. Abdellah, E. Bernoud, J.-F. Lohier, C. Alayrac, L. Toupet, C. Lepetit, A.-C. Gaumont, Chem. Commun. 2012, 48, 4088–4090.
- [111] W. F. McNamara, E. N. Duesler, R. T. Paine, J. V. Ortiz, P. Koelle, H. Noeth, Organometallics 1986, 5, 380–383.
- [112] F. Dornhaus, M. Bolte, H.-W. Lerner, M. Wagner, J. Organomet. Chem. 2007, 692, 2949– 2955.
- [113] S. Alvarez, Dalton Trans. 2013, 42, 8617–8636.
- [114] R. Streubel, A. Özbolat-Schön, G. von Frantzius, H. Lee, G. Schnakenburg, D. Gudat, Inorg. Chem. 2013, 52, 3313–3325.
- [115] A. Dransfeld, P. von Ragué Schleyer, Magn. Reson. Chem. 1998, 36, S29–S43.
- [116] A. Liske, K. Verlinden, H. Buhl, K. Schaper, C. Ganter, Organometallics 2013, 32, 5269– 5272.
- [117] S. Khan, H. W. Roesky, *Chem. Eur. J.* **2019**, *25*, 1636–1648.
- [118] H. Buhl, C. Ganter, Chem. Commun. 2013, 49, 5417–5419.
- [119] Y. Shao, M. Huang, F. Gu, C. Zhao, L.-B. Qu, Z. Ke, Org. Chem. Front. 2021, 8, 1206–1215.
- [120] Z. Zhao, J. Tan, T. Chen, Z. Hussain, Y. Li, Y. Wu, D. W. Stephan, *Inorg. Chem.* 2022, 61, 18670–18677.

- [121] D. Gudat, A. Haghverdi, W. Hoffbauer, Magn. Reson. Chem. 2002, 40, 589–594.
- [122] C. Boehme, G. Frenking, J. Am. Chem. Soc. 1996, 118, 2039–2046.
- [123] D. Gudat, A. Haghverdi, H. Hupfer, M. Nieger, Chem. Eur. J. 2000, 6, 3414–3425.
- [124] M. K. Denk, S. Gupta, A. J. Lough, Eur. J. Inorg. Chem. 1999, 1999, 41–49.
- [125] E. von Grotthuss, M. Diefenbach, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, *Angew. Chem. Int. Ed.* **2016**, *55*, 14067–14071.
- [126] T. Nakamura, K. Suzuki, M. Yamashita, J. Am. Chem. Soc. 2014, 136, 9276–9279.
- [127] T. D. Hettich, R. Rudolf, C. M. Feil, N. Birchall, M. Nieger, D. Gudat, Chem. Eur. J. 2021, 27, 5412–5416.
- [128] L. B. Krivdin, Magn. Reson. Chem. 2023, 61, 138–161.
- [129] H. Günther, D. Moskau, P. Bast, D. Schmalz, *Angew. Chem. Int. Ed. Engl.* **1987**, *26*, 1212–1220.
- [130] C. A. Jaska, A. J. Lough, I. Manners, Inorg. Chem. 2004, 43, 1090–1099.
- [131] J.-Q. Zhang, J.-J. Ye, L.-B. Han, *Phosphorus Sulfur Silicon Relat. Elem.* **2021**, *196*, 961–964.
- [132] D. Weber, G. Heckmann, E. Fluck, Z. Für Naturforschung B **1976**, *31*, 81–84.
- [133] A. Schmidpeter, S. Lochschmidt, W. S. Sheldrick, *Angew. Chem. Int. Ed. Engl.* **1982**, *21*, 63–64.
- [134] B. D. Ellis, C. L. B. Macdonald, Inorg. Chem. 2006, 45, 6864–6874.
- [135] A. Schmidpeter, S. Lochschmidt, K. Karaghiosoff, W. S. Sheldrick, J. Chem. Soc. Chem. Commun. 1985, 1447–1448.
- [136] K. Lammertsma, in New Asp. Phosphorus Chem. III (Ed.: J.-P. Majoral), Springer, Berlin, Heidelberg, 2003, pp. 95–119.
- [137] G. Baccolini, C. Boga, M. Mazzacurati, F. Sangirardi, Org. Lett. 2006, 8, 1677–1680.
- [138] A. Schmidpeter, G. Burget, *Phosphorus Sulfur Relat. Elem.* **1985**, 22, 323–335.
- [139] A. Schmidpeter, G. Bürget, Z. Für Naturforschung B **1985**, 40, 1306–1313.
- [140] P. Mastrorilli, Eur. J. Inorg. Chem. 2008, 2008, 4835–4850.
- [141] K. Kaniewska, Ł. Ponikiewski, N. Szynkiewicz, B. Cieślik, J. Pikies, J. Krzystek, A. Dragulescu-Andrasi, S. A. Stoian, R. Grubba, *Dalton Trans.* **2020**, *49*, 10091–10103.
- [142] L. Rosenberg, Coord. Chem. Rev. 2012, 256, 606–626.
- [143] R. Waterman, Dalton Trans. 2009, 18–26.
- [144] H.-J. Haupt, J. Chem. Sci. 2000, 112, 209–213.
- [145] W. Wang, P. J. Low, A. J. Carty, E. Sappa, G. Gervasio, C. Mealli, A. Ienco, E. Perez-Carreño, *Inorg. Chem.* 2000, 39, 998–1005.
- [146] H. Werner, Comments Inorg. Chem. 1990, 10, 267–295.

- [147] M. Elie, F. Sguerra, F. Di Meo, M. D. Weber, R. Marion, A. Grimault, J.-F. Lohier, A. Stallivieri, A. Brosseau, R. B. Pansu, J.-L. Renaud, M. Linares, M. Hamel, R. D. Costa, S. Gaillard, ACS Appl. Mater. Interfaces 2016, 8, 14678–14691.
- [148] J. Yuan, L. Zhu, J. Zhang, J. Li, C. Cui, Organometallics **2017**, *36*, 455–459.
- [149] M. Blum, Neue Wege zur PH-Funktionalisierung von Diaminophosphanen und Diaminophosphan-Boranen, Universität Stuttgart, **2019**.
- [150] T. S. De Vries, E. Vedejs, Organometallics **2007**, *26*, 3079–3081.
- [151] V. Plack, J. R. Goerlich, R. Schmutzler, Z. Für Anorg. Allg. Chem. 1998, 624, 1940–1942.
- [152] R. Rathore, C. L. Burns, I. A. Guzei, J. Org. Chem. 2004, 69, 1524–1530.
- [153] M. Henn, K. Jurkschat, R. Ludwig, M. Mehring, K. Peveling, M. Schürmann, Z. Für Anorg. *Allg. Chem.* **2002**, *628*, 2940–2947.
- [154] T. Reetz, Inorg. Chem. 1972, 11, 650-651.
- [155] J. R. Van Wazer, C. F. Callis, J. N. Shoolery, R. C. Jones, J. Am. Chem. Soc. 1956, 78, 5715– 5726.
- [156] N. Santschi, A. Togni, J. Org. Chem. 2011, 76, 4189–4193.
- [157] R. T. Paine, H. Noeth, Chem. Rev. 1995, 95, 343–379.
- [158] P. P. Power, Chem. Rev. 1999, 99, 3463-3503.
- [159] R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877-3923.
- [160] T. J. Clark, K. Lee, I. Manners, Chem. Eur. J. 2006, 12, 8634–8648.
- [161] E. M. Leitao, T. Jurca, I. Manners, Nat. Chem. 2013, 5, 817–829.
- [162] D. Zhao, N. Wu, S. Zhang, P. Xi, X. Su, J. Lan, J. You, Angew. Chem. Int. Ed. 2009, 48, 8729–8732.
- [163] I. Fleming, S. V. Ley, Category 1, Organometallics: Compounds of Groups 15 (As, Sb, Bi) and Silicon Compounds, Georg Thieme Verlag, Stuttgart, 2002.
- [164] R. K. Raut, S. F. Amin, P. Sahoo, V. Kumar, M. Majumdar, Inorganics 2018, 6, 69.
- [165] A. Bhattacharjee, H. Hosoya, H. Ikeda, K. Nishi, H. Tsurugi, K. Mashima, Chem. Eur. J. 2018, 24, 11278–11282.
- [166] M. Noguchi, K. Suzuki, J. Kobayashi, T. Yurino, H. Tsurugi, K. Mashima, M. Yamashita, Organometallics 2018, 37, 1833–1836.
- [167] T. Saito, H. Nishiyama, H. Tanahashi, K. Kawakita, H. Tsurugi, K. Mashima, J. Am. Chem. Soc. **2014**, 136, 5161–5170.
- [168] N. Wiberg, G. Preiner, Angew. Chem. 1977, 89, 343–344.
- [169] N. Wiberg, G. Preiner, O. Schieda, G. Fischer, Chem. Ber. 1981, 114, 3505–3517.
- [170] G. C. Lloyd-Jones, N. P. Taylor, *Chem. Eur. J.* **2015**, *21*, 5423–5428.

- [171] S. D. Pastor, S. P. Shum, A. D. DeBellis, L. P. Burke, R. K. Rodebaugh, F. H. Clarke, G. Rihs, *Inorg. Chem.* **1996**, *35*, 949–958.
- [172] J. Scherer, G. Huttner, M. Büchner, Chem. Ber. 1996, 129, 697–713.
- [173] J. Mormul, M. Mulzer, T. Rosendahl, F. Rominger, M. Limbach, P. Hofmann, Organometallics 2015, 34, 4102–4108.
- [174] R. B. Bedford, Y.-N. Chang, M. F. Haddow, C. L. McMullin, *Dalton Trans.* 2011, 40, 9034– 9041.
- [175] S.-B. Chen, Y.-M. Li, S.-Z. Luo, G. Zhao, B. Tan, Y.-F. Zhao, Phosphorus Sulfur Silicon Relat. Elem. 2000, 164, 277–291.
- [176] D. J. Collins, P. F. Drygala, J. M. Swan, Aust. J. Chem. 1983, 36, 2517–2536.
- [177] N. V. Timosheva, A. Chandrasekaran, R. R. Holmes, Inorg. Chem. 2006, 45, 3113–3123.
- [178] E. E. Nifantiev, S. F. Sorokina, A. A. Borisenko, A. I. Zavalishina, L. A. Vorobjeva, *Tetrahedron* **1981**, *37*, 3183–3194.
- [179] H. Schumann, O. Stelzer, U. Niederreuther, L. Rösch, Chem. Ber. 1970, 103, 1383–1390.
- [180] G. Lynn Wood, D. Dou, C. K. Narula, E. N. Duesler, R. T. Paine, H. Nöth, *Chem. Ber.* **1990**, *123*, 1455–1460.
- [181] J. Almy, D. J. Cram, J. Am. Chem. Soc. 1969, 91, 4459–4468.
- [182] W. Schlenk, Wilh. Schlenk jun., Berichte Dtsch. Chem. Ges. B Ser. 1929, 62, 920–924.
- [183] R. I. Yousef, B. Walfort, T. Rüffer, C. Wagner, H. Schmidt, R. Herzog, D. Steinborn, J. Organomet. Chem. 2005, 690, 1178–1191.
- [184] J. Toney, G. D. Stucky, J. Organomet. Chem. 1970, 22, 241–249.
- [185] D. C. Bradley, I. S. Harding, Eur. J. Solid State Inorg. Chem. 1993, 30, 659–659.
- [186] S. V. Ponomarev, A. A. Stepanov, V. N. Sergeev, I. F. Lutsenko, *Zh Obshch Khim* 1978, 48, 231.
- [187] B. M. Wile, R. McDonald, M. J. Ferguson, M. Stradiotto, *Organometallics* 2005, 24, 1959–1965.
- [188] T. N. Mitchell, H.-J. Belt, J. Organomet. Chem. 1990, 386, 167–176.
- [189] H. Schumann, P. Jutzi, M. Schmidt, Angew. Chem. Int. Ed. Engl. 1965, 4, 869–869.
- [190] H. Schumann, Angew. Chem. Int. Ed. Engl. 1969, 8, 937–950.
- [191] C. M. L. Kerr, K. Webster, F. Williams, J. Phys. Chem. 1975, 79, 2663–2668.
- [192] C. M. L. Kerr, K. Webster, F. Williams, J. Phys. Chem. 1975, 79, 2650–2662.
- [193] M. Lehnig, H.-U. Buschhaus, W. P. Neumann, Th. Apoussidis, Bull. Sociétés Chim. Belg. 1980, 89, 907–914.
- [194] C. Branfoot, T. A. Young, D. F. Wass, P. G. Pringle, *Dalton Trans.* **2021**, *50*, 7094–7104.
- [195] M. Blum, C. M. Feil, M. Nieger, D. Gudat, Z. Für Anorg. Allg. Chem. 2021, 647, 279–285.

- [196] I. S. M. Saiful, Y. Ohba, K. Mochida, S. Yamauchi, Phys. Chem. Chem. Phys. 2001, 3, 1011– 1014.
- [197] T. N. Mitchell, K. Heesche-Wagner, H.-J. Belt, Magn. Reson. Chem. 1991, 29, 78–82.
- [198] M. Duncan, M. J. Gallagher, Org. Magn. Reson. 1981, 15, 37–42.
- [199] A. Sato, H. Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 2005, 44, 1694–1696.
- [200] K. Hirano, M. Miura, *Tetrahedron Lett.* **2017**, *58*, 4317–4322.
- [201] S. Kawaguchi, S. Nagata, T. Shirai, K. Tsuchii, A. Nomoto, A. Ogawa, *Tetrahedron Lett.* **2006**, *47*, 3919–3922.
- [202] T. Arai, H. Sakuragi, K. Tokumaru, Bull. Chem. Soc. Jpn. 1982, 55, 2204–2207.
- [203] H. Morrison, J. Am. Chem. Soc. **1965**, 87, 932–932.
- [204] R. B. King, W. M. Rhee, Inorg. Chem. 1978, 17, 2961–2963.
- [205] L. H. Machemer, M. Pickel, Toxicology 1994, 91, 29-36.
- [206] R. C. Gupta, in *Toxicol. Organophosphate Carbamate Compd.* (Ed.: R.C. Gupta), Academic Press, Burlington, **2006**, pp. 5–24.
- [207] D. Chaturvedi, Tetrahedron 2012, 68, 15–45.
- [208] A. Matošević, A. Bosak, Arch. Ind. Hyg. Toxicol. 2020, 71, 285–299.
- [209] E. M. Váquez-López, A. Sánchez, J. S. Casas, J. Sordo, E. E. Castellano, *J. Organomet. Chem.* **1992**, *438*, 29–37.
- [210] U. Kunze, A. Antoniadis, M. Moll, J. Organomet. Chem. 1981, 215, 187–200.
- [211] J. Kopf, R. Lenck, S. N. Olafsson, R. Kramolowsky, Angew. Chem. **1976**, 88, 811–812.
- [212] R. Kramolowsky, Angew. Chem. Int. Ed. Engl. 1969, 8, 202–203.
- [213] I. Ruppert, Z. Für Anorg. Allg. Chem. 1981, 477, 59–70.
- [214] R. Mathieu, M. Lenzi, R. Poilblanc, Inorg. Chem. 1970, 9, 2030–2034.
- [215] L. S. Meriwether, J. R. Leto, J. Am. Chem. Soc. 1961, 83, 3192-3196.
- [216] A. Mantovani, A. Marcomini, U. Belluco, J. Mol. Catal. 1985, 30, 73–80.
- [217] L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L. Cavallo, *Organometallics* **2016**, *35*, 2286–2293.
- [218] H. Clavier, S. P. Nolan, Chem. Commun. 2010, 46, 841-861.
- [219] A. V. Artem'ev, N. K. Gusarova, S. F. Malysheva, B. A. Trofimov, Org. Prep. Proced. Int. 2011, 43, 381–449.
- [220] C. Q. Nguyen, M. Afzaal, M. A. Malik, M. Helliwell, J. Raftery, P. O'Brien, J. Organomet. *Chem.* **2007**, *692*, 2669–2677.
- [221] C. M. Evans, M. E. Evans, T. D. Krauss, J. Am. Chem. Soc. 2010, 132, 10973–10975.

- [222] C. W. Liu, I.-J. Shang, C.-M. Hung, J.-C. Wang, T.-C. Keng, J. Chem. Soc. Dalton Trans. **2002**, 1974–1979.
- [223] D. W. Allen, B. F. Taylor, J. Chem. Soc. Dalton Trans. 1982, 51–54.
- [224] T. S. Barnard, M. R. Mason, Inorg. Chem. 2001, 40, 5001–5009.
- [225] S. M. Socol, J. G. Verkade, Inorg. Chem. 1984, 23, 3487–3493.
- [226] P. W. Dyer, J. Fawcett, M. J. Hanton, R. D. W. Kemmitt, R. Padda, N. Singh, *Dalton Trans.* 2003, 104–113.
- [227] R. P. Davies, M. G. Martinelli, Inorg. Chem. 2002, 41, 348–352.
- [228] P. Lönnecke, M. Meisel, Phosphorus Sulfur Silicon Relat. Elem. 1997, 124, 505–508.
- [229] J. Hahn, A. Hopp, A. Borxowsky, Phosphorus Sulfur Silicon Relat. Elem. 1992, 64, 129– 136.
- [230] W.-W. du Mont, Angew. Chem. 1980, 92, 562–563.
- [231] S. Yogendra, S. S. Chitnis, F. Hennersdorf, M. Bodensteiner, R. Fischer, N. Burford, J. J. Weigand, *Inorg. Chem.* 2016, 55, 1854–1860.
- [232] R. Franz, S. Nasemann, C. Bruhn, Z. Kelemen, R. Pietschnig, Chem. Eur. J. 2021, 27, 641–648.
- [233] W. McFarlane, D. S. Rycroft, J. Chem. Soc. Dalton Trans. 1973, 2162–2166.
- [234] W. McFarlane, D. S. Rycroft, J. Chem. Soc. Chem. Commun. 1972, 902–903.
- [235] C. W. Liu, T. S. Lobana, J.-L. Xiao, H.-Y. Liu, B.-J. Liaw, C.-M. Hung, Z. Lin, Organometallics 2005, 24, 4072–4078.
- [236] W. J. Stec, A. Okruszek, B. Uznanski, J. Michalski, *Phosphorus Relat. Group V Elem.* **1972**, 2, 97.
- [237] K. N. Gavrilov, V. N. Tsarev, M. G. Maksimova, O. G. Bondarev, E. A. Rastorguev, S. E. Lyubimov, P. V. Petrovskii, V. A. Davankov, *J. Mol. Catal. Chem.* **2006**, *259*, 267–274.
- [238] A. Zwierzak, Can. J. Chem. **1967**, 45, 2501–2512.
- [239] K. Nozaki, N. Sakai, T. Nanno, T. Higashijima, S. Mano, T. Horiuchi, H. Takaya, *J. Am. Chem. Soc.* **1997**, *119*, 4413–4423.
- [240] S. A. Weicker, D. W. Stephan, Chem. Eur. J. 2015, 21, 13027–13034.
- [241] Y. Takeuchi, K. Suzuki, T. Yagi, Y. Yoshida, Y. Suzuki, *Appl. Organomet. Chem.* **2005**, *19*, 104–107.
- [242] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795–1818.
- [243] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42–55.
- [244] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112–122.
- [245] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.

- [246] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, **2016**.
- [247] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- [248] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- [249] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [250] C. van Wüllen, Phys. Chem. Chem. Phys. 2000, 2, 2137–2144.
- [251] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429–1437.

8 Anhang

Tabelle A1: Kristallographische Daten und Strukturverfeinerung für [2e]BH₃.

	gud660 tw	
Identification code	<u>guuooo_</u>	
Empirical formula	С6 Н16 В О2 Р	
Formula weight	161.97	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 18.1259(9) Å	a= 90°.
	b = 8.0903(4) Å	b= 112.576(2)°.
	c = 13.9636(7) Å	g = 90°.
Volume	1890.77(16) Å ³	
Z	8	
Density (calculated)	1.138 Mg/m ³	
Absorption coefficient	0.237 mm ⁻¹	
F(000)	704	
Crystal size	0.513 x 0.458 x 0.264 mm ³	
Theta range for data collection	2.434 to 33.253°.	
Index ranges	-27<=h<=27, -12<=k<=12, -21<=l<=21	
Reflections collected	7248	
Independent reflections	7248 [R(int) = ?]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7465 and 0.6985	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7248 / 0 / 189	
Goodness-of-fit on F ²	1.063	
Final R indices [I>2sigma(I)]	R1 = 0.0350, wR2 = 0.0886	
R indices (all data)	R1 = 0.0494, wR2 = 0.0968	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.352 and -0.382 e.Å ⁻³	

 $Tabelle \ A2: \ Kristallographische \ Daten \ und \ Strukturverfeinerung \ für \ \{ \textbf{[3i]} Li \cdot (i-Pr)_2 N \cdot [Li_8 (OEt)_6 THF_2)] \}.$

	aud 700	
Identification code	gud702	
Empirical formula	C70 H176 B4 Li12 N6 O12 P4	
Formula weight	1544.56	
Temperature	145(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.7653(12) Å	a= 90.663(3)°.
	b = 14.7008(15) Å	b= 109.305(3)°.
	c = 16.6452(18) Å	g = 102.627(3)°.
Volume	2640.3(5) Å ³	
Z	1	
Density (calculated)	0.971 Mg/m ³	
Absorption coefficient	0.118 mm ⁻¹	
F(000)	850	
Crystal size	0.457 x 0.261 x 0.208 mm ³	
Theta range for data collection	1.841 to 26.461°.	
Index ranges	-14<=h<=14, -18<=k<=18, -20<=l<=20	
Reflections collected	36961	
Independent reflections	10805 [R(int) = 0.0472]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7454 and 0.7120	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	10805 / 31 / 501	
Goodness-of-fit on F ²	1.022	
Final R indices [I>2sigma(I)]	R1 = 0.0621, wR2 = 0.1339	
R indices (all data)	R1 = 0.1308, wR2 = 0.1644	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.391 and -0.470 e.Å ⁻³	

Tabelle A3: Kristallographische Daten und Strukturverfeinerung für [3b]Cu.

	gud541	
Identification code		
Empirical formula	C31 H49 B Cu N2 O3 P	
Formula weight	603.04	
Temperature	135(2) К	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.7622(3) Å	a= 95.120(2)°.
	b = 17.8968(5) Å	b= 101.040(2)°.
	c = 18.4359(5) Å	g = 91.830(3)°.
Volume	3466.93(17) Å ³	
Z	4	
Density (calculated)	1.155 Mg/m ³	
Absorption coefficient	1.554 mm ⁻¹	
F(000)	1288	
Crystal size	0.111 x 0.071 x 0.070 mm ³	
Theta range for data collection	2.453 to 66.555°.	
Index ranges	-12<=h<=12, -19<=k<=21, -21<=l<=21	
Reflections collected	45619	
Independent reflections	11696 [R(int) = 0.0670]	
Completeness to theta = 66.555°	95.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.8642 and 0.7410	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11696 / 3 / 700	
Goodness-of-fit on F ²	1.017	
Final R indices [I>2sigma(I)]	R1 = 0.0535, wR2 = 0.1279	
R indices (all data)	R1 = 0.0860, wR2 = 0.1458	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.694 and -0.521 e.Å ⁻³	

Tabelle A4: Kristallographische Daten und Strukturverfeinerung für [8d]BH3.

	gud661	
Identification code	80001	
Empirical formula	C27 H46 B O2 P Si	
Formula weight	472.51	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 28.8930(12) Å	a= 90°.
	b = 11.3154(5) Å	b= 103.907(2)°.
	c = 18.6679(8) Å	g = 90°.
Volume	5924.3(4) Å ³	
Z	8	
Density (calculated)	1.060 Mg/m ³	
Absorption coefficient	0.153 mm ⁻¹	
F(000)	2064	
Crystal size	0.541 x 0.395 x 0.238 mm ³	
Theta range for data collection	1.941 to 28.372°.	
Index ranges	-37<=h<=38, -15<=k<=14, -24<=l<=24	
Reflections collected	77614	
Independent reflections	14759 [R(int) = 0.0349]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.7053	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	14759 / 62 / 590	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0558, wR2 = 0.1224	
R indices (all data)	R1 = 0.0868, wR2 = 0.1359	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.566 and -0.449 e.Å ⁻³	

Tabelle A5: Kristallographische Daten und Strukturverfeinerung für [9b]BH₃.

	gud634	
Identification code		
Empirical formula	C22 H28 B O2 P Si	
Formula weight	394.31	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.0255(9) Å	a= 91.526(5)°.
	b = 10.0888(10) Å	b= 90.385(6)°.
	c = 14.7531(16) Å	g = 112.851(4)°.
Volume	1100.2(2) Å ³	
Z	2	
Density (calculated)	1.190 Mg/m ³	
Absorption coefficient	0.193 mm ⁻¹	
F(000)	420	
Crystal size	0.537 x 0.277 x 0.050 mm ³	
Theta range for data collection	1.381 to 30.605°.	
Index ranges	-11<=h<=11, -14<=k<=9, -20<=l<=21	
Reflections collected	35968	
Independent reflections	6722 [R(int) = 0.0320]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7462 and 0.6875	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6722 / 0 / 252	
Goodness-of-fit on F ²	1.020	
Final R indices [I>2sigma(I)]	R1 = 0.0412, wR2 = 0.1005	
R indices (all data)	R1 = 0.0595, wR2 = 0.1095	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.421 and -0.374 e.Å ⁻³	

Tabelle A6: Kristallographische Daten und Strukturverfeinerung für [9c]BH3.

	gud624	
Identification code	800024	
Empirical formula	C24 H32 B O2 P Si	
Formula weight	422.36	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.1567(11) Å	a= 105.661(5)°.
	b = 15.8182(17) Å	b= 104.426(5)°.
	c = 16.7692(18) Å	g = 96.396(5)°.
Volume	2465.8(5) Å ³	
Z	4	
Density (calculated)	1.138 Mg/m ³	
Absorption coefficient	0.176 mm ⁻¹	
F(000)	904	
Crystal size	0.630 x 0.410 x 0.160 mm ³	
Theta range for data collection	1.576 to 28.459°.	
Index ranges	-13<=h<=13, -18<=k<=21, -22<=l<=21	
Reflections collected	63683	
Independent reflections	12185 [R(int) = 0.0314]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.7134	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12185 / 27 / 513	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0520, wR2 = 0.1354	
R indices (all data)	R1 = 0.0642, wR2 = 0.1455	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.953 and -0.675 e.Å ⁻³	

Tabelle A7: Kristallographische Daten und Strukturverfeinerung für [9d]BH₃.

Ident:fination and	gud674	
Empirical formula	C42 H52 B O2 P Si	
Formula weight	658.70	
Temperature	140(2) К	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.9052(5) Å	a= 74.396(2)°.
	b = 11.2663(5) Å	b= 72.675(2)°.
	c = 17.5404(7) Å	g = 69.963(2)°.
Volume	1898.96(15) Å ³	
Z	2	
Density (calculated)	1.152 Mg/m ³	
Absorption coefficient	0.138 mm ⁻¹	
F(000)	708	
Crystal size	0.832 x 0.584 x 0.397 mm ³	
Theta range for data collection	1.958 to 28.535°.	
Index ranges	-14<=h<=14, -15<=k<=15, -23<=l<=23	
Reflections collected	34097	
Independent reflections	9554 [R(int) = 0.0246]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.7081	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9554 / 0 / 433	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0399, wR2 = 0.1024	
R indices (all data)	R1 = 0.0510, wR2 = 0.1102	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.690 and -0.389 e.Å ⁻³	

Tabelle A8: Kristallographische Daten und Strukturverfeinerung für [10b]BH3.

	gud675	
Identification code	8	
Empirical formula	C22 H28 B Ge O2 P	
Formula weight	438.81	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.4941(5) Å	a= 72.888(3)°.
	b = 10.8509(5) Å	b= 75.688(3)°.
	c = 12.3737(7) Å	g = 69.276(2)°.
Volume	1124.78(10) Å ³	
Z	2	
Density (calculated)	1.296 Mg/m ³	
Absorption coefficient	1.446 mm ⁻¹	
F(000)	456	
Crystal size	0.534 x 0.261 x 0.132 mm ³	
Theta range for data collection	1.744 to 28.365°.	
Index ranges	-12<=h<=12, -14<=k<=14, -16<=l<=16	
Reflections collected	19926	
Independent reflections	5604 [R(int) = 0.0294]	
Completeness to theta = 25.242°	99.3 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.6331	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5604 / 0 / 244	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0377, wR2 = 0.0849	
R indices (all data)	R1 = 0.0501, wR2 = 0.0905	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.941 and -1.087 e.Å ⁻³	

Tabelle A9: Kristallographische Daten und Strukturverfeinerung für [10c]BH₃.

	aud676	
Identification code	guuoro	
Empirical formula	C24 H32 B Ge O2 P	
Formula weight	466.86	
Temperature	140(2) К	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.5963(5) Å	a= 73.995(2)°.
	b = 10.7445(5) Å	b= 78.958(2)°.
	c = 12.6460(7) Å	g = 72.777(2)°.
Volume	1188.55(11) Å ³	
Z	2	
Density (calculated)	1.305 Mg/m ³	
Absorption coefficient	1.373 mm ⁻¹	
F(000)	488	
Crystal size	0.447 x 0.228 x 0.188 mm ³	
Theta range for data collection	1.687 to 28.451°.	
Index ranges	-12<=h<=12, -9<=k<=14, -16<=l<=16	
Reflections collected	21092	
Independent reflections	5929 [R(int) = 0.0278]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.6586	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5929 / 0 / 271	
Goodness-of-fit on F ²	1.038	
Final R indices [I>2sigma(I)]	R1 = 0.0253, wR2 = 0.0572	
R indices (all data)	R1 = 0.0340, wR2 = 0.0605	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.336 and -0.316 e.Å ⁻³	

Tabelle A10: Kristallographische Daten und Strukturverfeinerung für [10d]BH₃.

	gud641a	
Identification code		
Empirical formula	C42 H52 B Ge O2 P	
Formula weight	703.20	
Temperature	140(2) К	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.9683(12) Å	a= 74.432(5)°.
	b = 11.2617(12) Å	b= 72.681(5)°.
	c = 17.5903(19) Å	g = 69.978(6)°.
Volume	1915.1(4) Å ³	
Z	2	
Density (calculated)	1.219 Mg/m ³	
Absorption coefficient	0.875 mm ⁻¹	
F(000)	744	
Crystal size	0.226 x 0.149 x 0.074 mm ³	
Theta range for data collection	1.959 to 28.387°.	
Index ranges	-14<=h<=14, -15<=k<=15, -23<=l<=23	
Reflections collected	37445	
Independent reflections	9515 [R(int) = 0.0443]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9540 and 0.8348	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9515 / 0 / 433	
Goodness-of-fit on F ²	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0405, wR2 = 0.0844	
R indices (all data)	R1 = 0.0650, wR2 = 0.0919	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.893 and -0.688 e.Å ⁻³	

Tabelle A11: Kristallographische Daten und	d Strukturverfeinerung †	für 9d
--	--------------------------	---------------

Identification code	gud649	
Empirical formula	C42 H49 O2 P Si	
Formula weight	644.87	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pna21	
Unit cell dimensions	a = 11.4924(5) Å	a= 90°.
	b = 15.4134(7) Å	b= 90°.
	c = 40.833(2) Å	g = 90°.
Volume	7233.1(6) Å ³	
Z	8	
Density (calculated)	1.184 Mg/m ³	
Absorption coefficient	0.144 mm ⁻¹	
F(000)	2768	
Crystal size	0.337 x 0.163 x 0.070 mm ³	
Theta range for data collection	1.412 to 26.364°.	
Index ranges	-14<=h<=14, -19<=k<=9, -43<=l<=50	
Reflections collected	48542	
Independent reflections	12724 [R(int) = 0.0594]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7454 and 0.6770	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12724 / 1 / 829	
Goodness-of-fit on F ²	1.016	
Final R indices [I>2sigma(I)]	R1 = 0.0485, wR2 = 0.0975	
R indices (all data)	R1 = 0.0766, wR2 = 0.1079	
Absolute structure parameter	0.27(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.599 and -0.349 e.Å ⁻³	

Tabelle A12: Kristallographische Daten und Strukturverfeinerung für 10d.

	gud644	
Identification code	5	
Empirical formula	C42 H49 Ge O2 P	
Formula weight	689.37	
Temperature	140(2) К	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.1536(5) Å	a= 76.490(2)°.
	b = 11.2082(5) Å	b= 74.438(2)°.
	c = 18.0985(8) Å	g = 70.625(3)°.
Volume	1847.95(15) Å ³	
Z	2	
Density (calculated)	1.239 Mg/m ³	
Absorption coefficient	0.906 mm ⁻¹	
F(000)	728	
Crystal size	0.578 x 0.157 x 0.143 mm ³	
Theta range for data collection	1.951 to 28.358°.	
Index ranges	-13<=h<=13, -14<=k<=14, -24<=l<=13	
Reflections collected	37354	
Independent reflections	9212 [R(int) = 0.0524]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9062 and 0.6477	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9212 / 0 / 460	
Goodness-of-fit on F ²	1.017	
Final R indices [I>2sigma(I)]	R1 = 0.0403, wR2 = 0.0774	
R indices (all data)	R1 = 0.0717, wR2 = 0.0868	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.369 and -0.346 e.Å ⁻³	

8 Anhang

Identification code	gud678_sq	
Empirical formula	C56 H42 O2 Si2 + [solvent]	
Formula weight	803.07	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2	
Unit cell dimensions	a = 17.7981(9) Å	a= 90°.
	b = 10.6730(7) Å	b= 96.063(4)°.
	c = 23.6875(15) Å	g = 90°.
Volume	4474.5(5) Å ³	
Z	4	
Density (calculated)	1.192 Mg/m ³	
Absorption coefficient	0.121 mm ⁻¹	
F(000)	1688	
Crystal size	0.349 x 0.186 x 0.020 mm ³	
Theta range for data collection	1.729 to 25.422°.	
Index ranges	-20<=h<=21, -12<=k<=12, -28<=l<=28	
Reflections collected	32640	
Independent reflections	8197 [R(int) = 0.0676]	
Completeness to theta = 25.242°	99.2 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7422 and 0.6991	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	8197 / 37 / 519	
Goodness-of-fit on F ²	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0672, wR2 = 0.1447	
R indices (all data)	R1 = 0.1236, wR2 = 0.1672	
Absolute structure parameter	0.11(7)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.672 and -0.568 e.Å ⁻³	

Tabelle A13: Kristallographische Daten und Strukturverfeinerung für S-2,2'-bis-(Triphenylsilyl)-1,1'binaphtholether.

Abbildung A1: ¹H-NMR-Spektrum von [2d] in C_6D_6 .

Abbildung A2: ${}^{13}C{}^{1}H$ -NMR-Spektrum von **[2d]** in C₆D₆.

Abbildung A3: ${}^{31}P{}^{1}H$ -NMR-Spektrum von **[2d]** in C₆D₆.

Abbildung A4: ³¹P-NMR-Spektrum von [2d] in C₆D₆.

Abbildung A5: ¹H-NMR Spektrum von [2e]BH₃ in C_6D_6 .

Abbildung A6: $^{11}B\{^{1}H\}\text{-}NMR$ Spektrum von **[2e]**BH₃ in C₆D₆.

Abbildung A7: ¹¹B-NMR Spektrum von **[2e]**BH₃ in C₆D₆.

Abbildung A8: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[2e]**BH₃ in C₆D₆.

Abbildung A9: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[2e]**BH₃ in C₆D₆.

Abbildung A10: ${}^{31}P$ -NMR Spektrum von **[2e]**BH₃ in C₆D₆.

8 Anhang

Abbildung A11: IR-Spektrum im Festkörper von [2e]BH₃.

Abbildung A12: (+)ESI-Massenspektrum von [2e]BH₃.

Abbildung A13: Ausschnitt des gemessenen (oben) und errechneten (unten) (+)ESI-Massenspektrums von [2e]BH₃.

Abbildung A14: ¹H-NMR Spektrum von [2f]BH₃ in CDCl₃.

Abbildung A15: $^{11}B{}^{1}H$ -NMR Spektrum von **[2f]**BH₃ in CDCl₃.

Abbildung A16: ¹¹B-NMR Spektrum von **[2f]**BH₃ in CDCl₃.

Abbildung A17: ³¹P{¹H}-NMR Spektrum von [2f]BH₃ in CDCl₃.

Abbildung A18: ³¹P-NMR Spektrum von **[2f]**BH₃ in CDCl₃.

Abbildung A19: IR-Spektrum im Festkörper von [2f]BH3.

8 Anhang

Abbildung A20: EI-Massenspektrum von [2f]BH₃.

Abbildung A21: Ausschnitt des gemessenen (oben) und errechneten (unten) El-Massenspektrums von [2f]BH3.

Abbildung A22: ³¹P-NMR-Spektrum der Umsetzung von **[2b]** mit NaHMDS in THF. Das Natriumphosphid **[3b]**Na zersetzt sich unmittelbar zu den Triphosphaniden **[4b]**Na und **[5b]**Na.

Abbildung A23: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[4b]**Na in THF-d₈.

Abbildung A24: ¹¹B-NMR Spektrum von **[4b]**Na in THF-d₈.

Abbildung A25: ³¹P{¹H}-NMR Spektrum von [4b]Na in THF-d₈.

Abbildung A26: ³¹P-NMR Spektrum von **[4b]**Na in THF-d₈.

Abbildung A27: ¹H-NMR Spektrum der Umsetzung von [2c]BH₃ mit NaHMDS zu [3c]Na in THF-d₈.

Abbildung A28: ¹¹B{¹H}-NMR Spektrum der Umsetzung von **[2c]**BH₃ mit NaHMDS zu **[3c]**Na in THF-d₈.

Abbildung A29: ¹¹B-NMR Spektrum der Umsetzung von [2c]BH₃ mit NaHMDS zu [3c]Na in THF-d₈.

Abbildung A30: ³¹P{¹H}-NMR Spektrum der Umsetzung von [2c]BH₃ mit NaHMDS zu [3c]Na in THF-d₈.

Abbildung A31: ³¹P-NMR Spektrum der Umsetzung von [2c]BH₃ mit NaHMDS zu [3c]Na in THF-d₈.

Abbildung A32: ¹¹B{¹H}-NMR Spektrum der Umsetzung von **[3b]**Li mit LiN(*i*-Pr)₂ zu **[3i]**Li in THF.

Abbildung A33: ¹¹B-NMR Spektrum der Umsetzung von **[3b]**Li mit LiN(*i*-Pr)₂ zu **[3i]**Li in THF.

Abbildung A34: ³¹P{¹H}-NMR Spektrum der Umsetzung von **[3b]**Li mit LiN(*i*-Pr)₂ zu **[3i]**Li in THF.

Abbildung A35: ³¹P-NMR Spektrum der Umsetzung von **[3b]**Li mit LiN(*i*-Pr)₂ zu **[3i]**Li in THF.

8 Anhang

Abbildung A36: FTIR-Spektrum im Festkörper (mit Fomblin Y) von [3i]Li.

Abbildung A37: ¹¹B{¹H}-NMR Spektrum von [6r]Li in THF.

Abbildung A38: ¹¹B-NMR Spektrum von [6r]Li in THF.

Abbildung A39: ³¹P{¹H}-NMR Spektrum von [6r]Li in THF.

Abbildung A40: ³¹P-NMR Spektrum von [6r]Li in THF.

Abbildung A41: ¹¹B{¹H}-NMR Spektrum der *in situ* Erzeugung von **[3d]**K in THF.

Abbildung A42: ¹¹B-NMR Spektrum der *in situ* Erzeugung von **[3d]**K in THF.

Abbildung A43: ³¹P{¹H}-NMR Spektrum der *in situ* Erzeugung von **[3d]**K in THF.

Abbildung A44: ¹¹B{¹H}-NMR Spektrum der Umsetzung von **[2e]**BH₃ mit KHMDS in THF.

Abbildung A45: ¹¹B-NMR Spektrum der Umsetzung von **[2e]**BH₃ mit KHMDS in THF.

Abbildung A46: ³¹P{¹H}-NMR Spektrum der Umsetzung von **[2e]**BH₃ mit KHMDS in THF.

Abbildung A48: 11 B-NMR Spektrum nach der Umsetzung von **[2f]**BH₃ mit KHMDS in Diethylether.

Abbildung A49: ³¹P{¹H}-NMR Spektrum nach der Umsetzung von **[2f]**BH₃ mit KHMDS in Diethylether.

Abbildung A50: ¹H-NMR Spektrum von S-2,2'-bis-(Triphenylsilyl)-1,1'-binaphtholether in C₆D₆.

Abbildung A51: ¹H-²⁹Si-HMQC Spektrum von S-2,2'-bis-(Triphenylsilyl)-1,1'-binaphtholether in C₆D₆.

Abbildung A52: ¹H-NMR-Spektrum von [7b]BH₃ als Rohprodukt in CDCl₃.

Abbildung A53: ¹¹B-NMR-Spektrum von **[7b]**BH₃ als Rohprodukt in CDCl₃.

Abbildung A54: $^{31}P\{^{1}H\}$ -NMR-Spektrum von $[7b]BH_{3}$ als Rohprodukt in CDCl₃.

Abbildung A55: ¹H-NMR-Spektrum von [7c]BH₃ in THF-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [3c]K und Ph₃C-Cl aufgenommen wurde.

Abbildung A56:¹¹B{¹H}-NMR-Spektrum von [7c]BH₃ in THF-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [3c]K und Ph₃C-Cl aufgenommen wurde

Abbildung A57 ¹¹B-NMR-Spektrum von [**7c**]BH₃ in THF-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [**3c**]K und Ph₃C-Cl aufgenommen wurde.

Abbildung A58: ³¹P{¹H}-NMR-Spektrum von [7c]BH₃ in THF-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [3c]K und Ph₃C-Cl aufgenommen wurde.

Abbildung A59: ³¹P-NMR-Spektrum von [7c]BH₃ in THF-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [3c]K und Ph₃C-Cl aufgenommen wurde.

Abbildung A60: ¹H-NMR-Spektrum von $[7c]BH_3$ in THF-d₈, welches nach Thermolyse für 18 h aufgenommen wurde.

Abbildung A61: ${}^{11}B{}^{1}H$ -NMR-Spektrum von **[7c]**BH₃ in THF-d₈, welches nach Thermolyse für 18 h aufgenommen wurde.

Abbildung A62: 11 B-NMR-Spektrum von [7c]BH₃ in THF-d₈, welches nach Thermolyse für 18 h aufgenommen wurde.

Abbildung A63: ³¹P{¹H}-NMR-Spektrum von **[7c]**BH₃ in THF-d₈, welches nach Thermolyse für 18 h aufgenommen wurde.

Abbildung A64: ${}^{31}P$ -NMR-Spektrum von [7c]BH₃ in THF-d₈, welches nach Thermolyse für 18 h aufgenommen wurde.

Abbildung A65: ¹H-NMR-Spektrum von **[7d]**BH₃ in Toluol-d₈, welches unmittelbar nach der Vereinigung der Reaktanten **[3d]**K und Ph₃C-Cl aufgenommen wurde.

Abbildung A66: ¹¹B{¹H}-NMR-Spektrum von [7d]BH₃ in Toluol-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [3d]K und Ph₃C-Cl aufgenommen wurde.

Abbildung A67: ¹¹B-NMR-Spektrum von **[7d]**BH₃ in Toluol-d₈, welches unmittelbar nach der Vereinigung der Reaktanten **[3d]**K und Ph₃C-Cl aufgenommen wurde.

8 Anhang

Abbildung A68: : FTIR-Spektrum des festen Rückstands der bei der Thermolyse von **[7c]**BH₃ entstanden ist.

Abbildung A69: Aussschnitt der BH-Streckschwingungsbanden, die im FTIR-Spektrum des festen Rückstands der Thermolyse von **[7d]**BH₃.

Abbildung A70: ${}^{31}P{}^{1}H$ -NMR-Spektrum von [7d]BH₃ in Toluol-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [3d]K und Ph₃C-Cl aufgenommen wurde.

Abbildung A71: ³¹P-NMR-Spektrum von [7d]BH₃ in Toluol-d₈, welches unmittelbar nach der Vereinigung der Reaktanten [3d]K und Ph₃C-Cl aufgenommen wurde.

Abbildung A72: ¹H-NMR-Spektrum von $[7d]BH_3$ in Toluol-d₈, welches nach Thermolyse bei 110 °C für 18 h aufgenommen wurde.

Abbildung A73: ¹¹B{¹H}-NMR-Spektrum von [7d]BH₃ in Toluol-d₈, welches nach Thermolyse bei 110 °C für 18 h aufgenommen wurde.

Abbildung A74: ¹¹B-NMR-Spektrum von $[7d]BH_3$ in Toluol-d₈, welches nach Thermolyse bei 110 °C für 18 h aufgenommen wurde.

Abbildung A75: ${}^{31}P{}^{1}H$ -NMR-Spektrum von **[7d]**BH₃ in Toluol-d₈, welches nach Thermolyse bei 110 °C für 18 h aufgenommen wurde.

Abbildung A76: ³¹P-NMR-Spektrum von $[7d]BH_3$ in Toluol-d₈, welches nach Thermolyse bei 110 °C für 18 h aufgenommen wurde.

Abbildung A77: FTIR-Spektrum des festen Rückstands der bei der Thermolyse von **[7d]**BH₃ entstanden ist.

Abbildung A78: ¹H-NMR Spektrum von $[8b]BH_3$ in C₆D₆.

Abbildung A79: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[8b]**BH₃ in C₆D₆.

Abbildung A80: 11 B-NMR Spektrum von **[8b]**BH₃ in C₆D₆.

Abbildung A81: 13C{1H}-NMR Spektrum von [8b]BH3 in C6D6.

Abbildung A82: ${}^{1}H$, ${}^{29}Si$ -HSQC Spektrum von **[8b]**BH₃ in C₆D₆.

Abbildung A83: $^{29}Si\{^{1}H\}\text{-}NMR$ Spektrum von $[\mbox{8b}]BH_3$ in $C_6D_6.$

Abbildung A84: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[8b]**BH₃ in C₆D₆.

Abbildung A85: ³¹P-NMR Spektrum von [8b]BH₃ in C₆D₆.

Abbildung A86: ¹H-NMR Spektrum von [8d]BH₃ in C_6D_6 .

Abbildung A87: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[8d]**BH₃ in C₆D₆.

Abbildung A88: ¹¹B-NMR Spektrum von [8d]BH₃ in C₆D₆.

Abbildung A89: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[8d]**BH₃ in C₆D₆.

Abbildung A90: $^{29}Si\{^{1}H\}\text{-}NMR$ Spektrum von $[8d]BH_{3}$ in $C_{6}D_{6}.$

8 Anhang

Abbildung A92: FTIR-Spektrum von **[8d]**BH₃ als ölige Flüssigkeit.

Abbildung A93: ¹H-NMR Spektrum von [9b]BH₃ in C_6D_6 .

Abbildung A94: $^{11}B\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von $[\![9b]\!]\mathsf{BH}_3$ in $\mathsf{C}_6\mathsf{D}_6$

Abbildung A95: $^{11}\text{B-NMR}$ Spektrum von $[9b]\text{BH}_3$ in C_6D_6

Abbildung A96: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[9b]**BH₃ in C₆D₆

Abbildung A97: $^{29}Si\{^{1}H\}\text{-}NMR$ Spektrum von **[9b]**BH3 in C6D6

Abbildung A98: ¹H, ²⁹Si-HMQC Spektrum von [9b]BH₃ in C₆D₆

Abbildung A99: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von $[\![9b]\!]\mathsf{BH}_3$ in $\mathsf{C}_6\mathsf{D}_6$

Abbildung A100: ³¹P-NMR Spektrum von **[9b]**BH₃ in C₆D₆.

Abbildung A101: FTIR-Spektrum im Festkörper von [9b]BH3.

Abbildung A102: ¹H-NMR Spektrum von **[9c]**BH₃ in C₆D₆.

Abbildung A103: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[9c]**BH₃ in C₆D₆.

Abbildung A104: ¹¹B-NMR Spektrum von **[9c]**BH₃ in C₆D₆.

Abbildung A105: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[9c]**BH₃ in C₆D₆.

Abbildung A106: ${}^{1}H$, ${}^{29}Si$ -HMQC Spektrum von **[9c]**BH₃ in C₆D₆.

Abbildung A107: $^{31}P\{^{1}H\}$ -NMR Spektrum von **[9c]**BH3 in C6D6.

Abbildung A108: ³¹P-NMR Spektrum von **[9c]**BH₃ in C₆D₆.

Abbildung A109: FTIR-Spektrum im Festkörper von [9c]BH₃.

Abbildung A110: ¹H-NMR Spektrum von [9d]BH₃ in C_6D_6 .

Abbildung A111: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[9d]**BH₃ in C₆D₆.

Abbildung A112: ¹¹B-NMR Spektrum von **[9d]**BH₃ in C₆D₆.

Abbildung A113: ${}^{13}C{}^{1}H$ -NMR Spektrum von [9d]BH₃ in C₆D₆.

8 Anhang

Abbildung A114: ${}^{1}H{}^{-29}Si{}$ -NMR Spektrum von **[9d]**BH₃ in C₆D₆.

Abbildung A115: $^{31}P\{^{1}H\}\text{-}NMR$ Spektrum von $[\textbf{9d}]BH_{3}$ in $C_{6}D_{6}.$

Abbildung A117: FTIR-Spektrum von **[9d]**BH₃ im Festkörper.

Abbildung A116: ³¹P-NMR Spektrum von **[9d]**BH₃ in C₆D₆.

250

200

150

100

50

350

300

Ó

-50

-100

-150

-200

ppm

Abbildung A118: ¹H-NMR Spektrum von **[9e]**BH₃ in C₆D₆.

Abbildung A119: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[9e]**BH₃ in C₆D₆.

Abbildung A120: : 11 B-NMR Spektrum von **[9e]**BH₃ in C₆D₆.

Abbildung A121: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[9e]**BH₃ in C₆D₆.

Abbildung A122: $^{31}P\{^{1}H\}\text{-}NMR$ Spektrum von $[\![9e]\!]BH_{3}$ in $C_{6}D_{6}.$

Abbildung A123: ³¹P-NMR Spektrum von **[9e]**BH₃ in C₆D₆.

Abbildung A124: ${}^{1}H{}^{-29}Si{}^{-}HMQC$ Spektrum von [9e]BH₃ in C₆D₆.

Abbildung A125: ¹H-NMR Spektrum von $[10b]BH_3$ in C₆D₆.

Abbildung A126: $^{11}B\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von $[10b]\mathsf{BH}_3$ in $\mathsf{C}_6\mathsf{D}_6.$

Abbildung A127: ¹¹B-NMR Spektrum von [10b]BH₃ in C_6D_6 .

Abbildung A128: $^{13}C{^{1}H}$ -NMR Spektrum von **[10b]**BH₃ in C₆D₆.

Abbildung A129: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[10b]**BH₃ in C₆D₆.

Abbildung A130: 31 P-NMR Spektrum von **[10b]**BH₃ in C₆D₆.

Abbildung A131: FTIR-Spektrum von [10b]BH₃ im Festkörper.

Abbildung A132: ¹H-NMR Spektrum von [10c]BH₃ in C₆D₆.

Abbildung A133: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[10c]**BH₃ in C₆D₆.

Abbildung A134: 11 B-NMR Spektrum von **[10c]**BH₃ in C₆D₆.

Abbildung A135:¹³C{¹H}-NMR Spektrum von [10c]BH₃ in C₆D₆.

Abbildung A136: ${}^{31}P\{{}^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von $[\textbf{10c}]BH_3$ in $C_6D_6.$

Abbildung A137: ${}^{31}P$ -NMR Spektrum von [10c]BH₃ in C₆D₆.

Abbildung A138: ¹H-NMR Spektrum von $[10d]BH_3$ in C₆D₆.

Abbildung A139: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[10d]**BH₃ in C₆D₆.

Abbildung A140: ¹¹B-NMR Spektrum von **[10d]**BH₃ in C₆D₆.

Abbildung A141: $^{13}C\{^{1}H\}\text{-}NMR$ Spektrum von **[10d]**BH3 in C6D6.

Abbildung A142: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von $[10d]\mathsf{BH}_{3}$ in $\mathsf{C}_{6}\mathsf{D}_{6}.$

Abbildung A143: 31 P-NMR Spektrum von **[10d]**BH₃ in C₆D₆.

8 Anhang

Abbildung A144: FTIR-Spektrum von **[10d]**BH₃ im Festkörper.

Massenspektrometrie - Universität Stuttgart

Abbildung A145: (+)ESI-Massenspektrum von [10d]BH₃.

Massenspektrometrie - Universität Stuttgart

Abbildung A146: Ausschnitt des (+)ESI-Massenspektrums von [10d]BH₃.

Massenspektrometrie - Universität Stuttgart

Abbildung A147: Ausschnitt des gemessenen (oben) und errechneten (unten) (+)ESI-Massenspektrums von [10d]BH₃.

Abbildung A148: $^{31}\mbox{P-NMR}$ Spektrum von $\mbox{[21b]}\mbox{BH}_3$ in Benzol/THF (3/1).

Abbildung A149: FTIR-Spektrum von **[21b]**BH₃ im Festkörper.

Abbildung A150: ¹H-NMR Spektrum von **[22b]**BH₃ in THF-d₈.

Abbildung A151: $^{11}B{^{1}H}$ -NMR Spektrum von **[22b]**BH₃ in THF-d₈.

Abbildung A152: ¹¹B-NMR Spektrum von **[22b]**BH₃ in THF-d₈.

Abbildung A153:¹³C{¹H}-NMR Spektrum von [**22b**]BH₃ in THF-d₈.

Abbildung A154: $^{31}P\{^{1}H\}$ -NMR Spektrum von $\cite{22b}BH_3$ in THF-d_8.

Abbildung A155: ³¹P-NMR Spektrum von **[22b]**BH₃ in THF-d₈.

Abbildung A156: FTIR-Spektrum von **[22b]**BH₃ im Festkörper.

Massenspektrometrie - Universität Stuttgart

Abbildung A157: (-)ESI-Massenspektrum von [22b]BH₃.

Abbildung A158: Ausschnitt des gemessenen (oben) und errechneten (unten) (-)ESI-Massenspektrums von [22b]BH₃.

Massenspektrometrie - Universität Stuttgart

Abbildung A159: ¹H-NMR Spektrum von [3b]Zn in DCM-d₂.

Abbildung A160: ¹¹B{¹H}-NMR Spektrum von **[3b]**Zn in DCM-d₂.

Abbildung A161: ¹¹B-NMR Spektrum von **[3b]**Zn in DCM-d₂.

Abbildung A162: ¹³C{¹H}-NMR Spektrum von [3b]Zn in DCM-d₂.

Abbildung A163: ³¹P{¹H}-NMR Spektrum von **[3b]**Zn in DCM-d₂.

Abbildung A164: ³¹P-NMR Spektrum von **[3b]**Zn in DCM-d₂.

Abbildung A165: ¹H-³¹P-HMQC Spektrum von **[3b]**Zn in DCM-d₂.

Abbildung A166: FTIR-Spektrum von [3b]Zn im Festkörper

Abbildung A167: ¹H-NMR Spektrum von **[3b]**₂Zn in C₆D₆.

Abbildung A168: ${}^{11}B{}^{1}H$ -NMR Spektrum von **[3b]**₂Zn in C₆D₆.

Abbildung A169: ¹¹B-NMR Spektrum von **[3b]**₂Zn in C₆D₆.

Abbildung A170: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[3b]**₂Zn in C₆D₆.

Abbildung A171: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[3b]**₂Zn in C₆D₆.

Abbildung A172: ³¹P-NMR Spektrum von **[3b]**₂Zn in C₆D₆.

8 Anhang

Abbildung A173: FTIR-Spektrum von [3b]₂Zn im Festkörper.

Massenspektrometrie - Universität Stuttgart

Abbildung A174: (+)ESI-Massenspektrums von [3b]₂Zn.

Massenspektrometrie - Universität Stuttgart

Abbildung A175: Ausschnitt des (+)ESI-Massenspektrums von [3b]₂Zn.

Abbildung A176: Ausschnitt des gemessenen (oben) und errechneten (unten) (+)ESI-Massenspektrums von [3b]₂Zn.

Massenspektrometrie - Universität Stuttgart

Abbildung A177: Ausschnitt des gemessenen (oben) und errechneten (unten) (+)ESI-Massenspektrums von [3b]₂Zn (M+Na).

Abbildung A178: ¹H-NMR Spektrum von **[3b]**Cu in C₆D₆.

Abbildung A179:¹¹B{¹H}-NMR Spektrum von **[3b]**Cu in C₆D₆.

Abbildung A180: 11 B-NMR Spektrum von **[3b]**Cu in C₆D₆.

Abbildung A181: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[3b]**Cu in C₆D₆.

Abbildung A182: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[3b]**Cu in C₆D₆.

Abbildung A183: ³¹P-NMR Spektrum von [3b]Cu in C₆D₆.

Abbildung A184: ¹H-NMR Spektrum von [3b]OCu in CDCl₃.

Abbildung A185: ¹¹B{¹H}-NMR Spektrum von [3b]OCu in CDCl₃.

Abbildung A186: ¹¹B-NMR Spektrum von [3b]OCu in CDCl₃.

Abbildung A187: ¹³C{¹H}-NMR Spektrum von [3b]OCu in CDCl₃.

Abbildung A188: ³¹P{¹H}-NMR Spektrum von **[3b]**OCu in CDCl₃.

Abbildung A189: ³¹P-NMR Spektrum von [3b]OCu in CDCl₃.

8 Anhang

Abbildung A190: FTIR-Spektrum von [3b]OCu im Festkörper.

Abbildung A191: ¹H-NMR Spektrum von **[8d]** in Toluol-d₈.

Abbildung A192: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[8d]** in Toluol-d₈.

Abbildung A193: ²⁹Si{¹H}-NMR Spektrum von **[8d]** in Toluol-d₈.

Abbildung A194: ¹H-²⁹Si-HSQC Spektrum von **[8d]** in Toluol-d₈.

Abbildung A195: ³¹P{¹H}-NMR Spektrum von **[8d]** in Toluol-d₈.

Abbildung A196: ³¹P-NMR Spektrum von [8d] in Toluol-d₈.

Abbildung A197: ¹H-NMR Spektrum von **9b** in C₆D₆.

Abbildung A198: ${}^{13}C{}^{1}H$ -NMR Spektrum von **9b** in C₆D₆.

Abbildung A199: ${}^{1}H{}^{-29}Si{}^{-}HMQC$ Spektrum von **9b** in C₆D₆.

Abbildung A200: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von 9b in $\mathsf{C}_6\mathsf{D}_6.$

Abbildung A201: ³¹P-NMR Spektrum von **9b** in C₆D₆.

Abbildung A202: ¹H-NMR Spektrum von **9c** in C₆D₆.

Abbildung A203: $^{\rm 13}C\{^{\rm 1}H\}\text{-}NMR$ Spektrum von 9c in $C_6D_6.$

Abbildung A204: ${}^{1}H{}^{-29}Si{}^{-}HMQC$ Spektrum von **9c** in C₆D₆.

Abbildung A205: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von 9c in $\mathsf{C}_6\mathsf{D}_6.$

Abbildung A206: ³¹P-NMR Spektrum von **9c** in C₆D₆.

Abbildung A207: ¹H-NMR Spektrum von **9d** in C₆D₆.

Abbildung A208: $^{13}\text{C}\{^{1}\text{H}\}\text{-NMR}$ Spektrum von 9d in C6D6.

Abbildung A209: ${}^{1}H{}^{-29}Si{}^{-}HMQC$ Spektrum von **9d** in C₆D₆.

Abbildung A210: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von 9d in C_6D_6.

Abbildung A211: ³¹P-NMR Spektrum von **9d** in C₆D₆.

Abbildung A212: ¹H-NMR Spektrum von **9e** in C₆D₆.

Abbildung A213: ${}^{31}P{}^{1}H$ -NMR Spektrum von **9e** in C₆D₆.

Abbildung A214: ³¹P-NMR Spektrum von **9e** in C₆D₆.

Abbildung A215: EI-Massenspektrum von 9d.

Abbildung A216: Ausschnitt des gemessenen (oben) und errechneten (unten) EI-Massenspektrums von 9d.

Abbildung A217: (+)ESI-Massenspektrum von 9e.

Abbildung A218: Ausschnitt des gemessenen (oben) und errechneten (unten) (+)ESI-Massenspektrums von 9e.

Abbildung A219: ¹H-NMR Spektrum der Umsetzung von $[10c]BH_3$ mit DABCO zu **9b** in C₆D₆.

Abbildung A220: ${}^{31}P{}^{1}H$ -NMR Spektrum der Umsetzung von **[10c]**BH₃ mit DABCO zu **9b** in C₆D₆.

Abbildung A221: ¹H-NMR Spektrum der Umsetzung von [10c]BH₃ mit DABCO zu 9c in C₆D₆.

Abbildung A222: ${}^{13}C{}^{1}H$ -NMR Spektrum der Umsetzung von **[10c]**BH₃ mit DABCO zu **9c** in C₆D₆.

Abbildung A223: ${}^{31}P{}^{1}H$ -NMR Spektrum der Umsetzung von **[10c]**BH₃ mit DABCO zu **9c** in C₆D₆.

Abbildung A224: ³¹P-NMR Spektrum der Umsetzung von $[10c]BH_3$ mit DABCO zu 9c in C₆D₆.

Abbildung A225: ¹H-NMR Spektrum von **10d** in C₆D₆.

Abbildung A226: ${}^{13}C{}^{1}H$ -NMR Spektrum von **10d** in C₆D₆.

Abbildung A227: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von 10d in $\mathsf{C}_6\mathsf{D}_6.$

Abbildung A228: ³¹P-NMR Spektrum von **10d** in C₆D₆.

Abbildung A229: (+)ESI-Massenspektrum von 10d.

Abbildung A231: ³¹P{¹H}-NMR Spektrum der Reaktion von **11b** mit Styrol in C₆D₆ nach 5 Tagen bei 66 °C.

Abbildung A232: ³¹P-NMR Spektrum der Reaktion von **11b** mit Styrol in C₆D₆ nach 5 Tagen bei 66 °C.

Abbildung A233: ¹H-³¹P-HMQC Spektrum der Reaktion von **11b** mit Styrol in C₆D₆ nach 5 Tagen bei 66 °C.

Abbildung A234: ${}^{31}P{}^{1}H$ -NMR Spektrum der Reaktion von **11b** mit Styrol in C₆D₆ nach 5 Tagen bei 66 °C und anschließender Bestrahlung mittels Xe-Bogenlampe für 2 h.

Abbildung A235: ³¹P-NMR Spektrum der Reaktion von **11b** mit Styrol in C_6D_6 nach 5 Tagen bei 66 °C und anschließender Bestrahlung mittels Xe-Bogenlampe für 2 h.

Abbildung A236: ${}^{1}H{}^{-31}P{}$ -HMQC Spektrum der Reaktion von **11b** mit Styrol in C₆D₆ nach 5 Tagen bei 66 °C und anschließender Bestrahlung mittels Xe-Bogenlampe für 2 h.

Abbildung A237: ¹¹⁹Sn{¹H}-NMR Spektrum der Reaktion von **11b** mit Styrol in C₆D₆ nach 5 Tagen bei 66 °C und anschließender Bestrahlung mittels Xe-Bogenlampe für 2 h.

Abbildung A238: Vollständiges EI-Massenspektrums des Reaktionsgemisch nach der Umsetzung von **11b** mit Styrol.

Abbildung A239: Ausschnitt des EI-Massenspektrums des Reaktionsgemisch nach der Umsetzung von **11b** mit Styrol.

Abbildung A240: Ausschnitt des EI-Massenspektrums des Reaktionsgemisch nach der Umsetzung von **11b** mit Styrol.

Abbildung A242: Ausschnitt des gemessenen (oben) und errechneten (unten) El-Massenspektrums von 14bO2.

Abbildung A243: Ausschnitt des gemessenen (oben) und errechneten (unten) El-Massenspektrums von 13b.

Abbildung A244: Ausschnitt des gemessenen (oben) und errechneten (unten) EI-Massenspektrums von 13b'.

Abbildung A245: ¹H-NMR Spektrum der Reaktion von **11b** mit Tolan in C₆D₆ nach 30 Minuten bei 66 °C.

Abbildung A246: ${}^{1}H{}^{-31}$ -HMQC Spektrum der Reaktion von **11b** mit Tolan in C₆D₆ nach 30 Minuten bei 66 °C.

Abbildung A247: ${}^{31}P{}^{1}H$ -NMR Spektrum der Reaktion von **11b** mit Tolan in C₆D₆ nach 30 Minuten bei 66 °C.

Abbildung A248: 31 P-NMR Spektrum der Reaktion von **11b** mit Tolan in C₆D₆ nach 30 Minuten bei 66 °C.

Abbildung A249: $^{1}H^{-119}$ Sn-HMQC Spektrum der Reaktion von **11b** mit Tolan in C₆D₆ nach 30 Minuten bei 66 °C.

Abbildung A250: ¹¹⁹Sn{¹H}-NMR Spektrum der Reaktion von **11b** mit Tolan in C₆D₆ nach 30 Minuten bei 66 °C.

Abbildung A251: EI-Massenspektrum des Produktgemisches der Reaktion von 11b mit Tolan unter Bestrahlung.

Abbildung A252: Ausschnitt des gemessenen (oben) und errechneten (unten) El-Massenspektrums des Produktgemisches der Reaktion von **11b** mit Tolan unter Bestrahlung mit **17b** als Produkt.

Abbildung A253: Ausschnitt des gemessenen (oben) und errechneten (unten) EI-Massenspektrums des Produktgemisches der Reaktion von **11b** mit Tolan unter Bestrahlung mit **18b** als Produkt.

Abbildung A254: ¹H-NMR Spektrum von [9b]Ni(CO)₃ in C₆D₆.

Abbildung A255: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[9b]**Ni(CO)₃ in C₆D₆.

Abbildung A256:³¹P{¹H}-NMR Spektrum von [9b]Ni(CO)₃ in C₆D₆.

Abbildung A257: ³¹P-NMR Spektrum von [9b]Ni(CO)₃ in C₆D₆.

8 Anhang

Abbildung A258: FTIR-Spektrum von **[9b]**Ni(CO)₃ in DCM.

Abbildung A259: ¹H-NMR Spektrum von **[9c]**Ni(CO)₃ in C₆D₆.

Abbildung A260: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[9c]**Ni(CO)₃ in C₆D₆.

Abbildung A261: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[9c]**Ni(CO)₃ in C₆D₆.

Abbildung A262: $^{31}\mbox{P-NMR}$ Spektrum von $[9c]\mbox{Ni}(\mbox{CO})_3$ in $\mbox{C}_6\mbox{D}_6.$

Abbildung A263: FTIR-Spektrum von [9c]Ni(CO)₃ in DCM.

Abbildung A264: ¹H-NMR Spektrum von **[2d]**Ni(CO)₃ in C₆D₆.

Abbildung A265: $^{13}\text{C}\{^{1}\text{H}\}\text{-}\text{NMR}$ Spektrum von $[\textbf{2d}]\text{Ni}(\text{CO})_{3}$ in C₆D₆.

Abbildung A266: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von $[\textbf{2d}]\mathsf{Ni}(\mathsf{CO})_{3}$ in $\mathsf{C}_6\mathsf{D}_6.$

Abbildung A267: 31 P-NMR Spektrum von **[2d]**Ni(CO)₃ in C₆D₆.

Abbildung A268: FTIR-Spektrum von [2d]Ni(CO)₃ in DCM.

Abbildung A269: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[8d]**Ni(CO)₃ in C₆D₆.

8 Anhang

Abbildung A270: FTIR-Spektrum von [8d]BH₃ in DCM.

Abbildung A271: ¹H-NMR Spektrum von [9d]Ni(CO)₃ in C_6D_6 .

Abbildung A272: ${}^{1}H{}^{-29}Si{}$ -HMQC Spektrum von **[9d]**Ni(CO)₃ in C₆D₆.

Abbildung A273: $^{13}\text{C}\{^{1}\text{H}\}\text{-}\text{NMR}$ Spektrum von **[9d]**Ni(CO)_3 in C₆D₆.

Abbildung A274: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von $[\![9d]\!]\mathsf{Ni}(\mathsf{CO})_{3}$ in $\mathsf{C}_6\mathsf{D}_6.$

Abbildung A275: ³¹P-NMR Spektrum von **[9d]**Ni(CO)₃ in C₆D₆.

8 Anhang

Abbildung A276: FTIR-Spektrum von **[9d]**Ni(CO)₃ in DCM.

Abbildung A277: ¹H-NMR Spektrum von **[9e]**Ni(CO)₃ in C₆D₆.

Abbildung A278: $^{31}P\{^{1}H\}\text{-}\mathsf{NMR}$ Spektrum von **[9e]**Ni(CO)_3 in C₆D₆.

Abbildung A279: ³¹P-NMR Spektrum von **[9e]**Ni(CO)₃ in C₆D₆.

8 Anhang

Abbildung A280: FTIR-Spektrum von [9e]Ni(CO)₃ in DCM.

Abbildung A281: ¹H-NMR Spektrum von [10d]Ni(CO)₃ in C₆D₆.

Abbildung A282: ${}^{13}C{}^{1}H$ -NMR Spektrum von **[10d]**Ni(CO)₃ in C₆D₆.

Abbildung A283: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[10d]**Ni(CO)₃ in C₆D₆.

Abbildung A284: ³¹P-NMR Spektrum von [10d]Ni(CO)₃ in C₆D₆.

Abbildung A286: ¹H-NMR Spektrum von [11d]Ni(CO)₃ in C_6D_6 .

Abbildung A287: $^{13}C\{^{1}H\}$ -NMR Spektrum von **[11d]**Ni(CO)₃ in C₆D₆.

Abbildung A288: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[11d]**Ni(CO)₃ in C₆D₆.

Abbildung A289: ³¹P-NMR Spektrum von [11d]Ni(CO)₃ in C₆D₆.

Abbildung A290: $^{119}Sn\{^{1}H\}$ -NMR Spektrum von **[11d]**Ni(CO)_3 in C₆D₆.

Abbildung A291: $^{1}H^{-119}$ Sn-HMQC Spektrum von **[11d]**Ni(CO)₃ in C₆D₆.

8 Anhang

Abbildung A292: FTIR-Spektrum von [11d]Ni(CO)₃ in DCM.

Abbildung A293: ¹H-NMR Spektrum von [9e]Ni(CO)₃ in C_6D_6 .

Abbildung A294: ${}^{31}P{}^{1}H$ -NMR Spektrum von **[9e]**Ni(CO)₃ in C₆D₆.

Abbildung A295: ³¹P-NMR Spektrum von **[9e]**Ni(CO)₃ in C₆D₆.

8 Anhang

Abbildung A296: FTIR-Spektrum von **[9e]**Ni(CO)₃ in DCM.

Abbildung A297: ¹H-NMR Spektrum nach der Umsetzung von **9b** mit grauem Selen zu **[9b]**Se und den Folgeprodukten **24b** und **[24b]**Se in C_6D_6 .

Abbildung A298: ${}^{13}C{}^{1}H$ -NMR Spektrum nach der Umsetzung von **9b** mit grauem Selen zu **[9b]**Se und den Folgeprodukten **24b** und **[24b]**Se in C₆D₆.

Abbildung A299: ${}^{31}P{}^{1}H$ -NMR Spektrum nach der Umsetzung von **9b** mit grauem Selen zu **[9b]**Se und den Folgeprodukten **24b** und **[24b]**Se in C₆D₆.

Abbildung A300: 31 P-NMR Spektrum nach der Umsetzung von **9b** mit grauem Selen zu **[9b]**Se und den Folgeprodukten **24b** und **[24b]**Se in C₆D₆.

Abbildung A301: ⁷⁷Se{¹H}-NMR Spektrum nach der Umsetzung von **9b** mit grauem Selen zu **[9b]**Se und den Folgeprodukten **24b** und **[24b]**Se in C_6D_6 .

Abbildung A302: ¹H-NMR Spektrum nach der Umsetzung von 9c mit grauem Selen zu [9c]Se und den Folgeprodukten 24c und [24c]Se in C₆D₆.

Abbildung A303: ${}^{13}C{}^{1}H$ -NMR Spektrum nach der Umsetzung von **9c** mit grauem Selen zu **[9c]**Se und den Folgeprodukten **24c** und **[24c]**Se in C₆D₆.

Abbildung A304: ${}^{31}P{}^{1}H$ -NMR Spektrum nach der Umsetzung von **9c** mit grauem Selen zu **[9c]**Se und den Folgeprodukten **24c** und **[24c]**Se in C₆D₆.

Abbildung A305: 31 P-NMR Spektrum nach der Umsetzung von **9c** mit grauem Selen zu **[9c]**Se und den Folgeprodukten **24c** und **[24c]**Se in C₆D₆.

Abbildung A306: ⁷⁷Se{¹H}-NMR Spektrum nach der Umsetzung von **9c** mit grauem Selen zu **[9c]**Se und den Folgeprodukten **24c** und **[24c]**Se in C₆D₆.

Abbildung A307: ³¹P{¹H}-NMR Spektrum von **26d** in Toluol.

Abbildung A308: ³¹P{¹H}-NMR Spektrum von **24d** in Toluol.

Abbildung A309: ³¹P{¹H}-NMR Spektrum von **25d** in Toluol.