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1 Introduction

1.1 Motivation

As early as the 18th century, physicists and mathematicians had to face the problem that
the three-body problem of classical mechanics has no general, closed solution and can
only be solved approximately using numerical approaches [1]. Many-particle systems such
as solids with particle numbers in the order of 1023 therefore pose an obvious problem
in physics. Over the past century, however, it has been shown that a surprisingly large
number of materials can be described to a very good approximation by effective models
of non-interacting fermions [2]. However, not all materials bow to the effectiveness of
these approaches. In so-called strongly correlated materials, the correlations between
the individual electrons cannot be ignored without leaving fundamental aspects of the
real material unexplained [3]. Transition metal compounds are an important class of
materials in which such correlation effects are prominent. The materials in this class
are characterised by the fact that electrons in partially filled d orbitals are responsible
for the dominant effects in the electronic structure [4]. Research into these materials
is relevant because some of them are promising candidates for topologically non-trivial
phases [5–9] as well as for unconventional superconductivity [4, 10, 11] and thus offer both
scientific and technological potential. In this work, we will specifically investigate how
four potentially relevant effects, Hund’s coupling, spin-orbit coupling, superexchange and
Jahn-Teller effect, affect the ground state in a half-filled t2g shell. Previous studies, such
as those by Streltsov and Khomskii [12], as well as more recent experimental studies based
on their results [13], have not yet made any statement about the mutual relationship
between the four effects, which is why the aim here is to investigate how they manifest
themselves both in the spectrum and in the state characteristics.

1.2 Structure of the thesis

This thesis is divided into five chapters, which are briefly described below.
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1 Introduction

In Chapter 2, the theory underlying the problem under consideration is first elaborated.
The fundamental difficulty of solving many-body problems is briefly explained and the
specific effects in the case of strongly correlated electrons in transition metal compounds
that will be relevant in this work are discussed.

Section 2.1 explains Hund’s coupling and spin-orbit coupling, which can also influence
the structure of individual atoms independently of the surrounding crystal.

Section 2.2 then explains the influence of the crystal surrounding the single ion on the
system, in particular the energetic splitting of the d-shell. In addition, the Jahn-Teller
effect is introduced, which in the context of this work has a similar effect to crystal field
splitting and can cause a further symmetry reduction.

The final Section 2.3 describes the possibilities for exchanging electrons between individual
sites and what influence these can have on the spectrum of the system. In addition, the
cooperative Jahn-Teller effect of several sites is briefly discussed.

Chapter 3 explains the mathematical models used in this work. After a brief introduction
to the considered Fock space in Section 3.1, Section 3.2 first explains how Hund’s
coupling can be described by the Kanamori-Hubbard Hamiltonian. Here, total angular
momentum and total spin are introduced as good quantum numbers of the operator and
the eigenstates of the ground state manifold are described.

The same is done in Section 3.3, where the spin-orbit coupling operator is derived and
analysed.

Section 3.4 then shows how the Jahn-Teller effect can be implemented as a Hamiltonian
operator. For this purpose, two normal modes are introduced, which describe the
distortion of the crystal around the ion.

Finally, in Section 3.5, the possibility of electron hopping between individual sites by the
superexchange mechanism is described, whereby the individual exchange terms between
orbitals are discussed. In addition, the method of second-order perturbation theory is
introduced, with which the solutions to the full problem will be analysed later.

The following results are divided into two chapters. Chapter 4 first explains all results
concerning a single ion in the crystal. Section 4.1 shows exactly which energies and
ground states the combination of Hund’s coupling and spin-orbit coupling provides.
Section 4.2 also considers the influence of the Jahn-Teller effect as an additional added
term on the solution of the Hamiltonian operator. Here it can be shown that the ground
state manifold is split depending on the magnitude of the magnetic quantum number,
whereby the maximisation of it is slightly preferred.
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1.2 Structure of the thesis

Chapter 5 explains the effects that can occur when two neighbouring ions interact.
Section 5.1 first discusses the applicability of perturbation theory to the problem. It was
shown that although the energy gap between the supposed ground state and other states
can disappear, this does not happen for physically relevant parameters, which ultimately
validates its use. The two edge cases of vanishing spin-orbit coupling and Hund’s coupling
are then described analytically and the common region is analysed numerically. This
shows that the perturbation-theoretic approach achieves almost perfect agreement with
the exact solution. Section 5.1.2 then analyses the influence that the Jahn-Teller effect
can have on the energy splitting. It is shown that this can cause a distortion even in a
highly simplified system.

The following Chapter 6 then summarises and provides an outlook on possible subsequent
research.
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2 Theory

This chapter explains the theoretical principles required to understand the underlying
physics and the methods and results based on it.

Section 2.1 describes the physics of isolated transition metal ions. It first explains how
the description of multi-electron atoms works in the shell model and then goes into the
two fundamental components in the Hamiltonian operator, namely Hund’s coupling and
spin-orbit coupling.

In Section 2.2, the effects that the ion experiences in the crystal are discussed. Firstly,
the crystal field splitting of the d orbitals is explained and secondly, the reduction of
the ground state energy through a further reduction of the symmetry, the so-called
Jahn-Teller effect, is introduced.

Section 2.3 then describes how the interaction between the individual ions can manifest
itself. On the one hand, this can occur through an exchange of electrons between the two
ions, which takes place through the ligand atom in between. This mechanism is referred
to as superexchange. Secondly, we briefly analyse how the Jahn-Teller effect manifests
itself when the distortions on neighbouring ions are related to each other.

2.1 Isolated transition metal ions

Elements that have an incomplete d subshell or can form ions with an incomplete d subshell
are referred to as transition metals.[14] This incomplete d subshell is a configuration
in which correlation effects between individual electrons can become relevant, which is
why the fundamental physical description is only possible using methods of many-body
quantum mechanics. Neglecting relativistic effects, the Schrödinger equation can be
described by

[
−

n∑
i

∆i

2m
− ∆α

2M
−

n∑
i

Ze2

riα
+

1

2

n∑
i,j

e2

rij
− Ek

]
ψk ({r⃗i}) = 0 (2.1)
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2 Theory

where i indicates the n individual electrons of mass m, α indicates the atomic nucleus of
mass M and atomic number Z and k indicates the possible eigenenergies and eigenstates
of the operator. The solution of this equation (2.1) describes the wave function of all
electrons under consideration and must also be completely antisymmetric under particle
exchange according to the Pauli principle [15]. Equations of this form are generally not
analytically solvable and must be replaced by simplified models [16]. A starting point
for this can be to consider the solutions of equation (2.1) for a single electron, since
this problem can be solved by eliminating the Coulomb interaction between individual
particles. The mathematical elaboration of this problem is dealt with in detail in most
standard textbooks on quantum mechanics [16–19], which is why only the results relevant
to the following considerations will be explained here. The solutions of the eigenvalue
problem can be separated in spherical coordinates by

ĤRn,l (r)Yl,m (ϕ, θ) = EnRn,l (r)Yl,m (ϕ, θ) (2.2)

where the eigenvalues are given by

En = −Z2ERy
1

n2
n ∈ N (2.3)

with the Rydberg energy ERy. For the remaining quantum numbers l and m the following
relations

l < n l ∈ N ∪ 0 (2.4)
|m| ≤ l m ∈ Z (2.5)

apply, which results in a degeneration of the energy eigenvalues of

# = n2. (2.6)

When naming the individual orbitals, it is usual to replace the secondary quantum
number l with a corresponding lower case letter. The following relations

l = 0 =̂ s

l = 1 =̂ p

l = 2 =̂ d

l = 3 =̂ f.

apply. The radial wave functions Rn,l (r) are exclusively decisive for the expected distance
between nucleus and electron, which is given by

⟨r⟩ =
∫ ∞

0

rRn,l (r) r
2dr. (2.7)
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2.1 Isolated transition metal ions

It can be seen that this expectation value increases not only with increasing principal
quantum number n, but also with increasing secondary quantum number l. If we now try
to apply the knowledge gained to the multi-electron problem, the simplest approach is to
use the calculated eigenstates of the single electron problem as the basis for the Fock
space. If one now occupies the individual orbitals one after the other, starting with the
lowest energy, it follows that the energy eigenvalues of the next highest orbitals must be
influenced by this. If we make the simplifying assumption that the individual electrons
shield the positively charged atomic nucleus radially symmetrically, the multi-electron
problem can be solved for each additional orbital by an effective Hamiltonian of the
form

Ĥeff = Ĥkin + V̂eff , (2.8)

where the shielding of the nucleus by the already distributed electrons is implemented in
V̂eff . Due to the l-dependence of the radial wave function and thus also the proportion
of effective shielding, the (n+ 1)-s orbitals are now even below the n-d orbitals in terms
of energy when the states are occupied. Even if this is not always true due to other
effects that only become clear in a more detailed treatment of the problem, it can be
assumed for the class of materials dealt with in this work that a configuration of the
form (n+ 1)s2 ndk always exists for the individual atom.

Various spin configurations are now available within this electronic configuration. De-
pending on the exact problem, two different effects can play a role here, which influence
the spin configuration in different ways.

Hund’s rule is based on the fundamental assumption that electrons that are in the same
orbital experience a greater Coulomb repulsion and thus an increase in energy than
electrons that are in different orbitals. Since the symmetry of the occupied orbitals is
directly linked to the total orbital angular momentum L and total spin S, the simple
rules formulated by Hund [20] apply that the energetic ground state is always determined
by the highest possible total spin S and, if this is fulfilled, the highest possible total
orbital angular momentum L is also aimed for. A more mathematical description of
these rules for the class of materials considered in this work is provided later on by the
Kanamori-Hubbard Hamiltonian.

Spin-orbit coupling considers the interaction of the electron spin with its own orbital
angular momentum. This interaction can be understood as a magnetic interaction, as in
a semi-classical view, such as in the Bohr atomic model, the orbiting electron generates
a magnetic field which can interact with the magnetic moment of the electron. In more
precise physical terms, the interaction can be described as

Ĥλ = λ
∑
i

⃗̂
li · ⃗̂si (2.9)
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2 Theory

where in the multi-electron problem the individual electrons, represented here by the
index i, are added up. The spin-orbit coupling constant λ can be estimated with λ ∝ Z4

[4], where Z is the atomic number.

2.2 Influence of the surrounding crystal

2.2.1 Crystal field splitting

If a transition metal ion described in the previous section is viewed in a crystal, the
physics changes fundamentally. The reason for this is that the full radial symmetry
is reduced to that of the surrounding crystal. The influence of the cubic symmetry
considered in this work, which is shown in Figure 2.1, is explained below.

Figure 2.1: Shown is a single ion (blue) surrounded by ligands (black) in cubic crystal
symmetry.

As can be seen in Figure 2.1, the ligands surrounding the transition metal ions in cubic
crystals can be located on the classical Cartesian axes. If we combine this observation
with the d orbitals considered in Figure 2.2, we can already intuitively see that the
z2 and x2 − y2 orbitals lying on the axes can be influenced differently than the yz, xz
and xy orbitals that lie between the axes. This crystal field splitting of the orbitals
can be physically explained by the Coulomb repulsion and the covalency between the
electrons of the neighbouring ions. Since a detailed derivation is not necessary for the
understanding of this work, only the result is considered here and reference is made to
the literature.[4]
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2.2 Influence of the surrounding crystal

Figure 2.2: A possible basis of the d orbitals is shown. It can be seen that three of the
states lie between, while the other two orbitals lie on the axes [4].
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2 Theory

Δ
CF

e
g

t
2g

d

Figure 2.3: The crystal field splitting of the d orbitals in cubic symmetry is shown.
The relevant triple degenerate t2g shell in this work is energetically below the double
degenerate eg shell.

The result of the detailed calculation shows that the so-called t2g orbitals, consisting of
the yz, xz and xy orbitals, are lowered in energy, while the eg orbitals consisting of the
z2 and x2 − y2 orbitals are increased. This energy splitting ∆CF, which can usually be
estimated with 1.5− 3.5 eV [4], is shown in Figure 2.3.
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2.2 Influence of the surrounding crystal

Due to this relatively large energy splitting, it can be assumed that the hybridisation of
the t2g with the eg orbitals can be neglected and only the t2g orbitals need to be considered.
If we consider the angular momentum of the d orbitals in matrix representation, we
find that these matrices, projected onto the subspace spanned by the t2g orbitals, are
almost identical to those of the angular momentum of the p orbitals. This is shown in
the following in the basis {dyz, dxz, dxy, d3z2−r2 , dx2−y2} respectively {px, py, pz}.

l̂xd =


0 0 0 −

√
3i −i

0 0 i 0 0

0 −i 0 0 0√
3i 0 0 0 0

i 0 0 0 0

 , l̂xp =

 0 0 0

0 0 −i
0 i 0

 , (2.10)

l̂yd =


0 0 −i 0 0

0 0 0
√
3i −i

i 0 0 0 0

0 −
√
3i 0 0 0

0 i 0 0 0

 , l̂yp =

 0 0 i

0 0 0

−i 0 0

 , (2.11)

l̂zd =


0 i 0 0 0

−i 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 −2i 0 0

 , l̂zp =

 0 −i 0

i 0 0

0 0 0

 . (2.12)

The only difference lies in the sign, which differs by one minus.

The angular momentum of the t2g orbitals can therefore be described by an effective
orbital angular momentum leff = 1, whereby the aforementioned negative sign must be
taken into account in individual cases [21]. Accordingly, the following applies to the
eigenstates

l̂zeff
1√
2
(|yz⟩+ i |xz⟩) = +

1√
2
(|yz⟩+ i |xz⟩) (2.13)

l̂zeff |xy⟩ = 0 (2.14)

l̂zeff
1√
2
(|yz⟩ − i |xz⟩) = − 1√

2
(|yz⟩ − i |xz⟩) . (2.15)
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2 Theory

2.2.2 Jahn-Teller effect

In addition to crystal field splitting, which is determined by the bonding-related sym-
metries of the crystal and here splits the d shell into t2g and eg orbitals, there are
other similar effects that can be summarised under the term Jahn-Teller effect. As was
shown with the Jahn-Teller theorem [22], the energy of the electronic ground state of
a non-linear molecule or crystal can be lowered further and further by reducing the
geometric symmetry until only the double Kramers degeneracy remains. Physically, this
reduction in symmetry is manifested by a shift in the surrounding ligands, which can be
described mathematically by generalised coordinates Qi. If the potential energy in these
coordinates is represented as a Taylor series, the result is

V (Q) = V0 +
∑
k

∂V

∂Qk

Qk +
1

2

∑
k,l

∂2V

∂Qk∂Ql

QkQl + · · · (2.16)

where the square part can be understood as the energy required to distort the crystal
against its compression modulus [23].

2.3 Interacting ions

2.3.1 Superexchange

If not only isolated ions are considered, but also ions in periodic crystal structures, these
can interact with each other. In the class of materials considered in this thesis, the
direct hybridisation of the orbitals of the transition metal ions is negligible. Instead, the
electron exchange takes place mostly via superexchange interaction. This is characterised
by the fact that the electrons in the d orbitals interact directly with the p orbitals of the
ligand, whereby two ions that are not directly adjacent interact with each other through
the ligand between them [24, 25]. The exchange can be described in general terms by a
Hamiltonian of the form

Ĥt = −tpd
∑
i

(
ĉ†iσ ĉpσ + ĉ†pσ ĉiσ

)
. (2.17)

2.3.2 Cooperative Jahn-Teller effect

If several atoms are considered in a Jahn-Teller active crystal system, this results in a
complex system with many possible interaction channels. The most important aspect is

16



2.3 Interacting ions

that the individual displacements of the ligands can no longer occur independently of each
other. If, for example, the crystal is compressed along the z-axis (Q3 < 0) in the vicinity
of a single ion, the crystal structure surrounding the ion above it must automatically be
elongated along the z-axis (Q3 > 0). In addition, the ions in the crystal can interact with
each other via phonons, which has a direct influence on the distortions that characterise
the Jahn-Teller effect. As the co-operative Jahn-Teller effect will only play a minor role
in the following, this will suffice for the theoretical part. For more in-depth insights, one
can find more detailed information in the literature [24, 26].
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3 Models and methods

This chapter explains the models which were used to the describe the physical systems
and the methods which were used to solve the resulting mathematical problems.

Section 3.1 introduces the Fock space on which all the calculations in this thesis are
performed.

In Section 3.2 the Kanamori-Hubbard Hamiltonian is introduced, which gives a mathe-
matical form to Hund’s rules. The eigenenergies and the ground state manifold of the
three electron case are given.

In Section 3.3 the mathematical implementation of the second relevant interaction, the
spin-orbit coupling is introduced. As in Section 3.2, the ground state manifold of the
three electron case is given.

Following this, the operator form of the Jahn-Teller effect and its corresponding normal
modes are introduced in Section 3.4.

Lastly the superexchange mechanism and its implementation as a perturbation on the
local Hamiltonian is explained in Section 3.5.

3.1 Fock space of the analysed model

In this thesis, we consider Fock spaces that describe half-filled t2g shells. Here, a
representation is chosen that is based on the underlying yz, xz and xy orbitals. Since
each of these orbitals is doubly spin degenerate, there are three electrons distributed over
six one-electron states, i.e. a

(
6
3

)
= 20 dimensional Fock space. As the standard basis used

is shown in full in Appendix A, a brief example will suffice for a better understanding of
the work.

|0, 0, 1, 1, 1, 0⟩ =
∣∣∣×, ↑↓, ↑

〉
= c†xz↑c

†
xz↓c

†
xy↑ |0⟩ (3.1)

In addition, a two-site model will be considered in this work, in which the two identical
ions are connected to each other via the z-axis. The resulting Fock space is therefore

19



3 Models and methods

top (t)

bottom (b)

Figure 3.1: Shown is the structure considered in the second part of the thesis. The two
octahedra share a corner on the z-axis.

(
12
6

)
= 924 dimensional. States in this space are composed of the one-site states, whereby

the upper (t) and lower (b) ions are indexed accordingly as is shown in figure 3.1

3.2 Kanamori-Hubbard Hamiltonian

The theoretical findings described in the previous chapter can be represented in the
Kanamori form of the multi-orbital Hubbard Hamiltonian as a mathematical operator
[27, 28]. This can be written in two forms, both of which contribute to understanding

20



3.2 Kanamori-Hubbard Hamiltonian

and will therefore be explained here. On the one hand, the operator can be written as

ĤU =
∑
α,β

ĉ†α↑ĉ
†
α↓ [Uδα,β + J ′ (1− δα,β)] ĉβ↓ĉβ↑ (3.2)

+
∑
α,β<α

∑
σ,σ′

ĉ†ασ ĉ
†
βσ′

[
U ′ĉβσ′ ĉασ − JHĉβσ ĉασ′

]
. (3.3)

Here U and U ′ represent the intra- and inter-orbital Coulomb repulsions between indi-
vidual electrons, while JH and J ′ represent the Hund’s coupling and the pair-hopping
exchange between individual orbitals respectively, whereby it can also be shown that
U ′ = U − 2JH and JH = J ′ applies [29]. The Greek letters α and β stand for the three
orbitals, while σ and σ′ can represent spin up and down. In this form, you can directly
see which microscopic aspects are taken into account in the model. Firstly, the energy
increases with each additional electron due to Coulomb repulsion between the electrons.
This is the essence of the Hubbard Hamiltonian. Secondly, there is a direct spin-spin
interaction between the individual orbitals, which shows that a parallel alignment of
the spins in the individual orbitals is favoured, exactly as predicted by Hund’s rules.
An alternative notation for the operator can be found by defining total orbital angular
momentum and total spin as operators. If these operators are defined as follows

L̂2 =
∑

i∈{x,y,z}

(∑
n

l̂in

)2

(3.4)

Ŝ2 =
∑

i∈{x,y,z}

(∑
n

ŝin

)2

, (3.5)

where n numbers the electrons and substituting them into the Kanamori-Hubbard
Hamiltonian gives the intuitively understandable form

ĤU = (U − 3JH)
N̂(N̂ − 1)

2
− 2JHŜ

2 − JH
2
L̂2 +

5

2
JHN̂ (3.6)

where N̂ represents the particle number operator. Here you can see directly how the
model relates to the well-known Hund’s rules. First, the aim is to maximise the total
spin, then to maximise the total orbital angular momentum. Accordingly, the eigenstates
can be simply described by the usual quantum numbers S, L, mS and mL, where the
degeneracy is given directly by (2S + 1) · (2L+ 1). The eigenspaces and their energies
are shown in Table 3.1, the states can be looked up in Appendix B.

In the following, only the most important states will be presented here, namely the
fourfold degenerate S = 3

2
, L = 0 ground state manifold of the three-electron problem.
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3 Models and methods

Table 3.1: Eigenenergies of the Kanamori-Hubbard Hamiltonian with three electrons

E S L degeneracy
3U − 4J 1

2
1 6

3U − 6J 1
2

2 10
3U − 9J 3

2
0 4

The states take the following form∣∣∣S+ 3
2

〉
=

∣∣∣∣mS = +
3

2

〉
= |↑, ↑, ↑⟩ (3.7)

∣∣∣S+ 1
2

〉
=

∣∣∣∣mS = +
1

2

〉
=

1√
3
(|↓, ↑, ↑⟩+ |↑, ↓, ↑⟩+ |↑, ↑, ↓⟩) (3.8)

∣∣∣S− 1
2

〉
=

∣∣∣∣mS = −1

2

〉
=

1√
3
(|↓, ↓, ↑⟩+ |↓, ↑, ↓⟩+ |↑, ↓, ↓⟩) (3.9)

∣∣∣S− 3
2

〉
=

∣∣∣∣mS = −3

2

〉
= |↓, ↓, ↓⟩ (3.10)

where their energy is 3U − 9JH.

3.3 Spin-orbit coupling

The spin-orbit coupling can be quantised with the help of the effective orbital angular
momentum derived in Section 2.2 in second quantisation by

Ĥλ = λ
∑
α,β

∑
σ,σ′

⟨α, σ| ⃗̂lt2g · ⃗̂s |β, σ′⟩ ĉ†α,σ ĉβ,σ′

= −λ
∑
α,β

∑
σ,σ′

⟨α| ⃗̂lp |β⟩ · ⟨σ| ⃗̂s |σ′⟩ ĉ†α,σ ĉβ,σ′

=
iλ

2

∑
α,β,γ

∑
σ,σ′

ϵα,β,γ τ̂
γ
σ,σ′ ĉ

†
α,σ ĉβ,σ′ (3.11)

where the τ̂ γ are the Pauli matrices [30]. The eigenstates of this operator can be
represented as correspondingly antisymmetrised, direct products of the one-particle
solution for any fixed number of particles. These are classified by the total angular
momentum quantum numbers j and mj. From the parameters for the single electron,
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3.4 Jahn-Teller effect

s = 1
2

and l = 1, it follows that only j = 1
2

and j = 3
2

are possible. The eigenstates are
therefore combined from

|j = 1/2,mj = +1/2⟩ ==
1√
3
|yz, ↓⟩+ i√

3
|xz, ↓⟩+ 1√

3
|xy, ↑⟩ , (3.12)

|j = 1/2,mj = −1/2⟩ = 1√
3
|yz, ↑⟩ − i√

3
|xz, ↑⟩ − 1√

3
|xy, ↓⟩ , (3.13)

with energy +λ and

|j = 3/2,mj = +3/2⟩ = 1√
2
|yz, ↑⟩+ i√

2
|xz, ↑⟩ , (3.14)

|j = 3/2,mj = +1/2⟩ = 1√
6
|yz, ↓⟩+ i√

6
|xz, ↓⟩ −

√
2

3
|xy, ↑⟩ , (3.15)

|j = 3/2,mj = −1/2⟩ = 1√
6
|yz, ↑⟩ − i√

6
|xz, ↑⟩+

√
2

3
|xy, ↓⟩ , (3.16)

|j = 3/2,mj = −3/2⟩ = 1√
2
|yz, ↓⟩ − i√

2
|xz, ↓⟩ , (3.17)

with energy −1
2
λ and are listed in Appendix B.

In the following, only the most important states will be presented, namely the fourfold
degenerate ground state manifold of the three-electron problem. The states take the
following form∣∣∣j+ 3

2

〉
= |j = 3/2,mj = +3/2⟩ |j = 3/2,mj = +1/2⟩ |j = 3/2,mj = −1/2⟩ (3.18)∣∣∣j+ 1

2

〉
= |j = 3/2,mj = +3/2⟩ |j = 3/2,mj = +1/2⟩ |j = 3/2,mj = −3/2⟩ (3.19)∣∣∣j− 1

2

〉
= |j = 3/2,mj = +3/2⟩ |j = 3/2,mj = −1/2⟩ |j = 3/2,mj = −3/2⟩ (3.20)∣∣∣j− 3

2

〉
= |j = 3/2,mj = +1/2⟩ |j = 3/2,mj = −1/2⟩ |j = 3/2,mj = −3/2⟩ (3.21)

where their energy is −3
2
λ.

3.4 Jahn-Teller effect

If the Taylor series (2.16) from 2.1 is broken off after the quadratic order, the Jahn-Teller
effect can be described in the natural coordinates of the oscillation. For the octahedral
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3 Models and methods

Figure 3.2: The Q2 and Q3 oscillation modes of the cubic system are shown.

system, only the oscillation modes Q2 and Q3 are relevant, which are represented by the
vectors

Q2 =
1√
2
(1,−1, 0)T (3.22)

Q3 =
1√
6
(−1,−1, 2)T (3.23)

(3.24)

and are shown in Figure 3.2.

The corresponding Hamiltonian can be written as

ĤJT =− g√
3

∑
n

[(
l̂xn

)2
−
(
l̂yn

)2]
Q2 − g

∑
n

[(
l̂zn

)2
− 2

3

]
Q3 +

B

2

(
Q2

2 +Q2
3

)
, (3.25)

where g can be understood as the coupling of the electrons to the geometric distortion
and B as the compression modulus of the crystal. The sums run over the individual
electrons in the system [12].

If a single ion is considered, then if only the energy minima are of interest, even the value
of Q2 can be set to zero, since it can be shown that all local minima are equivalent and
one always lies on the Q2 = 0 axis. Although this argument cannot be maintained for the
two-site problem, it is also assumed for this case in order to reduce the dimension of the
parameter space that has to be analysed. In addition, the relationship Qt

3 = −Qb
3 then

results for two ions connected to the z-axis, since a compression of the crystal around
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3.5 Superexchange

the upper ion is automatically accompanied by an elongation around the lower ion. As
already mentioned in 2.3, all other possible interactions are neglected in this work.

3.5 Superexchange

The Hamilton operator described in (2.17) can be simplified in a first step by integrating
out the occupations of the ligand orbitals within the framework of an effective theory
[25]. If two transition metal ions lie in a line with a ligand, the Hamilton operator can
be described similarly to the Hubbard Hamiltonian [28]. In its simplest form, this does
not take any orbitals into account and reads

ĤHub = −t
∑
i,σ

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
+ U

∑
i

n̂i↑n̂i↓. (3.26)

If, as is common in many transition metal compounds, U ≫ t applies, the kinetic part
can be treated in perturbation theory. The Hubbard model with half filling can then be
simplified to second order to a Heisenberg model of the form

ĤHeis =
4t2

U

∑
i

(
⃗̂
Si · ⃗̂Si+1 −

1

4

)
. (3.27)

The ground state of this model is an antiferromagnet. Due to the presence of individual
orbitals, the system must be represented in a slightly more complex way, as the exchange
between the orbitals is determined by their geometry. As can be seen from Figure 2.2, the
xz and yz orbitals are equipped with lobes in the z-axis direction, while the xy orbital
lies in the x-y plane. With a connection axis in the z direction, the dominant exchange
terms are accordingly those that mediate between xz − xz and yz − yz. For symmetry
reasons, the relation

tyz,yz = txz,xz = −t (3.28)

applies, while for all other combinations

tα,β = 0 (3.29)

can be assumed [31]. The corresponding kinetic Hamiltonian then takes the form

Ĥt = −t
∑

α∈{yz,xz},σ

(
ĉ†t,ασ ĉb,ασ + ĉ†b,ασ ĉt,ασ

)
. (3.30)

The local part of the full Hamiltonian is accordingly described by the two local interactions
of Kanamori-Hubbard type (3.2) and spin-orbit coupling type (3.11). Anticipating the
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3 Models and methods

results of the investigation of the single ion, it can be said that the ground state of
the three-electron problem is fourfold degenerate at any time and has an energy gap
to the states above it. It therefore makes sense to describe the physics with the aid of
degenerate perturbation theory. Since Ĥt by definition describes a single hopping between
the ions, it is clear that the perturbation series only contains the even-numbered terms.
If we limit ourselves to the first relevant order, we arrive at a degenerate second-order
perturbation theory, the derivation of which can be found in the standard textbooks [16,
19]. Effectively, it expresses itself in a Hamiltonian of the form(

Ĥt,eff

)
f,i

=
∑

|v⟩∈ES

1

EGS − EES

⟨f | Ĥt |v⟩ ⟨v| Ĥt |i⟩ (3.31)

where is summed over a basis of excited eigenstates (ES) of the unperturbed Hamiltonian
and |i⟩ and |f⟩ are chosen from a basis of the ground state manifold (GS) of the
unperturbed Hamiltonian.
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4 Single-ion results

In this chapter the results of the calculations of the single ion are presented. The chapter
is separated into two sections.

In Section 4.1 the ground state manifold and its energy are calculated analytically
for the Hamiltonian without Jahn-Teller effect, whereas the numerical results of the
diagonalisation of the Hamiltonian with Jahn-Teller effect are shown in Section 4.2.

4.1 Interplay between Hund’s rule and spin orbit
coupling

If the operator composed of Kanamori-Hubbard and spin-orbit coupling Hamiltonian

Ĥloc = (U − 3JH)
N̂(N̂ − 1)

2
− 2JHŜ

2 − JH
2
L̂2 +

5

2
JHN̂

+
iλ

2

∑
α,β,γ

∑
σ,σ′

ϵα,β,γ τ̂
γ
σ,σ′ ĉ

†
α,σ ĉβ,σ′ (4.1)

is diagonalised under the constraint N = 3, the energy spectrum shown in Figure 4.1 is
obtained [31].

It is noticeable that the ground state is clearly separated from the states above it
regardless of the choice of JH and λ and exhibits a fourfold degeneracy. To explain this
spectrum, it is useful to introduce the total angular momentum J , which is defined by

⃗̂
J =

⃗̂
L+

⃗̂
S. (4.2)

The corresponding operators

Ĵ2 = (
⃗̂
L+

⃗̂
S)2 = L̂2 + Ŝ2 + 2

⃗̂
L · ⃗̂S (4.3)

and

Ĵz = L̂z + Ŝz (4.4)
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4 Single-ion results
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Figure 4.1: The spectrum of the Hamiltonian operator (4.1) for U = 0, JH = 1 is shown.
The total angular momentum follows directly from the degeneracy, whereby J = 1/2

(blue), J = 3/2 (red) and J = 5/2 (green) are possible. It can be seen that the ground
state manifold is always separated from the remaining states by an energy gap, regardless
of λ.

with their corresponding quantum numbers J and mJ commute with the Hamilton
operator 4.1 and are therefore useful for describing the states. However, they do not
form a complete set of commuting observables. As can be seen, the ground state
manifold as shown in Figure 4.1 corresponds to one of three branches with total angular
momentum quantum number J = 3

2
. The ground state of the 20-dimensional Hamiltonian

can therefore also be described as the ground state of each of the four possible three-
dimensional J = 3

2
, mJ ∈ {−3/2,−1/2,+1/2,+3/2} blocks. In SL-basis this matrix

takes the form

Hloc,J=+ 3
2
=


−9JH 0 −λ
0 −6JH −i

√
5
4
λ

−λ i
√

5
4
λ −4JH.

 (4.5)

The intrinsic energy of the ground state can then either be determined as the smallest
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4.1 Interplay between Hund’s rule and spin orbit coupling

zero of the characteristic polynomial of the matrix, or formulated more elegantly as

EGS = −9JH −
√
2JHγ (4.6)

where γ is the positive solution of

4x3 + 16
√
2x2 +

(
30− 9

2

(
λ

JH

)2
)
x− 3

√
2

(
λ

JH

)2

= 0. (4.7)

Although exact representations exist for the zeros of such third-degree polynomials [32],
these are not used in the following due to their exorbitant length. The eigenstate could
now also be expressed in the selected SL-basis. However, the gain in knowledge of the
description of the state in this basis is rather low, since the admixture of the energetically
higher states does not provide any insight into the relevance of the j-like states. Instead,
an alternative, non-orthogonal description can be chosen in which the vectors |Si⟩ and
|ji⟩ each form a basis vector. This choice makes sense as it means that two of the entries
of the states in the extreme cases λ = 0 and λ→ ∞ must be zero. The third vector for
the complete description can now be selected, unique except for the prefactor, in such a
way that it is orthogonal to the other two states. Since, by definition, it is only finite in
the intermediate range, it is represented below as |Ii⟩. The four selected states can be
displayed as∣∣∣I+ 3

2

〉
=

1

2

(
−
∣∣∣×, ↑, ↑↓

〉
−
∣∣∣↑↓, ↑,×〉

+ i
∣∣∣↑,×, ↑↓

〉
+ i
∣∣∣↑, ↑↓,×〉)

(4.8)∣∣∣I+ 1
2

〉
=

1√
12

(
−
∣∣∣×, ↓, ↑↓

〉
−
∣∣∣↑↓, ↓,×〉

− 2i
∣∣∣×, ↑↓, ↑

〉
−2i

∣∣∣↑↓,×, ↑
〉
+ i
∣∣∣↓,×, ↑↓

〉
+ i
∣∣∣↓, ↑↓,×〉)

(4.9)∣∣∣I+ 1
2

〉
=

(
1√
12

−
∣∣∣×, ↑, ↑↓

〉
−
∣∣∣↑↓, ↑,×〉

− 2i
∣∣∣×, ↑↓, ↓

〉
−2i

∣∣∣↑↓, ↑,×〉
− i
∣∣∣↑,×, ↑↓

〉
− i
∣∣∣↑, ↑↓,×〉)

(4.10)∣∣∣I− 3
2

〉
=

1

2

(
−
∣∣∣×, ↓, ↑↓

〉
−
∣∣∣↑↓, ↓,×〉

− i
∣∣∣↓,×, ↑↓

〉
− i
∣∣∣↓, ↑↓,×〉)

(4.11)

in the standard base. In this form, the states can be described by

|GSi⟩ = α |Si⟩+ ω |Ii⟩+ β |ji⟩ (4.12)

where the parameters α, ω and β each depend on λ/JH and are chosen so that the entire
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4 Single-ion results
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Figure 4.2: Shown are the amounts of the three components that make up the individual
ground states, independent of mJ .

state is normalised. The following equations then result for the parameters

α =
1

N
(4.13)

ω =
1

N
ω′ =

−3
√
2− 2γ + 3√

2
λ

3Nλ
γ (4.14)

β± 3
2
= i

γ

N
β± 1

2
= −i γ

N
(4.15)

with the normalisation

N2 = 1 + γ2 + ω′2 −
√
2γω′ +

2
√
2

3
γ (4.16)

which are plotted in Figure 4.2. It can be seen that the additional third component,
which describes the orthogonal complement to the space spanned by |Si⟩ and |ji⟩, is
particularly relevant in the area λ ≈ JH.
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4.2 Jahn-Teller effect

4.2 Jahn-Teller effect

If the Jahn-Teller Hamiltonian from equation (3.25) is added as a further term to the
local Hamiltonian (4.1), this results in a minimum energy that also depends on Q2 and
Q3. This is plotted as an example for large λ in Figure 4.3.

It can be seen that the absolute minima are doubly degenerate at each point in time and
that three equivalent minima exist within the Q2 −Q3 plane. Since one of these minima
lies on the Q3 axis regardless of the selected parameters, the analysis can be reduced to
this axis in the following. The Jahn-Teller Hamiltonian thus takes the form

ĤJT = −g
∑
n

[(
l̂zn

)2
− 2

3

]
Q3 +

B

2
Q2

3. (4.17)

The minima of the resulting Hamiltonian were now analysed with variable spin-orbit
coupling to determine how these two different interactions with the orbital angular
momentum jointly influence the resulting ground state. For the free parameters, JH = 0.5,
g = 1, B = 1 with variable λ was chosen. For the λ = 0 case, it can be shown that
there can be no energetic advantage due to a distortion [12]. This is evident from the
fact that in the ground state all three orbitals are equally occupied by an electron.
Consequently, elongation and compression effects compensate each other, so that only
the energy-increasing, quadratic part of the Jahn-Teller Hamiltonian takes part. By
adding the Jahn-Teller term, the Hamiltonian no longer commutes with the Ĵ2 operator.
Consequently, the problem can no longer be reduced to a three-dimensional subspace
as before. However, it can be shown that the Hamiltonian still commutes with Ĵz. A
look back at Figure 4.1 shows that this results in three characteristically different block
matrices that must be diagonalised. These are characterised by the magnitude of their
magnetic quantum number and accordingly degenerate differently. Figure 4.1 also directly
shows the dimension of these matrices as

dim

(
±1

2

)
= 5 (4.18)

dim

(
±3

2

)
= 4 (4.19)

dim

(
±5

2

)
= 1. (4.20)

The ±5
2

case can therefore be ignored, as it cannot be influenced by the Jahn-Teller
Hamiltonian except for the trivial, quadratic part. The other two block matrices can be
represented explicitly with basis vectors of the form |S,mS, L,mL⟩.
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4 Single-ion results

Figure 4.3: Shown is the ground state energy of the single-ion Hamiltonian with Jahn-
Teller effect in the Q2Q3 plane and for

√
Q2

2 +Q2
3 = 0.267 (red circle) against the angle

to the Q2 axis θ (g = B = J = 1, λ = 5). It can be seen that three equivalent minima
are formed, with one of the minima lying on the Q3 axis (θ = 3

2
π).
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4.2 Jahn-Teller effect

For Jz = +3
2

one finds

Ĥloc+JT,+ 3
2
=


−9JH 0 0 −λ
0 −6JH 0 i(

√
1
5
gQ3 −

√
5
4
λ)

0 0 −6JH i
√

4
5
gQ3

−λ −i(
√

1
5
gQ3 −

√
5
4
λ) −i

√
4
5
gQ3 −4JH

+
B

2
Q2

3

(4.21)

in the basis ∣∣∣∣32 ,+3

2
, 0, 0

〉
(4.22)√

1

5

∣∣∣∣12 ,+1

2
, 2,+1

〉
+

√
4

5

∣∣∣∣12 ,−1

2
, 2,+2

〉
(4.23)√

4

5

∣∣∣∣12 ,+1

2
, 2,+1

〉
−
√

1

5

∣∣∣∣12 ,−1

2
, 2,+2

〉
(4.24)∣∣∣∣12 ,+1

2
, 1,+1

〉
(4.25)
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4 Single-ion results

and for Jz = +1
2

one finds

Ĥloc+JT,+ 1
2
=



−9JH 0 0 0 −λ
0 −6JH 0 −i

√
2
5
gQ3 i(

√
1
5
gQ3 +

√
5
4
λ)

0 0 −6JH i
√

4
15
gQ3 i

√
2
15
gQ3

0 i
√

2
5
gQ3 −i

√
4
15
gQ3 −4JH 0

−λ −i(
√

1
5
gQ3 +

√
5
4
λ) −i

√
2
15
gQ3 0 −4JH


+
B

2
Q2

3 (4.26)

in the basis ∣∣∣∣32 ,+1

2
, 0, 0

〉
(4.27)√

2

5

∣∣∣∣12 ,+1

2
, 2, 0

〉
+

√
3

5

∣∣∣∣12 ,−1

2
, 2,+1

〉
(4.28)√

3

5

∣∣∣∣12 ,+1

2
, 2, 0

〉
−
√

2

5

∣∣∣∣12 ,−1

2
, 2,+1

〉
(4.29)√

2

3

∣∣∣∣12 ,−1

2
, 1,+1

〉
−
√

1

3

∣∣∣∣12 ,+1

2
, 1, 0

〉
(4.30)√

1

3

∣∣∣∣12 ,−1

2
, 1,+1

〉
+

√
2

3

∣∣∣∣12 ,+1

2
, 1, 0

〉
. (4.31)

If these are diagonalised, it can be seen that the minimum for mJ = ±1
2

is positive and
that for mJ = ±3

2
is negative Q3. This is shown for various λ in Figure 4.4.

Consequently, the first maximum at π
2

shown in Figure 4.3 corresponds to the minimum
of the mJ = ±1

2
subspace, the actual minimum at 3π

2
corresponds to the minimum of the

mJ = ±3
2

subspace.
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4.2 Jahn-Teller effect
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Figure 4.4: Shown is the ground state energy of the two subspaces (mJ = ±1
2

in red,
mJ = ±1

2
in blue) as a function of Q3. It can be seen that two almost equivalent minima

are formed, with the one belonging to mJ = ±1
2

at positive Q3 and the one belonging to
mJ = ±3

2
at negative Q3.
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4 Single-ion results

Figure 4.5: The ground state energy is shown as a function of λ and JH, given by the
energy minimum of the Hamiltonian belonging to the mJ = ±3

2
subspace.

This results in the values shown in figures 4.5 and 4.6 for the energy and distortion of
the ground state.

If the differences between the values of the two subspaces are examined more closely, it
can be seen that the difference in energies almost disappears. This is shown in Figure
4.7.
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4.2 Jahn-Teller effect

Figure 4.6: The optimal distortion Q3,min is shown as a function of λ and JH, given by
the energy minimum of the Hamiltonian belonging to the mJ = ±3

2
subspace.
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4 Single-ion results

Figure 4.7: The difference between the minima of the ground state energy of the two
subspaces E± 3

2
,min −E± 1

2
,min is shown as a function of λ and JH. It can be seen that the

energy associated with mJ = ±3
2

is slightly lower.

In addition, the two minima are almost at the same Q3 except for the difference in sign.
This is shown in Figure 4.8.
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4.2 Jahn-Teller effect

Figure 4.8: The difference in the position of the minima of the ground state energy of
the two subspaces Q± 3

2
,min +Q± 1

2
,min is shown as a function of λ and JH. It can be seen

that the minimum belonging to mJ = ±3
2

is slightly further deflected.

This can be explained in more detail by plotting the contributions of the individual
components in SL representation on the ground state vector. This is illustrated for the
two relevant subspaces in the figures 4.9 and 4.10.

Here it can be seen that the additionally added component from the J = 1
2

branch, which
only takes part in the mJ = ±1

2
subspace (component 4 in Figure 4.9), does not have

a large share in the ground state in the energy minimum. This shows that although
the minimum energy is given by the twofold degenerate ground state of the mJ = ±3

2

subspace, the difference is so small that a qualitative statement by the approximation of
truncating the Jahn-Teller Hamiltonian in second order is not sufficiently meaningful.
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4 Single-ion results

Figure 4.9: The magnitude of the individual components at the ground state of the
mJ = ±1

2
Hamiltonian in SL basis is shown. The fourth component corresponds to the

contribution of the J = 1
2

branch, which does not contribute for mJ = ±3
2
.
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4.2 Jahn-Teller effect

Figure 4.10: The magnitude of the individual components at the ground state of the
mJ = ±3

2
Hamiltonian in SL basis is shown. The differences to the mJ = ±1

2
case from

Figure 4.9 are minimal.
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4 Single-ion results

Also worth mentioning is the behaviour at very small JH where it can be seen that the
Jahn-Teller effect can also select a completely different state as the ground state. This is
shown in Figure 4.11.

For λ = 0 this happens when

JH < (4−
√
15)

g2

B
(4.32)

is achieved. However, as this parameter range is not reached for the material class on
which the Hamiltonian is based, it is more of a mathematical curiosity than a physically
relevant case, so that the investigation of the phenomenon shall be discontinued here.
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4.2 Jahn-Teller effect
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Figure 4.11: The behaviour of the eigenvalues of the mJ = ±3
2

Hamiltonian is shown.
At a critical value JH < (4−

√
15), the characteristic of the ground state changes.
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5 Two-site results

In this chapter the results of the calculations of the two neighbouring ions are presented.
The chapter is separated into two sections.

In Section 5.1 the results of adding the superexchange interaction to the local Hamiltonian
are shown. Analytical expressions for the edge cases of the problems are presented and
the behaviour in between those two is described numerically.

Lastly the cooperative Jahn-Teller effect is implemented in a simple form in Section 5.1.2,
and its influence on the energy splitting is shown.

5.1 Superexchange

If two connected ions with six electrons are considered instead of a single ion with three
electrons, the Hilbert space expands from(

6

3

)
= 20 (5.1)

to (
12

6

)
= 924 (5.2)

dimensions.

If the Jahn-Teller effect is neglected, the Hamiltonian

Ĥ = Ĥloc,t + Ĥloc,b + Ĥt (5.3)

can be solved exactly, but the numerical effort is quite high. In the following, we will
therefore analyse how well the results of the exact calculation can be reproduced by a
perturbation-theoretic consideration of the ground state. The unperturbed Hamiltonian
used here is the Hamiltonian completely solved in the previous section

Ĥloc = ĤU + Ĥλ, (5.4)
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5 Two-site results

while the electron hopping between the two ions

Ĥt = −t
∑

α∈{yz,xz},σ

(
ĉ†ασ,tĉασ,b + ĉ†ασ,bĉασ,t

)
(5.5)

is considered a perturbation. For the ground state manifold, it is assumed that it
corresponds to the tensor product of the ground states of the solved one-site problem.
The reason for this is that the ground state for λ = 0 lies at

EGS,3,3 = 6U − 18JH (5.6)

and decreases for large λ with

dEGS,3,3

dλ
→ −3λ (5.7)

if three electrons can be found at each of the two sites, while the ground state under the
constraint of two electrons at one ion and four at the other ion lies for λ = 0 at

EGS,2,4 = 7U − 16JH (5.8)

and decreases for large λ also with

dEGS,2,4

dλ
→ −3λ. (5.9)

An exact description of these results is given in Appendix D. It is therefore reasonable to
assume that the ground state with three electrons per site is separated by about U +2JH
from the ground state of the system with two electrons on one ion and four electrons on
the other. However, this assumption can be wrong for certain parameter values, as it
ignores the curvature behaviour in the range of finite λ. Figure 5.1 shows this problem.
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5.1 Superexchange
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Figure 5.1: The behaviour of the ground state is shown for three electrons per site
(blue) and two electrons on one, four electrons on the other ion (red). For U

JH
≲ 2.3 the

order can be reversed with increasing λ.

If the relation of U and JH falls below

U

JH
≲ 2.3 (5.10)

the ground state may no longer described by the solutions from 4.1. However, this
problem does not occur for physically realistic parameters U > 3 eV, JH < 1 eV, λ < 1 eV

[4, 33]. The relevant energy scales are therefore still defined by

U ≫ t (5.11)

which validates a perturbation-theoretic treatment.

This is done as described in Section 3.5 by an effective Hamiltonian of the form(
Ĥt,eff

)
f,i

=
∑

|v⟩∈ES

1

EGS − EES

⟨f | Ĥt |v⟩ ⟨v| Ĥt |i⟩ . (5.12)

The initial and final states |i⟩ and |f⟩ form a 16-dimensional space dependent on λ
JH

,
which is spanned by the basis vectors derived in Chapter 4.1,∣∣∣∣+3

2
,+

3

2

〉
,

∣∣∣∣+3

2
,+

1

2

〉
, . . . ,

∣∣∣∣−3

2
,−1

2

〉
,

∣∣∣∣−3

2
,−3

2

〉
. (5.13)

The sum over the possible intermediate states also runs over a space dependent on λ
JH

,
which is spanned by all states in which there are two electrons on one ion and four
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5 Two-site results

electrons on the other. This sum therefore consists of

2

(
6

2

)(
6

4

)
= 450 (5.14)

individual terms, which can be constructed from the single ion solutions described in
Appendix D. First, the solutions for the two extreme cases λ = 0 and JH= 0, which can
be described as exact Hamiltonians, are analysed.

5.1.1 The case λ = 0

Using the parameter λ = 0 this results in a spectrum which is given by

∆E = − t2

U + 2JH



0 ×7

8
3

×5

40
9

×3

16
3

×1

. (5.15)

An analysis of the ground states shows that these states are eigenstates of the total spin
operator for both ions

Ŝ2
ges = (Ŝt + Ŝb)

2 = Ŝ2
t + Ŝ2

b + 2
⃗̂
St · ⃗̂Sb. (5.16)

Since

Ŝ2
t = Ŝ2

b = 15/4 (5.17)

applies to the ground state manifold, it follows that the Hamiltonian can be calculated
as

Ĥt,eff,λ=0 =
8

9
· t2

U + 2JH

(
⃗̂
St · ⃗̂Sb −

9

4

)
. (5.18)

The eigenstates are shown in table 5.1.
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5.1 Superexchange

Table 5.1: Eigenstates of the splitting with λ = 0

energy degeneracy state
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,+3
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〉
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(∣∣+3
2
,+1

2

〉
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5
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√
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5 Two-site results

5.1.2 The case JH = 0

For the case JH = 0 it can be analysed, for which intermediate and ground states the
overlap created by the perturbation

⟨ES| Ĥt |GS⟩ ≠ 0 (5.19)

holds. It turns out that only two energy terms become relevant. These are characterised
by

1

EES − EGS

=

{ 1
U

1
U+ 3

2
λ

. (5.20)

The energies and their degeneracies are given by

∆E = −t2



4
9

1
U+ 3

2
λ

×3

8
9

1
U+ 3

2
λ

×3

4
9U

+ 4
9

1
U+ 3

2
λ

×1

4
9U

+ 2
3

1
U+ 3

2
λ

×4

16
9U

+ 2
3

1
U+ 3

2
λ

×4

4
U
+ 8

9
1

U+ 3
2
λ

×1

(5.21)

while the states are given in table 5.2.

The effective Hamiltonian can be described by a model in which at both sites the original
quadruplet is considered as two doublets determined by the magnitude of mj. It shall
therefore apply that

H 3
2
= span

(∣∣∣∣+3

2

〉
,

∣∣∣∣−3

2

〉)
(5.22)

H 1
2
= span

(∣∣∣∣+1

2

〉
,

∣∣∣∣−1

2

〉)
(5.23)

H = H 3
2
⊗H 1

2
, (5.24)

where the two subspaces are provided with the usual spin-1/2-algebra, so among other
things

σz

∣∣∣∣±3

2

〉
= ±

∣∣∣∣±3

2

〉
(5.25)

σz

∣∣∣∣±1

2

〉
= ±

∣∣∣∣±1

2

〉
, (5.26)
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5.1 Superexchange

Table 5.2: Eigenstates of the splitting with JH = 0

energy degeneracy state
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5 Two-site results

with the usual, associated definitions for σx,y. The two doublets in turn are also connected
by a pseudo-spin-1/2-algebra, with the definition,

τ z
∣∣∣∣±3

2

〉
= +

∣∣∣∣±3

2

〉
(5.27)

τ z
∣∣∣∣±1

2

〉
= −

∣∣∣∣±1

2

〉
, (5.28)

with the usual, associated definitions for τ±. A detailed description of the operators is
given in appendix E. In this formalism various projectors can be calculated by

P singlet =
1

4
(1− σ⃗1 · σ⃗2) (5.29)

P triplet =
1

4
(σ⃗1 · σ⃗2 − 3) (5.30)

P
3
2 =

1

4
(1 + τ z1) (1 + τ z2) (5.31)

P
1
2 =

1

4
(1− τ z1) (1− τ z2) . (5.32)

The effective Hamiltonian is then given by

Ĥpert,JH=0 = Ω3P
singletP

3
2
1 P

3
2
2 + Ω1P

singletP
1
2
1 P

1
2
2

+ E1

(
P

1
2
1 P

3
2
2 + P

3
2
1 P

1
2
2

)
+ E2

(
τ+1 τ

−
2 + τ−1 τ

+
2

)
+ 2∆P tripletP

3
2
1 P

3
2
2 +∆P tripletP

1
2
1 P

1
2
2 (5.33)

with the parameters

Ω3 = − 4

U
− 8

9

1

U + 3
2
λ

(5.34)

Ω1 = − 4

9U
− 4

9

1

U + 3
2
λ

(5.35)

E1 = − 4

U
− 8

9

1

U + 3
2
λ

(5.36)

E2 = − 2

3U
(5.37)

∆ = −4

9

1

U + 3
2
λ
, (5.38)

which is similar to models explaining d1 systems [34, 35].
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5.1 Superexchange

5.1.3 Intermediate behaviour

For JH ≠ 0 and λ ̸= 0 the behaviour is not so easily determined. However, if the matrix
described in equation (5.12) is set up for different λ

JH
and diagonalised, the spectrum of

the Hamiltonian can be represented. This is shown for U = 4 eV, JH = 0.5 eV, t = 0.2 eV

in Figure 5.2. The parameter values were selected so that they lie within the usual range
for the materials under consideration [4].
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Figure 5.2: The energy splitting of the ground state for three electrons per site is
shown. The degree of degeneracy is given for λ = 0 and λ = 3, where quasi-degeneracy
(∆∆E < 0.1meV) is described by the notation (a+ b)×.

In addition, the full Hamilton operator (5.3) was exactly diagonalised under the constraint
of six electrons to serve as a reference for the quality of the approximated solution. It
turns out that the perturbation-theoretic solution is almost indistinguishable from the
exact solution. As can be seen in 5.2, the energies do not follow a simple course and thus
elude a simple analysis. Nevertheless, some observations can be made. Firstly, the ground
state is separated from the other states by an energy gap at all times. In addition, it can
be seen that the ground state energy does not interpolate directly between ∆E (λ = 0)

and ∆E (λ→ ∞), but first increases and then decreases again after a global maximum.
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Figure 5.3: The two components at the ground state are shown. For increasing λ, the
component α belonging to

∣∣±3
2
,∓3

2

〉
dominates more and more over the component β

belonging to
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2
,∓1

2

〉
.

It also shows that there is no observable level repulsion between the remaining states.
This observation is also supported by the exact results. In the following, we will now
analyze the course of the ground state vector between the edge cases already described.
The analysis shows that only states of the form

α√
2

(∣∣∣∣+3

2
,−3

2

〉
−
∣∣∣∣−3

2
,+

3

2

〉)
+

β√
2

(∣∣∣∣−1

2
,+

1

2

〉
−
∣∣∣∣+1

2
,−1

2

〉)
(5.39)

can be formed, where, as described in the previous sections, α(λ = 0) = 1 and β(JH =

0) = 1. If these two parameters are plotted, the result is Figure 5.3.

As expected, α initially increases, while β decreases. For JH ̸= 0, β for λ→ ∞ does not
converge towards 0, but towards a small, negative value. There is therefore a change
in the relative phase of α and β. For JH = 0.5 eV, however, this value is so small
(|β|2 ≈ 0.0025) that this behaviour is not quantitatively relevant and was therefore not
analysed in depth.
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5.2 Cooperative Jahn-Teller effect

5.2 Cooperative Jahn-Teller effect

As explained in Section 2.3, the cooperative Jahn-Teller effect is an effect that depends on
many factors. Nevertheless, it can be estimated to what extent the effect shown in Section
4.2 that for λ > 0 both

∣∣±1
2

〉
and

∣∣±3
2

〉
states can experience an almost identical energetic

lowering can have an influence on the level splitting generated by the superexchange.
It is to be expected that the Jahn-Teller Hamiltonian prefers a different ground state
than the superexchange Hamiltonian, since under the condition Qt

3 = −Qb
3 states that

take the form
∣∣±3

2
,±1

2

〉
or
∣∣±1

2
,±3

2

〉
are energetically preferred. For this purpose, the

Hamiltonian

Ĥt,JT,eff = Ĥt,eff + ĤJT,eff (5.40)

with

ĤJT,eff,i,j = ⟨i|HJT |j⟩ (5.41)

was assumed and diagonalised under the constraints Q2 = 0 and Qt
3 = −Qb

3. With this
approach, the ±1

2
±3

2
subspaces are identical except for the sign, which is why it is

sufficient to restrict the value range of Q3 to R+
0 . The results are shown in Figure 5.4.
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Figure 5.4: The spectra of the energy splitting are shown as a function of the distortion
Q3 (g = B = 0.25, U = 2JH = 1) for different λ. It can be seen that a distorted geometry
is preferred for λ ≳ 1.5.

It turns out that the ground state determined by the superexchange can be replaced by
the level above it at λ ≈ 1.5 eV. Although this value is higher than the usually assumed
λ < 1 eV [33], it cannot be ruled out that the ground state in real materials can be
influenced by the cooperative Jahn-Teller effect due to the highly simplified mathematical
model. The Jahn-Teller distortion might therefore be more pronounced in crystals with
superexchange than it was predicted in the purely one-site analysis of Section 4.2.
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6 Conclusion and outlook

In the present work, a model Hamiltonian was investigated which can describe the
properties of a half-filled t2g shell in transition metal compounds. For this purpose,
a one-site problem was first considered, in which the Hamiltonian can be composed
of two components. On the one hand, the effects of Hund’s coupling were described
by a Kanamori-Hubbard Hamiltonian, and on the other hand, spin-orbit coupling was
introduced by an interaction of spin and orbital angular momentum of the individual
electrons. This showed that, regardless of the strength of the individual terms, a fourfold
degenerate manifold always formed the ground state, the energy of which can be described
by a zero of a third-degree polynomial. Furthermore, the ground state manifold was
described completely, whereby it was shown that a basis of eigenstates of the two
individual terms is not sufficient to describe the eigenstates of their sum.

It was then considered how the introduction of the Jahn-Teller effect, a coupling of the
electronic states to the surrounding lattice, influences the states and whether the effect
leads to a distortion of the ligands surrounding the transition metal ion. Here it was
shown that the distortion increases with increasing spin-orbit coupling, whereby the
compressed geometry is slightly preferable to the elongated geometry.

In the second part of the work, the influence of the possibility of electron exchange between
neighbouring ions through superexchange on the ground state manifold was investigated.
An analytical description was obtained for the two limiting cases of vanishing Hund’s
coupling and vanishing spin-orbit coupling. For the area of combined effects it could
be shown that a perturbation-theoretical calculation does not always, but in the range
of physically realistic parameters, achieve an almost perfect agreement with the exact
diagonalisation of the Hamiltonian.

Furthermore, it was analysed to what extent the introduction of the superexchange
changes the effects of the Jahn-Teller effect. In a highly simplified approach, it was shown
that the symmetry reductions caused by the Jahn-Teller effect in the two-site model can
already be noticeable with smaller spin-orbit coupling than in the one-site case.

Further research on the theoretical side should focus on implementing the model on a
larger lattice with a stronger focus on the influence of the interplay between superexchange
and the Jahn-Teller effect on the splitting of the ground state manifold. A further analysis
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6 Conclusion and outlook

of the predicted states to conclude their magnetic properties also might return interesting
results. Research on the experimental side could be done comparing the predicted single
ion results with measured values in different materials. It could also prove useful to
measure the splitting of the ground state manifold, as the predicted energy scale is still
reasonably large.
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A Second quantisation
representation of t2g

The simplest basis of the t2g states can be given in second quantisation with the occupation
numbers of the orbitals and electron spin quantum numbers.

|yz ↑, yz ↓, xz ↑, xz ↓, xy ↑, xy ↓,⟩ (A.1)

In shorthand notation the states can be written by using just arrows to indicate spin
with the positioning between commas indicating the orbit. As a third part, the state
created by operators acting on the vacuum state |0⟩ is also given.

Table A.1: Second quantisation representation of t12g

occupation number notation shorthand notation creation operators notation

|0, 0, 0, 0, 0, 1⟩
∣∣×,×, ↓

〉
c†xy↓ |0⟩

|0, 0, 0, 0, 1, 0⟩
∣∣×,×, ↑

〉
c†xy↑ |0⟩

|0, 0, 0, 1, 0, 0⟩
∣∣×, ↓,×〉 c†xz↓ |0⟩

|0, 0, 1, 0, 0, 0⟩
∣∣×, ↑,×〉 c†xz↑ |0⟩

|0, 1, 0, 0, 0, 0⟩
∣∣↓,×,×〉 c†yz↓ |0⟩

|1, 0, 0, 0, 0, 0⟩
∣∣↑,×,×〉 c†yz↑ |0⟩

59



A Second quantisation representation of t2g

Table A.2: Second quantisation representation of t22g

occupation number notation shorthand notation creation operators notation

|0, 0, 0, 0, 1, 1⟩
∣∣×,×, ↑↓

〉
c†xy↑c

†
xy↓ |0⟩

|0, 0, 0, 1, 0, 1⟩
∣∣×, ↓, ↓

〉
c†xz↓c

†
xy↓ |0⟩

|0, 0, 0, 1, 1, 0⟩
∣∣×, ↓, ↑

〉
c†xz↓c

†
xy↑ |0⟩

|0, 0, 1, 0, 0, 1⟩
∣∣×, ↑, ↓

〉
c†xz↑c

†
xy↓ |0⟩

|0, 0, 1, 0, 1, 0⟩
∣∣×, ↑, ↑

〉
c†xz↑c

†
xy↑ |0⟩

|0, 0, 1, 1, 0, 0⟩
∣∣×, ↑↓,×〉 c†xz↑c

†
xz↓ |0⟩

|0, 1, 0, 0, 0, 1⟩
∣∣↓,×, ↓

〉
c†yz↓c

†
xy↓ |0⟩

|0, 1, 0, 0, 1, 0⟩
∣∣↓,×, ↑

〉
c†yz↓c

†
xy↑ |0⟩

|0, 1, 0, 1, 0, 0⟩
∣∣↓, ↓,×〉 c†yz↓c

†
xz↓ |0⟩

|0, 1, 1, 0, 0, 0⟩
∣∣↓, ↑,×〉 c†yz↓c

†
xz↑ |0⟩

|1, 0, 0, 0, 0, 1⟩
∣∣↑,×, ↓

〉
c†yz↑c

†
xy↓ |0⟩

|1, 0, 0, 0, 1, 0⟩
∣∣↑,×, ↑

〉
c†yz↑c

†
xy↑ |0⟩

|1, 0, 0, 1, 0, 0⟩
∣∣↑, ↓,×〉 c†yz↑c

†
xz↓ |0⟩

|1, 0, 1, 0, 0, 0⟩
∣∣↑, ↑,×〉 c†yz↑c

†
xz↑ |0⟩

|1, 1, 0, 0, 0, 0⟩
∣∣↑↓,×,×〉 c†yz↑c

†
yz↓ |0⟩
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Table A.3: Second quantisation representation of t32g

occupation number notation shorthand notation creation operators notation

|0, 0, 0, 1, 1, 1⟩
∣∣×, ↓, ↑↓

〉
c†xz↓c

†
xy↑c

†
xy↓ |0⟩

|0, 0, 1, 0, 1, 1⟩
∣∣×, ↑, ↑↓

〉
c†xz↑c

†
xy↑c

†
xy↓ |0⟩

|0, 0, 1, 1, 0, 1⟩
∣∣×, ↑↓, ↓

〉
c†xz↑c

†
xz↓c

†
xy↓ |0⟩

|0, 0, 1, 1, 1, 0⟩
∣∣×, ↑↓, ↑

〉
c†xz↑c

†
xz↓c

†
xy↑ |0⟩

|0, 1, 0, 0, 1, 1⟩
∣∣↓,×, ↑↓

〉
c†yz↓c

†
xy↑c

†
xy↓ |0⟩

|0, 1, 0, 1, 0, 1⟩ |↓, ↓, ↓⟩ c†yz↓c
†
xz↓c

†
xy↓ |0⟩

|0, 1, 0, 1, 1, 0⟩ |↓, ↓, ↑⟩ c†yz↓c
†
xz↓c

†
xy↑ |0⟩

|0, 1, 1, 0, 0, 1⟩ |↓, ↑, ↓⟩ c†yz↓c
†
xz↑c

†
xy↓ |0⟩

|0, 1, 1, 0, 1, 0⟩ |↓, ↑, ↑⟩ c†yz↓c
†
xz↑c

†
xy↑ |0⟩

|0, 1, 1, 1, 0, 0⟩
∣∣↓, ↑↓,×〉 c†yz↓c

†
xz↑c

†
xz↓ |0⟩

|1, 0, 0, 0, 1, 1⟩
∣∣↑,×, ↑↓

〉
c†yz↑c

†
xy↑c

†
xy↓ |0⟩

|1, 0, 0, 1, 0, 1⟩ |↑, ↓, ↓⟩ c†yz↑c
†
xz↓c

†
xy↓ |0⟩

|1, 0, 0, 1, 1, 0⟩ |↑, ↓, ↑⟩ c†yz↑c
†
xz↓c

†
xy↑ |0⟩

|1, 0, 1, 0, 0, 1⟩ |↑, ↑, ↓⟩ c†yz↑c
†
xz↑c

†
xy↓ |0⟩

|1, 0, 1, 0, 1, 0⟩ |↑, ↑, ↑⟩ c†yz↑c
†
xz↑c

†
xy↑ |0⟩

|1, 0, 1, 1, 0, 0⟩
∣∣↑, ↑↓,×〉 c†yz↑c

†
xz↑c

†
xz↓ |0⟩

|1, 1, 0, 0, 0, 1⟩
∣∣↑↓,×, ↓

〉
c†yz↑c

†
yz↓c

†
xy↓ |0⟩

|1, 1, 0, 0, 1, 0⟩
∣∣↑↓,×, ↑

〉
c†yz↑c

†
yz↓c

†
xy↑ |0⟩

|1, 1, 0, 1, 0, 0⟩
∣∣↑↓, ↓,×〉 c†yz↑c

†
yz↓c

†
xz↓ |0⟩

|1, 1, 1, 0, 0, 0⟩
∣∣↑↓, ↑,×〉 c†yz↑c

†
yz↓c

†
xz↑ |0⟩
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A Second quantisation representation of t2g

Table A.4: Second quantisation representation of t42g

occupation number notation shorthand notation creation operators notation

|0, 0, 1, 1, 1, 1⟩
∣∣×, ↑↓, ↑↓

〉
c†xz↑c

†
xz↓c

†
xy↑c

†
xy↓ |0⟩

|0, 1, 0, 1, 1, 1⟩ |↓, ↓, ↑↓⟩ c†yz↓c
†
xz↓c

†
xy↑c

†
xy↓ |0⟩

|0, 1, 1, 0, 1, 1⟩ |↓, ↑, ↑↓⟩ c†yz↓c
†
xz↑c

†
xy↑c

†
xy↓ |0⟩

|0, 1, 1, 1, 0, 1⟩ |↓, ↑↓, ↓⟩ c†yz↓c
†
xz↑c

†
xz↓c

†
xy↓ |0⟩

|0, 1, 1, 1, 1, 0⟩ |↓, ↑↓, ↑⟩ c†yz↓c
†
xz↑c

†
xz↓c

†
xy↑ |0⟩

|1, 0, 0, 1, 1, 1⟩ |↑, ↓, ↑↓⟩ c†yz↑c
†
xz↓c

†
xy↑c

†
xy↓ |0⟩

|1, 0, 1, 0, 1, 1⟩ |↑, ↑, ↑↓⟩ c†yz↑c
†
xz↑c

†
xy↑c

†
xy↓ |0⟩

|1, 0, 1, 1, 0, 1⟩ |↑, ↑↓, ↓⟩ c†yz↑c
†
xz↑c

†
xz↓c

†
xy↓ |0⟩

|1, 0, 1, 1, 1, 0⟩ |↑, ↑↓, ↑⟩ c†yz↑c
†
xz↑c

†
xz↓c

†
xy↑ |0⟩

|1, 1, 0, 0, 1, 1⟩
∣∣↑↓,×, ↑↓

〉
c†yz↑c

†
yz↓c

†
xy↑c

†
xy↓ |0⟩

|1, 1, 0, 1, 0, 1⟩ |↑↓, ↓, ↓⟩ c†yz↑c
†
yz↓c

†
xz↓c

†
xy↓ |0⟩

|1, 1, 0, 1, 1, 0⟩ |↑↓, ↓, ↑⟩ c†yz↑c
†
yz↓c

†
xz↓c

†
xy↑ |0⟩

|1, 1, 1, 0, 0, 1⟩ |↑↓, ↑, ↓⟩ c†yz↑c
†
yz↓c

†
xz↑c

†
xy↓ |0⟩

|1, 1, 1, 0, 1, 0⟩ |↑↓, ↑, ↑⟩ c†yz↑c
†
yz↓c

†
xz↑c

†
xy↑ |0⟩

|1, 1, 1, 1, 0, 0⟩
∣∣↑↓, ↑↓,×〉 c†yz↑c

†
yz↓c

†
xz↑c

†
xz↓ |0⟩

Table A.5: Second quantisation representation of t52g

occupation number notation shorthand notation creation operators notation

|0, 1, 1, 1, 1, 1⟩ |↓, ↑↓, ↑↓⟩ c†yz↓c
†
xz↑c

†
xz↓c

†
xy↑c

†
xy↓ |0⟩

|1, 0, 1, 1, 1, 1⟩ |↑, ↑↓, ↑↓⟩ c†yz↑c
†
xz↑c

†
xz↓c

†
xy↑c

†
xy↓ |0⟩

|1, 1, 0, 1, 1, 1⟩ |↑↓, ↓, ↑↓⟩ c†yz↑c
†
yz↓c

†
xz↓c

†
xy↑c

†
xy↓ |0⟩

|1, 1, 1, 0, 1, 1⟩ |↑↓, ↑, ↑↓⟩ c†yz↑c
†
yz↓c

†
xz↑c

†
xy↑c

†
xy↓ |0⟩

|1, 1, 1, 1, 0, 1⟩ |↑↓, ↑↓, ↓⟩ c†yz↑c
†
yz↓c

†
xz↑c

†
xz↓c

†
xy↓ |0⟩

|1, 1, 1, 1, 1, 0⟩ |↑↓, ↑↓, ↑⟩ c†yz↑c
†
yz↓c

†
xz↑c

†
xz↓c

†
xy↑ |0⟩
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B Eigenstates of the
Kanamori-Hubbard Hamiltonian

The eigenstates of the Kanamori-Hubbard Hamiltonian

Hint = (U − 3J)
N(N − 1)

2
− 2JS2 − 1

2
JL2 +

5

2
JN

are shown for different numbers of electrons. The states can be characterised by the
usual quantum numbers S, L,mS,mL. the degeneracy is therefore given by

# = (2S + 1) · (2L+ 1).
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B Eigenstates of the Kanamori-Hubbard Hamiltonian

B.1 t12g

For one electron there is one combination of S and L.

Table B.1: Eigenenergies and eigenstates of the Kanamori-Hubbard Hamiltonian with 1
electron

E S L mS mL state

0 1
2

1 +1
2

+1 1√
2

(∣∣×, ↑,×〉− i
∣∣↑,×,×〉)

+1
2

0
∣∣×,×, ↑

〉
+1

2
-1 1√

2

(∣∣×, ↑,×〉+ i
∣∣↑,×,×〉)

-1
2

+1 1√
2

(∣∣×, ↓,×〉− i
∣∣↓,×,×〉)

-1
2

0
∣∣×,×, ↓

〉
-1
2

-1 1√
2

(∣∣×, ↓,×〉− i
∣∣↓,×,×〉)
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B.2 t22g

B.2 t22g

For two electrons there are three different combinations of S and L.

Table B.2: Eigenenergies and eigenstates of the Kanamori-Hubbard Hamiltonian with 2
electrons

E S L mS mL state

U + 2J 0 0 0 0 1√
3

(∣∣×,×, ↑↓
〉
+
∣∣×, ↑↓,×〉+ ∣∣↑↓,×,×〉)

U − J 0 2 0 +2 1
2

(∣∣×, ↑↓,×〉+ i
∣∣↓, ↑,×〉− i

∣∣↑, ↓,×〉− ∣∣↑↓,×,×〉)
0 +1 1

2

(∣∣×, ↓, ↑
〉
−
∣∣×, ↑, ↓

〉
− i
∣∣↓,×, ↑

〉
+ i
∣∣↑,×, ↓

〉)
0 0 1√

6

(
2 ·
∣∣×,×, ↑↓

〉
−
∣∣×, ↑↓,×〉− ∣∣↑↓,×,×〉)

0 -1 1
2

(∣∣×, ↓, ↑
〉
−
∣∣×, ↑, ↓

〉
+ i
∣∣↓,×, ↑

〉
− i
∣∣↑,×, ↓

〉)
0 -2 1

2

(∣∣×, ↑↓,×〉− i
∣∣↓, ↑,×〉+ i

∣∣↑, ↓,×〉− ∣∣↑↓,×,×〉)
U − 3J 1 1 +1 +1 1√

2

(∣∣×, ↑, ↑
〉
− i
∣∣↑,×, ↑

〉)
+1 0

∣∣↑, ↑,×〉
+1 -1 1√

2

(∣∣×, ↑, ↑
〉
+ i
∣∣↑,×, ↑

〉)
0 +1 1

2

(∣∣×, ↓, ↑
〉
+
∣∣×, ↑, ↓

〉
− i
∣∣↓,×, ↑

〉
− i
∣∣↑,×, ↓

〉)
0 0 1√

2

(∣∣↓, ↑,×〉+ ∣∣↑, ↓,×〉)
0 -1 1

2

(∣∣×, ↓, ↑
〉
+
∣∣×, ↑, ↓

〉
+ i
∣∣↓,×, ↑

〉
+ i
∣∣↑,×, ↓

〉)
−1 +1 1√

2

(∣∣×, ↓, ↓
〉
− i
∣∣↓,×, ↓

〉)
−1 0

∣∣↓, ↓,×〉
−1 -1 1√

2

(∣∣×, ↓, ↓
〉
+ i
∣∣↓,×, ↓

〉)
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B Eigenstates of the Kanamori-Hubbard Hamiltonian

B.3 t32g

For three electrons there are three different combinations of S and L.
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B.3 t32g

Table B.3: Eigenenergies and eigenstates of the Kanamori-Hubbard Hamiltonian with 3
electrons

E S L mS mL state

3U − 4J 1
2

1 +1
2

+1 1
2

(∣∣×, ↑, ↑↓
〉
− i
∣∣↑,×, ↑↓

〉
− i
∣∣↑, ↑↓,×〉+ ∣∣↑↓, ↑,×〉)

+1
2

0 1√
2

(∣∣×, ↑↓, ↑
〉
+
∣∣↑↓,×, ↑

〉)
+1

2
-1 1

2

(∣∣×, ↑, ↑↓
〉
+ i
∣∣↑,×, ↑↓

〉
+ i
∣∣↑, ↑↓,×〉+ ∣∣↑↓, ↑,×〉)

−1
2

+1 1
2

(∣∣×, ↓, ↑↓
〉
− i
∣∣↓,×, ↑↓

〉
− i
∣∣↓, ↑↓,×〉+ ∣∣↑↓, ↓,×〉)

−1
2

0 1√
2

(∣∣×, ↑↓, ↓
〉
+
∣∣↑↓,×, ↓

〉)
−1

2
-1 1

2

(∣∣×, ↓, ↑↓
〉
+ i
∣∣↓,×, ↑↓

〉
+ i
∣∣↓, ↑↓,×〉+ ∣∣↑↓, ↓,×〉)

3U − 6J 1
2

2 +1
2

+2 1
2

(∣∣×, ↑↓, ↑
〉
+ i |↓, ↑, ↑⟩ − i |↑, ↓, ↑⟩ −

∣∣↑↓,×, ↑
〉)

+1
2

+1 1
2

(∣∣×, ↑, ↑↓
〉
− i
∣∣↑,×, ↑↓

〉
+ i
∣∣↑, ↑↓,×〉− ∣∣↑↓, ↑,×〉)

+1
2

0 1√
6
(|↓, ↑, ↑⟩+ |↑, ↓, ↑⟩ − 2 · |↑, ↑, ↓⟩)

+1
2

-1 1
2

(∣∣×, ↑, ↑↓
〉
+ i
∣∣↑,×, ↑↓

〉
− i
∣∣↑, ↑↓,×〉− ∣∣↑↓, ↑,×〉)

+1
2

-2 1
2

(∣∣×, ↑↓, ↑
〉
− i |↓, ↑, ↑⟩+ i |↑, ↓, ↑⟩ −

∣∣↑↓,×, ↑
〉)

−1
2

+2 1
2

(∣∣×, ↑↓, ↓
〉
+ i |↓, ↑, ↓⟩ − i |↑, ↓, ↓⟩ −

∣∣↑↓,×, ↓
〉)

−1
2

+1 1
2

(∣∣×, ↓, ↑↓
〉
− i
∣∣↓,×, ↑↓

〉
+ i
∣∣↓, ↑↓,×〉− ∣∣↑↓, ↓,×〉)

−1
2

0 1√
6
(2 · |↓, ↓, ↑⟩ − |↓, ↑, ↓⟩ − |↑, ↓, ↓⟩)

−1
2

-1 1
2

(∣∣×, ↓, ↑↓
〉
+ i
∣∣↓,×, ↑↓

〉
− i
∣∣↓, ↑↓,×〉− ∣∣↑↓, ↓,×〉)

−1
2

-2 1
2

(∣∣×, ↑↓, ↓
〉
− i |↓, ↑, ↓⟩+ i |↑, ↓, ↓⟩ −

∣∣↑↓,×, ↓
〉)

3U − 9J 3
2

0 +3
2

0 |↑, ↑, ↑⟩

+1
2

0 1√
3
(|↓, ↑, ↑⟩+ |↑, ↓, ↑⟩+ |↑, ↑, ↓⟩)

−1
2

0 1√
3
(|↓, ↓, ↑⟩+ |↓, ↑, ↓⟩+ |↑, ↓, ↓⟩)

−3
2

0 |↓, ↓, ↓⟩
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B Eigenstates of the Kanamori-Hubbard Hamiltonian

B.4 t42g

For four electrons there are three different combinations of S and L.

Table B.4: Eigenenergies and eigenstates of the Kanamori-Hubbard Hamiltonian with 4
electrons

E S L mS mL state

6U − 8J 0 0 0 0 1√
3

(∣∣×, ↑↓, ↑↓
〉
+
∣∣↑↓,×, ↑↓

〉
+
∣∣↑↓, ↑↓,×〉)

6U − 11J 0 2 0 +2 1
2

(∣∣×, ↑↓, ↑↓
〉
+ i |↓, ↑, ↑↓⟩ − i |↑, ↓, ↑↓⟩ −

∣∣↑↓, ↑↓,×〉)
0 +1 1

2
(|↓, ↑↓, ↑⟩ − |↑, ↑↓, ↓⟩+ i |↑↓, ↓, ↑⟩ − i |↑↓, ↑, ↓⟩)

0 0 1√
6

(∣∣×, ↑↓, ↑↓
〉
+
∣∣↑↓,×, ↑↓

〉
− 2 ·

∣∣↑↓, ↑↓,×〉)
0 -1 1

2
(|↓, ↑↓, ↑⟩ − |↑, ↑↓, ↓⟩ − i |↑↓, ↓, ↑⟩+ i |↑↓, ↑, ↓⟩)

0 -2 1
2

(∣∣×, ↑↓, ↑↓
〉
− i |↓, ↑, ↑↓⟩+ i |↑, ↓, ↑↓⟩ −

∣∣↑↓, ↑↓,×〉)
6U − 13J 1 1 +1 +1 1√

2
(|↑, ↑↓, ↑⟩+ i |↑↓, ↑, ↑⟩)

+1 0 |↑, ↑, ↑↓⟩

+1 -1 1√
2
(|↑, ↑↓, ↑⟩ − i |↑↓, ↑, ↑⟩)

0 +1 1
2
(|↓, ↑↓, ↑⟩+ |↑, ↑↓, ↓⟩+ i |↑↓, ↓, ↑⟩+ i |↑↓, ↑, ↓⟩)

0 0 1√
2
(|↓, ↑, ↑↓⟩+ |↑, ↓, ↑↓⟩)

0 -1 1
2
(|↓, ↑↓, ↑⟩+ |↑, ↑↓, ↓⟩ − i |↑↓, ↓, ↑⟩ − i |↑↓, ↑, ↓⟩)

−1 +1 1√
2
(|↓, ↑↓, ↓⟩+ i |↑↓, ↓, ↓⟩)

−1 0 |↓, ↓, ↑↓⟩

−1 -1 1√
2
(|↓, ↑↓, ↓⟩ − i |↑↓, ↓, ↓⟩)
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B.5 t52g

B.5 t52g

For five electrons there is one combination of S and L.

Table B.5: Eigenenergies and eigenstates of the Kanamori-Hubbard Hamiltonian with 5
electrons

E S L mS mL state

10U - 20J 1
2

1 +1
2

+1 1√
2
(|↑, ↑↓, ↑↓⟩+ i |↑↓, ↑, ↑↓⟩)

+1
2

0 |↑↓, ↑↓, ↑⟩

+1
2

-1 1√
2
(|↑, ↑↓, ↑↓⟩ − i |↑↓, ↑, ↑↓⟩)

-1
2

+1 1√
2
(|↓, ↑↓, ↑↓⟩+ i |↑↓, ↓, ↑↓⟩)

-1
2

0 |↑↓, ↑↓, ↓⟩

-1
2

-1 1√
2
(|↓, ↑↓, ↑↓⟩ − i |↑↓, ↓, ↑↓⟩)
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C Eigenstates of the spin-orbit
coupling Hamiltonian

The eigenstates of the spin-orbit coupling Hamiltonian

Hλ =
iλ

2

∑
α,β,γ

∑
σ,σ′

ϵα,β,γτ
γ
σ,σ′c

†
α,σcβ,σ′ (C.1)

are shown for different numbers of electrons. The states can be characterised by their
composition of one-electron states with the quantum numbers j, mj. Those having the
form

|j = 1/2,mj = +1/2⟩ ==
1√
3
|yz, ↓⟩+ i√

3
|xz, ↓⟩+ 1√

3
|xy, ↑⟩ , (C.2)

|j = 1/2,mj = −1/2⟩ = 1√
3
|yz, ↑⟩ − i√

3
|xz, ↑⟩ − 1√

3
|xy, ↓⟩ , (C.3)

with energy +λ and

|j = 3/2,mj = +3/2⟩ = 1√
2
|yz, ↑⟩+ i√

2
|xz, ↑⟩ , (C.4)

|j = 3/2,mj = +1/2⟩ = 1√
6
|yz, ↓⟩+ i√

6
|xz, ↓⟩ −

√
2

3
|xy, ↑⟩ , (C.5)

|j = 3/2,mj = −1/2⟩ = 1√
6
|yz, ↑⟩ − i√

6
|xz, ↑⟩+

√
2

3
|xy, ↓⟩ , (C.6)

|j = 3/2,mj = −3/2⟩ = 1√
2
|yz, ↓⟩ − i√

2
|xz, ↓⟩ , (C.7)

with energy −1
2
λ, the degeneracies can be deduced from the possible combinatorics.
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C Eigenstates of the spin-orbit coupling Hamiltonian

C.1 t12g

For one electron, the states are given by the one-electron states.

C.2 t22g

For two electrons there are three different combinations of j1 and j2.

Table C.1: Eigenenergies and eigenstates of the SOC-Hamiltonian with 2 electrons

E j1 j2 mj1 mj2 state

2λ 1
2

1
2

+1
2

−1
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

|0⟩
1
2
λ 1

2
3
2

+1
2

+3
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

|0⟩

+1
2

+1
2

c†1
2
,+ 1

2

c†3
2
,+ 1

2

|0⟩

+1
2

-1
2

c†1
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

+1
2

-3
2

c†1
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

-1
2

+3
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

|0⟩

-1
2

+1
2

c†1
2
,− 1

2

c†3
2
,+ 1

2

|0⟩

-1
2

-1
2

c†1
2
,− 1

2

c†3
2
,− 1

2

|0⟩

-1
2

-3
2

c†1
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−λ 3
2

3
2

+3
2

+1
2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

|0⟩

+3
2

-1
2

c†3
2
,+ 3

2

c†3
2
,− 1

2

|0⟩

+3
2

-3
2

c†3
2
,+ 3

2

c†3
2
,− 3

2

|0⟩

+1
2

-1
2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

+1
2

-3
2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

-1
2

-3
2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩
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C.3 t32g

C.3 t32g

For three electrons there are three different combinations j1, j2 and j3.
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C Eigenstates of the spin-orbit coupling Hamiltonian

Table C.2: Eigenenergies and eigenstates of the SOC-Hamiltonian with 3 electrons

E j1 j2 j3 mj1 mj2 mj3 state
3
2
λ 1

2
1
2

3
2

+1
2

−1
2

+3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 3

2

|0⟩

+1
2

−1
2

+3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 1

2

|0⟩

+1
2

−1
2

+3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,− 1

2

|0⟩

+1
2

−1
2

+3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,− 3

2

|0⟩

0 1
2

3
2

3
2

+1
2

+3
2

+1
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

|0⟩

+1
2

+3
2

−1
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

c†3
2
,− 1

2

|0⟩

+1
2

+3
2

−3
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

c†3
2
,− 3

2

|0⟩

+1
2

+1
2

−1
2

c†1
2
,+ 1

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

+1
2

+1
2

−3
2

c†1
2
,+ 1

2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

+1
2

−1
2

−3
2

c†1
2
,+ 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−1
2

+3
2

+1
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

|0⟩

−1
2

+3
2

−1
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,− 1

2

|0⟩

−1
2

+3
2

−3
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,− 3

2

|0⟩

−1
2

+1
2

−1
2

c†1
2
,− 1

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

−1
2

+1
2

−3
2

c†1
2
,− 1

2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

−1
2

−1
2

−3
2

c†1
2
,− 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−3
2
λ 3

2
3
2

3
2

+3
2

+1
2

−1
2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

+3
2

+1
2

−3
2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

+3
2

−1
2

−3
2

c†3
2
,+ 3

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

+1
2

−1
2

−3
2

c†3
2
,+ 3

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩
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C.4 t42g

C.4 t42g

For four electrons there are three different combinations of j1, j2, j3 and j4.

Table C.3: Eigenenergies and eigenstates of the SOC-Hamiltonian with 4 electrons

E j1 j2 j3 j4 mj1 mj2 mj3 mj4 state

λ 1
2

1
2

3
2

3
2

+1
2

−1
2

+3
2

+1
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

|0⟩

+1
2

−1
2

+3
2

−1
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,− 1

2

|0⟩

+1
2

−1
2

+3
2

−3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,− 3

2

|0⟩

+1
2

−1
2

+1
2

−1
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

+1
2

−1
2

+1
2

−3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

+1
2

−1
2

−1
2

−3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−1
2
λ 1

2
3
2

3
2

3
2

+1
2

+3
2

+1
2

−1
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

+1
2

+3
2

+1
2

−3
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

+1
2

+3
2

−1
2

−3
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

+1
2

+1
2

−1
2

−3
2

c†1
2
,+ 1

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−1
2

+3
2

+1
2

−1
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

−1
2

+3
2

+1
2

−3
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

−1
2

+3
2

−1
2

−3
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−1
2

+1
2

−1
2

−3
2

c†1
2
,− 1

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−2λ 3
2

3
2

3
2

3
2

+3
2

+1
2

−1
2

−3
2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩
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C Eigenstates of the spin-orbit coupling Hamiltonian

C.5 t52g

For five electrons there are two different combinations of j1, j2, j3, j4 and j5.

Table C.4: Eigenenergies and eigenstates of the SOC-Hamiltonian with 5 electrons

E j1 j2 j3 j4 j5 mj1 mj2 mj3 mj4 mj5 state
1
2
λ 1

2
1
2

3
2

3
2

3
2

+1
2

−1
2

+3
2

+1
2

−1
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

|0⟩

+1
2

−1
2

+3
2

+1
2

−3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 3

2

|0⟩

+1
2

−1
2

+3
2

−1
2

−3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

+1
2

−1
2

+1
2

−1
2

−3
2

c†1
2
,+ 1

2

c†1
2
,− 1

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−λ 1
2

3
2

3
2

3
2

3
2

+1
2

+3
2

+1
2

−1
2

−3
2

c†1
2
,+ 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

−1
2

+3
2

+1
2

−1
2

−3
2

c†1
2
,− 1

2

c†3
2
,+ 3

2

c†3
2
,+ 1

2

c†3
2
,− 1

2

c†3
2
,− 3

2

|0⟩

76



D Intermediate regime

For JH ̸= 0 and λ ≠ 0 the states can be described by their total angular momentum
quantum numbers J and mJ . However, those do not form a complete set of commuting
observables. The resulting eigenenergies are listed below.

D.1 t12g

As shown in figure D.1, there is one doubly degenerate(J = 1/2) and one fourfold
degenerate (J = 3/2) branch. The energies of the states can be described by the linear
functions

EJ= 1
2
= λ (D.1)

EJ= 3
2
= −1

2
λ. (D.2)
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D Intermediate regime

0 1 2 3 4 5
Spin-orbit coupling  (eV)

2

1

0

1

2

3

4

5

Ei
ge

ne
ne

rg
ie

s E
 (e

V)

2×

4×

Figure D.1: The eigenenergies of the one electron case are shown for U = 0, JH = 1.
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D.2 t22g

D.2 t22g

As shown in figure D.2, there are two nondegenerate (J = 0), two fivefold degenerate
(J = 2) and one threefold degenerate (J = 1) branch.

0 1 2 3 4 5
Spin-orbit coupling  (eV)

7.5
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2.5

0.0

2.5

5.0

7.5

Ei
ge

ne
ne

rg
ie

s E
 (e

V)

1×

5×

3×

1×

5×

Figure D.2: The eigenenergies of the two electron case are shown for U = 0, JH = 1.
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D Intermediate regime

The energies of the states can be described by the functions

EJ=0,upper = JH

−1

2
+

1

2

λ

JH
+

1

2

√
9

(
λ

JH

)2

− 10
λ

JH
+ 25

 (D.3)

EJ=2,upper = JH

−2− 1

4

λ

JH
+

1

2

√
9

4

(
λ

JH

)2

+ 2
λ

JH
+ 4

 (D.4)

EJ=1 = −3JH +
1

2
λ (D.5)

EJ=0,lower = JH

−1

2
+

1

2

λ

JH
− 1

2

√
9

(
λ

JH

)2

− 10
λ

JH
+ 25

 (D.6)

EJ=2,lower = JH

−2− 1

4

λ

JH
− 1

2

√
9

4

(
λ

JH

)2

+ 2
λ

JH
+ 4

 . (D.7)
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D.3 t32g

D.3 t32g

As shown in figure D.3, there are three fourfold degenerate (J = 3/2), one doubly
degenerate (J = 1/2) and one sixfold degenerate (J = 5/2) branch.

0 1 2 3 4 5
Spin-orbit coupling  (eV)

14

12
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8

6

4

2

0

2

Ei
ge

ne
ne

rg
ie

s E
 (e

V)

4×

2×

6×

4×

4×

Figure D.3: The eigenenergies of the three electron case are shown for U = 0, JH = 1.

The energies of the J = 0 states can be described by the the polynomial equation

−864J3
H − 456J2

HE + 60JHλ
2 − 76JHE

2 + 9λ2E − 4E3 = 0 (D.8)

while the energies of the other two branches lie constant at

EJ= 1
2
= −4JH (D.9)

EJ= 5
2
= −6JH. (D.10)
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D Intermediate regime

D.4 t42g

As shown in figure D.4, there are two nondegenerate (J = 0), two fivefold degenerate
(J = 2) and one threefold degenerate (J = 1) branch.
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Figure D.4: The eigenenergies of the four electron case are shown for U = 0, JH = 1.
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D.4 t42g

The energies of the states can be described by the functions

EJ=0,upper = JH

−21

2
− 1

2

λ

JH
+

1

2

√
9

(
λ

JH

)2

+ 10
λ

JH
+ 25

 (D.11)

EJ=2,upper = JH

−12 +
1

4

λ

JH
+

1

2

√
9

4

(
λ

JH

)2

− 2
λ

JH
+ 4

 (D.12)

EJ=2,lower = JH

−12 +
1

4

λ

JH
− 1

2

√
9

4

(
λ

JH

)2

− 2
λ

JH
+ 4

 (D.13)

EJ=1 = −13JH − 1

2
λ (D.14)

EJ=0,lower = JH

−21

2
− 1

2

λ

JH
− 1

2

√
9

(
λ

JH

)2

+ 10
λ

JH
+ 25

 . (D.15)
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D Intermediate regime

D.5 t52g

As shown in figure D.5, there is one fourfold degenerate (J = 3/2) and one doubly
degenerate(J = 1/2) branch.
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Figure D.5: The eigenenergies of the five electron case are shown for U = 0, JH = 1.

The energies of the states can be described by the linear functions

EJ= 3
2
= −20JH +

1

2
λ (D.16)

EJ= 1
2
= −20JH − λ. (D.17)
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E Operators for the splitting at
JH = 0

To describe the superexchange Hamiltonian for JH = 0, the fourfold degenerate ground
state manifold was described by two doublets with (pseudo) spin-1/2 algebras. The
fundamental operators used are listed below in their matrix form in the basis{∣∣∣∣+3

2

〉
,

∣∣∣∣−3

2

〉
,

∣∣∣∣+1

2

〉
,

∣∣∣∣−1

2

〉}
. (E.1)

σx =


0 +1 0 0

+1 0 0 0

0 0 0 +1

0 0 +1 0

 σy =


0 −i 0 0

+i 0 0 0

0 0 0 −i
0 0 +i 0

 σz =


+1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 −1


(E.2)

τ z =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 τ+ =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 τ− =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 (E.3)
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Deutschsprachige Zusammenfassung

In der vorliegenden Arbeit wurde ein Modell-Hamiltonoperator untersucht, welcher die
Eigenschaften einer halb gefüllten t2g Schale in Übergangsmetallverbindungen beschreiben
kann. Hierzu wurde zunächst das Problem eines einzelnen Ions betrachtet, bei welchem
der Hamiltonoperator aus zwei Komponenten zusammengesetzt werden kann. Zum einen
wurden die Effekte der Hundschen Kopplung durch einen Kanamori-Hubbard-Hamiltonian
beschrieben, zum anderen die Spin-Bahn-Kopplung durch eine Wechselwirkung von Spin
und Bahndrehimpuls der einzelnen Elektronen eingeführt. Hierbei zeigte sich, dass unab-
hängig von der Stärke der einzelnen Terme stets eine vierfach entartete Mannigfaltigkeit
den Grundzustand bildete, deren Energie durch eine Nullstelle eines Polynoms dritten
Grades beschrieben werden kann. Des Weiteren wurde die Grundzustandsmannigfaltigkeit
vollständig beschrieben, wobei gezeigt wurde, dass eine Basis aus Eigenzuständen der
beiden einzelnen Terme nicht ausreichend ist, um die Eigenzustände ihrer Summe zu
beschreiben.

Hiernach wurde betrachtet, wie die Einführung des Jahn-Teller Effekts, einer Kopplung
der elektronischen Zustände an das umgebende Gitter, Einfluss auf die Zustände nimmt
und ob der Effekt zu einer Verzerrung der das Übergangsmetallion umgebenden Liganden
führt. Hier wurde gezeigt, dass die Verzerrung mit steigender Spin-Bahn-Kopplung
zunimmt, wobei die komprimierte geringfügig gegenüber der elongierten Geometrie
bevorzugt wird.

Im zweiten Teil der Arbeit wurde untersucht, welchen Einfluss die Möglichkeit eines Elek-
tronenaustauschs zwischen benachbarten Ionen durch Superaustausch auf die Grundzu-
standsmannigfaltigkeit hat. Hierbei konnte für die beiden Grenzfälle verschwindender
Hundscher Kopplung respektive verschwindender Spin-Bahn-Kopplung eine analytische
Beschreibung ermittelt werden. Für den Bereich kombinierter Effekte konnte gezeigt
werden, dass eine störungstheoretische Berechnung zwar nicht immer, jedoch im Bereich
physikalisch realistischer Parameter, eine nahezu perfekte Übereinstimmung mit der
exakten Diagonalisierung des Hamiltonoperators erzielt.

Des weiteren wurde analysiert, inwiefern die Einführung eines Superaustausches die
Auswirkungen des Jahn-Teller-Effektes verändert. In einem stark vereinfachenden Ansatz
wurde gezeigt, dass sich die durch den Jahn-Teller-Effekt bedingten Symmetriereduktionen
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im Zwei-Ionen-Modell bereits bei kleinerer Spin-Bahn-Kopplung bemerkbar machen
können als beim One-Site Fall.
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