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A B S T R A C T

Text entry is an essential interaction in the digital environment. We use it to access
content on the web, share thoughts and information, access navigational instructions,
and use it for our interests. The conventional approach of inserting text with a key-
board and mouse has been with hands and fingers. This approach limits accessibility
and often restricts interaction in circumstances of situational impairment. To overcome
such challenges, we investigate alternative modalities like gaze and voice.

In the first part of the thesis, we investigate text entry by gaze and report our work
on designing and implementing a new keyboard (GazeTheKey) that enhances the
use of word predictions for improved efficiency. We further evaluate this design by
comparing it with a traditional gaze-based keyboard and another design aiming to
bring the word predictions closer to the visual fovea. This investigation and evaluation
contribute to exploring an on-screen predictive keyboard design and present an
enhanced layout for gaze-based text entry as a part of this thesis. We evaluate EEG
signals while users use different keyboard designs to understand the cognitive load
associated with each user experience. The result conclusively shows that our design
performs better than the traditional gaze-based keyboards. This investigation and
evaluation advance the text entry domain of research by contributing the findings
that EEG signals are an efficient metric in understanding instantaneous cognitive
load, which traditional approaches like NASA TLX or SUS fail to capture. Our novel
design prominently demonstrates the schematic nature of word prediction selection,
particularly when predictions are strategically positioned close to the keyboard’s letter
layout. However, the inherent challenges associated with gaze-only text entry remain,
and to overcome that, we approach the direction of multimodal text entry - using
voice and gaze together.

The second part of this thesis contributes to expanding the multimodal text entry
paradigm by using voice and gaze in parallel and designing an approach called”
Talk-and-Gaze(TAG)” for text revision. This approach reduces the limitations of the
gaze-only text entry approach (selecting letters or words linearly). It delivers an
improved performance of inserting text with the help of voice input for improved
usability. Our novel multimodal interaction approach works parallel (voice and gaze
input) and provides a fall-back mechanism when one modality fails to deliver.
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Z U S A M M E N FA S S U N G

Die Texteingabe ist eine wesentliche Interaktionsform in der digitalen Welt. Wir
nutzen sie, um auf Inhalte im Internet zuzugreifen, Gedanken und Informationen
auszutauschen, Navigationsanweisungen abzurufen und auch für unsere persönlichen
Interessen. Der herkömmliche Ansatz für die Eingabe von Text mit Tastatur und Maus
ist die Eingabe mit Händen und Fingern. Dieser Ansatz limitiert die Zugänglichkeit
und schränkt die Interaktion in Situationen, in denen eine Beeinträchtigung vorliegt,
häufig ein. Um solche Herausforderungen zu überwinden, untersuchen wir alternative
Modalitäten wie Blicke und Stimme.

Im ersten Teil der Arbeit untersuchen wir Texteingabe mit Hilfe des Blicks und stellen
unsere Entwicklung und Implementierung einer neuen Tastatur (GazeTheKey) vor, die
die Verwendung von Wortvorhersagen steigt, um eine verbesserte Benutzererfahrung
zu ermöglichen. Wir evaluieren dieses Design, indem wir es mit einer traditionellen
blickbasierten Tastatur und einem weiteren Design vergleichen, das darauf abzielt,
die Wortvorhersagen näher an die visuelle Fovea zu bringen. Um die kognitive Be-
lastung der jeweiligen Benutzererfahrungen zu verstehen, werten wir EEG-Signale
aus, während die Benutzer die verschiedenen Tastaturdesigns verwenden. Das Er-
gebnis zeigt eindeutig, dass unser Design besser abschneidet als die traditionellen
blickbasierten Tastaturen. Dieser Teil der Arbeit bringt die Forschung im Bereich der
Texteingabe voran, indem er EEG-Signale als effiziente Metrik für das Verständnis
der momentanen kognitiven Belastung etabliert, die mit traditionellen Ansätzen wie
NASA TLX oder SUS nicht erfasst werden kann. Unser neuartiges Design zeigt auch,
wie einfach es für Benutzer war, Wortvorhersagen auszuwählen, wenn ihre Präsenz
erhöht und in der Nähe der Buchstaben der Tastatur platziert wurde. Die inherenten
Herausforderungen, die bei der Texteingabe rein mit Hilfe des Blickes verbunden
sind, bleiben jedoch bestehen, und um diese zu überwinden, gehen wir den Weg der
multimodalen Texteingabe - mit Stimme und Blicken zusammen.

Der zweite Teil der Arbeit befasst sich mit dem Design und der Entwicklung einer
multimodalen Interaktion aus Blick und Stimme (”Talk-and-Gaze: TaG”) für das Sze-
nario der Textrevision. Dieser Ansatz reduziert die Einschränkungen der Texteingabe
rein mit Hilfe des Blickes und bietet eine verbesserte Leistung und Benutzererfahrung.
Unser neuartiger multimodaler Interaktionsansatz arbeitet parallel und bietet einen
Rückfallmechanismus, wenn eine Modalität nicht funktioniert.
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1
I N T R O D U C T I O N

Text entry is an essential interaction with digital systems. It is one
of the most common tasks in ICT (Information and Communication
Technology) devices like desktops, laptops, and even hand-held de-
vices like cell phones or tablets. The task of text entry is prevalent in
our professional interactions, personal and social ones. Variations in
form factors like cell phones, smartwatches, or tablets are crucial in
designing the user experience of text entry systems without compro-
mising efficiency and effort. The text entry task is vast and primarily
restricted to hand-based interactions via keyboard-mouse or by touch-
ing a virtual keyboard. Insertion of text is mainly required for logging
in to a system (let us say, one’s personal computer), searching for
content (perhaps a particular file), creating text-based content (writing
a report on a text editor like Microsoft Word), searching the Web
(Google Search, DuckDuckGo and many more), registering on websites
(let us say, on New York Times), composing emails or chat-based
communications. Nevertheless, the fundamental principle of text en-
try is the same for all these processes. It involves the primary task
of scanning and selecting letters and symbols from the keyboard to
form text like words, passwords, proper nouns, etc. As this process
continues, the user must read through the collected inputs to validate
the correctness. However, the selection techniques can vary: from
a traditional selection of keys on the keyboard by a single finger or
multiple fingers to using an on-screen keyboard and selecting the let-
ters on the traditional keyboard with a mouse, stylus [52], or joystick
[186] or rotary controls [195].

The performance of text entry systems is often measured by how
fast one can insert characters to form words. Speeds of 100 or more
words per minute (WPM) on physical keyboards with multiple fingers
[150, 184, 185] to 60 WPM on mobile tactile keyboards using two
thumbs [29] to 30-40 WPM on virtual keyboards for touch screen
mobile devices have been recorded [12]. WPM as low as 10-20 WPM
have been recorded on smartphone watches [4, 86]. As the form
factor (screen size here) decreases, the WPMs also decrease. However,
investigating comfort and cognitive load associated with such devices
when performing text entry tasks is limited.
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2 introduction

Researchers altered different parameters and input methodologies to
understand if that could lead to efficient text entry. Switches were
used to overcome keyboard-mouse challenges for users suffering from
motor control ailments. Ntoa et al. [125] list an exhaustive study of
switches they investigated. Work on muscle contractions [46], eye
blinks [8, 156] or eye movements [103] has also been undertaken for
the text entry process. While input modality was widely investigated,
language models [181] and word predictions [137] also played a
crucial role in improving text entry. Efficient word predictions reduced
keystrokes and helped users complete words faster. Keyboard designs
were also investigated to understand if grouping keys or layouts could
improve the text entry experience. The main goal has been to improve
text entry speed in all these cases.

While the hands and fingers have mostly been the preferred mode
of interaction on a keyboard for text input on digital systems, this
predominant mode of text entry limits access to people suffering
from motor control ailments or in scenarios that lead to situational
impairment. Challenges like deteriorated finger dexterity, ALS , andAmyotrophic lateral

sclerosis: A
neurodegenerative

disease that leads to
loss of motor control.

muscular dystrophy often limit the motor controls of patients, thus
leading them to digital seclusion since the predominant method of text
entry requires hands and fingers to work well for digital interaction
and communication [80]. Older adults with limited speed and agility
may also find the keyboard’s efficient use cumbersome and enter text
letter-by-letter after searching those keys on the keyboard. This often
leads to a higher cognitive load and poor user experience, pushing
this population to reject the use of technology [180].

Alternative modalities like gaze and voice are investigated widely to
understand their potential for regular usage as an additional commu-
nication channel beyond the traditional keyboard-mouse combination
or touch. Projects like MAMEM1, GazeTheWeb2, GazeMining3, Eu-
phonia4 focus on investigating how alternative modalities can be used
for interaction on digital content. Findings from such projects and
the growing market demands for alternative modalities (see Figure
1.1) motivated us to conduct our investigation – even for able-bodied
individuals. While these projects focus on accessibility issues, the in-
teraction and technology of such projects can also be used to overcome
situational impairments in interaction - for example, when hands are
busy performing some action, voice control can take over. Gaze andGaze is the

intersection of the
line of sight and the

screen

voice have also been investigated to be used together as multimodal
inputs. Beelders et al. [16] brought gaze and voice together for Mi-
crosoft Word 97 for transcribing content. Projects like Microsoft’s

1 https://www.mamem.eu/
2 https://west.uni-koblenz.de/research/gazetheweb
3 http://gazemining.de/
4 https://sites.research.google/euphonia/about/

https://www.mamem.eu/
https://west.uni-koblenz.de/research/gazetheweb
http://gazemining.de/
https://sites.research.google/euphonia/about/


1.1 understanding text entry process 3

HoloLens5 is one example where all-natural modalities come together
for enhanced interaction.

One of the most natural and intuitive approaches to understanding
user attention has been to observe the human gaze. Initially, it was
used to comprehend where users were looking and how design could
be enhanced. The advancement and proliferation of eye trackers have
transformed the gaze into more than just an input for understanding
user attention. Today, gaze signals are utilized as input methods for
text input and web navigation, aiding individuals accessing informa-
tion previously digitally excluded due to motor control challenges. The
growth of the eye-tracking industry also raises optimistic expectations
regarding integrating such hardware into mainstream ICT devices
(source: gaming.tobii.com/products/laptops). This would facilitate
not only able-bodied individuals but also those seeking improved
accessibility in digital design for greater inclusivity.

Voice, another natural modality like gaze, is rapidly accepted as a
command-based input for information exchange via intelligent voice-
enabled assistants like Google Home, Siri, Alexa, or Cortana. One of
the main reasons for the acceptability of voice input is the inherent
nature of the human voice to express intentions explicitly. In addition,
voice is used in verbal and non-verbal interactions to access informa-
tion from the web—the advancements in natural language processing
help transcribe text with fewer errors than before.

In this thesis, we investigate and evaluate an on-screen gaze-based text
entry system. Our investigation to understand the stress associated
with gaze-based text entry led to the need for measuring and under-
standing instantaneous cognitive load. The second part of the research
sheds light on multimodal interaction for text entry systems, where
we built a voice and gaze-based interaction approach for text revision
scenarios. This investigation aimed to understand the efficacy of the
additional modality that increased the communication bandwidth.

1.1 understanding text entry process

Text entry is an iterative process involving perceptive, cognitive, and
motor skills to form words to build the desired sentence. The design
space for methods of text entry is expansive. It includes decisions
about the variations in interfaces (touch screens, size, and shape of
buttons, position of interaction elements ), interaction techniques for
text input (gestures, feedback, modalities), use of intelligent methods

5 https://www.microsoft.com/en-us/hololens

https://www.microsoft.com/en-us/hololens
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(a)

(b)

Figure 1.1: Bar charts representing the growth and adoption of voice-based
interaction devices (a)The bar chart shows the growth of the use
of voice assistant users in the United States from 2017 - 2022,
signifying the growth of adoption of such alternative modalities
in our households and other places.; (b)The bar char represents
the number of voice assistants sold worldwide with a projection
of 8.4 billion units in 2024.
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Figure 1.2: Conceptual diagram representing the process of text entry via
fingers, eyes, and voice. Text entry by fingers and gaze is mostly
letter-based (however, the addition of the word prediction changes
the classification and makes them hybrid.) On the other hand,
voice input is word-based, where the speech-to-text engine tran-
scribes the spoken words into sentences. We see when the text
creation and revision occur in the three distinct blocks.



6 introduction

(intelligent word prediction and auto-correction), and many more.
Thus, it is important to understand the process of text entry. We have
split the process into two parts for our research: (i) text creation and
(ii) text revision. The text creation process is split into two parts: (i)
letter-based creation and (ii) word-based creation. Figure 1.2 gives us a
conceptual representation of the process of text entry for the traditional
hand-based approach along with the two alternative modalities in the
discussion here: gaze and voice.

While text creation is in progress, error(s) can occur. It is mainly taken
care of by developing the text revision mechanism where error correc-
tion occurs. Most error correction mechanisms involve the following
steps: (i) navigating to the error location, (ii) removing the error, and
finally (iii) inserting the correct entry. Regular error correction mecha-
nisms often add to the cost of text entry, thus minimizing the savings
in time and effort for an efficient text creation mechanism.

1.1.1 Text Creation

Text creation is a complex process because the person conceptualizes
the sentences to be formed and deconstructs them into words and
further into letters to produce an error-free entry. While this process
is in progress, the fingers navigate to the exact keys on the keyboard
(virtual or digital) that the mind has generated to record the letter
entries, thus forming words and sentences. If an error is detected, an
error correction process is initiated, which will be discussed in the
Text Revision subsection. The creation process becomes comparatively
simpler when one talks and technology takes over and helps transcribe
the speech to text. However, the errors generated from this speech-
to-text transcription must also be corrected. Thus, the text revision
section again plays a vital role in understanding the complete text
entry process.

The traditional method of using one’s hands with a writing instrument
such as pen and paper employs a similar approach. Nevertheless, to
address particular challenges encountered by users within a digital
context, researchers have delved into various aspects, including key-
board designs, as evidenced in Panwar’s work [132], enhancements
in word prediction capabilities [50], and the exploration of diverse
input modalities [43, 113, 142]. In instances where the utility of the
keyboard-mouse combination was found to be obstructive, researchers
have concentrated on investigating alternative modalities [78], the
development of optimized keyboard layouts [132], and the efficient
utilization of word prediction technologies [98].
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The central focus revolved around how text creation was accomplished
in all these instances. Here, we delve deeper into the limitations as-
sociated with these approaches, including a steeper learning curve
compared to the conventional keyboard-mouse design and interac-
tion. Additional challenges encompass incorrect word predictions,
inadvertent selection of erroneous predictions, instances akin to the
”Midas Touch” phenomenon [95], or recognition errors stemming from
voice-based systems. These issues lead to heightened task overload
and diminish the efficiency these approaches aimed to introduce into
efficient and user-friendly text entry systems. Research has demon-
strated that deploying multimodal systems can overcome some of
these challenges and enhance the overall usability of such systems.

1.1.2 Text Revision

While text creation is in progress, users scan and check the letters/-
words for error correction. If an error is detected, the text revision
process involves the following steps: (i) navigate to the erroneous
word/letter, (ii) select the position (iii) delete/replace the letters or
words. The schematic presentation of text revision can be seen in
Figure 1.3.

Locate position

 of error

Insert correct 

letter(s)

Backspace/Delete

to remove error

Navigate to 

error position

Apply

Mouse/Fingers/etc,

Is Error

at 


Last position?

NO

YES

Figure 1.3: Schematic diagram representing the process of text revision. The
generic process starts with the observation of the error and its
location. Once we know there is an error, we can apply corrective
actions immediately if it is currently at the last position. How-
ever, navigating to the error changes slightly when the error is
somewhere between the sentence construction and the written
paragraph. Then, navigating to the error forms a major point of
interaction. This is where gaze as an input modality is fast while
voice is not.

prediction engines
are responsible for
predicting the most
suitable word based
on the letter we type
and/or the word(s)
typed before.

To further improve the process of text revision, prediction engines
often help replace entire words based on the prediction logic. Re-
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searchers have also investigated the selection and replacement of erro-
neous words for voice-based systems by re-speaking them [176].

1.2 research methods and goals

This thesis explores input modality combinations to enhance the digital
text entry experience. Building upon prior research in text entry, this
thesis seeks to gain insights into the potential enhancements that
hands-free modalities, such as voice and gaze, can offer to the text
entry process. We have conducted a comprehensive investigation into
the design space, on-screen keyboard functionality, input modalities,
and their various combinations, all aimed at elevating the quality of
the text entry experience.

This exploratory study has given rise to two fundamental research
questions (RQ), each accompanied by three distinct research subques-
tions.

RQ1: How to improve the usability of a word prediction enabled gaze-based
keyboard?

Usability primarily refers to the ease with which users can interact
with a system, encompassing elements such as learnability, efficiency,
memorability, error frequency, and satisfaction [122]. Performance is
more quantitatively oriented, focusing on how effectively and swiftly
users can complete tasks using the system [23]. The overlap between
these two constructs becomes evident when considering that enhanced
usability often leads to improved performance. However, it is crucial
to recognize that high performance does not always equate to high
usability. We need performance-centric measurements and user qual-
itative feedback to understand usability from a broader perspective.
Therefore, in HCI research and practice, it is imperative to comprehen-
sively evaluate both usability and performance, acknowledging their
interdependence while appreciating their contributions to the overall
user experience. Thus, for our first research question, we wanted to
know how to improve the usability of a predictive on-screen keyboard
for a Gaze-based text entry system.

Further exploration of this research question has given rise to three
distinct research sub-questions, each focusing on issues impacting
system usability, strategies to surmount these challenges, and the
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evaluation process aimed at comprehending system usability and user
experience.

RQ1.1: What impacts the usability of an on-screen gaze-based keyboard?
To improve the usability of a gaze-based system, we first have
to investigate and understand the challenges of text entry in
accessing the information. This question helps us understand
existing problems like Midas Touch, drift, and fatigue, develop
the possible solutions, and overcome them for an improved
usability experience for on-screen gaze-based text entry systems.

RQ1.2: How can we improve the usability issues of gaze-based text entry sys-
tems?
To overcome the challenges discussed above, what are the differ-
ent approaches we can take to improve the usability of on-screen
keyboard text entry in a gaze-based system are discussed here.
We explored the dwell-time-based method and introduced an im-
proved approach to take advantage of the design of gaze-based
keyboards for improved usability.

RQ1.3: How to evaluate and understand the factors impacting usability of
on-screen gaze-based keyboards?
The success of any approach to overcome challenges can be
understood by evaluating the system and taking user feedback. It
is essential to understand that objective and subjective measures
often align but not always. We explored an innovative metric to
understand stress when using gaze-based keyboards.

RQ2: How to improve the usability of hands-free text entry with voice by
integrating gaze?

Voice was another natural input modality that expressed intentions,
and advancement in S2T (speech-to-text) technology has improved
its recognition capacity. However, voice input comes with challenges,
leading us to our RQ2, where we investigate voice and gaze for
improved text entry.

We explored RQ2 further, leading to three more sub-questions for
RQ2. These challenges focus on current problems, our approaches to
circumvent them, and an evaluation to understand how effective our
approach has been.

RQ2.1: What impacts users in integrating voice as a primary modality for text
entry?



10 introduction

While voice offers a fast solution for hands-free text entry, it
comes with challenges and inherent limitations, like incorrect
recognition. Voice input works as a solitary modality and can
often be combined with others in a multimodal setup for en-
hanced interaction. We investigated the users’ challenges using
voice-based text entry and developed solutions to overcome
them.

RQ2.2: How can we improve the usability issues of voice-based text entry
systems in multimodal context?
Voice modality faces the limitation of incorrect recognition and
navigation in space. This section explores the different ap-
proaches for voice as an input modality in text entry and revision
scenarios by exploring the multimodal setup of combining voice
with gaze. We use voice input for text entry, but we use gaze to
navigate to an erroneous word. This overcomes the challenge
of repeatedly using voice commands to reach a specific location
and takes advantage of fast eye movements.

RQ2.3: How to evaluate and understand the factors impacting the usability of
voice-based text entry systems?
Literature and previous work provide a pathway for understand-
ing how voice-based systems could be evaluated. However, our
approach to overcoming the challenges uses a modality combi-
nation. Thus, objective and subjective evaluation is crucial in
understanding the system’s usability.

1.3 research contributions

This thesis explores the combination of input modalities in text entry
and revision. In line with the research questions stated above, the
primary outcomes of this work are summarized in the following
points:

C1 This thesis contributes to exploring an on-screen predictive key-
board design and presents an enhanced layout for gaze-based
text entry.

To improve the text creation process, several works have
focused on improving the design of the on-screen keyboard
and, thus, created layouts that were heavily deviating from
the traditional layout. We were inspired by these works to
design a keyboard layout that retained the traditional layout
pattern (thus reducing the learning curve) but utilized word
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predictions’ impact on such on-screen keyboards. This
improvement allowed us to add more predictions, thus
making it easier for the user to interact with the predicted
word with minimized scanning distance. Contribution C1
maps to the RQ1, which aimed to improve the usability of
word prediction enabled gaze-keyboard.

C2 The thesis contributes to the introduction of measuring brain
signals for understanding instantaneous cognitive load and pre-
senting it as a metric for understanding user experience.

The challenge of usability analysis has always focused on
understanding how people feel when using the system.
This information can often be biased based on performance,
association, and other factors that affect the individual. For
a scenario like text entry, such factors often play a key
role in understanding improvements. NASA TLX often
measures cognitive load [57]. However, we introduced the
idea of measuring actual brain signals while the experiment
is in progress to understand temporal cognitive load. This
approach gave us an additional layer of information that
had not been accessed before. Contribution C2 also maps to
R1, as through this process, we can understand our designs’
impact from a cognitive load perspective.

C3 The thesis expands the multimodal text entry paradigm by using
voice and gaze in parallel and designing an approach called
”Talk-and-Gaze(TAG).”

We successfully utilized the strength of voice and gaze in
parallel for an efficient text revision scenario. We utilized
the strength of speech-to-text models for faster and more
efficient text entry and also used the super-fast movement of
gaze for pointing to the designated location for text revision.
Our approach used both the strengths of gaze and voice for
an improved hands-free text editing scenario. Contribution
C3 maps to RQ2 where we investigate the potential of voice
to work with gaze as a multimodal system for an efficient
text entry process.

1.4 supporting publications

The following publications support this thesis:
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P1 Korok Sengupta, Raphael Menges, Chandan Kumar, and Steffen
Staab. 2017. ”GazeTheKey: Interactive Keys to Integrate Word
Predictions for Gaze-based Text Entry”. In Proceedings of the
22nd International Conference on Intelligent User Interfaces
Companion (IUI ’17 Companion). Association for Computing
Machinery, New York, NY, USA, 121–124. DOI: https://doi.org/

10.1145/3030024.3038259

P2 Korok Sengupta, Jun Sun, Raphael Menges, Chandan Kumar
and Steffen Staab. ”Analyzing the Impact of Cognitive Load in
Evaluating Gaze-Based Typing,” 2017 IEEE 30th International
Symposium on Computer-Based Medical Systems (CBMS ’17),
Thessaloniki, 2017, pp. 787-792, DOI: https://doi.org/10.1109/

CBMS.2017.134.

P3 Korok Sengupta, Raphael Menges, Chandan Kumar, and Steffen
Staab. 2019. ”Impact of variable positioning of text prediction
in gaze-based text entry”. In Proceedings of the 11th ACM
Symposium on Eye Tracking Research & Applications (ETRA
’19). Association for Computing Machinery, New York, NY, USA,
Article 74, 1–9. DOI: https://doi.org/10.1145/3317956.3318152

P4 Korok Sengupta, Sabin Bhattarai, Sayan Sarcar, I. Scott MacKen-
zie, and Steffen Staab. 2020. ”Leveraging Error Correction in
Voice-based Text Entry by Talk-and-Gaze”. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems
(CHI ’20). Association for Computing Machinery, New York, NY,
USA, 1–11. DOI: https://doi.org/10.1145/3313831.3376579

1.5 thesis outline

The work presented in this thesis is based on the publications as
listed in the previous section. The thesis as a whole constitutes un-
derstanding text entry from the point of hands-free interaction and
enabling readers to understand generic domain-specific challenges
that need to be overcome for improved usability and user experience.
The remainder of the document is structured as follows:

• Chapter 2 provides a historical account of text entry using key-
boards and how it evolved from typewriters to modern-day
keyboards for text entry. This chapter highlights the three key
components of any text entry research document: Keyboard
layout, chosen input modality, and finally, evaluation metrics.

https://doi.org/10.1145/3030024.3038259
https://doi.org/10.1145/3030024.3038259
https://doi.org/10.1109/CBMS.2017.134
https://doi.org/10.1109/CBMS.2017.134
https://doi.org/10.1145/3317956.3318152
https://doi.org/10.1145/3313831.3376579
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• Chapter 3 extends the modality perspective and describes the
alternative modalities investigated for text entry scenarios. This
chapter primarily focuses on the plethora of work done for
exploring gaze and voice modalities for text entry purposes.
However, other modality sources like BCI and switches have also
been described.

• Chapter 4 is one of the core chapters of this thesis that show-
cases the design investigation and challenges associated with
on-screen gaze-based keyboards. It documents our approach
to designing and developing a new and improved on-screen
keyboard for gaze-based text entry: GazeTheKey [P1]. It also ex-
plores the impact of positioning word predictions for on-screen
gaze-based keyboards [P3]. The chapter answers all the research
questions associated with RQ1.

• Chapter 5 further explores the findings of Chapter 5 and aims to
expand the evaluation metrics for gaze-based text entry systems.
It presents a novel evaluation metric [P2] previously used only
as subjective feedback. This chapter answers RQ1.3 from RQ1.

• Chapter 6 expands the envelope of hands-free text entry further
by addressing the challenges of gaze-based text entry by adding
voice as the primary modality of interaction and keeping gaze
as the secondary for navigation [P4]. The chapter answers all
the research questions associated with RQ2.

• Chapter 7 concludes this thesis with a conclusion that highlights
the contributions of this thesis to the scientific community. It
also discusses the limitations and future work planned beyond
this thesis’s thresholds.





2
F O U N D AT I O N S

In this chapter, we introduce the essential concepts of text entry that
form the basis of our study. We begin by exploring the history of text
entry methods, tracing their evolution over time in Section 2.1;. This
sets the stage for a detailed examination of text entry via keyboard in
Section 2.2, where we dissect the various parameters influencing this
process. Subsections include an analysis of keyboard layouts in 2.2.1,
an overview of different input modalities in 2.2.2, and a discussion on
the performance metrics critical to text entry efficiency in 2.2.3.

2.1 history of text entry

Communication via a textual medium is an integral part of our lives.
From scribbles to penning down thoughts, the ”writing” process has
ensured socio-cultural development and storage of ideas on a tangible
medium. Writing enabled us to express our emotions, concerns, and
thoughts and be stored and transferred across long distances.

The earliest signs of writing and storing information can be found
around 3300 BC 1 in the form of cuneiforms. That later evolved into
language based on sounds by the Sumerians. In all these cases, writ-
ing acted as a tool for storing information and passing it on to the
next generation. It took nearly 160 years, from 1714 to 1874, for
the typewriter to gain significant recognition as an effective writing
tool. It took another 100 years for such tools to gain acceptance and
popularity in increasing the text entry speed for storing and sending
information. Scientists and engineers developed and improved the
writing tools’ shape, mechanics, and layout to increase writing or text
entry efficiency and usability.

Beyond the 1980s, the rise of personal computers slowly fazed out the
use of typewriters. The computers had additional features that made
text entry and information storage much easier than typewriters. The
availability of commercial internet service also increased the usage of

1 https://www.newscientist.com/article/mg23230990-700-in-search-of-the-very-first-
coded-symbols/
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https://www.newscientist.com/article/mg23230990-700-in-search-of-the-very-first-coded-symbols/
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Figure 2.1: The Dvorak Keyboard, designed by Dvorak and Dealy in 1936.
The layout was designed after careful investigation of hand mo-
tion since the objective was to design an accurate, faster layout
and create less stress than QWERTY. Unfortunately, the cost of
efficiency that Dvorak layout provides is not high enough, thus
impeding its growth and switch with QWERTY.

personal computers. However, the keys to insert the letters remained
almost the same as was in the Sholes-Glidden typewriter2. Attempts
were made to optimize the arrangement, as seen in the Dvorak layout
(see Figure 2.1). However, the Qwerty layout from Sholes-Glidden still
stays prominent in most countries.

Text entry plays a crucial role in our lives, which often gets unno-
ticed. Several works investigated different domains of text entry to
understand what could enhance the usability and performance of the
system for an improved user experience. The following sections list
the different parameters of text entry and how various research works
contributed to understanding it.

2.2 parameters of text entry via keyboard

As discussed earlier, the process of text entry starts at the cognitive
level, which translates to the movement of actuating parts of the hu-
man body on either a tangible, tactile surface or on a digital, similarly
(in most cases) laid out interface. The following subsections discuss
the prior research conducted in understanding the different directions
of text entry like keyboard layout, input modalities, and measuring
performance.

2 https://www.antikeychop.com/sholesgliddentypewriter

https://www.antikeychop.com/sholesgliddentypewriter
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2.2.1 Layout

Layout of text entry systems is a crucial parameter that impacts the
text entry process and user retention on that design. From physical
keyboards to digital keyboards on-screen, layout plays a crucial role
in how fast the user adopts the design and improves their text entry
speed while maintaining accuracy. In the following sub-sections, we
list the different keyboard layouts (physical and digital interactions),
which show the amount of exploration that keyboard design went
through to improve the usability and user experience of the system.
Our work in Chapters 4 and 5 also highlights different on-screen
keyboard designs for gaze-based text entry systems where we explore
different layout parameters.

However, it was not user experience and other usability principles
that guided Scholes to design the layout of his typewriter. Instead, the
mechanical limitation of the machines guided the design that became
so popular that we use an adaptation of that design even today. The
layout design of keys on a keyboard was to improve the text entry
rate. Researchers investigated the optimal configuration of the keys
by understanding the frequency of words and letters in a language
corpus. Thus, the dependency on the language in which the layout is
designed became a common property for optimal designs.

The following points discuss the physical/tangible keyboard inter-
face and the rise of the Digital/on-screen keyboard interfaces for
interaction with hand or other input modalities like a stylus or pen.

1. Physical: The early design alterations in the typewriters were
seen in the index typewriters3 (see Figure 2.2) that consisted of a
single wheel for letter selection followed by a key that confirmed
the selection for the letter to be imprinted on the paper. The
popularity of index typewriters grew since they were affordable
and portable, unlike the prevalent Sholes’s design.

While the original Sholes-Glidden typewriter (1874) revolution-
ized writing, it still lacked the basic feature of the two-letter
case - the uppercase and the lowercase of normal typefaces. To
overcome this challenge, double keyboard typewriters4 came into
place (see Figure 2.3).

While these designs impacted the text entry scenario when type-
writers came into play, the modern-day hand-held mobile phones

3 https://www.contextualternate.com/exhibition01#ex01-about
4 https://www.antiquetypewriters.com/typewriter/caligraph-2-typewriter/

https://www.contextualternate.com/exhibition01#ex01-about
https://www.antiquetypewriters.com/typewriter/caligraph-2-typewriter/
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Figure 2.2: The LAMBERT index type writer of 1884, invented by Frank Lam-
bert. The small portable typewriter had a circular anticlockwise
layout with a central selection button to imprint the letter on the
paper.

Figure 2.3: The “CALIGRAPH 2” typewriter of 1882.The keyboard had a
unique layout of the two letter cases. The lowercase is in white
while the upper case is in black. The image is resourced from
Quin, Liam R. E.: “Typewriters from the Martin Howard Collection”
(2008)

had an alternate layout. It solves the challenge of adapting 26

characters into a 12-key setup for an efficient text entry (Fig-
ure 2.4). A multitap method was designed wherein each key
would provide a piece of different information when tapped
more than once. So if one had to type the word“sky”, on the
mobile phone keypad, the keystrokes would be 7-7-7-7-5-5-9-
9-9. Nine keystrokes would be required for a word with only
three letters (considering no errors were made). This increase in
keystrokes naturally reduced the typing speed and efficiency of
the system.

Predictive text entry came into play to overcome this challenge,
where a dictionary would generate matching words from the
single interaction sequence on the keys. One of the most well-
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known and used predictive systems for such a use case scenario
was text on nine (9) keys, better known as T9, developed by Tegic5.
The predictive algorithm enabled users to arrive at the desired
word from the combination of keys on the keyboard. Thus, to
type“sky”, one needed to press 7-5-9. This reduced the cognitive
load associated with multitap, enhanced text entry speed, and
improved keystroke ratio.

Figure 2.4: The multitap keyboard in the earlier generation mobile phones
before the touchscreen era.Each key had 3 letters except number
7 and 9. The 0 was used for entering a space.

2. Digital: On-screen digital keyboards came much later into exis-
tence than the traditional typewriters. While most of them tried
to emulate the same layout style, some researchers opted to in-
vestigate optimal layouts by delving into the language model and
understanding which letters are used the most. Some examples
are:

• Fitaly layout6 (Figure 2.5): A unique one-finger accessible
layout with two keys for entering space and letters so placed
to minimize the travel distance between keys to form words
(Figure 2.5). It has six rows compared to the three rows
in a traditional keyboard layout and roughly six alphabets
in each row. This ensured a compact design suitable for
single-hand use cases. The design also enabled users to re-
duce hand movement when inserting text. It was primarily
designed for text entry using a stylus on a touch screen.
Later it was modified for left-handed, right-handed, and
mouse-driven input modalities.

• Opti Layout [96] (Figure 2.6): This optimized keyboard
layout was designed keeping in mind the Fitt’s law [48],
character and diagram frequencies in the English language,
and trial and error method of text entry. The design ra-

5 https://en.wikipedia.org/wiki/T9 (predictive text)
6 https://textware.com/fitaly/fitaly.htm

https://en.wikipedia.org/wiki/T9_(predictive_text)
https://textware.com/fitaly/fitaly.htm
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Figure 2.5: Fitaly Layout: A commercial one-finger typing layout that aimed
to minimize the travel distance between the keys to form words

tionale behind this layout ensured that there should be no
dead space between keys, where no action is assigned; no
limit on how many sizes or shapes can be used; shape
should be rectangular to fill in a typical application win-
dow. According to Mackenzie and Zhang [96], this layout
performed 35% faster than the traditional QWERTY and 5%
faster than Fitaly.

Figure 2.6: The Opti Layout: Designed by Mackenzie and Zhang, the core
objective of the layout was to improve the writing speed using
Fitt’s law. The layout has four space bar keys considering the
heavy usage of space between words to form a sentence.

• Cirrin Layout [108] (Figure 2.7): Inspired by short hand
and unistroke gesture, this circular layout was designed for
stylus-based input to speed up the text entry process. The
word gets formed as the stylus traverses through the letters
inside the ring. A challenge with this design layout was the
visual feedback of a letter selection was at the center of the
screen which was hindered when user moved the stylus
across the characters on the ring.
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Figure 2.7: Cirrin Layout: Designed by Mankoff and Abowd, this design
facilitated the use of a stylus for an efficient text entry process
without lifting the device from the skin. This is efficient from
using a stylus on a normal keyboard and emulating touching
every letter with a finger.

2.2.2 Input Modalities

In HCI, modality is
referred to as the
independent channel
of input/output
between a computer
and human. A
system with more
than one channel of
input/output is
multimodal.

From the onset of this chapter, the focus has been on writing or
typing as a means of text entry where the human hand plays a crucial
role. While the hand remains dominant for the keyboard-mouse
combination, other modalities like voice, gaze and switches are now
used for text entry, as described in this subsection.

1. Mechanical: The keyboard-mouse modality combination is still
dominant when it comes to text entry on the computer. While it
serves the purpose of input of text for most cases, there are some
use cases where this modality fails to deliver. People with limited
mobility or accessibility issues often find the keyboard-mouse
combination difficult to use. Also, for situational impairment,
when our hands might be busy doing something else, and we
still need tools for text entry, researchers have investigated and
designed other mechanical ways.

Switches have been used and investigated for text entry [125].
They vary from mechanical to pneumatic switches controlled by
breathing or even bite switches. Since switches are generally a
binary form of input, other modalities (as will be discussed) have
been used as switches like eye blinks [9, 156], muscle contrac-
tions [47] and non-verbal interactions [138]. Song et al. [169]
studied using a mechanical joystick for text entry with word
predictions for people suffering from motor-control challenges.
The MDITIM (Minimal Device Independent Text Input Method)
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method [63] was also investigated to be controlled by a joystick.
Trackballs [63, 190] have been used in several text entry scenar-
ios for people with motor-control issues (an example image can
be seen in Figure 2.8). Head tracking7 for quadriplegics have
also been studied. A noticeable challenge with such approaches

Figure 2.8: An image from a user study performed by Wobbrock et al. [191]
where the participant prefers the use of a Stingray trackball.

is the limitation of entering multiple letters with speed, as we do
when typing with hands. In most of the alternative approaches,
the process of letter entering is fairly linear - one at a time.Dwell time is the

duration of a user’s
fixation exceeding a
predefined threshold,

resulting in a
selection trigger.

2. Gaze8: One of the most natural means of interaction is the
human gaze. We always see something and then react to it. For
text entry, gaze plays a crucial role as it helps in scanning letters
but also assists us in navigating to the point of an error to apply
the error correction mechanism. Gaze-based text entry has been
either dwell-based or dwell-free.

Dwell times are adjusted to make the key selection faster. Gaze-
based text entry performance was analyzed extensively by Räihä and
Ovaska [143]. Text predictions were found to play a crucial role
in improving text creation. Several works [98, 162] investi-
gated the position of text predictions on gaze-based keyboards
to understand their impact in improving the performance and us-
ability of the system. Several works have attempted to solve the
problem by adding another modality in the system to overcome
the challenges of gaze-based inputs. Gaze has been combined
with voice [159], touch [134], and even switches [78] to improve
the text entry and interaction experience.

3. Voice: Like gaze, another natural modality is voice. While gaze
input can be used as a modality for pointing specific locations,
voice commands can be used to define the task at hand clearly.

7 https://www.naturalpoint.com/smartnav/
8 entry rate, error rate terminology is explained in detail in the subsequent sections

https://www.naturalpoint.com/smartnav/
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Figure 2.9: A photograph from Menges [110], showing MAMEM trials where
participants suffering from Parkinson disease writing emails with
the help of gaze input.

With the advancement of the Automatic Speech Recognition sys-
tems (ASR), voice input has been used to enter text by dictation
[124] or by spelling out all the letters [106, 123]. While it is
assumed to help people suffering from motor control challenges,
voice has its limitation of incorrect recognition [193]. People
suffering from speech impairments are limited from using such
modality. However, research now investigates the use of non-
verbal vocal signals [173] for text entry [59]. In this case, sounds
like humming, hissing, and whistling are used in conjunction
with a specially designed interface layout [59] or with another
modality [159].

Figure 2.10: In this image, a participant is seen entering a text with voice
input with the help of the external microphone placed in front
of her.

4. Biosignals: Another alternative approach to text entry has been
to use the biosignals from the human body and create a mapping
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system that translates to a selection of letters. Considering non-
invasive approaches, Electromyography for intentional muscle
contraction [45] and Electroencephalogram for brain signal
[42] (Figure 2.11)are two modalities that have been investigated
chiefly for text entry scenarios. In both these conditions, the
nature of the input signal is extremely noisy. It needs sufficient
signal processing to turn muscle twitch or brain signal into a
viable communication input method. This input modality is
beneficial for communication with people completely paralyzed
or who can perform some facial muscle movement.

Figure 2.11: A photograph from Sengupta et al. [163] showing the measure-
ment of EEG signals for text entry-related purposes.

For this thesis, we investigate alternative modalities like gaze and
voice as primary channels of text input and revision. Bio-signals like
EEG were used as a performance metric to understand the cognitive
load associated with interacting alternative modality approaches for
text entry and revision.

2.2.3 Performance

The evaluation of any system is often performance-centric. The sys-
tem’s performance is often a staple question whenever something new
is designed and investigated. Often, the measurement of speed for text
entry systems is the primary concern. While speed is an important
feature, other metrics should be examined to understand the system’s
usability. This section presents some of the empirical measures of text
entry performance. While many of these metrics are method-agnostic,
this section intends to highlight some of the key measures without
which a text entry system’s objective and subjective evaluation remain
incomplete.
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2.2.3.1 Objective Measures

1. Entry Rate: This point discusses some of the measures associated
with text entry speed. While the discussion can extend from
character-level entry to word-level transcription, we present two
of the most common metrics associated with how fast text can
be entered into a system.

• Words per Minute (WPM): The most popular and widely
reported metric for recording speed of text entry is WPM
[187]. WPM considers only the length of the final tran-
scribed string and how long it took to produce it. It does
not consider the number of keystrokes or gestures made
during the text entry process. The formula for computing
WPM :

WPM = |T|−1
S × 60× 1

5

In the above equation, T represents the total length of the
transcribed string by the user. T contains all the alpha-
numeric entries from the user apart from the backspace
entries. S represents the time taken by the user to transcribe
T. The 60 in the equation represents time in seconds and 1

5
represents the assumption that words are mostly 5 charac-
ters long [192]. Since the S represents the time from the
first character to the last, the -1 is present in the numerator.

pack my box with five dozen liquor jugs→ 39 characters
∧ ∧
t= 0 sec t= 10 sec

Thus, WPM = |39|−1
10 × 60× 1

5 = 45.6

A challenge with such a metric not considering the backspace
and ignoring the keystrokes associated with the backspace
or correction procedure.

• Keystrokes per second (KSPS): As mentioned, WPM does not
consider the process of text entry. It merely focuses on
the final results. KSPS helps us with that information to
understand the entire text entry process.

KSPS = |IS|−1
S
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IS is the input stream of characters that were executed to
form the sentence. this includes not just alpha-numeric
insertions but also corrective procedure in case of any error.
S represents the time taken by the user to transcribe IS.

The example for KSPS shows how different it is from WPM.The red letters
indicate incorrect

entries. The <
indicates the use of

backspace keys

t= 0 sec
∨
pacl<k my boc<x with fibw<<ve dozem<n lique<or
jugg<s→ 45 keystrokes

∧
t= 20 sec

Thus, KSPS = |45|−1
20 = 2.2

2. Error Rate: While speed plays a part in understanding how fast
the text entry can be possible on a system, Error Rates provide
us with the information of how accurate the intended system
usage is. The fewer errors made by the user during text entry,
the more accurate the system evaluates to the user’s intention.
Error rates can be evaluated from the system perspective or the
user perspective. If the user makes a spelling mistake, then the
user creates the error. However, if an intelligent speech-to-text
transcription system fails to transcribe an intended word, that
becomes a system error. In both cases, if the user recognizes the
error and applies a correction mechanism, then the cost of text
entry increases as the total time for task completion rises.

We discuss the common error metrics:

• Keystrokes per Character (KSPC): This simple ratio of the
number of characters entered (IS)to the total length of the
string (T) was formulated by Soukoreff and Mackenzie in
2001 [170]. The lower the value of KSPC, the better the
performance. A value of 1 signifies perfect text entry.

KSPC = |IS|
|T|

Thus for the example of KSPS, KSPC would be |45|
|39| = 1.153.

• Uncorrected Error rate: As the name suggests, this corre-
sponds to the number of errors that were left uncorrected
upon completion of the sentence.
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3. Correction: Error correction plays a crucial role in understanding
the system’s robustness. The cost of correction often impacts the
task completion time. The more efficient the correction process,
the faster the task completion. The process of error correction
varies based on the different modalities used. However, a base-
line evaluation can be performed to come up with a ratio based
on the number of words or characters (IF) that were initially
erroneous and then was fixed(F). Mackenzie and Soukoref intro-
duced this approach for character-level assessment as Correction
Efficiency(CE) [171].

CE = |IF|
|F|

CE is applicable for single character-based interaction for error
correction. However, there are other approaches for error cor-
rection that minimize the cost. One common approach is to
replace the wrong word with a correct word from the predic-
tions. Another approach that deals with the removal of multiple
characters was introduced as Fisch in-stroke word completion
technique by Wobbrock et al. [188].

The CE also varies when we consider error correction in voice-
based systems. There, word selection and word re-utterance play
a crucial role.

In the pursuit of measuring both speed and accuracy, objective metrics
frequently fail to address essential questions, such as:

• Despite its prominence as a primary benchmark, is the user
content with the system’s speed?

• Does system usage induce fatigue?
• Was it straightforward for users to acquire proficiency with and

adapt to the system?

2.2.3.2 Subjective Measures

To overcome the gap in understanding the perspective of system
usage from the user, subjective measures are used. They help us in
understanding the performance from the user’s perspective along
with how they feel when using the system. The subjective measures
involved in testing a text entry system are similar to any other new
system in design. While the following metrics do not fall under
text entry metrics, they have been used to understand the system’s
usability and the perceptual-cognitive load.
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1. System Usability Scale (SUS): Designed originally in the 1980s
by John Brook to test the usability of electronic equipment, this
questionnaire was used and modified later to test the usability
of all kinds of systems - from websites to mobile phones to
even machinery. While other questionnaires like SUS are also
available, the success of SUS lies in its nature of being agnostic
to technology and being small and quick for users to complete
the procedure.

The SUS questionnaire comprises of 10 questions (Q) with the
possibility of five responses (R): (i)Strongly Disagree, (ii)Disagree,
(iii) Neutral, (iv)Agree, (v)Strongly Agree.

• I think that I would like to use this website frequently.
• I found the website unnecessarily complex.
• I thought the website was easy to use.
• I think that I would need the support of a technical person

to be able to use this website.
• I found the various functions in this website were well

integrated.
• I thought there was too much inconsistency in this website.
• I would imagine that most people would learn to use this

website very quickly.
• I found the website very cumbersome to use.
• I felt very confident using the website.
• I needed to learn a lot of things before I could get going

with this system.For the responses R,
1 is deducted from

the value if the
question is odd, and
5 if even. Then the

sum is calculated
followed by 2.5 times
the value to reach the

SUS score

The questions Q and its responses R can be represented as:
Q = (qi, ri)|ri ∈ R =

{
1, 2, 3, 4, 5

}
, i ∈

{
1, 2, 3, 4, ...., 10

}
In order to find out the SUS score:

f (qi) =

{
ri − 1 i ∈ {1, 3, 5, 7, 9}
ri − 5 i ∈ {2, 4, 6, 8, 10} (2.1)

Thus the SUS Score is:

SUS = 2.5×
10

∑
i=1

f (qi) (2.2)

2. NASA Task Load Index (TLX): Another subjective measure like
SUS, but designed to understand the task load. Developed orig-
inally at NASA’s Human Performance Group, this subjective
evaluation metric is prevalent in task-based evaluations. The
objective of this survey was to understand different sources of
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the workload associated with the task. This subjective measure
takes into consideration the (i)Mental Demand, (ii) Physical De-
mand, (iii) Temporal Demand, (iv) Performance, (v) Effort, and
(vi) Frustration and asks the following questions:

• How much mental and perceptual activity was required
(e.g., thinking, deciding, calculating, remembering, looking,
searching)? Was the task easy or demanding, simple or
complex, exacting or forgiving?

• How much physical activity was required (e.g., pushing,
pulling, turning, controlling, activating)? Was the task easy
or demanding, slow or brisk, slack or strenuous, restful or
laborious?

• How much time pressure did you feel due to the rate of
pace at which the tasks or task elements occurred? Was the
pace slow and leisurely or rapid and frantic?

• How successful do you think you were in accomplishing the
goals of the task set by the experimenter (or yourself)? How
satisfied were you with your performance in accomplishing
these goals?

• How hard did you have to work (mentally and physically)
to accomplish your level of performance?

• How insecure, discouraged, irritated, stressed, and annoyed
versus secure, gratified, content, relaxed and complacent
did you feel during the task?

The initial evaluation is a 10-point scale with a 0.5-point interval,
following which the user is asked to provide importance to
which task load he/she deemed more in comparison to another.
The number of times each load is given prominence over the
other generates a weighted score. Using these values, the final
score is generated, which depends on the scale scores of each
load. Researchers often use the ”Raw TLX” score to avoid this
confusion.

For our experiments, we used the online tool9 to collect data and
generate the final NASA TLX score.

3. Custom Questionnaire: Custom heuristic questionnaires are of-
ten developed to better understand the system’s usability. Ques-
tions are often adapted from sources like Nielsen’s heuristic10

checklist that provides a guideline for understanding the usabil-
ity of the system (as can be seen in Chapter 4). In our experiment,
we also used a subjective custom questionnaire that focused on

9 https://www.keithv.com/software/nasatlx/
10 https://www.nngroup.com/articles/ten-usability-heuristics/

https://www.keithv.com/software/nasatlx/
https://www.nngroup.com/articles/ten-usability-heuristics/
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understanding the perception of Accuracy, Learnability, Speed,
and Comfort, and we asked users to rate it on a seven-point
Lickert scale.



3
G A Z E A N D V O I C E M O D A L I T I E S F O R T E X T E N T RY
S Y S T E M

This chapter investigates two powerful input methods, human gaze
and voice, and their integration into text entry systems. Section 3.1
delves into various eye movements and their application in selection
and pointing interactions. Subsection 3.1.1 further narrows the focus
to gaze input for text entry, discussing mechanisms like dwell time,
dwell-free, saccade-based, and smooth pursuit interactions. Section
3.2 studies speech as an input modality, tracing its evolution from
verbal to non-verbal modes and how these advancements enrich text
entry and interaction.

3.1 understanding gaze input

This section provides the background of eye tracking and its use for
interaction and text entry. We start our section by understanding how
eye movements are used in eye tracking for interaction. Finally, we
move on to how the eye movements are used for text entry - as a
standalone input modality or in combination with another modality.

The human eye plays a crucial role in our daily lives in inspecting,
perceiving, and understanding the environment around us from a
sensory perspective. Gaze forms one of the most natural forms of
communication amongst humans [71] and forms a bridge of our
actions with the environment around us. The visual information
around us is sent to our brains for processing via the photoreceptor
cells in our retina. These cells get stimulated when light reflections
from the environment reach our eyes.

While photoreceptor cells in the retina are active, the eye must main-
tain a ”fixation” position to process incoming visual information.
Typically, the eyes move rapidly from one fixation point to another
within a few milliseconds. These swift eye movements have been cate-
gorized by Robinson [145] as ”saccades” and ”smooth pursuits.” In
the context of gaze-based interaction [121], researchers have explored
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saccades, smooth pursuits, and fixations, encompassing various types
of physiological nystagmus.Nystagmus

(ni-stag-muhs) is a
condition in which

eyes make rapid,
repetitive,

uncontrolled
movements — such

as up and down
(vertical nystagmus),

side to side
(horizontal

nystagmus) or in a
circle (rotary

nystagmus)

1. Fixations: It is during fixation that the eyes remain relatively still
(while making short movements: physiological nystagmus). The
word fixation in gaze-based literature is often used to mention
the act of fixating on visual stimuli.

2. Saccades: The rapid eye movement from one fixation to another
is referred to as a saccade. During a saccade, the eye can reach a
velocity of 700 degrees per second [13]. Detection of saccades in
gaze-based evaluation helps in fixation detection [126].

Figure 3.1: Fixation and Saccades in an eye movement [75]

3. Smooth Pursuits: Also know as ”Fixation-in-Motion” [121],
smooth pursuits are defined as eye movements when eyes track a
moving object (For example, a car in motion.). Both saccades and
smooth pursuits are related to the motion of the eyes. Saccades
initially have a high velocity followed by deceleration, but for
smooth pursuits, the speed depends on the object’s movement it
is tracking.

Using gaze signals for input has been investigated and has been found
to be broadly classified under two categories: (i) selection and (ii)
pointing.

The Midas touch problem [64] is a common challenge in using gaze
signals as input. Jacob coined this term to describe a situation where
the system cannot disambiguate if the gaze signal is used for selection
or just exploration, thus leading to inadvertent selection. To overcome
such challenges, different selection and pointing processes have been
designed.

1. Selection: The voluntary/involuntary act of choosing an object,
region, or point of intent from a set of stimuli can be defined
as the selection process. In an eye-tracking context, the process
involves the precise control and coordination of eye movements.
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Selection plays a critical role in human-computer interaction and
usability studies, as it determines what elements users attend to
and interact with, influencing their cognitive processes and task
performance.

One of the initial and intuitive interactions was using eye blinks
as a gaze interaction selection technique. However, it suffered
from the inherent challenge of disambiguating intentional blinks
from unintentional blinks. In his article [85], Jacob considered
blinking an infeasible interaction for selection for all these chal-
lenges.

While Jacob considered blinking as infeasible, he also mentioned
the dwell-time selection method, where one needs to fixate on
an intended selection element for a longer duration to trigger
the selection process [64]. This process is simple and more
effective than blinking. However, visual feedback becomes nec-
essary for users to understand the ongoing dwelling process,
leading to selection to adapt interfaces for dwell-time-based se-
lection. Research on adaptive dwell-time [142, 198] also showed
improvement in selection.

Another approach to selection has been eye-gestures [35, 140,
152]. Gestures gave the advantage of not being dependent on
fixations, relying on movements, and detecting movement pat-
terns.

2. Pointing: Considering gaze as an input, pointing is directing
the gaze towards a target. It is typically defined as a saccade
towards the target. The saccade’s amplitude is typically used
to measure the distance between the current gaze position and
the target. Pointing with eye gaze is a fundamental aspect
of eye-tracking technology, often used in applications like eye-
controlled navigation, enhancing accessibility and usability of
computer systems and assistive technologies.

While the selection process was investigated in detail, the prob-
lem persisted with pinpointing where selection needs to happen
accurately. One approach followed was magnification [6, 83,
199]. Magnification involved a multi-step approach that involved
time. For a more straightforward pointing technique, Lutteroth
et al. [90] color-coded interaction elements. While it improved
the interaction, the colors occupied the screen area.
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3.1.1 Using gaze input for Text Entry

As mentioned earlier, text entry is crucial for different use cases.
We investigate how other researchers have used gaze input for text
entry:

1. Dwell-Time: It is one of the most common approaches to gaze-
based interaction. When used in gaze-based text entry systems,
every key is designed to trigger with a dwell time of 200-1000ms
[100, 104]. However, the lower the dwell time for the keys,
the possibility of accidentally triggering a letter increases, thus
increasing the overall cost of text entry. In most dwell-time-based
keyboard designs for text entry, the alphabets, major punctuation
marks, and predictions are activated by dwelling on them. While
the process is convenient, completing a word’s letters by dwelling
is time-consuming unless a good word prediction engine reduces
the task load. Two approaches were investigated to overcome
the challenge of the static dwell time selection approach: (i)
User-adjusted and (ii) Automatic.

• User-adjusted: A longitudinal study of ten participants was
conducted by Majranta et al. [100] to investigate the impact
of user-adjusted dwell time. From a starting 1000ms dwell
time, participants achieved an average of 282 ms after using
the system for a prolonged time. While the time decreased,
with frequent usage, the users improved the average text
entry speed from 6.9 WPM to 19.9 WPM. Another study
by Raiha et al. [142] achieved 20-24 WPM using the user-
adjusted dwell time technique.

• Automatic: Spakov et al. [198] investigated automatic dwell
time adjustment technique with nine participants. Their
approach involved adjusting the dwell time based on the
time of selection between two letters and the gaze moved
out from the key. With this approach, they achieved a rate
of 12.1 WPM.

2. Dwell-free: An alternative to dwell-based gaze typing is dwell-
free typing. Instead of fixating on a key for a predetermined time,
dwell-free systems allow users to gaze briefly at their intended
key before moving to the next. The system is then responsible
for disambiguating the user’s input [120].

A common disadvantage of the dwell time technique depended
on the dwelling process for every key that needed to be triggered
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to form a word or apply corrective measures. Kristensson et al.
[74] explored the concept of speed gain if the dwell time was
reduced to zero, i.e., a dwell-free setup. However, since their
results are based on simulations, actual human experimental
results are yet to be seen.

EyeSwipe [81] represents a dwell-free approach to emulate the
functionality of well-established shape-writing systems com-
monly utilized on touch-enabled mobile devices. In this system,
users initiate word selection by employing a reverse crossing
technique to designate the first and last characters of the in-
tended word. Subsequently, the middle characters are chosen as
the user directs their gaze towards them sequentially. The selec-
tion of words is based on an n-best list generated from the user’s
recorded gaze path. According to the findings reported by the
authors, non-disabled participants achieved an average text en-
try rate of 11.7 words per minute (wpm) with an accompanying
average Mean String Distance (MSD) error rate of 1.31%.

3. Saccade-based: Saccades have been used to activate selections,
and a combination of them have been designed to represent
gaze-based gestures programmed for different actions on the
interface. Morimoto et al. [118] uses saccade-based text entry
for designing a context-switching keyboard, as seen in Figure
3.2. The challenge with such an approach is the keyboard size
that takes up the entirety of the screen.

Figure 3.2: Context Switching Keyboard Design for saccade-based selection.
The two separate regions of the keyboard (purple and green) rep-
resent two contexts. Focusing on the keys is done by short dwell
times, and selection to type words is done by ”changing” the
context to the other keyboard and letter. Users can comfortably
explore the whole content of a context without the effects of the
Midas Touch problem.
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Approaches like EyeWrite [189], pEYEwrite [61], Quikwriting
[15] also attempt to solve the text entry challenge with saccade-
based gaze typing.

4. Smooth pursuit: Zooming interfaces explored smooth pursuit
as a means of interaction [183]. Since smooth pursuit is based
on objects moving, text entry interfaces like Dasher [182] utilize
this concept to provide a continuous zooming interaction for
text entry. While the design does not adhere to the traditional
keyboard-based approach, Dasher produced the fastest text entry
speed in the gaze-based text entry realm.

StarGazer [56], SMOOVS [91] also use smooth pursuits to
interact with the elements on the screen.

3.2 understanding voice input

Speech as an input modality is used as a communication tool in
various ways to achieve natural means of digital communication. This
section discusses how researchers have introduced this input modality
for efficient hands-free interaction in text entry scenarios.

Our voice forms one of the earliest and natural modality for humans.
Voice, initially in the form of simple sounds, helps us understand until
the ambient language model takes over. We start moving from sounds
to phonetically similar syllables and proceed to speech of the language
we are surrounded with. However, even before progressing from
sounds to words, we can communicate and express our intentions
and emotions. This occurs via another modality like hand or hand
gestures or elevation in the voice, leading to emotional signatures like
happiness and frustration.

However, with the advancement of technology, Licklider, in the early
1960s, proposed the idea of spoken dialogue between man and ma-
chine [89]. In continuation with this work, Richard Bolt in 1980 [21]
published his research ”Put-That-There” augmenting voice command
with gestures to produce an early version of the multimodal system
that was able to create shapes on a large screen with simple voice
commands like ”create a yellow circle” and then spatially move it to
another location by pointing in space and giving the command ”put
that there.”

Human speech recognition has substantially improved the Automatic
Speech Recognizers (ASR). This has led to their widespread adop-
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tion in different domains and products. Voice-based conversational
agents like Google Home, Siri, Alexa, and others started as simple
conversational agents or VUI (Voice User Interfaces) and now perform
various tasks based on the commands given (even like telling a joke
or a story).

The advancements and adoption of voice-based interaction also come
with specific challenges that are still being investigated to improve
the overall user experience of VUIs. Some common challenges be-
ing worked on are language-dependent incorrect recognition, homo-
phones, ambient noise, multi-speaker detection, and user mistakes
[53, 168].

Voice input has been investigated as an eyes-free interaction [49, 135,
175, 178]. This led to voice becoming a go-to modality for accessibility
challenge resolution. Zhong et al. [196] used voice for complete
interaction of an android phone to facilitate such interaction for the
blind population. Other such works that used voice input for device-
based interactions are Capti-Speak [7], a non-visual web browser [5],
etc. While it assisted accessibility issues, voice input has also been
investigated for healthcare [92, 115, 117], tourism [72, 146], and even
in the domain of education [10, 84]. Schulman et al. investigated
voice as a tool for understanding attitudinal and behavioral cues [154,
155]. Not limited to these domains, voice input has also been used for
gaming [25], assistance [88], and recommendation [85].

Research has focused on understanding voice input from the perspec-
tive of conversational agents and has investigated aspects like context
[87], emotion [73], empathy [119], and even humor [37].

Using voice for text entry

As mentioned in Chapter 1 and discussed in Section 2.3.2 for gaze,
text entry forms an inevitable and crucial interaction. Section 2.4.1
discusses the use of voice for different uses cases, showcasing the
importance of hands-free interaction. Motivated by such findings, we
investigate the affordance of voice input for text entry.

Voice as a natural modality for communication is faster than hand-
based [148, 149] and even gaze-based text entry. Its inherent nature
supports hands and eyes-free interaction for situations involving ac-
cessibility issues or when the hands are busy performing other tasks.
However, even when quite advanced, voice recognition suffers from
recognition challenges. These recognition challenges often form bar-
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riers in designing and implementing voice-based user interfaces for
improved user experience.

While we focus on the interaction and user experience for text entry,
voice-based text entry is heavily dependent on the performance of
Automatic Speech Recognizers (ASR) like Mozilla voice1, Google’s
speech-to-text2, Dragon speech from Nuance3, etc. Recognition errors
from ASRs and others limit the user experience, especially in the text
entry scenario. This is particularly problematic since research shows
that 80% of the transcription time is invested in correcting recognition
errors [11] in voice-based text entry - thus adding overhead cost to an
already efficient input modality.

While the challenges are being investigated, voice-based text entry can
be classified into two categories: verbal and non-verbal.

1. Verbal: Verbal or traditional text entry with voice is simply the
text entry process with the help of ASRs. As described earlier,
this approach has been broadly investigated for different use
cases and is efficient if recognition errors are disregarded. How-
ever, in reality, error corrections form an important interaction
that impacts the overall text entry process.

2. Non-verbal: People suffering from speech impairment condi-
tions like dysarthria [28] often cannot speak; thus, the verbal
mode of text entry becomes a challenge for them. Non-verbal
voice interactions like humming or whistling [18] have been
investigated for such situations for text entry. This approach
has been used for character-level text insertion based on hum-
ming patterns [27, 34], but is often slow and erroneous, leading
to further frustrations. Multimodal combinations of humming
or whistling with other modalities have been investigated for
improving the non-verbal text entry [59, 174].

1 https://commonvoice.mozilla.org/en
2 https://cloud.google.com/speech-to-text
3 https://www.nuance.com/dragon.html

https://commonvoice.mozilla.org/en
https://cloud.google.com/speech-to-text
https://www.nuance.com/dragon.html
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In this chapter, we introduce ”GazeTheKey” (GTK). This novel gaze-
based keyboard design utilizes dwell time to optimize text predic-
tion selection, enhancing the user experience in hands-free text entry.
GTK’s innovative approach focuses on bringing predictions closer
to the visual fovea, effectively addressing the intrinsic limitations of
gaze as a modality in text entry and providing a more effective, user-
friendly solution. Section 4.1 provides a comprehensive overview of
gaze-based text entry, exploring various gaze-based keyboards and
identifying key factors contributing to word predictions’ success and
usability. In Section 4.2, we conduct a detailed design investigation,
examining keyboard layouts, the utilization of word predictions, their
placement, and various text entry techniques. Section 4.3 delves into
understanding the usage and positioning of word predictions in vir-
tual keyboards, highlighting their impact on user interaction and
efficiency. Finally, Section 4.4 presents our design, ”GazeTheKey,”
showcasing its unique features and demonstrating how it stands out
in gaze-based text entry solutions. The following sections present
the keyboard design’s initial and final investigation against two other
designs.

The chapter presents the understanding of key interaction components
required for gaze-based text entry and a detailed design investigation.
From the literature, we understand that word predictions play an
essential role in improving the performance of gaze-based text entry
systems. However, visual search, scanning, and selection of word
predictions require a shift in the user’s attention from the keyboard
layout when selecting such predictions. Hence, the spatial positioning
of predictions becomes a crucial aspect of the end-user experience.
Thus, we also investigate the role of spatial positioning by comparing
the performance of GTK.

We observe a high selection of word prediction when it is in the con-
stant visual attention of users, often leading to incorrect selection,
thus increasing the cost of error correction. Our evaluation and obser-
vation indicate that fast saccadic eye movements undermine spatial
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distance optimization in prediction positioning. This is especially
essential when understanding and developing new keyboard designs
that target improved efficiency of text entry.

This chapter is adapted from two of our published papers, [161] and
[162], published at IUI 2017

1 and ETRA2
2019.

4.1 gaze-based text entry

Text entry in gaze-based systems is accomplished using on-screen
keyboards facilitated by wearable or standalone eye trackers. In these
scenarios, on-screen keyboards featuring various designs and text
entry methods have constituted the primary interface for letter input
and selecting available text predictions. In most cases, enlarging key
sizes has been a prevalent strategy to mitigate drift-related inadvertent
activations. There have been some designs and approaches where theDrift: the progressive

displacement of
fixation registrations

that results from a
gradual loss of

eye-tracker
calibration over time

dwell free [74], and smooth pursuit methodology [182] have also
improved the text entry process.

However, due to the larger keys, the on-screen keyboard takes up a
considerable part of the screen. The large keys have a single purpose
of just entering the letters, while the designated word prediction area
displays the words. This design approach for dwell-based text entry
reduces the efficiency of the system.

AugKey [38] (Figure 4.1a) presents the layout with word predictions
placed on the right side of the keyboard augmenting keys with a
prefix to allow continuous text inspection and suffixes to speed up
typing with word prediction. This design attempted to utilize the
space around the predictions to exploit the foveal region of visual
perception. Johansen et al. [67] (Figure 4.1b)had a similar idea for
each of the keys. However, their design split the predictions from the
prefixes even though they utilized the space around the letters.

The success and usability of text predictions depend highly on the
presentation and user interface parameters [51]. This includes (i)
the number of suggestions to display (too few might miss relevant
suggestions, and too many will add an extra delay of scanning a long
list), (ii) layout of the presentation (horizontal, vertical, triangular),
and most importantly (iii) the positioning of suggestion in the screen
space of keyboard. Another design perspective that came out from the
previous literature was to utilize the empty space of the large keys.

1 https://iui.acm.org/2017/index.html
2 https://etra.acm.org/

https://iui.acm.org/2017/index.html
https://etra.acm.org/
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(a)

(b)

Figure 4.1: Gaze-based text entry keyboards with text predictions at different
places. (a)Keyboard from Augkey by Diaz-Tula et al.; (b)Keyboard
from GazeTalk by Johansen et al.

4.2 design investigation

We systematically analyzed keyboard designs and input methodolo-
gies to understand the design and interaction space for gaze-based
text entry systems. The aim was to understand the key components
required for designing a text entry system and the existing pain points.
We adopted the Zwicky box technique [197] and identified the follow-
ing categories for gaze-based text entry: Zwicky Box

Technique: The
process of breaking
the problem down
into categories,
adding values to each
category, and
combining these
values to create
unique answers

1. Keyboard Layout: In Chapter 2, we discussed the different lay-
outs and how each had the primary goal of improving the text
entry speed. While many continued to use the Dvorak Layout
with minor changes, others experimented with different place-
ment of keys, space bar or punctuation to primarily increase the
text insertion speed. Unfortunately, most new design layouts did
not detail the training phase or the learning curve participants
generated while using their system.

2. Usage of Word Predictions: The early investigations of gaze-
based keyboards did not include a word prediction system. It
primarily focused on letter-based text entry. Investigation into
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the usage of word predictions led to them being integrated
into the keyboard design - as was available in most hand-held
on-screen keyboard designs.

3. Placement of Word Predictions: With the increased usage of
word predictions, they were primarily placed above the keyboard
as a row [98]. This was followed by moving the predictions
around the keyboard, as shown in Figure 4.1. Some designs even
delved deeper into letter-level predictions and their selection to
enhance the text entry system.

4. Text entry technique: The technique adapted to enter text (dwell,
dwell-free, and saccade-based) has also been investigated, and
each approach has been found to pose certain inherent chal-
lenges. While no other gaze-based text entry technique achieved
as high a speed as Dasher, these techniques possess a steeper
learning curve in practical scenarios.

Taking inspiration from Card et al. [24], we compartmentalized our
categories in two dimensions:(i)Keyboard Properties - containing Key-
board Layout, Usage of Word Predictions and Placement of Word
predictions; (ii) Text Entry techniques (as discussed in Chapter 3.1.1).

4.3 understanding usage and positioning of word

predictions in virtual keyboards

While investigating keyboard properties, we understood word predic-
tions play a significant role in text entry. They are generated from a
language corpus or a word frequency dictionary. Predictive algorithms
help the user suggest words from the corpus most likely to occur after
a particular sequence of user-selected characters. The research focused
on predictive letter models like n-gram [66], and k-gram [116], which
suggest the following terms of a given sentence based on the previous
terms. Reflective text entry [151] improved the user experience of text
entry as it considered abbreviated forms of words.

There have been several gaze-based text entry systems [38, 67, 98] that
use word prediction as an essential feature in the virtual keyboard
space. Prediction mechanisms are particularly valuable for text entry
with virtual keyboards (for gaze-based as well as touch-based systems)
[164, 172]. The success and usability of word predictions depend
highly on the presentation and user interface parameters [50]. It
includes (i) the number of word predictions to display (too few might
miss relevant predictions, and too many will add an extra delay of
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(a) Keyboard of OptiKey suite3 (b) AugKey layout [38]

(c) Eye Typing by MacKenzie & Zhang [98] (d) GazeTalk Keyboard [67]

Figure 4.2: Gaze-based virtual keyboards with word predictions. Figure (a)
shows us the onscreen keyboard from the Optikey suit. Figure
(b) gives us the layout of the keyboard AugKey where the word
prediction comes with prefixes around the prediction to exploit
the foveal region of visual perception. Figure (c) was designed to
involve word predictions with the next keystroke about to be hit.
Figure (d) is from GazeTalk that included both word and letter
predictions.

scanning long list), (ii) layout of the presentation (horizontal, verti-
cal, triangular, etc.), and most importantly (iii) the positioning of the
predictions in the screen space of keyboard. Positioning of word pre-
dictions is crucial since it deals with the user’s visual attention while
typing letters and relates to cognitive and perceptual influence.

Figure 4.2b and Figure 4.2d showcases a few gaze-based text entry
systems, signifying the variable positioning of predictions in different
approaches. For most conventional designs, a predicted word list is
placed on top of the keyboard layout near the text entry area. This
can be seen in the interface (Figure 4.2a) of a popular open-sourced
gaze-based interaction tool OptiKey. Figure 4.2c shows the eye typing
approach with word and letter predictions by McKenzie and Zhang
[98]. Their design, however, places word predictions below the text
area. Figure 4.2b shows the AugKey approach [38] where word
predictions are framed at the right side of the keyboard and also
include prefixes around the key to exploiting the foveal region of
visual perception. The GazeTalk system (Figure 4.2d) [67] provides
both word and letter prediction features. The predicted word list is

3 https://github.com/OptiKey/OptiKey/wiki

https://github.com/OptiKey/OptiKey/wiki
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on the keyboard layout’s left side. The preview of the next character
layout is also available within the currently selected cell.

In touch-based text entry on virtual keyboards (e.g., text entry on
mobile displays), the representation and positioning of word predic-
tions have received significant consideration. Some modern virtual
keyboard layouts in the touch-based text entry domain present the pre-
dictions closer to the attention of the user by embedding them in the
keypad as inter-spaced and in-letter dynamic predictions [54, 55]. Pop-
ular designs on Blackberry (Figure 4.3a4) and iOS keyboards (Figure
4.3b5). Cuaresma et al. [32] showed that bringing predictions closer
to users’ attention by in-letter predictions in mobile phone keyboards
enhances their ability to interact with predictions and significantly
improves the typing speed by touch interaction.

(a)

(b)

Figure 4.3: Virtual mobile keyboards that bring word prediction close to the
keys. (a)Blackberry Keyboard; (b)Crimson Keyboard

4 https://www.donmckenzie.ca/portfolio/bb-virtual-keyboard/
5 http://ok.k3a.me

https://www.donmckenzie.ca/portfolio/bb-virtual-keyboard/
http://ok.k3a.me


4.4 gazethekey 45

These approaches emphasize the role of word prediction in gaze-based
text entry. However, it is unclear if the variable positioning of these
predictions impacts the performance by reducing eye movements,
visual search, or scanning time. Majranta et al. [99] argued that an
increase in perceptual and cognitive load occurs due to the shift of
focus from the keyboard to the word prediction list while scanning
it. However, no concrete studies have investigated if the variable
positioning of word predictions correlates with visual attention and
could enhance the user experience while typing.

4.4 gazethekey

Considering the observations and approaches as described in the
prior section, we aimed at understanding the individual keys of the
keyboard where a lot of white space was not utilized, leading to these
questions:

• How can the keys incorporate the word predictions at design
level

• How does the user interact with word predictions

The interaction relies on the next word that the respective language
model could predict based on the previously entered text by user
[179]. Figure 4.4 shows the the keys containing the letter and the
associated word suggestion at the bottom. The green framed letters on
the key are the ones the user has already entered. The letters framed in
yellow could be the next letter. The red frame signifies the prediction
based on previous letters.

Figure 4.4: In GazeTheKey design, for each of the letters that will house word
predictions, per key is estimated with previous letters entered
by the user and letters associated with the key as input. In this
image, the already entered letters to form words are in green, the
letter on the key is yellow, and if the letter on the key is activated,
then the predicted letters from the corpus to form the words are
in red.
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While Figure 4.4 presents the structure of word suggestion on keys,
Figure 4.5 displays the user interaction methodology via different
states of a key on eye gaze fixation. a) At first, the key is in its
standard mode to trigger the input of the single letter displayed on
it. b) This is implemented via a dwell time visualized through an
orange circle. When the user gazes at the key, the circle grows from
the center of the key until the key’s area is filled. c) The input of the
displayed letter is triggered, and visual feedback in the appearance
of a black pulse is fed back to the user. d) If a suggestion is available
by the prediction engine, the key now turns into suggestion mode
e) If the prediction on the key is what the user intends to select, the
user continues to dwell on the key and the prediction fills the key
starting from the bottom and ending at the top. f) When the key is
filled, the currently collected word is replaced by the given suggestion.
The user can abort all key actions by looking at a different position on
the screen.

Figure 4.5: In GazeTheKey, we implement a double dwelling interaction that
enables people to shift from letter to prediction selection without
shifting their visual foeva. The approach to the placement of the
predictions is presented in Figure 4.4

Figure 4.6 shows the complete design of GTK keyboard interface
including above-mentioned functionality (detailed demonstration of
GTK usage is available here6). The design includes the principles

6 https://youtu.be/-UDDTJHBPVA

https://youtu.be/-UDDTJHBPVA
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of eye-controlled interfaces [76] (e.g., enlarged buttons and visual
feedback to cope with eye-tracking accuracy); moreover, it follows
the usability heuristics of Neilsen7, keeping the design as close to
conventional keyboard layout as possible with minor adjustment of
key formation and addition of necessary keys for improving efficiency
while typing.

Figure 4.6: The complete GazeTheKey layout with predictions on every key
based on the letter selection.

In the shown example in Figure 4.6, the user typed some letter of a
word, and the current state of all keys shows relevant suggestions that
can be selected via additional dwell time over the key (as explained
in Figure 4.5). One limitation of such a two-step dwell time input
is that the user couldn’t dwell on a letter consecutively to type the
letter multiple times. Hence, an extra repeat key has been added at
the lower bottom of the environment. This key serves to trigger the
input of the last selected letter. We have done further optimization to
minimize the visual search for users, i.e., space and backspace key is
used to present further information about the edited word. As shown
in the example, the space button works as the confirmation of the
typed word, and therefore, it is displayed on the bottom of the key. A
preview of the edited word (after deletion by backspace) is displayed
on the backspace key (essentially showing the usage of the respective
key). These simple heuristics help the user stay with the gaze in the
same position without checking the intended action on the edited
word.

7 https://www.nngroup.com/articles/ten-usability-heuristics/

https://www.nngroup.com/articles/ten-usability-heuristics/
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4.5 initial evaluation

A preliminary investigation was conducted to understand the potential
of our design.

4.5.1 Apparatus

An SMIREDn eye tracker running at 60Hz was attached to a 24-inch
monitor that displayed 1280 x 800 pixels. The participants were asked
to sit on an adjustable height chair before the calibration process to
center the eyes at a distance of about 70 cm from the screen. Cali-
bration of the SMI eye tracker was done by the SMI calibration tool.
However, when participants reported too much drift, re-calibration
was done.

4.5.2 Participants

Ten participants (five male, five female) contributed to our study; they
were aged between 21 and 30 years (mean 24.8, SD 2.347) and had
no prior experience with eye-controlled interfaces. However, all of
them had adequate experience with computer usage, and all of them
were familiar with the QWERTY layout of a keyboard. All the chosen
participants were well-versed in English, although none were native
English speakers.

4.5.3 Procedure

To test the performance of GTK, we performed an experimental evalua-
tion to understand the system’s efficacy. An experiment was designed
that consisted of the 10 participants recruited to type sentences taken
from the phrase set of Mackenzie and Soukoreff [93]. The experiment
was built into five sessions, and each session had five sentences that
the user needed to transcribe with the help of the newly designed
keyboard. Each participant was provided with a training session, and
before the actual onset of the experiment, their systems were reset
so that the word prediction algorithm was not biased. A physical
keyboard was placed in front of the participant whose space bar was
used to go to the next sentence transcription. In summary, the design
had:
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10 participants ×
1 new keyboard design ×
5 sessions ×
5 sentences in each session
= 100 submissions in total.

4.5.4 Results

To understand the performance of our design, we performed subjec-
tive and objective evaluations. We performed the words per minute
analysis for objective evaluations and the percentage usage of predic-
tions.

1. Objective evaluation:

• Words per minute (WPM): Figure 4.7 shows us the perfor-
mance of GTK across 5 sessions. The maximum WPM
across five sessions for 10 participants was 11.17, with a
mean of 9.34 (showing notable acceptance).
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Figure 4.7: Usage of word predictions across different sessions for GTK

• Prediction Usage: Since our design aimed to improve gaze-
based text entry by integrating word predictions inside the
keys, we evaluated the percentage usage of word predic-
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tions when using GazeTheKey. Table 1 shows how partici-
pants (P) improved on the usage of on-key word predictions
for their task completion after every session (S).

S1 S2 S3 S4 S5

TR On Key TR OK TR OK TR OK TR OK
P1 10.34 48.27 6.67 66.67 4.17 87.75 22.73 63.63 36.36 59.09

P2 15.38 69.23 18.75 62.5 30 63.33 44.44 48.14 53.57 32.14

P3 14.28 82.14 28.57 60.71 19.23 73.07 10.34 75.86 28.57 75

P4 22.22 44.44 22.22 59.25 40 54.44 3.7 92.5 3.8 89.65

P5 7.47 77.78 14.28 75 19.23 76.9 6.89 89.65 10 80

P6 82.3 0 85 0 82 5.47 85 0 80 0

P7 79.23 27.58 60.8 26.1 50.0 46.15 38.6 57.23 26.9 61.53

P8 45.83 41.67 62.5 37.5 45.83 45.83 30.76 61.53 17.24 62.06

P9 66.67 33.34 46.15 47.69 33.33 66.67 35.48 64.51 38 52

P10 48.27 37.93 57.14 35.71 36.27 60.5 41.67 58.33 44.4 55.25

Table 1: TR: Top Row; OK: On Key. Usage of predictions on key and on the
top row (See Figure 4.6) for our design GazeTheKey. The data clearly
indicates the growth of on key word predictions with the passage of
time and sentences.

2. Subjective evaluation: To understand how the participants felt
on using the system, we designed a custom heuristic question-
naire inspired from the heuristic principles 8 that Jacob Nielsen
proposed:

a) How good is the visibility of main interaction elements? (In-
teraction elements include keys, suggestions, typing area)

b) How close did you feel to the features of this keyboard to a
conventional keyboard that you are used to?

c) How easy was it to control the keyboard?
d) How easy was it to recover from errors made?
e) How will you rate the design of the keyboard?
f) How comfortable was to use eye tracking on this keyboard

design?
g) Was the design intuitive? (If there was no guidance, would

you have figured it out easily?)

The average score from the heuristic evaluation was 8.05.

Our initial experiment demonstrates a noticeable increase in word
prediction utilization when users can select desired words directly
from the keys. This experimental study aimed to understand the
efficacy of the design and understand if the performance of such a
keyboard falls in the acceptable range of text entry. However, to com-
prehensively assess its performance relative to a traditional on-screen
gaze-based keyboard, it is essential to compare various performance
metrics. The upcoming sections will delve into the evaluation of GTK

8 https://www.nngroup.com/articles/ten-usability-heuristics/

https://www.nngroup.com/articles/ten-usability-heuristics/
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6 6,5 7 7,5 8 8,5 9

How good is the visibility of main interaction elements? (Interaction
elements include keys, suggestions, typing area)

How close did you feel to the features of this keyboard to
conventional keyboard that you are used to?

How easy was it to control the keyboard?

How easy was it to recover from errors made?

How will you rate the design of the keyboard?

How comfortable was to use eye tracking on this keyboard design?

Was the design intuitive ? (If there was no guidance, would you
have figured it out easily?)

Figure 4.8: Heuristic evaluation of the usage of GazeTheKey.

and its effectiveness in positioning predictions closer to the visual
fovea.

The initial evaluation sheds light on RQ1 where we take the approach
of designing a new predictive keyboard to overcome the limitations of
existing gaze-based keyboards.

4.6 gaze-based keyboard design

For our investigation of understanding the impact of variable position-
ing of word predictions, we used the traditional keyboard layout (let
us term it as Keyboard A), an inter-spaced keyboard with prediction
position above each row (let us term it as Keyboard B) and finally the
keyboard we designed, GTK.

Keyboard A (Figure 4.9a) has a single line of word predictions on the
top of the keyboard area. This design is adapted from the most conven-
tional touch-based text entry keyboards design. It also represents the
most prevalent design for gaze-based text entry keyboards. Keyboard
B (Figure 4.9b), is an inter-spaced keyboard that has been designed to
bring the word predictions inside the keyboard layout. The predictions
are displayed as inter-spaced in the line over the last triggered letter to
reduce the visual distance to the last area of fixation. The inter-spacing
was inspired from keyboards as shown in Figure 4.3a and Figure 4.3b.
This design was also created to investigate if the findings by Cuaresma
et al. [32] for mobile phone keyboards also hold for gaze-based text
entry systems. GTK (Figure 4.9c), embeds the prediction related to
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the letter on the representative key. It brings the visual focus to the
keys. It also has a single line of word prediction on the top of the
keyboard area to ensure accessibility to the increased number of word
predictions. In all the keyboards, the most relevant word prediction
was placed in the middle followed by left and right for all the word
prediction positions across the three keyboards.

(a) Keyboard A: Conventional Keyboard (b) Keyboard B: Bringing word prediction inside
Keyboard

(c) GTK: Bringing word prediction inside keys

Figure 4.9: Keyboard A, B designed to evaluate impact of variable word prediction
position in connection to GTK

For Keyboard A and GTK, the complete keyboard layout along with
the word prediction area took approximately 65% of the screen space.
For Keyboard B, it was 77% of the screen space. The on-key word
predictions for GTK occupied approximately 30% of the space of the
key on which it was initially displayed.The dwelling status

can be seen clearly in
Figure 4.9a and 4.9b

and also in the
step-by-step

implementation of
the double dwelling

interaction approach
in Figure 4.5

The keys and word predictions are the main responsive elements
arranged in QWERTY order for the virtual keyboard interface. The
QWERTY layout was modified to include the most used punctua-
tion [31] for quicker access. The layout change with the dimensions
mentioned earlier utilizes the available space and the eye tracker’s
accuracy. The font on these elements is rendered in white, while the
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fore- and background is kept in shades of dark and unsaturated green
to provide a clean and non-distracting experience.

Interaction is implemented via a dwell time of 1.0 seconds for key
activation. The dwelling status is queried to the user with a transparent
orange circle centered in the middle of the element and growing at
fixation until filling the complete element. When the complete element
is filled, the key or prediction is activated and the content added to
the collected input.

Keys in GTK features a two-step dwell time approach. It requires
a second dwell time for activation of the offered word predictions.
Once the first step of dwelling selects the letter, the key switches to
its prediction during the second dwelling step. The same duration of
fixation dwell time is necessary to trigger the input of the displayed
word prediction (Figure 4.5). The space and the backspace key in GTK
include a preview of the currently edited word after activation of
these keys. This integrates into the concept of locating the visual
focus on the keys. All the keyboards include a particular key in the
lower-left part to repeat the last letter for double-lettered words. This
was necessary only for GTK as it does not allow for repetitive key
activation. The offered prediction is activated during a second dwell
time phase instead of the selected letter.

4.7 final evaluation

The final evaluation involved five consecutive eye typing sessions on
different days. The participants were asked to experiment with the
keyboard layout allotted to them as per the Latin Square ordering.
It was done to nullify the effect of bias. The experiment was con-
ducted in a controlled lab environment with artificial illumination.
The dependent (measured metrics: wpm, backspace usage, error rate,
keystroke saved), independent (test conditions: keyboard layouts, pre-
diction positioning, visual feedback) and controlled variables (ambient
lighting, font size, font colour, key size, key colour, prediction size,
visual feedback colour etc.) were noted for the proper execution of the
experimental process. Before the actual experimental study, a pilot
test was conducted with four participants to validate the experimental
procedure. The participants were asked to enter each time a single
sentence was presented in the text area in the upper region of the key-
board interface. At the first keystroke, the sentence disappeared, and
the participant had to recall the sentence to continue. This procedure
simulates free writing and prohibits the participants from comparing
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the collected input with the desired result, which would influence the
gaze data strongly [81].

4.7.1 Participants

The main experimental session consisted of 10 participants (five male
and five female). The participants’ age ranged between 21 to 30 years
(mean = 24.8, SD = 2.348). Due to technical challenges [recording of
gaze data had abruptly stopped], we considered 9 participants as the
data recorded for 1 of the participants got corrupt and could not be
recovered. While the findings offer valuable insights into this specific
context, more participants would have ensured greater generalizability
of the results to a broader population and enhanced statistical power,
allowing for more robust and widely applicable conclusions. How-
ever, given the constraints and the specific research objectives, the
smaller sample size was justified in this instance, providing a deeper
understanding of the unique aspects of the study’s subject matter.

70% of the participants wore spectacles, and none had prior experience
with eye-tracking/typing environments. However, all of them had
adequate experience with computer usage and were familiar with
the QWERTY layout of a keyboard. All the chosen participants were
well-versed in English, but none were native English speakers.

4.7.2 Apparatus

For this experimental study, we used the same apparatus setup as
described in Section 4.5.1.

4.7.3 Procedure

Like Section 4.5.3, we followed the same approach here. The area
of the collected text can be seen in Figure 4.9a, 4.9b and 4.9c. Each
participant was introduced to a training phase which consisted of two
sessions of 5 sentences each for the participants to get familiarized
with the environment. The system was reset for every session so that
the predictive engine would not bias word prediction. Participants
were instructed to use the physical space bar on the physical keyboard
in front of them to access the following sentence in the experiment. In
summary, the design was:
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9 participants ×
3 keyboard designs ×
5 sessions ×
5 sentences in each session (excluding practice phrases)
= 675 submissions in total.

4.7.4 Results

Standard metrics for text entry evaluation include [94, 97]: (i) Words
Per Minute, (ii) Error, (iii) Keystrokes Saved. We have evaluated two
other parameters to understand the usage of word prediction in a gaze
typing scenario (iv) Backspace Key usage and (v) word prediction
usage. The metrics below give a detailed direction to the findings.
While typing speed performance indicates non-significant change,
there is a high usage of predictions and backspace keys.

1. Words per minute (WPM): WPM of 9 participants across five The explanation and
details of Words Per
Minute (WPM) can
be found in Chapter
2, under the section
titled ”Performance”
(2.2.3.1)
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Figure 4.10: Words per Minute performance across different sessions for
Keyboard A, B and GTK

sessions for three different keyboards designs can be seen in
Figure 4.10. ANOVA on WPM across different sessions for
the three different keyboards reveal a non-significant effect,
F2,12 = 0.420, p = 0.67(ns), with the grand mean of each of
the keyboards being very close to one another: 9.57, 9.36 and
9.65 wpm for Keyboard A, B and GTK respectively. The values lie
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well within the range of 7-25 words per minute range reported in
other setups [102, 183], indicating reasonable eye typing speed.
More specifically, the noted text entry rate lies in the upper range
for a dwell-based keyboard with no extensive training. For ex-
ample, gaze-based text entry speeds using dwelling is about 10

wpm after about ten training sessions [105].

No significant learning effect was observed across the perfor-
mance of the three keyboards.

2. Error: Uncorrected errors are missed or wrongly entered com-Traditional metrics
as mentioned in

Chapter 2, under
”Performance”

(2.2.3.1) consider
letter or word-based
entry. For our case,

this was slightly
complicated since the

user was at the
freedom to choose

letters or words.

pared to the original sentence and not corrected. Levenshtein
Distance is one measure of calculating the edit distance that mea-
sures the deviation of the input sentence to the original sentence.
The grand mean of the uncorrected error for the three keyboards
across different sessions are 0.56, 1.36 and 0.88. Figure 4.11

shows the errors left uncorrected by the participants across 5

sessions .
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Figure 4.11: Uncorrected Error across different sessions for Keyboard A,
Keyboard B and GTK

Shapiro Wilk Test9 revealed the data to be not normally distributed.
Hence we used a Friedman test, which gave a significant result
with p = 0.02. Keyboard A had the least number of errors,
followed by GTK and B.

9 https://www.sciencedirect.com/topics/psychology/shapiro-wilk-test

https://www.sciencedirect.com/topics/psychology/shapiro-wilk-test
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No learning effect for uncorrected error is observed across the
performance on the three keyboards.

3. Keystrokes saved: Measurement of keystrokes is another crucial
measure of performance in text entry systems. The use of word
prediction reduces keystrokes, thus leading to faster text entry
speed. In this experimental study, every keystroke was calcu-
lated and compared against the original count of letters for the
sentence they were provided with. The percentage of keystrokes
saved across different sessions for the three keyboards designs is
shown in Figure 4.12. Grand mean of 35.48%, 34.54% and 28.16%
of saved keystrokes were recorded for the three keyboards across
five sessions.
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Figure 4.12: Percentage of Keystrokes saved across different sessions

ANOVA shows significant result with F2,12 = 9.56; p = 0.003
indicating the use of significantly fewer keystrokes to achieve
complete sentences in Keyboard A than in Keyboard B and GTK.

No learning effect was observed for keystroke savings across the
three keyboards.

4. Backspace: Backspace usage indicates the attempts made to cor-
rect the sentence/words before confirming. It also indicates the
participants’ corrections when they accidentally selected a wrong
letter or a wrong word prediction from the list. Grand mean
of 0.72, 1.17 and 1.44 backspace hits for the three keyboards
were recorded across five sessions. Figure 4.13 indicates the
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efforts required to formulate a sentence were much higher for
GTK and keyboard B through deleting the characters. Further
investigation of the backspace usage revealed the high amount
of backspaces were used for correcting/editing the picked pre-
dictions.
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Figure 4.13: Backspace Key Usage across different sessions for Keyboard A,
B and GTK

ANOVA shows a non-significant result with F2,12 = 3.25; p =

0.07(ns).

5. Word prediction usage:This metric measures the usage of word
predictions while formulating the sentence. It indicates how
effective the predictions were and how easy it was to access
them.

For Keyboard A, with only a one-word prediction line at the top,
the suggested usage was 90.12%. The inter-spaced Keyboard
B had 91.11% usage and 93.21% in the GTK with predictions
on the keys themselves. ANOVA gave a non-significant result
F2,12 = 0.08; p = 0.92(ns). Figure 4.14 shows us the session-
based performance across the three keyboards.

Further analysis shows that the participants accepted the layout’s
word predictions well. For keyboard B, 46.61% of the used
predictions are chosen from the top, 33.88% from the center,
and 19.51% from the bottom. In GTK, with prediction-enhanced
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keys, 54.37% of the utilized suggestions are taken from the keys
instead of the single-word prediction line on top.
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Figure 4.14: Usage of word predictions across different sessions for Keyboard
A, B and GTK

Despite high text-prediction usage, there is no significant learn-
ing effect for any keyboards.

4.8 discussion

The experimental evaluation indicates that bringing the word pre-
dictions closer to the user’s visual attention does not significantly
impact text entry performance. Several implications of gaze-based
interactions could arguably be the reason behind these findings.

One central observation is the inessential usage of word predictions
by participants. Word predictions offer users the possibility to reduce
effort by auto-completing the words. However, inter-spaced and in-
letter predictions bring the word predictions in the constant visual
attention of users, which might lead them to be overly reliant on
predictions (as we can see with the increment of prediction usage
for Keyboard B and GTK). We observed that the participants even
picked partially relevant word predictions with additional suffixes,
e.g., a participant selected the predicted word organization after typing
or, and then edited the terms to write the desired word organize.
Such instances require additional usage of backspace keys, and it
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makes the actual benefit of predictions much smaller than anticipated,
i.e., picking a word prediction does not necessarily correlate with
fewer keystrokes to complete the desired word since it involves the
editing task of the picked suggestion, which is a non-trivial task in
eye typing.

Section 4.5.4 (Backspace) results confirm this assumption, as backspace
usage is much higher for GTK and B than A. We calculated the number
of backspace hits after selecting a word prediction to investigate this
phenomenon further. Using backspace on selected word prediction
exhibits the user picking partially relevant word predictions. Grand
mean of 9 participants across 5 sessions was recorded as 2.56, 3.67, 5.56
for the three keyboard designs. This indicates that Keyboard B and
GTK participants used partially correct predictions and applied more
backspaces to correct the suggestions. It eventually aligns with the
result on Keyboard B and GTK needing significantly more keystrokes
than A (see Section 4.5.3), despite having similar text entry rates.

Dwelling on individual keys to compose a text is demanding and
tedious. Hence, the user is keen on additional help from the system to
ease the task. Word prediction helps the user in this aspect. However,
like any other recommendation engine, predictions may not always
be relevant and helpful for users. We can contemplate that bringing
predicted words closer to user attention affects user cognition, as they
become keener on picking the suggested options. However, this does
not translate to the improved text entry performance.

Another reflection on performance is the rapid eye movements inval-
idating the effect of positioning benefit. The major variation in the
design of Keyboard B and GTK was to bring the predictions closer
to visual focus while selecting letters so that the user does not need
additional time to switch attention to the external word prediction
list. However, for gaze-based interaction, the fast eye movements
might nullify this effect. It has been noted that eye movements are so
fast that it provides an interaction medium potentially faster than the
conventional mouse [166]. More specifically, eye saccades (movement
between two consecutive fixations) are extremely fast movements that
commonly takes 30 to 120 ms having an amplitude range between 1°
and 40° (average 15° to 20° ) [40]. The inspection and selection of
prediction can be made quickly since it requires only one saccade or
more saccades in the same direction. More specifically, for the indi-
vidual keyboard designs, users retain the position information of the
word list and hence can predetermine the path to reach the list. The
user can mark ahead path [82] and hence the time can be significantly
minimized. Furthermore, the variant position does not correlate with
the scanning cost of word predictions. The user still has to scan for
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relevant words to be picked from presented predictions irrespective
of the positions, i.e., for both Keyboard A and B user has to look at
all three predicted words to find out if the relevant predictions are
present in the list. For Keyboard A user has to look at a distant top
layout. However, the additional time required is not very significant
due to fast eye movements.

Compared to touch-based text entry virtual keyboards, eyes always
start moving toward the target before the hand. As eye movements
are quite rapid, the eyes usually arrive at the target before the hand
starts to move [1]. Touch-based input combines hand movement with
eye movements since users need first to look and scan if the suggested
word is relevant and then perform the selection by hand. Therefore,
touch-based selections of word predictions require additional physical
movement, which is not correlated with eye movements [19], i.e.,
hand movements need substantial time for interaction distinguished
from eye movements. Hence, the keyboard designs to bring the
predictions closer for touch-based inputs [55] invariably help reduce
the effort of selecting predictions and improve the user experience and
performance.

4.9 conclusion

Word prediction is a valuable feature to enhance the typing experi-
ence. Relevant word prediction representation to end-users becomes
essential for text entry with virtual keyboards. In this chapter, we
assess the visual representation of word predictions by evaluating
a newly designed keyboard that brings word predictions closer to
the visual focus. To understand the usability of such a design, we
further conducted a user study to evaluate the performance and user
feedback by comparing our design with two similar dwell-time-based
keyboards with the variable spatial positioning of word predictions.

The evaluation indicates that predictions near the visual fovea make
users heavily dependent on the given predictions for gaze-based text
entry. While this can be beneficial if the predictions are helpful, it leads
to extensive usage of word predictions that could hamper usability.

The variant position does not correlate with the scanning cost of word
predictions since the user must still scan for relevant words to be
picked from the presented predictions. An interesting future direction
would be to investigate this phenomenon in large-scale studies and
understand how the scan time affects the typing process and how it
can be minimized to improve performance.



62 gazethekey

This chapter sheds light on RQ 1.1, where we see the challenges
of designing on-screen gaze-based keyboards. The detailed design
investigation and experimental evaluation answers RQ 1.2 and RQ 1.3,
providing directions to the community on evaluating the performances
of newly designed keyboards against traditional designs.

The upcoming chapter sheds light on how we can further investigate
the usability and cognitive impact of new designs of on-screen gaze-
based keyboards.



5
A N A LY Z I N G T H E I M PA C T O F C O G N I T I V E L O A D I N
E VA L UAT I N G G A Z E - B A S E D T Y P I N G

In this chapter, we investigate the intricate nature of gaze-based text
entry systems, specifically focusing on the cognitive load involved
in using such interfaces. This chapter broadens the exploration to
include cognitive aspects beyond traditional text entry metrics like
words per minute, keystrokes per character, and backspace usage.
Acknowledging the close relationship between gaze-based text entry,
natural eye movements, and human brain cognition, we emphasize
the significance of incorporating cognitive load as a key factor in eval-
uating the effectiveness of eye typing systems. Section 5.1 introduces
the concept of cognitive load, outlining its characteristics and calcu-
lation methods, setting the stage for a comprehensive understanding
of its role in gaze-based typing. Section 5.2 details our methodology,
describing the experimental setup, the hardware used, participant
selection, and procedures followed during the experiment. Section
5.3 presents the results of our study, offering crucial insights into the
impact of cognitive load on gaze-based text entry. Finally, Section 6.9
concludes the chapter by summarizing our findings and reflecting on
their implications for the future of gaze-based typing interfaces.

The EEG analysis offered insights into the cognitive variations of users
during different typing phases and intervals. These findings under-
score the importance of considering cognitive factors in improving
the usability and efficiency of eye typing systems, paving the way for
more user-centric design approaches in gaze-based text entry.

The contributions of this chapter are adapted from the full paper
published at CBMS 2017

1 [163]

5.1 cognitive load

Different designs for gaze-based text entry have included input tech-
niques like dwell time [101] and dwell free [133] based approaches.
Another significant aspect is exploiting intelligent text prediction meth-

1 https://ieeexplore.ieee.org/xpl/conhome/8100282/proceeding
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ods for more efficient text entry [98]. Moreover, the placement of
word predictions [172] around the foveal region [38] has been investi-
gated. However, how these designs impact user cognition is still being
determined, i.e., if the mental effort required in the text entry process
varies for different designs.

Cognitive effort could be measured by analyzing EEG signals. EEG
signals have been used in different experiments [165] – along with
gaze signals – to navigate different applications. Other directions
are understanding artifacts caused by eye movements [136] or using
EEG as event-related potentials [177]. However, EEG has rarely been
used to analyze gaze-based typing, although it might provide helpful
feedback about the cognitive demand of the user.

Antonenko et al. [3] define cognitive load as the load or the effort im-
posed on the memory by the cognitive processes involved in learning.
Paas et al. [131] have extended this definition of mental effort as the
cognitive capacity allocated to care for the demands imposed by a
specific task. These research works – which focus on the cognitive
architecture involving memory and time collectively – contribute to-
wards a theory called Cognitive Load Theory (CLT) [131]. Text entry is
a cognitively demanding task. While selecting letters is easy, forming
words and checking their correctness involves the interaction of sev-
eral information units, thus leading to a higher intrinsic load on the
working memory.

The fluctuations of cognitive load across the task completion time
provide us a detailed picture of where the system’s usability suffered
and caused the user challenges. Different techniques have been incor-
porated to measure this load; the NASA Task Load Index is one of the
most common tests. However, when asked to be filled at the end of
the experiment, these subjective ratings or scales do not shed light on
the instantaneous intrinsic load. This is where physiological measure-
ments like Electroencephalogram or Functional Magnetic Resonance
Imaging play a key role in extracting such information.

Electroencephalogram (EEG) signals help record a continuous measure
of cognitive load by picking up fluctuations in the signal when ex-
posed to instantaneous load, thus providing us a better granularity
in measurement. This granularity is missed if the overall cognitive
load was recorded at the end of the experiment [3]. EEG signals have
been used to investigate cognitive load and are researched well over
years [14]. Apart from EEG, Galvanic Skin Response (GSR) has also
been used to estimate the effect of cognitive load [30]. Compared to
other available options to measure the cognitive state of an individ-
ual, such as PET, fMRI, fNRS, EEG has the advantage of both high
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temporal resolution [20] and economic flexibility. The development
of low-cost and light-weight EEG devices like Emotiv EPOC2 allows
researchers to investigate the domain of cognitive load easily [70].
This easy, non-invasive access to EEG signals motivated us to use
such low-cost devices to study the cognitive reaction associated with
gaze-based typing on virtual keyboards.

5.1.1 EEG Signal Processing

In this experimental investigation, we apply Short-time Fourier Trans-
form (STFT) to the EEG signal time series to evaluate the cognitive
load of each participant during the experiments [62]. Compared with
simple Fast Fourier Transform (FFT), STFT can capture both time and
frequency information in non-stationary signals – as in our case. We
executed the following pipeline to extract cognitive load out of the
raw EEG channels’ data:

1. Preprocessing: We first divide each signal time series into multi-
ple sliding windows of equal length (1024 samples, or 8 seconds)
with a window slide unit of length 512 samples (4 seconds). This
results in two neighboring windows sharing an overlap of 50%
window length.

2. Fourier transform: In this step, a discrete Fourier transform of
each windowed signal c with length N=1024 and sampling rate
Fs=128Hz is performed (see Equation 5.1) [158], resulting in its
spectrogram.

Ck =
N−1

∑
j=0

cje2πijk/N k = 0, ..., N − 1 (5.1)

This is subdivided into frequency bands [33]:

• Delta (<4Hz): are the slowest of the EEG waves and can be
detected during deep sleep.

• Theta (≥4Hz and <8Hz): is observed during deep focus.

• Alpha (≥8Hz and <14Hz): is observed when one is relaxed
and awake but mostly eyes are closed.

• Beta (≥14Hz): is generated during normal consciousness
and active concentration.

2 https://www.emotiv.com/epoc 128Hz Sampling Rate, 14 Channels

https://www.emotiv.com/epoc
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3. Computation of spectral power. For a defined frequency band
[ f1, f2], we can further estimate its spectral power P (see Equa-
tion 5.2) and the corresponding spectral power ratio (spectral
power in a certain frequency band divided by total power in all
bands).

P =
1
N ∑

k
|Ck|2 k ∈ [b f1 · N/Fsc, b f2 · N/Fsc] (5.2)

Studies have shown that for participants who are performing specific
tasks with higher cognitive load (e.g., writing) – compared to relaxing
– a higher percentage of high-frequency EEG waves (especially in the
Beta band) can be observed [41]. Hence, we can compute the average
value of the spectral power ratio of the Beta band in the EEG signal
from all 14 channels within a time window. This serves as an indicator
of the cognitive load within this particular time window.

5.2 methodology

Participants were asked to participate in three sessions on three days,This setup was
similar to the one we

saw in Chapter 4.
each dedicated to one keyboard design. The experiment was executed
in a controlled environment with artificial illumination. Latin square
ordering was used for the counter-balanced setup of experimental
session slots. The independent and control variables were carefully
noted before the experimental process. Each participant was instructed
on how the experimental process will be carried out in a short training
session. They were specifically trained to read the sentence to type.
The participants were also instructed on how the hinted sentence
disappears on selecting the first letter. This behavior was chosen to
ensure the simulation of free writing and to prohibit the participant
from comparing the collected input letter-per-letter, which would
influence eye gaze data [81].

5.2.1 Participants

The main experiment had five able-bodied male participants who
were paid to participate, ages 22 to 26 years (mean = 24.2, SD = 2.17).
None of the participants had prior eye typing experience and wore
any corrective visual devices. Every participant was familiar with the
QWERTY layout used in the designs.
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5.2.2 Apparatus

The eye tracking setup for the experiment is similar to the setup
described in Section 4.5.1 For the BCI device, Emotiv’s 14-channel
EPOC+ device was chosen to measure the brain signals at a sampling
rate of 128Hz (Figure 5.1). The Premium SDK allowed us to extract
the raw EEG data of each channel.

Figure 5.1: The image shows us the Emotiv EPOC+ headset with 14 electrode
combination for capturing EEG data.

Recording and synchronization of keyboard event markers, eye track-
ing, and EEG data were achieved with LabStreamingLayer3, which
provided us with synchronized time stamps.

5.2.3 Procedure

The same procedure that is described in Section 4.5.3 has been followed
here.

Each participant was requested to sign the informed consent form
prior to their experimental session. They were then given an accurate
description of the experiment and the devices being used. Prior to
every session, the eye tracker was calibrated. In the training session,
they were shown that in order to submit a typed sentence, they needed
to hit the space bar on the computer’s physical keyboard.

3 https://github.com/sccn/labstreaminglayer

https://github.com/sccn/labstreaminglayer
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5.3 results and observations

The experimental results provide an indication of the significant role
of mental workload assessment while performing the high cognitive
agility task of eye typing. We first provide the details on conventional
performance metrics, present the experimental cognitive load results
and discuss our findings.

5.3.1 Performance

Based on words per minute (WPM), the grand means of each of the
keyboards are very close to one another: 9.20, 8.60, and 9.05 wpm
for Keyboard A, B, and GTK, respectively. ANOVA for wpm values
reveal a non-significant effect with F(2,12)=0.403, p>0.05 (ns).

Keystrokes per character (KPSC) [144] is another standard metric that
is often used. We have adopted this concept to measure how many
keystrokes were saved during a session. This reveals how text predic-
tions positively influence typing effort, reducing the time required
for typing. The average percentage of keystrokes saved was 39.0018,
35.4366, 33.4694 for the three keyboard setups. ANOVA, however,
indicates a non-significant effect, with F(2,12)=1.54, p>0.05 (ns).

The backspace key usage is another indicative metric that hints about
the number of mistakes rectified by the users while typing. Since eye
typing is an exhaustive task, people often make mistakes. The average
backspace usage for the three keyboards A, B, and GTK, were 2.92,
6.32, and 5.00 times. ANOVA for backspace key usage indicates a
non-significant effect, with F(2,12)=1.64, p>0.05 (ns).

5.3.2 Cognitive Load

In this section, we compare the cognitive load of our participants in
different experimental setups. As discussed in Section 5.1, we use the
spectral power ratio of the Beta band of EEG signals to indicate the
level of cognitive load.

Figure 5.2 shows the average cognitive effort required by participants
for different keyboards. We can observe that GTK (with mean value
0.0824) has a lesser cognitive load compared to both Keyboard A (with



5.3 results and observations 69

Keyboard A Keyboard B GazeTheKey

0.075

0.080

0.085

0.090

0.095

0.100

S
pe

ct
ra

l P
ow

er
 R

at
io

 o
f B

et
a 

B
an

d

Figure 5.2: Comparison of overall cognitive load of participants using the
three keyboards during the experiment. The X-axis marks the
keyboard, while the Y-axis denotes the spectral power ratio of the
Beta band of EEG signals, which indicates the level of cognitive
load of the participant. Each data entry in the box-plot corre-
sponds to the spectral power ratio value of one time window (see
Section 5.1). The horizontal bar in the middle of the box shows
the median value, while the red dot shows the mean value (same
for all boxplots in this paper).

mean value 0.0865) and B (with mean value 0.0860). Shapiro-Wilk
showed normal distribution of data. T-test shows that the differences
are significant (Keyboard A and C with p=0.01542, N=150; Keyboard
B and GTK with p=0.00047, N=150)4. GTK embeds individual sugges- The Shapiro-Wilk

test is a hypothesis
test that is applied to
a sample with a null
hypothesis that the
sample has been
generated from a
normal distribution.
If the p-value is low,
we can reject such a
null hypothesis and
say that the sample
has not been
generated from a
normal distribution.

tions on the letters itself, and hence users might have required less
cognitive effort of scanning text prediction list. Keyboard B has similar
predictions as A however, the dynamic appearance of the inter-spaced
word list seems to confuse users, leading to high mental demand.
Some participants in a parallel experiment also revealed similar obser-
vations, as they stated design B as frustrating; however, GTK design is
more consistent.

These results do not have a direct correlation with the conventional
performance metrics; however, all three metrics in Section 5.3.1 in-
dicate a lower performance for Keyboard B (non-significant), and
EEG analysis indicating significantly higher cognitive load, implying
Keyboard B as a bad design choice for end-users.

4 N=5 participants * (1 training + 5 experimental sessions) * 5 sentences
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Figure 5.3: Comparison of cognitive load of participants in different typing
modes using the three keyboards (shown with different colors)
during the experiment. The X-axis labels different modes, while
the Y-axis shows the spectral power ratio of the Beta band of
EEG signals, which indicates the level of cognitive load of the
participant. In each boxplot, we have 25 samples in total (outliers
are omitted), corresponding to the 5 participants and five sessions
for each participant.

We were also keen to investigate how different aspects of the text entry
process impact user cognition. Hence we compared the cognitive
load of participants in different typing modes when using the three
keyboards:

• BKSP: the participant is deleting content by hitting the backspace
key on the eye-tracking keyboard

• SUGG: the participant is selecting the suggestions provided by
the eye-tracking keyboard

• INSERT: the participant is inserting single letters

Figure 5.3 reveals that the cognitive load is lower for all designs when
the participants were deleting content (BKSP) or using suggestions on
the keyboard (SUGG), than inserting content letter by letter (INSERT).
This indicates a higher demand while selecting letters, as one needs
to scan and process the information in the foveal region and then
finalize which one to pick. However, when deleting letters because of
a mistake, one must repeatedly fixate the backspace key. It could also
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Figure 5.4: Comparison of cognitive load of participants when typing differ-
ent sentences using Keyboards C during the experiment (the other
two keyboards provide a similar pattern). The X-axis contains the
ordinal number of the sentence in each session (Pre is the time
before a keyboard is displayed and a participant asked to type).
At the same time, the Y-axis shows the spectral power ratio of the
Beta band of EEG signals, which indicates the level of cognitive
load of the participant. In each boxplot, we have 25 samples in
total (outliers are omitted), corresponding to the 5 participants
and five sessions for each participant.

relate to why Keyboard A does not perform better despite having less
backspace usage and errors. The effort required for error correction
has no major impact.

Furthermore, we compared the cognitive load when the participants
were in the pre-experiment phase (the time between each section starts
and the first sentence is shown) to the task of typing the sentences. As
shown in Figure 5.4, we do not observe a significant difference in the
cognitive load among different sentences within a session. This could
be explained by the fact that we randomized the order of different
sentences, as some sentences might be more cognitively demanding
than others. However, we observe that the cognitive load during
the pre-experiment phase is higher than during actual typing. This
observation indicates that users need time to adjust to the experimental
gaze-based text entry environment. However, once they get used to
the environment, the cognitive load is stable.
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5.4 conclusion

In this chapter, we conducted a small-scale experimental study to
analyze the impact of cognitive load on gaze-based typing. However,
a larger participant group and a longitudinal experimental design
could have provided valuable insights into statistical evaluations, such
as understanding the learning curve and other temporal patterns.
These elements were not fully explored due to the limited sample size
and the experimental design’s shorter duration. We assessed virtual
keyboards with variable positioning of word predictions. The results
indicate the need to assess cognitive load impact in gaze-based typing
scenarios. It provides a valuable direction to understand gaze-based
keyboard designs from a cognitive load perspective. The alternation
in word prediction positioning creates little or no effect on traditional
performance metrics, but according to the EEG analysis, it is quite
evident that cognitive load varies. In the future, we aim to improve
the usability of gaze-based text entry by adapting the dwell time of
virtual keyboards based on instantaneous cognitive load.

This chapter again sheds light on RA 1.3 by expanding the traditional
text entry system evaluation metrics. It investigates instantaneous
cognitive load to discover the hidden nuances of user experience that
are somehow lost in the traditional subjective evaluation process.
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L E V E R A G I N G E R R O R C O R R E C T I O N I N
V O I C E - B A S E D T E X T E N T RY B Y TA L K - A N D - G A Z E

This chapter explores the innovative ’Talk-and-Gaze’ (TaG) method,
which uniquely combines voice input and eye gaze to select and
correct text errors efficiently. This method capitalizes on the intuitive
nature of voice input and the precision of gaze control, effectively
addressing the limitations of using gaze as the sole input modality
and the shortcomings of spatial guidance in voice-only systems. The
TaG approach proves especially beneficial in text revision scenarios,
offering a sophisticated and user-friendly enhancement to text entry
processes.

Section 6.1 discusses the role of voice-based text entry, exploring the
integration of voice/speech as an additional modality in interaction,
its application in error corrections, and our specific research focus
when using voice as an input. In Section 6.2, we describe a pilot study
conducted to identify the limitations of existing systems. Section 6.3
presents findings from a small-scale experiment focused on a voice-
only approach, highlighting its strengths and weaknesses. Section
6.4 introduces our design, TaG, and its unique features. Section 6.5
evaluates TaG against two other approaches through a comprehensive
experiment with 12 participants. The results, detailed in Section 6.6,
demonstrate significant acceptance and improvement with our de-
sign: corrections were performed more than 20% faster with dwelling
than voice commands or voice-only methods; the dwelling approach
required 24% less selection effort than the command approach and
11% less than voice-only error correction. Section 6.7 discusses these
findings, and Section 6.8 concludes the chapter, summarizing our
contributions and reflecting on their implications for the future of
voice-based text entry.

The details of this chapter have been adapted from the full paper
published at CHI1

2020 [159].

1 https://chi2020.acm.org/
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6.1 voice-based text entry

Recent improvements in speech recognition systems [2, 157] have
made voice input a popular modality for digital interaction. Voice
input is now widely adopted, a key factor being the speed of input
compared to typing on a keyboard [149].

For voice-based text entry, validation of the entered text is necessary,
as recognition errors are inevitable. Recognition challenges include
ambient noise (that drowns out the voice), multiple voices speaking
simultaneously, and recognition errors due to homophones or diction
[147, 194]. These challenges impact the entry of text and the use of
voice commands to navigate the text and correct errors.

Error correction forms a major part of the text entry process. It involves
the complex task of identifying errors, navigating to the errors, and
then applying corrective measures. Thus, voice-based text entry that
also involves validating and correcting the formed sentences is a
challenge [142]. Sears et al. [157] suggest that 66% of the interaction
time is spent in correcting errors with only 33% of the time used in
transcribing. Karat et al. [68] note that the assumed productivity
gain for speech dictation systems depreciates when error correction is
factored in.Target-based

Navigation: The user
identifies a target or

destination and
issues an appropriate
command to trigger

the target. For
example: ”Select

Friday”; where Select
is the command and
Friday is the target

word.

One challenge for voice input is the inability to provide spatial infor-
mation naturally.

In order to correct an error, the first task is to navigate to the location
of the error. However, navigation by voice is a challenge. Strategies
include target-based navigation or direction-based navigation [36, 107,
114]. In both approaches, recalling and articulating the commands
and applying corrective measures slows the overall speed of text entry.
To overcome these challenges, research has investigated combining
voice input with another modality [60, 128–130, 139].Direction-based

Navigation: The user
specifies the direction

and distance to
navigate to a desired

location. For
example: ”Move

three words left”;
where Move is the

command, three
words is the distance,

and left is the
direction.

6.1.1 Integration of Additional Modality

Most approaches involving an additional modality require physical
input, which presents a challenge when the hands are used for an
activity other than typing. Some users may lack the fine motor control
required to place a pen or similar device accurately. Thus, the need
for digital inclusion has led researchers to investigate hands-free ap-
proaches for text entry and error correction. Gaze, a natural modality
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like voice, has been well investigated for web navigation [111, 140]
and text entry and editing [69, 99, 161, 162]. Although gaze has the
potential to complement the voice as an input modality, there is little
research [141] that combines voice as the primary modality with gaze
as the secondary modality.

Oviatt et al. [127, 130] tried to overcome the limitations of voice
input by combining voice with pen-based gestures. They studied
different GUI-based interfaces and reported that the task completion
time improved for a multimodal approach compared to a unimodal
approach. Similar experiments by Mantravadi [109] combined voice
and gaze for menu selections and showed improved accuracy and less
ambiguity with a multimodal approach. Kumar et al. [79] combined
gaze and keyboard with ”look-press-look-release” interaction for web
navigation. Sengupta et al. [160] combined voice and gaze for
hands-free usage of a Web browser and found a 70% improvement in
link selection using a multimodal approach compared to a unimodal
approach. Castellina et al. [26] also found improved performance in
a hands-free multimodal environment.

6.1.2 Using Voice and Gaze for Error Correction

Beelders et al. [17] showed an approach to interacting with the GUI of
Microsoft Word through voice and gaze. Although erroneous words
were located through eye movement and fixation, corrections were
done with the help of an on-screen keyboard where the keys were
selected by a combination of gaze input and voice commands.

However, the two modalities were not used simultaneously to achieve
any intended task.

To the best of our knowledge, the sole contribution that combines
voice and gaze for multimodal error correction in text entry is by
Portela et al. [141]. They present a method that uses gaze (with a
2 s dwell) both to select an erroneous word and to select the correct
word from a list of alternatives. This was compared to a voice method
where the list of alternatives was numbered. Speaking the number
selected the alternate word. However, if the correct word was not in
the list, the user had to re-speak the word to alter the prediction list.

This repeated approach leads to frustration if the correct word is not
present or speech recognition errors persist.
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6.1.3 Research Scope

We present a novel approach called ”Talk-and-Gaze” or ”TaG” that
uses gaze as an additional modality for hands-free voice-based text
entry. TaG facilitates error correction in a hands-free environment
by utilizing the strengths of gaze and voice as input modalities. The
identification of words to be edited comprises two interaction tasks:
First, the gaze defines the spatial position in the text. Second, the
position must be selected when the erroneous word is gazed at, but not
when the gaze is used for reading and validating the text (to avoid
the Midas-Touch problem [65]). We have implemented two versions
of Talk-and-Gaze. D-TaG uses dwell-time selection: An erroneous
word is selected if the user’s gaze dwells on the word longer than a
pre-defined time threshold. V-TaG uses voice command selection: An
erroneous word is selected if the user utters a command to lock-in the
word at the gaze location.

In this chapter, we address the research question RQ2 and the subse-
quent sub questions associated with it (Chapter 1).

We performed a comparative evaluation of D-TaG, V-TaG, and Voice-
Only error correction to answer these questions. We performed objec-
tive and subjective evaluations of the three edit methods for a read and
correct task. This was followed by a subjective analysis of the image
description task where users could freely form text based on what
they perceived from the given images.

6.2 pilot study : design investigation

A popular use case for voice-based text entry is the Google Speech
API for converting speech to text on Google Docs. This widely used
system has built-in functions for error correction if the Speech API
transcribes spoken words incorrectly.

We conducted a pilot study to investigate design challenges in using
voice control in Google Docs. The aim was to collect user feedback on
the advantages and disadvantages of such a system in a hands-free
condition.

Five university students (4 male, 1 female, ages 22-29) volunteered
for the study. All had prior knowledge of speech-based commands
on hand-held devices; however, none had experience using voice in
Google Docs. The study was divided into three parts.
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First, the background and motivation for the study were explained.
Participants were shown how voice commands work on Google Docs
and how to correct errors. Second, each participant was asked to fix
errors in five sentences without any additional help. Finally, partic-
ipants read a passage and corrected erroneous words. They had to
remember the voice commands and make corrections. They were then
asked to share their experience and think of voice-based commands
that are intuitive for them. This qualitative feedback was provided to
us in writing.

The participants listed the following challenges, which were consid-
ered when our voice-only approach was designed.

1. Remembering and recalling commands.

2. Inability to select the desired word when it occurs twice in a
sentence. For example, if the sentence was He had a big head, big
teeth, a big nose, and a big attitude. and the objective was to select
the second big, the select command inadvertently selected the
last big unless the cursor was explicitly positioned at the big in
question.

3. Inability to promptly select a word that occurs multiple times
across different paragraphs.

4. Effort to navigate across multiple incorrect words in passages.

6.3 voice-only approach

To overcome the challenges found in our pilot study, we designed the
initial interaction for voice-only error correction using a “map” mode
[176].

The command “map” assigns a unique number to each erroneous
word in a passage for our implementation. The participant then
utters the number to select a word. This eliminates the need to recall
commands and allows the participant to select an incorrect word
directly. It also eliminates the challenge when a word occurs twice in
a sentence. The voice-only error correction system then offers a list of
predictions along with three additional editing options (refer to Figure
6.1):

1. Delete – delete the currently selected word.
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2. Spell – substitute the currently selected word by a new word that
is spelled. This mode is introduced as re-speaking the incorrect
word often does not lead to correct recognition.

3. Case Change – toggle the case of a letter in a word that has been
accidentally capitalized or needs capitalization.

The map functionality also extends to the “spell” mode where the
participant performs letter-level correction for incorrect transcriptions
caused by homophones, diction, or ambient noise. “Spell” mode
allows spelling the word in case recognition error occurs multiple
times. The workflow of the Voice-Only approach is seen in Figure
6.1.

(a)

(b)

Figure 6.1: Voice-only edit method using “map” functionality. (a)Workflow
of Voice-only approach using available predictions; (b)Workflow
of Voice-only approach using ”SPELL” mode
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6.3.1 Pilot Study II: Design Investigation

Based on the feedback from the first pilot study, the same participants
were asked to use our voice-based approach and provide feedback.
The investigation occurred in three parts, and in the end, participants
were asked to share their experiences.

Using our voice-based approach, participants noted the following:

1. Improved and quicker navigation style – they did not need to
use long commands in comparison to the voice commands in
Google Docs

2. Predictions helped to quicken correction

3. Advantage of not adhering to one error correction mode - Spell
mode gives additional help.

4. Spell mode helped in distinguishing homonyms. Some words
were homonymic because of the accents of non-native English
speakers.

5. Repeated use of the ”map” command to select errors led to
discomfort for some users.

6.4 tag : augment voice-based text input with gaze

From the feedback of the second pilot study, we understood that the
map-based approach helps in minimizing navigational commands and
ambiguity of word selection. However, it introduced an intermediate
step in error correction. Our design, TaG, augments voice with gaze
to facilitate faster error selection followed by a correction to reduce
this for error correction.

A common challenge of gaze-based activation is Midas Touch [65].
This leads to incorrect triggering and eventual frustration. For our
TaG method, we have examined two approaches to alleviate this:

1. D-TaG – Gazing and then dwelling on the incorrect word for 0.8
seconds selects the word and triggers the text predictions. While
this minimizes the number of interaction steps, the risk of Midas
Touch, or inadvertent triggering, remains. The dwell time was
the average duration participants took between observing the
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incorrect transcription and calling out the mapped number in
the second pilot study. The workflow is seen in Figure 6.3.

2. V-TaG – Focusing on the incorrect word and then saying “select”
to select the erroneous word. While this avoids the Midas Touch
problem, it also introduces an intermediate step in selecting the
incorrect word. The workflow is depicted in Figure 6.2.

(a)

(b)

Figure 6.2: Voice-only edit method using “map” functionality. (a)Workflow
of V-TaG approach using available predictions (b)Workflow of
V-TaG approach using ”SPELL” mode

The selection of the predictions in both D-TaG and V-TaG used the
voice to minimize recognition errors and the Midas Touch challenge.
Uttering just the number associated with the correct prediction instead
of the entire word also reduced the effort and recognition errors.



6.5 experiment 81

(a)

(b)

Figure 6.3: Voice-only edit method using “map” functionality. (a)Workflow
of D-TaG approach using available predictions (b)Workflow of
D-TaG approach using ”SPELL” mode

6.5 experiment

6.5.1 Participants

Seventeen participants were recruited. All were well versed in En-
glish with B2 level proficiency and knew all the words in the sentence
set. Most of the participants were university students with a back-
ground in computer science. While there was no problem in command
recognition during our pilot study II, the recognition engine failed to
understand the commands necessary to select erroneous words for
five of the participants during their training process. Non-recognition
or misrecognition of the keywords was due to the influence of heavy
native language accents, which led to their exclusion at the onset of
the training session. Ages ranged from 22 to 37 years (µ = 28.1, σ =
4.6). Seven participants were male, five females. Five wore corrective
devices for vision and five had prior experience in eye-tracking experi-
ments. While some used voice commands on their smartphones, none
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had experience in voice-based typing or gaze-based typing. Partici-
pants were compensated 30 € for their time.

6.5.2 Apparatus

A Tobii EyeX2platform was used to collect the gaze data.

The eye tracker was attached below a 24-inch adjustable monitor. A
stand-alone microphone was positioned beside the monitor on the
desktop. Participants sat on a height-adjustable chair. See Figure 6.4.
The experiments were conducted in an environment with controlled
ambient light and sound. The software to evaluate the interactions was
made on React Native3 which recorded the participant’s performance.
Data were stored in a .csv file for further evaluation.

Figure 6.4: Experimental setup showing the fixed display with the eye tracker,
the stand-alone microphone, and a participant performing error
corrections in ”spell” mode.

6.5.3 Tasks

Evaluations of text entry and correction systems often employ a copy
task where the participant copies text and then fixes errors if any oc-

2 https://help.tobii.com/hc/en-us/categories/201185405-EyeX
3 https://facebook.github.io/react-native/

https://help.tobii.com/hc/en-us/categories/201185405-EyeX
https://facebook.github.io/react-native/
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Types of Error Count

Missing Letter 37

Extra Letter 11

Double Letter 17

Mistakes 25

Table 2: Types of errors in the read and correct task. (For example: Missing -
terible→ terrible; Extra - hers→ her; Double - upp→ up; Mistake -
want→ went)

curred. Voice-based text entry evaluations frequently follow a similar
protocol. The disadvantage is that copying involves cognitive over-
head; that is, reading than typing; this is atypical of most real-world
situations.

Therefore, our strategy was to let subjects perform a read and correct
task and an image description task as described below.

Read and Correct Task. This task is motivated by situations when users
encounter text they need to proofread and correct [167]. It allows
for understanding the effort required in correcting erroneous text
when already present. Since we wanted to investigate the interaction
procedure, not the participants’ skill in finding errors, the errors were
underlined in red (see Figure 6.3, 6.2). Underlining the error excluded
visual search time from the interaction.

Image Description Task. Dunlop et al. [39] argue that evaluating
text entry and editing requires free-form input that is not based on
established transcription/copy tasks. They note that fixed-phrase
copying provides internal consistency but lacks representativeness
in natural text entry systems. Following their rationale, we adopted
an image description task that they suggested. This setup is close to
a realistic scenario of text creation and editing. We used the image
dataset from Dunlop et al. [39].

6.5.4 Procedure

Participants first signed an informed consent form. This was followed
by an explanation of the study. Then, they were shown how the sys-
tem works by the experimenter (including the calibration procedure).
Afterward, the eye tracker was calibrated to each participant using
six calibration points. This was followed by a training block where
they operated the system themselves. Once they were comfortable
with the training process, the actual experiment started. Breaks were
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Figure 6.5: Image Description Task: Participants describe the images freely
without any assistive visual marker to show errors.

provided between sessions, followed by participants recalibrating the
eye tracker and continuing the test.

To offset order effects, participants were assigned in sequence to one
of 3! = 6 orders for testing the three edit methods.

After the experiment, participants completed the NASA TLX question-
naire, a SUS questionnaire, and an additional questionnaire. Testing
took approximately 60 minutes per participant for each edit method.
Participants were told that their gaze data would be recorded for
evaluation purposes. Testing for each task included a screen recording
for further analysis to understand the ease of selecting erroneous
words.

For the read and correct task, the experiment consisted of a training
block followed by five testing blocks. The passages were taken from
American short stories4. Each passage was around 90 words, which
covered 50% of the screen space. The errors were chosen to include
misspellings, incorrect letter entries, missing letters, and toggled order
of letters. Table 2 summarizes the different types of errors and their
count in the experiment.

For the image description task, there was a training block followed by
three testing blocks. Participants were provided with three distinct
images (as seen in Figure 6.5) for each block and were asked to de-

4 https://americanliterature.com/home

https://americanliterature.com/home
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scribe any two. When they were satisfied with the transcription and
corrections, they could go to the next image, uttering ”next.”

However, the command only gets activated when ”next” is mentioned
after a pause. Each user performed three image description tasks
where each set of images was different.

The procedure is illustrated in Figure 6.6.

Figure 6.6: Experimental procedure for Voice-only, D-TaG and V-Tag edit
methods

6.5.5 Design

The experiment was a 3 × 5 within-subjects design with the following
independent variables and levels:
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• Edit method (Voice-only, D-TaG, V-TaG)
• Block (1, 2, 3, 4, 5)Each block included

three passages, each
with five errors for

correction The dependent variables were block completion time (seconds) and
selection effort (count). Block completion time was the time to correct
all 15 errors in a block. Selection effort was a count of the number
of events to select an erroneous word: the more selection events, the
higher the assumed effort. By the edit method, the events logged were
non-recognition (Voice-only), a shift in focus or non-recognition of
”select” (V-TaG), and selection miscues (D-TaG).

In summary, the total number of trials (corrections) was : 12 (partici-
pants) × 3 (edit methods) × 5 (blocks) × 3(passages per session) × 5

(error per passage) = 2700.

6.6 results

The detailed results of the Read and Correct task and Image Descrip-
tion task are described in the following subsections.

1. Read And Correct Task

• Objective Measure

– Block Completion Time: The grand mean for block
completion time was 265.4 seconds. By edit method,
the means were 294.8 s (Voice-only), 280.6 s (V-TaG),
and 220.7 s (D-TaG). Thus, D-TaG was 21.4% faster than
V-TaG and 25.1% faster than Voice-only. There was a
slight improvement with practice with means of 282.0
s in block 2 and 249.5 s in block 6. (Block 1 was for
training and was excluded from the data analysis.) See
Figure 6.7. Using a repeated-measures ANOVA, the
differences were deemed statistically significant for edit
method (F2,22 = 11.5, p = .0004, η2= 0.239) and block
(F4,44 = 2.67, p = .0447).

The Voice-only edit method had the longest block com-
pletion time in 60% of the cases, while D-TaG consis-
tently was the fastest of the three approaches for error
correction.

– Selection Effort: The effort or the number of attempts to
select an erroneous word was measured. The measure



6.6 results 87

Figure 6.7: Block completion time (s) by edit method and block.

is a count per erroneous word, with a floor value of
1, implying a word was selected on the first attempt.
To the extent selection effort was above 1, the measure
reflects additional effort or frustration in selecting the
erroneous word. As noted earlier, selecting erroneous
words has been challenging in most research and com-
mercial applications for voice-based text entry.

The grand mean for selection effort was 1.32. By edit
method, the means were 1.29 (Voice-only), 1.52 (V-TaG),
and 1.15 (D-TaG). D-TaG required 24.3% less selection
effort than V-TaG and 10.9% less selection effort than
Voice-only. There was an improvement with practice,
with means of 1.42 in block 2 and falling to 1.24 in block
6. See Figure 6.8. The differences were statistically
significant for edit method (F2,22 = 19.1, p = .0001) and
block (F4,44 = 10.2, p = .0001). The V-TaG entry method
had the highest selection effort in all blocks, while
D-TaG demonstrated the lowest selection effort in all
blocks. The block-6 selection effort for D-TaG was 1.14,
implying an additional selection about once for every
seven erroneous words.

• Subjective Measure: A subjective feedback session was con-
ducted to understand how participants perceived their in-
teraction with the three edit methods. The goal was to
understand the perceived task load using the NASA TLX
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Figure 6.8: Selection effort (count) by edit method and block. (Selection effort
is the number of attempts to select an erroneous word)

questionnaire [58] and the usability of the edit method us-
ing the System Usability Scale (SUS) [22]. We also included
a custom questionnaire asking participants to subjectively
rate the edit methods on accuracy, learnability, speed, and
comfort.

The NASA TLX task load evaluation yielded means of 30.8
(Voice-only), 50.9 (V-TaG), and 31.2 (D-TaG). Although V-
TaG had the highest score – indicating a higher task load
compared to Voice-only and D-TaG – there were substantial
differences among the participants with scores ranging
from 29 to 75. A Friedman non-parametric test indicated
the differences between the three edit methods were not
statistically significant (χ2(2) = 4.67, p = .097).

Interviewing participants mentioned that focusing on the
erroneous word and then speaking ”select” for triggering
error correction was stressful.

Participants who did D-TaG before V-TaG were observed
to wait and dwell on the error word. On asking why most
mentioned they forgot to give the ”select” command as
dwell selection was simple for them.

The System Usability Scale (SUS) evaluation was conducted
to understand the overall usability of the edit methods. The



6.6 results 89

scores were 81.0 (Voice-only), 80.2 (D-TaG), and 73.3 (V-
TaG). The scores for Voice-only and D-TaG are quite good,
placing them in the top 10% of SUS scores.5 However, the
differences were deemed not statistically significant using
the Friedman test (χ2(2) = 3.96, p = .138).

Participants expressed comfort in using D-TaG as they did
not need to focus and say a command or say ”map” to
select an error.

The custom questionnaire was given to understand how
participants perceived accuracy, learnability, speed, and
comfort of the edit methods. Responses were on a scale
from 1 to 7, with higher scores preferred. Participants
reported that the speed and accuracy of D-TaG made the
experience of error correction simpler and easier than the
other edit methods. Voice-only and D-TaG scored the same
for learnability (6.6) and accuracy (5.7). D-TaG performed
better on speed (6.0 vs. 5.3 vs. 4.7) and comfort (5.3 vs. 5

vs. 4.7). See Figure 6.9.

Figure 6.9: Read and Correct Task – average perceived performance on a 1-7
scale with higher scores preferred

5 https://measuringu.com/sus/

https://measuringu.com/sus/


90 talk-and-gaze (tag)

2. Image Description Task: A free text formation task was per-
formed, asking participants to describe images presented before
them (Figure 6.5). A qualitative evaluation was performed based
on their performance.

• Subjective Feedback

– Preference: At the end of the study, participants were
asked to rank their preferences for the three edit meth-
ods. D-TaG emerged as the most preferred choice, with
66.6% going in its favor. This was followed by Voice-
only and finally V-TaG.

– Comfort: As seen in Figure 6.10, Voice-only tops the
list in comfort, followed by D-TaG and V-TaG. On ask-
ing participants the reason, they noted it was difficult
to focus on an erroneous word while giving the com-
mand for selection with V-TaG. While all praised D-
TaG, they raised issues with the accidental selection
of non-erroneous words. Voice trumps the list as it is
precise even though the steps take longer.

– Speed: D-TaG was perceived as the fastest edit method
(see Figure 6.10), with most participants expressing
comfort with the 0.8 second dwell time. However, when
false triggering happened, they felt uncomfortable. One
participant complained about the speed of erroneous
word selection but proposed a hybrid approach that
combined the voice and D-TaG approaches.

– Accuracy: Some participants had difficulty selecting the
erroneous word by gaze and confirming it by speaking
”select” for the V-TaG edit method. This led V-TaG to
the lowest perceived accuracy compared to the other
edit methods. While they were comfortable with the
selection in D-TaG, participants also appreciated the
voice-only approach.

– Overall Experience: Three participants expressed fa-
tigue from using the ”map” command with the Voice-
only edit method. Some found it difficult to focus on
the erroneous word while giving the ”select” command.
None reported fatigue with D-TaG even though some
noted and did not like the Midas Touch issue.
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Figure 6.10: Image Description Task – perceived performance on a 1-7 scale
with higher scores preferred

6.7 discussion

Discussions of the results below focus on (i) the use of gaze in a
voice-controlled environment for improving selection and editing of
text, (ii) the convenience of selecting erroneous words in the presence
of an additional modality, and (iii) use of a fall-back option when one
modality fails to perform.

Objective measurements and subjective feedback favored the combina-
tion of voice and gaze for hands-free error correction.

As observed in block completion time, D-TaG performed better than
V-TaG. The perceived speed also supports this in the qualitative evalu-
ation. One reason is the speed of gaze input for spatial exploration
in the context of user interfaces. This work also leveraged gaze in a
voice-controlled, hands-free environment to select textual errors in
fewer attempts compared to other edit methods.

This is seen in the selection effort where D-TaG performed better
than the V-TaG and Voice-only methods. Our approach overcomes
the limitations of recognition errors in error selection and thus also
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performs better in perceived comfort. Designers can leverage these
observations for faster pointing and selection of items in hands-free
applications. Applications for text entry and editing in head-mounted
multimodal displays or selection of interface elements in a multi-
monitor system are areas where our approach has potential.

The questionnaire responses show that the gaze-based D-TaG interface
was considered more comfortable than the V-TaG interface. The
possible reason is the jitter in gaze movement while fixating on the
incorrect word before uttering “select”. Selection errors sometimes
occurred, forcing the participant to repeat the selection process.

Interestingly, participants preferred the Voice-only approach over V-
TaG. This is irrespective of the fact that Voice-only has more steps to
error correction than V-TaG. This gives us insight into a fall-back mode
that designers can leverage for a multimodal hands-free environment.
Applications can primarily take advantage of the modalities available,
but in case of eye strain or eye tracker drift, a voice-only approach is a
fall-back method to complete the error correction task.

6.8 limitations and future work

1. Phonetically similar words were often incorrectly rendered (e.g.,
”little” vs. “Lidl”, ”year” vs. “yeah”). Incorrect recognition
increases error correction time and creates a barrier for command
recognition. For example, ”select” was often recognized as
“Sylhet” for three participants. For future work, this can be
addressed by a self-learning approach where the system learns
from mistakes corrected.

2. We used stand-alone eye trackers with traditional eye-tracking
challenges, such as calibration and drift. Some participants
reported that they had to look slightly above or below the target
word. This can be addressed by ”on-the-fly” calibration [153,
200].

3. This experiment did not provide visual feedback for the dwelling.
Future work would include visual feedback as used in many
gaze-based selection methods [77, 112].

4. Participants did not undergo extensive training. Future work
could include more training to understand how far performance
may improve beyond that shown in this evaluation.
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5. The text editing scenario only considered single-screen text.
However, our approach supports editing text that is longer than
the height of the screen. Voice commands like “scroll up” or
“scroll down” could be used along with gaze-based scrolling.
This would help in jumping across pages to do error correction.

6. While the study focused on character-level error correction, com-
plex text edits (grammatical errors, moving words, or sentences)
were not investigated. Future work could evaluate using voice
and gaze for implementing such features.

This work provides directions to future applications involving voice
and gaze for developers and designers. The subjective evaluation for
the image description task was intended to understand if using voice
and gaze for error correction could extend from a testing scenario to a
more realistic scenario. A detailed evaluation of different use cases is
planned for a near-future study.

6.9 conclusion

Voice-based input offers a fast, hands-free approach to text insertion.
With the advancement of several robust language models, speech-to-
text ensures that a relatively correct transcription is possible in the
English language. However, the challenge still lies in the process of
revising or or correcting the incorrect transcription.

We presented the design and evaluation of two versions of TaG (Talk-
and-Gaze): D-TaG and V-TaG, two novel gaze-augmented voice-based
text entry methods. Objective measures and subjective feedback for a
read and correct task show D-TaG performed better than a Voice-only
approach and V-TaG. Results also showed that D-TaG enables users
to complete their task in the least number of attempts, leading to
lower cognitive load and higher usability scores. The work work also
highlights the need of a fall back mode when one input modality
fails to perform. It ensures that the process of text entry and revision
continues.

Our novel approach could be extended to different styles of text
editing, thereby expanding the potential of voice and gaze for text-
based interactions.

This chapter sheds light on RQ 2 by showcasing how we can improve
hands-free text entry by integrating voice with gaze modality.
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C O N C L U S I O N A N D O U T L O O K

The design and development of text entry methods is a highly complex
and challenging task that always entails how efficient and user-friendly
the design and interaction are for the user to perform their input
actions. In her doctoral dissertation, Anna Felt points out that for
the most straightforward keyboard design with 26 letters, one can
generate 1026 design combinations [44]. This information aptly sheds
light on the various keyboard designs found in research and discussed
in this thesis. Moreover, this is just the standard keyboard design
without considering word predictions.

The growth of online content and our subsequent consumption of it
has increased manifolds. Growth is observed in additional domains
like entertainment, e-commerce, and information. This massive shift in
information consumption also needs great impetus in understanding
and adopting content for alternative modalities. Text entry in such
context thus becomes a pertinent topic of discussion. Without it, access
and interaction to content become extremely limited - not just from
an accessibility standpoint but also from a situational impairment
scenario. In this thesis, we investigated and enhanced the text entry
system’s usability with alternate modalities and highlighted the need
for understanding instantaneous cognitive load.

This thesis focuses on two alternative modalities for text entry systems:
gaze and voice. Our investigation conducted several objective and
subjective evaluations to understand the newly designed text entry
system and how users felt. The first part of our work focused on
increasing the number of text predictions and bringing them closer to
the visual fovea for gaze-based predictive keyboard design. Chapter
4 includes a detailed design investigation and evaluation of three
keyboard designs to understand the impact of design effectiveness.
Chapter 5 discusses an essential contribution of measuring cognitive
load while participants experimented. This novel investigation showed
how interacting with different designs impacts our cognitive load. The
second part investigated the text revision scenario, used voice as the
primary modality, and investigated how adding gaze as a secondary
modality could improve performance and overall user experience.
Chapter 6 explored the possibility of voice being a primary modality
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and gaze being a secondary for text editing scenarios. Our design
and evaluation showed improved results in a hands-free text editing
context.

In both cases, we tried to investigate the two core aspects of measuring
user experience: (i) Usability (ease of use) and (ii) Effectiveness (speed,
error reduction, etc.). While significant works focused on effectiveness
to define user experience, usability and measuring cognitive load to
establish usability is a core contribution that this thesis upholds.

Cognitive load has been an important stakeholder in understanding
the usability of a system. Surveys like the System Usability Scale
(SUS) or NASA Task Load Index (NASA TLX) have thus been very
important. Our investigation took it one notch higher to measure and
understand instantaneous cognitive load with a non-invasive EEG
device. Although we explored the cognitive load for gaze-based text
input, such evaluation was not done for multimodal systems. Thus,
in the future, the focus would be to measure cognitive information
for voice-based interaction and when modality switching happens for
multimodal systems.

7.1 outlook

The investigations conducted for this thesis have far-reaching impli-
cations that extend beyond predictive keyboard design employing
alternative modalities. The fusion of these two modalities holds the
potential for diverse applications in text entry, encompassing tasks as
varied as form filling and programming. While the primary objective
of this thesis was to delve into the intricacies of predictive text entry
and enhance the overall user experience, the findings have elucidated
the feasibility of such approaches in an array of scenarios where phys-
ical constraints necessitate deviation from the conventional keyboard
mouse interface.

Our innovative multimodal approach and keyboard design could
be helpful within mixed-reality environments such as Microsoft’s
Hololens or Facebook’s Quest. Even in these advanced settings, log-
ging into applications or networks relies on the laborious clicking of
individual keys on a virtual keyboard. Our work in this area opens up
exciting possibilities for simplifying and enhancing the user experience
within such immersive environments.

Expanding our design in accessibility, a combination of voice and gaze,
or any other pointing modality like gesture could benefit older adults
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where seamless technology integration is paramount. By aligning
technological interfaces with more natural modes of interaction, we
mitigate the steep learning curve among older generations. Whether
through gaze tracking, voice commands, or gesture-based inputs, these
alternative modalities can serve as valuable additions to the existing
input methods, fostering inclusivity and usability.

Additionally, our research has delved into EEG signal analysis to com-
prehend cognitive load. As the market witnesses bio-sensor prolifera-
tion and integration into commonplace devices such as smartwatches,
the potential for enhancing the user experience becomes increasingly
tangible. Smart glasses and virtual or augmented reality headsets can
seamlessly incorporate EEG sensors, facilitating real-time cognitive
load assessment. Such integration promises to dynamically tailor user
interfaces based on cognitive demands, optimizing user experiences
across a broad spectrum of applications and contexts.
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[88] Esther Levin and Amir M Mané. “Voice user interface design for automated
directory assistance.” In: Ninth European Conference on Speech Communication
and Technology. 2005.

[89] J. C. R. Licklider. “Man-Computer Symbiosis.” In: IRE Transactions on Human
Factors in Electronics HFE-1.1 (1960), pp. 4–11. doi: 10.1109/THFE2.1960.

4503259.

[90] Christof Lutteroth, Moiz Penkar, and Gerald Weber. “Gaze vs. Mouse: A
Fast and Accurate Gaze-Only Click Alternative.” In: Proceedings of the 28th
Annual ACM Symposium on User Interface Software amp; Technology. UIST ’15.
Charlotte, NC, USA: Association for Computing Machinery, 2015, 385–394.
isbn: 9781450337793. doi: 10.1145/2807442.2807461. url: https://doi.org/10.

1145/2807442.2807461.

[91] Otto Hans-Martin Lutz, Antje Christine Venjakob, and Stefan Ruff. “SMOOVS:
Towards calibration-free text entry by gaze using smooth pursuit movements.”
In: Journal of Eye Movement Research 8.1 (2015). doi: 10.16910/jemr.8.1.2. url:
https://bop.unibe.ch/JEMR/article/view/2394.

[92] Kien Hoa Ly, Ann-Marie Ly, and Gerhard Andersson. “A fully automated
conversational agent for promoting mental well-being: A pilot RCT using
mixed methods.” In: Internet Interventions 10 (2017), pp. 39–46. issn: 2214-
7829. doi: https://doi.org/10.1016/j.invent.2017.10.002. url: https://www.

sciencedirect.com/science/article/pii/S221478291730091X.

[93] I. Scott MacKenzie and R. William Soukoreff. “Phrase Sets for Evaluating Text
Entry Techniques.” In: CHI ’03 Extended Abstracts on Human Factors in Computing
Systems. CHI EA ’03. Ft. Lauderdale, Florida, USA: Association for Computing
Machinery, 2003, 754–755. isbn: 1581136374. doi: 10.1145/765891.765971. url:
https://doi.org/10.1145/765891.765971.

[94] I Scott MacKenzie and K Tanaka-Ishii. Evaluation of text entry techniques.
Vol. 2007. Morgan Kaufmann San Francisco, CA, 2007.

[95] I. Scott MacKenzie and Kumiko Tanaka-Ishii. Text Entry Systems: Mobility, Ac-
cessibility, Universality. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007. isbn: 0123735912.

[96] I. Scott MacKenzie and Shawn X. Zhang. “The Design and Evaluation of a
High-Performance Soft Keyboard.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’99. Pittsburgh, Pennsylvania, USA:
Association for Computing Machinery, 1999, 25–31. isbn: 0201485591. doi:
10.1145/302979.302983. url: https://doi.org/10.1145/302979.302983.

https://doi.org/10.1145/1040830.1040880
https://doi.org/10.1145/1040830.1040880
https://doi.org/10.1145/1040830.1040880
https://doi.org/10.1109/THFE2.1960.4503259
https://doi.org/10.1109/THFE2.1960.4503259
https://doi.org/10.1145/2807442.2807461
https://doi.org/10.1145/2807442.2807461
https://doi.org/10.1145/2807442.2807461
https://doi.org/10.16910/jemr.8.1.2
https://bop.unibe.ch/JEMR/article/view/2394
https://doi.org/https://doi.org/10.1016/j.invent.2017.10.002
https://www.sciencedirect.com/science/article/pii/S221478291730091X
https://www.sciencedirect.com/science/article/pii/S221478291730091X
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/302979.302983
https://doi.org/10.1145/302979.302983


bibliography 115

[97] I. Scott MacKenzie and Shawn X. Zhang. “The Design and Evaluation of a
High-Performance Soft Keyboard.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’99. Pittsburgh, Pennsylvania, USA:
Association for Computing Machinery, 1999, 25–31. isbn: 0201485591. doi:
10.1145/302979.302983. url: https://doi.org/10.1145/302979.302983.

[98] I. Scott MacKenzie and Xuang Zhang. “Eye Typing Using Word and Letter
Prediction and a Fixation Algorithm.” In: Proceedings of the 2008 Symposium
on Eye Tracking Research amp; Applications. ETRA ’08. Savannah, Georgia:
Association for Computing Machinery, 2008, 55–58. isbn: 9781595939821. doi:
10.1145/1344471.1344484. url: https://doi.org/10.1145/1344471.1344484.
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[123] Jan Nouza, Tomáš Nouza, and P Cerva. “A multi-functional voice-control aid
for disabled persons.” In: Proc. of International Conference on Speech and Computer
(SPECOM’05). Patras, Greece. 2005, pp. 715–718.

[124] Jan Nouza, Jindrich Zdansky, Petr Cerva, and Jan Silovsky. “Challenges in
Speech Processing of Slavic Languages (Case Studies in Speech Recognition of
Czech and Slovak).” In: Development of Multimodal Interfaces: Active Listening
and Synchrony: Second COST 2102 International Training School, Dublin, Ireland,
March 23-27, 2009, Revised Selected Papers. Ed. by Anna Esposito, Nick Campbell,
Carl Vogel, Amir Hussain, and Anton Nijholt. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 225–241. doi: 10.1007/978-3-642-12397-9 19. url:
https://doi.org/10.1007/978-3-642-12397-9 19.

[125] Stavroula Ntoa, George Margetis, Margherita Antona, and Constantine Stephani-
dis. “Scanning-based interaction techniques for motor impaired users.” In:
Assistive Technologies and Computer Access for Motor Disabilities. IGI Global, 2014,
pp. 57–89.

[126] Marcus Nyström and Kenneth Holmqvist. “An adaptive algorithm for fixation,
saccade, and glissade detection in eyetracking data.” In: Behavior research
methods 42.1 (2010), pp. 188–204.

[127] Sharon Oviatt. “Multimodal interactive maps: Designing for human perfor-
mance.” In: Human-Computer Interaction 12.1 (1997), pp. 93–129.

https://ojs.aaai.org/index.php/AAAI/article/view/9777
https://ojs.aaai.org/index.php/AAAI/article/view/9777
https://doi.org/10.1145/1743666.1743730
https://doi.org/10.1145/1743666.1743730
https://doi.org/10.2196/10148
http://www.jmir.org/2018/6/e10148/
https://doi.org/10.1145/3025453.3025517
https://doi.org/10.1145/3025453.3025517
https://doi.org/10.1145/3025453.3025517
https://doi.org/10.16910/jemr.6.2.1
https://bop.unibe.ch/JEMR/article/view/2354
https://bop.unibe.ch/JEMR/article/view/2354
https://doi.org/10.1007/978-3-642-12397-9_19
https://doi.org/10.1007/978-3-642-12397-9_19


118 bibliography

[128] Sharon Oviatt. “Taming recognition errors with a multimodal interface.” In:
Communications of the ACM 43.9 (2000), pp. 45–45.

[129] Sharon Oviatt. “Multimodal interfaces.” In: The Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies and Emerging Applications. Ed. by
J. A. Jacko A. Sears. 2nd ed. Vol. 14. Erlbaum, Mahwah, NJ, 2003, pp. 286–304.

[130] Sharon Oviatt, Phil Cohen, Lizhong Wu, Lisbeth Duncan, Bernhard Suhm,
Josh Bers, Thomas Holzman, Terry Winograd, James Landay, Jim Larson, et al.
“Designing the user interface for multimodal speech and pen-based gesture ap-
plications: state-of-the-art systems and future research directions.” In: Human-
Computer Interaction 15.4 (2000), pp. 263–322. doi: 10.1207/S15327051HCI1504

1.

[131] Fred Paas, Alexander Renkl, and John Sweller. “Cognitive Load Theory and
Instructional Design: Recent Developments.” In: Educational Psychologist 38.1
(2003), pp. 1–4. doi: 10.1207/S15326985EP3801\ 1. eprint: https://doi.org/10.

1207/S15326985EP3801 1. url: https://doi.org/10.1207/S15326985EP3801 1.

[132] Prateek Panwar, Sayan Sarcar, and Debasis Samanta. “EyeBoard: A fast and
accurate eye gaze-based text entry system.” In: 2012 4th International Conference
on Intelligent Human Computer Interaction (IHCI). IEEE. 2012, pp. 1–8.

[133] Diogo Pedrosa, Maria Da Graça Pimentel, Amy Wright, and Khai N. Truong.
“Filteryedping: Design Challenges and User Performance of Dwell-Free Eye
Typing.” In: ACM Trans. Access. Comput. 6.1 (2015). issn: 1936-7228. doi:
10.1145/2724728. url: https://doi.org/10.1145/2724728.

[134] Ken Pfeuffer and Hans Gellersen. “Gaze and Touch Interaction on Tablets.”
In: Proceedings of the 29th Annual Symposium on User Interface Software and
Technology. UIST ’16. Tokyo, Japan: Association for Computing Machinery,
2016, 301–311. isbn: 9781450341899. doi: 10.1145/2984511.2984514. url:
https://doi.org/10.1145/2984511.2984514.

[135] Ian J. Pitt and Alistair D. N. Edwards. “Improving the Usability of Speech-Based
Interfaces for Blind Users.” In: Assets ’96. Vancouver, British Columbia, Canada:
Association for Computing Machinery, 1996, 124–130. isbn: 0897917766. doi:
10.1145/228347.228367. url: https://doi.org/10.1145/228347.228367.
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