
Institute of Software Engineering
Empirical Software Engineering Group

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit

Exploring Runtime Monitoring
Techniques in the Automotive

Domain for Advanced
Driver-Assistance Systems

Andrĳana Radic

Course of Study: Informatik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Eva Zimmermann, M.Sc.,
Pavel Nedvědický, Ing.

Commenced: June 14, 2023

Completed: December 14, 2023

Abstract

In the real world, a dynamic and unpredictable environment, an “Advanced Driver-Assistance
System” (ADAS) should be safe for itself, pedestrians, and other obstacles. One possible approach
to ensure the safety of ADAS is “Runtime Monitoring” (RM). In this context, additional formal
safety mechanisms are added to the system. This thesis aims to explore RM for ADAS. Our main
contributions consist of three parts. Firstly, we conducted a rapid review to find relevant RM
techniques for ADAS. We provided detailed information on our search query and the filter criteria for
the papers. We extracted the information from 16 remaining relevant papers and applied an existing
taxonomy to classify the techniques. Secondly, we defined the hardware criteria given by the “Robot
Operating System” (ROS)-based “Autonomous Research Vehicle” (ARV) called Mecabot TX, the
use case for the prototype, and four safety requirements for our runtime monitor. In our use case,
the system performed “Advanced Emergency Braking” (AEB) without the intervention of a driver.
Based on that, we then chose one of the 16 techniques for our prototype. The technique we evaluated
to be optimal was rtamt that relied on specifications written in “Signal Temporal Logic” (STL).
Thirdly, we implemented one passive runtime monitor for each safety requirement using rtamt. We
proposed an architecture consisting of an object tracker, the AEB logic, and the runtime monitors.
We verified our monitors and conducted an experiment to test the implementation. We identified
that the runtime monitors successfully detected multiple violations for each safety requirement
during the test run. By analyzing the violations, we gained helpful insights for debugging the system
and improvements for its safety. Therefore, our work paves the way for future research in the area of
RM for ADAS.

3

Kurzfassung

In der realen Welt, einer dynamischen und unvorhersehbaren Umgebung, sollten fortschrittliche
Fahrerassistenzsysteme (ADAS) die eigene Sicherheit sowie die Sicherheit für andere Verkehrsteil-
nehmer wie beispielsweise Fußgänger gewährleisten. Ein möglicher Ansatz, um die Sicherheit
solcher Fahrerassistenzsysteme zu gewährleisten, ist “Runtime Monitoring” (RM). Dabei werden
zusätzliche formale Sicherheitsmechanismen in das System integriert. Das Ziel dieser Arbeit ist
die Erforschung des Einsatzes von RM im Kontext fortschrittlicher Fahrerassistenzsysteme. Unser
Hauptbeitrag lässt sich in mehrere Teile gliedern. Zum einen führten wir eine “Rapid Review”
durch, um relevante RM-Techniken im Kontext von Fahrerassistenzsystemen zu identifizieren.
Dabei beschrieben wir detailliert unsere verwendete Suchanfrage und unsere Filterkriterien. Wir
extrahierten Informationen aus den 16 verbliebenen relevanten wissenschaftlichen Arbeiten. Zudem
wandten wir eine vorhandene Taxonomie zur Klassifizierung dieser identifizierten RM-Techniken
an. Des Weiteren definierten wir die Hardwarekriterien des auf dem “Robot Operating System”
(ROS) basierenden autonomen Fahrzeugroboters namens Mecabot TX, unseren Anwendungsfall für
den Prototyp und vier Sicherheitsanforderungen für unseren Laufzeitmonitor. In unserem Beispiel
führte ein Notbremsassistenzsystem (AEB) eine autonome Notbremsung ohne das Eingreifen des
Fahrers durch, sobald ein relevantes Hindernis vor dem Fahrzeugroboter erkannt wurde. Daraufhin
wählten wir eine der 16 Techniken für unseren Prototyp basierend auf unserer Klassifikation der
RM-Techniken und den erhobenen Kriterien aus. Die von uns als optimal bewertete Technik lautete
dabei rtamt, bei der die Spezifikationen in “Signal Temporal Logic” (STL) definiert werden. Unter
Verwendung der rtamt Bibliothek implementierten wir für jede spezifizierte Sicherheitsanforderung
einen passiven Laufzeitmonitor. Unsere finale Architektur bestand aus einer Objekterkennung, dem
autonomen Notbremssystem und den Laufzeitmonitoren. Wir verifizierten die Implementierung
unserer Monitore und führten ein Experiment mit dem Gesamtsystem in einer Laborumgebung durch.
Dabei stellten wir fest, dass die implementierten Laufzeitmonitore während des Testlaufs erfolgreich
mehrere Verstöße gegen jede unserer vier Sicherheitsanforderungen erkannten. Durch die manuelle
Analyse dieser Verstöße erhielten wir hilfreiche Einblicke zur Fehlerbehebung des Systems und für
mögliche Verbesserungen der Sicherheit unseres Fahrerassistenzsystems. Somit legt unsere Arbeit
den Grundstein für zukünftige Forschungen im Bereich des RM für Fahrerassistenzsysteme, die an
unsere Ergebnisse anknüpfen.

5

Contents

1 Introduction 17
1.1 Motivation . 17
1.2 Problem Statement . 18
1.3 Structure . 18

2 Background and Foundations 19
2.1 Background . 19

2.1.1 Driving Automation . 19
2.1.2 Advanced Driver-Assistance Systems 21
2.1.3 Runtime Monitoring . 22

2.2 Foundations . 24
2.2.1 Robot Operating System . 24
2.2.2 Runtime Monitoring Library - rtamt . 26
2.2.3 Object Detector - darknet_ros with YOLOv3 26
2.2.4 Object Tracker - sort-deepsort-yolov3-ROS 27

3 Related Work 29
3.1 Conference . 29
3.2 Taxonomy . 29

4 Study Design 31
4.1 Research Questions . 31
4.2 Methodology . 31

5 Rapid Review 33
5.1 Methodology . 33

5.1.1 Search Strategy . 33
5.1.2 Selection Procedure . 37
5.1.3 Quality Appraisal . 39
5.1.4 Snowballing . 39
5.1.5 Synthesis Procedure . 40

5.2 Results . 40
5.2.1 Common Keywords Within Papers . 41
5.2.2 Paper Dependencies . 42
5.2.3 Technique Classification . 43
5.2.4 Technique Classification Analysis . 46

6 Prototype Technique Selection 51
6.1 Hardware - Mecabot TX . 51

7

6.2 Prototype Use Case . 52
6.2.1 Data Flow Visualization . 53

6.3 Selection Procedure . 54

7 Prototype Implementation 57
7.1 Architecture . 57

7.1.1 Object Tracking . 59
7.1.2 AEB ADAS . 59
7.1.3 Runtime Monitors . 60

7.2 Verification of the Monitors . 62
7.3 Experiment . 63

7.3.1 Setup . 64
7.3.2 Execution and Results . 64
7.3.3 Evaluation . 67

7.4 Challenges and Key Considerations . 71
7.4.1 Challenges Working with the Robot . 71
7.4.2 Key Considerations for our Implementation 72

8 Discussion 77
8.1 Discussion . 77
8.2 Threats to Validity . 79

8.2.1 Rapid Review . 79
8.2.2 Prototype Technique Selection . 80
8.2.3 Prototype Implementation . 80

9 Conclusion and Outlook 81
9.1 Summary . 81
9.2 Benefits . 81
9.3 Limitations . 81
9.4 Lessons Learned . 82
9.5 Future Work . 82

9.5.1 Rapid Review . 82
9.5.2 Prototype Implementation . 83

Bibliography 85

A Appendix 93

8

List of Figures

2.1 Driving automation levels introduced by the SAE International [SAE21a], cropped 20

3.1 Classification overview of the seven main categories and partly subcategories as
mind map from [FKRT21] . 30

5.1 RR main-process in BPMN with process milestones [Hil23] 36
5.2 RR sub-processes and call activity in BPMN with process milestones [Hil23] . . 37
5.3 Dependency graph to visualize the dependencies between the papers 42

6.1 AEB danger zone illustration . 52
6.2 Prototype data flow with a black box system . 54

7.1 Architecture diagram of the prototype . 58
7.2 Experiment sequence of events . 65
7.3 Images used as obstacles for experiment . 66

A.1 Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the first obstacle (obstacle image [ami10]) 95

A.2 Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the second obstacle (obstacle image [mal07]) - Part 1 . . . 95

A.3 Screenshots of the object detector (left) and AEB ADAS (right) camera images
during experiment - related to the second obstacle (obstacle image [mal07]) - Part 2 96

A.4 Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the third obstacle (obstacle image [Hun12], cropped) . . . 97

A.5 Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the fourth obstacle (obstacle - random moving person,
unrecognizable and anonymous, there is also the fifth obstacle [Kec13]) 98

A.6 Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the fifth obstacle (obstacle image [Kec13]) 99

9

List of Tables

5.1 List of all papers found with the query . 38
5.2 List of added papers during snowballing . 40
5.3 Occurrence of most significant keywords (by TF-IDF [SW10]) scores in source papers 41
5.4 Classification abbreviations: The table is first introduced by Falcone et al. [FKRT18;

FKRT21], as well as extended by us. 44
5.5 Classification - Part 1: Gray highlighted entries use open-source tools 45
5.6 Classification - Part 2: Gray highlighted entries use open-source tools 46
5.7 Analysis of the classification - Part 1 . 48
5.8 Analysis of the classification - Part 2 . 49
5.9 Similarities of the classification in % from Table 5.5 and Table 5.6: Gray highlighted

entries are connected in Figure 5.3 . 50

6.1 Tool requirements, missing columns can have any value 55
6.2 Filter criteria derived from our requirements applied to all retrieved RM techniques 56

7.1 Test cases and results of SR2, SR3, and SR4 . 62

11

List of Listings

7.1 Snippet from a sample violations report file . 61

A.1 Ignored words and punctuations in the source papers 93
A.2 Tool selection code . 94

13

Acronyms

AD Autonomous Driving. 19

ADAS Advanced Driver-Assistance System. 9, 17

AEB Advanced Emergency Braking. 9, 17

ARV Autonomous Research Vehicle. 18

BPMN Business Process Model and Notation. 33

COCO Common Objects in Context. 27

DeepSORT Simple Online and Realtime Tracking with a Deep Association Metric. 27

LiDAR Light Detection and Ranging. 21

RM Runtime Monitoring. 11, 18

ROS Robot Operating System. 24

RR Rapid Review. 9, 31

RV Runtime Verification. 22

SORT Simple Online and Realtime Tracking. 27

SR Safety Requirement. 11, 53

STL Signal Temporal Logic. 23

YOLO You Only Look Once. 24

15

1 Introduction

To introduce this thesis, we first explain the motivation behind our work in Section 1.1. Next, we
describe the problem statement in Section 1.2. Finally, we give an overview of our thesis structure
in Section 1.3.

1.1 Motivation

In our day-to-day life, we are surrounded by a multitude of vehicles. Either they are private vehicles
like cars, industrial vehicles like trucks, or public transport vehicles like buses. With this diverse
setting on the road from different drivers to different sized vehicles, it is difficult to maintain
safety. As an example, vehicles often have blind spots, where the drivers do not see other road
users [Bau22]. Achieving road safety is challenging, e.g., due to the complexity of human behavior,
blind spots, and unpredictable environmental conditions [Bau22; Eur21]. With 2.4 million reported
road traffic accidents in Germany in 2022, there is still much room for improvements in decreasing
this amount [Sta23a]. The causes of the accidents are diverse. There were driver-related accidents,
e.g., due to intoxicated drivers, inappropriate velocity, or insufficient safety distance [Sta23b]. Other
causes for the accidents were, e.g., harsh weather conditions like rain, snow, ice, and fog, but also,
e.g., wild animals on the roads [Sta23c]. To decrease the number of road accidents and to increase
the overall road safety, there is research done both in the industry [MMGP19] and in scientific
communities targeting automated driving.

The SAE On-Road Automated Driving (ORAD) Committee [SAE21b] defines different levels of
automated-driving (autonomous) systems. The different levels describe systems that either assist
the driver while driving the vehicle or systems that fully drive on their own (in all or only in
restricted conditions). With higher levels, the driver’s importance and control over the vehicle
decrease. Contrary to that, with higher levels, the vehicle and its systems gain importance and
control [SAE21a; SAE21b].

An “Advanced Driver-Assistance System (ADAS)” [Eur21, p. 2] is such a system that assists the
driver while driving [Eur21]. An example of such an ADAS is, e.g., an “Advanced Emergency
Braking (AEB)” [Eur21]. The AEB helps with braking if the distance to an obstacle falls below a
safety distance [Eur21]. An ADAS has several advantages, e.g., they increase the reaction time
and the perception of the driver. Collected and processed sensor information is sent to the driver,
which can increase the driver’s perception regarding the blind spots, if they are correctly placed and
working. Additionally, some ADAS can take over the car in a critical moment (as the AEB), e.g., if
the driver is distracted [Eur21].

Overall, increasing the road safety is of great importance for everyone and everything on the road,
from pedestrians to cyclists and the drivers of the vehicles themselves.

17

1 Introduction

1.2 Problem Statement

We have noticed that there is still improvement possible regarding road safety and that there is work
done to use ADAS to improve the road safety. But using ADAS in the real world to increase the
road safety leads us to a problem, that we will explore with this thesis. As the aim of adding driving
automation to a car, e.g., by using an ADAS, is to provide an additional safety instance to support
the driver, the ADAS itself should be safe and reliable. One possible approach to ensure the safety
of ADAS is “Runtime Monitoring (RM)” [BFFR18, p. 1]. By using RM, additional formal safety
mechanisms are added to the system. The mechanisms can be useful regarding debugging and
testing of the ADAS [BFFR18]. Therefore, it increases the safety of the ADAS as it can be tested
with multiple approaches (RM and more). As there is still a lack of research and literature reviews
on RM regarding ADAS, this thesis aims to explore RM for ADAS on an “Autonomous Research
Vehicle (ARV)” [KCDK15, p. 102].

1.3 Structure

In the following, we outline the structure of this thesis.

Chapter 2 – Background and Foundations Here, we explain the relevant information that is
needed for the reader to understand the rest of this thesis.

Chapter 3 – Related Work In this chapter, we summarize the influence of the conference on RM
and briefly describe a taxonomy for RM.

Chapter 4 – Study Design Next, we describe our research questions and briefly summarize the
used methodology.

Chapter 5 – Rapid Review The first part of the main part is the rapid review. We describe the
process and results in this chapter.

Chapter 6 – Prototype Technique Selection The second part of the main part is the technique
selection for the prototype. This includes defining requirements and a use case for the
prototype.

Chapter 7 – Prototype Implementation The last part of the main part is the implementation
description, where we explain our realized architecture as well as the verification of the
monitors, and the description and evaluation of our experiment.

Chapter 8 – Discussion Here, we evaluate this thesis in the context of the research questions and
bring the results into context. Furthermore, we describe the threats to validity.

Chapter 9 – Conclusion and Outlook In the end, we summarize our work, its benefits and
limitations, possible future work and the lessons we learned with this thesis.

18

2 Background and Foundations

In this chapter, we first provide necessary background information for understanding the general
topic of this thesis in Section 2.1. Secondly, we provide foundational information to understand this
thesis and its outcomes in Section 2.2.

2.1 Background

We start with providing insights into relevant background knowledge of this thesis. The relevant
topics include: “Autonomous Driving (AD)” [ZBK20, p. 172], “Advanced Driver-Assistance
System (ADAS)” [Eur21, p. 2], and “Runtime Monitoring (RM)” [BFFR18, p. 1].

2.1.1 Driving Automation

The SAE On-Road Automated Driving (ORAD) Committee [SAE21b] describes different levels
of automated-driving (autonomous) systems. The six different levels are separated by the degree
of control by the driver of the vehicle. At the lowest level, the driver has full control over the
vehicle. At the highest level, the vehicle has full control without interruptions by the driver. The
levels in between are the spectrum between the lowest and highest level. In the following, we
describe the levels based on the standard provided by SAE On-Road Automated Driving (ORAD)
Committee [SAE21a; SAE21b] in Figure 2.1:

Level 0 This level is called “no driving automation” [SAE21b]. At this level, the driver has an
active role while driving, even though there are features involved. Those features are called
“driver support features” [SAE21a]. As they are only for the support of the driver while
driving, they have to be constantly supervised by the driver. The driver may have to intervene
to maintain safety, e.g., by braking. The support features at this level warn and assist the
driver for short moments [SAE21a; SAE21b].

Level 1 This level is called “driver assistance” [SAE21b]. At this level, the driver has an active
role while driving, even though there are features involved. Those features are called driver
support features. As they are only for the support of the driver while driving, they have to
be constantly supervised by the driver. The driver may have to intervene to maintain safety,
e.g., by braking. The support features at this level help with slowing down / speeding up or
steering [SAE21a; SAE21b].

Level 2 This level is called “partial driving automation” [SAE21b]. At this level, the driver has an
active role while driving, even though there are features involved. Those features are called
driver support features. As they are only for the support of the driver while driving, they have
to be constantly supervised by the driver. The driver may have to intervene to maintain safety,

19

2 Background and FoundationsSAE J3016TM LEVELS OF DRIVING AUTOMATIONTM

DRAFT- Stand alone

•	lane centering

	 OR

•	adaptive cruise
control

•	local driverless
taxi

•	pedals/
steering
wheel may or
may not be
installed

•	lane centering

		 AND

•	adaptive cruise
control at the
same time

•	same as
level 4,
but feature
can drive
everywhere
in all
conditions

•	automatic
emergency
braking

•	blind spot
warning

•	lane departure
warning

•	traffic jam
chauffeur

You are driving whenever these driver support features
are engaged – even if your feet are off the pedals and

you are not steering

You are not driving when these automated driving
features are engaged – even if you are seated in

“the driver’s seat”

These automated driving features
will not require you to take

over driving

You must constantly supervise these support features;
you must steer, brake or accelerate as needed to

maintain safety

What does the
human in the
driver’s seat
have to do?

Example
Features

When the feature
requests,

you must drive

These are automated driving features
These features

provide
steering

OR brake/
acceleration
support to
the driver

These features
provide
steering

AND brake/
acceleration
support to
the driver

These features can drive the vehicle
under limited conditions and will

not operate unless all required
conditions are met

This feature
can drive the
vehicle under
all conditions

These features
are limited

to providing
warnings and
momentary
assistance

These are driver support features

What do these
features do?

SAE
 LEVEL 0TM

SAE
 LEVEL 1TM

SAE
 LEVEL 2TM

SAE
 LEVEL 3TM

SAE
 LEVEL 4TM

SAE
 LEVEL 5TM

Copyright © 2021 SAE International.

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

Learn more here: sae.org/standards/content/j3016_202104

Figure 2.1: Driving automation levels introduced by the SAE International [SAE21a], cropped

e.g., by braking. The support features at this level help with slowing down / speeding up and
steering. Which means that not only one feature needs to be included, but multiple features
with different scopes [SAE21a; SAE21b].

Level 3 This level is called “conditional driving automation” [SAE21b]. At this level, the driver has
a passive role while driving. The features are called “automated driving features” [SAE21a].
The features at this level can only work when all the conditions for it are met. It can also
generally only take over driving under limited conditions. When those conditions are not met,
the driver is requested to drive instead [SAE21a; SAE21b].

Level 4 This level is called “high driving automation” [SAE21b]. The features are called automated
driving features. At this level, the driver always has a passive role while driving. The automated
driving features can only work when all the conditions for it are met. It can also generally
only take over driving under limited conditions. When those conditions are not met, the
driver is not requested to drive instead. There may not even exist a way that allows manually
steering the wheel or pushing the pedals [SAE21a; SAE21b].

Level 5 This level is called “full driving automation” [SAE21b]. The features are called automated
driving features. At this level, the driver has always a passive role while driving because the
vehicle can drive on its own under all conditions and in all places [SAE21a; SAE21b].

As already mentioned, the levels zero to two provide driver support features and levels three to five
provide automated driving features. As the driver support features are relevant to our topic, we
describe it further in the next section (see Section 2.1.2).

20

2.1 Background

2.1.2 Advanced Driver-Assistance Systems

In the section before, we introduce the different levels of AD features. The vehicle gains more
control at levels higher than zero. The system that takes over control in levels zero to two is called
an ADAS. At levels three to five, they are AD systems [Eur21].

One relevant ADAS that we need is “Advanced Emergency Braking (AEB)” [Eco14]. AEB systems
are systems that provide momentary assistance to avoid forward collisions of the vehicle with
obstacles. This assistance includes automatically detecting the obstacles and decelerating the vehicle
to avoid said collisions or reduce the damage by said collisions [Eco14].

The European Commission states that ADAS improve the road safety, especially ADAS at level zero,
have the highest potential of increasing the road safety. Additionally, they state some challenges with
such systems. The main challenges are regarding the interaction between the driver and ADAS. This
includes distraction issues of the driver, as the driver has to drive and simultaneously monitor the
ADAS. Additional challenges are the trust in the system, transparency, and having the understanding
of all the features the ADAS provides. Besides the interaction challenges of driver and ADAS, there
are also technical challenges stated, e.g., accuracy of the detections and range limitations of sensors.
All these challenges have to be addressed to benefit from those safety mechanisms [Eur21].

Sensors

We describe the previously mentioned sensors further. The main purpose of sensors is to collect
environmental data [Eur21]. The collected data can then be used in, e.g., an ADAS. The sensor
data and the range of sensors depend on the specific sensor [RCG22]. Examples of such sensors are
“Light Detection and Ranging (LiDAR)” [RCG22, p. 1], camera, and radar [RCG22]. The range of
sensors can be a limitation for systems [Eur21]. Therefore, when sensors are used for observing the
environment, then oftentimes multiple sensors and sensor types are used to solve range limitations
and for fulfilling the requirements the system has [RCG22]. In the following, we briefly describe
the mentioned sensor examples.

LiDAR LiDAR is an abbreviation of “Light Detection and Ranging” [RCG22, p. 1]. The basic
idea of a LiDAR is to collect information about the environment and transform them into 3D
digital representations. Mainly, it calculates distances to obstacles. It does that by sending
laser pulses. These pulses then reach the obstacle and return to the LiDAR. With the timely
information, it calculates the distance to the obstacle in real-time [RCG22].

Camera Cameras are used for detecting objects and classifying objects. The camera images create
visual descriptions of the environment. A huge factor to consider when using camera images
is that they are easily affected by foggy, dark, or rainy weather conditions [RCG22].

Radar Similar to cameras, if radar sensors are positioned strategically around the vehicle, it can
detect obstacles from all angles. As LiDAR sensors, radar sensors also use pulses and wait
for their return. Contrary to LiDAR sensors, radar sensors work with radio waves. Radar
sensors provide, e.g., precise and direct distance measurements. Additionally, radar sensors
are unaffected by variations in lighting [RCG22].

With the knowledge on what ADAS are and how sensors are integrated into them, we can take a
look at RM itself and how it is connected to ADAS.

21

2 Background and Foundations

2.1.3 Runtime Monitoring

As described by Bartocci et al. [BFFR18], “Runtime Verification (RV)” [BFFR18, p. 1] describes
the process of checking the correctness of a property during runtime. There are inconsistencies with
the definition of RM. Sometimes in research, it is described as a synonym of RV. Other times, RM
is described as more specific than RV as it is the observation and active interaction with a system
when checking for the correctness of properties. In this thesis, we use RM and RV synonymous.
Generally, RM is useful regarding the testing and debugging of systems. Additionally, it guarantees
the safety and the robustness of systems. We only name a few examples mentioned by Bartocci
et al. [BFFR18].
In Section 2.1.2, we already mentioned that ADAS benefit from safety mechanisms [Eur21]. As
RM guarantees the safety of systems, we think that RM can be useful in ADAS. Therefore, we look
further into RM. RM can be separated into three parts that have to be done [BFFR18]:

Specification Wanted and unwanted system behavior is described in the first part [BFFR18].

Generation A monitor is generated based on the defined specifications in the second part [BFFR18].

Connection The connection of the monitor to the system is created in the third part [BFFR18].

In the next sections, we further describe the mentioned parts of RM.

Specification

In the following section, we define the information we need to define the wanted and unwanted system
behavior. This includes defining events, traces, properties and specifications itself [BFFR18].

Event Any observation concerning the system is an event. Therefore, events are like a snapshot of
the system and its behavior at a given time. Events can be about the internal behavior or the
external system behavior [BFFR18].

Traces A series of events is called trace. It describes system behavior over time instead of just in a
specific moment [BFFR18].

Property A set consisting of traces is called a property. The set may be finite. A property is unique
as well as language independent. There are explicit and implicit properties [BFFR18].

Specification It describes the textual formalization of the property of a system [BFFR18].

Language Features Specifications are written in a specification language. Some of the
relevant features of such a language are: is it executable or declarative, is it finite
or infinite, and the time. Executable specifications are specified and then they are
immediately executable. Declarative specifications are specified, then the executable
object is generated from this specification. An example for each are: state machines
(executable) and temporal logic (declarative). The next relevant point is whether the
traces are finite or infinite. There are languages that satisfy the demands of finite traces
and others for infinite traces. An example for each are: state machines (finite) and
temporal logic (infinite). Generally, sometimes infinite traces are parted into sections of

22

2.1 Background

finite traces to evaluate them in real-time. Time constraint mechanisms can be added in
both, declarative and executable languages. E.g., in declarative languages, you define
that some value should change in the next x seconds [BFFR18].

Temporal Logic In the following, we describe one declarative language as an example. We
already mentioned temporal logic previously. “Linear Temporal Logic (LTL)” [BFFR18,
p. 7] is the base variant of the temporal logics. There are two types of LTL, LTL with
future operators and LTL with past operators. Future and past are referring to the time.
Future operators that are directly available are next and until. Operators that are derived
from them are eventually and always. The semantics of the operators is intuitive from
the name. Therefore, we do not describe this further. The past operators that are directly
available are previous and since. The language features that are previously described
for temporal logics are valid for LTL [BFFR18].
There are multiple variants of temporal logics that provide additional expressiveness
compared to LTL. To us, “Signal Temporal Logic (STL)” [BFFR18, p. 9] with past
operators and future operators is of relevance. Compared to LTL, STL has signals as
input. Signals are multiple pairs of the following form: (time, value). STL also provides
a quantitative value for a formula, the robustness. The robustness describes how much
a signal satisfies or violates the specification (formula). The provided information on
STL and its formal definition can be found in [NY20].

Generation

We now summarize relevant knowledge on the generation of such monitors, especially how such a
monitoring setup looks like and how different approaches can be used for the setup [BFFR18].

Standard Setup The standard setup consists of the monitor, the system to observe and instrumen-
tation between monitor and system. The instrumentation is the connection between monitor
and system [BFFR18].

Monitor As previously described, monitors are executable and are generated from specifications.
The monitor is the component that observes the system at runtime. It checks whether the
defined properties are violated or satisfied. With enough gathered information, monitors may
evaluate a decision (verdict). It can not be withdrawn and is forwarded to other components
that can handle the decision. Monitors are generally trusted and should be correct themselves.
The automatic generation of monitors from specifications increases this as monitor code is
standardized. Monitors typically have minimal, or ideally no, impact on the operation of the
observed system [BFFR18].

Instrumentation We already described this as the connection between the monitor and the system
that is observed. It defines which information of the system’s execution become observable
for analysis by the monitor. The instrumentation is responsible for filtering relevant and
observable data from irrelevant and hidden data. The relevant and observable data is sent to
the monitor [BFFR18].

Programming There exists “Monitor-Oriented Programming” [BFFR18, p. 14], we explain a
few aspects of it here. It is a design concept in which the monitors code and the observed
systems code are as separated as possible. Contrary to the monitors we talked about until

23

2 Background and Foundations

now, monitors are a key aspect to raise violations and to act on these violations. The actions
of the monitor can be that it suppresses unwanted behavior or even adapt to such behavior of
the system in the future [BFFR18].

Design Details We introduced the general setup of such a monitor and the system to observe.
Within this setup, multiple design choices are made. We explain some design choices to
give an idea of what they are about. The first relevant design choice is whether the monitor
should be online or offline. Online monitors evaluate the information while the system is
running. Offline monitors evaluate the information after the system finishes its execution.
Both approaches have advantages and disadvantages that need to be considered when deciding
which approach is appropriate. The second design choice one can make is that the execution
of the monitor and system can be synchronous. That means that the system provides relevant
information to the monitor and then waits until the monitor evaluates a result until it continues.
Alternatively, with the asynchronous approach, the system does not have to wait. Mechanisms
to guarantee synchronicity have a higher interference with the system. The decisions on
which design choice depend on the use case and requirements one wants to fulfill [BFFR18].

Connection

For creating the connection between the system and the monitor, instrumentation is needed. We
already introduced instrumentation previously, but we want to add some additional information.
Generally, the connection between monitor and system varies depending on the observed system.
The system can be hardware or software. For this thesis, we focus on software systems. For
monitoring such systems, additional code is needed, as there is the need to define the outputs
the system should provide to the monitor. There are limitations concerning instrumentation for
software systems. If the instrumentation code is not working or not executed, then there is relevant
information missing. In settings where maintaining real-time requirements is crucial to satisfy
safety-critical demands, such an outcome might be fatal [BFFR18].

As we now have the knowledge on the characteristics of ADAS, RM, and on how RM is connected
to ADAS, we can now continue with some foundations to understand what was done in this thesis.

2.2 Foundations

After summarizing the relevant information for understanding the topic of this thesis, we summarize
information to fully understand the contents of this thesis, especially the implementation. This
includes information that is not common knowledge in software engineering. The relevant
topics are the “Robot Operating System (ROS)” [AÐHM23, p. 1], “rtamt” [NY20, p. 1], and
“darknet_ros” [Bje18] with “You Only Look Once (YOLO)v3” [RF18, p. 1].

2.2.1 Robot Operating System

“ROS is a collection of open-source robotics libraries and tools centered around robotics software
development” [AÐHM23, p. 1]. ROS finds application in a wide range of areas [AÐHM23].
Examples for such areas are: “navigation tasks” [AÐHM23, p. 13], autonomous vehicles, and

24

2.2 Foundations

“home and medical care” [AÐHM23, p. 13]. For this thesis, we focus on ROS 1 [AÐHM23].
There are many concepts at different levels that could be explained, e.g., “the Filesystem level,
the Computation Graph level, and the Community level” [Ope22]. As we only need the ROS
Computation Graph level for understanding this thesis, we focus on the concepts at this level.

Computation Graph Level

The ROS processes together form a decentralized network. The processes collaborate on data
processing tasks. The components of such a graph include nodes, topics, and more. They each
contribute data through diverse mechanisms [Ope22].

Nodes Nodes represent operational entities executing computational tasks. ROS’ design exhibits
modularity at a detailed level. Therefore, a typical robot control system consists of numerous
individual nodes. E.g., the wheel speed is one node, etc. [Ope22].

Master Firstly, the ROS is responsible for registering the names of the graphs components.
Secondly, it provides a lookup within the graph. Nodes rely on the master, e.g., to find
one another and communicate with one another. Without it, such functionalities would be
unavailable [Ope22].

Parameter Server It enables centralized storage of data using key-value pairs. The master
integrates the parameter server [Ope22].

Messages A message constitutes a structured data format with typed fields. These messages
support standard types (primitive) such as booleans, integers, and floats, along with arrays of
these types. Additionally, nesting is possible. Nodes exchange messages to communicate
with each other [Ope22].

Topics The previously introduced messages are exchanged via a publish and subscribe mechanism.
Nodes that are interested in specific data subscribe to the corresponding topic. Producers of
the data publish messages of the data to the topic. The subscribed node then receives the
messages and thus the data. The publishing and subscribing is not restricted to a one-to-one
relationship. Multiple publishers can publish to one topic, and multiple subscribers can
subscribe to a topic. The publishers and subscribers do not know about each other, e.g., how
many publishers write to the subscribed topic or how many subscribers read the topic [Ope22].

Services The publish / subscribe mechanism, explained in topics, is not always ideal. If a
communication is wanted with request and response, publish / subscribe is not suited.
Therefore, there are services provided by nodes. Services are message pairs (request_message,
response_message). A node can send a request to another node that makes the service
available and waits for the response [Ope22].

Bags Bags provide data storage for messages [Ope22].

In the next section, we describe the RM library used for our prototype.

25

2 Background and Foundations

2.2.2 Runtime Monitoring Library - rtamt

As stated by Ničković and Yamaguchi [NY20], rtamt is a library with which one can implement
online monitors out of “STL” [NY20, p. 1] specifications. Additionally, robustness is provided. It
supports future operators as well as past operators in the specifications. It generates the monitors
from the specifications automatically [NY20].

Robustness The inputs that rtamt should receive are the STL specification and (time, value) pairs.
The robustness describes how much the values satisfies or violates the specification. The
robustness is a value between [-1,1], where a one describes a full satisfaction and minus one
describes a full violation at a specific time [NY20].

Components There are three main components of rtamt: the specification, the frontend, and the
backend. The first part was already introduced, a “declarative specification language” [NY20,
p. 2] is, e.g., STL. The specification is written in such a language. The frontend processes
the specification and creates the monitor. To achieve this, it parses the formal specification
into a specific data structure (“abstract parse tree” [NY20, p. 2]) and then transforms it into a
STL grammar. This is then utilized to create the monitor. The backend consists of the actual
algorithm of the monitor that is used for evaluation [NY20].

STL Support The rtamt library is compatible with multiple variants of STL. The variant that is
relevant to us is “input bounded-future STL (bfSTL)” [NY20, p. 2]. It is characterized by
the restrictions regarding multiple operators: “eventually, always and until” [NY20, p. 2].
The restrictions are regarding the intervals concerning these operators. For offline monitors,
intervals can be unbounded. For online monitors, they need to be bounded [NY20].

Online Monitors The earlier introduced parsing of the specification and the resulting transformation
into a grammar is not usable for online monitors. Hence, the specification is transformed
from a “bfSTL formula into an equi-satisfiable past STL formula” [NY20, p. 3]. These
formulas only use past-time operators. The evaluation of the formula is delayed until reaching
the boundary. This guarantees that all required inputs for calculating the robustness are
accessible [NY20].

ROS Support The rtamt4ros library represents a ROS integration of rtamt. To integrate rtamt
with ROS, the specification has to be transformed to match ROS. One possibility is to define
the variables, its types and the topics of the specification in a .stl file. The result is not
generalized, it is specification specific. This then associates one variable with one ROS
topic [NY20].

In the next section, we describe the object detector for our prototype.

2.2.3 Object Detector - darknet_ros with YOLOv3

darknet_ros is an implementation of multiple YOLO [RDGF16] object detection models to use
within ROS. YOLO is a neural network used for the detection of objects in real-time. It uses camera
images for the detection. The result of the detector can be seen in the images as bounding boxes
with the classes attached to the boxes.

26

2.2 Foundations

YOLOv3 YOLOv3 is one object detection model to use with darknet_ros. Its tiny weights are
especially interesting because of their best performance. There are updated versions of YOLO,
but they are not of use for this thesis.

Dataset “Common Objects in Context (COCO)” [Bje18] is the dataset the YOLOv3 model was
trained on. It contains the following class labels: “person, bicycle, car, motorbike, aeroplane,
bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, cat, dog,
horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase,
frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard,
tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich,
orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, sofa, pottedplant, bed, diningtable,
toilet, tvmonitor, laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink,
refrigerator, book, clock, vase, scissors, teddy bear, hair drier, toothbrush” [Bje18].

Next, we provide information on the object tracker used in our prototype.

2.2.4 Object Tracker - sort-deepsort-yolov3-ROS

The provided COCO classes and bounding boxes by darknet_ros with YOLOv3 are needed for the
object tracker. The “sort-deepsort-yolov3-ROS” [ily20] project provides a ROS implementation for
both the “Simple Online and Realtime Tracking (SORT)” [BGO+16; ily20] tracker and its extension
“Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT)” [WB18;
WBP17]. These implementations are compatible with the YOLOv3 object detector. In the following,
we conceptually explain the idea behind SORT and how DeepSORT extends SORT.

SORT SORT is a tracking algorithm. Conceptually, its main purpose is to track objects (give them
IDs) and identify them as the same object regarding their bounding boxes, their position, and
their movement between frames [BGO+16]. Ideally, the tracker can give the same ID to the
same objects over multiple frames [BGO+16]. Exceptions for this are when objects are fully
covered by other objects within the frame, or if they leave the frame and return to it [ily20].
Then, they are always considered as new objects with new IDs [ily20].

DeepSORT DeepSORT is an extension of SORT. The extension enables tracking objects even
though they were covered for some time [WBP17]. This is not used in this thesis. Therefore,
we do not describe this further.

After introducing the relevant background information and foundations, the next chapter gives an
overview of related work regarding RM.

27

3 Related Work

In this chapter, we summarize a topic related conference as well as related work regarding RM. We
explain why our work is relevant and how it is different from the work done in previous studies.

3.1 Conference

An important contribution to the field of RM is provided by the “International Conference on Runtime
Verification” [Spr23b]. RM in general, is useful for increasing the reliability, safety, and robustness
of systems [CL18]. These systems can be hardware systems as well as software systems [CL18].
One of the RM conference’s goals is to introduce new lightweight RM techniques [CL18]. As
RM can be applied in a broad variety of areas, the conference introduces techniques, e.g., for
cyber-physical systems [DN20] and for the security of systems (e.g., intrusion detection [DTCL21]).
Besides monitoring such systems, analyzing and guiding the system’s behavior at runtime is also of
relevance [DN20]. The reviewed conference proceedings are published in a book named “Runtime
Verification” [Spr23b]. The book itself is published as part of the “Lecture Notes in Computer
Science”[Spr23a] series [Spr23b].

3.2 Taxonomy

In the RM conference of 2018, Falcone et al. [FKRT18] published “a taxonomy for classifying
runtime verification tools” [FKRT18, p. 241]. They provide a great contribution to not only
specifying a terminology regarding RM and finding similarities between existing tools, but also to
provide a classification overview of existing tools. As of 2018, they have classified 20 RM tools using
their taxonomy, but without contacting the authors of the tools to do the classification [FKRT18].

In 2021, they provide refinements regarding the terminology of the classification. Additionally, they
provide an extension of that paper, increasing the amount of classified tools to 60 instead of 20.
They define seven main categories for their classification. They are visualized in Figure 3.1. The
seven main categories are connected to the RV node in the middle. For easier understanding, we
describe the categories as questions, partly based on each other [FKRT21]:

Specification What do we want to check at runtime [FKRT21]?

Monitor What checks the specification at runtime [FKRT21]?

Deployment How do we implement the monitor? How does the monitor get the needed informa-
tion [FKRT21]?

Reaction What does the monitor do following the evaluation of the given specification [FKRT18]?

29

3 Related Work
A taxonomy for classifying runtime verification tools 257

Fig. 1 Mind map overviewing the taxonomy of runtime verification

Relations between nodes.Wedo not capture concepts such as
mutual exclusion or interdependence between nodes graphi-
cally but aim to describe these in the text. In most cases, the
final level of the taxonomy captures some concrete instances
of a particular (sub-)concept and it is at this level where such
relations are most important.

The remainder of this section focuses on each of the seven
major concepts and expands the description along the corre-
sponding branches.

3.1 Specification

The specification part of the taxonomy is depicted in Fig. 2. A
specification describes the intended system behaviour (prop-
erty), that is what one wants to check when monitoring the
system. It is one of the main inputs to an RV framework, and
it is formulated before running the system.

A specification exists within the context of a general sys-
temmodel, i.e., the abstraction of the monitored system. The
main purpose of such a model is to define the information
that can be obtained by observing the monitored system (see

Sect. 3.5), but it may also define other contextual informa-
tion.

A specification itself can be organised in a centralised or
decentralised fashion, in relation to the system being moni-
tored.Centralised specifications aremore common; they are
monolithic descriptions of the intended systembehaviour and
abstract away from the system architecture. Decentralised
specifications are organised in interdependent modules; their
organisation can follow the monitored system’s architecture
or some other logical structure [70,72,83,113,129,130,145].

Moreover, a specification can be either implicit or
explicit, depending on the desired behaviour to be moni-
tored.
Implicit specifications. An implicit specification is used in
an RV framework when there is a general understanding of
the particular desired behaviour. RV tools do not require
their users to explicitly formulate and enter implicit spec-
ifications. Implicit specifications generally aim at avoiding
runtime errors/violations (that typically would not be caught
by a compiler or before the system deployment). Such run-
time errors can be critical. Three categories of implicit

123

Figure 3.1: Classification overview of the seven main categories and partly subcategories as mind
map from [FKRT21]

Trace What information of the system is collected at runtime [FKRT21]?

Interference How much does the tool effect the system [FKRT21]?

The seven main categories may have subcategories that are connected to the main categories. The
subcategories are also defined in the papers and the included mind map (see Figure 3.1). For
creating their classification overview, Falcone et al. [FKRT21] relied on contacting the authors of the
tools to classify their own tools within a survey. The classification results show the classification of
the tools while the survey was done. As tools can develop and change over time, their classification
may change [FKRT21].

Even though there is the RM conference, finding domain-specific contributions is still challenging.
In our case, finding ADAS specific RM techniques is challenging. To the best of our knowledge,
there does not exist a literature review regarding RM in the automotive domain. Therefore, there is
still great potential in RM in this domain. Additionally, we use the classification taxonomy provided
by Falcone et al. [FKRT21] to apply it to our retrieved papers in Chapter 5.

In the next chapter, we provide insights on our study design. We focus on our research questions
and our methodology.

30

4 Study Design

In this chapter, we describe the study design. We describe our research questions for this thesis and
summarize the methodology we use to answer each research question.

4.1 Research Questions

RQ1 What are the current state-of-the-art Runtime Monitoring (RM) techniques in the automotive
domain, especially for Advanced Driver-Assistance System (ADAS)?

RQ2 Which RM technique is optimal in the context of our prototype?

RQ2.1 What are the key factors that had to be considered during selection?

RQ3 How can the chosen RM technique be practically implemented in our prototype?

RQ3.1 What are the key considerations and challenges involved in the implementation
process?

4.2 Methodology

This section describes the methods we use to answer the previously defined research questions.
For answering RQ1, we conduct a “Rapid Review (RR)” [CPS20, p. 357] to collect information
on current monitoring techniques for ADAS. We also categorize the found information using a
taxonomy provided by Falcone et al. [FKRT21] to help with further evaluation. All of this can be
found in Chapter 5. For RQ2, we evaluate the provided hardware and the use case to define the
context of our prototype. We then evaluate the possible tools using the context and categorized tools.
This can be found in Chapter 6. For RQ3, we implement the use case on the provided hardware.
The relevant information can be found in Chapter 7.

31

5 Rapid Review

With this whole chapter, we answer the following research question, which is first defined in
Section 4.1:

RQ1 What are the current state-of-the-art RM techniques in the automotive domain, especially for
ADAS?

We give detailed information on the methodology in Section 5.1 and show the results in Section 5.2.

5.1 Methodology

To answer RQ1, we perform a literature review. Due to the limitations in time and reviewers we
have for this thesis and the effectiveness of RRs in the decision-making process connected to a
practical problem, we choose to do a RR instead of a “Systematic Review” [CPS20, p. 359] as
stated by Cartaxo et al. [CPS20].
We visualize the complete workflow of the RR using “Business Process Model and Notation
(BPMN)” [Obj23] in Figures 5.1 and 5.2. In the following, we explain the search strategy, the
selection procedure, the inclusion and exclusion criteria, the quality appraisal, and the synthesis
procedure of the RR [CPS20]. Those parts are also the milestones [Hil23] in Figures 5.1 and 5.2.
In the figures, the steps before a milestone are explained in the milestone directly after. E.g., the
activities: “Search for Keywords”, “Test Queries”, “Use Query”, and “Duplicate Removal” are
explained in the first milestone “Search Strategy”. In Figure 5.1, there is the main process visualized.
The mentioned sub-processes and call activity are displayed in Figure 5.2. Parallel to the work on
the RR, we document the decisions in the next parts (activity: “Create Documentation”).

5.1.1 Search Strategy

We start with the activity “Search for Keywords” as displayed in Figure 5.1. We use the title of
this thesis to collect keywords without extended prior knowledge on the topic. This results in the
following keywords: “ADAS”, “Automotive”, and “Runtime monitoring”. After doing further
research in Google Scholar [Goo23] to find synonyms and other related words, we end up with a list
of topic-related keywords as visualized by the data object in Figure 5.1. With the keywords, we
test multiple combinations in form of queries in scientific databases (activity: “Test Queries”) and
finally, we proceed with the following search query:

33

5 Rapid Review

Search Query

Abstract/Title: (
“ADAS”

OR “Autonomous driv*”
OR “Autonomous vehicle*”
OR “Autonomous research vehicle*”
OR “Driver assistan*”
OR “Driver-assistan*”
OR “Automated driv*”

) AND Title: (
“Runtime monitoring”

OR “Real-time monitoring”
OR “Realtime monitoring”
OR “Runtime verification”
OR “Real-time verification”
OR “Realtime verification”

)

This is not the exact query for each search engine but a generalized version of it. Even though the
following keywords may seem relevant to the topic, we exclude the following keywords because
of numerous false positives: “RV”, “ARV”, and “automotive”. We exclude them because the
abbreviations also abbreviate words unrelated to the topic and the keyword “automotive” is too
general. The query consists of two parts, reflecting our two main focuses: ADAS and RM. We
look for RM-related keywords in the title of the papers, as RM should be the primary focus of the
results. With ADAS-related keywords, we extend the focus by also searching in the title and the
abstract. With explicit exact searches regarding “ADAS”, we try to prevent false positives because
of the fuzzy searches of search engines in scientific databases. Normally in RRs, there are only one
or few sources used to find papers [CPS20]. As there does not exist a large quantity of literature
on our topic, we choose to look into multiple scientific databases. We use the following scientific
databases:

• Scopus [Els23]

• IEEE Xplore [Ins23]

• Web of Science [Cla23]

• Lens [Cam23]

In Figure 5.1, we combine the databases as one symbol. On July 17, 2023, we collect 67 relevant
entries with the query (Scopus: 19 entries, IEEE Xplore: 9 entries, Web of Science: 11 entries,
and Lens: 28 entries; activity: “Use Query”). As we use multiple search engines, we have to filter

34

5.1 Methodology

the results (sub-process: “Filter Results”). The first filtering step is duplicate removal (activity:
“Remove Duplicates”). After duplicate removal, there are 36 entries left (see Table 5.1). In the
same table, there is an Identifier (ID) for each paper, the title, the publication year, the reference,
and the exclusion criterion. We also describe where we found each entry in the scientific databases
(see source/s column). There are multiple entries in the column if there are multiple sources for one
paper (duplicates). For reproducibility, we mention where exactly we found each paper, even if they
are found multiple times. Overall, we get 67 source entries for the 67 initial entries that we found in
the different search engines. E.g, we have three source entries for paper ID 1 as we found the paper
in IEEE, Scopus, and Web of Science. These are then three out of the 67 entries. In Figure 5.2, we
have now reached the “Search Strategy” milestone. We continue with the “Selection Procedure”.

35

5 Rapid Review

Se
ar

ch
 fo

r
Ke

yw
or

ds
Te

st
Q

ue
rie

s

Sc
ie

nt
ifi

c
D

at
ab

as
es

C
re

at
e

D
oc

um
en

ta
tio

n

U
se

Q
ue

ry

Li
st

 o
f

Ke
yw

or
ds

Ta
bl

e
w

ith
Q

ue
rie

s
an

d
R

es
ul

ts

67
 R

es
ul

ts

Fo
un

d
Su

ita
bl

e
Q

ue
ry

? Ye
s

N
o

Sy
nt

he
si

s
Pr

oc
ed

ur
e

Ex
tra

ct
 D

at
a

16
 R

es
ul

ts

D
oc

um
en

ta
tio

n

R
es

ul
t:

Ta
bl

es
 a

nd
 D

ia
gr

am
s

D
o

Sn
ow

ba
llin

g

Sn
ow

ba
llin

g

12
 R

es
ul

ts
 a

nd
D

ep
en

de
nc

ie
s

Fi
lte

r Q
ue

ry
R

es
ul

ts
C

at
eg

or
iz

e
D

at
a

Fi
lle

d
Fo

rm

Figure 5.1: RR main-process in BPMN with process milestones [Hil23]36

5.1 Methodology

Do Snowballing Sub-Process

Collect
References

Collect
Citations

Filter
Results

Filter
Results

Remove
Duplicates

Search
Strategy

Appraise
Quality

36 Results

Define
Incl./Excl.
Criteria

Selection
Procedure

Filter Query Results Sub-Process

18 Results 15 Results

Apply
Incl./Excl.
Criteria

Appraise
Quality

Filter Results Call Activity

Apply
Incl./Excl.
Criteria

Remove
Duplicates

Apply
Snowballing

Criteria

New Results
Found in
 Iteration?

No

Yes

12 Results and
Dependencies

Use TF-IDF

Quality
Appraisal

Figure 5.2: RR sub-processes and call activity in BPMN with process milestones [Hil23]

5.1.2 Selection Procedure

With the 36 entries left, we define inclusion and exclusion criteria, as some entries may not be
suitable for our research (activity: “Define Incl./Excl. Criteria”). We define and apply the following
criteria in that order (activity: “Apply Incl./Excl. Criteria”):

Year All the entries with publication year before 2013 are excluded.

Language All entries in a language that is not English or German are excluded.

Bug The exact search of Lens was not working perfectly at that time, we excluded the false positives
caused by that. In more detail, instead of “ADAS”, there were papers found with “Ada”. We
exclude them.

Conference We exclude entries if, i.e., they represent a collection of all scientific papers presented
at the conference rather than a single work.

In Table 5.1, we list all 36 entries. In the column “Exclusion Criterion”, we mention the criterion
that leads to the exclusion. In total, we have 18 papers left. We have now reached the “Selection
Procedure” milestone in Figure 5.2. Next, we continue with the “Quality Appraisal”.

37

5 Rapid Review

ID Title Year Ref. Source/s Exclusion
Crite-
rion

1 “Real-Time Monitoring With Timing Side Information” 2023 [YCP23] IEEE/S/WoS Focus
2 “Early Concept Evaluation of a Runtime Monitoring Approach for Safe Auto-

mated Driving”
2022 [MČSP22] IEEE/S

3 “Pembuatan Sistem Real Time Monitoring Pengukur Oil Layer Pada Vertical
Continuous Tank di Pabrik Kelapa Sawit Pekawai Kalimantan Barat”

2022 [Han22] L Lang.

4 “Towards Runtime Monitoring of Complex System Requirements for Au-
tonomous Driving Functions”

2022 [GKS+22] S

5 “TSI-Aided Real-Time Monitoring of Brownian Motions: A Rate-Latency-
Distortion Perspective”

2022 [YCP22] IEEE/S/WoS Focus

6 “Computation and Communication Co-Design for Real-Time Monitoring and
Control in Multi-Agent Systems”

2021 [TBCM21] IEEE/L/L/S/
WoS

Focus

7 “Provably-Robust Runtime Monitoring of Neuron Activation Patterns” 2021 [Che21] IEEE/S/WoS
8 “Real-time Monitoring of Autonomous Vehicle’s Time Gap Variations: A

Bayesian Framework.”
2021 [KA21] L Qual.

9 “Trace-Length Independent Runtime Monitoring of Quantitative Policies” 2021 [DTCL21] IEEE/L/S/WoS
10 “20th International Conference on Runtime Verification, RV 2020” 2020 [DN20] S Conf.
11 “A Smartphone-Based Adaptive Recognition and Real-Time Monitoring System

for Human Activities”
2020 [QSA20] L Bug

12 “Assuring the Safety of End-to-End Learning-Based Autonomous Driving
through Runtime Monitoring”

2020 [GZWR20] IEEE/L/S/
WoS

13 “Enabling Real-Time Monitoring of Intrabody Networks Through the Acoustic
Discovery Architecture”

2020 [PHCR20] L Bug

14 “Formal Runtime Monitoring Approaches for Autonomous Vehicles.” 2020 [SUPR20] L/S
15 “Runtime Verification of Autonomous Driving Systems in CARLA” 2020 [ZBK20] S/WoS
16 “Uncertainty modeling and runtime verification for autonomous vehicles driving

control: A machine learning-based approach”
2020 [ALZ+20] L/S/WoS

17 “18th International Conference on Runtime Verification, RV 2018” 2019 [CL18] S Conf.
18 “RANCANG BANGUN SISTEM REAL TIME MONITORING GAS BERBA-

HAYA PADA PETERNAKAN AYAM BROILER BERBASIS INTERNET OF
THINGS DAN DATA LOGGER”

2019 [Yuf19] L Lang.

19 “Real-Time Verification for Distributed Cyber-Physical Systems” 2019 [TNM+19] L/L Qual.
20 “APLIKASI REAL-TIME MONITORING KEHADIRAN KARYAWAN TER-

INTEGRASI DENGAN FINGERPRINT SYSTEM PADA UNIVERSITAS
DEHASEN BENGKULU”

2018 [AR18] L Lang.

21 “INVITED: Runtime Monitoring for Safety of Intelligent Vehicles” 2018 [WKLS18] IEEE/L/L/S/
WoS

22 “IoT on Heart Arrhythmia Real Time Monitoring” 2018 [AM18] L Lang.
23 “NORTH - Non-intrusive observation and Runtime Verification of cyber-physical

systems”
2018 [RCL+18] S

24 “ISoLA (2) - Assuring the Safety of Advanced Driver Assistance Systems
Through a Combination of Simulation and Runtime Monitoring”

2016 [MHR16] L/ S/ WoS

25 “Desain Real-Time Monitoring Berbasis Wireless Sensor Network Upaya Miti-
gasi Bencana Erupsi Gunungapi”

2015 [Pam15] L Lang.

26 “Formal Contracts for Runtime Verification Support in the Ada Programming
Language”

2015 [MPPP15] L Bug

27 “RV - A Case Study on Runtime Monitoring of an Autonomous Research Vehicle
(ARV) System”

2015 [KCDK15] L/ S/ WoS

28 “Ada-Europe - Towards a Runtime Verification Framework for the Ada Program-
ming Language”

2014 [MPPP14] L Bug

29 “Dependable ADAS by combining design time testing and runtime monitoring” 2014 [MRS14] S Qual.
30 “Runtime Verification of Linux Kernel Modules Based on Call Interception” 2011 [RS11] IEEE/ S Year
31 “Ada-Europe - Runtime verification of java programs for scenario-based specifi-

cations”
2006 [XLX+06] L Year

32 “Concurrent runtime monitoring of formally specified programs” 1993 [SM93] L Year
33 “An application generator for a family of real-time monitor and control systems” 1990 [BY90] L Year
34 “Prototype Real-Time Monitor: Ada Code.” 1987 [Sco87a] L Year
35 “Prototype Real-Time Monitor. Executive Summary.” 1987 [Sco87b] L Year
36 “Prototype Real-Time Monitor: Requirements” 1987 [DLP+87] L Year

S = Scopus, L = Lens.org, WoS = Web of Science, Lang. = Language, Conf. =
Conference, Qual. = Quality Appraisal

Table 5.1: List of all papers found with the query

38

5.1 Methodology

5.1.3 Quality Appraisal

To guarantee the quality of the papers, we only use papers that already passed some type of quality
control, e.g., in the form of peer reviews. The papers we exclude because of that can be found
in Table 5.1 with the exclusion criterion “Quality Appraisal”. In the case of ID 29, we can not
find helpful information about whether the symposium peer reviews its papers. Thus, we are
pessimistic and exclude the paper. After this, we have 15 papers left. In the “Use TF-IDF” activity,
we implement a script which counts the occurrences of all words in our papers (in the 15 results)
and sorts the keywords by their “TF-IDF” [SW10] scores. By calculating this, we gain insight into
the contents of the papers. We ignore stopwords, that do not reflect the contents of the papers. We
also fix some formatting issues and ignore punctuations. We do not singularize specific keywords.
All the information on the keywords is listed in Listing A.1. We found three papers that are not
primarily about RM. Therefore, we exclude them (Exclusion Criterion: “Focus” in Table 5.1).
Before the final decision to exclude the papers, we check the contents of the papers to make sure not
to exclude relevant papers. We highlight the remaining papers in gray in Table 5.1. We add the
common keyword distribution in Section 5.2 (see Table 5.3). In Figure 5.2, we have now reached
the “Quality Appraisal” milestone.

5.1.4 Snowballing

On August 28, 2023, we use all remaining papers and Google Scholar [Goo23] for snowballing
(sub-process: “Do Snowballing”) [Woh14]. The process of snowballing involves collecting the
references (backward snowballing) and filtering the results, as well as collecting the citations
(forward snowballing) and again filtering the results [Woh14]. If new results are found, we repeat
the process for the new papers until no new results are found [Woh14]. The corresponding activities
are called: “Collect References”, “Filter Results”, and “Collect Citations”. We describe the “Filter
Results” call activity during backward and forward snowballing further:

1. Filter based on previously defined inclusion and exclusion criteria (activity: “Apply Incl./Excl.
Criteria”).

2. Filter based on title or journal. Our RM keywords have to be visible either in the title or in
the published journal (activity: “Apply Snowballing Criteria”).

3. Filter based on title or abstract. Our ADAS keywords have to be visible either in the title/
abstract or in the published journal (activity: “Apply Snowballing Criteria”).

4. Remove duplicates (activity: “Remove Duplicates”).

5. Filter based on previously defined quality criterion (activity: “Appraise Quality”). If it is not
obvious from the reference directly whether the result is satisfying our quality criterion, we do
further research on the results for including or excluding them to the best of our knowledge.

Our snowballing criteria are analogous to our search query, where we have one RM part (step
two) and one ADAS part (step three). As we conduct a RR instead of a systematic review, we are
rigorous with our criteria compared to Wohlin [Woh14]. Therefore, we focus on the words that are
included in the query to decide if a paper needs to be excluded or included in both parts (RM and
ADAS) [Woh14]. We want to collect only additional results the query missed. In this case, the
paper still matches our defined criteria but is, e.g., published in a different database. After filtering

39

5 Rapid Review

the references and citations based on the previously described procedure, we collect one result from
backward snowballing (ID 38) and two results from forward snowballing (ID 37 and ID 40) in
the first iteration. In the second iteration, we collect one paper from backward snowballing (ID
39). In the third iteration, we collect no papers. All found papers during snowballing, including in
which iteration and in which snowballing step they are found, are visualized in Table 5.2. We list
the 16 final papers in Table 5.1 and Table 5.2, all highlighted in gray, as previously described. We
recreate and replace the final common keywords table with contents from all remaining papers (see
Table 5.3).

ID Title Year Ref. Snowballing Iteration

37 “PerceMon: Online Monitoring for Perception Systems” 2021 [BDH+21] Forward 1
38 “Run-Time Safety Monitoring Framework for AI-Based Systems: Automated

Driving Cases”
2019 [OKS19] Backward 1

39 “Evaluating Perception Systems for Autonomous Vehicles Using Quality Tem-
poral Logic”

2018 [DADF18] Backward 2

40 “Hierarchical Non-intrusive In-situ Requirements Monitoring for Embedded
Systems”

2017 [SL17] Forward 1

Forward = Forward Snowballing, Backward = Backward Snowballing

Table 5.2: List of added papers during snowballing

5.1.5 Synthesis Procedure

We see the data extraction and categorization of the data as parts of the data synthesis (activities:
“Extract Data” and “Categorize Data” in Figure 5.1). We use a form, which is introduced and
used by Falcone et al. [FKRT21] to extract and visualize the data. We change the sequences of
columns within the form, to make it more useful to us. Additionally, while filling out the form, we
already categorize the data (see Table 5.5 and Table 5.6). We had a similar experience as Falcone
et al. [FKRT21], while filling out the form, as there are cases where a distinction between categories
is not clear. We do all the categorization to the best of our knowledge and leave fields with a “?”
where we are not sure, as there is no sufficient information in the papers to categorize it. Falcone
et al. [FKRT21] contact the original authors of the papers and tools to categorize their own tools.
We do not have the time to contact the authors. Further, we create a dependency graph for the
papers (see Figure 5.3).

We have now reached the “Synthesis Procedure” milestone in Figure 5.1. The output of the whole
RR are the resulting tables and diagrams (see Table 5.1, Table 5.2, Figure 5.3, Table 5.3, Table 5.4,
Table 5.5 and Table 5.6). With that, we reach the end of the RR. In the following section, there is a
description of the results.

5.2 Results

With our previously described RR, we collect 16 relevant papers (see gray entries in Table 5.1 and
Table 5.2). We try to make the process and the individual steps as reproducible as possible. We
now include the findings from our RR.

40

5.2 Results

5.2.1 Common Keywords Within Papers

In Table 5.3, we visualize the occurrences of the 20 most significant keywords by their TF-IDF
scores in the source papers (see gray entries in Table 5.1 and Table 5.2). In the table, we have the
paper IDs listed and the 20 most significant keywords by TF-IDF. We mark when a keyword is in
a paper with the ◦ symbol. We also include in how many papers a keyword is found as the sum
column. We also include how many keywords are found in each paper as a sum row. The keywords
are sorted by their TF-IDF scores with “RM” at in the top row and “bounding box” in the bottom
row. The keywords that are in 15 out of the 16 papers are “RV” and “autonomous vehicle”. “RV” ,
compared to “autonomous vehicle” can be found in paper ID 27. In return, “autonomous vehicle”
can be found in paper ID 7. The keywords with the least amount of papers are: “traffic situation”,
“driving style”, “acc system”, and “bounding box”. The keywords “traffic situation” and “bounding
box” share source paper ID 39. The keywords “traffic situation” and “acc system” share source
paper ID 24. The paper with the highest sum of keywords found is paper ID 15. Throughout the
papers, there are at least six keywords found in each paper. The keyword “acc system” stands for
“Adaptive Cruise Control (ACC)”. Throughout the 20 keywords, we have no keyword that does not
match either RM or ADAS aspects. Therefore, we expect that all remaining papers contents are
related to our topic.

ID/
Keyword

2 4 7 9 12 14 15 16 21 23 24 27 37 38 39 40 sum

runtime monitoring ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 14
neural network ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 8
traffic situation ◦ ◦ 2
runtime verification ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 15
temporal logic ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 11
system requirement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 8
autonomous vehicle ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 15
machine learning ◦ ◦ ◦ ◦ ◦ ◦ 6
autonomous driving ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 13
monitoring algorithm ◦ ◦ ◦ ◦ ◦ 5
driving style ◦ ◦ 2
runtime monitor ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 9
anomaly detection ◦ ◦ ◦ ◦ 4
training data ◦ ◦ ◦ ◦ ◦ 5
case study ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 12
perception system ◦ ◦ ◦ ◦ 4
data set ◦ ◦ ◦ 3
acc system ◦ ◦ 2
test case ◦ ◦ ◦ 3
bounding box ◦ ◦ 2
sum 6 8 9 9 10 8 15 10 9 6 11 7 9 10 10 6
2: [MČSP22], 4: [Han22], 7: [Che21], 9: [DTCL21], 12: [GZWR20], 14: [SUPR20], 15: [ZBK20], 16: [ALZ+20],

21: [WKLS18], 23: [RCL+18], 24: [MHR16], 27: [KCDK15], 37: [BDH+21], 38: [OKS19], 39: [DADF18], 40: [SL17]

Table 5.3: Occurrence of most significant keywords (by TF-IDF [SW10]) scores in source papers

41

5 Rapid Review

5.2.2 Paper Dependencies

We analyze the dependencies between the papers to gain more information on the relevance of
the individual papers. We visualize the dependencies in the graph in Figure 5.3. In the graph, the
papers are visualized as nodes. With a number (“ID”) in each node, we specify which paper is
represented by the node (by ID). The numbers and further information on the papers can be found
in Table 5.1 and Table 5.2. In the graph, there are two types of nodes, three sizes of nodes, and
one connection type. There are two types of nodes, base nodes and snowballing nodes. Each type
represents when a paper was found, either it is a base paper or it was found during snowballing.
The three sizes of nodes are: small, medium, and large. Each size represents the relevance of the
paper for the other 15 papers. We describe this further:

Small node A paper is represented with a small node if none of the 15 other papers reference it.
Therefore, the small node has no incoming edges.

Medium node A paper is represented with a medium node if one or two of the 15 other papers
reference it. Therefore, it has one or two incoming edges.

Large node A paper is represented with a large node if three or more of the 15 other papers
reference it. Therefore, it has three or more incoming edges.

The edges visualize the references. We have four papers referencing the paper with ID 27 (ID 12,
ID 21, ID 23, and ID 40). The paper with ID 12 also references the paper with ID 38. We also
have two papers referencing ID 15 (ID 4 and ID 37). The paper with ID 37 also references ID 39.
Therefore, we have three medium nodes (ID 15, ID 38, and ID 39) and one large node (ID 27).
The remaining nodes are small nodes. We expect that the referenced papers are foundational work.
Thus, we think that the connected papers may be similar regarding their topics.

27

241614972

4 3723 4012 21

3938 15 ID

ID

0 References

3+ References

1 - 2 References

References

Legend

ID

ID ID/ Snowballing /
Base Paper

Sizes:

Types:

Connection:

2: [MČSP22], 4: [Han22], 7: [Che21], 9: [DTCL21], 12: [GZWR20], 14: [SUPR20], 15: [ZBK20], 16: [ALZ+20],
21: [WKLS18], 23: [RCL+18], 24: [MHR16], 27: [KCDK15], 37: [BDH+21], 38: [OKS19], 39: [DADF18], 40: [SL17]

Figure 5.3: Dependency graph to visualize the dependencies between the papers

42

5.2 Results

5.2.3 Technique Classification

In a RR, there is the synthesis procedure. It combines the data extraction and categorization of
the retrieved data. We add these results in Table 5.5 and Table 5.6. We use abbreviations from
now on, which we list in Table 5.4. In Table 5.4, we have two columns. We call the left column
“Column” and the right column“Values”. Entries in the “Column” column are names of the columns
and sub-columns in, e.g., Table 5.5. The “Values” column describes all the values the columns
and sub-columns can have. The main columns are “Specification”, “Monitor”, “Deployment”,
“Interference”, “Reaction”, “Trace”, and “ADAS application”. In the Table 5.4, there exists one
extra column, which is called “General”. It defines generally usable abbreviations throughout
multiple columns. As we use the taxonomy by Falcone et al. [FKRT21], most of the abbreviations
are by them. We extend the abbreviations, e.g., by adding the general value “x supported”, which is
then explained in the table. For further explanation on the columns and sub-columns, see Chapter 3
or the paper by Falcone et al. [FKRT21].

After introducing the abbreviations, we display our extraction and categorization of the data
in Table 5.5 and Table 5.6. We now explain the alterations we make to the form by Falcone et
al. [FKRT21]. In Table 5.5, we make the following alterations: Contrary to Falcone et al. [FKRT21],
we add the “organization” column to the table, even though we also have only the same value
in the column. We keep the “behavior” sub-column to distinguish it from the “organization”
column, as we also keep that column. We separate the “output” column into “information” and
“frequency”. We add the “tool” column to the “decision-procedure”, instead of a separate column
for the tool. We divide the “stage” column into an “offline” and an “online” column. We combine
the “synchronisation” [FKRT21] column and “placement” [FKRT21] column that belong to the
“online” column. We combine those columns into “online” to make the connection more clear.

In Table 5.6, we add the “formalism & fragment”, merged from “Specification formalism” [FKRT21]
and “Supported fragment” [FKRT21]. We also extend the “application area” [FKRT21] by adding
the “tool” column and by adding the “focus” column, “environment” column, the “communication”
column, and the “task” column. We have the following questions in mind while filling out these
columns:

Focus What is the main focus of the work?

Environment In what environment do they use the tool in?

Communication How does communication happen between components?

Task What is the purpose of the work?

Most columns from Table 5.6 contain further textual information, besides just the abbreviations.
The gray marked entries in both tables are open-source tools. We gather 16 relevant papers and
collect 16 approaches for RM that can be used in the automotive domain. We categorize the data
and visualize it using the form tables. We continue with an analysis of our extracted and categorized
data in the next section.

43

5 Rapid Review

Column Values
Specification
organization c = central, d = decentral

implicit
ms = memory safety,
c = concurrency,
sec = security

data p = propositional, s = simple parametric, c = complex parametric
output information v = verdict, r = robustness, q = quality
output frequency sng(_) = a single _, seq(_) = a sequence of _
logical time tot = total order, par = partial order
physical time di = discrete, de = dense, none = no time
modality f = future and current, p = past and current, c = current
paradigm d = declarative, o = operational
Monitor
generation e = explicit, i = implicit
execution i = interpreted, d = direct
properties of the decision procedure s = soundness, c = completeness, i = impartiality, a = anticipation
Deployment
stage on = online, off = offline
synchronisation sync = synchronous, async = asynchronous
architecture c = centralised, d = decentralised
placement out = outline, in = inline,
instrumentation sw = software
Interference
Interference in = invasive, ni = non-invasive
Reaction
active ex = exception, r = recovery, ro = rollback, en = enforcement
passive so = specification output, e = explanations, st = statistics
Trace
information e = events, s = states, i/o = input and output, si = signal
sampling et = event-triggered, tt = time-triggered
evaluation p = points, i = intervals
precision p = precise, i = imprecise
model f = finite trace model, i = infinite trace model
ADAS application

focus pv = property verification, fp = failure prevention & reaction,
td = testing and debugging

General
all = all features supported, none = no features supported
na = not applicable, ? = insufficient information
x supported = x not applied but supported by the tool

Table 5.4: Classification abbreviations: The table is first introduced by Falcone et al. [FKRT18;
FKRT21], as well as extended by us.

44

5.2 Results

ID

Sp
ec

ifi
ca

tio
n

M
on

ito
r

D
ep

lo
ym

en
t

Interference

R
ea

ct
io

n
Tr

ac
e

organization

be
ha

vi
or

de
ci

sio
n

pr
oc

ed
ur

e

generation

execution

st
ag

e

architecture

instrumentation

active

passive

information

sampling

evaluation

precision

model

implicit

ex
pl

ic
it

realisation

tool

properties

offline

online

data

ou
tp

ut
tim

e

modality

paradigm

info.

freq.

log.

phys.

2
c

no
ne

c
v

sn
g

?
?

f
d

an
al

yt
ic

al
SD

E-
V

c
i

d
no

?,
sy

nc
c

no
ne

in
r

so
s

et
p

p
i

4
c

no
ne

c
v

sn
g

?
?

f,p
d

an
al

yt
ic

al
?

c,
s,i

,a
e

i
no

?,
?

c
no

ne
in

no
ne

so
,st

s
?

p
p

i

7
c

no
ne

p
v

sn
g

no
ne

no
ne

c
o

sy
m

bo
lic

re
as

on
in

g
na

s
i

d
no

in
lin

e,
sy

nc
c

na
in

no
ne

so
i/o

et
p

i
f

9
c

no
ne

p
v

se
q

?
di

p
d

dy
na

m
ic

pr
og

ra
m

m
in

g
?

c,
s

i
i

no
ou

tli
ne

,a
sy

nc
c

Lo
gi

cD
ro

id
:

sw
,

RO
S:

no
ne

in
,n

i
en

so
s,e

et
i

p
i

12
c

no
ne

s
v

sn
g

?
?

c
d

an
al

yt
ic

al
D

ep
en

da
bi

lit
y

C
ag

e
?

?
?

no
?,

?
c

no
ne

in
r

so
s

?
p

p
i

14
c

no
ne

s
v

sn
g

?
di

c
o

au
to

m
at

a-
ba

se
d

ea
sy

-r
te

c,
s

e
d

no
ou

tli
ne

,sy
nc

c
no

ne
in

en
so

e
et

p
p

i

15
c

no
ne

s
v,

r
se

q
?

di
,d

e

su
pp

or
te

d
f,p

d
an

al
yt

ic
al

rta
m

t
?

e
i

su
pp

or
te

d
ou

tli
ne

,sy
nc

c
no

ne
ni

no
ne

so
,st

e
tt,

et

su
pp

or
te

d
i

p
i

16
c

no
ne

s
r

se
q

?
di

c
d

au
to

m
at

a-
ba

se
d

U
PP

A
A

L-
SM

C
c,

s
e

i
no

ne
?,

sy
nc

c
no

ne
in

en
so

i/o
tt

p
p

i

21
c

no
ne

s
v,

r
se

q
to

t
de

f
d

an
al

yt
ic

al
B

re
ac

h
?

i
i

ye
s

?,
sy

nc
c

no
ne

in
no

ne
so

,e
e,

s
et

i
p

i

23
c

c,

m
ss

up
po

rte
d

se
c

su
pp

or
te

d

c
v

se
q

?
?

c
d

?
co

m
pa

tib
le

w
/C

he
dd

ar
?

?
?

no
in

lin
e,

?
c

no
ne

ni
no

ne
so

e
et

,tt
p

i
f,i

24
c

no
ne

c
v

sn
g

?
?

c
d

an
al

yt
ic

al
?

?
e

d
no

ou
tli

ne
,?

c
no

ne
ni

no
ne

so
i/o

et
p

p
i

27
c

no
ne

p
v

se
q

to
t

di
f,p

d
dy

na
m

ic

pr
og

ra
m

m
in

g
A

gM
on

/E
gM

on
s,a

i
i

no
ou

tli
ne

,sy
nc

c
no

ne
ni

no
ne

so
e

tt
p

p
i

37
c

no
ne

c
v,

r
sn

g
?

?
f,p

d
an

al
yt

ic
al

Pe
rc

eM
on

c,
s

i
i

ye
s

ou
tli

ne
,?

c
no

ne
ni

no
ne

so
i/o

et
p

p
i

38
c

no
ne

s
v

sn
g

?
di

c
d

an
al

yt
ic

al
SM

F
?

i
i

no
?,

?
c

no
ne

in
r

so
i/o

tt
p

p
i

39
c

no
ne

c
v,

q
sn

g
?

?
f

d
an

al
yt

ic
al

Pe
rs

ep
ho

ne

ba
se

d
on

S-
Ta

Li
Ro

?
i

i
ye

s
su

pp
or

te
d

c
no

ne
ni

no
ne

so
i/o

et
p

p
i

40
c

no
ne

p
v

sn
g

?
?

c
o

?

N
IR

M

ha
rd

w
ar

e

m
on

ito
r

?
e

d
no

ne
ou

tli
ne

,?
c

no
ne

ni
no

ne
so

,st
si

,e
et

p
p

i

2: [MČSP22], 4: [Han22], 7: [Che21], 9: [DTCL21], 12: [GZWR20], 14: [SUPR20], 15: [ZBK20], 16: [ALZ+20],
21: [WKLS18], 23: [RCL+18], 24: [MHR16], 27: [KCDK15], 37: [BDH+21], 38: [OKS19], 39: [DADF18], 40: [SL17]

Table 5.5: Classification - Part 1: Gray highlighted entries use open-source tools
45

5 Rapid Review

ID Specification ADAS application
formalism & fragment focus environment communication task

2 SDE-V pv
IPG CarMaker,

TTTech’s RazorMotion
Automotive Prototype ECU, PC

?
check ADAS output trajectory to

avoid collisions and avoid
entering undrivable areas

4 Visual TSCs, SVR, TER pv simulation in CARLA,
also supports real-world vehicles

CARLA, ROS pass-by maneuver monitoring

7 abstractions for neuron activation
patterns in DNNs

pv ARV ?
detect abnormal camera images

in physical laboratory
setting (race track)

9 MTLcnt: extension of ptMTL
(past-time MTL variant)

pv
LogicDroid,

autonomous vehicle simulation
platform (based on ROS)

USB, CAN malware detection,
intrusion detection

12 direct implementation pv ARV ?
ensure collision-free
autonomous driving

through parcour

14 FA or VDTA pv
ARV with Raspberry Pi

as master and Arduino Uno
as slave for steering

? ensure correct steering
to keep vehicle within lane

15 STL pv simulation in CARLA CARLA
find ACC parameters
and continuosly check

ACC performance requirements

16
informal visual stohChart(p)
requirements translated to
formal PCTL properties

pv ARV, experiments with
simulated scenario

? ensure safety of LCA decisions

21 Parametric STL,
online monitoring: restricted

pv,td Unity, Simulink, MATLAB LAN, MQTT CPMS,FPS

23 TL pv FPGA hardware monitor
with RTEMS target

BUS
online job scheduling

errors detection, planned:
experiments with CPS

24 ATS, mapping functions pv
trained in simulations and then
applied to real-world industrial

prototype → loop
? monitor safe operation of LCA

27 MTL, bounded future modalities pv ARV USB, CAN check safety requirements
(mode transitions, heartbeats)

37 TQTL, STQL pv
simulation in CARLA

+ ROS wrapper for CARLA,
OpenSCENARIO

CARLA, ROS

check consistency of detections
and smoothness of bounding box

trajectories for all objects in
dangerous driving situations

38 Safety Profile pv,fp ARV ? monitor safety of ADAS for
lane and obstacle detection

39 TQTL pv
monitor applied on KITTI

image benchmark dataset for
autonomous driving scenarios

na
check consistency of

detections for all objects
in subsequent image frames

40 UML sequence diagrams
translated to HRMGs

pv
on-chip NIRM hardware
implemented on FPGA

with Microblaze processor
BUS

detect timing, dependency,
synchronization and sensor

failures in multiple autonomous
vehicle driving scenarios

2: [MČSP22], 4: [Han22], 7: [Che21], 9: [DTCL21], 12: [GZWR20], 14: [SUPR20], 15: [ZBK20], 16: [ALZ+20],
21: [WKLS18], 23: [RCL+18], 24: [MHR16], 27: [KCDK15], 37: [BDH+21], 38: [OKS19], 39: [DADF18], 40: [SL17]

Table 5.6: Classification - Part 2: Gray highlighted entries use open-source tools

5.2.4 Technique Classification Analysis

Here, we describe how we analyze the retrieved techniques. First, we provide an overview on the
distribution of the classified taxonomy values. Then, we compare the taxonomy classification values
of each paper with all other papers to retrieve pairwise similarity scores.

46

5.2 Results

Contents of the Papers

As we have textual information in form of papers, direct analysis is not possible. We show the
extraction and categorization results of the data in the previous section. Generally, the contents of
the 16 papers are all related to the topic of the thesis, as expected due to no outliers in Table 5.3.
We now analyze the classification results. We implement a script to analyze the contents of our
data where possible. We omit the following columns: “formalism & fragment”, “environment”,
and “task”. We visualize our results in Table 5.7 and Table 5.8. We left the main categories/
columns to match the structure of Table 5.5 and Table 5.6. The smaller tables, within Table 5.7
and Table 5.8, are the sub-columns of the classification results. Table 5.7 contains the columns:
“Specification”, “Monitor”, and “Deployment”. Table 5.8 contains the columns: “Interference”,
“Reaction”, “Trace”, and “ADAS application”. With the script, we count how often we got which
result in the sub-column, e.g., in the “specification” column, we have “c” as a result 100% of times
throughout the 16 papers. If a column has multiple values as an entry, we split them at the comma
and count them as separate entries. E.g., the paper with ID 23 has “c,ms supported,sec supported”
as an entry in Table 5.5. Besides the “organization” column, the “architecture” column also has
“c” as entry in 100% of the entries. As we rounded the values, sometimes they do not add up to
100%. We have several columns where we have insufficient information in at least 1

3 of cases. The
columns are: “logical” (logical time) with approximately 81%, “physical” (physical time) with
approximately 47%, “properties” with approximately 33%, “online” with approximately 42%, and
“communication” with approximately 33%. The other fields are mostly assignable. We also have
multiple columns where we often have “none” as entry, e.g., “implicit” with approximately 83%,
“instrumentation” with approximately 82%, and “active” with 62%. In the “tool” column, there
are always unique answers that are then evenly distributed with 6.25%, except where we have no
sufficient information to categorize them. In the “interference” column, almost half of the results
(approximately 47%) has “ni” as entry and the remainder has approximately 53%.

Similarities Between Papers

In Table 5.9, we evaluate how similar pairs (ID 1, ID 2) of papers are in our classification. We
always choose two papers and compare the row entries of the papers from Table 5.5 and Table 5.6
with each other. The “similarity” column contains the similarity values. They are rounded for better
readability. The column “ID 1” contains the ID of the first paper of the pair, and the column “ID 2”
contains the second paper of the pair. E.g., we compare the papers with ID 2 and ID 15. They have
a similarity of around 32%. To evaluate the similarity, we always compare the values of the same
column with each other. E.g., ID 2 and ID 15 both have “d” as “paradigm” entry, which increases
their similarity. Columns, where the entries are not the same, decrease the papers’ similarity.

In total, we get 120 pairs, which we separate into three smaller tables for readability in Table 5.9.
The lowest similarity has the pair (7,15) with around 16%. The pairs (12,38) and (37,39) have the
highest similarities with 71% each. The gray highlighted entries are entries that have a connection
in Figure 5.3 through a reference. We observe that the lowest similarity value is not one of the gray
highlighted entries, but both of the highest values are highlighted entries, as they have a connection
in Figure 5.3. As a reminder, ID 12 references ID 38 and ID 37 references ID 39. All the gray
highlighted entries have a similarity of at least 32%. The highest similarity in the non-highlighted
entries is 65%. There are five pairs with this value: (2,12), (2,24), (24,37), (24,39), and (24,40).

47

5 Rapid Review

Specification Monitor Deployment

organization % realisation % offline %
c 100.00 analytical 56.25 no 62.50

dynamic programming 12.50 yes 18.75
implicit % automata-based 12.50 none 12.50

none 83.33 ? 12.50 supported 6.25
c 5.56 symbolic reasoning 6.25

sec supported 5.56 online %
ms supported 5.56 tool % ? 41.94

? 18.75 sync 22.58
data % SDE-V 6.25 outline 22.58

c 37.50 na 6.25 inline 6.45
s 37.50 Dependability Cage 6.25 async 3.23
p 25.00 easy-rte 6.25 supported 3.23

rtamt 6.25
information % UPPAAL-SMC 6.25 architecture %

v 75.00 Breach 6.25 c 100.00
r 20.00 compatible w/ Cheddar 6.25
q 5.00 AgMon/EgMon 6.25 instrumentation %

PerceMon 6.25 none 82.35
frequency % SMF 6.25 na 5.88

sng 62.50 Persephone based on S-TaLiRo 6.25 LogicDroid: sw 5.88
seq 37.50 NIRM hardware monitor 6.25 ROS: none 5.88

logical % properties %
? 81.25 ? 33.33

tot 12.50 s 29.17
none 6.25 c 25.00

a 8.33
physical % i 4.17

? 47.06
di 35.29 generation %

none 5.88 i 50.00
de supported 5.88 e 37.50

de 5.88 ? 12.50

modality % execution %
c 40.00 i 56.25
f 35.00 d 31.25
p 25.00 ? 12.50

paradigm %
d 81.25
o 18.75

Table 5.7: Analysis of the classification - Part 1

48

5.2 Results

Interference Reaction Trace ADAS application

interference % active % trace information % focus %
in 52.94 none 62.50 e 36.84 pv 88.89
ni 47.06 r 18.75 i/o 31.58 td 5.56

en 18.75 s 26.32 fp 5.56
si 5.26

passive % communication %
so 80.00 sampling % ? 33.33
st 15.00 et 55.56 CARLA 14.29
e 5.00 tt 27.78 ROS 9.52

? 11.11 USB 9.52
et supported 5.56 CAN 9.52

BUS 9.52
evaluation % LAN 4.76

p 81.25 MQTT 4.76
i 18.75 na 4.76

precision %
p 87.50
i 12.50

model %
i 88.24
f 11.76

Table 5.8: Analysis of the classification - Part 2

The difference of 6% between 71% and 65% is a difference of about 1.9 entries. The two highest
similarities can be explained due to the fact that one paper is based on the other. The one paper is
then a foundation for the other paper. Which means that the foundational paper is further extended,
as the other paper may have worked on the future work aspects of the foundational paper. The
smaller similarities can be explained due to extending the foundational paper for entirely new aspects
not covered in the foundational work. We expected all connected papers to have a high similarity,
which is not the case. For instance, even papers that are not connected through a reference have a
higher similarity than those papers that are connected. But the highest similarities are still within
the connected papers.

The information provided in the tables Table 5.5 and Table 5.6 summarize the available tools and
techniques since 2013 in the automotive domain, especially for ADAS. Therefore, they represent
the answer to our research question RQ1. Using these results, we now proceed with deciding which
tool to use for the prototype in the next chapter.

49

5 Rapid Review

ID 1 ID 2 similarity
2 4 58%
2 7 45%
2 9 42%
2 12 65%
2 14 55%
2 15 32%
2 16 45%
2 21 42%
2 23 39%
2 24 65%
2 27 42%
2 37 55%
2 38 58%
2 39 58%
2 40 45%
4 7 32%
4 9 39%
4 12 61%
4 14 45%
4 15 48%
4 16 42%
4 21 35%
4 23 39%
4 24 61%
4 27 45%
4 37 58%
4 38 52%
4 39 52%
4 40 48%
7 9 32%
7 12 42%
7 14 48%
7 15 16%
7 16 32%
7 21 23%
7 23 32%
7 24 48%
7 27 39%
7 37 35%
7 38 45%

ID 1 ID 2 similarity
7 39 35%
7 40 42%
9 12 35%
9 14 45%
9 15 35%
9 16 45%
9 21 35%
9 23 29%
9 24 42%
9 27 52%
9 37 42%
9 38 42%
9 39 39%
9 40 32%
12 14 55%
12 15 39%
12 16 48%
12 21 35%
12 23 48%
12 24 61%
12 27 42%
12 37 45%
12 38 71%
12 39 48%
12 40 45%
14 15 39%
14 16 61%
14 21 29%
14 23 35%
14 24 58%
14 27 45%
14 37 42%
14 38 55%
14 39 39%
14 40 52%
15 16 42%
15 21 48%
15 23 35%
15 24 45%
15 27 48%

ID 1 ID 2 similarity
15 37 48%
15 38 39%
15 39 45%
15 40 42%
16 21 39%
16 23 32%
16 24 48%
16 27 45%
16 37 45%
16 38 58%
16 39 42%
16 40 39%
21 23 23%
21 24 35%
21 27 39%
21 37 45%
21 38 42%
21 39 48%
21 40 29%
23 24 52%
23 27 42%
23 37 39%
23 38 35%
23 39 42%
23 40 45%
24 27 45%
24 37 65%
24 38 58%
24 39 65%
24 40 65%
27 37 48%
27 38 52%
27 39 45%
27 40 39%
37 38 48%
37 39 71%
37 40 48%
38 39 52%
38 40 39%
39 40 48%

2: [MČSP22], 4: [Han22], 7: [Che21], 9: [DTCL21], 12: [GZWR20], 14: [SUPR20], 15: [ZBK20], 16: [ALZ+20],
21: [WKLS18], 23: [RCL+18], 24: [MHR16], 27: [KCDK15], 37: [BDH+21], 38: [OKS19], 39: [DADF18], 40: [SL17]

Table 5.9: Similarities of the classification in % from Table 5.5 and Table 5.6: Gray highlighted
entries are connected in Figure 5.350

6 Prototype Technique Selection

With this whole chapter, we answer the following research questions, which are first defined in
Chapter 4:

RQ2 Which RM technique is optimal in the context of our prototype?

RQ2.1 What are the key factors that had to be considered during selection?

To answer RQ2.1, we collect information on the provided hardware in Section 6.1 and information
on the prototype’s use case in Section 6.2. The hardware requirements and the use case are relevant
factors for tool selection. With knowledge on them, we have then defined a context and requirements
for the prototype. With this, we then filter the 16 tools on more detailed factors and provide one
optimal tool for the prototype in Section 6.3 to answer RQ2.

6.1 Hardware - Mecabot TX

For our exploration of RM in the automotive domain, we have the opportunity to work with an
ARV, the “Mecabot TX” [Rob23a]. The following information on the Mecabot TX is extracted from
the Roboworks [Rob23a] online shop:

Applications “Autonomous driving[,] autonomous mobile robot[,] SLAM[,] navigation[,] mobile
manipulation[,] multi robot system[,] human robot interaction[,] mobile computer vision[,]
edge computing over 4G/5G” [Rob23a]

Dimensions “Length: 41.05 cm[,] Width: 40.7 cm[,] Height: 15.3 cm” [Rob23a]

Included Components The components of the robot can be divided into multiple categories,
which are given below.

Hardware “1x ROS controller Jetson TX1[,] 1x chassis battery[,] 1x battery
charger” [Rob23a]

Sensors “Orbbec depth camera[,] Leishen LSLiDAR” [Rob23a]

Operating System and Software “onboard Ubuntu [18.04,] ROS1 [Melodic] [and]
STM32 driver[,] [...] remote control app[,] drivers and software installers” [Rob23a]

ROS Packages and Source Codes “STM32 chassis source codes” [Rob23a]

Actuators “omnidirectional mecanum wheels with 100 mm diameter[,] 35W servo
power” [Rob23a]

We investigate this, as it is relevant to know what hardware we have available for our prototype.
The tool selection may differ depending on the hardware the robot provides. Next, we define the use
case for our prototype.

51

6 Prototype Technique Selection

6.2 Prototype Use Case

In this section, we present our prototypical use case to demonstrate the usage of runtime monitors
for ADAS systems. The prototype is deployed onto a real-world ARV called Mecabot TX. The ARV
is further described in Section 6.1. The aim of our AEB ADAS system is to perform AEB in case
of an obstacle appearing in front of the ARV. In detail, the system is based on RGB camera images
that are used to check for pedestrians, cars, etc. in a certain sub area of the image (called the AEB
danger zone). Whenever an obstacle of a particular COCO class (e.g., person, car, ...) is detected
within this AEB danger zone, the AEB system produces an emergency braking signal to stop all
wheels of the ARV immediately. This corresponds to a full emergency braking maneuver. If there
is no such obstacle within the AEB danger zone, the AEB outputs a safe driving signal and sets a
constant positive speed on all wheels.

The danger zone and example COCO classes are visualized in Figure 6.1. Obstacles with a green
border are safe obstacles and obstacles with a red border are unsafe. We have two examples in
Figure 6.1, on the left are safe obstacles in the danger zone and on the right are unsafe obstacles. In
Figure 6.1, the safe obstacles are: cars outside the danger zone, a person outside the danger zone
and obstacles that are within the danger zone, but the overlap is under a threshold. Additionally, we
consider COCO classes like donuts as safe, even though they are fully within the danger zone, as we
do not consider them as a safety threat. On the right image in Figure 6.1, we visualize the unsafe
obstacles, where the obstacles are overlapping with the danger zone (overlap of at least the chosen
threshold).

RGB Camera Image

AEB Danger Zone

person
⇒ safe

car
⇒ safe

car
⇒ safe

donut
⇒ safe

person
⇒ safe

RGB Camera Image

AEB Danger Zone

person
⇒ unsafe

car
⇒ unsafe

car
⇒ unsafe

bicycle
⇒ unsafe

person
⇒ unsafe

safe ⇒ AEB should emit safe
driving signal

unsafe ⇒AEB should emit
emergency braking signal

Figure 6.1: AEB danger zone illustration

The AEB is intended to work in a dynamic environment where obstacles can appear in front of the
ARV anytime. Therefore, the goal of the AEB system is to prevent the ARV from hitting any unsafe
obstacle in front. The AEB system works solely perception-based, e.g., by analyzing RGB camera
images. The idea behind this perception-based AEB ADAS is to simulate a complex perception- &
AI-based system for AD functions, as, e.g., used in real-world autonomous vehicles by different
companies [MMGP19]. These perception- and AI-based systems are known to be error-prone, as

52

6.2 Prototype Use Case

already discussed in Chapter 2. Therefore, we additionally set up runtime monitors to monitor the
decisions of the AEB ADAS at runtime regarding several Safety Requirements (SRs). We present
the SRs for the RMs:

SR1 The AEB system should produce a signal (safe driving or emergency braking) each [50,150] ms
(real-time samples).

SR2 If the current distance of the ARV to the nearest object in front is less than the current safety
distance, then the AEB ADAS should emit an emergency braking signal within the next
500 ms. In example, when an emergency brake is required due to immediate danger, the AEB
ADAS must produce an emergency braking signal quickly (no false negatives).

SR3 If the AEB ADAS emits an emergency braking signal, then the current distance to the nearest
object in front must be less than the current safety distance. In other words, when the AEB
ADAS produces an emergency braking signal, there must be an immediate danger in front of
the ARV (no false positives).

SR4 Whenever the AEB system emits an emergency braking signal, then there may not occur a safe
driving signal within the next 2000 ms before the ARV reaches zero velocity (no stopping of
emergency braking maneuver).

6.2.1 Data Flow Visualization

Based on the given hardware and SRs, we visualize a possible data flow (connection arrows) in
Figure 6.2. Details may change in the actual implementation. The sensors and outputs are parts of
the ARV. We have the sensor components on the left (Sensors). As we know from Section 6.1, we
have a RGB camera and a LiDAR equipped. Both sensors collect environmental data. The camera
and LiDAR data are topics the system within the ARV is subscribed to. How exactly the data is
processed is currently a black box system (marked with a ?). We do know that our runtime monitors
and the AEB will run on this system on the ARV, as the comment in Figure 6.2 describes.

After the black box system, we have the outputs the system publishes. We think that the wheel
speed, the AEB signal, the monitor result and the violations report may be relevant outputs. The
wheel speed, the AEB signal, and the monitor result will also be topics.

The wheel speed likely controls the actual wheel speed of the ARV. This makes emergency braking
and driving possible. The AEB signal is the decision of the AEB whether to stop or to drive. The
monitor result is the evaluation of the perception data by the monitor. The violation report will be a
file with details about the violations of the SRs. Further details on the actual implementation are
provided in Chapter 7.

53

6 Prototype Technique Selection

ARV

RGB Camera

LiDAR Sensor

Wheel
Speed

Monitor Result

Sensors

Outputs

AEB Signal

Violations
Report

Black box system
with AEB and runtime

monitor inside

Legend

Types:

Connection:
Data Flow

Topic

File

comment

Black Box
System

?

Figure 6.2: Prototype data flow with a black box system

6.3 Selection Procedure

For choosing the tool for our prototype, we evaluate relevant aspects from the form by Falcone
et al. [FKRT21] considering the available hardware and use case. We evaluate the aspects and
values shown in Table 6.1.

The table is similar to the abbreviations table (see Table 5.4). We exclude columns, where the actual
entry is not relevant for our use case. We include the reasoning for the relevant aspects and their
needed values in the following:

Specification We need verdicts for properties to check. Thus, we need at least v as value in explicit
output information. We need some notion of time for our SRs. Therefore, we want neither
none nor ? as values in explicit physical time. Our SRs also require future operators. Thus,
we need at least f (current and future) for the explicit modality.

Monitor We need specified open-source tooling.

Deployment We need the monitor to not be inline with the system to monitor (e.g., outline with
separate ROS node). Thus, we need at least outline as value in stage online. We need a
central deployment architecture (deployed as one centralized ROS node). Therefore, we need
c as value in architecture. We would rather not use direct instrumentation but use pub/sub
with ROS topics. Therefore, we need none as value in instrumentation.

Reaction We need specification outputs (e.g., verdicts of properties). Thus, we need at least so as
value in passive.

Trace We need the monitor to use a precise trace model (assumes perfect precision of given trace
data). Therefore, we need p as value in precision. We need the monitor to support retrieving
trace information endlessly. Therefore, we need i as a value in the model.

54

6.3 Selection Procedure

ADAS application We need property violation checking. Therefore, we need pv as value in focus.
ROS compatibility is ideal.

Column Values
Specification
explicit output information at least v
explicit physical time not none, not ?
explicit modality at least f
Monitor
tool of the decision procedure specified and open-source
Deployment
stage online at least outline
architecture c
instrumentation none
Reaction
passive at least so
Trace
precision p
model i
ADAS application
focus at least pv
ideally, there is also a use case with ROS or there exists a library
to make RM tool compatible with ROS

Table 6.1: Tool requirements, missing columns can have any value

55

6 Prototype Technique Selection

ID/
Filter criterion

2 4 7 9 12 14 15 16 21 23 24 27 37 38 39 40 sum

Specification
explicit output information:
at least v

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 15

explicit physical time:
not none, not ?

◦ ◦ ◦ ◦ ◦ ◦ ◦ 7

explicit modality:
at least f

◦ ◦ ◦ ◦ ◦ ◦ ◦ 7

Monitor
tool:
specified & ◦pen source

◦ ◦ ◦ ◦ ◦ ◦ 6

Deployment
stage online:
at least outline

◦ ◦ ◦ ◦ ◦ ◦ ◦ 7

architecture:
c

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 16

instrumentation:
none

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 14

Reaction
passive:
at least so

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 16

Trace
precision:
p

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 14

model:
i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 14

ADAS application
focus:
at least pv

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 16

sum 8 8 4 8 7 10 11 8 10 5 8 10 10 8 9 8
2:[MČSP22], 4:[Han22], 7:[Che21], 9:[DTCL21], 12:[GZWR20],14: [SUPR20], 15:[ZBK20], 16:[ALZ+20],

21:[WKLS18], 23:[RCL+18], 24:[MHR16], 27:[KCDK15], 37:[BDH+21], 38:[OKS19], 39:[DADF18], 40:[SL17]

Table 6.2: Filter criteria derived from our requirements applied to all retrieved RM techniques

After evaluation of the relevant aspects, we filter the entries from Table 5.5 and Table 5.6 based
on the aspects from Table 6.1. We include the code in which we do the filtering in Listing A.2
in Appendix A. Also, in Table 6.2 we visualize each filtering step by showing the papers that
fulfill each individual filtering criterion specified. After evaluation of the requirements and
filtering out tools, we have one possible tool left: rtamt. The corresponding paper ID is ID 15
by Zapridou et al. [ZBK20]. Ideally, we want a tool that is compatible with ROS. The rtamt tool
by itself is written in “Python” [VD09]. Thus, rtamt can be made compatible with ROS using
the “rospy” [Ope17] library. However, this would require additional development effort. But, as
Ničković and Yamaguchi[NY20] state, there also exists rtamt4ros. The rtamt4ros library is directly
compatible with ROS. Using the rtamt4ros tool, we create our monitor on the robot. We describe
our implementation in the next chapter.

56

7 Prototype Implementation

In the previous chapter, we evaluated the tool (rtamt4ros) to implement our monitor (see Chapter 6).
In this chapter, we describe how we implement the prototype. In detail, we answer the following
research questions, which are first defined in Chapter 4:

RQ3 How can the chosen RM technique be practically implemented in our prototype?

RQ3.1 What are the key considerations and challenges involved in the implementation
process?

We provide insights into our implementation in Section 7.1. Additionally, we verify our monitor in
Section 7.2 and provide details on our experiment in Section 7.3. To answer RQ3.1, we provide
information on our challenges and key considerations in Section 7.4. Then, to answer RQ3, we
implement the prototype with possible tools and provide the architecture of our solution in the next
section.

7.1 Architecture

After evaluating which tools are usable on our hardware, we implement a prototype with the tools.
We provide the architecture of the prototype in Figure 7.1. Some aspects of this figure are similar to
Figure 6.2, so we do not explain them again. We only focus on aspects that were not mentioned yet
or that have changed. We added implementation details as comments in Figure 7.1.

The sensors publish data to the ARV. Previously, the system inside the ARV was a black box system
(see ? in Figure 6.2). Now, we have the knowledge that we have an object detection ROS node (OD
node) as well as a front distance measurement ROS node (FDM node) provided on the robot. The
OD node works with darknet_ros with YOLOv3 which was trained on the COCO dataset. The
FDM node is from the simple_follower ROS node, which is provided on the robot [Rob23a]. The
OD node subscribes the RGB camera ROS topic. In the following, we just write the term topic to
refer to a ROS topic. When the OD node receives data, it then detects objects in the camera images.
The OD node publishes detected object data to a topic that the object tracking ROS node (OT node)
subscribes to.

We implement the OT node based on sort-deepsort-yolov3-ROS. The OT node gives IDs to detected
objects and tries to track equal objects within multiple frames. Ideally, equal objects should have the
same ID. The OT node publishes data to a topic. This data and the camera topic data are subscribed
by the AEB ADAS ROS node (AA node).

The AA node, which we implement from scratch based on the specifications in the previous
chapter (see Chapter 6), publishes data on two topics: the wheel speed and the AEB signal. In
our implementation, the wheel speed is either zero, if the ARV does an emergency brake, or a

57

7 Prototype Implementation

System

RGB Camera

LiDAR Sensor

Object
Detection

Object
Tracking

Front
Distance

Measurement

AEB ADAS

Runtime
Monitors

Wheel
Speed

Monitor Result

Sensors

ARV

Outputs

AEB Signal

Violations
Report

from
simple_follower

darknet_ros
with YOLOv3

based on sort-
deepsort-yolov3-

ROS

own
implementation

based on rtamt4ros
passive monitor

(reports violations
to file & ROS Topics)

decision result:
emergency braking

(boolean)

speed:
zero if emergency

braking, else constant
positive value

Legend

Types:

Connection:
Pub/Sub Data Flow

ROS Topic

File

ROS Node
(new)

ROS Node
(Mecabot TX)

comment

former
black box
system

Figure 7.1: Architecture diagram of the prototype

constant positive value. The AEB signal contains the decision result. It is a boolean value which
indicates whether the ARV should do an emergency brake (true) or whether the ARV should not do
an emergency brake (false).

The provided FDM node subscribes the LiDAR sensor topic. When data is published, the FDM
node receives the data and calculates the distance to the nearest object. The FDM node publishes
this data to a topic.

The runtime monitors ROS node (RM node) subscribes to the FDM result topic. In addition, the
runtime monitors node also subscribes to the wheel speed topic and the AEB signal topic. Here, the
idea is that the runtime monitors can use the given wheel speed and distance to the nearest object
in front to check the provided decisions by the AEB ADAS (i.e., whether the ARV should be in
safe driving mode or in emergency braking mode). After checking the AEB results, the RM node
publishes the monitoring result and writes to the violations report file. Note that this report does
not only include the actual violations. Instead, we report all monitor outputs together with the input
values and state whether this represents a violation or not. The RM node publishes the monitoring
result to the monitor result topic. The RM node is based on our selected tool (rtamt4ros). It consists
of four monitors (one for each SR from Chapter 6). They are passive monitors as they do not
actively interfere with our system, but only report violations to a file and publish their results via
ROS topics. In particular, the monitors cannot overwrite the driving decisions taken by the AEB
ADAS. The violations represent violations of our previously defined SRs in Chapter 6. We simplify
the architecture by leaving out how the Mecabot TX processes the outputs of the system. The robot
subscribes to the wheel speed topic. The robot starts and stops driving according to the speed. For
simplicity, we also omit the names of the topics between nodes in the system. The next sections
further explain the blue ROS nodes.

58

7.1 Architecture

7.1.1 Object Tracking

The object tracking ROS node subscribes to the /darknet_ros/bounding_boxes topic provided by the
object detection ROS node. This topic provides the bounding boxes of detected objects together
with their COCO class labels (e.g., person or car). Whitelisted object classes restrict the tracker as
it can only track whitelisted object classes. In our case, the whitelist contains the following COCO
classes: person, car, bicycle, motorbike, bus, train, truck, boat, and stop sign. For each detected
object, the tracker is updated with input (bounding_box, prediction_probability, class_id). On a
given input, the tracker then checks if this object is already contained in the previous frame. This is
done by comparing the new bounding box and COCO label with the bounding boxes and COCO
labels of all objects in the last input image. If the tracker thinks that a given object is identical with
an object in the last input image, the current object is assigned the same ID as the corresponding
object in the last input image. Otherwise, the tracker selects a completely new ID for the given
object. Note that a detected object can be assigned a new ID either if it is actually new (i.e., not
contained in the previous frame) or because the current bounding box of the object differs too
much from its previous bounding box. As visualized by Figure 7.1, the object tracking ROS node
publishes to a topic (/sort_track) which is then consumed by the AEB ADAS ROS node.

7.1.2 AEB ADAS

In the AEB ADAS ROS node, we implement the logic of our AEB ADAS. As visualized in
Figure 7.1, the AEB ADAS ROS node subscribes to the RGB camera topic and the /sort_track topic
provided by the object tracking ROS node. The camera images have width 640 px, height 480 px,
and the origin is located in the upper left corner of the input image. The object tracking ROS node
enables us to introduce cooldowns for detected objects. As an example, if an object is detected in
a frame but not in the next frame, it does not directly get removed but lives on for a little while
longer. The reason, why we want to do this is that we have identified that the used object detector
(darknet_ros [Bje18]) produces very unsteady predictions. As an example, an object is detected
in frame i, but not in frame i+1, but then again detected in frame i+2. This would cause large
fluctuations in our system. By using the cooldowns for objects, we smoothen this object detection
step. The consequence of this is that objects can live longer than they would actually live. But this
is not a problem in our case, since this only means that the ARV performs an emergency braking
maneuver in front of a detected object a little while longer than needed. On the other hand, if we
would not use the object tracker, the detections of objects would be highly fluctuating leading to
our AEB ADAS to constantly switch between safe driving mode and emergency braking mode,
which is not desired by us. Therefore, the use of the object tracker introduces additional stability
and safety for our system.

The danger zone definition is in the AEB ADAS ROS node (see danger zone from Figure 6.1). The
following values are relevant for the size of the danger zone (in pixels): danger_zone_min_x: 140,
danger_zone_max_x: 500, danger_zone_min_y: 140, danger_zone_max_y: 480. The figure also
contains objects that overlap with the danger zone, but the objects are not fully within the zone.
The minimum width that the bounding box has to be within the danger zone is 20 pixels. The
minimum height that the bounding box has to be within the danger zone is 25 pixels. The safe
driving speed is also defined here (0.1 m/s). The AEB ADAS ROS node is responsible for starting

59

7 Prototype Implementation

and stopping the ARV based on its evaluated signal. The AEB ADAS node regularly publishes the
new wheel speed value and the evaluated signal (either safe driving or emergency braking) through
ROS publications.

7.1.3 Runtime Monitors

Like the previous nodes, the runtime monitors have an input/output configuration and the monitor
configuration. In the input/output configuration, there are the input and output ROS topics defined.
As visualized in Figure 7.1, the node subscribes to three topics: the FDM topic, the ARV wheel
speed topic, and the AEB decision topic. For simplicity, only one topic visualizes the monitor result
in Figure 7.1. We simplify the architecture by combining the five output topics that could be used
into one monitoring result in the architecture diagram in Figure 7.1. There is one topic for each
SR and one combined topic (monitor_output_all_topic). As the monitors are passive, the monitor
result is not actually used in our prototype. The last output (output_logs_folder) is for the violations
report.

Basic property definitions are in the monitor configuration part. The sampling_period is the time
period when a signal by the AEB system is expected (every 0.1 s). The sampling_tolerance is
relevant for SR1. The value adds timely tolerance to the production of the AEB signal. In this
case, we have the 0.5 as value. These values specify that the elapsed time between two input data
samples must be in [0.5*sampling_period,1.5*sampling_period] s ([50,150] ms). For example, if
one sample arrives 40 ms after the previous sample or 160 ms after the previous sample, this both
counts as a violation. The robustness violation threshold set to the value zero defines that if the
robustness (rob) is smaller than zero, there is a violation. The min_distance_to_nearest_object is a
float that describes the minimal distance to the nearest object (safety distance). In the example, it is
1 m.

There is one formula for each SR from Chapter 6. As described in Table 5.6 at ID 15, rtamt requires
to use STL as a formalism for writing specifications. Based on these STL specifications, rtamt
generates the monitors by itself. Note that we use a dummy formula for SR1 (see formula 7.1
below), as we only care about the sample timing violations count outputted by the STL monitor. In
the following, the STL specifications for our four SRs are listed. In example, formula 7.1 represents
SR1, formula 7.2 represents SR2, formula 7.3 represents SR3, and formula 7.4 represents SR4:

out = (1 >= 1)(7.1)

out = (nearestObjDist < safetyDistance)
→ (𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦[0:0.5] (aebIsEmergencyBraking > 0))

(7.2)

out = (aebIsEmergencyBraking > 0)
→ (nearestObjDist < safetyDistance)

(7.3)

out = (aebIsEmergencyBraking > 0)
→ ((aebIsEmergencyBraking > 0) 𝑢𝑛𝑡𝑖𝑙 [0, 2] (speed == 0))

(7.4)

60

7.1 Architecture

The formula 7.2 for SR2 describes that if the nearest object distance is smaller than the safety
distance, then the AEB must respond with emergency braking signal within 0.5 s after violating the
safety distance. The formula 7.3 for SR2 describes that if the AEB outputs an emergency braking
signal, then the safety distance must be violated currently. Lastly, the formula 7.4 for SR4 describes
that if the AEB outputs an emergency braking signal, then it must continue to do so until the ARV
is stationary (speed is zero). For that, we assume that the emergency braking maneuver takes at
most two seconds. For visualization, parts of the violations report are included in Listing 7.1. Note
that this report does not only include the actual violations. Instead, we report all monitor outputs
together with the input values and state whether this represents a violation or not. We describe the
columns of the file further:

SR Provides information on which SR the row is about. Values can be the following: SR1, SR2,
SR3, and SR4.

STL Contains the STL formula for the monitored property.

Logical Time The same logical time represents an integer counter that is incremented each time
the monitors are evaluated. As for each logical time step, we report the outputs for all four
SRs, the same logical time value can be found in four subsequent rows (e.g., lines two to five
in Listing 7.1). The logical time connects the entries.

Sample Timestamp This is the timestamp the value (i.e., the AEB signal) is from.

Nearest Obj Dist It contains the distance to the nearest object as determined by the FDM ROS
node using the LiDAR sensor.

Speed It contains the speed of the ARV. This can be either 0.1 m/s or 0 m/s.

Safety Dist In this example, the safety distance is always 1.0 m.

AEB Emergency Braking The values can be either -1.0 (false) or 1.0 (true). If the value is false,
the ARV is not braking. If the value is true, the ARV is braking.

Robustness It is a value between [-1,1], that indicates the extents of the violation. A one indicates
no violation. Everything below zero is a violation. The smaller the value is, the more the
formula is violated. The robustness value is calculated by rtamt.

Violation True indicates a violation of the SR, false indicates no violation.� �
1 SR;STL;Logical Time;Sample Timestamp;Nearest Obj Dist;Speed;Safety Dist;AEB Emergency Braking;Robustness;

Violation

2 SR1;1 >= 1;0;1700412683999655961;1.3669999837875366;0.1;1.0;-1.0;0;False

3 SR2;out = (nearestObjDist < safetyDistance) -> (eventually[0:0.5](aebIsEmergencyBraking > 0))

;0;1700412683999655961;1.3669999837875366;0.1;1.0;-1.0;nan;False

4 SR3;out = (aebIsEmergencyBraking > 0) -> (nearestObjDist < safetyDistance)

;0;1700412683999655961;1.3669999837875366;0.1;1.0;-1.0;1.0;False

5 SR4;out = (aebIsEmergencyBraking > 0) -> ((aebIsEmergencyBraking > 0) until[0,2] (speed == 0))

;0;1700412683999655961;1.3669999837875366;0.1;1.0;-1.0;inf;False

6 SR1;1 >= 1;1;1700412687024082899;1.3450000286102295;0.1;1.0;-1.0;-1;True

7 ...� �
Listing 7.1: Snippet from a sample violations report file

A description of the verification of the four monitors of the RM node is in the next section.

61

7 Prototype Implementation

7.2 Verification of the Monitors

In this chapter, there are explanations on how the different monitors are verified. As already
explained, there is one monitor for each SR from Section 6.2.

SR 1 For this verification, appropriate settings have to be determined. Therefore, all components
run at the same time, and we check how frequently the monitor node gets an AEB result
ROS message. The sampling period of SR1 monitor is set accordingly (approximately 10 Hz.
Thus, the sampling period is 100 ms). We test the monitor with this setting and a tolerance of
50%. Accepted durations between two AEB samples are 50 ms to 150 ms. Any duration
outside this interval should be detected as violation by the rtamt monitor. In our test run, we
see that rtamt indeed detects these cases as violations and does not report false negatives.

We visualize the next test cases (SR2 to SR4) using Table 7.1. On the left most column, we have
the SR that is being tested by the test case. Then in mocked condition, we have the variables that
we mock for the test and what condition needs to be fulfilled by mocking their values. In AEB
emergency braking, there are the necessary AEB signal values and changes in the value for the tests.
Then we have the expected outcome of the test and the actual outcome of the test as two columns.
If the expected outcome result and actual outcome result match, then the monitor passes the test
successfully.

SR Mocked condition AEB emergency braking Expected outcome Actual outcome Passed?

SR2
nearest object dist < safety distance 1.0 violation = false violation = false yes
nearest object dist < safety distance -1.0 violation = true violation = true yes

nearest object dist >= safety distance -1.0 violation = false violation = false yes

SR3
nearest object dist < safety distance 1.0 violation = false violation = false yes

nearest object dist >= safety distance -1.0 violation = false violation = false yes
nearest object dist >= safety distance 1.0 violation = true violation = true yes

SR4
speed > 0 -1.0 violation = false violation = false yes

speed > 0 1.0 to -1.0
before two seconds

violation = true violation = true yes

speed > 0 1.0 to -1.0 after more
than two seconds

violation = false violation = false yes

Table 7.1: Test cases and results of SR2, SR3, and SR4

SR 2 To simulate all relevant cases, there is the need of simulating incoming ROS subscription
values. Firstly, set the nearest object dist and the safety distance such that the nearest object
dist is smaller than the safety distance for the test. Then check if the monitor reports a
violation when the AEB does not respond with a braking Signal. Otherwise, the monitor
should not report a violation. Using a test run, we confirm that both cases are correctly
handled by the monitor. Secondly, use fixed nearest obj dist and safety distance such that the
nearest object dist is at least the safety distance. Check that the monitor does not report a
violation. Using a test run, we confirm that the monitor handles the case correctly by not
reporting a violation.

SR 3 To simulate all relevant cases, there is the need of simulating incoming ROS subscription
values. Firstly, set the nearest object dist and the safety distance such that the nearest object
dist is smaller than the safety distance. Then check that the monitor reports no violation even
when the AEB emits a braking signal. Using a test run, we see that the monitor handles this

62

7.3 Experiment

case correctly. Secondly, set the nearest object dist and the safety distance fixed such that
the nearest object dist is at least the safety distance. Then check that the monitor reports
no violation when the AEB does not emit a braking Signal. The monitor should report a
violation when the AEB does emit a braking Signal. Using a test run, we see that the monitor
handles both cases correctly.

SR 4 To simulate all relevant cases, there is the need of simulating incoming ROS subscription
values. For the speed of the robot, we set it to a fixed speed greater than zero for a sufficiently
large number of time units (greater than two seconds, which is the time bound for the until
operator) after the AEB emits a braking signal. After the time units, the speed is again set to
fixed speed zero. We then test all relevant cases as follows: Firstly, check that the monitor
never reports a violation when the AEB does not emit a braking signal. Using a test run,
we can confirm that the monitor correctly handles this case. Secondly, place a person in
front of the camera causing AEB to emit a braking signal. Then move the person out of
the image quickly (before the logical time units pass) and check that the monitor reports a
violation. The violation is caused due to the emergency braking signal switching to false
(-1.0) again, although the braking maneuver is not successfully completed yet (as the speed is
still greater than zero) and the two seconds time bound for the until operator has not passed
yet. Intuitively, this means that the ARV stops the emergency braking maneuver before it halts
completely. Using a test run, we confirm the monitor handles this case correctly. Thirdly,
place a person in front of the camera, causing the AEB to emit a braking signal. Then move
the person out of the image only after more than two seconds. Check that the monitor reports
no violation. Using a test run, we confirm the monitor handles this case correctly.

This completes the verification of the monitors’ implementation. This is needed for a correct
evaluation of the usefulness of the implemented monitors for our use case. For the following
experiment, we can be sure that the monitor is not buggy, causing it to produce wrong verdicts
(robustness values) for given input values. However, input values could still be out of sync or
delayed, causing the whole approach to not be useful in our setting. This needs to be investigated
now in the experiment with a test track.

7.3 Experiment

As the implementation of the prototype was done using something similar to a test bench for cars,
just in smaller size for the ARV, we did an experiment to test the implementation while the ARV
was able to actually drive. A simple test track was set up for the ARV which consisted of a straight
path. We then performed one experiment with different obstacles on the track. For the experiment
we used a dynamic obstacle at the side of the track and the others were placed directly on the track.
The aim of the AEB system was to let the ARV perform an emergency brake for all obstacles that
were on the track (immediate danger) and no emergency brake for all obstacles beside the track (no
immediate danger). After the experimental run, we observed the output file produced by the RMs
that contained violations for the different SRs that were identified. We then analyzed the validity of
the reported violations, which allowed us to give an insight into the effectiveness of the applied
RMs for improving the safety of the AEB ADAS system.

63

7 Prototype Implementation

7.3.1 Setup

The implementations of the monitors were tested with an experiment. For the experiment, the
ARV was connected to a laptop via remote access. The necessary programs on the ARV could be
started without connecting the ARV to a monitor itself by using remote access. This made the ARV
movable as it was not restricted by cable lengths. The system and its nodes were started in the
following order:

1. Started ROS on the Mecabot TX

2. Started darknes_ros with YOLOv3 object detector

3. Started sort_track SORT object tracker

4. Started LiDAR object distance tracker

5. Started AEB perception-based ADAS system

6. Started runtime safety monitoring system

The initial setup of the experiment is visualized in Figure 7.2 as starting position. The straight
path consisted of sixteen 60 cm big square tiles. The ARVs length and width are rounded, the
exact sizes are in Section 6.1. The ARV was placed on the first tile in the bottom-right corner, as
visualized in the figure. All obstacles were printed out images of obstacles in A4 format that we
attached to objects to make them face the ARV by themselves. There were two obstacles, which
were initial obstacles, as they were placed during the experiment setup (initially). The image of the
first obstacle is Figure 7.3a. The image of the second obstacle is Figure 7.3b. The first obstacle
(green rectangle with number one) was positioned with a distance of three tiles from the ARV.
The second obstacle was placed three tiles from the first obstacle. As previously described, there
were three more obstacles placed during the experiment, which we will explain in the next section.
Multiple cameras were used to record the experiment. We placed one camera behind the ARV and
the other camera was carried by the person placing and removing obstacles during the experiment.
By using cameras, stopping positions of the ARV and positions of the obstacles could be evaluated.
Additionally, we recorded the screen of the laptop during the experiment to record the camera view
and violations of the ARV.

7.3.2 Execution and Results

When the experiment started, the ARV started driving at a speed of 0.1 m/s. This value was constant
as the speed was either zero or the constant value we choose, in this case it was 0.1 m/s. The safety
distance was also a constant with a value of 1 m. The driving direction was indicated by the arrows
in Figure 7.2. While the ARV drove, it processed the environmental information.

For the first obstacle, the ARV did two stops. The first stop was approximately 1.5 tiles away from
the first obstacle. The second stop was approximately 1.16 tiles away from the first obstacle, as
visualized in Figure 7.2. After the first stop, the ARV started driving again. At the second stop,
there was no movement anymore. We then removed the first obstacle from the track. Now we
investigated how the ARV reacted to the second obstacle. The ARV did two stops again (third
and fourth stop), similar to the first two stops. When the ARV finally stopped at the fourth stop,
we placed the third obstacle on the track. It was placed three tiles from the second obstacle. The

64

7.3 Experiment

Starting Position

First Obstacle

2

Second Obstacle

2 3 4

Third Obstacle

2 3 4 5

Fourth Obstacle

2 3 4 5 6

60cm

60
cm Floor Tile Initial / Added

Obstacle with No./ /

41
cm

41cm
ARV Starting Position /
ARV Emergency Brake (No.) Position

Tile ... Tile Path Driving Direction

Legend

ARV

ARV

ARV 1 2

ARV 1 2 3

ARV 1 2 3 4 5

ARV 1 2 3 4 5 6

4

5

53

32

2

2

1

1

No
No

No

4

Fifth Obstacle

2 3 4 5 6ARV 1 2 3 4 5 6 5

Figure 7.2: Experiment sequence of events

65

7 Prototype Implementation

(a) Image 1 [ami10] showing a stop
sign

(b) Image 2 [mal07] showing multiple persons on a
crosswalk

(c) Image 3 [Hun12] showing a person
on a bicycle, cropped

(d) Image 4 [Kec13] showing a crossing with a stop
sign

Figure 7.3: Images used as obstacles for experiment

image of the second obstacle is Figure 7.3c. After placing the third obstacle, we removed the second
obstacle. Removal and addition of the obstacles was done by a person walking into the frame and
grabbing the obstacle to remove it. For adding the obstacles, the person was also in the frame. After
the removal of the obstacle, the person walked out of the frame and the ARV started driving again.
At the third obstacle, the ARV did its fifth stop, approximately 2.16 tiles away. When the ARV
stopped, the person placed the fifth obstacle three tiles away from the third obstacle. The image for
the fifth obstacle is Figure 7.3d. For the third obstacle, there was only one stop (the fifth). The
fourth obstacle was a random person walking into our test track. The distance to the ARV was
not accurately visualized for this obstacle. The ARV did a stop approximately 2.5 tiles away from
the fifth obstacle (the sixth stop). When the fourth obstacle walked off the track, the ARV started
driving again. For the fifth obstacle, the ARV never stopped. It drove against and over the obstacle.
We then stopped the ARV and the experiment was finished. The monitors created the violations
report file during the execution.

66

7.3 Experiment

7.3.3 Evaluation

When observing the ARV emergency brake positions, we looked at the distance to the nearest
objects and the screen recordings of the object detector and AEB ADAS.

ARV Emergency Brake 1. Position At this position, the object detector and the AEB ADAS
detected the stop sign and the ARV halted approximately 96 cm away from the sign (similar
to Figure A.1a and Figure A.1b but it should be further away). Then, the object detector and
the AEB abruptly did not recognize the stop sign anymore. The cooldown by the AEB ADAS
was not enough to keep the ARV at a stop long enough.

ARV Emergency Brake 2. Position The ARV drove further until it recognized the sign again
(see Figure A.1a and Figure A.1b). The stop was within the safety distance at approximately
78 cm from the obstacle. The first halt should have been the only one for the first obstacle.
Even though the ARV stopped to recognize the obstacle and drove again, it did not collide
with the obstacle. In Figure A.1d, there is the screenshot of a cooldown of the stop sign.

ARV Emergency Brake 3. Position At the third stop, the object detector recognized a bicycle
(see Figure A.2a). The AEB ADAS recognized the bicycle within the danger zone a few
frames later (see Figure A.3b). Thus, it stopped approximately 1.13m from the third obstacle.
The bicycle was, in fact, nonexistent. The floor had round holes in it, which were recognized
as bicycle. Then, the bicycle was not recognized anymore and the ARV drove again.

ARV Emergency Brake 4. Position At the fourth stop, the ARV halted for the pedestrians
approximately 79 cm away from the obstacle. The object detector initially mismatched the
persons with another COCO object class (see Figure A.3a), this may have been caused by two
pedestrians standing near to each other, and it looked like an object with four legs instead of
two objects with two legs each. The AEB ADAS recognized the persons. Thus, the ARV then
halted because it correctly recognized the persons as such (see Figure A.3c and Figure A.3d).

ARV Emergency Brake 5. Position At the fifth position, the ARV stopped approximately 1.42 m
away from the obstacle. The object detector recognized a boat and a person as objects. The
person was correctly recognized. The boat, on the other hand, was not correctly recognized
as the object detector recognized it on the floor, but there was no boat (see Figure A.4a and
Figure A.4b).

ARV Emergency Brake 6. Position The AEB ADAS recognized a person within the danger
zone (see Figure A.5b). Thus, it stopped driving. The fifth obstacle was approximately 1.41m
away.

There were no more stops after the sixth stop, as the object detector could not recognize the stop sign
in the image. The object detector did recognize the whole obstacle as a TV monitor, but this was
not a COCO object class that the AEB ADAS had whitelisted, so it did not stop for it. That was also
why we knew with certainty that the sixth stop was caused by the fourth obstacle. In Appendix A,
there are more images included, e.g., regarding the cooldowns of objects (see Figure A.4d) or
examples where the object detector recognized objects that were not whitelisted by the AEB ADAS.
Therefore, they were not recognized by the AEB ADAS (see Figure A.5c and Figure A.5d).

The violations report contained 4305 items (rows). For the purpose of this thesis, we filtered the
relevant aspects.

67

7 Prototype Implementation

SR1 There were 573 SR1 violation cases in total. These violations occurred regularly because the
monitor ROS node received new data samples either too fast or too slow after each other (not
within [50,150] ms compared to the previous sample). The occurrences were investigated in
more detail. We identified that the smallest amount of time between two SR1 samples in our
test run was 18 ms, and the longest amount of time between two SR1 samples was 562 ms.
Thus, these values represent the extreme cases for the time elapsed between two samples.
Furthermore, in 39% of the cases a sample arrived too early (less than 50 ms elapsed since
the last sample), and in the other 61% of the cases, a sample arrived too late (more than
150 ms elapsed since the last sample).

This suggested that the current expected sampling rate (10 Hz) should be lowered a little,
since in the majority of cases the samples arrived too late. This adaptation could lead to
less SR1 violations being thrown. Generally, we had a large discrepancy in the elapsed
time between two samples ([18,562] ms) which would not be desired in a real production
system. This could be due to unsuitable outgoing and incoming queue sizes at the ROS
publishers’ and ROS subscribers’ queues. For more information on the queue sizes, visit the
ROS documentation [Ope23].

SR2 There were 84 SR2 violation cases in total which could be divided into three unique occurrence
series.

Occurrence Series 1/3 This was the situation where the ARV stopped in front of the stop
sign (the first obstacle and the first brake) but then continued driving again at logical
time unit 140 because the stop sign was not recognized anymore. The safety distance
was still violated at this point (distance to the nearest object in front was less than 1 m)
so the monitor of SR2 started tracking if in the next 0.5 s the AEB would emit an
emergency braking signal again in response to the violated safety distance. However,
this signal did not arrive (this is visualized in the screen recording, where the ARV did
not recognize the stop sign anymore and continued driving). Thus, the SR2 monitor
reported a violation from logical time unit 145 (approximately 0.5 s after logical time
unit 140) until the object in front was detected again at logical time unit 151 by the
object detector. Therefore, it was also detected by the AEB ADAS.

A possible solution to improve the AEB ADAS is to increase the cooldown in the AEB
ADAS node to better handle cases where the object detector suddenly did not recognize
objects anymore, but then did again.

Occurrence Series 2/3 This was the situation where the ARV stopped in front of a wrongly
detected bicycle on the floor (the third emergency braking position) but then continued
driving and did not recognize the pedestrians on the crosswalk (the second obstacle) in
front soon enough. At logical time unit 350, the safety distance was first violated at
this point (distance to nearest object in front was less than 1 m) so the monitor of SR2
started tracking if in the next 0.5 s the AEB would emit an emergency braking signal
again in response to the violated safety distance. However, this signal did not arrive (in
the screen recording: the ARV first did not recognize the pedestrians on the crosswalk
but mistook them for other objects (i.e., cows) and only detected actual persons at a
much later point in time). Thus, the SR2 monitor reported a violation from logical time

68

7.3 Experiment

unit 355 (approximately 0.5 s after logical time unit 350) until the object in front was
detected correctly at logical time unit 361 by the object detector. Therefore, it was also
correctly detected by the AEB ADAS.

A possible solution to improve the AEB ADAS is to use a more sophisticated object
detector that does not mistake two persons side by side on a crosswalk as cows.

Occurrence Series 3/3 At logical time unit 993 the safety distance was violated (LiDAR
distance to nearest object in front was less than 1 m) so the monitor for SR2 started
tracking if in the next 0.5 s the AEB would emit an emergency braking signal in
response to the violated safety distance. However, this signal did not arrive (in the
screen recording: where the ARV did not recognize the stop sign at the crossing and just
drove over it). Thus, the SR2 monitor reported a violation from logical time unit 998
(approximately 0.5 s after logical time unit 993) until the object in front was completely
run over (LiDAR distance to next object in front was again at least 1 m).

A possible solution to improve AEB ADAS is to adapt the AEB danger zone because as
soon as the small stop sign was detected it was outside the danger zone, causing the
AEB not to stop in front of it.

SR3 There were 232 SR3 violation cases in total which could be divided into six unique occurrence
series. This violation describes when the ARV braked too early, or when the ARV braked
even though the nearest object distance was at least the safety distance. In general, this can
mean that the AEB ADAS was not working perfectly, as it started the emergency braking
maneuver too early. For context, this is a problem, as a stop too far away from, e.g., a
pedestrian crosswalk or a stop sign is not wanted behavior. Here should be improvements
done in the future, e.g., by adapting the size of the AEB danger zone or the minimum overlap
size of objects with the AEB danger zone.

Occurrence Series 1/6 At logical time unit 118 the AEB ADAS outputted a correct
emergency braking signal but the current distance to the nearest object in front was
still a little over the safety distance (1 m). In fact, this case did not represent an actual
problem of the AEB ADAS.

Occurrence Series 2/6 and 4/6 At logical time units 203/529, after the object in front (in
front of which the ARV successfully stopped) was removed. Due to the cooldown
configured in the AEB ADAS, the previous objects (i.e., persons/ stop sign) were still
detected for some time although the distance to the nearest object in front was now
greater again, e.g., greater than the safety distance (1 m). Therefore, the monitor of SR3
reported a violation because the AEB ADAS still emitted the emergency braking signal,
although the safety distance was not violated anymore. After the cooldown was over at
logical time unit 216/542, the emergency braking signals stopped. Thus, no more SR3
violations were reported.

This problem came from the configuration of the cooldown inside the AEB ADAS. The
number of SR3 violations caused by this could be lowered by lowering the cooldown,
but this could result in a higher number of SR2 violations (see above). There is a
trade-off between high cooldowns leading to more SR3 violations and low cooldowns
leading to a higher number of SR2 violations.

69

7 Prototype Implementation

Occurrence Series 3/6 At logical time unit 317, the object detector wrongly detected a
bicycle in the tile on the ground. Thus, the AEB ADAS emitted an emergency braking
signal. However, the safety distance was not violated at this point, since the current
distance to the nearest object in front was larger than 1 m. The monitor of SR3 reported
a violation here until logical time unit 332, where the bicycle was not detected anymore.

Occurrence Series 5/6 At logical time unit 636 the object detector wrongly detected a
boat in the tile on the ground. Thus, the AEB ADAS emitted an emergency braking
signal. However, the safety distance was not violated at this point, since the current
distance to the nearest object in front was larger than 1 m. The monitor of SR3 reported
a violation here. After wrongly detecting the boat, the system correctly identified the
person on a bicycle in front, but still, the safety distance was not violated so the monitor
of SR3 continued reporting violations. Even after the object in front was removed, the
violations continued for a little while again due to the cooldown of the AEB ADAS
until logical time unit 789 where the object in front was not detected anymore.

Occurrence Series 6/6 At logical time unit 916 the object detector detected a person
entering the room at a long distance. Since the detected person was within the AEB
danger zone with large overlap, the AEB ADAS started an emergency braking maneuver.
However, the safety distance was not violated at this point, since the distance to the
nearest object in front was larger than 1 m. The monitor of SR3 reported a violation
here until logical time unit 954 where (after the cooldown) the person was not detected
anymore and the AEB ADAS continued driving.

SR4 There were three SR4 violation cases in total. Until logical time 215, the ARV did emergency
braking. Then the obstacle in front was removed, leading to the AEB to detect that there was
no obstacle any longer. Thus, the AEB switched to safe driving mode. This means that the
AEB published a wheel speed of 0.1 m/s and a new AEB result with an emergency braking
value of -1.0 (false). The problem was that the monitor subscribed to the wheel speed and
AEB result topics independently and in this case, the monitor already received the new wheel
speed (0.1 m/s) but still an old AEB result (with an emergency braking value of 1.0 (true)).
On receiving the old AEB result, the monitor was evaluated again, meaning that the two
seconds period for checking SR4 was started (because emergency braking exceeds zero). The
problem was that in the next frame, we retrieved the updated AEB result (with an emergency
braking value of -1.0 (false)) and the wheel speed stayed 0.1 m/s because the ARV was in
safe driving mode. Thus, after the two seconds period, the SR4 monitor reported a violation
because the monitor thought that at logical time 215 a new emergency braking maneuver
was started which was stopped before the wheels stopped (zero speed). But this was false
because there never was a new emergency brake maneuver, an old value was retrieved for
the AEB result. To solve this, the input values should be better synchronized in the future,
e.g., we should send the current wheel speed and safety distance inside the AEB node and
make sure that the times are synchronized. To summarize: the problem here did not originate
from a wrongly implemented SR4 specification (monitor) or from a wrong AEB ADAS
implementation, but from an unsynchronized use of multiple subscriptions for input data to
update the monitors with.

In this section, we described our experiment, together with its execution, results, and evaluation. In
the next section, we will outline our main challenges and key considerations of this thesis.

70

7.4 Challenges and Key Considerations

7.4 Challenges and Key Considerations

In this chapter, we provide information on the challenges and key considerations regarding our
implementation process of the prototype. They range from language-specific challenges to hardware
restrictions and software considerations. We also provide insights into our implementation and
explain our choices for the final implementation.

7.4.1 Challenges Working with the Robot

A large fraction of these challenges could be summarized as “working with the robot”. Nobody
involved in this thesis worked with the Mecabot TX before. Thus, we had to learn everything from
scratch and from examples how to work with the robot. But there were also restrictions due to the
hardware provided by the Mecabot TX. In the following, we describe these challenges.

Foreign Language Most of the code samples on the Mecabot TX only contained comments in a
foreign language, which we do not speak or read. Therefore, it was hard for us to get started
with the implementation.

Deprecated Tutorials Initially, we wanted to use a newer version of ROS, namely “ROS 2
Galactic” [Ope23]. But this version required the Ubuntu 20.04 operating system to be
installed on the robot [Ope23]. However, the pre-installed Ubuntu version on the robot was
Ubuntu 18.04 and setting up the robot was extremely time-consuming. This was because
we, firstly, have never worked with the robot and secondly, the online tutorials were either
deprecated or for another robot family [Rob23c](“Rosbot” [Rob23c]). We only knew that the
tutorials were deprecated because we contacted the Roboworks [Rob23b] support. Thus, we
did not update the robot from Ubuntu 18.04 to Ubuntu 20.04. Generally, we had to work with
deprecated tutorials and samples with comments we did not understand, which complicated
the entire implementation process.

Lack of ADAS Solutions First, existing ADAS solutions to use with our environment were
challenging to find. The retrieved solutions then were either developed for specific other
hardware (e.g., another robot), or were incompatible with our hardware. Even if a solution
was compatible with e.g., ROS, our hardware restrictions did not allow us to use this solution.
For example, the state-of-the-art AD toolkit “Autoware” [The23c] was compatible with ROS
but had higher system requirements than we could offer (see [The23a] and [The23b]).
Therefore, it would not have run on the Mecabot TX. Generally, this restricted us in the tools
we could use on the robot. All in all, we did not find any existing solution that could be used
in our environment out of the box.

Own ADAS Solution As we mentioned, we could not use an existing AEB solution out of the box.
However, there existed foundational models and systems, e.g., the YOLO object detector with
direct ROS integration. Therefore, we used the YOLOv3 implementation for ROS provided
by the darknet_ros repository to implement our own AEB ADAS system.

Further Hardware Restrictions The available hardware restrictions for the Mecabot TX also
caused challenges for the YOLO object detection. Our goal was to use a newer version of the
YOLO object detector. These newer versions were compatible with the YOLO implementation
for ROS provided by the darknet_ros repository. However, after setting up newer versions

71

7 Prototype Implementation

of the YOLO object detector on the Mecabot TX, we identified that the performance was
too bad for using it in a real-time setting. In example, with newer versions of YOLO, we
only retrieved one frame per second from the object detector, compared to approximately 15
frames per second using YOLOv3. Therefore, we were restricted to use the older version of
YOLO, namely YOLOv3, for implementing our AEB ADAS.

7.4.2 Key Considerations for our Implementation

Now we describe our key considerations that were made for implementing our own AEB ADAS
system on the ROS-based Mecabot TX. First, we explain the considerations behind the implementation
of our AEB ADAS.

Camera-based AEB We decided to implement a camera-based AEB system. The reason for this
was that we wanted to detect concrete objects and categorize them based on their object class.
This allowed us to only perform an emergency brake for certain object classes.

Speed For simplicity, we used a constant positive speed of 0.1 m/s for the safe driving mode of our
AEB ADAS and switched the speed directly to zero when performing an emergency brake.

Whitelisted Object Classes We only want our AEB ADAS to perform an emergency brake
whenever an object of a certain class is detected in front of our robot. Therefore, we used
a whitelist for filtering all COCO object classes to only keep those where our AEB should
cause an emergency brake. For example, we did not put any food object classes (e.g., donut
or banana) on this whitelist because driving over such an object does not represent a safety
threat.

Object Detection Cooldown We noticed that the YOLOv3 object detector we used for imple-
menting our AEB ADAS produced very unsteady results. For example, the object detector
detected an object in a frame, but then failed to do so in the next frame, although the object
was still present. Later, the object was detected again. This would cause our AEB ADAS
to first perform an emergency brake, but then switch to the safe driving mode again, before
performing an emergency brake again. We did not want this unsteady behavior for our system.

Our solution for this problem was to introduce a cooldown to all detected objects. In example,
a detected object lives on for a little while longer even if it is not detected anymore by the
YOLOv3 object detector. The duration of this time was given by the cooldown that was used.
As soon as the YOLO object detector detected an object again, the cooldown is again resetted.

However, the use of such cooldowns required that we could identify objects as the same over
the course of multiple frames. Otherwise, we could not associate a detected object with
a cooldown and decrease or reset the cooldown value for a specific object. Therefore, we
additionally implemented an object tracker to associate each object with a unique ID.

For the object tracker, we found an existing repository called sort-deepsort-yolov3-ROS. This
repository contained implementations of both the SORT object tracker, and its extension called
DeepSORT. We tried to use the newer DeepSORT variant of the object tracker. However, this
required a specific version for a Python dependency that was incompatible with our software
setup on the Mecabot TX. Therefore, we decided to use the simpler SORT tracker.

72

7.4 Challenges and Key Considerations

The use of the tracker also allows monitoring of further properties in the future. For
example, Balakrishnan et al. [BDH+21] monitored the consistency of detected objects and
the smoothness of their bounding box trajectories across subsequent image frames. This
would not be possible without the use of an object tracker. Therefore, such properties can
easily be added to our RM component in the future without the need for large adaptations of
the source code.

AEB Danger Zone We decided to introduce a danger zone to our AEB ADAS which represents
a sub area in our input image frames. With this danger zone, we only considered detected
objects in the view of the Mecabot TX to be a safety threat, if the detected bounding boxes of
the objects have an overlap with this sub area. This allowed our AEB ADAS to only cause an
emergency brake for objects that are close to the robot and in front of the robot, rather than at
the side. Further, we specified that the overlap of each object’s bounding box with the danger
zone must have at least a given width and height. This was added to further prevent our AEB
to produce an emergency brake for objects that are very far away (i.e., having a very small
bounding box).

Next, we describe our considerations behind the implementation of our runtime monitors.

LiDAR Front Distance Measurement We decided to use an existing system on the Mecabot TX
from the simple_follower module for determining the distance to the nearest object in front of
the robot (in meters) using the LiDAR sensor attached to the robot. This enabled us to provide
our runtime monitors with additional information that could be used to check the decisions of
our AEB ADAS independent of the camera inputs. Therefore, we had an additional input
mechanism to check the safe operation of our AEB ADAS.

Safety Distance We decided to use a safety distance of one meter for the implementation of our
runtime monitors. This value was chosen specifically for our fixed safe driving speed of
0.1 m/s. In a realistic environment where the driving speed is not constant, this safety distance
would need to be calculated dynamically at runtime, e.g., based on the current speed of the
vehicle. For simplicity, we used this fixed safety distance in our prototype.

Safety Requirements The considerations behind our four SRs are that we wanted to monitor
different safety-related aspects of our AEB ADAS. First, we were interested in the timeliness
of the inputs for our AEB ADAS. This could be checked using the runtime monitor of SR1.
Next, we wanted to detect false negatives and false positives for the braking signals produced
by our AEB ADAS. These were covered by SR2 and SR3. Last, we wanted to detect whenever
the AEB ADAS stops an emergency braking maneuver, although it is not completed yet,
therefore we introduced SR4. This list of SRs is not complete, as additional aspects for
monitoring can always be added. Thus, our intention was to provide a proof of concept that
covered different aspects to monitor. This showcases the flexibility of our implemented RM
approach.

Sampling Period For monitoring the timeliness of the inputs in SR1, we needed to specify a
certain sampling_period in rtamt. To choose the value for the sampling_period, we performed
a test run of our complete system and checked how often new AEB decisions are produced.
We identified the output rate to be approximately 10 Hz, therefore we decided to use a
sampling_period of 0.1 s. However, this value was chosen based on this one test run only

73

7 Prototype Implementation

and was not derived systematically. Therefore, in a realistic environment, choosing the value
for the sampling_period is more difficult which must be considered for ensuring the correct
operation of the associated runtime monitor.

Passive Monitors For simplicity, we decided to use passive runtime monitors. In example, instead
of actively interfering with our system, our runtime monitors only report violations to an
output file. Thus, for making use of our runtime monitors, one must inspect this output file,
either manually or automatically. This can then help to test and debug the ADAS and to
improve its safety in new software iterations. We decided to use passive monitors because we
first wanted to investigate the usefulness and safety of our deployed runtime monitors. In the
future, we could consider replacing these monitors with active monitors that can overwrite
the decisions of the AEB ADAS to improve the overall safety of the system.

Using the rtamt library Based on our tool selection, we decided to use the rtamt library for
implementing the runtime monitors. During the course of the implementation, we noticed
that this library was really intuitive. Therefore, it was easy to use, even for beginners. The
available rtamt4ros package allowed us to easily integrate rtamt in our ROS-based system.
Also, specifying the SRs as STL formulas was straight-forward, also due to the detailed
documentation provided by Ničković and Yamaguchi [NY20].

The only challenge for us was specifying a .stl file to provide as input to rtamt4ros. This
was because in these specification files, each input variable for the STL formula had to be
annotated with one ROS topic that provided these values. The rtamt4ros library would then
set up subscribers for each input variable automatically. However, in our prototype, multiple
input variables sometimes needed to be derived from the same ROS message. Therefore, we
could not use these specification files. Instead, we implemented our own Python script based
on the available scripts provided by rtamt4ros. In this script, we manually set up the ROS
subscriptions for the input variables and handled the data management ourselves.

One more challenge for us was using different datatypes for these input variables. In example,
we wanted to use a boolean variable for the AEB ADAS decision result (the emergency
braking signal). However, we faced problems with the imports of these datatypes. Therefore,
we converted all input variables to floating point numbers and used the default float datatype
for each variable. For the boolean variable, we replaced the True value with the number 1
and the False value with the number -1.

Also, we added logic for handling the outputted robustness values produced by the rtamt
monitors. In example, a specification was considered violated under the current input values,
if the robustness value produced by the rtamt monitor was below zero.

Analyzing the Violations Report As mentioned above, we considered each negative robustness
as a violation of a specification under the current input values. However, the concrete
robustness values were still useful, since we also outputted them to the violations report
produced by our runtime monitors ROS node. There, the robustness values indicated how
strongly the specifications were violated without having to look into each individual input
value in detail. This allowed us to easily scan the violations and allowed us to find the most
severe violations.

74

7.4 Challenges and Key Considerations

To further assist in analyzing the violations report, we decided to add a logical time in addition
to the timestamps of the input samples that are provided as input to the rtamt monitors. This
logical time was an integer counter that was incremented each time the runtime monitors were
evaluated with new input data. Using this logical time, we could easily associate specific
violations with the exact moment in time they were caused in our screen recordings. This
allowed us to analyze the correctness of the reported violations and to determine their root
causes.

All in all, manually analyzing the violations report still was cumbersome to do. Therefore,
one idea is to increase the automation of this step in the future. As a concrete example, we
could build a dashboard with a user interface that automatically visualizes the violations
associated with the relevant sequences in the screen recording, e.g., based on the logical time.
This would remove the need for manual association. In general, understanding the root causes
of the violations was crucial for testing and debugging the system with the ultimate goal of
improving its overall safety.

Verification of our Runtime Monitors To make sure that our implemented runtime monitors
operated correctly, we used multiple test cases for verification of each monitor. This allowed
us to ensure that the monitors acted as required as long as they were provided with correct
input values. This allowed us to ensure that wrongly reported violations were not caused by a
faulty implementation of a monitor, but rather by a wrong (e.g., unsynchronized) combination
of input values for the variables in its STL specification.

In this chapter, we provided detailed information on the implementation of our prototype. In
example, we described our final architecture, the verification process of the runtime monitors, our
experiment, and our key considerations and challenges in the implementation process. In the next
chapter, we will discuss the answers to our research questions by summarizing our results.

75

8 Discussion

In this chapter, we answer our research questions in Section 8.1 by summarizing our previous results,
and describe our threats to validity in Section 8.2.

8.1 Discussion

Here, we summarize our process and answers for each research question, as we already answered
the research questions in the previous chapters.

RQ1 What are the current state-of-the-art RM techniques in the automotive domain, especially for
ADAS?

In Chapter 5, we described the whole RR process. We used our search query to collect current
state-of-the-art RM techniques in the automotive domain. Here, we focused on ADAS in the query.
By trying multiple possible queries, we discovered that some keywords lead to too many false
positives. These keywords are: “RV”, “ARV” and “automotive”.

We collected multiple results and filtered them by quality and contents. Then we extracted data
from the remaining 16 papers by reading them. We classified the data using a taxonomy by Falcone
et al. [FKRT21]. We visualized the results in two tables (see Table 5.5 and Table 5.6). With all of
that, we collected and categorized the 16 current state-of-the-art RM techniques in the automotive
domain, especially for ADAS.

Additionally, we did some analysis on the papers, discovering that the highest similarities from
our sample (71%) both represent cases in which one paper referenced the other paper. The lowest
similarity (16%) was retrieved for two papers which did not have a reference between each other.

RQ2 Which RM technique is optimal in the context of our prototype?

RQ2.1 What were the key factors that had to be considered during selection?

For answering RQ2, we firstly have to answer RQ2.1. We first needed to define the hardware
requirements of the provided robot (Mecabot TX), as this restricted us in our decision. Then we
worked on defining the context of our prototype by describing a use case. In our use case, we
wanted to do AEB with the ARV. We explained our idea with the AEB danger zone and visualized
this idea. We also described four SRs that were relevant for the runtime monitors. We described
how a possible data flow could look like with the knowledge we had during that time on the robot
and its provided examples and features. We thought about what useful outputs would be. With all
these key factors that we had to consider, we then chose a technique for the prototype.

77

8 Discussion

For answering RQ2, we provided Table 6.1 with the important aspects from the classifications.
We oriented on the structure and aspects of the classification. Relevant aspects were, e.g., that
the explicit output information contain verdicts for properties to check or that the tool should be
open-source. Overall, the relevant aspects were about, e.g., the output information, the physical
time, the modality, the reaction and more. The optimal tool that we evaluated with these criteria
was rtamt. In general, we see a great potential in using the classification results of our retrieved RM
techniques to select an optimal technique for the implementation.

RQ3 How can the chosen RM technique be practically implemented in our prototype?

RQ3.1 What are the key considerations and challenges involved in the implementation
process?

For answering RQ3, we first answer RQ3.1. The greatest considerations and challenges involved in
the implementation process were: the foreign language in code samples on the robot, deprecated
tutorials for the robot and the hardware restrictions.

Working with the robot contained a lot of trial and error with samples one did not understand and
tutorials that were deprecated. The hardware was challenging as it restricted us in the toolkits we
could use but also in the speed of progress as the robot shut itself down if too much, e.g., tabs in a
browser were opened. There were additional challenges, but they were less challenging as there
were always alternative solutions for them.

To answer RQ3, we visualized and explained our architecture in the context of ROS and its topics
and nodes (see Figure 7.1). To the existing nodes on the robot, we added the object tracking ROS
node, the AEB ADAS ROS node, and the runtime monitors ROS node. We then explained the
nodes. We had four runtime monitors in the corresponding node. We had one monitor for each SR.
We added the STL formulas in the descriptions. We used future operators in our solution (eventually
and until). We used rtamt4ros for our solution, as it was even more optimized for ROS than rtamt
itself. For the generation of the monitors, only the STL formulas were needed. The generation of
the monitors itself was handled by rtamt as well as calculating the robustness value. We included a
snippet from a sample violations report file. We verified the monitors by simulating some incoming
ROS topic values and evaluating whether the monitors delivered the expected outcome. We verified
all four monitors to ensure that the monitors were working correctly for the experiment.

The experiment itself showed multiple anomalies in the system’s behavior. The ARV did more
emergency braking maneuvers than we expected and collided with an obstacle. In the evaluation of
the experiment, we discovered causes of the unexpected behaviors. One cause was that the object
detector suddenly did not recognize the objects anymore (SR2 violation). This would cause safety
issues if it was in a real-world setting. In our experiment, the ARV started driving again, even
though it should not have done that. By doing that, the distance to obstacles became even less than
at the first stop. We tried to fix that with a cooldown. With the cooldown, the bounding boxes for
the detected objects remained longer in the image and the ARV braked longer. As the cooldown was
still not high enough, it would need to be increased. On the other hand, some violations (SR3) were
caused because the cooldown was, in fact, too high. It appeared that there is a trade-off between
SR2 and SR3 violations. We observed that the object detector wrongly classified some objects. The
wrong classification could cause that objects, e.g., pedestrians were not recognized as such and the

78

8.2 Threats to Validity

AEB ADAS did not stop for them, even though it should have stopped. A more sophisticated object
detector could be a solution for that. The size of the danger zone could also be adapted, as it was
too small and missed one obstacle. Thus, it collided with it.

The sampling period of the monitor is when the monitor expects a sample. We expanded the period
by allowing samples every [50,150] ms. We discovered that the sampling period of the monitor
(10 Hz) was too high because 39% of samples arrived too early and 61% arrived too late. The
elapsed time between two samples was always within [18,562] ms. The goal is to balance this as
much as possible and reduce the outliers upwards.

The last aspect that we discovered was that the inputs of the monitor (AEB signal, wheel speed, and
front distance measurement) were unsynchronized which caused violations of SR4.

Generally, we found multiple safety issues with the runtime monitors and discovered possible
optimizations that could be investigated in the future to increase the safety of the system.

8.2 Threats to Validity

In this section, we describe the threats to validity that we see in the approaches we chose. Further,
we explain our efforts to avoid known risks regarding those. We start with the threats to validity
regarding our RR. We continue with the decision-making of the tools we chose, and lastly, we
describe the threats to validity regarding the implementation of the prototype.

8.2.1 Rapid Review

By conducting a RR instead of a systematic review, we generally have a higher risk of missing
relevant papers. The approach of RR is more rigorous, as the duration of RRs is shorter than the
duration of a systematic review.

We tried to minimize the risk of missing relevant papers by including four scientific databases as
sources and by doing snowballing. While doing snowballing, we chose strict criteria for including
the papers which may have lead to missing relevant foundational papers. We chose this approach to
only find relevant studies that were, e.g., not published in the chosen scientific databases. We did
three iterations of snowballing to collect all papers satisfying our criteria.

The inclusion and exclusion criteria were more restrictive than in systematic reviews as we limited
results regarding publication year, language and later also regarding quality and focus of the paper
as described in Chapter 5.

In our RR, only one person was responsible for the review, so the results may be biased. We tried
to reduce biases by keeping close communication between the reviewer and the supervisors of
the bachelor’s thesis regarding relevant decision-making during the review, e.g., when choosing
the search query or the inclusion and exclusion criteria. Despite the close communication within
our team, there is the possibility that we missed papers because of our search query. We tried to
minimize the risk of an unsuitable query by trying multiple queries. The quality appraisal of the
papers was conducted by the single reviewer with consultation of the supervisors if there were
uncertainties.

79

8 Discussion

Generally, we tried to design the RR process as reproducible as possible, by making detailed process
descriptions in Figure 5.1 and Figure 5.2. We included interim findings of the review and tried
to document the reasons for exclusion of the initial set of base papers in Table 5.1. The synthesis
procedure is also a threat to validity. The outputs of the data synthesis were, among others, Table 5.5
and Table 5.6. We left entries with a question mark, if we were unsure how to categorize the data.
But there is still the possibility of wrongly categorized entries, as only one person was responsible
for it.

8.2.2 Prototype Technique Selection

As well as in the RR process, there is the possibility that we may have misunderstood information
from the taxonomy [FKRT21] or from the final papers. Thus, this may have influenced our tool
selection. Empty entries in the classification (entries with a question mark in it) may have lead to
a different tool selection decision, compared to when all values would have been filled correctly.
Additionally, we only chose to include open-source tools into consideration for the monitoring
component, which rapidly reduced the amount of possible tools from 16 to six. Another threat to
validity is the translation of our hardware and tool requirements (use case) into classification values.
Everything was done by one person. Thus, there is a possible bias.

8.2.3 Prototype Implementation

The main threat to validity of the prototype implementation is the lack of experience of working
with the robot. Implementation decisions may have been different if a more experienced researcher
worked with the robot. E.g., in the implementation itself, we tried to use a newer version of YOLO.
We were unable to get results fast enough to match our real-time requirements. Possible causes for
the bad performance of newer versions of YOLO lie in our implementation and integration. In the
given time, we were not able to improve this to use some newer YOLO version. A similar case was
with DeepSORT, as we were not able to implement this on the robot. The conducted experiment
was minimal, with one test run and five obstacles.

In this section, we discussed the answers to our research questions and provided our threats to
validity. Next, in Chapter 9, we summarize the work done in this thesis. Further, we describe the
benefits of this thesis and give insights into the limitations and important lessons learned during the
thesis. Finally, we propose future work that can be approached following our thesis.

80

9 Conclusion and Outlook

In this last section, we provide a conclusion of our work by summarizing its contributions, benefits,
and limitations. In addition, we provide an overview of possible future work following our thesis.

9.1 Summary

We provided a classification of 16 papers found with a RR. We chose rtamt as tool for the
implementation of the prototype. We implemented the prototype and described our architecture.
We added three ROS nodes to the already provided nodes on the provided robot. The three nodes
were: object tracker, AEB ADAS, and runtime monitors. We implemented four runtime monitors
in the runtime monitors node, one for each safety requirement we defined earlier. For each safety
requirement, we specified a corresponding STL formula. We verified the implementation of our
monitors. In an experiment, we tested the implementation. During the evaluation of the experiment,
we discovered that several optimizations could be done to improve the prototype. Additionally,
we discovered a trade-off between two types of violations. In example, increasing or decreasing
the cooldown lead to the one type of violations to become more frequent and the other type of
violations to become less frequent. The object detector sometimes caused unwanted behavior that
could be safety critical if this had been a real-world setting. We also identified outliers upwards,
with samples being delivered to the monitors only every 562 ms. The goal is to balance the sample
periods as much as possible and reduce the outliers upwards. Generally, we found multiple safety
issues with the runtime monitors and discovered possible optimizations that could be investigated in
the future to increase the safety of the system.

9.2 Benefits

As we discovered multiple safety issues and optimizations using RM, our results are beneficial
to everyone who wants to build safe ADAS perception systems. RM was identified as a useful
technique for gaining additional insights on certain specified properties (e.g., safety requirements).
Therefore, it is useful for debugging and testing of ADAS systems.

9.3 Limitations

Although the used RR approach was very efficient, it introduced a significant risk of missing relevant
papers because of its shortened duration and stricter inclusion and exclusion criteria compared
to a systematic review. Also, a systematic review is usually not performed by a single person.
We attempted to keep these risks at a minimum by using multiple scientific databases, trying out

81

9 Conclusion and Outlook

different queries, performing snowballing and ensuring close communication within our team.
The selection of a suitable technique for our prototype introduces additional limitations due to the
restriction to open-source tools only and wrong or missing labels caused by misunderstandings of
the applied taxonomy by Falcone et al. [FKRT21]. Additionally, the correct implementation of our
prototype is threatened by a general lack of experience with the Mecabot TX robot environment. In
example, the limited available time did not allow us to upgrade our operating system and to use
newer versions of certain tools (e.g., YOLO). Further, we only performed one minimal experiment
to evaluate our implementation.

9.4 Lessons Learned

The main lesson we learned is how important good literature reviews are. As our whole work was
depending on the results of the RR, we were: firstly blocked for some time as all the steps of the
work (RR, tool selection, and implementation) had to be done mostly sequentially. Secondly, the
classification of the papers was of extreme relevance for the steps after. Ideally, the classification is
done by a team or by the authors themselves discussing their thoughts and comparing their results.
This was not the case here, as only one person did the classification. In the experiment, it was
difficult to do multiple tasks as one person. From setting the experiment up, to starting the robot and
simultaneously filming multiple perspectives of the experiment. The quality of the video recordings
was accordingly bad. Luckily, we still got useful information from the videos and screen recordings
for the evaluation.

9.5 Future Work

We have several suggestions for future work. We separate our ideas into two parts: a RR part and
an implementation part.

9.5.1 Rapid Review

There are several possibilities to improve the search query we used in the RR. In example, we
would add “runtime safety monitor*” and “run-time safety monitor*” to the “RM” part of the query.
We would also replace all occurrences of “monitoring” with “monitor*”. For the “ADAS” part of
this thesis, we can imagine adding “automotive driv*”. To make the query more general, words
like: “cyber physical system”, “cyber-physical-system”, “autonomous system”, and “automotive”
can be added. In our case, this was not necessary, but this may be interesting for other research.
Conducting a RR instead of a systematic review involves increasing the threats to validity, as we
mention in Chapter 8. Therefore, conducting a systematic review can decrease the threats to validity
of the results. Therefore, an additional idea is to contact the authors in the scope of a systematic
review to validate our classification of the tools and also to fill the open classification values (the
“?”) in our results. The similarities of our papers were calculated in a simple fashion. An alternative
approach would be to also separate values and compare them. E.g, if we have one paper with value
“x,y” and another paper with value “x”, then they do not have similarity with our approach as we
currently require identical values. This could be more loose, allowing identical parts of the values

82

9.5 Future Work

to have an impact on the total similarity. Furthermore, in the tool classification results, we could
add the programming language, that a tool was written in. This would allow to easily filter the tools
for compatibility with a certain environment.

9.5.2 Prototype Implementation

Firstly, all the unexpected behaviors that occurred during the experiment could be further inves-
tigated. From changing and testing different sample periods to fixing the synchronization issues
of the runtime monitor, and investigating how to choose the cooldown. Additionally, the newer
YOLO versions could be tested. Besides that, we chose constant values for the speed and safety
distance. This could be more complex and realistic in future work with, e.g., a safety distance
formula. Additional experiments would further test the implementation. For instance, we could
consider using different obstacles, and multiple rooms with different lighting conditions. We also
imagine adding additional monitors to check other properties of the detected objects. For example,
we could check the plausibility of the bounding box transitions or the consistency of detected COCO
object classes, as shown by Balakrishnan et al. [BDH+21].

In conclusion, our extensive exploration and successful implementation of multiple runtime monitors
for an exemplary AD use case showcase the effectiveness of RM for improving the safety of ADAS
applications. Therefore, our work serves as a solid foundation for future research on the use of RM
in the area of AD.

83

Bibliography

[AÐHM23] M. Albonico, M. Ðorđević, E. Hamer, I. Malavolta. “Software engineering research
on the Robot Operating System: A systematic mapping study”. In: Journal of Systems
and Software 197 (2023). issn: 0164-1212. doi: 10.1016/j.jss.2022.111574 (cit. on
pp. 24, 25).

[ALZ+20] D. An, J. Liu, M. Zhang, X. Chen, M. Chen, H. Sun. “Uncertainty modeling and
runtime verification for autonomous vehicles driving control: A machine learning-
based approach”. In: JOURNAL OF SYSTEMS AND SOFTWARE 167 (Sept. 2020).
issn: 0164-1212. doi: 10.1016/j.jss.2020.110617 (cit. on pp. 38, 41, 42, 45, 46, 50,
56).

[AM18] M. A. Akbar, S. Mandala. “IoT on Heart Arrhythmia Real Time Monitoring”. In:
Indonesian Journal on Computing (Indo-JC) 3 (2 Sept. 2018), pp. 1–10. doi:
10.21108/indojc.2018.3.2.170 (cit. on p. 38).

[ami10] amitp. Solar powered stop sign. This work is licensed under the CC BY-SA 2.0 license.
To view a copy of this license, visit https://creativecommons.org/licenses/by-
sa/2.0/. 2010. url: https://openverse.org/image/8ea98097-14f4-442a-98d2-
a8850abff76d?q=stop%20sign (cit. on pp. 66, 95).

[AR18] H. Aspriyono, R. Riska. “APLIKASI REAL-TIME MONITORING KEHADIRAN
KARYAWAN TERINTEGRASI DENGAN FINGERPRINT SYSTEM PADA UNI-
VERSITAS DEHASEN BENGKULU”. In: ILKOM Jurnal Ilmiah 10 (3 Dec. 2018),
pp. 260–266. doi: 10.33096/ilkom.v10i3.352.260-266 (cit. on p. 38).

[Bau22] A. Bauder. Toter Winkel bei Lkw, Bus und Pkw: Das müssen Sie wissen. Allgemeiner
Deutscher Automobil-Club e.V. (ADAC). Aug. 2022. url: https://www.adac.de/
verkehr/verkehrssicherheit/gefahrensituation/toter-winkel/ (cit. on p. 17).

[BDH+21] A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, G. Fainekos. “PerceMon:
Online Monitoring for Perception Systems”. In: Runtime Verification. Ed. by L. Feng,
D. Fisman. Cham: Springer International Publishing, 2021, pp. 297–308. isbn:
978-3-030-88494-9. doi: 10.48550/arXiv.2108.08289 (cit. on pp. 40–42, 45, 46, 50,
56, 73, 83).

[BFFR18] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger. “Introduction to Runtime Verifica-
tion”. In: Lectures on Runtime Verification: Introductory and Advanced Topics. Ed. by
E. Bartocci, Y. Falcone. Cham: Springer International Publishing, 2018, pp. 1–33.
doi: 10.1007/978-3-319-75632-5_1 (cit. on pp. 18, 19, 22–24).

[BGO+16] A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft. “Simple online and realtime tracking”.
In: 2016 IEEE International Conference on Image Processing (ICIP). 2016, pp. 3464–
3468. doi: 10.1109/ICIP.2016.7533003 (cit. on p. 27).

85

https://doi.org/10.1016/j.jss.2022.111574
https://doi.org/10.1016/j.jss.2020.110617
https://doi.org/10.21108/indojc.2018.3.2.170
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://openverse.org/image/8ea98097-14f4-442a-98d2-a8850abff76d?q=stop%20sign
https://openverse.org/image/8ea98097-14f4-442a-98d2-a8850abff76d?q=stop%20sign
https://doi.org/10.33096/ilkom.v10i3.352.260-266
https://www.adac.de/verkehr/verkehrssicherheit/gefahrensituation/toter-winkel/
https://www.adac.de/verkehr/verkehrssicherheit/gefahrensituation/toter-winkel/
https://doi.org/10.48550/arXiv.2108.08289
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1109/ICIP.2016.7533003

Bibliography

[Bje18] M. Bjelonic. YOLO ROS: Real-Time Object Detection for ROS. GitHub. 2016–2018.
url: https://github.com/leggedrobotics/darknet_ros (cit. on pp. 24, 27, 59).

[BY90] T. Benaya, A. Yehudai. “An application generator for a family of real-time monitor and
control systems”. In: COMPEURO’90: Proceedings of the 1990 IEEE International
Conference on Computer Systems and Software Engineering - Systems Engineering
Aspects of Complex Computerized Systems. IEEE Comput. Soc. Press, 1990, pp. 274–
279. doi: 10.1109/cmpeur.1990.113635 (cit. on p. 38).

[Cam23] Cambia. The Lens - Free & Open Patent and Scholarly Search. 2023. url: https:
//www.lens.org/ (cit. on p. 34).

[Che21] C.-H. Cheng. “Provably-Robust Runtime Monitoring of Neuron Activation Patterns”.
In: IEEE, 2021, pp. 1310–1313. isbn: 978-3-9819263-5-4. doi: 10.23919/DATE51398.
2021.9473957 (cit. on pp. 38, 41, 42, 45, 46, 50, 56).

[CL18] C. Colombo, M. Leucker. Runtime Verification: 18th International Conference,
RV 2018, Limassol, Cyprus, November 10–13, 2018, Proceedings. Lecture Notes
in Computer Science. Springer Verlag, Nov. 2018. isbn: 978-303003768-0. doi:
10.1007/978-3-030-03769-7 (cit. on pp. 29, 38).

[Cla23] Clarivate group. Web of Science. 2023. url: https://www.webofscience.com/ (cit. on
p. 34).

[CPS20] B. Cartaxo, G. Pinto, S. Soares. “Rapid Reviews in Software Engineering”. In:
Contemporary Empirical Methods in Software Engineering. Ed. by M. Felderer,
G. H. Travassos. Cham: Springer International Publishing, 2020, pp. 357–384. isbn:
978-3-030-32489-6. doi: 10.1007/978-3-030-32489-6_13 (cit. on pp. 31, 33, 34).

[DADF18] A. Dokhanchi, H. B. Amor, J. V. Deshmukh, G. Fainekos. “Evaluating Perception
Systems for Autonomous Vehicles Using Quality Temporal Logic”. In: Runtime
Verification. Ed. by C. Colombo, M. Leucker. Cham: Springer International Publishing,
2018, pp. 409–416. isbn: 978-3-030-03769-7. doi: 10.1007/978-3-030-03769-7_23
(cit. on pp. 40–42, 45, 46, 50, 56).

[DLP+87] R. D’Ippolito, K. Lee, C. Plinta, M. Rissman, R. Van Scoy. Prototype real-time
monitor: Requirements. Tech. rep. Technical Report CMU/SEI-87-TR-36, Software
Engineering Institute, Nov. 1987. url: https://apps.dtic.mil/sti/citations/
ADA188929 (cit. on p. 38).

[DN20] J. Deshmukh, D. Ničković. Runtime Verification: 20th International Conference, RV
2020, Los Angeles, CA, USA, October 6–9, 2020, Proceedings. Vol. 12399. Springer
Nature, Oct. 2020. isbn: 978-3-030-60508-7. doi: 10.1007/978-3-030-60508-7
(cit. on pp. 29, 38).

[DTCL21] X. Du, A. Tiu, K. Cheng, Y. Liu. “Trace-Length Independent Runtime Monitoring
of Quantitative Policies”. In: IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING 18 (3 May 2021), pp. 1489–1510. issn: 1545-5971. doi:
10.1109/TDSC.2019.2919693 (cit. on pp. 29, 38, 41, 42, 45, 46, 50, 56).

[Eco14] Economic Commission for Europe of the United Nations (UN/ECE). Regulation No
131 of the Economic Commission for Europe of the United Nations (UN/ECE) —
Uniform provisions concerning the approval of motor vehicles with regard to the
Advanced Emergency Braking Systems (AEBS). July 2014. url: http://data.europa.
eu/eli/reg/2014/131/oj (cit. on p. 21).

86

https://github.com/leggedrobotics/darknet_ros
https://doi.org/10.1109/cmpeur.1990.113635
https://www.lens.org/
https://www.lens.org/
https://doi.org/10.23919/DATE51398.2021.9473957
https://doi.org/10.23919/DATE51398.2021.9473957
https://doi.org/10.1007/978-3-030-03769-7
https://www.webofscience.com/
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1007/978-3-030-03769-7_23
https://apps.dtic.mil/sti/citations/ADA188929
https://apps.dtic.mil/sti/citations/ADA188929
https://doi.org/10.1007/978-3-030-60508-7
https://doi.org/10.1109/TDSC.2019.2919693
http://data.europa.eu/eli/reg/2014/131/oj
http://data.europa.eu/eli/reg/2014/131/oj

Bibliography

[Els23] Elsevier B.V. Scopus. 2023. url: https://www.scopus.com/ (cit. on p. 34).

[Eur21] European Commission. Road safety thematic report – Advanced driver assistance
systems. European Road Safety Observatory. Brussels, European Commission, Di-
rectorate General for Transport., 2021. url: https://road-safety.transport.ec.
europa.eu/system/files/2022-04/Road_Safety_Thematic_Report_ADAS_2021.pdf

(cit. on pp. 17, 19, 21, 22).

[FKRT18] Y. Falcone, S. Krstić, G. Reger, D. Traytel. “A Taxonomy for Classifying Runtime
Verification Tools”. In: Runtime Verification. Ed. by C. Colombo, M. Leucker. Cham:
Springer International Publishing, 2018, pp. 241–262. isbn: 978-3-030-03769-7. doi:
10.1007/978-3-030-03769-7_14 (cit. on pp. 29, 44).

[FKRT21] Y. Falcone, S. Krstić, G. Reger, D. Traytel. “A taxonomy for classifying runtime
verification tools”. In: International Journal on Software Tools for Technology Transfer
23.2 (May 2021), pp. 255–284. issn: 1433-2787. doi: 10.1007/s10009-021-00609-z
(cit. on pp. 29–31, 40, 43, 44, 54, 77, 80, 82).

[GKS+22] D. Grundt, A. Köhne, I. Saxena, R. Stemmer, B. Westphal, E. Möhlmann. “Towards
Runtime Monitoring of Complex System Requirements for Autonomous Driving
Functions”. In: vol. 371. 2022, pp. 53–61. doi: 10.4204/EPTCS.371.4 (cit. on p. 38).

[Goo23] Google LLC. Google Scholar. 2023. url: https://scholar.google.com/ (cit. on
pp. 33, 39).

[GZWR20] J. Grieser, M. Zhang, T. Warnecke, A. Rausch. “Assuring the Safety of End-to-End
Learning-Based Autonomous Driving through Runtime Monitoring”. In: ed. by
A. Trost, A. Zemva, A. Skavhaug. IEEE COMPUTER SOC, 2020, pp. 476–483. isbn:
978-1-7281-9535-3. doi: 10.1109/DSD51259.2020.00081 (cit. on pp. 38, 41, 42, 45,
46, 50, 56).

[Han22] H. Hanifadinna. “Pembuatan Sistem Real Time Monitoring Pengukur Oil Layer Pada
Vertical Continuous Tank di Pabrik Kelapa Sawit Pekawai Kalimantan Barat”. In:
JURNAL VOKASI TEKNOLOGI INDUSTRI (JVTI) 4 (1 June 2022), pp. 1–10. url:
https://journal.ugm.ac.id/v3/JNTETI/article/view/2998 (cit. on pp. 38, 41, 42,
45, 46, 50, 56).

[Hil23] P. Hilton. Process Milestones for Workflow Execution Status Visibility. 2023. url:
https://www.signavio.com/post/process-milestones/ (cit. on pp. 33, 36, 37).

[Hun12] C. Hunkeler. Woman Cyclist Gives Thumbs Up. This work is licensed under the CC
BY-SA 2.0 license. To view a copy of this license, visit https://creativecommons.
org/licenses/by-sa/2.0/. 2012. url: https://openverse.org/image/5aa66793-
532c-47a1-9e59-61642c357824?q=cyclist (cit. on pp. 66, 96, 97).

[ily20] ilyasmg. sort-deepsort-yolov3-ROS. GitHub. 2019–2020. url: https://github.com/
ilyasmg/sort-deepsort-yolov3-ROS (cit. on p. 27).

[Ins23] Institute of Electrical and Electronics Engineers (IEEE). IEEE Xplore. 2023. url:
https://ieeexplore.ieee.org/ (cit. on p. 34).

[KA21] W. Kontar, S. Ahn. Real-time Monitoring of Autonomous Vehicle’s Time Gap
Variations: A Bayesian Framework. Jan. 2021. doi: 10.48550/arXiv.2102.00375
(cit. on p. 38).

87

https://www.scopus.com/
https://road-safety.transport.ec.europa.eu/system/files/2022-04/Road_Safety_Thematic_Report_ADAS_2021.pdf
https://road-safety.transport.ec.europa.eu/system/files/2022-04/Road_Safety_Thematic_Report_ADAS_2021.pdf
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.4204/EPTCS.371.4
https://scholar.google.com/
https://doi.org/10.1109/DSD51259.2020.00081
https://journal.ugm.ac.id/v3/JNTETI/article/view/2998
https://www.signavio.com/post/process-milestones/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://openverse.org/image/5aa66793-532c-47a1-9e59-61642c357824?q=cyclist
https://openverse.org/image/5aa66793-532c-47a1-9e59-61642c357824?q=cyclist
https://github.com/ilyasmg/sort-deepsort-yolov3-ROS
https://github.com/ilyasmg/sort-deepsort-yolov3-ROS
https://ieeexplore.ieee.org/
https://doi.org/10.48550/arXiv.2102.00375

Bibliography

[KCDK15] A. Kane, O. Chowdhury, A. Datta, P. Koopman. “A case study on runtime monitoring
of an autonomous research vehicle (ARV) system”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 9333 (2015), pp. 102–117. doi: 10.1007/978-3-319-23820-3_7
(cit. on pp. 18, 38, 41, 42, 45, 46, 50, 56).

[Kec13] Kecko. Swiss Crosswalk. This work is licensed under the CC BY-SA 2.0 license.
To view a copy of this license, visit https://creativecommons.org/licenses/by-
sa/2.0/. 2013. url: https://openverse.org/image/c6ca8537-b60c-4178-a5eb-
22a6ae9ad129?q=crosswalk (cit. on pp. 66, 97–99).

[mal07] malouette. Crosswalk Conversations. This work is licensed under the CC BY-SA
2.0 license. To view a copy of this license, visit https://creativecommons.org/
licenses/by-sa/2.0/. 2007. url: https://openverse.org/image/717e7e97-e6d0-
48c1-b2de-9f46bfb27327?q=crosswalk (cit. on pp. 66, 95, 96).

[MČSP22] A. Mehmed, A. Čaušević, W. Steiner, S. Punnekkat. “Early Concept Evaluation
of a Runtime Monitoring Approach for Safe Automated Driving”. In: 2022 IEEE
Zooming Innovation in Consumer Technologies Conference (ZINC). 2022, pp. 53–58.
doi: 10.1109/ZINC55034.2022.9840649 (cit. on pp. 38, 41, 42, 45, 46, 50, 56).

[MHR16] M. Mauritz, F. Howar, A. Rausch. “Assuring the safety of advanced driver assistance
systems through a combination of simulation and runtime monitoring”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 9953 LNCS (2016), pp. 672–687. doi: 10.
1007/978-3-319-47169-3_52 (cit. on pp. 38, 41, 42, 45, 46, 50, 56).

[MMGP19] E. Marti, M. A. de Miguel, F. Garcia, J. Perez. “A Review of Sensor Technologies
for Perception in Automated Driving”. In: IEEE Intelligent Transportation Systems
Magazine 11.4 (2019), pp. 94–108. doi: 10.1109/MITS.2019.2907630 (cit. on pp. 17,
52).

[MPPP14] A. de Matos Pedro, D. Pereira, L. M. Pinho, J. S. Pinto. “Towards a Runtime
Verification Framework for the Ada Programming Language”. In: Reliable Software
Technologies – Ada-Europe 2014. Ed. by L. George, T. Vardanega. Cham: Springer
International Publishing, 2014, pp. 58–73. isbn: 978-3-319-08311-7. doi: 10.1007/
978-3-319-08311-7_6 (cit. on p. 38).

[MPPP15] A. de Matos Pedro, D. Pereira, L. M. Pinho, J. S. Pinto. Formal Contracts for
Runtime Verification Support in the Ada Programming Language. Mar. 2015. url:
http://hdl.handle.net/10400.22/6802 (cit. on p. 38).

[MRS14] M. Mauritz, A. Rausch, I. Schaefer. “Dependable ADAS by combining design
time testing and runtime monitoring”. In: 2014, pp. 28–37. url: https://www.
researchgate.net/publication/278684216_Dependable_ADAS_by_Combining_

Design_Time_Testing_and_Runtime_Monitoring (cit. on p. 38).
[NY20] D. Ničković, T. Yamaguchi. “RTAMT: Online Robustness Monitors from STL”. In:

Automated Technology for Verification and Analysis. Ed. by D. V. Hung, O. Sokolsky.
Cham: Springer International Publishing, 2020, pp. 564–571. isbn: 978-3-030-59152-
6. doi: 10.1007/978-3-030-59152-6_34 (cit. on pp. 23, 24, 26, 56, 74).

[Obj23] Object Management Group, Inc. BPMN Specification - Business Process Model and
Notation. 2023. url: https://www.bpmn.org/ (cit. on p. 33).

88

https://doi.org/10.1007/978-3-319-23820-3_7
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://openverse.org/image/c6ca8537-b60c-4178-a5eb-22a6ae9ad129?q=crosswalk
https://openverse.org/image/c6ca8537-b60c-4178-a5eb-22a6ae9ad129?q=crosswalk
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://openverse.org/image/717e7e97-e6d0-48c1-b2de-9f46bfb27327?q=crosswalk
https://openverse.org/image/717e7e97-e6d0-48c1-b2de-9f46bfb27327?q=crosswalk
https://doi.org/10.1109/ZINC55034.2022.9840649
https://doi.org/10.1007/978-3-319-47169-3_52
https://doi.org/10.1007/978-3-319-47169-3_52
https://doi.org/10.1109/MITS.2019.2907630
https://doi.org/10.1007/978-3-319-08311-7_6
https://doi.org/10.1007/978-3-319-08311-7_6
http://hdl.handle.net/10400.22/6802
https://www.researchgate.net/publication/278684216_Dependable_ADAS_by_Combining_Design_Time_Testing_and_Runtime_Monitoring
https://www.researchgate.net/publication/278684216_Dependable_ADAS_by_Combining_Design_Time_Testing_and_Runtime_Monitoring
https://www.researchgate.net/publication/278684216_Dependable_ADAS_by_Combining_Design_Time_Testing_and_Runtime_Monitoring
https://doi.org/10.1007/978-3-030-59152-6_34
https://www.bpmn.org/

Bibliography

[OKS19] M. H. Osman, S. Kugele, S. Shafaei. “Run-Time Safety Monitoring Framework for
AI-Based Systems: Automated Driving Cases”. In: 2019 26th Asia-Pacific Software
Engineering Conference (APSEC). 2019, pp. 442–449. doi: 10.1109/APSEC48747.
2019.00066 (cit. on pp. 40–42, 45, 46, 50, 56).

[Ope17] Open Robotics. rospy. This work is licensed under the CC BY 3.0 license. To view a
copy of this license, visit https://creativecommons.org/licenses/by/3.0/. 2017.
url: https://wiki.ros.org/rospy (cit. on p. 56).

[Ope22] Open Robotics. ROS/Concepts. This work is licensed under the CC BY 3.0 license.
To view a copy of this license, visit https://creativecommons.org/licenses/by/3.0/.
2022. url: https://wiki.ros.org/ROS/Concepts (cit. on p. 25).

[Ope23] Open Robotics. ROS 2 Documentation: Galactic - Installation. 2023. url: https:
//docs.ros.org/en/galactic/Installation.html (cit. on pp. 68, 71).

[Pam15] J. Pamungkas. “Desain Real-Time Monitoring Berbasis Wireless Sensor Network
Upaya Mitigasi Bencana Erupsi Gunungapi”. In: Jurnal Nasional Teknik Elektro dan
Teknologi Informasi (JNTETI) 4 (3 Dec. 2015), pp. 177–181. doi: 10.22146/jnteti.
v4i3.160 (cit. on p. 38).

[PHCR20] F. Pop, B. Herrera, C. Cassella, M. Rinaldi. “Enabling Real-Time Monitoring
of Intrabody Networks Through the Acoustic Discovery Architecture”. In: IEEE
transactions on ultrasonics, ferroelectrics, and frequency control 67 (11 June 2020),
pp. 2336–2344. doi: 10.1109/tuffc.2020.3002973 (cit. on p. 38).

[QSA20] W. Qi, H. Su, A. Aliverti. “A Smartphone-Based Adaptive Recognition and Real-Time
Monitoring System for Human Activities”. In: IEEE Transactions on Human-Machine
Systems 50 (5 2020), pp. 414–423. doi: 10.1109/thms.2020.2984181 (cit. on p. 38).

[RCG22] R. Roriz, J. Cabral, T. Gomes. “Automotive LiDAR Technology: A Survey”. In: IEEE
Transactions on Intelligent Transportation Systems 23.7 (July 2022), pp. 6282–6297.
doi: 10.1109/TITS.2021.3086804 (cit. on p. 21).

[RCL+18] J. Rufino, A. Casimiro, A. Lopes, F. Singhoff, S. Rubini, V.-A. Nicolas, M. Lallali,
M. Dridi, J. Boukhobza, L. Allache. “NORTH - Non-intrusive observation and
Runtime Verification of cyber-physical systems”. In: Ada User Journal 39 (4 2018),
pp. 278–281. url: https://www.di.fc.ul.pt/~casim/papers/auj18-NORTH/auj18-
NORTH.pdf (cit. on pp. 38, 41, 42, 45, 46, 50, 56).

[RDGF16] J. Redmon, S. Divvala, R. Girshick, A. Farhadi. “You Only Look Once: Unified,
Real-Time Object Detection”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91
(cit. on p. 26).

[RF18] J. Redmon, A. Farhadi. “YOLOv3: An Incremental Improvement”. In: arXiv (2018).
doi: 10.48550/arXiv.1804.02767 (cit. on p. 24).

[Rob23a] RobotShop Europe. Mecabot TX. 2023. url: https://eu.robotshop.com/products/
mecabot-tx (cit. on pp. 51, 57).

[Rob23b] Roboworks. Roboworks: Robot Educational Programable Mobile Robots. 2023. url:
https://www.roboworks.net/ (cit. on p. 71).

[Rob23c] Roboworks. Wheelbots. 2023. url: https://www.roboworks.net/store/wheelbots
(cit. on p. 71).

89

https://doi.org/10.1109/APSEC48747.2019.00066
https://doi.org/10.1109/APSEC48747.2019.00066
https://creativecommons.org/licenses/by/3.0/
https://wiki.ros.org/rospy
https://creativecommons.org/licenses/by/3.0/
https://wiki.ros.org/ROS/Concepts
https://docs.ros.org/en/galactic/Installation.html
https://docs.ros.org/en/galactic/Installation.html
https://doi.org/10.22146/jnteti.v4i3.160
https://doi.org/10.22146/jnteti.v4i3.160
https://doi.org/10.1109/tuffc.2020.3002973
https://doi.org/10.1109/thms.2020.2984181
https://doi.org/10.1109/TITS.2021.3086804
https://www.di.fc.ul.pt/~casim/papers/auj18-NORTH/auj18-NORTH.pdf
https://www.di.fc.ul.pt/~casim/papers/auj18-NORTH/auj18-NORTH.pdf
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1804.02767
https://eu.robotshop.com/products/mecabot-tx
https://eu.robotshop.com/products/mecabot-tx
https://www.roboworks.net/
https://www.roboworks.net/store/wheelbots

Bibliography

[RS11] V. V. Rubanov, E. A. Shatokhin. “Runtime Verification of Linux Kernel Modules
Based on Call Interception”. In: Mar. 2011, pp. 180–189. doi: 10.1109/ICST.2011.20
(cit. on p. 38).

[SAE21a] SAE International. SAE 𝐽3016𝑇𝑀 LEVELS OF DRIVING 𝐴𝑈𝑇𝑂𝑀𝐴𝑇𝐼𝑂𝑁𝑇𝑀 .
Pdf found at: https://www.sae.org/standards/content/j3016_202104/ under "Related
Items", named: “SAE J3016 Visual Chart”. 2021. url: https://www.sae.org/
binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf

(cit. on pp. 17, 19, 20).

[SAE21b] SAE On-Road Automated Driving (ORAD) Committee. Taxonomy and Definitions
for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE
International, Apr. 2021. doi: 10.4271/J3016_202104 (cit. on pp. 17, 19, 20).

[Sco87a] R. V. Scoy. Prototype Real-Time Monitor: Ada Code. Nov. 1987. url: https :

//apps.dtic.mil/sti/tr/pdf/ADA191095.pdf (cit. on p. 38).

[Sco87b] R. V. Scoy. Prototype Real-Time Monitor. Executive Summary. Nov. 1987. url:
https://apps.dtic.mil/sti/citations/ADA188928 (cit. on p. 38).

[SL17] M. Seo, R. Lysecky. “Hierarchical Non-intrusive In-situ Requirements Monitoring
for Embedded Systems”. In: Runtime Verification. Ed. by S. Lahiri, G. Reger. Cham:
Springer International Publishing, 2017, pp. 259–276. isbn: 978-3-319-67531-2. doi:
10.1007/978-3-319-67531-2_16 (cit. on pp. 40–42, 45, 46, 50, 56).

[SM93] S. Sankar, M. Mandal. “Concurrent runtime monitoring of formally specified
programs”. In: Computer 26 (3 1993), pp. 32–41. doi: 10.1109/2.204684 (cit.
on p. 38).

[Spr23a] Springer Nature. Lecture Notes in Computer Science. 2023. url: https://www.
springer.com/gp/computer-science/lncs (cit. on p. 29).

[Spr23b] Springer Nature Switzerland AG. Part of Springer Nature. International Conference
on Runtime Verification. 2023. url: https://link.springer.com/conference/rv
(cit. on p. 29).

[Sta23a] Statistisches Bundesamt (Destatis). Accidents registered by the police: specification.
Nov. 2023. url: https://www.destatis.de/EN/Themes/Society-Environment/
Traffic-Accidents/Tables/accidents-casualties.html (cit. on p. 17).

[Sta23b] Statistisches Bundesamt (Destatis). Driver-related causes of accidents involving
personal injury. 2023. url: https://www.destatis.de/EN/Themes/Society-

Environment/Traffic-Accidents/Tables/driver-mistakes.html (cit. on p. 17).

[Sta23c] Statistisches Bundesamt (Destatis). General causes of accidents. Nov. 2023. url:
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/

Tables/causes-accidents-personal-injury2.html (cit. on p. 17).

[SUPR20] S. Shankar, V. R. Ujwal, S. Pinisetty, P. Roop. “Formal runtime monitoring approaches
for autonomous vehicles”. In: vol. 2785. 2020, pp. 89–94. url: https://ceur-
ws.org/Vol-2785/paper15.pdf (cit. on pp. 38, 41, 42, 45, 46, 50, 56).

[SW10] “TF–IDF”. In: Encyclopedia of Machine Learning. Ed. by C. Sammut, G. I. Webb.
Boston, MA: Springer US, 2010, pp. 986–987. isbn: 978-0-387-30164-8. doi:
10.1007/978-0-387-30164-8_832 (cit. on pp. 39, 41).

90

https://doi.org/10.1109/ICST.2011.20
https://www.sae.org/binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf
https://www.sae.org/binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf
https://doi.org/10.4271/J3016_202104
https://apps.dtic.mil/sti/tr/pdf/ADA191095.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA191095.pdf
https://apps.dtic.mil/sti/citations/ADA188928
https://doi.org/10.1007/978-3-319-67531-2_16
https://doi.org/10.1109/2.204684
https://www.springer.com/gp/computer-science/lncs
https://www.springer.com/gp/computer-science/lncs
https://link.springer.com/conference/rv
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/accidents-casualties.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/accidents-casualties.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/driver-mistakes.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/driver-mistakes.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury2.html
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/causes-accidents-personal-injury2.html
https://ceur-ws.org/Vol-2785/paper15.pdf
https://ceur-ws.org/Vol-2785/paper15.pdf
https://doi.org/10.1007/978-0-387-30164-8_832

Bibliography

[TBCM21] V. Tripathi, L. Ballotta, L. Carlone, E. Modiano. “WiOpt - Computation and Commu-
nication Co-Design for Real-Time Monitoring and Control in Multi-Agent Systems”.
In: IEEE, Oct. 2021, pp. 65–72. doi: 10.23919/wiopt52861.2021.9589966 (cit. on
p. 38).

[The23a] The Autoware Foundation. Autoware Documentation - Installation. GitHub. 2023.
url: https://autowarefoundation.github.io/autoware-documentation/main/
installation/ (cit. on p. 71).

[The23b] The Autoware Foundation. Autoware Documentation - Source installation. GitHub.
2023. url: https://autowarefoundation.github.io/autoware-documentation/main/
installation/autoware/source-installation/ (cit. on p. 71).

[The23c] The Autoware Foundation. Autoware - the world’s leading open-source software
project for autonomous driving. GitHub. 2021–2023. url: https://github.com/
autowarefoundation/autoware (cit. on p. 71).

[TNM+19] H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, T. T. Johnson. “Real-time verification
for distributed cyber-physical systems”. In: arXiv preprint arXiv:1909.09087 (Sept.
2019). doi: 10.48550/arxiv.1909.09087 (cit. on p. 38).

[VD09] G. Van Rossum, F. L. Drake. Python 3 Reference Manual. Scotts Valley, CA: Cre-
ateSpace, 2009. isbn: 1441412697 (cit. on p. 56).

[WB18] N. Wojke, A. Bewley. “Deep Cosine Metric Learning for Person Re-identification”.
In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE.
2018, pp. 748–756. doi: 10.1109/WACV.2018.00087 (cit. on p. 27).

[WBP17] N. Wojke, A. Bewley, D. Paulus. “Simple Online and Realtime Tracking with a Deep
Association Metric”. In: 2017 IEEE International Conference on Image Processing
(ICIP). IEEE. 2017, pp. 3645–3649. doi: 10.1109/ICIP.2017.8296962 (cit. on p. 27).

[WKLS18] K. Watanabe, E. Kang, C.-W. Lin, S. Shiraishi. “INVITED: Runtime Monitoring for
Safety of Intelligent Vehicles”. In: 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). June 2018, pp. 1–6. doi: 10.1109/DAC.2018.8465912 (cit. on
pp. 38, 41, 42, 45, 46, 50, 56).

[Woh14] C. Wohlin. “Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering”. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. EASE ’14.
London, England, United Kingdom: Association for Computing Machinery, 2014.
isbn: 9781450324762. doi: 10.1145/2601248.2601268 (cit. on p. 39).

[XLX+06] L. Xuandong, W. Linzhang, Q. Xiaokang, L. Bin, Y. Jiesong, Z. Jianhua, Z. Guoliang.
Ada-Europe - Runtime verification of java programs for scenario-based specifications.
Springer Berlin Heidelberg, 2006, pp. 94–105. doi: 10.1007/11767077_8 (cit. on
p. 38).

[YCP22] S. Yu, W. Chen, H. V. Poor. “TSI-Aided Real-Time Monitoring of Brownian Motions:
A Rate-Latency-Distortion Perspective”. In: IEEE, 2022, pp. 5342–5347. isbn:
978-1-6654-3540-6. doi: 10.1109/GLOBECOM48099.2022.10001271 (cit. on p. 38).

[YCP23] S. Yu, W. Chen, H. V. Poor. “Real-Time Monitoring With Timing Side Information”.
In: IEEE TRANSACTIONS ON COMMUNICATIONS 71 (4 Apr. 2023), pp. 1953–
1969. issn: 0090-6778. doi: 10.1109/TCOMM.2023.3239514 (cit. on p. 38).

91

https://doi.org/10.23919/wiopt52861.2021.9589966
https://autowarefoundation.github.io/autoware-documentation/main/installation/
https://autowarefoundation.github.io/autoware-documentation/main/installation/
https://autowarefoundation.github.io/autoware-documentation/main/installation/autoware/source-installation/
https://autowarefoundation.github.io/autoware-documentation/main/installation/autoware/source-installation/
https://github.com/autowarefoundation/autoware
https://github.com/autowarefoundation/autoware
https://doi.org/10.48550/arxiv.1909.09087
https://doi.org/10.1109/WACV.2018.00087
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/DAC.2018.8465912
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/11767077_8
https://doi.org/10.1109/GLOBECOM48099.2022.10001271
https://doi.org/10.1109/TCOMM.2023.3239514

Bibliography

[Yuf19] A. Yufiyanto. RANCANG BANGUN SISTEM REAL TIME MONITORING GAS
BERBAHAYA PADA PETERNAKAN AYAM BROILER BERBASIS INTERNET OF
THINGS DAN DATA LOGGER. 2019. url: https://lens.org/011-562-388-952-255
(cit. on p. 38).

[ZBK20] E. Zapridou, E. Bartocci, P. Katsaros. “Runtime Verification of Autonomous Driving
Systems in CARLA”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12399
LNCS (2020), pp. 172–183. doi: 10.1007/978-3-030-60508-7_9 (cit. on pp. 19, 38,
41, 42, 45, 46, 50, 56).

All links were last followed on December 11, 2023.

92

https://lens.org/011-562-388-952-255
https://doi.org/10.1007/978-3-030-60508-7_9

A Appendix
� �

1 # List of words to be ignored

2 ignore_words = ['doi', 'ieee', 'vol', 'proposed', 'work', 'figure', 'fig', 'authorized',

3 'licensed', 'use', 'restrictions', 'may/june', 'apply', 'xplore', 'utc', '12:08:36',

4 '12:04:40', 'downloaded', 'july', '21,2023', 'august', '25,2023', '10:42:32',

5 'stuttgart', 'universitaetsbibl', 'limited', 'international', 'conference', 'd.an',

6 'al./the', 'journal', 'elsevier', 'page', 'may', 'https', 'org', '10', '1007', '978',

7 '//doi.org/10.1109/tcomm.2023.3239514']

8
9 # List of punctuations to be ignored

10 punctuations = ['(',')',';',':','[',']',',','.','--','-','#','!','*','"','%']

11
12 # Get the stopwords list to be ignored; stopwords can be found here:

13 # https://github.com/nltk/nltk_data/blob/gh-pages/packages/corpora/stopwords.zip

14 stop_words = stopwords.words('english')

15
16 # Convert ignore words from user to lower case

17 ignore_words_lower = [x.lower() for x in ignore_words]

18
19 # Combine all the words to be ignored

20 all_ignored_words = punctuations + stop_words + ignore_words_lower

21
22 # Keyword fix, when letters could not be read correctly

23 fix_keywords = { 'verication': 'verification', 'trafc': 'traffic', 'trac': 'traffic' }

24
25 # Keywords that should not be singularized

26 do_not_singularize = { 'autonomous', 'data' }

27� �
Listing A.1: Ignored words and punctuations in the source papers

93

� �
1 import pandas as pd

2
3 # read file and rename columns

4 # used spreadsheet file represents Table 5.5 + focus and communication columns from Table 5.6

5 df = pd.read_excel('/content/Taxonomy_Data_Extraction_Form_simplyfied.xlsx',

6 names=["paper_id", "specification_organization", "specification_behavior_implicit",

7 "specification_behavior_explicit_data", "specification_behavior_explicit_output_information",

8 "specification_behavior_explicit_output_frequency", "specification_behavior_explicit_time_logical",

9 "specification_behavior_explicit_time_physical", "specification_behavior_explicit_modality",

10 "specification_behavior_explicit_paradigm", "monitor_decision_procedure_realisation",

11 "monitor_decision_procedure_tool", "monitor_decision_procedure_properties",

12 "monitor_generation", "monitor_execution", "deployment_stage_offline", "deployment_stage_online",

13 "deployment_architecture", "deployment_instrumentation", "interference", "reaction_active",

14 "reaction_passive", "trace_information", "trace_sampling", "trace_evaluation", "trace_precision",

15 "trace_model", "ADAS_application_focus", "ADAS_application_communication"])

16
17 # fill in missing information on whether the tool is open source or not

18 df["monitor_decision_procedure_tool_open_source"] = df["monitor_decision_procedure_tool"]

19 .apply(lambda t: t in ["easy-rte", "rtamt", "UPPAAL-SMC", "Breach", "PerceMon",

20 "Persephone based on S-TaLiRo"])

21
22 # define the filter criteria

23 rm_technique_filter = ' and '.join([

24 "monitor_decision_procedure_tool_open_source == True",

25 "specification_behavior_explicit_output_information.str.contains('v')",

26 "specification_behavior_explicit_time_physical not in ['none', '?']",

27 "specification_behavior_explicit_modality.str.contains('f')",

28 "deployment_stage_online.str.contains('outline')",

29 "deployment_architecture == 'c'",

30 "deployment_instrumentation == 'none'",

31 "reaction_passive.str.contains('so')",

32 "trace_precision == 'p'",

33 "trace_model == 'i'",

34 "ADAS_application_focus.str.contains('pv')"

35])

36
37 # apply the filter criteria to the data

38 df_filtered = df.query(rm_technique_filter)

39 df_filtered� �
Listing A.2: Tool selection code

(a) The object detector recognizes stop sign
and chairs

(b) The AEB ADAS detects stop sign (ID
#3) in the AEB danger zone (larger rect-
angle)

(c) The object detector recognizes a chair
and the stop sign while AEB ADAS is
cooling down the stop sign

(d) The AEB ADAS recognizes the stop sign
a few moments after it is removed (in the
distance is the second obstacle [mal07])

Figure A.1: Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the first obstacle (obstacle image [ami10])

(a) The object detector recognizes bicycle
in the floor

(b) The AEB ADAS recognizes no objects
in the frame contrary to Figure A.2a

Figure A.2: Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the second obstacle (obstacle image [mal07]) - Part 1

(a) The object detector recognizes the ob-
stacle as cows as the obstacle is still far
away. It also recognizes a chair

(b) The AEB ADAS processes the bicycle
from Figure A.2a as object (ID #5) in
the AEB danger zone (larger rectangle)

(c) The object detector recognizes the per-
sons in the obstacle contrary to Fig-
ure A.3a

(d) The AEB ADAS recognizes the obstacle
(mutiple persons with multiple IDs) in
the AEB danger zone (larger rectangle)

(e) After removal of the second obstacle, the
object detecter recognizes no objects (in
the distance is the third obstacle [Hun12],
cropped)

(f) The AEB ADAS recognizes the persons
a few moments after they are removed (in
the distance is the third obstacle [Hun12],
cropped)

Figure A.3: Screenshots of the object detector (left) and AEB ADAS (right) camera images during
experiment - related to the second obstacle (obstacle image [mal07]) - Part 2

(a) The object detector recognizes a person
and a chair

(b) Contrary to Figure A.4a, the AEB ADAS
also recognizes a boat (ID #30) besides
the person (ID #31)

(c) The object detector recognizes multiple
chairs (in the distance is the fifth obsta-
cle [Kec13])

(d) Contrary to Figure A.4c, the AEB ADAS
still recognizes the person, but with a
different ID (ID #40) and the bound-
ing box of the person that removed the
obstacle (in the distance is the fifth ob-
stacle [Kec13])

Figure A.4: Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the third obstacle (obstacle image [Hun12], cropped)

(a) The object detector recognizes person
an chairs

(b) The AEB ADAS recognizes the per-
son multipe times as there are multiple
bounding boxes and the person is mov-
ing (e.g., ID #42)

(c) The object detector recognizes the tv
monitor and a chair

(d) TheAEB ADAS does not recognize the
objects from Figure A.5c, as they are
not whitelisted

Figure A.5: Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the fourth obstacle (obstacle - random moving person, unrecog-
nizable and anonymous, there is also the fifth obstacle [Kec13])

(a) The object detector does not recognize
the obstacle

(b) As in Figure A.6a, the AEB ADAS does
not recognize the obstacle

(c) The object detector recognizes a person
and then the obstacle as tv monitor

(d) The obstacle is not recognized as tv
monitors are not whitelisted and the
stop sign is outside the danger zone
(rectangle)

Figure A.6: Screenshots of object detector (left) and AEB ADAS (right) camera images during
experiment - related to the fifth obstacle (obstacle image [Kec13])

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Structure

	2 Background and Foundations
	2.1 Background
	2.1.1 Driving Automation
	2.1.2 Advanced Driver-Assistance Systems
	2.1.3 Runtime Monitoring

	2.2 Foundations
	2.2.1 Robot Operating System
	2.2.2 Runtime Monitoring Library - rtamt
	2.2.3 Object Detector - darknet_ros with YOLOv3
	2.2.4 Object Tracker - sort-deepsort-yolov3-ROS

	3 Related Work
	3.1 Conference
	3.2 Taxonomy

	4 Study Design
	4.1 Research Questions
	4.2 Methodology

	5 Rapid Review
	5.1 Methodology
	5.1.1 Search Strategy
	5.1.2 Selection Procedure
	5.1.3 Quality Appraisal
	5.1.4 Snowballing
	5.1.5 Synthesis Procedure

	5.2 Results
	5.2.1 Common Keywords Within Papers
	5.2.2 Paper Dependencies
	5.2.3 Technique Classification
	5.2.4 Technique Classification Analysis

	6 Prototype Technique Selection
	6.1 Hardware - Mecabot TX
	6.2 Prototype Use Case
	6.2.1 Data Flow Visualization

	6.3 Selection Procedure

	7 Prototype Implementation
	7.1 Architecture
	7.1.1 Object Tracking
	7.1.2 AEB ADAS
	7.1.3 Runtime Monitors

	7.2 Verification of the Monitors
	7.3 Experiment
	7.3.1 Setup
	7.3.2 Execution and Results
	7.3.3 Evaluation

	7.4 Challenges and Key Considerations
	7.4.1 Challenges Working with the Robot
	7.4.2 Key Considerations for our Implementation

	8 Discussion
	8.1 Discussion
	8.2 Threats to Validity
	8.2.1 Rapid Review
	8.2.2 Prototype Technique Selection
	8.2.3 Prototype Implementation

	9 Conclusion and Outlook
	9.1 Summary
	9.2 Benefits
	9.3 Limitations
	9.4 Lessons Learned
	9.5 Future Work
	9.5.1 Rapid Review
	9.5.2 Prototype Implementation

	Bibliography
	A Appendix

