
Institute of Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

A Global Adversarial Attack on
Scene Flow

Marcel Hasenbalg

Course of Study: Informatik

Examiner: Prof. Dr.-Ing. Andrés Bruhn

Supervisor: Jenny Schmalfuß, M.Sc.

Commenced: September 8, 2022

Completed: March 8, 2023





Abstract

In the field of computer vision deep neural networks are proven and tested solutions for
complex problems. Depth reconstruction from stereo images and estimation of optical flow
from image sequences is solved most accurate by deep learning based methods. The extension
of optical flow to three spatial dimensions is called scene flow. Deep neural networks for scene
flow estimation outperform classical energy functional minimisation methods. The application
of neural network solutions for scene flow estimation in security-critical applications such as
autonomous driving or robot-assisted surgery calls for an in-depth evaluation of these systems.
The manipulation of network outputs with adversarial attacks was first uncovered for object
classification networks. Adversarial attacks aim at introducing imperceptible perturbations
to input images to cause erroneous network outputs. Recent research could reveal the low
adversarial robustness of state-of-the-art stereo matching and optical flow neural network
solutions.

In this thesis a framework to generate a targeted constrained global adversarial attack on scene
flow neural networks (GSFA) is developed. Multiple different attack types which add perturba-
tions to specific types of inputs or at different stages of the networks processing pipeline are
introduced. The attack types are applied to the state-of-the-art scene flow estimation network
RAFT-3D. The effects of GSFA regarding scene flow estimation accuracy and perturbation size
of inputs is analysed using RAFT-3D and two scene flow benchmark datasets. The results of
various experiments proof that RAFT-3D shows the same vulnerabilities to adversarial attacks
as optical flow and stereo matching networks. Constraints on perturbation sizes effectively
keep perturbations imperceptible or hardly perceptible, while scene flow estimations approach
a defined zero scene flow target.

Kurzfassung

Im Bereich Computer Vision haben sich tiefe neuronale Netze als Lösung für komplexe Probleme
bewährt. Die Rekonstruktion von Tiefeninformation aus Stereo-Bildern und die Schätzung des
optischen Flusses aus Bildsequenzen wird am genauesten von Methoden, welche auf tiefem
maschinellem Lernen basieren gelöst. Die Erweiertung des optischen Flusses auf drei räumliche
Dimensionen wird Scene Flow genannt. Tiefe neuronale Netze für die Schätzung von Scene
Flow übertreffen die Genauigkeit klassischer Methoden, welche auf Minimierung von Energie
Funktionen basieren. Die Anwendung von neuronalen Netzen für die Schätzung von Scene Flow
in sicherheitskritischen Bereichen wie autonomes Fahren oder roboter-assistierter Chirurgie
erfordert eine gründliche Evaluation dieser Systeme. Die Manipulation der Ausgabeschicht
von Neuronalen Netzwerken mithilfe von Adversarial Attacks wurde zunächst für Objekt-
Klassifizierungsnetzwerke entdeckt. Das Ziel von Adversarial Attacks ist den Eingabe-Bildern
minimale Störungen hinzuzufügen, welche letztendlich zu fehlerhaften Ausgaben führen.
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Aktuelle Forschungsergebnisse konnten zeigen, dass moderne Netzwerke zur Schätzung des
optischen Flusses oder der Tiefenrekonstruktion eine geringe Robustheit gegen Adversarial
Attacks aufweisen.

In dieser Thesis wird ein Framework entwickelt, welches eine gezielte beschränkte glob-
ale Adversarial Attack (GSFA) auf neuronale Netze zur Scene Flow Schätzung ermöglicht.
Mehrere verschiedene Arten von Attacken, welche Störungen auf bestimmte Eingaben oder
an verschiedenen Stellen der Vearbeitung hinzufügen, werden eingeführt. Diese Arten von
Adversarial Attacks werden angewendet um die Ausgaben des modernen Scene Flow Netzwerks
RAFT-3D zu manipulieren. Die Auswirkungen von GSFA auf die Genaugikeit der Scene Flow
Schätzung und die Größe der Störung der Eingabebilder wird mit RAFT-3D und zwei Scene
Flow Benchmark Datensätzen überprüft. Die Ergebnisse vielseitiger Experimente beweisen,
dass RAFT-3D dieselben Schwächen gegen Adversarial Attacks aufzeigt, wie Netzwerke zur
Tiefenrekonstruktion oder zur Schätzung des optischen Flusses. Einschränkungen der Größe
der Störungen sind effektiv darin die Störungen der Eingabebilder im nicht wahrnehmbaren
oder kaum wahrnehmbaren Bereich zu halten, während die Ausgabe sich dem definierten Ziel
des Zero Scene Flow annähert.
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1 Introduction

Applications of scene flow include autonomous vehicle navigation, robotics, video analysis
and augmented reality. In the domain of autonomous driving scene flow helps the vehicle
to navigate and understand their environment. The motion estimation of other vehicles,
pedestrians and environment objects is critical to make sound driving decisions and avoid
collisions [1]. Robots equipped with a stereoscopic camera are able to provide doctors
with important information about motion of organs during minimally invasive surgeries [2].
Extracted scene flow information can be used to analyze video footage to extract the motion
information of objects in the scene. For instance, this is applied in football sports analysis to
track players or to enhance spectator experience with augmented reality [3].

Scene flow is the three-dimensional motion of real-word or virtual objects in a three-
dimensional scene. It can be derived from subsequent images captured by multiple cameras at
different points in time. A dense scene flow maps each three-dimensional point of a scene to a
three-dimensional motion vector, which indicates the motion of the point for a certain period
in each direction. Optical flow is a projection of the three-dimensional scene flow onto the
two-dimensional image plane. Stereo matching recovers three-dimensional structures from
multiple two-dimensional images which are captured by multiple cameras. By combining the
solutions of optical flow and stereo matching problems for a scene one can derive scene flow.

The formulation and first solutions of the scene flow problem predate the extensive usage of
deep neural network solutions for complex problems [4]. However, since improved hardware
and GPU-based computing made neural network solutions feasible in the last decade, all
current state-of-the-art scene flow estimation methods use deep learning techniques. On the
one hand, deep learning based methods excel at solving complex problems and perform well
given solid training data. On the other hand, they cannot provide interpretable solutions and
are therefore also referred to as black box. With the rise of deep learning based methods a major
weakness called adversarial attacks was identified by Szegedy et al. [5]. Minimal perturbations
of input data, which are hardly perceptible for human observers, can lead to erroneous output
classifications and predictions. Therefore, in recent years the robustness against adversarial
attacks has become another important quality characteristic of deep learning based methods
besides prediction accuracy.

Adversarial attacks in the scope of computer vision flow problems are not extensively covered
in current literature yet. Optical flow estimation neural networks were attacked by Ranjan
et al. [6] using patch-based adversarial attacks. Schrodi et al. [7] and Schmalfuss et al. [8]
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1 Introduction

used global adversarial attacks to examine the robustness of optical flow deep neural network
methods. The depth estimation of stereo matching neural networks was attacked by Berger
et al. [9] and Wong et al. [10]. All of them could proof certain vulnerabilities in the analysed
state-of-the-art methods. To the best of the author’s knowledge, no adversarial attacks on scene
flow estimation neural networks have been conducted yet. The experiments in this work show,
that scene flow neural networks are affected by the same vulnerabilities to adversarial attacks
as optical flow and stereo matching networks. As scene flow relies on solutions to optical and
stereo flow problems, it is interesting to analyse the effects of adversarial attacks on different
inputs or at different stages of the network.

In this work:

• the lack of knowledge about the vulnerability of scene flow deep learning based methods
to adversarial attacks is addressed.

• a framework to perform different types of unconstrained and constrained attacks on
scene flow estimation neural networks is introduced.

• different adversarial attacks are carried out on the state-of-the-art scene flow estimation
network RAFT-3D.

• the robustness of RAFT-3D against these adversarial attacks is compared on different
benchmark datasets.

Outline

This thesis is structured as follows:

Chapter 2 – Foundations and Related Work: In this chapter existing solutions and practices
from literature to computer vision flow problems as well as to adversarial attacks are
presented. Furthermore, the fundamentals of optical, stereo and scene flow problems are
explained in detail.

Chapter 3 – Applied Techniques in Detail covers the applied methods used for the adversar-
ial attacks in this work. These methods include neural networks for scene flow estimation
(RAFT-3D) and stereo matching estimation (GA-Net). The global constrained adversarial
attack developed in this work is based on the perturbation constrained flow attack (PCFA),
whose operation is explained in Section 3.3.

Chapter 4 – A Global Adversarial Attack on Scene Flow: The framework to perform differ-
ent types of attacks on scene flow estimation neural networks is introduced. The RAFT-3D
scene flow network is attacked using different combinations of attack inputs and param-
eters, as well as attacking the network at different stages of the processing pipeline to
identify the most effective attack types.
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Chapter 5 – Experiments and Results of the different experiments performed in Chapter 4
are presented in this chapter. Therefore, error metrics from literature as well as new
metrics for scene flow and adversarial attacks are defined. Ground truth data from two
different scene flow benchmarks is used to compare the adversarial attack strength and
robustness of RAFT-3D.

Chapter 6 – Conclusion and Outlook concludes the results of this work and presents promis-
ing follow-up experiments and future research topics in this domain.
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2 Foundations and Related Work

The following sections focus on related work from literature and the fundamental definitions
of scene flow and adversarial attacks. The scene flow problem (Section 2.3), can be subdivided
into stereo flow and optical flow which are discussed in Section 2.1 and 2.2 respectively. Basic
principles of adversarial attacks and relevant publications in this domain are discussed in
Section 2.4.

Inherent to all flow problems is the change of scene properties in space and time. In stereo
flow or stereo matching the position of real world objects changes in the image space, resulting
in a scalar disparity between the left and right image of a stereo image pair captured at a
fixed point in time. In optical flow the real world motion of objects over time is projected to
the image space, where the apparent motion of objects can be used to infer a displacement
vector field from an ordered sequence of images. Consequently, scene flow preserves the
three-dimensional real world motion of objects by combining stereo flow and optical flow
inferred from a sequence of stereo image pairs.

In the following the three different flow problems are defined and proven solutions are
presented. Standard solutions to these problems from the past include local and variational
methods, which involve the minimisation of an energy functional. However, auspicious results
of deep-learning based methods for computer vision problems in recent years led to the
development of deep neural networks to solve these flow problems. Classical methods and
state-of-the-art neural networks for scene flow rely on principles from stereo matching and
optical flow.

2.1 Stereo Matching

The goal of the stereo matching or stereo flow problem is to reconstruct the three-dimensional
structure of a scene using multiple two-dimensional images. Human binocular vision is able
to perceive depth with two eyes, which are offset from one another. Both eyes view the same
object from a different perspective. Hence, disparity information processed by the visual cortex
enables humans to construct a three-dimensional representation of the scene [11]. The human
brain is capable of performing such tasks automatically, but computer systems can use the
same information for stereo matching algorithms. However, systems may need calibration
to enable the translation of two-dimensional image data to three-dimensional world data.
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2 Foundations and Related Work

Figure 2.1: Objects captured with the pinhole camera model appear upside down on the image
plane. The distance between focal and image plane is called focal distance f .

Required parameters regarding camera models and calibration as well as techniques to find
correspondences are explained in the following.

2.1.1 Camera Model and Parameters

The pinhole camera model can be used to model the perspective projection from three-
dimensional space onto the two-dimensional image plane [12]. A three-dimensional scene
point M = (X, Y, Z) is mapped to the two-dimensional image point m = (x, y). As Figure 2.1
shows, the camera model uses the focal plane F and the image plane I, where the distance
between these planes is called focal distance f . The order of image plane and focal plane leads
to objects appearing upside down in the resulting image.

From a scene point M = (X, Y, Z) to an image pixel p = (u, v) three transitions between
different coordinate systems are conducted:
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2.1 Stereo Matching

1. Transition from world to camera coordinates: The six extrinsic parameters, three
parameters for translation and rotation each, characterise the position and orientation
of the camera in relation to the world coordinates [13]. These parameters are used to
transform points from the world coordinates to the camera coordinates. The 3×3 rotation
matrix R with entries ri,j is part of the upper left corner of the extrinsic parameters Aext.
It is defined as the product of three rotation matrices with a specific rotation angle of the
camera around each axis, called roll, pitch and yaw. The location of the camera in the
world coordinate system is defined by the translation vector t. In the end the extrinsic
matrix can be constructed, if the camera’s roll, pitch and yaw angles and translation in
each direction are known.

Aext =


r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3
0 0 0 1

 (2.1)

This matrix notation of combined translation and rotation of an object is also called
SE(3), the special Euclidean group of three-dimensional rigid body displacement [14].

2. Transition from camera coordinates to image coordinates: The projective matrix Pf ,
where f denotes the focal length, transitions points from the camera coordinate system
to the image plane. Homogeneous coordinates are a remedy for the non-uniqueness of
multiple points on the optic ray mapping to the same pixel. An additional coordinate is
added by scaling each point by a factor λ ̸= 0:

(
x

y

)
→

λx

λy

λ

 . (2.2)

Division by λ transforms homogeneous coordinates back to non-homogenous coordinates.
With the use of the intercept theorem [15] and homogenous coordinates the transition
from camera to image coordinates can be expressed with the projection matrix Pf :

λx

λy

λ

 =

Zx

Zy

Z

 =

f 0 0 0
0 f 0 0
0 0 1 0


︸ ︷︷ ︸

Pf


X

Y

Z

1

 . (2.3)

3. Transition from camera coordinates to image coordinates: Finally, image coordinates
are translated to pixel coordinates using the intrinsic camera parameters. The principal
point c of the image plane is located at (u0, v0). These parameters can be put together in
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2 Foundations and Related Work

the intrinsic camera parameters matrix Aint. For quadratic pixels with density k aligned
in a square grid the intrinsic matrix becomes:

Aint =

k −k u0
0 k v0
0 0 1

 (2.4)

By ordered multiplication of the three coordinate transformation matrices one can calculate
the pixel coordinates from real world coordinates:

k −k u0
0 k v0
0 0 1


︸ ︷︷ ︸

Aint

f 0 0 0
0 f 0 0
0 0 1 0


︸ ︷︷ ︸

Pf


r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3
0 0 0 1


︸ ︷︷ ︸

Aext


X

Y

Z

1

 = λ

u

v

1

 (2.5)

The product of the intrinsic matrix Aint, projection matrix Pf and extrinsic matrix Aext is called
full projection matrix P [13]. Estimating the intrinsic and extrinsic camera parameters of a
stereo camera rig is called camera calibration. In practice, the stereo camera calibration can be
determined by analysis of captured images of an object of known dimensions.

2.1.2 Stereo geometry for multiple cameras

The use of multiple calibrated cameras enables the depth reconstruction of a scene, which
is important for estimating three-dimensional scene flow. The basic setup of a stereo flow
problem consists of a set of at least two cameras (left and right). If more than two cameras
are used the problem is referred to as multi-view stereo (MVS) [16]. Both cameras capture an
image of the scene at the same time, resulting in images I0 and I1. Both cameras are located at
different positions and the distance between their focal points is called baseline b. If the optical
axes of the cameras are parallel, the setup is called ortho-parallel, as illustrated in Figure 2.2.

The stereo problem can be subdivided in two phases:

1. Disparity estimation: Let M = (X, Y, Z) be a three-dimensional scene point displayed
in the left image I0 and the right image I1. Because both cameras are located at different
positions, the pixels representing M will be located at different positions in the images.
Identifying the conjugated points in I0 and I1 means finding the pixels representing
M in each image. The plane spanned by the scene point M and the focal points of
the cameras C0 and C1 is called epipolar plane [13] (see Figure 2.2). All epipolar lines
intersect the epipol of a camera, which is a mapping of the focal point of the other camera.
Intersecting the epipolar plane with the image plane of C0 yields the first epipolar line e0.
In the same way e1 is defined by the intersection of the epipolar plane with the image
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2.1 Stereo Matching

Figure 2.2: Stereo geometry for ortho-parallel cameras resulting in disparity x1 − x2 for scene
point M . The epipolar lines are marked in red. Illustration adapted from Kim et al.
[17].

plane of C1. The points representing M are located on the epiploar lines e0 and e1. By
superposition of I0 and I1 the displacement between conjugated points can be identified.
This displacement is defined as disparity d and can be visualised by a gray-scale image,
where each pixel is assigned its disparity value (see Figure 2.3). In practice the process
of stereo rectification ensures that corresponding points are located on the same image
scan line (y-axis). Therefore, the disparity becomes the displacement in x-direction
and the distance can be calculated by subtraction of the x-coordinates x1 and x2 of the
corresponding points.

2. Depth reconstruction: In the ortho-parallel case the depth Z of the scene point M can
be reconstructed using the disparity x1 − x2:

Z = bf

x1 − x2
(2.6)
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2 Foundations and Related Work

Figure 2.3: A disparity map encodes the disparity value for each pixel of the rectified stereo
image pair.

2.1.3 Stereo Rectification

In the ortho-parallel case the epipolar lines are parallel to the x-axis of the image plane, which
is convenient as it reduces the search space for correspondences to one dimension. However,
this does not hold for a setup of converging cameras. The process of rectification transforms a
stereo image pair in such a way, that the epipolar lines become parallel to the x-axis of the
rectified image plane. This can be achieved by projective transforms, which map the epipoles
to points that are infinitely far away from the camera. Consequently, corresponding epipolar
lines become parallel. The algorithm proposed by Hartley and Zisserman [13] performs stereo
rectification by finding a projective transform that maps epipoles to infinity and minimizes
image distortions between the warped images.

Finding conjugated points in stereo images is a correspondence problem and the most complex
part of the stereo problem discussed in the following sections.

2.1.4 Local Methods for Stereo Matching

Local methods search the correspondences in both images locally by matching local image
regions of a stereo pair. Corresponding points only appear along epiploar lines and within a
maximum displacement distance. Zhang et al. [18] could show that recovery of the epipolar
geometry from images without camera calibration is possible by estimation of correspondences
only.

The intensity values of the local window around corresponding points in both images are
assumed to be similar. Local methods compare the similarity of box- or ball-shaped windows
around two points (x, y) and (x+u, y +v) where (u, v)⊤ denotes the displacement vector along
the epipolar line. The intensity consistency assumption for stereo matching in Equation (2.7)
states this similarity:

I0(x, y) = I1(x + u, y + v) (2.7)

These methods compare all window pair candidates in the search space, which is limited
by the epipolar lines and the maximum displacement. Hirschmüller and Scharstein [19] list
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2.1 Stereo Matching

and compare different measures used for window comparison, including the window mean
value, normalized cross-correlation (NCC), sum of absolute differences (SAD) and mutual
information (MI). Local methods that use these similarity measures were proposed by Zhang
et al. [20] (NCC) or Super and Klarquist [21] (mean and standard deviation). Illumination
intensity, direction or color changes can violate the intensity consistency assumption, hindering
the matching of local windows. Window similarity measures that are invariant under certain
illumination changes are desirable and were proposed by Heo et al. [22] in form of adaptive
normalized cross-correlation (ANCC).

The two windows with the highest similarity score are selected as corresponding points.
However, in flat image regions or regions including repetitive textures the window similarity
score is not discriminable, leading to non-dense disparity maps of local methods. To sum
up, local methods are simple and robust but cannot always yield a dense representation of
correspondences.

2.1.5 Variational Methods for Stereo Matching

Variational methods examine the images globally to estimate the disparity. Two assumptions
are fundamental for these kinds of methods [23]:

1. Intensity consistency assumption: Conjugated points have the same pixel values (see
Equation (2.7)).

2. Smoothness assumption: Disparity maps vary smoothly in space.

A disparity map which satisfies these constraints best can be computed by minimisation of a
multi-term energy functional. Equation (2.8) shows such a simplified energy functional for the
ortho-parallel case. In an orthoparallel camera setup, no displacements along the y-axis occur.
The first term enforces the intensity consistency assumption between corresponding points.
The second term ensures a smooth disparity map u with a constant penalty factor α.

E(u) =
∫

Ω
(I0(x, y)− I1(x + u, y))2 + α|∇u|2 dx dy (2.8)

Alvarez et al. [24] implemented a similar energy functional which is not limited to the ortho-
parallel case. The minimisation of the energy functional can be achieved by a numerical
scheme using finite differences, primal-dual algorithms [25] or gradient descent algorithms
[26].

2.1.6 Semi-Global Matching

As global methods are computationally expensive, semi-global matching reduces complexity by
providing an alternative approach to the smoothness constraint. Hirschmüller [27] proposes
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2 Foundations and Related Work

semi-global matching, which replaces the global approximation of two-dimensional smoothness
by a combination of multiple one-dimensional constraints. The stereo reconstruction in classical
methods consists of three stages: feature extraction, matching cost aggregation and disparity
estimation. In the first step image features are extracted, which can then be used to calculate
the cost of matching pixels C(p, d) between the left and right image in the second step.
Finally, depending on the matching cost the pixel correspondences can be established and
the disparity map is generated. Using only pixel-wise and feature-based matching can lead
to incorrect correspondences, as occlusions, noise or reflections can lead to lower matching
costs. Cost aggregation, as implemented in semi-global matching, counteracts this problem by
extending the matching cost computation to respect certain constraints, such as local and global
smoothness assumptions. The matching cost between pixels and the smoothness assumptions
are formulated in an energy function E(d), where d is the output disparity map [27]:

E(d) =
∑

p

C(p, dp) +
∑

q∈Np

P1 · δ(|dp − dq| = 1) +
∑

q∈Np

P2 · δ(|dp − dq| > 1). (2.9)

The first term sums up the matching cost C(p, dp) of each pixel p with assigned disparity dp.
The second and third term are penalty terms, which handle discontinuities of the disparity
around pixel p in a neighbourhood Np. Disparity differences of 1 in the neighbourhood are
counted by function δ and penalised by a constant factor P1. Larger disparity discontinuities in
Np are penalised by the third term with factor P2.

Instead of ensuring smoothness of disparity values in all directions, semi-global matching
aggregates the costs in C along specific paths starting from pixel p. This eases computational
complexity, by reducing a two-dimensional problem down to multiple one-dimensional prob-
lems. Hirschmüller [27] proposes to aggregate costs along 8 to 16 paths in equally spaced
distinct directions. The cost of all these paths is summed up, resulting in the lowest cost
C(p, d) for pixel p if disparities along all these paths are smooth. After the cost aggrega-
tion C is completed, the disparity can be calculated by minimising the energy function in
Equation (2.9).

2.1.7 Deep learning-based Methods for Stereo Matching

Deep learning-based methods are able to learn features from training data instead of relying
on handcrafted solutions used in local and global stereo matching methods. Therefore,
neural networks for disparity estimation have become the most promising and accurate
solutions [28]. These methods rely on (labeled) training data, which is provided by publicly
available benchmarks [29, 1, 30]. In actual fact, there is no need to learn stereo, as depth
estimation can be solved exactly if no assumptions are violated and the camera system is
calibrated [10]. Nevertheless, deep learning is used to regularise the depth reconstruction in
areas where these assumptions are violated, which is the case in many real world scenarios.
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2.2 Optical Flow

Mayer et al. [31] introduced the concept of cost volumes in end-to-end stereo matching neural
networks. The cost volume represents the costs associated with matching pixels between the
left and right images of a stereo pair. It is implemented as multidimensional array, which stores
the similarity measure for the pixel pairs. Group-wise correlation was introduced by GwcNet
[32] to further improve disparity estimation. Instead of comparing single pixels for a possible
match, groups of pixels are compared while searching for correspondences similar to window
comparison in local methods. This technique improved robustness of deep-learning based
methods for noisy input images. Multiscale cost volumes enable networks to extract image
information on multiple scales and were introduced by Shen et al. [33]. The information on
the coarse level of a multiscale space allow for more precise disparity estimation on the finer
levels.

The idea of semi-global matching is revisited by Zhang et al. [34], who propose GA-Net with
local guided aggregation layers (LGA) and semi-global guided aggregation layers (SGA). SGA
layers act as a differentiable version of the semi-global matching algorithm, whose parameters
and penalty coefficients are learned instead of handcrafted. A modified version of GA-Net,
which uses adaptive cross-entropy loss is currently the top ranked method for stereo matching
in the KITTI 2015 stereo benchmark [1].

As neural networks grow more complex, neural architecture search (NAS) is used to find
optimal network architectures for a given task. NAS algorithms explore the space of possible
network architectures. The application of NAS to end-to-end stereo matching neural networks
by Cheng et al. [35] resulted in state-of-the-art disparity estimation performance. Current
literature proposes a multitude of network architectures and modifications to further improve
disparity estimation.

For the experiments with adversarial attacks in Chapter 4 disparity estimation is realised with
GA-Net. Therefore, GA-Net is additionally covered in detail in Chapter 3.1.

2.2 Optical Flow

Optical flow describes the relative motion of objects between an observer and an environment
over time. In the context of flow estimation, the projection of three-dimensional scene flow onto
the image plane is called optical flow. Additional depth information from disparity estimations
in combination with the optical flow estimation enables the expression of three-dimensional
scene flow. In the field of computer vision optical flow belongs to the class of correspondence
problems. The goal of optical flow is to estimate the movement of objects in a scene using a
sequence of images. The key idea is, that the apparent motion of objects in subsequent images
is related to their actual motion in the real world. Whereas stereo flow uses multiple cameras
at the same point in time, optical flow inputs are image sequences generated by a single camera
at different points in time. Each pixel (x, y) of an image is mapped to a displacement vector
(u, v) resulting in a two-dimensional vector field. Given two images taken at time t = 0 and
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t = 1, function f(x, y, t) retrieves the pixel value of an image for a certain position (x, y) and
point in time t.

In general, methods to solve to the optical flow problem resort to the optical flow constraint
(OFC): The intensity consistency assumption states, that corresponding points in both images
have the same pixel values:

f(x, y, t) = f(x + u, y + v, t + 1). (2.10)

The differential formulation of the intensity consistency assumption leads to the OFC: If the
displacement vector (u, v) is small and the flow varies smoothly in space one can rewrite
Equation (2.10) as linearised optic flow constraint:

f(x, y, t)− f(x + u, y + v, t + 1) = 0
≈ fxu + fyv + ft

= (u, v)
(

fx

fy

)
+ ft.

(2.11)

The OFC in Equation (2.11) has two unknowns, thus no unique solution. Only the flow
component parallel to (fx, fy)⊤ is considered. Therefore, it is possible to add flow components
orthogonal to (fx, fy)⊤ without violating the constraint. Optical flow methods need to introduce
additional assumptions as remedy for the so-called aperture problem.

2.2.1 Local Methods for Optical Flow

Multiple methods that use additional local assumptions exist. The approach of Lucas et al.
[36] introduces the assumption, that the optic flow is approximately constant in a ball-shaped
neighbourhood Bp with radius p. The energy functional in Equation (2.12) is minimised to
adequately fulfill the optic flow constraint in a ball-shaped neighbourhood:

E(u, v) = 1
2

∫
Bp

(fxu + fyv + ft)2 dx dy . (2.12)

The performance of this approach suffers in regions that violate the local constancy assumption.
This assumption is violated if the flow is discontinuous or the motion is non-translatory. These
problems prohibit the calculation of dense optical flow fields.

2.2.2 Global Methods for Optical Flow

Horn and Schunck [37] introduce a variational method with more flexible model assumptions
than the local methods. The intensity consistency assumption in form of the OFC is the same
assumption used in local methods (see Equation (2.11)). The second assumption is a smooth
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flow field, because neighbouring pixels are expected to belong to the same object and hence
move similarly. The second global constraint tries to maximise the smoothness of the flow
field in both directions and is a remedy for the aperture problem. Adding the constraint to the
energy functional [37] results in Equation (2.13), where the second term penalises non-smooth
flow fields:

E(u, v) =
∫

Ω
((fxu + fyv + ft)2 + α(|∇u|2 + |∇v|2)) dx dy . (2.13)

Schnörr [38] could show that this optimization has a unique solution. The variational model
can handle non-translatory motion and achieves dense flow fields due to filling in effects. Flow
information from dense regions propagates to flat regions, filling in missing flow information.
The variational model of Horn and Schunck [37] can be improved by modifying or appending
terms. Bartolini and Piva [39] reduce the weight of the smoothness constraint to preserve
sharpness of the flow field at motion boundaries by using median filters.

To gain the advantages of both types of optical flow estimation methods a combination of the
local Lucas-Kanade and global Horn and Schunck method was proposed by Bauer et al. [40].

2.2.3 Deep-learning Methods for Optical Flow

The research of recent years identified deep-learning based methods as appropriate technique
to solve computer vision problems. For instance object classification by ImageNet [41] or
semantic segmentation using convolutional neural networks (CNN) [42, 43] show accurate
results. In the same way as stereo flow estimation was improved by deep-learning based
methods, current state-of-the-art optical flow methods are based on trained neural networks.
End-to-end dense optical flow field estimation networks were first introduced with FlowNet by
Dosovitskiy et al. [44] using a classical encoder-decoder architecture [45]. The purpose of the
encoder part of the network is to extract feature representations of the input data in form of
multiple feature maps while reducing spatial resolution. Encoding is realised by a series of
convolutional and pooling layers. The decoder part on the other hand, uses the low-resolution
feature representations generated by the encoder as input and increases spatial resolution of
the networks final output with transposed convolutional layers. FlowNet showed promising
results but could not compete with standard variational methods on real-world data including
small displacement vectors. Ilg et al. [46] proposed FlowNet 2.0 to alleviate these issues,
combining multiple stacked FlowNet modules and introducing a subnetwork specializing on
small motions.

SPyNet [47] uses a coarse-to-fine spatial pyramid structure in which separate optical flow
neural networks are trained for each pyramid level. At each level of the pyramid the input
resolution is halved, resulting in a decrease of neural network parameters and optical flow
displacement vector magnitude. This architecture proposed by Ranjan and Black [47] is
simpler than FlowNet and has 96% less model parameters, while keeping up with the flow
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estimation accuracy of FlowNet. However, SPyNet performs worse than FlowNet 2.0 indicating
a trade-off between model size and accuracy. The inference of optical flow by SPyNet starts at
the lowest resolution, where the optic flow estimate is initialized as zero-flow. Consecutively
the optical flow estimation of the coarser pyramid level is passed as additional input for the
next level that estimates flow at double the resolution.

Sun et al. [48] propose PWCNet which refines the SPyNet architecture by introducing a cost
volume layer, which stores the matching cost for each pixel’s potential correspondence pixel.
Whereas SPyNet directly works on input images, PWCNet uses a learned feature representation
created from input images at each layer which further reduces the amount of model parameters.
Resolution of the feature representation in PWCNet is halved at each pyramid level in the same
way as in SPyNet. PWCNet outperforms SPyNet and FlowNet 2.0 but uses fewer parameters.

Zhang et al. [49] propose Separable Flow to replace the correlation cost volume with a
separable cost volume to improve optic flow estimation in occluded areas or areas without
texture. Memory requirements and computational complexity are improved by separation
and compression of the 4D cost volume into two 3D feature tensors. Guided aggregation
layers were identified as valuable improvement for stereo matching networks [34]. Therefore,
Zhang et al. [49] introduce semi-global matching realised by semi-global aggregation layers to
incorporate non-local information. Finally, the authors include a motion regression module
which learns a low-resolution but high-quality flow prediction as initial input to the upscaling
module in contrast to zero-flow initialisations of the other methods.

Recurrent All-Pairs Field Transforms (RAFT) by Teed and Deng [50] introduces a network
architecture for end-to-end optical flow estimation that is different to FlowNet, SPyNet and
PWCNet. The network does not use a pyramidal coarse-to-fine scheme but keeps a single
high-resolution flow field which is iteratively refined by an update module. The abandonment
of the coarse-to-fine scheme is a remedy for error recovery at coarse resolutions, long training
times and the tendency to miss small and fast objects [50]. RAFT consists of three main
components: feature and context encoders (1), a correlation volume at different scales (2)
and an iterative update operator (3). The iterative update module mimics the behaviour of a
first-order optimization algorithm, whose parameters are learned instead of handcrafted. At the
time of its publication in 2020 RAFT ranked top for the KITTI 2015 optical flow benchmark [1].
Numerous modified and improved versions of optical flow neural networks based on the RAFT
architecture were proposed by different authors, all resulting in competitive benchmark results
[51, 52, 53, 54]. As the adversarial attacks in this work are applied on the RAFT based scene
flow estimation network RAFT-3D [55], this network is discussed in detail in Section 3.2.

The aforementioned deep-learning based approaches are supervised during learning and rely
on labeled ground truth data. Unsupervised learning methods can train end-to-end optical flow
neural networks without ground truth data [56, 57]. Zhu et al. [57] proposed an unsupervised
learning method which uses a proxy ground truth generated by Flow Fields [58], which is a
dense correspondence field approach and not a deep-learning based method. SelFlow [59]
is another self-supervised approach for deep-learning based optical flow estimation. Ground
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truth data is reliably generated from non-occluded pixels. Liu et al. [59] propose to manipulate
this ground truth data with artificial occlusions to enable training of optical flow estimation for
occluded image regions.

In summary, since the introduction of FlowNet [44] in 2015 the deep-learning based methods
were refined multiple times and enhanced with new innovations to improve performance.
Recent deep-learning based methods achieve the highest accuracy for optical flow estimation.

2.3 Scene Flow

Scene Flow methods estimate the three-dimensional motion of objects using images or point
clouds of a dynamic scene. In literature methods using stereo image sequences or point cloud
data as input are presented. In images the three-dimensional world is projected onto the
two-dimensional image plane. Furthermore, images depict the world at a specific point in time.
To deduct three-dimensional movement of objects in a scene over time, single images are not
sufficient and image pairs or sequences are required. Stereo matching recovers the depth of a
scene using a stereo image pair. Thus, position in all three dimensions is recovered. Optical
flow reconstructs the motion of a scene using an image sequence. The motion is recovered and
projected onto the two-dimensional image plane.

Scene flow estimation with a single camera is an ill-posed problem, that requires additional
constraints. A stereo camera system renders the task feasible introducing the required con-
straints with a sequence of stereo image pairs. In summary, scene flow is the three-dimensional
version of optical flow. However, scene flow estimation has similar ambiguities in certain cases
that also affect human perception [60]:

1. Unknown camera motion
If the motion of the camera is not known, scene flow estimates only retrieve the motion
relative to the camera. The question if stars revolve around the earth or the earth is
rotating is an example that human perception is also not able to interpret this ambiguity
by simple observation.

2. Occlusions
All points along the optic ray of a camera are projected to the same image pixel resulting
in occlusions. Scene flow cannot reliably estimate motion of occluded image regions.
Human observers are also not able to detect occluded motions, for instance a person
walking behind an object.

3. Aperture problem
For flat image areas with missing structure, the aperture problem mentioned in Section 2.2
persists. For instance, motion in uniform color scenes cannot be detected by humans.
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2.3.1 Decoupled Variational Approach for Scene Flow Estimation

As scene flow can be derived from stereo matching and optical flow, Wedel and Cremers
[60] propose a decoupled approach, where position (disparity) and motion (optical flow
and disparity change) are computed separately. Choosing an optimal technique to solve
each sub-problem enables selection of appropriate algorithms for each problem and parallel
computing. Nonetheless, both problems are coupled and the consistency between optical flow
and disparities has to be ensured. In the following a solution by a variational model [60] is
used to outline the scene flow problem in detail.

Scene flow estimation is realised by a combined approach of stereo matching and optical flow
estimation. The input to the scene flow is an image sequence of stereo pairs. Consecutive
stereo pairs at times t = 0 and t = 1 are captured by a left and right camera (i ∈ 0, 1), resulting
in four images It,i ∈ {I0,0, I0,1, I1,0, I1,1}.

Figure 2.4 illustrates, that the scene flow problem is constrained by two stereo matchings d0
and d1 and two optical flows fl and fr which couple the four images. Let I0,0(x, y) denote the
intensity value of the left image at position (x, y) and time t = 0. Likewise, It,1(x, y) retrieves
intensity values for the right image for the specified position and time.

• Optical flows
The optical flow of the left camera using the images I0,0 and I1,0 is defined as
fl(x, y) = (ul, vl).
The optical flow of the right camera using the images I0,1 and I1,1 is defined as
fr(x, y) = (ur, vr).

• Stereo matchings
The stereo matching at time t = 0 using images I0,0 and I0,1 is defined as d0.
Respectively, d1 is the stereo matching at time t = 1 using images I1,0, I1,1.
Note that d0 is registered to the reference frame I0,0, whereas d1 is registered to I0,1.

The four-dimensional scene flow can be uniquely defined using one optical flow and two
disparity maps. Let fl = (u, v)⊤ be the left optical flow of the image sequence I0,0, I1,0. The
first disparity between I0,0 and I0,1 is defined as d = d0. The second disparity d′ cannot be
adopted in the same manner using the images at time t = 1, because it has to be registered to
the same reference image. This also implies, that the disparity change ∆d cannot be calculated
by subtraction of the separate disparities d0 and d1 alone, as d1 references I0,1. Therefore, d′

denotes the disparity at t = 1 registered to the reference image I0,0. In this way both disparities
are registered to I0,0. The disparity change ∆d = d′ − d can be used to determine d′. The
combination of disparity maps d and d′ and the left optical flow fl = (u, v)⊤ result in the
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four-dimensional scene flow vector field. The scene flow function s maps a pixel to its temporal
change of flow and disparity:

s(x, y) =


u

v

d

d′

 =


ul

vl

d0
∆d + d0

 . (2.14)

Applying the intensity consistency assumption for stereo matchings and optical flows results in
three constraints:

1. Left Optic Flow Constraint
The left flow constraint ensures the intensity consistency assumption for fl:

Efl
: I1,0(x + ul, y + vl)− I0,0(x, y) = 0. (2.15)

2. Right Optic Flow Constraint
Stereo rectification (see Section 2.1.2) ensures that corresponding points of the left and
right images are aligned on the scan lines in y-direction. Therefore, the x-component of
the right image is only shifted by the disparity d0. The same principle holds for the optical
flow, where the u component is shifted by the disparity change ∆d, so ur = ul + ∆d. This
leads to the right optical flow constraint:

Efr : I1,1(x + d + ∆d + ul, y + vl)− I0,1(x + d, y) = 0. (2.16)

3. Disparity Constraint
The disparity constraint ensures the intensity consistency assumption for the stereo pair
at t = 1:

Ed : I1,1(x + d + ∆d + ul, y + vl)− I1,0(x + ul, y + vl) = 0. (2.17)

Variational Model for Scene Flow

Similar to the variational optical flow method of Horn and Schunck [37], the linearised
versions of these three constraints are used as data term ED in an energy functional ESF in
the method of Wedel and Cremers [60]. A simplified version of the data term is described in
Equation (2.18):

ED = Elf + Erf
+ Ed. (2.18)

As in the optic flow variational approach, Wedel and Cremers [60] introduce a smoothness
term, which penalises non-smooth flow or disparity changes by analysing the magnitude of the
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Figure 2.4: The scene flow problem is constrained by the left and right optic flow constraint
Efl

, Efr (red) and the disparity constraint Ed (yellow). The disparity d0 is given
(blue).

spatial gradients. Equation (2.19) shows the weights λ for penalising non-smooth flow and γ

for disparity change respectively.

ES = λ|∇u|2 + λ|∇v|2 + γ|∇(∆d)|2 (2.19)

The final energy functional is minimised in the entire image domain Ω:

ESF (u, v, d, d′) =
∫

Ω
(ED + ES) dx dy . (2.20)

Minimisation is achieved by computing the Euler-Lagrange equations, which are then solved
by a fixed point iteration scheme [61].

2.3.2 3D World Scene Flow

A solved scene flow problem s(x, y) = (u, v, d, d′)⊤ enables the computation of three-
dimensional real world motion vectors (X ′, Y ′, Z ′)⊤, which start from the world point (X, Y, Z)
at time t = 0 [60]. A visualisation of the real-world three-dimensional scene flow vectors is
depicted in Figure 2.5. The focal point of the left camera is located at (x0, y0), f is the focal
length and b the baseline:X

Y

Z

 = b

d

x− x0
y − y0

f

 (2.21)
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Figure 2.5: Visualisation of scene flow by Wedel and Cremers [60]. The three-dimensional
vectors point in the direction of the scene flow. A large displacement vector
translates to high velocity of the object (color-coded in red).

X ′

Y ′

Z ′

 = b

d + ∆d

x− x0 + ul

y − y0 + vl

f

− b

d

x− x0
y − y0

f

 (2.22)

Besides the demonstrated method of Wedel and Cremers [60], different approaches to scene
flow estimation exist in literature. In 1999 Vedula et al. [4] coined the term scene flow
and propose a method for dense scene flow estimation from optical flow for three different
scenarios. The scenarios distinguish between different levels of available stereo information,
where either a stereo matching, stereo correspondences or no stereo information is given. Later
variational methods use different data terms, for instance Vogel et al. [62] introduce a model,
which uses local rigidity instead of smoothness for regularisation to further improve scene
flow estimation. The local rigidity constraint assumes that the scene flow in small regions of
the scene can be described by a locally rigid motion. Huguet and Devernay [63] propose a
variational model, which abstains from linearised constraints to improve performance [61].
This approach couples disparity and flow estimation and optimises (u, v, d, d′)⊤ collectively,
whereas the decoupled method described in Section 2.3.1 first computes d which is then used
to optimise (u, v, d′)⊤. Energy minimisation of variational methods for scene flow can also be
realised by multi-resolution pyramid approaches combined with fixed point iteration [63] or
primal-dual algorithms [64].

The methods mentioned so far all rely on stereo image sequences, however there exists
variational methods that use point cloud data [65, 66]. Point cloud data from the real world
can be gathered using the Lidar (Light detection and ranging) technology. Lidar infers surface
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information by emitting laser beams into the real world and measuring the time it takes for
the reflection to reach the sensor.

As outlined in Section 2.2.2 and 2.3.1 it could be shown, that variational models are able
to solve the stereo matching and optical flow problem. Hence, the scene flow problem can
be solved by creation of variational models that combine approaches from the underlying
sub-problems. In literature coupled and decoupled methods for stereo image sequences and
point cloud data are available.

2.3.3 Deep-learning based methods for Scene Flow Estimation

In the same way deep-learning based methods for stereo matching and optical flow could
show their superiority in contrast to local and variational models, recent deep-learning based
scene flow methods score the highest in relevant benchmarks [29, 1, 30]. Mayer et al. [31]
introduced SceneFlowNet, the first convolutional neural network for end-to-end scene flow
estimation. The authors follow the encoder-decoder architecture of FlowNet [44]. For disparity
estimation Mayer et al. [31] introduce DispNet and modify the FlowNet architecture by adding
convolutional layers in the decoder to increase the smoothness of disparity maps. In the
DispNetCorr architecture the two images of the stereo pair are processed separately for the first
two layers, before the resulting features are correlated. This transforms the two-dimensional
correlation of images proposed by Dosovitskiy et al. [44] to a one-dimensional correlation
of feature vectors, which decreases computational effort and allows the network to cover
large disparities. Finally, scene flow prediction is enabled by combination of the modified
FlowNet for optical flow and two DispNet modules for disparities at both points in time. The
network is trained on the datasets FlyingThings [31] and KITTI [1]. SceneFlowNet showed
promising results but could not compete with state-of-the-art variational methods. However,
the introduction of the architecture further motivated the use of deep neural networks for
scene flow estimation.

Ilg et al. [67] revisited the approach of SceneFlowNet [31] and produced the first competitive
results for scene flow estimation by neural networks in the KITTI scene flow benchmark [31].
The proposed architecture is based on FlowNet [44] and FlowNet 2.0 [46]. To compute the
disparity change for scene flow, the authors propose to compute the disparity at t = 1 and
warp this disparity to t = 0 to obtain the disparity change.

The aforementioned methods [31, 67] are non-rigid models, which estimate scene flow for each
scene point individually. Object-rigid model use semantic segmentation to detect the objects
of a scene. Accordingly, a single motion vector is assigned to a rigid object. The scene flow
problem is approached with an object-rigid model by Yang and Ramanan [68], who combine
the concepts of semantic object segmentation and rigid motion. Depth and optical flow are
precomputed using off-the-shelf networks. Remarkable is the limitation to monocular vision
as the modular network is trained with only two input images. The two-stream architecture
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uses a U-Net module [45] for background segmentation and a CenterNet [69] for instance
segmentation. The resulting rigid body motions are fitted to the initial precomputed flow
and depth estimates. Compared to other proposed methods, the segmentation priors add
meaningful information for scene flow estimation.

Sommer et al. [70] further refine the object-rigid approach. The authors also estimate the
scene flow using off-the-shelf networks for optical flow [50] and disparity [35] estimation from
a sequence of stereo images. The objective of the proposed iterative algorithm is to estimate
a collection of rigid objects including their position and motion. Scene flow estimation by
this method uses deep-learning methods to estimate priors which are used by a handcrafted
algorithm to estimate scene flow.

RAFT-3D [55] is an end-to-end neural network for scene flow estimation, based on the ideas
of RAFT [50]. Instead of an iterative refinement of a two-dimensional optical flow field, a
SE(3) rigid body displacement field is optimised for scene flow (see Section 2.1.1 for SE(3)).
As previous object-rigid methods showed, information about rigid objects in the scene are
advantageous. Therefore, the authors introduce rigid-motion embeddings, which encode the
membership of pixels to rigid objects. As RAFT-3D is attacked in this work using adversarial
examples, the network is described in detail in Section 3.2.

The standard scene flow problem only considers inputs at two points in time. In real-world
applications, such as autonomous driving, more temporal information is available. Multi-
frame scene flow methods add additional stereo pairs to the sequence of input images to
exploit this information. Besides variational multi-frame methods, Mehl et al. [71] proposed a
deep-learning based multi-frame scene flow method that achieves top accuracy rankings [1].
This multi-frame scene flow network trains an improved RAFT-3D [55] version as baseline
method. It utilises three stereo pairs at times t91, t0, t1 and uses the improved RAFT-3D for
initial estimation of forward (t0 → t1) and backward flow (t0 → t91). Each flow estimate is
enriched with rigid motion embeddings and correlation cost volumes and used as input to train
a fusion module, which learns the final scene flow estimate (t0 → t1).

Scene flow can be derived from a sequence of stereo pairs or point cloud data. Deep-learning
based methods that are based on point clouds are FlowNet3D [72] or PointFlowNet [73]. Both
authors could show, that deep-learning based approaches for scene flow estimation using point
clouds are able to compete with image based methods. Instead of focusing on only stereo image
sequences or Lidar data as network inputs alone, Liu et al. [74] introduce CamLiFlow, a method
using synchronized stereo frames and Lidar data as inputs. In this approach the connection
between image pixels and Lidar points is learned by a fusion module. The network consists
of two connected branches and estimates optical flow and scene flow with state-of-the-art
accuracy.
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2.4 Adversarial Attacks on Flow Networks

Neural networks are approved solutions for a variety of computer vision tasks, such as object
classification, segmentation, stereo matching, optical flow and scene flow [41, 34, 50, 55]. In
a mathematical sense, end-to-end neural networks output layers can be interpreted as highly
non-linear functions of the input layer. The assessment if this non-linear function is actually
artificially intelligent seems difficult, regarding the discovery of adversarial attacks. Szegedy
et al. [5] found, that hardly perceptible perturbations to input images can severely impact the
accuracy of object classification neural networks for images. The authors introduce a method
to train these small perturbations, which are applied to the input images. These modified
images are called adversarial examples. Attackers that know how to craft efficient adversarial
examples may be able to manipulate machine-learning systems to their advantage in the real
world.

While human intelligence succeeds in the classification of adversarial examples, deep neural
networks fail in various problem settings [75, 76, 5]. Identifying reasons for this vulnerability
is hard, as deep neural networks are complex and operate in a black box manner. It was found,
that individual network units do not contribute to the semantics of networks, which means that
separate layers are not necessarily responsible for certain semantics. Instead, Szegedy et al. [5]
found that the semantics are spread across the entire space of activations. Recent methods try
to visualize neural network properties to better understand how and why certain outputs are
generated [77]. Simonyan et al. [77] generate class appearance models, which are images that
encode all class aspects and output maximal score for a certain object class. Class saliency maps
explain for single images, which regions contributed the most to the classification decision.
Discovering and explaining neural network semantics as remedy for the black box problem is
an open research topic.

The counter-intuitive properties identified by Szegedy et al. [5] led to a multitude of adversarial
attacks in various problem domains. These attacks are not limited to noise or synthetic input
manipulation but can also be applied in the real world. The adversarial attack of Brown et al.
[78] is based on adversarial patches that are placed in the real world in the form of stickers.
For instance, a captured image of a banana including this sticker is incorrectly classified as
toaster. Real world adversarial examples are not limited to 2D, as 3D-printed objects also
contributed to effective adversarial attacks [79]. Simulated real world phenomena include
adversarial snow, which was used to attack optical flow networks [80].
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2.4.1 Perturbation of Inputs

Let I be the input image for a neural network ϕ, which classifies objects into classes in C. The
correct label for I is c ∈ C, while d ∈ C is an incorrect class label. The adversarial example
caused by perturbation δ is then defined as I + δ leading to an adversarial attack:

ϕ(I) = c

ϕ(I + δ) = d
(2.23)

Besides manipulation of the output, adversarial attacks aim to minimise the perturbation size
|δ|, while keeping the perturbed image I + δ in a valid range of values. In other words, minimal
input change should lead to maximal output change of the network. This instability property
can be analysed with the Lipschitz constant L. The Lipschitz constant L states, that the distance
between two arbitrary function outputs is at most L times the distance of their corresponding
inputs |δ| [81]. Szegedy et al. [5] describe how to analyse a deep neural network ϕ using the
Lipschitz constant. The output of each network layer k with weights Wk is represented by the
function ϕk(I, Wk). The upper Lipschitz constant of a layer is then defined as Lk by:

∀I, δ : ||ϕk(I, Wk)− ϕk(I + δ, Wk)|| ≤ Lk||δ|| (2.24)

The Lipschitz constant L of the entire network ϕ can be obtained by calculating the product of
each layers constant Lk:

∀I, δ : ||ϕ(I)− ϕ(I + δ)|| ≤ L||δ|| where L =
K∏
k

Lk (2.25)

In general, small upper bounds of L for a neural network guarantee robustness against
adversarial examples [5]. Therefore, Szegedy et al. [5] propose to penalise the upper Lipschitz
bounds of each layer during parameter training to defend against adversarial attacks.

2.4.2 Constraints on Perturbations

Perturbation constraints enforce certain limitations on perturbations. Patch-based perturbations
limit the shape, location, rotation and scale of a perturbation [78, 6]. For instance, these patch
regions can be defined by an origin point and radius. Karmon et al. [82] could show that even
small patches that cover at most 2% of the input image area can generate effective adversarial
examples. Additionally, perturbed input values have to remain in the valid range of the input
domain.

Another important optimisation criteria is the magnitude of perturbations. Ideally, small
perturbations which are not perceptible by humans should trigger large output changes.
Therefore, a similarity measure between original and perturbed image is required. In practice
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the p-norm distance between original and perturbed values Lp is constrained to remain below
a certain bound ϵ.

||I − (I + δ)||p ≤ ϵ (2.26)

The L0-norm counts the number of modified pixels by the perturbation. The L1-norm is called
Manhattan distance and accounts for the total variation of the perturbation:

||I||1 =
∑
(i,j)
|I(i, j)|. (2.27)

The L2-norm, which is also known as euclidean distance, is an adequate metric to enforce
certain perturbation constraints in adversarial attacks [83]:

||I||2 =
∑
(i,j)

√
|I(i, j)|2. (2.28)

The maximum perturbation magnitude between any two pixels is called L∞-norm. This norm
is used in global attacks to ensure all perturbed pixels stay within a specified perturbation
range [84]:

||I||∞ = max(|I(i, j)|). (2.29)

2.4.3 Generation of Adversarial Examples

The goal of an adversarial attack is to manipulate the input data I with a perturbation δ to
cause the network ϕ output to become incorrect. The specified incorrect network output is
called target t. Adversarial examples are generated by minimising a loss function [85]. Carlini
et al. [86] formulate an objective function f with:

f(I + δ) ≤ 0 ⇐⇒ ϕ(I + δ) = t (2.30)

The resulting Carlini-Wagner (C&W) attack is realised by minimisation of the loss function
defined by Equation (2.31). The constant c > 0 is empirically chosen to enable simultaneous
minimisation of both terms.

l(δ, t) = ||δ||p + c · f(I + δ) (2.31)

The output of this loss function becomes minimal if the specified Lp-norm distance between
original image and perturbed image is small (1) and the network output matches the target
t = ϕ(I + δ) (2). Proposed adversarial attacks in literature use the L1, L2 or L∞-norm
[87, 83, 84]. Finally, the loss function is minimized using a solver, such as gradient descent,
gradient descent with momentum or Adam [86]. Szegedy et al. [5] introduced a similar
method which uses the L2-norm and the L-BFGS algorithm [88] for minimisation.
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2.4 Adversarial Attacks on Flow Networks

The fast gradient sign method (FGSM) uses the gradients of a network to generate adversarial
examples [75]. Let ϕ be a trained network with fixed parameters Θ and loss function J(Θ, I, y),
where I is an input image with the ground-truth label y. Then ∇IJ is the gradient of the
network’s loss function with respect to the input image. The perturbation δ can then be
calculated using Equation (2.32):

δ = ϵ ∗ sgn(∇IJ(Θ, I, y)) (2.32)

The sign function returns the sign of the gradient with respect to the input data. The scaling
factor ϵ is used to limit the perturbations. Additive modification of the input image in this
signed direction creates an adversarial example (I + δ), which maximises the loss:

I + δ = I + ϵ ∗ sgn(∇IJ(Θ, I, y)) (2.33)

FGSM is a simple method and can be computed fast, however adversarial examples crafted with
this method yield a lower attack strength [89]. Kurakin et al. [76] refine the FGSM method
with an iterative approach. Instead of a single large step in direction of the maximum loss
gradient, multiple small steps are chained while recomputing the gradient using the current
adversarial example. This leads to stronger attacks and finer perturbations compared to the
non-iterative methods. Additionally, the iterative method does not always select perturbation
values in the vicinity of the ϵ-border.

Elastic-Net Attacks (EAD) were proposed by Chen et al. [87]. The authors refine the Carlini-
Wagner attack by introducing a regularisation parameter β, which controls the trade-off
between the L1 and L2 norms. Pixel perturbations that exceed β are shrunken, while pixel
deviations smaller β remain unchanged. Consequently, increasing β leads to less L1 distorted
adversarial examples and sparsity of the perturbation. For β = 0 their attack is equal to the
Carlini-Wagner attack.

2.4.4 Attacking Flow Networks

The work of Szegedy et al. [5] demonstrated the effectiveness of adversarial attacks on neural
networks which perform object classification in images. However, adversarial attacks are not
limited to the object classification problem. Deep-learning based methods perform well for
the stereo matching and optical flow problem. Recent research highlighted the vulnerability
of neural networks for stereo matching and optical flow estimation to adversarial attacks
[6, 7, 8, 9, 10]. For these kinds of computer vision problems the aforementioned approaches
were modified to craft adversarial examples.

The network output is not a class label anymore but a scalar or vector-valued image for
disparity or optical flow respectively. Therefore, the target of an adversarial attack has to be a
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disparity map or optical flow. Let f(x, y) = (u, v)⊤ be the optical flow of an image sequence.
The negative flow f̃ is defined by inverting the direction of each flow vector:

f̃(x, y) = −
(

u

v

)
(2.34)

The zero flow is defined by f0. The semantic interpretation of f0 is a static scene.

f0(x, y) =
(

0
0

)
(2.35)

Alternatively, the target of an adversarial attack can be a specific but arbitrary target flow
ft(x, y).

For adversarial attacks in the context of optical flow problems three relations between flows are
important. These quantitative properties can be used to compare accuracy (1) and robustness
(2) of neural networks or the strength of adversarial attacks (3) [8]. Let fgt be the ground-
truth flow. Then f is the output of a optical flow neural network using input data which
was not attacked. The flow resulting from adversarial example inputs is the adversarial flow
f∗, whereas ft denotes the fixed target flow of this adversarial attack. To compare different
networks or adversarial attacks, quality measures based on similarity, such as the mean-squared
error MSE or average endpoint-error AEE [90] can be used. Let m ∈ {MSE, AEE} be one of
these measures, where low values correspond to high similarity.

1. Baseline accuracy
A performant deep-learning based flow estimation method achieves high accuracy. The
estimated flow and the ground truth flow are similar:

arg min
f

m(fgt, f) (2.36)

2. Adversarial robustness
A robust deep-learning based flow estimation method cannot be manipulated by adver-
sarial examples. Given small perturbations, the adversarial flow and the unattacked flow
are still similar:

arg min
f∗

m(f, f∗) (2.37)

The ground truth flow fgt is not considered for the adversarial robustness assessment. No
ground truth is known for the perturbed inputs and the baseline (see Equation (2.36))
already measures the flow accuracy.

3. Attack strength
A robust method allows only weak attacks. A strong adversarial attack achieves a high
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2.4 Adversarial Attacks on Flow Networks

Figure 2.6: Classification of adversarial attack types on optical flow networks of PCFA by
Schmalfuss et al. [8].

similarity between adversarial flow and target flow. The attacker seeks to achieve a high
attack strength, which translates to high similarity between adversarial and target flow:

arg min
f∗

m(f∗, ft) (2.38)

For adversarial attacks on object classification networks a single input image is attacked. In
stereo matching and optical flow a pair or sequence of input images can be subject to adversarial
attacks. Schmalfuss et al. [8] define different types of attacks that are applied to different
subsets of inputs (see Figure 2.6). Frame-specific attacks train perturbations for each input
image of an instance of the dataset. Universal attacks apply the same optimised perturbation to
all input instances of a dataset processed by a neural network. A single perturbation is trained
and applied to both images of a sequence or pair in joint adversarial attacks. In the optical
flow case this means the same perturbation δ is trained and applied to both images I0 and I1.
On the other hand, disjoint attacks train a separate perturbation for all images of a sequence
or pair. Frame-specific and universal attacks can be combined with joint or disjoint attacks,
resulting in a total of four distinct attack types. Perturbations that are applied to multiple input
images have to fulfill more constraints, hence the attack strength is expected to decrease in
these attack types.

Ranjan et al. [6] developed the first adversarial attack on optical flow networks. The proposed
attack is patch-based and aims to achieve a high attack strength to demonstrate the low
adversarial robustness of the optical flow neural networks FlowNetC, FlowNet2.0, SpyNet
and PWC-Net [44, 46, 47, 48]. To evaluate the adversarial robustness, the authors use the
unattacked flow f instead of the ground truth flow fgt. Using f enables attacking unlabeled
data instead of requiring ground truth data. The circular perturbation patch is applied to
both images of the sequence with the same rotation and scaling. Therefore, the optical flow
in the perturbed region becomes the zero flow. The area of the perturbed patches is limited
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to 5% of the image area. Ranjan et al. [6] found that all examined network architectures
are vulnerable to adversarial attacks. Neural networks that are based on encoder-decoder
architectures (FlowNetC and FlowNet2.0) are more vulnerable to this patch-based attack than
spatial pyramid based methods (SPyNet, PWCNet)[6]. Interestingly, conventional methods
such as variational models are not affected at all. The real world applicability of this attack
could be confirmed by printing adversarial patches on paper and placing them in a scene.

A global attack on optical flow was introduced by Schrodi et al. [7]. The authors explore causes
for the vulnerability of optical flow networks and relate the aperture problem to the degradation
of flow estimation. Patches with repetitive patterns processed by networks with relatively small
receptive fields (FlowNetC [44]) cause the same ambiguities of the aperture problem. Large
receptive fields in PWC-Net [48] or RAFT [50] see areas of the image unaffected by the patch
attack, increasing their adversarial robustness. Adversarial examples for these frame-specific or
universal targeted attacks are generated with the iterative method of FGSM (I-FGSM). Because
the number of optimisation steps in I-FGSM is fixed to enforce the perturbation constraint,
non-optimal perturbations are generated. Therefore, the attack of Schrodi et al. [7] imposes a
weaker constraint on the global perturbation.

The perturbation-constrained flow attack (PCFA) by Schmalfuss et al. [80] aims to generate
global perturbations which result in strong attacks with various targets. Optimisation is realised
with the L-BFGS algorithm and the perturbation is bounded using the L2-norm. The authors
propose AEE, MSE or cosine similarity to quantify the attack strength. PCFA was able to reveal
vulnerabilities of multiple state-of-the-art optical flow networks: FlowNet2.0, SPyNet, PWCNet
and RAFT [46, 47, 48, 50]. For attacks with a zero-flow target PCFA can create stronger
attacks than I-FGSM while bounding perturbations to the same ϵ. In Section 3.3 this method
is explained in detail, as PCFA serves as foundation of the global adversarial attack on scene
flow.

As pointed out in Section 2.1.7 the stereo matching problem can be solved precisely if all
assumptions hold. However, in most scenarios in the real-world these assumptions are violated
at least in some parts of the input images. Therefore, neural networks are trained to learn
disparity estimation, which especially enhances performance in these regions.

In general stereo neural networks are robust under Gaussian and uniform noise, but not
robust against adversarial attacks [9, 10]. Wong et al. [10] attack three state-of-the-art stereo
matching neural networks with global non-targeted frame-specific disjoint adversaries. To
generate these adversarial examples FGSM, I-FGSM and MI-FGSM are used. MI-FGSM is a
modified version of I-FGSM, which incorporates gradient information from previous steps.
Adversarial examples generated with small I-FGSM step sizes cause severe effects on disparity
estimation. In flat regions or regions with uniform textures small perturbations are sufficient
to fool the neural networks. The adversarial attack aims at increasing flatness, which is
possible with small perturbations in these regions. Consequently, non-flat regions require larger
perturbations.
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A global non-targeted universal disjoint attack on stereo networks is proposed by Berger et al.
[9]. The attack optimises a single perturbation tile of 64×64 pixels, which is repeatedly added
to the input to cover the entire image. The perturbations are trained separately for the left and
right input image, but are universal for the entire KITTI dataset [1]. This way perturbations are
not influenced by scene bias (KITTI: sky on top, road on bottom). The resulting perturbations
are effective and can be transferred to different networks trained on different datasets. These
works demonstrate the vulnerability of stereo networks to adversarial attacks, indicating
another attack vector for adversarial attacks on scene flow estimation. Augmenting the training
data with adversarial examples is an effective defense against these attacks without causing a
loss of accuracy [9, 10].

To the best of the author’s knowledge no attacks on scene flow networks have been proposed
yet. As scene flow requires solutions to optical flow and disparity estimation, attacks on scene
flow can be seen as a form of a combined attack. Depending on network inputs and outputs,
different perturbations and targets have to be defined. For instance, RAFT-3D takes two input
images and two disparity maps as input data [55]. Therefore, perturbations may have to be
trained and applied for images and disparities separately. Moreover, in the case of targeted
attacks different definitions of zero flow or negative flow have to be specified for scene flow.
This work proposes a method to train a global constrained targeted frame-specific disjoint
adversarial attack for scene flow in Chapter 4.
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In this chapter the deep neural networks which are attacked (RAFT-3D and GA-Net) as well
as the principle used for attacking (PCFA) are demonstrated. All relevant properties of these
methods are stated, such that the global adversarial attack on scene flow presented in Chapter 4
can be followed easily.

3.1 GA-Net: Guided Aggregation Net

GA-Net [34] is a deep neural network to solve the problem of stereo matching. The input of
the network is an RGB stereo pair and the output a disparity map (see Figure 3.1). Note that
GA-Net does not rely on extrinsic or intrinsic camera calibration as input but is trained on
rectified images (e.g. KITTI). Previous state-of-the-art stereo network architectures are based
on multiple 3D-convolutional layers. These 3D convolutions are computationally expensive
and require a lot of memory. Therefore, Zhang et al. [34] propose to incorporate semi-global
matching (SGM) and local methods for cost aggregation in their network (see Section 2.1.6
for SGM). As the standard SGM and local cost aggregation are not differentiable, training
of an end-to-end stereo network with these techniques is not possible. The authors propose
new differentiable neural network layers which mimic the behaviour of SGM and local cost
aggregation. These layers are called semi-global guided aggregation (SGA) and local guided
aggregation (LGA) layer.

Figure 3.1: GA-Net uses a stereo image pair as input and outputs a disparity map.
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3.1.1 Local Guided Aggregation Layer (LGA)

Let C(p, d) be the four-dimensional cost volume H×W×Dmax×F , where H and W are the
image dimensions, Dmax is the maximum displacement disparity and F the length of the
feature vector. In deep neural networks, cost filtering of the cost volume is used to refine thin
structures and object edges after the downsampling and upsampling of the encoder-decoder
architecture. Traditional cost filtering uses a K×K kernel to filter the cost volume in the
neighbourhood Np. The LGA layer filters the costs of the cost volume correspondingly with a
K×K×3 kernel, with filter weights for the three disparities d 9 1, d, d + 1. The weights of these
filters are learned during training using a subnet consisting of multiple 2D convolutional layers.
This subnet uses the left image as input an outputs the filter weights for the LGA layers. In
the GA-Net architecture LGA layers are implemented before the softmax layer of the disparity
regression.

3.1.2 Semi-Global Guided Aggregation Layer (SGA)

The semi-global guided aggregation layer (SGA) is a differentiable approximation of the semi-
global matching algorithm [27]. Semi-global matching improves the disparity estimation,
especially in occluded, textureless or reflective regions. Constant penalty parameters P1 and P2
are used in semi-global matching (see 2.1.6). The SGM layer learns these penalty parameters
during training. Furthermore, the original cost-aggregation along a path in the images is
modified. The SGA layers use four cost aggregation path directions: left, right, top and down.
The terms are constrained by weights to avoid very large cost values.

3.1.3 Disparity Regression

The disparity regression is used at the end of the GA-Net architecture to infer the disparity
map D(x, y) from the cost volume. Each possible disparity value d′ ∈ {0, ..., Dmax} is weighted
by its probability. The probability of each disparity for each pixel is calculated with the
softmax function σ. The softmax function maps a vector of K real values to a new vector of K

real values that sum up to one. Therefore, the new vector can be interpreted as probability
distribution of the K elements. For the disparity regression, a slice of the cost volume can be
interpreted as a vector with K elements.

Summing up the product of candidate disparity d′ and the corresponding probabilities of d′ for
each pixel p results in the disparity map. Note that the negative cost is used for softmax, as
low cost means high probability.

D(p) =
Dmax∑
d′=0

d′ × σ(−C(p, d′)) (3.1)
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3.1 GA-Net: Guided Aggregation Net

Figure 3.2: GA-Net architecture [34]: Three SGA Layers and one LGA layer are used in the
cost aggregation stage of the network. The SGA Layers select the cost of the most
expensive path from the four examined directions (b).

3.1.4 Network Architecture

Zhang et al. [34] experiment with different architectures of GA-Net, which consist of combina-
tions of 3D convolutional layers, SGA and LGA layers. These architectures use three SGA layers
and one LGA layer for cost-aggregation before the disparity regression as Figure 3.2 illustrates.
In this work the architectures GA-Net-11 and GA-Net-15 are used for the adversarial attacks on
RAFT-3D. The numbers in the architecture identifier indicate the number of 3D convolutional
layers. In comparison to other state-of-the-art methods, GA-Net uses fewer 3D convolutional
layers (11 or 15) than GC-Net (19) or PSMNet (25). This results in less parameters, faster
inference and training times and higher accuracy due to LGA and SGA layers.

3.1.5 Results

GA-Net currently ranks 56th on the KITTI stereo flow 2015 benchmark with a disparity bad
pixel error of 1.88%. The most accurate method submitted to the benchmark is called GA-
Net+ADL, which is based on the GA-Net architecture and achieves an error 1.55%. These
results show, that GA-Net is a state-of-the-art method for disparity estimation from stereo
image pairs.
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3.2 RAFT-3D: Scene Flow Estimation

RAFT-3D is a deep neural network architecture for scene flow estimation. It is built upon the
key ideas of RAFT, which iteratively updates a 2D motion field to estimate optic flow. The
method proposed by Teed and Deng [55] also iteratively updates a motion field T , however
for the scene flow problem they extend the concept and use a rigid motion SE(3)-field (see
Section 2.1.1). The name recurrent all-pairs field transform 3D (RAFT-3D) refers to the iterative
update (recurrent) of an SE(3) motion field using an all-pixel-pairs correlation volume. The
SE(3) motion field T has six dimensions, three for translation and three for rotation. An
accurate motion field estimates the scene flow in such a way, that T explains the movement of
world points between t = 0 and t = 1.

3.2.1 Inputs and Outputs

The input to the RAFT-3D scene flow processing pipeline illustrated in Figure 3.3 is a stereo
pair of RGB images. The disparities d0 at time t = 0 and d1 at time t = 1 are estimated using
the stereo network GA-Net-15 (see Section 3.1). The final inputs of RAFT-3D are both left
images of the stereo pairs and both disparity maps registered to the left images. The input
images are converted from RGB to BGR and normalized using the mean and standard deviation
of ImageNet [41]. Disparity values are sampled at 1/8 resolution and converted to depth using
the camera intrinsics. The output of RAFT-3D is the SE3 field T , which induces an optical flow
(u, v)⊤ and a change in depth. For the first point in time the output disparity d is equal to the
input disparity d0. The change in depth is used to calculate the disparity d′ at t = 1, which is
registered to the same frame as d0 = d (left image at t = 0). The scene flow problem is then
estimated by (u, v, d, d′)⊤, with ∆d = d− d′.

3.2.2 Feature Extraction

RAFT-3D uses two separate feature extraction networks. The first feature extractor uses both
left images at 1/8 resolution with shared weights and outputs a 128-dimensional feature vector.
A pretrained ResNet-50 network is used as second feature extraction network (context encoder),
which uses I0,0 as input. This context encoder retrieves semantic and contextual information
about rigid objects in the scene at 1/8 resolution.

3.2.3 Correlation Pyramid

A 4D correlation volume C1 ∈ RH×W ×H×W compares the similarity between all pairs of pixels.
It is realised by the dot product of the pixels feature vectors. The last two dimensions of the
full resolution correlation volume are pooled with a 2×2 kernel average pooling three times,
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Figure 3.3: Processing pipeline of RAFT-3D: All images of the stereo pairs are used for disparity
estimation by GA-Net. The resulting disparities and the preprocessed left images
I0,0, I1,0 are used as inputs for RAFT-3D for scene flow estimation.

resulting in three additional lower resolution correlation volumes C2, C3, C4. The resulting
correlation pyramid is then defined by C = {C1, C2, C3, C4} and indexed by bilinear sampling
around the requested pixel.

3.2.4 Rigid Motion Embeddings

The information about rigid objects is a meaningful prior for scene flow estimation. Object
detection networks can deliver this additional information to scene flow networks but intro-
duce non-differentiable components. Therefore, Teed and Deng [55] introduce rigid motion
embedding vectors, which softly and differentiably group pixels into rigid moving objects. For
each pixel a rigid motion embedding vector is created, which encodes the affiliation of this
pixel to an object in the scene. Pixels with similar rigid motion embeddings belong to the
same object and therefore follow the same SE(3) motion. The rigid motion embeddings are
learned unsupervised during RAFT-3D training using features, which include the output from
the pretrained ResNet-50 context encoder.
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3.2.5 Dense-SE(3) Layer

The projections in RAFT-3D use the pinhole camera model and assume piecewise constant
rotation and translation for rigid objects. To transform from homogeneous world coordinates
to image coordinates the projective function π in Equation (3.2) is used. Here d = 1

Z is the
inverse depth, f the focal distance and (cx, cy) the principal point of the image plane.

π(


X

Y

Z

1

) =

f X
Z + cx

f Y
Z + cy

1
Z

 =

x

y

d

 (3.2)

If a dense depth map Z is given, the inverse projection π−1 maps from pixel coordinates to 3D
world points, with d = 1

Z :

π−1(

x

y

d

) = 1
d


x−cx

f
y−cy

f

1
d

 =


X

Y

Z

1

 (3.3)

The 3D motion between the stereo frame pair is represented by T , which can be used to
construct a function which maps a pixel in I0,0 to its corresponding pixel in I1,1. The corre-
spondence (x′, y′, d′)⊤ for a certain pixel (x, y, d)⊤ can be found using the SE(3) motion for
this pixel Tp:

π(Tp · π−1(

x

y

d

)) =

x′

y′

d′

 (3.4)

The point is first projected into world space by π−1, then the SE(3) motion Tp can be applied.
After application of the motion Tp the point is projected back into image space using π.

The optical flow (u, v)⊤ and disparity change ∆d can then be calculated using the correspon-
dences:x′

y′

d′

−
x

y

d

 =

 u

v

∆d

 (3.5)

The high resolution SE(3) motion field estimated by RAFT-3D is at 1/8 resolution of the input
images. Other encoder-decoder based architectures down- and upsample flow estimates further,
which results in loss of details. Optimisation of T is achieved by iterative updates by the Dense-
SE(3) layer which uses the update operator. As shown in Equation (3.4), the current estimate
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of T can be used to get the 2D correspondences. Accordingly, the recurrent update operator
uses the current estimated correspondence to index from the correlation volume. The indexed
correlation features are used as input, besides the current flow field and depth residual. The
depth residual compares the depth of the current correspondences using the depth map at
t = 1 and the depth resulting from application of T to the depth map at t = 0. The output of
the update operator is a a revision map and a rigid motion embedding map, which are used as
input for the Dense-SE(3) layer.

The differentiable optimisation Dense-SE(3) layer maps the revision map to a SE(3) field
update. It uses a similarity measure of rigid motion embeddings to identify if pixels belong to
the same object. The objective function of the Dense-SE(3) layer tries to find the transformation
T , which describes the motion of a neighbourhood of pixels, while respecting the affiliation of
pixels to rigid objects. The SE(3) field T is consecutively optimised by the update operator and
Dense-SE(3) layer twelve times. After the last iteration, T is upsampled to the original image
resolution.

3.2.6 Training

The network is trained in an end-to-end manner using the ground truth data fgt for scene
flow. As the ground truth data consists of optical flow and disparities (for KITTI), Teed and
Deng [55] infer the inverse depth change from the ground truth disparities. To compute the
L1 loss, the optical flow and inverse depth change fk induced by all k iterative updates of the
SE(3)-motion field Tk are compared with the ground truth data. The first iteration T1 has the
lowest loss weight and the weight increases for every consecutive SE(3) field estimate:

L =
12∑
k

0.912−k||fk − fgt||1 (3.6)

3.2.7 Results

Currently, RAFT-3D ranks eighth in the KITTI scene flow evaluation 2015 benchmark. Three
additional methods that use modified versions of RAFT-3D or incorporate the network architec-
ture achieve rank three, four and six. Thus, RAFT-3D is a proven state-of-the art solution for
estimating dense and accurate scene flow estimates.

3.3 PCFA: Perturbation-Constrained Flow Attack

The perturbation-constrained flow attack by Schmalfuss et al. [8] generates strong global
adversarial examples for the optical flow networks FlowNet 2.0, SPyNet, PWCNet and RAFT
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[46, 47, 48, 50]. The attack is optimised for destructibility of flow predictions rather than
real world applicability. Given an optical flow network, the attack aims to find perturbations
δt, δt+1 for both input images which respect three constraints. The first goal is to minimise the
proximity L of the predicted flow f and the target flow ft:

argmin
δt,δt+1

L(f, ft). (3.7)

The perturbation constraint bounds the L2-norm of the perturbation below a certain bound ϵ:

||δt, δt+1||2 ≤ ϵ
√

2IC. (3.8)

To make ϵ independent of the image dimensions the factor IC is used. I = H ×W is the
amount of pixels in the input images and C the number of color channels. Because two
perturbations are generated, the factor is multiplied by 2. The last constraint ensures, that the
perturbed image values stay in the valid color range and can be realised with clipping:

Ii + δi ∈ [0, 1]C×I , i = t, t + . (3.9)

These constraints are used to optimise the perturbation δ by minimising the loss function ϕ:

argmin
δ

ϕ(δ, µ), ϕ(δ, µ) = L(f, ft) + µ · |max(0, ||δt, δt+1||2 − ϵ
√

2IC)| (3.10)

The first term penalises deviations from the target flow. The second term, weighted by
parameter µ linearly penalises perturbations that exceed the perturbation budget ϵ

√
2IC. For

instance, if all pixel perturbations are smaller than ϵ, the penalty term resolves to 0. The
minimisation problem in Equation (3.10) is solved by the L-BFGS algorithm [88] and the
target flow ft is set to the zero flow f0. Schmalfuss et al. [8] identified the mean-squared
error (MSE) instead of AEE as an adequate flow proximity function. Compared to the AEE
the squared norm of the MSE circumvents undefined derivatives if adversarial and target flow
match. The optimisation of perturbations is stopped if the desired proximity to the target flow
is achieved or can be bounded by a maximum number of optimisation steps. The authors could
also generate effective adversarial examples for other flow targets, such as negative flow or
arbitrary flow.

The frame-specific PCFA attack on RAFT [50] with images from the KITTI dataset [1] with a
zero target flow achieves an average endpoint error between the zero flow and the attacked
flow (attack strength) of 3.76. Finally, Schmalfuss et al. [80] generate joint and universal
perturbations for different optical flow networks. The adversarial robustness measure shows,
that all optical flow networks can be manipulated by universal perturbations. The AEE
between the unattacked flow and the attacked flow using universal perturbations is between
2.25 (SPyNet [47]) and 3.52 (RAFT [50]). The concept of the PCFA attack and its measures
for robustness and attack strength are extended to enable attacks on scene flow estimation
networks in Chapter 4.

46



4 A Global Adversarial Attack on Scene Flow

To the best of found knowledge no adversarial attacks on scene flow networks have been
proposed in literature yet. In the following chapter a framework is established to enable
adversarial attacks on end-to-end scene flow estimation networks. Extensions to existing attack
methods on stereo- and optical-flow networks are made to adjust for the new setting. As scene
flow estimation is a combination of optical flow and stereo matching, network inputs can be
attacked at different stages of the processing pipeline in decoupled approaches. In general
the scene flow problem has more inputs than optical flow and stereo matching. Therefore,
these multiple inputs as well as intermediate results can be subject to perturbations. To limit
perturbation size for adversarial attacks on scene flow the loss functions have to incorporate
these different types of perturbations. Furthermore, for targeted attacks new target definitions
for scene flow have to be established.

4.1 Targets for Scene Flow

The presented adversarial attacks on stereo flow networks in Chapter 2.4.4 do not define a
target. However, the adversarial attacks on optical flow networks by Schrodi et al. [7] and
Schmalfuss et al. [80] are targeted. Targeted attacks aim at generating adversarial examples
which lead to a certain target output of the attacked network. Proposed target flows include
the zero flow or the negative flow. To create a targeted attack for scene flow, the concept of
zero flow and negative flow can be extended by including the disparity change. A scene flow
is defined by the vector (u, v, d, d′)⊤. As both disparities d and d′ are registered to the same
reference frame (e.g. I0,0), the disparity change ∆d can be calculated by:

∆d = d− d′. (4.1)

Stereo correspondences of objects close to the camera have larger disparities than objects
in the background. A negative change in disparity means the disparity increased over time,
indicating that the object moved closer to the camera or the depth of the corresponding scene
point decreased. Similarly, a positive ∆d means the depth of the object increased over time
or the object moved further away in Z-direction. A disparity change of zero indicates a static
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scene with no movement in Z-direction. The target flow of an adversarial attack on scene flow
is defined by:

st(x, y) =

 ut

vt

∆dt

 . (4.2)

Then the zero flow is defined by s0:

s0(x, y) =

0
0
0

 . (4.3)

Consequently, the negative target scene flow can be expressed by s̃:

s̃(x, y) =

 −u

−v

−∆d

 . (4.4)

The attack strength metric defined for attacks on optical flow networks can also be applied
to the new defined target flow st. The disparity change of the attacked flow (u, v, d, d′)⊤ can
be computed, resulting in the attacked scene flow vector s∗ = (u∗, v∗, ∆d∗). To quantify the
attack strength standard measures m ∈ {MSE, AEE} can be applied:

arg min
s∗

m(s∗, st) = arg min
s∗

m(

 u∗

v∗

∆d∗

 ,

 ut

vt

∆dt

). (4.5)

However, it should be noted, that now the three dimensions of the scene flow vector are not
composed of the same units. The values for flow (u, v) denote displacement on the image
plane in pixels, whereas the ∆d component denotes disparity changes. Disparity change is
directly related to depth change, however these changes in disparity or depth are not in the
same unit as the pixel displacement of the optical flow. Therefore, measures such as MSE or
AEE judge the proximity to the target flow differently for flow and disparity change. In practice,
it could be shown for real world datasets that values for optical flow and disparity change are
in the same order of magnitude (see Table 4.2).

4.2 Perturbations for Scene Flow

The standard inputs to a scene flow problem are two stereo image pairs at time t = 0 and t = 1,
with i = 0 representing the left image and i = 1 the right image. Then It,i ∈ {I0,0, I0,1, I1,0, I1,1}
describes these four images. A coupled method processes these four input images and includes
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the stereo matching problems for both stereo pairs. Moreover, decoupled approaches separate
the disparity estimation from the scene flow estimation. For instance, RAFT-3D [55] relies on
the disparity estimation of GA-Net [34] for scene flow estimation. This results in a total of six
possible inputs which can be perturbed, in contrast to two inputs for adversarial attacks on
optical flow or stereo matching:

1. Images: Perturbations for all images of both stereo pairs can be trained to attack a scene
flow estimation network.

2. Disparity Maps: The intermediate results in decoupled approaches for disparity informa-
tion can be perturbed to perform adversarial attacks.

Depending on the architecture of the scene flow network (coupled or decoupled) and the
processed inputs, a subset of these six inputs can be selected for perturbation optimisation.
When optimising these perturbations, the different range of values of image and disparity
inputs have to be considered for learning rate and perturbation bound selection.

4.2.1 Inequality Constraints on Perturbation Sizes

An efficient adversarial attack for scene flow networks causes a large scene flow error by adding
small perturbations to the inputs. Constraints on perturbation size keep the perturbations
small. For the scene flow attack the L2-norm of the perturbations of the perturbed inputs is
bounded in the same way as in PCFA. Depending on the selection of attacked inputs, again the
different value ranges of input images and input disparities have to be considered. Therefore,
additionally to the bound ϵ used by PCFA for images, the bound ϵd is introduced to limit
perturbations of input disparities. Let δi,t be the perturbation for an input image It,i, where
t ∈ {0, 1} denotes the chronological order of the stereo pair sequence and i ∈ {0, 1} the
position of the image in the stereo pair (left, right). Then the perturbations for attacking all
four images with P pixels and C color channels are bounded in the same way as in PCFA:

1∑
i=0

1∑
t=0
||δi,t||2 ≤ ϵ

√
4PC (4.6)

In theory, arbitrary combinations of subsets of the four input images can be used for adversarial
attacks on scene flow. The same concept can be applied to the input disparities. Let θ0 and θ1
be the perturbations of the input disparity maps for time t = 0 and t = 1. The perturbations of
both disparity maps of size Pd are then bounded by ϵd:

1∑
t=0
||θt||2 ≤ ϵd

√
2Pd (4.7)
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4.3 Loss Functions for Adversarial Examples

To generate adversarial examples for scene flow networks the perturbations to the image inputs
δ and disparity inputs θ are optimised while respecting the inequality constraints. This is
achieved by minimisation of a loss function ω in the same way as in PCFA [80]. A subset of
the set of network inputs is selected for optimisation of perturbations. The penalty for the
perturbation δ̃ of a single network input of dimensions P = H ·W with C color channels and
L2-norm perturbation bound ϵ̃ can be expressed by the penalty function p:

p(δ̃, ϵ̃) = max(0, ||δ̃||2 − ϵ̃
√

PC). (4.8)

The perturbation constraints for image inputs and disparity map inputs are configured dif-
ferently, because of the different range of values. Therefore, two weight parameters α and
β are introduced, which control the penalty for perturbations of images and disparity maps
separately. The penalties of the N image perturbations δn and M disparity perturbations θm

are summed up and multiplied by the corresponding penalty factor. In practice up to four
image perturbations are optimised (N = 4) and in the decoupled approach both disparity
maps are perturbed (M = 2). Finally, the sum of the proximity L between attacked flow s∗

and target flow st and the penalties of image perturbations and disparity map perturbations
result in the loss:

ω = L(s∗, st) + α ·
N∑

n=0
|p(δn, ϵ)|+ β ·

M∑
m=0
|p(θm, ϵd)|. (4.9)

The target flow st is constant, whereas the adversarial flow s∗ is the resulting flow after
applying the current perturbations δ and θ to the inputs of the attacked network. This loss
function enables a multitude of different adversarial attack types on scene flow networks.
No disparity maps are required as input for coupled networks. Consequently, no disparity
perturbations are required for attacking such a network. In this case β = 0 disables the
penalty for disparity perturbation and the loss function becomes the PCFA loss function with
the capability for more than two input images. Furthermore, it is possible to only attack a
subset of input images, for instance only images at time t = 1 or only from one camera (left,
right). Another type of attack only optimises perturbations for the disparity maps, which can
be achieved by setting α = 0. An unconstrained attack, which only aims at an adversarial flow
which resembles the target flow best is possible by setting α = β = 0.

4.3.1 Optimisation of Perturbations

The procedure to generate adversarial examples for scene flow starts with the selection of
a set of attacked inputs and the definition of a desired target flow ft. In the first step, the
original network inputs are used to predict the current scene flow estimation. Because the
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scene flow network is end-to-end differentiable an optimiser can use the loss function ω to
modify the network inputs, such that the loss is minimised. Again, here the optimiser learning
rates for image inputs and disparity inputs have to be configured separately, because of the
different range of values. For all attacks in this work the PyTorch implementation of the Adam
optimisation algorithm [91] is used. At the start of the optimisation process the proximity to the
target flow contributes the most to the loss, while no perturbation penalties are present. Each
step of the optimiser modifies the selected network inputs, increasing the perturbation penalties
as well as the proximity to st. For all following optimiser steps the current perturbed network
inputs are used as inputs to predict the updated scene flow estimate. This optimisation process
can be stopped if a certain proximity to the target flow has been achieved or a predefined
number of optimisation steps were taken.

4.4 Attack Types

One goal of the comparison of the five different attack types is to show which attacked inputs
cause high attack strength. Additionally, the effectiveness of the perturbation constraints in
place can be checked with the results of an unconstrained attack. The combined adversarial
attack on RAFT-3D and GA-Net affects inputs at an earlier stage in the scene flow estimation
pipeline. Therefore, this attack type is able to exploit the low adversarial robustness of prior
disparity estimation networks.

1. GSFA: Unconstrained Attack
The global scene flow attack (GSFA) on RAFT-3D generates unconstrained perturbations
for all RAFT-3D inputs, which are both left images and both disparity maps. Because no
perturbation constraints are in place the loss function ω with α = β = 0 only penalises
the proximity to the target flow:

ω = MSE(s∗, s0) (4.10)

2. GSFAC: Constrained Attack
Perturbations for both input images and both disparity maps (n, m ∈ {0, 1}) are generated
in the constrained global scene flow attack (GSFAC). Image perturbations are bounded
by ϵ and disparity perturbations by ϵd. The penalty factors α and β allow to steer
perturbation penalties for input disparities and images separately.

ω = MSE(s∗, s0) + α ·
1∑

n=0
|p(δn, ϵ)|+ β ·

1∑
m=0
|p(θm, ϵd)| (4.11)

Once an appropriate ratio between α and β for image and disparity perturbations has
been established by experiments, more strict penalty coefficients in GSFAC-strict further
limit perturbation size.
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3. GSFAC-I: Perturbation of Input Images
For this attack only the images (n ∈ {0, 1}) considered by RAFT-3D are attacked. As
disparities are untouched, no penalty has to be calculated for disparity map perturbations:

ω = MSE(s∗, s0) + α ·
1∑

n=0
|p(δn, ϵ)| (4.12)

4. GSFAC-D: Perturbation of Disparity Maps
The GSFAC-D attack perturbs only both input disparity maps (m ∈ {0, 1}) of RAFT-3D.
Again, untouched inputs do not have to be considered in the loss function for this attack:

ω = MSE(s∗, s0) + β ·
1∑

m=0
|p(θm, ϵd)| (4.13)

5. Coupled GSFAC: Simultaneous Attack on RAFT-3D and GA-Net
The attack on the coupled scene flow estimation of GA-Net and RAFT-3D generates
perturbations for all four images (n ∈ {0, 1, 2, 3}) of the sequence of stereo pairs. The
perturbations δn are optimised for the raw images before preprocessing of RAFT-3D and
disparity estimation of GA-Net. Therefore, this attack type can also exploit adversarial
weaknesses of the stereo matching network GA-Net. After each optimisation step the
disparities d0 and d1 are estimated again by GA-Net using the perturbed images. These
implicitly attacked disparities are used as input, together with the preprocessed explicitly
attacked left images I0,0, I1,0 for RAFT-3D. No perturbations are optimised for the
disparity map inputs, as they are implicitly included by attacking GA-Net:

ω = MSE(s∗, s0) + α ·
3∑

n=0
|p(δn, ϵ)| (4.14)

This attacks optimises perturbations of the images before the preprocessing of RAFT-3D.
Therefore, the value range of the RGB images is [0, 255] which has to be considered for
learning rate and perturbation bound selection. For the experiments in Section 5.3.4
the GA-Net-11 architecture is used, because a combined computation graph of RAFT-
3D and GA-Net-15 exceeds feasible GPU memory requirements. GA-Net-11 uses fewer
convolutional layers and therefore requires less memory when differentiating end-to-end.

4.5 Adversarial Attacks on RAFT-3D

The applicability of the global adversarial attack on scene flow is demonstrated on the state-of-
the-art network RAFT-3D [55]. As RAFT-3D is a decoupled network it enables the comparison
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Figure 4.1: Points of attack in the scene flow estimation pipeline: Four attack types (GSFA,
GSFAC, GSFAC-I, GSFA-D) on the decoupled scene flow estimation optimise per-
turbations of the four direct RAFT-3D inputs (cross in magenta). GSFAC-coupled
perturbs both stereo pairs before disparity estimation of GA-Net and preprocessing
of RAFT-3D (crosses in light blue).

of all proposed attack types shown in Table 4.1. In the following, five types of global scene
flow attacks (GSFA) are defined. Four attack types focus on the coupled (preprocessed) inputs
of the RAFT-3D scene flow network. The fifth attack type extends the attack to the decoupled
disparity estimation by GA-Net [34]. As mentioned in Section 3.2 RAFT-3D uses four inputs,
which include both left images I0,0, I1,0 and both disparity maps d0, d1. Furthermore, GA-
Net uses both images of a stereo pair for disparity estimation. The input perturbations are
optimised before or after the preprocessing step and disparity estimation of RAFT-3D, as shown
in Figure 4.1. The zero scene flow s0 is selected as target flow and MSE is chosen as proximity
measure L for all attacks described in this section. To find adequate values for learning
rates and the penalty parameters α and β an experiment based fine-tuning is conducted in
Section 5.2. The results of experiments with the five proposed attack types on different datasets
are shown in Chapter 5
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Attack Type Networks Attacked Perturbed Inputs
RAFT-3D GA-Net I0,0 I0,1 I1,0 I1,1 d0 d1

GSFA ✓ ✓ ✓ ✓ ✓

GSFAC ✓ ✓ ✓ ✓ ✓

GSFAC-I ✓ ✓ ✓

GSFAC-D ✓ ✓ ✓

GSFAC coupled ✓ ✓ ✓ ✓ ✓ ✓

Table 4.1: Overview of the five attack types. The adversarial attacks optimise perturbations
for a subset of all six inputs. The coupled attack extends the adversarial robustness
evaluation to the disparity estimation network GA-Net.

Inputs Outputs
I0,0, I1,0 d0, d1 u v ∆d

mean value -0.42 30.46 4.92 8.79 -3.82

Table 4.2: Comparison of mean values for inputs of and outputs of RAFT-3D on the 200
training images of the KITTI 2015 scene flow benchmark.

4.5.1 Value Ranges

After the preprocessing of the RAFT-3D inputs the value ranges of images and disparity maps
are different. The normalisation of images results in RGB pixel values which approach a
zero mean, whereas the disparity maps of GA-Net show values from 0 to 150. Analysing
all input scenes of the KITTI training datasets results in the histograms shown in Figure 4.2.
The normalized input images value range has its mean close to zero. The values of the input
disparity maps however are much larger. This has to be considered when selecting the learning
rates for the optimiser and perturbation bounds ϵ, ϵd. The outputs of RAFT-3D are optical flow
(u, v) and disparity change ∆d. Both quantities are not in the same unit, however the range of
values is in the same order of magnitude, which enables the use of flow proximity measures
MSE or AEE to penalise deviations from the target flow. These value distributions are important
to select appropriate learning rates and perturbation bounds for images and disparity maps. As
disparity values are by an order of magnitude larger than image values, a higher learning rate
γd and perturbation bound ϵd for disparities is selected for the optimiser and loss function.

4.5.2 Disparity Map Perturbations

RAFT-3D relies on the disparity estimation from both stereo pairs by GA-Net. These estimated
disparities d0 and d1 at times t = 0 and t = 1 are network inputs for the RAFT-3D model. The
disparity map output of GA-Net is upscaled to the full resolution of the input images. However,
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(a) Histogram of pixels in preprocessed I0,0, I1,0. (b) Histogram of pixels in d0, d1.

Figure 4.2: Comparison of RAFT-3D input value ranges. The preprocessed images I0,0, I1,0
show pixel values centered around a mean close to 0. The mean of disparity maps
is at 30.46 (see Table 4.2) and by an order of magnitude larger.

RAFT-3D samples the disparity maps at only an 1/8 of the input resolution. Therefore, when
optimising perturbations on full resolution disparity maps, only every eighth pixel is modified
by backpropagation, which also keeps the perturbation penalty low. This results in a dot pattern
in the perturbed disparity maps, as seen in Figure 4.3. Because only every eighth pixel is
processed by RAFT-3D and all the other pixels are discarded, it is reasonable to penalise only
perturbations of these downsampled disparity maps in the loss function. In the following, all
visualisations of disparity maps and their perturbations show the downsampled version used
by RAFT-3D.

55



4 A Global Adversarial Attack on Scene Flow

Figure 4.3: Effects of optimising perturbations for full resolution disparity maps: The left
frame shows the dot pattern in input perturbation d0, caused by the RAFT-3D
downsampling. The contrast of the disparity map is enhanced to make the dot
pattern visible. On the right side on top a downsampled disparity map at 1/8

resolution is shown. All pixels in this downsampled disparity map are used for
scene flow estimation by RAFT-3D. The bottom right frame shows the region
encircled in red. The low resolution of the downsampled disparity maps is visible.

4.6 Implementation Details

All types of the global scene flow attack are implemented in the Python programming language.
For the framework a virtual environment with Python version 3.7.9 is created. The CUDA
toolkit version 11.3 enables GPU computing in this environment. All experiments can be run
on a single Nvidia RTX A6000 GPU with 48 GB memory. The GSFAC-coupled attack type has
the highest memory requirement with up to 42 GB, because the loss computation graph is built
across the two neural networks GA-Net and RAFT-3D. In other attack types only RAFT-3D is
part of the adversarial attack, which reduces memory requirements to 8 GB.

Deep neural networks are loaded and deployed with the PyTorch 1.12.1 machine learning frame-
work. The code for RAFT-3D is publicly available at https://github.com/princeton-vl/RAFT-3D
[55]. RAFT-3D depends on the lietorch package [92] available at https://github.com/princeton-
vl/lietorch, which extends the tensor concept from PyTorch for SE(3) motion fields. In PyTorch
tensors are multidimensional matrices of scalar values, whereas lietorch adds support for mul-
tidimensional matrices of SE(3) motion elements to PyTorch. The authors provide downloads
for pretrained models, including a standard model used for GSFAC-I on the Spring dataset. The
fine-tuned RAFT-3D model for KITTI with bilaplacian smoothing is also available for download
and used in the other attacks. The source to build GA-Net [34] and multiple pretrained models
are available at https://github.com/feihuzhang/GANet.

The GSFAC and GSFAC-coupled procedures are described in pseudocode in Algorithm 4.1 and
4.2. All attacks search for the best set of perturbations found during 400 optimisation steps
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(see Section 5.2.1). The current best set of perturbations is saved in the best variable, which
is initialized with the value ∞. If an optimisation step leads to a lower loss, the improved
set of perturbations is saved to the best variable. In GSFAC-coupled the disparity estimation
of GA-Net is repeated after every perturbation of the pair of stereo images (inside the while
loop). In the other attack types the disparity is estimated one-time before the optimisation
of perturbations begins. Therefore, GSFAC-coupled requires 7 seconds per optimisation step,
whereas the other attack types require less than 1.5 seconds. The runtime to optimise all
perturbations of the stereo pairs for the 200 KITTI scenes in the GSFAC-coupled attack is about
one week. For other attack types, such as GSFAC, the runtime for the KITTI dataset is about
one day. These runtimes only consider sequential computation and can be sped up by parallel
processing of KITTI input instances using multiple GPUs.

There is a Python script for GSFAC-coupled and another script for all other attack types. A
JSON file which contains all parameters for the scene flow attack can be passed as argument to
this script to execute the adversarial attack. In the JSON config file the set of attacked inputs is
defined. The config file specifies which dataset is used (KITTI or Spring) and which indices of
these datasets are used. Additionally, the learning rates γ and γd, perturbation bounds ϵ and
ϵd and the penalty weights α, β are specified in this file. After all specified dataset indices are
processed, the effect of the attack is automatically evaluated and reports metrics regarding
scene flow estimation accuracy and perturbation size.
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Algorithmus 4.1 GSFAC
procedure GSFAC(I0,0, I0,1, I1,0, I1,1)

d0 ← GANet15(I0,0, I0,1) // GA-Net estimate disparity at t = 0
d1 ← GANet15(I1,0, I1,1) // GA-Net estimate disparity at t = 1
I0,0, I1,0 ← preprocess(I0,0, I1,0) // RAFT-3D preprocessing
I ′

0,0, I ′
1,0, d′

0, d′
1 ← I0,0, I1,0, d0, d1 // Remember unperturbed inputs

st ← s0 // select zero scene flow as target

γ ← 0.01 // Setup optimiser for perturbations
γd ← 0.05
opt← Adam(I0,0, I1,0, d0, d1, γ, γd)

steps← 0
best←∞
while steps ≤ 400 do

s∗ ← RAFT3D(I0,0, I1,0, d0, d1) // RAFT-3D estimate adversarial scene flow

δ0,0 = I ′
0,0 − I0,0 // Get perturbations

δ1,0 = I ′
1,0 − I1,0

θ0 = d′
0 − d0

θ1 = d′
1 − d1

loss← ω(s∗, st, δ0,0, δ1,0, θ0, θ1, α, ϵ, β, ϵd)
if loss < best then

best← loss
δ∗

0,0 = δ0,0
δ∗

1,0 = δ1,0
θ∗

0 = θ0
θ∗

1 = θ1
end if

loss.backward()
I0,0, I1,0, d0, d1 ← opt.step() // Update perturbations

end while
return δ∗

0,0, δ∗
1,0, θ∗

0, θ∗
1

end procedure
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Algorithmus 4.2 coupled GSFAC
procedure GSFAC-COUPLED(I0,0, I0,1, I1,0, I1,1)

I ′
0,0, I ′

1,0, I ′
1,0, I ′

1,1 ← I0,0, I0,1, I1,0, I1,1 // Remember unperturbed inputs
st ← s0 // select zero scene flow as target

γ ← 0.5 // Setup optimiser for perturbations
opt← Adam(I0,0, I0,1, I1,0, I1,1, γ)

steps← 0
best←∞
while steps ≤ 400 do

d0 ← GANet11(I0,0, I0,1) // GA-Net estimate disparity at t = 0
d1 ← GANet11(I1,0, I1,1) // GA-Net estimate disparity at t = 1
s∗ ← RAFT3D(I0,0, I1,0, d0, d1) // RAFT-3D estimate adversarial scene flow

δ0,0 = I ′
0,0 − I0,0 // Get perturbations

δ0,1 = I ′
0,1 − I0,1

δ1,0 = I ′
1,0 − I1,0

δ1,1 = I ′
1,1 − I1,1

loss← ω(s∗, st, δ0,0, δ0,1, δ1,0, δ1,1, α, ϵ)
if loss < best then

best← loss
δ∗

0,0 = δ0,0
δ∗

0,1 = δ0,1
δ∗

1,0 = δ1,0
δ∗

1,1 = δ1,1
end if

loss.backward()
I0,0, I0,1, I1,0, I1,1 ← opt.step() // Update perturbations

end while
return δ∗

0,0, δ∗
0,1, δ∗

1,0, δ∗
1,1

end procedure
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In this chapter the proposed global adversarial attacks on scene flow are applied to the state-
of-the art scene flow network RAFT-3D [55] using inputs from the real-world KITTI scene flow
2015 benchmark [1]. For the adversarial attack procedure up to six parameter values have to
be selected manually. For image and disparity map perturbation generation three parameters
each have to be configured: the penalty term weight, the perturbation bound and the learning
rate. Therefore, in Section 5.2 experiments with various parameter combinations for penalty
term weights and learning rates are conducted to identify reasonable configurations. Once
efficient parameters have been identified, experiments with the five different attack types are
discussed in the following sections. In addition to the KITTI scene flow 2015 benchmark,
a novel synthetic scene flow benchmark created from sequences of the animated short film
Spring is used to evaluate the adversarial robustness of RAFT-3D (see Section 5.1). The attack
strength of the different attack types as well as the effects on perturbation sizes are compared
at the end of this chapter.

5.1 Benchmarks for Flow Problems

There exist various benchmarks to evaluate the performance of methods for flow problems.
These benchmark consist of input data and labeled ground truth output data for the specific
flow problem. To compare how close the estimated flow or disparity is to the ground truth
different measures are used in literature. In the following the relevant measures for this work
are presented. The benchmark datasets KITTI and Spring, which are used for testing the
adversarial attacks defined in Chapter 4 are introduced. The impact on scene flow estimation
accuracy of an adversarial attack can be analysed by comparing the scene flow estimation of a
neural network before and after perturbation of inputs.

5.1.1 Error Metrics for Scene Flow

To compare how accurate a predicted flow f of size H ×W matches the ground truth flow
fgt the endpoints or angles of the flow vectors can be compared [90]. The angular error AE
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is defined as the angle between the predicted flow vector (u, v)⊤ and the ground truth flow
(ugt, vgt)⊤ in three-dimensional space:

AE(
(

u

v

)
,

(
ugt

vgt

)
) = arccos( 1 + u · ugt + v · vgt√

1 + u2 + v2 ·
√

1 + u2
gt + v2

gt

). (5.1)

The endpoint error EE is calculated by the euclidean distance of the endpoints of the two flow
vectors:

EE(
(

u

v

)
,

(
ugt

vgt

)
) =

√
(ugt − u)2 + (vgt − v)2. (5.2)

These measures both determine the accuracy of a single predicted vector. To evaluate an entire
flow field, the average of the selected measure m ∈ {AE, EE} can be computed:

1
W ·H

H∑
y=0

W∑
x=0

m(f(y, x), fgt(y, x)). (5.3)

The averages are called average angular error AAE and average endpoint error AEE.

In practice stereo matching is preceded by rectification, resulting in 1D disparity maps of size
H ×W . Therefore, the predicted disparity map d and the ground truth dgt are both scalar
valued. The average error ω of the prediction d is then quantified by the average absolute
error:

ω(d, dgt) = 1
W ·H

H∑
y=0

W∑
x=0
|d(y, x)− dgt(y, x)| (5.4)

5.1.2 KITTI Scene Flow 2015 Benchmark

KITTI Scene Flow 2015 [1] is a benchmark for scene flow estimation methods. The real-world
scenes comprise traffic situations captured from the point of view of a passenger car. The car
is equipped with a color stereo rig with a baseline of 54 cm. The benchmark consists of 200
training and 200 test scenes with the ground truth data provided by a laser scanner and a GPS
system. Each scene consists of two synchronized and rectified stereo pairs. Each stereo pair
consists of two RGB color images with known intrinsics, resulting in a total of four images per
scene. The resolution of the color images is 0.5 megapixel. The goal of the benchmark is to
accurately estimate the scene flow (u, v, d, d′)⊤.

Menze et al. [1] introduce a new per-pixel metric, which is labeled as bad pixel error (BP). A
pixel is considered good if the disparity or flow estimation endpoint distance is less than 3
pixels to the ground truth. For large displacements the endpoint error is allowed to exceed the
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distance of 3 pixels, but has to remain smaller than 5% of the displacement vector magnitude
or disparity value:

BP(x, y) =

1 if (EE(f(x, y), fgt(x, y)) > 3 ∧ EE(f(x,y),fgt(x,y))
fgt(x,y) > 0.05)

0 otherwise
. (5.5)

The ratio of bad pixels of an estimated flow vector field f of size H ×W can then be computed
by:

BP(f, fgt) = 1
H ·W

H∑
y=0

W∑
x=0

BP (x, y). (5.6)

The KITTI ground-truth data includes binary image masks which encode invalid or occluded
regions. Therefore, the bad pixel error is only evaluated for included pixels for the corresponding
benchmark. The KITTI Scene Flow 2015 benchmark distinguishes three categories: foreground
and background regions and their combination (all valid pixels). The D1 and D2-error is the
ratio of bad pixels for the disparity estimations d and d′. The flow error Fl is the ratio of bad
pixels for the predicted optical flow f = (u, v)⊤. The scene flow error is the ratio of scene flow
outlier pixels. In scene flow a pixel is considered erroneous if any of the D1, D2 or Fl metrics
report a bad pixel.

5.1.3 Spring Scene Flow Benchmark

The Spring scene flow dataset is a large, high-resolution synthetic benchmark for scene flow,
optical flow and stereo. Scene data is extracted from the open-source Blender movie Spring
using a virtual stereo camera rig. The image resolution is 1920×1080 and ground truth disparity
and optical flow data is available in UHD (3840×2160). The entire dataset consists of 6000
stereo image pairs from 47 scenes. The ground truth data is available for different directions,
e.g. forward or backward optical flow.

For experiments in this work the entirety of the 6000 scenes of the dataset is too extensive.
Therefore, a subset called Spring200 is generated. In this subset up to six randomly selected
stereo image pairs for each of the 47 scenes are chosen, resulting in 200 stereo image pairs.
For these selected scenes the disparity from left to right image of the stereo pair is used as
ground truth disparity. In the same way the forward optical flow from the left images is used,
to match the input and output setting established by RAFT-3D. For evaluation of scene flow,
the disparities and optical flow ground truth data is downsampled to 1920×1080 to match the
input stereo image resolution. With these adjustments the same evaluation procedure used for
experiments with the KITTI scene flow benchmark is feasible. The experiments with GSFAC-I
(see Section 5.3.3) use this subset to evaluate the effectiveness of the global constrained scene
flow adversarial attack on input images of RAFT-3D.
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5 Experiments and Results

5.2 Parameter Refinement

The global perturbation constrained adversarial attack on scene flow uses the loss function ω

and an optimiser to find efficient adversarial examples. Because disparity maps and images
have a different range of values, two separate penalty terms with separate perturbation bounds
ϵ, ϵd are used. Consequently, two penalty term weights α, β are used for two reasons. First, in a
homogeneous attack the contribution to the total loss of image perturbation penalty term and
disparity map perturbation penalty term should be similar. Secondly, two penalty terms and
weights enable attacks which allow different perturbation sizes on a specific set of inputs.

The following parameter experiments use the GSFAC attack type, which perturbs the direct
RAFT-3D inputs (preprocessed images and disparity maps). A subset of n = 20 randomly
selected images from KITTI scene flow 2015 training is used for the experiments. The pertur-
bation bounds are fixed to ϵ = 0.01 for images and ϵd = 0.1 for disparity maps, as disparity
maps show higher values in general (see Table 4.2). A parameter selection which generates
adversarial examples with high attack strength and low perturbation size is favored. Therefore,
for each parameter setting the KITTI bad pixel error and the perturbation size is analysed. Here,
the root-mean-square error (RMSE) between the original and perturbed image is calculated to
measure the perturbation size. The proposed GSFAC procedure in Algorithm 4.1 is able to stop
optimisation of perturbations after a predefined number of steps. For the following experiments,
the best perturbations found in at most 400 steps are selected as final perturbations.

5.2.1 Penalty Weights of GSFAC

To examine the effect of the α, β penalty weights on the corresponding perturbations, the set of
parameter values V = {0, 10, 20, 50, 100, 500, 1000} with |V | = 7 is defined. This results in 49
different combined parameter assignments for α, β ∈ V . In addition to the fixed perturbation
bounds, the learning rates for images and disparity maps are fixed to γ = γd = 0.01 for this
step of the parameter refinement. Experiments could show that in 400 optimisation steps
sufficiently large perturbations could be generated with these learning rates.

Table 5.1 shows a subset of the results of the experiments with different α, β penalty weights.
The results of all 49 experiments are added to the Appendix A.1 of this work. The first row
shows the baseline performance of RAFT-3D on the n = 20 subset of the KITTI training split.
The bad pixel error for scene flow is 1.2%, for optical flow 1% and for disparities d, d′ smaller
than 0.5%. As the baseline shows no adversarial attack, the perturbation size is zero for all
inputs.

The results of the unconstrained GSFA wit α, β = 0 are shown as another baseline. The GSFA is
effective and leads to the highest bad-pixel error percentages, with 96.6% bad pixels for scene
flow. As perturbation size is unconstrained this high attack strength comes with the largest
perturbation sizes. In general the range of values for disparity maps is higher, therefore the
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5.2 Parameter Refinement

Parameters KITTI Bad-Pixel Error Perturbation Size RMSE
Experiment α ϵ β ϵd Scene Flow Optical Flow d d′ I0,0 I1,0 d0 d1

RAFT-3D - - - - 1.2% 1.0% 0.4% 0.5% 0 0 0 0
GSFA 0 - 0 - 96.6% 91.8% 81.6% 86.1% 0.23 0.22 6.93 2.70
43 1000 0.01 10 0.1 91.9% 88.2% 67.0% 71.4% 0.12 0.09 4.74 2.05
44 1000 0.01 20 0.1 92.1% 86.5% 67.8% 72.0% 0.11 0.09 4.44 1.91
37 500 0.01 20 0.1 91.8% 86.7% 64.8% 70.7% 0.13 0.10 4.89 2.10
45 1000 0.01 50 0.1 83.4% 78.3% 43.3% 53.2% 0.10 0.08 3.08 1.49
29 100 0.01 10 0.1 93.4% 90.2% 69.7% 75.6% 0.16 0.14 5.23 2.21
48 1000 0.01 1000 0.1 21.0% 20.8% 0.5% 4.5% 0.02 0.02 0.34 0.26

Table 5.1: Comparison of a subset of the 49 experiments testing different penalty weights α for
images and β for disparities. Highest error and lowest perturbation sizes marked in
bold.

corresponding perturbation size RMSE is also higher than for images. Additionally, as disparity
map values are higher, the resulting penalties from perturbations are higher as well. Therefore,
to achieve a balanced penalty contribution of all three terms of the loss function ω, the penalty
weight β has to be chosen smaller than α. For all experiments perturbation size for inputs of
time step t = 0, which are I0,0 and d0, are higher than for time step t = 1 (I1,0 and d1).

The selection of experiments shown in Table 5.1 is based on effective attacks with low pertur-
bation sizes. The experiments 43, 44, 37, 45 and 29 all show the same characteristics:

1. High bad-pixel errors for scene flow and optical flow (> 75%).

2. Medium to high bad-pixel errors for disparity outputs d and d′ (> 50%). Note that for
RAFT-3D the input d0 is equal to the output d. This means any increase in error is caused
by the perturbation alone.

3. Effective limitation of perturbation sizes compared to the unconstrained attack GSFA.

4. High weight α to penalise perturbations of the images.

5. Low weight β for disparity perturbation penalty compared to α.

The experiment 48 has the most strict penalties for perturbations with α = β = 1000. While
this is effective to limit the perturbation RMSE to 0.02 for images and 0.34 for disparity maps,
the bad-pixel error for flows is only around 21%. Compared to the other experiments, these
strict perturbation penalties lead to an adversarial attack, which is unable to completely destroy
scene flow estimation.

In general all the 49 experiments disrupt the accurate scene flow estimation of RAFT-3D (see
Figure 5.1). However, these experiments show the obvious trade-off between attack strength
and limitations on perturbation size. A high attack strength requires larger perturbations of
inputs. In reverse conclusion, strict perturbation penalties lead to small perturbations of inputs
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5 Experiments and Results

(a) Top row: Original inputs for RAFT-3D (I0,0, I1,0, d0, d1) from left to right. Bottom row: Perturbed inputs.

(b) Top row: Optical flow (left) and disparity change (right) estimated by RAFT-3D with original inputs. Bottom
row: Scene Flow Estimation using the perturbed inputs.

Figure 5.1: Experiment 37: The perturbation penalty terms use the factors α = 500 and
β = 20. The perturbations of the disparities are more perceptible than the image
perturbations. These perturbations lead to a scene flow estimation close to the
target flow s0.

which result in low attack strength. The results of experiment 43 with α = 1000 and β = 10
proved reasonable in terms of attack strength and perturbation size. Therefore, the α :β ratio
of 1:100 is used for the remaining experiments in this work.

5.2.2 Learning Rates for GSFAC

For the experiments the optimisation of perturbations is bounded by the runtime, which is
the number of optimisation steps. In general, a carefully selected learning rate enables the
machine learning algorithm to find good optima. If the learning rate is too high, local optima
can be skipped. An optimisation procedure where the learning rate is too small may approach a
minimum of the loss function slowly. The goal of this step of the parameter refinement is to find
suitable learning rates for the Adam optimiser. The PyTorch implementation of Adam is able
to apply different learning rates to specific subsets of the learned parameters. Therefore, the
learning rate γ is used for perturbation of RAFT-3D input images and γd for the perturbation of
disparity maps. Again, as disparity map values are higher than preprocessed image values, γd

has to be larger than γ.

The set K of candidate learning rates is defined as

γ, γd ∈ K = {0.01, 0.05, 0.1, 0.25, 0.5, 1.0}. (5.7)
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5.2 Parameter Refinement

Parameters KITTI Bad-Pixel Error Perturbation Size RMSE Best Perturbation
Experiment γ γd Scene Flow Optical Flow d d′ I0,0 I1,0 d0 d1 Steps Loss
RAFT-3D - - 1.2% 1.0% 0.4% 0.5% 0 0 0 0 - -
GSFA 0.01 0.01 96.6% 91.8% 81.6% 86.1% 0.23 0.22 6.93 2.70 376 11.6
6 0.05 0.01 89.8% 89.5% 1.5% 56.6% 0.14 0.08 0.79 0.35 286 25.1
0 0.01 0.01 90.7% 89.5% 6.1% 60.1% 0.11 0.07 1.05 0.50 331 34.1
1 0.01 0.05 93.5% 89.3% 69.1% 77.0% 0.11 0.07 4.66 1.78 275 42.1
7 0.05 0.05 93.0% 89.6% 56.0% 74.6% 0.15 0.09 3.52 1.19 205 43.9
8 0.05 0.1 96.7% 89.8% 89.2% 91.5% 0.14 0.08 6.51 2.16 223 55.2
30 1.0 0.1 69.9% 69.7% 7.5% 45.2% 0.71 0.57 1.03 0.36 176 422.3

Table 5.2: Comparison of a subset of the 36 experiments testing different learning rates γ for
perturbation of images and γd for perturbation of disparity maps. Highest error and
lowest perturbation sizes marked in bold.

All possible assignments of these values to the learning rates result in 36 experiments. For all
experiments the average number of steps to find the best set of perturbation is 175, which
justifies the runtime bound of 400 steps. The perturbation bounds are fixed to ϵ = 0.01, ϵd = 0.1
and the penalty weights set to the values α = 1000, β = 10 identified in Section 5.2.1.

Table 5.2 shows the results of a subset of the experiments. In the Appendix A.2 the results of
all experiments are available. In three of these experiments high learning rates for disparity
perturbation (yd >= 0.5) result in NaN values contained in the RAFT-3D output optical flow
or disparity maps. These experiments cannot be evaluated because of the erroneous outputs
and are excluded from the selection. The next to last column in Table 5.2 shows the average
number of steps the optimiser takes to generate the best perturbation according to the loss
function. Only for the unconstrained GSFA the number approaches the maximum number of
400 optimisation steps. The experiments require less than 400 steps on average to generate the
best perturbations. The last column shows the mean loss function output for each of the best
set of perturbation for the 20 RAFT-3D input instances.

The selected experiments 0, 1, 6, 7 and 8 highlight the effects of specific learning rate parameters.
The smaller learning rates in K are sufficient to generate effective perturbations in 400
optimisation steps. As expected, small learning rates lead to smaller perturbation sizes, while
the trade-off between attack strength and perturbation size persists.

In general low learning rates generate effective adversarial examples. The outcome of experi-
ment 1 with γ = 0.01 and γd = 0.05 shows a balanced performance regarding attack strength
and perturbation size. The bad-pixel errors for all outputs is high, and the perturbation sizes for
images is low. The optimisation procedure of experiment 1 finds the best perturbation after an
average of 275 steps with a mean loss of 42.1. The perturbation of d in experiment 1 also leads
to a higher bad-pixel error of d′ than experiments that use a γd smaller than 0.05. Therefore,
the learning rates γ = 0.01 for image perturbations and γ = 0.05 for disparity perturbations
are effective and used in further experiments.
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The parameter refinement showed, that in general all parameters obey the trade-off between
attack strength and perturbation size. Extreme parameter selections lead to low attack strength
or high perturbation sizes or cause RAFT-3D to generate erroneous outputs. In conclusion
the parameter configuration with ϵ = 0.01, γ = 0.01, α = 1000 for image perturbations and
ϵd = 0.1, γd = 0.05, β = 10 for disparity map perturbations proved to be effective. The
average contribution of each penalty term to the loss function ω with this parameter selection
is balanced. The proximity to target flow term on average contributes 37% to the total loss.
The perturbation penalty terms contribute on average 24% (images) and 39% (disparity) to
the total loss ω.

5.3 Global Scene Flow Attack on RAFT-3D

The effectiveness of the five proposed global adversarial attack types on scene flow is tested on
the KITTI 2015 scene flow benchmark, which consists of 200 images and includes the ground
truth scene flow. The bad-pixel error for the scene flow estimation of RAFT-3D on this data is
1.33% (see Table 5.3). The KITTI bad-pixel error metric is non-linear and relatively strict, hence
it can reach high percentage values even if the AEE of the estimated flow is only slightly off.
Additionally, because of different value ranges the perturbation sizes of images and disparity
maps cannot be compared directly. A remedy for both of these problems is the introduction
of a linear and value range independent measure of estimation performance. The relative
squared error compares the estimation performance of a model to another model which simply
uses the mean value of the ground truth data for every estimation [93]. The ratio of the errors
of these models is called the relative squared error RSE. An RSE of 0% means the examined
model provides an exact estimation of the ground truth data. On the other hand, high values
up to 100% indicate an inaccurate model. Let y be the ground truth data with mean y and ỹ

the predictions of the model:

RSE(ỹ, y) =
∑n

i=1(yi − ỹi)2∑n
i=1(yi − y)2 (5.8)

The RSE can be used as secondary metric to assess the accuracy of the flow estimation besides
the KITTI bad-pixel error. On the KITTI test dataset RAFT-3D achieves RSE values of 0.4% for
optical flow prediction and 0.07% and 0.11% for disparity estimations d, d′. To evaluate the
perturbation size of adversarial examples, the RSE of the original input and the perturbed
input can be calculated. Because the RSE is value range independent this enables a direct
comparison of image and disparity map perturbation sizes.

The RSE is an error measure which does not respect characteristics of the human perception.
Therefore, the structural similarity index SSIM is added as a second measure to evaluate
perturbation sizes. The SSIM is a model based on human perception and used to measure the
similarity of two images. The range of SSIM is in the interval [0, 1], where 1 denotes identical
images. Zanforlin et al. [94] assigned labels based on human-perception to certain SSIM value
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5.3 Global Scene Flow Attack on RAFT-3D

KITTI Bad-Pixel Error RSE
Scene Flow Optical Flow d d′ Optical Flow d d′

RAFT-3D 1.33% 1.19% 0.52% 0.68% 0.41% 0.07% 0.11%
GSFA 89.41% 85.23% 67.69% 76.41% 96.11% 34.5% 32.69%

Table 5.3: Results of scene flow estimation for RAFT-3D and the unconstrained adversarial
attack GSFA on the n = 200 KITTI scenes.

ranges and found that SSIM values greater than 0.95 indicate imperceptible perturbations. The
SSIM metric can also be expressed as percentage value.

To analyse the qualitative effects of perturbations on scene flow prediction, distinct example
input scenes of the KITTI benchmark are selected. In general, in scenes where the car is
stationary the length of most scene flow vectors is small or zero, thus the actual scene flow
is close the target flow s0. Therefore, the perturbation-induced flow matches the target flow
s0 more easily in stationary scenes. In scenes where the car is driving, the average length
of scene flow vectors is higher, which increases the distance to the zero target scene flow.
To demonstrate the effects of the global adversarial attacks, figures depicting stationary and
driving scenes are selected to highlight effects on scene flow estimation and perturbation
size.

5.3.1 GSFA: Unconstrained Attack

The global scene flow attack without constraints on perturbation size achieves a high attack
strength. The adversarial flow approaches the target scene flow s0 in all the 200 scenes of
KITTI training without exceptions. Figure 5.2 shows the input perturbations and the estimated
scene flow of RAFT-3D (optical flow and disparity change) for KITTI scene 38. For GSFA the
learning rates are set to γ = 0.01 and γd = 0.05 and without the perturbation penalty terms
the loss function becomes:

ω = MSE(s∗, s0) (5.9)

The perturbation size is implicitly bounded by the learning rate and maximum number of 400
optimisation steps. However, the resulting perturbation size is large and the perturbations
on both input types are perceptible by human observers (see Figure 5.3). The average KITTI
bad-pixel error of RAFT-3D for the 200 training scenes increases from 1.33% to 89.4%, which
makes the unconstrained attack the most destructive. This is expected, as there is a trade-off
between attack strength and perturbation size. The following GSFAC experiments aim at
generating imperceptible perturbations while maintaining a high attack strength.
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5 Experiments and Results

(a) Input images I0,0, I1,0 (top) and their perturbed
versions (bottom).

(b) Input disparity maps d0, d1 (top) and their perturbed
versions (bottom).

(c) Top: RAFT-3D estimated scene flow. Bottom: the flow and disparity change resulting from the adversarial
examples. The target flow s0 is matched closely.

Figure 5.2: GSFA attack on KITTI scene 38.
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5.3 Global Scene Flow Attack on RAFT-3D

(a) Input images I0,0, I1,0 (top) and their perturbed versions (bottom).

(b) Input disparity maps d0, d1 (top) and their perturbed versions (bottom).

(c) Scene flow estimations of RAFT-3D (top) and after input perturbation using GSFA (bottom).

Figure 5.3: GSFA attack on KITTI scene 86.
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5.3.2 GSFAC: Perturbation Constrained Attack

The learning rates and penalty weight ratio 1:100 found in the parameter refinement is used
in the experiments with the perturbation constrained scene flow attack GSFAC. Perturbations
are generated for both input images I0,0, I1,0 and both disparity maps d0, d1. The first set of
relaxed constraints use the penalty term weights α = 103, β = 10. The learning rates are set to
γ = 0.01 and γd = 0.05. The perturbation bounds ϵ = 0.01 and ϵd = 0.1 stay the same as in the
parameter refinement. The final loss function of GSFAC with relaxed constraints is shown in
Equation (5.10):

ω(δn, θm) = MSE(s∗, s0) + 103 ·
2∑

n=0
|p(δn, 0.01)|+ 10 ·

2∑
m=0
|p(θm, 0.1)|. (5.10)

A second experiment GSFAC-strict with higher penalty term factors is realised with α = 104, β =
102:

ω(δn, θm) = MSE(s∗, s0) + 104 ·
2∑

n=0
|p(δn, 0.01)|+ 102 ·

2∑
m=0
|p(θm, 0.1)|. (5.11)

Table 5.4 shows the results of both adversarial attacks. The relaxed constraints effectively
decrease the perturbation size for the input images I0,0, I1,0. The disparity perturbations
are not limited effectively by GSFAC, but GSFAC-strict reduces this perturbation size using
an increased penalty weight β = 100. The bad-pixel error and the RSE for all outputs still
increase substantially after GSFAC compared to the unattacked RAFT-3D flow estimation. The
experiment GSFAC-strict also effectively disturbs scene flow estimation. However, the output
disparity d with a bad-pixel error of 6.6% is not affected as much as in GSFAC (61%). The
increase in bad-pixel error for d is caused by the perturbation alone, as in RAFT-3D the input
disparity d0 is equal to the output d. This means, that the perturbations of GSFAC-strict keep
disparity values in the vicinity of the 3 pixel threshold of the KITTI bad pixel error. The RSE
values, which compare estimated flow and ground truth flow, confirm the bad-pixel error
data.

Figure 5.4 shows the effects of increased penalty weights on perturbations. The perceptibility
of the perturbations decreases with higher penalty weights, however the image perturbations
remain perceptible for humans. Disparity map perturbations in GSFAC-strict are imperceptible
and hardly perceptible for GSFAC. The resulting attacked flow in Figure 5.4 is heavily impaired,
even by strict perturbation penalty weights. The car depicted in the scene vanishes almost
completely from the optical flow and disparity change predicted by RAFT-3D for inputs
perturbed with GSFAC or GSFAC-strict.

There exist particular scenes in the KITTI training set, which are more robust against GSFAC
and GSFAC-strict (see Figure 5.5 and Figure 5.6). As perturbation constraints become stricter,
the global attack becomes a patch-like attack. The noisy pattern in the perturbations δ0, δ1 in
Figure 5.5 is concentrated on the left image region where the driving van is located. Other
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5.3 Global Scene Flow Attack on RAFT-3D

(a) Perturbed I0,0 by GSFA. (b) Perturbed d0 by GSFA.

(c) Perturbed I0,0 by GSFAC. (d) Perturbed d0 by GSFAC.

(e) Perturbed I0,0 by GSFAC-strict. (f) Perturbed d0 by GSFAC-strict.

(g) Scene flow estimations ((u, v) left, ∆d right) with RAFT-3D and after GSFA, GSFAC, GSFAC-strict (from top to
bottom).

Figure 5.4: Comparing different perturbation constraints for adversarial attacks on RAFT-3D
for KITTI scene 86.
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KITTI Bad-Pixel Error RSE
Scene Flow Optical Flow d d′ Optical Flow d d′

RAFT-3D 1.33% 1.19% 0.52% 0.68% 0.41% 0.07% 0.11%
GSFAC 84.98% 81.12% 60.95% 68.92% 83.24% 39.32% 35.48%
GSFAC-strict 70.03% 67.38% 6.66% 43.39% 53.62% 0.26% 2.49%

RSE SSIM
I0,0 I1,0 d0 d1 I0,0 I1,0 d0 d1

GSFA 3.59% 3.43% 3.77% 0.60% 87.62% 89.94% 94.74% 94.74%
GSFAC 0.71% 0.30% 3.53% 0.54% 95.94% 98.13% 95.13% 97.46%
GSFAC-strict 0.16% 0.06% 0.23% 0.05% 98.76% 99.52% 99.57% 99.73%

Table 5.4: Top: Scene flow estimation accuracy of RAFT-3D and the effects of GSFAC, GSFAC-
strict. Bottom: Perturbation size RSE and SSIM are limited by GSFAC compared to
GSFA.

22

(a) Perturbations δ0, δ1 generated by GSFAC-strict. The strict constraints cause patch-like perturbations.

(b) Top: RAFT-3D scene flow. Bottom: Flow after GSFAC-strict attack.

Figure 5.5: The GSFAC perturbations with strict constraints cause only minor differences in
the attacked scene flow for specific scenes. The van on the left partially disappears.
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5.3 Global Scene Flow Attack on RAFT-3D

Figure 5.6: RAFT-3D is relatively robust against GSFAC-strict on particular KITTI scenes with
high-contrast moving objects. Top: I0,0 of scene. Bottom: Attacked flow s∗.

regions of the image exhibit a low perturbation size. The resulting attacked flow is affected the
most in the regions of the patch-like perturbations. In the other areas of the scene, scene flow
estimation is robust against GSFAC-strict. The analysed robust scenes in Figure 5.6 show, that
scene flow of objects with high contrast is harder to attack. Therefore, increasing the contrast
of input images during preprocessing may increase adversarial robustness of RAFT-3D.

5.3.3 GSFAC-D and GSFAC-I: Perturbation of Input Types

The attacks GSFAC-D and GSFAC-I limit the perturbation of RAFT-3D inputs to images and
disparities respectively. In GSFAC-D only perturbations for the disparity maps are optimised,
whereas in GSFAC-I the images are perturbed. For these kinds of attacks the loss function uses
the same parameters as in GSFAC for the particular input type. For GSFAC-D the parameters
are γd = 0.05, ϵd = 0.1 and β = 10. The GSFAC-I uses γ = 0.01, ϵ = 0.01 and α = 1000.
The results show, that perturbation of images has severe effects on the scene flow estimation
(see Table 5.5). Perturbation of disparity maps alone have weaker effects on the scene flow
estimation compared to GSFAC-I or other attack types.

The perturbation size of the GSFAC-I attack on images is even slightly lower than in GSFAC.
The estimated scene flow after perturbation of I0,0, I1,0 shows a bad-pixel error of 82.85%,
slightly lower than GSFAC (84.89%) which adds perturbations to the disparity maps. Without
perturbations of the disparity maps, the accurate RAFT-3D estimation of d using GA-Net stays
untouched. However, just by perturbation of input images the estimation error of d′ is raised
from the baseline 0.68% to 41.78% bad-pixel percentage. Comparing the d′ estimation bad-pixel
error of GSFAC and GFSAC-I shows a decrease from 68.9% to 41.8%, while the RSE decreases
from 35.5% to 3%. In this particular case of d′ the strictness of the KITTI bad-pixel percentage
is apparent. The attack type which focuses on the perturbation of input images only is able
to generate scene flows that approach the target zero scene flow, with stronger effects on the
optical flow component of the scene flow.
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(a) Scene flow estimation of RAFT-3D on KITTI scene 196.

(b) GSFAC-D: Large perturbation on d0 (top right) with medium effects on scene flow estimation.

(c) GSFAC-I: Perturbation on I0,0 (top left).

Figure 5.7: Comparison of effects of GSFAC-D and GSFAC-I on scene flow estimation of RAFT-
3D.

GSFAC-D generates two large perturbations for d0 and d1 (see Figure 5.7(b)). The perturbation
size magnitude of GSFAC-D is comparable to the unconstrained GSFA, with 3.01% RSE for
d0 and 0.93% for d1. The large perturbations cause an increased bad-pixel error and RSE of
the scene flow estimated by RAFT-3D. However, for GSFAC-D the scene flow and optical flow
bad-pixel percentage only reach 10% to 12% which is small compared to other attack types.
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KITTI Bad-Pixel Error RSE
Scene Flow Optical Flow d d′ Optical Flow d d′

RAFT-3D 1.33% 1.19% 0.52% 0.68% 0.41% 0.07% 0.11%
GSFAC-I 82.85% 82.81% 0.52% 41.78% 88.95% 0.07% 3.08%
GSFAC-D 11.86% 10.03% 10.90% 11.27% 2.36% 27.40% 21.69%

Table 5.5: Effects on scene flow estimation of RAFT-3D using perturbations generated by
GSFAC-I and GSFAC-D.

GSFAC-I on Spring dataset

The experiments of GSFAC-I on the KITTI dataset discovered, that perturbation of input images
is sufficient to perform efficient adversarial attacks on the scene flow network RAFT-3D. To test
the transferability of the scene flow attacks to other datasets, GSFAC-I is applied to a subset of
scenes of the synthetic Spring dataset. The subset consists of 20 scenes, which contain different
scene flow types with a stationary or moving camera. The scenes in Spring have a frame rate
of 60 FPS compared to 10 FPS in the KITTI dataset. Therefore, the average length of the scene
flow vectors is smaller and large regions of the scene already match the target flow s0. The
unattacked flow being close to the target flow eases the optimisation of perturbations in the
same way the KITTI experiments for stationary scenes showed. The AEE between the estimated
unattacked scene flow and target scene flow s0 for the Spring dataset is 5.45, compared to 7.46
in KITTI. In general the scene flow estimation accuracy of RAFT-3D compared to the ground
truth scene flow on Spring is low: The bad-pixel error metric from KITTI for the disparities
d, d′ reports 13.7% and 14% (KITTI 0.52% and 0.68%). For scene flow the percentage of bad
pixels is 58.9% compared to 1.33% for KITTI, which confirms the strictness of the bad-pixel
ratio measure.

The previous attacks used the RAFT-3D model, which was fine-tuned on KITTI and uses
bilaplacian smoothing [55]. However, the experiments showed that the KITTI fine-tuned model
performs worse on Spring than the standard RAFT-3D model. In the GSFAC-I on Spring the
standard model is used and the same attack parameters as in the attack on KITTI inputs are
used (γ = 0.01, ϵ = 0.01 and α = 103). The best set of perturbations {δ0, δ1} found during the
400 optimisation steps is used as final perturbation.

Table 5.6 shows the results of the attack, with lower perturbation sizes than in all other attack
types on KITTI. The RSE values of the perturbations of I0,0, I1,0 are 0.06% and 0.03%, while
the SSIM values are above 99%. Analysing the perturbed images shown in figures 5.8 and 5.9,
reveals hardly perceptible perturbations in particular scenes and imperceptible perturbations
in most scenes. The AEE proximity to the target flow decreased effectively from 5.45 to 0.16,
which is also lower than in all attacks featuring the KITTI dataset.
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5 Experiments and Results

Perturbations Scene Flow Estimation
RSE SSIM AEE RSE

I0,0 I0,1 I0,0 I0,1 s∗ to s0 s∗ to sgt

RAFT-3D Spring - - - - 5.45 83.1%
GSFAC-I Spring 0.06% 0.03% 99.37% 99.72% 0.16 100.4%

Table 5.6: Effects on GSFAC-I on Spring dataset. Average of measures for n = 20 scenes of the
Spring dataset.

(a) Spring scene 18. (b) Spring scene 56.

Figure 5.8: GSFAC-I on Spring dataset. Perturbed input images on top. RAFT-3D estimated
optical flow and disparity change in the second row. The bottom row shows the
scene flow estimation of RAFT-3D using the GSFAC-I perturbed images from the
top row.
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5.3 Global Scene Flow Attack on RAFT-3D

(a) GSFAC-I image perturbations of Spring scene 140 (contrast enhanced to improve visibility).

(b) Perturbed images on top. The second row shows the scene flow estimation by RAFT-3D using unperturbed
inputs (optical flow left, disparity change right). The bottom row shows the resulting scene flow after adding

the GSFAC-I perturbations from (a) to the input images.

Figure 5.9: GSFAC-I on Spring scene 140.
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5 Experiments and Results

5.3.4 GSFAC-coupled: Adversarial Attack including GA-Net

The coupled constrained global scene flow adversarial attack (GSFAC-coupled) optimises four
perturbations, one for each image of the two stereo pairs (see Figure 5.10). The perturbed
images are then used as inputs for the disparity estimation of GA-Net and at the RAFT-3D
preprocessing stage. Therefore, the perturbations have effects on two networks. Without
an accurate disparity estimation of GA-Net no meaningful scene flow estimation is feasi-
ble. Additionally, the other attack types have shown that RAFT-3D is vulnerable to image
perturbations.

This combined attack also considers the adversarial robustness of GA-Net. For this attack
the GA-Net-11 architecture is used, because an end-to-end computation graph of RAFT-3D
and GA-Net-15 exceeds feasible GPU memory limitations. To account for the reduction of
3D-convolutional layers in GA-Net, a new baseline scene flow estimation of RAFT-3D with
disparities estimated by GA-Net-11 is created. As expected, the results are worse as the disparity
priors are not as accurate. The bad-pixel percentage error for scene flow of the new baseline
increases from 1.33% to 4.12% (RSE: from 0.41% to 0.55%) compared to the use of GA-Net-15.
Because the perturbations are optimised before preprocessing and disparity estimation, the
value range of the RGB images is in [0, 255].

Similarly to the other attack types the minimum loss perturbation set {δ0, δ1, δ2, δ3} during 400
optimisation steps is chosen. The learning rate is set to γ = 0.5 because of the higher pixel
value range. Perturbations are penalised if pixel value perturbations exceed 1 and the penalty
weight term is set to α = 1. This results in the loss function in Equation (5.12):

ω(δ0, δ1, δ2, δ3) = MSE(s∗, s0) +
3∑

n=0
|p(δn, 1)| (5.12)

The results of GSFAC-coupled reveal a low adversarial robustness of GA-Net. The attack
efficiently destroys the input disparity maps d0, d1 of RAFT-3D for all scenes. GSFAC-coupled
aims at setting the disparity value for all pixels in d0 close to zero and introduces artefacts in d1
(see Figure 5.11). After the attack even for human observers it is hard to find correspondences
between the two disparity maps.

The scene flow bad-pixel error percentage for GSFAC-coupled for the 200 training scenes is the
highest among all constrained attack types (87.8%). Additionally, the size of the four input
image perturbations is similar to GSFAC-strict. The average perturbation size of the left stereo
pair images is higher, as these are also directly used as RAFT-3D inputs after preprocessing. The
left image perturbation size RSE is 0.24% for I0,0 and 0.15% for I1,0, compared to 0.04% and
0.01% for the right images. Recalling the subjective classification of the SSIM by Zanforlin et al.
[94], the perturbations of GSFAC-coupled are imperceptible by humans. The GSFAC-coupled
attack effectively limits the perturbation size to generate imperceptible perturbations, which
cause high attack strength and uncover the low adversarial robustness of GA-Net disparity
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5.3 Global Scene Flow Attack on RAFT-3D

Figure 5.10: GSFAC-coupled perturbed images (left) and perturbations δi (right).

Figure 5.11: Unattacked disparity maps estimated by GA-Net before (top) and after GSFAC-
coupled (bottom).

estimations. In Figure 5.12 the adversarial scene flow of KITTI scene 20 approaches the
target flow s0. The average endpoint error of GSFAC-coupled between target flow s0 and the
adversarial flow for all 200 KITTI scenes is 0.38. Based on the fact that the AEE between the
baseline RAFT-3D flow and s0 is 7.5, the attack effectively generates the target flow. RAFT-3D
cannot recover from the inaccurate attacked disparity estimations of GA-Net.
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5 Experiments and Results

Figure 5.12: Left: RAFT-3D scene flow estimation (u, v), d, d′, ∆d from top to bottom. Right:
Adversarial scene flow s∗ after GSFAC-coupled.

5.3.5 Comparison of Attack Types

The results of the six different experiments in Table 5.7 show that RAFT-3D and GA-Net are
vulnerable to adversarial attacks. GSFAC-coupled generates hardly perceptible or imperceptible
perturbations for all scenes, which result in scene flow estimations that are close to the
target flow s0. For most scenes GSFAC-strict is able to do so as well. However, there are
some specific scenes where GSFAC-strict is unable to create strong attacks. The realisation of
perturbation constraints by penalty terms in the loss function is effective in all constrained
attacks, with average SSIM values greater 95% for all perturbed inputs. If no constraints
or relaxed constraints are used, the perturbations are perceptible for the majority of scenes.
In general, the GSFAC-I attack showed that perturbing only the input images is sufficient
to generate an effective adversarial example. Perturbations of the input disparity maps by
GSFAC-D are not effective on their own.

Because RAFT-3D uses d0 estimated by GA-Net directly as output disparity d, the estimation
error of d for all attacks except GSFAC-coupled is caused by the perturbation θ0. For instance,
the perturbations of d0 of GSFAC cause an increase of bad-pixel error percentage from 0.52%
to 60.95%. This means for more than half of the disparity map pixels the disparity value
is changed by the perturbation in such a way, that the pixel disparity value exceeds the
absolute error threshold of 3 from the KITTI bad-pixel metric. The increased penalty weight for
disparity perturbations in GSFAC-strict limits this effect of the perturbation to a 6.66% bad-pixel
percentage, while still affecting the output disparity d′. Nevertheless, GSFAC-I showed that
perturbations of disparity maps is not necessary to effectively disturb the estimation of d′. To
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5.3 Global Scene Flow Attack on RAFT-3D

KITTI Bad-Pixel Error RSE AEE
Scene Flow Optical Flow d d′ Optical Flow d d′ s∗ to s0

RAFT-3D GA-Net-15 1.33% 1.19% 0.52% 0.68% 0.41% 0.07% 0.11% 7.47
GSFA 89.41% 85.23% 67.69% 76.41% 96.11% 34.5% 32.69% 0.28
GSFAC 84.98% 81.12% 60.95% 68.92% 83.24% 39.32% 35.48% 1.27
GSFAC-strict 70.03% 67.38% 6.66% 43.39% 53.62% 0.26% 2.49% 3.25
GSFAC-D 11.86% 10.03% 10.90% 11.27% 2.36% 27.40% 21.69% 7.07
GSFAC-I 82.85% 82.81% 0.52% 41.78% 88.95% 0.07% 3.08% 0.88
RAFT-3D GA-Net-11 4.12% 3.01% 1.90% 2.70% 0.55% 0.23% 0.28% 7.50
GSFAC-coupled 87.81% 83.44% 84.40% 84.65% 96.72% 92.86% 97.14% 0.38

Table 5.7: Effects of different adversarial attack types on RAFT-3D scene flow estimation
accuracy.

RSE SSIM
I0,0 I0,1 I1,0 I1,1 d0 d1 I0,0 I0,1 I1,0 I1,1 d0 d1

GSFA 3.59% 3.43% - - 3.77% 0.77% 87.62% 89.94% - - 94.74% 97.01%
GSFAC 0.71% 0.30% - - 3.53% 0.54% 95.94% 98.13% - - 95.13% 97.46%
GSFAC-strict 0.16% 0.06% - - 0.23% 0.05% 98.76% 99.52% - - 99.57% 99.73%
GSFAC-D - - - - 3.01% 0.93% - - - - 97.57% 97.80%
GSFAC-I 0.68% 0.28% - - - - 96.17% 98.33% - - - -
GSFAC-coupled 0.24% 0.04% 0.15% 0.01% - - 97.99% 99.60% 98.58% 99.86% - -

Table 5.8: Comparison of perturbation sizes of RAFT-3D inputs for different scene flow attack
types. Smallest perturbations are marked in bold.

create effective attacks with minimal perturbations GSFAC-I or GSFAC-coupled are suited well,
as the comparison of perturbation sizes in Table 5.8 shows.

All attacks reduce the proximity of adversarial flow to target flow (see Table 5.7). The strict
constraints cause a reduction of AEE from 7.47 to 3.25. Among the constrained attacks GSFAC,
GSFAC-I and GSFAC-coupled show the best proximity to s0. Figure 5.13 display the effects
of the different attacks on the same scene. In general the trade-off between limitations of
perturbation size and attack strength can be seen in these examples. In GSFAC-strict for
non-stationary scenes the basic structure of the scene flow is not completely erased (see
Figure 5.13(b)). However, GSFAC-coupled delivers the highest attack strength while keeping
perturbations in a hardly perceptible range. Therefore, GSFAC-coupled is deemed as the most
effective attack.
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5 Experiments and Results

(a) KITTI scene 11 with GSFAC-D, GSFAC-I (second and third column).

(b) KITTI scene 78: Moving camera causes a dense scene flow field with large displacement vector magnitude.

(c) KITTI scene 169: A stationary camera causes an unattacked sparse flow field, where only moving objects
mismatch the target scene flow s0.

Figure 5.13: Comparison of attack types from left to right: RAFT-3D baseline, (GSFAC-D,
GSFAC-I), GSFA, GSFAC, GSFAC-strict, GSFAC-coupled. (Perturbed) inputs and
outputs of RAFT-3D from top to bottom: I0,0, d0, (u, v), ∆d.
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6 Conclusion and Outlook

6.1 Outlook

The research topic adversarial attacks on flow neural networks is relatively new and so far
only attacks on optical flow and stereo networks have been proposed. This work introduced a
method to generate effective adversarial examples for scene flow estimation networks. However,
the method was only tested on the RAFT-3D network. Further promising research directions
include the application of GSFA or other scene flow adversarial attacks on different scene
flow estimation networks. Currently, multiple networks based on the RAFT-3D architecture
rank in the top 10 of the KITTI 2015 scene flow benchmark [1]. Applying the scene flow
adversarial attack on scene flow networks, which are not based on RAFT architecture (e.g.
CamLiFlow) would enable a comparison of adversarial robustness. Additionally, the effects on
adversarial robustness of extensions or modifications of other RAFT-3D based networks could
be examined. The results of these comparisons may reveal insights about possible defense
mechanisms. Previous works could show, that adversarial examples optimised for one network
are also effective on another network to some extent [83]. Therefore, the transferability of
the perturbations generated by GSFA and its variations could be tested on other scene flow
networks.

Perturbations of images is sufficient for the proposed scene flow attacks GSFAC-I or GSFAC-
coupled. A possible cause for this vulnerability could be the context encoder of RAFT-3D.
The context encoder uses a pretrained ResNet50 to extract context information about rigid
objects of the scene. A hypothesis for the vulnerability of RAFT-3D to image perturbations
is the destruction of the rigidity property of objects. Image perturbations may cause the
context encoder to split a perturbed object into multiple smaller rigid objects or prohibit object
detection. Excluding the image perturbations only for the context encoder part of RAFT-3D
could be a way to test this hypothesis. Analysing the rigid object embeddings of RAFT-3D for
the perturbed inputs is another way to check if this hypothesis holds.

The experiments in this work optimise frame-specific disjoint perturbations for input images
and disparity maps. Schmalfuss et al. [8] generated universal and joint perturbations to attack
optical flow networks. Further experiments with GSFA could optimise different combinations
of universal, frame-specific and joint or disjoint perturbations. As frame-specific disjoint
perturbations impose the least constraints it is expected that RAFT-3D is less vulnerable against
the other attack types.
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6 Conclusion and Outlook

This work focuses on theoretical aspects of adversarial robustness of scene flow networks. The
proposed attack method is of theoretical nature and may not be applicable in the real-world.
Brown et al. [78] showed that the adversarial patch attack could be transferred to real-world
scenarios using printed stickers. For scene flow adversarial attacks the applicability in the
real-world is another potential research direction.

Finally, defensive mechanisms against adversarial attacks on scene flow would be an interesting
research topic. The GSFA perturbations added to the input images show very intricate patterns,
which could be partially erased by simple Gaussian smoothing during the RAFT-3D preprocess-
ing step. Kurakin et al. [89] and Goodfellow et al. [75] could show, that including adversarial
examples into the training set of a neural network increases the adversarial robustness. The
adversarial examples generated with GSFA and its variations can be used for adversarial re-
training of RAFT-3D or other scene flow networks to examine the effects on robustness. Effects
of smoothing and other defense mechanisms from literature on the adversarial robustness of
RAFT-3D and other scene flow networks is subject to further research.

6.2 Conclusion

Research findings from Ranjan et al. [6], Schrodi et al. [7] and Schmalfuss et al. [8] revealed
the vulnerability of optical flow estimation neural networks to adversarial attacks. For stereo
matching networks effective adversarial attacks were proposed by Berger et al. [9] and Wong
et al. [10]. In this work the concept of adversarial attacks on flow networks is extended to the
scene flow problem, which combines disparity and optical flow estimation. The framework
developed in this work is based on the PCFA attack [80] and introduces new targets and loss
functions for the scene flow problem setting. With the targeted global scene flow attack (GSFA)
and its variations coupled and decoupled scene flow estimation networks can be attacked.
Input perturbations are generated by the Adam optimisation algorithm, which minimises
a loss function which respects the proximity to the target flow and the perturbation size.
The perturbations can be limited to arbitrary combinations of different types of inputs or
intermediate disparity estimations. Additionally, perturbation sizes are effectively limited by
penalty terms in the loss functions.

The analysis of extensive experiments with different combinations of parameters identified
suitable parameter settings for GSFA. Experiments covering all variations of GSFA on the
state-of-the-art scene flow estimation network RAFT-3D [55] using input data from 200 scenes
of the KITTI 2015 scene flow benchmark [1] are conducted. All attack variations except
GSFAC-D show a high attack strength. The GSFAC-I method, which perturbs two input images
of RAFT-3D, could show that perturbations of disparity maps are not neccessary to create an
effective attack. The effectiveness of GSFA is also shown for the synthetic scene flow benchmark
Spring using scenes from an animated movie.
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6.2 Conclusion

While no constraints on perturbations (GSFA) or relaxed constraints in GSFAC produce ad-
versarial examples with a large perturbation size, strict constraints on perturbation sizes by
GSFAC-strict lead to imperceptible but effective perturbations. A second point of attack is
realised with GSFAC-coupled, where the prior disparity estimation network GA-Net used by
RAFT-3D is also included in the adversarial attack. GSFAC-coupled exploits vulnerabilities of
RAFT-3D and GA-Net and creates hardly perceptible perturbations on the consecutive pairs
of stereo images. The experiments showed that attacks on coupled and decoupled scene flow
estimation networks are feasible, as they exhibit similar vulnerabilities as optical flow and
disparity estimation networks.

Besides flow accuracy, future evaluations of scene flow networks should consider reporting
adversarial robustness metrics. The global scene flow attack presented in this work is primarily
of theoretical nature. Further implications of GSFA for scene flow networks used in real-world
scenarios is a future research question.
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A Appendix

A.1 Penalty Weights Refinement Experiments

Experiment Index Parameters KITTI Bad-Pixel Error Perturbation Size RMSE
α ϵ β ϵd Scene Flow Optical Flow d d′ I0,0 I1,0 d0 d1

RAFT-3D - - - - 1.2% 1.0% 0.4% 0.5% 0 0 0 0
0 0 0.01 0 0.1 96.6% 91.8% 81.6% 86.1% 0.23 0.22 6.93 2.70
1 0 0.01 10 0.1 94.8% 91.7% 75.0% 80.0% 0.20 0.19 6.09 2.42
2 0 0.01 20 0.1 94.3% 89.7% 70.8% 77.4% 0.19 0.18 5.18 2.28
3 0 0.01 50 0.1 85.4% 79.4% 47.0% 53.5% 0.12 0.12 2.95 1.44
4 0 0.01 100 0.1 74.9% 70.7% 29.0% 37.3% 0.09 0.09 2.02 1.06
5 0 0.01 500 0.1 42.3% 41.6% 1.1% 7.9% 0.04 0.04 0.64 0.44
6 0 0.01 1000 0.1 20.0% 19.9% 0.5% 2.9% 0.02 0.02 0.29 0.24
7 10 0.01 0 0.1 97.3% 91.7% 81.4% 85.6% 0.21 0.19 7.33 2.75
8 10 0.01 10 0.1 94.8% 91.4% 73.6% 78.2% 0.19 0.18 5.60 2.36
9 10 0.01 20 0.1 93.5% 90.5% 68.0% 73.5% 0.17 0.16 4.70 2.07

10 10 0.01 50 0.1 84.7% 80.5% 46.2% 53.8% 0.13 0.12 3.15 1.49
12 10 0.01 500 0.1 47.9% 46.1% 6.2% 16.7% 0.05 0.05 0.89 0.56
13 10 0.01 1000 0.1 20.8% 20.7% 0.5% 3.1% 0.02 0.02 0.31 0.26
14 20 0.01 0 0.1 96.5% 91.7% 82.7% 87.7% 0.20 0.17 6.90 2.74
15 20 0.01 10 0.1 94.3% 91.0% 71.5% 77.9% 0.18 0.17 5.54 2.27
16 20 0.01 20 0.1 93.0% 89.0% 67.7% 73.6% 0.17 0.16 5.09 2.12
17 20 0.01 50 0.1 84.9% 78.6% 46.8% 54.2% 0.11 0.11 2.77 1.37
18 20 0.01 100 0.1 74.2% 69.8% 28.5% 37.5% 0.09 0.09 2.07 1.10
19 20 0.01 500 0.1 43.8% 42.3% 5.8% 12.5% 0.04 0.04 0.77 0.50
20 20 0.01 1000 0.1 20.9% 20.8% 0.5% 4.4% 0.02 0.02 0.32 0.26
21 50 0.01 0 0.1 96.4% 91.6% 83.6% 87.8% 0.19 0.15 7.68 2.87
22 50 0.01 10 0.1 93.6% 90.2% 71.7% 78.1% 0.17 0.15 5.63 2.31
23 50 0.01 20 0.1 93.0% 89.0% 65.3% 71.8% 0.17 0.15 4.98 2.14
24 50 0.01 50 0.1 80.5% 76.2% 36.6% 46.4% 0.11 0.11 2.78 1.34
25 50 0.01 100 0.1 71.6% 68.5% 22.4% 34.0% 0.08 0.08 1.89 1.00
26 50 0.01 500 0.1 46.7% 45.1% 5.3% 15.5% 0.05 0.05 0.81 0.53
27 50 0.01 1000 0.1 21.2% 21.0% 0.5% 4.5% 0.02 0.02 0.34 0.26
28 100 0.01 0 0.1 96.7% 91.6% 87.1% 89.8% 0.17 0.12 7.74 2.88
29 100 0.01 10 0.1 93.4% 90.2% 69.7% 75.6% 0.16 0.14 5.23 2.21
30 100 0.01 20 0.1 93.0% 88.9% 68.1% 74.9% 0.16 0.14 4.88 2.07
31 100 0.01 50 0.1 83.1% 79.5% 40.4% 49.4% 0.12 0.11 2.95 1.44
32 100 0.01 100 0.1 70.6% 67.3% 20.5% 32.1% 0.08 0.08 1.58 0.92
33 100 0.01 500 0.1 44.5% 42.9% 5.4% 11.6% 0.04 0.04 0.77 0.50
34 100 0.01 1000 0.1 19.9% 19.8% 0.5% 2.8% 0.02 0.02 0.29 0.24
35 500 0.01 0 0.1 96.5% 91.5% 89.4% 90.9% 0.11 0.07 8.67 3.20
36 500 0.01 10 0.1 93.8% 89.3% 73.5% 77.3% 0.13 0.10 5.25 2.22
37 500 0.01 20 0.1 91.8% 86.7% 64.8% 70.7% 0.13 0.10 4.89 2.10
38 500 0.01 50 0.1 84.0% 76.7% 43.4% 52.5% 0.10 0.09 2.93 1.39
39 500 0.01 100 0.1 74.5% 68.8% 29.3% 37.4% 0.08 0.07 1.84 1.01
40 500 0.01 500 0.1 38.4% 38.1% 0.6% 6.2% 0.03 0.03 0.52 0.40
41 500 0.01 1000 0.1 21.5% 21.4% 0.5% 4.3% 0.02 0.02 0.33 0.26
42 1000 0.01 0 0.1 95.8% 91.1% 90.5% 91.4% 0.10 0.06 9.51 3.42
43 1000 0.01 10 0.1 91.9% 88.2% 67.0% 71.4% 0.12 0.09 4.74 2.05
44 1000 0.01 20 0.1 92.1% 86.5% 67.8% 72.0% 0.11 0.09 4.44 1.91
45 1000 0.01 50 0.1 83.4% 78.3% 43.3% 53.2% 0.10 0.08 3.08 1.49
46 1000 0.01 100 0.1 74.2% 70.0% 31.5% 37.7% 0.08 0.07 2.03 1.09
47 1000 0.01 500 0.1 42.9% 41.8% 1.6% 9.7% 0.04 0.04 0.66 0.46
48 1000 0.01 1000 0.1 21.0% 20.8% 0.5% 4.5% 0.02 0.02 0.34 0.26

Table A.1: Results of the penalty weights refinement experiments.
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A Appendix

A.2 Learning Rates Refinement Experiments

Parameters KITTI Bad-Pixel Error Perturbation Size RMSE Best Loss
Experiment Index y y_d Scene Flow Optical Flow d d′ I0,0 I1,0 d0 d1 Step Loss

RAFT-3D - - 1.2% 1.0% 0.4% 0.5% - - - - - -
0 0.01 0.01 90.7% 89.5% 6.1% 60.1% 0.11 0.07 1.05 0.50 330.6 34.1
1 0.01 0.05 93.5% 89.3% 69.1% 77.0% 0.11 0.07 4.66 1.78 275.2 42.1
2 0.01 0.1 93.1% 90.2% 75.4% 78.9% 0.09 0.06 8.24 2.88 243.5 68.4
3 0.01 0.25 95.8% 89.7% 88.6% 90.3% 0.09 0.06 14.08 5.21 157.1 146.4
4 0.01 0.5 97.1% 89.0% 95.1% 94.2% 0.09 0.06 17.98 7.20 86.4 245.7
5 0.01 1 97.0% 86.9% 95.9% 95.2% 0.08 0.06 21.13 9.50 41.0 335.9
6 0.05 0.01 89.8% 89.5% 1.5% 56.6% 0.14 0.08 0.79 0.35 285.5 25.1
7 0.05 0.05 93.0% 89.6% 56.0% 74.6% 0.15 0.09 3.52 1.19 205.1 43.9
8 0.05 0.1 96.7% 89.8% 89.2% 91.5% 0.14 0.08 6.51 2.16 223.0 55.2
9 0.05 0.25 95.8% 88.2% 84.6% 87.0% 0.16 0.10 8.98 3.27 102.2 98.8

10 0.05 0.5 95.6% 89.0% 89.3% 89.2% 0.15 0.09 13.66 5.24 78.2 147.8
11 0.05 1 97.2% 88.7% 95.9% 94.6% 0.18 0.12 15.87 7.42 33.3 228.4
12 0.1 0.01 88.0% 87.5% 2.6% 53.3% 0.21 0.13 0.85 0.34 241.0 72.7
13 0.1 0.05 93.4% 88.7% 67.0% 80.8% 0.21 0.13 3.81 1.19 216.2 73.4
14 0.1 0.1 92.6% 89.4% 76.4% 81.2% 0.18 0.11 7.14 1.99 210.0 79.1
15 0.1 0.25 95.2% 88.4% 87.0% 88.6% 0.18 0.11 9.38 3.10 112.2 102.7
17 0.1 1 92.4% 84.4% 90.5% 89.4% 0.23 0.14 14.04 6.78 35.7 222.1
18 0.25 0.01 81.9% 80.9% 5.4% 55.1% 0.34 0.22 1.01 0.36 255.4 150.3
19 0.25 0.05 94.1% 86.8% 78.1% 84.6% 0.26 0.17 4.21 1.27 246.2 113.9
20 0.25 0.1 90.6% 84.1% 84.1% 86.0% 0.24 0.15 8.70 2.19 267.1 118.2
21 0.25 0.25 90.6% 84.9% 88.4% 87.3% 0.20 0.13 13.19 3.56 167.1 150.0
22 0.25 0.5 86.6% 79.1% 84.6% 84.0% 0.25 0.16 13.76 4.71 82.5 191.6
23 0.25 1 77.5% 70.6% 75.7% 74.9% 0.25 0.17 17.85 7.77 55.0 277.8
24 0.5 0.01 75.9% 75.5% 1.3% 43.8% 0.46 0.33 0.70 0.27 142.9 270.8
25 0.5 0.05 84.0% 77.2% 70.4% 75.5% 0.42 0.29 4.61 1.31 227.8 227.6
26 0.5 0.1 84.9% 79.3% 81.3% 80.2% 0.35 0.25 10.08 2.33 264.5 196.0
27 0.5 0.25 86.6% 79.6% 84.8% 84.1% 0.28 0.21 14.78 3.79 184.3 194.6
29 0.5 1 69.8% 65.5% 67.9% 68.0% 0.40 0.33 16.91 7.04 46.8 312.0
30 1 0.01 69.9% 69.7% 7.5% 45.2% 0.71 0.57 1.03 0.36 176.1 422.3
31 1 0.05 79.0% 73.4% 72.1% 70.9% 0.60 0.49 5.46 1.47 221.4 368.3
32 1 0.1 74.7% 70.7% 71.0% 71.1% 0.60 0.52 10.98 2.72 250.8 308.4
33 1 0.25 76.6% 70.3% 74.1% 74.2% 0.52 0.48 16.81 4.38 206.7 253.6
34 1 0.5 72.0% 65.8% 71.3% 70.2% 0.56 0.52 17.87 5.61 110.7 277.2

Table A.2: Results of the learning rates refinement experiments.
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