
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Visual Parameter Space
Exploration for AI Art Design

Julian Hummel

Course of Study: Informatik

Examiner: Dr. Steffen Koch

Supervisor: Dr. Kuno Kurzhals,
Jena Satkunarajan

Commenced: April 27, 2023

Completed: October 27, 2023

Abstract

Generative AI gained great popularity in recent years and it is important that the users understand
how the input parameters of such models relate to the generated output. The term parameter space
exploration describes the systematic variation of model input parameters and the generation of
the corresponding outputs which can then be used to better understand the relations between the
parameters and the outputs. With this work, the DiffusionExplorer is proposed, incorporating a
visual and interactive framework for parameter space exploration in the context of latent diffusion
models. The Iterative View, the Projection View and the Pipeline View build up the major views
of the DiffusionExplorer, while the Iterative View offers the user the iterative refinement of a
given image by tuning the model parameters. The Projection View embodies the visualization of
image samples by using a 2D projection based on similarity metrics. The last view, namely the
Pipeline View provides the user with an image history consisting of nodes and edges representing the
generation steps. In order to allow a seamless integration of drawing and other editing techniques,
the tool is integrated into the painting program Krita via a plugin. After the implementation phase,
the DiffusionExplorer has been put to the test, being evaluated with a user study, proving the
effective application of the DiffusionExplorer in the context of AI art design. Therefore several
participants successfully completed a given task using the tool in combination with Krita and
accomplished the synthesis of images that could not be generated in a single synthesis step with a
classical approach.

2

Contents

1 Introduction 4

2 Background 5
2.1 Similarity Metrics for Vectors . 5
2.2 Machine Learning . 6
2.3 Dimensionality Reduction . 7
2.4 Generative Adversarial Networks . 10
2.5 Latent Diffusion Models . 11
2.6 Design Study Methodology . 12

3 Related Work 15
3.1 Stable Diffusion Web UI . 15
3.2 Visual Parameter Space Analysis . 15
3.3 Prompt Engineering and Design Space Exploration 18

4 Design 20
4.1 Design Concept . 20
4.2 Visualization Design . 27

5 Developing a Tool for Visual Parameter Exploration 33
5.1 Krita . 33
5.2 Tool Development . 34

6 Evaluation of the Tool 36
6.1 Case Study . 37
6.2 User Study . 40

7 Discussion 50
7.1 Requirements and Workflow . 50
7.2 Limitations . 52

8 Conclusion 53

Bibliography 54

3

1 Introduction

In recent years, the field of digital art design has undergone a significant transformation due to
advancements in machine learning techniques. One notable breakthrough is the ability to synthesize
new image content from text prompts, which has opened up exciting possibilities for generating
images solely based on textual descriptions or in conjunction with existing images [RBL+21].
Recent developments, such as Latent Diffusion Models [RBL+22] make image synthesis more
and more accessible due to the efficient generation of images. However, despite this technological
leap, creating images that precisely meet the expectations of users remains a challenging task that
often requires additional human involvement. The complexity arises from the multiple facets of
parameter tuning that are essential for adjusting image results to achieve a more satisfying outcome.
Each alteration of an individual parameter can potentially lead to significant changes in the resulting
image, making it a time-consuming process. Artists and designers often find themselves engaged in
multiple generation iterations, manually inspecting and comparing image results to arrive at the
desired output. This tedious process hinders the creative flow and slows down the art production
cycle. The primary objective of this thesis is to address this challenge and develop an innovative
approach that facilitates interactive image synthesis, offering the user to systematically explore the
input parameter space.

As already touched on before, the tuning and exploration of the input parameters in the context
of latent diffusion models represents a challenge especially when the user tries to understand the
relationship between the input parameters and the model output. This work focuses on the field
of art design with the help of generative artificial intelligence, which will be referred to as AI
art design in the following chapters. Therefore, the core contribution is the implementation of a
framework for image synthesis with latent diffusion models that incorporates the exploration of
the input parameters as well as a 2D embedding of the generated images using projections. The
resulting framework will be integrated into the open-source painting program Krita via a plugin,
to enable the user to perform image composition and editing techniques on the generated images.
After the elaboration of the requirements and the implementation phase, a user study serves as the
foundation of the evaluation of the DiffusionExplorer.

Starting with Chapter 2, this part aims to build a technical foundation for the topics of latent
diffusion models and projection using similarity metrics as well as a methodology for the design
process of the tool. The background chapter is followed by Chapter 3, which summarizes existing
implementations and scientific work related to topics such as parameter space exploration and
frameworks for latent diffusion models. Before implementing the software solution, the process
of requirements gathering and design prototyping is covered in Chapter 4, while Chapter 5 gives
a brief overview of the painting program Krita and the underlying implementation details of the
tool. Covering the evaluation and the subsequent discussion of the results, Chapter 6 and Chapter 7
highlight a user study followed by the discussion of the initial requirements of the tool and the
results of the user study. Finally, Chapter 8 summarizes this work and gives an outlook on possible
future iterations and improvements of the tool.

4

2 Background

The background chapter serves as the foundation for this thesis, providing a comprehensive overview
of the key concepts and techniques that form the basis of the proposed DiffusionExplorer. It covers
various topics such as similarity metrics in Section 2.1 and machine learning in Section 2.2 building
the foundation for the embedding of images in a 2D plane covered by dimensionality reduction
in Section 2.3. As the tool integrates image synthesis models, Section 2.4 introduces generative
adversarial networks (GANs) and Section 2.5 gives an overview on Latent Diffusion Models that
are used for the image generation in the tool. The design study methodology section introduces a
framework to gather the requirements for the tool and to develop possible design solutions.

The following sections Section 2.1, Section 2.2 and Section 2.3 introduce basics and techniques
that enable the visual presentation of sampled output images to the user. Techniques such as
dimensionality reduction based on similarity metrics provide a framework to solve the problem of
mapping high dimensional input data to lower dimensional data. In the context of this work this
relates to the 2D arrangement of generated output images in an intuitive way.

2.1 Similarity Metrics for Vectors

Many machine learning models depend on the distance between two data points in order to predict
an output. When working with vectors, similarity metrics provide a way to quantify the similarity
or dissimilarity between two vectors. In our context, a similarity metric describes the distance
between two vectors, where a small distance is associated with a high degree of similarity of the
features. The vectors can represent different kinds of data, such as parameters, text documents
and images. Some commonly used similarity metrics are the Euclidean distance, the Manhattan
distance and the cosine similarity, while the advantages and disadvantages of the metrics depend on
the use case. This will be addressed at the end of this section. Figure 2.1 shows the visualization of
the previously mentioned three distance metrics for the two dimensional vectors 𝑎 and 𝑏, while
both vectors might for example represent the values of two parameters. The Euclidean and the
Manhattan distance can be derived from the p-norms ∥.∥ 𝑝 which is a generalized distance metric.
Let the vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) then the p-norms is defined as follows:

∥𝑥∥ 𝑝 :=

(
𝑛∑︁
𝑖=1

|𝑥𝑖 |𝑝
)1/𝑝

, 1 ≤ 𝑝 < ∞(2.1)

For a second vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) and by setting 𝑝 = 1 we derive the Manhattan norm which
is also referred to as the L1-norm ∥.∥1 [AHK01]. Thus, the L1-norm of the difference 𝑥 − 𝑦 is
defined as:

𝑑manhattan = ∥𝑥 − 𝑦∥1 =

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |(2.2)

5

2 Background

Similarly for the the Euclidean distance we fix 𝑝 = 2 which is the L2-norm ∥.∥2 and for the L2-norm
of the difference 𝑥 − 𝑦 we get:

𝑑euclid = ∥𝑥 − 𝑦∥2 =

√√
𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2(2.3)

The cosine similarity is computed as:

cosine similarity = 𝑐𝑜𝑠(\) = 𝑥 · 𝑦
|𝑥 | |𝑦 | ,(2.4)

for 𝑥 · 𝑦 being the dot product of the two vectors 𝑥 and 𝑦 [SPTS19]. As already touched upon in
the introduction of this section, some similarity metrics may perform better than others in specific
scenarios.

𝑥

𝑦

𝑑
𝐴

𝐵

(a) Euclidean Distance: The
length of the line segment be-
tween the two points A and B.

𝑥

𝑦

𝐴

𝐵

\

(b) Cosine Distance: The angle
\ between the two vectors 𝑎

and 𝑏.

𝑥

𝑦
𝐴

𝐵𝑑

(c) Manhattan Distance: The
distance between 𝐴 and 𝐵mea-
sured along the axes.

Figure 2.1: Distance Metrics: Three different distance metrics to measure the distance between
two vectors.

Aggrarwal et al. [AHK01] present the behaviour of distance metrics in high dimensional space.
They compared the performance of distance metrics based on the p-norm for varying values of
p applied to high dimensional input data and discovered a major trend of performance loss with
increasing values of p. Looking at the example of the K-Means clustering algorithm [HW79], the
authors state a significant decrease for the classification rate when moving from 𝑝 = 0.5 to 𝑝 = 1
[AHK01]. Besides, for two similar document vectors with a lot of entries, where the Euclidean
distance indicates a low similarity due to the size of the vectors, the cosine similarity can yield better
results as the angle \ between the vectors is still small. In this research, the cosine similarity metric
will be applied to create projections based on parameters and image vectors in the context of image
synthesis with latent diffusion models (Section 2.5). Libraries such as scikit-learn [PVG+11] offer
implementations to compute the pairwise metrics for a given set of vectors, which can later be used
as an input for dimensionality reduction algorithms. This topic will be covered in Section 2.3.

2.2 Machine Learning

Machine learning is a subset of artificial intelligence that involves the development of algorithms
and models to make predictions for data that has not been part of the training data. The intention
is to achieve a desired behavior of the model, such as making appropriate decisions in a given

6

2 Background

application environment which is not directly programmed but learned based on input data [Die03].
The machine learning workflow can be split into two main processes: Training and inference. In
some settings the latter is also called prediction, while this thesis will make use of the term inference.
In the training phase, the model is fed with data which is then used to learn parameters that influence
the decision making of the model. A trained machine learning model is usually deployed in an
application environment where it used for inference. In the inference phase the model is used to
make predictions on new, unseen data. The input data is passed through the model and an output
is generated as the result of the inference. In general, machine learning tasks can be classified as
one of the following three types: supervised, reinforced and unsupervised [Die03] and of special
interest for this work is unsupervised learning. Unsupervised learning, which is also known as
unsupervised machine learning, aims to discover structures and patterns in data sets without the
necessity for labelled training data. Common applications of unsupervised learning are clustering
and dimensionality reduction algorithms. Clustering describes a technique to group unlabeled data
based on given metrics such as similarity. On the other hand, dimensionality reduction is used in
situations where it promises new insights into data sets, which would be difficult to gain in the high
dimensional space [MPH07]. Section 2.3 highlights some of the core points of dimensionality
reduction, as it is utilized in the approach of this work.

Deep Neural Networks

Deep neural networks (DNNs) are a specific type of multilayer neural networks which contain at
least one hidden layer. The term deep in DNN refers to the depth of the neural network which is
characterized by the number of layers, while DNNs consist of an input layer, one or multiple hidden
layers and an output layer. The intermediate layers between the input and output layer are referred
to as hidden layers as they are not visible to the user [Agg18]. Figure 2.2 shows an example of a
fully connected DNN with two hidden layers. This network architecture is also called feed-forward
network, as the input is fed subsequently through the layers from left to right until reaching the
output layer. Another type of deep neural networks are so called convolutional neural networks
(CNNs), which are a special type of feed-forward networks and are used in computer vision for
image classification and object detection. For each layer in a CNN a convolution operation is
defined, which is a filter that gets the activations of the current layer as input and maps them to the
next next layer. Layers in CNNs can be used to extract simple as well as complex features from the
input data such as lines and other primitive or complex shapes [Agg18]. Feed-forward networks
find their application in Generative Adversarial Networks (GANs) where the generator usually is a
feed-forward network (see Section 2.4).

2.3 Dimensionality Reduction

The problem that dimensionality reduction (DR) algorithms aim to solve is the high dimensionality
of data, such as parameter spaces and digital photographs, which is complex or even impossible to
visualize and to interpret in a meaningful way. Dimensionality reduction describes the transformation
of high-dimensional data into low-dimensional data which is usually two or three-dimensional
[MPH07], [MH08]. For the purpose of this work, we will focus on two kinds of high-dimensional
input data: Parameters, which are used to guide the image generation process and image samples, that

7

2 Background

Input Layer

Hidden Layer 1 Hidden Layer 2

Output Layer

Figure 2.2: Deep Neural Networks: The visualization of a simple deep neural network consisting
of an input layer, two hidden layers and an output layer. The layers are fully connected
such that each neuron is connected to all neurons of the subsequent layer.

are generated based on these parameters. Let A = {𝑎1, 𝑎2, . . . , 𝑎𝑛} be the high-dimensional input
data set. The parameter or image vectors are not directly used as input for the DR algorithm, as we
are interested in the similarity of the vectors. The similarities build up the high-dimensional dataset
X = {𝑥1, 𝑥2, . . . , 𝑥𝑛} which is transformed into a interpretable representation Y = {𝑦1, 𝑦2, . . . , 𝑦𝑛}
while preserving as much of the similarity properties as possible [MH08]. In our case X is
transformed into a 2D representation and visualized in a 2D plane, where an increase of the distance
of the elements is interpreted as a decrease of their similarity. For the application in this work,
we can divide the whole process into two steps: The computation of the similarity of the input
vectors and the projection of these similarities into a 2D plane using dimensionality reduction.
Figure 2.3 shows a simplified visualization of these two steps. As already covered in Section 2.1,
there exist several distance metrics that can be used to compute the similarity between vectors.
The similarity metric of choice is then computed pairwise for all input vectors 𝑎𝑖 ∈ A, 1 ≤ 𝑖 ≤ 𝑛

and fed into the DR algorithm. An example is shown in Figure 2.3, where the vector entry 𝑥1,2
denotes the similarity value of the two input vectors 𝑎1, 𝑎2 ∈ A. Following the work of Kurzhals
[Kur21], DR techniques such as t-distributed Stochastic Neighbor Embedding (t-SNE) [MH08] and
Uniform Manifold Approximation and Projection (UMAP) [MHM20] perform well for the purpose
of creating a 2D embedding of image samples with visible clusters. Both techniques favor the
preservation of local distances over global distances [MHM20]. In the following, the core properties
of these two techniques will be highlighted.

T-distributed Stochastic Neighbor Embedding

T-distributed stochastic neighbor embedding is a nonlinear dimensionality reduction technique
which has been proposed by Maaten and Hinton in [MH08]. The technique is based on stochastic
neighbor embedding (SNE) [HR02] and can be used to visualize similarity data. For two data

8

2 Background

Parameter
Vectors

Image
Vectors

Input Similarity Computation

OR

. . .

Projection

Embed in
2D plane

Figure 2.3: The process of preparing the input vectors for the application of dimensionality reduction
in order to embed the feature vectors in a 2D plane. In the first step, the pairwise
similarities of the input vectors are computed and then fed into the dimensionality
reduction algorithm to create a 2D embedding. The embedding is used in the Projection
View of the DiffusionExplorer where the image samples are projected onto the 2D
plane.

points 𝑥𝑖 , 𝑥 𝑗 ∈ X in the high-dimensional space, SNE assigns the high-dimensional distance to
a conditional probability 𝑝 𝑗 |𝑖 which represents the similarity between the 𝑥𝑖 and 𝑥 𝑗 . The value
of 𝑝 𝑗 |𝑖 describes the probability that 𝑥𝑖 picks 𝑥 𝑗 as its neighbor, while 𝑝 𝑗 |𝑖 is relatively high for
data points that are close to each other. For the two corresponding data points 𝑦𝑖 , 𝑦 𝑗 ∈ Y in the
low-dimensional space a similar conditional probability 𝑞 𝑗 |𝑖 can be formulated and analogously this
conditional probability should be relatively high for similar data points 𝑦𝑖 and 𝑦 𝑗 . Intuitively, if the
data points 𝑦𝑖 and 𝑦 𝑗 correctly represent the similarity between the high-dimensional data points
𝑥𝑖 and 𝑥 𝑗 we get 𝑝 𝑗 |𝑖 = 𝑞 𝑗 |𝑖. SNE aims to minimize the difference between the two conditional
probabilities by minimizing the sum of the Kullback-Leibler divergences over all data points with
the gradient descent approach [MH08]. As presented by the authors, some problems arise with
the usage of the SNE technique which are the difficulty to optimize the cost function and what the
authors refer to as the "crowding problem". The latter basically describes the tendency of SNE
to crowd data points together in the center of the map, which makes it more difficult to identify
structures in the data. t-SNE provides a solution, as it uses a different cost function compared to
SNE and a Student-t Distribution instead of a Gaussian to compute the similarity between two
low-dimensional data points. These two modifications address both the optimization problem of the
cost function and the crowding problem of the SNE technique [MH08].

Uniform Manifold Approximation and Projection

Another dimensionality reduction technique used in this work, that is competitive with t-SNE
in regard to the quality of the visualization, is Uniform Manifold Approximation and Projection
(UMAP). UMAP has been proposed by Healy and Melville in [MHM20] and is characterized by
the ability to preserve the global structure of the high-dimensional input data [MHM20] and the

9

2 Background

advantage of a better run time performance compared to t-SNE [Kur21]. The UMAP algorithm
starts with the creation of a high-dimensional graph representation of the input data, where each
data point is connected to its nearest neighbors. It then aims to reduce the discrepancy between
the pairwise relationships in the high-dimensional and low-dimensional embedding by applying
stochastic gradient descent. Due to its flexibility in handling different types of data sets and in
choosing the dimensions of the low-dimensional representation, UMAP can be applied to a wide
range of problems, such as the visualization of high-dimensional data in two or three dimensions
[MHM20].

The last sections covered several metrics for the similarity computation of vectors as well as two
popular dimensionality reduction techniques that can be used to create a low-dimensional embedding
for the high-dimensional similarity data. These topics are especially important for this work, as they
allow the visualization of image samples on a 2D plane which makes it easier for a user to interpret
large numbers of image samples and to identify similar samples based on different metrics. Going
further, we will now take a closer look at techniques for the generation of these image samples
that we are embedding in the low-dimensional space. Before addressing machine learning models
such as latent diffusion models, the following section aims to build a foundation for the topic of
generative machine learning models.

2.4 Generative Adversarial Networks

Generative Adversarial Networks, in short GANs are an unsupervised machine learning task that
makes use of deep learning methods such as convolutional neural networks (CNNs). They have
been one of the most successful models for image generation in the last years and build a foundation
for several computer vision tasks. Figure 2.4 shows the framework of GANs, which consist of two
networks: The generator and the discriminator. The generator, which is a feed forward network,
gets noise as input and aims to reproduce the original images without noise. The discriminator
however is a classifier that aims to differentiate between the original and the reproduced images
and thus both networks are trained adversarilly. This means that the generator and discriminator
are in a constant battle, as the generator tries to produce data that is realistic enough to fool the
discriminator, while the discriminator tries to get better at distinguishing real from fake data. As
a consequence, the generator can improve the generation of fake images when the discriminator
correctly identified a fake image from the generator. Summarizing this, the objective of the
discriminator is minimization of the classification error, while the generator aims to maximize the
classification error of the discriminator. As a result of this training process, the generator learns to
generate realistic, high-resolution images [ML21]. One usually wants to generate a wide variety of
output samples when applying generative models such as GANs. A well-known problem of GANs
is the failure mode called "mode collapse", which results in the problem that the generator only
rotates through a small set of output types. This is caused by the generator, which might only learn
to produce a certain output if that output is plausible. By construction, the discriminator aims to
reject outputs that get generated over and over again, but if the discriminator gets stuck in a local
minimum, the generator of the next iteration might find a way to generate a plausible input for the
current discriminator. As a result, the discriminator never manages to overcome this cycle and the
GAN fails [TTV18]. Another problem of GANs concerns the stability of the training when applied
in large scale GANs and Brock et al. [BDS18] describe such instabilities for both the generator and
discriminator.

10

2 Background

Random
Noise

Fake Image
Generator

Training Set
Discriminator

Real

Fake
Loss

Figure 2.4: Framework of GANs: GANs are divided into two networks, the generator and the
discriminator. The generator creates fake samples based on random noise input. Both
networks are trained adversarially, such that the discriminator aims to differentiate
between real samples from the training set and fake samples generated by the generator.
Through the training process, the generator learns to synthesize photo-realistic and
high-definition images.

Having impressive recent developments, the synthesis of high-definition images is a popular
application in the computer vision field. One of the main problems is the high computational
demand of the training and inference process of the machine learning models that are used for the
synthesis. Especially when synthesizing highly detailed images, such as nature scenes with a high
pixel density, the great computational effort leads to comparatively long inference times.
One of the latest advancements called latent diffusion models are an approach to solve this
problem.

2.5 Latent Diffusion Models

Latent diffusion models are deep-learning models that can be used to generate high-definition
images based on textual descriptions as well as for image inpainting and several other tasks. The
model has been developed as a collaboration of the CompVis group, Stability AI and Runway and
has been released in summer 2022. In contrast to GANs, the more recent diffusion probabilistic
models (DMs) [SWMG15] don’t exhibit mode collapse or training instabilities and they are capable
of modeling highly complex distributions of detailed natural images without the use of billions of
parameters [RBL+22]. However, DMs are still computationally demanding as the training and
evaluation is taking place in the high-dimensional space of RGB images and thus a high number of
function evaluations as well as gradient computations need to be done. In their work [RBL+22],
Rombach et al. introduce the ”Latent Space”, which serves as the training ground for Diffusion
Models (DMs) and also enables efficient image generation. Figure 2.5 shows a high-level overview
of how Latent Diffusion Models (LDMs) work. In the first step, a compact representation in the
low-dimensional latent space of the image is extracted using the encoder E as shown in the top left
in Figure 2.5. In the next step described be the diffusion process, Gaussian noise is added to the
image and the resulting 𝑧𝑇 representation is then passed through a U-Net which is a convolutional
neural network. Finally, after the cross-attention based conditioning, the output is transformed back

11

2 Background

Figure 2.5: Latent Diffusion Models: A high-level overview on the synthesis process of latent
diffusion models [RBL+22]. The diffusion process takes place in the ”Latent Space”,
which is low-dimensional and allows a much more efficient generation of images as
if the diffusion process would take place in the high-dimensional pixel space. Note:
Reprinted from [RBL+22].

into the pixel space using the decoder D. To guide the image synthesis process, several parameters
can be adjusted including the cfg scale, the denoising strength and the seed. The cfg scale can be
semantically interpreted as the text prompt guidance, controlling to what extent the text prompt
should be considered for the image generation, while in the context of image-to-image synthesis,
the denoising strength controls the influence of the input image. Finally, the seed can be used to get
variations for the output samples. As already highlighted previously, these parameters will be used
for parameter sampling in order to allow the user to explore the input parameter space of the latent
diffusion models.

After covering some necessary technical background including similarity metrics and machine
learning models for dimensionality reduction and image synthesis, the final section of this chapter
describes the Design Study Methodology which guides the requirements for the proposed tool, as
well as the visual solution finding process of this tool.

2.6 Design Study Methodology

This section addresses the first phase of the creation process of this tool, which consists of collecting
the requirements and constraints as well as solution ideas for the problems that the proposed
approach of this work aims to solve. As the core contribution of the tool is a visualization solution
for the application of latent diffusion models in the process of AI art design, we will have a closer
look at how to conduct design studies.

12

2 Background

About Design Studies

Design studies are a form of problem-driven visualization research, aiming to analyze problems
that occur in the daily work of domain experts. Based on this analysis, design solutions are derived
in collaboration with the domain experts and finally, the design is validated [SMM12]. Figure 2.6
shows one possible overview of how a design study might be carried out, where two main building
blocks describe the process of the design study. The first block consists of the Empathize and Define
phases, which are crucial for gathering the necessary information and insights that will guide the
design process. During the empathize phase, the designer seeks to understand the domain experts’
needs, desires and pain points with the current state of their daily work. In the define phase, the
designer synthesizes the information collected during the empathize phase to create a clear problem
statement that guides the subsequent phases. The second block is built from the Ideate, Prototype
and Test phases. During the ideate phase, the designer generates a wide range of ideas and solutions
that address the problem statement defined in the first block. In the prototype phase, the designer
creates low-fidelity versions of the most promising ideas, allowing for rapid iteration and refinement.
These low-fidelity prototypes might be represented by simple sketches, that can also be drawn
together with the domain experts. Finally, during the test phase, the prototypes are tested with real
users to gather feedback and insights that inform further iteration. This block emphasizes creativity,
experimentation, and user feedback, and provides a structured approach to quickly developing and
testing potential solutions [S23]. The figure originates from a method called Design Thinking,
while the creation flow of the DiffusionExplorer will be strongly based on it. To complement this
chapter about design studies the following subsection will briefly highlight important aspects of the
single phases, whereby [SMM12] offers a great summary of this topic.

The Learnings from Design Studies

In their work [SMM12] Sedlmair et al. investigated twenty-one different design studies and proposed
a methodological framework for design studies. Although the framework that has been described
there is not the same as in Figure 2.6, the concepts still apply. The first building block containing
Empathize and Define is reflected by what the authors call the discovery stage, where the problem
is characterized and abstracted. One key learning that is stated in this stage is the importance of
not only focusing on the problem itself but also on the successful aspects of existing solutions
in the workflow of the domain experts. Another main point that is mentioned by Sedlmair and
colleagues is to control the initial discussions with the domain experts in such a way, that they
don’t focus on their own visions of possible visualization solutions and explain the problems that
they are facing. Considering the second building block, the three phases Ideate, Prototype and
Test can be associated with the so-called design stage in [SMM12]. The authors found out that
making use of dual representations (swapping nodes and edges) when sketching ideas led to an
efficient way for domain experts to model the outputs of algorithms. In addition, the importance of
having a broad consideration space of possible solutions is mentioned for the design stage. This
consideration space is then filtered down to what the authors call a narrow proposal space, which
should be discussed with the domain experts. The final results of the discussion might be final
design solutions that will be implemented [SMM12].

13

2 Background

Figure 2.6: Design Thinking: The method of Design Thinking is one possible way to conduct a
design study. It aims to solve real-world problems of domain experts with a visualization
approach. As shown above, the process can be divided into five phases while Empathize
and Define build the foundation for the identification of the problem statement. The
Ideate, Prototype and Test phases aim to generate ideas based on the problem statement,
to create prototypes and to test these prototypes in a feedback loop that connects again
to the Empathize phase. Note: Reprinted from [S23].

14

3 Related Work

This chapter aims to give an overview of existing publications and implementations related to the
topics of this work. This consists of a popular user interface for the usage of stable diffusion, work
on visual parameter space analysis and further topics related to generative image models such as
prompt engineering. While existing publications in the field of diffusion models and generative
image models primarily emphasize prompt engineering for text-to-image generation in order to
optimize the output of the models, this work takes a distinct direction by shifting the focus towards
the inclusion of visual parameter space exploration in the topic of latent diffusion models. While
Section 3.1 covers an existing user interface for stable diffusion, the following Section 3.2 presents
the idea of visual parameter space analysis, which aims to enable the user the exploration and
the analysis of the model parameters using visual interaction techniques. Finally, Section 3.3
summarizes publications related to the topics of prompt engineering and design space exploration.

3.1 Stable Diffusion Web UI

Stable Diffusion Web UI [AUT22] also referred to as AUTOMATIC1111 is a quite powerful
web-based user interface for stable diffusion that provides the functionality to run both text-to-image
and image-to-image generations. Figure 3.1 shows the text-to-image view of the Web UI which
has been used to generate an image based on the given text prompt. It is also possible to provide
a negative prompt as well as a set of parameters including the cfg scale and the random seed.
Additionally, the tool enables the user to follow a certain workflow by providing portability of the
images generated in the text-to-image tab. After generating an initial image in this tab it is possible
to further modify this image in the image-to-image tab for multiple iterations until a desired output
is generated.

Although the tool offers a variety of features and parameter options, this might be overwhelming at
the beginning and it is difficult to understand the relations between the input parameters and the
generated output images. Especially for new users, there is no functionality provided that allows
the exploration of the input parameter space and the visual analysis of how different parameter
constellations relate to output samples. While the tool offers sampling functionalities, the user
still has to define scripts in order to make use of sampling which makes it quite complex for an
inexperienced user.

3.2 Visual Parameter Space Analysis

Many machine learning models are guided by a set of input parameters where it is often challenging
to find values for the parameters that influence the outputs of the model in the intended way.
Although some parameters have a semantic interpretation it is often difficult to understand how

15

3 Related Work

Figure 3.1: Stable Diffusion Web UI: The browser interface of the Stable Diffusion Web UI
offers functionalities such as text-to-image and image-to-image generation using stable
diffusion models. The user can control various model parameters such as the cfg scale
and the random seed and the generated images can be transferred between the different
tabs of the user interface. These tabs offer additional features including inpainting,
which can be used to fix defects in images.

a parameter constellation interacts in regard to the output of the model. In their work, Sedlmair
et al. describe a framework for visual parameter space analysis (vPSA) [SHB+14], which is a
visual analytics technique that can support the validation and the usage of (simulation) models by
applying both visual and automatic methods [PBM]. The models that are analyzed are represented
by input-output models that map a set of input parameters to a set of outputs. Input and output
parameters can be classified as either multivariate/multidimensional or complex, where the first
category can contain semantically meaningful input parameters and the latter might be an image
that is seen as a single complex input parameter. Figure 3.2 shows an example of an input-output
model consisting of four input parameters, one of them being a complex input parameter. Following
the definitions given by M. Sedlmair et al. we can then formulate the term parameter space analysis
(PSA) as the systematic variation of model input parameters and the generation of the corresponding
outputs in order to understand the relations between the input parameters and the outputs. In the
context of this work, PSA is supported by interactive visualization which is referred to as the
already-mentioned concept of vPSA. Although the tool that is implemented with this work does

16

3 Related Work

Model , ,

Figure 3.2: Sampling a model: The figure shows a model that has a complex input which is an
image and three additional input parameters. The model is sampled three times for
different input parameter constellations and the same input image, generating an output
image for each parameter constellation.

not cover the whole process of vPSA some concepts will be applied in order to better understand
the relations between the input parameters and the outputs of the latent diffusion models, which is
one of the core contributions of this work. This enables the user to explore the parameter space
consisting of parameters such as the cfg scale and the seed and to understand how these parameters
influence the output of the latent diffusion models. While Section 2.5 was dedicated to the details of
latent diffusion models, the model will be treated as a black box input-output model for the purpose
of this topic. The process can be divided into two steps: The variation of the input parameters
which will be referred to as parameter sampling and the interactive visualization of the outputs that
are generated by the model for the sampled input parameters, which will be briefly covered in the
following two sections.

Parameter Sampling

The systematic sampling of the input parameter space is a crucial part of the vPSA process.
Coming back to Figure 3.2 one can see that the model is sampled for three different parameter
constellations which generate three corresponding output samples. As described in [SHB+14],
either regular or stochastic sampling strategies are mostly used to generate parameter constellations.
A commonly used regular sampling strategy is Regular Cartesian sampling, which is also used
in the context of experimental design. Supposing a model has two different parameters 𝐴 and 𝐵,
which are also denoted as factors, cartesian sampling would generate all possible combinations of
parameter pairs. 𝐴 and 𝐵 with possible values {𝐴1, 𝐴2} and {𝐵1, 𝐵2} would lead to the samples
{(𝐴1, 𝐵1), (𝐴1, 𝐵2), (𝐴2, 𝐵1), (𝐴2, 𝐵2)} [SHB+14]. A popular example of a stochastic sampling
strategy is the so-called uniform random sampling, where the parameter values are randomly picked
from a given range of possible values. Unlike cartesian sampling, which systematically covers
the whole parameter space, uniform random sampling randomly selects parameter values without
considering the specific combinations of those. In this work, uniform random sampling will be
used for the generation of image samples.

17

3 Related Work

Navigation Strategy

After the sampling of the input parameters and the generation of the corresponding outputs, these
outputs must be presented to the user in a manner that allows exploration and analysis of the
parameter space. Sedlmair et al. classify four strategies that can be used for the navigation through
the input parameters and the generated outputs, while we will focus on the so-called local-to-global
navigation strategy. This strategy relies on the pre-computation of samples before starting with the
parameter space analysis in order to prevent long waiting times of the user [SHB+14]. Depending
on the model and the use case, the number of pre-computed samples may vary and is also limited by
the chosen visualization of the output samples. The idea of this navigation strategy will be applied
to this work, as it enables the visual presentation of various output samples to the user, from which
he can then select the most appropriate one.

3.3 Prompt Engineering and Design Space Exploration

Prompt engineering refers to the process of strategically designing text prompts to generate desired
outcomes from language models, specifically in the context of text-to-image models. In their work
[LC21], V. Liu and L. Chilton conducted a study in order to identify text prompt components and
model parameters that yield the generation of coherent model outputs. The study consisted of
several experiments, including the permutation of prompts, the variation of the random seed and the
investigation of the length of the optimization. In the first experiment, they started by comparing
the outcomes of text prompts with only small differences such as the usage of different words with
the same semantic meaning. As a result of the experiment they stated, that there is no significant
variation in the results when rephrasing the text prompt. Thus when trying to optimize the output of
the text-to-image generation the focus should lie on the keywords rather than on the rephrasing of
the text prompt. In the second experiment, which covered the variation of the random seed that is
used for the generation they started with the hypothesis that the variation of the random seed would
have no significant impact on the quality of the generation output. However, in their experiment they
used 10 different randomly generated seeds and they found out, that there exist significant quality
differences between the outcomes of the generation when varying the random seed for the same text
prompt. The authors conclude that in the process of prompt engineering before adapting the text
prompt one should consider to vary the random seed first. The third experiment that is of interest for
this work and that has been executed in the scope of the study is about the length of the optimization
which is described by the number of iterations for which the model is executed. The question that
the authors encountered is whether a higher number of iterations yields better-evaluated generations.
As a result, they stated that in the range between 100 and 1000 iterations, a higher number of
iterations did not significantly increase the quality of the generations. They conclude, that for the
purpose of faster iteration, it would be valid to choose a lower number of iterations such as 400. To
summarize the results of this work, varying the seed as well as choosing a number of iterations in
the magnitude of 400 are good approaches for prompt engineering whereas rephrasing the prompt
with similar semantic meanings does not significantly optimize the generation results. By applying
the results from the just presented work on prompt engineering to this thesis, the variation of the
random seed and the iterations represent feasible approaches for the optimization of the generation
results. While the work by V. Liu and L. Chilton includes the variation of parameters such as the

18

3 Related Work

random seed, it does not provide an approach for the systematic exploration of such parameters.
This is where this work comes into place, which aims to provide a tool for the visual parameter
space exploration as described in Section 3.2.

Another work, that also focuses on the improvement of text prompts in the context of text-to-image
synthesis has been presented by Feng et al. [FWW+23] with the so called PromptMagician. Among
other things, the PromptMagician helps the user to refine his text prompts by initially sampling
images for a given text prompt of which the user can select an image with the desired style. The
tool then proposed to the user additional keywords that match the selected style in order to improve
the generation results. In contrast to the PromptMagician, this work focuses on the exploration of
the model parameters of latent diffusion models rather than on the improvement of the text prompts.
However, both the PromptMagician and this work share similar approaches by including sampling
and projection for the visual presentation of image samples.

With their tool called generative.fashion [DWJ+23], Davis et al. present a GAN-based fashion
design tool that is based on principles of design space exploration and aims to improve the support
for creativity in the design process. For the purpose of exploring the latent space of a deep generative
model, the implementation of generative.fashion offers a panel where the users can move generated
images along meaningful directions in the latent space in order to intentionally explore the latent
space of the GAN. Related to the idea of the presented work, this thesis focuses on the parameter
space exploration of latent diffusion models using sampling and projection functionalities.

19

4 Design

This chapter describes the creation process of the design concept as well as the final design that is
implemented by the DiffusionExplorer. The creation process consists of multiple steps, consisting of
two interview phases that aim to elicit the fundamental requirements of the software solution as well
as to develop visual solutions. As the tool is created in the context of this bachelor thesis, the main
input for the interviews and the derived requirements originates from the two supervisors and two
employees of the same institute of visualization and interactive systems (VISUS) of the University
of Stuttgart. Both supervisors are visualization experts and already worked with latent diffusion
models. This chapter is structured as follows: Section 4.1 will give an overview of the creation of
the design concept including interviews that have been conducted with the two supervisors and the
two employees of the institute. The section also addresses the extracted problem statement and
the current workflow of the participants of the interviews and summarizes the requirements for the
software solution that aims to solve the problem statement gathered from the interviews. Finally,
the last part of the section highlights the solution phase, which includes the creation of possible
visualization solutions that aim to meet the requirements and solve the problem statement. The
course of Section 4.1 strongly reflects the Design Study Methodology that has been presented in
Section 2.6, while each section can be associated with a specific step of the design thinking process.
The second part of this chapter is built from Section 4.2 and presents the final visualization design
of the tool as a result of the whole implementation process of the tool. In this section the final
design decisions are described and to what extent the designs from the design concept in Section 4.1
have been adapted or modified.

4.1 Design Concept

As already touched upon in the introduction of this chapter, this section goes hand in hand with
the Design Study Methodology and explains the process of deriving the requirements and possible
design solutions step by step. The first step consists of the two interview phases which will be
covered in the following.

Interviews

To understand the current workflow and the requirements of the software solution, two interview
phases have been conducted. The first interview phase refers to the Empathize and Define phases of
the design thinking method and consists of fundamental questions that help to better understand the
current workflow of the users, the problems they currently face and the requirements for a solution
that addresses these problems. The first block of this interview phase consisted of the following
questions:

20

4 Design

• What tasks are you currently completing using Krita and Stable Diffusion?

• What is your workflow for these tasks?

• What problems are you currently facing regarding the solutions that you are currently using
to complete the tasks?

• Which features currently work great for the completion of the tasks?

The question set of this first block consisting of the four above questions aims to capture the
current state of the problem and solution space and they reflect the Empathize phase. Section 4.1
summarizes the results gathered from these questions such as the problem statement and the current
workflow of the interview participants. The second interview block of the first interview phase
which is associated with the Define phase consisted of the following questions:

• What are fundamental functionalities and properties that a solution should definitely offer?

• Are there functionalities and properties that are not fundamental but still important for you?

• Are there functionalities and properties that would excite you?

These questions are formulated with the goal of differentiating between the functionalities and
properties in regard to their importance. The second interview phase goes hand in hand with the
Ideate and Prototype phases of the design thinking method.

Understanding the Problem and the Workflow

Based on the questions of the first block of the first interview phase, the current workflow as well
as several problems with existing tools could be identified. Figure 4.1 shows the visualization of
the workflow which combines the stated workflows of the interview participants and shows how
they solve the task of art design using latent diffusion models. The workflow can be divided into
three steps, while each step may be repeated multiple times. As art design is generally performed
layer-wise, the three steps are executed for each layer which are later composed in tools such as
Photoshop or Krita.

Step 1 starts with the creation of an initial text prompt as well as the selection of initial values for
parameters such as the cfg scale, the denoising strength and the seed. Optionally, the participants
make use of databases like PromptHero that offer a wide range of prompts for latent diffusion
models with the corresponding output images. In this step, the prompt and the initial parameters
are repeatedly updated until the generated image matches the desired style. The image resulting
from the first step is then used as input for the sampling step.

The goal of step 2 is to generate a variety of output samples as an image grid using different
sampling methods and seeds in order to explore parameter constellations and find the appropriate
configuration for the desired output. In the context of this step, parameters such as the cfg scale
and the denoising strength are less important and the focus lies on the usage of different sampling
methods. Optionally, negative text prompts are used to intentionally remove elements from the
image.

21

4 Design

The last step which is shown in Figure 4.1 on the right consists only of repeated iterations of
image-to-image in order to refine the output of step 2. This step usually starts with an upscaling
of the output image from the previous step e.g. from 512x512 to 1024x1024 which is especially
important when dealing with faces as 512x512 has a too low resolution for this purpose. By
experimenting with the cfg scale and the denoising strength a couple of image-to-image samples are
generated and images that match the requirements are exported to Photoshop or Krita and inserted
into the specific layers.

As described by the participants they mainly used the Stable Diffusion Web UI (see Section 3.1)
for the described workflow and they stated some core problems that they encountered, which are
summarized in the following:

• Problem 1: Missing image history

• Problem 2: Complexity of the image sampling functionality

• Problem 3: No grouping of samples based on similarity metrics

• Problem 4: General complexity of the parameter configuration interface

The first problem is, that the Web UI does not offer the functionality to access an image history such
that the user can apply image-to-image multiple times on the same image and go back to old versions
of the image. Currently, the participants manually save images that they want to keep in order to
prevent the output of the next image-to-image iteration from being worse than the current version
and thus to lose this progress. Another problem is the complexity of the image sampling process in
the Stable Diffusion Web UI, as a separate script needs to be created where the configuration of the
sampling is defined. Especially for inexperienced users, this creates further friction to make use
of sampling techniques. Also related to image samples is the problem, that these samples are not
grouped based on any similarity metrics which makes it less intuitive to understand the relationships
between the parameter constellations and the output samples. The last core problem of the existing
tooling consists of the high complexity of the parameter configuration interface. As shown in
Section 3.1, several parameters can be adjusted using sliders and other configuration methods which
overwhelmed the participants especially when first starting to experiment with the tool.

Identifying the Requirements

Based on the existing workflow and the problems that the interview participants came across with
their current solution, the requirements of the new software solution can be formulated. In order
to better understand the importance of certain requirements, the so-called Kano Model [OC12] is
applied. The Kano Model describes a theory to classify requirements in the context of product
development as one of several categories. Depending on the source, the number of categories varies
and for this work, three categories will be considered. Figure 4.2 shows the visualization of these
three categories consisting of basic, performance and excitement. The figure shows the relation
between the fulfillment of requirements originating from the respective category and customer
satisfaction. Basic requirements refer to the fundamental features or attributes that customers expect
from the product. These are essential requirements that customers consider as the bare minimum
for satisfaction and their absence will lead to a dissatisfaction of the customer. Performance
requirements are related to the satisfaction of the customer and their improvement can lead to a
proportional increase in satisfaction on the customer side. Finally, excitement requirements are

22

4 Design

Initial text prompt

Initial parameters

Step 1: Text-to-Image

Generate initial
images and update

text prompt

repeat

Generate image grid

Remove elements
with negative prompt

repeat

Choose images for
image-to-image

Change parameters

repeat

Step 2: Sampling

Refine image with
image-to-image

Change parameters

repeat

Save progress

Step 3: Image-to-Image

Figure 4.1: Current workflow: The workflow of the interview participants that they apply in their
daily art design routine using diffusion models. The investigation of the procedure
aims to support the formulation of the problem statement and how the participants
interact with the technologies. The workflow consists of three steps, while the first step
generates initial images using text-to-image, the second step uses sampling methods to
cover different parameter configurations and the last step refines the output of step 2
with image-to-image.

known as unexpected features that have not been explicitly demanded by the customer. However,
fulfilling these requirements can significantly increase the satisfaction of the customer and usually
represents unique and innovative features [OC12]. The following question set describes the
second block of the first interview phase and aims to classify the requirements as one of the three
categories:

• What are fundamental functions and properties that the software solution should definitely
have? (Basic)

• Are there functions and properties that you don’t see as fundamental, but that are still important
for you? (Performance)

• Which functions and properties are not expected, but would lead to excitement when they are
fulfilled? (Excitement)

The result of the question set of this second block is shown in Table 4.1. The final requirements
of the software solution consist of five basic requirements, two performance requirements and
one excitement requirement. R-B1 describes a history functionality that should be present when
dealing with updates of images by iteratively applying latent diffusion models. The user should
be able to go back to old versions of the image in order to revert updates to the image. The next
requirement R-B2 is related to the general concept of modifying composed images layer-wise. As
already highlighted before, the participants mainly use tools such as Photoshop and Krita where
they compose the results of the latent diffusion model generation using layers. To fluently integrate
the DiffusionExplorer in this workflow, the solution should make it possible to import the layers
of a document in Krita, modify them individually and export the modified layers back into Krita.
As each layer might consist of different styles of images and different generation approaches, an
individual parameter configuration for each layer must be provisioned which is described by the
requirement R-B3. The final two basic requirements R-B4 and R-B5 are closely related to each other
as they cover the topics of parameter exploration and the embedding of images in the 2D plane. R-B4
summarizes the functionality to define parameter ranges that should be sampled and for those a set

23

4 Design

Satisfaction

Functionality

Performance

Excitement

Basic

Figure 4.2: Kano Model: The Kano Model [OC12] describes the relation between the fulfillment
of requirements and the satisfaction of the client in the context of software development.
Requirements are divided into three categories: Basic, performance and excitement.
While basic requirements are expected to be present in the software, performance
requirements have a linear correlation with client satisfaction and the presence of
excitement requirements results in an exponential increase in client satisfaction.

of output samples is generated. In order to better understand the relationship between the parameter
constellations and the output samples, R-B5 describes that the images should be embedded in a 2D
plane based on either the similarity of the parameter or the image vectors. Moving forward to the
performance requirements, two of these namely R-P1 and R-P2 have been stated by the interview
participants. R-P1 is about the visualization of the current context of the displayed image, such as
providing the input image, which the image has been generated from. The second requirement R-P2
can be seen as an advanced sampling functionality, where the user can choose between different
sampling methods, whereas the basic requirements would only cover the provision of parameter
sampling, in general, involving at least one parameter sampling method. As these two requirements
are classified as performance requirements, their fulfillment would indeed enhance the workflow of
the user but have not been seen as fundamental properties of the software solution. The last category
of requirements consists of a single excitement requirement. The interview participants came up
with R-E1 which summarizes the functionality to not only have a linear history of the images but to
provide the user with the opportunity to branch into multiple directions originating from a single
image. This involves, that the user could perform multiple image-to-image generations starting
from the same input image, which would be visually presented to the user as branches originating
from the same image state. As all the requirements have now been classified as one of the three
categories, this can be used to lead the implementation process by prioritizing the requirements. For
the implementation phase, the basic requirements will have the highest priority as they represent
fundamental properties of the software solution. The second highest priority will be assigned to the

24

4 Design

Table 4.1: The requirements of the software solution classified as one of the three categories: Basic,
performance and excitement.

Basic Requirements

ID Description

R-B1 The provision of a linear history that enables to go back to older versions
of the image.

R-B2 The functionality to import individual layers from Krita, modify them
and export them back into Krita.

R-B3 Configuration of a parameter set for each individual layer.

R-B4 The provision of a systematic exploration of the parameter space using
parameter sampling for specified ranges.

R-B5 The possibility to compare output samples using a projection view that
embeds the samples in a 2D plane.

Performance Requirements

ID Description

R-P1 Visualization in what context a series of images has been generated e.g.
what the the generation input was.

R-P2 Selection of the parameter sampling method.

Excitement Requirements

ID Description

R-E1 The provision of a history which is not only linear but also offers several
branches from a specific state.

performance requirements, as they further enhance the workflow of the user and the excitement
requirements will be implemented with the lowest priority. After having collected the requirements
of the software solution, the next paragraph will cover the Prototype phase of the design thinking
method. This involves the creation of visual prototypes together with the domain experts which are
the interview participants in order to steer the final design into the desired direction.

Design Prototype

The Prototype phase which corresponds to the second interview phase aims to collect ideas and
possible solutions for the visual realization of the software solution. Being one of the most exciting
phases as all the collected requirements are brought into a prototype of the tool, this phase is
also the least structured one. For this interview phase, screenshots of the skeleton of the tool

25

4 Design

Figure 4.3: Iterative View Prototype: The Iterative View of the prototype which is the default
view when applying image-to-image generations in the DiffusionExplorer. The view
offers the functionality to configure the parameters and to go back and forth in the
image history. As the model parameters in this view are fixed to a certain value, only a
single image output is generated.

have been prepared in order to allow an interaction with the tool which should be as realistic as
possible. Together with the interview participants, multiple views of the visual solution have been
discussed, which can be broken down into three different views: The Iterative View, the Projection
View and the Pipeline View. Figure 4.3 shows the so called Iterative View which is shown when
image-to-image generations without sampling take place in the tool. The view provides the result
of the image generation, a text field to write the text prompt and configuration possibilities for
the model parameters placed at the upper right. The user can fix a specified set of parameters to
the screen, such that only the desired parameters are continuously shown. As expressed in the
basic requirement R-B1, the DiffusionExplorer should support a linear history which is accessible
through the two buttons called Previous Step and Next Step enabling the user to return to older
or newer versions of the current image. The options menu, which is located in the navigation
bar is supposed to offer the configuration of the parameters that are shown on the screen as well
as other parameters such as the image size. Proceeding to the next view of the prototype, the
Projection View implements the visualization of the parameter sampling output. As shown in
Figure 4.4 the input image, as well as the generated output samples are presented on the screen.
Related to R-B4 and R-B5, the output samples are embedded in the 2D plane based on either the
similarity of the parameter or the image vectors. As it is sketched in the screenshot, the user can
access the individual parameter configurations for the output samples by hovering over an image
and thus better understand the relationship between the samples and the corresponding parameter
configurations. By clicking on a specific output sample, the user can select the sample he wants
to continue with. The final view created in the second interview phase is the Pipeline View. As

26

4 Design

Figure 4.4: Projection View Prototype: The Projection View of the prototype is shown after
applying parameter sampling to a given input image. The view shows the 2D embedding
of the output samples based on similarity metrics and the coordinates of the images
can be calculated using either t-SNE or UMAP.

the DiffusionExplorer allows the iterative modification of an input image using image-to-image
generations, the subsequent application generates a pipeline of images that represents the image
history. The Pipeline View shown in Figure 4.5 is dedicated to giving the user an overview of
multiple generation steps by presenting the images as nodes connected with edges that are labeled
with the parameter configuration that led from one image to another. The user can click on a node
in the pipeline and the screen jumps into the Iterative View of the selected image allowing the user
to run further image-to-image generations and replace the image history coming after the selected
image with the new generation results. Something that is currently represented by the blue box
filled with the parameter values in the Pipeline View, is the visual encoding of those parameters
using so-called Glyphs which can be used to visually describe a single parameter as well as a whole
parameter constellation.

4.2 Visualization Design

After having covered the requirements gathering process as well as the development of prototypes
of the different views of the DiffusionExplorer, this section covers the final design of the tool. Each
of the views will be presented in a dedicated paragraph and the original prototypes of the views will
be compared to their final designs.

27

4 Design

Figure 4.5: Pipeline View Prototype: The Pipeline View of the prototype visualizes the image
generation pipeline of the DiffusionExplorer and allows the user to jump into a specific
step of the pipeline by clicking on an image node. Above the edges that connect
the nodes with each other, the model parameters that have been configured for the
respective generation are visualized.

Iterative View

As already touched upon in the solution phase, the so-called Iterative View is shown to the user when
performing image-to-image generations with the sampling option disabled. Figure 4.6 shows the
final and implemented design of the Iterative View. By comparing it to the prototype in Figure 4.3
one can see that both views have a resembling structure but several elements have been changed.
While implementing this view, the idea of a bottom integration of the Pipeline View came up which
enables the user to directly keep track of the history and switch to older versions of the image simply
by clicking on a node in the pipeline which is shown at the bottom of the screen. This functionality
makes the usage of buttons for the back-and-forth navigation in the image history obsolete which
is why these buttons have been removed in the final design. Similar to the prototype, at the right
side of the current image, this view offers several parameter configurations for the cfg scale, the
denoising strength and the seed. The two buttons above the configuration sliders allow the user to
enable the sampling option as well as to zoom out in order to show the Pipeline View which will be
covered in a following paragraph. One crucial element of the design that has been introduced in
the prototype of the Pipeline View is the glyph which is used to visually encode several generation
parameters. In the implementation phase, the decision has been made to not only include this glyph
in the Pipeline View but to also add it to the Iterative View such that the user is provided with a
visual overview of the parameters that have been used to generate the currently shown image. This
glyph is shown on the left in Figure 4.6 and consists of a radial radial bar chart that visually encodes
both the cfg scale and the denoising strength as well as the sampler that has been applied for the

28

4 Design

Figure 4.6: Iterative View Design: The final design of the Iterative View shows the current image
in the center and the image history at the bottom. On the right side, the user can
customize the parameters for the image-to-image generation, enable the sampling
functionality and zoom out to the full view of the image history. The glyph on the left
side of the image visually encodes the model parameters that have been configured for
the generation that led to the image in the center of the view.

image generation. The angle of the arcs is dependent on the value of the respective parameters in
relation to the maximum allowed values of the parameters. Finally, the appearance of this screen is
customizable in the options menu which will be covered later. By using the options menu, the user
can remove parameter configurations from the screen and substitute the sliders with input fields for
a more precise parameter configuration.

Projection View

Switching to the so-called Projection View, this view is presented to the user when the sampling
option is enabled and after the user executed the image generation. The Projection View is strongly
based on the prototype and Figure 4.7 shows the final implementation. This view can be divided
into the left and the right side while the left side consists of the current image, a glyph and a slider
to change the size of the image samples that are shown on the right. On the right side, the generated
image samples are embedded using 2D coordinates that are computed based on either the similarity
of the parameter or the image vectors. Whenever the user hovers over an image sample, the glyph
on the left side shows the generation parameters of the specific image sample. As the images on
the right might overlap especially when sampling for a larger amount of parameter constellations,
the slider can be helpful to reduce the overlapping of the images. For the 2D embedding in the
Projection View both t-SNE and UMAP are offered as dimensionality reduction algorithms which

29

4 Design

Figure 4.7: Projection View Design: The final design of the Projection View which shows an
example of 10 image samples that are embedded in the 2D space based on the similarity
of the parameter vectors using the UMAP dimensionality reduction algorithm. When
the user hovers over one of the image samples, the glyph on the left shows the model
parameter configuration of the hovered image. Above the glyph, the input image of the
generation step is shown.

the user can choose from in the options menu. In order to continue with the workflow, the user can
choose one of the image samples by clicking on it and the view changes back to the Iterative View
where the user can proceed with further image-to-images generations. As a result, the sampling
step is then added to the image history.

Pipeline View

The third major view of the DiffusionExplorer is the Pipeline View which visually represents the
image history of the currently selected layer. The view can be accessed by clicking the Zoom
Out button in the navigation bar of the tool when being in the Iterative View or the Projection
View. Figure 4.8 shows the final design of the Pipeline View for an example where two individual
generation steps have been performed. In this view, each generation step is represented by a node
and connected to the subsequent step via an edge. As shown in the example, the nodes are colored
differently depending on the type of image generation that has been performed. In the tool, there
exist different types of generations that lead to three different node types: Initial View, Iterative
and Projection. The first type appears when the input image is completely ignored and the image
generation is only based on the given text prompt. This might be the case when the user imports
a Krita document with empty layers into the tool and wants to perform an initial text-to-image
generation. The second node type Iterative features regular image-to-image generations where the
sampling option is disabled and the user only adapts the text prompt as well as other generation

30

4 Design

Figure 4.8: Pipeline View Design: The final design of the Pipeline View. In this example, an
initial text-to-image generation has been performed, followed by one image-to-image
generation and one sampling iteration. Each iteration type is represented by a different
node color and on-demand, all the image samples of the sampling step can be shown
inside the blue node. The edges, that connect the nodes with each other consist of a
glyph that visually encodes the model parameter configuration that has been applied
for the respective generation step.

parameters. Finally, the last node type describes generation steps with the sampling option enabled
which leads to the Projection View. After the user selects an image sample in the Projection View
the image is added as a node of type Projection to the pipeline. A node of the Projection type offers
the functionality to give a quick overview of the samples that have been generated in the sampling
step. As shown in Figure 4.8 six samples have been generated in the second step, which can be
displayed on demand in the node. Each node additionally contains the value of the random seed
as well as the size of the generated image. Besides the nodes themselves, the Pipeline View also
features glyphs which are displayed between nodes. Each glyph visually encodes several generation
parameters that lead from the node on its left to the node on its right. As a result, the user has an
overview of the image history as well as of all major generation parameters that have been applied
in the generation steps.

Options Menu

The last visual element of the tool is the options menu which can be accessed through the navigation
bar on the top of the tool. Figure 4.9 shows the implemented options menu which offers a wide
variety of customizations and parameters. The upper half of the menu is related to the visual
appearance of the parameter settings that are shown on the right in the Iterative View. By clicking

31

4 Design

Figure 4.9: Options Menu Design: The final design of the Options Menu offers several function-
alities including the customization of the screen as well as the number of iterations
and the selection of the dimensionality reduction algorithm. By setting the Initial
Text-to-Image flag, the user can control whether the current image or solely the text
prompt should be used for the generation step.

on these checkboxes, the user can decide which of the parameters should be shown in the parameter
settings. The lower half of the options menu offers further model settings that are not shown in the
parameter settings including the choice of the dimensionality reduction algorithm and the size of the
images when performing upscaling. The Initial Text-to-Image check box provides the functionality
to ignore the content of the current layer that has been imported from Krita and to perform an initial
text-to-image generation based on the given text prompt.

This chapter covered the application of the design thinking process to the development of the
software solution as well as the final resulting visualization design. As this completely left out the
underlying technical implementation details, the following chapter aims to give an overview of
these.

32

5 Developing a Tool for Visual Parameter
Exploration

After having covered the visualization aspects of the software solution, this chapter aims to address
the technical implementation details such as the frameworks and the architecture that has been used
to implement the DiffusionExplorer which might be especially interesting for future extensions
of the tool. The first Section 5.1 is all about the open-source painting program Krita and how
to develop plugins for it. The next Section 5.2 covers the technical implementation of the tool
consisting of the frameworks and other technologies, as well as how multiple components of the
tool interact with each other in order to offer the desired functionalities.

5.1 Krita

As already introduced at the beginning of this chapter, Krita is a free open-source painting program
that offers extensibility through plugins. In general, paintings in Krita are usually decomposed into
several layers that are then laid on top of each other.

Krita Python API

The Krita Python API provides a comprehensive set of tools and functions that allow developers to
extend and customize the capabilities of Krita using the Python programming language. With the
API, programmers can automate repetitive tasks, create custom brushes, modify the user interface
and interact with Krita’s document structure, layers and image data. In the context of this work,
the interaction with the current active document as well as the layers contained in the document
is important, as these functionalities allow the import and export of the layer data in order to
manipulate it in the tool. For this purpose, the Krita Python API offers functions to access all layers,
change their properties such as their name and their content. To make use of this API, Krita offers
the possibility to write plugins using API functions and that can be visually embedded into the user
interface of the painting program. The following paragraph describes how plugins can be defined
and included in Krita.

Plugin Architecture

Krita provides a flexible plugin architecture that allows users to extend its functionality through
custom plugins. Plugins can be written in Python and integrated into Krita. In this paragraph, the
file structure of a Krita plugin will be presented and it will be explained how it can be included
in the application. Figure Figure 5.1 illustrates an example file structure for a Krita plugin called

33

5 Developing a Tool for Visual Parameter Exploration

pykrita
...

my-plugin.desktop

my-plugin

init .py

my-plugin.py
...

Figure 5.1: Plugin File Structure: The file structure how the sample plugin my-plugin is included
into Krita. The plugin can then be enabled in the settings of the painting program.

my-plugin. The pykrita directory serves as the main directory where Krita looks for Python
plugins and acts as the parent directory for all Python-based plugins. Within this directory, the
my-plugin.desktop file is a desktop entry file that provides metadata about the plugin including
information such as the plugin’s name, description and the path to the main Python script file. The
my-plugin/ directory represents the plugin itself. It contains the plugin’s Python files and any
additional resources or assets required by the plugin. The _init_.py file within this directory acts as
the initialization script for the plugin. It is executed when the plugin is loaded and allows you to
perform any necessary setup or initialization steps. The my-plugin.py file is the main Python script
file for the plugin containing the code that defines the functionality of the plugin. This can also
include the user interface of the plugin which is then shown in the running Krita application.

5.2 Tool Development

This section aims to give an overview of the technical background of the DiffusionExplorer, which
is split into multiple components. The first paragraph of this section presents how these components
of the tool interact with each other and the second paragraph addresses the technology decisions
that have been made for these components.

Tool Architecture

Figure 5.2 visualizes the component view of the DiffusionExplorer consisting of four major
components. The first component is a Krita plugin, that enables the import and export of the layer
data of the current active document. The plugin acts basically as an interface between Krita and
the other components, enabling the exchange of the layer data back and forth having direct access
to the data of the current document which is opened in Krita. Label B in Figure 6.1 shows the
minimalist user interface of the Krita plugin, which consists of only two buttons that provide the
functionality to import and export layer data. While the first button exports every single layer
consisting of a layer name and the content of the layer and sends it to the electron application, the
second button can be used to update the content of the selected layer in Krita with the modified layer
content from the electron application. The second and fundamental component of the tool is the
electron application which represents the main interaction with the user. As shown in Section 4.2
the electron application offers the user interface the user mainly interacts with and provides all the

34

5 Developing a Tool for Visual Parameter Exploration

Electron Application

Stable Diffusion
Web UI Server

Krita

Krita Plugin

Active
Document

layer data

Python Server

import / export
layer data

fetch images,
upscaling, ...

fetch embeddings,
img2vec, ...

Figure 5.2: Component View of the DiffusionExplorer: This figure shows the four main
components of the tool, consisting of the Krita application and the Krita plugin, the
main electron application and two helper components for the image generation and
the dimensionality reduction. The electron app is directly connected to Krita via the
plugin, enabling the user the transfer of layer data between the two instances.

functionalities that have been described in the requirements. This component communicates with
two additional components as shown in Figure 5.2 on the left, while one component is the Stable
Diffusion Web UI running in API-only mode and the other component is a Python server that offers
endpoints to compute the 2D embedding of given vectors as well as image2vec in order to reduce
the dimension of images to much smaller vectors.

Technology Decisions

One of the biggest technology decisions has been the usage of Electron in combination with the
library React for the frontend implementation. Electron is a framework to build cross-platform
applications that can be used with frontend frameworks such as React and Angular. The first
approach for the implementation of a plugin for Krita would have been to fully implement the user
interface inside the Krita plugin. However, the usage of an external application window for the
plugin offers many freedoms and the possibility to develop an independent desktop application.
The communication between the Krita plugin and the electron application takes place using sockets.
This technology has been chosen to enable fast and real-time communication between the two
components as they might have frequent exchanges of layer data. Finally, the Stable Diffusion Web
UI API has been chosen as an endpoint for all image generations including the upscaling of images
as the API offers a wide range of features and reliable implementations.

After having covered the technical background of the DiffusionExplorer, the following chapter
covers the evaluation of the tool which represents one of the core chapters of this work as it presents
the theoretical and practical interaction with the tool.

35

6 Evaluation of the Tool

This chapter presents the evaluation of the developed software tool, which aims to address a specific
use case within the process of art design using latent diffusion models. The evaluation process
consists of two main parts: A case study with the proposed workflow and a user evaluation where
the tool is tested by the same users who have been interviewed for the requirements of the tool. The
goal of this evaluation is to assess the effectiveness, usability and alignment of the DiffusionExplorer
with the intended use case, as well as to gather valuable user feedback for further improvements.
The case study in Section 6.1 focuses on the initial conceptualization and design of the tool. It
entails presenting the workflow that was devised to guide users through the different steps and
functionalities of the tool. By demonstrating the predefined use case, it is illustrated how the tool
was originally envisioned to be used and how it behaves in a given scenario. In contrast, Section 6.2
covers the user evaluation and assesses the practical usability of the tool through direct engagement
with the target users. As the requirements and expectations were gathered during the interview
phases, in the user testing phase, the participants were given access to the software and encouraged
to explore its features. The goal is the execution of tasks related to the use case and the provision
of feedback on their experience. This evaluation not only aims to compare the proposed usage
with the actual user interactions but also aims to gather insights into user satisfaction and identify
strengths and weaknesses, as well as limitations of the tool. Before jumping into the evaluations,
the following paragraph describes the task that will be used throughout this chapter.

Task and Scenario: Art Design

This task consists of the design of two layers in Krita, one being the background of the image and
the other layer being a paint layer that is laid on top of the background layer. The user wants to
create a background for a specific topic, which is, in this case, a beautiful, photo-realistic landscape
with mountains. In addition to this background, the user wants to add specific elements such as a
wooden house to the image, which are added to the paint layer and laid on top of the background.
This should be achieved as combined work using both Krita and the DiffusionExplorer which
enables the user to use latent diffusion models. Section 6.1 presents a theoretical workflow of a user
that solves this task using the tool based on the developer and background knowledge of the tool.
In Section 6.2 this workflow will then be compared with the workflow of actual users that try to
execute the scenario and solve the task. To summarize, the task consists of the following points:

• A document in Krita consisting of two layers: A background and a paint layer

• The background layer should be topic-specific for the given topic: beautiful, photo-realistic
landscape with mountains

• The paint layer consists of a specific element, namely a wooden house

36

6 Evaluation of the Tool

Figure 6.1: Step 1: The user starts with a new document in Krita consisting of two layers: A
background layer and a paint layer. Label A in the screenshot shows the two layers of
the newly created document and label B shows the UI of the Krita plugin consisting of
two buttons.

6.1 Case Study

The previously described task may be solved in different ways, while this case study presents a
particular solution for the given task. The solution can be broken down into the following steps:

• Step 1: Create an empty document in Krita consisting of two layers (background and paint
layer)

• Step 2: Export the layers from Krita into the tool

• Step 3: Run initial text-to-image generations for both the background and the paint layer
until a desired state is achieved

• Step 4: Iterative application of image-to-image generations for both layers including the
usage of features such as sampling

• Step 5: Import the results from the tool back into Krita and integrate the paint layer into the
background. Finally, run an image-to-image generation.

Starting with Step 1 the user creates a new document in Krita and does not perform any drawing
operations in the newly created document. The document contains two empty layers, the first layer
being a white background layer and the second layer being an empty paint layer. Figure 6.1 shows
the resulting state of the Krita program of the user after executing the first step. The two layers of
the new Krita document are highlighted and labeled with A. As visible in the screenshot and labeled
with B are the two buttons of the Krita plugin that are connected to the tool. By clicking on the
button called Transfer Data to Plugin the user executes the second step of the workflow and exports

37

6 Evaluation of the Tool

Figure 6.2: Step 2: The user interface of the DiffusionExplorer after the export of the layers of
the Krita document to the tool. Label A shows the currently selected layer and label
B highlights the prompt field for the initial text-to-image generation. The parameters
for the first generation such as the cfg scale and the seed can be found on the right
highlighted by label C.

all layers of the Krita document into the tool. At this point, the focus of the workflow switches from
Krita to the DiffusionExplorer and Figure 6.2 shows the initial state of the tool after the export of
the layers from Krita into the tool. By default, the content of the layers is ignored and the tool offers
an initial text-to-image generation for all layers. As labeled by A in the screenshot, the last layer
called Paint Layer 1 is selected and the user can start a text-to-image generation based on a text
prompt in B and configure the generation parameters in C.

Transitioning to Step 3, both Figure 6.3 and Figure 6.4 show the generated images for the background
and the paint layer after the initial text-to-image generation. Additionally, the labels A and B in
Figure 6.3 highlight important elements of the shown view. Spotlighted by label A is the glyph
that summarizes some of the parameters that have been used for the generation of the image that is
shown next to the glyph. Also highlighted in Figure 6.3 by label B is the first element of the pipeline
that shows the image generation history. Assuming the user is satisfied with the background image,
he now wants to further modify the wooden house in the paint layer which brings us to Step 4.

As the user would like the house to be more photo-realistic and to have a door, with Step 4 he adapts
the text prompt and wants to create multiple samples for different values of the cfg scale and the
seed and uses the sample functionality to sample 15 images for the full ranges of both parameters.
The result of the sampling process is shown in Figure 6.5, where hovering an image sample shows
a glyph with the corresponding generation parameters of the image (label A). Label B represents
the area where all the image samples are embedded, in this case, based on the similarity of the
parameter vectors.

38

6 Evaluation of the Tool

Figure 6.3: Step 3: The background layer in the tool after the initial text-to-image generation which
shows a beautiful, photo realistic landscape with mountains. The first label A shows
the glyph that represents the generation parameters and the second label B highlights
the first element of the image history which has just been generated.

Figure 6.4: Step 3: The paint layer in the DiffusionExplorer after the initial text-to-image generation
which shows the generation result for a wooden house.

39

6 Evaluation of the Tool

Figure 6.5: Step 4: The result of the parameter sampling for the paint layer for the full ranges of
the cfg scale and the seed. Label A highlights the glyph that summarizes the generation
parameters of the hovered image sample and label B marks the 2D embedding of the
image samples based on the similarity of the parameter vectors.

The user then selects one of the samples that matches his requirements and continues with Step 5,
where the focus of the workflow switches back to Krita and the user can use the second button of the
plugin user interface to import the modified layers back into Krita. After switching back to Krita,
the user cuts out the wooden house from the paint layer and inserts it into the background layer. As
it is now clearly visible that the wooden house has been manually inserted into the background,
the user finishes the last step by running a final image-to-image generation in the tool using the
combined prompt beautiful, photo-realistic landscape with mountains and a wooden house and
exports the result. Figure 6.6 shows the final output of the whole task, while the last image-to-image
generation enabled a smooth integration of the wooden house into the background layer.

To summarize this case study, the presented task shows how the DiffusionExplorer can be used
to solve a basic art design task by applying the intended workflow of the developer of the tool.
However, this is more of an iterative presentation of the features using a concrete task than a study
with real users, which is done in the next section.

6.2 User Study

This section of the tool evaluation chapter covers the execution of a user study with the same
participants who have been interviewed in the requirements gathering phase. The goal of the study
is to collect some valuable insights of the user interaction with the tool, in order to evaluate the
DiffusionExplorer and its capabilities to solve the problem statement from the interview phases.

40

6 Evaluation of the Tool

Figure 6.6: Step 5: The result of the integration of the paint layer into the background layer in
Krita. After the integration, a final image-to-image generation is executed to improve
the smoothness of the integration.

Each participant is equipped with a computer that has all the necessary software installed, including
Krita and a running instance of the tool. The study can be divided into three steps, while in the
first step, each participant is provided with a short demo of the tool where all the core features as
well as the views are explained. Additionally, the interface between Krita and the tool, as well as
some basic editing functionalities in Krita are covered in order to prepare the participants for the
study task. The second step consists of a task that is supposed to be solved in the scope of the study
which is scheduled for around 30 minutes and can be summarized as follows:

• Creation of an image containing Bob Ross painted in the style of Bob Ross.

• Start with an empty document in Krita (512x512) consisting of two layers.

• Proposed workflow:

– Import the empty Krita document into the tool.

– Generate e.g. a picture frame in the background layer and a portrait of Bob Ross in the
paint layer.

– Experiment with multiple image-to-image generations, the configuration of the parame-
ters and sampling.

– Import both layers back into Krita and make use of masking e.g. in order to put the
portrait of Bob Ross inside the picture frame until a desired final image is achieved.

41

6 Evaluation of the Tool

Bob Ross was an iconic American painter and TV host known for his soothing voice and "Joy of
Painting" series, teaching art with a calming demeanor and happy landscapes. The goal of the task
is a basic interaction of the participants with the tool, by providing them with a proposed workflow
that aims to structure the task. Depending on the level of expertise of the study participants, the task
can be solved in various ways and there is no clear restriction given on how the task should be solved.
Thus, the task execution might start with some basic drawing in Krita, but the participant could also
directly export the empty layers into the DiffusionExplorer and start with text-to-image generations.
In the third and final step after solving the task, each participant of the user study is asked to fill
out a survey that addresses each view of the tool individually. Each statement of the survey can be
evaluated using a likert scale and for each view, the participant can leave further comments that have
not been covered by the provided statements. As already presented in Section 4.2, the tool consists
of the Iterative View, the Projection View, the Pipeline View and the Options Menu. For each of
these views, the survey covers three statements, while the following two are stated for each view:

• S1: This view is easy to navigate and the offered functionalities in this view are easy to use.

• S2: This view enables me to solve the problem, that I want to address with it.

The first statement addresses the intuitiveness of the respective view, including the navigation inside
it as well as how easy/difficult it is to make use of the offered functionalities. The second one covers
another core evaluation of the views, which is to what extent a view actually helps to solve the
problem that it is supposed to address. In addition to these two statements, the survey includes a
third statement individually for each view:

• S3.1: The visual parameter encoding (Glyph, Sliders) is understandable and it is clear what
the values refer to (Iterative View).

• S3.2: This view offers comparability between the generated samples and their parameters
(Projection View).

• S3.3: This view offers an overview of the image history with a suitable density of information
(Pipeline View).

• S3.4: The options in the menu are structured in an intuitive way (Options Menu).

Each of the additional statements aims to evaluate the respective view based on the core properties
that have been collected in the interview phases before the implementation. The following paragraphs
summarize the results of the user study including the resulting images of the task, the evaluation of
the survey and further findings.

Image Results

Before starting the study, each participant could choose to publish the resulting image either
anonymously or with a self-chosen pseudonym. In the following, the images are referred to as
the pseudonyms of the respective participants. A solution strategy, that is of special interest for
the comparison of the image results is the usage of painting in Krita in order to add elements to
the image and support their generation with latent diffusion models. In an example scenario of an
image showing a lake, a user might want to perform an image-to-image generation to add a boat to
the lake. Therefore the user could only add the keyword to the text prompt or additionally sketch
a boat into the input image to support the generation process. As the users of the study applied

42

6 Evaluation of the Tool

Figure 6.7: The resulting image of the user study executed by the participant with the pseudonym J.
The participant did not make use of any initial sketching and achieved the result solely
through text prompts and the combination of two layers.

different strategies for the inclusion of specific elements, the resulting images can be compared
based on these different approaches. Figure 6.7 shows the resulting image of the participant with
the pseudonym J. In the execution of the study, the participant transferred the empty document from
Krita into the tool and both the portrait of Bob Ross and the picture frame have been generated in
separate layers. Interestingly, the participant did not make use of any supportive painting in Krita
and the results of the layers have been achieved by applying initial sampling followed by multiple
iterations of image-to-image generations. Finally, the participant transferred the layers back into
Krita and inserted the layer containing Bob Ross into the layer with the picture frame. A major
obstacle that occurred in the generation process of the picture frame was the inclusion of a white
background surrounding the picture frame instead of the dark background as shown in Figure 6.7.
Despite multiple attempts to include the white background in the prompt and different parameter
configurations, the participant could not achieve the desired white background. This shows the
limitation of only using prompt adaptations to include specific details in the provided image.

The approaches of the other three participants jokkurt, Moe and hageldave have all been inspired
by the idea to create a painting in the style of Bob Ross in which Bob Ross is painting with a
brush on a canvas. In contrast to the first participant, jokkurt, Moe and hageldave approached the
task with supportive painting in Krita, while each participant used painting to a different extent.
Starting with jokkurt, the participant started initially by roughly sketching both the landscape
background and the silhouette of Bob Ross in two separate layers in Krita. After transferring both
layers into the tool, the participant executed an initial image-to-image generation with each layer,
that transformed the sketched layers together with a similar text prompt into images that already
matched the desired style quite well. At this point, it is remarkable how accurately the results of
the image-to-image generations match the desired style just by providing rough sketches as input.

43

6 Evaluation of the Tool

Figure 6.8: The resulting image of the user study executed by the participant with the pseudonym
jokkurt. Starting with quite detailed sketching of Bob Ross and other elements such as
the style of the landscape, the participant managed to generate accurate results matching
the desired outcome.

After multiple applications of sampling over the seed and the denoising strength and some minor
painting in between, the participant inserted the layer containing Bob Ross into the landscape and
executed additional image-to-image generations in order to make the embedding of Bob Ross in
the landscape smoother. The resulting image of this process is shown in Figure 6.8. The resulting
images of the user study executed by the last two participants hageldave and Moe are shown in
Figure 6.10 and Figure 6.9. Both participants took similar approaches as jokkurt, with the difference
that they used initial text-to-image generations with text prompts that described the landscape and
Bob Ross before using supportive sketching to include specific elements in the images.

To summarize the image results of the user study, all participants could solve the task and match
the desired outcome using Krita in combination with the tool. However the application of initial
sketching or sketching in between made it much easier for the participants to include specific
elements into the images, which would have been difficult or not even achievable with plain text
prompts. These results disclose the advantages of the tool, especially offering a seamless integration
into Krita that allows the user to quickly transfer the layers between Krita and the tool to add sketches
that support the image generation process. During the user study, the sampling functionality was
used very often, as the majority of the participants did not have advanced experience using latent
diffusion models as well as the parameters related to the models. Some of the participants also used
the Projection View to compare the parameters of the generated samples. The participants could
identify the relationship between the denoising strength and the intensity of visual adaptions in the
generated image. For higher values of the denoising strength, the output samples differed more
from the input image than other samples where the denoising strength had lower values. This fact

44

6 Evaluation of the Tool

Figure 6.9: The resulting image of the user study executed by the participant with the pseudonym
Moe. In this study execution, a lot of sketching was applied between the generation
steps and the participant tried to insert the content of the whole image as the content of
the canvas that Bob Ross paints on.

Figure 6.10: The resulting image of the user study executed by the participant with the pseudonym
hageldave. The participant made use of supportive sketching to generate specific
elements in the image.

45

6 Evaluation of the Tool

01 1 2 3 4
Number of Responses

S3.1

S2

S1

1

1

3

1 3

3

Iterative View
Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Figure 6.11: The Likert plot of the survey results for the Iterative View.

was then used by the participants to control the strength of the visual changes in the input image.
In addition to these observations, the participants with less experience related to latent diffusion
models generally applied more sampling than iterative generations with fixed parameter values. In
contrast to this behavior, the participants with prior knowledge of the semantic interpretation of the
model parameters such as the denoising strength performed selective adaptations of the parameters
using iterative generations.

Survey Results

After having analyzed the resulting images of the user study, this paragraph covers the evaluation
survey which has been filled out by each participant after solving the given task. As already touched
upon earlier, the survey consisted of three statements for each view where the participants could
communicate their level of agreement using a likert scale with five response categories, as they are
shown in the legend of Figure 6.11. The given figure shows the answers of the four participants
for each of the three statements addressing the Iterative View (see design in Figure 4.6) of the
DiffusionExplorer. In general, the feedback for the view in regard to the given statements turned out
to be positive, as the level of agreement was high. While the statements S1 and S2 covering the
navigation, the ease of use and the capability to solve problems had a strong level of agreement, the
statement S3.1 was mainly rated with an agreement regarding the understandability of the visual
parameter encoding. Depending on the level of expertise of the respective participant, the textual
comments on the Iterative View took completely different directions. While the participant with
further expertise proposed to offer a bar chart instead of a radial encoding of the parameter values,
another participant with less experience stated not having used the glyphs at all as mainly the
sampling option has been applied and the true values of the parameters did not matter. Proceeding
to the survey results of the Projection View (see design in Figure 4.7), this view resulted in the

46

6 Evaluation of the Tool

012 1 2 3 4
Number of Responses

S3.2

S2

S1 1

3

3

1

1

1

2

Projection View
Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Figure 6.12: The Likert plot of the survey results for the Projection View.

lowest levels of agreement compared to the other views. While the comparability of the generated
samples based on their parameter values in statement S2 was rated with an agreeing attitude, the
answers for the statements S1 and S3.2 had a greater variance in the level of agreement as shown in
Figure 6.12. Similar to the comments for the Iterative View some of the participants stated that
they did not focus on the parameter configurations of the individual samples and simply chose the
sample that they liked best. Another comment was related to the visual layout based on the number
of samples, such that the samples should be displayed as a list for lower numbers of samples and
that dimensionality reduction is only applied when exceeding a certain threshold in the number of
samples. Alternatively to a 2D embedding using dimensionality reduction, one of the participants
proposed embedding the samples in a 2D coordinate system where the two axes represent two input
parameters such as the cfg scale and the denoising strength. With no further modifications to the
computed coordinates of the dimensionality reduction algorithm, often the problem occurs that
images overlap in the Projection View as their coordinates are close to each other. This observation
has also been stated by a participant, who proposed an alternative list view of the image samples to
overcome this problem. The third view that has been covered by the survey is the Pipeline View (see
design in Figure 4.8). Figure 6.13 shows the survey results for the given view, where all statements
generally have been rated with a (strong) agreement in regard to the ease of navigation, the capability
to solve the problem and the suitable density of the presented information. Unlike to the other views,
half of the participants did not leave any further comments, while the given comments mainly
address the presentation of the generation parameters and the image samples when sampling is
enabled. One of the two participants stated, that the parameters that are shown in the glyph as well
as in the nodes should be better grouped together. In addition to the grouping, the participant noted
to use more of the available space in the Pipeline View. As shown in Figure 4.8, the projection
node only shows the selected image from the image samples that have been generated in the specific
step. Related to the projection node, the second participant proposed a modification that enables
the user to show the image samples from which the presented image has been chosen. The last

47

6 Evaluation of the Tool

01 1 2 3 4
Number of Responses

S3.3

S2

S1

1

2

1

2

2

2

2

Pipeline View
Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Figure 6.13: The Likert plot of the survey results for the Pipeline View.

01 1 2 3 4
Number of Responses

S3.4

S2

S1

1

2

1

2

2

2

2

Options Menu
Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Figure 6.14: The Likert plot of the survey results for the Options Menu.

48

6 Evaluation of the Tool

view that has been part of the survey is the Options Menu (see design in Figure 4.9). The results
of the survey strongly resemble those from the Pipeline View and are shown in Figure 6.14. All
statements that cover the ease of navigation, the capability to solve the problem and the intuitiveness
of the structure of the menu have been rated with a (strong) agreement on average. There was only
one comment, that addresses the Initial Text-to-Image flag which is shown in Figure 4.9. When
the user initially transfers the layers from Krita into the tool, the view in the tool is dependent on
whether the flag is set or not. When the flag is set, the content of the selected layer is ignored and
the user can run a text-to-image generation only based on the provided text prompt. In the other
case, where the flag is not set the content of the layer is used as input for the image generation and
an image-to-image generation is performed. The participant proposed that this flag is automatically
set based on the content of the given layer such that when a blank layer is transferred to the tool the
flag is automatically set, as the user likely wants to ignore the content of the empty layer.

To summarize the evaluation chapter, the case study presented in Section 6.1 covered the general
workflow of the DiffusionExplorer based on a given use case. In the second part of the evaluation
chapter in Section 6.2 the user study aimed to test the tool with real users in order to observe their
interaction and workflow with the tool as well as to detect possible improvements. The following
chapter discusses the results of the user study together with the individual visual components of the
tool as well as the initial requirements gathered in the interview phase.

49

7 Discussion

After performing the user study and collecting valuable feedback from the participants, this
discussion chapter aims to address the initial requirements and the workflow of the tool as well as to
integrate the results of the user study from Chapter 6. While Section 7.1 compares the requirements
and the workflow produced in the interview phase with those reflected by the final state of the
DiffusionExplorer, Section 7.2 of this chapter summarizes the limitations based on the presented
results.

7.1 Requirements and Workflow

Recalling the results of the interview phase presented in Section 4.1, there were eight requirements
in total divided into the three categories basic, performance and excitement. In the final state of
the tool, all of the five basic requirements have been fully implemented, addressing fundamental
functionalities such as a revertible image history, the seamless integration into the painting program
Krita as well as sampling and the 2D projection of the resulting images. The image history that is
shown in the Pipeline View successfully enabled the study participants to revert changes to the image
simply by clicking on a previous node. This also supported the willingness to try new parameter
constellations, as bad results could be reverted easily. Another basic requirement that worked
perfectly fine for the participants was the plugin integration into Krita. With a nearly instant transfer
of the layer data, the focus could be effortlessly switched between Krita and the DiffusionExplorer,
allowing the fast application of drawing and editing. Reconsidering the results of the survey in the
user study related to these basic functionalities, the sampling, as well as the projection functionalities,
got the most suggestions for improvement. Especially for inexperienced users, rather the resulting
images than the actual model parameters are relevant, which could be addressed by introducing a
mode that hides these parameters that are currently visually communicated using range sliders in
the Iterative View (see Figure 4.6) and glyphs that visually encode the core parameters of the image
generation in all major views of the tool.

Another discussion point with a great presence in the user study is the visual presentation of the
images in the Projection View. As already stated in Section 6.2, a fundamental problem of the
current 2D projection in the DiffusionExplorer is the overlap of images that have a high degree of
similarity. One possible way to approach this problem is to create an image grid based on the 2D
coordinates resulting from the dimensionality reduction. This can be achieved with the tool Hagrid
that makes use of Hilbert and Gosper curves to handle overlaps in data and creates a grid-like
structure [CMC+22]. Another approach to improve the readability of the Projection View could
also be to focus on two model parameters such as the cfg scale and the denoising strength and to use
them as axis values for a 2D coordinate system. On one hand, this would decrease the complexity of
the view for inexperienced users and could improve the capability for direct comparisons of images.

50

7 Discussion

On the other hand, the information on the other generation parameters or the image vectors would
get lost, however, this could be integrated as part of the already mentioned mode for inexperienced
users in order to reduce the complexity of the sampling and projection process.

The last component of the DiffusionExplorer that is discussed in the context of the basic requirements
is the glyph that visually encodes the model parameters that led to the generated images. In the tool,
the glyphs are present in the Iterative View at the middle-left (see Figure 4.6), in the Projection
View on hover on an image sample and in the Pipeline View on top of the edges that connect the
nodes with each other. Being part of multiple comments in the user study and several discussions
in the development process, the glyph offers great potential for parameter encoding. As of right
now, the cfg scale, the denoising strength and the selected sampler of the image generation are
visually encoded in the glyph. The reason why the scope of the glyph is limited to these parameters
is to keep a balance between the density of information communicated by the glyph and the visual
readability without overwhelming the user with too much information. There are several ways to
modify the current implementation of the glyph including different types of visualizations such as a
standard bar chart instead of a radial representation of the data. The amount of parameters that
are encoded by the glyph can also be increased by including additional values namely the random
seed and the text prompt. In the case where the sampling option is enabled, the glyph could also be
used to communicate the ranges that have been selected in the generation step with markings of the
actual values of the selected image sample. For the purpose of the discussed modifications to the
glyph, the library D3.js [Bos12] that has been used for the implementation of the glyph offers the
tools to apply them.

Proceeding the performance category of the set of requirements, the category consists of two
requirements that cover the visualization of the context of an image generation as well as the
selection of the parameter sampling method. The first requirement is reflected in the Pipeline View
(see Figure 4.8) where the user can see which input image as well as which parameters led to the
result of the following step. The second performance requirement has not been implemented in the
DiffusionExplorer and the current sampling method is the uniform random choice from the given
parameter ranges. Concerning this topic, the inclusion of additional sampling methods such as
cartesian sampling (see Section 3.2) or grid sampling could be considered.

The last category of requirements which only consists of a single requirement is the excitement
category. The requirement describes the extension of a linear history to enable multiple branches,
such that the user can go into multiple directions starting from an image and visually compare
the different results. Due to its high complexity, this requirement could also not be implemented
in the scope of this work, however, this topic has also been quite popular in discussions with the
participants of the user study. This functionality could be visually integrated into the Pipeline
View which currently shows the linear history of the image generations of the selected layer. The
current visualization could be extended such that nodes that represent images could have arbitrary
numbers of outgoing edges associated with the different paths that a user took starting from the
respective node. Being a technical as well a visual challenge, this topic could be interesting for
further iterations of the tool.

After having looked at the requirements of the tool, the next topic that is of interest for this discussion
is the workflow in the AI art design. As presented earlier in Figure 4.1, the workflow of the
consulted experts in the interviews could be broken down into three main steps, starting with
initial text-to-image generations, continuing with sampling and finishing up with image-to-image
generations in order to refine the result. After having evaluated the DiffusionExplorer with the same

51

7 Discussion

experts and additional participants in the user study, the workflow the participants applied in the
tool strongly differed from the one determined in the interview phase. As already highlighted in
the evaluation chapter (see Chapter 6) the majority of the participants included drawing/sketching
in their design workflow, resulting in good outcomes in regard to the images they created. As the
user study showed, the current state of the tool enables the user to easily switch between Krita
and the tool, allowing the inclusion of painting and other operations performed in Krita. However,
sometimes the user might only want to modify certain areas in the image. This might be useful in
several contexts, e.g. when the user needs to restore a damaged area in the image. To approach this
problem, inpainting in combination with diffusion models can be used, as it is already offered by the
Stable Diffusion Web UI. This functionality has been discussed multiple times in the development
process of the tool and could also be considered when developing future iterations of this tool.

7.2 Limitations

After having discussed the initial requirements and the workflow of the DiffusionExplorer combined
with the results from the user study, this section aims to present and discuss the limitations of
the tool. The limitations can be divided into the technical ones and those that are related to the
visualizations themselves.

From a technical standpoint, in each generation step a single image or in the case of sampling all
the image samples are stored in the state of the application as they are needed for the image history.
For increasing numbers of generation steps, samples and resolutions, this might cause performance
issues. However, during the development and the user study, sample sizes of 50 and resolutions of
512x512 did not cause any problems.

Concerning the visual limitations, mainly the Projection View and the Pipeline View are affected.
As all the image samples are embedded in the 2D plane in the Projection View the readability of the
current visualization strongly depends on the number of samples as well as their degree of similarity.
With higher degrees of similarity and samples, the probability of overlaps is increasing which can
be coped with techniques as described earlier. However, if larger sample sizes e.g. 100 are needed
in certain use cases, techniques such as clustering improve the readability of the visualization.
Switching to the Pipeline View, the visual limitations in this view are dependent on the number of
total generation steps in the image history. One approach to address this scalability problem of the
Pipeline View could be to visually summarize multiple generation steps into a single node that is
displayed in the pipeline. A sample strategy for this could be to summarize multiple occurrences of
the same node type that appear in a row. If a user performed multiple image-to-image generations
without sampling, he might not be interested in getting all of them displayed after each other in the
pipeline, as he is only interested in the result of the last one. Thus, they could be summarized into a
single node and be displayed on demand.

52

8 Conclusion

Coming back to the initial motivation and problem statement of this work, the goal was to create a
framework that incorporates an interactive way to explore the parameter space of latent diffusion
models. After implementing and evaluating the DiffusionExplorer, one can conclude that the current
state of the software solution meets the requirements of such a framework. As the user study proved,
the participants with different levels of expertise in the field managed to use the tool in the AI art
design process and successfully created images that satisfied the requirements of the given task
in the user study. The images the participants synthesized with the DiffusionExplorer, including
the embedding of individual components could not be generated directly in one generation step
with a classical approach. However, through the integration of Krita in the generation process, the
participants generated more complex scenes giving them more flexibility and precision regarding the
resulting images. The users could transfer the image data between Krita and the tool, giving them the
flexibility to draw and apply other editing techniques to the generated images. Core functionalities
such as the revertible image history and the parameter sampling have been fundamental features
that the participants in the user study made use of when designing their images.

In the greater context of latent diffusion models, tools that address the exploration of the parameter
spaces play an important role in improving the understanding of the relationships between the input
parameters and the generated images. As already discussed in the previous chapter, there are several
starting points concerning future work and research on the topic of parameter space exploration. As
the visualizations in the tool are usually limited in the size of data they can communicate without
overwhelming the user, the exploration of the parameter space is limited to a subregion of the
whole space. Incorporating other forms of visualization in the DiffusionExplorer could enlarge the
covered parameter space and further improve the completeness of the exploration. Regarding the
integration of the tool into Krita via a plugin, there are also other possibilities to integrate painting
and other editing techniques into the image synthesis process. An image editor, that is specifically
tailored towards supporting image synthesis could be directly integrated into the DiffusionExplorer,
making it a standalone tool independent of additional software such as Krita.

53

Bibliography

[Agg18] C. C. Aggarwal. Neural Networks and Deep Learning. Springer, 2018 (cit. on p. 7).

[AHK01] C. C. Aggarwal, A. Hinneburg, D. A. Keim. “On the Surprising Behavior of Distance
Metrics in High Dimensional Spaces”. In: Proceedings of the 8th International
Conference on Database Theory. ICDT ’01. Berlin, Heidelberg: Springer-Verlag,
2001, pp. 420–434. isbn: 3540414568 (cit. on pp. 5, 6).

[AUT22] AUTOMATIC1111. Stable Diffusion Web UI. https://github.com/AUTOMATIC1111/
stable-diffusion-webui. Accessed: 2023-10-14. 2022 (cit. on p. 15).

[BDS18] A. Brock, J. Donahue, K. Simonyan. “Large Scale GAN Training for High Fidelity
Natural Image Synthesis”. In: CoRR abs/1809.11096 (2018). arXiv: 1809.11096. url:
http://arxiv.org/abs/1809.11096 (cit. on p. 10).

[Bos12] M. Bostock. D3.js - Data-Driven Documents. 2012. url: http://d3js.org/ (cit. on
p. 51).

[CMC+22] R. Cutura, C. Morariu, Z. Cheng, Y. Wang, D. Weiskopf, M. Sedlmair. “Hagrid:
using Hilbert and Gosper curves to gridify scatterplots”. In: Journal of Visualization
25 (July 2022). doi: 10.1007/s12650-022-00854-7 (cit. on p. 50).

[Die03] T. G. Dietterich. “Machine Learning”. In: Encyclopedia of Computer Science. GBR:
John Wiley and Sons Ltd., 2003, pp. 1056–1059. isbn: 0470864125 (cit. on p. 7).

[DWJ+23] R. L. Davis, T. Wambsganss, W. Jiang, K. G. Kim, T. Käser, P. Dillenbourg. “Fashion-
ing the Future: Unlocking the Creative Potential of Deep Generative Models for Design
Space Exploration”. In: Extended Abstracts of the 2023 CHI Conference on Human
Factors in Computing Systems. CHI EA ’23. Hamburg, Germany: Association for
Computing Machinery, 2023. isbn: 9781450394222. doi: 10.1145/3544549.3585644.
url: https://doi.org/10.1145/3544549.3585644 (cit. on p. 19).

[FWW+23] Y. Feng, X. Wang, K. K. Wong, S. Wang, Y. Lu, M. Zhu, B. Wang, W. Chen.
PromptMagician: Interactive Prompt Engineering for Text-to-Image Creation. 2023.
arXiv: 2307.09036 [cs.AI] (cit. on p. 19).

[HR02] G. E. Hinton, S. Roweis. “Stochastic Neighbor Embedding”. In: Advances in Neural
Information Processing Systems. Ed. by S. Becker, S. Thrun, K. Obermayer. Vol. 15.
MIT Press, 2002. url: https://proceedings.neurips.cc/paper_files/paper/2002/
file/6150ccc6069bea6b5716254057a194ef-Paper.pdf (cit. on p. 8).

[HW79] J. A. Hartigan, M. A. Wong. “Algorithm AS 136: A K-Means Clustering Algorithm”.
In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 28.1 (1979),
pp. 100–108. issn: 00359254, 14679876. url: http://www.jstor.org/stable/
2346830 (visited on 10/21/2023) (cit. on p. 6).

54

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
http://d3js.org/
https://doi.org/10.1007/s12650-022-00854-7
https://doi.org/10.1145/3544549.3585644
https://doi.org/10.1145/3544549.3585644
https://arxiv.org/abs/2307.09036
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
http://www.jstor.org/stable/2346830
http://www.jstor.org/stable/2346830

Bibliography

[Kur21] K. Kurzhals. “Image-Based Projection Labeling for Mobile Eye Tracking”. In:
ACM Symposium on Eye Tracking Research and Applications. ETRA ’21 Full
Papers. Virtual Event, Germany: Association for Computing Machinery, 2021. isbn:
9781450383448. doi: 10.1145/3448017.3457382. url: https://doi.org/10.1145/
3448017.3457382 (cit. on pp. 8, 10).

[LC21] V. Liu, L. B. Chilton. “Design Guidelines for Prompt Engineering Text-to-Image
Generative Models”. In: CoRR abs/2109.06977 (2021). arXiv: 2109.06977. url:
https://arxiv.org/abs/2109.06977 (cit. on p. 18).

[MH08] L. van der Maaten, G. Hinton. “Viualizing data using t-SNE”. In: Journal of Machine
Learning Research 9 (Nov. 2008), pp. 2579–2605 (cit. on pp. 7–9).

[MHM20] L. McInnes, J. Healy, J. Melville. UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. 2020. arXiv: 1802.03426 [stat.ML] (cit. on
pp. 8–10).

[ML21] X. Mao, Q. Li. Generative adversarial networks for Image Generation. Springer,
2021 (cit. on p. 10).

[MPH07] L. van der Maaten, E. Postma, H. Herik. “Dimensionality Reduction: A Comparative
Review”. In: Journal of Machine Learning Research - JMLR 10 (Jan. 2007) (cit. on
p. 7).

[OC12] A. Octavian, A. Cotîrlet. “Kano Model”. In: Issue 2/2012 (2012). url: https:

//www.ugb.ro/etc/etc2012no2/18_Paraschivescu_final.pdf (cit. on pp. 22–24).

[PBM] N. Piccolotto, M. Bögl, S. Miksch. “Visual Parameter Space Exploration in Time and
Space”. In: Computer Graphics Forum n/a.n/a (). doi: https://doi.org/10.1111/
cgf.14785. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14785.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14785 (cit. on p. 16).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 6).

[RBL+21] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer. “High-Resolution Image
Synthesis with Latent Diffusion Models”. In: CoRR abs/2112.10752 (2021). arXiv:
2112.10752. url: https://arxiv.org/abs/2112.10752 (cit. on p. 4).

[RBL+22] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models. 2022. arXiv: 2112.10752 [cs.CV] (cit. on
pp. 4, 11, 12).

[S23] K. S. The Design Thinking Process - How does it work? - MAQE - Insights. https:
//www.maqe.com/insight/the-design-thinking-process-how-does-it-work/.
(Accessed on 05/07/2023). 2023 (cit. on pp. 13, 14).

[SHB+14] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, T. Möller. “Visual Parameter Space
Analysis: A Conceptual Framework”. In: IEEE Transactions on Visualization and
Computer Graphics 20.12 (2014), pp. 2161–2170. doi: 10.1109/TVCG.2014.2346321
(cit. on pp. 16–18).

55

https://doi.org/10.1145/3448017.3457382
https://doi.org/10.1145/3448017.3457382
https://doi.org/10.1145/3448017.3457382
https://arxiv.org/abs/2109.06977
https://arxiv.org/abs/2109.06977
https://arxiv.org/abs/1802.03426
https://www.ugb.ro/etc/etc2012no2/18_Paraschivescu_final.pdf
https://www.ugb.ro/etc/etc2012no2/18_Paraschivescu_final.pdf
https://doi.org/https://doi.org/10.1111/cgf.14785
https://doi.org/https://doi.org/10.1111/cgf.14785
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14785
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14785
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://www.maqe.com/insight/the-design-thinking-process-how-does-it-work/
https://www.maqe.com/insight/the-design-thinking-process-how-does-it-work/
https://doi.org/10.1109/TVCG.2014.2346321

[SMM12] M. Sedlmair, M. Meyer, T. Munzner. “Design Study Methodology: Reflections from
the Trenches and the Stacks”. In: IEEE Transactions on Visualization and Computer
Graphics 18.12 (2012), pp. 2431–2440. doi: 10.1109/TVCG.2012.213 (cit. on p. 13).

[SPTS19] P. Sitikhu, K. Pahi, P. Thapa, S. Shakya. A Comparison of Semantic Similarity
Methods for Maximum Human Interpretability. 2019. arXiv: 1910.09129 [cs.IR]

(cit. on p. 6).

[SWMG15] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, S. Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. 2015. arXiv: 1503.03585 [cs.LG]

(cit. on p. 11).

[TTV18] H. Thanh-Tung, T. Tran, S. Venkatesh. “On catastrophic forgetting and mode collapse
in Generative Adversarial Networks”. In: CoRR abs/1807.04015 (2018). arXiv:
1807.04015. url: http://arxiv.org/abs/1807.04015 (cit. on p. 10).

https://doi.org/10.1109/TVCG.2012.213
https://arxiv.org/abs/1910.09129
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1807.04015
http://arxiv.org/abs/1807.04015

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Similarity Metrics for Vectors
	2.2 Machine Learning
	2.3 Dimensionality Reduction
	2.4 Generative Adversarial Networks
	2.5 Latent Diffusion Models
	2.6 Design Study Methodology

	3 Related Work
	3.1 Stable Diffusion Web UI
	3.2 Visual Parameter Space Analysis
	3.3 Prompt Engineering and Design Space Exploration

	4 Design
	4.1 Design Concept
	4.2 Visualization Design

	5 Developing a Tool for Visual Parameter Exploration
	5.1 Krita
	5.2 Tool Development

	6 Evaluation of the Tool
	6.1 Case Study
	6.2 User Study

	7 Discussion
	7.1 Requirements and Workflow
	7.2 Limitations

	8 Conclusion
	Bibliography

