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Abstract

This dissertation deals with the tippedisk which is a new mechanical-mathematical
archetype for friction-induced instabilities and exhibits an energetically counterin-
tuitive inversion phenomenon.

In a holistic analysis, the dynamics of the tippedisk is investigated numerically
in the field of multibody simulation, theoretically in the field of nonlinear dynamics,
and experimentally in the focus of applied physics. Based on different nonsmooth
rigid body models with set-valued force laws, the main physical mechanisms induc-
ing the inversion behavior are identified and the governing system equations are
derived. Subsequent model reduction results in a reduced system in the form of an
ordinary differential equation, which is suited to be studied in the context of non-
linear dynamics. Both the local stability behavior of the non-inverted and inverted
stationary spinning motions as well as the global proof of an existing heteroclinic
saddle connection allow the dynamic behavior of the tippedisk to be captured ana-
lytically. The particular structure of the mathematical model reveals a singularly
perturbed dynamics that evolves on multiple time scales and is characterized by
slow rolling and fast sliding motions of the tippedisk. Utilizing perturbation ex-
pansions and an analysis in dimensionless quantities, the qualitative dynamics is
characterized by closed-form expressions, from which a global stability map is de-
duced. Based on this complete stability map, three different bifurcation scenarios
are identified, which correspond to different geometric and inertia properties, defin-
ing three qualitatively different types of tippedisks.

Finally, the mathematical investigation is complemented by high-speed experi-
ments on a real test specimen. Qualitative comparison of experimental measure-
ments with simulations at different levels of abstraction completes the holistic ap-
proach to the dynamic analysis of the tippedisk.





Zusammenfassung

Diese Dissertation befasst sich mit der Stehaufscheibe (engl. Tippedisk), die einen
neuen mechanisch-mathematischen Archetyp für reibungsinduzierte Instabilitäten
bildet und ein energetisch nicht intuitives Inversionsphänomen aufweist.

In einer ganzheitlichen Analyse wird die Dynamik der Stehaufscheibe sowohl
numerisch im Bereich der Mehrkörpersimulation als auch theoretisch im Gebiet der
nichtlinearen Dynamik und experimentell im Fokus der angewandten Physik un-
tersucht. Basierend auf verschiedenen nicht glatten Starrkörpermodellen mit men-
genwertigen Reibgesetzen, werden die erforderlichen physikalischen Mechanismen
identifiziert, die das Inversionsverhalten induzieren. Die anschließende Modellre-
duktion resultiert in einem reduzierten System, in Gestalt einer gewöhnlichen Dif-
ferentialgleichung, das im Hinblick auf die nichtlineare Dynamik untersucht wird.
Sowohl die lokalen Stabilitätseigenschaften der nicht-invertierten und invertier-
ten Drehbewegungen als auch der globale Nachweis eines heteroklinen Orbits er-
lauben es, das dynamische Verhalten der Stehaufscheibe analytisch zu erfassen.
Hierbei offenbart die Systemstruktur eine singuläre Dynamik auf mehreren Zeits-
kalen, die sich durch langsame Rollbewegungen und schnelles Gleiten auszeichnet.
Mithilfe von Störungsansätzen und dimensionsloser Analyse wird die qualitative
Dynamik in geschlossener Form charakterisiert, woraus sich eine globale Stabili-
tätskarte ableiten lässt. Anhand der ermittelten Stabilitätskarte lassen sich drei
Bifurkationsszenarien erkennen, die wiederum drei qualitativ verschiedene Typen
von Stehaufscheiben definieren.

Die mathematische Untersuchung wird abschließend durch exemplarische Ex-
perimente an einem realen Prüfkörper ergänzt. Ein qualitativer Vergleich von ex-
perimentellen Messungen mit Simulationen auf verschiedenen Abstraktionsleveln
komplettiert die ganzheitliche Analyse der Stehaufscheibe.





CHAPTER 1
Introduction

This monograph presents a holistic analysis of the tippedisk, a novel mechanical-
mathematical archetype for friction-induced instabilities that exhibits a counterin-
tuitive inversion phenomenon. To analyze the qualitative behavior of this archetype,
various mechanical models are derived based on first principles and set-valued force
laws, whose complexity is subsequently reduced by model order reduction. Based
on the reduced models, concepts and tools of nonlinear dynamics such as singu-
lar perturbation theory and the Melnikov function method are used and applied to
unveil the fundamental dynamics of the tippedisk. The introduction of dimension-
less quantities allows to characterize the global behavior by closed-form expressions
and reveals a variety of qualitatively different dynamics, implying different physical
types of tippedisks. The theoretical analysis is complemented by high-speed mea-
surements of experiments with a real specimen to complete the holistic approach.

This introductory chapter motivates the study of nonlinear mechanical arche-
types for friction-induced phenomena and serves as an outline of this monograph.
In addition, the relevant literature and the aims and objectives of this thesis are
discussed.

1.1 Motivation

The ultimate goal of the research field of nonlinear dynamics is to understand the
qualitative behavior of real-world systems that evolve with time. In particular, ap-
plications in mechanical engineering or robotics and control with the objective to
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influence a system in a predefined way by developing new mechanisms, applying
control strategies or finding optimal solutions are real-world technical problems. An
alternative issue in engineering application is the characterization of safe operating
conditions, such as the under- and oversteering behavior of automobiles [118], loss
of stability during aircraft ground maneuvers [100], the instability of towed wheels,
also known as wheel shimmy [92], or even the characterization of critical speeds
at which resonances lead to catastrophic failure of structural integrity [121, 12].
Regardless of the technical challenges, such as adapting an existing system or char-
acterizing its qualitative behavior, appropriate mathematical models that predict
the physical behavior are needed to access the dynamics.

Most systems in modern engineering include mechanical components in com-
bination with mechatronic and electrical elements, which can be well-modeled by
applying classical mechanics and models based on first principles. The modeling on
first principles in combination with a non-trivial technical complexity of the system
naturally results in large state dimensions. For example, finite element modeling
is a common modeling approach in industrial research, easily involving thousands
of degrees of freedom. In addition, more complex systems such as ones with con-
straints, friction, or impacts, are described by differential algebraic equations, or
nonsmooth dynamical systems. However, most state-of-the-art tools and concepts in
nonlinear dynamics are primarily applicable to smooth ordinary differential equa-
tions (ODEs). Moreover, the application to systems exceeding few states becomes
cumbersome, which makes a closed-form analysis hardly possible. Therefore, it is
rather difficult to apply the full repertoire of methods provided by nonlinear dy-
namics to real-world applications. As a result, engineers are often left with the
only option of numerical simulation, which provides a system solution for a given
parameter setting and one specific initial condition without offering any qualitative
insight into the dynamics.

From an academic point of view, one may argue that nonlinear dynamics, as a
branch of applied mathematics, is universally applicable and is not limited to the
qualitative study of real-world systems. Consequently, for simplicity, fundamen-
tal theorems and methods are tested on examples and benchmark systems that
are mostly just abstract ordinary differential equations with hardly any visible re-
lationship to real-world applications, such as the Mathieu equation [106], which
is assumed to describe the capsizing of ships. By restricting the techniques of
nonlinear analysis (e.g., local and global stability analysis [63], Harmonic Balance
Method [120], Melnikov theory [80], ...) to either abstract ODEs or almost trivial
systems (e.g., the pendulum [119], the Duffing system [56], or the van Pol oscilla-
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tor [55]) the research field of nonlinear dynamics risks to miss its ultimate goal,
which is to understand and predict real-world phenomena.

At the same time, attempts are made to apply the collection of methods from
nonlinear dynamics to engineering applications. For this purpose, expert knowl-
edge from the specific field is used to derive a high-dimensional model to which
numerical methods from nonlinear dynamics are applied, while closed-form analy-
sis is usually unattainable. Moreover, these large systems often show a plethora of
different phenomena. A further system reduction using expert knowledge eventu-
ally leads to simplified models that are better suited for analysis, but may also have
lost their physical interpretability and are therefore not comprehensible to other
researchers attempting to develop new methods in the field of nonlinear dynamics.

This motivates the search for nontrivial, real-world problems that exhibit a par-
ticular nonlinear phenomenon and can be studied in a laboratory set-up. Moreover,
the behavior of such systems should be well described by dynamics with small state
dimensions, and preceding reduction steps should not lead to a loss of physical in-
terpretation. Ideally, the system should be technically simple and optimally ‘hand-
held’, facilitating dissemination to make the nonlinear phenomenon accessible to
a wider audience. The above characteristics are quite demanding, which is why
these systems are not just ‘scientific toys’, but must be considered as ‘mathematical
archetype systems’.

At this point, various gyroscopic systems enter the scene, consisting of a single
rigid body in contact with a frictional support. In virtue of their technical simplic-
ity, naturally low state dimension, and intrinsically nonlinear physical behavior,
they are perfect candidates for mathematical archetype systems. Since their na-
ture lies in mechanics, these systems are referred to as ‘mechanical-mathematical
archetypes’. Rolling and sliding disks, as well as spinning tops are examples of such
mechanical-mathematical archetype systems and provide a scientific playground for
the study of theoretical mechanics and nonlinear dynamics.

1.2 Literature

This section gives an overview of relevant literature, ranging from the modeling of
nonsmooth systems, the fundamentals of theoretical and applied nonlinear dynam-
ics to already existing mechanical-mathematical archetype systems in frictional
contact. Since there exists a tremendous number of papers and books on nonlin-
ear dynamics and nonsmooth mechanics in general, this literature review is far
from complete. However, the main relevant topics and methods which are required
for modeling and analyzing the tippedisk are listed in summarized form.
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Nonsmooth dynamics

The research field of nonsmooth dynamics is about modeling and analysis of nons-
mooth dynamical systems, i.e., systems with non-differentiable or even discontinu-
ous solutions. When the focus is on a mechanical system, as in this monograph, the
research is more precisely referred to as nonsmooth mechanics, with foundations
laid by MOREAU [85, 84] and JEAN [58].

In multibody dynamics the Lagrange formalism, developed by LAGRANGE [69],
as well as the formalism of projected Newton–Euler equations, provide a varia-
tional approach to modern mechanics. The books of BREMER [24] and PFEIFFER

and SCHINDLER [96] give a good overview of the Lagrange formalism. For an in-
troduction to the projected Newton–Euler equations, the reader is referred to the
works of WITTENBURG [132], PFEIFFER and SCHINDLER [96], and GLOCKER [44].
Both formalisms offer a structured way to derive the equations of motion in gener-
alized coordinates, taking into account inertia and potential forces. Assuming the
potential to be smooth and differentiable, as in the case of the gravity potential, the
resulting equations of motion correspond to ordinary differential equations. How-
ever, using the concept of virtual work [44], additional forces like friction or normal
contact forces can easily be embedded in this generalized framework.

Especially, friction has a long tradition, with fundamentals laid by AMONTONS

and COULOMB, in the 17th and 18th centuries, respectively. According to the laws
of AMONTONS, friction is proportional to the normal contact force and independent
of the size of the contact area. Classical viscous friction, i.e., a friction force that
smoothly depends on the relative sliding velocity of the contact point and is scaled
by the normal contact force, satisfies AMONTONS laws and, when incorporated into
the equations of motion, again results in an ordinary differential equation. Based on
COULOMB’S observation, which states that dry sliding friction is independent of the
velocity and constant in magnitude opposing sliding direction, dry Coulomb friction
is obtained by assuming a force with constant magnitude whose direction changes
as a function of sliding velocity, see the introduction of LEINE and NIJMEIJER [74].
Including Coulomb friction into the system equations yields a hybrid dynamics con-
sisting of multiple systems of ordinary differential equations and a switching law
that selects the active one. A similar hybrid structure is also found in switching sys-
tems with constraint activation, as in models for walking robots [39] when a contact
closes or opens. Assuming Coulomb friction, solutions may end up in a sliding mode
on the so-called switching manifold that characterizes pure rolling motions, i.e., mo-
tions with zero sliding velocity and thus motions for which the frictional force is not
defined. Moreover, according to the switching nature, a local stability analysis of
pure rolling motions is infeasible.
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The framework of nonsmooth dynamics utilizes convex analysis, treated in the
books of ROCKAFELLAR [103] and CLARK [30], to develop set-valued force and im-
pact laws, as done by PFEIFFER and GLOCKER [95, 44]. Set-valued spatial Coulomb
friction, discussed in the book of GLOCKER [44], is an essential friction law that
is valid for both sliding and rolling motions. Assuming persistent contacts in com-
bination with set-valued Coulomb friction yields a system of differential algebraic
inclusions. Corresponding to the set-valued nature, the local stability of pure rolling
motions is again infeasible. To incorporate tangential sliding and pivoting friction
in a single set-valued force law, LEINE and GLOCKER [73] extended spatial set-
valued Coulomb friction to the more generalized Coulomb–Contensou friction law.
In persistent contact when the relative pivoting velocity is non-zero, the set-valued
Coulomb–Contensou friction degenerates to a smooth friction law, allowing to per-
form a local stability analysis, cf. the linear stability analysis of the tippetop [73].

In the most general case, when dealing with unilateral contact and impacts, the
equations of motion with corresponding set-valued friction and normal contact laws
have to be complemented by impact equations with associated impact laws. The
resulting dynamical systems have the form of measure differential equations, cf. the
book of LEINE and VAN DE WOUW [75]. When dealing with nonsmooth dynamics,
it is essential to also acknowledge the comprehensive contributions of ACARY and
BROGLIATO [1, 26]. Their works encompass numerical implementation and offer a
broad overview.

Fundamentals of nonlinear dynamics

Nonlinear dynamics is a research field in applied mathematics that emerged in the
late 19th century with the aim of understanding the qualitative behavior of dynam-
ical systems, i.e., systems whose states evolve with time. The dynamic behavior
of these systems is determined by mathematical models, whereas their origin in
mechanics, electronics, biology, etc. often plays only a minor role. The books au-
thored by KHALIL [63] and STROGATZ [119] provide a good overview of the field.
To characterize asymptotic dynamics, the stability behavior is of particular impor-
tance. The local behavior of a linear system is (in the hyperbolic case) characterized
by the real part of the eigenvalues, cf. [76, 63]. Based on the works of ROUTH [104]
and HURWITZ [57], the Routh–Hurwitz criterion was established which determines
the location of the corresponding eigenvalues in the complex plane and thus the
stability of the linear system.

For nonlinear systems, LYAPUNOV introduced a more general concept of stability
to study asymptotic behavior in the neighborhood of equilibria [63, 64]. Based on
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the concept of Lyapunov stability, the research branch of bifurcation theory em-
erged, which studies system behavior in dependence of system parameters, see
also the book of KUZNETSOV [68]. Exploiting the system structure allows to get
deeper understanding by using tools from geometrical mathematics. For example,
FENICHEL [35, 34] used geometric structure to study system behavior on invariant
manifolds, which forms the foundations of singular perturbation theory. A more
detailed introduction to singular perturbation theory can be found in the books of
WIGGINS [130], VERHULST [125], and SHCHEPAKINA et al. [115].

Since the beginning of dynamics, scientists and researchers analyzed mechanical
systems to study their qualitative behavior. As their system description originates
from mechanical principles but tools and concepts from nonlinear dynamics are ap-
plied, this approach defines the research field of nonlinear mechanics.

In engineering applications such as vehicle dynamics, there are many example
mechanical systems that exhibit nonlinear behavior. The hunting motion of railroad
vehicles induces lateral vibrations if the traveling speed exceeds a certain value, see
TRUE [123] and GARG [41]. For a planar two-wheeled vehicle, a slow-fast system
behavior caused by stiff tire interactions can be observed, as shown by STEINDL

et al. [118]. In summary, the nonlinear dynamics of mechanical systems strongly
depends on the underlying modeling assumptions and requires a holistic approach.

Mechanical-mathematical archetypes

Already in the 18th and 19th centuries, EULER and POINSOT [97] analyzed the
gyroscopic behavior of a single rigid body and presented description of its motion.
For example, the intermediate axis theorem, also known as the tennis racket the-
orem [8] was predicted by Euler and Poinsot. In the 20th century, the cosmonaut
V.A. Dzhanibekov observed a recurring flipping behavior of a wing nut in space,
which is why the intermediate axis theorem is also known as the Dzhanibekov ef-
fect [122]. This particular gyroscopic behavior is also crucial during free flight in
rockfall simulations, so numerical integration schemes must be able to capture this
behavior, see LEINE et al. [72].

When a rigid body interacts with a frictional support, the interplay of gyroscopic
and contact forces causes even richer dynamics. In this monograph, the focus is on
the dynamic behavior of the tippedisk, which is essentially an unbalanced disk-
like rigid object in frictional contact, forming a novel mechanical-mathematical
archetype. Since there is already a lot of preliminary work on other rigid body sys-
tems in frictional contact, the most relevant mechanical-mathematical archetype
systems are discussed below.
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Spinning and rolling disks

The problem of a thin disk in contact with a flat support has a long history and dates
back to the 19th century. Classical literature distinguishes between inherently dif-
ferent assumptions, i.e., the contact is assumed to be either infinitely smooth or
rough. Accordingly, the system equations are obtained either by neglecting the fric-
tional forces or by formulating nonholonomic constraints. CHAPLYGIN [28] showed
the integrability of a homogeneous disk under pure rolling assumption. Indepen-
dently of each other APPELL [7] and GALLOP [38] presented a solution to the prob-
lem. In the work of ROUTH [105], the local dynamical behavior of steady state mo-
tions was studied. About three decades ago, a complete stability analysis of rolling
and sliding disks was presented by O’REILLY [91]. In addition, the presence of het-
eroclinic orbits was mentioned. For an infinitely thin disk under the assumption of
pure rolling, BORISOV et al. [19] conducted a qualitative analysis and revealed the
system to be Hamiltonian. In the works of BATISTA [9, 10], the system was extended
to a disk with finite thickness. Considering an infinitely smooth or rough ground,
the disk is either in the state of pure sliding or pure rolling. Therefore, the above
mentioned works neglect dissipation, e.g., due to sliding friction or air resistance.
Strictly speaking, this is not physically valid for a real specimen on a table.

Figure 1.1: Circular rolling
motion of a disk.

However, considering the dynamical behavior on
different time scales enables one to focus on the
most important physical effects and neglect the ef-
fect of, e.g., friction on short time scales. Even with
minimal dissipation, a rolling disk will eventually
reach equilibrium on a long time scale. Neglecting
dissipation mechanisms such as air drag or sliding
friction, the circular rolling motion shown in Fig-
ure 1.1 is a good description and motivates the anal-
ysis of stationary and dissipative free pure rolling
motions, cf. [94]. Following OLSSON [89], the coin
spinning on a table is described by neglecting fric-
tion forces as the lying down rate is small compared
to the precession rate. The assumption of viscous

friction at the contact point of a rolling disk allowed the study of the asymptotic
dynamics, e.g., PRZYBYLSKA and RAUCH-WOJCIECHOWSKI [99] showed that the
asymptotic solutions of straight-line rolling, vertical rotation and tumbling are char-
acterized by the existence of first integrals.
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The consideration of dissipation opens the door to a plethora of different phenom-
ena and various mechanical-mathematical gyroscopic archetype systems, forming a
scientific playground for research in theoretical mechanics.

Euler’s disk

The Euler disk from Figure 1.2 is an archetype for finite-time singularities, describ-
ing the final stage of motion when a disk falls down and finally comes to an abrupt
halt of the motion. According to dissipation, the energy decreases and the incli-
nation approaches zero, while the rolling velocity of the contact point diverges to
infinity. In particular, different dissipation mechanisms have been hypothesized in
various works on the dynamics of Euler’s disk.

Figure 1.2: Euler’s disk, with
finite-time singularity.

In his pioneering article, MOFFATT [81] consid-
ered aerodynamic drag as main dissipation mecha-
nism of Euler’s disk. A generalized form of velocity-
dependent friction was studied by MCDONALD and
MCDONALD [79]. In KESSLER and O’REILLY [62],
the effect of physical rolling, sliding and pivoting
friction has been analyzed. However, the derived
model shows an asymptotic energy decrease and
therefore does not have a finite-time singularity.
Applying set-valued friction laws from nonsmooth
mechanics LE SAUX et al. [70] succeeded in obtain-
ing a model that exhibits finite-time singularity. In
addition, the energy decay was investigated in de-
pendence on various friction laws. The experimen-
tal analysis of LEINE [71] questioned the drag of air as dominant dissipation mech-
anism and suggests the importance of contour friction. Following the Euler disk, in
a recent study, BORISOV et al. [17] analyzed the retrograde motion of a rolling ring
and concluded that, again, frictional effects outweigh aerodynamic drag.

Rattleback

Figure 1.3 shows a half ellipsoid with inertia asymmetry in contact with a flat
support, also called a rattleback. If this ratteback is spun in clockwise direction,
the axis of rotation remains persistent. In contrast, if spun in counter-clockwise
direction, an instability causes the the rattleback to reverse its axis of rotation.
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Figure 1.3: A rattleback
whose inertia tensor implies
stable clockwise rotation.

Therefore, the rattleback takes the role of
a mechanical-mathematical archetype describing
friction-induced spin reversal. In a first approach to
analyze this phenomenon, WALKER [129] assumed
dissipation free rolling of an ellipsoid and showed
that stable motions only occur in one spin direc-
tion. However, MAGNUS [78] questioned the pure
rolling condition and motivated a viscous friction
law. A detailed theoretical and experimental inves-
tigation of the rattleback was performed by GAR-
CIA and HUBBARD [40]. Later, BORISOV and MA-
MAEV [18] analyzed the dynamical behavior of the
rattleback in pure rolling and numerically revealed
the rich global dynamics, even containing strange

attractors. Due to its interesting global behavior, the rattleback is still a topic of
current research, e.g., GONCHENKO et al. [46] and RAUCH-WOJCIECHOWSKI and
PRZYBYLSKA [102].

Tippetop and spinning axisymmetric bodies

The tippetop is another mechanical-mathematical archetype, showing a friction-
induced inversion phenomenon of a mushroom shaped toy top, invented by the Ger-
man nurse HELENE SPERL [117] in the late 19th century. In Figure 1.4, the in-
version phenomenon of the tippetop is depicted. On the left side, the top rotates in
a non-inverted spinning configuration. Since the non-inverted motion is unstable,
the top starts to wobble (see center) until it reverses its orientation and reaches the
inverted spinning configuration on the right side.

Figure 1.4: Inversion phenomenon of the tippetop.
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Figure 1.5: Rising phenomenon of an axisymmetric spinning body in form of a
(prolate) spheroid.

With a rise of the center of gravity, it seems like gyroscopic and friction forces
defy gravity. In the work of COHEN [31], it was shown that sliding friction in the
contact point, i.e., a constant friction force acting in negative sliding direction, is
suited to describe the inversion of the tippetop. Later, OR [90] assumed a viscous
friction law and concluded that both sliding friction and viscous friction cause the
inversion phenomenon, cf. the earlier work of O’BRIEN [88]. As a benchmark sys-
tem for set-valued Coulomb–Contensou friction, LEINE [73] introduced a full model
of the tippetop considering sliding and pivoting frictional forces. For a rotating
state, Coulomb–Contensou friction degenerates to a smooth friction law and thus
meets the necessary conditions for stable spinning motions of the tippetop outlined
by MAGNUS [77]. The subsequent analysis of BOURABEE [20] evidenced a hete-
roclinic connection between non-inverted and inverted spinning. Moreover, it was
shown that translational effects play a minor role and that the translational en-
ergy of the tippetop is negligible. By utilizing the findings of JELLET [59], RAUCH–
WOJCIECHOWSKI [101] obtained the ‘main equation for the tippetop’, in form of a
first-order time dependent ordinary differential equation.

Similar to the tippetop, spinning eggs also exhibit a rise of the center of gravity
if spun on a flat support. The scientific toy ‘PhiTOP’1, is basically the symmetric
equivalent to an egg, and has been studied extensively by the scientific research
community. In Figure 1.5, the rising phenomenon of an axisymmetric spinning
body in form of a prolate spheroid is depicted. Similar behavior can be observed for
oblate spheroids. Unlike the tippetop, a spinning spheroid does not invert its ori-
entation because non-inverted and inverted motions correspond to rotations about
the same axes, and the non-raised and raised stationary motions of a spheroid in-
dicate rotations about orthogonal axes. In the paper series [82, 83, 116, 22, 23]

1http://www.thephitop.com/

http://www.thephitop.com/


1.2. LITERATURE 11

of MOFFATT, SHIMOMURA and BRANICKI, the dynamics of axisymmetric bodies
spinning on flat support has been extensively studied. For axisymmetric bodies,
MOFFATT [82] claimed that sliding friction must be present to observe a ‘rise’ phe-
nomenon. In this preliminary work, it has been assumed that friction is weak and
the spinning speed is large, which causes the Coriolis force to dominate, yielding a
first-order ordinary differential equation governed by gyroscopic balancing. More-
over, by assuming weak friction the horizontal velocity components were taken to be
zero. This is not accurate from a physical point of view. It is, nonetheless, a reason-
able approximation. In the second paper, MOFFATT [83] applied ‘dry’ and viscous
friction laws to the problem and studied the stability by a local analysis.2 In addi-
tion, it was found that the normal force can decrease to zero, suggesting self-induced
jumping, which was subsequently investigated by SHIMOMURA [116]. To close the
paper series, BRANICKI [22, 23] extended the previous findings to general axisym-
metric convex bodies. Even though the early research on these rising archetypes
dates back to the mid-19th century [37, 21, 88], the topic is still of current scientific
interest interest [32, 61, 16, 65].

The tippedisk and its variants

At this point, it is interesting to note that the phenomenon of inversion also occurs
with unbalanced disk-like objects, shown in Figure 1.6. The first example can eas-
ily be made from a paperclip and corresponds to an unbalanced circularly shaped
ring. In Figure 1.6(a), the ring-shaped paperclip is depicted in an almost inverted
spinning configuration. The ‘orbit spinning top’ from Figure 1.6(b) is a commercial
toy, consisting of a thin disk and an eccentrically attached sphere, and also shows
the inversion phenomenon [47]. The only sources which mention or discuss the in-
version phenomenon of asymmetric disks are non-academic and either from social
media or from websites of producers of scientific toys. According to their technical
simplicity and the fascinating counterintuitive behavior, these unbalanced disk-like
bodies exhibit inversion phenomena and are used to enthuse people about physics,
cf. UCKE [124]. The inversion behavior of an unbalanced disk attracted plenty of
attention on social media [127, 128]. Although there is enormous fascination and
enthusiasm for these types of systems, there is no rigorous scientific analysis and
all existing explanations are based on intuitive considerations and pseudo-scientific
statements such as ‘the disk inverts because this is energetically beneficial’ or the

2The terminology ‘dry’ friction in the context of nonsmooth mechanics suggests a friction law that
describes both sliding and sticking in one set-valued force law. Here, however, ‘dry friction’ means a constant
force acting in the counter-slip direction, with the magnitude of the scaled normal force.
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(a) Ring-shaped paperclip (b) Orbit Spinning Top (c) Tippedisk

Figure 1.6: Mechanical-mathematical archetype systems with disk-like shape that
exhibit an inversion phenomenon when spun on a flat support. All three examples
are depicted in an almost inverted spinning configuration.

inversion is explained by the ‘effect of the tippetop’, which is obviously neither a
physical effect nor a principle. From a phenomenological point of view, the Dzhan-
nibekov effect is also attributed for this behavior. However, this argumentation can
be directly falsified by the fact that the inversion is a one-way process.

Unlike the tippetop, these spinning unbalanced disk-like bodies do not have any
rotational symmetry in geometry or inertia, and are therefore inherently different.
Consequently, the tippedisk as a novel mechanical-mathematical archetype was in-
troduced by the author to study the dynamical behavior of spinning unbalanced
disk-like bodies in frictional contact. A detailed list of the relevant publications on
the tippedisk is given in Section 1.5. In Figure 1.6(c), the tippedisk is depicted in
an inverted spinning configuration. By changing inertia and dimensional proper-
ties, the dynamics of the tippedisk contains both the dynamics of the unbalanced
paperclip and the orbit spinning top. Thereby, the tippedisk to some extent closes
the gap between the dynamics of spinning and rolling disks and the spinning of
axisymmetric rigid bodies.

1.3 Objectives

The overall aim of this monograph is to introduce the tippedisk as a new mechanical-
mathematical archetype for friction-induced instabilities and to present a holistic
analysis of its dynamics, ranging from the fields of rigid body mechanics to nonlin-
ear dynamics and experimental investigations.
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To this aim, four main objectives are of particular importance and are defined
below.

Objective 1. Introduction of the tippedisk as a novel mechanical-mathematical
archetype and explanation of its inversion behavior from a phenomenological point
of view to a wide audience.

Objective 2. Embedding of the tippedisk in the context of rigid body dynamics and
nonsmooth mechanics:

Objective 2.1. Derivation of full nonsmooth numerical simulation models based
on first principles and state-of-the art contact mechanics to describe the inver-
sion phenomenon from Objective 1.

Objective 2.2. Comparison of different set-valued and smooth friction laws in
order to identify the main relevant effects that cause inversion.

Objective 2.3. Implementation of different model parametrizations in order to
obtain a problem description in physical coordinates.

Objective 3. Perform an in-depth nonlinear dynamical analysis to characterize the
qualitative system behavior of the tippedisk:

Objective 3.1. Reduction and simplification of the system equations of the me-
chanical models resulting from Objective 2.

Objective 3.2. Execution of an in-depth global analysis for the tippedisk intro-
duced with respect to Objective 1.

Objective 3.3. Identification of system parameter domains that characterize
various bifurcation scenarios and thus different types of tippedisks.

Objective 3.4. Description of the qualitative system behavior by closed-form
expressions validated through application of numerical tools and methods.

Objective 4. Conduct an experimental investigation of a real specimen:

Objective 4.1. Implementation of high-speed measurements using object track-
ing and camera fusion.

Objective 4.2. Comparison of the experimental behavior of a real specimen
with the qualitative findings of the nonlinear dynamics analysis from Objec-
tive 3 and full model simulations as results from Objective 2.
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1.4 Contributions

This monograph contributes to a variety of research fields ranging from engineer-
ing to applied mathematics, like the fields of rigid body and nonsmooth mechanics,
nonlinear dynamics, and experimental physics, by presenting a holistic analysis of
the novel mechanical-mathematical archetype, the tippedisk.

The above objectives are addressed in the contributions of the thesis.

Contribution 1. With respect to Objective 1, the first contribution of this thesis
is the introduction of the tippedisk as a new mechanical-mathematical archetype,
showing a counterintuitive inversion phenomenon. For a specific specimen, the di-
mension and inertia properties are discussed, stationary spinning solutions are in-
troduced, and the inversion behavior is described using a stroboscopic sequence of a
preliminary experiment.

The technical simplicity of the tippedisk allows to manufacture a palm-sized me-
chanical system that exhibits an interesting behavior because it is inherently non-
linear due to gyroscopic forces. Moreover, the real-world problem can easily be stud-
ied in a laboratory setup.

Contribution 2. As a contribution in the field of rigid body dynamics and to ad-
dress Objective 2.1, various mechanical models of the tippedisk are derived based
on first principles, using various set-valued and/or smooth friction laws considering
different parametrizations. Based on full model simulations, the main underlying
physical effects causing the inversion behavior are identified, see Objective 2.2 and
Objective 2.3.

The derived models are perfectly suited to test numerical integration schemes, as
their nature is highly nonlinear, the contact can be either considered to be unilateral
or persistent, and different friction laws can be applied.

Moreover, the Blender-based animation application developed by the author enables
a qualitative comparison of real experiments with high-quality renderings of simu-
lation results. In the scope of Objective 1, this also serves to present the inversion
behavior of the disk in a visually appealing way to a non-scientific audience.

Contribution 3. Utilizing the findings of the investigations on the mechanical
models, this thesis shows that the inversion phenomenon of the tippdisk can be
described by an ordinary differential equation.

By providing a set of nonlinear system equations, the dynamics can be analyzed
using concepts and methods from the field of nonlinear dynamics.
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Contribution 4. To link the field of rigid body mechanics to the research branch
of nonlinear dynamics and to answer Objective 3.1, this monograph performs a
model order reduction based on physical principles and assumptions with the result
of a low-dimensional nonlinear dynamical system that qualitatively describes the
inversion phenomenon of the tippedisk.

Contribution 5. In addition, this thesis contributes to the field of nonlinear me-
chanics by revealing a singularly perturbed dynamical structure induced by specific
friction laws of mechanical systems whose motions resemble pure rolling.

Vice versa, the slow-fast system behavior determined by singularly perturbed dy-
namics can be physically interpreted in the context of rigid body dynamics.

Contribution 6. A global bifurcation analysis for a specific specimen is performed
with respect to Objective 3.2.

In detail, the specific contributions are:

Contribution 6.1 For the full mechanical and reduced tippedisk models, the
local stability of stationary inverted and non-inverted spinning solutions is in-
vestigated, evidencing the existence of a Hopf bifurcation.

Contribution 6.2 To identify the type of Hopf bifurcation, a perturbation ex-
pansion of the harmonic balance method is applied, which provides a closed-
form characterization.

Contribution 6.3 The singularly perturbed dynamical structure of the system
equations is exploited to provide a conclusive stability analysis over time scales.

The asymptotic dynamics on the slow manifold manifests as a regularly per-
turbed Hamiltonian system, allowing for the application of the Melnikov theory.

Contribution 6.4 The Melnikov function method is adapted and applied to the
dynamics on the slow manifold, to obtain a necessary condition for the existence
of a heteroclinic saddle connection. Utilizing perturbation expansions, various
closed-form approximations of the involved integrals are presented, ultimately
providing an approximation of the heteroclinic spinning velocity.

All of these Contributions 6.1-6.4 are crucial to conduct the global analysis re-
quested in Objective 3.2. The closed-form expressions derived by utilizing pertur-
bation expansions are consistent with numerical validations, justifying the nonlin-
ear analysis in terms of Objective 3.4.
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Contribution 7. Based on the closed-form findings, a normalization is performed
to identify dimensionless system parameters that characterize qualitatively differ-
ent bifurcation scenarios and thus imply further variants of the tippedisk, as re-
quested in Objective 3.3.

Again, the corresponding results are validated numerically to meet Objective 3.4.

In the framework of nonlinear dynamics, the reduced model of the tippedisk is per-
fectly suited to test novel tools and methods, e.g., to characterize stable/unstable
heteroclinic connections, fold bifurcations, sub- or supercritical Hopf bifurcations
and to analyze slow-fast system behavior.

Contribution 8. As a final contribution to the field of applied mechanics in context
of Objective 4.1 and Objective 4.2, this thesis compares results of high-speed
measurements of an experiment on a real specimen with the findings of nonlinear
analysis and the physics-based simulation models.

In addition, the self-developed high-speed setup and object tracking system enables
the fusion of measurements from multiple cameras at different perspectives, re-
sulting in accurate measurement and an uninterrupted time signal. Consequently,
the implemented high-speed measurement setup and object tracking system set a
standard for subsequent experimental investigations.

1.5 List of own publications

In this monograph, findings from previous publications are supplemented with new
results to obtain a holistic and self-consistent analysis of the tippedisk.
The relevant publications of the author are:

• S. Sailer, S. R. Eugster, and R. I. Leine. The tippedisk: a tippetop without
rotational symmetry. Regul. Chaot. Dyn., 25(6):553–580, 2020

• S. Sailer, S. R. Eugster, and R. I. Leine. The tippedisk: A minimal model for
friction-induced inversion. In Proceedings of the ECCOMAS Thematic Confer-
ence on Multibody Dynamics, Budapest, 2021

• S. Sailer and R. I. Leine. Model reduction of the tippedisk: a path to the full
analysis. Nonlinear Dyn, 105(3):1955–1975, 2021

• S. Sailer and R. I. Leine. Singularly perturbed dynamics of the tippedisk.
Proc. R. Soc. A, 477(2256), 2021

• S. Sailer and R. I. Leine. Why does the tippedisk invert? Theory and experi-
ments. In Proceedings of the ENOC 2020+2 Conference, Lyon, 2022
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• S. Sailer and R. I. Leine. Heteroclinic bifurcation analysis of the tippedisk
through the use of Melnikov theory. Proc. R. Soc. A, 2023

• S. Sailer and R. Leine. A complete stability chart for the tippedisk. In Pro-
ceedings of the NODYCON 2023 Conference, Rome, 2023

1.6 Outline

The first introductory chapter motivates the research and embeds the monograph
in the relevant literature. It also presents the objectives and contributions of this
thesis.

Chapter 2 introduces, from a phenomenological perspective, the tippedisk as a
new mechanical-mathematical archetype that exhibits a counterintuitive inversion
phenomenon caused by frictional and gyroscopic effects. Moreover, Section 2.2 pre-
sents the dimension and inertia properties for a particular specimen, which is sub-
sequently studied in the following of this monograph.

The main body of Chapter 3 has been published in [107] and is presented in a
revised form. After a short general introduction into rigid body kinematics and ki-
netics in Sections 3.1-3.3, Section 3.4 introduces the kinematics of the tippedisk.
In Section 3.5, several contact laws are discussed, distinguishing between normal
and frictional forces. In particular, friction plays an important role in describ-
ing the inversion behavior of the tippedisk. Therefore, the set-valued Coulomb,
Coulomb–Contensou, pivoting and contour friction laws are discussed, accompa-
nied by the smooth regularized Coulomb friction law. In Section 3.6, a non-singular
parametrization using unit quaternions is derived, which is complemented by a sec-
ond parametrization in physical coordinates. The applied numerical integration
concepts are presented in Section 3.7, followed by the simulation results in Sec-
tion 3.8, which are subsequently discussed in Section 3.9.

Based on the physical rigid body models derived in Chapter 3, a reparametriza-
tion is performed in Chapter 4 and Lyapunov’s indirect method is applied in Sec-
tion 4.1 to analyze the local stability behavior. In Section 4.2, a qualitative model
reduction is performed by numerically introducing physical constraints. The cor-
responding dynamical behavior is subsequently investigated by a linear stability
analysis and the application of the harmonic balance method, validated by the im-
plementation of a numerical shooting and continuation procedure, as discussed in
Sections 4.3-4.5.

The body of Chapter 5 has been published in [113]. Section 5.1 and Section 5.2
introduce singular perturbation theory and the Melnikov function method. The two
fundamental sections set notation for the subsequent application of the presented
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methodologies to the dynamics of the tippedisk, cf. Section 5.3. Section 5.4 presents
the bifurcation diagram of the tippedisk, with properties from Table 2.1. The fol-
lowing Section 5.5 reveals a second physical tippedisk variant, motivating to study
the global behavior in a dimensionless context.

The last theoretical Chapter 6 conducts a global analysis by normalizing sys-
tem equations and conditions from the preceding investigations. The dimensionless
analysis finally allows to identify three parameter groups, implying three different
qualitative bifurcation diagrams, cf. Section 6.4.

Chapter 7 presents an experimental investigation of a real specimen, i.e., the
tippedisk V1 defined in Section 2. In Section 7.1, the experimental setup of the
developed high-speed object-tracking system is described. The results of four exper-
iments each, initially starting in inverted and non-inverted spinning configurations,
are presented in Section 7.2. The experimental chapter closes with a comparison of
two example experiments with their respective predictions from full and reduced
model simulations, followed by a discussion, see Section 7.3 and Section 7.4.

Finally, Chapter 8 concludes the thesis by recapping the big picture of the holistic
analysis, and summarizing the main contributions of this monograph. In addition,
an outlook is given on further scientific issues arising from the results of this mono-
graph, including possible applications of the proposed methodology.



CHAPTER 2
The tippedisk

The tippedisk is a mechanical-mathematical archetype for a peculiar friction-induced
inversion phenomenon, first introduced to the academic research community and
scientifically studied in [107].

2.1 The phenomenon of inversion

Essentially, the tippedisk is an eccentric disk whose center of gravity (COG) does
not coincide with the geometric center G of the disk. One way to construct such
a tippedisk is to take a homogeneous disk and remove mass at an arbitrary dis-
tance, e.g., by drilling a hole at an arbitrary point that does not coincide with the
geometric center. If such a specimen is placed on a flat support, like a flat table,
in the gravitational field, it is quite obvious that there are two equilibria where
the gravitational force and the normal contact force balance each other. Namely,
an equilibrium where the COG is below the geometric center G and one where the
COG is vertically above G. From an energetic point of view, the equilibrium with
the center of gravity below the geometric center has a lower potential energy than
the second equilibrium with an elevated center of gravity. In analogy to the mathe-
matical pendulum, it is natural to refer to the equilibrium with the lower potential
as non-inverted equilibrium, while the configuration with the COG above is called
inverted equilibrium.
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Figure 2.1: Stationary motions of the tippedisk. For non-inverted spinning, the
center of gravity S is located below the geometric center G and the disk is spinning
about the in-plane axis through S and G and the contact point C. The inverted
motion is similar to non-inverted spinning, but with S located above G.

Neglecting the influence of pivoting friction, two qualitatively different station-
ary motions can be observed, corresponding to a spinning of the non-inverted and
inverted equilibrium configuration about the vertical. Accordingly, these station-
ary spinning motions are called non-inverted and inverted spinning and are shown
in Figure 2.1. If other dissipation mechanisms such as pivoting friction, which de-
pends on the micro structure, or even air resistance are taken into account, the en-
ergy inevitably decreases. From this energetic point of view, one may naturally be
tempted to assume that the non-inverted spinning of the disk is energetically some-
what more ‘beneficial’ than the spinning in the inverted configuration. However,
the stroboscopic sequence of a laboratory experiment in Figure 2.2 shows the inver-
sion of the disk obtained from high-speed recordings at 500 fps. If the non-inverted
tippedisk is spun fast around an in-plane axis, the center of gravity rises until the
disk ends in an inverted configuration, this somewhat contradicts the energetic in-
tuition from above. As the disk transitions from a non-inverted state of spinning to
an inverted one, accompanied by an increase of the potential energy this transient
process is called the inversion phenomenon of the tippedisk. The experimental ob-
servations qualitatively indicate that for a fastly spinning tippedisk, non-inverted
spinning is unstable, while inverted spinning appears to be attractive. Moreover,
the non-inverted spinning solution corresponds to an isolated point in the region of
attraction of the inverted spinning. In particular, stable inverted spinning attracts
trajectories corresponding to a perturbed spinning in non-inverted configuration.
In analogy to the well-known tippetop, which also shows an inversion phenomenon
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(a) t = 0s (b) t = 4
50 s (c) t = 8
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Figure 2.2: Experiment: Stroboscopic sequence showing the inversion behavior of
the tippedisk. The experiment is started in the non-inverted configuration.

when spun rapidly, the name tippedisk becomes clear.

Instead of arguing by potentially misleading intuition, the subsequent analysis
of the dynamics of the tippedisk is based on rigorous modeling and system analysis
in the context of nonlinear dynamics. In order not to overload the complexity of the
equations by analyzing different parameter influences and identifying dimension-
less quantities, a real specimen is first considered in the following analysis. Later,
the results are used to define dimensionless quantities that allow to classify various
qualitative bifurcation scenarios and thus different variants of tippedisks.

2.2 Dimension and inertia properties of a real specimen

Figure 2.3 shows the dimensions of a real specimen considered in the first part of
this monograph. The main dimensions of the tippedisk are the radius r and the
thickness h; the rounding of the edge is neglected. For a given body-fixed frame
B = (G, eB

x , eB
y , eB

z ), see Figure 2.3, the considered specimen of the tippedisk has
a hole of radius a, whose center lies in a point with distance b with respect to
G along the negative eB

x -axis. The associated dimensions are listed in the upper
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Figure 2.3: Dimensions of the tippedisk; the inertia tensor BΘG is given with
respect to the depicted body-fixed B-frame.

part of Table 2.1. By considering a homogeneous disk with constant density ρ, the
eccentricity

e = ba2

r2 −a2

is obtained from the surface weighted distance and defines the center of gravity S,
trough rGS = eeB

x . The inertia tensor of a solid disk with radius r, height h, and
mass mr = ρπr2h is given in the principal axis system, with respect to its geometric
center, by

BΘr,G =




1
12 mr(h2 +3 r2) 0 0

0 1
12 mr(h2 +3 r2) 0

0 0 6
12 mrr2


 .

Introducing the negative mass ma = −ρπa2h of the ‘hole’, the inertia tensor of re-
moved mass with respect to the geometric center G of the solid disk is given by

BΘa,G =




1
12 ma(h2 +3a2) 0 0

0 1
12 ma(h2 +3a2)+mrb2 0

0 0 6
12 maa2 +mab2


 .

Consequently, the inertia tensor of the tippedisk from Figure 2.3 results as the sum

BΘG = BΘr,G +BΘa,G ,

of single inertia contributions. For the following analysis, a stainless steel disk is
considered, whose dimension and mass properties can be found in Table 2.1. In
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Table 2.1: Dimension and inertia properties of the tippedisk

Property Formula Magnitude Unit

Disk radius r - 0.045 m
Hole radius a - 0.015 m
Distance b - 0.02 m
Disk height h - 0.01 m

Eccentricity e ba2

r2−a2 2.5 ·10−3 m

Density ρ - 7700 kg/m3

Mass m mr +ma = ρπ(r2 −a2)h 0.435 kg

BΘG (1,1)= A ρπh
12

(
3r4 + r2h2 −a2h2 −3a4)

0.249 ·10−3 kg m2

BΘG (2,2)= B ρπh
12

(
3r4 + r2h2 −a2h2 −3a4 −12a2b2)

0.227 ·10−3 kg m2

BΘG (3,3)= C ρπh
12

(
6r4 −6a4 −12a2b2)

0.468 ·10−3 kg m2

BΘS(2,2)= B̄ B−me2 0.224 ·10−3 kg m2

addition, the auxiliary quantity B̄ = B − me2 is listed, which corresponds to the
second principal moment of inertia BΘS(2,2) with respect to the center of gravity S
of the tippedisk with removed mass.

The qualitative analysis of the tippedisk ultimately leads to different bifurcation
scenarios and thus different disk types, which are influenced by the physical param-
eters, i.e., the dimension and the mass properties. Although a qualitative analysis
in dimensionless quantities is beneficial to identify the influence of the parameters,
the starting point of the subsequent investigation is the modeling and simulation of
the real specimen, with dimensions discussed and presented in this section. By do-
ing so, the dynamics of the resulting mathematical model in dimensional quantities
can be directly related to real physics, and thus to intuitive motions of the tippedisk,
without being bothered with transformations between a dimensionless state-space
and the physical behavior of the disk.





CHAPTER 3
Mechanical model of the tippedisk

The present chapter introduces the mechanical model of the tippedisk and is orga-
nized as follows.

In Section 3.1 and Section 3.2, the coordinate-free spatial kinematics and kinet-
ics of a general rigid body are discussed, followed by explicit coordinate represen-
tations in Section 3.3. Based on the general rigid body dynamics, the kinematics
of the tippedisk in contact with a flat support is introduced in Section 3.4. In Sec-
tion 3.5, the utilized set-valued and smooth force laws are discussed. Section 3.6
provides two parametrizations of the mechanical rigid body model, each with its
own advantages. Application of the numerical schemes from Section 3.7 various
simulation results are presented in Section 3.8. Finally, the results are discussed in
Section 3.9.

3.1 Rigid body kinematics

The configuration of a rigid body may be given by the position of an arbitrary body-
fixed reference point P and the orientation of a body-fixed orthonormal B-frame,
relative to a given non-moving inertial system I = (O, eI

x, eI
y, eI

z). The two kinematic
quantities, position vector rOP and rotation tensor R, fully embed the rigid body
in the three-dimensional Euclidean space E3, see Figure 3.1. More precisely, the
position ξ ∈ E3 of any material particle can be addressed by a vector chain

ξ= rOP +ρ,
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Figure 3.1: Kinematics of a rigid body.

with the reference vector rOP ∈ E3 and the relative particle vector ρ ∈ B(R). The
closed subset B ⊂ E3 depends on the orientation of the body-fixed B-frame, as the
rotation tensor R ∈ SO(3,E) rotates a reference configuration B0 onto the current
configuration of the body B. A detailed discussion about rotations, rotation tensors
R, and rotation matrices I R can be found in Appendix A.

Multibody dynamics aims to characterize body configurations that evolve over
time and are called motions of the system. Therefore, the position ξ(t) of each ma-
terial particle can be considered as a function of time t. The corresponding particle
velocity is given by the time derivative ξ̇, where the notation •̇ = d

dt • is used. In the
context of rigid body kinematics, the reference vector rOP (t) and the rotation R(t),
which define the configuration of a body, are also functions that depend on time t
and therefore induce a velocity field

ξ̇= ṙOP + ρ̇ (3.1)

on the rigid body. Introducing the linear and bijective mapping

j : E3 → so(3,E) : a= ai e i 7→ ã=−ϵi jkak e i ⊗ e j , (3.2)

between a vector a ∈ E3 and an element ã of the tangent space so(3,E) at the point
R ∈ SO(3,E), allows to introduce the angular velocity of the current configuration B

as
Ω := j−1

(
ṘRT

)
, (3.3)
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an element of E3.
Since the relative particle vector ρ in the reference configuration B0 is constant,

its absolute derivative is given by the vector product

ρ̇ =Ω×××ρ.

Introducing the absolute velocity vP := ṙOP , of the reference point P, allows to
rewrite Eq. (3.1) as

ξ̇= vP +Ω×××ρ, (3.4)

which is also known as the rigid body formula. The absolute particle acceleration

ξ̈= aP +Ψ×××ρ+Ω××× (
Ω×××ρ)

(3.5)

is derived by differentiating the velocities Ω and vP with respect to time t, where
aP := v̇P defines the linear acceleration and Ψ := Ω̇ denotes the angular accelera-
tion of the body.

In general, the virtual displacement of a particle is defined as the variation

δξ := ∂ξ̂

∂ε

∣∣∣∣
ε=ε0

δε,

where ξ̂(t; ε) is introduced as a family of curves depending on the variation param-
eter ε, for which ξ(t) = ξ̂(t; ε0) holds. However, for a rigid body, only admissible
variations of particles that preserve the rigidity of the body are allowed. Therefore,
families of reference positions r̂OP (t; ε) and rotation tensors R̂(t; ε) are introduced,
with the properties rOP (t) = r̂OP (t; ε0) and R(t) = R̂(t; ε0). The associated varia-
tions read as

δrP = ∂r̂OP
∂ε

∣∣∣∣
ε=ε0

δε and δR = ∂R̂
∂ε

∣∣∣∣
ε=ε0

δε,

in which the variation δR of the rotation tensor R is directly connected to the vari-
ation

δϕ= j−1
(
δRRT

)
,

given the mapping j(•) defined in Eq. (3.2). The angular variation δϕ can be in-
terpreted in axis-angle description as an infinitesimal rotation with angle φ= ∥δϕ∥
around the axis

ax = δϕ

∥δϕ∥ .

These variations of the reference vector δrP and the orientation δϕ, induce the field

δξrig = δrP +δϕ×××ρ (3.6)
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of virtual rigid body displacements. Comparison of the rigid body formula (3.4) with
the variational field in Eq. (3.6), shows that velocities and variations of particles
behave in a similar way, e.g., depend linearly on the derivatives of the reference
position r̂OP and the orientation R̂.

In summary, the kinematics of a rigid body is given by three kinematic quanti-
ties, the body configuration

Q = (
rOP , R

) ∈ E3 ×SO(3,E),

the body velocity

U = (
vP ,Ω

) ∈ E3 ×E3,

and the associated body variation

δS = (
δrP , δϕ

) ∈ E3 ×E3,

defining the position ξ = ξ(Q), the velocity ξ̇ = ξ̇(Q,U) and associated variation
δξrig = δξrig(Q,δS) of each material point. The corresponding particle acceleration
ξ̈= ξ̈(Q,U ,U̇) follows from Eq. (3.5).

The body state is introduced as the pair

X := (Q, U) ∈ E3 ×SO(3,E) × E3 ×E3,

of the configuration Q and the velocity U . It completely defines the current config-
uration and velocity field on a rigid body.

3.2 Rigid body kinetics

An elegant axiomatic access to classical mechanics is given by the variational ap-
proach, cf. [33].

The virtual work δW of a system S is defined as the linear functional

δW[δξ] :=
∫

S
δξ · (ξ̈dm−dF

)
,

where dm characterizes the mass density and dF an arbitrary distribution of forces
acting on the system S . Each material point is addressed by its associated parti-
cle coordinate ξ ∈ E3. To shorten notation, the argument of the expression δW[δξ]
is subsequently omitted, well knowing that the virtual work δW is a functional.
Furthermore, to distinguish between internal and external actions, the total force
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F = ∫
S dF is decomposed into internal forces Fint and external forces Fext. Accord-

ing to the variational law of interaction [33], the virtual work

δW int =
∫

S
δξ ·dFint = δξ ·Fint

of internal forces Fint vanishes when the system is subjected to virtual rigid body
motions δξrig, implying

δW =
∫

S
δξrig ·

(
ξ̈dm−dFext

)
.

Following the principle of virtual work, as a postulate, the system is in the state of
dynamic equilibrium, if the virtual work vanishes for all variations δξ, especially
for all rigid virtual displacements δξrig.

Applying the variational law of interaction and the principle of virtual work to a
single rigid body B, yields the balance

δWB =
∫

B
δξrig ·

(
ξ̈dm−dFext

)
= δWdyn +δWext = 0 ∀δξrig

of virtual works, containing contributions from inertia and external forces:

δWdyn =
∫

B
δξrig · ξ̈dm, and δWext =−

∫

B
δξrig ·dFext. (3.7)

Together with the rigid virtual displacements from Eq. (3.6), the absolute particle
acceleration in Eq. (3.5), the virtual work of inertia forces is given as

δWdyn =
∫

B
(δrP +δϕ×××ρ) · (v̇P +Ω̇×××ρ+Ω××× (

Ω×××ρ))
dm. (3.8)

Abusing notation in the sense of embedding tensor calculus in ‘matrix’ form, see
Appendix A.6, and knowing that the variations δrP and δϕ are constant on the
whole body B, allows to rewrite the virtual work from Eq. (3.8) in a compact form

δWdyn =
[
δrP
δϕ

]T
·
∫

B

[
1 ρ̃T

ρ̃ ρ̃ρ̃T

][
vP
Ω

]•
−

[
−Ω××× (

Ω×××ρ)

−Ω××× (
ρ̃ρ̃TΩ

)
]

dm, (3.9)

where the equality δϕ×××ρ = δϕT · ρ̃ and the Jacobi identity ρ̃ ·Ω××× (
Ω×××ρ) = Ω×××(

ρ̃ρ̃T ·Ω)
are used.

Therein, three inertia integrals

m1 :=
∫

B
1dm, m r̃PS :=

∫

B
ρ̃dm and ΘP :=

∫

B
ρ̃ρ̃T dm (3.10)
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are identified, defining the mass m, the relative vector rPS of the center of gravity
S, and the moment of inertia ΘP with respect to the chosen reference point P.

Substitution of the rigid virtual displacement (3.6) into the virtual work of exter-
nal forces δWext from Eq. (3.7) yields the integral

δWext =−
[
δrP
δϕ

]T
·
∫

B

[
dFext

ρ×dFext

]
,

where ρ×dFext measures the resulting torque dMext
P with respect to the reference

point P. Since a rigid body B is blind to the individual force distribution and feels
only the resulting force Fext and torque Mext

P , the virtual work of the external forces
simplifies to

δWext =−
[
δrP
δϕ

]T
·
[

Fext

Mext
P

]
. (3.11)

In total, the virtual work of a single rigid body with the inertia quantities from
Eq. (3.10), the virtual work of dynamic forces δWdyn in Eq. (3.9), and the virtual
work of external forces δWext from Eq. (3.11) is given as

δWB =
[
δrP
δϕ

]T
·
([

m1 mr̃T
PS

mr̃PS ΘP

][
vP
Ω

]•
−

[
−mΩ××× (

Ω××× rPS
)

−Ω××× (
ΘPΩ

)
])

+δWext. (3.12)

This virtual work from Eq. (3.12) forms the basis for rigid body dynamics and is the
most general coordinate-free description when the kinematics from Section 3.1 is
assumed. In rigid multibody dynamics, it is convenient to calculate the total virtual
work of the system by accumulation

δWS =
∑

i δWBi

of the individual virtual work contributions δWBi of all rigid bodies Bi . The inter-
action between the bodies is accounted for by the virtual work contribution δWexti

of the individual bodies. Although the above virtual work δWB is based on rigid
body assumptions, structurally similar expressions of the virtual work can be found
in finite element formulations of geometrically nonlinear structural elements, e.g.,
cosserat rod finite elements [51].

3.3 Coordinate representation

So far, the kinematics and kinetics of a rigid body have been introduced and dis-
cussed in a coordinate-free manner, i.e., by describing vectors and tensors in the
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three-dimensional Euclidean space E3. However, this representation is not suited
for simulation or to analyze the dynamics with respect to system states, as the in-
troduced configuration Q, the body velocity U and the variations δS are couples
of coordinate-free quantities, and thus abstract objects. Therefore, this section dis-
cusses the coordinate representation and transformation properties of vector and
tensor objects.

For a given vector c ∈ E3, the linear coordinate map

KA : E3 →R3

c 7→ A c =
(
c · eA

i

)
A eA

i =




c · eA
x

c · eA
y

c · eA
z




collects the components cA
i =

(
c · eA

i

)
in the tuple A c ∈R3. As a tensor T = Ti j e i ⊗ e j

is spanned by the basis e i⊗e j , the application of the coordinate map KA to the ten-
sor T = Ti j e i ⊗ e j = T A

i j eA
i ⊗ eA

j yields the matrix

AT = T A
i j KA(e i)KA

T(e j)=




T A
11 T A

12 T A
13

T A
21 T A

22 T A
23

T A
31 T A

32 T A
33


 ∈R3×3,

being the tensor representation with respect to the A-basis. Assuming a second ba-
sis B with the associated coordinate mapping KB, tuple and matrix representations
of c and T are obtained as B c and BT.

The relation between A- and B-representations is governed by the transforma-
tions

A c = AAB B c and AT = AAB BT AT
AB,

where the coordinate transformation matrix AAB =
[
eA

i · eB
j

]
∈ R3×3 is introduced.

In Appendix A, it is shown that the transformation matrix AAB is related to a
associated rotation tensor RBA by the relation AAB = ARBA .

Similar to Eq. (3.3), the relative angular velocity ωAB of the B-frame with re-
spect to the A-frame is given by

ωAB := j−1
(
ṘBART

BA

)
,

and may be expressed in the A-frame as

AωAB := j−1
R

(
ȦAB AT

AB

)
,
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where the linear and bijective mapping

jR : R3 → so(3,R) : Av=




vA
1

vA
2

vA
3


 7→ A c̃ =




0 −cA
3 cA

2
cA

3 0 −cA
1

−cA
2 cA

1 0




is used, where A c̃ is a skew-symmetric matrix, being an element of the tangent
space so(3,R) at the point ARBA in the manifold SO(3,R).

The time derivative of a vector, spanned by a moving A-basis, yields

ċ = ċA
i eA

i + cA
i ėA

i , (3.13)

in which the derivative of the i-th basis vector eA
i , is given by

ėA
i =ωAI × eA

i . (3.14)

Combining Eq. (3.13) and Eq. (3.14) yields the absolute derivative

ċ = ċA
i eA

i +ωAI × cA
i eA

i , (3.15)

which may be transformed by KA in A-coordinates as

A(ċ)= A ċ+ AωI A × A c, (3.16)

also known as Euler’s differentiation rule.

3.4 Kinematics of the tippedisk

The previous Section 3.1 describes the kinematics of a single rigid body, by charac-
terizing a reference vector pointing from the origin to the chosen reference point,
and by a relative orientation of a body-fixed B-frame with respect to an inertial
I-frame. In the current section, this kinematic rigid body description is used to
embed the tippedisk in the three-dimensional Euclidean space E3, which allows the
introduction of different parametrizations in a natural way.

Configuration of the tippedisk

In Figure 3.2, the mechanical model of the tippedisk is displayed, depicting an in-
finitely thin disk with radius r and eccentricity e above a flat support. To obtain a
mechanical model with a minimal number of degrees of freedom that describes the
macroscopic dynamic effects and neglects local deformations at the contact point,
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Figure 3.2: Mechanical model of the tippedisk in contact with a flat frictional sup-
port.

the disk and the flat support are assumed to be rigid. The assumption of zero thick-
ness facilitates the contact kinematics, as the contact point lies on a circle around
the geometric center and thus on a one-dimensional curve.

To describe the orientation of the tippedisk in the three-dimensional Euclidean
space E3, an orthonormal inertial I-frame I = (O, eI

x, eI
y, eI

z) is attached to the iner-
tial origin O, with the unit vector eI

z pointing vertically upward and orthogonal to
the supporting hyperplane spanned by eI

x and eI
y. Without loss of generality, as-

suming the support to be homogeneous and isotropic, the origin O can be chosen as
an arbitrary point of the support. Due to isotropy, any unit vector of the hyperplane
can be defined as the first basis vector eI

x, so that the right-handed frame is com-
pleted by the definition eI

y := eI
z ××× eI

x. In addition, a right-handed body-fixed frame
B = (G, eB

x , eB
y , eB

z ) is attached to the geometric center G of the disk, such that eB
z is

normal to the surface of the disk. Introducing the unit vector eB
x as the normalized

relative vector of

rGS = e eB
x (3.17)
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pointing from the geometric center G to the center of gravity S, and eB
y := eB

z ××× eB
x ,

the body-fixed B-frame is uniquely defined. The relative orientation of the body-
fixed frame with respect to the inertial I-frame is characterized by the rotation
tensor R ∈ SO(3,E), induced by the relation eB

i = R · eI
i , for i ∈ {x, y, z}.

Definition of contact points

To describe the interaction between the disk and the support, the floating frame
G = (G, eG

x , eG
y , eG

z ) is introduced, with eG
z = eB

z , which is attached to the geometric
center G. For non-horizontal configurations of the disk, the cross product eI

z × eB
z is

perpendicular to eI
z and eB

z , implying the horizontally floating unit vector

eG
x := eI

z × eB
z

∥eI
z × eB

z ∥
. (3.18)

Obviously, this definition is only valid for non-horizontal orientations, i.e., eI
z ×××

eB
z ̸= 0. If the disk enters a horizontal configuration, the floating vector eG

x can
be chosen arbitrarily, as long eG

x · eG
z = 0 and eG

z = eB
z hold. For the numerical

implementation, the continuity condition eG
x (ti) = eG

x (ti−1) is assumed, if the disk
passes a horizontal configuration, i.e., the G-frame from the previous step is used,
cf. [70]. Assuming that the third and first basis vectors eB

z and eG
x are given, the

two vectors can be completed by introducing the second basis vector

eG
y := eB

z ××× eG
x , (3.19)

yielding the right-handed orthonormal G-frame.
With eG

y from Eq. (3.19) the projection eI
z · eG

y results in the triple product

eI
z · eG

y = eG
x ·

[
eI

z ××× eB
z

]
,

where the circular shifting property has been applied. Subsequent substitution of
eG

x from Eq. (3.18) reveals that for non-horizontal configurations the inner product

eI
z · eG

y = eI
z × eB

z

∥eI
z × eB

z ∥
·
[
eI

z ××× eB
z

]

is greater than zero. As a consequence, the relative vector from the geometric cen-
ter G to the contact point C1 with minimal height is given as

rGC1 =−r eG
y . (3.20)
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In general, the rotation tensor

RG
z (ϑ) := 1+sinϑ j(eG

z )+ (1−cosϑ) j2(eG
z ),

in the axis angle description, characterizes rotations around the unit vector eG
z with

corresponding angle ϑ. Thus, two additional contact points C2 and C3 can be con-
structed (cf. LE SAUX et al. [70]) by rotating the relative vector rGC1 with angle
ϑ2,3 =± 2π

3 around the axis eG
z , resulting in the rotated vectors

rGC2 = RG
z (ϑ2)rGC1 and rGC3 = RG

z (ϑ3)rGC1 , (3.21)

with associated rotations

RGz
z (ϑ2) :=−1

2

(
1−

p
3 j(eG

z )
)

and RGz
z (ϑ3) :=−1

2

(
1+

p
3 j(eG

z )
)
. (3.22)

In accordance with [70], the Eqs. (3.21) and (3.22) allow, for any given vector
rGC1 , to introduce the relative contact vectors

rGC2 =−1
2

rGC1 +
p

3
2

(
eG

z × rGC1

)
and rGC3 =−1

2
rGC1 −

p
3

2

(
eG

z × rGC1

)
,

(3.23)

yielding three angle-equidistant contact points C1, C2 and C3, see Figure 3.3. The
corresponding gap distance gk between each contact point Ck and the correspond-
ing point Dk on the flat support is equal to the projection of rOCk onto the eI

z-axis.
Assuming the given reference vector rOG , the gap functions gNk are defined

with Eq. (3.20) and Eq. (3.23) and yield the projections

gNk = rOCk · e
I
z =

(
rOG + rGCk

) · eI
z, k = 1,2,3.

In general, the configuration Q of the tippedisk is fully defined by choosing an
arbitrary reference point P with the associated position vector rOP ∈ E3 and in-
troducing the body-fixed B-frame whose orientation is given by the rotation ten-
sor R ∈ SO(3,E). Since the introduced B-frame is uniquely aligned with respect to
the disk, the orientation given by the rotation tensor R ∈ SO(3,E) is also unique.
In contrast, the choice of an appropriate reference point P is not unique. For the
tippedisk, three characteristic points are of special importance. In particular, the
geometric center G of the disk, the center of gravity S and the contact point C1 are
characteristic points that may be chosen as reference points.
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(a) view in −eG
z -direction (b) view in +eG

x -direction

Figure 3.3: Definition of the contact points Ck with k = 1,2,3. The angle β measures
the inclination of the disk.

Physical coordinates

To interpret the orientation in physical coordinates, three angles α, β and γ are de-
fined without any dependence on a chosen parametrization. Therefore, these angles
have a physical meaning and must be constructed by projections of given configura-
tions Q. Here, the spinning angle

α := arctan2
(
eG

x · eI
y, eG

x · eI
x

)
∈ [−π,+π)

,

the inclination angle

β := arccos
(
eI

z · eG
z

)
∈ [

0,+π]
,

and the rolling angle

γ := arctan2
(
eB

x · eG
y , eB

x · eG
x

)
∈ [−π,+π)

,

are introduced, characterizing relative orientations of specific coordinate frames.
Due to trigonometric ambiguity, these definitions are not unique, since they map
to compact intervals. However, by taking periodicity properties into account, the
discontinuous signals (i.e., α(t),β(t),γ(t)) can be unwrapped into continuous ones.

In Figure 3.4, the physical angles α, β and γ are depicted for three particular
configurations of the tippedisk.
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(a) view in −eI
z-direction (b) view in +eG

x -direction (c) view in −eG
z -direction

Figure 3.4: Physical angles of the tippedisk. In Figure 3.4(a) and Figure 3.4(c), the
disk is assumed to be vertically inclined, i.e., β= π

2 , for a clearer illustration.

Velocities

So far, the static configuration Q of the tippedisk has been discussed, defining the
current position and orientation. To describe the motion of the tippedisk, velocities
and accelerations must be introduced as time derivatives of the configuration, which
determine the dynamic behavior over time t.

The body velocity U of the tippedisk, i.e., the angular velocity Ω and an abso-
lute velocity vP of the reference point P, is related to the configuration Q by the
kinematic equation

vP = ṙOP

Ω= j−1
(
RTṘ

)


 ⇔ U = F−1(Q)Q̇. (3.24)

From Eq. (3.24) the inverse mapping

ṙOP = vP

Ṙ = R j (Ω)

}
⇔ Q̇ = F(Q)U ,

can be constructed, which characterizes the derivative Q̇ of the configuration as a
function of the configuration Q and the body velocity U . According to the rigid body
formula from Eq. (3.1), the absolute velocity of the contact point Ck is given by

vCk = vP +Ω××× rPCk , k = 1,2,3, (3.25)

which reveals the absolute velocity vCk (Q,U) is a function that depends on the
configuration and is linear in the body velocity.
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Projection of the absolute velocity vCk , of the contact point Ck, onto the orthonor-
mal I-frame yields the normal relative contact velocity

γNk := vCk · e
I
z (3.26)

and the two-dimensional tangential relative contact velocity as the 2-tuple

γTk :=
[
γTxk
γT yk

]
=

[
vCk · eI

x
vCk · eI

y

]
, (3.27)

where γTxk and γT yk are the relative sliding velocities in eI
x- and eI

y-direction,
respectively. Furthermore, the pivoting velocity

γτk := εkωIB (3.28)

is introduced as the relative spinning speed ωIB := Ω · eI
z scaled with a constant

contact radius εk > 0. Herein, the contact radius εk corresponds to the radius of the
contact area between disk an support, which is assumed to be circular but idealized
to be a point, see [73] for further details.

Above, the floating G-frame is introduced, which is constructed from the inertial
I-frame and the body-fixed B-frame. As the I-frame is assumed to be motionless,
the angular velocity Ω induces also the angular velocity ω of the floating G-frame.
With these two angular velocities, the relative velocity of the moving contact point
Ck, with respect to the associated body-fixed material point which momentarily
agrees with it, holds as

γRk := (
(ω−Ω)××× rPCk

) · eG
x =−rϕ̇. (3.29)

Here, the relative rolling velocity γRk is a measure of how fast the contact point
wanders on the one-dimensional outer ring of the disk.

3.5 Contact laws

The contact laws of the contact forces at the contact points Ck will be described
within the framework of nonsmooth dynamics [85, 73, 71]. Frictional contacts have
a set-valued nature and can conveniently be expressed using normal cone inclu-
sions.

To write force laws as normal cone inclusions, the definition of normal cone

NC (x) :=
{

y ∈Rn
∣∣∣ yT(x∗− x)≤ 0, x ∈C ,∀x∗ ∈C

}

to a closed convex non-empty set C ⊂ Rn at point x is used [103]. For x ∉ C the
normal cone is empty, i.e., NC (x)=;.
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Normal contact laws

To prevent the disk from penetrating the support, a unilateral constraint in normal
direction is assumed. Therefore, Signorini’s law

0≤ gNk ⊥λNk ≥ 0 (3.30)

is used as the contact law in normal direction, which determines the normal force
λNk at the contact point.

Utilizing Moreau’s viability lemma [85], Proposition 2.4, Signorini’s normal con-
tact law on position level from Eq. (3.30), can equivalently be formulated on velocity
level as

gNk = 0 : 0≤ γNk ⊥λNk ≥ 0,

whenever γNk is continuous.
Following [85, 45, 74], the generalized Newton’s impact law yields the normal

cone inclusion

ξNk ∈NR−
0

(−ΛNk ) with ξNk = γ+Nk
+ eNkγ

−
Nk

.

Herein, the parameter eNk indicates the restitution coefficient, the kinematic quan-
tities γ+Nk

and γ−Nk
are post- and preimpact velocities, and ΛNk denotes the corre-

sponding impulsive force in normal direction [45].

Frictional contact laws

Classical spatial Coulomb friction is described by the set-valued force law

γTk ∈NCTk
(−λTk ), (3.31)

where CTk is a closed convex set denoting the negative force reservoir. For isotropic
friction the negative force reservoir CTk is equal to a disk with radius µλNk , where
µ is identified as friction coefficient, i.e., CTk = {−λTk ∈R2∣∣∥λTk∥ ≤µλNk

}
. In [73],

it was shown that the coupling between sliding friction and pivoting friction is es-
sential for the inversion of the tippetop. The Coulomb–Contensou friction model
from [73] expresses the coupling between the tangential friction forces λT and the
pivoting torque λτ, both of which depend on the tangential sliding velocity γTk and
the scaled angular spinning speed γτk . Together with the triples

γFk =
[
γTk
γτk

]
and λFk =

[
λTk
λτk

]
,
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the Coulomb–Contensou friction law yields the normal cone inclusion

γFk ∈NBFk
(−λFk ). (3.32)

For a parabolic pressure distribution at the contact area with radius εk (see [73]),
the friction ball BFk (λN ) can be expressed with the auxiliary quantities

ξ̄=
∥λTk∥
µλN

and η̄= λτk

µλN

and
ξ∗ = 9

32
π and η∗ = 9

128
π

as

BFk :=





{
λFk

∣∣∣∣
9
64

(
η̄

η∗

)2
+ 9

8

(
ξ̄

ξ∗

)2
− 243

1024

(
ξ̄

ξ∗

)4
+O

((
ξ̄

ξ∗

)6 )
≤ 1

}
, ξ̄≤ ξ∗

{
λFk

∣∣∣∣ ξ̄2 +5η̄2 − 75
7
η̄4 +O(η̄6)≤ 1

}
, ξ̄> ξ∗.

To describe impacts, we restrict us to the classical spatial Coulomb friction impact
law

ξTk ∈NCTk

(−ΛTk

)
with ξTk =γ+Tk

+ eTkγ
−
Tk

,

with negative force reservoir CTk , cf. [45] .
The Coulomb–Contensou friction law incorporates the coupling between sliding

and pivoting friction and describes the Contensou effect [73]. For vanishing pivoting
speed one retrieves the set-valued Coulomb friction law for sliding, whereas it is
strongly regularized for large values of γτ. For a fast spinning disk, i.e., |γτ| ≫
∥γT∥, Coulomb–Contensou yields a smooth tangential friction law, motivating the
introduction of the regularized Coulomb friction law

λTk =−µλNk

γTk

∥γTk∥+ε
, (3.33)

with friction parameter µ and smoothing coefficient ε.
As isolated force law for pivoting friction, dry pivoting friction

γτk ∈NCτk
(−λτk )

is assumed, with the corresponding negative force reservoir Cτk := {x ∈R| |x| ≤µτλNk }.
Equivalently, dry contour friction

γRk ∈NCRk
(−λRk )

is introduced to describe the resistance against rolling, where CRk corresponds to
the negative force reservoir CRk := {x ∈R| |x| ≤µR λNk }, cf. [70].
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3.6 Parametrization

For finite dimensional mechanical systems, the task of a parametrization is to fully
define the configuration and the velocity field of the mechanical system, using gener-
alized coordinates q ∈Rn and generalized velocities u ∈Rν. For rigid body systems,
it is common to take, for each rigid body, one point as reference and to describe
the orientation of any rigid body by a representative rotation matrix, i.e., the posi-
tion vector rOP ∈ E3 of the reference point P together with a parametrized rotation
tensor R(p) ∈ SO(3,E), depending on rotation parameters p, defines the current
configuration of each rigid body.

Introducing the velocity vP ∈ E3 of the reference point P and the angular velocity
Ω ∈ E3, the body-velocity field is fully defined. This way of parametrization is not
the most general, but it is the most common for a rigid body and allows to directly
obtain the system equations in the well-known form

q̇ = F(q)u+χ(q, t) (3.34)

M(q, t) u̇ = h(q,u, t)+ f (q,u, t).

The first line of Eq. (3.34) is the kinematic equation, which relates the time deriva-
tives of coordinates q to the generalized velocity u. The second equation identi-
fies as the equation of motion describing the kinetics and contains the mass ma-
trix M(q, t), the vector of gyroscopic forces h(q,u, t), and additional external forces
f (q,u, t), e.g., damping or friction forces.

Since several parametrizations will be introduced in this monograph, all of which
have their own advantages and allow for different physical interpretations, a gen-
eral parametrization will be performed here as an example to shorten the subse-
quent chapters. A single rigid body may be parametrized in the above described
manner, by defining the position vector rOP of the reference point P as tuples

ArOP :=




x
y
z


 ∈R3, (3.35)

expressed with respect to an A-frame, and by introducing the rotation matrix I R(p)
as element of SO(3,R), defining the orientation of the body-fixed B-frame relative
to the inertial I-frame. In mechanics it is common to describe the reference point in
Cartesian coordinates. Alternatively, cylindrical, spherical or other curved coordi-
nates can be chosen to describe a reference point of a mechanical system [27]. The
choice of the representing coordinates is far from trivial and depends strongly on
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the respective application and the subsequent analysis. In a first step, the rotation
matrix is assumed to be parametrized by nine matrix components

p :=
[
R11 R12 . . . R33

]
∈R9,

yielding the rotation matrix

I R(p) :=




R11 R12 R13
R21 R22 R23
R31 R32 R33


 ∈R3×3. (3.36)

Together with the parametrizations from Eq. (3.35) and Eq. (3.36), the configuration
of the body is fully defined by the chosen coordinates

q :=
[

ArOP , p
]
=

[
x y z R11 R12 . . . R33

]
∈R12.

To parametrize the velocity and variation fields, the minimal velocities

u =
[

AvP , BΩ
]
∈R6,

and the corresponding variations

δs=
[

AδrP , Bδϕ
]
∈R6

are chosen. Here, the angular velocity BΩ= [ωx,ωy,ωz] ∈R3 and the associated an-
guar variation Bδϕ= [δϕx, δϕy, δϕz] ∈R3 are expressed in the body-fixed B-frame,
which are connected to the derivatives of the parameters p by

BΩ= AT
IB j−1

R

[(
∂I R(p)
∂p

ṗ
)

I R(p)T
]

(3.37)

and

Bδϕ= AT
IB j−1

R

[(
∂I R(p)
∂p

δp
)

I R(p)T
]

,

respectively. According to Eq. (3.16) the velocity AvP yields

AvP = A ṙOP +AωI A ×A rOP . (3.38)

From Eq. (3.37) and Eq. (3.38), the kinematic equation q̇ = F(q)u+χ(q, t) is identi-
fied. Again, using Eq. (3.16) the linear acceleration AaP and the angular accelera-
tion BΨ are given in coordinates by

AaP = A v̇P +AωI A ×A vP , (3.39)
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and

BΨ=B Ω̇, (3.40)

where the identity BωIB × BΩ = BΩ× BΩ = 0 has been used. Combination of
Eq. (3.39) and Eq. (3.40) yields the expression

[
AaP

BΨ

]
=

[
AvP

BΩ

]•
+

[
AωI A ×A vP

0

]
= u̇+b(q,u). (3.41)

In Equation (3.12) the virtual work of a rigid body is introduced, which can be
expressed with respect to the chosen minimal velocity u and the corresponding vari-
ation δs as

δWB =
[

AδrP

Bδϕ

]T ([
m1 mAABB r̃T

PS
mB r̃PS AT

AB BΘP

][
AaP

BΨ

]
(3.42)

−
[
−mAABBΩ××× (

BΩ×××BrPS
)

−BΩ××× (
BΘP BΩ

)
])

+δWext.

Inserting the accelerations from Eq. (3.41) and identifying the variations δs finally
yields the virtual work

δWB = δsT
([

m1 mAABB r̃T
PS

mB r̃PS AT
AB BΘP

]
u̇ (3.43)

−
[

−mAωI A × AvP −mAABBΩ××× (
BΩ×××BrPS

)

−mB r̃PS AT
AB(AωI A × AvP )−BΩ××× (

BΘP BΩ
)
])

+δWext,

with respect to the minimal velocities u. Identifying the mass matrix

M(q, t)=
[

m1 mAABB r̃T
PS

mB r̃PS AT
AB BΘP

]
(3.44)

and the vector of gyroscopic terms

h(q,u, t)=
[

−mAωI A × AvP −mAABBΩ××× (
BΩ×××BrPS

)

−mB r̃PS AT
AB(AωI A ×A vP )−BΩ××× (

BΘP BΩ
)
]

(3.45)

reveals the compact expression

δW = δsT(
M(q, t)u̇−h(q,u, t)

)+δWext (3.46)

of the virtual work from Eq. (3.43). Therein, the virtual work of external forces
δWext in generalized velocities u reads as

δWext =−δsT f (q,u, t),
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where the corresponding generalized force f (q,u, t) = fg(q, t)+∑
k fγk (q,u, t) con-

tains all external forces acting on the rigid body. In particular, the generalized
gravitational force is given by

fg(q, t)= I JS
T

I Fg,

with Jacobian

I JS = ∂I vs
∂u

and gravitational force I F g = [0, 0, −mg]T.
Contact forces, i.e., normal and frictional forces, are characterized by a relative

velocity γk and corresponding force (or moment) λk, which is projected onto the
velocity coordinates by the generalized force direction

wT
γk

= ∂γk
∂u

,

resulting in the associated generalized force contributions

fγk (q,u, t)= wγk λk.

Following the principle of virtual work, which states that the virtual work (3.46)
must vanish for all virtual displacements δs at each instant of time t, the equations
of motion are given by

M(q, t) u̇ = h(q,u, t)+ f (q,u, t). (3.47)

The kinematic relationships from Eq. (3.37) and Eq. (3.38) yield the kinematic
equation

q̇ = F(q)u+χ(q, t) (3.48)

where F(q) ∈R12×6 and χ(q, t) ∈R12 are not given here in full detail. Herein, q has
to satisfy the six orthogonality conditions I RT I R = 1, which implies that F(q) is
such that the velocity constraint d

dt
(
I RT I R

) = 0 is fulfilled. With Equation (3.47)
and Eq. (3.48), the system

q̇ = F(q)u+χ(q, t)

M(q, t) u̇ = h(q,u, t)+ f (q,u, t)
(3.49)

in first-order form is obtained, governing the non-impulsive motion of the body B.
In the following sections, various mechanical models of the tippedisk in different

parametrizations are presented, each of which has its own advantages.
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Geometric center G described in the inertial frame

Choosing the geometric center G as reference point of the tippedisk leads to simpli-
fied generalized force directions, with the disadvantage of more cumbersome gyro-
scopic terms and coupling between the translational and rotational motion in the
mass matrix. It is a choice to parametrize the position of the reference point G in
inertial I-coordinates, i.e.,

I rOG =
[
x y z

]T ∈R3, (3.50)

with associated velocity

I vG =
[
ẋ ẏ ż

]T ∈R3. (3.51)

At this point the question arises: how to parametrize the orientation and angular
velocity of the body?

In the following, a parametrization in quaternions and one in Euler angles are
presented. The quaternion based model has the advantage of singular free descrip-
tion and provides a symmetric structure that allows more efficient numerical inte-
gration. The parametrization in Euler angles leads to a singular description and
an asymmetric system structure with numerical drawbacks, but corresponds to a
minimal formulation that allows for a direct physical interpretation. Therefore, the
model in Euler angles is more suitable for the nonlinear analysis. Since the dynam-
ics of the tippedisk contains different time scales and is highly nonlinear, the con-
vergence of the numerical integration is far from trivial. Therefore, the redundant
parametrization allows to demonstrate the convergence of the numerical solutions.

Quaternion based Model

One way to parametrize the rotation matrix I R is by using a unit quaternion p =
[p0, p1, p2, p3]T ∈R4, with ∥p∥4 = 1, where ∥.∥4 denotes the Euclidean norm in R4.
By splitting the quaternion p into its scalar real part p0 and the three-dimensional
complex part pc = [p1, p2, p3]T ∈R3, the rotation matrix I R is parametrized by

I R(p)= 1+2
(
p0 p̃c + p̃2

c

)
= AIB, (3.52)

and fulfills the orthogonality condition I RT
I R = 1, if the quaternion p satisfies the

constraint ∥p∥4 = 1. Evaluation of the parametrization from Eq. (3.52) yields the
nine components of the rotation matrix

I R(p)=




2(p2
0 + p2

1)−1 2(p1 p2 − p0 p3) 2(p1 p3 + p0 p2)
2(p1 p2 + p0 p3) 2(p2

0 + p2
2)−1 2(p2 p3 − p0 p1)

2(p1 p3 − p0 p2) 2(p2 p3 + p0 p1) 2(p2
0 + p2

3)−1


 . (3.53)
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Together with the position I rOG and velocity I vG of the reference point G, from
Eq. (3.50) and Eq. (3.51), the parametrization is fully defined by choosing the gen-
eralized coordinates

q :=
[

I rT
OG pT

]T =
[
x y z p0 p1 p2 p3

]T ∈R7 (3.54)

and the minimal velocities

u :=
[
ẋ ẏ ż ωx ωy ωz

]T ∈R6, (3.55)

where the angular velocity Ω of the tippedisk expressed in the body-fixed B-frame
is given as

BΩ=:
[
ωx ωy ωz

]T = B JR u, (3.56)

with associated Jacobian

B JR =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 . (3.57)

The linear kinematic equation q̇ = F(q)u is obtained using the time derivative
of ∥p∥2

4 = pT p = 1 and yields

q̇ = F(q)u =
[

1 0
0 1

2 H̄T

]
u, (3.58)

with

H̄T =




−p1 −p2 −p3
p0 −p3 p2
p3 p0 −p1

−p2 p1 p0


=

[
−pT

c
p0 1+ p̃c

]
,

cf. [87]. Following the general parametrization from above, with the geometric
center as reference point P =G, the relative vector BrGS = [e, 0, 0]T (cf. Eq. (3.17)),
the parametrization of I R(p) from Eq. (3.53), and the angular velocity BΩ from
Eq. (3.56), yields the equation of motion

M(q) u̇ = h(q,u)+ f (q,u)

parametrized in generalized coordinates q given in Eq. (3.54) and the minimal ve-
locities u defined in Eq. (3.55), with the corresponding mass matrix

M(q)=
[

m1 mI R(p)B r̃T
GS

mB r̃GS I R(p)T BΘG

]
, (3.59)
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and the associated vector of gyroscopic forces

h(q,u)=
[
−mIΩ××× (

IΩ××× I rGS
)

−BΩ××× (
BΘP BΩ

)
]

. (3.60)

The angular velocity Ω and the relative position vector rGS are given with respect
to the I-frame by the transformations IΩ = I R(p)BΩ and I rGS = I R(p)BrGS .
Note that for the chosen coordinates q from Eq. (3.54) and the generalized veloc-
ities u from Eq. (3.55), the equations of motion do not depend explicitly on time t,
which would be the case, for example, if the body reference point P is parametrized
with respect to a moving basis.

To determine the external, generalized forces f (q,u), gravitational and contact
forces must be taken into account. The gravitational force I F g = [0, 0, −mg]T is
applied at the center of gravity S. The velocity of S is determined by using the rigid
body formula (3.4) yielding

I vS = I vG − I r̃GS I R(p)BΩ=
[
1 I rT

GS I R(p)
]

u,

from which the Jacobian

I JS =
[
1 I rT

GS I R(p)
]

with respect to the chosen minimal velocities u is extracted. The generalized gravi-
tational force then gives

fg = I JT
S I Fg. (3.61)

Similarly, the relative velocity Iγk = [γT
Tk

, γNk ]T of all contact points, is obtained by
using again the rigid body formula

Iγk = I vCk
= I vG − I rGCk

× IΩ=
[
1 I r̃T

GCk I R(p)
]

u.

The generalized force directions of the normal and tangential contact forces are then
given as the components in eI

x-, eI
y- and eI

z-direction. For a single contact point Ck,
the generalized normal force direction is obtained as

wNk =
[
(I eI

z)T −(I eI
z)T I r̃GCk I R(p)

]T ∈R6×1

and the generalized tangential force direction as

WTk =
[

(I eI
x)T −(I eI

x)T I r̃GCk I R(p)
(I eI

y)T −(I eI
y)T I r̃GCk I R(p)

]T
∈R6×2.

Gathering of these force directions allows to introduce the matrix representations

WN =
[
wN1 wN2 wN3

]
∈R6×3
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and
WT =

[
WT1 WT2 WT3

]
∈R6×6,

which leads to compact expressions. To obtain the generalized force directions of
pivoting and contour frictional forces, the relative spin velocity

ωIB := (I eI
z)T IΩ= (I eI

z)T I R(p)BΩ,

is defined, from which the relative pivoting velocity

γτk := εkωIB

is deduced for each contact point Ck. Together with the rotational Jacobian B JR
from Eq. (3.57), the generalized force direction

wτk = εk

[
0 0 0 (I eI

z)T I R(p)
]T ∈R6×1

is identified. The generalized force directions for pivoting friction of all contact
points are collected in the matrix

Wτ =
[
wτ1 wτ2 wτ3

]
∈R6×3.

To consider contour friction, the relative velocity

γRk =−rϕ̇ (3.62)

is introduced. Differentiating the horizontality condition eG
x ·eI

z ≡ 0 allows to deduce
the velocity

ϕ̇=
[ R31R33

R2
31+R2

32

R32R33
R2

31+R2
32

1
]

B JR u

of the grinding angle ϕ, from which the corresponding generalized force direction

wR1 =−r
[ R31R33

R2
31+R2

32

R32R33
R2

31+R2
32

1
]

B JR ∈R6×1

is extracted. The definition of the contact point C1 is valid only for non-horizontal
configurations, i.e., configurations with only one contact point, therefore the gener-
alized force direction for contour friction is given as

WR =−r




0 0 0 R31R33
R2

31+R2
32

R32R33
R2

31+R2
32

1

0 0 0 0 0 0
0 0 0 0 0 0




T

∈R6×3.
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For a horizontally orientated disk, the contact points Ck are not properly defined
[70], resulting in the trivial generalized force direction WR = 0 ∈R6×3.

As the quaternion based model is already written in first-order form, the gen-
eralized force directions W = [

WN , WT , Wτ, WR
]

and corresponding contact forces

λ =
[
λT

N ,λT
T ,λT

τ ,λT
R

]T
are collected in matrices, allowing the system equations to

be compactly written as

q̇ = F(q)u

M(q)u̇ = h(q,u)+ fg +Wλ,
(3.63)

with the mass matrix M(q) from Eq. (3.59), the vector of gyroscopic forces h(q,u)
from Eq. (3.60), the generalized gravitational force fg from Eq. (3.61) and the kine-
matic equation from Eq. (3.58).

For a quaternion based model, the orthogonality condition I R(p)T I R(p) = 1 is
fulfilled through the constraint on the norm ∥p∥4 = 1 of the quaternion. The latter,
however, is by Eq. (3.58) only kept on velocity level. This implies that the quaternion
needs to be properly initialized such that I R(p(t0))T I R(p(t0)) = 1 holds. In addi-
tion, note that Eq. (3.63) does not contain an associated Lagrange multiplier, which
may prevent the constraint from drifting. Therefore, in a numerical scheme, drift
correction may be required, when Eq. (3.63) is integrated numerically. To prevent
this condition from drifting, the quaternion is normalized after each time step.

Euler angles

Alternatively, the rotation matrix can be described by the three Euler angles ϕ =
[α, β, γ]T in an intrinsic z-x-z-convention. This specific choice of Euler angles en-
ables a straightforward physical interpretation, since each Euler angle corresponds
to a physical angle, cf. Figure 3.4. Therefore, the R-frame with eR

z = eI
z, eR

x =
cosα eI

x + sinα eI
y and eR

y = eR
z × eR

x is introduced, by rotating the inertial I-frame
around eR

z . The sequence of rotation is then given as the first rotation with an-
gle α around the eI

z-axis, the second rotation with angle β around the eR
x -axis and

the third rotation with angle γ around the eG
z -axis. The corresponding elemental

transformations are

AIR =




cα −sα 0
sα cα 0
0 0 1


 , ARG =




1 0 0
0 cβ −sβ
0 sβ cβ


 , AGB =




cγ −sγ 0
sγ cγ 0
0 0 1


 , (3.64)
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where the abbreviations sα = sin(α), cα = cos(α) etc. have been used to shorten
notation. The rotation matrix

I R(ϕ)=




cαcγ−sαcβsγ −cαsγ−sαcβcγ sαsβ
sαcγ+cαcβsγ −sαsγ+cαcβcγ −cαsβ

sβsγ sβcγ cβ


= AIB, (3.65)

is obtained by the series multiplication AIB = AIR ARG AGB of transformation ma-
trices and subsequent identification of I R(ϕ) = AIB. According to the group prop-
erties of SO(3,R) the constructed rotation matrix per se fulfills the orthogonality
condition I RT I R = 1. The corresponding angular velocity Ω expressed in the body-
fixed B-frame results from the sum

BΩ= α̇AT
RB R eR

z + β̇AT
GB G eG

x + γ̇B eB
z =



α̇sβsγ+ β̇cγ
α̇sβcγ− β̇sγ
α̇cβ+ γ̇


=:



ωx
ωy
ωz


 , (3.66)

with the transformation matrix ARB = ARG AGB. Making use of the transforma-
tion AIB = I R(ϕ), the angular velocity expressed with respect to the I-frame yields
the tuple

IΩ= AIB BΩ=



β̇cα+ γ̇sαsβ
β̇sα− γ̇cαsβ
α̇+ γ̇cβ


 .

If in addition the geometric center G is chosen as reference point with position
vector I rOG from Eq. (3.50) given in the inertial I-frame, the configuration of the
tippedisk is fully defined. This kinematic description implicates the generalized
coordinates

q :=
[
x y z α β γ

]T ∈R6. (3.67)

Since these generalized coordinates q allow to characterize the configuration of the
tippedisk, without additional dependencies, they are called minimal coordinates of
the free tippedisk.

Equivalent to the quaternion based model, the translational velocity I vG of the
geometric center G given in Eq. (3.51) and the angular velocity from Eq. (3.66) are
a valid choice

u :=
[
ẋ ẏ ż ωx ωy ωz

]T ∈R6 (3.68)

of minimal velocities. With q and u the configuration and the body velocity of the
tippedisk is fully defined.
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From Eq. (3.51) and Eq. (3.66) the Jacobian matrix of translation

I JG = ∂I vG
∂q̇

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 ,

and the Jacobian matrix of rotation

B JR = ∂BΩ

∂q̇
=




0 0 0 sβsγ cγ 0
0 0 0 sβcγ −sγ 0
0 0 0 cβ 0 1


 (3.69)

are deduced, implying the kinematic relation

u =
[

I vG

BΩ

]
= A(q) q̇ =

[
I JG

B JR

]
q̇ (3.70)

between the generalized velocities u from Eq. (3.68) and the time derivatives q̇ of
the generalized position coordinates q from Eq. (3.67). For non-singular configu-
rations the linear function BΩ = BΩ(ϕ̇) is invertible, allowing to define for these
configurations the kinematic equation

q̇ =B(q)u, with B(q)= A(q)−1. (3.71)

Evaluation of the system equation (3.49) in coordinates q and velocities u gives
with the kinematic equation from Eq. (3.71) the mechanical system

q̇ =B(q)u

M(q)u̇ = h(q,u)+ f (q,u),
(3.72)

in first-order form with the associated mass matrix

M(q)=
[

m1 mI R(ϕ)B r̃T
GS

mB r̃GS I R(ϕ)T BΘG

]
, (3.73)

and the vector of gyroscopic forces

h(q,u)=
[
−mIΩ××× (

IΩ××× I rGS
)

−BΩ××× (
BΘP BΩ

)
]

, (3.74)

cf. Eq. (3.44) and Eq. (3.45). Structurally, the mass matrix and the vector of gyro-
scopic forces from Eq. (3.73) and Eq. (3.74) are equal to the mass matrix and the
vector of gyroscopic forces from Eq. (3.59) and Eq. (3.60). This structural equality
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comes from the fact, that both models are derived with respect to the same minimal
velocities u. However, the evaluated identities are different, as the rotation matrix

I R(ϕ) is parametrized differently.

Substitution of Eq. (3.70) into the dynamics from Eq. (3.72), renders the kine-
matic equation trivial. Moreover, by pre-multiplying the equation of motion with
the matrix A(q)T, a step which may be motivated through the virtual work, the
Lagrangian system

M̄(q) q̈ = h̄(q, q̇)+ f̄ (q, q̇, t) (3.75)

is obtained. Equation (3.75) defines the equations of motion for generalized coordi-
nates q, where M̄(q) describes the mass matrix and h̄(q, q̇) a vector containing all
inertia forces which are not linear in the generalized accelerations q̈, i.e., gyroscopic
forces. In detail, the mass matrix and the vector of gyroscopic forces are given as:

M̄ := A(q)T M(q) A(q)=
[

M̄11 M̄12
M̄21 M̄22

]
(3.76)

with submatrices

M̄11 =




m 0 0
0 m 0
0 0 m


 , M̄21 = M̄T

12

M̄12 = me



−cαcβsγ−sαcγ sαsβsγ −cαsγ−sαcβcγ
−sαcβsγ+cαcγ −cαsβsγ −sαsγ+cαcβcγ

0 cβsγ sβcγ




M̄22 =




(As2γ+Bc2γ)s2β+Cc2β (A−B)sβsγcγ Ccβ
(A−B)sβsγcγ Ac2γ+Bs2γ 0

Ccβ 0 C




and

h̄(q, q̇) := A(q)T
(
h (q, A(q) q̇)−M(q, t) Ȧ(q)q̇

)

=
[
h̄1 h̄2 h̄3 h̄4 h̄5 h̄6

]T (3.77)
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with

h̄1 = me
[
α̇2(cαcγ−sαcβsγ)− β̇2sαcβsγ+ γ̇2(cαcγ−sαcβsγ)

−2α̇β̇cαsβsγ−2α̇γ̇(sαsγ−cαcβcγ)−2β̇γ̇sαsβcγ
]
,

h̄2 = me
[
α̇2(sαcγ+cαcβsγ)+ β̇2cαcβsγ+ γ̇2(sαcγ+cαcβsγ)

−2α̇β̇sαsβsγ+2α̇γ̇(cαsγ+sαcβcγ)+2β̇γ̇cαsβcγ
]
,

h̄3 = me
[
β̇2sβsγ+ γ̇2sβsγ−2β̇γ̇cβcγ

]
,

h̄4 =−β̇2(A−B)cβsγcγ−2α̇β̇(As2γ+Bc2γ−C)sβcβ

−2α̇γ̇(A−B)s2βsγcγ− β̇γ̇sβ
[
(A−B)(c2γ−s2γ)−C

]
,

h̄5 = α̇2sβcβ(As2γ+Bc2γ−C)− α̇γ̇sβ
[
(A−B)(c2γ−s2γ)+C

]

+2β̇γ̇(A−B)sγcγ,

h̄6 = α̇2(A−B)s2βsγcγ− β̇2sγcγ(A−B)+ α̇β̇sβ
[
(A−B)(c2γ−s2γ)+C

]
.

(3.78)

With Eqs. (3.76)-(3.78) all inertia forces are determined. The generalized vector f̄ of
external forces contains gravitational, normal contact and friction forces. Instead of
a transformation, the generalized force directions of external forces Fext are directly
extracted from the corresponding Jacobians.

To take gravitational forces into account, we express the position of the center of
gravity S as

I rOS = I rOG + eI eB
x =




x+ e(cαcγ−sαcβsγ)
y+ e(sαcγ+cαcβsγ)

z+ esβsγ


 .

The time derivative leads to the velocity

I vS =




ẋ− e
[
α̇(sαcγ+cαcβsγ)− β̇sαsβsγ+ γ̇(cαsγ+sαcβcγ)

]

ẏ+ e
[
α̇(cαcγ−sαcβsγ)− β̇cαsβsγ− γ̇(sαsγ−cαcβcγ)

]

ż+ e(β̇cβsγ+ γ̇sβcγ)


 ,

from which the translational Jacobian matrix

I JS =


 1

∣∣∣∣∣∣∣

−e(sαcγ+cαcβsγ) esαsβsγ −e(cαsγ+sαcβcγ)
e(cαcγ−sαcβsγ) −ecαsβsγ −e(sαsγ−cαcβcγ)

0 ecβsγ esβcγ




of the center of gravity is extracted. Using this Jacobian, the gravitational force

I F g = [0, 0, −mg]T is projected onto the generalized velocity space, and yields the
generalized force

f̄g(q)= I JT
S I F g =−mg

[
0 0 1 0 ecβsγ esβcγ

]T
. (3.79)
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Following the rigid body formula (3.25), the velocity of the contact point C1 follows
as

I vC1 = I vG + IΩ× I rGC1 =




ẋ+ r(α̇cαcβ− β̇sαsβ+ γ̇cα)
ẏ+ r(α̇sαcβ+ β̇cαsβ+ γ̇sα)

ż− rβ̇cβ


 .

Since the support is not moving, the velocity I vC1 is equivalent to the relative con-
tact velocity of the contact point C1. The components of I vC1 can be split according
to Eq. (3.26) and Eq. (3.27) into the normal relative velocity

γN1 = ż− rβ̇cβ (3.80)

and into the tangential sliding velocity

γT1 =
[

ẋ+ r(α̇cαcβ− β̇sαsβ+ γ̇cα)
ẏ+ r(α̇sαcβ+ β̇cαsβ+ γ̇sα)

]
. (3.81)

The corresponding generalized normal force direction wN1 is obtained from Eq. (3.80)
as

w̄N1 =
(
∂γN1

∂q̇

)T
=

[
0 0 1 0 −rcβ 0

]T ∈R6×1,

whereas Eq. (3.81) provides the generalized force directions

W̄T1 =
(
∂γT1

∂q̇

)T
=

[
1 0 0 rcαcβ −rsαsβ rcα
0 1 0 rsαcβ rcαsβ rsα

]T
∈R6×2,

for the tangential friction forces. The generalized normal and tangential force direc-
tions for the contact points C2 and C3 are calculated analogously using Eqs. (3.25)
and (3.23). Finally, the contact force directions are collected in a matrix of general-
ized normal force directions

W̄N =
[
w̄N1 w̄N2 w̄N3

]
∈R6×3 (3.82)

and a matrix containing generalized tangential force directions

W̄T =
[
W̄T1 W̄T2 W̄T3

]
∈R6×6.

The relative pivoting velocity is given as

γτk := εkωIB,

with corresponding generalized pivoting friction force direction

w̄τk =
(
∂γτk

∂q̇

)T
= εk

[
0 0 0 1 0 cos(β)

]T ∈R6×1,
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for a single contact point Ck, which can be gathered in the matrix of force directions

W̄τ =
[
w̄τ1 w̄τ2 w̄τ3

]
∈R6×3.

The relative contour velocity γR of the contact point Ck with respect to its body-fixed
point is defined in Eq. (3.62). Since the angular velocity ϕ̇ equals the derivative γ̇ of
the third Euler angle, the contour friction velocity directly yields

γRk =−rϕ̇=−rγ̇.

With generalized velocities q̇, the generalized force direction follows as

w̄Rk = r
[
0 0 0 0 0 −1

]T ∈R6×1.

For an inclined disk, i.e., there exists a unique contact point with minimal height,
the generalized force direction for contour friction is given as

W̄R = r




0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0




T

∈R6×3. (3.83)

Note that the generalized force direction W̄R should be adapted for a horizontally
oriented disk. As this horizontal configuration is intrinsically equal to the singular-
ity of the Euler angles and leads to a singular mass matrix [52], it is sufficient to
consider W̄R for the inclined tippedisk. As it will show up, this singularity does not
play a role during the inversion phenomenon.

Together with the kinetic quantities, i.e., mass matrix M̄(q) from Eq. (3.76), the
vector of gyroscopic forces h̄(q, q̇) from Eq. (3.77), the gravitational force f̄g(q) from
Eq. (3.79), and the generalized force directions from Eqs. (3.82)-(3.83) the equations
of motion yield

M̄(q)q̈ = h̄(q, q̇)+ f̄g(q)+W̄NλN +W̄TλT +W̄τλτ+W̄RλR ,

and give in compact form

M̄(q)q̈ = h̄(q, q̇)+ f̄g +W̄λ (3.84)

with W̄ = [
W̄N , W̄T , W̄τ, W̄R

]
and λ =

[
λT

N ,λT
T ,λT

τ ,λT
R

]T
. Introducing the trivial

kinematic relationship v = q̇, or more formal q̇ = B̄v with B̄(q) = 1 (for a unified
numerical treatment), the second-order differential equation from Eq. (3.84) refor-
mulated in first-order form gives

q̇ = B̄(q)v

M̄(q)v̇= h̄(q,v)+ f̄g +W̄λ,
(3.85)
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which is structurally similar to Eq. (3.72), and parametrized with respect to the
same minimal coordinates q but with different minimal velocities u ̸= v. To distin-
guish between the two first-order forms from Eq. (3.72) and Eq. (3.85), the notation
using bars has been introduced.

In the case of Euler angles the orthogonality condition I RT I R = 1 is always sat-
isfied on position level, such that any initialization is admissible and constraint
violation is not possible. Therefore, no additional projection is needed for drift com-
pensation.

3.7 Numerical integration

In the previous section, different parametrizations of the tippedisk have been in-
troduced and discussed. These parametrizations are complemented by constitutive
laws that determine the normal and tangential contact forces and possibly addi-
tional dissipation mechanisms, resulting in complete mechanical models that de-
scribe the physics of the tippedisk. Based on the applied force laws, the resulting
systems are described by differential algebraic inclusions (DAIs) or differential al-
gebraic equations (DAEs).

In this section two integration schemes are presented. In particular, Moreau’s
time-stepping scheme is utilized to solve DAIs, i.e., models in which set-valued force
laws are applied. In addition, a second scheme is presented that uses mechanical
structure to reformulate a index three DAE as an ODE, which allows to use any
standard integrator for ODEs.

Nonsmooth time-stepping scheme

Moreau’s time-stepping scheme [85] is a numerical simulation method for multi-
body systems with frictional unilateral constraints which falls under the class of
velocity-impulse based integration methods. The scheme may be derived from a di-
rect discretization of an equality of measures, incorporating the equation of motion
and the impact equation, together with a discrete approximation of the combined
contact and impact laws. Here, only the final stepping scheme is presented, taking
care to explain how the sophisticated contact laws are treated, and refer the reader
to [85, 45, 1, 74] for a detailed discussion of the integration scheme.

An equidistant grid t0 < t1 < ...< ti < ti+1 < ...< tfinal with ti+1 − ti =∆t is used,
with approximated coordinates qi ≈ q(ti) and velocities ui ≈ u(ti). Moreau’s time-
stepping scheme is a one step scheme that calculates from known positions qA := qi



3.7. NUMERICAL INTEGRATION 57

and velocities uA := ui at the beginning A of the timestep the unknown quantities
qE := qi+1 and uE := ui+1 at the end E.

Moreau’s time-stepping scheme:

1. Calculate the midpoint tM = tA + 1
2

(
tE − tA

)= tA + 1
2∆t

2. Approximate the midpoint position at time tM using a forward Euler step:
qM = qA + 1

2 F(qA)uA∆t

3. Evaluate the mass matrix MM := M(qM ), generalized force directions W∗M :=
W∗(qM ), the vector of gyroscopic forces hM := h(qM ,uA) and fg,M := fg(qM )
at the midpoint and identify the set I = {i | gNi(qM ) ≤ 0} of active contacts.
Calculate the contact velocities γA∗i = wT

∗Mi
uA for all active contact, i.e.,

i ∈I , at the beginning of the timestep, where ∗ has been used generically for
N, T, τ and R.

4. Solve contact problem using the fixed-point iteration scheme:

uk
E = uA +M−1

M

(
hM∆t+

∑
i∈I

(
wNMi P

k
Ni +WTMi P

k
Ti +wτMi P

k
τi +wRMi P

k
Ri

))

γE∗i = wT
∗Mi

uk
E ∀i ∈I

ξ∗i = γE∗i + e iγA∗i ∀i ∈I

Pk+1
Ni =−proxCNi

(
−Pk

Ni + rN ξk
Ni

)
∀i ∈I

Pk+1
Ti =−proxCTi (CNi )

(
−Pk

Ti + rT ξ
k
Ti

)
∀i ∈I

Pk+1
τi =−proxCτi (CNi )

(
−Pk

τi + rτ ξk
τi

)
∀i ∈I

Pk+1
Ri =−proxCRi (CNi )

(
−Pk

Ri + rR ξk
Ri

)
∀i ∈I

As stopping criterion, the accumulated force difference

error=
∑
i∈I

(|Pk+1
Ni −Pk

Ni |+∥Pk
Ti −Pk

Ti∥2 +|Pk+1
τi −Pk

τi |+ |Pk+1
Ri −Pk

Ri |
)< tol

is utilized.

5. Upon convergence of the iteration in 4) giving uE , the position qE at tE is
updated as qE = qM + 1

2 F(qM )uE∆t.

6. Projection step p⋆E = pE (qE )
∥pE (qE )∥ to normalize quaternions, i.e., ∥p⋆E∥ = 1 .
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In the above scheme various contact force laws have been taken into account. At
this point it is important to note that the scheme above applies only to models with
separated Coulomb and pivoting friction. For other friction models, like Coulomb–
Contensou friction or smoothed Coulomb friction, this scheme has to be modified by
replacing the corresponding contact laws.

Simulation of the model with bilateral constraint

For a spinning disk in persistent contact with the support one may formulate the
dynamics as an ODE and solve it with standard methods for ordinary differential
equations. Under the hypothesis, that the contact point C1 does not detach dur-
ing the inversion, the bilateral constraint gN1(q) = 0 is applied, forcing the con-
tact point C1 to the ground. If this constraint is initially satisfied on position level
gN1(q0)= 0, the constraint equation on velocity level yields

γN1(q,u)= wT
N1 u = 0. (3.86)

Similarly, if the constraints on position and velocity level

gN1(q0)= γN1(q0,u0)= 0

initially hold, the constraint on velocity level from Eq. (3.86) can be derived to obtain
an equivalent bilateral constraint

γ̇N1(q,u, u̇)= ∂γN1(q,u)
∂u

u̇+ ẇT
N1u

= wT
N1 u̇+ ẇT

N1u = 0,
(3.87)

on acceleration level. Under the assumption of only regularized Coulomb friction
given in Eq. (3.33) (i.e., no additional friction forces like contour or pivoting friction),
Eq. (3.87) together with the system equations from Eq. (3.63) or Eq. (3.85) form a
linear system of the form




I 0 0
0 M −WNT
0 wT

N1 0




︸ ︷︷ ︸
A




q̇
u̇
λN


=




F(q)u
h+ fg
−ẇT

N1 u


 . (3.88)

Since the tangential force is linear in the Lagrange multiplier λN , the matrix

WNT := wN1 −µWT1
γT1

∥γT1∥+ε
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is introduced as a generalized force direction, containing both normal and tangen-
tial forces. For sufficiently small µ, the matrix A is of full rank, such that the system
from Eq. (3.88) can be integrated with every standard integrator for ordinary differ-
ential equations, e.g., the stiff integrator ode15s from MATLAB.

3.8 Simulation results

In this section, the simulation results for different models are presented and dis-
cussed. In order to keep the result interpretable and to ensure the comparability
of the models, the initial conditions as well as the simulation results are expressed
in physical coordinates and their corresponding derivatives, cf. Section 3.4. In Sec-
tion 3.6, Euler angles in z-x-z-convention are introduced in conformity with the
physical angles α, β and γ, making a postprocessing of the orientation obsolete for
the corresponding models.

As shown in Figure 3.5, the tippedisk is non-inverted, if β= π
2 and γ=−π

2 holds,
which indicates that the center of gravity S is below the geometric center G. Vice
versa, the disk is inverted if β= π

2 and γ= π
2 holds, i.e., the COG is located above the

geometric center. Due to trigonometric ambiguities this definition is not unique, as
β=−π

2 and γ= π
2 describes also an inverted orientation of the tippedisk. Since the

inclination angle is restricted to β ∈ [0,π), this ambiguity is not present. However,
as the rolling angle γ is not restricted to an interval, β= π

2 and e.g. γ= 3π2 also de-
scribe non-inverted configurations of the disk. In addition, a perturbed non-inverted
configuration is shown in Figure 3.5 on the right-hand side.

In Table 3.1, the initial conditions, at time t0 = 0s, are given for the following
simulations. The simulation end time is set to t1 = 5s, with equidistant time step
∆t = 1e−5 s. The initial conditions were chosen such that the disk spins in a per-
turbed non-inverted orientation (∆γ = 0.1rad), without slip and in persistent con-
tact with the support, see Figure 3.5. This particular initial condition is suitable for
full model simulation with unilateral contact and impacts, as well as a valid initial
condition for models that assume bilateral contact, which plays an important role
in the following analysis.

For the quaternion based models, the corresponding coordinates are deduced
from the equivalence of the rotation matrix I R = I R(p) = I R(ϕ) introduced in
Eq. (3.53) and Eq. (3.65). For non-horizontal configurations, i.e., when the rotation
matrix parametrized with Euler angles is non-singular, such as the configuration
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Figure 3.5: Configuration of the tippedisk: The left image shows a non-inverted
tippedisk, while the middle image corresponds to an inverted disk. In the right
image, the tippedisk is in a perturbed non-inverted spinning configuration.

Table 3.1: Initial conditions

Coordinate Magnitude Unit Velocity Magnitude Unit

x0 0 m ẋ0 0 m/s
y0 0 m ẏ0 0 m/s
z0 0.045 m ż0 0 m/s

α0 0 rad α̇0 40 rad/s
β0 0.5π rad β̇0 0 rad/s
γ0 −0.5π+0.1 rad γ̇0 −α̇0 cos(β0)= 0 rad/s

defined in Table 3.1, a mapping p = p(ϕ) can be deduced.1 The associated minimal
velocities are induced by the kinematic coupling




ẋ0
ẏ0
ż0
ωx0
ωy0
ωz0




=
[

1 0
0 B JR

]




ẋ0
ẏ0
ż0
α̇0
β̇0
γ̇0




,

1According to the two-to-one bijection I R(p) = I R(−p), two different maps p(ϕ) could be obtained.
However, since the simulation results are interpreted and compared in physical coordinates without closer
inspection of the specific quaternion, this can be neglected.
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with Jacobian B JR from Eq. (3.69). Using these relations, the initial condition
for the quaternion based models can be computed directly from Table 3.1, making
explicit specification unnecessary. In the evaluation of results, the two-to-one bijec-
tion of unit quaternions and rotation matrices does not matter, since the results in
physical coordinates are equal.

For the following numerical simulations, the usual values for the contact param-
eters, the friction, restitution, and smoothing coefficients µ, e, and ε, from Table 3.2
are assumed. In addition, the integration parameters are given by

time-stepping tolerance: tol = 10−8

proximal point scaling: rN = rT = rτ = 0.1 and rR = 10−4

With the dimension and mass properties from Table 2.1, the contact properties from
Table 3.2 and the above integration parameters, all parameters are given to obtain
the following simulation results.

Table 3.2: Contact parameters containing friction, smoothing and restitution coeffi-
cients.

Property value Property value

µT 3×10−1 eT 0
µτ 3×10−3 eτ 0
µR 3×10−3 eR 0
ε 0.1m/s eN 0

In Table 3.3, models with different parametrizations and modeling levels are
listed. Here, all models assume that the geometric center G is parametrized with
respect to the inertial I-frame, cf. Eq. (3.50) and Eq. (3.51). The orientation is pa-
rameterized either in quaternions or in Euler angles, with the corresponding system
equations from Eq. (3.63) and Eq. (3.85), respectively. The abbreviation ‘E’ denotes
a model with Euler angles, ‘Q’ implies a quaternion based one. Any combination
of the friction laws from Section 3.5 can be chosen as dissipation mechanism. In
the following, the different simulation results are identified by the model name to
indicate which dissipation mechanisms and parametrization were used.

Time-stepping with set-valued Coulomb friction

Figure 3.6 shows the simulation results of the models (Model 1 and Model 2) where
spatial Coulomb friction is incorporated by a set-valued friction law. The upper
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Table 3.3: Various models with different parametrizations and friction laws.

Model name - Integrator Dissipation Mechanisms (friction)

ODE Model 1 E ode15s smooth Coulomb
ODE Model 2 Q ode15s smooth Coulomb

Model 1 E Moreau set-valued Coulomb
Model 2 Q Moreau set-valued Coulomb
Model 3 E Moreau Coulomb–Contensou
Model 4 Q Moreau Coulomb–Contensou
Model 5 E Moreau smooth Coulomb
Model 6 Q Moreau smooth Coulomb
Model 7 E Moreau set-valued Coulomb, pivoting, contour
Model 8 Q Moreau set-valued Coulomb, pivoting, contour
Model 9 E Moreau smooth Coulomb, pivoting, contour
Model 10 Q Moreau smooth Coulomb, pivoting, contour

left graph shows the time evolution of the inclination angle β (blue, dotted) and
the rolling angle γ (red, dashed). For t = 0s, the configuration of the tippedisk is
near to the non-inverted spinning solution, cf. the initial condition in Figure 3.5.
After short time, the rolling angle γ increases and a periodic oscillation around the
inverted configuration occurs. During this process, the angle β does only change
slightly, whereas the angle γ is oscillating with a large amplitude. The height zS
of the center of gravity S in the upper right plot increases initially, but instead of
reaching the fully inverted height r + e, it oscillates aperiodically around 0.044m
(arithmetic mean of zS for t ∈ [1s,5s], for the model in Euler angles). The graphs
from Figure 3.6(c) and 3.6(d) depict the potential energy Epot (red, dashed), the
kinetic energy Ekin (blue, dotted) and total energy Etot (green, dash-dotted) of the
tippedisk. During the transient phase t ∈ [0s,0.5s], the potential energy increases
while the kinetic energy decreases. The total energy Etot, reveals energy dissipation
during t ∈ [0s,0.5s] and remains almost constant for t ∈ [0.5s,5s), accompanied by a
dynamic exchange of kinetic and potential energy. The lower graphs, Figure 3.6(e)
and Figure 3.6(f), show that the contact distance gN1 of the contact point C1 is non-
positive but nearly zero, indicating that the contact point C1 does not detach. For
the Model 1 in Euler angles, the contact distance gN1 changes with high frequency
between zero and −2 · 10−9 m. Using the quaternion based Model 2, the height
of the contact point C1 decreases monotonically, i.e., the simulation suffers from
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constraint drift in the normal contact, as no penetration correction was applied at
the end of each time-step.

Time-stepping with Coulomb–Contensou friction

Figure 3.7 shows the simulation results for Model 3 with a description in Euler
angles and the quaternion based Model 4 under consideration of the Coulomb–
Contensou friction from Eq. (3.32), i.e., a single friction law that couples pivoting
and tangential friction. Contour friction is neglected. According to Figure 3.7(a)
the the tippedisk inverts its orientation. For t ∈ [0s, 0.5s], the rolling angle γ (red,
dashed) initially increases, which is followed by a damped oscillation that appears to
converge asymptotically to γ= π

2 . The inclination angle β (blue, dotted) performs a
damped oscillation around β= π

2 . In both graphs γ and β start to oscillate with high
frequency at t ≈ 2s. In the upper right graph, Figure 3.7(b), the height of the center
of gravity drops slightly before converging to the inverted height r+ e. The energy
graphs from Figure 3.7(c) and Figure 3.7(d), show that the potential energy Epot
(red, dashed) increases, whereas the kinetic energy Ekin (blue, dotted) decreases
during the inversion. The total energy Etot (green, dash-dotted) decreases fastly
during the transient inversion process. After the disk reaches an almost inverted
spinning motion, the rate of dissipation drops, but remains non-zero due to the piv-
oting friction. The contact distance gN1 of the contact point C1 behaves similar
to the results based on set-valued Coulomb friction. Like for Model 2, the Model 4
suffers from constraint penetration, which saturates at −1.36 ·10−5 m.

Time-stepping with smooth Coulomb friction

Figure 3.8 shows simulation results for Model 5 parametrized in Euler angles and
the quaternion based Model 6 under consideration of smooth Coulomb friction. Ad-
ditional dissipation mechanisms, such as contour or pivoting friction, are neglected.
In the interval t ∈ [0s,0.5s], the rolling angle γ (red, dashed) increases. After this
transient dynamics, a damped oscillation around γ = π

2 occurs. During the entire
motion, the inclination angle β (blue, dashed) oscillates with decreasing amplitude
around β= π

2 . In both angles γ and β small oscillations with high frequency start to
occur at t ≈ 1s. In the upper right graph, Figure 3.8(b), the height zs of the center of
gravity S drops slightly and then grows asymptotically to the inverted height r+ e.
The energy plots from Figure 3.8(c) and Figure 3.8(d) reveal that the kinetic energy
Ekin (blue, dotted) decreases during the inversion process, whereas the potential en-
ergy Epot (red, dashed) increases, which is directly related to the height of the COG.
The total energy Etot (green, dash-dotted) drops during the initial inversion phase.
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Figure 3.6: Simulation results for set-valued Coulomb friction from Eq. (3.31).



3.8. SIMULATION RESULTS 65

0 2 4
−π

2

0

+π
2

+π

t [s]

β
,γ

[r
ad

]

(a) inclination and rolling angles

β: Model 3
γ: Model 3
β: Model 4
γ: Model 4

0 2 4

r− e

4.4

r

r+ e

·10−2

t [s]

z S
[m

]

(b) height of COG

zS : Model 3
zS : Model 4

0 2 4

0.16

0.18

0.2

t [s]

E
ki

n
,E

po
t

[J
]

(c) kinetic and potential energy

Ekin: Model 3
Epot: Model 3
Ekin: Model 4
Epot: Model 4

0 2 4

0.3

0.35

0.4

t [s]

E
to

t
[J

]

(d) total energy

Etot: Model 3
Etot: Model 4

0 2 4

−1.5
−1

−0.5
0

·10−9

t [s]

g N
1

[m
]

(e) gap distance gN1: Model 3

gN1: Model 3

0 2 4

−1

−0.5

0
·10−5

t [s]

g N
1

[m
]

(f) gap distance gN1: Model 4

gN1: Model 4

Figure 3.7: Simulation results for Coulomb–Contensou friction from Eq. (3.32).
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In the inverted configuration, the total energy tends to decrease slowly. As in the
case of set-valued Coulomb friction, the contact distance gN1 is never greater than
zero for the case of smooth Coulomb friction, see Figure 3.8(e) and Figure 3.8(f). A
closer look at the left gN1 graph shows that Model 5, parametrized in Euler angles,
yields an aperiodic oscillation of the contact distance gN1 in a band with a width
of 10−9 m. In contrast, for the quaternion based Model 6 the height of the contact
point C1 decreases from 0m and saturates at −7.5 ·10−6 m.

Ordinary differential equation with smooth Coulomb friction

Both models ODE Model 1 and ODE Model 2 assume a bilateral constrained contact
point C1 and assume smooth Coulomb friction. Additional dissipation mechanism
are neglected. Figure 3.9 presents the results of the corresponding simulations. In
contrast to the previous models with unilateral contact, both ODE models assume
a priori a persistent normal contact. The height of the contact point C1 and the cor-
responding gap distance gN1 are numerically forced and therefore irrelevant and
are not shown for this reason. In the upper left graph, Figure 3.9(a), the rolling
angle γ rises quickly from −π

2 and ends in an asymptotic oscillation around +π
2 .

The inclination angle β does only change slightly for t ∈ [0s,0.5s]. Similar to the
previous models, both the inclination angle β and the rolling angle γ are increas-
ingly superimposed by small oscillations with higher frequency. The height of the
center of gravity S is shown in the upper right Figure 3.9(b) and grows from r− e to
r+ e, i.e., the disk starts in a non-inverted configuration and ends in a configuration
close to inverted spinning. Consequently, the potential energy Epot (red, dashed) in-
creases during inversion, whereas the kinetic energy Ekin (blue, dotted) decreases.
During inversion the total energy dissipates from 0.38J to 0.36J. After this fast
decay t < 0.5s the system slowly dissipates energy.

Comparison of models

Figure 3.10 provides a comparison of the dynamic behavior exhibited by various
rigid body mechanical models incorporating different dissipation mechanisms. Ac-
cording to Figures 3.6-3.9, quaternion and Euler angle based models yield the same
results. To keep the plot in Figure 3.10 clearer, only the simulation results of the
quaternion based models are shown. The inversion motion is mainly characterized
by the rolling angle γ, shown in the left graph, Figure 3.10(a). The COG height
zS is depicted in the right diagram, Figure 3.10(b). For set-valued Coulomb fric-
tion, Model 2 (black), the solution settles on a periodic oscillation around γ = π

2
with slightly increasing amplitude. Since the height zS does not reach the inverted
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Figure 3.8: Simulation results for smooth Coulomb friction from Eq. (3.33).
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Figure 3.9: Simulation results of models with a bilaterally constrained contact point
C1 and the application of smooth Coulomb friction from Eq. (3.33).
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Figure 3.10: Comparison of the introduced models from Table 3.3 on a relatively
short time scale, i.e., during the initial phase of motion.

height r+ e, the simulation under assumption of set-valued Coulomb friction does
not describe the inversion phenomenon of the tippedisk. If contour and pivoting
friction are added, see Model 8 (black, dashed), the behavior during the transient
process is similar to that of purely set-valued Coulomb friction. After the COG
height saturates at zS = 0.044m, the height and thus the potential energy of the
disk decreases, i.e., more energy is dissipated during the periodic oscillation. As a
consequence the amplitude of the rolling angle γ increases significantly. Assump-
tion of set-valued Coulomb–Contensou friction, Model 4 (red), shows that to rolling
angle γ increases, and after the transient interval t ∈ [0, 0.3s], a decaying oscillation
occurs, such that the disk ends in an almost inverted spinning configuration. For
this friction law, the COG height increases until is saturates at zS = r+ e, implying
a complete inversion of the disk. Smooth Coulomb friction, Model 6 (green), leads
to qualitatively similar behavior as the Coulomb–Contensou friction model. Adding
contour and pivoting friction, as considered in Model 10 (blue), affects the inversion
motion slightly, but the qualitative behavior remains the same. Finally, the sim-
ulation results for the ODE model 2 (black, dash-dotted), which considers smooth
Coulomb friction and a persistent contact, are identical to the solution of Model 6.



70 3. MECHANICAL MODEL OF THE TIPPEDISK

The right Figure 3.8(b) reveals that models with smooth tangential friction be-
havior are suited to describe the inversion phenomenon. Consideration of additional
dissipation mechanisms, e.g., pivoting and contour friction, has a quantitative effect
on inversion motion. However, these additional dissipation mechanisms do not sig-
nificantly affect qualitative behavior. On the one hand, it is striking that solutions
of models with additional dissipation mechanisms do not differ qualitatively from
the model with only smooth Coulomb friction on a small time scale, cf. Model 6 and
Model 10. On the other hand, adding more dissipation by accounting for additional
frictional forces has a major impact on the long-term behavior. Since Model 2 and
Model 8, which assume set-valued Coulomb friction, are not suitable for describing
the phenomenon of inversion, neither model will be considered in the following.

The long-term behavior of the tippedisk is shown in Figure 3.11 for the time in-
terval t ∈ [0, 25s]. Here, the left graph, Figure 3.11(a), depicts the rolling angle γ,
whereas the right graph shows the total energy Etot of the mechanical rigid body
system. The red graph describes the solution using the quaternion based Model 4
with Coulomb–Contensou friction, neglecting additional frictional effects. After the
inversion, an increasing vibration around +π

2 occurs, until the tippedisk falls down
at t ≈ 17s. Both models Model 6 (green) and ODE Model 2 (black, dash-dotted) with
pure and smooth Coulomb friction, are showing similar behavior. After γ converges
to +π

2 , energy is being dissipated, meaning that the disk falls down and comes to
rest. This decay depends strongly on the chosen friction parameters. Simulation
results of Model 10 considering smooth Coulomb, contour and pivoting friction are
shown in blue. At an initial stage of the motion, the rolling angle γ increases and
after a short time oscillates asymptotically to γ = π/2. After t ≈ 5s this asymptotic
decay seems to end in a periodic oscillation with constant amplitude. According to
the pivoting friction mechanism, this oscillation cannot be a limit set for this system,
because the rotating disk dissipates energy. As a result, the tippedisk will fall down
and end up in a horizontal configuration. The differences in the long-term behavior
depend on the applied dissipation mechanisms and cannot be attributed to numer-
ical convergence. To show this, the solutions of the models based on quaternions
were compared with the models parametrized in Euler angles. In the right-hand
plot, Figure 3.11(b), the total energy Etot is depicted for the long-term simulations.
It is counterintuitive that Model 10 stays in the inverted configuration longer even
though more dissipation mechanisms were considered, i.e., contour friction may act
as a stabilizing effect of the inverted spinning solution. In summary, additional
dissipation mechanisms, like contour or pivoting friction, hardly play a role during
the inversion process. However, the long-term behavior of the tippedisk is strongly
influenced by dissipation, and air friction may also play a role.
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Figure 3.11: Long-term simulations comparing the effect of additional dissipation
mechanisms, e.g., contour and pivoting friction. The colors of the displayed solutions
match the colors from Figure 3.10.

The stroboscopic sequence in Figure 3.12, shows a preliminary experiment that
comes from recordings with a high-speed camera at 500fps. Here the video of the in-
version process is discretized into eight time instants. The initial angular velocity,
in the non-inverted configuration, is identified to be α̇ ≈ −50rad/s. For compari-
son, Figure 3.13 depicts renderings of the numerical experiment using Euler angles
and smooth Coulomb friction, more specifically the ODE Model 1. The initial angu-
lar spinning velocity α̇ = −50rad/s is chosen in agreement with the experiment. A
visual comparison between both stroboscopic image sequences, shows that the pre-
sented model is able to describe the real system qualitatively, during the process of
inversion. It is essential to note here that the parameters of the numerical model
have not been fitted to the experiment and are listed in Tables 2.1 and 3.2. The
corresponding integration parameters are chosen in Section 3.8. Nevertheless, the
quantitative agreement between the numerical and the laboratory experiment is
striking.

3.9 Discussion of the full model simulations

The previous section has shown that the application of set-valued Coulomb fric-
tion is not sufficient to describe the inversion phenomenon of the tippedisk. For
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Figure 3.12: Stroboscopic image sequence showing the inversion of the tippedisk
during a real experiment.
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Figure 3.13: Stroboscopic image sequence of the tippedisk inversion phenomenon
obtained by numerical simulation.
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this friction law, the rolling angle γ keeps on oscillating periodically, whereas the
COG height zS oscillates about a constant value, cf. Figure 3.10. In particular,
in case of set-valued Coulomb friction, the tippedisk is captured by a pure rolling
motion where the center of gravity S is not above the geometric center G of the
disk. Adding pivoting and contour friction also does not result in inversion behav-
ior. The application of Coulomb–Contensou friction, developed in [73], leads to a
mechanical model that exhibits a full inversion of the tippedisk. During the inver-
sion the disk is always in spinning state. Therefore, Coulomb–Contensou friction
motivates the application of a smooth Coulomb friction law, which leads to numeri-
cal results consistent with experiments, see Figure 3.12 and Figure 3.13. Moreover,
the time-stepping simulations show that the contact point C1 does not detach from
the flat support during the inversion process. This observation supports the as-
sumption that the unilateral constraint between disk and support may be replaced
for the considered motion by a bilateral constraint, introduced in Eq. (3.86). In
Figure 3.10, the evolution of the angle γ is depicted in the left graph for the most
relevant models. Comparing the angle γ of the time-stepping model with smooth
Coulomb friction with the smooth ODE-models, both solutions are similar with re-
spect to numerical error. In the case of smooth Coulomb friction in combination
with pivoting and contour friction, the qualitative behavior remains similar to the
case of (only) smooth Coulomb friction. At short time scales, the models with ad-
ditional dissipation mechanisms do not differ from the models that consider only
smooth Coulomb friction. However, in the long-term simulations, additional dis-
sipation mechanisms strongly influence the asymptotic dynamics. For ε ↓ 0, the
solutions under smooth Coulomb friction converge to the solutions under set-valued
Coulomb friction resulting in pure rolling motions, i.e., γT = 0. The convergence
of all numerical results is checked by comparing the models based on quaternions
and the models in Euler angles. Numerical experiments of quaternion based models
converge faster for decreasing time steps. In contrast, the models in Euler angles
do not suffer from constraint drift as much as the quaternion based models. For
both models, penetration of the contact point in the time-stepping solutions is a
consequence from the application of Signorini’s law on velocity level, which is used
to formulate a single set-valued contact law that combines Signorini’s normal law
and Newton’s impact law. To prevent these inadmissible penetrations, a correction
step could have been added at the end of each time step, see [70]. For the inversion
phenomenon, however, these penetrations are negligible.

In this chapter, mechanical models of the tippedisk with different modeling as-
sumptions and various parametrizations have been presented. In particular, the
orientation of the disk is parametrized with respect to unit quaternions and Eu-
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ler angles in z-x-z-convention. Each parametrization has its own advantages. The
quaternion based models with minimal velocities from Eq. (3.55) converge faster,
but lead to more pronounced inadmissible penetration of the contact point if no con-
straint correction is applied. In contrast, the convergence of models in Euler angles
with trivial kinematic equation is slower. However, these models lead to less pene-
tration of the contact point and allow the system states to be interpreted as physical
coordinates. According to the presented comparison of various models with differ-
ent dissipation mechanisms, it is shown that regularized smooth Coulomb friction
is sufficient to describe the inversion phenomenon of the tippedisk on a relatively
fast time scale. The long-term behavior of the disk is strongly influenced by the
application of additional friction laws that act on the contour Eq. (3.29) or pivot-
ing velocity Eq. (3.28), e.g., friction laws such as Coulomb–Contensou, pivoting and
contour friction. Hence, the solution from inverted spinning to a static horizontal
configuration depends strongly on these additional friction effects.

In order to understand the short-time inversion behavior of the tippedisk, the
minimal model with Euler angles and smooth Coulomb friction will be the basis for
the subsequent qualitative dynamic analysis.



CHAPTER 4
Stability analysis and model reduction

As discussed in Section 2, there are two steady state solutions for the tippedisk
when the dissipation caused by pivoting friction is neglected, i.e., non-inverted sta-
tionary spinning if the center of gravity S is below the geometric center G, and
inverted stationary spinning with S above G.

In the previous chapter, various full mechanical models of the tippedisk have
been derived that are suited to describe the inversion phenomenon. The terminol-
ogy full indicates that the rigid body system is modeled with respect to first princi-
ples and thus describes real physics without simplification or reduction of the model
order. For the following analysis, the most minimal model (ODE Model 1) is consid-
ered, which is parametrized in Euler angles and assumes smooth Coulomb friction
without accounting for additional dissipation mechanisms. Therefore, the mechan-
ical model neglects pivoting torques, such that inverted and non-inverted spinning
correspond to stationary motions characterized by a constant spinning speed. A
good starting point to analyze the dynamic behavior is to study the local stabil-
ity properties of these two spinning solutions. The corresponding orientations are
shown in the left an middle drawings in Figure 3.5. Utilizing the generalized coor-
dinates q introduced in Eq. (3.67) and the associated trivial velocities v= q̇, the two



76 4. STABILITY ANALYSIS AND MODEL REDUCTION

stationary spinning solutions in a non-inverted and inverted configuration may be
described by coordinates

q−(t)=




0
0
r

−Ωt
+π

2
−π

2




; q+(t)=




0
0
r
Ωt
+π

2
+π

2




and the constant velocities v− = −v+ =
[
0 0 0 −Ω 0 0

]T
. Both stationary

spinning solutions are characterized by a vertical inclination angle β = π
2 . For

γ = −π
2 , the COG is below the geometric center G, indicating a non-inverted con-

figuration. Inverted spinning is indicated by γ=+π
2 , where S is above G.

4.1 Linear stability analysis - 6 DOF

As a first step in the analysis of the dynamic behavior of the tippedisk, the local sta-
bility properties of inverted and non-inverted spinning solutions are analyzed using
Lyapunov’s indirect method. Since the tippedisk inverts its orientation when spun
fast enough, the inverted spinning solution seems attractive, while the non-inverted
spinning must be repulsive. Instead of linearizing the system equations around
both non-inverted and inverted spinning, symmetry is used to avoid repeated cal-
culations. More precisely, the system equations are linearized around the inverted
configuration given by q+. Local behavior of non-inverted spinning is then obtained
by overloading e with −e and considering a π-shift of the rolling angle.

Stationary spinning is characterized by a constant rotational velocity α̇=Ω, re-
sulting in a linear time dependence α(t) =Ωt+α0 of the spinning angle. Lineariz-
ing the equations of motion from Eq. (3.75) around any stationary spinning solu-
tion with generalized coordinates q∗ ∈ {q−, q+} and associated minimal velocities
v∗ ∈ {v−, v+}, results in a linear system of the form

M(t) ÿ+B(t) ẏ+C(t)y= 0,

with y(t) = q(t)−q∗(t) and M(t) = M̄(q∗(t)). The time dependent matrices B(t) and
C(t) are extracted from the gyroscopic force vector h̄

(
q∗(t),v∗

)
, and the generalized

force f̄
(
q∗(t),v∗

)
which contains the gravitational and the contact forces. Since the

mass matrix M̄(q) from Eq. (3.76) depends on the spinning angle α(t) and thus lin-
early on time, the linear system is non-autonomous. As a consequence, Lyapunov’s
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indirect method is not applicable in the current parametrization and one would need
to resort to Floquet theory, which usually cannot be performed in closed-form [36].
In contrast, physical intuition suggests that the absolute value of the spinning angle
does not influence the qualitative behavior. The question therefore arises whether
the time dependence of the spinning angle is omitted or decoupled when the system
is parametrized in other, more appropriate coordinates.

Reparametrization

In the previous chapter, different models have been introduced, which parametrize
the geometric center with respect to the inertial I-frame, cf. Eq. (3.50). This descrip-
tion of the reference point G with a rotation matrix parametrized in Euler angles
leads to a time dependent mass matrix M̄ and therefore to a non-autonomous sys-
tem in coordinates

q =
[
x y z α β γ

]T ∈R6,

cf. Eq. (3.84) and recall that additional dissipation mechanisms are neglected. In-
troducing new minimal coordinates

z =
[
x̄ ȳ z α β γ

]T ∈R6, (4.1)

where the position of the geometric center G

R rOG =




x̄
ȳ
z




is expressed with respect to the co-rotating R-frame, which results from rotation of
the I-frame with the angle α around the eI

z-vector, the kinematic relation

q =
[

AIR 0
0 1

]
z = H(z)z = q(z) (4.2)

between coordinates q and z is given with the transformation matrix AIR from
Eq. (3.64). The relationship between q̇ and ż is deduced by differentiating Eq. (4.2)
with respect to time and gives

q̇ = H(z)ż+ Ḣ(z)z =B(z)ż, (4.3)

where the kinematic matrix

B(z)=




cα −sα 0
sα cα 0
0 0 1

−sαx̄−cα ȳ 0 0
cαx̄−sα ȳ 0 0

0 0 0
0 1
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is identified. Together with Eq. (4.2) and Eq. (4.3), the equations of motion

M̄(q)q̈ = h̄(q, q̇)+ f̄g +W̄λ

from Eq. (3.84) transform to

BTM̄(q(z))Bz̈ =BT [
h̄(q(z),Bż)− M̄(q(z))Ḃż

]+BT f̄g +BTW̄λ,

which can be written in short form as

M(z)z̈ = h(z, ż)+ fg +Wλ, (4.4)

where the letters without a dash indicate transformed quantities. Equation (4.4)
corresponds to equations of motion in the new minimal coordinates z and is iden-
tified as a second-order ordinary differential equation. Here it is assumed that

the generalized contact force λ =
[
λN ,λT

T

]T
only contains a scalar normal and a

two-dimensional tangential friction force. This assumption is valid if only smooth
Coulomb friction is considered and additional friction forces are neglected, cf. the
assumptions of ODE Model 1. The symmetric mass matrix M and the vector of
gyroscopic forces h are given as

M(z) :=BTM̄(q(z))B

:=
[

M11 M12
M21 M22

]
,

(4.5)

with

M11 =




m 0 0
0 m 0
0 0 m


 , M21 = MT

12,

M12 =



−mȳ−mecβsγ 0 −mesγ

mx̄+mecγ −mesβsγ mecβcγ
0 mecβsγ mesβcγ


 ,

M22 =




M22,11 · sym.
M22,12 Ac2γ+Bs2γ ·
M22,13 0 C


 ,

M22,11 = m(x̄2 + ȳ2)+2me(x̄cγ+ ȳcβsγ)

+ (As2γ+Bc2γ)s2β+Cc2β,

M22,12 = (A−B)sβsγcγ−mex̄sβsγ,

M22,13 = mex̄cβcγ+meȳsγ+Ccβ,
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and
h(z, ż) :=BT [

h̄(q(z),Bż)− M̄(q(z))Ḃż
]

:=
[
h1 h2 h3 h4 h5 h6

]T

with
h1 =m

[
x̄α̇2 +2 ˙̄yα̇

]+me
[
(α̇2 + γ̇2)cγ−2α̇β̇sβsγ+2α̇γ̇cβcγ

]
,

h2 =m
[
ȳα̇2 −2 ˙̄xα̇

]+me
[
(α̇2 + β̇2 + γ̇2)cβsγ+2α̇γ̇sγ+2β̇γ̇sβcγ

]
,

h3 =me
[
β̇2sβsγ+ γ̇2sβsγ−2β̇γ̇cβcγ

]
,

h4 =−2m
[
x̄ ˙̄xα̇+ ȳ ˙̄yα̇

]

−me
[
2 ˙̄xα̇cγ+ (2 ˙̄yα̇− x̄β̇2 − x̄γ̇2)cβsγ

−2x̄α̇γ̇sγ−2x̄β̇γ̇sβcγ+ ȳγ̇2cγ−2 ȳα̇β̇sβsγ+2 ȳα̇γ̇cβcγ
]

− (A−B)
[
β̇2cβsγcγ+2α̇γ̇s2βsγcγ+ β̇γ̇sβ(c2γ−s2γ)

]

−2(As2γ+Bc2γ−C)α̇β̇sβcβ+Cβ̇γ̇sβ,

h5 =me
[
2 ˙̄xα̇− ȳα̇2]

sβsγ+ (A−B)
[
2β̇γ̇sγcγ− α̇γ̇sβ(c2γ−s2γ)

]

+ (As2γ+Bc2γ)α̇2sβcβ−C
[
α̇2sβcβ+ α̇γ̇sβ

]
,

h6 =−me
[
2 ˙̄yα̇+ x̄α̇2]

sγ−me
[
2 ˙̄xα̇− ȳα̇2]

cβcγ

+ (A−B)
[
(α̇2s2β− β̇2)sγcγ+ α̇β̇(c2γ−s2γ)sβ

]+Cα̇β̇sβ.

(4.6)

Equations (4.5)-(4.6) determine the inertia forces. The generalized gravitational
force yields

fg(z) :=BT f̄ (q(z))

:=−mg
[
0 0 1 0 ecβsγ esβcγ

]T
.

From the transformed matrix of generalized force directions W := BTW̄ the gener-
alized normal force direction with respect to the coordinates z is identified as the
first column

wN =
[
0 0 1 0 −rcβ 0

]T
(4.7)

of the matrix W . The matrix

WT :=BTW̄T

[
cα −sα
sα cα

]

:=
[

1 0 0 rcβ− ȳ 0 r
0 1 0 x̄ rsβ 0

]T
,

(4.8)

of tangential force directions collects the α-transformed second and third columns of
W . The linear α-transformation allows to identify the generalized tangential force
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directions with physical sliding directions of the tippedisk, i.e., sliding in longitudi-
nal rolling direction eR

x and the lateral sliding direction eR
y . With the transformed

relative sliding velocity

γT =WT
T ż =

[
vC1 · eR

x
vC1 · eR

y

]
, (4.9)

the isotropic smooth Coulomb friction law from Eq. (3.33) yields the same qualita-
tive behavior, as in the case of the tangential relative velocity from Eq. (3.27). Note,
however, that the transformed system equations do not depend on the spinning an-
gle α explicitly, allowing to proceed with Lyapunov’s indirect method.

Linear stability analysis of the full system

To study the local dynamics of inverted and non-inverted spinning, the resulting
equations of motion given in Eq. (4.4) are partially linearized in the inclination
angle β and the rolling angle γ, as well as in the co-rotating small horizontal devia-
tions x̄ and ȳ.

Using symmetry, the linearized equations for non-inverted spinning motions are
similar to the linearized equations of motion for inverted spinning and differ only
in the sign of the eccentricity e. Therefore, the linearization of the reparametrized
system Eq. (4.4) is performed here only for the inverted tippedisk. The non-inverted
dynamics can be easily derived by considering symmetry. This motivates the intro-
duction of the shifted angles β̄ = β−π/2 ≪ 1 and γ̄ = γ−π/2 ≪ 1, which initially
implies an inverted configuration of the disk. Since the height z = r is constant and
the spinning angle α increases with time, the generalized coordinates of the small
quantities are introduced as

ẑ :=
[
x̄ ȳ β̄ γ̄

]T

to quantify the deviation from a stationary inverted spinning solution. Conse-
quently, nearly inverted spinning is characterized by O (∥ẑ∥) ≪ 1. Assuming the
orders

O (x̄)=O ( ȳ)=O (β̄)=O (γ̄)≪ 1

yields the following approximations

sinβ= cos β̄= 1+O (β̄2),

cosβ=−sin β̄=−β̄+O (β̄3),

sinγ= cos γ̄= 1+O (γ̄2),

cosγ=−sin γ̄=−γ̄+O (γ̄3).
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of trigonometric expressions. Inspection of the third z-component of the system
reveals that

mz̈ =−mg+λN +O (∥ẑ∥2). (4.10)

As shown by the simulation results presented in the Section 3.8, the contact remains
persistent, i.e., the contact distance gN1 = z−rsinβ= z−r cos β̄ between the contact
point C1 on the rim of the disk and the support is zero. Assuming persistent contact
yields for slightly perturbed inverted motions that the second time derivative

z̈ =−r( ¨̄βsin β̄− ˙̄β2 cos β̄)= 0+O (∥ẑ∥2) (4.11)

of z vanishes in the linear analysis. Substituting Eq. (4.11) into Eq. (4.10) results in

O (∥ẑ∥2)=−mg+λN ⇒ λN = mg+O (∥ẑ∥2). (4.12)

For motions in the vicinity of stationary spinning in place, the normal contact force
is equal to the weight of the disk. Moreover, for stationary spinning, the relative
tangential velocity γT defined in Eq. (4.9) vanishes, which motivates the lineariza-
tion

λT =−µλN
ε

γT =−dγT , (4.13)

of smooth Coulomb friction Eq. (3.33). According to Eq. (4.12), the normal contact
force λN is equal to the weight of the disk, resulting in the dissipation constant
d = µmg

ε introduced in Eq. (4.13). Substitution of the relative contact velocity from
Eq. (4.9) into the linearized Coulomb friction law yields the generalized friction force

WTλT =−dWTWT
T ż+O (∥γT∥3)

=−d




1 0 0 −rβ̄− ȳ 0 r
0 1 0 x̄ r 0
0 0 0 0 0 0
0 0 0 0 0 0
0 r 0 x̄r r2 0
r 0 0 −r2β̄− r ȳ 0 r2




ż+O (∥ẑ∥2).
(4.14)

With the generalized tangential force direction from Eq. (4.8), the matrix product
WTWT

T yields a symmetric matrix. However, in Eq. (4.14), all higher-order terms
of WTWT

T ż must be consistently shifted into big O (∥ẑ∥2) resulting in a matrix tuple
expression with non-symmetric matrix. According to Eq. (4.14), tangential friction
does not affect the third and forth generalized coordinates α and z. Neglecting
higher-order terms in the fourth generalized coordinate, results in a vanishing an-
gular spinning acceleration α̈ = 0. As a consequence, the angular velocity α̇ ≈Ω is
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about constant, which implies the linear time dependence α(t)=α0+Ωt of the spin-
ning angle. The corresponding inverted stationary spinning solution is described in
transformed z-coordinates by

z0 =
[
0 0 r α0 +Ωt 0 0

]T

ż0 =
[
0 0 0 Ω 0 0

]T
,

(4.15)

which can equivalently be expressed in q-coordinates by

q0 =
[
0 0 r α0 +Ωt π/2 π/2

]T

q̇0 =
[
0 0 0 Ω 0 0

]T
.

Without loss of generality, the initial angle α0 is set to zero since the friction law is
assumed to be isotropic. Neglecting the higher-order terms O (∥ẑ∥2) reveals a split-
ting of linearized systems equations, i.e., the linearized dynamics of third and forth
row is decoupled. Consequently, the normal contact force λN used in the tangential
Coulomb friction law and the rotational velocity α̇ =Ω in the linearization are no
longer degrees of freedom but become parameters of the reduced linear system. Any
stationary spinning solution is identified by the specific height z = r of the geometric
center G and a constant angular velocity Ω ∈R. Since for each Ω ∈R, there exists a
stationary spinning solution, the parameter Ω yields a foliation of the state-space.

Introducing the linear relations ẑ = Cz and ˙̂z = Cż with associated selection
matrix

C =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ,

any stationary spinning solution from Eq. (4.15) is characterized by the trivial equi-
librium ẑ0 = ˙̂z0 = 0. This projections allows to study the linear stability on one
leaf of the foliated state-space. Pre-multiplication of the equations of motion from
Eq. (4.4) with the selection matrix C leads to a deletion of the third and fourth
line. Linearization around zero using the constant spinning speed α̇ =Ω gives the
four-dimensional linear system

M4×4 ¨̂z+G4×4
h

˙̂z+K4×4
h ẑ =−K4×4

f ẑ−D4×4
C

˙̂z−B4×4
C ẑ (4.16)



4.1. LINEAR STABILITY ANALYSIS - 6 DOF 83

of second-order with constant system matrices

M4×4 =




m 0 0 −me
0 m −me 0
0 −me B 0

−me 0 0 C


 ,

G4×4
h =




0 −2mΩ +2meΩ 0
+2mΩ 0 0 −2meΩ
−2meΩ 0 0 −DΩ

0 +2meΩ +DΩ 0


 ,

K4×4
h =




−mΩ2 0 0 +meΩ2

0 −mΩ2 +meΩ2 0
0 +meΩ2 (A−C)Ω2 0

+meΩ2 0 0 (A−B)Ω2


 , (4.17)

K4×4
f =−




0 0 0 0
0 0 0 0
0 0 mg(e+ r) 0
0 0 0 mge


 ,

D4×4
C =−




d 0 0 dr
0 d dr 0
0 dr dr2 0

dr 0 0 dr2




and

B4×4
C =−




0 −dΩ −drΩ 0
dΩ 0 0 0
drΩ 0 0 0

0 −drΩ −dr2Ω 0


=B4×4

sym +B4×4
skew.

To shorten notation the abbreviation D = (A −B−C) is used in Eq. (4.17). Since
the spinning speed α̇ is constant in the reduced system from Eq. (4.16), it describes
motions of the tippedisk in permanent rotation, cf. [13, 66]. The linearization of the
vector h of gyroscopic forces yields a skew-symmetric gyro matrix G4×4

h and a sym-
metric stiffness matrix K4×4

h . Gravitation and normal contact induce a symmetric
matrix K4×4

f . Linearized Coulomb friction includes linear terms in ˙̂z, which induce

the symmetric matrix D4×4
C . Moreover, Coulomb friction leads to linear terms in
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ẑ, which occur symmetrically with B4×4
sym and skew symmetric with B4×4

skew. Defin-
ing the matrices D4×4 := D4×4

C , G4×4 := G4×4
h , K4×4 := K4×4

h +K4×4
f +B4×4

sym and

N4×4 :=B4×4
skew, the linearized equations of motion become

M4×4 ¨̂z+
(
D4×4 +G4×4

)
˙̂z+

(
K4×4 +N4×4

)
ẑ = 0,

forming a system of linear ordinary differential equations with constant coefficients
suitable for eigenvalue analysis. The matrices M4×4, D4×4 and K4×4 have a sym-
metric structure. The matrices G4×4 and N4×4 are skew symmetric. To study the
local stability of permanent rotations spinning around the vertical axis, the con-
stant spinning velocity Ω takes the role of a bifurcation parameter. In the asso-
ciated state-space with natural choice of states ẑ and ˙̂z, the corresponding eight
eigenvalues are computed numerically.

Figure 4.1 shows the evolution of the eight eigenvalues λ1 −λ8 of the stationary
inverted spinning solution for Ω ∈ [0,50rad/s]. Here, the complex conjugate pairs
of eigenvalues are sorted in the order of their imaginary part, followed by the two
real eigenvalues. The real parts of λ1 −λ6 are depicted in Figure 4.1(a), while their
imaginary parts are shown in Figure 4.1(b). Comparison of the real and imaginary
parts shows that the eigenvalues λ1 (red) and λ2 (red, dashed) cross the imaginary
axis as complex conjugated pair at the critical spinning velocity Ωc2 ≈ 30.2rad/s,
indicating a Hopf bifurcation. For small spinning speeds Ω < Ωc2 , the red eigen-
values have a pronounced positive real part, so the inverted orientation of the disk
is unstable. For supercritical spinning velocities Ω > Ωc2 , their real part is nega-
tive, corresponding to a stable two-dimensional subspace. As the rotational speed
increases, the real part of the eigenvalues λ1 and λ2 decreases further.

The green pair of conjugated eigenvalues λ3 and λ4 are purely imaginary and
their magnitude is directly proportional to the spinning velocity Ω. These eigen-
values are connected to rigid body motions as the horizontal position of the disk is
irrelevant.

For small spinning speeds, the eigenvalues λ5 (blue) and λ6 (blue, dashed) have
negative real parts. With increasing rotational speed they become complex con-
jugate, and the resulting complex conjugate pair of blue eigenvalues crosses the
imaginary axis at Ωc1 ≈ 27.1rad/s. The bifurcation at Ωc1 is therefore identified as
a Hopf bifurcation, implying an unstable subspace for supercritical spinning veloci-
ties Ω>Ωc1 .

In the lower right graph of Figure 4.1(d) both critical velocities Ωc1 and Ωc2 are
depicted in a magnified plot, which where determined numerically. So within this
eight-dimensional state-space, the inverted spinning motion ẑ0 = ˙̂z0 = 0 is strictly
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Figure 4.1: Eigenvalues for the inverted tippedisk.
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speaking never stable, since there exists for each Ω a pair of eigenvalues with posi-
tive real part.

In addition, there are two real eigenvalues λ7 and λ8, which are related to very
fast sliding of the disk. Since their real parts are strongly negative, they are shown
separately in Figure 4.1(c). The corresponding subspaces remain stable and do not
change their qualitative stability behavior for Ω≤ 50rad/s.

For supercritical spinning speeds Ω > Ωc1 , the eigenvalue pairs differ signifi-
cantly in magnitude and each pair describes a motion on a distinct time scale. The
eigenvalues λ7 and λ8 are related to very fast dynamics. The eigenvalues λ1 and
λ2 characterize an intermediate time scale, whereas the blue eigenvalues λ5 and λ6
are connected to motions on a slow time scale. Moreover, the blue eigenvalues seem
to behave almost like rigid body motions at large spin velocities, with an almost
negligible real part.

In summary, the local stability analysis does not reflect the physical observation
of an inverted spinning motion which, loosely speaking, seems to attract almost
all trajectories. Apparently, it is not fruitful to analyze the asymptotic dynamical
behavior applying Lyapunov’s indirect method to the six-dimensional system from
Eq. (4.4). Just because of the vanishing real parts of λ3 and λ4, a stability statement
about the nonlinear system by neglecting higher-order terms is not possible.

The eight eigenvalues shown in Figure 4.2, characterize the local stability of per-
manent rotations in non-inverted configuration. Two eigenvalues λ1 and λ2 shown
in red are real with pronounced positive and negative real part. The complex conju-
gate eigenvalues λ3 and λ4 with zero real part in green refer to rigid body motions,
while the complex conjugate blue eigenvalues λ5 and λ6 have a negative real part
for slow rotational velocity, which becomes positive when Ω is increased. The eigen-
values λ7 and λ8 are again related to fast motions whose real parts are strongly
negative, cf. Figure 4.2(c). In conclusion, the non-inverted stationary solution is
always unstable due to λ1. This stability behavior is consistent with experimen-
tal observations, since it is not possible to rotate the disk so that it remains in a
non-inverted configuration. It either falls over or ends in a permanent rotation with
inverted orientation.

In summary, the linear stability analysis contradicts the physical observation
for inverted spinning solutions. The reason for this contradiction could be the re-
strictive assumption of small |x̄| ≪ 1 and | ȳ| ≪ 1. This hypothesis is supported by
the fact that in the real experiment slight horizontal movements of the tippedisk
are present during the inversion phenomenon. Although the linear analysis cannot
properly describe the qualitative dynamics, it provides important results. On the
one hand, inverted spinning of the disk is basically a permanent rotation, which
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Figure 4.2: Eigenvalues for the non-inverted tippedisk.
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manifests as an equilibrium in generalized coordinates ẑ ∈ R4. On the other hand,
the linearization of the 6 DOF system motivates a constant spinning velocity α̇≈Ω
and a constant normal contact force λN ≈ mg. Furthermore, the large difference in
the eigenvalues implies that the qualitative behavior can be decomposed into slow
and fast dynamics, suggesting the application of singular perturbation theory and
thus the theory of slow-fast systems.

4.2 Model reduction

In Chapter 3, a detailed mechanical model of the tippedisk is derived, which is able
to capture the inversion phenomenon. Assuming regularized Coulomb friction, local
stability of inverted and non-inverted spinning solutions is studied in Section 4.1.
There, the full dynamics with six generalized coordinates introduced in Eq. (4.1)
is linearized, giving a total dimension of twelve states. With the ultimate goal to
understand the qualitative behavior, the full model is not suited. Therefore, this
section focuses on the model reduction, aiming to obtain a simplified model with
reduced states, which preserves the qualitative stability. In the following, several
constraints are imposed to reduce the state dimension while preserving the quali-
tative behavior of the tippedisk near vertical rotations.

As the disk remains almost vertical during inversion (β≈ π
2 ), the additional con-

tact points C2 and C3 have no particular meaning, while the contact in point C1
is persistent. For the considered motion, the contact point C1 can therefore be as-
sumed to be bilaterally constrained.

This constraint is naturally satisfied for the full mechanical system during the
inversion, cf. the numerical simulation results from Section 3.8. Accompanied by
the assumption of a smooth friction law, the resulting dynamics is given by a system
of differential algebraic equations.

After this first reduction step, new physically motivated constraints are intro-
duced and validated numerically using simulations with fixed initial conditions. For
the sake of clarity, Table 4.1 introduces model names for the reduced models with
the assumptions made. As several constraints will be introduced in this section, the
reduction procedure is explained once in a general way. The starting point of any
reduction step is an unconstrained mechanical system of the form

q̇ = u

M(q)u̇ = h(q,u)+ f (q,u)

with generalized coordinates q ∈Rn and velocities u ∈Rn. Adding a generic mechan-
ical constraint equation c(q,u,λc) = 0 ∈ Rm yields an additional constraint force
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Table 4.1: Assumptions on constraints of various models introduced in this mono-
graph. The meaning of the constraints will be explained in following sections.

Constraints Model 1.1 Model 1.2 Model 1.3 Model 1.4

Bilateral constraint gN = 0 ✓ ✓ ✓ ✓
Hor. fixed COG gS = 0 ✓ ✓ ✓
No tangential slip γx = 0 ✓ ✓
Permanent rotation γα = 0 ✓

λc ∈ Rm, i.e., a Lagrange multiplier, which is accounted for on the right-hand side
of the equation of motion by fc = Wcλc. The matrix Wc ∈ Rn×m corresponds to the
matrix of generalized force directions. In total, this yields the constrained system

q̇ = u

M(q)u̇ = h(q,u)+ f (q,u)+Wcλc

c(q,u,λc)= 0,

(4.18)

which forms a differential algebraic equation (DAE), cf. [49]. In theory of DAEs it is
possible to obtain the underlying ordinary differential equation (ODE) by successive
differentiation of the constraint equation c(q,u,λc)= 0. The (differentiation) index
of a DAE counts the differentiations needed to obtain an ODE for all states and
Lagrange multipliers [49, 43]. Mechanical systems are restricted to constraints
on position, velocity or acceleration level. Constraints on position level gc(q) = 0,
which depend only on the coordinates q, can be differentiated once to obtain the
corresponding constraint on velocity level

γc(q,u)= ∂gc(q)
∂q

q̇ = ∂gc(q)
∂q

u = 0.

Consequently, the differentiation of a constraint on velocity level yields the con-
straint on acceleration level

γ̇c(q,u, u̇)= ∂γc(q,u)
∂u

u̇+ ∂γc(q,u)
∂q

u

= ∂γc(q,u)
∂u

u̇+χc(q,u)= 0.
(4.19)

Since the mass matrix M is symmetric, positive definite and thus invertible, the
generalized acceleration yields

u̇ = M−1 (h+ f +Wcλc) . (4.20)
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For ideal constraints in the sense of d’Alembert, the matrix Wc of generalized force
directions is deduced as

Wc =
(
∂gc
∂q

)T
=

(
∂γc
∂u

)T

from the kinematic constraint. Substitution of Eq. (4.20) into Eq. (4.19) reveals the
constraint on acceleration level

γ̇c(q,u, u̇)= ∂γc(q,u)
∂u

M−1 (h+ f +Wcλc)+χc

=WT
c M−1Wc︸ ︷︷ ︸
=:Dc

λc +WT
c M−1 (h+ f )+χc

= c(q,u,λc)

(4.21)

as a function of q, u, and λc. The square matrix Dc = WT
c M−1Wc, defined in

Eq. (4.21), is called the Delassus matrix [25]. It is symmetric, positive definite,
and thus invertible if the matrix Wc of generalized force directions is of full column
rank, i.e., if the kinematic constraints γ̇c are linearly independent. If the Delassus
matrix Dc is invertible, the Lagrange multipliers λc can be explicitly calculated
from Eq. (4.21). The underlying ODE is obtained by substituting the Lagrange
multiplier in explicit form into the equation of motion. In general, constraints on
acceleration level imply index 1 DAEs while constraints on velocity or position level
yield index 2 and index 3 DAEs, respectively. The exploitation of the mechanical
structure allows a numerical scheme that directly solves the index 1 DAE. Adding
the constraint on acceleration level Eq. (4.21) to system (4.18) reveals the DAE of
index 1

q̇ = u

M(q)u̇ = h(q,u)+ f (q,u)+Wcλc

c(q,u,λc)= γ̇c(q,u, u̇)=WT
c u̇+χc = 0;

which is cast in linear matrix form as



I 0 0
0 M −Wc
0 WT

c 0




︸ ︷︷ ︸
A




q̇
u̇
λc


=




u
h+ f
−χc


 . (4.22)

The square matrix A is of full rank as it can be transformed into the upper triangu-
lar matrix

A∗ =




I 0 0
0 I −M−1 Wc
0 0 WT

c M−1 Wc


 ,
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with a submatrix A∗
33 =WT

c M−1 Wc, which is equal to the Delassus matrix Dc and
thus of full rank if the constraints are linear independent. By solving Eq. (4.22)
for each time step, any standard integrator for ordinary differential equations (e.g.
the stiff integrator ode15s from MATLAB) can be utilized to obtain the solution of
the constrained system. As the constraint is only forced to be fulfilled on accelera-
tion level, the initial conditions must be admissible, i.e., they must be compatible
with the associated constraints on position and velocity level. For the following sim-
ulations, the initial conditions from Table 3.1 are used, describing the perturbed
spinning of the tippedisk in non-inverted configuration. This initial condition does
not violate any of the following constraints.

Bilateral constraint

According to full model simulations from Chapter 3, the unilateral constraint ex-
pressing the impenetrability of the contact gN ≥ 0 remains persistent. It can there-
fore be replaced by a bilateral one

gN (z)= z− rsinβ= 0, (4.23)

with the associated constraint force λN that prevent penetration of the contact
point C.1 Of course, this bilateral restriction does not apply to general motion of
the tippedisk, but it is indeed fulfilled during the inversion process and is there-
fore not an approximation that contradicts physics. The equations of motion from
Eq. (4.4) in reformulated coordinates z together with the bilateral constraint from
Eq. (4.23) form a differential algebraic system

M(z)z̈ = h(z, ż)+ fg +wNλN +WTλT (λN ,γT ),

gN (z)= 0

with the generalized force directions wN and WT from Eq. (4.7) and Eq. (4.8), re-
spectively. Since the bilateral constraint from Eq. (4.23) is formulated on position
level, the DAE is of index 3. The generalized force direction in Eq. (4.7) equals the
constraint Jacobian

wN =
(
∂gN (z)
∂z

)T
,

which indicates that the associated Lagrange multiplier of the bilateral constraint
is equal to the normal contact force λN . The tangential friction force

λT (λN ,γT )=−µλN
γT

∥γT∥+ε
1For better readability, the subscript notation is simplified to C = C1 and gN (z) := gN1 (z).
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from Eq. (3.33) depends linearly on the normal contact force λN . Differentiating the
constraint Eq. (4.23), the velocity constraint

γN (z, ż)= ∂gN (z)
∂z

ż = wT
N ż = ż− rβ̇cosβ= 0 (4.24)

is obtained. By replacing the constraint on position level with the constraint on
velocity level, index reduction results in the DAE of index 2

M(z)z̈ = h(z, ż)+ fg +wNλN +WTλT (λN ,γT ),

γN (q, ż)= wT
N ż = 0.

(4.25)

Further time derivation of the constraint equation yields

γ̇N (z, ż, z̈)= wT
N z̈+ ẇT

N ż = z̈− rβ̈cosβ+ rβ̇2 sinβ= 0,

making the DAE (4.25) an index 1 DAE

M(z)z̈ = h(z, ż)+ fg +wNλN +WTλT (λN ,γT ),

γ̇N (z, ż, z̈)= wT
N z̈+ ẇT

N ż = 0.

The introduction of the trivial velocity

u := ż,

allows to reformulate the second-order differential equation to first-order form

ż = u

M(z)u̇ = h(z,u)+ fg +wNλN +WTλT (λN ,γT ),

γ̇N (q,u, u̇)= wT
N u̇+ ẇT

N u = 0.

Replacing the tangential contact force λT (λN ,γT ) by the corresponding smooth
Coulomb friction law yields the reformulated equation of motion

M(z)u̇ = h(z,u)+ fg +
(
wN −µWT

γT
∥γT∥+ε

)

︸ ︷︷ ︸
=:WNT

λN ,

allowing to deduce the index 1 DAE in linear matrix form



I 0 0
0 M(z) −WNT
0 wT

N 0




︸ ︷︷ ︸
A0




ż
u̇
λN


=




u
h(z,u)+ fg
−ẇT

N u


 (4.26)
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depending on the coordinates z, the velocities ż, the accelerations u̇ as well as the
normal force λN . The DAE given in Eq. (4.26) has the same structure as Eq. (3.88)
with the same modeling assumptions, but different system coordinates, which is
due to reparametrization in Section 4.1.

In general, the regularized Coulomb friction depends linearly on the normal con-
tact force λN , rendering the matrix A0 asymmetric. Therefore, in principle, A0
is not guaranteed to be invertible. For nearly inverted and non-inverted spinning
motions, the normal contact force is about equal to the weight of the disk, which
motivates the approximation of a constant normal force λN ≈ mg, motivating to
simplify Eq. (4.26) to




I 0 0
0 M(z) −wN
0 wT

N 0




︸ ︷︷ ︸
A1




ż
u̇
λN


=




u
h(z,u)+ fg +WTλT

−ẇT
N u


 (4.27)

with the adapted friction law

λT =
[
λTx
λT y

]
=−µmg

γT
∥γT∥+ε . (4.28)

Assuming that the normal force is constant in the friction law, the tangential fric-
tion force is independent of the constraint force λN , i.e., λT = λT (z,u) holds. The
resulting symmetric matrix A1 is structurally similar to the matrix A in Eq. (4.22),
guaranteeing the solvability of Eq. (4.27).

Figure 4.3 shows the evolution of the angles β and γ during the inversion of the
tippedisk starting from a perturbed non-inverted spinning solution, given in Ta-
ble 3.1. The rolling angle γ (solid red and black dashed), starts from γ0 = −π/2+
0.1 rad and increases in the interval t ∈ [0s, 0.5s] until it converges at γ=π/2. Dur-
ing this first transient phase, the inclination angle β (blue, dotted) only changes
slightly. Similar to previous results from Section 3.8, both inclination and rolling
angles are superimposed with small oscillations occurring from t ≈ 0.5s. The so-
lutions shown in color are obtained by solving the DAE of index 1 from Eq. (4.26),
representing Model 1.1. These results are identical with respect to numerical errors
to the simulation results of the ODE Model 2, presented in Figure 3.10. The solu-
tions shown in black are obtained by assuming a constant normal force λN ≈ mg,
i.e., by combining Eq. (4.27) and the simplified friction law Eq. (4.28).

Comparison of the graphs in Figure 4.3 indicates that in the tangential friction
law, the normal contact force λN can be assumed to be constant during inversion
without significant impact on the qualitative and quantitative behavior. To be more
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Figure 4.3: Simulation results for Model 1 with bilateral constrained contact point.

specific, the absolute differences |∆β| and |∆γ| are in the range of 10−2 rad. Neglect-
ing the λN -dependence in the friction law allows to reduce the complexity of the
system, by neglecting additional terms. For the sake of simplicity, the simplified
friction law from Eq. (4.28) is used in the following.

COG constraint

A close look at the original system equations from Section 3.6 reveals that the dy-
namics (w.r.t the inertial I-frame) is not affected by the horizontal position of the
disk. Moreover, only tangential friction forces act in horizontal direction, which
depend on the relative sliding velocity at the contact point. Here, the relative slid-
ing velocity can be decomposed into a part caused by horizontal translation and
a part induced by angular velocities. Numerical simulations show that gyroscopic
effects dominate the relative sliding velocity, therefore horizontal motion is negligi-
ble. This motivates the assumption of a horizontally fixed center of gravity, which is
often used in the analysis of fast rotating rigid body systems in contact with a flat
support [29, 66]. Experiments support this hypothesis as the disk drifts only slowly
in the horizontal plane. On position level, the constraint that restricts horizontal
motion of the COG

gS(z)=
[

eR
x · rOS

eR
y · rOS

]
=

[
x̄+ ecosγ

ȳ+ ecosβsinγ

]
= 0
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in terms of the transformed coordinates z from Eq. (4.1). This constraint equation
implies the matrix

WS =
(
∂gS(z)
∂z

)T
=

[
1 0 0 0 0 −esinγ
0 1 0 0 −esinβsinγ +ecosβcosγ

]T

of generalized force directions, which is used to reformulate the constraint on veloc-
ity level

γS(z,u)=WT
S u = 0. (4.29)

Figure 4.4 shows the simulation results for the inversion process of Model 1.2, which
assumes a bilaterally constrained contact point C, constant normal force scaling in
the friction law, and a horizontally immobile center of gravity S. Qualitatively and
quantitatively, the simulation results of Model 1.2 are very similar to the results
of Model 1.1. However, the superimposed high-frequency oscillations present in
Model 1.1 disappear in Model 1.2. The long-term behavior is strongly characterized
by the dissipation and thus by the superimposed oscillations, cf. Figure 3.11. Nev-
ertheless, on the short time scale, i.e., during the inversion of the tippedisk, these
superimposed oscillations do not have any significant effects.

No tangential slip

The analysis in the following Chapter 5 reveals the singularly perturbed structure
of the dynamical system. According to the slow-fast behavior the relative sliding
velocity drops quickly to a small value, indicating slow motions that are close to
pure rolling, characterized by a manifold of zero relative sliding velocity.

With the co-rotating R-frame introduced in Section 3.6, the projected relative
velocity components γx := eR

x · vC and γy := eR
y · vC are defined as tangential and

lateral sliding velocity, respectively. In order to graphically embed the the system
dynamics in a three-dimensional state-space, the relative sliding velocity in tangen-
tial rolling direction, i.e., eR

x -direction, is assumed to vanish, implying the velocity
constraint

γx(z,u)= wT
x u = eR

x ·vC = 0, (4.30)

where the force direction wx corresponds to the first row of WT from Eq. (4.8).
It is important to note that a model that assumes zero relative sliding velocity

(vC = 0) in both the tangential and lateral directions does not describe the inversion
phenomenon, since the disk is forced in a state of pure rolling motions. Similar be-
havior is observed in Figure 3.10 for Model 2, which assumes pure Coulomb friction.
For the phenomenon of inversion, a slight sliding motion in at least one direction is
essential.
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Figure 4.4 shows the simulation results of Model 1.3 in blue assuming a bilateral
constraint, a horizontally fixed center of gravity and zero relative velocity in rolling
direction, cf. Table 4.1. Qualitatively, the simulation results of Model 1.3 are similar
to Model 1.2.

Constant spinning velocity

For motion in the vicinity of stationary spinning solutions, the linearization of the
system from Eq. (4.4) implies the constant spinning velocity α̇ = Ω. So assuming
a permanent rotation with α̇ = Ω is valid in the neighborhood of stationary spin-
ning motions. Moreover, the simulation results of Model 1.1 show that the spinning
velocity α̇ decreases by about 10%, indicating a nearly linear time evolution of the
spinning angle α during the inversion process.

Constant spinning corresponds to the constraint on velocity level

γα(z,u)= wT
αu−χα = α̇−Ω= 0, (4.31)

with the associated generalized force direction

wα =
[
0 0 0 1 0 0

]T
,

and the affine part χα =Ω= const. Equation (4.31) corresponds to a holonomic con-
straint that yields in integrated form the associated rheonomic constraint equation

gα(z, t)=α(t)−Ωt−α0 = 0

on position level, cf. [24]. The equations of motion (4.4) in reformulated coordinates
z from Eq. (4.1) do not depend on the spinning angle α explicitly. For this reason,
the initial spinning angle α0 is set to zero without loss of generality.

From a physical point of view, the assumption of a constant spinning velocity
α̇ = Ω leads to energetic inconsistencies since a constant spinning speed implies
a higher total energy level for the inverted spinning configuration than for non-
inverted spinning at the same spinning speed. Form the perspective of dynamics,
this assumption foliates the state-space with respect to one coordinate α̇, allowing
to study a lower-dimensional subspace. Instead of assuming the spinning speed to
be constant, the total energy could also be fixed. This would have resulted in a fo-
liation of the state-space with more physical meaning since the total energy does
not increase during the inversion. Nevertheless, the dissipation during inversion
would be neglected. Since foliation in terms of total energy implies additional non-
linear terms that complicate the analysis and do not really improve the energetic
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consistency, the spinning rate is assumed to be constant in the following. Moreover,
this allows to treat the rotational velocity α̇ =Ω as a bifurcation parameter of the
system in accordance with the local stability analysis.

From an intuitive perspective, the spinning velocity is naturally assumed to be
the bifurcation parameter, since the disk reverses its orientation if it is ‘spun fast
enough’.

Reduced system

Combining the bilateral constraint of the contact point (4.24), the assumption of a
horizontal fixed center of gravity (4.29), zero tangential slip (4.30), and a constant
spinning velocity (4.31) yields the constrained system

ż = u

M(z)u̇ = h(z,u)+ fg +wNλN +wyλT y +WSλS +wxλTx +wαλα

γ̇N (z,u, u̇)= 0

γ̇S(z,u, u̇)= 0

γ̇x(z,u, u̇)= 0

γ̇α(z,u, u̇)= 0.

(4.32)

If all constraints are applied on acceleration level, the resulting DAE is of index 1
and can be written in linear matrix form




I 0 0 0 0 0
0 M −wN −WS −wx −wα

0 wT
N 0 0 0 0

0 WT
S 0 0 0 0

0 wT
x 0 0 0 0

0 wT
α 0 0 0 0




︸ ︷︷ ︸
Ared




ż
u̇
λN
λS
λTx
λα




=




u
h+ fg +wyλT y

−ẇT
N u

−ẆT
S u

−ẇT
x u

−ẇT
αu




. (4.33)

Since the applied constraints are linearly independent, the matrix Ared is invert-
ible, so the DAE from Eq. (4.33) can be solved numerically by explicit integration
methods. However, this formulation on acceleration level can lead to drift prob-
lems and therefore to excessive constraint violation, e.g., penetration of the contact
point. Furthermore, for a nonlinear analysis, an ordinary differential equation is
advantageous.
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In order to prevent constraint violation and to obtain an ODE description, a set
of new minimal coordinates

x=
[
β

γ

]
∈R2 (4.34)

is introduced such that z = z(x) fulfills all constraints on position level

gN (z(x))≡ 0∀x

gS(z(x))≡ 0∀x

gα(z(x))≡ 0∀x

a priori. In addition, the new minimal velocity

y := β̇ ∈R (4.35)

with associated kinematic equation

u = B̄(x)y+ β̄(x, t),

is defined, where

B̄(z)=




0
esinβsinγ
+r cosβ

0
1
0




; β̄(x, t)=




−eΩcosβsinγ
+eΩcos2βsinγ

0
Ω

0
−Ωcosβ




, (4.36)

such that the velocity constraint

γx(z(x),u(x, y))≡ 0 (4.37)

is intrinsically fulfilled for all x and for all y. The velocity constraint from Eq. (4.37)
is non-integrable and therefore identified as a nonholonomic constraint [14, 15]. All
constraints from (4.32) are said to be perfect in the sense of d’Alembert, as

B̄TwN = 0

B̄TWS = 0

B̄Twx = 0

B̄Twα = 0

(4.38)
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holds [93, 24]. With Equation (4.36), Eq. (4.38), Eq. (4.32) and the selection matrix

C =
[

0 0 0 0 1 0
0 0 0 0 0 1

]
,

the reduced system

ẋ=C
(
B̄(x)y+ β̄(x, t)

)

B̄TMB̄ ẏ= B̄T
(
h

(
z(x), B̄(x)y+ β̄(x, t)

)−M( ˙̄By+ ˙̄β)
)
+ B̄T fg + B̄TwyλT y

is derived. This reduced system in minimal coordinates x and minimal velocities y
forms a first-order ordinary differential equation of the form

ẋ=B(x)y+β(x, t)

M(x) ẏ= h(x, y)+ fg(x)+wy(x)λT y(x, y),
(4.39)

with scalar mass matrix

M(x)= A cos2γ+ B̄sin2γ+m(r+ esinγ)2 cos2β, (4.40)

scalar gyroscopic force term

h(x, y)=+(A cos2γ+ B̄sin2γ)Ω2 sinβcosβ

−2(A− B̄)Ωβ̇cosβsinγcosγ

+m(r+ esinγ)2β̇2 sinβcosβ

+me(r+ esinγ)Ω2 sinβcos3βsinγ

−me(r+ esinγ)(3sin2β−2)Ωβ̇cosβcosγ,

(4.41)

generalized gravitational force

fg(x)=−mg(r+ esinγ)cosβ (4.42)

and generalized friction force wyλT y with corresponding force direction

wy(x)= (r+ esinγ)sinβ, (4.43)

lateral sliding velocity

γy(x, y)= (r+ esinγ)sinββ̇− eΩsin2βcosγ (4.44)

and constant scaled smooth Coulomb friction force

λT y(x, y)=−µmg
γy

|γy|+ε
.
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In Eqs. (4.40) and (4.41), the abbreviation B̄ := B − me2 is introduced to shorten
notation. Here, B̄ corresponds to the second principal moment of inertia BΘS(2,2)
with respect to the COG S. The kinematic part of (4.39) yields

ẋ=B(x)y+β(x, t) (4.45)

with

B(x)=
[

1
0

]
and β(x, t)=

[
0

−Ωcosβ

]
.

Both Eq. (4.33) and Eq. (4.39) describe the bilaterally constrained tippedisk with
horizontally fixed center of gravity, zero slip condition in eR

x -direction and a con-
stant spinning velocity, i.e., Model 1.4. Equation (4.33) constitutes a DAE of index 1,
which can be solved numerically since all constraints are formulated on accelera-
tion level. In contrast, Eq. (4.39) forms a first-order ordinary differential equation
in minimal coordinates x and minimal velocities y satisfying the introduced con-
straints. Neglecting numerical drift, both approaches yield the same simulation
results, which are shown in Figure 4.4 in yellow and black dashed, respectively.

Comparison

In the previous sections, several models on different modeling levels are derived
by the application of additional constraints. These constraints are used to reduce
the number of degrees of freedom, step by step, and to finally obtain a minimal
model which qualitatively describes the inversion behavior of the tippedisk. In this
section, the numerical solutions of all reduction stages are compared, starting from
the initial conditions given in Table 3.1. The evolution of the rolling angle γ, the
inclination angle β, and the spinning speed α̇ are shown in Figure 4.4 for Model 1.1-
1.4.

The red graphs describe solutions of Model 1.1 under the assumption of a bilater-
ally constrained contact point. The green solutions correspond to Model 1.2 with the
assumption of a bilateral constraint and a horizontally fixed center of gravity. The
blue graph is obtained from the Model 1.3 simulations with an additional constraint
on the tangential sliding velocity. Model 1.4 additionally assumes a constant spin-
ning velocity and therefore directly implies a linear time dependency of the spinning
angle α. The corresponding solutions are shown in yellow and dashed black and are
obtained by the DAE description from Eq. (4.33) and the reduced ODE formulation
from Eq. (4.39), respectively.

For all models, the rolling angle γ starts at γ0 =−π/2+0.1 rad and quickly settles
in a damped oscillation around γ=π/2. The inclination angle β remains close to π/2.
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Figure 4.4: Comparison of different reduced order models listed in Table 4.1: The
red graphs describe solutions of Model 1.1 under the assumption of a bilaterally
constrained contact point. The green solutions correspond to Model 1.2 with the
assumption of a bilateral constraint and a horizontally fixed center of gravity. The
blue graph is obtained from the Model 1.3 with an additional constraint on the
tangential sliding velocity. The yellow solutions correspond to results of Model 1.4
from Eq. (4.33), which assumes a constant spinning velocity α̇ and therefore implies
directly a linear time dependency of α. In addition, the black dashed solutions follow
from the reduced description of Model 1.4, cf. Eq. (4.39).
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The qualitative behavior of all models is similar but differs slightly quantitatively.
With increasing time, only Model 1.1 in red shows superimposed high-frequency os-
cillations of the inclination angle β and rolling angle γ, which are not present in the
other models. It is also noted that the models with additional constraints overshoot
less and converge faster to the inverted spinning solution. During the inversion,
the corresponding spinning speed α̇ is depicted in Figure 4.2. For Models 1.1-1.3,
the spinning velocity α̇(t) drops slightly during the inversion from α̇0 = 40rad/s to
α̇ ≈ 35rad/s. This drop in α̇ stems from the fact that the kinetic energy has to de-
crease when the potential energy rises during the inversion process. The exact de-
crease here depends on the respective model, but is in a similar order of magnitude.
After the disk inverts its orientation, the rotational velocity α̇ remains nearly con-
stant. In Model 1.4, the rotational velocity α̇0 = 40rad is kept constant throughout
the motion phase according to the constraint.

4.3 Linear stability analysis - 3 states

The reduced order model of the previous section given in Eq. (4.39) qualitatively
describes the inversion behavior of the tippedisk. Similar to Section 4.1, a local
stability analysis is performed first.

To study the behavior in the neighborhood of inverted spinning, the shifted an-
gles β̄ and γ̄ are gathered in coordinates

x̄ :=
[
β̄

γ̄

]
=

[
β− π

2
γ− π

2

]
, (4.46)

where the trivial equilibrium characterizes an inverted spinning motion. With β̄=
β− π

2 , the shifted velocity ȳ= ˙̄β= β̇= y follows by differentiation.
Linearizing Eq. (4.39) with respect to the shifted coordinates x̄ around the trivial

equilibrium ‘inverted spinning’ gives the linear homogeneous system

[
˙̄x
˙̄y

]
=




˙̄β
˙̄γ
¨̄β


=




0 0 1
Ω 0 0

A31 A32 A33






β̄

γ̄
˙̄β


= A

[
x̄
ȳ

]
(4.47)

with matrix coefficients

A31 = mg
B̄

(r+ e)−Ω2 =O (1)

A32 =−µmg
εB̄

e (r+ e)Ω=O
(

1
ε

)

A33 =−µmg
εB̄

(r+ e)2 =O
(

1
ε

)
.

(4.48)
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Figure 4.5: Eigenvalues for the inverted tippedisk for varying spinning velocity Ω.

Since the linear system (4.47) depends on the spinning speed and is autonomous, the
corresponding eigenvalues directly characterize the stability of the inverted spin-
ning depending on the bifurcation parameter Ω.

In Figure 4.5, the numerically calculated eigenvalues σi ∈ eig(A) of Eq. (4.47) are
shown in color for Ω ∈ [0,50rad/s]. The upper left graph 4.5(a) shows the real parts
R(σi) of the eigenvalues σ1 and σ2 in red while the lower left graph 4.5(c) contains
the real part of the third eigenvalue σ3 in gray. The upper right graph 4.5(b) dis-
plays the corresponding imaginary parts I (σi) of the eigenvalues σ1,2,3. The third
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eigenvalue σ3 is purely real and has a pronounced negative magnitude R(σ3) <
−100 1/s∀Ω ∈ [0,50rad/s]. For Ω= 0, the eigenvalues σ1 and σ2 are purely real and
R(σ1) > 0, R(σ2) = 0 holds. As the spinning speed Ω increases, the eigenvalues σ1
and σ2 with positive real parts converge until they meet and form a complex conju-
gate pair at Ω1 ≈ 13.61rad/s. Increasing the spinning speed even further causes the
red pair of complex conjugate eigenvalues σ1,2 to enter the left half of the complex
plane at the critical spinning velocity Ωn

c ≈ 31rad/s, which is determined numeri-
cally. For supercritical spinning speeds Ω >Ωn

c all eigenvalues have negative real
part, so the inverted spinning equilibrium is locally asymptotically stable. For sub-
critical spinning speeds the equilibrium is unstable as σ1 and σ2 have a positive
real part. With a pair of complex conjugate eigenvalues changing the sign of their
real part at Ωc, the stability boundary is characterized by a Hopf bifurcation. Due
to the complexity of the system from Eq. (4.47), determining the eigenvalues σ1,2,3
in closed-form is hardly feasible. However, the smoothing parameter ε≪ 1 is small,
which motivates an asymptotic expansion to approximate the eigenvalues. Using
the Laplace expansion, the characteristic polynomial p(σ) yields

p(σ)= det(A−σI)

= (−σ)(−σ(A33 −σ))+ (+1)(A32Ω+ A31σ)

=−σ3 + A33σ
2 + A31σ+ A32Ω

!= 0.

(4.49)

Since the linear first-order system from Eq. (4.47) is three-dimensional, there is at
least one purely real eigenvalue (here σ3), so the characteristic polynomial takes
the most general form

p(σ)= (a−σ)(σ2 +bσ+ c)

=−σ3 + (a−b)σ2 + (ab− c)σ+ac != 0.
(4.50)

The comparison of coefficients from Eqs. (4.49) and (4.50) yields with Eq. (4.48) the
constants

A31 = ab− c

A32 = ac
Ω

A33 = a−b.

(4.51)

Combining Eq. (4.48) and (4.51) gives the orders of magnitude

a =O
(

1
ε

)
, c =O (1) , b =O (ε) ,
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implying for ε≪ 1 the polynomial coefficients

a → A33 =−µmg
εB̄

(r+ e)2

c → A32
A33

Ω= e
r+ e

Ω2

b → 1
a

(A31 + c)=− ε

µ

(
1

(r+ e)
− rB̄

mg(r+ e)3
Ω2

)
.

According to the polynomial decomposition from Eq. (4.50), the purely real eigen-
value is approximated by

σε3 = a = A33 +O (ε)=−µmg
εB̄

(r+ e)2 +O (ε)≈−129.04 1
s . (4.52)

Solving the quadratic polynomial factor σ2+bσ+ c = 0 results in the approxima-
tion

σε1,2 = −b±
√

b2 −4c
2

(4.53)

of σ1,2. Equations (4.52) and (4.53) approximate the eigenvalues σ1,2,3 of the lin-
ear system (4.47) in closed-form assuming a small smoothing parameter ε. In Fig-
ure 4.5, the approximated eigenvalues σε1,2,3 are depicted in black. The asymptotic
expansion yields a good approximation of σ1,2. The real eigenvalue σ3 is approxi-
mately constant with average magnitude of σε3 ≈−129.04 1

s .
In order to obtain a closed-form expression of the critical spinning speed Ωc, the

approximation Eq. (4.53) is used together with the condition

R(σ1,2(Ωc))= 0

of vanishing real parts at the Hopf bifurcation point. For ε≪ 1, the argument b2−4c
of the root in Eq. (4.53) is negative, implying a nontrivial imaginary part. Therefore,
the real part of σ1,2 is zero if the coefficient b vanishes, i.e., if

b ≈− ε

µ

(
1

(r+ e)
− rB̄

mg(r+ e)3
Ω2

)
= 0 (4.54)

holds. From Eq. (4.54) the approximation of the critical spinning speed

Ωc =
√

(r+ e)2

r
mg
B̄

= 30.92
rad
s

(4.55)
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is deduced2. The numerically determined critical spinning velocity Ωn
c ≈ 31 rad

s is
close to the spinning velocity from Eq. (4.55), validating the approximation. The
associated purely complex eigenvalues are given as

σ1,2 =±i
p

c =±6.9i 1
s ,

matching the numerical result, cf. Figure 4.5(b).
At a Hopf bifurcation it is a priori known that a pair σ1,2 =±iω of purely complex

eigenvalues crosses the imaginary axis, yielding with the polynomial from Eq. (4.50)
the characteristic equation

iω3 − A33ω
2 + iA31ω+ A32Ω= 0.

Setting both the real and imaginary parts to zero yields two decouples expressions

R : −A33ω
2 + A32Ω = µmg

εB̄

(
(r+ e)2ω2 − e(r+ e)Ω2

)
= 0 (4.56)

I :
(
ω2 + A31

)
ω =

(
ω2 + mg

B̄
(r+ e)−Ω2

)
ω = 0. (4.57)

The first expression (4.56) gives the natural frequency

ω2 = e
r+ e

Ω2, (4.58)

which is inserted into the second expression (4.57) and subsequently solved for Ω=
Ωc, yielding

Ω2
c = (r+ e)2

r
mg
B̄

.

Therefore, the critical spinning speed Ωc from Eq. (4.55) is exact and not only an
approximation for small values of the smoothing parameter ε. Moreover, the criti-
cal spinning velocity does not depend on the friction coefficient µ or the smoothing
parameter ε, i.e., the friction parameters do not affect the location of the Hopf bifur-
cation. Similarly, the necessary stability condition of the tippetop presented in [77]
does not depend on the friction coefficient, see [73].

Comparison of local stability properties

In Section 4.1, a linear stability analysis is performed. Here the local stability prop-
erties of inverted and non-inverted spinning are studied. The associated eigenval-
ues are depicted in Figure 4.1 and Figure 4.2. Non-inverted spinning is unstable

2Alternatively, the condition c = −A31 yields the same critical spinning speed, indicating the correct
estimation of the orders O of the coefficients a, b and c, cf. [110].
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because one eigenvalue has a distinct positive real part. For inverted spinning the
eigenvalue analysis it is not so straightforward to draw conclusions. Although a
pair of complex conjugate eigenvalues λ1 and λ2 enters the left half of the complex
plane at Ωc2 , there is a second pair of complex conjugate eigenvalues λ5 and λ6
that has a slightly positive real part. Strictly speaking, therefore, inverted spin-
ning is also unstable. However, the eigenvalues have very different magnitudes of
their real part. Motions on a fast time scale, e.g., the inversion of the tippedisk, are
strongly characterized by eigenvalues with a large magnitude of their real part, i.e.,
eigenvalues λ1,2 and λ7,8. In the long-time behavior, the two eigenvalues λ5,6 with
slightly positive real part cause an instability of the inverted spinning solution. By
introducing several reduction steps in Section 4.2, the dimension of the state-space
is reduced without changing the qualitative system behavior.

Originally, the state-space of the full system given in Eq. (4.4) has dimension 12.
Since the α- and z-dynamics decouple in the linearization, eight eigenvalues λ1,...,8
are left. By constraining the contact point and assuming a permanent rotation with
α̇=Ω, the decoupled dynamics in α and z vanishes. In the analysis of Section 4.1,
the two pairs of complex-conjugate eigenvalues in green λ3,4 and blue λ5,6 appear
to characterize rigid body motions related to the horizontal drift behavior of the
tippedisk. By neglecting the horizontal motions of the COG, these pairs of eigen-
values are suppressed. The real eigenvalues λ7,8 are associated with fast sliding
motions of the disk and have a strongly negative real part. The assumption of zero
slip in rolling direction renders the eigenvalue λ7 obsolete. This reduction step is
not fully motivated here, but is applied to obtain a three-dimensional system that
can be depicted graphically. However, the perturbation analysis in Section 5.3 will
show that the disk is attracted to a state of almost pure rolling motions during the
inversion, justifying the rolling constraint as a valid approximation.

As a result of the reduction procedure, the linearization from Eq. (4.47) around
the inverted spinning equilibrium of the reduced system (4.39) has a total of three
eigenvalues σi . The comparison of Figure 4.1 and Figure 4.5 reveals the relations
λ1,2 ∼ σ1,2 and λ8 ∼ σ3 between the eigenvalues of the full and reduced systems,
linearized around inverted spinning solutions. In summary, the reduced system
focuses on the dynamics on a relatively short time scale and is thus suitable to
study the inversion phenomenon.

4.4 Harmonic balance approximation

According to the local stability analysis of the previous Section 4.3, the stability of
inverted spinning on the short time scale is strongly determined by a Hopf bifurca-
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tion. Since the Hopf bifurcation cannot be fully characterized by a linear eigenvalue
analysis, a harmonic balance analysis is performed in this section to obtain closed-
form expressions for the periodic solution and thus identify the nature of the Hopf
bifurcation as sub- or supercritical.

In order to approximate the periodic solution in the neighborhood of inverted
spinning, the shifted coordinates x̄ introduced in Eq. (4.46) are used to approximate
the system equations. To classify the nature of the Hopf bifurcation, the system
equations from Eq. (4.39) must be expanded at least up to cubic orders.

Using the trigonometric relations

sinβ= cos β̄= 1− 1
2 β̄

2 +O (β̄4),

cosβ=−sin β̄=−β̄+ 1
6 β̄

3 +O (β̄5),

sinγ= cos γ̄= 1− 1
2 γ̄

2 +O (γ̄4),

cosγ=−sin γ̄=−γ̄+ 1
6 γ̄

3 +O (γ̄5),

and isolating quartic orders O (∥x̄∥4) in the dynamics of Model 1.4, given in Eq. (4.39),
yields the local approximation

˙̄γ=+Ωβ̄+O (|β̄|3), (4.59)

of the second kinematic equation and the expansion of the equation of motion

M̃(x̄) ¨̄β= h̃(x̄, ˙̄x)+ f̃ (x̄, ˙̄x)+O (∥x̄∥4), (4.60)

which corresponds to a scalar second-order differential equation for the shifted in-
clination angle β̄. The approximations of the mass matrix M̃(x̄) and vector of gyro-
scopic forces h̃(x̄, y) are derived as

M̃(x̄)= (A− B̄)γ̄2 + B̄+m(r+ e)2β̄2 +O (∥x̄∥4)

and
h̃(x̄, ˙̄x)=− B̄Ω2β̄+ (B̄− A)Ω2β̄γ̄2 +

[
2
3

B̄−me(r+ e)
]
Ω2β̄3

−2
[
A− B̄+me(r+ e)

]
Ω ˙̄ββ̄γ̄−m(r+ e)2 ˙̄β2β̄+O (∥x̄∥4).

The external generalized force f̃ := f̃g+w̃yλT y contains both the gravitational force

f̃g =+mg(r+ e)β̄− 1
2

mgeβ̄γ̄3 − 1
6

mg(r+ e)β̄3 +O (∥x̄∥4)

and the frictional force

w̃yλT y =− µmg
ε

[
−Ωe

4e+ r
6

γ̄3 + (r+ e)2 ˙̄β− 3
2
Ωe(r+ e)β̄2γ̄

−(r+ e)2 ˙̄ββ̄2 + e(r+ e)Ωγ̄− e(r+ e) ˙̄βγ̄2
]
+O (∥x̄∥4),
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where the smooth Coulomb friction is approximated by the linearized friction law

λT y =−µmg
ε

γy. (4.61)

To facilitate the qualitative analysis and to obtain more compact expressions, the
linearized Coulomb friction law from Eq. (4.61) is assumed below. This assumption
does not affect the qualitative dynamical behaviour. Assuming a linear friction law
may seem artificial at this point, but its validity will be shown in Section 5.3.

Inserting the harmonic ansatz

β̄= C sin(ωt) (4.62)

γ̄= D sin(ωt+ϕ),

with amplitudes C, D, angular frequency ω and phase ϕ into the kinematic relation
Eq. (4.59) reveals after comparison of the coefficients

ϕ= π

2
and D =−C

Ω

ω
. (4.63)

With Equation (4.63) the harmonic ansatz from Eq. (4.62) is written in vectorial
form

x̂=
[

C sin(ωt)
−CΩ

ω cos(ωt)

]
.

Substituting this harmonic ansatz in the cubic approximated system (4.60) yields
the balance

−M̂(C,ω)Cω2 sin(ωt)= ĥ(C,ω)+ f̂ (C,ω)+O (C4), (4.64)

with mass matrix M̂(C,ω) := M̃(x̂), vector of gyroscopic forces ĥ(C,ω) := h̃(x̂, ˙̂x) and
external forces f̂ (C,ω) := f̃ (x̂, ˙̂x). Equation (4.64) contains higher orders of trigono-
metric expressions (cos2(ωt), sin2(ωt), ...). By applying trigonometric addition theo-
rems

sin(ωt)cos2(ωt)= 1
4

sinωt+ 1
4

sin3ωt

sin2(ωt)cos(ωt)= 1
4

cosωt− 1
4

cos3ωt

sin3(ωt)= 3
4

sinωt− 1
4

sin3ωt

cos3(ωt)= 3
4

cosωt+ 1
4

cos3ωt,
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the exponents are shifted into the arguments, resulting in terms containing 3rd-
order harmonics. Neglecting higher harmonics in Eq. (4.64), the balance of the first
harmonics sin(ωt) and cos(ωt) yields

sin(ωt) : C2κ1 +
[
B̄

(
Ω2 −ω2

)
−mg(r+ e)

]
= 0, (4.65)

cos(ωt) :
1
4

C2 κ2
ω

+ (r+ e)

[
e
Ω2

ω
− (r+ e)ω

]
= 0 (4.66)

with the parameters

κ1 =1
4

[
B̄−3A−2me(r+ e)

]
Ω2 − 1

2
m(r+ e)2ω2

+ 1
8

mge
Ω2

ω2 − 1
4

(B̄− A)
Ω4

ω2 + 1
8

mg(r+ e)

and

κ2 =−e
r+4e

2
Ω4

ω2 + 3
2

e(r+ e)Ω2 + (r+ e)2ω2. (4.67)

Neglecting quadratic orders O (C2) in Eq. (4.66) results in

ω2 = e
r+ e

Ω2 +O (C2),

where ω is equal to the natural frequency already found in Eq. (4.58) and thus the
imaginary part of the critical eigenvalues σ1,2 = ±iω. To classify the Hopf bifur-
cation, quadratic terms have to be considered, i.e., the above approximation is too
restrictive. However, to approximate the solution up to higher-order terms, the cor-
rection term δ= δ(C,ω) is added to obtain the ansatz

ω2 = e
r+ e

Ω2 +δC2 +O (C4). (4.68)

Multiplying Eq. (4.70) with the factor 4ω and inserting Eq. (4.67) yields

C2
[
−e

r+4e
2(r+ e)

Ω4

ω2 + 3
2

eΩ2 + (r+ e)ω2
]
+4

[
eΩ2 − (r+ e)ω2

]
= 0,

into which the adapted ansatz (4.68) is substituted to obtain

C2
[
− r+4e

2
Ω2 + 5

2
eΩ2

]
−4(r+ e)δC2 =O (C4). (4.69)
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From Eq. (4.69) the correction term δ is given by

δ=−1
8

r− e
r+ e

Ω2 +O (C2).

Together with Eq. (4.68), the natural frequency reads as

ω2 =
(

e
r+ e

− 1
8

r− e
r+ e

C2
)
Ω2 +O (C4), (4.70)

which solves Eq. (4.66) up to quartic orders O (C4). Substitution of ω2 into the
balance of sin(ωt) from Eq. (4.65) results in a quadratic function

C2κ1 +
[
B̄

(
1−

(
e

r+ e
− 1

8
r− e
r+ e

C2
))
Ω2 −mg(r+ e)

]
=O (C4),

of the amplitude C, which is simplified to

C2
(
κ1(r+ e)+ 1

8
B̄(r− e)Ω2

)
+

[
B̄rΩ2 −mg(r+ e)2

]
=O (C4). (4.71)

Solving Eq. (4.71) for the amplitude C in closed-form gives

C = 2
√

e
r+ e

√
− B̄rΩ2 −mg(r+ e)2

χΩ2 +mge(r+ e)
+O (C4), (4.72)

where the constant

χ := A(r−2e)− B̄
2r2 + e(r+ e)

2(r+ e)
= 1.31 ·10−7 kgm3 (4.73)

has been used to shorten the expression and is calculated taking into account the
parameters of Table 2.1.

The solution given in Eq. (4.72) is real if the argument under the square root is
greater than zero, implying the existence of a periodic solution with amplitude C.
As χ > 0 with the parameters of Table 2.1, the denominator χΩ2 + mge(r + e) is
positive for all spinning velocities Ω, such that a real-valued amplitude C exists if

Ω≤
√

mg
B̄

(r+ e)2

r
=Ωc. (4.74)

This condition is consistent with the critical spinning speed derived in Eq. (4.55),
since a periodic solution vanishes at the bifurcation point, i.e., when the spinning
speed Ω is equal to the critical spinning velocity Ωc. According to the eigenvalue
analysis from Section 4.3, the inverted spinning equilibrium is unstable for sub-
critical spinning speeds Ω < Ωc. Near the Hopf bifurcation, the above amplitude
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Figure 4.6: Harmonic balance method (HBM) results obtained by local approxima-
tions around the Hopf bifurcation at Ωc. The left bifurcation diagram shows the
closed-form approximation of the supercritical Hopf bifurcation. The right plot de-
picts the period time T in dependency on the spinning speed Ω. For both plots, the
extrapolations of the closed-form approximations are shown as a black dotted line.

condition (4.74) states the existence of a periodic solution for subcritical spinning
speeds. The combination of both statements identifies the Hopf bifurcation at Ωc
as a supercritical3 one. The angular frequency ω of the periodic solution is approxi-
mately given by

ω=Ω
√

e
r+ e

(
1+ 1

2
(r− e)
(r+ e)

B̄rΩ2 −mg(r+ e)2

χΩ2 +mge(r+ e)

)
, (4.75)

which is obtained by substituting the amplitude from Eq. (4.72) into Eq. (4.70). The
associated period time is given by T = 2π

ω . In particular, the period time Tc = 0.886s
at the bifurcation point Ω =Ωc is deduced from Eq. (4.75) by inserting the critical
spinning velocity given in Eq. (4.55). In Figure 4.6, the closed-form results of the
harmonic balance method (HBM) are depicted. The left bifurcation diagram in Fig-
ure 4.6(a) depicts the β̄-amplitude β̄max in dependency of the angular velocity Ω.
In addition, the equilibrium associated with inverted spinning is represented by a
horizontal line β̄max = 0. For subcritical spinning speeds Ω ≤Ωc, a stable periodic
limit cycle (red) surrounds an unstable equilibrium (blue). The limit cycle vanishes
at the bifurcation point Ωc, which is characterized by a supercritical Hopf bifurca-
tion. The right Figure 4.6(b) shows the associated period time T of the periodic limit

3The name supercritical Hopf is somewhat misleading, since the branch of stable periodic solutions
exists for ‘subcritical’ spinning velocities Ω ≤Ωc. Nevertheless, this terminology is common in the classic
literature [68, 86] and characterizes a Hopf bifurcation for which a stable periodic solution exists around an
unstable equilibrium.
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cycle. The HBM approximation is truncated and is only valid for small values of C,
i.e., in the neighborhood of the Hopf bifurcation. Therefore, the results in Figure 4.6
for larger amplitudes C are depicted by black dotted lines.

4.5 Continuation of periodic solutions

In the previous Section 4.3 and Section 4.4, the local behavior of inverted spinning
was studied by a linearization and the harmonic balance method.

Approximations were made to obtain results in closed-form. In particular, near
the Hopf bifurcation, the amplitude C is small, so that higher-order terms in the
amplitude are neglected. Since the focus is on the first harmonic frequency, the
higher harmonic oscillations can be neglected. According to these approximations,
the presented results of the single harmonic balance approach have validity near
the Hopf bifurcation when the amplitude C small, i.e., in the neighborhood Ω≈Ωc.
More accurate and global results could have been obtained with a multi-harmonic
balance approach with local approximations of higher-order. However, this would
not have been feasible in closed-form. To study the global dynamics, the periodic
limit cycle is traced in dependency of the spinning speed Ω numerically.

The shooting method [86, 114] combined with a continuation method [3] is a
popular approach to construct a numerical bifurcation diagram. For the tippedisk,
a direct application of these classical numerical methods is not feasible because the
singularly perturbed structure of the system (cf. Section 5.3) leads to an extremely
stiff set of ordinary differential equations with multiple time scales. In particular,
more elaborate variants such as the multiple shooting method and arclength con-
tinuation with variable step size are prone to convergence problems. To guarantee
a robust continuation, single shooting in combination with sequential continuation
is applied.

The aim of the classical shooting method is to find periodic solutions in depen-
dency of a bifurcation parameter Ω. Using the periodicity condition, a two-point
boundary value problem is formulated in terms of a zero-finding problem that can
be solved by Newton-like methods. Sequentially changing the bifurcation parame-
ter allows to track the periodic solution along the desired parameter range.

For a three-dimensional autonomous nonlinear system of the form

Ẋ = F(X ;Ω) ∈R3
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depending on the bifurcation parameter Ω, each point X0 of a periodic limit cycle
satisfies the periodicity condition with the three-dimensional residual

rp(X0,T;Ω)=ϕ(X0, t0 +T)− X0 =
∫ t0+T

t0
F(X (τ);Ω)dτ ∈R3, (4.76)

and the a priori unknown period time T. A periodic solution is thus characterized
by an arbitrary point X0 ∈ R3 on the limit cycle and the associated period time
T ∈ R, i.e., in total by four unknown quantities. However, the periodicity condition
from Eq. (4.76), which is a three-dimensional residual rp(X0,T;Ω), yields only three
integral equations. By introducing an additional equation in the form of a scalar
anchor equation

0= ra(X0,T;Ω) ∈R,

the two-point boundary value problem is complemented, which is formulated in
terms of a zero-finding problem of the four-dimensional residual

0 != r(X0,T;Ω) :=
[

rp(X0,T;Ω)
ra(X0,T;Ω)

]
∈R4. (4.77)

A periodic limit cycle corresponds to a solution of the zero-finding problem with
residual r(X0,T;Ω) = 0, which specifies a state X0 on the T-periodic solution. Any
standard Newton-type algorithm can be used to solve the zero-finding problem of
Eq. (4.77), starting with an initial guess

(
X (0)

0 ,T(0)
0

)
and, resulting in the converged

solution
(
X (∗)

0 ,T(∗)
0

)
. Since the residual r(X0,T;Ω) implicitly depends on the bi-

furcation parameter Ω, the periodic limit cycle changes accordingly. The depen-
dence on the bifurcation parameter can be studied by a sequential continuation
procedure, where Ωi is an element of the set A = {Ω0,Ω1, ...,Ωn} and the index
i ∈N is incremented step wise. Sequential continuation combines a predictor step,
where the initial estimate

(
X (0),i

0 ,T(0),i
0

)
for a given Ωi comes from the solution(

X (∗),i−1
0 ,T(∗),i−1

0

)
of the shooting step at Ωi−1 with a subsequent corrector step,

viz. the shooting procedure. This decoupling of predictor and following corrector
step allows for a robust shooting continuation procedure.

By introducing the state vector

X =
[

x
y

]
=



β

γ

β̇


 ∈R3 (4.78)

the reduced dynamics of the tippedisk from Eq. (4.39) is rewritten into a three-
dimensional autonomous nonlinear system

Ẋ = F(X ;Ω) ∈R3, (4.79)
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Table 4.2: Initial guess for sequential continuation

Estimated quantity Magnitude Unit

β̄0 0 rad
γ̄0 1.69 rad
˙̄β0 −1.72 rad/s

T0 1.10 s

depending on the spinning speed Ω. Choosing the explicit anchor equation

ra(X0,T;Ω)=β0 −
π

2
∈R,

which characterizes a vertically inclined disk, the periodicity condition of Eq. (4.76)
is complemented to a four-dimensional residual of the form Eq. (4.77). The initial
starting point of the shooting procedure is given for Ω0 =Ωc−0.5rad/s in Table 4.2.
In a first sequential continuation step, the spinning speed Ω is increased step wise,
according to the set

A in = {
Ωi+1 ∈R

∣∣Ωi+1 =Ωi +
(
Ωc −Ωi

)
/100, i ∈I

}
,

with respect to the index set I = {1,2, ...,400}. In a second step, the evolution of the
periodic limit cycle for decreasing Ω is analyzed by defining the decreasing Ω-set

A de = {
Ωi+1 ∈R

∣∣Ωi+1 =Ωi +
(
Ωh −Ωi

)
/100, i ∈I

}
.

The spinning speed Ωh = 30.07 rad
s corresponds to a heteroclinic spinning velocity

found in a previous application of numerical shooting.
Both sets A in and A de are generated by convergent sequences, resulting in a

fine resolution around the Hopf bifurcation Ωc and a heteroclinic bifurcation Ωh.
Figure 4.7 shows the results of the considered shooting procedure. The diagram in
Figure 4.7(a) depicts the bifurcation diagram with respect to the β-amplitude β̄max.
The right Figure 4.7(b) shows the corresponding period time T. For comparison, the
closed-form solutions obtained by the harmonic balance approach from Figure 4.6
are depicted in black. Near the Hopf bifurcation, the results of the sequential shoot-
ing method are in accordance with the HBM approximations since a stable periodic
solution exists for subcritical spinning velocities Ω <Ωc. However, as the distance
to the Hopf bifurcation increases, the results diverge as the HBM approximation
loses its validity. For decreasing spinning velocities, the periodic solution vanishes
at Ωh = 30.07 rad

s with corresponding period time Th →∞, which is later identified
as a heteroclinic bifurcation in Section 5.3.
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Figure 4.7: Numerical results from the shooting continuation procedure. The left
bifurcation diagram shows a heteroclinic bifurcation at Ωh, where a stable periodic
solution arises. This limit cycle collapses into the trivial equilibrium at the super-
critical Hopf bifurcation at Ωc. The right diagram shows the period time T of the
associated limit cycle in dependency on the spinning speedΩ. ForΩ ↓Ωh, the period
time T diverges to infinity. The closed-form HBM approximation is shown in black
for comparison.

In summary, the qualitative dynamics of the tippedisk from Section 2 is char-
acterized by a heteroclinic bifurcation at Ωh, at which a stable periodic limit cycle
emerges that shrinks until it degenerates in a supercritical Hopf bifurcation at Ωc.



CHAPTER 5
Slow-fast dynamics of the tippedisk

The eigenvalue analysis in Chapter 4 has shown that the dynamics of the tippedisk
is governed by different time scales, which motivates to analyze the system behavior
in the framework of slow-fast dynamics.

5.1 Basics of singular perturbation theory

Singular perturbation theory is a mathematical concept for studying problems in-
volving multiple time scales. In a variety of physical and engineering applications,
singularly perturbed system equations are induced by a small system parameter,
causing slow-fast behavior. Singular perturbation theory provides a powerful set of
tools to reduce and approximate the dynamic behavior. More detailed introductions
can be found in [115, 131, 54, 48].

Basics of singular perturbation theory

In the context of dynamics, singular perturbation theory deals with systems of the
form

ẋ= f (t, x, y;ε)

ε ẏ= g(t, x, y;ε),

where 0 < ε≪ 1 is a small and fixed perturbation parameter representing the ratio
of time scales. It is assumed that both functions f and g are sufficiently smooth,
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which is a common assumption, cf. [67]. For the following application, this gen-
eral framework is too broad as the reduced dynamics of the tippedisk is time au-
tonomous [126]. To focus on the principal concepts in dense form, it suffices to
consider autonomous singularly perturbed dynamics of the form

ẋ= f (x, y;ε)

ε ẏ= g(x, y;ε),
(5.1)

where the time derivative •̇ := d
dt • denotes the derivative with respect to the ‘slow

time’ t, cf. [115]. The subsystem

ẋ= f (x, y;ε) ∈Rn

is called the slow subsystem corresponding to a differential equation of the slow
states x ∈Rn, while the fast subsystem is identified as

ε ẏ= g(x, y;ε) ∈Rm (5.2)

with associated fast variable y ∈Rm. By introducing the ‘fast time’ variable τ := tε−1

and the associated derivative •′ := d
dτ•, the rescaled dynamical system is given by

the differential equation
x′ = ε f (x, y;ε)

y′ = g(x, y;ε).
(5.3)

The so-called critical dynamics is obtained by setting the perturbation parameter ε
to zero. Since the perturbation parameter represents the ratio of the time scales,
setting ε to zero reveals the separation of slow and fast time. Depending on the
representation of the singular dynamics, the focus is on one of the two time scales.
Setting the perturbation parameter ε in Eq. (5.1) to zero yields the critical system

ẋ= f (x, y;0)

0= g(x, y;0),

which governs the dynamics on the slow time scale t. The trajectories of this system
are embedded in the so-called critical manifold, which (if the Jacobian ∂g

∂y is regular)
can be represented by the canonical parametrization

Mc :=
{
(x, y) ∈Rn+m

∣∣∣ y= hc(x), x ∈Rn
}

,

where the function hc is an isolated solution of the implicit function g(x,hc(x);0)=
0 ∀x. As the n-dimensional critical manifold Mc governs the dependency of the
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fast variables y on the slow variables x, the dynamics of the critical system is fully
characterized by the reduced differential equation

ẋ= f (x,hc(x);0), (5.4)

where the focus is on the slow time scale t. In contrast, setting ε to zero in the
rescaled dynamics of Eq. (5.3) yields the critical boundary layer system

x′ = 0

y′ = g(x, y;0).

Due to x′ = 0, the dynamics of the slow states x is suppressed. Therefore, the dy-
namics on the fast time scale τ is determined by the fast subsystem y′ = g(x, y;0),
where the slow states x take the role of parameters. Equilibria of the fast dynam-
ics y′ = g(x, y;0) = 0, define a set of critical points, which implicitly relates the fast
variables y to the ‘states’ x, i.e., the fast variables are expressed as a function of
the slow states x. This set of critical points is represented by the critical manifold
Mc. In summary, the critical manifold Mc can be interpreted in two different ways:
On the slow time scale t, the critical dynamics is restricted to Mc, i.e., the fast
variables y = hc(x) only depend on the slow variables x and the dynamics is given
by Eq. (5.4). On the fast time scale τ, the critical manifold characterizes the set
of all critical points of the boundary dynamics y′ = g(x, y;0) in dependence on the
‘constant’ states x.

The ultimate goal of singular perturbation theory is to understand the interac-
tion of the slow and fast time scale. However, setting ε= 0 separates the time scales
completely, yielding only a rough estimation. It is therefore essential to consider
the singularly perturbed case ε> 0, with nonvanishing perturbation parameter. As-
suming that g is a smooth enough function, whose Jacobian ∂g

∂y is regular, then the
critical points (x, y) s.t. g(x, y;0) = 0 (i.e., any point on the critical manifold Mc)
are normal hyperbolic [35]. If the critical manifold Mc is assumed to satisfy this
stability condition, Fenichel’s first theorem [34, 60, 67] states that there exists an
n-dimensional slow invariant manifold

Ms :=
{
(x, y) ∈Rn+m

∣∣∣ y= hs(x;ε), x ∈Rn
}

,

being diffeomorphic to the critical manifold Mc.
Exploiting its invariance, the shape of the slow manifold Ms is obtained through

a perturbation technique. Inserting the fast variable as function y= hs(x;ε) as well
as the associated time derivative via chain rule ẏ= ∂hs

∂x
∣∣
x;ε ẋ into the fast subsystem

from Eq. (5.2), yields the implicit equation

ε
∂hs
∂x

∣∣∣
x;ε

f (x,hs(x);ε)= g(x,hs(x);ε). (5.5)
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Substitution of the regular perturbation expansion

hs(x;ε)= h0(x)+εh1(x)+O (ε2)

allows to expand Eq. (5.5) up to quadratic orders of O (ε2) to

ε
∂h0
∂x

∣∣∣
x

f (x,h0;0)= g(x,h0;0)+ε
[
∂g
∂ε

∣∣∣
x,h0;0

+ ∂g
∂y

∣∣∣
x,h0;0

h1

]
+O (ε2).

The equality must be valid for all orders of ε. Comparison of ε coefficients yields:

ε0 : 0= g(x,h0;0) (5.6)

ε1 :
∂h0
∂x

∣∣∣
x

f (x,h0;0)= ∂g
∂ε

∣∣∣
x,h0;0

+ ∂g
∂y

∣∣∣
x,h0;0

h1 (5.7)

...

As the balance of zero-orders given in Eq. (5.6) corresponds to the implicit defini-
tion of the critical manifold, the critical manifold Mc is identified as the zero-order
approximation of the slow manifold Ms, i.e., h0 = hc holds. With invertible Jaco-
bian ∂g

∂y
∣∣
x,h0;0, the balance of first-orders from Eq. (5.7) can be solved to obtain the

function

h1(x)= ∂g
∂y

∣∣∣
−1

x,h0(x);0

[
∂h0
∂x

∣∣∣
x

f (x,h0(x);0)− ∂g
∂ε

∣∣∣
x,h0(x);0

]
. (5.8)

Subsequent application of this procedure allows to derive h2,h3, ...,hn, yielding an
approximation of the slow manifold Ms up to arbitrary orders O (εn+1). Due to this
identification, the system’s slow dynamics on the n-dimensional slow manifold Ms
is approximately given by

hs(x;ε)≈ h0(x)+εh1(x)

ẋ= f (x,hs(x;ε);ε) ,
(5.9)

neglecting orders O (ε2). While the slow dynamics Eq. (5.9) governs the slow invari-
ant behavior of solutions on the slow manifold Ms, the full singularly perturbed
system (5.1) also contains fast dynamics. To study the asymptotic behavior on the
fast time scale, the ‘distance’ function

d := y−hs(x;ε)

is introduced. If the distance function is zero, the solution is on the slow manifold,
i.e., d = 0⇔ y ∈Ms. The distance dynamics on the fast time scale yields

d′ = y′− ∂hs
∂x

x′ = y′+O (ε)= g(x,d+hs(x;ε);ε)+O (ε)
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and characterizes the asymptotic behavior. Near the slow manifold Ms, the distance
dynamics is approximately described by the linearization

d′ = g(x,h0(x),0)︸ ︷︷ ︸
=0

+∂g
∂y

∣∣∣
x,h0;0

d+O (ε)= ∂g
∂y

∣∣∣
x,h0;0

d+O (ε),

around d = 0. Following Lyapunov’s indirect method, the slow manifold is locally
attractive if the Jacobian ∂g

∂y
∣∣
x,h0;0 is Hurwitz [63]. If this stability criterion is

satisfied, solutions of the full system converge on the fast time scale τ, i.e., they
seem to ‘jump’ with respect to the slow time t onto the slow manifold Ms. The
asymptotic behavior of the full system is then governed by the lower dimensional
system from Eq. (5.9). If the slow manifold Ms is attractive, the slow-fast behavior
implies the model reduction

ẋ= f (x, y;ε)

ε ẏ= g (x, y;ε)

}
∈Rn+m → ẋ= f (x,hs(x;ε);ε) ∈Rn,

where the ‘slow’ evolution of the fast variables is determined by the slave dynamics

ẏ= ∂hs
∂x

f (x,hs(x;ε);ε) ∈Rm.

This allows the dimension of the system to be naturally reduced according to its
asymptotic behavior.

5.2 Fundamentals of the Melnikov function method

The origin of Melnikov theory was laid in the 20th century by MELNIKOV [80] and is
in general concerned with finding conditions for chaotic dynamics, cf. [131]. In this
work, the singularly perturbed structure is used to analyze the tippedisk. The fol-
lowing analysis shows that the asymptotic dynamics of the tippedisk describing the
inversion phenomenon is mainly governed by a two-dimensional and autonomous
system. Therefore, chaotic behavior cannot be observed. However, the Melnikov
function method can be applied for finding heteroclinic bifurcations of autonomous
perturbed Hamiltonian systems. The following section serves as a short introduc-
tion to the Melnikov function method [131].

In general, a perturbed Hamiltonian dynamical system is a system of the form

q̇ = ∂H

∂p
+ε f (q, p)+O (ε2),

ṗ =−∂H
∂q

+ε g(q, p)+O (ε2),
(5.10)
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with Hamiltonian H (q, p) in canonical coordinates (q, p), i.e., generalized positions
q ∈ Rn and generalized momenta p ∈ Rn. Here, the perturbation parameter ε is
assumed to be small and positive. Setting the perturbation parameter ε in Eq. (5.10)
to zero reveals the Hamiltonian structure

q̇ = ∂H

∂p
,

ṗ =−∂H
∂q

,
(5.11)

of the critical system. Since the perturbation parameter is small, higher-order per-
turbations O (ε2) are neglected in Eq. (5.10). Occasionally in literature, it is assumed
that the Hamiltonian H =H0+εH1+O (ε2) of the system is regularly perturbed, cf.
[54, 131, 98]. For the following application of the Melnikov function method to find
saddle connections (i.e., heteroclinic or homoclinic orbits), however, this assumption
is too restrictive.

A scalar function C :R2n →R with
(
q
p

)
7→C (q, p)

is called a conserved quantity if its time derivative vanishes for all generalized po-
sitions q and momenta p:

Ċ (q, p)= ∂C

∂q
q̇+ ∂C

∂p
ṗ = 0

under the flow of the Hamiltonian system given in Eq. (5.11). Substituting the
critical Hamiltonian dynamics and introducing the Poisson bracket {·, ·} indicates
that for a conserved quantity C , the Poisson bracket

{C ,H } := ∂C

∂q
∂H

∂p
− ∂C

∂p
∂H

∂q
= 0 (5.12)

of C and H must vanish. In particular, the Hamiltonian H is a conserved quantity
itself as {H ,H }= 0.

The critical Hamiltonian system from Eq. (5.11) may have a heteroclinic sad-
dle connection Γc connecting two saddle equilibria [53]. Such a heteroclinic saddle
connection may be expressed as a one-parametric integral curve

Γt
c : [−∞,+∞]→R2n

t 7→
(
qc(t)
pc(t)

)
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q

p

-1 0 +1

0

qc(t)

pc(t)
Γc

(a) Critical Hamiltonian system.

q

p

-1 0 +1

0

qε(t)

pε(t)
Γε

(b) Perturbed Hamiltonian system.

Figure 5.1: Heteroclinic orbits connecting the ‘left’ (−1,0) and the ‘right’ (+1,0) sad-
dle equilibria. The left Figure 5.1(a) shows two heteroclinic saddle connections of
the critical Hamiltonian system that exist for all Ω ∈ R. The right Figure 5.1(b)
depicts two heteroclinic saddle connections of the perturbed Hamiltonian system
existing only for a specific parameter value Ω=Ωh.

with two saddle equilibria at Γt
c(−∞) and Γt

c(+∞). Instead of parametrizing the
curve by time t, it is common to introduce a master coordinate q1 that induces
another parametrization of the heteroclinic saddle connection. Transformations can
be applied to obtain a master coordinate so that the saddle equilibria are at q1 =∓1.
In particular, if q̇1(t) > 0 along Γc, then the mapping φ : t 7→ q1 is strictly monotone
and the integral curve Γc is parametrized by

Γ
q
c : [−1,+1]→R2n

q1 7→
(
qc(q1)
pc(q1)

)
.

(5.13)

In order to increase readability, the abbreviation qc(q1) := qc(φ−1(q1)) has been
used. In Figure 5.1(a), two heteroclinic saddle connections are shown in blue. Here,
the upper saddle connection is described by the parametric curve Γc which may
be parametrized with respect to the master coordinate q1. For any conserved quan-
tity C , the function Ch(q1)=C (qc(q1), pc(q1)) takes the same value for every point
on the saddle connection. If ∂C

∂q1
is invertible on Γq

c , then the implicit function theo-
rem allows to find the generalized momenta pc and the generalized coordinates qc
as a function depending on the master coordinate q1.
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Suppose that the Hamiltonian system (5.11) depends on a system parameter Ω
that affects the Hamiltonian H and hence changes the shape of the heteroclinic con-
nection Γc, but not its existence. Moreover, it is assumed that variations of Ω do not
alter the locations (q(q1), p)= (q(∓1),0) of the saddle equilibria. Perturbing the dy-
namics in form of Eq. (5.10) by adding terms, the system becomes non-Hamiltonian,
and the heteroclinic connection may cease to exist for any value of the parameter
Ω. However, there may be specific values Ω = Ωh where the heteroclinic saddle
connection may be present, cf. Figure 5.1(b).

The goal of the Melikov function method is to find an approximate necessary
criterion for the existence of a heteroclinic connection depending on the non-zero
perturbation parameter ε and the system parameter Ω.

A heteroclinic saddle connection Γε of a perturbed Hamiltonian system (5.10)
may be parametrized with respect to time t by

Γt
ε : [−∞,+∞]→R2n

t 7→
(
qε(t)
pε(t)

)

in analogy to the critical Hamiltonian system. Taking the conservation quantity
C (q, p) of the critical system and substituting the parametrization of Γε, the im-
plicit time evolution C (t) := C (qε(t), pε(t)) is obtained. While the expression C (t)
along the heteroclinic connection is constant for the critical case ε = 0, it becomes
time dependent for 0< ε≪ 1. Since the position of the saddle equilibria is assumed
to be unaffected by the perturbation with parameter ε, the net change of the func-
tion C (t) along the saddle connection Γε is zero, implying C (t =∓∞)=C (q(∓1),0)=
Ch. This condition can be cast in integral form

∫ +∞

−∞
Ċ (t)

∣∣∣
qε,pε

dt =
∫ +∞

−∞
∂C

∂q
q̇+ ∂C

∂p
ṗ

∣∣∣
qε,pε

dt = 0. (5.14)

Substituting the perturbed Hamiltonian dynamics into Eq. (5.14) yields the in-
tegral balance ∫ +∞

−∞
∂C

∂q
∂H

∂p
− ∂C

∂p
∂H

∂q

∣∣∣
qε,pε

dt
︸ ︷︷ ︸

=:M0

+ε
∫ +∞

−∞
∂C

∂q
f (q, p)+ ∂C

∂p
g(q, p)

∣∣∣
qε,pε

dt = 0,

(5.15)

evaluated along the heteroclinic saddle connection Γε of the perturbed Hamiltonian
system.



5.2. FUNDAMENTALS OF THE MELNIKOV FUNCTION METHOD 125

In anticipation of results below, the summands of Eq. (5.15) are separated into

M0 +ε
(
M1 +O (ε)

)= 0,

where M1 collects terms of the second summand that only depend linearly on ε and
M0 is given by

M0 =
∫ +∞

−∞
∂C

∂q
∂H

∂p
− ∂C

∂p
∂H

∂q

∣∣∣
qε,pε

dt.

Note that M0 is not independent of the perturbation parameter ε as it is evaluated
along the heteroclinic saddle connection Γε of the perturbed Hamiltonian system.
However, it vanishes per definition as the Poisson bracket (5.12) is zero for the
conserved quantity for any arbitrary point (p, q).

Approximation of the heteroclinic connection Γε by the regular perturbation ex-
pansion

qε = q0 +εq1 +O (ε2)

pε = p0 +εp1 +O (ε2)

reveals the zero-orders q0 = qc and p0 = pc, i.e., the saddle connection Γc of the
critical Hamiltonian system is the zero-order approximation of Γε.

This relationship is substituted into the second summand of Eq. (5.15) to obtain
the Melnikov function

M1 =
∫ +∞

−∞
∂C

∂q
f (q, p)+ ∂C

∂p
g(q, p)

∣∣∣
q0,p0

dt, (5.16)

evaluated along the saddle connection Γc. With M0(ε) = 0, the Melnikov function
M1 must vanish, being the first-order term of the second summand, cf. Eq. (5.15).

Using the parametrization of the saddle connection Γ
q
c from Eq. (5.13) and the

differential relation dq1 = q̇1dt between time t and master coordinate q1, the time
integral (5.16) transforms to

M1 =
∫ +1

−1

(
∂C

∂q
f (q, p)+ ∂C

∂p
g(q, p)

)
1
q̇1

∣∣∣
q0(q1),p0(q1)

dq1

=
∫ +1

−1

(
∂C

∂q
f (q, p)+ ∂C

∂p
g(q, p)

)(
∂H

∂p1

)−1 ∣∣∣
q0(q1),p0(q1)

dq1

(5.17)

i.e., a definite integral with respect to the master coordinate q1.
Considering the conservation of C , it may be possible to compute the critical

saddle connection Γc in closed-form. This allows to evaluate the integral (5.17)
with q0(q1) = qc(q1) and p0(q1) = pc(q1) to obtain an algebraic expression for the
Melnikov function M1 that depends on the system parameter Ω. With M1 = 0, the
necessary condition for the existence of a heteroclinic saddle connection Γε follows.
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5.3 Singularly perturbed dynamics of the tippedisk

In Chapter 4, a reduced minimal model in R3 was derived that qualitatively de-
scribes the inversion behavior of the tippedisk. The linearization of the reduced
system shows that the system has to be considered on different time scales. There-
fore, this section applies the singular perturbation theory presented in Section 5.1
to analyze the dynamical behavior of the tippedisk in the framework of slow-fast
systems.

Assuming linearized Coulomb friction from Eq. (4.61) (motivated by Coulomb–
Contensou friction), a singularly perturbed dynamical system is obtained by nor-
malizing the kinetics in Eq. (4.39) with the mass M(x) and pre-multiplying by the
small smoothing coefficient ε. Identifying the coordinates x from Eq. (4.34) as the
slow variables and the scalar velocity y = η= β̇ from Eq. (4.35) as the fast variable,
gives the singularly perturbed dynamical system

ẋ= f (x, y)

ε ẏ= g(x, y;ε)= g0(x, y)+ε g1(x, y),
(5.18)

which results from splitting the three-dimensional dynamics Ẋ = F(X ;Ω) ∈R3 from
Eq. (4.79) with corresponding state X defined in Eq. (4.78) into slow and fast dy-
namics with states x and y, respectively. The function

f (x, y)=
[

η

−Ωcosβ

]
∈R2

results from the kinematics Eq. (4.45). With the mass M(x) from Eq. (4.40), the
gyroscopic and gravitational forces from Eqs. (4.41) and (4.42), and the generalized
force direction from Eq. (4.43), as well as the sliding velocity from Eq. (4.44), the
expressions

g0(x, y)=−M(x)−1µmg wy(x)γy(x, y) ∈R,

and
g1(x, y)= M(x)−1 [

h(x, y)+ fg(x, y)
] ∈R

are fully defined. From the singularly perturbed dynamical system (5.18), the two-
dimensional slow subsystem

ẋ= f (x, y) ∈R2

and the scalar fast subsystems

ε ẏ= g(x, y;ε)= g0(x, y)+ε g1(x, y),
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are identified, cf. [115]. In the context of singular perturbation theory the critical
dynamics

ẋ= f (x, y) ∈R2

0= g0(x, y) ∈R
(5.19)

of the singularly perturbed system (5.18) is obtained by setting the perturbation
parameter ε to zero, i.e., the fast subsystem degenerates to the algebraic equation
g0(x, y) = 0. Since the ‘mass matrix’ M (here scalar) is non-singular and the gener-
alized force direction for β ∈ (0, π) is non-zero1, the critical dynamics from Eq. (5.19)
can be equivalently rewritten as

ẋ= f (x, y)

0= γy(x, y),
(5.20)

characterizing motions with zero relative sliding velocity of the contact point C,
i.e., motions under perfect rolling condition. The relative velocity γy in Eq. (4.44)
depends linearly on the fast variable y = β̇ with non-zero prefactor (r+ esγ)sβ for
all β ∈ (0, π), and the Jacobian ∂g0

∂y is invertible. Thus, a two-dimensional critical
manifold

Mc :=
{

(x, y)= (β,γ, y) ∈R3
∣∣∣ y= hc(x)= esinβcosγ

(r+ esinγ)
Ω

}
,

exists globally for β ∈ (0,π). The corresponding two-dimensional critical dynamics is
determined by the differential equation

ẋ= f (x,hc(x)) ⇐⇒
[
β̇

γ̇

]
=

[
hc(β,γ)
−Ωcosβ,

]
(5.21)

which characterizes the slow behavior of the tippedisk under the pure rolling condi-
tion γy(x,hc(x))≡ 0.

For ε > 0, the asymptotic dynamics of the perturbed dynamical system from
Eq. (5.18) takes place on the slow manifold Ms, which is approximated up to first
orders O (ε2) by

Ms :≈
{

(x, y) ∈R3
∣∣∣ y= esinβcosγ

(r+ esinγ)
Ω+εh1(x)

}
, (5.22)

with

h1(x)= ∂g0
∂y

∣∣∣
−1

x,hc(x)

[
∂hc(x)
∂x

∣∣∣
x

f (x,hc(x))− g1(x,hc(x))
]

,

1For β = 0 and β = π, the tippedisk is horizontal, i.e., not inclined with respect to the support. During
inversion the tippedisk is almost vertically oriented, ensuring a regular mass matrix.
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cf. Eq. (5.8). Evaluation of the first-order part h1(x) yields after some algebra2 the
expression

h1(x)= Ω2 cβ
µmgsβ(r+ esγ)4

[
A c2γ(r2 − ersγ−2e2)

+ B̄rsγ
(
rsγ+ e+ ec2γ

)
− mg(r+ esγ)3

Ω2sβ

]
.

(5.23)

The critical manifold Mc corresponds to the zero-order approximation of the slow
manifold Ms, whose stability on the fast time scale is characterized by the distance
dynamics

d′ = ∂g0
∂y

∣∣∣
x,hc

d,

which is asymptotically stable, as the Jacobian

∂g0
∂y

∣∣∣
x,hc

=−M(x)−1µmg (r+ esinγ)2 sin2β

is strictly negative for the inclined tippedisk, i.e., β ∈ (0,+π). Since the critical
manifold Mc characterizes pure rolling motions, solutions on the slow manifold Ms
are close to pure rolling. Moreover, in a basin of attraction solutions are attracted
to the invariant manifold Ms, such that the asymptotic dynamics of the tippedisk
is governed by the two-dimensional system

ẋ= f (x,hc(x)+εh1(x))⇔
[
β̇

γ̇

]
=

[
hc(β,γ)+εh1(β,γ)

−Ωcosβ

]
, (5.24)

which corresponds to the approximated dynamics on the slow manifold. Note that
the perturbation reduction procedure of the singularly perturbed dynamics (5.18)
yields a lower-dimensional regularly perturbed dynamical system (5.24).

Slow-fast dynamics

After revealing the singularly perturbed structure of the tippedisk from Eq. (5.18),
the qualitative behavior is presented in this section. According to the linear stabil-
ity analysis of Section 4.3, non-inverted spinning is always unstable. The inverted
spinning equilibrium is unstable for subcritical spinning velocities Ω<Ωc and sta-
ble for supercritical spinning velocities Ω>Ωc. Due to the ambiguity of trigonomet-
ric expressions, both the states

X−
1 =

[
+π

2 −π
2 0

]T
and X−

2 =
[
+π

2 +3π2 0
]T

(5.25)

2Here, ‘some algebra’ means several pages of tedious algebraic calculations by hand and non-trivial
identifications of trigonometric expressions.
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correspond to an equilibrium which characterizing non-inverted stationary spinning
motions. Inverted spinning motion is represented by the equilibrium at

X+ =
[
+π

2 +π
2 0

]T
. (5.26)

Figure 5.2 shows the three-dimensional, slow-fast dynamics from Eq. (5.18) for dif-
ferent spinning speeds Ω. The associated discrete spinning velocities are given in
Figure 5.3, where the dots represent the spinning equilibria, and the red square
marks correspond to stable periodic solutions.

This bifurcation diagram corresponds to the magnified version of Figure 4.7(a),
which contains only the numerical shooting results from Section 4.5. In Figure 5.2,
the slow manifold Ms defined in Eq. (5.22) is represented as gray surface. Unstable
equilibria are shown as blue dots, stable ones as red dots. For each subfigure 5.2(a)-
5.2(d), two blue orbits are initialized as black crosses at

X0
1 =

[
+π

2 −π
2 2

]T
and X0

2 =
[
+π

2 +π
2 +0.4 0

]T
.

For Ω < Ωh, solutions are repelled by the inverted spinning equilibrium, cf. Fig-
ure 5.2(a). AtΩh, a heteroclinic limit cycle with period time T =∞ arises, which con-
sists of two heteroclinic saddle connections connecting both non-inverted spinning
equilibria. For Ωh <Ω<Ωc, this limit cycle is attractive and shrinks for increasing
Ω (cf. Figures 5.2(b)-5.2(e)), the period time decreases according to Figure 4.7(b).
At Ωc, the stable periodic solution vanishes in a supercritical Hopf bifurcation, so
the inverted spinning motion becomes stable (shown as a red dot) and attracts the
initialized trajectories (cf. Figure 5.2(f)). According to the stability property of the
slow manifold Ms, the trajectories are attracted and converge on a fast time scale,
resulting in an initial jump of the initialized trajectories on Ms. After convergence,
the orbits evolve on this two-dimensional slow manifold. This allows to project the
three-dimensional dynamics onto the (β,γ)-plane of slow variables without loosing
much information. In Appendix B.2, the projected trajectories from the bifurcation
scenario of Figure 5.2 are shown in Figure B.1.

The considered simulations show that the bifurcation scenario in Figure 5.3 is
dominated by a heteroclinic bifurcation followed by a supercritical Hopf bifurcation.
In Section 4.3, a closed-form expression of the critical spinning velocity Ωc has been
derived, characterizing the location of the Hopf bifurcation. Combining the results
of the linear stability analysis and the harmonic balance approximation from Sec-
tion 4.4, the nature of the Hopf bifurcation in closed-form is identified as supercriti-
cal. In order to obtain closed-form approximations of the heteroclinic bifurcation at
Ωh, the Melnikov function method presented in Section 5.2 is subsequently applied.
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Figure 5.2: Slow-fast dynamics of the tippedisk for different spinning speeds Ω.
The slow manifold Ms is depicted in gray. The transient solutions are initialized
at the black crosses and depicted in blue. Stable periodic solutions are obtained
by numerical shooting of the singularly perturbed system from Eq. (4.39) and are
depicted in red. Unstable stationary spinning motions are marked as blue dots,
whereas stable spinning is indicated by a red dot.
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Figure 5.3: Location of the parameter values of Figure 5.2 in the associated bi-
furcation diagram. Unstable inverted spinning is marked as blue dots, whereas
stable spinning is indicated by a red dot. Stable periodic solutions are shown as red
squares. The branch of periodic solutions has been obtained by numerical shooting.

Hamiltonian structure on the critical manifold

To apply the Melnikov function method, the critical dynamics with ε= 0 requires a
special Hamiltonian structure. The slow dynamics on the critical manifold Mc from
Eq. (5.20) is shown in Figure 5.4 for two different spinning speeds Ω. The points

(
β−1 , γ−1

)= (+ π
2 , −π

2
)

and
(
β−2 , γ−2

)= (+ π
2 , +3π2

)
, (5.27)

represent the two non-inverted spinning states x−1 and x−2 , respectively, see also the
definitions from Eq. (5.25).

The inverted spinning equilibrium x+ is located at the point

(
β+, γ+

)= (+ π
2 , +π

2
)
, (5.28)

cf. Eq. (5.26). For all spinning speeds Ω ̸= 0, a heteroclinic orbit Γc exists for the
critical dynamics, connecting the saddle equilibria x−1 and x−2 . As both saddle equi-
libria correspond to non-inverted stationary spinning, we may also call the saddle
connection a homoclinic orbit from a physical perspective (or on a cylindrical state-
space). The projection of associated trajectories in this two-dimensional space looks
the same for different spinning speeds Ω. However, comparison of two equivalent
periodic orbits shows different orbital speeds, see Figure 5.4(c).
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(c) Comparison of orbital speeds

Figure 5.4: Dynamics on the critical manifold for two different values of the spin-
ning speed Ω. In Figure 5.4(a) and Figure 5.4(b), the trajectories are identical with
respect to the phase portrait, as they only differ in the orbital speed. Figure 5.4(c)
shows exemplarily for the two trajectories (dotted in (a) and solid in (b), respec-
tively) that the orbital speed increases with increasing spinning speed Ω.

Since the spinning speed Ω is assumed to be constant and takes the role of a
bifurcation parameter, the time derivative of γ̇=−Ωcosβ (cf. Eq. (5.21)) yields

γ̈=+Ωsinββ̇.

For the critical case, the slaved fast variable β̇= hc(β,γ) can be substituted into the
above differential equation as a function of the slow variables, leading to

γ̈=+Ω2 sin2β
ecosγ

(r+ esinγ)
.

Substitution of sin2β= 1−cos2β and identifying γ̇2 =Ω2 cos2β results in the second-
order system

(r+ esinγ) γ̈+ ecosγγ̇2 −Ω2 ecosγ= 0. (5.29)
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To identify canonical coordinates and momenta, Eq. (5.29) or an equation equiva-
lent to it can be interpreted as if it were a Lagrangian equation of motion in the
coordinate γ. In analogy, the ‘kinetic’ and ‘potential’ energies

T = 1
2

(r+ e sinγ)2 γ̇2, V =−1
2

(r+ e sinγ)2Ω2,

are introduced, implying the Lagrangian L (γ, γ̇)=T −V in the coordinate γ and its
associated time derivative γ̇. Evaluating the Euler equation

d
dt

(
∂L

∂γ̇

)
−

(
∂L

∂γ

)
= 0

yields the Lagrangian dynamics

(r+ esinγ)
[
(r+ esinγ)γ̈+ ecosγγ̇2 −Ω2 ecosγ

]
= 0, (5.30)

which characterizes the dynamics on the critical manifold, i.e., pure rolling motions.
Since the outer radius r of the disk is greater than the eccentricity e, the factor (r+
esinγ) is non-zero for all γ ∈R, such that the equivalence of Eq. (5.29) and Eq. (5.30)
follows directly. Therefore, the critical dynamics corresponds to a single degree
of freedom Lagrangian system, for which the associated Hamiltonian system with
Hamiltonian H can be deduced by convex conjugation, also called the Legendre–
Fenchel–Transformation [103]. In canonical coordinates, namely the generalized
coordinates q = γ and the corresponding generalized momentum

p = ϱ= ∂L

∂γ̇
= (r+ e sinγ)2 γ̇, (5.31)

the associated Hamiltonian H (γ,ϱ)= ϱγ̇−L (γ, γ̇) with γ̇= γ̇(γ,ϱ) takes the form

H (γ,ϱ)= 1
2

1
(r+ esinγ)2

ϱ2 − 1
2

(r+ esinγ)2Ω2. (5.32)

The application of Hamilton’s formalism reveals the critical Hamiltonian system

γ̇=+∂H (γ,ϱ)
∂ϱ

ϱ̇=−∂H (γ,ϱ)
∂γ

,
(5.33)

whose dynamics is shown in Figure 5.5 for two different rotational velocities. With
respect to the canonical coordinates γ and ϱ = (r + esγ)2γ̇, non-inverted spinning
motion is characterized by the equilibrium points

(
γ−1 , ϱ−1

)= (− π
2 , 0

)
and

(
γ−2 , ϱ−2

)= (+3π2 , 0
)
.
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Figure 5.5: Critical Hamiltonian dynamics in canonical γ-ϱ-coordinates for two val-
ues of the spinning speed Ω.

Inverted spinning is represented by the equilibrium point at

(
γ+, ϱ+

)= (+ π
2 , 0

)
.

In contrast to the critical dynamics in β-γ-coordinates from Figure 5.4, the shape
of heteroclinic orbits in Hamiltonian ϱ-γ-coordinates depends on the spinning speed
Ω. Although the phase portrait differs for varying bifurcation parameter Ω, the
existence of the heteroclinic saddle connection Γc is preserved.

Heteroclinic orbit of the perturbed system

Equation (5.24) corresponds to a regularly perturbed dynamics on the slow mani-
fold. Setting the regular perturbation parameter ε to zero results in the slow dy-
namics on the critical manifold Mc given in Eq. (5.20), which can be cast in Hamil-
tonian form Eq. (5.33). Therefore, the reduced dynamics on the slow manifold Ms
from Eq. (5.24) resulting from the application of singular perturbation theory has
a perturbed Hamiltonian structure. In Figure 5.6, the dynamics on the slow mani-
fold is shown for different values of the spinning speed Ω. Solutions are initialized
at the black crosses and the simulation end time is set to t = 2s. Similarly to the
dynamics of the singularly perturbed system, the bifurcation scenario is character-
ized by a heteroclinic bifurcation with associated heteroclinic orbits in green (see
Figure 5.6(b)), which is followed by a supercritical Hopf bifurcation. Since the crit-
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Figure 5.6: Dynamics on the slow manifold Ms from Eq. (5.24). The qualitative
behavior is similar to the dynamics from Figure 5.2 of the three-dimensional sin-
gularly perturbed dynamical system, which corresponding bifurcation diagram in
Figure 5.3.
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ical system is Hamiltonian and contains a heteroclinic saddle connection for any
rotational velocity Ω, Melnikov theory can be applied to obtain a necessary condi-
tion for the heteroclinic bifurcation point. Instead of applying Melnikov theory in
its general form, i.e., in the canonical coordinates q and momenta p of the Hamil-
tonian system, the following analysis is performed with respect to physical system
coordinates, namely the inclination angle β and rolling angle γ, well knowing and
presupposing that the critical dynamics has a Hamiltonian structure and, there-
fore, a conserved quantity, e.g., the Hamiltonian H , exists regardless of the choice
of system parametrization. On the one hand, this avoids cumbersome algebraic ma-
nipulations. On the other hand, the physical coordinates are perfectly suited to link
the dynamics with the motion of the real tippedisk.

Taking the Hamiltonian (5.32) in Hamiltonian canonical coordinate γ and mo-
mentum ϱ and inserting the transformation from Eq. (5.31) yields the Hamiltonian
as a function

H̄ (γ, γ̇)= 1
2

(r+ esinγ)2
(
γ̇2 −Ω2

)

in Lagrangian coordinates γ and γ̇ with the property H̄ (γ, γ̇)=H (γ,ϱ(γ, γ̇)). Replac-
ing the Lagrangian coordinate γ̇ by the second kinematic relation from Eq. (5.21)

γ̇=−Ωcosβ,

the functional expression

¯̄H (β,γ)=−1
2

(r+ esinγ)2sin2βΩ2 (5.34)

of the Hamiltonian is obtained. On the saddle connection, the Hamiltonian of the
critical dynamical system remains constant. As the heteroclinic orbit connects the
non-inverted equilibria x−1 and x−2 from Eq. (5.27), the Hamiltonian takes the con-
stant value

H =−1
2

(r− e)2Ω2 = ¯̄H (βc(γ),γ).

Substitution of β̇= hc(β,γ) from Eq. (5.21) yields the implicit equation

0= Ḣ = ∂ ¯̄H

∂β
hc(βc(γ),γ)+ ∂ ¯̄H

∂γ
γ̇.

Taking a closer look at the Hamiltonian ¯̄H (β,γ) and noting that the height of the
COG is expressed by

zs(β,γ)= (r+ esγ)sβ, (5.35)

shows that
¯̄H (β,γ)=−1

2
(
zs(β,γ)

)2
Ω2
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holds, from which it can be deduced that the COG height zs is a conserved quantity
for pure rolling motions. Since the COG height is related to the potential energy
of the tippedisk, the critical system characterizes motions for which the potential
energy of the mechanical system is conserved. To evaluate the Melnikov function
M1 (cf. Eq. (5.16)), the expression has to be integrated along a heteroclinic saddle
connection Γc of the critical system. For the non-inverted tippedisk, the COG height
is zs = r − e. The upper heteroclinic connection in Figure 5.4 connects two non-
inverted saddle equilibria such that, with the constant COG height from Eq. (5.35),
the implicit equation

r− e = (r+ esγ)sβ.

follows. From this, it can be seen that the upper heteroclinic saddle connection for
β ∈ [π/2, π) is given by the curve

Γ
γ
c :

[
−π

2
, 3

π

2

]
→

[π
2

, π−sin−1
( r− e

r+ e

)]

γ 7→βc(γ)=π−sin−1
(

r− e
r+ esinγ

)
.

(5.36)

Herein, the expression sin−1(•) corresponds to the standard definition of arcsin(•),
i.e., to the function which maps the interval [−1, +1,] 7→ [−π/2, +π/2].

Taking the Hamiltonian as the conserved quantity, the integral balance

0=
∫ +∞

−∞
Ḣ dt =

∫ +∞

−∞

(
∂ ¯̄H

∂β
β̇(β,γ)+ ∂ ¯̄H

∂γ
γ̇(β,γ)

)∣∣∣
βε(γ),γ

dt

yields together with the reduced dynamics on the slow manifold from Eq. (5.24) and
the perturbation expansion

βε =βc +εβ1 +O (ε2)

the expression

0=
∫ +∞

−∞

(
∂ ¯̄H

∂β
hc(β,γ)− ∂ ¯̄H

∂γ
Ωcosβ

)∣∣∣
βε(γ),γ

dt

+ε
∫ +∞

−∞

(
∂ ¯̄H

∂β
h1(β,γ)

)∣∣∣
βc(γ),γ

dt+O (ε2).

Herein, the Melnikov functions

M0 =
∫ +∞

−∞

(
∂ ¯̄H

∂β
hc(β,γ)− ∂ ¯̄H

∂γ
Ωcosβ

)∣∣∣
βε(γ),γ

dt (5.37)
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and

M1 =
∫ +∞

−∞

(
∂ ¯̄H

∂β
h1(β,γ)

)∣∣∣
βc(γ),γ

dt (5.38)

are identified, yielding the integral criterion

0=
∫ +∞

−∞
Ḣ dt =M0 +εM1 +O (ε2).

With ¯̄H (β,γ) from Eq. (5.34), the partial derivatives

∂ ¯̄H (β,γ)
∂β

=−(r+ esγ)2 sβcβΩ2,
∂ ¯̄H (β,γ)

∂γ
=−e(r+ esγ)s2βcγΩ2 (5.39)

are obtained. Inserting these partial derivatives together with the natural parametriza-
tion of the critical manifold

hc(x)= esinβcosγ
(r+ esinγ)

Ω,

into Eq. (5.37), results in a vanishing Melnikov function

M0 =−
∫ +∞

−∞
(r+ esγ)sβcβΩ2

(
(r+ esγ)hc(β,γ)− esβcγΩ

)∣∣∣
βε(γ),γ

dt

=−
∫ +∞

−∞
(r+ esγ)sβcβΩ2 (

esβcγΩ− esβcγΩ
)

︸ ︷︷ ︸
=0

∣∣∣
βε(γ),γ

dt ≡ 0

for arbitrary Ω. For any quantity C which is conserved for the critical dynamical
system ε= 0, it follows that the Poisson brackets {C ,H }= 0 and therefore M0 van-
ishes identically, irrespective of the saddle connection Γε defined by the function
βε(γ). Consequently, for a heteroclinic saddle-connection of the regularly perturbed
dynamical system (5.24) resulting from the singular perturbation reduction proce-
dure, the Melnikov function M1 (cf. Eq. (5.38)) has to vanish (approximately) on the
path Γc, which is represented in Figure 5.7 by the solid blue line.

Inserting the critical inclination angle βc(γ) from Eq. (5.36) into the first-order
term h1(β,γ) from Eq. (5.23) yields the function

hc
1(γ)= Ω2

µmg
cosβc(γ)

(r− e)(r+ esγ)3
·
[
A c2γ(r2 − ersγ−2e2)

+ B̄rsγ
(
rsγ+ e+ ec2γ

)
− mg(r+ esγ)4

Ω2(r− e)

]
.

(5.40)
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Figure 5.7: Comparison of heteroclinic orbits Γc of the critical system in blue and
the heteroclinic connections Γε of the perturbed dynamical system in green. The
upper connections are shown in solid, the lower as dashed lines.

Together with the Eqs. (5.38), (5.39) and Eq. (5.40), the Melnikov function M1 gives
the indefinite integral

M1 =−
∫ +∞

−∞
(r+ esγ)2Ω2 sβcβhc

1(γ)
∣∣∣
βc(γ),γ

dt

=− Ω4

µmg

∫ +∞

−∞
sβc

c2βc
(r− e)(r+ esγ)

·
[
A c2γ(r2 − ersγ−2e2)

+ B̄rsγ
(
rsγ+ e+ ec2γ

)
− mg(r+ esγ)4

Ω2(r− e)

]
dt.

(5.41)

Substitution of

sinβc =
(r− e)

(r+ esγ)
,

simplifies the expression to

M1 =− Ω4

µmg

∫ +∞

−∞
c2βc

(r+ esγ)2
·
[
A c2γ(r2 − ersγ−2e2)

+ B̄rsγ
(
rsγ+ e+ ec2γ

)
− mg(r+ esγ)4

Ω2(r− e)

]
dt.

(5.42)

Introduction of the strictly monotone mapping

φ : (−∞,+∞)→ [−π/2,+3π/2]

t 7→ γc(t)
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allows to transform the time parametrized upper critical heteroclinic connection
from Figure 5.7 into a parametrization with respect to the master coordinate γ.
From the kinematic equation (5.21), the relation cβ = − γ̇

Ω is identified. Together

with the differential relation dt = dγ
γ̇ , Eq. (5.42) is integrated by substitution, re-

sulting in the finite γ-integral:

M1 = Ω3

µmg

∫ +3π/2

−π/2

cosβc(γ)
(r+ esγ)2

·
[
A c2γ (r2 − ersγ−2e2)

+ B̄rsγ
(
rsγ+ e+ ec2γ

)
− mg(r+ esγ)4

Ω2(r− e)

]
dγ.

As the Melnikov function M1 has to vanish, the constant prefactor of the integral
can be neglected, which implies the introduction of the scaled Melnikov function
M̂1 :=M1

µmg
Ω3 . Introducing the dimensionless parameters

inertia ratio : ζ := A
B̄

,

eccentricity ratio : κ := e
r ,

(5.43)

as well as the integrals

I1(κ,ζ) :=
∫ +3 π

2

− π
2

cosβc(γ)
(1+κsγ)2

·
[
ζc2γ (1−κsγ−2κ2)+sγ

(
sγ+κ+κc2γ

)]
dγ (5.44)

and

I2(κ,ζ) :=
∫ +3 π

2

− π
2

cosβc(γ)
(1+κsγ)2

(1−κ)
dγ, (5.45)

finally gives the necessary condition for a heteroclinic saddle connection:

0= M̂1 = B̄I1 −
mgr
Ω2 I2 (5.46)

The spinning velocity

Ω2
h = mgr

B̄
I2
I1

, (5.47)

solves Eq. (5.46), characterizing the heteroclinic bifurcation point. With the inertia
ratio ζ and the eccentricity ratio κ from Eq. (5.43), the critical rotational velocity Ωc
of the Hopf bifurcation, from Eq. (4.74), can be rewritten as

Ωc =
√

mgr
B̄

(1+κ)2.
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Combination of this critical spinning speed and Eq. (5.47) allows the definition of
the dimensionless ratio

ν(κ,ζ) :=
(
Ωh
Ωc

)2
= 1

(1+κ)2
I2
I1

, (5.48)

between heteroclinic and Hopf bifurcation, in dependence of the dimensionless in-
tegrals I1 and I2.

To get an estimate of the heteroclinic spinning speed Ωh, the two integrals I1
and I2 must be solved, but in general there is no closed-form solution.

Melnikov approximation of the heteroclinic orbit

For the tippedisk with dimensions and inertia properties from Table 2.1, the dimen-
sionless eccentricity ratio

κ= e
r = 0.056

is small, and it is therefore a perturbation parameter. This motivates asymp-
totic expansions that subsequently provide closed-form approximations of the in-
tegrals I1,2 and thus an approximate characterization of the heteroclinic spinning
speed Ωh.

Along the upper critical saddle connection Γc, the rolling angle γ increases with
time, i.e., γ̇> 0. Therefore, the kinematic equation γ̇=−Ω cosβ implies that the co-
sine cosβc is negative for any point on the saddle connection, i.e., the trigonometric
identity

cosβc =−
√

1−sin2βc

holds. Substitution of the parametrization βc(γ) from Eq. (5.36) and the identifica-
tion of the dimensionless quantities yields

cosβc =−
√

1−sin2
(
π−sin−1

(
1−κ

1+κsinγ

))
. (5.49)

As the sine function is uneven and has 2π-periodicity, the identity sin(π−∗) =
−sin(−(π−∗))=−sin(∗−π)= sin(∗) holds, allowing to transform Eq. (5.49) to

cosβc =−pκ

√
2(sinγ+1)+κ(sin2γ−1)

1+κsinγ
. (5.50)

Substitution of this representation of cosβc into the integral expression I2 from
Eq. (5.45) yields

I2 =−
p
κ

(1−κ)

[∫ +3 π
2

− π
2

√
2(sγ+1)+κ(s2γ−1)

(
1+κsγ

)
dγ

]
. (5.51)
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Introduction of the first-order expansion
√

2(sγ+1)+κ (s2γ−1)=
√

2(sγ+1)
(
1+ sγ−1

4
κ

)
+O (κ2)

allows to approximate the integral

I2 ≈−
p
κ

(1−κ)

[∫ +3 π
2

− π
2

√
2(sγ+1)+

(
5
4

√
2(sγ+1)sγ− 1

4

√
2(sγ+1)

)
κdγ

]
(5.52)

up to orders O (κ5/2) in the eccentricity ratio κ. However, having a close look at the
prefactor p

κ

(1−κ)
=p

κ (1+κ)+O (κ5/2)

reveals the presence of higher-order terms in Eq. (5.52) and thus an inconsistent
approximation. Neglecting all orders O (κ5/2) and considering the above expansion
of the prefactor results in the consistent approximation

I2 ≈−pκ
[∫ +3 π

2

− π
2

√
2(sγ+1)+

(
5
4

√
2(sγ+1)sγ+ 3

4

√
2(sγ+1)

)
κdγ

]

of the integral I2. Identification of the Integrals I1 and I2 from Section B.1 finally
yields the definite integral

I2 ≈−pκ
[

I1 +
(

5
4

I2 +
3
4

I1

)
κ

]
=−pκ

[
8+ 28

3
κ

]
. (5.53)

Likewise, the integral I1 must be evaluated to obtain a closed-form expression for
the heteroclinic rotational velocity Ωh. Substitution of Eq. (5.50) into Eq. (5.44)
yields after some basic algebraic transformations the integral

I1 =−pκ
∫ +3 π

2

− π
2

√
2(sγ+1)+κ(s2γ−1)

(1+κsγ)3

·
[
ζc2γ

(
1−κsγ−2κ2

)
+sγ

(
sγ+κ

(
1+c2γ

))]
dγ.

The asymptotic Taylor series approximations
√

2(sγ+1)+κ(s2γ−1)

(1+κsγ)3
=

√
2(sγ+1)

(
1− 11sγ+1

4
κ

)
+O (κ2)

and [
ζc2γ

(
1−κsγ−2κ2

)
+sγ

(
sγ+κ

(
1+c2γ

))]

= 1+ (ζ−1)c2γ+
(
sγ+ (1−ζ)sγc2γ

)
κ+O (κ2)
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allow to approximate the integral I1 up to orders O (κ5/2) as

I1 =−pκ
∫ +3 π

2

− π
2

√
2(sγ+1)

(
1− 11sγ+1

4
κ
)

·
[
1+ (ζ−1)c2γ+

(
sγ+ (1−ζ)sγc2γ

)
κ
]
dγ+O (κ5/2).

Decomposition of the integral I1 into subintegrals and neglecting higher-order κ-
terms yields

I1 ≈−pκ
[∫ +3 π

2

− π
2

√
2(sγ+1)dγ

(
1− 1

4
κ

)
+

∫ +3 π
2

− π
2

√
2(sγ+1)sγdγ

(
−7

4
κ

)

+
∫ +3 π

2

− π
2

√
2(sγ+1)c2γdγ (ζ−1)

(
1− 1

4
κ

)

+
∫ +3 π

2

− π
2

√
2(sγ+1)sγc2γdγ

15
4

(1−ζ)κ
]
,

which can be simplified by identifying the definite integrals I1, I2, I3, and I4 from
the Section B.1 to

I1 ≈−pκ
[
I1

(
1− 1

4
κ

)
+ I2

(
−7

4
κ

)
+ I3 (ζ−1)

(
1− 1

4
κ

)
+ I4

15
4

(1−ζ)κ
]
. (5.54)

The subsequent evaluation of the Integral I1 yields

I1 ≈−pκ
([

56
15

− 116
35

κ

]
+

[
64
15

− 352
105

κ

]
ζ
)
. (5.55)

Substitution of the approximated definite integrals I1 and I2 from Eq. (5.55)
and Eq. (5.53) into Eq. (5.48) gives the quadratic ratio

ν1 = 1
(1+κ)2

[
8+ 28

3 κ
]

([
56
15 − 116

35 κ
]
+

[
64
15 − 352

105κ
]
ζ
) ≈ ν (5.56)

of the heteroclinic spinning speed Ωh to the critical spinning speed Ωc. Since the
eccentricity e ≪ 1 is very small, even linear terms in eccentricity ratio κ may be
neglected, resulting in an even coarser approximation

ν2 = 15
7+8ζ

≈ ν (5.57)

of the spinning speed ratio ν. For small eccentricity ratios κ≪ 1, the condition

ζ> 1 =⇒ ν< 1 =⇒ Ωh <Ωc and ζ< 1 =⇒ ν> 1 =⇒ Ωh >Ωc (5.58)

describes whether the heteroclinic bifurcation occurs before or after the Hopf bifur-
cation.
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Harmonic balance approximation

In Section 4.4, the Hamonic balance method is used to characterize the Hopf bifur-
cation at the critical spinning speed Ωc as a supercritical one. In order to simplify
the Melnikov integrals, the dimensionless quantities κ and ζ were introduced in the
previous section, allowing also to reformulate the amplitude

C = 2
p
κ

√
Ω2

c −Ω2

ζ−1+O (κ)
+O (κ2),

from Eq. (4.72), where the eccentricity ratio κ takes the role of a regular perturba-
tion parameter. This expansion shows that the numerator Ω2

c −Ω2 switches sign
from positive to negative at the critical spinning speed Ω=Ωc. A periodic solution
exists only if the amplitude C is real, i.e., if the argument of the square root is posi-
tive. Therefore, the denominator determines the type of Hopf bifurcation, implying
the condition

ζ≶ 1+O (κ) (5.59)

for a subcritical (<) and supercritical (>) Hopf bifurcation. This condition is in agree-
ment with Eq. (5.58).

5.4 Bifurcation diagram

For the specimen with dimension and mass properties from Table 2.1, the bifur-
cation scenario as analyzed in Section 5.3 (shown in Figures 5.2 and 5.3) is char-
acterized by a heteroclinic saddle connection followed by a supercritical Hopf bi-
furcation. As a consequence of the singularly perturbed dynamical structure, the
asymptotic dynamics takes place on a slow manifold Ms. The reduced dynamics
on this slow manifold is described by the two-dimensional system (5.24), with dy-
namics depicted in Figure 5.6. The asymptotic behavior of the three-dimensional
and the reduced two-dimensional dynamics is similar. In particular, for increasing
spinning speeds Ω, a heteroclinic bifurcation occurs at Ωh, where a stable periodic
solution arises. This periodic solution shrinks even further if Ω is increased and
finally vanishes at a supercritical Hopf bifurcation, characterized by Ωc.

To compare the quantitative accordance, Figure 5.8 depicts the numerical bifur-
cation diagram with respect to the maximal γ-amplitude γ̄max of the periodic solu-
tion, relative to the inverted spinning equilibrium at γ = π

2 . Inverted spinning is
characterized by the solid line at zero. For subcritical spinning speeds Ω <Ωc, the
inverted equilibrium is unstable and depicted in blue. For supercritical spinning
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Figure 5.8: Bifurcation diagram with respect to the γ-amplitude, i.e., γ̄max :=
max

(
γ(t)

)− π
2 : The unstable inverted spinning is marked blue, whereas stable spin-

ning is indicated by a red line at zero. The branches of stable periodic solutions
have been obtained numerically, using the shooting method. The black curve char-
acterizes periodic solutions of the three-dimensional singularly perturbed system
given Eq. (5.18). The red branch corresponds to the periodic solution of the reduced
system Eq. (5.24) on the two-dimensional slow manifold Ms.

speeds Ω >Ωc, inverted spinning corresponds to an asymptotically stable equilib-
rium point, indicated by a red line at zero. The small difference between the red and
black branches of periodic solutions stems from the fact that the slow manifold Ms
has only been approximated up to first-order terms in ε, see Eq. (5.24). The accuracy
of the two-dimensional dynamics on Ms may be increased by increasing the approxi-
mation order of the perturbation expansion. In the right magnification of Figure 5.8,
Ω3D

h corresponds to the heteroclinic spinning speed of the three-dimensional system
from Eq. (5.18) which has been obtained in Section 4.5 by the application of numer-
ical shooting. Equivalently, Ω2D

h characterizes the heteroclinic bifurcation point of
the reduced dynamics on the slow manifold. According to the Melnikov function
method, the heteroclinic spinning speed is given by Eq. (5.48). The heteroclinic
spinning speed ΩM

h in red results from numerically solving the definite integrals I1
and I2 in the Melnikov condition Eq. (5.48). The two approximations ν1, ν2 from
Eq. (5.56) and Eq. (5.57), which differ in accuracy, yield the closed-form approxi-
mations ΩM1

h and ΩM2
h . Both periodic solutions of the three-dimensional and two-

dimensional system (black and red), respectively, finally vanish at the same critical
spinning speed Ωc of the Hopf bifurcation given in Eq. (4.55).

In Table 5.1, a summary of the spinning speeds Ω is given, characterizing the
bifurcation points.
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Table 5.1: Different spinning speeds Ω characterizing the bifurcation points of V1.

Bifurcation Symbol Magnitude Origin

Heteroclinic Ω3D
h 30.07 rad

s Shooting method

Heteroclinic Ω
M2
h 30.04 rad

s Melnikov approximation, Eq. (5.57)

Ω
M1
h 30.07 rad

s Melnikov approximation, Eq. (5.56)

ΩM
h 30.11 rad

s Melnikov analysis, Eq. (5.48)

Ω2D
h 30.12 rad

s Shooting method

Hopf Ωc 30.92 rad
s Derived in Eq. (4.55)

5.5 Variants of the tippedisk

All above sections consider as system parameters the dimension and inertia prop-
erties from Table 2.1 belonging to a real specimen, which will be referred to as type
V1 tippedisk in the following. For this specimen, the dimensionless quantities from
Eq. (5.43), are ζ= 1.112 and κ= 0.056.

Since the eccentricity ratio κ≪ 1 is small, the approximation of Eq. (5.57) holds
and states for ζ > 1 that the ratio ν is smaller than one, i.e., the heteroclinic bifur-
cation occurs before the Hopf bifurcation. In addition, the HBM approximation of
Eq. (6.11) identifies the Hopf bifurcation as a supercritical one. These statements
are consistent with the bifurcation scenario presented in Figure 5.8, which shows a
heteroclinic bifurcation followed by a supercritical Hopf bifurcation.

However, the question arises whether another type of tippedisk can be con-
structed, for which these bifurcations occur in reverse order (ν > 1) and the Hopf
bifurcation is subcritical (ζ < 1). Such a tippedisk may perhaps be designed using
a well chosen pattern of holes. Instead, here, a additional mass is added to an ho-
mogeneous disk. Figure 5.9 shows a new variant V2 of the tippedisk, which has
essentially the same geometrical dimensions as the tippedisk V1, but the hole is
filled with a cylinder of height c. The density is chosen to be ρ = 7700kg/m3. For
consistency with the previous analysis, the rounding of the disk is neglected in the
calculation of moments of inertia. The associated geometry and inertia properties
are shown in Table 5.2. Although the inertia properties of the tippedisk V1 and V2
are different, both variants exhibit the phenomenon of inversion, i.e., the rise of the
center of gravity if the disk is rotated fast enough.
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Figure 5.9: Dimensions of the tippedisk variant V2.

Table 5.2: Dimensions and mass properties of the tippedisk V2 with added mass.

Property Parameter Magnitude Unit
Disk radius r 0.045 m
Cylinder radius a 0.015 m
Distance b 0.02 m
Mass height c 0.02 m
Disk thickness h 0.01 m
Eccentricity e 2 ·10−3 m
Mass m 0.544 kg

BΘG (1,1) A 0.258 ·10−3 kgm2

BΘG (2,2) B 0.280 ·10−3 kgm2

BΘG (3,3) C 0.524 ·10−3 kgm2

BΘS(2,2) B̄ 0.278 ·10−3 kgm2

Eccentricity ratio κ 0.044 -
Inertia ratio ζ 0.928 -
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The local stability analysis of Section 4.3 and the harmonic balance results from
Section 4.4 imply for type V2 a subcritical Hopf bifurcation at

Variant V2: Ωc =
√

(r+ e)2

r
mg
B̄

= 30.70 rad
s , (5.60)

as A < B̄ =⇒ ζ< 1 holds. For Ω<Ωc, inverted spinning is unstable. If Ω>Ωc, the
inverted spinning motion is stable and locally attractive, and an unstable periodic
solution shields the domain of attraction. Evaluation of the Melnikov condition
Eq. (5.48) yields the approximation

Variant V2: ΩM
h = 31.36 rad

s ,

characterizing a heteroclinic saddle connection at a spinning speed Ωh larger than
the critical rotational velocity Ωc. With that, one might argue that the unstable
periodic solution emerging from the Hopf bifurcation vanishes at a heteroclinic bi-
furcation point.

However, the numerically obtained bifurcation diagram in Figure 5.10 shows a
different bifurcation scenario for the tippedisk of type V2. In particular, a subcriti-
cal Hopf bifurcation occurs at Ωc. The amplitude of the emerging unstable periodic
limit cycle increases with increasing spinning speed. At Ωh, a heteroclinic bifurca-
tion occurs, giving rise to a stable periodic orbit for Ω>Ωh. The unstable and stable
periodic limit cycles collide at a fold bifurcation Ωf and cancel out. For Ω > Ωf,
the domain of attraction extends to the non-inverted spinning equilibrium, i.e., al-
most all trajectories are attracted by the inverted spinning motion. To obtain the
bifurcation diagram, numerical shooting was used in combination with arc length
continuation to overcome the fold bifurcation point with vertical tangent [2]. The
two values Ω2D

h and Ωf characterizing the heteroclinic and fold bifurcations are
determined from the numerical solution. The critical spinning speed is given in
Eq. (5.60). Predictions of the heteroclinic spinning speed Ωh result from the nec-
essary condition of Eq. (5.48), where ΩM

h is obtained by numerical evaluation. In

contrast, the approximated heteroclinic spinning speeds ΩM1
h and ΩM2

h correspond
to the asymptotic approximations in Eq. (5.56) and Eq. (5.57). Table 5.3 lists the
different spinning speeds in an ascending order.
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Figure 5.10: Bifurcation diagram for the singularly reduced dynamical system given
in Eq. (5.24) with V2 parameters, shown in Table 5.2: Unstable inverted spinning
is marked blue, whereas stable spinning is indicated by a red line at zero. The
branches of stable and unstable periodic solutions have been obtained numerically,
using arc length continuation in combination with single shooting.

Table 5.3: Different spinning speeds Ω characterizing the bifurcation points of V2.

Bifurcation Symbol Magnitude Origin

Hopf Ωc 30.70 rad
s cf. Eq. (5.60)

Heteroclinic Ω
M2
h 31.31 rad

s Melnikov approximation, E. (5.57)

Ω
M1
h 31.33 rad

s Melnikov approximation, Eq. (5.56)

ΩM
h 31.36 rad

s Melnikov analysis, Eq. (5.48)

Ω2D
h 31.37 rad

s Shooting method

Fold Ωf 31.48 rad
s Shooting method





CHAPTER 6
Global analysis

The previous chapters illuminated the dynamics of the tippedisk for specific speci-
mens. Two different types with the same main geometric dimensions but different
inertia properties were considered, both exhibiting the phenomenon of inversion
but differing qualitatively in dynamic behavior. To obtain a better insight into the
dynamics, it is advantageous to introduce dimensionless quantities to analyze the
influence of parameters characterizing the qualitative behavior.

Finally, the analysis of the normalized dynamics on a slow manifold yields a
complete stability chart that characterizes the qualitative behavior of the tippedisk
and allows to identify different variants, implying different qualitative bifurcation
scenarios.

6.1 Normalized system equations

To study the influence of parameters, the singularly perturbed system from Eq. (5.18)
is normalized with respect to the slow coordinates

x=
[
β

γ

]
∈R2
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and the dimensionless velocity y := β̇
Ω = y

Ω , all as functions of the dimensionless
time t := tΩ.1 Furthermore, the normalized spinning speed

ω :=
√

B̄
mgr

Ω= Ω

Ωc
(1+κ) (6.1)

is defined. Here, without loss of generality, Ω> 0 is considered and correspondingly,
in view of κ > 0, ω > 0. In addition, the normalized perturbation parameter ϵ :=
ε
Ωr as well as the sphericity ψ are introduced and listed in Table 6.1, along with
the dimensionless eccentricity ratio κ and the inertia ratio ζ, defined in Eq. (5.43).
Moreover, the associated values for the previously discussed tippedisk types V1 and
V2 are also listed.

Table 6.1: Dimensionless parameters of the tippedisk.

Dimensionless parameter Definition V1 V2

eccentricity ratio κ := e
r ∈ (0,0.1] 0.056 0.044

inertia ratio ζ := A
B̄
∈R+ 1.112 0.928

sphericity ψ := mr2

B̄
∈R+ 3.932 3.963

perturbation parameter ϵ := ε
Ωr ∈R+ - -

Introducing the dimensionless quantities, the reduced dynamics of the tippedisk
is governed by the three-dimensional singularly perturbed dynamical system

x◦ = f(x,y)

ϵy◦ = g0(x,y)+ϵg1(x,y),

where the time-derivative •◦ := ∂
∂t• denotes the derivative w.r.t. the dimensionless

time t. Herein, the slow dynamics is determined by the function

f(x,y)=
[

y

−cosβ

]
,

whereas the fast dynamics is characterized by the zero- and first-order terms

g0(x,y)=−µ (1+κsγ)s2β

M(x)ω2
(
(1+κsγ)y−κsβcγ

)
,

1To distinguish between normalized and dimensioned quantities, a sans serif font is used to indicate
normalized quantities.
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and

g1(x,y)= cβ
M(x)

[
(ζc2γ+s2γ)sβ−2(ζ−1)ysγcγ

+ψ
(
(1+κsγ)2 y2 sβ+κ(1+κsγ)sβc2βsγ

−κ(1+κsγ)(3s2β−2)ycγ
)
− (1+κsγ)

ω2

]
.

To shorten notation, the dimensionless mass ‘matrix’

M(x) := ζcos2γ+sin2γ+ψ(1+κsinγ)2 cos2β

is used, which results from normalizing the mass matrix from Eq. (4.40) by the mo-
ment of inertia B̄. According to the singularly perturbed structure of Eq. (5.18), the
asymptotic dynamics takes place on the slow manifold Ms. Therefore, the asymp-
totic normalized dynamics is governed by the dynamics

x◦ = f(x,hs(x))=
[
hs(x)
−cosβ

]
, (6.2)

on the slow manifold Ms. Performing the singular perturbation reduction procedure
up to and excluding quadratic orders O (ϵ2) yields the slow manifold

Ms :=
{
(x,y) ∈R3

∣∣∣ y= hs(x)= hc(x)+ϵh1(x), x ∈R2
}

,

embedded in the dimensionless state-space. The associated zero- and first-order
approximations are given as

hc(x)= κsβcγ
1+κsγ

and

h1(x)= ω2 cβ
µsβ(1+κsγ)4

[
ζc2γ

(
1−κsγ−2κ2

)
+sγ

(
sγ+κ+κc2γ

)
− (1+κsγ)3

ω2 sβ

]
.

6.2 Local stability analysis on the slow manifold

Chapter 4 analyzes the local behavior in the vicinity of inverted and non-inverted
stationary spinning motions using Lyapunov’s indirect method. In particular, the
eigenvalues of the full system from Eq. (4.4) and the three-dimensional reduced sys-
tem from Eq. (4.39) were linearized. In this section, Lyapunov’s indirect method is
applied to the two-dimensional normalized system from Eq. (6.2) to obtain local sta-
bility statements on the slow manifold. With respect to the chosen parametrization
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of the disk, the non-inverted stationary spinning solution is characterized by the
state

x− =
[
+π

2 −π
2

]T
, (6.3)

whereas the inverted spinning equilibrium corresponds to

x+ =
[
+π

2 +π
2

]T
, (6.4)

cf. the equilibria points from Eq. (5.27) and from Eq. (5.28). Due to trigonometric
ambiguity, both spinning solutions occur with 2π periodicity in the rolling angle γ,

e.g., the state x=
[
π
2 , 3π

2

]T
is also identified as a non-inverted spinning equilibrium.

As the stability properties of equivalent equilibria are the same, only x− and x+ from
Eq. (6.3) and Eq. (6.4), respectively, are considered in the following analysis.

Local stability of inverted spinning

To analyze the local stability behavior of inverted spinning on the two-dimensional
slow manifold, the normalized reduced dynamics from Eq. (6.2) is linearized around
the inverted stationary spinning motion x+ given in Eq. (6.4), resulting in the linear
two-dimensional system

(x−x+)◦ =A+(x−x+),

where A+ is a constant linearization matrix given as

A+ =
[

a+11 a+12
1 0

]
, (6.5)

with the matrix coefficients

a+11 =−ϵω
2 − (1+κ)2

µ(1+κ)3
, a+12 =− κ

(1+κ)
. (6.6)

Due to the special structure of the inverted linearization matrix A+ from Eq. (6.5),
the characteristic polynomial is given by

p(λ)=λ2 −a+11λ−a+12

and has the roots

λ+1,2 =
a+11 ±

√
a+11

2 +4a+12
2

,

which read after substitution of the matrix coefficients Eq. (6.6) as

λ+1,2 =
−ϵ(ω2 − (1+κ)2

)±
√
ϵ2

(
ω2 − (1+κ)2

)2 −4µ2κ(1+κ)5

2µ(1+κ)3
. (6.7)
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The three-dimensional analysis of Section 4 (cf. Eq. (4.39)) reveals a Hopf bifur-
cation at Ω =Ωc. Substitution of the critical spinning speed Ωc into the definition
of the normalized equivalence from Eq. (6.1) yields the critical spinning speed

ωc = 1+κ (6.8)

of the normalized system from Eq. (6.2). At ω = ωc, a pair of complex conjugate
eigenvalues

λ+1,2 =±i
√

κ

1+κ (6.9)

crosses the imaginary axis, implying again a Hopf bifurcation. Both the value of
the critical spinning speed from Eq. (6.8) and the corresponding eigenvalues from
Eq. (6.9) do not depend on friction parameters. In particular, the friction coeffi-
cient µ and the normalized smoothing parameter ϵ do not alter the critical value ωc
of the Hopf bifurcation. Here, the imaginary part of the complex conjugate eigen-
values of the two-dimensional normalized system on the slow manifold Eq. (6.9)
corresponds to the normalized equivalent of the natural frequency at the Hopf bi-
furcation point, cf. the ansatz from Eq. (4.68).

The denominator of Eq. (6.7) is always greater than zero because the friction
coefficient µ and the eccentricity ratio κ are both positive. The argument under the
square root is negative for

ϵ< 2µ

√
κ(1+κ)5

ω2 − (1+κ)2
,

i.e., for small ϵ the stability of the inverted spinning solution is determined by the
sign of

ℜ(λ+1,2)∝−1+
(

1+κ
ω

)2
.

The real part vanishes at the critical spinning speed ωc, validating the prediction
from Eq. (6.8). For small eccentricity ratios, i.e., κ≪ 1, it holds that

ℜ(λ+1,2)> 0 ⇔ ω<ωc ⇔ Ω<Ωc.

In summary, the inverted spinning configuration is unstable for ω < ωc and stable
for ω > ωc. This local stability statement is in accordance with the linear stability
analysis of Section 4.3.
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Harmonic balance approximation

Taking into account the dimensional results of the harmonic balance method in
Section 4.4, the normalized amplitude

C = 2
p
κ

ω

√
(1+κ)2 −ω2

ζ−1+O (κ)
(6.10)

results from substitution of Eq. (4.73) into the Eq. (4.72), followed by some algebra
and identification of the dimensionless quantities defined in Table 6.1.

According to Eq. (6.10), the periodic solution exists if and only if the argument
of the square root is positive. The numerator in the square root argument changes
sign (from positive to negative) at the Hopf bifurcation point ωc given in Eq. (6.8),
while the approximate denominator is frequency independent and positive if the
inertia ratio ζ is larger than one.

For ζ> 1, the periodic limit cycle exists if the dimensionless spinning speed ω is
subcritical, i.e., ω < ωc. Since the inverted spinning equilibrium is then unstable,
the Hopf bifurcation is classified as a supercritical one. Vice versa, if 0 < ζ< 1, the
periodic limit cycle exists for ω>ωc, implying a subcritical Hopf bifurcation where
an unstable periodic solution emerges surrounding a stable equilibrium.

In summary, using the asymptotic harmonic balance approximation, the type of
the Hopf bifurcation at the critical spinning speed ωc depends on the inertia ratio

ζ≶ 1+O (κ), (6.11)

with ζ< 1 leading to a subcritical Hopf bifurcation, while ζ> 1 implies a supercriti-
cal one.

Local stability of non-inverted spinning

The above analysis showed that inverted spinning is locally asymptotically stable if
the normalized spinning speed ω is larger than the critical value ωc. If this condition
is satisfied, only local attractivity of inverted spinning is guaranteed. However,
the global behavior is also strongly influenced by the dynamics of the non-inverted
spinning solution.

In this section, the stability properties of the non-inverted spinning configuration
are studied. Linearizing the slow dynamics around equilibrium x− from Eq. (6.3),
which corresponds to the non-inverted spinning motion, gives the autonomous sys-
tem

(x−x−)◦ =A−(x−x−)
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with linearization matrix

A− =
[

a−11 a−12
1 0

]
,

and corresponding coefficients

a−11 =−ϵω
2 − (1−κ)2

µ(1−κ)3
, a−12 = κ

(1−κ)
.

Exploiting the κ-symmetry between inverted and non-inverted configurations, the
eigenvalues for non-inverted spinning are obtained directly from Eq. (6.7) as

λ−1,2 =
−ϵ(ω2 − (1−κ)2

)±
√
ϵ2

(
ω2 − (1−κ)2

)2 +4µ2κ(1−κ)5

2µ(1−κ)3
,

with positive denominator for κ < 1. The argument of the square root is positive
for κ < 1, immediately showing that both eigenvalues are real. Since the deter-
minant det A− = −a−12 < 0 is negative, the first eigenvalue λ−1 > 0 is larger and the
second eigenvalue λ−2 < 0 is smaller than zero, characterizing the non-inverted spin-
ning solutions as an unstable saddle equilibrium. The same stability properties
hold when linearization is performed around the second non-inverted equilibrium
at x− = [+π

2 ,+3π2 ]T. A heteroclinic saddle connection connecting both non-inverted
spinning equilibria in β-γ-coordinates corresponds to a homoclinic orbit from a phys-
ical point of view, cf. the slow dynamics mapped on the unit sphere from Figure B.2

The stability of homoclinic orbits is determined by the saddle quantity σ=λ−1 +λ−2
of the saddle equilibrium, cf. [68]. The saddle quantity of non-inverted spinning
equals the first matrix coefficient

σ= a−11 =−ϵω
2 − (1−κ)2

µ(1−κ)3
, (6.12)

which is negative if the normalized spinning speed ω is larger than

ωσ = 1−κ. (6.13)

The sign of the saddle quantity σ plays an important role for the asymptotic
behavior of the heteroclinic saddle connection, whose existence is discussed subse-
quently.
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6.3 Global heteroclinic bifurcation

From the Melnikov function method applied in Section 5.3, the quadratic ratio ν

between heteroclinicΩh and critical spinning speedΩc was introduced in Eq. (5.48),
and allows to determine the heteroclinic spinning velocity as

Ω2
h = νΩ2

c .

For a small eccentricity ratio κ≪ 1, the quadratic spinning speed ratio ν is approx-
imated in closed-form by Eq. (5.57), resulting in

Ω2
h = 15

7+8ζ
Ω2

c ,

from which the dimensionless heteroclinic spinning speed is obtained by normaliza-
tion as

ωh =
√

15
7+8ζ

(1+κ)> 0. (6.14)

Subsequent identification of ωc from Eq. (6.8) yields the relation

ωh =
√

15
7+8ζ

ωc. (6.15)

According to Eq. (6.15), the relative position of the heteroclinic and the Hopf bifur-
cation is characterized by the dimensionless inertia ratio ζ, more precisely:

ζ> 1⇐⇒ωh <ωc ⇐⇒ ν< 1⇐⇒Ωh <Ωc. (6.16)

A comparison of Eq. (6.11) with Eq. (6.16) shows that the two conditions, identifying
the nature of the Hopf bifurcation and predicting the location of the heteroclinic sad-
dle connection, are related. The Hopf bifurcation changes its type at ζ = 1, that is,
when the heteroclinic and the critical spinning speeds ωh =ωc are equal, according
to the Melnikov prediction.

The Andronov–Leontovich theorem [4] states that for planar systems the sta-
bility of a saddle connection depends on the sign of the associated saddle quantity,
given in Eq. (6.12). In Eq. (6.13), the spinning velocity ωσ is introduced which char-
acterizes the sign change of the saddle quantity corresponding to the non-inverted
spinning equilibrium. Therefore, the stability of the saddle connection at ωh de-
pends on the relative position of the heteroclinic bifurcation point with respect to
the spinning speed ωσ. It follows that the heteroclinic saddle connection is unsta-
ble from the inside if ωh <ωσ, i.e., if σ is positive. Conversely, ωh >ωσ indicates a
heteroclinic orbit that is stable from the inside, where σ is negative.
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Figure 6.1: Three-dimensional parameter space, characterizing the qualitative be-
havior of the tippedisk. The gray manifold Φ is defined by Eq. (6.8) and specifies
the critical spinning speed ωc of the Hopf bifurcation determined by a local stability
analysis of the inverted spinning equilibrium x+. Following the HBM approxima-
tion from Eq. (6.11), the red plane Λ, identifies the Hopf bifurcation as sub- or
supercritical, with ζ < 1 and ζ > 1, respectively. The Melnikov approximation in
Eq. (6.14) determines the location of the heteroclinic bifurcation and is represented
by the manifold Σ. Following Andronov–Leontovich, this manifold is separated by
Eq. (6.13) into two regions blue and yellow, classifying the heteroclinic saddle con-
nection from the inside as stable and unstable, respectively.

6.4 Global stability chart

The behavior of the tippedisk during its inversion is governed by the asymptotic
dynamics on the slow manifold. The main dimensionless parameters defining the
qualitative dynamics of the corresponding normalized system from Eq. (6.2) are the
eccentricity ratio κ, the inertia ratio ζ and the normalized spinning speed ω.

Figure 6.1 shows the dimensionless quantitiesω, κ and ζ in the three-dimensional
parameter space. The first condition of Eq. (6.8), determines the Hopf bifurcation
point by a relation between the spinning speed ωc and the eccentricity ratio κ. For
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ω < ωc, the inverted spinning equilibrium is unstable. Vice versa, for ω > ωc, in-
verted spinning is stable. In Figure 6.1, the associated stability boundary is shown
as a gray manifold Φ representing the critical spinning speed ωc. Note that this
manifold Φ does not depend on the inertia ratio ζ. Following the harmonic balance
approximation from Eq. (6.11), the red hyperplane Λ at ζ = 1 separates the pa-
rameter configurations by classifying the Hopf bifurcation as sub- or supercritical.
Equation (6.14), defines the heteroclinic spinning speed ωh for which a heteroclinic
saddle connection occurs. According to the Andronov–Leontovich theorem [4], the
saddle quantity σ of the non-inverted spinning equilibrium characterizes the stabil-
ity of the corresponding heteroclinic orbit. Combination of Eq. (6.13) and Eq. (6.14)
defines a manifold Σ which determines the heteroclinic spinning speed ωh, sepa-
rated into a blue and a yellow region by a solid black line representing the sign
change of the saddle quantity σ at the associated heteroclinic spinning speed from
Eq. (6.13). The blue region identifies the heteroclinic orbit as stable from the inside,
while the yellow region implies a saddle connection that is unstable from inside. In
addition, for five different inertia ratios ζ ∈ {0.75,1,1.25,1.5,1.75}, the correspond-
ing ζ-isoclines on the heteroclinic manifold Σ are shown by solid gray lines. The
intersection of the red hyperplane Λ with the gray and blue manifolds Φ and Σ,
respectively, coincides with the ζ-isocline for ζ = 1 and is shown as a black dashed
line. This relationship has already been discussed in short form in Section 6.3, cf.
Eq. (6.16).

In summary, the qualitative behavior of the tippedisk is described by the four
conditions specified in Eq. (6.8), Eq. (6.11), Eq. (6.13), and Eq. (6.14), which charac-
terize the three-dimensional parameter space from Figure 6.1. To facilitate read-
ability and interpretation of the three-dimensional parameter space, Figure 6.2
presents two two-dimensional projections, which offer a simplified visual represen-
tation for better comprehension.

Figure 6.2(a) shows the ζ-projection onto the ω-κ-plane. Here, the red and blue
domains are separated by the dashed line that marks the Hopf bifurcation point.
The solid black line representing the sign change of the saddle quantity σ from
Eq. (6.12) separates the blue and yellow domain. In accordance to Figure 6.1, the
ζ-isoclines are shown as gray curves. As Figure 6.2(a) results from a parallel pro-
jection in ζ-direction, and the critical spinning speed ωc given in Eq. (6.8) does not
depend on the inertia ratio ζ, the gray manifold from Figure 6.1 in this projection
coincides with the dashed black intersection in this reduced representation.

From physical intuition, it seems obvious to take a specific tippedisk with fixed
dimensions and inertia properties and to study the qualitative behavior in depen-
dence of the rotational velocity. More precisely, the dimensionless velocity ω takes
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Figure 6.2: Projected parameter space.

the role of a bifurcation parameter, whereas the dimensionless quantities κ and ζ

are fixed parameters.
Figure 6.2(b) shows the projection of Figure 6.1 in ω-direction corresponding

to the two-dimensional κ-ζ-parameter space which characterizes a real specimen.
With respect to this parameter space, three different bifurcation scenarios are iden-
tified, represented by three parameter domains in gray, blue and yellow, separated
by the solid and dashed black lines. Thus, there exist three different types of the
tippedisk, which show inherently different qualitative behavior.

To study the qualitative behavior of each type, three characteristic points v1, v2,
and v3 are chosen in the κ-ζ-space from Figure 6.2(b), with the same fixed eccentric-
ity ratio κ = 0.05, but varying inertia ratio ζ ∈ {0.9,1.2,1.5}. Each point represents
a type of tippedisk and thus implies a particular bifurcation scenario. According to
Figure 6.1, only one manifold depends on the inertia ratio ζ, namely the manifold
corresponding to the heteroclinic spinning velocity of the Melnikov estimate, so it
suffices to study the projection of the three-dimensional parameter space onto the
two-dimensional ω-κ-plane without loss of information. Therefore, Figure 6.3 shows
a magnified ω-κ-projection and identifies the three regions I, II, and III separated
by the solid and dashed black lines, respectively.

The black horizontal line at κ = 0.05 intersects the dashed line at the square
mark. Therefore, all three variants have the same critical spinning speed ω⋆c . The
intersections with the respective ζ-isoclines determine the individual heteroclinic
spinning speeds ωhi . To visualize the stability properties of the associated hete-
roclinic saddle connection, the points on the ζ-isocline are colored in red when the
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Figure 6.3: Stability chart for 0< κ< 0.1.

saddle quantity σ is negative. If κ= 0.05 intersects the red part of the ζ-isocline in
the domain I or II, the heteroclinic saddle connection is from the inside stable. Vice
versa, a blue intersection in the domain III indicates a from the inside unstable het-
eroclinic orbit. The two types v1 and v2 selected in Figure 6.2(b) result in the two
corresponding intersections, denoted by the two red points 1 and 2 in Figure 6.3,
characterizing two stable heteroclinic orbits at ωh1 <ω⋆c and ωh2 >ω⋆c , respectively.
Type v3 yields the blue intersection 3, implying an unstable saddle connection at
ωh3 <ω⋆c .

Consequently, the stability chart from Figure 6.3 determines the existence and
stability properties of limit sets and classifies local Hopf bifurcations and global
heteroclinic saddle connections of all tippedisk variants. All curves are given by
closed-form expressions resulting from regular expansions. According to the stabil-
ity chart, three different global bifurcation scenarios can be observed for three pairs
of parameter combinations with κ = 0.05 and ζ ∈ {0.9,1.2,1.5}, which are shown in
Figure 6.4.

The left bifurcation diagrams depict the γ-amplitude in dependence on the bifur-
cation parameter ω, accompanied by the evolution of the period time T in the right
diagrams. This representation of the γ-amplitude is advantageous because the pe-
riodic solution degenerates to a heteroclinic connection with dimensionless orbital
time T=∞, when the periodic solution approaches the non-inverted spinning equi-
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librium at γ= 3π/2. Since the spinning velocities ωhi at the heteroclinic bifurcation
points result from ϵ-approximations in the Melnikov function theorem, there is a
small discrepancy between predicted and real heteroclinic spinning speeds in Fig-
ure 6.4. Bifurcation points are shown as dots, with blue and red dots denoting un-
stable and stable heteroclinic saddle connections, respectively. All bifurcation dia-
grams are obtained using numerical shooting in combination with pseudo-arclength
continuation to overcome fold bifurcations [3]. As the eccentricity ratio κ = 0.05 is
kept constant, the eigenvalues for all three variants are the same, cf. Eq. (6.7).
Using the critical eigenvalues from Eq. (6.9), the dimensionless time is defined as

Tc := 2π

I
(
λ+1,2

) = 2π√
κ

1+κ
≈ 28.79, (6.17)

characterizing the normalized period time T of the periodic solution at the Hopf
bifurcation point. For the three types v1, v2, and v3 defined in Figure 6.2(b), the
stability chart in Figure 6.3 predicts the following bifurcation scenarios.

v1 κ = 0.05 and ζ = 1.2: For subcritical normalized spinning speeds ω < ω⋆c , in-
verted spinning is unstable. At ω = ω⋆c , a supercritical Hopf bifurcation fol-
lows, characterized by a stable periodic solution surrounding the unstable
equilibrium. If ω>ω⋆c , inverted spinning corresponds to a stable equilibrium.
The Melnikov estimate of the heteroclinic bifurcation point ωh1 <ω⋆c predicts
the vanishing of a stable heteroclinic saddle connection.

Since both the periodic solution near the Hopf and the heteroclinic bifurcation
point are stable, no additional fold bifurcation occurs so that the respective
bifurcation points are directly connected, cf. the bifurcation diagram 6.4(a).
Figure 6.4(b) reveals that with decreasing spinning speeds, the period time T
increases from Tc at the Hopf bifurcation and diverges to T =∞ at the hete-
roclinic bifurcation point.

v2 κ= 0.05 and ζ= 0.9: At ω=ω⋆c , there is a subcritical Hopf bifurcation, where
an unstable periodic orbit emerges from an equilibrium branch. The inverted
spinning equilibrium at γ=π/2 is unstable for ω<ω⋆c and stable for ω>ω⋆c . A
global heteroclinic bifurcation follows for ω=ωh2 , where a stable heteroclinic
saddle connection between the two non-inverted equilibria occurs.

The bifurcation diagram 6.4(c) is in accordance with the qualitative predic-
tions. However, since the unstable periodic solution arising from the subcriti-
cal Hopf bifurcation degenerates into a stable heteroclinic saddle connection,
an additional fold bifurcation must occur, altering the stability properties of



164 6. GLOBAL ANALYSIS

the periodic orbit. The bifurcation scenario starts with a subcritical Hopf bi-
furcation at ω⋆c , where an unstable periodic orbit is created. At ωh2 , a stable
periodic orbit arises from a heteroclinic saddle connection. Finally, the stable
and unstable periodic orbits collide and vanish in a fold bifurcation at ωf2 . The
diagram from Figure 6.4(d) shows the corresponding period time T, with ver-
tical tangent at the heteroclinic bifurcation point ωh2 . Approaching the Hopf
bifurcation causes the period time to converge to Tc defined in Eq. (6.17).

v3 κ= 0.05 and ζ= 1.5: Following the stability chart from Figure 6.3, the bifurca-
tion scenario for type v3 is characterized by a heteroclinic bifurcation at ωh3
and a supercritical Hopf bifurcation at ω⋆c . In contrast to the previous vari-
ants, the corresponding heteroclinic saddle connection is unstable from the
inside, as the saddle quantity of the non-inverted spinning equilibria is posi-
tive. Consequently, an additional bifurcation must occur to achieve dynamic
consistency.

The bifurcation diagram from Figure 6.4(e) shows that the stability of the
periodic solution changes through an additional fold bifurcation, allowing to
connect the unstable heteroclinic saddle connection with the branch of stable
periodic orbits arising from the supercritical Hopf bifurcation. According to
Figure 6.4(f), the period time at ω⋆c equals Tc and increases until it diverges
to T = ∞. In between, the period time takes the value Tf3 = 64.53 at the
occurring fold bifurcation point ωf3 ≈ 1.14.

In summary, the stability chart from Figure 6.3 combines several closed-form
conditions of the local stability analysis around the inverted and non-inverted spin-
ning equilibria from Eq. (6.8) and (6.13), results of the harmonic balance method
Eq. (6.11) and the approximation of the heteroclinic bifurcation using the Melnikov
function method, cf. Eq. (6.14). Combining these conditions, three different do-
mains I, II and III are distinguished, implying three different bifurcation scenarios,
see Figures 6.4(c), 6.4(a) and 6.4(e). For a specific specimen, the intersection of the
horizontal κ- and ζ-isocline characterizes the location and stability properties of the
heteroclinic bifurcation point. The critical spinning velocity ω⋆c , determining the
Hopf bifurcation, depends only on the eccentricity ratio κ, while the inertia ratio
ζ classifies the Hopf bifurcation as sub- or supercritical. In general, the qualita-
tive dynamics of the tippedisk is characterized by a heteroclinic bifurcation, where
a periodic solution arises from a heteroclinic saddle connection that shrinks and
eventually vanishes in a Hopf bifurcation.

However, if the stability properties of the periodic solution do not agree with
the stability properties of the heteroclinic saddle connection, an additional bifur-



6.4. GLOBAL STABILITY CHART 165

0.85 ω⋆c 1.15

π
2

3π
2

ωh1

ω

γ
m

ax

(a) Type v1: γ-amplitude

0.85 ω⋆c 1.15

0

Tc

100
ωh1

ω

T

(b) Type v1: Period time T

0.85 ωf2ω⋆c 1.15

π
2

3π
2

ωh2

γf2

ω

γ
m

ax

(c) Type v2: γ-amplitude

0.85 ωf2ω⋆c 1.15

0

Tc

100
ωh2

Tf2

ω

T

(d) Type v2: Period time T

0.85 ω⋆c
ωf3 1.15

π
2

3π
2

ωh3

γf3

ω

γ
m

ax

(e) Type v3: γ-amplitude

0.85 ω⋆c
ωf3 1.15

0

Tc

100
ωh3

Tf3

ω

T

(f) Type v3: Period time T

Figure 6.4: Bifurcation scenarios which correspond to the types v1, v2, and v3 de-
fined in Figure 6.2(a), each being a representative of an equivalence class with re-
spect to the global behavior. The left diagrams show the γ-amplitude of periodic
solutions and the inverted equilibrium at γ = π/2. Stable limit sets are shown in
red, unstable ones in blue. The right graphs depict the period time T of the corre-
sponding periodic limit cycles.
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cation must occur in between that changes the stability properties of the periodic
solution. As the normalized dynamics from Eq. (6.2) on the slow manifold Ms is
time autonomous, one Floquet multiplier equals unity representing the freedom of
phase. Due to the dimension of the system and the uniqueness of solutions, it is
a priori known that period doubling or symmetry breaking bifurcations cannot oc-
cur [48, 63]. Therefore, the second Floquet multiplier can leave the unit circle only
at +1, which implies a fold bifurcation. From this, the following conclusion is de-
duced, which consistently completes the prediction of the qualitative dynamics of
the tippedisk: If the stability of the heteroclinic and the periodic orbit near the Hopf
bifurcation do not have the same stability properties, at least one fold bifurcation
must occur.

All bifurcation scenarios from Figure 6.4 agree with the predictions of the sta-
bility diagram in Figure 6.3, which numerically validates the statement of the di-
agram. The presented stability chart explains the bifurcation scenario of all three
types v1, v2 and v3 for 0< κ< 0.1, 0.5< ζ< 2 and 0.85<ω< 1.15.

To embed the previously introduced specimens V1 and V2 with mass and inertia
properties from Table 2.1 and Table 5.2, respectively, their qualitative dynamics can
be compared with the bifurcation scenarios from Figure 6.4. Considering the propor-
tional relationship between the spinning speed Ω and its corresponding normalized
quantity ω, it is observed that the specimen with hole (variant V1) has qualitatively
the same behavior as in the bifurcation diagram 6.4(a) of type v1, while the speci-
men with added mass (variant V2) corresponds to the dynamics of the bifurcation
scenario of type v2 from Figure 6.4(c). Plotting the corresponding dimensionless
eccentricity ratio κ and inertia ratio ζ from Table 6.1 into the two-dimensional pa-
rameter space in Figure 6.2(b), the tippedisk with hole (variant V1) is located in
the blue region, while the specimen with additional mass (variant V2) is in the gray
domain. Therefore, the tippedisk with hole and the type v1 are elements of the
same equivalence class, i.e., the class characterized by the bifurcation scenario from
Figure 6.4(a). The tippedisk with added mass is associated with the representative
point v2 in Figure 6.2, which classifies the qualitative behavior from Figure 6.4(c).
Since the global behavior of the real specimens and the equivalence classification
according to the domains of the two-dimensional parameter space agree with the
predictions of the stability chart, this again confirms the qualitative statements.

In summary, the presented stability chart from Figure 6.3 allows statements
about the stability of inverted and non-inverted spinning solutions, the prediction
and classification of the Hopf bifurcation, and the existence of stable or unstable
(from the inside) heteroclinic saddle connection. If the stability properties of the
connected heteroclinic orbit and the periodic solution evolving from the Hopf bifur-
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cation do not match, there must be at least one fold bifurcation in between where
the periodic solution changes its stability. Thus, the existence of a fold bifurcation is
inferred from dynamic consistency and is not directly characterized. Therefore, the
question arises whether the stability chart is complete or whether additional bifur-
cation scenarios with more than one fold bifurcation occur. Assuming that at most
two periodic solutions coexist surrounding the inverted spinning equilibrium, at
most one fold bifurcation can occur. This hypothesis is supported by various numer-
ical experiments and could be examined by introducing a Poincaré map. Since the
solution of the system is not given in closed-form, the investigation of the Poincaré
map would also yield only numerical statements.

In conclusion, the dynamical behavior of the tippedisk appears to be completely
characterized by the stability chart from Figure 6.3, explaining all presented types
of bifurcation scenarios. Thus, the normalized analysis captures the dynamics of all
unbalanced disk-like variants from Figure 1.6.





CHAPTER 7
Experimental investigation

With the ultimate goal of nonlinear dynamics to understand real-world phenomena,
this chapter presents the experimental study of the tippedisk V1 to supplement the
theoretical analysis of the previous chapters.

To measure the motion of the rapidly rotating objects, the author has developed
a custom object tracking system from scratch based on off-the-shelf consumer cam-
eras and the state-of-the-art OpenCV computer vision library, capable of tracking
at high-speed with multiple cameras.

7.1 Laboratory setup

The tracking system consists of six Sony RX0 II high-speed cameras that are con-
nected by six Sony CCB-WD1 camera control boxes to synchronize the timing, cf.
Figure 7.1. The camera control boxes are connected to an Aruba HP 1820-8G switch
by Cat-5 cables.

Five of the cameras are mounted on an adjustable frame made of square alu-
minum profiles with a cross-sectional width of 20mm while the sixth camera is at-
tached to a portable magnetic tripod. The cameras are arranged in a circle-like fash-
ion to capture the motion of the target from different perspectives and various an-
gles. To capture blind spots or focus on specific details, the tripod-mounted camera
can be moved. Therefore, the arrangement and synchronization of multiple high-
speed cameras provides an estimate of the target’s position and orientation at any
given time instant. The tracking system is complemented by a high-performance
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Figure 7.1: Hardware for object tracking. Five cameras are mounted on a frame and
are supplemented by a sixth camera on a portable tripod. The camera control boxes
can be seen in the background. The setup is complemented by five high-performance
LED spots.

LED lighting setup, so that sufficient lighting is available even at high frame rates.
Specifically, an Aputure LS C300D MKII, two Aputure LS 300X, two Dedo DLED7-
D and the corresponding softboxes were used for the following experiments. Instead
of identifying tracked objects through object recognition, fiducial 6×6-ArUco mark-
ers are used, to simplify identification and allow for higher precision [42].

In general, object tracking systems measure the relative position and orientation
of a marker point relative to the camera. Therefore, a camera is often first calibrated
with respect to an origin. Based on this calibration, the subsequent measurement
takes place. This concept has the disadvantage that the camera must be stationary
during the measurement. To overcome this disadvantage, a marker reference board
was designed containing 16 ArUco (100× 100mm) markers distributed circularly
around an origin O, with corresponding inertial frame I, cf. Section 3.4. In this
setting, each camera measures its current configuration with respect to the selected
origin if at least one reference marker is detected.

To measure the configuration of the tippedisk, two ArUco markers with iden-
tifiers id0 and id1 and dimensions of 50×50mm are placed as target markers on
either side of the disk. The markers are orientated with respect to the body-fixed
B-frame such that the second eTi

y -axis of the marker points in opposite eB
x -direction

defined in Section 3.4. Also, the geometric center Ti of each target marker is directly
above/below the geometric center G of the tippedisk, so the markers are shifted by
half the disk height h in the positive/negative eB

z -direction. Thus, the target mark-
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Table 7.1: Relative position and orientation of the target markers with respect to
the body-fixed B-frame and the geometric center G of the tippedisk.

Property id0 id1 unit Property id0 id1 unit

eB
x · rGTi 0 0 mm eB

x eT0
y eT1

y [-]

eB
y · rGTi 0 0 mm eB

y −eT0
y eT1

x [-]

eB
z · rGTi 5 −5 mm eB

z eT0
z −eT1

z [-]

(a) target id0 (b) target id1

Figure 7.2: Alignment of the target markers id0 and id1 on the tippedisk variant
V1. The respective relative position and orientation are given in Table 7.1.

ers are uniquely aligned with respect to the body-fixed B-frame of the tippedisk.
The corresponding relative orientations are given in Table 7.1, where the center of
the respective marker is denoted as Ti , with associated relative vector rGTi , for
i = 1,2. In addition, Figure 7.2 depicts the relative position of the target markers
with respect to the body-fixed B-frame. The left Figure 7.2(a) shows the first target
marker id0, while the right Figure 7.2(b) depicts the second target marker id1.

The following high-speed measurements were captured at a frame rate of 500fps
under ‘Quality Priority’ with a recording setting of 50p 50M at a resolution of
1920×1080 pixels. At 500 frames per second and a theoretical spinning speed of
about 60rad/s, the frame-to-frame resolution in the orientation angle is about 7◦.
Results of a comparative benchmark experiment show that the achieved measure-
ment accuracy in the given setup was approximately ±1mm in position and a de-
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viation of less than 1◦ in angular measurement. As the absolute position of the
tippedisk is not of great interest, the position accuracy has no influence on the re-
sults. Regardless, the accuracy of the angle measurement is more than sufficient to
characterize the qualitative behavior.

At the above high-speed settings, the Sony RX0 II can only record a maximum
shooting time of approximately 2s due to its hardware limitations. In other words,
the camera’s hardware constrains the duration of the high-speed measurement.
Since the focus is on the inversion of the tippedisk, which is a transient phenomenon
on a relatively short time scale, the limited recording time is sufficient to measure
the behavior during the first phase of motion.

Ultimately, one wants to have repeatable experiments that can be reproduced
exactly every time. However, since the tippedisk is a freely spinning rigid body in
frictional contact, it is not trivial to start an experimental run by initiating the body
with a certain body state, i.e., a predefined configuration and a specific velocity field.
Without significantly increasing the engineering effort, this can hardly be realized
by a technical apparatus, not even by additional finesse like automation. Therefore,
it seems best to start various experiments by hand and then determine the corre-
sponding initial conditions in a following post-processing step, which subsequently
allows to select specific experiments of particular interest.

This manual initialization requires some experience if the angular spinning ve-
locity about the vertical axis should be of similar magnitude, but can be trained in a
relatively short time with manageable effort. Since the acceleration of the tippedisk
is manual and without sensors, there is no trigger that automatically starts the
recording of the cameras. Therefore, the camera recording is also started manually.

Figure 7.3 shows a stroboscopic sequence of an experiment in which the tippedisk
was manually started in a non-inverted spinning configuration, as seen by camera 1.
The first and second pictures of the sequence show a phase of acceleration, followed
by the release phase in which the tippedisk is released. After release, the disk
rotates in an almost non-inverted configuration and begins to invert its orientation
until the inverted spinning configuration is reached, see the third and fourth images
of the sequence.

Since the tippedisk is always in spinning state, each high-speed camera captures
either a target marker with id0 or id1, or neither if the tippedisk is oriented orthog-
onally to the image plane. For example, in the release phase shown in Figure 7.3(b),
camera 1 does not detect any target markers. In particular, the recording of each
individual camera therefore only allows an estimate of the body configuration for
distinct time intervals. As the cameras are synchronized, the individual measure-
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(a) Acceleration phase (b) Release phase

(c) Perturbed non-inverted spinning (d) Almost inverted spinning

Figure 7.3: Stroboscopic sequence from view of camera 1, showing the starting pro-
cedure of the experiment. The sequence is taken from a post-processed video so that
the orthonormal, right-handed trihedrons of the target and reference markers are
shown in the RGB convention.

ments from all cameras are fused to obtain a continuous measurement of the body
configuration.

The manufacturer Sony claims that the cameras are synchronized up to ten mi-
croseconds. However, when the experiments were evaluated, it was found that the
synchronization was off by up to about 1×10−2s, and together with spinning speeds
up to 70 rad

s this time delay gives an angular error of about 40◦. The fusion of non-
continuous, time interval measurements that are not perfectly synchronized results
in a signal with jumps and a large variance. To prevent this effect, a numerical
time-shift algorithm was implemented that optimizes the time delay by minimizing
the difference between the individual camera measurements.

7.2 Experimental results

Both Figure 7.4 and Figure 7.5 show four different experimental runs each starting
with a perturbed inverted and non-inverted configuration of the tippedisk, respec-
tively. For each experiment, the tippedisk type V1 is started manually in a per-
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turbed stationary spinning configuration indicated by the crosses. Since the author
is right-handed, the disk is started clockwise in vertical spinning direction, which
results in a negative spinning speed α̇. In contrast to the previous analysis with
positive spinning speeds, the trajectories are spiraling counter-clockwise. Due to
symmetry, both solutions with positive and negative rotational speed are equiva-
lent in terms of physical behavior. Figure 7.4 and Figure 7.5 show the evolution of
the spinning angle α, the inclination angle β, and the rolling angle γ, obtained by
object tracking. In addition, the corresponding spinning speed α̇ determined by nu-
merical differentiation is presented in Figure 7.4(b) and Figure 7.5(b), respectively.

Figure 7.4 shows four experiments labeled inv that start from a perturbed, in-
verted spinning motion. In Figure 7.4(a), the evolution of the spinning angle α is
shown as solid line, accompanied by the dashed linear extrapolation assuming a
constant initial spinning velocity. The corresponding spinning velocities α̇ are pre-
sented in Figure 7.4(b). The inclination angle β and the rolling angle γ are shown
in Figure 7.4(c) and Figure 7.4(d), respectively. Following the previous analysis,
the inversion behavior of the tippedisk is well characterized by the two-dimensional
β-γ-space, which motivates the projection in Figure 7.4(e). In this projection, the
inverted spinning equilibrium is marked as a black dot. The α- and α̇-graphs reveal
that the spinning speed decreases due to dissipation. However, the decay is rela-
tively small. The red trajectories of the experiment inv 1 correspond to the fastest
spinning speeds and show a converging behavior to the asymptotically stable in-
verted spinning equilibrium. At lower spinning speeds, as in the experiments inv 2
and inv 4, in green and yellow, respectively, the inverted equilibrium also appears to
attract the solutions. However, the corresponding orbits do not reach the inverted
spinning state in the limited experimental time. Therefore, it is not clear whether
the solutions converge to the inverted spinning equilibrium or end up in small os-
cillations around it. In contrast, the blue orbit of the experiment inv 3 at slowest
spinning velocity is repelled by the inverted equilibrium.

Figure 7.5 presents experiments that start from a perturbed non-inverted spin-
ning configuration. According to the β- and γ-graphs from Figure 7.5(c) and Fig-
ure 7.5(d), respectively, the initial fast spinning solutions non 1 and non 4 (red and
yellow), initialized close to non-inverted equilibrium, converge to inverted spinning
and end in a small oscillation. In the corresponding β-γ-projection, inverted and
non-inverted equilibria are shown as black dots. Neglecting the time-shift, the two
experiments appear to be qualitatively similar with a slight decrease in the magni-
tude of the spinning velocity, cf. Figure 7.5(b). The corresponding vertical spinning
angle is shown in Figure 7.5(a). The experiment non 2 in green has approximately
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Figure 7.4: Four different inverted-spinning experiments in which the tippedisk is
initialized by hand in an inverted configuration.
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Figure 7.5: Four different non-inverted spinning experiments in which the tippedisk
is initialized by hand in a non-inverted configuration.
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the same initial spinning speed as the non 4, but starts farther away from the non-
inverted spinning configuration.

According to the projection onto the β-γ-space, the corresponding orbit ends in an
oscillation about the inverted spinning equilibrium. The initial configuration of the
experiment non 3 in blue is similar to that of experiment non 2 and differs only in
the initial velocity, but results in a qualitatively different behavior. The experiment
non 3 at the slowest initial spinning speeds shows no inversion of the disk as the
rolling angle γ diverges with increasing time, accompanied by a decrease in the
inclination angle β.

For experiments non 1, non 2 and non 4, the tippedisk oscillates around a ver-
tically inclined configuration, as the inclination angle remains close to β = π/2. In
contrast, the oscillation in the blue experiment non 3 is superimposed by an in-
crease in the inclination angle, which characterizes a falling of the tippedisk where
the height of the geometric center G decreases.

7.3 Comparison of experiments and simulation

Figure 7.6 and Figure 7.7 compare the experimental results of the two experiments
inv 2 and non 1 presented above with the corresponding simulation results of the
rigid body system Model 1.1 of Table 4.1 and the reduced dynamics from Eq. (5.24)
on the slow manifold. The parameters, friction and smoothing coefficients, were
chosen to be µ = 0.3 and ε = 0.001m/s, respectively, and were identified by manual
inspection of the results.

Simulations are initialized with the same initial conditions as the experiment,
as far as possible. Since the orientation is measured by visual object tracking, the
angles α, β and γ are determined directly. However, the corresponding initial an-
gular velocities α̇, β̇, and γ̇ must be determined by numerical differentiation, which
introduces some additional uncertainty in the initial conditions.

In Figure 7.6, the measurements of experiment inv 2 are depicted in green. The
simulation results of Model 1.1 and the dynamics on the slow manifold is shown
in black and blue, respectively. Qualitatively, the results of the experiment and the
simulation behave similarly. However, the experiment and the full model simulation
show that the corresponding orbits oscillate around the virtual slow manifold in β-
γ-β̇-space, while the slow dynamics is constrained to this manifold.

Figure 7.7 presents the experiment non 1 in red, where the tippedisk is initial-
ized in a perturbed non-inverted spinning configuration. Model 1.1 in black shows
qualitatively similar behavior, while the reduced dynamics on the slow manifold
in blue deviates slightly. In addition, a second solution of the dynamics on the
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Figure 7.6: Inverted spinning experiment inv 2 in comparison with the rigid body
model (Model 1.1) defined in Table 4.1 and the dynamics on the slow manifold from
Eq. (5.24). Both simulations are started with the same initial conditions as the
experiment.
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Figure 7.7: Non-inverted spinning experiment non 1 in comparison with the rigid
body model (Model 1.1) defined in Table 4.1 and the dynamics on the slow manifold
from Eq. (5.24). The simulations shown as solid lines are started with the same
initial conditions as the experiment in red, while the dashed blue line is determined
by the reduced dynamics on the slow manifold initialized with the state of Model 1.1
at t = 0.7s.

slow manifold is shown as a dashed blue line, initialized according to the state of
Model 1.1 at time t = 0.7s. The corresponding initial condition is indicated by the
plus sign. The solution of the Model 1.1 simulation is close to the experiment non 1
and ends in an oscillation around inverted spinning. According to Figure 7.7(d),
both corresponding orbits oscillate around the virtual slow manifold.
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7.4 Discussion of experiments

As the experiments are started manually, the time instant of release cannot directly
be obtained from measurements, i.e., the first time instant for which the disk is
spinning freely. To avoid false identifications of the starting point, the release of
the disk can be conservatively estimated to exclude movements where the target
touches the starting hand. Therefore, the start time of the experiment must be
determined based on the object tracking results, which can be extremely difficult
for specific experiments. Together with the constraint of the maximum recording
time 2s of the used cameras in high-speed mode, the experimental time is severely
limited. In Figure 7.5, for example, the time origin at t = 0s for the experiments
non 2 and non 3 (green and blue) does not correspond to the actual release point,
as the measurement was started manually with a slight time delay. Therefore,
the associated graphs do not capture the entire inversion process and somewhat
disregard the very first phase of motion. However, the state at t = 0s is a valid initial
condition of a freely spinning tippedisk in a (strongly) perturbed configuration.

The qualitative analysis from the preceding sections yields an asymptotically at-
tractive inverted spinning configuration if the spinning speed α̇=Ω is large enough.

According to the experiments started close to inverted spinning, the inverted
spinning equilibrium attracts solutions when the initial spinning speed is large, cf.
Figure 7.4. In experiment inv 1, the tippedisk ends up in a perfect inverted spinning
configuration. For slow initial spinning speeds, the solutions are repelled by the
inverted spinning equilibrium, cf. experiment inv 3. This is consistent with the
local stability analysis performed in Section 4. For intermediate spinning speeds,
the tippedisk ends in a oscillating state around inverted spinning, as in experiments
inv 2 and inv 4.

Following the initially non-inverted experiments from Figure 7.5, the tippedisk
inverts its orientation and oscillates around inverted spinning if spun fast enough.
Even for extremely fast spinning speeds, the tippedisk does not exhibit a full inver-
sion. At first glance, this appears to be in contradiction to the qualitative analysis,
which predicts an asymptotically attractive inverted spinning equilibrium when the
spinning speed is above the critical value Ωc = 30.92 rad

s . However, due to the lim-
ited recording time, it is hardly possible to conclude from the experiments whether
or not the disk eventually converges to the inverted spinning equilibrium. Another
reason for this contradiction could be the assumption of a horizontally immobile
COG, since translational velocities may cause additional frictional disturbances
leading to superimposed oscillations. This hypothesis is supported by the compari-
son of the experimental results in Figure 7.6 and Figure 7.7 with their correspond-
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ing simulation results, as the solutions of Model 1.1 simulations are superimposed
by oscillations which are not present in the dynamics on the slow manifold. Neglect-
ing superimposed oscillations, the slow invariant dynamics gives a good prediction
of the experiment initialized at inverted spinning.

The experiment non 1 and the corresponding simulation results of the reduced
Model 1.1 in Figure 7.7 show a different behavior than the dynamics on the slow
manifold, initialized at the same initial condition at t = 0s. However, the asymp-
totic dynamics on the slow manifold initialized at t = 0.7s seems qualitatively close
to the asymptotic dynamics of experiment non 1 and the corresponding simulation of
Model 1.1. Since the dynamics on the slow manifold characterizes the slow dynam-
ics after an initial phase of fast motion, the reduced model describes the asymptotic
behavior of the tippedisk close to pure rolling. If the initial state is close to pure
rolling motions, the dynamics on the slow manifold is a valid approximation of the
initial phase of the motion. Therefore, the asymptotic dynamics on the slow mani-
fold initialized at t = 0.7s with the angles of the simulation of Model 1.1, i.e., after
a fast transient phase, is qualitatively close to the asymptotic dynamics of the ex-
periment non 1 and the corresponding simulation of Model 1.1 with respect to the
evolution of the inclination and the rolling angles β and γ.

Since the total energy of the tippedisk is mainly determined by the spinning
speed, the α̇-diagrams in Figure 7.6(a) and Figures 7.7(a) are suited to estimate the
dissipation losses. It is evident that the two models (Model 1.1 and the dynamics on
the slow manifold), which neglect pivoting and contour friction or even aerodynamic
drag, exhibit much lower dissipation rates compared to the real experiments. There-
fore, the time scales of the real system in contact with a frictional support are more
blurred than in the case of the idealized simulation models. As a consequence, it is
difficult to decompose the motion of the real tippedisk into three different phases,
namely, convergence to almost pure rolling motions on a fast time scale, the inver-
sion on an average time scale, followed by a dissipation-driven falling of the disk on
the slow time scale.

In summary, the experiment and the reduced dynamics is reasonably consistent
in qualitative terms. However, the experimental setup does not allow for a more
accurate comparison because both the recording time of the system is limited and
the numerical derivative of the angle measurements leads to uncertainties in the
angular velocities.

To improve the measurement, additional microelectromechanical gyroscopes that
directly measure the angular velocity of the body could be mounted on the tippedisk,
allowing more accurate measurement through sensor fusion. However, this experi-
mental setup presents additional challenges because the application of an electronic
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sensor with a non-negligible mass and inertia tensor alters the inertia properties of
the tippedisk, which must be taken into account. Here the use of lightweight tar-
get markers has its own appeal, since the inertia properties of the tippedisk can
be easily determined from measurement and trivial calculations without additional
inaccuracies, with the disadvantage that there is no direct access to the angular
velocity. Therefore, the application of more specialized high-speed cameras with un-
limited recording time and higher frame rates would allow longer and more precise
measurements with a finer time resolution and thus the possibility of the applica-
tion of signal filters. For more accurate measurements, it is also recommended to
optimize system parameters such as friction and smoothing coefficient to increase
the quantitative agreement between measurements and simulation.



CHAPTER 8
Conclusion and Outlook

In this monograph, the tippedisk was introduced as a novel mechanical-mathematical
archetype exhibiting a counterintuitive friction-induced inversion phenomenon. The
holistic analysis ranges from the theoretical research fields of nonsmooth rigid body
dynamics, through global bifurcation analysis in the context of nonlinear dynamics,
to high-speed experiments in the domain of applied physics. The analysis was per-
formed exemplarily on a real physical specimen and generalized by a subsequent
dimensionless analysis.

8.1 Conclusion

A rigorous mathematical description of the tippedisk in the framework of non-
smooth dynamics serves as the foundation for a holistic analysis of its peculiar
and fascinating dynamics. Therefore, as a first step, a full mechanical model was
introduced, based on first principles and taking into account various smooth and
set-valued friction laws as well as frictional contact. Physical system coordinates,
referred to as the spinning, inclination, and rolling angles of the disk, were identi-
fied from a coordinate-free description. To derive a description in generalized coor-
dinates, two different models were deduced, one based on a quaternion formulation
and one parametrized in Euler angles. The quaternion-based model has the advan-
tage of much simpler system equations due to a symmetric structure, allowing more
efficient numerical integration.
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However, the major drawback lies in the non-physical parametrization, as the as-
sociated generalized coordinates cannot be directly identified with the physical con-
figuration of the tippedisk. In contrast, the system equations of the model in Euler
angles are highly nonlinear, intrinsically asymmetric, and extremely tedious to de-
duce. Approaches to derive the system equations with symbolic computations were
not feasible because trigonometric ambiguities resulted in extremely large nonlin-
ear system equations that could not be simplified in a manageable way. With the
ultimate aim to perform a qualitative analysis, compact expressions are favorable.
Consequently, a diligent two-week process of rigorous hand calculations was re-
quired to derive equations that were reasonably compact. The identification of the
Euler angles with the physical spinning, inclination, and rolling angles showed the
relevance of this parametrization. Due to the high rotational speed of the tippedisk
and its inherent slow-fast behavior, convergence with the first-order Moreau’s time-
stepping scheme was anything but trivial. However, the redundant parametrization
made it possible to compare the simulation results in order to check convergence on
the one hand and to numerically validate the derived system equations on the other
hand. A numerical study of full model simulations showed that set-valued Coulomb
friction is not suitable to describe the inversion behavior, as the tippedisk ends in
pure rolling motions without inverting its orientation. This stands in contrast to
the tippetop, which can be described using dry Coulomb friction, cf. [31]. By incor-
porating both spinning and tangential sliding friction in the set-valued Coulomb–
Contensou friction law, the mechanical model of the tippedisk successfully captured
the qualitative behavior. Comparison of short- and long-term simulations revealed
that the dynamical behavior of the tippedisk is governed by multiple time scales.
By focusing on the inversion behavior, additional dissipation mechanism, as con-
tour and pivoting friction play a minor role, which only have a significant effect on
the long-term behavior. During inversion, the tippedisk is in spinning state, which,
under the assumption of Coulomb–Contensou friction, yields a smooth force law.
Therefore, by neglecting pivoting torques, and simultaneously taking the smooth
friction behavior into account, the model with smooth Coulomb friction captures
the essence of the inversion phenomenon. Moreover, numerical simulations showed
that the tippedisk remains in persistent contact with the flat support. Considering
the persistence of the contact point and the application of a smooth friction law, an
ordinary differential equation describing the physical motion of the tippedisk was
established.

The local stability behavior of stationary spinning solutions was analyzed using
Lyapunov’s indirect method, which required prior reparametrization. Numerical
evaluation of the eigenvalues, showed that the dynamics of the tippedisk is char-
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acterized by three different time scales suggesting slow-fast system behavior. To
investigate the stability of permanent rotations, the spinning speed was found to be
the bifurcation parameter. Here, the eigenvalues prove the existence of a Hopf bifur-
cation, where an unstable two-dimensional subspace of inverted spinning becomes
stable when the spinning velocity is large enough.

Due to the high dimensionality of the full mechanical system, a closed-form anal-
ysis was not possible. Therefore, a reduction procedure was performed to obtain a
lower-dimensional model that captures the main features of the dynamical behav-
ior of the tippedisk. Based on the simulations of the full model and observations
from preliminary experiments, it was assumed that the contact point is bilaterally
constrained. Under the postulate of a homogeneous frictional support, the absolute
horizontal position of the disk has no influence on the dynamical behavior. Neglect-
ing the frictional forces caused by a slow wandering of the disk led to a gyroscopic
master dynamics to which the translational dynamics is enslaved. With the em-
phasis on the inversion phenomenon characterized by the orientation of the disk,
the enslaved translational dynamics was hidden by the assumption of a horizon-
tally immobile center of gravity. Similar simplification assumptions are present in
the analysis of spinning eggs [82] and the tippetop [20], and are common for fast
spinning objects [66]. Numerical validation also showed that the relative sliding
velocity of the contact point during inversion is small, i.e., the inversion is close to a
pure rolling motion, which justifies the assumption of pure rolling in the tangential
rolling direction. The results of the analysis within the singular perturbation the-
ory are consistent with this assumption and prove the attractiveness of almost pure
rolling motions.

Inspired by the local stability analysis, the spinning speed was chosen as bifur-
cation parameter that foliates the state-space. However, the corresponding assump-
tion of a constant spinning speed leads to energetic inconsistencies. More precisely,
assuming a constant spinning speed, the kinetic energy is the same for inverted
and non-inverted stationary spinning motion, as opposed to the potential energy,
which is higher in the inverted configuration. Consequently, the net total energy
must increase during inversion if the spinning speed is kept constant, which is not
physical. Nevertheless, the reduced dynamics properly describes the qualitative in-
version behavior. Application of perturbation expansions on the linearized reduced
model and the subsequent application of the harmonic balance method, have led to
closed-form approximations which characterize both the critical spinning speed and
the type of Hopf bifurcation as supercritical.

Assuming a smooth but ‘stiff ’ friction law induces dynamics in the form of a
singularly perturbed dynamical system. Therefore, the physical behavior of the
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tippedisk is related to the mathematical concept of slow-fast dynamics and allows
to identify pure rolling motions with the critical manifold. Studying the singu-
larly perturbed dynamical structure revealed that the asymptotic dynamics of the
tippedisk takes place on a two-dimensional slow manifold, which allows to obtain
a two-dimensional dynamics that characterizes the inversion behavior. Unlike the
tippetop, which is always in spinning state [90], the inversion phenomenon of the
tippedisk is described by motions close to pure rolling. Consequently, the tippedisk
is not merely an asymmetrical version of the tippetop, but exhibits a different quali-
tative behavior, and thus defines its own mechanical-mathematical archetype. Since
the asymptotic dynamics in physical coordinates is equivalent to a perturbed Hamil-
tonian structure, the Melnikov function method was applied, allowing to obtain a
necessary condition for the existence of a heteroclinic saddle connection. By using
perturbation expansion, the heteroclinic bifurcation parameter is approximately de-
rived in closed-form. Furthermore, the dimensionless quantities arise almost natu-
rally as a consequence of this approximation.

Normalization of the closed-form expressions that characterize the Hopf and het-
eroclinic bifurcations and the analysis of the normalized dynamics on the slow man-
ifold allowed to obtain a stability chart characterizing the qualitative behavior of the
tippedisk. From this stability chart, three different variants of the tippedisk with
qualitatively different dynamics were identified. The corresponding bifurcation sce-
narios were computed numerically to demonstrate the validity of the dimensionless
analysis.

The theoretical analysis has been complemented by high-speeds experiments
that are compared to the full mechanical model and the reduced dynamics on the
slow manifold. Analogous to the Euler disk, aerodynamic drag is not the main dissi-
pation mechanism [17] and the inversion phenomenon is caused by the interaction
of gyroscopic, normal and frictional forces. In a qualitative analysis of the dynamics
on a short time scale, the effect of aerodynamic drag can be neglected. However, the
long-term behavior can be influenced by air friction.

8.2 Outlook

Although the presented analysis explains the inversion phenomenon of the tippedisk,
there are some open questions. Based on intuition, it is natural to consider the spin-
ning velocity as a bifurcation parameter. However, if dissipation is assumed to be
negligible during inversion, i.e., on a short time scale, this yields energetic inconsis-
tencies. Therefore, it would be preferable to choose the total energy as a bifurcation
parameter. For non-inverted and inverted spinning motions, respectively, the total
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energy and the spinning speed are directly related as the potential energy is given
naturally by the orientation of the disk. Neglecting dissipation does not result in
energetic inconsistencies.

Axisymmetric rigid bodies [116] exhibit self-induced jumping for larger spinning
speeds. The inversion behavior of the tippedisk is characterized by almost pure
rolling motions in persistent contact. Nevertheless, there may be motions for which
the disk detaches from the ground, motivating to study the phenomenon of self-
induced jumping.

Although the reduced dynamics captures the essence of the counterintuitive in-
version phenomenon, the reduction procedure may somehow ignore even more rich
and interesting dynamics, e.g., quasiperiodic solutions of the full system could be
forced to periodic ones in the reduced dynamics. Instead of performing the model or-
der reduction procedure, the singular perturbation analysis may be directly applied
on the full mechanical model where only the contact is assumed to be persistent.
Because the inversion behavior is characterized by almost pure rolling motions, the
relative sliding velocities correspond to fast variables, which motivates to formu-
late the system with respect to minimal velocities that contain the relative sliding
velocities.

To improve the experimental measurements, the application of high-speed cam-
eras with infinite recording time is highly recommended. Furthermore, higher
frame rates would allow a better estimation of the initial condition and thus im-
proved comparability of simulations. Based on the adapted experiments, a parame-
ter optimization would allow to characterize the influence of additional dissipation
mechanisms, such as aerodynamic drag and pivoting friction.

Due to the extremely rich dynamics induced by gyroscopic and contact forces, the
tippedisk is an excellent benchmark example for nonsmooth integration schemes,
e.g., nonsmooth Ruge-Kutta methods [50]. In particular, the tippedisk allows to
check constraint satisfaction and the convergence of higher-order schemes. From
the stability chart, system parameters can be chosen to obtain a particular dynam-
ics that includes sub- or supercritical Hopf bifurcations, stable or unstable hete-
roclinic saddle connections, and even a fold bifurcation. Therefore, the reduced
dynamics is suited to test numerical methods that predict and characterize peri-
odic limit cycles and heteroclinic saddle connections, e.g., the stability analysis of
periodic solutions through Koopman analysis [11].

The analysis of the tippedisk showed how certain friction laws induce a sin-
gularly perturbed dynamical structure, motivating to apply the methodology to
engineering applications. In particular, systems from vehicle dynamics, such as
the over- and understreer behavior of automobiles [118], the instability of towed
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wheels [5], the hunting motion [41, 6], or the behavior of aircrafts during ground
maneuvers [100] may be analyzed in the framework of singular perturbation theory
since their nominal motion is close to pure rolling.

To summarize, the tippedisk exhibits extremely rich and interesting dynamics
and shows a counterintuitive inversion phenomenon. Its nonlinear dynamic analy-
sis reveals a singularly perturbed dynamical structure, which is naturally induced
by a peculiar friction law. Consequently, the tippedisk forms not only an excellent
mathematical-mechanical archetype for friction-induced instabilities, but also an
archetype system for singular perturbation theory.



APPENDIX A
Description of rotations

A.1 Coordinate map

The coordinate map AK maps a vector v of the Euclidean space E3 to coordinates

Av ∈R3 of the basis A and is defined as:

AK : E3 →R3

v 7→ Av=
(
v · eA

i

)
A eA

i .

The projection of the vector v onto the unit basis vectors eA
i is identified as i-

coordinate vA
i =

(
v · eA

i

)
w.r.t. the basis A. The coordinate map AK is linear1:

AK (αa+βb)=αAK a+βAK b

The inverse coordinate mapping

AK −1 :R3 → E3

Av 7→ v= vA
i eA

i .

maps coordinates Av ∈R3 w.r.t the basis A onto the associated vector v ∈ E3.

1This directly results from the fact that E3 and R3 are both linear vector spaces.
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v ∈ E3

Av ∈R3
Bv ∈R3

KA KB

AAB

Figure A.1: Transformation: Commutative diagram

A.2 Coordinate transformation

The coordinate transformation

AAB :R3 →R3

Bv 7→ Av= AAB Bv

maps the vector B-coordinates Bv onto the A-coordinates Av. According to the com-
mutative diagram Figure A.1, the coordinate transformation is equal to

AAB =A K ◦B K −1.

The action of AAB on Bv then yields

AAB Bv=A K ◦B K −1 (
Bv

)=
(
vB

j eB
j · eA

i

)
A eA

i ,

from which we deduce the transformation matrix

AAB =




(
eA

1 · eB
1

) (
eA

1 · eB
2

) (
eA

1 · eB
3

)
(
eA

2 · eB
1

) (
eA

2 · eB
2

) (
eA

2 · eB
3

)
(
eA

3 · eB
1

) (
eA

3 · eB
2

) (
eA

3 · eB
3

)


=

[
A eB

1 A eB
2 A eB

3

]
.

Due to symmetry it follows that ABA = AT

AB = A−1
AB.

A.3 General rotations

An orthogonal tensor Q is a bilinear mapping from E3 to E3

Q : E3 → E3

v 7→ v′ :=Q ·v,
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which preserves relative angles v ·w = v′ ·w′ and the length ∥v∥ = ∥v′∥ of a vector.
From these conditions we conclude with

v ·w= (Qv) · (Qw)= v ·QT
Q w,

that QTQ = 1 has to hold. As Q is orthogonal, the inverse Q−1 is equal to the
transpose QT

. Moreover, we conclude from the orthogonality

det(Q
T
Q)= det(Q)2 = 1 =⇒ det(Q)=±1.

If det(Q) = +1 holds, we identify Q as a ‘proper’ rotation R. Proper rotations R do
not reflect bases, such that

(e i × e j) · ek = (R e i ×R e j) ·R ek

holds.

A.4 Rotation induced frames

Any rotation RAI induces intrinsically for any right-handed reference I-frame a
rotated, right-handed A-frame as the mapping

RAI : E3 → E3

eI
i 7→ eA

i := RAI · eI
i ,

can be applied on each basis vector eI
i of the reference frame I and preserves angles,

length and orientations. The rotation RAI is therefore a tensor of second-order and
can be identified as2

RAI = δi j eA
i ⊗ eI

j

= (eA
j · eI

i ) eI
i ⊗ eI

j

= (eI
i · eA

j ) eI
i ⊗ eI

j

= eA
i ⊗ (eI

i · eA
j ) eA

j

= (eI
i · eA

j ) eA
i ⊗ eA

j .

(A.1)

By introducing the components

RI
AI,i j := RAI (eI

i , eI
i )= (eI

i · eA
j )

2In Eq. (A.1) the commutativity of the dot product · and the linearity of the tensor R are used.



192 A. DESCRIPTION OF ROTATIONS

and
RA

AI,i j := RAI (eA
i , eA

i )= (eI
i · eA

j ),

one observes that RI
AI,i j = RA

AI,i j holds. For more compact expressions, the shorter

notation RAI,i j := RI
AI,i j = RA

AI,i j is introduced. At this point we have to keep in
mind that the components RAI,i j of the rotation-tensor RAI are associated with
pure bases, i.e., eI

i ⊗ eI
j or eA

i ⊗ eA
j .

The inverse rotation RI A = R−1
AI induces the mapping

RI A = R−1
AI : E3 → E3

eA
i 7→ eI

i := R−1
AI · e

A
i ,

which rotates eA
i onto eI

i and is identified as

RI A = δi j eI
i ⊗ eA

j

= eI
j ⊗ (eA

j · eI
i ) eI

i

= (eA
i · eI

j) eI
i ⊗ eI

j

= (eI
j · eA

i ) eA
i ⊗ eA

j

= (eA
i · eI

j) eA
i ⊗ eA

j .

(A.2)

The comparison of Eq. (A.1) and Eq. (A.2) implies that the inverse rotation

RI A = R−1
AI = RT

AI

is equal to the transpose of RAI .
As eI

i spans the basis I and eA
i spans the basis A, each vector v can be decom-

posed into a linear combination

v= (v · eI
i ) eI

i = vI
i eI

i , (A.3)

spanned by the basis of I with coordinates vI
i := (v · eI

i ), or into the linear combina-
tion

v= (v · eA
i ) eA

i = vA
i eA

i ,

w.r.t. basis of A and coordinates vA
i := (v · eA

i ). For any given vector v, the rotation
RAI induces a rotated vector

v′ = RAI v= (v · eI
i ) eA

i = v′Ai eA
i . (A.4)
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The comparison of Eq. (A.3) and (A.4) implies the I-coordinates of the vector v and
the A-coordinates of the rotated vector v′ = RAI v are equal, i.e., Av′ = I v holds, see
Figure A.2.

As the rotation RAI intrinsically induces a rotated A-frame, the vector v can be
expressed in both I- and A-coordinates. Expressing the vector v = vA

i eA
i as linear

combination with respect to the A-basis, one obtains after applying the coordinate
map KI

I v= vA
i I eA

i = vA
i I (RAI eI

i )= vA
i I RAI I eI

i = I RAI Av,

from which
AI A = I RAI

is deduced. In summary, the transformation matrix AI A is connected with the
rotation RAI by the components AI A,i j = RAI,i j .

v v′

Av I v= Av′

RAI

KA KI KA

AI A

Figure A.2: Rotation vs. transformation

A.5 Relative rotations

Introducing rotations RAI , RBI , we obtain the rotation and transformation matri-
ces

I RAI = ARAI = AI A

I RBI = BRBI = AIB.

The relative rotation RBA from A to B is defined as

RBA := δi j eB
i ⊗ eA

i = RBI RT
AI

with associated rotation and transformation matrices

ARBA = BRBA = AAB.
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I

A B

RAI

RBA

RBI

Figure A.3: Relative rotations

The rotation RBI can be constructed by rotating eI
i onto eA

i , which are subsequently
rotated onto eB

i and yields
RBI = RBA RAI ,

see Figure A.3. Often, one searches for absolute orientations with respect to a ref-
erence frame I, expressed in I-coordinates, i.e.,

I RBI = I RBA I RAI

= AI A ARBA A
T

I A I RAI

= AI A ARBA A
T

I A AI A

= AI A AAB

= AIB,

which also can be written as

I RBI = I RAI ARBA .

Introducing parameters ϕ, it is convenient to parametrize rotations RBA(ϕ), in
coordinates RA

BA,i j(ϕ)= RBA,i j(ϕ), such that

RBA(ϕ)= RBA,i j(ϕ) eA
i ⊗ eA

j

holds, which also implies

ARBA(ϕ)= AAB(ϕ).

A.6 Tensor stacking

To shorten expressions, ‘matrix notation’ for tensors is used. Bold capital letters
A,B,C,D ∈ L(E3;E3) imply bilinear mappings. Bold lower case letters a,b,u,v ∈ E3
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denote elements of the euclidean space E3. In Chapter 3 the following properties
are used.

Property 1: [
a
b

]T
·
[

u
v

]
:= a ·u+b ·v ∈R

Property 2: [
A B
C D

][
u
v

]
:=

[
Au+Bv
Cu+Dv

]
∈ E3+3

Property 3: [
a
b

]•
:=

[
ȧ
ḃ

]





APPENDIX B
Supplementary material

B.1 Integrals

To evaluate the Melnikov expressions I1 and I2 from Eq. (5.53) and Eq. (5.54),
respectively, the expressions can be decomposed into four sub-integrals presented
in this Appendix.

The corresponding definite integrals I1, I2, I3 and I4 are defined and yield

I1 :=
∫ 3 π

2

− π
2

√
2(sγ+1)dγ= 8,

I2 :=
∫ 3 π

2

− π
2

√
2(sγ+1)sγdγ= 8

3
,

I3 :=
∫ 3 π

2

− π
2

√
2(sγ+1)c2γdγ= 64

15
,

and

I4 :=
∫ 3 π

2

− π
2

√
2(sγ+1)sγc2γdγ= 64

105
.

B.2 Projected dynamics
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Figure B.1: Projection of the three-dimensional dynamics from Figure 5.2 onto
the β-γ-plane. Unstable inverted or non-inverted equilibria are indicated by blue
dots, while a stable inverted spinning equilibrium is marked in red. The blue orbits
result from transient simulations and are initialized at the black crosses, which are
not necessarily on the slow manifold. Both the stable periodic limit cycles and the
heteroclinic saddle connections, are obtained by applying numerical shooting. The
corresponding bifurcation diagram is shown in Figure 5.3.
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(a) Ω=Ωh −0.1 rad
s (b) Ω=Ωh +0.01 rad

s ≈Ωh

(c) Ω=Ωh +0.1 rad
s (d) Ω=Ωc −0.5 rad

s

(e) Ω=Ωc −0.2 rad
s (f) Ω=Ωc +0.5 rad

s

Figure B.2: Mapping of the two-dimensional slow dynamics from Figure 5.6 onto
the unit sphere. If the inclination angle β and the rolling angle γ are interpreted as
spherical coordinates, where γ takes the role of the polar and β that of the azimuthal
coordinate, respectively, the heteroclinic saddle connection becomes homoclinic. Ini-
tial conditions are resembled by crosses. The black dots denote the north and south
poles of the spheres implying a horizontal orientated disk. Configurations on the
black dashed equator corresponds to a vertically inclined tippedisk. The unstable
non-inverted spinning equilibrium is located on the left rear side of the sphere and
is represented by a blue dot. The inverted spinning equilibrium is located at the
front right and is shown as a blue or red dot, depending on whether it is unstable or
stable.
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