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Abstract

Water storage is an indispensable constituent of the intricate water cycle, as it governs the avail-
ability and distribution of this precious resource. Any alteration in the water storage can trigger
a cascade of consequences, affecting not only our agricultural practices but also the well-being
of various ecosystems and the occurrence of natural hazards. Therefore, it is essential to moni-
tor and manage the water storage levels prudently to ensure a sustainable future for our planet.
Despite significant advancements in ground-based measurements and modeling techniques,
accurately measuring water storage variation remained a major challenge for a long time. Since
2002, the Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-
On (GRACE-FO) satellites have revolutionized our understanding of the Earth’s water cycle. By
detecting variations in the Earth’s gravity field caused by changes in water distribution, these
satellites can precisely measure changes in total water storage (TWS) across the entire globe,
providing a truly comprehensive view of the world’s water resources. This information has
proved invaluable for understanding how water resources are changing over time, and for de-
veloping strategies to manage these resources sustainably. However, GRACE and GRACE-FO
are subject to various challenges that must be addressed in order to enhance the efficacy of our
exploitation of GRACE observations for scientific and practical purposes. This thesis aims to
address some of the challenges faced by GRACE and GRACE-FO.

Since the inception of the GRACE mission, scholars have commonly extracted mass changes
from observations by approximating the Earth’s gravity field utilizing mathematical functions
termed spherical harmonics. Various institutions have already processed GRACE(-FO) data,
known as level-2 data in the GRACE community, considering the constraints, approaches, and
models that have been utilized. However, this processed data necessitates post-processing to
be used for several applications, such as hydrology and climate research. In this thesis, we eval-
uate various methods of processing GRACE(-FO) level-2 data and assess the spatio-temporal
effect of the post-processing steps. Furthermore, we aim to compare the consistency between
GRACE and its successor mission, GRACE-FO, in terms of data quality and measurement accu-
racy. By analyzing and comparing the data from these two missions, we can identify any poten-
tial discrepancies or differences and establish the level of confidence in the accuracy and relia-
bility of the GRACE-FO measurements. Finally, we will compare the processed level-3 products
with the level-3 products that are presently accessible online.

The relatively short record of the GRACE measurements, compared to other satellite missions
and observational records, can limit some studies that require long-term data. This short record
makes it challenging to separate long-term signals from short-term variability and validate the
data with ground-based measurements or other satellite missions. To address this limitation,
this thesis expands the temporal coverage of GRACE(-FO) observations using global hydrolog-
ical, atmospheric, and reanalysis models. First, we assess these models in estimating the TWS
variation at a global scale. We compare the performance of various methods including data-
driven and machine learning approaches in incorporating models and reconstruct GRACE TWS
change. The results are also validated against Satellite Laser Ranging (SLR) observations over
the pre-GRACE period. This thesis develops a hindcasted GRACE, which provides a better un-
derstanding of the changes in the Earth’s water storage on a longer time scale.
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x Abstract

The GRACE satellite mission detects changes in the overall water storage in a specific region but
cannot distinguish between the different compartments of TWS, such as surface water, ground-
water, and soil moisture. Understanding these individual components is crucial for managing
water resources and addressing the effects of droughts and floods. This study aims to integrate
various data sources to improve our understanding of water storage variations at the conti-
nental to basin scale, including water fluxes, lake water level, and lake storage change data.
Additionally, the study demonstrates the importance of combining GRACE(-FO) observations
with other measurements, such as piezometric wells and rain-gauges, to understand the water
scarcity predicament in Iran and other regions facing similar challenges.

The GRACE satellite mission provides valuable insights into the Earth’s system. However, the
GRACE product has a level of uncertainty due to several error sources. While the mission has
taken measures to minimize these uncertainties, researchers need to account for them when
analyzing the data and communicate them when reporting findings. This thesis proposes
a probabilistic approach to incorporate the Total Water Storage Anomaly (TWSA) data from
GRACE(-FO). By accounting for the uncertainty in the TWSA data, this approach can provide
a more comprehensive understanding of drought conditions, which is essential for decision
makers managing water resources and responding to drought events.



Zusammenfassung

Der Wasserspeicher ist ein essentieller Bestandteil des komplexen Wasserkreislaufs, da sie die
Verfügbarkeit und Verteilung dieser wertvollen Ressource steuert. Jede Änderung des Wasser-
speichers kann eine Reihe von Konsequenzen auslösen, die nicht nur unsere Landwirtschaft,
sondern auch die Intaktheit verschiedener Ökosysteme und das Auftreten von Naturgefahren
beeinflussen. Daher ist es von entscheidender Bedeutung, die Wasserstandsmessung sorgfältig
zu überwachen und zu verwalten, um eine nachhaltige Zukunft für unseren Planeten zu sich-
erstellen. Trotz bedeutender Fortschritte bei bodenbasierten Messungen und Modellierung-
stechniken blieb die genaue Messung von Wasserstandsänderungen lange Zeit eine große
Herausforderung. Seit 2002 haben die Satelliten der Gravity Recovery and Climate Experi-
ment (GRACE) und ihr Nachfolger GRACE Follow-On (GRACE-FO) unsere Kenntnisse über den
Wasserkreislauf der Erde umgestellt. Durch die Feststellung von Variationen im Gravitations-
feld der Erde, die durch Änderungen in der Wasserverteilung verursacht werden, können diese
Satelliten Änderungen im gesamten Wasserspeicher (TWS) auf der Erde präzise messen und
damit eine umfassende Sicht auf die weltweiten Wasserressourcen bieten. Diese Informatio-
nen sind essentiell, um zu verstehen, wie sich Wasserressourcen im Laufe der Zeit verändern
und um Strategien zu entwickeln diese Ressourcen nachhaltig zu verwalten. Allerdings sind
GRACE und GRACE-FO verschiedenen Herausforderungen ausgesetzt, die angegangen wer-
den müssen, um die Nutzung von GRACE-Beobachtungen für wissenschaftliche und praktis-
che Zwecke zu verbessern. Diese Arbeit hat das Ziel, einige der Herausforderungen zu behan-
deln, die bei GRACE und GRACE-FO auftreten.

Seit Beginn der GRACE-Mission verwenden Wissenschaftler zum Herleiten der Massenän-
derungen (meist) eine Darstellung des Gravitationsfeldes mit Hilfe von so genannten Kugel-
funktionen. Verschiedene Institutionen haben bereits GRACE(-FO)-Daten, in der GRACE Com-
munity als Level-2-Daten bekannt, unter Berücksichtigung der verwendeten Einschränkun-
gen, Ansätze und Modelle verarbeitet. Diese verarbeiteten Daten erfordern jedoch eine
Nachbearbeitung, damit sie für Anwendungen, wie beispielsweise die Hydrologie und Kli-
maforschung, genutzt werden können. In dieser Arbeit bewerten wir verschiedene Methoden
zur Verarbeitung von GRACE(-FO) Level-2-Daten und untersuchen den Effekt der Nachbear-
beitung auf das räumliche und das zeitliche Verhalten der Daten. Darüber hinaus möchten
wir der Konsistenz zwischen GRACE und seiner Nachfolgemission, GRACE-FO, hinsichtlich
der Datenqualität und Messgenauigkeit vergleichen. Durch die Analyse und den Vergleich der
Daten aus diesen beiden Missionen können potenzielle Unstimmigkeiten oder Unterschiede
identifiziert sowie das Maß an Genauigkeit und Zuverlässigkeit der GRACE-FO-Messungen
festgestellt werden. Schließlich werden die neu gewonnenen Level-3-Produkte mit den Level-
3-Produkten verglichen, die derzeit online zugänglich sind.

Der im Vergleich zu anderen Satellitenmissionen und Beobachtungsreichen kurze Zeitraum
der GRACE-Messungen kann einige Studien einschränken, die langfristige Daten erfordern.
Dieser kurze Zeitraum erschwert die Trennung von langfristigen Signalen und kurzfristiger
Variabilität sowie die Validierung der Daten mit bodengestützten Messungen oder anderen
Satellitenmissionen. Um diese Einschränkung zu bewältigen, nutzt diese Arbeit globale hy-
drologische, atmosphärische und Reanalyse Modelle, um die zeitliche Abdeckung der GRACE(-
FO)-Beobachtungen zu erweitern. Zunächst bewerten wir diese Modelle in der Schätzung der
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xii Zusammenfassung

TWS-Variation im globalen Maßstab. Wir vergleichen die Leistung verschiedener Methoden,
einschließlich datengesteuerter und maschineller Lernansätze, um Modelle zu integrieren und
die Veränderungen der GRACE-TWS zu rekonstruieren. Die Ergebnisse werden auch über den
Zeitraum vor GRACE gegenüber Satelliten-Laserentfernungsmessungen validiert. Diese Arbeit
entwickelt einen rückwirkend erzeugten GRACE, die ein besseres Verständnis der Veränderun-
gen des Erdwasserspeichers auf einer längeren Zeitskala ermöglicht.

Die GRACE-Satellitenmission erfasst Veränderungen des gesamten Wasserspeichers in einer
bestimmten Region, kann jedoch nicht zwischen den verschiedenen Kompartimenten des
TWS, wie Oberflächenwasser, Grundwasser und Bodenfeuchte unterscheiden. Das Verständ-
nis dieser einzelnen Komponenten ist entscheidend für die Bewirtschaftung von Wasser-
ressourcen und die Bewältigung der Auswirkungen von Dürren und Überschwemmungen.
Diese Studie zielt darauf ab, verschiedene Datenquellen zu integrieren, um unser Verständnis
von Wasserspeichervariationen auf kontinentaler bis hin zur Beckenskala zu verbessern, ein-
schließlich Wasserflüssen, Wasserstand von Seen und Veränderungen des Seevolumens. Zusät-
zlich zeigt die Studie die Bedeutung des Zusammenhangs von GRACE(-FO)-Beobachtungen
mit anderen Messungen wie Piezometern und Niederschlagsmessern, um das Problem der
Wasserknappheit im Iran und anderen Regionen mit ähnlichen Herausforderungen zu verste-
hen.

Die GRACE-Satellitenmission bietet wertvolle Einblicke in das Erdsystem. Das GRACE-
Produkt ist jedoch aufgrund verschiedener Fehlerquellen mit einem gewissen Grad an Un-
sicherheit behaftet. Obwohl die Mission Maßnahmen ergriffen hat, um diese Unsicherheiten
zu minimieren, müssen Forscher sie berücksichtigen, wenn sie die Daten analysieren und sie
bei der Berichterstattung übermitteln. Diese Arbeit schlägt einen probabilistischen Ansatz vor,
um die Daten der Total Water Storage Anomalie (TWSA) von GRACE(-FO) in die Bewertung
von Dürregefahren zu integrieren. Durch Berücksichtigung der Unsicherheit in den TWSA-
Daten, kann dieser Ansatz ein umfassenderes Verständnis von Dürrebedingungen vermitteln,
was für Entscheidungsträger bei der Bewältigung von Wasserknappheit und Dürreereignissen
unerlässlich ist.
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1.1. Introduction

The Earth system refers to the interconnected and interrelated processes and components. It
includes the physical components of the planet, such as the land, water, and atmosphere, as
well as the biological and geological processes that shape it over time. The Earth system can
be divided into several subsystems, each of which contributes to the overall functioning of the
planet and interact to form a cohesive and interdependent system (Figure 1.1). These subsys-
tems include:

• the geosphere, which encompasses the solid Earth, including the crust, mantle, and core.
It exercises a key influence in shaping the Earth’s surface through processes such as ero-
sion and tectonics.

• the biosphere, which encompasses all living things on the planet, including plants, ani-
mals, and microorganisms, as well as the ecosystems they form. The biosphere plays a
crucial role in maintaining the overall health and well-being of the planet.

• the atmosphere, which is the layer of gases surrounding the Earth, composed primarily
of nitrogen and oxygen. It plays a vital role in regulating the Earth’s temperature, weather
patterns, and atmospheric circulation.

• the cryosphere, which includes all the frozen water on Earth, such as ice caps, glaciers,
and permafrost. It also plays a decisive part in regulating the Earth’s climate, as ice re-
flects a large amount of incoming solar radiation and thus helps to cool the planet.

• the hydrosphere, which refers to all the water on Earth, including oceans, rivers, lakes,
and groundwater. It serves a crucial function in the Earth’s climate, as water has a high
heat capacity and is able to store and transport heat.

Figure 1.1: The components of the Earth as a system. Courtesy: U.S. National Aeronautics and Space Administration
(NASA).



1.2. Water Cycle

1

3

These subsystems interact with one another in complex ways. For example, the emission of
greenhouse gases from human activities can alter the composition of the atmosphere and cause
global warming, which in turn can lead to melting of the cryosphere and rising sea levels, af-
fecting the geosphere and hydrosphere (Desonie, 2008; Kundzewicz, 2008; Rockström et al.,
2009). The Earth system also plays a critical role in regulating the planet’s climate and main-
taining the conditions necessary for life to thrive. Therefore, understanding the Earth system is
crucial for understanding how our planet works, and how human activities can impact it. One
of the most important components of the Earth system is the water cycle. Water is constantly
moving through the atmosphere, hydrosphere, cryosphere, geosphere, and biosphere, in a pro-
cess known as the water cycle. In what follows, a brief introduction of the water cycle and its
importance in regulating the Earth’s climate is presented.

1.2. Water Cycle

The hydrologic cycle, also known as the water cycle, is an ongoing movement of water in the
Earth-atmosphere system (Figure 1.3). While the overall volume of water remains constant, it is
constantly distributed through various processes such as evaporation, transpiration, sublima-
tion, condensation, precipitation, infiltration, surface runoff, and subsurface flow. The sun’s
energy heats water at the Earth’s surface, causing it to evaporate and rise into the atmosphere
as water vapor. In addition to evaporation, plants also release water vapor into the atmosphere
through transpiration. A portion of water vapor in the atmosphere also forms directly from
the phase change of ice to vapor, known as sublimation. The water vapor released through
evaporation, transpiration, and sublimation is less dense than the primary components of the
atmosphere, such as nitrogen (N2) and oxygen (O2), and is lifted upward by buoyancy. At high
altitudes, the water vapor condenses into liquid droplets due to the lower temperature and
pressure, forming clouds. These droplets may merge, growing larger, and eventually fall to the
ground as hail, rain, sleet, or snow.

The droplets that fall on the Earth’s surface can take various paths, such as infiltrating into the
soil or permeating through rock, flowing over the ground as surface runoff, falling back into
the ocean as rain, or accumulating in ice sheets, glaciers, and snowpacks. Water that infil-
trates into the soil increases its moisture, and some may even reach deep enough to recharge
aquifers, where it can be stored for long periods. This groundwater may also emerge as fresh-
water springs or flow into oceans or rivers. Some surface runoff flows into rivers and ultimately
discharges into oceans, lakes, man-made reservoirs, and wetlands. Figure 1.2 illustrates the
distribution of these processes on both impervious and natural surfaces.

Pools that store water play an essential role in the water cycle, as they act as reservoirs that hold
water until it can be released into the environment through various processes. These pools
include a variety of water bodies, such as lakes, oceans, and permafrost, as well as the moisture
present in the atmosphere. Lakes and oceans are some of the most significant water pools,
with oceans containing about 97 % of the world’s water. Permafrost, a layer of soil that remains
frozen for at least two consecutive years, also serves as a vital water storage pool. Water stored
in solid form in glaciers and snowpacks is a critical component of the water cycle, providing a
steady source of freshwater to downstream ecosystems and human populations. Moisture in
the atmosphere, in the form of water vapor, is another important pool that plays a crucial role
in the water cycle, as it forms clouds and precipitation, which ultimately replenish the Earth’s
water supply. Soil moisture and groundwater are also essential pools in the water cycle, playing
a critical role in providing water to plants and animals, as well as replenishing surface water
sources. These pools are interconnected, and the movement of water between them is critical
for the functioning of the water cycle and sustaining life on our planet.
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Figure 1.2: Relationship between impervious surfaces and natural surface. Courtesy: U.S. Environmental Protection
Agency (EPA).

Fluxes circulate water between storing sections. The water travels between the atmosphere
and the land surface via precipitation, evaporation, and transpiration. Across the Earth’s sur-
face, snowmelt, runoff, and streamflow are the main drivers the water transpiration and moves
to the ground via infiltration and groundwater recharge. Through these processes, water is
constantly moving from one storage section to another, helping to regulate the Earth’s climate
and maintain the conditions necessary for life to thrive. Without water fluxes, the water cycle
would not function, and there would be serious consequences for life on Earth.

The water cycle and climate change are closely linked. Climate change is altering the water
cycle and its components. As the Earth’s temperature increases, it causes more evaporation,
which leads to more precipitation in some regions, and less precipitation in others. The altered
water cycle can cause changes in the timing, intensity, and distribution of precipitation, which
can lead to changes in the amount of water stored in various reservoirs such as surface and sub-
surface reservoirs, glaciers, ice caps, and the ocean (Levizzani & Cattani, 2019; Wu et al., 2013;
Yang et al., 2014). These changes in water storage can have significant impacts on water re-
sources, agriculture, and ecosystems, as well as on natural hazards such as floods and droughts
(Kundzewicz, 2008; Yoon et al., 2015). Climate change also affects the amount of water vapor in
the atmosphere (Schneider et al., 2010; Voigt & Shaw, 2015), which can lead to changes in the
amount of water stored in clouds and precipitation. Additionally, changes in temperature and
precipitation can cause changes in the timing and amount of snowmelt, which can have sig-
nificant impacts on water resources, agriculture, and ecosystems (Adam et al., 2009; Qin et al.,
2020; Yang et al., 2022).

Climate change can also affect evapotranspiration, which is the combination of evaporation
and plant transpiration, which is an important component of the water cycle (Abtew et al.,
2013; Tabari & Talaee, 2014). As the temperature increases, it causes more evaporation, which
leads to more evapotranspiration, which can lead to changes in water resources, agriculture,
and ecosystems. It is worth noting that, while the water cycle is a global phenomenon, the im-
pacts of climate change on the water cycle are not uniform around the world. Climate change
can cause more extreme weather events such as heat waves, heavy precipitation, and pro-
longed droughts, which can lead to water scarcity in some regions and water excess in others.
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Figure 1.3: The water cycle diagram. Courtesy: United States Geological Survey (USGS).
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1.3. Total Water Storage

The continental Total Water Storage (TWS) is of crucial importance for the global hydrological
cycle, significantly impacting climatic variability, sea level budget, and water resource availabil-
ity for human life (e.g., Dieng et al., 2017; Jensen et al., 2019; Pellet et al., 2020; Syed et al., 2008;
Zhang et al., 2016). The Steering Committee of the Global Climate Observing System (GCOS)
has recently recognized TWS as a new Essential Climate Variable (ECV). TWS encompasses
all above and below surface water storages, including canopy water, rivers and lakes, soil mois-
ture, groundwater, snow, and ice. Soil water storage is a crucial factor in water and energy fluxes
over the land’s surface and, alongside precipitation, contributes to hydrological extremes such
as droughts and floods. Groundwater storage, or water stored in the saturated zone of soil lay-
ers, comprises a significant percentage (about 30%) of total freshwater on Earth and supports
agriculture, industry, and domestic needs. Surface water, including water in wetlands, flood-
plains, lakes, rivers, and man-made reservoirs, supports global agriculture and energy produc-
tion, particularly in wet tropics and sub-polar regions, while influencing hydro-meteorological
and biogeochemical processes (Landerer & Swenson, 2012; Zhao et al., 2021).

TWS is the total of all potential water reserves (Humphrey et al., 2023):

TWS = GW+SM+SWE+SW+LI+BW, (1.1)

where GW is the groundwater, SM is the soil moisture, SWE is the snow water equivalent, SW is
the surface water, LI is the land ice, and BW is the biomass water.

Figure 1.4: The components of the TWS. Source:www.eurekalert.org.

The water balance equation can also be used to estimate the change in TWS by calculating the
difference between inputs (precipitation, surface water inflows) and outputs (evapotranspira-
tion, surface water outflows, groundwater recharge) over a specific time period. A generalized
equation for a region (like basin or sub-basin) can be written as:

∫
specific time period

P −ET−Q d t =∆TWS (1.2)

where P is Precipitation, ET is Evapotranspiration (ET), and Q is the runoff.
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To determine the change in TWS, or ∆TWS, we must measure or estimate the different com-
ponents of the water balance equation. The precision of our estimate will rely on the quality
and accuracy of the data used in the calculations. It is important to note that the water balance
equation mentioned above is a general one, and depending on the scale and location of the
area being studied, different models may use different formulations and inputs.

1.4. Monitoring Total Water Storage

Monitoring the TWS is of paramount importance for understanding the Earth’s climate system
and its impact on water resources. Accurate and reliable monitoring of TWS is essential for wa-
ter resource management, drought and flood early warning, and prediction of future changes
in the water cycle (Pellet et al., 2020; Syed et al., 2008). Furthermore, it provides valuable infor-
mation for agriculture, industry, and domestic needs by providing insights into the availability
of freshwater resources (Landerer & Swenson, 2012; Zhao et al., 2021). Such information can
be used to improve irrigation and water management strategies, as well as to identify areas that
are at risk of water scarcity. Moreover, it facilitates a deeper comprehension of the variability
and distribution of water resources, and the correlation between surface and subsurface water
storage.

Several methods exist to accurately gauge TWS at global and regional levels:

• Ground-based measurements: This approach uses in-situ measurement of precipitation,
evapotranspiration, runoff, and groundwater storage to estimate TWS. These data can be
collected from a variety of sources, including weather stations, stream gauges, and wells.

• Hydrological models: This approach uses numerical models to simulate the water cycle
and estimate TWS. These models can be driven by both satellite-based remote sensing
data and in-situ data, and can be used to estimate TWS at both global and regional scales.

• Space-based observation: This approach uses satellite-borne sensors to measure the
gravity field of the Earth, which can be used to infer changes in TWS.

• Data assimilation: This approach combines satellite-based remote sensing data, in-situ
data, and hydrological models to estimate TWS. Such a approach allows for the integra-
tion of different types of data to improve the accuracy of TWS estimates.

In the following, a succinct overview is presented for each of the previously mentioned meth-
ods.

1.4.1. Ground-based measurements approach

The Ground-based measurements approach is a method used to estimate TWS that relies on
measurements collected from various in-situ sensors and stations. These measurements in-
clude precipitation, evapotranspiration, runoff, soil moisture, and groundwater storage. The
data can be collected from a variety of sources, including weather stations, stream gauges, and
wells. The history of this approach goes back to the early 20th century, when the first systematic
attempts to measure precipitation and streamflow were made. Since then, the network of in-
situ data collection has expanded significantly, with the installation of weather stations, stream
gauges, and other types of sensors around the world (Robock et al., 2000). With the increasing
availability of these data, the ground-based measurements approach has become an important
tool for understanding the water cycle and estimating TWS (Vorosmarty et al., 2000).

The advantage of this approach is that it provides high-resolution and accurate data, which
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can be used to estimate TWS at a local or regional scale. However, it also has some limita-
tions such as the data availability is limited by the spatial distribution of the measurements
and the sensors, and it can be affected by the measurement errors and bias. The development
of new and more advanced sensors and measurement devices has led to an increase in the ac-
curacy and resolution of in-situ data. For example, the use of automatic weather stations and
high-frequency stream gauges has improved the measurement of precipitation and stream-
flow, respectively (Al Sawaf & Kawanisi, 2019; De Vos et al., 2017; Nitu & Wong, 2010; Nsabagwa
et al., 2019). Besides, efforts have been made to standardize the measurement methods, in-
struments, and data formats, allowing for easier data sharing and comparison across different
locations and time periods.

Despite the enhancement both in terms of hardware and data management, the number of
precipitation and stream-flow gauges has decreased over the last two decades in some regions
and countries due to financial constraints, lack of maintenance and obsolescence of the equip-
ment (Strangeways, 2006; Sun et al., 2018; Tourian et al., 2013, e.g., ). Figure 1.5 show the de-
crease in the number of precipitation stations used by the Global Precipitation Climatology
Centre (GPCC) dataset since 1980s after a long-term increase from 1890. Figure 1.6 highlights
the decline of in-situ streamflow observation globally, especially after 1980s. Such a contin-
uos decrease in the gourd-based network has led to a significant challenge for the hydrological
research and the management of water resources. Moreover it affects the accuracy and relia-
bility of the data, and it may also lead to a gap in the long-term data record that is essential for
understanding the variability and change in the hydrological cycle.

Figure 1.5: The number of monthly precipitation data points in the different databases as a function of time across
the period covered by the Global Precipitation Climatology Centre (GPCC) dataset.

Figure 1.6: The number of Global Runoff Data Centre (GRDC) database stations over time together with the total
mean annual streamflow from the stations with available data. Out of the 8424 global stations, only 3323 gauging
stations remain in use following the launch of ENVISAT and GRACE, as indicated by the dashed line. Courtesy:
Tourian et al. (2013).
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1.4.2. Hydrological models

A hydrological model is a mathematical representation of the water cycle, used to estimate
TWS and other hydrological variables, such as precipitation, evapotranspiration, and runoff.
These models can be classified into different categories based on their complexity, spatial and
temporal resolution, and the data inputs required.

• Conceptual models: These models are based on simple physical or empirical relation-
ships and are used to estimate TWS at a regional or catchment scale. They are easy to use
and require only a limited amount of input data. Examples of conceptual models include
the Simple Water Balance Model (SWBM), the Budyko model (Budyko, 1974), and the Soil
Moisture Accounting model (SMAC) (Brutsaert, 1975, 2023).

• Semi-distributed models: These models divide a catchment into multiple sub-catchments
and use distributed parameters to represent the spatial variability of the hydrological
processes. They are more complex than conceptual models and require more input data,
such as land use, soil properties, and topography. Examples of semi-distributed mod-
els include the Soil and Water Assessment Tool (SWAT) and the Hydrological Simulation
Program - FORTRAN (HSPF) (Arnold et al., 2012)

• Distributed models: These models represent the spatial variability of the hydrological
processes at a high resolution, using a grid or mesh of cells. They are the most complex
and data-intensive models, requiring large amounts of input data, such as digital eleva-
tion models, land use maps, and meteorological data. Examples of distributed models
include the Catchment Land Surface Model (CLSM) and the Community Land Model
(CLM) (Dai et al., 2003)

• Stochastic models: Stochastic models are a type of hydrological models that incorporate
randomness or probability into their calculations. These models are used to simulate and
predict the occurrence of natural phenomena, such as precipitation, evaporation, and
runoff, which are inherently uncertain. Stochastic models are useful in situations where
there is a high degree of uncertainty in the input data, and they can be used to estimate
the range of possible outcomes and their likelihoods. These models can also be used
to estimate model parameters that are uncertain, such as precipitation and evaporation
rates.

In addition to these three main categories, there are also other types of hydrological models,
such as hybrid models, which combine elements of different types of models, and data-driven
models, which use statistical or machine learning techniques to estimate TWS.

Hydrological models have the advantage of providing detailed information on the water cycle,
including the distribution and variability of TWS, and can be used to make predictions of future
changes in the water cycle. Despite their ability to provide detailed information on the water
cycle, hydrological models present several limitations in accurately estimating TWS. These lim-
itations include:

• Complexity: Hydrological models can be complex, requiring a large amount of input data
and computational resources. This can make it difficult to use these models in regions
where data is scarce or of poor quality.

• Uncertainty: Hydrological models are based on a set of assumptions and parametriza-
tions, which can introduce uncertainty into the TWS estimates. The accuracy of the
model’s predictions is dependent on the quality and availability of input data, the model’s
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(a) (b)

Figure 1.7: (a) A modified version of the schematic structure of a General Circulation Model, as outlined by Vargas
Godoy et al. (2021). (b) A diagram that illustrates the Budyko bucket model, which was developed by Manabe (1969).
It depicts a single layer of soil that acts as a reservoir with a maximum capacity of 15 cm for field water. The rate of
evaporation from the soil is directly proportional to the amount of water remaining in the reservoir.

structure and parametrization, and the skill of the modeler (Sherwood et al., 2020).

• Lack of flexibility: Hydrological models are designed to simulate specific hydrological
processes and may not be able to account for changes in the water cycle due to climate
change or human activities.

• Lack of validation: Many hydrological models are not validated against independent
data, making it difficult to assess their accuracy and reliability.

• Data requirements: Hydrological models require a large amount of input data, includ-
ing meteorological, land use, and topographical data, which can be difficult to obtain in
some regions.

1.4.3. Space-based TWS change observation

Satellites are widely used to measure various water fluxes such as precipitation, evapotranspi-
ration, and runoff, which are important components of the water cycle. These measurements
can be used to estimate the water balance, which is the balance of water inflows and outflows
on a global scale. The earliest attempts to estimate the water cycle using satellites were fo-
cused on measuring precipitation. In the 1970s, the first geostationary weather satellites, such
as the U.S. National Oceanic and Atmospheric Administration’s (NOAA) Television Infrared Ob-
servation Satellite (TIROS), were launched (Schwalb, 1978). These satellites provided measure-
ments of cloud cover and precipitation, which were used to estimate precipitation rates. In the
following decades, new satellite missions were launched that improved the accuracy of precip-
itation estimates. For example, the launch of the NASA’s Tropical Rainfall Measuring Mission
(TRMM) in 1997 (Simpson et al., 1988), provided measurements of precipitation over the trop-
ics and subtropics, which are regions that are particularly challenging to measure precipitation
(e.g., AghaKouchak et al., 2009; Maggioni et al., 2016). In the early 2000s, the Global Precipi-
tation Measurement (GPM) mission was developed as a joint mission by NASA and the Japan
Aerospace Exploration Agency (JAXA), to provide global coverage of precipitation (Skofronick-
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Jackson et al., 2017; Tapiador et al., 2012) (Figure 1.8). The GPM mission provided more accu-
rate measurements of precipitation, by combining data from multiple instruments and satel-
lites.

Figure 1.8: GPM (Global Precipitation Measurement) Mission constellation satellites. Source: NASA.

In the 1980s and 1990s, the focus of estimating water balance fluxes shifted to measuring evap-
oration. The earliest attempts to estimate evapotranspiration from satellite observations fo-
cused on using measurements of surface temperature and vegetation cover. For example, the
Normalized Difference Vegetation Index (NDVI) was developed, which uses measurements of
visible and infrared radiation to estimate vegetation cover (Myneni et al., 1995; Running, 1990).
NDVI values are then related to evapotranspiration through empirical relationships (e.g., Ne-
mani & Running, 1989; Rossato et al., 2005). However, these early methods had limited ac-
curacy and were affected by various sources of error. In the late 1990s, new satellite missions
were launched that provided measurements of surface wind speed and direction, which im-
proved the accuracy of evapotranspiration estimates. For example, the National Aeronautics
and Space Administration’s (NASA) Scatterometer (NSCAT) was launched in 1996, and the Eu-
ropean Space Agency’s (ESA) Advanced Scatterometer (ASCAT) in 1999. These missions pro-
vided measurements of surface wind speed and direction, which can be used to estimate evap-
oration rates through incorporating the satellite data in the land surface models (Evans, 1993;
Yagci & Yilmaz, 2021).

Since then, new satellite missions have been launched that have improved the ability to es-
timate evapotranspiration. For example, the European Space Agency’s Sentinel-1, Sentinel-2
and Sentinel-3 missions provide information on vegetation cover, soil moisture, temperature,
and surface wind speed and direction, which can be used to estimate evapotranspiration (e.g.,
Guzinski et al., 2020; Vanino et al., 2018). NASA’s Soil Moisture Active Passive (SMAP) mission,
provide measurements of soil moisture, which is important for understanding evapotranspira-
tion (e.g., Purdy et al., 2018; Walker et al., 2019). Empirical or theoretical models, such as the
Penman-Monteith method (PM) (Monteith, 1965) and the Surface Energy Balance Algorithm
for Land (SEBAL) (Bastiaanssen, Menenti, et al., 1998; Bastiaanssen, Pelgrum, et al., 1998),
have been developed to convert satellite imageries observations into ET estimates. In recent
years, the use of remote sensing data and machine learning techniques has been developed
to estimate evapotranspiration, this method combines multi-sensor data, such as NDVI, Land
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Surface Temperature (LST), and surface wind speed, as well as meteorological data to estimate
evapotranspiration (e.g., Chia et al., 2020; Dou & Yang, 2018; Granata, 2019). The use of satel-
lite imagery provides a cost-effective and efficient means of estimating ET over large areas, as
it eliminates the need for ground-based measurements, which are both time-consuming and
labor-intensive.

Figure 1.9: The Sentinel missions. Source: the European Space Agency (ESA).

The last term of the water balance fluxes that became observable by satellite is the runoff. The
history of using satellite observations for estimating runoff, which is the amount of water that
flows over land and into rivers, lakes and oceans, is relatively recent. The earliest attempts to
estimate runoff from satellite observations focused on using measurements of surface water
bodies, such as lakes and rivers. For example, the European Space Agency’s (ESA) ERS-1 and
ERS-2 satellites, launched in 1991 and 1995, respectively, provided measurements of surface
water bodies, which were used to estimate the storage of water in these surface reservoirs (e.g.,
Nagler & Rott, 1997; Nagler et al., 2000). However, the spatial resolution of these early mea-
surements was relatively low, and the estimates of runoff were affected by various sources of
error. In the early 2000s, new satellite missions were launched that provided measurements of
surface water bodies, such as the European Space Agency’s Sentinel-1 and Sentinel-2, which
improved the accuracy of runoff estimates (Brombacher et al., 2020; Tarpanelli et al., 2022).
These missions provide high-resolution Synthetic Aperture Radar (SAR) images, which can be
used to estimate the storage of water in these surface reservoirs.

In recent years, new satellite missions have been launched that have improved the ability to
estimate runoff. For example, the Sentinel-6 Michael Freilich satellite, launched in November
2020. This satellite is part of the European Space Agency’s Copernicus program and is a col-
laboration between ESA, NASA, European Organisation for the Exploitation of Meteorological
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Satellites (EUMETSAT), and the the French space agency i.e., Centre National d’Etudes Spa-
tiales (CNES). Although the main mission of Sentinel-6 is to measure the height of the ocean
surface with high accuracy and precision, it will also be able to measure the height of river and
lake surfaces, providing data on the water level changes, which can be used to estimate the
runoff from these sources as well. Last but not least is the NASA’s Surface Water and Ocean To-
pography (SWOT) mission, was launched on November 21, 2021, which will provide measure-
ments of surface water bodies, including oceans, lakes, and rivers, to estimate the storage of
water in these surface reservoirs and the amount of water that is discharged as runoff (Tourian
et al., 2021).

Figure 1.10: The SWOT (Surface Water Ocean Topography) measurement concept. Source: NASA, CNES

Other than the attempts to estimate the water balance fluxes using spaceborne observations,
several methods have been developed to quantify the TWS state variables such as surface water
storage or soil moisture:

• Measuring surface water bodies: Satellites such as Sentinel-1 and Sentinel-2, Landsat,
Moderate Resolution Imaging Spectroradiometer (MODIS), and SWOT mission, provide
measurements of surface water bodies, such as lakes and rivers. These measurements
can be used to estimate the storage of water in these surface reservoirs (e.g., Duan &
Bastiaanssen, 2013; Papa & Frappart, 2021; Tortini et al., 2020).

• Measuring the water level: Satellites altimetry missions such as ENVISAT, Sentinel-3A,
Sentinel-3B, and CryoSat-2 provide measurements of the water level for the inland water
bodies, which can be used to estimate total water storage over rivers and lakes (e.g., Ni
et al., 2017; Song et al., 2013; Zhang et al., 2006).

• Measuring ice elevation: Satellites such as NASA’s Ice, Cloud, and Land Elevation Satel-
lite (ICESat-2) can be used to measure the elevation of ice sheets, glaciers, and ice caps.
These measurements can be used to estimate the amount of water stored in these ice
reservoirs (e.g., Fricker et al., 2021; Kwok et al., 2019; Markus et al., 2017).
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• Measuring soil moisture: Satellites such as NASA’s Soil Moisture Active Passive (SMAP)
mission, provide measurements of the amount of water in the top few centimeters of soil
(e.g., Chan et al., 2016; Entekhabi et al., 2010; Zhang & Zhou, 2016).

The above-mentioned spaceborn measurements, either estimating the TWS state components
such as soil moisture or the water balance fluxes would not deliver a holistic view of the TWS
change. One other approach that can solve this problem would be the estimation of the tem-
poral gravity field which can be then inferred as the TWS change. The static gravity field which
refers to the Earth’s gravity field as it exists at a given point in time, without taking into account
any changes that may occur over time. However, the temporal gravity field refers to the varia-
tions in the Earth’s gravity field that occur over time, due to changes in the distribution of mass
on the Earth’s surface. These changes in mass distribution can be caused by various factors,
such as changes in the amount of water stored in surface and subsurface reservoirs, changes in
the amount of ice stored in glaciers and ice sheets, and changes in the amount of water stored
in the oceans. The temporal gravity field is typically measured using satellite gravimetry, which
is the measurement of the Earth’s gravity field from space, and it allows monitoring changes in
TWS over time.

The use of the Earth’s gravity field for estimating TWS dates back to the early 20th century,
when scientists first began to use gravity measurements to study the Earth’s crust and subsur-
face. However, it wasn’t until the advent of satellite technology in the late 20th century that the
use of the Earth’s gravity field for estimating TWS became possible. The CHAllenging Minisatel-
lite Payload (CHAMP), launched in 2000 by the German Aerospace Center, was the first satellite
mission to provide precise measurements of the Earth’s magnetic and gravity field. CHAMP’s
measurements were used to study the Earth’s magnetic field and its interaction with the so-
lar wind, as well as the gravity field’s variations due to the Earth’s internal structure and mass
redistribution in the atmosphere and oceans. The Gravity field and steady-state Ocean Circu-
lation Explorer (GOCE),launched in 2009 by the European Space Agency, provided the highest
accuracy and spatial resolution gravity field measurements to date. It was designed to measure
the gravity field signals from Earth’s crust and mantle, ocean circulation, and ice mass changes.
GOCE’s data was crucial in understanding the Earth’s geoid and improving our knowledge of
the planet’s interior structure.

The Gravity Recovery and Climate Experiment (GRACE), which was a joint mission between
NASA and the German Aerospace Center (DLR) launched in 2002. GRACE provided measure-
ments of the Earth’s gravity field, which were used to estimate changes in TWS, mainly in sur-
face and subsurface reservoirs such as groundwater, lakes, and rivers. The successor of the
GRACE mission, GRACE Follow-On, was launched in 2018. While GOCE and CHAMP have con-
tributed significantly to our understanding of the Earth’s gravity field, they differ from GRACE
and its follow-on mission, GRACE Follow-On (GRACE-FO), in several ways. GOCE was primar-
ily designed to measure the static part of the gravity field, while GRACE and GRACE-FO were
designed to measure the time-varying part of the gravity field due to mass redistributions. Simi-
larly, CHAMP was not specifically designed to measure the time-varying part of the gravity field
related to TWS changes.

The use of the Earth’s gravity field for estimating TWS has become an essential tool for moni-
toring and understanding TWS changes and its variability. The method has been used to esti-
mate TWS changes in various regions of the world, such as the Amazon Basin, the Arctic, the
Himalayas, and the major rivers basins in the world. It has also been used to estimate TWS
changes due to climate change, such as the melting of glaciers and ice sheets, and changes in
groundwater storage. Other than the GRACE satellite, no other satellite provides a holistic view
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of TWS change. Other satellite missions, such as those that measure surface water bodies, sea
surface height, ice elevation, soil moisture, and salinity, use different measurement principles
to estimate TWS. These measurements are sensitive to specific components of the water cycle
such as surface water, soil moisture, ocean water and ice. Moreover, subsurface water storage
such as groundwater and deep soil moisture is a crucial component of the TWS. The satellites
other GRACE fail to observe it and it is challenging to estimate it through other means than
satellite gravimetry.

Figure 1.11: Comparison of the spatio-temporal resolution of the satellite gravimetry missions including GOCE,
CHAMP, and GRACE(-FO). The region of interest for geodesy and hydrology is shown with the background colors.
Courtesy: Mohammad J. Tourian.
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1.5. Motivation and Objectives

GRACE and GRACE-FO provide unique insights into the Earth system and have been used for
various applications:

• Understanding the water cycle: TWS is an essential component of the water cycle, and
GRACE provides a unique way to measure changes in TWS over time and across the globe.
GRACE data has been used to estimate TWS changes in different regions of the world and
is shown that such a variation can be attributed to both natural and human-induced fac-
tors such as climate variability and human activities such as irrigation and dam building
(e.g., Forootan et al., 2014; Hosseini-Moghari et al., 2020; Joodaki et al., 2014; Rodell et
al., 2018; Tourian et al., 2015; Voss et al., 2013). Understanding these changes can pro-
vide important information for comprehending the water cycle and its variability, which
is crucial for water resource management and climate change studies.

• Groundwater monitoring: GRACE is particularly useful for monitoring changes in sub-
surface water storage, such as groundwater (e.g., Chen et al., 2016; Richey et al., 2015;
Thomas & Famiglietti, 2019; Thomas et al., 2017). For example, Scanlon et al. (2012) used
GRACE data to estimate changes in groundwater storage in the United States and found
that groundwater depletion is a significant problem in the western and southern parts
of the country. Similarly, (Rodell et al., 2009) found similar signature of the groundwa-
ter depletion in GRACE signal over India. Groundwater is an important source of water
for many regions of the world, and changes in groundwater storage can have significant
impacts on water resources, agriculture, and ecosystems.

• Climate change studies: GRACE can also be used to measure changes in TWS due to cli-
mate change, such as the melting of glaciers and ice sheets, and changes in soil moisture
(Tapley et al., 2019). The first direct measurement of ice mass change was made possible
by GRACE, including clear signal of ice mass loss in Greenland and Antarctica (Velicogna
& Wahr, 2005, 2006). Besides, GRACE allowed for a direct correlation to be made between
inter-annual fluctuations in ice sheet mass and global variability in atmospheric circula-
tion patterns, in addition to long-term trends (Hanna et al., 2014). Moreover, GRACE is
regularly employed in conjunction with ocean hydrographic profiles from Argo to inves-
tigate the worldwide sea-level budget, which improves our comprehension of how con-
tributions are shifting with time (Wouters, van de Wal, et al., 2018). Understanding these
changes can provide important information for understanding the impacts of climate
change on water resources and ecosystems.

• Natural hazards monitoring: GRACE data can provide valuable information for under-
standing the dynamics of natural hazards and for improving hazard assessments and
risk management. GRACE data have been used to study volcanic activity and coastal
land subsidence. Moreover, studies have shown that GRACE data can be used to detect
changes in surface deformation caused by earthquakes (Chen et al., 2007; Wang et al.,
2012), volcanic eruptions (Li et al., 2023), and ground water withdrawal (Castellazzi et
al., 2016; Liu et al., 2014; Zheng et al., 2018). GRACE data is vital for monitoring and man-
aging droughts and floods, enabling scientists to pinpoint areas at risk of water stress
and track changes in water availability, vital for effective water allocation. The compre-
hensive datasets provided by GRACE allow policymakers to make informed decisions on
water policy and management, reducing the negative impacts of natural disasters such
as droughts and floods.
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Despite its invaluable impacts, GRACE(-FO) faces a number of challenges that must be ad-
dressed in order to maintain the accuracy and reliability of its measurements. This thesis is
motivated to address some of these challenges, including:

The GRACE(-FO) post-processing approaches and consistency evaluation

Since the early days of the GRACE mission, researchers have commonly extracted mass changes
from observations by approximating the Earth’s gravity field using mathematical functions called
spherical harmonics. Considering the constraints, approaches, and models that have been
used, several institutes have already developed their own processed GRACE(-FO) data. This
processed data, known as level-2 data in the GRACE community, requires post-processing to
be used for various applications, including hydrology and climate research (Swenson & Wahr,
2006). For example, the GRACE Level-2 solutions contain a significant amount of noise and
errors, which can reduce the accuracy of gravity field estimates (Devaraju, 2015). To address
this issue, various filters have been developed and can be applied during the post-processing
stage (e.g., Jekeli, 1981; Klees et al., 2008; Kusche et al., 2009; Yi & Sneeuw, 2022). The choice
of filter can depend on the specific application and the noise characteristics in the data (De-
varaju & Sneeuw, 2017). Consequently, post-processed data, or so-called level-3 products, of
the GRACE(-FO) mission are not unique and depend on the post-processing steps chosen.

In this thesis, we evaluate different methods of processing GRACE(-FO) level-2 data and assess
the spatio-temporal effect of the post-processing steps. In addition, we aim to compare the
consistency between GRACE and its successor mission, GRACE-FO, in terms of the data quality
and measurement accuracy. By analyzing and comparing the data from these two missions,
we can identify any potential discrepancies or differences and establish the level of confidence
in the accuracy and reliability of the GRACE-FO measurements. Furthermore, the processed
level-3 products will be compared to the level-3 products that are currently accessible online.

Expanding the short record of GRACE(-FO) observations

The GRACE mission, launched in 2002, was designed to last for 5 years, but it was extended
multiple times and it operated until October 2017. However, even with the multiple extensions,
the record of GRACE measurements is relatively short compared to other satellite missions and
observational records. This short record can be a limitation for some studies that require long-
term data, such as studying long-term trends in sea level rise, ice sheet mass loss, or groundwa-
ter depletion (e.g., Reager & Famiglietti, 2009; Scanlon et al., 2015; Tapley et al., 2019; Thomas
et al., 2014). The short record also makes it more difficult to separate the long-term signals from
the short-term variability, which can affect the accuracy of the gravity field solutions (Eicker et
al., 2016). Additionally, the short record can make it more challenging to compare the GRACE
data with other observational records, such as ground-based measurements or other satellite
missions, which can limit the ability of researchers to validate the GRACE data and gain a more
complete understanding of the Earth’s gravity field.

This thesis endeavors to address the limited temporal scope of GRACE observations by lever-
aging the capabilities of global hydrological, atmospheric, and reanalysis models. To attain this
objective we employ various methods and compare our results with the ensemble mean and
ensemble weighted mean of the datasets, which serves as the naive method. Additionally, we
evaluate the performance of the methods against Satellite Laser Ranging (SLR) observations.
The hindcasted GRACE, GRACEH, not only expands the temporal coverage of GRACE(-FO) ob-
servations but also provides a better understanding of the changes in the Earth’s water storage
on a longer time scale.
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GRACE’s limitations and opportunities in differentiating water storage components

The GRACE satellite mission can only detect changes in the overall water storage (TWS) in a
specific region and is unable to differentiate between variations in different compartments of
TWS, such as variations in surface water, groundwater, or soil moisture (Rodell et al., 2009;
Wada et al., 2013; Yeh et al., 2006). For instance, when a region undergoes an increase in total
water storage, it could be a result of an increase in surface water, groundwater, or soil mois-
ture. Without supplementary data or measurements, it is impossible to determine which com-
ponent of water storage is changing. This poses a significant constraint when attempting to
comprehend the movement of water throughout the Earth’s system, as variations in different
compartments of water storage can have distinct impacts on water resources and the environ-
ment. For example, an increase in surface water could indicate a flood event, while an increase
in groundwater could signify a sustainable increase in water resources. Understanding the in-
dividual components of water storage is crucial for managing water resources and addressing
the effects of droughts and floods (Landerer & Swenson, 2012; Reichle & Koster, 2005; Sheffield
et al., 2012).

The other objective of this thesis is to build upon the near two-decade record of TWS change
observations from GRACE, with the aim of improving our understanding of water storage vari-
ations at the continental to basin scale. To achieve this objective, we integrate a myriad of wa-
ter fluxes, lake water level, and lake storage change data and measurements. Additionally, we
demonstrate how the integration of GRACE(-FO) observations in conjunction with peizometric
wells and rain-gauges measurements, prove instrumental in comprehending the water scarcity
predicament in Iran. This case study highlights the alarming negative trends in the Middle
East region and serves as a prime example of how scrutinizing GRACE(-FO) observations can
furnish vital insights for managing water resources in regions facing similar challenges.

Accounting GRACE(-FO)’s uncertainty in drought characterization

The GRACE satellite mission, like any other scientific measurement, has its own level of un-
certainty. While the mission has been successful in providing valuable insights into the Earth’s
system, the accuracy and precision of the data obtained by GRACE are not perfect. There are
several sources of uncertainty associated with the GRACE data, including measurement error,
instrument noise, and uncertainties in the models and algorithms used to process the data
(Tapley et al., 2004; Tapley et al., 2019; Wahr et al., 1998). The GRACE mission has taken vari-
ous measures to minimize these uncertainties, such as calibrating the instruments and using
multiple models to process the data (Devaraju, 2015; Tourian, 2013). However, it is still im-
portant for researchers to account for these uncertainties when analyzing the GRACE data, as
they can affect the accuracy and reliability of the results. It is also essential to communicate the
uncertainty associated with the GRACE data when reporting findings based on the mission’s
observations.

This thesis aims to address the uncertainty that exists in the GRACE(-FO) TWSA data, and pro-
poses a probabilistic approach to utilize this data in characterizing storage-based drought.
Traditional drought indices such as the Standardized Precipitation Index (SPI) or the Palmer
Drought Severity Index (PDSI) do not take into account the availability of water in storage, and
may lead to an incomplete understanding of drought conditions. By incorporating the TWSA
data and accounting for its uncertainty, the proposed approach can provide a more compre-
hensive and informative assessment of drought risk. This will be particularly beneficial for
decision makers who rely on accurate and timely information for managing water resources
and responding to drought events.
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1.6. Outline of the thesis

In line with the aforementioned motivations and objectives, the following outline has been
devised:

• Chapter 2 provides an overview of the GRACE and GRACE-FO missions, including an
introduction to the different levels of GRACE(-FO) data. The post-processing of GRACE
level-2 products is then explained step-by-step, with an assessment of the spatio-temporal
analysis of the consequences of different choices in the post-processing steps on the final
result at a global scale. Additionally, the chapter examines the coherence and consistency
of the accuracy between GRACE and its successor GRACE-FO. Finally, the result from the
post-processing scheme offered in this study is compared to the level-3 products that are
already available publicly, providing valuable insights into the performance of the pro-
posed scheme.

• Chapter 3 aims to extend the relatively short record of GRACE observations back to 1980.
The chapter highlights the potential pitfalls of relying solely on GRACE(-FO) observations
for climate-related assessments and hydrological extreme characterizations. To over-
come these limitations, a range of global models are presented, followed by an analysis of
their strengths and weaknesses. Different hindcasting methods, including the Gaussian
Process Regression (GPR), are then introduced and their results are compared to assess
over selected basins and globally.

• Chapter 4 analyzes TWS variation from 2003 to 2021, examining TWS variations and
separating them into their components, namely precipitation, evapotranspiration, and
runoff across major river basins and sub-continents. Additionally, further investigations
are conducted into the water storage variation in Iran, utilizing auxiliary data such as
precipitation gauges and piezometric groundwater wells to augment our understanding
of the data.

• Chapter 5 provides an introduction on drought in general and proposes a probabilis-
tic approach to utilize GRACE(-FO) TWSA data in characterizing storage-based drought,
which can provide a more comprehensive assessment of drought risk for decision mak-
ers. The aim is to contribute to the development of more effective monitoring and risk
management strategies for water resources.

• Chapter 6 succinctly encapsulates the accomplishments of this thesis, draws insightful
conclusions, and sheds light on future prospects.
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2.1. GRACE(-FO) Satellite Mission

The Gravity Recovery and Climate Experiment (GRACE) was a joint mission of the National
Aeronautics and Space Administration (NASA) and the German Aerospace Center (DLR) (Tap-
ley et al., 2004a) (Figure 2.1(a)). On March 17th, 2002, the twin satellites were launched on a
Rockot launch vehicle from the Eurockot’s launch facility at the Plesetsk cosmodrome in Rus-
sia. GRACE consisted of two identical spacecrafts in tandem named GRACE-A and GRACE-B, or
Tom and Jerry, flying 220 km apart from each other (Nelson, 2017; Wahr et al., 1998). The trail-
ing satellite passes over a specific region approximately 28 s after the leading satellite. GRACE
satellites fly in a co-planar, nearly polar orbit (89 ° inclination) to ensure near-global coverage
of the Earth (Kirschner et al., 2001; Visser, 2005). The mission was designed in low orbit to in-
crease the spatial resolution of the final gravity field anomalies up to a few hundred kilometers
(Ray & Luthcke, 2006; Schrama & Visser, 2007). Due to atmospheric drag, the initial altitude
of 500 km decreased to 330 km by mid-2017. One revolution took about 94 minutes which re-
sulted in 15.5 revolutions per day. The Earth’s dense spatial coverage can be achieved after
one month of continuous observation (Figure 2.2). The complete orbital configuration can be
found at http://www.csr.utexas.edu/grace/.

The GRACE-FO (GRACE Follow-On) mission, launched on 22 May 2018, is a continuation of
the original GRACE mission. The satellite mission launched aboard a SpaceX Falcon 9 rocket
from Vandenberg AFB, California. GRACE-FO builds on the success of the original GRACE mis-
sion by using more advanced technologies like the Laser-Ranging Interferometers (LRI) and
is designed to continue providing high-precision measurements of Earth’s gravity field (Fig-
ure 2.1(b)). The interferometers use a laser beam, which is split into two paths and then recom-
bined, to measure the distance between the two satellites to within a fraction of a micrometer.
This allows for much more precise measurements of the distance between the satellites, and
therefore more accurate measurements of changes in the Earth’s gravity field. Additionally, the
laser ranging system operates at a much higher frequency than the microwave system, which
results in a reduction of signal noise and a more stable measurement. Therefore, GRACE-FO’s
measurements are expected to be at least as accurate as those of the original GRACE mission.
Additionally, the satellites feature a new set of navigation and attitude determination instru-
ments, such as a Global Positioning System (GPS) receiver and a fiber-optic gyroscope. GRACE-
FO has a design life of 5 years.

(a) (b)

Figure 2.1: (a) Illustration of the twin GRACE satellites (credit: NASA); (b) The GRACE-FO satellites. The inter-
satellite range is measured using lasers instead of microwaves (credit: Max-Planck institute for gravitational physics)

http://www.csr.utexas.edu/grace/
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Figure 2.2: The path that the GRACE satellite mission follows is shown in three different time periods: one day (left
panel), one week (middle panel), and one month (right panel). (credit: Szabó and Marjańska, 2020)

GRACE satellites were equipped with the following instruments (Figure 2.3) (for more details,
see https://earth.esa.int/eogateway/missions/grace) :

• K-band Ranging System (KBR): provides precise (within 10 µm) measurements of the
distance change between the two satellites needed to estimate fluctuations in gravity.

• Ultra Stable Oscillator (USO): provides a stable frequency generation for the K-band
ranging system.

• SuperSTAR Accelerometers (ACC): precisely measures the non-gravitational accelera-
tions acting on the satellites.

• Star Camera Assembly (SCA): precisely determines the two satellite’s orientation by track-
ing them relative to the position of the stars.

• Coarse Earth Sun Sensor (CES): provides omnidirectional, reliable, and robust, but fairly
coarse, Earth and Sun tracking. Used during initial acquisition and whenever GRACE
operates in safe mode.

• Center of Mass Trim Assembly (MTA): precisely measures the offset between the satel-
lite’s centre of mass and the ACC proof-mass and adjusts center of mass as needed during
the flight.

• BlackJack GPS Receiver and Instrument Processing Unit (GPS): provides digital signal
processing; measures the distance change relative to the GPS satellite constellation.

In an idealized case (i.e., no atmospheric drag, no solar radiation pressure, etc.), the change in
distance between two co-orbiting satellites is essentially proportional to the difference in the
Earth’s gravitational potential at the respective locations (Wolff, 1969). Variations in gravity exist
due to mass changes in the hydrosphere, atmosphere, biosphere, oceans, and mass variations
inside the Earth. Initially, the GRACE mission was designed for a 5-year lifespan (Tapley et
al., 2004b). Since 2011, battery issues have led to missing solutions approximately every six
months. GRACE was operational until June 2017, providing 15 years of records. GRACE-FO
now carries on the observation strategy of the GRACE mission while testing a new laser ranging
system, which is more precise than the K-band instrument (Sheard et al., 2012; Tapley et al.,
2019).

https://earth.esa.int/eogateway/missions/grace
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(b)(a)

Figure 2.3: (a) Interior view of the GRACE instruments (Credit: NASA). (b) The twin GRACE satellites (Credit: As-
trium).

2.1.1. Measurement Principle

The GRACE measurement principle is based on three fundamental techniques: precise orbit
determination, inter-satellite ranging, and accelerometry. The GRACE orbit tracking primarily
uses the Global Positioning System (GPS). Additionally, the orbit is tracked from the ground
stations using the Satellite Laser Ranging (SLR) observation technique. For these purposes, a
laser retro-reflector is mounted on the nadir panel of each satellite. The SLR observations are
then used for validation of the GPS-based orbits. The precise orbit determination is performed
on the ground by applying the so-called kinematic, dynamic, or reduced dynamic approach
(Jäggi et al., 2007; Kang et al., 2006).

It is not only the gravitational attraction of the Earth but also the gravitational attraction of
the Sun, the Moon, and other celestial bodies, which perturb the satellite’s orbit. All these
forces have to be precisely modeled and removed from the observations. Along with the grav-
itational forces, non-gravitational forces such as air drag, solar radiation pressure, and Earth
albedo act on the satellite vehicle. Each satellite was equipped with two simultaneously op-
erating star cameras, which provided orientation towards the stars i.e., external orientation in
an inertial frame. Knowing the location (GPS) can then turn this information into an Earth-
fixed or Satellite-fixed orientation. In order to obtain the orbit perturbations caused solely by
the gravitational attraction of the Earth’s mass, these non-gravitational forces are sensed by
ultra-sensitive accelerometers located at the center of mass of each satellite and subsequently
reduced from the original observations as well. The key instrument of the GRACE satellites was
a dual one-way KBR system, which measured the inter-satellite range and its time derivative.
After processing, biased ranges, range rates, and range accelerations are available at 5-second
sampling.

2.2. Data Pre-Processing

Before the onboard data is used for gravity field investigations, several correction and filtering
steps are required. Generally, the following background models are considered (e.g., Dahle et
al., 2013; Watkins & Yuan, 2012):

• N-Body Perturbations: the satellites’ orbits are influenced by gravitational forces from
third bodies, i.e., the sun, the moon, and the planets. These direct and indirect accel-
erations acting on the GRACE satellites are computed from planetary ephemerides and
eventually removed from the observations (Agnew, 2010).
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• Solid Earth Tides: tidal forces induce deformations of the solid Earth, which can be mod-
eled using Love numbers (Wahr et al., 1998). Subsequently, the influence on the Earth’s
gravitational potential is computed.

• Ocean Tides: oceanic mass variations due to tidal forces are considered by combining
models of the different tidal constituents.

• Pole Tides: changes in the Earth’s rotation result in centrifugal force changes. The influ-
ence on the gravitational potential is computed from the polar motion and (i) an Earth
model for the contribution of the solid Earth and (ii) an equilibrium model for the oceanic
contribution (Desai, 2002).

• De-aliasing: high-frequency (< 30 days) non-tidal variations of atmosphere and ocean
are modeled and removed using the Atmosphere and Ocean De-aliasing Level- 1B (AOD1B)
products (Dobslaw et al., 2017; Flechtner et al., 2014). By this means, the aliasing of high
frequencies into monthly gravity field solutions is reduced. It should be mentioned that
errors in this model can introduce biases to estimates of mass change from GRACE(-FO).
AOD1B Product is subject to several sources of error that can affect its accuracy and relia-
bility. Such errors including error in the modeling of the atmosphere and ocean dynamics
and errors in the estimation of the AOD1B coefficients can become aliased in the GRACE
solutions, meaning that they can appear as signals in the estimated changes in the Earth’s
gravity field.

• Non-gravitational Forces: non-gravitational accelerations, i.e., atmospheric drag and ra-
diation pressure from Sun and Earth, were measured by the satellites’ accelerometers.
A few-parameter model relating linear acceleration observations to non-gravitational
forces is set up. During gravity field estimation, biases and scale factors of the accelerom-
eter measurements are co-estimated.

• Relativistic Correction: instead of a fully consistent relativistic formulation of the equa-
tion of motion, general relativistic corrections are applied as described in Chapter 10 of
the International Earth Rotation and Reference Systems (IERS) 2010 conventions (Petit &
Luzum, 2010).

2.3. Data levels

The GRACE(-FO) raw telemetry data called Level-0 is processed by the Science Data System
(SDS) and stored in binary encoded measurements. At the next level, the binary data is trans-
formed into engineering units through editing, quality control, and sensor calibration to yield
Level-1A data. The Level-1B data will then be derived from the Level-1A data after being
down-sampled, time-tagged, and filtered. The Level-1A and Level-1B data are generated by
two of the SDS centers, namely the German Research Center for Geoscience (GFZ) and the Jet
Propulsion Laboratory (JPL). The GRACE(-FO) Level-2 products, which hold the monthly and
static gravity field models in terms of Spherical Harmonics (SHs) coefficients, are computed
from various gravity field solutions. Three official centers calculate temporal global gravity
field models using the classical variation approach (or dynamic approach) and provide SHs
solutions, namely the University of Texas Centre for Space Research (CSR), GFZ, and JPL. Be-
sides the official centers, several other centers have obtained their own solutions using dif-
ferent approaches and background models. Table 2.1 lists the solutions, including their time
span and maximum degree/order. Temporal gravity field models developed by different insti-
tutions and agencies can be downloaded from the International Center for Global Earth Mod-
els (ICGEM) http://icgem.gfz-potsdam.de/series (last access: 1 June 2022). Please note that

http://icgem.gfz-potsdam.de/series
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the COST-G product is a combination of AIUB-RL02, GFZ-RL06, GRGS-RL04 (unconstrained
solution), ITSG-GRACE2018, and CSR-RL06.

GRACE(-FO) Level-3 products, i.e., gridded geopotential functionals (e.g. water equivalent
mass change), can be generated from the Level-2 solutions. To this end, additional steps known
as post-processing must be conducted. These steps are later introduced in the section 2.4.
Within the past several years, an alternative approach for processing GRACE level-1 has been
proposed, which considers parameterizing the gravitational field with regional mass concen-
tration functions (mascons) (watkins2015mascon). Three mascons solutions (RL06) are cur-
rently available: the CSR mascon solutions (Save, 2020; Save et al., 2016), the NASA Goddard
Space Flight Center (GSFC) (Rowlands et al., 2010; Watkins et al., 2015) that are calculated
through expansion of spherical harmonics and the JPL mascon solution which is acquired from
analytical partial derivatives (Wiese et al., 2016).

Table 2.1: List of GRACE(-FO) Level-2 solutions.

Center Solution(s) max d/o time span (GRACE) Approach

Solutions that include GRACE and GRACE-FO

CSR CSR RL06 60, 96 200204–201706 dynamic
CSR RL06 (GFO) 60, 96 201806–present

GFZ GFZ RL06 60, 97 200204–201706 dynamic
CSR RL06 (GFO) 60, 96 201806–present

JPL JPL RL06 60, 98 200204–201706 dynamic
CSR RL06 (GFO) 60, 96 201806–present

ITSG ITSG-Grace2018 60, 96, 120 200204–201706 dynamic
ITSG-Grace_op 60, 96, 120 201806–present

LUH LUH-Grace2018 80* 200301–201603 dynamic
LUH-GRACE-FO-2020 80* 201806–present

COST-G∗∗ Grace 90 200204–201706 celestial mechanics
Grace-FO 90 201806–present

AIUB AIUB-RL02 90* 200302–201403 celestial mechanics
AIUB-GRACE-FO_op 90* 201806–present

CNES CNES_GRGS_RL05 90 200209–present dynamic

Solutions that include only GRACE

Tongji Tongji-Grace2018 96 200204–201608 modified short arc
HUST HUST-Grace2020 60, 90 200301–201607 dynamic
IGG IGG-RL01 60 200204–201607 dynamic
SWJTU SWJTU-GRACE-RL01 60 200303–201110 dynamic
SWPU SWPU-GRACE2021 96 200204–201705 dynamic
WHU WHU RL01 60, 90, 120 200204–201607 dynamic
XISM&SSTC GRACE01 60 200204-201603 dynamic

* The maximum d/o might change at some epochs.

The SDS provides quality-controlled data from Level-0 (KBR range data) to Level-3 (grids).
Moreover, Level-3 solutions from the mascons approach and expressed in terms of TWSA can
be accessed from CSR, JPL, and NASA-GSFC. Other than Level-3 data, several centers help to
visualize GRACE TWSA. The JPL and GSFC mascons, for instance, can be visualized using the
Mascon Visualization Tool from the University of Colorado Boulder, and the basin-wise vari-
ability of TWS can be obtained from the Gravity over basins Information Service (GravIS) web-
site. Furthermore, several data browsers allow the interactive retrieval of GRACE and GRACE-
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FO data, including the one developed within the International Center for Global Earth Models
(ICGEM) project, the GRACE Plotter, and NASA data Analysis Tool. Table 2.2 lists the above-
mentioned centers and products.

Table 2.2: List of centers which provide Level-3 TWSA from GRACE and GRACE-FO.

Product Sensor(s) Source/Reference

Level-3 datasets

JPL GRACE Landerer (2020d); Landerer and Swenson (2012)
GRACE-FO Landerer (2020e)
GRACE/GRACE-FO (mascons) Landerer et al. (2020); Wiese et al. (2018); Watkins et al. (2015)

CSR GRACE Landerer (2020a)
GRACE-FO Landerer (2020b)
GRACE/GRACE-FO (mascons) Save (2020); Save et al. (2016)

GFZ GRACE Landerer (2020c)
GRACE-FO Landerer (2020b)
GRACE/GRACE-FO Boergens et al. (2020)

GSFC GRACE/GRACE-FO (mascons) Loomis et al. (2019)

Visualization centers

CU Boulder GRACE/GRACE-FO https://ccar.colorado.edu/grace
ICGEM GRACE/GRACE-FO http://icgem.gfz-potsdam.de/home
The GRACE Plotter GRACE/GRACE-FO http://thegraceplotter.com
NASA GRACE/GRACE-FO https://grace.jpl.nasa.gov/data-analysis-tool
GFZ GRACE/GRACE-FO http://gravis.gfz-potsdam.de/land
HydroSat GRACE/GRACE-FO http://hydrosat.gis.uni-stuttgart.de

https://ccar.colorado.edu/grace
http://icgem.gfz-potsdam.de/home
http://thegraceplotter.com
https://grace.jpl.nasa.gov/data-analysis-tool
http://gravis.gfz-potsdam.de/land
http://hydrosat.gis.uni-stuttgart.de
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2.4. Data post-processing

Each monthly solution of GRACE(-FO) contains the full hydrological, cryospheric, and Glacial
Isostatic Adjustment (GIA) signal in the form of fully normalized SH coefficients after removing
the contributions from other phenomena like tides (ocean, solid earth, and atmospheric), at-
mospheric and non-tidal oceanic mass changes. To accurately obtain the Total Water Storage
Anomaly (TWSA), which represents the water equivalent mass change, several corrections still
need to be applied to the GRACE(-FO) solutions, known as post-processing steps. Figure 2.4
illustrates the scheme of the data post-processing from GRACE(-FO) Level-2 to Level-3. The
post-processing steps are color-coded in four colors: gray : formal uncertainties and the final

TWSA, blue : steps that are well-established in the community, orange : steps that depend
on the user choice, and green : steps that are not common but improve the final results. In
what follows, each of the post-processing steps is introduced. For the orange and green steps,
a comparison between possible approaches is discussed.

GRACE L2 SH 
GRACE L2 SH 
uncertainties

Replacing 𝐂𝟐𝟎, 𝐂𝟑𝟎
with SLR solution

Calculating SH residuals 
relative to 

2004—2010

Correcting 
tidal aliasing error 

Filtering 

Correcting leakageCorrecting GIA
Error propagation 

over basins

TWSA and uncertainty

Ellipsoidal correction
Adding degree-1 

coefficients

Figure 2.4: Flowchart of obtaining Total Water Storage Anomaly (TWSA) and its corresponding uncertainty from
GRACE(-FO) Level-2 solutions.

Most comparisons have been conducted over the 405 major global river basins. The boundaries
of the basins are obtained from the Global River Discharge Center (GRDC) (https://www.bafg.
de/GRDC). Figure 2.5 illustrates the global distribution of the major basins while highlighting
the 27 largest and most important river basins worldwide, categorized and listed based on their
continent. Based on the area of the basins, we have categorized them into four major groups
namely small to medium (area < 104 km2), large (area within 104–105 km2), very large (area
within 105–106 km2), and mega (area > 106 km2) (Table 2.3). Based on such criteria, ∼ 10 % of
the basins are small to medium sizes (e.g., Daule, Mira, and Geba), ∼ 60 % are large (e.g., Tana,
Alabama, and Po), ∼ 23 % are very large (e.g., Ganges, Colorado, Highland of Tibet), and ∼ 7 %
are mega (e.g., Greenland, Antarctica, Amur, Nelson, Lena).

Table 2.3: Summary of the area of the four major groups of the basins in terms of the basins’ size.

# of basins total area [106 km2]

small/medium 40 0.25
large 246 9.8
very large 91 31.1
mega 28 72.4

https://www.bafg.de/GRDC
https://www.bafg.de/GRDC
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2. Mackenzie
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4. Mississippi

5. St. Lawrence

6.  Amazon

7.  Parana

8.  Danube

9.  Niger

10. Lake Chad

11. Congo

12. Nile

13. Zambezi
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15. Tigris

16. Euphrates

17.  Volga
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19. Yenisei

20. Lena

21. Kolyma
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23. Ganges

24. Yangtze

25. Murray Darling

26. Yellow river

27.  Indus

Figure 2.5: Global distribution of the major river basins with gray background. The 27 largest and most important
river basins are highlighted, listed, and color coded based on their continent.

These basins represent the global range of climate, land cover, and extent of irrigation. Char-
acterization of climate for the basins is based on the mean annual aridity index (AI, the mean
of annual precipitation over annual potential evapotranspiration), including:

• humid (AI > 0.65),

• dry sub-humid (AI ≤ 0.65, and AI > 0.5),

• semi-arid (AI ≤ 0.5 and > 0.2),

• arid (AI ≤ 0.2 and > 0.05),

• hyper-arid (AI ≤ 0.05).

This study grouped arid and hyper-arid into one group, arid to hyper-arid (Figure 2.6 a). Based
on AI classification, 60 % of the river basins are categorized as humid, ∼ 10 % as sub-humid,
22 % as semi-arid, and ∼ 8 % as arid to hyper-arid). In order to understand the effect of latitude
on the comparison of the GRACE(-FO) post-processing steps, four dominant latitude zones
have been considered namely Polar (from 66.5 ° north (resp. south) to the North (resp. South)
Poles), Temperate (40 °–66.5 ° north and south), Sub-tropical (23.5–40 ° north and south), and
Tropical (-23.5–23.5 °) (Figure 2.6 b). Based on the latitude zones, the majority of the river basins
lie in the tropical zones (∼ 85 %), a balance between sub-tropical and temperate (each ∼ 6.5 %),
and only (∼ 2 %) are located in the polar zones including Greenland and Antarctica.



2

38 2. Spaceborne Monitoring of Water Storage Variation

The Root Mean Squares (RMS) of the GRACE(-FO) TWSA represent the strength of signal in
each basin. The magnitude can be seen as a measure to characterize basins. In this thesis, we
have divided the RMS of TWSA into four categories, namely <30 mm (∼ 25 %), 30–60 mm (∼
40 %), 60–90 mm (∼ 20 %), and > 90 mm (∼ 15 %) (Figure 2.6 c).

Figure 2.6: Characteristics of Global River Basins (a) aridity index (AI), (b) Latitude Zones, and (c) Root Mean
Squared (RMS) of the TWSA signal from GRACE(-FO). The pie charts in the right panel show the percentage of
the basins that lies in each category.
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2.4.1. Total Water Storage Anomalies from spherical harmonics

GRACE(-FO) measures the Earth’s gravity field commonly illustrated in terms of the shape of
geoid: the equipotential surface corresponding to mean sea level over the oceans. The Earth’s
gravitational field is described by the geopotential V , using the following synthesis relation
(Heiskanen & Moritz, 1967):

V (r,θ,λ) = GM

R

{ ∞∑
l=0

l∑
m=0

(
R

r

)l+1

Plm(cosθ) [Cl m cos(mλ)+Sl m sin(mλ)]

}
, (2.1)

where G is the Newton’s gravitational constant, M is the total mass of the Earth, R represent the
mean equatorial radius of the Earth, r is the radius, θ and λ are the co-latitude and longitude
respectively. Pl m are the fully normalized Legendre polynomials of degree l and order m while
Cl m and Clm are the fully normalized dimensionless spherical harmonic coefficients.

Beyond the static gravity potential (Equation 2.1), GRACE(-FO) provides a valuable insight into
the time-variable gravity information represented by change in the spherical harmonic coef-
ficients. This variability can be seen as either the change in V from one time to the other, or
the difference with respect to a time average of V . We considered the later interpretation and
removed the long-term mean of spherical harmonic coefficients from monthly values. These
residual spherical harmonic coefficients are denoted by ∆Clm and ∆Sl m can be related to the
density redistribution (∆ρ(r,θ,λ)) occurring on and in the Earth:

{
∆Clm

∆Slm

}
= 3

4πRρave(2l +1)

∫ ∫ ∫
v
∆ρ(r,θ,λ)Pl m(cosθ)×

( r

R

)l+2
{

cos(mλ)

sin(mλ)

}
sinθdθdλdr,

(2.2)

Where ρave is the average density of the Earth (= 5517 kg/m3). We assume that most of the mass
redistribution takes place within a thin layer of thickness H , including those portion of the at-
mosphere, oceans, ice caps, and below groundwater storage with significant mass fluctuations.
Moreover, we pretend that this thin layer consists of water. This is a meaningful assumption in
hydrology , but must be used with care in ice sheet and and in GIA/seismo analysis. When H

is thin enough (i.e. (lmax + 2)H/R ≪ 1) then
( r

R

)l+2 will be approximately equal to 1 and by
replacing the volume integral ∆ρ by the surface integral ∆σ, Equation 2.2 becomes:

{
∆Clm

∆Slm

}
= 3

4πRρave(2l +1)

∫
Ω
∆σ(θ,λ)Pl m(cosθ)×

{
cos(mλ)

sin(mλ)

}
dΩ. (2.3)

The surface mass density change (∆σ) can be expressed in terms of Equivalent Water Height
(EWH). EWH or the TWSA is obtained as follow (Wahr et al., 1998):

TWSA = EWH(θ,λ) = Rρave

3ρw

∞∑
l=0

2l +1

1+kl

l∑
m=0

Plm(cosθ)[∆Clm cos(mλ)+∆Slm sin(mλ)] (2.4)
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2.4.2. GRACE(-FO) Level-2 solutions quality assessment

The GRACE(-FO) gravity field solutions depend on the dynamic process models, methods, as-
sumptions, and background force models (ocean and atmospheric models together with ocean
dealiasing product). Although most solutions have comparable signal amplitude, their perfor-
mance in reducing noise should be evaluated, especially at higher degrees. To this end, we have
compared the Level-2 solutions in the spectral domain using geoid degree RMS relative to the
state-of-the-art static model EIGEN6C4. Figure 2.7 shows the comparison for three months,
namely July 2003, December 2008, and April 2011. In all selected epochs in Figure 2.7, various
solutions agree well up to degree 30. Such a performance can be expected since the gravity field
signals dominate for lower degrees (∼ below 30) (Chen et al., 2018; Meyer et al., 2016). ITSG-
Grace2018 perform slighly better than other solutions. Such a performance has already been
reported by Chen et al. (2019), but within a smaller group of solutions. In contrast, considering
the coefficients up to degree 30, LUH and AIUB showed the highest difference among all the
solutions. Among official centers, CSR demonstrates slightly better performance while JPL and
GFZ lie within the same range of RMS error.

The performance of the CNES solution is similar to other solutions up to degree (order) 30.
However, unlike other solutions, the degree RMS in the spherical harmonic coefficients of the
CNES solutions continues to decrease after degree 30 with an increases after degree 75. The
overall performance of the solutions outperforms others. Such an outstanding performance
has been achieved via regularization. Unlike a simple Cholesky inversion, in the CNES so-
lutions, the normal matrices are first diagonalized, ordered by decreasing order of the eigen-
values, and only the best-defined sets of linear combinations of the spherical harmonics are
solved. Moreover, to obtain an accurate and consistent estimation of the very low degree of the
gravity field, the data from GRACE, including the SCA, ACC, KBR, and GPS receiver, are com-
bined with the data from 5 SLR satellites are also used (Lageos, Lageos-2, Starlette, Stella, and
Ajisai). Therefore, in the process of the CNES SHs, we do not apply the corrections for the very
low degree (see subsection 2.4.3 and subsection 2.4.4 for more details). For more details about
the CNES solutions, please see https://grace.obs-mip.fr/.

To evaluate the stochastics of the gravity field solutions, known as formal errors, we have con-
sidered a ratio between the average formal errors and the empirical errors following the ap-
proach suggested by Kvas et al. (2019). For the average formal errors, we have computed the
mean of the reported variance of the spherical harmonics coefficients for monthly solutions
from January 2005 to December 2010, which is assumed to hold a homogeneous data quality.
In order to estimate the empirical errors, we compute the standard deviation of the coefficients
after removing the mean, linear trend, and annual and semi-annual signal. The ratio between
these two quantities for all solutions is shown in Figure 2.8. We have excluded solutions that
do not provide formal errors, namely IGG-China, LUH, and SWJTU. The optimal value is one,
and values below one indicate an underestimation, while values bigger than one show overesti-
mation. ITSG-Grace2018 shows more realistic values among all solutions while formal centers,
SWPU, WHU, and AIUB are mostly overestimating, especially for d/o higher than 30. The pecu-
liar pattern in the CNES product is related to the regularization that has been applied to obtain
the gravity field from the Level-1 dataset.

It is important to assess the variation in the final TWSA estimation from different GRACE(-FO)
Level-2 solutions. To this end, for each of the solutions, we have applied the following steps
the necessary steps shown in Figure 2.4 including adding degree-1, replacing C20 and C30 co-
efficients, calculating the SH residuals and then filtering using Gaussian with radius 400 km
and de-striping approach proposed by Swenson and Wahr (2006). Then, we have aggregated
TWSA over the major river basins. Figure 2.9 compares magnitudes and spatial patterns of all

https://grace.obs-mip.fr/
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Figure 2.7: Geoid degree RMS of various gravity field solutions with respect to EIGEN6C4 for three epochs.

GRACE(-FO) Level-2 solutions in terms of the coefficient of variation or CV (defined as the ra-
tio between the standard deviation and the mean) of the RMS and linear trend of TWSA within
2003–2011. The full set of solutions would provide a full set of RMS for each basin which pro-
vides CVRMS =σRMS/µRMS. The same can be applied for the linear trends. Moreover, the CV of
the RMS and the linear trend are compared based on different categories of climate, latitude
zones, basin area, and the RMS of the GRACE TWSA signal (Figure 2.10).

Based on the results, on average, the CV of the RMS is about 0.07 while 70 % of the basins shows
CV≤0.10. Significant disparities in RMS were found in arid to hyper-arid areas, e.g., western and
eastern Sahara, Gobi, and North China. The lowest range of CV is observed over sub-humid re-
gions, e.g., Ganges, Lena, Nelson, and Amur. In terms of latitude zones, the maximum variation
of RMS is shown in the sub-tropical regions, while tropical areas have the minimum disparities.
Moreover, based on the results of the boxplots in Figure 2.9 generally, the CV of the RMS from
various solutions decreases as the size of the basin increase and has the same range of variation
among each category of basins area. Finally, the disparities in RMS are considerable for basins
with large (or small) RMS of GRACE signals (RMS<30 or RMS>90), e.g., SanJuan, West Australia,
Zambezi, Rio Parnaiba, and Greenland while it is at lowest for basins with RMS within 30–60,
e.g., Po, Kolyma, Alabama, and Niger.

In terms of trends, the discrepancies are higher among different solutions. The CV of the trend
lies below 0.3 in more than 60 % of the basins. However, 20 % of the river basins have CV>0.8
and even 15 % show CV>1. Relatively low dispersion in trend values was found in sub-humid
regions, e.g., Central Amazon, Mississippi, and Central Africa. In contrast, low disparities in the
linear trend (e.g., CV<0.4) were found in semi-arid areas, e.g., the southern U.S. and Mexico,
eastern Australia, Middle East, Northwest China, and Mongolia. Basins in the sub-tropical re-
gion would be affected the least by the choice of solutions regarding trend values. In contrast,
the sensitivity of basins located in polar regions to the choice of GRACE solution for trend esti-
mation is significant. The size of the basin also plays a crucial role, with larger basins such as
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Figure 2.8: The coefficient-wise ratio of average formal errors and empirical errors of the GRACE solutions following
the approach suggested by Kvas et al. (2019). The optimal value is one, and values below one indicate an underesti-
mation, while values bigger than one show overestimation. The solutions that do not provide formal errors, namely
IGG-China, LUH, and SWJTU are excluded.

Western Dvina, Po, Karun, Savannah, and Alabama exhibiting relatively minor differences. On
the other hand, small to medium basins exhibit the largest discrepancies. In terms of the RMS,
a clear message from the boxplot is that the disparities in the trend values among the solutions
decrease significantly with the increase of the GRACE signal RMS.

Figure 2.9: Basin-wise CVs of monthly TWSA derived from various GRACE(-FO) Level-2 products across the global
land surface in terms of, (a) RMS and (b) the linear trend.

Figure 2.11 illustrates the TWSA retrieved from various GRACE Level-2 solutions over selected
river basins. For the post-processing, the degree-1 coefficients are added from the estimation
by Sun et al. (2016) and the C20 and C30 coefficients are replaced with SLR estimations. More-
over, the noisy fields of the residuals are filtered using the de-striping filter (Swenson & Wahr,
2006) and a Gaussian filter with radius 400 km for all solutions. It should be noted that the GIA
is not removed from the TWSA field during the post-processing. Among the selected basins,
the highest discrepancies between the solution are observed over the Murray Darling basin in
Australia, Yangtze in China, and Niger and Nile in Africa. Such significant discrepancies can be
related to the difference between the background models. The HUST solution shows outlier
values in February 2015 over several basins, namely Death Valley, Danube, Tigris, and Murray
Darling.
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climate latitude zone basins area RMS of TWSA 

Figure 2.10: Boxplot of the RMS and trend values from various GRACE(-FO) Level-2 products categorized in terms
of climate, latitude zone, basin area, and RMS of the GRACE TWSA signal.

Figure 2.11: GRACE TWSA from various GRACE Level-2 products over selected basins. The noisy fields of the SHs
residuals are filtered using de-striping (Swenson & Wahr, 2006) and Gaussian filter with a radius of 400 km. The
degree-1 coefficients are added, and C20 and C30 are replaced with SLR estimations. The GIA trend is not removed
from the filtered TWSA fields.
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2.4.3. Adding Degree-1 Coefficients

The spherical harmonic coefficients of degree 1 (x: C1,1, y : S1,1, z: C1,0) represent the geocentric
motion of the Earth. The geocenter moves with respect to the Center of Figure (CF) of the solid
Earth. The origin of the reference frame for the gravity field solutions and also the twin satellites
is the Center of Mass (CM). Hence, GRACE is blind to degree 1 signal and therefore cannot
measure it. The lack of degree 1 information has the potential to have a significant effect on
the recovery of high-latitude mass variability and large-scale inter-basin ocean mass exchange
(Swenson et al., 2008). Therefore, degree 1 coefficients have to be added to the GRACE gravity
solutions using independent external information.

Different approaches exist for modeling the degree1 coefficients. The geocentric motion can be
determined using GPS observations which lack measurements in the oceans and remote areas
(Sun et al., 2016). The other method is to use SLR measurements using the distances along the
axis of rotation. In another approach, Swenson et al. (2008) and later on Sun et al. (2016) used
a numerical ocean model to estimate the degree 1 time-variable gravity coefficients, which are
more consistent with the so-called sea-level-equation and the patterns of sea-level rise. In this
thesis, the time series of degree-1 and corresponding error information from Sun et al. (2016)
is used. The degree 1 coefficients in terms of (fully normalized) coefficients of the geopotential
estimated based on (Sun et al., 2016) are available as the GRACE Technical Note #13 in https:
//podaac.jpl.nasa.gov/gravity/grace-documentation website and is shown in Figure 2.12.

Figure 2.12: Time series of the degree-1 coefficients from SLR estimated by Sun et al. (2016).

https://podaac.jpl.nasa.gov/gravity/grace-documentation
https://podaac.jpl.nasa.gov/gravity/grace-documentation
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2.4.4. Replacing Degree-2 Coefficients

The spherical harmonics of degree 2 represent the Earth’s moment of inertia. In particular, the
zonal coefficient, C2,0, represents the flattening of the Earth, also known as Earth’s dynamic
oblateness. Satellite observations since 1979 show that C2,0 has decreased constantly (Cheng
et al., 2013). Two main phenomena contribute to the variation of C2,0:

1 GIA following the last ice age

2 Climate related mass exchange between the tropics (23.5°N to 23.5°S latitudes) and the
extratropical areas

GRACE should be able to reflect the effects of ice mass loss on C2,0. However, the GRACE-
derived C2,0 is not accurate due to its polar orbit and because it is affected by large tidal aliases
(Liu, 2019). The SLR tracking from geodetic satellites provides a unique estimation of C20.
The SLR-derived C2,0 is derived from 5 satellites, namely LAGEOS-1 and 2, Stella, Starlette,
and AJISAI. The coefficients can be accessed from the GRACE Technical Note #14 in https:
//podaac.jpl.nasa.gov/gravity/grace-documentation website. Figure 2.13 illustrates the time
series of the C2,0 and the C3,0 coefficients from ITSG-Grace2018 and the release 6 of GFZ, SLR,
and JPL compared with the SLR estimation. More discrepancies exist between the GRACE
observations and the SLR values in estimating the degree-2 coefficients than degree-3. The
GRACE solutions show similar variation compared with the SLR estimation in estimating the
C3,0. However, the RMS of the degree-3 coefficients from various solutions shows higher RMS
for the GRACE-FO period
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Figure 2.13: Time series of the C2,0 and the C3,0 coefficients from ITSG-Grace2018 and the release 6 of GFZ, SLR,
and JPL compared with the SLR estimation of the five satellites.

2.4.5. Ellipsoidal Correction

It is common to use a spherical approximation to synthesize the GRACE(-FO) solutions. The
true form of the Earth resembles more an ellipsoid than a sphere, with the radius of the Earth
at the north (or south) pole being ∼ 22 km shorter than that at the equator. Therefore, the men-
tioned approximation would cause noticeable bias, especially in high-latitude regions. Li et al.
(2017) showed that the differences (underestimations) can be 4.3 % over Greenland to 6.6 % for
Svalbard Islands. In this thesis, each solution is corrected from spherical to ellipsoidal coeffi-
cients following the iterative method proposed by Li et al. (2017). The spherical approximation
leads to underestimation, and removing the underestimation is called the ellipsoidal correc-
tion.

Figure 2.14 compares the global field of TWSA with and without ellipsoidal correction for Jan-
uary 2004. The analysis reveals significant differences in the Northern Antarctic Peninsula,
Greenland’s periphery, and the East Canadian Arctic Archipelago regions. To determine the

https://podaac.jpl.nasa.gov/gravity/grace-documentation
https://podaac.jpl.nasa.gov/gravity/grace-documentation
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effect of ellipsoidal correction on the RMS and trend of TWSA at the basin scale, we have calcu-
lated the relative RMS difference (RMS(TWSAwithout)−RMS(TWSAwith))/RMS(TWSAwithout) for
the three official centers, namely CSR, GFZ, and JPL. We also performed the same calculation
for the linear trends, and the results are presented in Figure 2.15. The relative difference in es-
timating RMS ellipsoidal correction are mostly positive (correction increases the RMS values)
and increase by latitude which can be as high as 6 %. In terms of the effects on the trend values,
the correction mostly leads to an increase in trend values (0–15%). However, in some regions
such as central Australia, mid and southern South America, and central China, the correction
results in a decrease in trend values by up to 10 %.

To investigate the spatial distribution of the significance of the ellipsoidal correction, the rel-
ative RMS and trend values are plotted within specific categories of climate, latitude zones,
basin area, and the RMS of the GRACE TWSA Figure 2.16. The results from the climate cate-
gories show that sub-humid to humid regions are more affected by the ellipsoidal correction in
terms of RMS and trend values. As expected, the effect of the ellipsoidal correction increases by
latitude and is at its highest over Polar regions. Moreover, the basin size does not play a signifi-
cant role in the effect of corrections for estimating the RMS and trend values but shows a higher
range of variations over small to large basins than very large or mega basins. Although basins
with higher RMS of the TWSA signal show a bigger difference regarding ellipsoidal corrections,
this might be related to the fact that many of such regions are located at higher latitudes; the
boxplots should not be over-interpreted.

(a) No ellipsoidal correction (b) After ellipsoidal correction

(c) Difference between (a) and (b)

Figure 2.14: The global gridded TWSA values with ellipsoidal correction and without for January 2004 (a and b). (c)
the differences obtained by subtracting (b) from (a). Note the difference in color bar scales. For all plots the residual
of the CSR Release 06 solution with respect to 2004–2010 is filtered by a Gaussian filter with filter radius 400 km after
applying de-striping filter proposed by Swenson and Wahr (2006).
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CSR CSR

GFZ GFZ

JPL JPL

Figure 2.15: Basin-wise distribution of the relative RMS and trend values of the effect of ellipsoidal corrections for
the three official GRACE(-FO) solutions.

climate latitude zone basins area RMS of TWSA 

Figure 2.16: Boxplot of the relative difference in RMS and trend values of the TWSA over major river global basins
before and after ellipsoidal correction in terms of climate, latitude zone, basin area, and RMS of the GRACE TWSA
signal. The CSR RL06 GRACE(-FO) Level-2 products is used as the input and the noisy fields of the residuals are
filtered using de-striping filter (Swenson & Wahr, 2006) and Gaussian with radius 400 km.
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2.4.6. Removing the Remaining Tidal Aliasing Errors

Undersampling the mass motions from GRACE’s orbital configuration results in aliasing (Seo et
al., 2008). Due to imperfect tidal models, GRACE SHs are contaminated by residual tidal alias-
ing error, a primary and a secondary one (Liu & Sneeuw, 2021; Tourian, 2013). To avoid mixing
the real seasonal variation with the tidal error such a remaining aliasing error should be cor-
rected. Therefore, within the post-processing of GRACE(-FO) Level-2 solutions, we eliminate
the primary and secondary tidal aliasing errors of the main tidal constituents, S1, S2, P1, K1,
K2, M2, O2, O1, and Q1 from GRACE monthly solutions using a least-squares Fourier analysis
proposed by Tourian (2013). To this end, a parametric model of y = Ax +e can be defined:

∆Cl m(t ) = a1t +
N∑
i

bi cos(ωi t )+ ci sin(ωi t ), (2.5)

∆Sl m(t ) = a2t +
N∑
i

di cos(ωi t )+ei sin(ωi t ), (2.6)

where ∆Clm and ∆Slm are the spherical harmonics residuals, a1 and a2 are the trend coeffi-
cients, N is the number of tidal constituents, ωi is the tidal aliasing angular frequency and the
bi , ci , di , ei are the unknown coefficients of the model. The amplitude of each tidal aliasing
error can be calculated by:

Ai =
√

b2
i + c2

i (2.7)

Based on the analysis conducted by Tourian (2013), removing tidal aliasing error from GRACE
monthly solutions improves the solutions towards being more consistent with the hydrometeo-
rological water storage change. Moreover, the maximum tidal aliasing error occurs over Green-
land, where the investigation into its ice mass loss plays an important role in climatic studies.
Besides, the impact of removing the error on trend is not significant according to the given un-
certainty in GRACE data (Table 2.4). The low impact of tidal aliasing error on the estimated
trend is better represented in the frequency domain, where the low frequencies belonging to
the trend are not affected after removing the error.

2.4.7. Filtering Noise

The GRACE(-FO) monthly gravity field solutions suffer from correlated noise (cf. Figure 2.17),
resulting from measurement errors, orbit geometry, sensitivity of the observable, and under-
sampling. Due to the near-polar orbit, GRACE(-FO) measurements are sensitive north-south,
while the sensitivity is weaker in the east-west direction. Besides, temporal aliasing caused by
imperfect background models and the sampling frequency would result in an error in the solu-
tions. Moreover, the GRACE(-FO) level 2 coefficients are contaminated by the instrument noise
resulting from the orbit errors, star cameras, accelerometer observations, and the noise in the
K-band ranging system. The aforementioned errors manifest themselves as distinctive North-
South striping patterns (Swenson & Wahr, 2006; Wahr et al., 2006). To investigate any physical
signal, such noise must be removed (or suppressed) from the GRACE(-FO) solutions. There is
a trade-off between the resolution and noise, i.e., increasing the degree of spherical harmonics
coefficients would lead to higher resolution but also greater noise. Conversely, decreasing the
degree of coefficients would result in lower resolution but less noise. Therefore, a straightfor-
ward way to lower the noise would be to truncate the spherical harmonic series around degrees
20–30 (cf. Figure 2.7). However, the monthly results from higher degrees include a complex
noise for applications with high spatial resolution demand, such as in hydrology.
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Table 2.4: The estimated linear trend from GRACE for Jan. 2005 to December 2011 for the 19 drainage basins of
Greenland (Tourian, 2013).

Drainage basin Area Linear Trend [Gt/yr]
[103 km2] before after

A1 130 -7.8 7.7
A2 63 -5.6 -5.5
A3 46 -5.0 -4.9
A4 17 -4.2 -4.1
B1 273 -11.2 -11.1
B2 50 -8.0 -7.9
C1 148 -9.8 -9.6
C2 35 -9.8 -9.6
C3 72 -12.2 -12.0
D1 64 -11.5 -11.3
D2 47 -13.0 -12.8
D3 33 -11.7 -11.5
E1 49 -11.0 -10.9
F1 48 -11.6 -11.5
F2 135 -13.9 -13.7
G1 95 -10.8 -10.7
G2 129 -12.6 -12.4
H1 240 -16.1 -15.8
H2 34 -16.3 -16.1

Total 1718 -202 -199

Several filters have been developed to reduce the noise in the GRACE(-FO) solutions. Wahr
et al. (1998) utilized the low-pass isotropic Gaussian smoothing operator designed by Jekeli
(1981) which was further developed as an anisotropic version in Han et al. (2005) and Zhang
et al. (2009). Other examples of the spectral filters include the Wiener filter (Klees et al., 2008;
Sasgen et al., 2006), the denoising and decorrelation kernel (DDK) filter (Kusche et al., 2009),
and the regularization filter (Devaraju & Sneeuw, 2017). Such filters use the error variance-
covariance matrix but also require a priori signal covariance information (Devaraju, 2015; Duan
et al., 2009). Another category of filters attempts to improve the signal-to-noise ratio by remov-
ing the correlation in the spectral domain (stripes in the spatial domain). Swenson and Wahr
(2006) proposed such a de-striping filter by smoothing the spherical harmonics coefficients for
a particular order m with a polynomial of order p using least squares estimation. Following
Swenson and Wahr (2006) several filters have been developed which investigate such a pat-
tern in the unconstrained solutions (Chambers, 2006; Chen et al., 2007; Duan et al., 2009).
These filters are mostly followed by a spatial filter like a Gaussian filter to reduce the remaining
noise. Another category of filters benefits from the temporal information in the GRACE(-FO)
data including the Empirical Orthogonal Function (EOF) filter (Schrama et al., 2007; Wouters
& Schrama, 2007), the Independent Component Analysis (ICA) filter (Frappart et al., 2011), the
stochastic filter (Wang et al., 2016), the Singular Spectrum Analysis (SSA) filter (Prevost et al.,
2019). Recently Yi and Sneeuw (2022) introduced a new filter named Spatial SSA (SSAS), which
mainly follows the strategy suggested by Swenson and Wahr (2006) while applying SSA on the
spatial domain to suppress the residual noise. Figure 2.17 illustrates the global field of TWSA
for April 2006 retrieved from the release 06 of the CSR solution and applying commonly used
filters together with the noisy field.
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Figure 2.17: The Global field of the TWSA retrieved from the noisy data of GRACE and also after applying various
commonly used filters for April 2006. The CSR RL06 has been used as the solution for the plots.

To assess the impact of filter choice on the estimation of TWSA from GRACE(-FO) Level-2 data,
we conducted a comparative analysis of the RMS and linear trend of TWSA obtained using
various filters, as shown in Figure 2.18. We also examined the CV of the TWSA signal in different
climate categories, latitude zones, basin areas, and RMS values using boxplots, as illustrated in
Figure 2.19. Our analysis of the TWSA signal across various basins and regions suggests that
the choice of filter significantly affects the RMS of the TWSA signal in arid to semi-arid regions.
Specifically, we observed that the effect of filter choice on the RMS of the TWSA signal varied
depending on the latitude zone of the basin. While this effect was minimal in polar and tropical
regions, it was significant in tropical basins of Africa, such as Niger, Nile, Congo, and Chad. Our
findings also indicate that the choice of filter did not have a significant impact on trend values,
although the CV of trends was generally higher in semi-arid regions. Notably, we found that the
effect of basin size on the RMS or linear trend estimation of the TWSA signal was substantial,
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as it significantly reduced the discrepancies among different filters.

Additionally, we observed that the disparities between various filters decreased as the magni-
tude of the TWSA signal’s RMS increased. This suggests that the choice of filter may have a
greater impact on the analysis of TWSA signals in regions where the signal’s variability is low.
Furthermore, our analysis revealed that the estimation of trends exhibited substantial differ-
ences in polar and tropical regions. This finding suggests that researchers should exercise cau-
tion when interpreting TWSA trends in these regions and carefully consider the choice of filter.
In conclusion, our study highlights the importance of carefully selecting a filter when analyzing
TWSA signals, particularly in arid to semi-arid regions and tropical basins in Africa. Addition-
ally, our findings suggest that basin size and the magnitude of the TWSA signal’s RMS should be
taken into consideration when selecting a filter. These insights can help researchers to better
understand and interpret TWSA data, ultimately improving our understanding of global water
resources.

Figure 2.18: Basin-wise CVs of monthly TWSA derived from various filters and CSR RL06 Level-2 product across the
global land surface in terms of, (a) RMS and (b) linear trend.
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Figure 2.19: Boxplot of the relative difference in RMS and trend values of the TWSA over major river basins from
various filters categorized in terms of climate, latitude zone, basin area, and RMS of the GRACE TWSA signal. The
CSR RL06 GRACE(-FO) Level-2 products are used as the input.
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2.4.8. Correcting Leakage

Filtering, in the context of GRACE data analysis, can be viewed as a spectral multiplication
operation that selectively modifies the spectral content of the signal. However, it is important
to note that leakage, which occurs during the spectral analysis or transformation, is primarily a
consequence of spatial convolution operations. Correcting leaked signal is an inevitable step,
especially in coastal regions. Various approaches have been proposed to restore the GRACE
TWSA signal at pixel and basin scale including:

• (1) the scaling factor approach proposed by Landerer and Swenson (2012) which suggest
a scaling factor by least squares fit between the filtered and unfiltered field of a Land
Surface Model (LSM),

• (2) the additive correction approach by Klees et al. (2007) that add the difference between
the unfiltered field of TWSA from a Land Surface Model (LSM) and the filtered field (same
filter as applied to the GRACE noisy field) and excluding the signal outside of the area of
interest (basin or a grid cell),

• (3) the multiplicative correction approach proposed by Longuevergne et al. (2010) which
adjusts the filtered basin function’s amplitude to that of the unfiltered basin function and
multiplies the difference between the filtered GRACE signal and the leakage,

• (4) the data-driven approach proposed by Vishwakarma et al. (2016) which follows the
idea of the multiplicative approach while the leakage inside and outside of the basin is
reduced using a catchment mask and a filter kernel,

• (5) the forward modeling algorithm proposed by Chen et al. (2015) which reduces the
leaked signal via an iterative process that makes incremental changes to a model until
the difference between the filtered model and filtered GRACE is minimal.

The above-mentioned models have been extensively compared at basin and grid-level (Khaki
et al., 2018; Long et al., 2015; Vishwakarma et al., 2017). In this thesis, we deliberately exclude
further analysis and use the forward modeling approach for two main reasons. First, the for-
ward modeling has shown superior performance over the first three methods (Long et al., 2016)
and second, the data-driven, despite its great performance over multiple comparisons (Vish-
wakarma et al., 2017), can only be applied over a specific region (basin) and not grids.

2.4.9. Glacial Isostatic Adjustment

The Earth’s crust is slowly recovering from the ice load of the past ice ages and sea-level change.
During the ice ages, the continental and polar ice sheets and mountains glaciers expanded
due to the significant reduction in Earth’s temperature. The most recent global deglaciation
even (started 21 000 years ago and was completed about 6 000 years ago) has unloaded a huge
amount of mass from land to the ocean, which is a major contributor to the sea level variations
that has been observed recently.

The Earth’s geopotential and geoid change includes the GIA signal. Therefore, to compute the
present surface mass change (i.e., trends in water content of hydrologic basins, or ocean bot-
tom pressure, or ice sheet mass) the GRACE(-FO) data must be corrected for GIA (e.g., Geruo
et al., 2013; Peltier, 2009). It is noteworthy that a GIA surface mass equivalent is not a physical
mass that exists at the surface; rather, it is a hypothetical equivalent mass that would produce
the same geopotential effect if observed from space. Several GIA models exist to account for
the GIA. Geruo et al., 2013 simulated the viscoelastic response of a compressible Earth to the
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surface load. Peltier (2009) developed the ICE6G-D model by computing the solid Earth vis-
coelastic response to forcing applied by surface mass redistributions during waxing and wan-
ing of Pleistocene glaciations using more data. Geruo et al. (2013) used a Bayesian hierarchical
modeling approach to combine GPS measurements with a new geophysical GIA model based
on the ICE-6G_C (VM5a) deglaciation history (the Wahr Model in the Figure 2.20). More re-
cently, Caron et al. (2018) have adapted new GIA modeling and inversion approaches that en-
able a physical uncertainty quantification of GIA model errors and uncertainty ranges across a
range of realistic GIA model parameters. Recently Sun and Riva (2020) have developed a global
empirical model of present-day GIA, solely based on GRACE data and on geoid fingerprints of
mass redistribution. The global representation of the GIA annual trend values from the four
datasets mentioned above is shown in Figure 2.20.

Figure 2.20: Contemporary geoid rates (in mm/yr) from GIA as predicted by the four GIA models.

2.4.10. Filling gaps

During the GRACE mission, there were some months when the data from the satellites were
not available due to various issues such as equipment malfunctions or maintenance activities.
These gaps in data availability can affect the continuity and accuracy of the gravity field solu-
tions. The GRACE Follow-On mission, which was launched in 2018, is a continuation of the
GRACE mission and aims to continue the measurements of changes in the Earth’s gravity field.
However, there is a gap in the data between the end of the original GRACE mission in 2017
and the beginning of the GRACE Follow-On mission in 2018 (Figure 2.21). This gap in data can
affect the continuity of the time-series of gravity field solutions. Moreover, gaps in data avail-
ability can also make it difficult to study long-term trends and changes in the Earth’s gravity
field, which is one of the main goals of the GRACE mission.

Several methods have been proposed to address this issue. One approach is to use data from
other satellite missions, such as Swarm satellites and SLR, to reconstruct TWSA and reproduce
TWSA variations at large scales (Löcher & Kusche, 2021; Richter et al., 2021). However, the spa-
tial resolution of these datasets is not comparable to GRACE and GRACE-FO datasets, leading
to large uncertainty for some small catchments and high-latitudes (Li et al., 2021). EOF analy-
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Figure 2.21: The global monthly variation of the TWS observed by GRACE mission. To estimate the TWS change,
the unconstrained solution from the Institute of Geodesy of the Graz University of Technology (ITSG-Grace2018 ) is
used.

sis is a statistical technique that can be used to extract dominant patterns of variability from a
dataset. It has been used to fill the temporal gap in GRACE data by estimating the missing data
based on the correlation between the dominant patterns of variability in GRACE and other
datasets, such as the Global Land Data Assimilation System (GLDAS) dataset (Lenczuk et al.,
2022; Sun et al., 2021; Zhang et al., 2022).

Another approach involves using hydroclimatic factors as predictors and reconstructing GRACE-
derived TWSA at the gridded resolution. For example, Humphrey et al. (2017) and Humphrey
and Gudmundsson (2019) used precipitation and temperature as explanatory variables and
reconstructed the de-seasonalized and de-trended TWSA using a statistical model. Sun et al.
(2019) employed a deep neural network with precipitation, temperature, and soil moisture in
the GLDAS model as explanatory variables for the prediction of TWSA. Li et al. (2021) recon-
structed global TWSA for the gap period using various statistical methods. Moreover, regional
TWSA reconstructions have been accomplished for India (Kumar et al., 2022), Africa (Ahmed
et al., 2019), and China (Chu et al., 2023). Despite the success of these methods, their accuracy
and reliability still depend on various factors, such as the quality of the input data, the selection
of predictor variables, and the statistical methods used for reconstruction.
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Yi and Sneeuw (2021) proposed a non-parametric and data-adaptive approach to fill the miss-
ing epochs in the monthly gravity product of the GRACE and GRACE-FO missions. The ap-
proach is composed of Singular Spectrum Analysis gap-filling technique, cross-validation, and
spectral testing for significant components to produce reasonable gap-filling results in the form
of Spherical Harmonic (SH) coefficients. The quality of the gap-filling product is evaluated
through comparison with a surface mass balance based estimate in Greenland, Swarm gravity
solutions and a climate-driven water storage model, all of which confirm the good performance
of the results. The authors demonstrate that the proposed method effectively suppresses noise
and can reduce noise in the oceans without sacrificing resolutions on land. The method is ap-
plicable to smoothed gridded observations and provides a ready-to-use gap-filling product in
the form of SH coefficients with proper error estimates. In our study, we have used this method
to fill the gap in GRACE and GRACE-FO data.

2.5. GRACE vs GRACE-FO

One way to assess the accuracy of GRACE TWSA observations is to compare them with alti-
metric water level time series over large lakes. Considering the spatial resolution of GRACE,
we have selected several lakes, including the Caspian Sea, Superior, Victoria, Huron, Michi-
gan, Tanganyika, Malawi, Erie, and Turkana (Figure 2.22 and Table 2.5). To conduct the evalua-
tion, we have used the solutions that incorporate GRACE-FO level-2 data and all three mascons
products: JPL, CSR, and GSFC. To process the spherical harmonic coefficients, we followed the
flowchart previously outlined in Figure 2.4, using a Gaussian filter with a 400 km radius and the
destriping method proposed by Swenson and Wahr (2006). Additionally, to correct leakage in
the SH coefficients, we employed the data-driven approach as suggested by Vishwakarma et
al. (2017). In addition, we also computed the ensemble mean of the mascons products and the
ensemble mean of the processed solutions. By calculating the ensemble mean, we can mitigate
the influence of the specific solution or product chosen and obtain a more robust estimate of
the TWSA. This approach can improve the accuracy of the evaluation and provide more reliable
results.

Figure 2.22: Distribution of the selected lakes.
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Figure 2.23 displays the time series of GRACE(-FO) data in comparison to the altimetric water
level data for a selection of lakes. The entire time period under consideration is divided into
four segments: the mission duration (2002-2020), the GRACE-FO period (2018-2020), the pre-
GRACE-FO period (2002-2010), and an intermediate period (2011-2017). The GRACE period
is further subdivided into two periods, the first from 2002 to 2010, during which the satellites
were in their most stable period, and the second from 2011 to 2017, which experienced some
gaps and battery problems in the last few months. The envelope surrounding the GRACE(-FO)
time series represents the 1-σ uncertainty, which is estimated from various calculations based
on the mascon products of SHs solutions.

In Table 2.6, the correlation coefficients between GRACE TWSA observations and altimetric wa-
ter level time series over the selected lakes for the four periods mentioned above are presented.
The correlation coefficients were computed for two types of GRACE solutions: mascons and
processed SH coefficients. The results reveal that the accuracy of the TWSA observations varies
across different lakes, time periods, and types of GRACE solutions. Some lakes, such as Supe-
rior and Turkana, consistently exhibit high correlation coefficients across all time periods and
GRACE solutions, while others, such as Huron and Erie, show lower correlations.

The correlation coefficients between GRACE and altimetric water level time series are gener-
ally higher than those between GRACE-FO and the same time series across all lakes and time
periods. For example, the correlation coefficient between GRACE and the altimetric water level
time series for Superior is consistently higher than that for GRACE-FO for all time periods and
types of GRACE solutions. However, some lakes, such as Malawi and Turkana, display very high
correlation coefficients between GRACE-FO and the altimetric water level time series, even
higher than those between GRACE and the same time series. Overall, while there are variations
across different lakes, time periods, and types of GRACE solutions, the general trend suggests
that GRACE is more accurate than GRACE-FO. It is important to note that the results should not
be over-interpreted due to the coarse spatial resolution of GRACE, the use of only correlation
coefficients, and the limited scope of lakes considered in the assessment.

Table 2.5: Summary of the selected lakes with their surface area and type.

Lake Name Surface Area [km2] Type

Caspian Sea 371000 Saline
Superior 82100 Freshwater
Victoria 68870 Freshwater
Huron 59600 Freshwater
Michigan 58000 Freshwater
Tanganyika 32600 Freshwater
Malawi 29500 Freshwater
Erie 25700 Freshwater
Turkana 6405 Saline
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Figure 2.23: Time series of TWSA from GRACE and GRACE-FO from the ensemble mean of the mascons solutions
(the black line) and the ensemble mean of the processed SH coefficients from various solutions (the blue line) over
selected lakes. The standard deviation of the ensemble means are shown as an envelope. The time series of the
water level from satellite altimetry are shown in green. The time period is divided into three periods namely from
April 2002 to December 2010, from Januaray 2011 to June 2017, and from June 2018 to the end of 2021.

Table 2.6: Summary of the GRACE(-FO) performance (correlation coefficient) over four periods from two approach,
ensemble mean of all possible scenarios of the SHs approach and the ensemble weighted mean of the mascons
products.

Lake Name
GRACE(-FO) (2002–2020) GRACE (2002–2010) GRACE (2011–2017) GRACE-FO (2018–2020)

mascons SHs mascons SHs mascons SHs mascons SHs

Erie 0.81 0.79 0.55 0.50 0.72 0.59 0.66 0.54
Huron 0.94 0.86 0.58 0.35 0.91 0.74 0.79 0.57
Malawi 0.73 0.67 0.81 0.79 0.71 0.66 0.82 0.85
Superior 0.83 0.71 0.59 0.33 0.82 0.69 0.00 -0.09
Tanganyika 0.75 0.76 0.76 0.75 0.70 0.68 0.80 0.77
Turkana 0.86 0.76 0.64 0.52 0.58 0.18 0.83 0.82
Caspian 0.99 0.97 0.91 0.84 0.96 0.89 0.89 0.79
Michigan 0.93 0.89 0.58 0.45 0.90 0.83 0.56 0.48
Victoria 0.97 0.96 0.91 0.86 0.90 0.91 0.98 0.98
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2.6. Ensemble of the scenarios

No universal and unique procedure is accepted by the Earth’s science community in post-
processing GRACE(-FO) data. Therefore, after delivering an analysis of the outcomes from var-
ious choices in the post-processing steps in the previous sections, we offer an ensemble of the
most common scenarios in this section. To this end, we have chosen centers with both GRACE
and GRACE-FO solution to be consistent during the whole time period of the satellite missions.
These solutions enclose releasing 6 of the official centers, namely CSR, GFZ, and JPL. Besides,
we have campuses the latest version of the solutions from ITSG, COST-G, and CNES consider-
ing their superior performance which has been discussed in subsection 2.4.2. The steps in blue
and green have been considered for all scenarios (see Figure 2.4).

To filter the noisy field of the GRACE(-FO), we have incorporated four different approaches,
including a Gaussian filter with three different radii together with the de-striping methods de-
scribed in subsection 2.4.7. Moreover, we have encompassed two anisotropic filters, namely
Hann and Fan filters, each with three radius choices. The DDK2, DDK3, and DDK4 are included
as widely used filters among the spatial filters, and finally, the recent filter SSAS together with
DDK6 proposed by Yi and Sneeuw (2022). It should be noted that since the noise level in the
CNES solutions has already been decreased via regularization, we have only considered the
Gaussian, Hann, Fann with radius 300 km and DDK4 among all the possible filter choices. To
correct the leakage, we have included the data-driven approach proposed by Vishwakarma et
al., 2017. All four GIA models have been considered in the processing resulting in different sce-
narios to account for the GIA. GRACE and GRACE-FO solutions include 11-month gap between
the two missions. Moreover, in total 35 months gap exists in the GRACE Level 2 solutions. To
fill these gaps, we have employed the gap-filling technique proposed by Yi and Sneeuw (2021)
that benefits from the SSA. The above-mentioned post-processing would end up in about 600
level 3 products from each of the level-2 solutions. Let’s call them SHs products. The ensem-
ble mean of the outcomes is calculated together with the standard deviation representing the
uncertainty.

GRACE(-FO) L2 solutions Filters

GIA model

Gaussian + de-striping
Gaussian radius in km

300, 400, 500

de-striping method
Swenson-2006
Chambers-2012

Chen-2007
Chen-2009
Duan-2009

Hann 
Gaussian radius in km

300, 400, 500

DDK
DDK2, DDK3, DDK4

Fan
Gaussian radius in km

300, 400, 500

SSAS + DDK6

CSR GFZ

ITSGJPL

COST-G CNES

Caron Wahr

Sun Peltier

Figure 2.24: Schematic of the different choices for different processing steps of the GRACE(-FO) solutions.

The average coefficient of variation (CV) has been calculated for various scenarios across major
river basins. Figure 2.25 presents the results, displaying the boxplot for each category: climate,
latitude zone, basin area, and signal strength (RMS of the TWS signal). The findings demon-
strate substantial differences in the coefficient of variation (CV) of TWSA across all categories.

One interesting finding is that the arid to hyper-arid climate category had the highest mean CV



2.6. Ensemble of the scenarios

2

59

value (0.39), indicating a high level of sensitivity to the processing choices. This suggests that
the accuracy of TWSA estimates in these regions may be particularly affected by the processing
choices, which could have important implications for water resource management in these
areas.

In terms of latitude zone, the results showed that the polar zone had the highest mean CV value
(1.11), which is consistent with the higher variability in temperature and precipitation patterns
in these regions. This suggests that accurate TWSA estimates in polar regions may be more
challenging than in other zones, and that the processing choices can have a significant impact
on the accuracy of the estimates.

Another interesting finding is that the mean CV values were relatively consistent across differ-
ent area categories, ranging from 0.25 to 0.39. This suggests that the processing choices have a
similar level of impact on TWSA estimates across different basin sizes. However, it is important
to note that the choice of basin size can still affect the TWSA estimates themselves, even if the
processing choices have a similar level of impact across different basin sizes.

Finally, the results showed that the mean CV values generally increased with increasing signal
strength, which indicates that the processing choices have a greater impact on TWSA estimates
when the signal is stronger. This finding highlights the importance of carefully considering the
processing choices for GRACE Level 2 data when analyzing TWSA time series, particularly in
regions with a strong signal.

Overall, these results suggest that the processing choices for GRACE Level 2 data can have a
significant impact on the accuracy of TWSA estimates, particularly in regions with certain cli-
mate characteristics, latitudes, and signal strengths. By carefully considering these factors, re-
searchers can optimize their processing choices and improve the accuracy of TWSA estimates,
which has important implications for water resource management and hydrological modeling.

climate latitude zone basins area RMS of the TWSA

Figure 2.25: Top:Basin-wise average CV from various scenarios. Bottom: Boxplot of the average CV from 600 scenar-
ios over major river basins categorized in terms of climate, latitude zone, basin area, and RMS of the GRACE TWSA
signal.
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Figure 2.26 illustrates the time series of GRACE(-FO)-TWSA using the ensemble of all the sce-
narios compared with three mascons solutions, namely CSR mascon v2, JPL mascon v2, and
GSFC mascon v2 over selected basins. The ensemble approach (GRACE-Merged) is aligned
with all three mascons solutions, while the mascons approach has a different procedure for
processing the data.

Figure 2.26: Time series of the ensemble products together with the three mascons products namely CSR mascon
v2, JPL mascon v2, and GSFC mascon v2 over selected basins.
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3.1. Introduction

The Terrestrial Water Storage (TWS) dynamics represent the available freshwater on land and
play a critical role in understanding the Earth’s coupled climate system (e.g., Frappart & Ramil-
lien, 2018; McCabe et al., 2017; Richey et al., 2015; Tapley et al., 2019). The GRACE and GRACE-
FO missions have measured the TWS change with unprecedented accuracy for more than 20
years (Tapley et al., 2004). Using GRACE(-FO) we can investigate the footprint of the natu-
ral ecosystems and human interventions on the spatio-temporal variability of the TWS at the
regional to global scales. While these measurements are valuable for identifying short-term
variations in water storage, such as seasonal and interannual variations, they are insufficient
for detecting long-term trends in water storage, which may be important for various applica-
tions including testing climate model simulations (Goosse, 2015; Jensen et al., 2019; Trenberth
& Trenberth, 1992, e.g., ), understanding past extreme hydro-climate events (drought or flood)
(Zhang et al., 2016; Zhao et al., 2018), and constructing the sea level budget (Horwath et al.,
2022; Wouters, van de Wal, et al., 2018). Understanding and monitoring these changes in wa-
ter storage are particularly crucial in regions where water availability is a major concern, such
as arid and semi-arid regions, where long-term changes in water storage can have significant
impacts on water resource management and agricultural productivity (Van Beek et al., 2011).

The climatology of TWS refers to the long-term monthly average of TWS, which characterizes
the baseline variation across a region. To appraise the impact of observation records on the
TWS climatology, we computed the extended-term mean of TWS anomalies (TWSA) for three
distinct periods. The first period spans from 2003 to 2016, during the GRACE era, utilizing
GRACE observations. The second period ranges from 1980 to 2002, prior to the availability of
GRACE data, employing an ensemble mean of models, as described in section 3.3. The third
period consists of a merged dataset, encompassing 1980 to 2016, which includes the GRACE
period and the pre-GRACE period. Figure 3.1 presents the outcomes for twelve selected basins
and their corresponding level of uncertainty. We calculated the uncertainty for each month by
determining the standard deviation of TWSA values within the given time period. Notably, we
observed wider envelopes for 1980–2002 since we employed a merged model version. While
some basins, such as the Danube, show no change in climatology between the GRACE era and
a longer record back to 1980, selecting only the GRACE record would significantly underesti-
mate TWS in some basins (e.g., Murray) and overestimate it in others (e.g., Amazon). This un-
derscores the importance of considering an adequate length of record for estimating the TWS
climatology of a region.

To obtain a global perspective, we assessed the differences between the climatology calculated
using a longer-term record (1980–2012) and the GRACE data record (2003–2012) for 403 ma-
jor river basins worldwide, except for Greenland and Antarctica. Although the result from the
longer-term record is not evaluated yet, we assume the longer period includes more of the
climate variation and hence can be considered as the true baseline. Figure 3.2 displays the
climatology difference for each month. Generally, May, June, July, and December exhibit the
highest differences (positive or negative) in climatology, while April and October show the low-
est variations. The maximum underestimation is observed in December and January, whereas
the maximum overestimation occurs in June and July when compared to the long-term refer-
ence record. The number of basins with underestimated (overestimated) climatology ranges
from approximately 130 (190) basins in January (July) to about 210 (265) basins in July (Jan-
uary). The Tana, Bravo, and Zagros basins exhibit the maximum overestimation, while the
Atrato, Svarta, and South Iran basins exhibit the maximum underestimation. These findings
highlight the necessity of employing a record of observations spanning over 30 years to estab-
lish a reliable climatology.
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Figure 3.1: Long-term monthly mean (climatology) of TWSA over selected basins within three periods namely 1980–
2002 (pre-GRACE period), 2002–2016 (GRACE period), and 1980–2016. The envelopes represent the climatology
uncertainty. The global distribution of the selected basins is shows in the top panel.
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Figure 3.2: Distribution of the difference of the TWSA climatology within the restricted GRACE time period (2002–
2012) and 1980–2012 for the 403 major river basins. The long-term TWSA dataset is derived from the ensemble of
the models as described in subsection section 3.3.
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3.2. Brief review on the hindcasting methods

There are several approaches to estimate TWSA for the pre GRACE period. The first option is
to use in-situ observations of groundwater or surface water levels. Such an approach is not
an effective one due to several reasons. Firstly, the spatial coverage of in-situ measurements is
limited and unevenly distributed across the globe, making it difficult to capture the large-scale
changes in water storage that GRACE is capable of detecting. Moreover, in-situ measurements
are often limited to specific depths or locations, which may not be representative of the entire
basin or region, leading to biased estimates. Secondly, in-situ measurements are subject to
errors, uncertainties, and biases due to various factors such as instrument drift, measurement
noise, data gaps, and inconsistencies in sampling frequency. These errors can accumulate over
time and affect the accuracy and reliability of the reconstructed data, particularly for long-
term analysis. Thirdly, in-situ measurements are often influenced by local processes such as
groundwater pumping, irrigation, and reservoir management, which can obscure the signal of
large-scale hydrological processes that GRACE aims to capture. These local effects can vary
spatially and temporally and can be challenging to separate from the signal of interest. Overall,
while in-situ measurements are valuable for validating and calibrating remote sensing data,
they are not a substitute for GRACE data for reconstructing global water storage changes over
time.

Several space-borne sensors are employed to estimate TWSA, including Swarm satellites (de
Teixeira da Encarnação et al., 2019; Lück et al., 2018; Olsen et al., 2013; Richter et al., 2021,
e.g., ), Global Navigation Satellite System (GNSS) inversion (Rietbroek et al., 2014), and SLR
(Li et al., 2021; Talpe et al., 2017). While space-borne sensors such as Swarm and GNSS in-
version offer global coverage, their products have lower spatial resolution and accuracy than
GRACE, making them insufficient to fully reconstruct GRACE TWSA. Besides, while the GRACE
mission provided a continuous record of TWSA changes over a period of more than 15 years,
other spaceborne sensors may have limited temporal coverage due to their shorter operational
lifetimes. Moreover, each spaceborne sensor measures TWSA using a different principle and
technology, which can lead to different sources of errors and uncertainties. As a result, com-
bining data from different sensors may introduce additional sources of error that are difficult
to quantify and correct for. Finally, processing and analyzing data from different spaceborne
sensors can be challenging due to differences in data format, resolution, and accuracy. Inte-
grating these data sources requires careful calibration, quality control, and validation, which
can be time-consuming and resource-intensive.

Several studies have assessed approaches to reconstruct TWSA prior to the GRACE era (i.e.,
before 2002). Humphrey et al. (2017) developed a statistical model based on precipitation and
temperature to reconstruct climate-driven TWSA. The study aims to reconstruct TWSA changes
over the last century, which is a significant period for understanding the variability of water re-
sources on a global scale. The accuracy of the reconstructed data depends on the accuracy of
the input data used to drive the model. Additionally, the water balance model used in their
study does not take into account changes in groundwater storage, which can be a significant
component of TWSA changes in some regions. Similarly, Liu et al. (2022) reconstructed the
Climate-driven Water Storage Anomalies (CWSAs) using precipitation and temperature data as
input. The model significantly outperformed LSMs and produced similar results to machine
learning-based methods. However, limitations were observed in some basins with widespread
frozen ground and glaciers or huge lakes. While these studies show promise in reconstruct-
ing long-term TWSA trends, they are limited by the accuracy of the input data used to drive
the models. Additionally, the water balance models used in these studies do not account for
changes in groundwater storage, which can be a significant component of TWSA changes in
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high-intensity human-intervention basins. Future studies could incorporate additional data
sources, such as remote sensing data or groundwater monitoring networks, to improve the ac-
curacy of reconstructed TWSA.

Many studies have improved the performance of the physically-based hydrological models,
especially in region with considerable groundwater extraction, by assimilating GRACE obser-
vations (Eicker et al., 2014; Khaki et al., 2017; Kumar et al., 2016; Schumacher et al., 2018). Za-
itchik et al. (2008) assimilated GRACE data into a hydrological model to improve estimates of
groundwater recharge in the Mississippi River basin. The assimilation of GRACE data improved
the accuracy of the model, particularly during the drought period, and provided valuable infor-
mation on the spatial patterns of groundwater recharge. For example, The Global Land Data
Assimilation System (GLDAS) 2.21 DA model is the latest version of the GLDAS product, which
was released in 2021. The DA in the name refers to the Data Assimilation component of the
model. In this version, GLDAS uses the Community Land Model (CLM) version 4.5 as the land
surface model and assimilates various observational data sources into the model using the En-
semble Kalman Filter (EnKF) algorithm. GLDAS 2.21 DA model provides several variables, in-
cluding soil moisture, temperature, and snow water equivalent, at a spatial resolution of 0.25 °
and at a temporal resolution of three hours. The model has a global coverage and provides
data from January 2000 to the present. The GLDAS 2.21 DA model is useful for a range of ap-
plications, such as drought monitoring, flood forecasting, and climate modeling. The data is
publicly available and can be accessed through the NASA Earthdata website or the GLDAS web-
site.

Some recent studies have employed Machine Learning (ML) techniques to reconstruct GRACE
TWSA and in particular to hindcast TWSA back in time. These methods have shown promising
results in capturing the spatiotemporal patterns of TWSA and reducing the uncertainties as-
sociated with the GRACE data. One approach is to use Convolutional Neural Network (CNN),
a type of deep learning algorithm that extracts relevant features from input data using convo-
lutional filters. For example, (Sun et al., 2019), proposed a TWSA-CNN model that utilized a
3D CNN architecture to learn the temporal and spatial features of TWSA. The model achieved
good performance in reproducing TWSA with a correlation coefficient of 0.94 between the re-
constructed and observed TWSA.

Another machine learning technique that has gained popularity is Long Short-Term Memory
(LSTM), a type of recurrent neural network that can model the temporal dependencies of se-
quential data. (Wang et al., 2021) applied an LSTM-based model to reconstruct TWSA over the
period of 2002–2016, achieving a high correlation coefficient of 0.98 between the reconstructed
and observed TWSA. Another method that combines machine learning and spatial analysis is
the random forest algorithm with a spatially moving window structure. (Jing et al., 2020) used
this method to reconstruct TWSA over the period of GRACE and showed good performance in
capturing the spatial heterogeneity of TWSA. In addition, some studies have utilized a com-
bination of machine learning methods to improve the accuracy of TWSA reconstruction. For
example, (Sun et al., 2020) proposed a TWSA-MLs model that integrated Deep Neural Network
(DNN), Multiple Linear Regression (MLR), and Seasonal AutoRegressive Integrated Moving Av-
erage with exogenous variables (SARIMAX) methods. The model showed significant improve-
ment over individual methods in capturing the temporal and spatial patterns of TWSA.
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3.3. Global TWSA from models

3.3.1. Overview of the global models

The total amount of water on Earth is fixed while it continuously circulates between the oceans,
the atmosphere, cryosphere, and the land in the so-called water cycle. We count on global
models to predict the effects of human intervention and the environment on water resources
(Döll et al., 2016; Scanlon et al., 2018). Models, from a simple box model to a recent sophis-
ticated deep learning model, have been designed to enhance our understanding and acuity
of the Earth’s water system that occurs as an exchange between the terrestrial biosphere and
atmosphere. In general, three different groups of models have been developed, namely Land
Surface Models (LSMs), Global Hydrological Models (GHMs), and global atmospheric reanaly-
sis models.

LSMs, as a part of climate models, simulate processes happening at the Earth’s surface be-
tween the land surface and atmosphere. Such processes include the coupled fluxes of water,
energy, and carbon and incorporate the direct and indirect human interventions and ecologi-
cal dynamics (Fisher & Koven, 2020). Land surface models have expanded through time from
their simple biophysical configurations to including various units such as soil carbon cycling,
surface hydrological processes, soil moisture dynamics, and phosphorus cycling (Abramowitz
et al., 2008; Lawrence et al., 2019; Wiltshire et al., 2020; Yokohata et al., 2019). These expan-
sions have been driven by the needs of various users and the availability of satellite data and
projects such as FLUXNET (an international network of Eddy Covariance (EC) sites) (Stöckli
et al., 2008; Williams et al., 2009). Deardorff (1978) performed one of the first LSM assessments
for a wheat crop in the United Kingdom, utilizing fluxes derived from a few meteorological data
over two summer days. Since then, several models have been developed, including on-layer or
big-leaf models, also known as Penman-Monteith type models, two-layer models, and multi-
layer models (Figure 3.3).

Figure 3.3: Different type of LSMs from (a) Penman to (d) Multi-layer model (credit: Overgaard et al. (2006))

In response to global water scarcity problems, GHMs are developed using empirical water bud-
get approaches rather than a complex physical basis in LSMs (Döll et al., 2016; Scanlon et
al., 2018). Such models describe the spatio-temporal distribution of the water resources and
water stress under the impact of both human and natural mechanisms. Global hydrological
modeling is used to predict water fluxes in the Earth’s terrestrial regions, such as evapotran-
spiration, river discharge, groundwater recharge, and water storage (or merely water storage
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fluctuations) in various compartments, such as soil, groundwater, and surface water bodies
(Müller Schmied et al., 2021; Sood & Smakhtin, 2015; Sutanudjaja et al., 2018a). Although ac-
tual GHMs have few calibratable parameters, the recent advanced models are becoming more
complex, provide invaluable spatio-temporal estimates of global water resources, and help to
analyze possible projections/scenarios of changes in those estimates (Sood & Smakhtin, 2015).
A continuous improvement of modeling in the GHMs aims to reduce uncertainty, incorporat-
ing fine-scale satellite observations, calibrating/assimilating models, and downscaling in time
and space (Hoch et al., 2022; Schewe et al., 2019).

An atmospheric reanalysis model systematically monitors and forecasts the climate state by
combining models with observations. The data assimilation scheme and model(s) are un-
changed ("frozen") during the process, which enables a dynamically consistent estimate of the
states on the global scale (Dee et al., 2016). The reanalysis models contain a numerical descrip-
tion of the climate, including surface parameters such as rainfall, soil moisture content, and
sea surface temperature over a long period that can extend back several decades (Cucchi et al.,
2020; Muñoz-Sabater et al., 2021). Several groups have developed global atmospheric reanaly-
sis models, including the recent products of the JRA-55 produced by the Japan Meteorological
Agency (JMA) (Kobayashi et al., 2015), the MERRA-2 reanalysis from the NASA Global Modeling
and Assimilation Office (GMAO) (Gelaro et al., 2017), and the Climate Forecast System Reanal-
ysis (CFSR) produced by the National Centers for Environmental Prediction (NCEP) (Saha et
al., 2006; Saha et al., 2014) (for a comprehensive list of the reanalysis products please see Dee
et al. (2016)). Besides the mentioned models, the European Centre for Medium-Range Weather
Forecasts (ECMWF) has a long history with reanalysis products starting from 1979 with the First
GARP Global Experiment (FGGE) project (Bengtsson et al., 1982) and ERA-15 in the 1990s (Gib-
son, 1997), followed by ERA-40 from 2001 to 2003 (Uppala et al., 2005), ERA-Interim from 2006
to 2019, and finally the fifth generation, which is called ERA5 in 2019 (Hersbach et al., 2020).
A successive product aims for higher spatio-temporal resolution, incorporating more sophis-
ticated data assimilation techniques and delivering consistent estimates of the climate states
using the atmosphere, land surface, ocean sea ice, and carbon cycle (Hersbach et al., 2020).

3.3.2. Global models used in this study

In this study, we have employed in total 13 state-of-the-art datasets of Global Hydrological
Models (GHMs), Land Surface Models (LSMs), and atmospheric reanalysis models (Table 3.1).
Nine multi-decadal global water resources datasets were obtained from the eartH2Observe
Water Cycle Integrator (WCI; ftp://wci.earth2observe.eu (last access: 31 May 2021), including
PCR-GLOBWB, SURFEX-TRIP, HBV-SIMREG, HTESSEL-CaMa, JULES, LISFLOOD, ORCHIDEE,
SWBM, and W3RA. The output of these datasets are available at 0.5 ° spatial resolution over
the period 1979–2012. Beside datasets from eartH2Observe, we have included the Commu-
nity Land Model Version 5 (CLM5) with two standard forcing datasets, namely the Global Soil
Wetness Project forcing data set (GSWP3) and CRUNCEP (the combination of the Climate Re-
search Unit (CRU) and the National Centers for Environmental Prediction (NCEP)). The CLM5
datasets are at 0.5 ° spatial resolution covering the period 1901–2014 (for more detail about the
CLM5 model, please see Lawrence et al., 2019). The CLM5 products are accesible via Earth Sys-
tem Grid (ESG) (Oleson et al., 2019). We have also included the latest version of the WaterGAP
Global Hydrology Model (WaterGAP v2.2d) (Müller Schmied et al., 2021), covering the period
1901–2016 and at 0.5 ° spatial resolution. The outputs of the WaterGap v2.d are available at
(https://doi.pangaea.de/10.1594/PANGAEA.918447). Finally, we have included the fifth gener-
ation ECMWF atmospheric reanalysis of the global climate (ERA5) at 0.25 ° spatial resolution
which provide data from 1979 to present. The data is downloaded from the Copernicus Cli-
mate Change Service (C3S) at ECMWF (https://cds.climate.copernicus.eu)(last access: 30 May

ftp://wci.earth2observe.eu
https://doi.pangaea.de/10.1594/PANGAEA.918447
https://cds.climate.copernicus.eu
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2021). TWSA from models carries a higher spatial resolution and therefore values with higher
frequency. To set the same spectral content in models comparing to GRACE TWSA, we have
transferred the models outputs into the spectral domain and truncated the SHs to the maxi-
mum degree and order 96. Finally we recovered the TWSA fields from the truncated SHs.

Table 3.1: Summary of global models used in this study. GHM: Global Hydrological Model; LSM: Land Surface
Model; ReA: Reanalysis Model.

Model Time Period Data Provider Reference

G
H

M

WGHM 1901–2016 Goethe University Frankfurt Müller Schmied et al., 2021
PCRGLOB-WB 1979–2012 Utrecht University (UU) Sutanudjaja et al., 2018b; Wada et al., 2014
HBV-SIMREG 1979–2012 Joint Research Centre (JRC) Lindström et al., 1997
LISFLOOD 1979–2012 Joint Research Centre (JRC) Van Der Knijff et al., 2010
W3RA 1979–2012 CSIRO∗∗ Van Dijk, 2010
SWBM 1979–2012 Simple Water Balance Model Koster and Mahanama, 2012; Orth and Seneviratne, 2013

LS
M

CLM5 1940–2014 The Earth System Grid (ESG) at NCAR Lawrence et al., 2019
HTESSEL 1979–2012 ECMWF Balsamo et al., 2015
JULES 1979–2012 Centre for Ecology and Hydrology (CEH) Best et al., 2011; Clark et al., 2011
ORCHIDEE 1979–2012 French National Centre for Scientific Research Polcher et al., 2011
SURFEX-TRIP 1979–2012 Meteo France Decharme et al., 2013

R
eA ERA5 1979–2016 ECMWF∗ Hersbach et al., 2020

* ECMWF: European Centre for Medium-Range Weather Forecasts

** CSIRO: Commonwealth Scientific and Industrial Research Organisation

3.3.3. Assessment of the global models

To assess the consistency between models, we have computed the temporal RMS and the an-
nual trend from the models mentioned above within 1980–2012 for the 403 major river basins
(Figure 3.5). The envelope represents the range (minimum and maximum) of values across dif-
ferent models, and basins are grouped in different continents or sub-continents separated by
the white and gray background color. The basins within each sub-continent are sorted accord-
ing to the latitude of their center. In general, Figure 3.5 indicates high variation within models
in estimating the two principal components of the TWSA time series. The highest discrepancies
in RMS are observed in North America, north of South America, Australia, and southern Asia.
The same pattern can be observed in the annual trend estimation while considerable varia-
tions over North America and North Europe. Figure 3.5 highlights the need for considering a
combination selected models rather than a single model for estimating TWSA over a different
part of the world.

In order to assess the performance of the above-mentioned models over different climate cat-
egories, we have computed the correlation coefficient and the Nash–Sutcliffe model efficiency
coefficient (NSE) between each model with GRACE from 2003 to 2012 over the 403 major river
basins. The boxplots in Figure 3.6 illustrate the correlations in four different climate categories
(please see section 2.4 for details about the categories). On average, the highest correlations
(> 0.8) are obtained from JULES, followed by CLM5-GSWP3 and HTESSEL, while the lowest
correlations (< 0.75) are observed from HBV-SIMREG, followed by SURFEX-TRIP and W3RA. In
general, the correlation increases by the humidity so that arid to hyper-arid regions show the
lowest correlations between models and GRACE, while the highest correlations are achieved
over sub-humid to humid regions.

In terms of NSE, generally HTESSEL outperforms others (NSE = 0.53) followed by JULES (NSE =
0.50) and ORCHIDEE (NSE = 0.43). The highest variation of NSE among basins is observed
over the arid to hyper-arid regions among the CLM5 datasets, ERA5, and SWBM. For the arid
to hyper-arid category, most of the models have negative NSE values, indicating poor model
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Figure 3.4: Annual trend value of the TWSA over the global land (except for Greenland and Antarctica) from GRACE
(first row) and various models. The trend values are obtained during the period from 2003 to 2012.

performance. The only models that show positive NSE values are HTESSEL, ORCHIDEE, and
PCRGLOBWB. In the semi-arid category, all models have positive NSE values, indicating better
performance compared to the arid to hyper-arid category. The highest NSE value is observed
for the model JULES. In the Dry sub-humid category, all models have positive NSE values, and
the highest NSE value is observed for the model ERA5. Finally, in the humid category, most
models have positive NSE values, with the highest value observed for the model JULES. Over-
all, the results suggest that hydrological models perform better in regions with higher moisture
availability, such as Dry sub-humid and humid climates. This is expected, as the availabil-
ity of water is a critical factor in hydrological processes, and accurate representation of water
resources is necessary for accurate hydrological modeling. The results from Figure 3.6 and Fig-
ure 3.6 also support the conclusion mentioned earlier in this section regarding the importance
of model combination, as different models perform differently in different climatic regions,
and no single model performs consistently well across all regions.
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Figure 3.5: The Root Mean Square (RMS) and the annual trend from the models (hydrological, atmospheric, and
land surface) for the global major river basins, except Greenland and Antarctica, within 1980–2012. The envelope
shows the range of the variations, and the line with solid color represents the ensemble median of the models. Each
continent or subcontinent has been separated using the gray/white background shade, and within each continent
or subcontinent, the basins are sorted by latitude of the basins’ center point in ascending order.

Figure 3.6: Boxplot of the correlation coefficient between the models and GRACE over major basins within 2003–
2012 for different categories of climate regions.
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Figure 3.7: Boxplot of the NSE between the models and GRACE within 2003–2012 for different categories of climate
regions.
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3.4. Methodology

As it is shows in subsection 3.3.3, each model incorporates unique assumptions, algorithms, or
parameterizations, which can lead to distinct perspectives on the underlying processes driving
TWSA variations. By considering a broader set of models, we increase the likelihood of cap-
turing a wider range of TWSA patterns and potential sources of uncertainty. To combine the
models and estimate TWSA before GRACE era, we have calculated the ensemble mean (EM)
and the ensemble weighted mean (EWM) of the models. In addition to the ensemble mean
and ensemble weighted mean, we have evaluated six alternative approaches for hindcasting
GRACE TWSA using a combination of models. These approaches were considered to explore
potential variations and improvements beyond the ensemble-based methods. By investigating
a diverse range of modeling techniques, we aimed to capture a comprehensive understanding
of the complex dynamics involved in the GRACE TWSA hindcasting process. The six methods
include:

• Multivariate Linear Regression (MLR)

• Non-Negative Least Squares (NNLS)

• Support Vector Machine (SVM)

• Decision Tree (DT)

• Random Forest (RF)

• Gaussian Process Regression (GPR)

Multivariate Linear Regression (MLS) and Non-Negative Least Squares Regression (NNLS) are
the extensions of the classical Least Squares Regression (LSR) method. They differ in their ap-
proach to addressing the limitations of LSR and have specific advantages and limitations. MLS
extends the LSR method to multiple response variables, allowing for a more comprehensive
analysis of the relationships between multiple predictor and response variables. NNLS, on the
other hand, constrains the regression coefficients to be non-negative, which can result in a
more interpretable and easily understood model.

We employed a variety of machine learning techniques to analyze the relationships between
our predictor and response variables. We used Support Vector Machines (SVM), Decision Trees
(DT), Random Forest (RF), Gaussian Process Regression (GPR). SVM is a supervised learning
algorithm that constructs a hyperplane or a set of hyperplanes in a high-dimensional space to
separate the different classes in our dataset. DT and RF are also supervised learning algorithms
that create decision trees or a forest of decision trees to classify or regress our data. Gaussian
Process Regression (GPR) is a Bayesian non-parametric method that can also improve the ac-
curacy and precision of regression parameter estimates. Compared to MLS and NNLS, GPR
has the advantage of being able to capture nonlinear relationships between the predictor and
response variables. However, GPR can be more computationally intensive and require the se-
lection of a kernel function to model the covariance between the observations. In what follows,
each of these approaches are introduced.

3.4.1. The ensemble (weighted) mean

To enhance our comprehension and forecast of terrestrial water storage changes, we can utilize
GRACE data to hindcast TWSA data by integrating multiple models. One simple strategy to
incorporate these models is to employ an ensemble mean of the models, which functions as a
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benchmark for evaluating outcomes from other techniques. This ensemble mean is achieved
by averaging the output of each model, which helps to alleviate the impact of individual model
biases, errors, and uncertainties. Besides the ensemble mean, one can integrate models using
the weighted mean. In addition to the ensemble mean, models can also be integrated using a
weighted mean. Since the performance of the models varies over different regions and climate
(see subsection 3.3.3), a combination of models using different weights might have a better
performance. To accomplish this, we calculated the Root Mean Squared (RMS) of the GRACE
signal from 2003–2012 and compared it with the RMS from the models during the same period.
The inverse of the absolute difference between the RMS from the models and GRACE were then
used as their corresponding weights. The RMS is a measure of the overall agreement between
the GRACE observations and the models. Using this measure allows you to identify models that
closely match the observed GRACE data, indicating their potential accuracy in representing
the TWSA variations. Besides, by considering the differences between the RMS values, we are
effectively taking into account potential biases in the models. Models with systematic biases
that consistently deviate from the GRACE signal will have larger differences in their RMS values.

TWSAEWM =
∑n

i=1 wi ·TWSAi∑n
i=1 wi

(3.1)

wi = |RMSGRACE −RMSModel|−1 (3.2)

where n is the number of models, TWSAi represents the TWSA from model i , and wi represents
the weight associated with model i .

Figure 3.8 displays the time series of GRACE, the ensemble mean of the models (EM), and the
ensemble weighted mean (EWM) of the models across selected basins. The disparities between
GRACE and the ensemble models are negligible in certain basins such as Danube, Nile, and
Ob. Conversely, the ensemble models depicts considerable differences with the GRACE obser-
vations in the RMS of the signal in basins like Amazon, or the trend in basins such as Tigris,
Mackenzie, and Mississippi. In the results section, we compare the performance of such an en-
semble mean over the GRACE time period with other approaches. To compare results from dif-
ferent model categories, it is essential to calculate the ensemble mean for each category. This
is crucial because each category, namely Global Hydrological Models (GHMs), Land Surface
Models (LSMs), and Reanalysis models, operates under distinct assumptions and uses differ-
ent input data, resulting in diverse output. Therefore, calculating the ensemble mean for each
category of models provides a more precise and robust estimate of the TWSA. This approach
also helps to determine the strengths and weaknesses of each category of models accurately.

We compare the ensemble mean (EM) and the ensemble weighted mean (EWM) of three groups
of models - Global Hydrological Models (GHM), Land Surface Models (LSM), and Reanalysis
(ReA) - with GRACE over the major river basin within 2003-2012. We used three metrics to eval-
uate the models including Kling-Gupta Efficiency (KGE), Normalized Root Mean Squared Error
(NRMSE), and Mean Bias Error (MBE). The results are presented in Table 3.2 that provides a
comparison between EM and EWM for each of the three model groups across all basins and
four climate categories - arid to hyper-arid, semi-arid, Dry sub-humid, and humid. It appears
that the EWM performs slightly better than EM in terms of KGE and NRMSE for all three model
groups. However, for MBE, the performance of EWM is mixed. In the case of GHM and ReA,
the EWM performs slightly worse than EM, while for LSM, EWM performs slightly better than
EM. When considering the results by climate category, it appears that the performance of the
models varies depending on the climate category. For arid to hyper-arid, EWM performs better
than EM for all three model groups across all three metrics. However, for semi-arid and Dry
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sub-humid, the performance of EWM is mixed, and for humid, EM performs better than EWM
for all three model groups across all three metrics. The results suggest that using an ensem-
ble weighted mean can improve model performance in some cases, but the results may vary
depending on the model group and climate category.

Table 3.2: Performance comparison of ensemble mean (EM) and ensemble weighted mean (EWM) of different types
of models (Global Hydrological Models (GHM), Land surface Models (LSM) and Reanalysis Models (ReA)) in terms
of three metrics (KGE, NRMSE, and MBE) against GRACE TWSA over major river basins. The performance evalua-
tion is conducted separately for different climatic categories including arid, semi-arid, dry sub-humid, and humid.
The shaded cells represent the top three performance within each column for each metric and category while the
darker the color, the better the performance.

Metric EM-GHM EM-LSM EM-ReA EWM-GHM EWM-LSM EWM-ReA

al
lb

as
in

s KGE −11.34 −5.44 −9.21 −10.33 −5.11 −10.12
NRMSE 0.65 0.62 0.65 0.63 0.58 0.65

MBE 1.78 1.25 −0.70 1.47 1.00 −1.01

ar
id

KGE −2.39 −1.29 −0.75 −0.88 −0.70 −0.75
NRMSE 0.61 0.61 0.59 0.62 0.50 0.58

MBE 1.30 4.30 0.20 1.67 1.85 −0.90

se
m

i-
ar

id KGE −29.00 −13.86 −27.43 −32.29 −11.73 −29.85
NRMSE 0.62 0.61 0.64 0.62 0.58 0.64

MBE 3.49 1.67 0.81 2.71 0.99 0.45

d
ry

su
b

-h
u

m
id KGE −14.33 −7.80 −12.25 −12.75 −6.26 −14.68

NRMSE 0.44 0.44 0.47 0.42 0.38 0.51
MBE 10.01 4.64 6.48 9.28 5.18 8.03

h
u

m
id

KGE −5.18 −2.30 −2.73 −2.63 −2.96 −2.91
NRMSE 0.70 0.66 0.70 0.68 0.62 0.70

MBE −0.35 −0.02 −2.78 −0.50 0.10 −3.28
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Figure 3.8: Time series of TWSA obtained from GRACE compared with the one estimated from the models’ ensemble
mean (EM) and ensemble weighted mean (EWM) over selected basins.
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3.4.2. Multivariate Linear Regression

Multivariate Linear Regression (MLR) is a statistical method used for estimating the parameters
of a linear regression model with multiple independent variables. The history of MLS dates
back to the early 1800s, when it was first proposed by Carl Friedrich Gauss for the analysis of
astronomical data. Later, it was further developed by several statisticians, including Francis
Galton and Karl Pearson. The basic idea behind MLS is to find the coefficients that minimize
the sum of squared errors between the predicted and actual values of the dependent variable.
The formula for MLS is as follows:

y = Xβ+ϵ (3.3)

Where, y is the vector of dependent variable values, X is the matrix of independent variable
values, β is the vector of coefficients to be estimated, and ϵ is the vector of errors, which are
assumed to be normally distributed with mean zero and constant variance.

MLS has several advantages, including its ability to handle multiple independent variables and
to model complex relationships between variables. It also provides estimates of the coefficients
and their standard errors, which can be used to test hypotheses and construct confidence in-
tervals. However, MLS assumes that the errors are normally distributed and have constant
variance, which may not always be true in practice. Additionally, it can be sensitive to outliers
and multicollinearity among the independent variables.

3.4.3. Non-Negative Least Squares Regression

Non-Negative Least Squares (NNLS) regression is a method used for solving linear regression
problems where the coefficients are constrained to be non-negative. The basic idea behind
NNLS is to find the coefficients that minimize the sum of squared errors subject to the non-
negativity constraint. The history of NNLS dates back to the early 1970s, when it was first pro-
posed by Lawson and Hanson as a method for solving linear regression problems with non-
negative coefficients. Since then, NNLS has been widely used in various fields, including biol-
ogy, chemistry, and economics. The formula for NNLS is as follows:

min
β≥0

∣∣y−Xβ
∣∣2
2 (3.4)

Where, y is the vector of dependent variable values, X is the matrix of independent variable
values, β is the vector of coefficients to be estimated, subject to the constraint that β ≥ 0, |·|22
denotes the Euclidean norm.

NNLS has several advantages, including its ability to handle problems where the coefficients
must be positive, such as in signal processing and image analysis. It also provides a unique
solution and can be efficiently solved using iterative algorithms. However, NNLS assumes that
the relationship between the dependent and independent variables is linear, which may not
always be true in practice. Additionally, the non-negativity constraint may result in a biased
estimation of the coefficients.

3.4.4. Support Vector Machine

Support Vector Machines (SVMs) are a popular class of supervised learning algorithms that can
be used for classification and regression tasks. In the context of regression, the goal of SVM is
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to find a function f (x) that approximates the relationship between input features x and output
y , given a set of training examples (x1, y1), (x2, y2), ..., (xn , yn).

The SVM algorithm for regression involves finding a hyperplane in a high-dimensional feature
space that has the maximum margin from the training data. This hyperplane can be repre-
sented as:

f (x) = wTφ(x)+b (3.5)

where w is the weight vector, φ(x) is the feature mapping function that transforms the input
x into a higher-dimensional space, and b is the bias term. The feature mapping function is
usually determined by the choice of a kernel function, which defines the similarity between
two input data points in the high-dimensional space.

The kernel function plays a crucial role in the SVM algorithm, as it allows the algorithm to
find nonlinear relationships between the input features and output. The most commonly used
kernel functions for SVM regression are:

1. Linear kernel: K (x, x ′) = xT x ′

2. Polynomial kernel: K (x, x ′) = (xT x ′+ c)d

3. Radial Basis Function (RBF) kernel: K (x, x ′) = exp(−γ||x −x ′||2)

where c, d , and γ are hyperparameters that control the shape and complexity of the decision
boundary.

To find the optimal weight vector w and bias term b, the SVM algorithm minimizes a regularized
objective function that balances the margin and the loss incurred by violating the margin. The
objective function can be written as:

min
w,b

1

2
||w ||2 +C

n∑
i=1

Lϵ(yi , f (xi )) (3.6)

where ||w ||2 is the L2-norm of the weight vector, Lϵ is the epsilon-insensitive loss function that
penalizes the deviations of predicted values from true values by at least epsilon (ϵ), and C is
the regularization parameter that controls the trade-off between fitting the training data and
preventing overfitting.

3.4.5. Random Forest

Random Forest is a powerful machine learning algorithm that can be used for both classifica-
tion and regression tasks. It belongs to the family of ensemble learning algorithms that com-
bine multiple decision trees to form a single model. The Random Forest algorithm can be used
for regression tasks by averaging the predictions of multiple decision trees.

The algorithm works by first creating a set of decision trees using random subsets of the training
data and random subsets of the features. During the training phase, each tree is grown using a
portion of the training data, selected randomly with replacement (bootstrap sample). Then, at
each node of each tree, a subset of the features is randomly selected and the best split is made
using one of several criteria, such as Mean Squared Error (MSE) or Mean Absolute Error (MAE).
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The prediction of the Random Forest model for a new input x is obtained by averaging the
predictions of all the trees in the forest. For regression tasks, the predicted value ŷ is the average
of the predicted values of all the trees:

ŷ = 1

B

B∑
b=1

fb(x), (3.7)

where B is the number of trees in the forest, fb is the prediction of the b-th tree, and ŷ is the
final prediction.

The Random Forest algorithm can also be used to calculate the importance of each feature
in the dataset. Feature importance is a measure of how much each feature contributes to the
prediction of the model. The feature importance score I j for feature j is calculated by averaging
the reduction in the impurity measure (such as MSE or MAE) over all the trees in the forest that
use feature j for splitting:

I j = 1

B

B∑
b=1

∑
i∈Nb ( j )

wb pb(i )(yi − ȳ N b( j ))2, (3.8)

where Nb( j ) is the set of nodes that use feature j for splitting in the b-th tree, wb is the weight
of the b-th tree, pb(i ) is the proportion of samples that reach node i in the b-th tree, yi is the
true label of the i -th sample, and ȳ N b( j ) is the mean of the labels of the samples in node Nb( j ).

The Random Forest algorithm can be further enhanced by using different types of splits or by
combining it with other algorithms. For example, Random Forest with Extra Trees (Extremely
Randomized Trees) is a variant that uses extremely randomized splits instead of optimal splits,
resulting in faster training and lower variance at the cost of higher bias. Additionally, using
Random Forest as a feature selection method in combination with other algorithms such as
SVM or Gradient Boosted Trees can lead to improved performance.

3.4.6. Decision Tree

Decision Trees (DT) are a non-parametric supervised learning method used for both regression
and classification problems. In regression problems, DT is used to approximate the mapping
function between input features and target values. The idea behind DT is to recursively split
the input space into smaller regions using a set of rules based on the input features until the
resulting regions become homogeneous with respect to the target variable.

The splitting of the input space is performed using a tree-like structure where the internal
nodes represent the splitting rules based on the input features, and the terminal nodes, also
called leaves, represent the resulting regions with the corresponding target values. DT can be
trained using a top-down greedy approach called recursive binary splitting. The idea is to select
the best feature and the corresponding split value that best separates the target variable in the
input space.

The quality of the split is evaluated using a criterion that measures the impurity of the resulting
regions. One commonly used impurity measure is the mean squared error (MSE). Once a split is
performed, the process is recursively applied to each resulting region until a stopping criterion
is met, such as a maximum depth of the tree or a minimum number of samples required to split
a node.
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One limitation of DT is that it tends to overfit the training data, resulting in poor generalization
performance on unseen data. One way to address this issue is to use ensemble methods such as
Random Forest (RF) that combine multiple DT models to improve the predictive performance.

In summary, the main steps involved in training a DT model for regression are:

1. Split the input space using a set of rules based on the input features.

2. Evaluate the quality of the split using an impurity measure, such as the mean squared
error.

3. Recursively apply the splitting process to each resulting region until a stopping criterion
is met.

4. Use the resulting regions as leaves with the corresponding mean target values as predic-
tions.

3.4.7. Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric Bayesian regression method used for
modeling and predicting complex nonlinear relationships between variables. The history of
GPR dates back to the early 1950s, when it was first introduced by Andrey Kolmogorov as a tool
for modeling random processes. Later, it was further developed by several researchers, includ-
ing David MacKay and Carl Rasmussen, who introduced the concept of Bayesian inference in
GPR. Today, GPR is widely used in various fields, including engineering, finance, and biology.
The basic idea behind GPR is to model the target variable as a Gaussian process, which is a
collection of random variables, any finite number of which have a joint Gaussian distribution.

GPR has several advantages, including its ability to model complex nonlinear relationships and
to provide a probabilistic estimate of the predictions, which can be used to construct confi-
dence intervals. It also has the ability to handle missing data and to incorporate prior knowl-
edge into the model. However, GPR can be computationally expensive and may suffer from
overfitting if the covariance function is not properly specified. The formula for GPR is as fol-
lows:

y = f (x)+ϵ (3.9)

Where, y is the target variable to be predicted, f (x) is the latent function, which is modeled
as a Gaussian process, x is the vector of input variables, ϵ is the random error term, which is
assumed to be normally distributed with mean zero and constant variance. The latent function
values are assumed to follow a multivariate Gaussian distribution with a mean of zero and a
covariance matrix K, where Ki j = k(xi ,x j ) is the kernel function evaluated at inputs xi and x j .
The noise values are also assumed to follow a multivariate Gaussian distribution with a mean
of zero and a covariance matrix σ2

nI, where σ2
n is the noise variance and I is the identity matrix.

The formula for the prediction of the target variable at a new input x∗ is:

ŷ∗= k∗⊤K−1y (3.10)

where k∗ is the vector of kernel values between x∗ and each training input.

In matrix form, the main formula for GPR can be written as:
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[
y f∗]∼N

(
0,

[
K+σ2

nI K∗ K∗⊤ k∗∗])
(3.11)

where f∗ is the vector of latent function values at the new input, K∗ is the vector of kernel values
between the training inputs and the new input, and k∗∗ is the kernel value at the new input.
The formula for the prediction of the target variable at a new input can be written as:

ŷ∗= k∗⊤(K+σ2
nI)−1y (3.12)

where the inverse of the covariance matrix is used to compute the weights of the linear com-
bination of training targets, as determined by the kernel similarity between the training inputs
and the new input. The kernel function is seen in the calculation of the covariance matrix K and
the kernel vectors K∗ and k∗∗. The choice of kernel or covariance function plays a crucial role
in modeling the relationship between the input variables and the target variable. The kernel
specifies the similarity between any two input variables, and thus determines the smoothness
and shape of the underlying function that is being modeled by the Gaussian process. A kernel
function must be positive semi-definite to ensure that the resulting covariance matrix is also
positive semi-definite. There are several commonly used kernel functions in GPR, including:

1. Radial Basis Function (RBF) kernel: This is the most commonly used kernel function in
GPR, and it assumes that the function being modeled is smooth and continuous. The RBF
kernel has a single length scale hyperparameter, which controls the degree of smooth-
ness of the function.

2. Matérn kernel: The Matérn kernel is a more flexible kernel that can model functions with
varying degrees of smoothness. It has two hyperparameters: the length scale and the
smoothness parameter.

3. Periodic kernel: The periodic kernel is used when the function being modeled has a re-
peating pattern. It has a single hyperparameter, which controls the period of the func-
tion.

4. Linear kernel: The linear kernel assumes that the function being modeled is linear. It has
no hyperparameters.

GPR involves estimating the hyperparameters of the Gaussian process, which include the length
scale and the amplitude of the covariance function. The covariance function determines the
similarity between the input variables and is typically chosen based on prior knowledge of the
problem.

3.4.8. Selecting the Kernel and Hyperparameters

The selection of the kernel function and hyperparameters is contingent upon the nature of the
modeled problem and the available prior knowledge. Certain kernels may be better suited for
specific types of data, for instance, the periodic kernel for data exhibiting periodic patterns.
Gaussian Process Regression (GPR) and Support Vector Machine (SVM) are two powerful al-
gorithms used for regression problems in Machine Learning. One of the key factors that con-
tribute to their effectiveness is the use of a kernel function. In GPR, the kernel function plays
a crucial role in defining the covariance structure of the prior distribution over the function
values. It determines the similarity between any two points in the input space, and hence how
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strongly their output values are correlated. The choice of kernel function reflects the assump-
tions made about the underlying function, such as smoothness or periodicity. Popular choices
of kernel functions in GPR include the RBF kernel and the Matérn kernel.

Similarly, in SVM, the kernel function serves as a mapping between the input space and a higher
dimensional feature space, where the linearly non-separable problem can be solved. The ker-
nel function measures the similarity between any two points in the input space, and the SVM
algorithm uses this similarity to find the optimal separating hyperplane. By choosing an ap-
propriate kernel function, the SVM algorithm can capture complex nonlinear relationships
between the input features and the output variable. Common kernel functions used in SVM
include the RBF kernel, polynomial kernel, and sigmoid kernel.

In this study, we have incorporated the most prevalent kernels for GPR. We have considered a
variety of kernels, ten in total, such as exponential, squared-exponential, Matern32, Matern52,
rational quadratic, ard-exponential, ard-squared-exponential, ard-Matern32, ard-Matern52,
and ard-rational quadratic. We have also employed four different kernels for SVM including
Gaussian, Radial Basis Function (RBF), linear, and polynomial kernel. For each kernel, the hy-
perparameters that yield optimal performance during the training period are selected. For each
river basin, we have computed ten reconstructions of TWSA resulting from the kernels, utilizing
the best hyperparameter choices.

Hyperparameters are parameters that are set before the model training process, unlike model
parameters, which are learned during the training process. Other than kenel type, examples
of hyperparameters include learning rate, regularization strength, number of hidden layers.
The values of hyperparameters significantly impact the model’s performance, and the optimal
values vary depending on the specific problem and dataset. In general, the hyperparameter
tuning process involves selecting a range of values for each hyperparameter and evaluating the
model’s performance for each combination of hyperparameters.

Common approached for hyperparameter tuning are:

• Grid search: a grid of hyperparameters is defined, and the model is trained and evaluated
for each combination of hyperparameters in the grid.

• Random search: hyperparameters are randomly sampled from a distribution, and the
model is trained and evaluated for each combination of hyperparameters.

• Maximum likelihood estimation (MLE): a commonly used method for hyperparameter
tuning in machine learning algorithms. MLE is a statistical method that seeks to find
the values of hyperparameters that maximize the likelihood of the observed data given
the model. In other words, MLE estimates the values of hyperparameters that make the
model most likely to have generated the observed data.

• Bayesian optimization: a probabilistic model is used to model the performance of the
model as a function of the hyperparameters. The probabilistic model is then used to
select the next set of hyperparameters to evaluate, based on the expected improvement
in the model’s performance.

In this study we have employed the Bayesian optimization approach to tune the hyperparame-
ters for each algorithm. Bayesian optimization is a powerful method for tuning hyperparame-
ters in machine learning algorithms because it combines the benefits of both random and grid
search methods. Unlike grid search, Bayesian optimization does not require a predefined grid
of hyperparameters to explore. Instead, it models the performance of the model as a function of
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the hyperparameters and uses this model to select the next set of hyperparameters to evaluate.
This approach allows the algorithm to focus on promising areas of the hyperparameter space
and quickly eliminate unpromising regions. Moreover, Bayesian optimization provides a prob-
abilistic model of the model’s performance that can be used to estimate the uncertainty of the
performance estimate, which is valuable for making decisions about which hyperparameters
to use in the final model.

3.5. Results

3.5.1. Training period sensitivity

The duration of the training period is a critical aspect to consider when training and assess-
ing a statistical model. Generally, an increase in the length of the training data is likely to lead
to improved model performance, as it enables the model to capture the patterns and interre-
lationships in the data more accurately and glean more information. However, an excessive
amount of training data may result in overfitting, where the model becomes too specialized to
the training data and fails to generalize to new data. Therefore, it is essential to strike a balance
between using sufficient training data to achieve good performance and avoiding overfitting.
The optimal length of the training data depends on various factors, including model intricacy,
the amount and quality of available data, and the specific problem under consideration. Con-
ducting experiments with different training durations can assist in determining the ideal length
for a particular model and problem.

We assessed the performance of the six different methods for reconstructing TWSA over major
river basins using varying training periods ranging from two to eight years. Figure 3.9 displays
the performance of these six methods, indicating that the mean NRMSE for all methods does
not vary significantly as the training period decreases. Among the methods, the multiple linear
regression (MLR) and Gaussian process regression (GPR) methods displayed the lowest mean
NRMSE across all training periods. In contrast, the support vector machine (SVM) and deci-
sion tree (DT) methods exhibited higher mean NRMSE, indicating a lower accuracy in TWSA
estimation, particularly for shorter training periods. In general, it appears that the SVM and DT
models are more sensitive to the length of the training period, while the MLR and GPR models
are less so.

We conducted a similar analysis by grouping basins into four climate categories, revealing that
the methods’ performance varies across different climatic regions and training period lengths.
We found that the performance of all models generally improves as the training period length-
ens for all climate categories. However, the rate of improvement varies for each model and
climate category. For the arid to hyper-arid category, the SVM and DT models appear to be the
most sensitive to the length of the training period, with their performance improving signif-
icantly as the training period lengthens. For the semi-arid category, the SVM model is again
the most sensitive, followed by the DT model. For the dry sub-humid category, the SVM model
shows the most considerable improvement with an increase in training period length, followed
by the DT model. For the humid category, the SVM and DT models again appear to be the most
sensitive to training period length. It is also noteworthy that the MLR model displays the least
sensitivity to training period length for all climate categories. The GPR model also exhibits low
sensitivity, especially for the humid and dry sub-humid categories.

3.5.2. Cross-Validation analysis

Cross-validation is a crucial technique in machine learning and data analysis, which plays a
vital role in assessing model accuracy and robustness. In K -fold cross-validation, the data is
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Figure 3.9: Boxplot comparing the NRMSE of six algorithms, including Decision Tree, Gaussian Process Regression
(GPR), Multivariate Linear Regression (MLR), Non-negative Least Squares (NNLS), Random Forest (RF), and Sup-
port Vector Machine (SVM), for different training periods ranging from 2 to 8 years.

partitioned into K equally sized subsets or "folds". The model is trained on K −1 of these folds
and tested on the remaining fold. This process is repeated K times, with each fold being used
exactly once as the testing data. The results from each iteration are then averaged to estimate
the model’s overall performance. K -fold cross-validation provides a more accurate estimate
of the model’s performance compared to simple partitioning of the data into a single training
and testing set since it uses all the data for both training and testing. Moreover, K -fold cross-
validation can also help identify whether the model is overfitting or underfitting the data. If the
training error is much lower than the testing error, it suggests overfitting, which may result in
poor generalization to new data. Conversely, if both the training error and testing error are high,
it indicates underfitting, meaning that the model is unable to capture the underlying patterns
in the data.

For a time series dataset like TWSA, where the order of the data points matters, it is impor-
tant to use a variation of cross-validation called time series cross-validation. Time series cross-
validation takes into account the temporal aspect of the data and ensures that the model is
evaluated on data that it has not seen before in time. One common approach to time series
cross-validation is to use a sliding window approach. In this approach, you split the time series
data into multiple segments or folds, where each fold consists of a certain number of consec-
utive time points. You can then use each fold as the test set and the remaining data as the
training set. In this study, GPR was used to estimate TWSA using various models as features,
with GRACE data serving as the target variable. The number of folds to use in time series cross-
validation depends on the length of the time series and the size of the segments you want to
use. To evaluate the performance of the models, cross-validation was applied using K-folds
equal to 10. The study utilized a time series data spanning 120 months from 2003 to 2012,
which provided a sufficient duration for robust model evaluation.

The performance of the various models on the training and testing sets for the major river
basins is presented in Figure 3.10 and Figure 3.11. The results demonstrate that most of the
models exhibit good performance on both the training and testing sets, indicating that they
are able to capture the underlying patterns in the data and generate accurate predictions on
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new data. However, there are some discrepancies in the performance of the Decision Trees and
SVM models between the training and testing sets, suggesting potential overfitting or under-
fitting issues. To address these issues, we employed L2 regularization, also known as weight
decay, which is a technique that adds a penalty term to the loss function of the model to con-
strain the weights of the model during training (Cortes et al., 2012). By adding this penalty
term, we encourage the model to produce simpler and smoother solutions that generalize bet-
ter to new data, thereby reducing the potential for overfitting or underfitting. L2 regularization
is particularly effective in controlling overfitting by shrinking the weights towards zero, which
reduces their influence on the predictions and makes the model more robust.

Figure 3.10: The figure shows the average NRMSE obtained from K -fold cross-validation for the training and test-
ing sets of Ensemble Weighted Mean (EWM), Non-Negative Least Squares (NNLS), Multivariate Linear Regression
(MLR), and Decision Tree (DT) over the major river basins.
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Figure 3.11: The figure shows the average NRMSE obtained from K -fold cross-validation for the training and testing
sets of Random Forest (RF), Support Vector Machine (SVM), and Gaussian Process Regression (GPR) over the major
river basins.

3.5.3. Assessing the performance of kernels

To derive a quantitative measure of the Kernels performance variability, we have computed the
Coefficient of Variation (CV) of TWSA estimates from all kernels at each time step. Figure 3.12
portrays the mean coefficient of variation from various kernels, both from GPR and SVM, across
major river basins during the period spanning April 2002 to December 2012. Overall, the results
suggest that GPR and SVM are relatively insensitive to the choice of kernels, as evidenced by the
similar CV values across different kernels. This suggests that the choice of kernel may not be
critical for achieving accurate TWSA estimates using these methods. However, the sensitivity
of GPR and SVM to kernel choice does appear to vary somewhat across different climate cate-
gories. For example, in arid to hyper-arid regions, both GPR and SVM exhibit relatively low CV
values across all kernel types, suggesting that these methods are relatively robust in these re-
gions. In contrast, in semi-arid regions, both GPR and SVM exhibit higher CV values, suggesting
that the choice of kernel may have a greater impact on TWSA estimates in these regions. There
also appears to be some differences in the sensitivity of GPR and SVM to kernel choice. For ex-
ample, in humid regions, GPR exhibits a higher mean CV value compared to SVM, suggesting
that GPR may be more sensitive to the choice of kernel in these regions.

3.5.4. Comparison with SLR

Satellite Laser Ranging (SLR) is a powerful geodetic technique that can be used to measure the
precise range between a satellite and ground-based receivers using laser beams. SLR observa-
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Figure 3.12: Performance comparison of GPR and SVM using various kernels and optimized hyperparameters. The
averaged Coefficient of Variation (CV) is shown for each kernel over major river basins. Additionally, boxplots of the
average CVs among the four climate categories are shown for each method.

tions can be used to infer changes in the Earth’s gravitational field, which are primarily caused
by the redistribution of water, ice, and atmospheric mass. SLR provides a valuable method
to estimate temporal gravity fields prior to the GRACE mission. While SLR solutions contain
more noise in higher degrees compared to GRACE solutions, they allow for high-resolution
estimates of temporal gravity fields in the pre-GRACE period. This approach can be used to
validate the performance of models that estimate TWSA before the launch of GRACE. Löcher
and Kusche (2021) developed a new hybrid approach that combines SLR observations with the
leading GRACE empirical orthogonal functions to produce high-resolution temporal gravity
fields for the period between 1992 and 2020. This approach allows for high-resolution esti-
mates of temporal gravity fields with up to 60 ° resolution, enabling us to estimate TWSA vari-
ations in large basins, such as the Amazon, with high accuracy. The data can be downloaded
from https://www.apmg.uni-bonn.de/daten-und-modelle/slr. We followed the approach uti-
lized by Li et al. (2021) and compared the results from SLR first with GRACE. To this end, we
found the reliable grid cells that was introduced in Li et al. (2021) and also reliable basins by
comparing the time series of the TWSA from SLR with the GRACE observation (Figure 3.13(a)
and Figure 3.13(b)). Considering the criterian of strong correlation, in our case larger than 0.8,
we selected 112 basins out of 403 major river basins (Figure 3.13(c)).

The boxplot of correlation values (Figure 3.14) over the reliable basins shows that the mod-
els have varying performance across different regions, with some regions showing consistently
high correlation values and others showing more variability. All the models are able to cap-
ture the variability in the observed TWSA, as evidenced by the moderate to high correlation
coefficients obtained for both time periods. The MLR, NNLS, DT, RF, SVM, and GPR models
all perform similarly, with average correlation coefficients ranging from 0.80 to 0.86, indicating
their effectiveness in capturing the dynamics of TWSA. Interestingly, the ensemble mean and

https://www.apmg.uni-bonn.de/daten-und-modelle/slr


3

94 3. Hindcasting GRACE(-FO)

ensemble weighted mean methods perform similarly to the individual models, suggesting that
introducing weights may not necessarily lead to better performance. Additionally, it is notewor-
thy that the GRACE satellite mission, which directly measures changes in TWSA, outperforms
all the models, with a correlation coefficient of 0.87 for the GRACE time period.

(a) (b)

(c)

Figure 3.13: (a) Pixel-wise and (b) basinwise correlations between Satellite Laser Ranging (SLR) TWSA and GRACE(-
FO) TWSA for the period from April 2002 to the end of 2021. (c) Basins with reliable correlation coefficient (r ≥ 0.8)
are highlighted in blue.

Nov. 1992 — Dec. 2012 Jan. 2003 — Dec. 2012

Figure 3.14: Boxplots of correlation coefficients between SLR TWSA and the results of various models over selected
(reliable) river basins. The left plot shows the correlation between Nov. 1992 to Dec. 2012, while the right plot shows
the correlation between Jan. 2003 to Dec. 2012, with the boxplot for the comparison between GRACE and SLR also
included.
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3.5.5. Comparison with GRACE

We compared the performance of various methods against GRACE in reconstructing TWSA
over major river basins from 2003-2012. To assess the efficacy of each method, we utilized
three metrics: KGE, NRMSE, and Mean Bias Error (MBE). KGE provides an overview of over-
all performance, while NRMSE quantifies the difference between the GRACE TWSA, taken as
truth, and the reconstructed TWSA. Finally, MBE indicates the overall direction of the error,
whether overestimation or underestimation. The results for KGE, NRMSE, and MBE over the
major river basins, excluding Greenland and Antarctica, are depicted in Figures 3.15, 3.16, and
3.17, respectively.

Table 3.3 presents the results of comparing the performance of different methods with GRACE
for reconstructing TWSA across all basins and specific basin types, namely arid to hyper-arid,
semi-arid, dry sub-humid, and humid. The table shows the KGE, NRMSE, and MBE values for
eight different methods, namely EM, EWM, MLR, NNLS, DT, RF, SVM, and GPR. We found that
MLR and GPR showed the best overall performance in KGE and NRMSE, respectively. How-
ever, GPR consistently shows the best performance in most of the basins, except for arid to
hyper-arid regions where MLR showed better performance in KGE. SVM and DT has poor per-
formance in most of the basins.

The results of the comparison show that the performance of the different methods varies de-
pending on the climate conditions of the region being analyzed. In the arid to hyper-arid re-
gions, the MLR and NNLS methods show comparable results with the GPR method, while in
semi-arid regions, the MLR and NNLS methods perform poorly. In the humid regions, the GPR
and DT methods perform the best, while the MLR and NNLS methods perform poorly. It is also
interesting to note that the Ensemble Mean (EM) method, which is the simplest and most naive
method used as a baseline, performs poorly in all climate regions compared to the other meth-
ods. This suggests that the more advanced and sophisticated methods used in this study are
necessary to accurately reconstruct TWSA in different regions and climates. Overall, the results
suggest that the choice of method for reconstructing TWSA should be made with consideration
of the specific climate conditions of the region being analyzed. The MLR method may be a
good choice for dry sub-humid regions, while the GPR method may be a good choice for most
regions.
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Table 3.3: Performance comparison of various approaches for hindcasting GRACE in terms of three metrics (KGE,
NRMSE, and MBE) against GRACE TWSA over major river basins. The performance evaluation is conducted sep-
arately for different climatic categories including arid, semi-arid, dry sub-humid, and humid. The shaded cells
represent the top three performance within each column for each metric and category while the darker the color,
the better the performance.

Metric EM EWM MLR NNLS DT RF SVM GPR

al
lb

as
in

s KGE −6.46 −5.45 0.92 −2.64 0.90 0.38 −0.07 0.94
NRMSE 0.60 0.58 0.31 0.43 0.32 0.15 0.31 0.19

MBE 1.03 0.79 0.00 −0.14 0.00 −0.08 0.19 0.00

ar
id

KGE −2.48 0.06 0.93 0.46 0.93 0.89 0.83 0.94
NRMSE 0.58 0.50 0.30 0.38 0.29 0.15 0.28 0.20

MBE 3.21 1.00 0.00 0.20 0.00 −0.11 0.27 0.00

se
m

i-
ar

id KGE −17.67 −14.26 0.91 −6.55 0.89 −0.24 −0.94 0.92
NRMSE 0.60 0.57 0.32 0.42 0.32 0.16 0.31 0.21

MBE 1.82 1.06 0.00 −1.12 0.00 −0.09 0.57 0.00

d
ry

su
b

-h
u

m
id KGE −9.35 −7.19 0.96 −2.98 0.96 0.48 −0.97 0.97

NRMSE 0.42 0.40 0.21 0.28 0.21 0.11 0.28 0.15
MBE 5.75 6.29 0.00 2.90 0.00 0.11 0.14 0.00

h
u

m
id KGE −2.10 −2.50 0.91 −1.51 0.89 0.53 0.31 0.94

NRMSE 0.65 0.62 0.32 0.46 0.34 0.16 0.32 0.19
MBE −0.49 −0.36 0.00 −0.37 0.00 −0.10 0.03 0.00
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Figure 3.15: Global distribution of Kling-Gupta Efficiency (KGE) values for major river basins (excluding Greenland
and Antarctica) obtained from the comparison between the reconstructed TWSA from various methods and GRACE
during 2003–2012. Higher KGE values indicate better agreement between the reconstructed TWSA and GRACE
measurements.
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Figure 3.16: Global distribution of NRMSE values for major river basins (excluding Greenland and Antarctica) ob-
tained from the comparison between the reconstructed TWSA from various methods and GRACE during 2003–2012.
Lower NRMSE values indicate better agreement between the reconstructed TWSA and GRACE measurements.
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Figure 3.17: Global distribution of Mean Bias Error (MBE) values for major river basins (excluding Greenland and
Antarctica) obtained from the comparison between the reconstructed TWSA from various methods and GRACE
during 2003–2012. Positive values shows over estimation and negative values indicate underestimation.
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4.1. Introduction

The terrestrial water cycle consists of groundwater, surface water, soil moisture, canopy water,
snow, and ice. The sum of the mentioned compartments is defined as the Total (Terrestrial) Wa-
ter Storage (TWS). Despite its tendency to remain range-bound, the TWS has shown some sig-
nificant negative trends (water loss), especially in regions with over-exploitation of the ground-
water (Castellazzi et al., 2016; Joodaki et al., 2014; Voss et al., 2013) and where the ice sheets
and glaciers are melting as a consequence of climate change (Khan et al., 2010; Velicogna et al.,
2020). Moreover, positive trends (water gain) are also observed over vast regions of Africa and
the Amazon while progressing from dry to wet periods (Huang et al., 2015; Seyoum, 2018; Syed
et al., 2008). Accurate accounting of the TWS gain (or loss) is essential for sustainable water
resource management, assessment of the water scarcity, ensuring the food supply cycle, and
energy generation (Rodell et al., 2018).

GRACE(-FO) missions have delivered an unprecedented monthly measurement of the TWS
anomaly at the continental and regional scales over the last two decades. GRACE(-FO) ob-
servations have been employed in several studies to quantify the TWS change together with
its uncertainty at a global to regional scale (e.g., Joodaki et al., 2014; Pokhrel et al., 2021; Rea-
ger & Famiglietti, 2013; Rodell et al., 2018; Wang et al., 2018). Figure 4.1 shows the long-term
trend of TWSA observed from GRACE(-FO) from 2003 to the end of 2021. To calculate the lin-
ear trend, we have used ordinary least squares regression and the NASA Goddard Space Flight
Center (GSFC) mascon solution. Significant water storage loss has occurred over Greenland,
the Middle East, Central Asia, the Indian sub-continent, the east and south of South America,
western Canada, and states like California and Texas in the US. In contrast, regions like the
Amazon, large parts of Africa (except for North Africa), and the Great Lakes basin have gained
considerable water.

Figure 4.1: Annual trend of TWSA from 2003 to 2021. The mascon solution by the the NASA Goddard Space Flight
Center (GSFC) has been used https://earth.gsfc.nasa.gov/geo/data/grace-mascons.

In this chapter we analyze the total water storage variation. According to the Merriam-Webster
dictionary, Analysis is "a detailed examination of anything complex to understand its nature
or to determine its essential features". Moreover, as its second meaning, Analysis is the act of
separating a whole into its components. Following the mentioned definitions, i.e., to analyze
the water storage variation, this chapter quantifies the TWS change from 2003 to the end of
2021. Moreover, we have analyzed the water storage change’s three components: precipitation,
evapotranspiration, and runoff. All the analyses are presented over the main sub-continents
and the major river basins. Finally, further investigations are presented over Iran and its major
river basins using auxiliary data like precipitation gauges and piezometric groundwater wells.

https://earth.gsfc.nasa.gov/geo/data/grace-mascons
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4.2. Study areas

In this chapter, we analyzed GRACE data in three different study areas, ranging from sub-
continents to major river basins and finally over Iran, to demonstrate the versatility of using
this data at different regional scales. By considering different regional scales, we were able to
gain a better understanding of the spatial and temporal variability of water resources, and how
they are impacted by factors such as climate change and human activities. This information is
crucial for making informed decisions regarding water management and resource allocation,
particularly in regions where water scarcity is a pressing issue.

4.2.1. Sub-continents

We have divided the global land into 16 sub-continental regions, excluding Greenland, Antarc-
tica, Southeastern Asia, and Northern Asia (Figure 4.2). The boundaries are taken from the
United Nations geo-scheme, devised by the United Nations Statistics Division (UNSD). We
have deliberately excluded Antarctica, Greenland, Siberia, and the east and north of Russia as
their TWSA signal includes significant contributions from phenomena like the permafrost or
extensive glacier melting, which is beyond the scope of our study. Moreover, we have excluded
southwestern Asia due to the considerable contamination of leaked signals from the ocean.

North America

Central America

South America

North Europe

West Europe

South Europe

East Europe

North Africa

West Africa

South Africa

East Africa

Central Africa

Middle East

Central Asia

Indian Sub-continent

Australia

Figure 4.2: Global distribution of the sub-continents selected in this study.

4.2.2. Major river basins

To investigate the TWS loss (gain) at the basin scale, 405 major global river basins are selected.
The distribution of the basins is shown in Figure 4.3. We use the categories introduced in sec-
tion 2.4 to analyze the results, including the basins’ size, climate, latitude zone, and the signal’s
RMS. For the characteristics of the basins in terms of the mentioned categories, please see Fig-
ure 2.6.
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Figure 4.3: Global distribution of the selected basins.

4.2.3. Iran

Iran has an area of about 1.7 million km2 and is located in the south-west of Asia (Figure 4.4).
The country’s main water bodies include the world’s largest (by area) inland water body called
the Caspian Sea in the north, the Persian Gulf and the Sea of Oman in the south, and Lake
Urmia in the northwest. Two large mountain ranges cover 60 % of the area: the Alborz chain
running from the northwest to the northeast along the southern edge of the Caspian Sea and
the Zagros range, which runs from the northwest southward to the shores of the Persian Gulf.
The central part of the country is covered by two large deserts: Dasht-e Kavir ( 77 600 km2) and
the Lut Desert (Dasht-e Lut) ( 51 800 km2), which are the world’s 24th and 25th-largest deserts.
Iran is divided into six main water basins, which are subdivided into 30 major river basins.
The characteristics of the river basins are listed in Table 4.1. The first digit in the basin’s ID
represents the number of 6 major basins in Iran, and the second indicates the sub-basins.
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Figure 4.4: Elevation map of the Middle East including Iran.

In terms of climate, Iran is located in the subtropical high-pressure belt of the Earth. However,
the variety of topographic regions, with heights varying from 25 m to 5600 m, has led to a wide
range of climates across the country. Most of the country is arid (65 %) to semi-arid (20 %) with
sweltering summers in the central and southern coastal regions. In contrast, only 15 % is hu-
mid, mainly in regions close to the Caspian Sea and partly in areas close to the Persian Gulf
and Sea of Oman (Madani, 2014) (Figure 4.5 (a)). Using the data from Global Precipitation Cli-
matology Centre (GPCC), the long-term (1960–2016) mean annual precipitation for the entire
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country is around 225 mm (∼ 370 km3), while precipitation can be as low as 50 mm in deserts
and exceed 1500 mm in the northern side of the Alborz Mountain range and the coastal areas
of the Caspian Sea (Figure 4.5 (b)). In terms of annual precipitation, Iran ranked 158 among
189 countries over 1960–2016 period using GPCC as the reference dataset. Around 30 % of the
total precipitation falls in the form of snow (Mousavi, 2005). However, this share seems to be
declining over the last decade (Araghi & Mousavi-Baygi, 2020). About 70 % of the precipitation
is lost through evaporation (Lehane, 2014).
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Figure 4.5: (a) Köppen-Geiger climate classification map (1980–2016) based on calculations by Beck et al. (2018),
and (b) Spatial distribution of mean annual precipitation using long-term (1980–2016) precipitation data from
GPCC. Borders and numbers inside the country represent the 30 major river basins in Iran, listed in Table 4.1.
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Table 4.1: Iran’s major river basins and their areas. Mean annual precipitation and discharge were calculated for
each basin from ERA5 dataset for the period from 1983 to 2019.

ID name area mean annual mean annual

[103 km2] precipitation [cm/yr] discharge [cm/yr]

11 Aras 41 16.5 6.5
12 Talesh 7 51.5 50.9
13 Sefidrood 60 26.5 5.5
14 Haraz-Sefidrood 11 27.0 15.5
15 Haraz 19 31.0 18.5
16 Gharesoo 13 15.5 3.5
17 Atrak River 27 17.0 1.5

21 West-border 39 32.5 9.0
22 Karkheh 50 30.5 7.0
23 Karun 64 40.5 23.0
24 Jarahi and Zohreh 38 23.5 9.5
25 Helle 20 21.0 3.5
26 Mand 44 18.5 1.5
27 Mehran-Kal 58 13.5 1.0
28 Bandar Abbas 41 9.5 0.5
29 South Baluchestan 44 10.5 0.2

30 Lake Urmia 53 23.0 0.0

41 Salt Lake 91 19.5 2.0
42 Gavkhuni 40 13.0 0.4
43 Tashk 29 20.5 2.0
44 Abarghoo-Sirjan 54 11.0 0.2
45 Hamun-Jazmurian 64 10.5 0.5
46 Lut Desert 195 9.5 0.3
47 Central Desert 224 13.5 0.8
48 Siahkooh 47 6.0 0.3
49 Saghand 48 11.5 0.8

51 Khaf 32 12.5 0.8
52 Hamun Hirmand 3.2 4.0 0.2
53 Hamun Mashkil 3.3 8.0 0.2

60 Ghareghoom 44 20.5 3.0



4.3. Data

4

113

4.3. Data

4.3.1. Water balance fluxes

As expressed in chapter 1, the total water storage change can be determined from the terrestrial
water balance equation:

dTWSA

dt
= P −ET −R, (4.1)

where dTWSA
dt is the derivative of GRACE-TWSA and P , ET , and R are precipitation, evapotran-

spiration, and runoff, respectively. Due to the lack of one superior dataset which can deliver
water balance fluxes with high accuracy on a global scale, we have determined the water fluxes
using an ensemble mean of selected datasets. To this end, we have first compared the aggre-
gated precipitation from all datasets over the Amazon basin using the GPCC version 2020 as
the reference. GPCC is acquired from more than 85,000 stations worldwide, and several stud-
ies have already used GPCC as a reference to compare precipitation products globally and re-
gionally (e.g., Becker et al., 2013; Sun et al., 2018). For evapotranspiration, we have used the
Penman-Monteith-Leuning Evapotranspiration Version 2 (PML-V2) dataset as the reference,
which has already shown the overall best global and regional performance among available
gridded datasets (e.g., Chao et al., 2021; Elnashar et al., 2021; Zhang et al., 2019). Finally, we in-
cluded datasets with various approaches, including hydrological, reanalysis, and atmospheric
models for runoff. The datasets are compared with the global runoff reconstruction product,
named Global RUNoff ENSEMBLE (G-RUN ENSEMBLE), derived by Ghiggi et al., 2021 from a
machine learning approach and 21 different atmospheric forcing datasets and streamflow ob-
servations from the Global Streamflow Indices and Metadata Archive (GSIM).

For each flux, the datasets are assessed with respect to the reference dataset via three com-
monly used metrics, namely the Correlation Coefficient (CC), Root Mean Square Error (RMSE),
and the Kling-Gupta Efficiency (KGE). For the full description of these metrics, please see the
information provided in Appendix section B. We have selected datasets with KGE>0.5 (KGE>0.3
for runoff) and RMSE< 10 % of the mean annual. The final estimation for each flux was ob-
tained from the ensemble mean of the selected datasets at each pixel. It should be noted that
for all the fluxes, the ensemble of the selected datasets holds the spatial resolution of 0.5°. Daily
data were aggregated to monthly values, and when necessary, data were interpolated to 0.5°
resolution using the nearest-neighbor approach. Such an interpolation would not affect the
ranking of datasets (Saemian et al., 2021).

4.3.2. Surface water extent

Surface water storage is a vital variable in the TWS change over a vast region of the world. With
the advent of satellite imagery missions, we have started to monitor the surface water extent
of the global water bodies, including lakes, rivers, and wetlands. Observations from missions
like the Moderate Resolution Imaging Spectroradiometer (MODIS), Landsats, and Sentinel-2
have been used in several studies to extract water bodies’ extent (Donchyts et al., 2016; Khan-
delwal et al., 2017; Klein et al., 2017; Pekel et al., 2016; Schwatke et al., 2020; Zhang & Gao,
2016). Four datasets are available which provide the time series of the lakes surface area, in-
cluding Hydroweb (Crétaux et al., 2011), Database for Hydrological Time Series of Inland Wa-
ters (DAHITI) (Schwatke et al., 2019), the Bluedot observatory, and HydroSat (Tourian et al.,
2021). Table 4.3 lists these datasets, including their links. In this study, we have employed the
surface water area from HydroSat (Tourian et al., 2021). The dataset is developed based on the
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Table 4.2: Summary of the datasets used in this study to compute the ensemble mean of the water balance fluxes.

Dataset Method/Source(s) Spatial Resolution Time period Reference

P
re

ci
p

it
at

io
n

AgCFSR G, R 0.25°×0.25° 1980–2010 Ruane et al., 2015
AgMERRA G, S, R 0.25°×0.25° 1980–2010 Ruane et al., 2015
CHIRPS G, S, R 0.05°×0.05° 1981–present Funk et al., 2015
CRUv4.04 G 0.5°×0.5° 1901–2019 Harris et al., 2020
GPCCv2020 G 0.25°×0.25° 1982–2019 Schneider et al., 2020
GPCPv2.3 G, S 2.5°×2.5° 1979–present adler2018GPCPv2.3; Adler et al., 2003
GPCP 1DD G, S 1.0°×1.0° 1996–present Huffman et al., 2001
GPM IMERG v6 Final G, S 0.1°×0.1° 2000–present Huffman et al., 2019
MSWEP v2.8 G, S, R 0.1°×0.1° 1979–2020 Beck et al., 2019
PERSIANN-CDR G, S 0.25°×0.25° 1983–present Ashouri et al., 2015
PREC/L G 0.5°×0.5° 1948–present Chen et al., 2002
TRMM-3B42-adj G, S 0.25°×0.25° 1998–2019 Huffman et al., 2007
UDELv5.01 G 0.5°×0.5° 1900–2017 Willmott and Matsuura, 1995

E
T

ERA5 R 31 km 1979–present Hersbach et al., 2020
FluxCom R 31 km 1979–present Jung et al., 2019
P-LSH R 31 km 1979–present Zhang et al., 2010
PML-v2 R 31 km 1979–present Zhang et al., 2019

R
u

n
o

ff G-RUN R 31 km 1979–present Ghiggi et al., 2021
SURFEX-TRIP R 31 km 1979–present Lindström et al., 1997
W3RA R 31 km 1979–present Van Dijk, 2010

Global Surface Water Dataset (GSWD) and has improved GSWD in terms of its temporal gaps
and also biases (see Figure 8 and section 3 of (Tourian et al., 2021) for more details). HydroSat
contains time series of 4980 lakes and reservoirs worldwide (Figure 4.6).

Table 4.3: List of sources for providing time series of surface water extent from satellite imagery (adapted from
(Tourian et al., 2021))

.
Product operated by source Remark

Hydroweb CNES http://hydroweb.theia-land.fr available for lakes

DAHITI Deutsches Geodätisches https://dahiti.dgfi.tum.de available for lakes
Forschungsinstitut (DGFI)

HydroSat Insititute of Geodesy http://hydrosat.gis.uni-stuttgart.de available over rivers and lakes
University of Stuttgart

Bluedot observatory Copernicus, European commission https://blue-dot-observatory.com available for lakes and reservoirs
ESA, USGS, Amazon Web Services

Figure 4.6: Distribution of the lakes and reservoirs with surface water extent time series used in this study.

http://hydroweb.theia-land.fr
https://dahiti.dgfi.tum.de
http://hydrosat.gis.uni-stuttgart.de
https://blue-dot-observatory.com
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4.3.3. Satellite altimetric water level

Monitoring the water level over the inland water bodies, including lakes, reservoirs, rivers, and
wetlands, is crucial for various applications, including water resource management, natural
hazard monitoring, and hydrological extreme events mitigation. Despite its importance, gauge
observations are sparse and, in many cases, lack continuous measurement. Satellite altime-
try, initially intended to track sea level budgets, has shown promise as a virtual lake and river
gauge (e.g., Alsdorf et al., 2007; Papa et al., 2010). TOPEX/Poseidon and Envisat are the first
satellite altimetry missions that used Open-Loop Tracking Command (OLTC), especially for in-
land water bodies monitoring. Later, the Delay Doppler technique or the concept of Synthetic
ApertureRadar (SAR) is used in the Sentinel-3A and Sentinel-3B missions. Recently, the Surface
Water and Ocean Topography (SWOT) is launch in December 2022, which has improved the
spatio-temporal resolution of the altimetric water level for both the inland water bodies and
the Ocean. The mission is a collaboration between NASA and CNES, the French space agency,
in partnership with the Canadian Space Agency (CSA) and the UK Space Agency (UKSA).

The centers provide satellite altimetry data on three main levels. The level 1 data includes raw
telemetry from instruments on the satellites, which are timed and located. Such data needs to
be corrected in terms of instrument errors, atmospheric errors, geophysical corrections (solid
Earth, ocean and pole tides, etc.), and error from the signal perturbations caused by surface re-
flection. The corrected data is called level 2 data. Such data can be processed using various al-
gorithms and adjustments and is released in terms of water level, called level 3 data. Hydroweb
was the first website that delivered the altimetric water level time series. After Hydroweb, sev-
eral centers have released their own level-3 data for the inland water bodies. Table 4.4 lists the
repositories that provide altimetric water time series. In this study, we have combined all the
available level-3 products with continuous measurement from 2003 to 2020.

Table 4.4: List of the providers for the altimetric water level time series, adapted from Tourian et al. (2021).

Product operated by source

Hydroweb CNES http://hydroweb.theia-land.fr

River& Lake ESA http://altimetry.esa.int/riverlake

DAHITI Deutsches Geodätisches https://dahiti.dgfi.tum.de
Forschungsinstitut (DGFI), TU Munich Schwatke et al., 2015

HydroSat Insititute of Geodesy http://hydrosat.gis.uni-stuttgart.de
University of Stuttgart

G-REALM United States Department of Agriculture https://ipad.fas.usda.gov/cropexplorer/global_reservoir

GRRATS The Ohio State University https://doi.org/10.5067/PSGRA-SA2V1
Coss et al., 2020

AltEx USAID and NASA https://altex.servirglobal.net/
Markert et al., 2019

C3S LWL CLS on behalf of Copernicus https://doi.org/10.24381/cds.5714c668
and European Commission

Water Level Copernicus Global Land Operations https://land.copernicus.eu/global/products/wl
on VITO CNES, LEGOS, and CLS

http://hydroweb.theia-land.fr
http://altimetry.esa.int/riverlake
https://dahiti.dgfi.tum.de
http://hydrosat.gis.uni-stuttgart.de
https://ipad.fas.usda.gov/cropexplorer/global_reservoir
https://doi.org/10.5067/PSGRA-SA2V1
https://altex.servirglobal.net/
https://doi.org/10.24381/cds.5714c668
https://land.copernicus.eu/global/products/wl
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4.3.4. Data over Iran

Precipitation data (In-situ)

A dense network of 2850 precipitation stations has been collected from Iran’s Meteorologi-
cal Organization (IRIMO) and Iran Water Resources Management Company (IWRM), covering
1983–2013. Figure 4.7 illustrates the distribution of gauges throughout Iran. Continuous in-situ
observations up to the end of 2019 are available only for a limited number of rain gauges (less
than 400), which does not provide a desirably dense measurement network. Therefore, we eval-
uate the performance of 10 gridded precipitation datasets that include observations from 1983
to 2013 over Iran’s basins (Table 4.5). At each basin, we assess the performance of these models
using the in-situ observations and select the best group of them (see subsection 4.5.2 for more
details). The ensemble mean of the selected datasets at each basin is then used for calculat-
ing the long-term monthly mean (1983–2002) and precipitation anomaly over the study period
(2003–2019).
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Figure 4.7: Distribution of the rain-gauges over Iran.

To compute the reference in-situ dataset, we first perform quality control and test the homo-
geneity for all the stations by four tests: the Buishand range test (Buishand, 1982), the Von
Neumann ratio test (Von Neumann, 1941), the Standard Normal Homogeneity Test (SNHT)
(Alexandersson, 1986) and the Pettit test (Pettit, 1979). In order to identify inconsistencies, we
have applied the double mass curve test (Searcy & Hardison, 1960). The tests mentioned above
are explained briefly in Appendix section A . Based on the aforementioned tests, we have ex-
cluded 19 stations from our assessments, because of sudden changes in precipitation patterns,
such as abrupt increases or decreases or inconsistencies or shifts in the double mass curve.
The remaining stations do not show data outages within 1983–2013. During this period, at
each month, we average gauge values for each 0.5 ° × 0.5 ° grid cells. In order to reduce the
uncertainty from gauge measurements, only grid cells containing at least three gauges are con-
sidered in the estimation (Adler et al., 2003; Xue et al., 2013). Please see the distribution of cells
with and without data in Figure 4.8. Two basins, 47 and 46, suffer from sparsity of gauged cells.
These spatial gaps are located at two large deserts: Dashte-e-Kavir and the Lut Desert, where
we expect limited precipitation variation. Therefore, the gauged cells of these two basins can
be generalized to the whole basin.
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with data

without data

Figure 4.8: Distribution of gauged and ungauged grid cells in the in-situ dataset.

Precipitation data (globally gridded datasets)

In this thesis, we have analyzed 10 gridded precipitation datasets over Iran and its 30 major
basins. The datasets are classified into three classes: gauge-based, satellite-based, and reanal-
ysis products (see Table 4.5). All gridded precipitation datasets are re-sampled to 0.5 ° × 0.5 ° to
be consistent with the gridded data from ground data.

Table 4.5: Summary of global precipitation datasets used for estimating the precipitation over Iran. Abbreviations
in the data source(s) defined as: G, gauge; S, satellite; and R, reanalysis.

Dataset Class
Resolution Coverage

Reference
Spatial Temporal Spatial Temporal

Gauge-Based Products

PRECL G 0.5°×0.5° 1 mo Global land 1948–2019 (Chen et al., 2002)
CPC G 0.5°×0.5° 1 d Global land 1979–2019 (Chen et al., 2008)

Satellite-Based Products

GPCP G, S 2.5°×2.5° 1 mo Global 1979–2019 (Adler et al., 2003)
CMAP G, S 2.5°×2.5° 1 mo Global 1979–2019 (Xie et al., 2003)
PERSIANN-CDR G, S 0.25°×0.25° 3,6 h /1 d 60°S–60°N 1983–2019 (Ashouri et al., 2015)
CHIRPS G, S, R 0.05°×0.05° 1d 50°S–50°N 1981–2019 (Funk et al., 2015)

Reanalysis Products

ERA5 R 0.25°×0.25° 6 h/ 1 mo Global 1979–2019 (Dee et al., 2011)
NCEP 1 R 2.5°×2.5° 6 h/1 d/ 1 mo Global 1948–2019 (Kalnay et al., 1996)
NCEP 2 R 1.875°×1.875° 6 h/1 d/ 1 mo Global 1979–2019 (Kanamitsu et al., 2002)
MERRA-2 R 0.5°×0.67° 1 d Global 1979–2019 (Rienecker et al., 2011)

Groundwater level data

This thesis utilizes groundwater observations from 13 879 piezometric wells from IWRM (http:
//wrs.wrm.ir/amar, last access 20 April 2020), with the most updated available data up to June
2017 (Figure 4.9). The wells selected for analysis cover the period from 2003 to 2016, with less
than 12 months of gaps, while data after 2016 was not available at the time of writing. Quality
control was applied to eliminate outliers and biases in each group of wells within their corre-
sponding aquifer, and spline interpolation was used to fill gaps in the data. The study’s rigor-
ous data processing methodology, including quality control, gap filling, and standardization,
enhances the reliability and accuracy of the resulting time series of mean groundwater level,
enabling more informed decisions regarding groundwater resource management in the region.

Figure 4.10 illustrates the data process to obtain the time series of Mean Groundwater Level

http://wrs.wrm.ir/amar
http://wrs.wrm.ir/amar
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Anomaly (GWLA). To estimate GWLA at each basin, the time series at each well is standardized
using its mean and standard deviation. The standardization enables us to merge wells that
carry different properties (Tourian et al., 2015). Then, in each aquifer, we calculate the ensem-
ble mean of all standardized levels and multiply the obtained time series by the average of the
well’s standard deviations before standardization. Finally, to determine the time series of mean
groundwater level, at each basin we compute the ensemble mean of the aquifers’ time series
weighted by the aquifers’ area. The standard deviation of the groundwater levels at each month
is considered as the uncertainty of the final time series for each basin. Figure 4.11 illustrates
the validity of the Gaussian distribution for the errors at each epoch of the GWLA. Kurtosis is
a metric for how tailed the probability distribution is. The kurtosis of the GWLA residuals is
3.2, indicating that it is slightly higher than three. However, it can still be considered within the
range of a normal distribution.

Saudi 

Arabia

Piezometric wells

Aquifers

Figure 4.9: Spatial distribution of piezometric wells and the aquifers in Iran.

Figure 4.10: Schematic of the main two steps to estimate GWLA for each basin.
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Figure 4.11: (a) GWLA time series together with the estimated combination of nonlinear trend and seasonality signal
over Iran within 2003–2016. The residuals, GWLA signal after removing trend and seasonal variation, are shown as
green bars. (b) Histogram of the GWLA residuals together with the fitted distribution.

4.4. Validation of the datasets

In this chapter, we employed a range of evaluation metrics to thoroughly assess the perfor-
mance of the models. These metrics encompassed the correlation coefficient, Kling-Gupta
Efficiency (KGE), its two constituent parameters (γ and β), Normalized Root Mean Square Er-
ror (NRMSE), and Nash-Sutcliffe Efficiency (NSE). For a comprehensive understanding of each
metric and its calculation, please refer to the detailed information provided in Appendix sec-
tion B.

4.4.1. Validation of TWSA from fluxes

In order to assess the performance of the fluxes estimations, we have compared the left side
(derivative of GRACE-TWSA) with the right side (fluxes) of the Equation 4.1 over the study re-
gions.

Over sub-continents

Figure 4.12 and Figure 4.13 show the result of this comparison over the sub-continents. To
quantify the accuracy of the water balance fluxes, we have employed four evaluation met-
rics namely Correlation, NSE, and NRMSE. Summary of the evaluation metrics is shown in
Table 4.6. Generally, the ensemble mean of flux datasets agrees well (r ≥ 0.56) with the GRACE
TWSA derivation. The correlation coefficient varies between 0.56 to 0.95, while the highest
correlation is obtained over the Indian-sub-continent (r = 0.95), followed by West Africa (r =
0.92) and East Europe (r = 0.92) and the lowest values are obtained over Central Asia and North
Africa with r = 0.56. In terms of NSE, the performances vary between 0.17 and 0.90, with the
highest NSE over the Indian sub-continent (NSE = 0.90), followed by West Africa (NSE = 0.85).
The lowest NSE is observed over East Africa (r = 0.04), followed by Central Africa (r = 0.17)
and Central Asia (r = 0.18). Time series of the fluxes balance (P −ET −R) with respect to the
derivative of GRACE-TWSA over the sub-continents are shown in Figure 4.12 and Figure 4.12.
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Table 4.6: Evaluation of the fluxes with respect to the derivative of GRACE-TWSA as the reference over the sub-
continents.

Region r NSE NRMSE

Australia 0.82 0.35 0.14
Central Asia 0.56 0.18 0.16
Indian sub-continent 0.95 0.90 0.08
Middle East 0.83 0.67 0.12
North Europe 0.74 0.33 0.23
South Europe 0.91 0.57 0.14
West Europe 0.89 0.47 0.16
East Europe 0.92 0.79 0.12
South America 0.91 0.65 0.17
North America 0.91 0.81 0.12
Central America 0.87 0.57 0.15
North Africa 0.56 0.31 0.12
South Africa 0.91 0.81 0.11
Central Africa 0.75 0.17 0.18
East Africa 0.65 0.04 0.18
West Africa 0.92 0.85 0.10
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Figure 4.12: Comparison of the derivative of GRACE-TWSA (dT W S A/dt ) with the balance of the water fluxes (P −
ET −R) over sub-continents. The scatter plot and the correlation coefficient for each region are shown on the right
side of the time series.
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Figure 4.13: Figure 4.12 continued.
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Over major river basins:

The results of the evaluation using three metrics are presented in Figure 4.14. These metrics
reveal that the performance of the flux datasets varies across the basins. On average, the flux
estimations correlate well with the derivative of GRACE(-FO), with 85 % of the basins exhibiting
a correlation coefficient greater than 0.6. The Northern Sahara basin displays the lowest corre-
lation coefficient of 0.15, while the Columbia basin in the US displays the highest correlation
coefficient of 0.95. In terms of correlation, the datasets perform best over Europe (r = 0.87),
followed by South America (r = 0.75). The worst performance is observed, on average, over
Australia.

Regarding the Nash-Sutcliffe Efficiency (NSE), the performance of the datasets ranges from as
low as -2.2 in the St. Lawrence basin to as high as 0.88 in the Ganges basin. On average, the
NSE over the selected basins is 0.74, with 72 % of the basins showing an NSE greater than 0.1,
and over 75 % of them having an NSE greater than 0.5. The best performance, on average, is
observed over the basins in Europe (NSE = 0.65). However, the datasets fail to represent the
dynamics of storage change in the three major basins of Australia. One possible reason for
this low performance could be the strong effect of the El Niño-Southern Oscillation (ENSO),
which significantly affects the RMS and trend of the flux values over Australia, resulting in se-
vere droughts and heavy flood events.

The NRMSE yields similar results to NSE across the basins. In the Ganges basin, the NRMSE
is less than 10 %, while in the St. Lawrence basin, it is 30 %. More than half of the basins have
NRMSE values between 12–16 %, which is acceptable given the ensemble mean of the datasets.
However, some basins exhibit low accuracy in estimating water storage change, as evidenced
by negative NSE and high NRMSE values. It is important to note that such results should not be
over-interpreted for monthly evaluations. Furthermore, it is worth mentioning that the water
fluxes are presented as total estimates over the study period in the results section, rather than
as monthly or annual comparisons.

Figure 4.15 illustrates the boxplot of the metrics in Figure 4.14 over different climate categories.
The correlation between the fluxes balance and the derivative of GRACE TWSA is generally high
across all climate types, but it is the highest in the arid to hyper-arid regions (0.81 to 0.94), and
lowest in the humid regions (-0.02 to 0.94). This suggests that the relationship between the
two variables is stronger in arid regions compared to humid regions. A lower NRMSE indicates
better model performance. The NRMSE is generally lowest in dry sub-humid regions (0.37 to
0.68), and highest in arid to hyper-arid regions (0.38 to 4.70). This suggests that the accuracy of
the model is better in regions with moderate precipitation.

The boxplot in Figure 4.15 depicts the metrics from Figure 4.14 across diverse climate cate-
gories. Overall, the correlation between the fluxes balance and the derivative of GRACE TWSA
is robust across all climate types. However, it is most pronounced in arid to hyper-arid regions,
ranging from 0.81 to 0.94, while being the lowest in humid regions, ranging from -0.02 to 0.94.
This observation implies a more robust relationship between the two variables in arid regions
in comparison to humid regions. Furthermore, a lower NRMSE value implies better model per-
formance. It was found that the NRMSE is generally lowest in dry sub-humid regions, ranging
from 0.37 to 0.68, and highest in arid to hyper-arid regions, ranging from 0.38 to 4.70. This
finding suggests that the model’s accuracy is superior in regions with moderate precipitation.

The bias (β) gauges the disparity between predicted and observed values, and lower bias sig-
nifies superior model performance. Notably, the bias appears to be minimal in dry sub-humid
regions (0.67 to 3.51), and at its peak in semi-arid regions (2.84 to 1070.37), indicating that the
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model has a tendency to over-predict flux balance in semi-arid regions. Conversely, the vari-
ability ratio (γ) measures the ratio of the predicted values’ standard deviation to that of the
observed values, and a lower variability ratio suggests better model performance. The variabil-
ity ratio is generally lower in dry sub-humid regions (0.02 to 0.49) and higher in humid regions
(0.01 to 179.89). The model, therefore, tends to overestimate the variability of flux balance in
humid regions.

Overall, these findings indicate that the model’s accuracy is higher in arid to hyper-arid re-
gions than in humid areas. The model performs better in regions with moderate precipitation,
lower variability, higher correlation, and lower bias. Notably, the model’s error is primarily at-
tributable to variability ratio and bias, rather than correlation.
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Figure 4.14: Evaluation of the fluxes with respect to the derivative of GRACE-TWSA as the reference over the major
river basins. The figure includes Pearson’s correlation (r ), Root Mean Squared Error (RMSE), Nash-Sutcliffe Effi-
ciency (NSE), Kling-Gupta efficiency (KGE), bias (β), and variability ratio (γ).
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Figure 4.15: Boxplot of the evaluation metrics presented in Figure 4.14 over the four categories of climate. Only the
Normalized RMSE is used instead of RMSE to make the comparison easier.
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4.4.2. Validation of the surface water extent

To validate the time series of the surface water extent for each lake or reservoir, the correla-
tion coefficient between the monthly surface area from satellite imagery with water level from
monthly satellite altimetry is calculated. Figure 4.16 illustrates the correlations worldwide. A
high correlation (0.5 or higher) is obtained for most lakes and reservoirs (>70 %). The algorithm
used to extract the lake extent performed well, as evidenced by the strong association between
the lake’s area and the altimetric water level (Figure 4.16). Although the high correlation be-
tween the surface water area and the altimetric water level indicates a satisfactory performance
of the algorithm in estimating the surface water extent, the low correlation can be the result of
various reasons, including (1) high regulation over reservoirs and regulated lakes which signif-
icantly affect the natural dynamic of the area and level relationship, (2) the satellite altimetry
may overpass the part of the lake that is disconnected to the lake which can not represent the
lake (reservoir) variation.

0.0 0.2 0.4 0.6 0.8 1.0

Corr. (optimum = 1)

Figure 4.16: Global distribution of the correlation coefficient between the surface water extent from satellite imagery
and the altimetric water level.

4.5. Methodology

4.5.1. Trend analysis

A linear trend does not necessarily represent the long-term behavior of TWSA time series over
many regions, because it may fail to capture seasonal and cyclic patterns. Moreover, time series
data are often autocorrelated, meaning that each observation is correlated with previous obser-
vations. This autocorrelation can result in changes in the trend over time that are not linear and
cannot be adequately represented by a linear trend. Furthermore, the long-term behavior of a
time series may exhibit non-monotonic changes, where the trend is not consistently increas-
ing or decreasing over time. A non-linear trend may better capture these complex patterns and
provide a more accurate representation of the long-term behavior of the time series.

There are several methods that can be used to extract the non-linear trend in a time series. Here
are some of the most commonly used methods:

• Non-linear regression: Non-linear regression is a statistical method that involves fitting
a non-linear equation to the data. Non-linear regression can be used to model a wide
range of non-linear trends, and it allows for the inclusion of additional predictors and
covariates in the model.
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• Polynomial regression: Polynomial regression involves fitting a polynomial equation to
the data. Polynomial regression can be used to model a wide range of non-linear trends,
but it is limited by the degree of the polynomial that can be used.

• Smoothing methods: Smoothing methods involve averaging the data over a moving win-
dow or a fixed interval. Smoothing methods can be used to estimate the non-linear trend
by removing the short-term fluctuations in the data.

• Wavelet analysis: Wavelet analysis involves decomposing the time series into a set of
wavelet coefficients. Wavelet analysis can be used to identify the non-linear trend and
other features of the data at different scales and frequencies.

• Machine learning methods: Machine learning methods, such as neural networks and
support vector machines, can be used to model non-linear trends. Machine learning
methods can be particularly useful when the data is high-dimensional and complex.

• Seasonal and Trend decomposition using Loess (STL): STL is another data-driven method
that involves decomposing the time series into three components: the seasonal compo-
nent, the trend component, and the remainder component. The trend component is
estimated using a non-parametric smoothing method called Locally Weighted Scatter-
plot Smoothing (Loess). STL can be used to extract non-linear trends from time series
data with complex seasonal patterns, and it is particularly useful for data with multiple
seasonal cycles.

• Singular Spectrum Analysis (SSA): SSA is a data-driven method that involves decompos-
ing the time series into a set of orthogonal components called empirical orthogonal func-
tions (EOFs). The first EOF represents the trend component, while the remaining EOFs
represent the noise and cyclical components. SSA can be used to extract non-linear
trends from noisy and complex time series data, and it is particularly useful when the
data contains strong cyclical or seasonal patterns.

Singular Spectrum Analysis (SSA) is a powerful and versatile method for analyzing time series
data (Blewitt & Lavallée, 2002). It has several advantages over other methods for extracting
non-linear trends, including:

1. Data-driven approach: SSA is a data-driven method that does not require a priori as-
sumptions about the shape or form of the trend. Instead, it uses the data itself to identify
the underlying patterns and structures in the time series.

2. Adaptive decomposition: SSA decomposes the time series into a set of orthogonal com-
ponents called empirical orthogonal functions (EOFs), which are adaptive to the data
and capture the most important patterns and structures. This allows for a flexible and
efficient decomposition of the time series, even when it is noisy and complex.

3. Separation of components: SSA separates the time series into its different components,
including the trend, cyclical, and noise. This allows for a more detailed and interpretable
analysis of the underlying patterns and structures in the data.

4. Outlier detection: SSA can be used to detect outliers and anomalies in the time series,
which can be useful for identifying data quality issues or unusual events.

5. Parameter selection: SSA allows for the selection of important parameters, such as the
window length and the number of EOFs, using cross-validation or other statistical crite-
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ria. This ensures that the analysis is robust and reliable.

Compared to other methods discussed above, such as non-linear regression, polynomial re-
gression, smoothing methods, and STL, SSA has some unique advantages. Non-linear regres-
sion and polynomial regression can be sensitive to the choice of model and the initial condi-
tions, and may not be able to capture complex and non-linear patterns in the data. Smoothing
methods, such as moving averages and exponential smoothing, can remove important infor-
mation from the data and may not be able to adapt to changes in the trend over time. STL can
be useful for extracting non-linear trends with complex seasonal patterns, but it may not be
able to handle data with multiple seasonal cycles or strong noise

Figure 4.17 (a) presents the time series of the TWSA over Australia from 2003 to 2021, with its
uncertainty shown as the gray envelope. We obtain the long-term non-linear signal using the
SSA approach with a 2-year window. The 2-year window results in the minimum linear trend
left in the seasonal signal after removing the SSA non-linear trend. However, the SSA method
does not deliver uncertainty for the estimated non-linear trend. Therefore, to obtain a realistic
uncertainty, we perturb storage and groundwater time series according to their stochastic in-
formation using a Monte-Carlo simulation (Metropolis & Ulam, 1949; Mooney, 1997). Monte
Carlo simulation is a statistical method that can be used to assess the uncertainty in a model or
an analysis by generating multiple realizations of the data. In the context of time series analy-
sis, Monte Carlo simulation can be used to deal with the uncertainty in the data and estimate
the non-linear trend using SSA.

To use Monte Carlo simulation with SSA, one would generate multiple simulations of the time
series data by adding noise to the original data. To perturb, we assume a normal distribution
for each monthly value, centered at the signal with the estimated uncertainties as its standard
deviation. We simulate 10 000 realizations of the time series to acquire a comprehensive repre-
sentation of all possible realizations (Figure 4.17 (b)). Each simulation would be analyzed using
SSA to extract the non-linear trend component (Figure 4.17 (b)). The resulting trend estimates
from the multiple simulations can be used to assess the uncertainty in the trend estimate and
calculate confidence intervals.

We estimate the total water loss or gain within the study period from each of the non-linear
realizations by subtracting the last value from the first value (Figure 4.17 (c)). The total water
storage loss from all realizations forms a normal distribution according to the Monte-Carlo-
Simulation assumption (see the bottom left of Figure 4.17 (c)). Finally, the mean of all 10 000
realizations would be the representative total water storage loss or gain, and their standard
deviation indicates uncertainty.

4.5.2. Precipitation analysis over Iran

We quantify relative gain or deficit in precipitation within the past 17 years (2003–2019). Gain
(deficit) is considered to be the precipitation higher (lower) than a reference, which is defined
as the long-term monthly mean from 1983 to 2002. To this end, we first analyze the datasets to
nominate the most reliable precipitation data of each basin. As error measure at each basin,
we subtracted the monthly gauged precipitation throughout 1983–2013 from the correspond-
ing values in the gridded precipitation datasets. It should be noted that to calculate the monthly
values from precipitation datasets, at each basin we have included only the grid cells with mea-
surements in the in-situ dataset (colored cells in Figure 4.8). To evaluate the results, we do not
rely on any standard metric like Nash-Sutcliffe, Root Mean Square of Errors (RMSE) or bias as
they provide only a summary rather than a full view of the error. Instead, we look at the whole
distribution of the error which allows us to evaluate errors in all quantiles. The errors contain
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(a)

(b)

(c)
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non-linear trends of the realizations

Figure 4.17: (a) GRACE TWSA time series including uncertainty (gray envelope). (b) Simulating 10 000 time series in
a Monte Carlo simulation approach for which the gray envelope represents all realizations. The green line shows the
simulated signal for the kth realization (TWSk ) and the blueish line its corresponding non-linear trend (Trendk ). (c)
The non-linear trend of the 10 000 realizations using SSA (gray envelope) together with the mean of all non-linear
trends (Trend). For each non-linear trend, we calculated the total water storage loss by subtracting the last value
from the first. The histogram of all 10 000 TWS loss which forms a normal density function fit in red, is shown in
the left corner of the plot (c). This normal distribution’s mean and three standard deviations are the estimated total
water storage loss and its corresponding uncertainty.

both negative and positive values and have typically a non-zero bias. The Cumulative Distri-
bution Function (CDF) plot can not be directly used as a metric. To benefit from the CDF as
a metric, one should fold the error over a specific number. One choice can be zero (absolute
value of the error) assuming the dataset as bias-free which might not hold in our case. We fold
the error over its median (i.e., |e −Median(e)|) and then build its CDF. Using this method we
can detect the bias in the dataset that will affect our final ranking of the datasets.

Figure 4.18 (b) shows the CDF of 10 precipitation datasets over the Lake Urmia basin. They
perform similarly, with 55–70 % of the centered errors below 10mm. At each basin, we select
the precipitation datasets with an error at the 90th percentile less than 15 % of the mean annual
precipitation of the basin, with the mean taken from GPCC (see Figure 4.18 (b)). The selected
datasets are shown in Figure 4.18 (a). For each basin, we calculate the time series of monthly
precipitation for the period 1983–2019 from the selected datasets and the corresponding error
at 90 % CDF as their weight using least squares adjustment.

We quantify water input stability at each basin by the precipitation anomaly δP (ty,m) for the
period of 2003–2019 with respect to its long-term monthly mean (1983–2002):
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Figure 4.18: (a) Filled rectangles at each row represent the selected precipitation datasets at each basin of Iran. (b)
CDF of the centered error for all datasets in the Lake Urmia basin and the selected datasets including their error at
CDF = 0.9.

δP (ty,m) = P (ty,m)− 1

20

2002∑
y=1983

P (ty,m) , (4.2)

where P is the precipitation, ty,m represents the month (m) and year (y). We then obtain the
long-term mean annual anomaly by:

δP = 1

17

2019∑
y=2003

12∑
m=1

δP (ty,m) . (4.3)
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4.6. Results

4.6.1. Sub-continental analysis

In accordance with the methodology outlined in subsection 4.5.1, this study estimates the
non-linear trend and corresponding uncertainty of GRACE-TWSA for sub-continents during
the period spanning from 2003 to 2021. Figure 4.19 presents the TWS loss or gain, as well as
its corresponding uncertainty, relative to the 2003 state. It is pertinent to note that the initial
state, 2003, is arbitrary, and we are solely investigating the relative change in TWS. With the
exception of sub-Saharan Africa, all sub-continents examined in this study have experienced
a decline in water storage compared to their status in 2003. In certain regions, such as Cen-
tral Asia, the Indian sub-continent, the Middle East, Europe, and North America, water storage
levels remained below the 2003 state for the majority of the 2003–2021 time-frame (exceeding
70 %) (Table 4.7). North America registered the largest TWS loss of 2302±321 km3 at a rate of
−121± 17 km3/year. Despite a three-year increase in TWS from 2003 to 2006, a controversial
negative trend emerged in 2006, resulting in this significant water loss. Following North Amer-
ica, the Middle East, Central Asia, and Eastern Europe have experienced losses of 813±70 km3,
590±99 km3, and 570±48 km3, respectively. In all the regions mentioned above, the onset of
the negative trend can be observed around 2006–2008.

The overall TWS loss for Europe is estimated to be 890±57 km3, with the vast majority (∼90 %)
occurring in the North and West of the continent. Between 2003 and 2014, the South and West
of Europe experienced fluctuating TWS levels, with intermittent periods of water gain and loss.
However, both regions exhibited a significant negative trend in TWS from 2015 to 2020, leading
to TWS losses of 108± 12 km3 and 52± 11 km3, respectively (Figure 4.19). In contrast, West
Europe experienced a noteworthy positive trend starting from 2019, which resulted in a TWS
increase of 37±12 km3.

Australia has experienced a significant decrease in its TWS, amounting to 100±32 km3 at a rate
of −5.2± 1.7 km3/year from 2003 until the conclusion of 2021. The evolution of TWS in Aus-
tralia is characterised by six primary phases. During the initial phase, which spanned from
2003 until 2008, the region lost 152±37 km3. This period coincided with one of the most severe
droughts in recent Australian history known as the Millennium Drought. Subsequently, the re-
gion experienced a series of floods from 2008 until 2012, leading to a TWS gain of 547±50 km3

and commencing the second phase. The third phase began in 2012 with a substantial negative
trend that ceased in 2014, causing a TWS loss of 234±35 km3. Following this remarkable loss of
water in a mere two years, the region remained in equilibrium regarding water storage fluctua-
tions for four years (2012–2016). However, a notable negative trend ensued, resulting in the loss
of 261±20 km3 from TWS. The region showed signs of TWS recovery starting from early 2019,
yet the recovery remains insufficient to offset the colossal water loss from 2016 until 2018.

Africa as a continent has observed a net gain in water, except for the North region. The to-
tal TWS of the continent has increased by 2380± 165 km3. Except for North Africa, the sub-
continents of Africa have mostly maintained a higher TWS (>70 %) than their 2003 baseline
during the period from 2003 to 2021. South, Central, and East Africa experienced a negative
trend from 2003 to 2006, resulting in TWS losses of 301±88 km3, 120±27 km3, and 87±22 km3,
respectively. In contrast, North Africa showed a decline in TWS, with a loss of 150±30 km3 from
2003 to 2021, despite a weak positive trend (30±12 km3) from 2003 to 2006.

Central Asia, the Indian sub-continent, and the Middle East have experienced a significant drop
in TWS from 2003 to 2021. During this period, these regions were mostly (>84 %) below their
2003 TWS levels. The Middle East recorded the highest TWS loss of −813±70 km3. This enor-
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mous loss in a region with an arid to semi-arid climate began in late 2007 and has shown no
sign of recovery as of 2021. In Central Asia, despite a weak positive trend that increased TWS
by 70±15 km3 within 2003–2005, the region has lost −590±99 km3 of its TWS over the last two
decades. The Indian sub-continent experienced a considerable TWS loss from 2008 to the end
of 2019, resulting in a loss of −527± 29 km3. The region has exhibited a weak positive trend
from early 2020 onward, which partially recovered 63±13 km3 (∼11 %) of its TWS.

The Table 4.7 provides estimates of the relative gain (or deficit) in water fluxes including precip-
itation, evapotranspiration, and runoff 16 sub-continents of the world. Such a gain or deficit is
calculated by subtracting the total amount of fluxes from 1984 to 2002 from the total amount
of 2003 to 2021. Additionally, the table presents the relative TWS for each sub-continent, with
respect to the TWS in 2003. The estimates of the water fluxes show that Australia experienced
no significant changes in the water balance during the observed period. In contrast, Central
Asia had the highest relative positive change in precipitation, evapotranspiration, and runoff,
with a respective increase of 6, 7, and 2 103 km3 in which the balance result in water loss over
the region. The Indian sub-continent experienced a positive relative change in precipitation
and evapotranspiration, but no change in runoff. The TWS, however, showed a negative rela-
tive change of −419±37. In the Middle East, the relative change in precipitation was negative,
while evapotranspiration and runoff remained unchanged. This negative trend in precipitation
has led to a significant decrease in TWS, with a negative value of −813±70.

During the study period, the North European sub-continent experienced an increase in precip-
itation, although there was a decrease in runoff. Despite this seemingly positive balance, there
was actually a decline in TWS during this time. This discrepancy may be attributed to other
factors that affect water storage, such as changes in groundwater pumping, land-use, and soil
moisture. On the other hand, the South and West European sub-continents did not show sig-
nificant changes in the water fluxes balance, which is consistent with the TWS estimations from
GRACE data. Similarly, East Europe was estimated to have the same balance, but the result was
not consistent with the relative TWS change observed. This inconsistency may be explained
by the contribution of permafrost in the region, which is not fully captured in global datasets
used to estimate the water fluxes. This highlights the importance of accounting for local factors
when studying changes in water resources.

The flux balances of North and Central America indicates no significant change in water fluxes.
Although the GRACE observation supports the findings over Central America, a significant dis-
crepancy is observed between the relative change in water fluxes and TWS. This discrepancy
can be attributed to the contribution of ice-sheet loss, which is observable by GRACE and can
be inferred by an increase in evapotranspiration. In contrast, South America displays a positive
balance, mainly due to the decrease in runoff. This decline is consistent with the decrease in
relative precipitation over the sub-continent.

The African sub-continents exhibited mixed results during the study period. North Africa showed
a small negative change in TWS relative to the state in 2003, which was also supported by the
results from the water fluxes balance that showed no significant change. It is worth noting that
much of North Africa is covered by the Sahara Desert, where TWS variations are minimal. This
small variation decreases the Signal to Noise Ratio (SNR) and increases the possibility that the
negative trend observed in TWS is partly due to measurement errors. Conversely, the relative
TWS increased in the other sub-continents of Africa, which can be explained by a decrease in
runoff, especially in Central Africa.
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Table 4.7: Summary of total water fluxes and changes in TWS across selected sub-continents. The relative values for
the fluxes are derived by subtracting the total amount between 1984 and 2002 from the total amount between 2003
and 2021. Regarding TWS, the relative status indicates the level in 2021 compared to the level in 2003.

Region
Area rel. Total P rel. Total ET rel. Total R rel. TWS

[106 km2] [103 km3] [103 km3] [103 km3] [km3]

Australia 7.7 1 0 0 −100±32
Central Asia 14.9 6 7 2 −590±99
Indian sub-continent 5.1 5 5 0 −419±37
Middle East 6.9 −1 0 0 −813±70
North Europe 1.8 1 0 −2 −215±27
South Europe 1.7 1 1 0 −79±8
West Europe 1.2 −1 0 −1 −26±14
East Europe 5.3 1 2 −1 −570±48
South America 17.8 −4 2 −5 −370±130
North America 19.3 2 3 −1 −2302±321
Central America 2.7 1 2 −1 −151±25
North Africa 7.7 1 1 0 −150±30
South Africa 9.8 2 3 −2 613±86
Central Africa 6.6 1 3 −6 488±47
East Africa 7.7 0 1 −1 737±52
West Africa 6.0 4 4 −1 690±120
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Figure 4.19: Inter-annual trend of TWSA estimated from MC-SSA using the GRACE and GRACE-FO observations
from 2003 to 2021 over sub-continents. The gain period is shown by the blue color, and the loss period by red. The
standard deviation of the trend estimation is shown with gray error bars, representing the uncertainty of the trend.



4

136 4. Analysis of Water Storage Variation

Surface Water (SW) constitutes a major part of the TWS change as a component of the total wa-
ter storage. Therefore, to understand the TWS loss and gain estimated from GRACE(-FO), we
have compared the GRACE-TWSA with the SW time series obtained from satellite imagery. Fig-
ure 4.21 compares the mean annual TWSA observed by GRACE(-FO) with the time series of the
SW during 2003–2020 over the selected sub-continents. It should be noted that we have not in-
cluded the change of the water volume in the river system. To measure the level of agreement,
we have determined the correlation between the SW and the annual mean of the GRACE-TWSA
for the whole period of study over the selected sub-continents (Table 4.8). The time series of
the TWSA agrees well (r >0.7) with the time series of SW over Australia, Central Asia, East Eu-
rope, South America, South Africa, Central Africa, and East Africa. The highest correlation is
observed in Australia (r =0.9) followed by Central Asia (r =0.86) and East Africa (r =0.85).

TWSA and SW show a negative correlation over the Indian sub-continent, North Europe, West
Europe, North America, and North Africa. Such a negative correlation can be explained by the
fact that the surface water over such regions carries an insignificant role in the TWS variations.
For example, TWS dynamics are mainly governed by snow and glaciers melting in North Europe
and North America and groundwater extraction is the main factor of the TWS change over the
Indian sub-continent. The TWS over North Africa primarily represents the variations of the Sa-
hara Desert, where the surface water at its highest range is as low as 16 km2. In West Europe, the
total variation of the surface water within the study period was insignificant (<1 % of the total
surface water). It is noteworthy that for the lakes and reservoirs, surface water variations rep-
resent a portion of the total surface water variations as the water change over the river systems
can also contribute significantly, especially in regions with large river networks like Amazon in
south America and Nile in Africa.

The surface water from lakes and reservoirs can be divided into two main categories: regulated
and non-regulated. The former includes reservoirs and regulated lakes, while the latter con-
tains only natural lakes. The time series of the regulated and non-regulated surface water is
shown for each of the selected sub-continent within the inside plot (Figure 4.21). Figure 4.20
shows the average ratio of non-regulated versus regulated with respect to the total surface water
over the selected regions. The higher the ratio of the regulated, the more possibility for surface
water resource management, especially during flood events. Therefore, the surface water in
regions like Australia, the Indian sub-continent, East Europe, North Africa, and West Africa has
the potential to be managed via reservoirs and regulated lakes. Such a potential is limited in
Central Asia, North Europe, West Europe, South Africa, Central Africa, and East Africa.
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Table 4.8: Correlation between the annual mean of the TWSA and SW over the selected sub-continents.

Region r

Australia 0.90
Central Asia 0.86
Indian sub-continent −0.28
Middle East 0.38
North Europe −0.78
South Europe 0.35
West Europe −0.30
East Europe 0.59
North America 0.79
Central America −0.59
South America 0.12
North Africa −0.40
South Africa 0.69
Central Africa 0.67
East Africa 0.85
West Africa 0.47

Non-regulatedRegulated

Figure 4.20: Average volume percentage of the regulated (reservoirs and regulated lakes) versus non-regulated (nat-
ural lakes) over the sub-continents from 2003 to 2020.
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Figure 4.21: Annual mean of GRACE-TWSA from 2003 to 2021 over sub-continents versus the annual mean of the
surface water from lakes and reservoirs. The time series of the regulated surface water (reservoirs and regulated
lakes) and the time series of the non-regulated lakes for each region is shown inside the plots. The x axis in the
inside plot is time and share the same range as the main plot.
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4.6.2. Analysis over major river basin

Africa

Thirteen major river basins are selected over Africa with area larger than 0.2 ×106 km2. The
distribution of the selected basins over Africa is shown in Figure 4.22. The area of the basins
varies from 0.23 × 106 km2 (Shebelle) to 3.62 ×106 km2 (Congo). Figure 4.23 shows the TWS loss
or gain obtained from the GRACE(-FO) observations with respect to the state in 2003 over the
basins. Except for two basins, Limpopo and Northern Sahara, all other basins are gauged at a
higher level with respect to their stand in 2003. The maximum gain is observed over Congo (422
± 27 km3) followed by Nile (399 ± 20 km3) and Niger (289 ± 13 km3). The basins like the Nile,
Niger, Senegal, Volta, Shebelle, Congo, and Lake Chad have an overall continuous and gradual
water gain. In contrast, basins like Ogooue, Zambezi, Orange, and Western Sahara despite an
overall gaining status in 2021 has varied between higher and lower level within 2003–2021.

Only two major basins in Africa gained water with respect to their level in 2003, namely north-
ern Sahara and Limpopo. Since 2003 the northern Sahara has witnessed a strong negative trend
(−10±0.8 km3/yr), except for a weak positive trend from 2003 to 2005 (2.9 ± 0.8 km3/yr), and
has lost 289 ± 13 km3 of its TWS. On the other hand, the TWS of the Limpopo basin has oscil-
lated between positive and negative trends over the last two decades. Despite positive trend
periods since 2003, the basin was only gauged positive from early 2009 to the end of 2012. The
same periodic behavior is observed over the adjacent basins, namely Orange and Okavango.
However, those basins were mostly leveled above their status in 2003.

1. Northern Sahara

2. Western Sahara

3. Senegal

4. Volta

5. Niger

6. Lake Chad

7. Nile

8. Ogooue

9. Congo

10. Highland of Ethiobia

11. Shebelle

12. Somalia

13. Zambezi

14. Ocavango

15. Limpopo

16. Orange
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Figure 4.22: Geographic location of the selected basins over Africa. The gray regions are among the 405 major river
basins defined by the GRDC but with area < 200 000 km2.
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Figure 4.23: Inter-annual TWSA estimated from SSA using the GRACE and GRACE-FO observations from 2003 to
2021 over the major basins (Area ≥ 200 000 km2) of Africa. The gain period is shown in blue, and the loss period in
red.
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Table 4.9 presents the TWS gain (loss) since 2003 as observed by GRACE(-FO) within the period
of 2003–2021, along with the relative water fluxes estimated for the same period. The rela-
tive water fluxes were obtained with respect to the 1984–2002. The relative increase (decrease)
within the study period with respect to the long-term mean is indicated in parentheses. The
Congo basin experienced the greatest decline in precipitation (94 × 103 km3), followed by the
Nile (35 ×103 km3) and Niger (24 ×103 km3) basins. Total precipitation over the study period
remained relatively unchanged in most basins, except for the Nile, Niger, Senegal, Zambezi,
Lake Chad, and Okavango. The only region with less precipitation compared to the long-term
was the Ogooue basin. In terms of evapotranspiration, most basins experienced an increase
of 1 ×103 km3 over the study period, with the largest increase occurring in the Niger basin. In
some regions, such an increase compensated for the rise in total precipitation, as observed in
the Nile, Niger, Zambezi, and Okavango. The Congo basin exhibited the highest total ET among
the selected African basins (73 ×103 km3), followed by the Nile (29 ×103 km3) and Niger (18
×103 km3) basins. Consistent with the results of the precipitation analysis, most basins (eleven
basins) had evapotranspiration less than 8 × 103 km3.

The primary discharge from the significant basins in Africa is predominantly from the Congo
basin (28 ×103 km3), trailed by the Nile (7 ×103 km3) and the Niger (5 × 103 km3) basins. A few
of the basins (six basins) are dischargeless (DL), including Shebelle, Limpopo, Orange, Western
and Northern Sahara, and Somalia. The overall discharge from the Congo basin has decreased
significantly (−4×103 km3). The total discharge from the major basins of Africa has slightly
decreased (−2×103 km3) in comparison to the 1984–2002 period. This decline happened de-
spite an increase in the total precipitation (7×103 km3), which can be partially explained by the
increase in the overall ET of 11×103 km3.

Table 4.9: Summary of total water fluxes and changes in TWS across the major basins of Africa. The relative values
for the fluxes are derived by subtracting the total amount between 1984 and 2002 from the total amount between
2003 and 2021. Regarding TWS, the relative status indicates the level in 2021 compared to the level in 2003.

Basin
Area rel. Total P rel. Total ET rel. Total R rel. TWS

[106 km2] [103 km3] [103 km3] [103 km3] [km3]

Nile 3.05 1 1 1 399 ± 20
Niger 2.10 2 2 0 289±13
Senegal 0.42 1 0 1 23±2
Volta 0.40 0 1 0 59±3
Shebelle 0.23 0 0 0 24±1
Congo 3.62 0 1 −4 422±27
Ogooue 0.21 −1 0 −1 9±3
Zambezi 1.12 1 1 0 42±14
Limpopo 0.34 0 0 0 -4±3
Orange 0.83 0 0 0 28±8
Lake Chad 3.18 2 1 0 158±23
Okavango 0.74 1 1 1 79±9
Western Sahara 1.81 0 1 0 8±6
Northern Sahara 3.47 0 1 0 -159±12
Highland of Ethiopia 0.57 0 1 0 100±3
Somalia 0.37 0 0 0 19±1
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Australia

The basins exhibit a wide variation in their areas, ranging from 1.2× 106 km2 for Murray Darling
to 2.04 × 106 km2 for West Australia. Furthermore, the figure 4.25 illustrates the trend in TWS
over these basins since 2003. The TWS data reveals that Murray Darling basin experienced a
significant increase in TWS, with a net gain of 31 ± 6 km3 compared to its status in 2003. On
the other hand, East and West Australia basins have undergone a loss in TWS of around -24 ±
11 km3 and -63 ± 11 km3, respectively (4.10).

Although the final TWS levels in the basins varied at the end of the study period, the dynamic
changes in TWS across the major basins in Australia exhibited a consistent pattern. TWS lev-
els in all the basins have been decreasing since 2003, with declines ending in 2007, 2009, and
2010 in the Murray Darling (−10± 1 km3/yr), East Australia −4.5± 0.7 km3/yr, and West Aus-
tralia −16.5±0.8 km3/yr, respectively. Subsequently, there was an increase in TWS levels, which
ended in early 2012, end of 2010, and early 2012 over the Murray Darling (33.7 ± 2 km3/yr), East
Australia 75.7 ± 7.5 km3/yr, and West Australia 22.9 ± 6.6 km3/yr, respectively. Following this
gaining period, the East and West Australia basins started to lose water, which continued un-
til the end of 2021, resulting in a negative trend of −12.6± 0.8 km3/yr and −4.9± 0.9 km3/yr,
respectively. Similarly, the Murray Darling experienced a negative trend from 2013 to 2018
(−5.5± 1 km3/yr). However, within the last two years of the study period (2019–2021), there
has been a continuous positive trend of TWS recovery (28.8 ± 1.5 km3/yr), and the basin has
returned to its late 2016 status.

The table in Table 4.10 provides a summary of the estimated total water fluxes and volumetric
TWS gain or loss since 2003. The fluxes are consistent across the three basins. Total precip-
itation and evapotranspiration over the basins are estimated to be within the same range of
8–11 ×103 km3. Regarding runoff, Murray Darling and West Australia align with their estimates
from the pre-GRACE era (1984–2002). However, the runoff from East Australia has increased by
1000 km3.

In terms of water flux balance with respect to the same period (1983–2002), there has been a
slight decrease in Murray Darling by −1×103 km3, an increase in West Australia by the same
amount, and no change in East Australia. The GRACE(-FO) observations indicate water loss
over West Australia, but this finding is not aligned with the water flux balance over Murray Dar-
ling and East Australia. Such discrepancies can be explained by the limited accuracy of the flux
estimates in capturing the TWS change, which has been previously discussed in Figure 4.4.1.
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1. West Australia

2. East Australia

3. Murray Darling

Figure 4.24: Geographic location of the selected basins over Australia. The gray regions are among the 405 major
river basins defined by the GRDC but with area < 200 000 km2.
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Figure 4.25: Inter-annual trend of TWSA estimated from SSA using the GRACE and GRACE-FO observations from
2003 to 2021 over the major basins (Area ≥ 200 000 km2) of Australia. The gain period is shown by the blue color,
and the loss period by red.

Table 4.10: Summary of total water fluxes and changes in TWS across the major basins of Australia. The relative
values for the fluxes are derived by subtracting the total amount between 1984 and 2002 from the total amount
between 2003 and 2021. Regarding TWS, the relative status indicates the level in 2021 compared to the level in 2003.

Basin
Area rel. Total P rel. Total ET rel. Total R rel. TWS

[106 km2] [103 km3] [103 km3] [103 km3

Murray Darling 1.02 −1 0 0 31±6
East Australia 1.84 1 0 1 −24±11
West Australia 2.04 0 1 0 −63±11

North America

The spatial distribution of the eleven major basins across North America is illustrated in Fig-
ure 4.26. The size of these basins ranges from 0.3 ×106 km2 in Churchill basin to 2.94 ×106 km2

in Mississippi. The corresponding temporal trends of TWS gain or loss since 2003 over these se-
lected basins are presented in Figure 4.27. Among these basins, only two, namely St. Lawrence
(137 ± 19 km3) and Mississippi (132 ± 38 km3), have exhibited a net gain in TWS since 2003. On
the other hand, the Yukon basin shows the maximum water loss of −199 ± 10 km3, followed by
Mackenzie (−105 ± 17 km3) and Death Valley (−74 ± 3 km3).

The relative TWS changes over Colorado, Bravo, Death Valley, Churchill, and Fraser can be seg-
regated into two distinct phases. These basins have experienced a net gain in water in the first
phase, primarily from 2003 to 2011. However, all basins have witnessed a significant negative
trend in TWS in the second phase, resulting in a considerable decline in the TWS. The Nelson
basin has recorded a consistently higher TWS compared to its status in 2003, while the TWS in
the Yukon and Mackenzie basins has shown a decline compared to the TWS level in 2003. It is
noteworthy that the observed discrepancies between the TWS loss/gain and water fluxes over
the basins can be attributed to the limitations of flux estimates in predicting TWS variations, as
discussed in Figure 4.4.1.
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Figure 4.26: Geographic location of the selected basins over North America. The gray regions are among the 405
major river basins defined by the GRDC but with area < 200 000 km2.

Table 4.11 presents a summary of the estimated total water fluxes and volumetric TWS gain
(or loss) since 2003 for the major basins of North America. Mississippi received the maximum
precipitation (42 ×103 km3) followed by St. Lawrence (16 ×103 km3), Mackenzie (12 × 103

km3), and Nelson (10 × 103 km3). In contrast, Colorado, Death Valley, Churchill, and Fraser
received the minimum amount of precipitation (3 ×103 km3). Most basins have gained the
same amount of water from precipitation as in the previous period (1984–2002). However, the
total precipitation has relatively increased (+1×103 km3) in three basins since 1984–2002, while
the Colorado river basin has experienced a 25 % reduction in precipitation. Notably, basins with
high precipitation values also have the highest ET rates.

In terms of evapotranspiration, more than half of the basins have remained unchanged com-
pared to the previous period (1984–2002). However, three basins, namely St. Lawrence, Col-
orado, and Death Valley, have shown a relatively lower ET rate (−1×103 km3) over the last two
decades. Concerning runoff, most basins discharged the same amount of water from 2003 to
2020 as they did from 1984–2002. However, Columbia has experienced a relative total runoff of
33 % less than the long-term average, while four basins, namely Colorado, Bravo, Death Valley,
and Churchill, have shown discharge-less behavior. The considerable contribution of ice sheet
loss explains the 66 % increase in runoff above the long-term average in some basins. Finally,
the balance in the total water fluxes (P −ET −R) indicates significant water storage loss in the
St. Lawrence basin. On the other hand, the water storage in Colorado, Mackenzie, Churchill,
Nelson, and Fraser basins has remained unchanged compared to the previous period (1984–
2002).
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Figure 4.27: Inter-annual trend of TWSA estimated from SSA using the GRACE and GRACE-FO observations from
2003 to 2021 over the major basins (Area ≥ 200 000 km2) of North America. The gain period is shown by the blue
color, and the loss period by red.
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Table 4.11: Summary of total water fluxes and changes in TWS across the major basins of North America. The
relative values for the fluxes are derived by subtracting the total amount between 1984 and 2002 from the total
amount between 2003 and 2021. Regarding TWS, the relative status indicates the level in 2021 compared to the level
in 2003.

Basin
Area rel. Total P rel. Total ET rel. Total R rel. TWS

[106 km2] [103 km3] [103 km3] [103 km3

Columbia 0.66 0 0 −1 −36±6
St. Lawrence 0.94 1 −1 4 137±19
Mississippi 2.94 1 1 0 132±38
Colorado 0.64 −1 −1 0 −42±3
Yukon 0.82 1 0 0 −199±10
Bravo 0.51 0 1 0 −52±2
Mackenzie 1.67 0 0 0 −105±17
Death Valley 0.55 0 −1 0 −74±3
Churchill 0.30 0 0 0 −1±3
Nelson 1.13 0 0 0 −29±49
Fraser 0.23 0 0 0 −55±2

South America

Figure 4.28 illustrates the distribution of the selected major river basins over South America.
The area of the selected basins varies from 0.24×106 km2 in Uruguay to 4.67×106 km2 in Ama-
zonas. Figure 4.29 shows the TWS loss or gain since 2003 over the selected basins. Since 2003
most of the basins in Asia have leveled below their status in 2003. The maximum water loss
is observed over the Parana basin (−184 ± 59 km3) followed by Sao Francisco (−117 ± 4 km3).
Three basins indicate an overall gain in TWS, including Magdalena, Orinoco, and Amazonas.
While some basins like Colorado (Argentinia) and the Atacama mostly leveled below their sta-
tus in 2003, others like Amazonas, Rio Tapajos, and Parana have been oscillating between water
loss and water gain over the study period. Five basins have experienced almost two phases in
their TWS change. Some of these basins, including Xingu, Tocantins, Sao Francisco, and Rio
Parnaiba, have witnessed first the positive level for almost half of the study period while started
to lose water for the second half. The Uruguay basin, in contrast, has to experience phases con-
trariwise over the study period.

The estimation of the total water fluxes since 2003 over the selected major basins of South
America is shown in Table 4.12. The total precipitation varies from as low as in Colorado to as
high as in Amazonas. Considering all the basins, the same amount of precipitation has fallen
over the study period compared with 1984–2002. A slight increase of 2 % is observed over Ama-
zonas while two basins, namely Tocantins and Parana, have observed slightly (∼ 3.5 %) less
water with respect to the 1984–2002 period. The Uruguay basins have received considerable
(∼ 15 %) less water from precipitation over the last two decades.

In terms of ET, on average 70 % of the precipitation has been evaporated from the basins rang-
ing from 54 % in Orinoco to 100 % in Colorado (Argentinia). The total ET has slightly increased
(2 ×103 km3) over the whole region of South America while most of the basins (∼ 75 %) re-
mained unchanged with respect to 1984–2002. Only one basins, Colorado, is dischargeless
while the runoff over the basins varies from 1 ×103 km3 in Atacama to 88 ×103 km3 in Ama-
zonas. Other than the Amazonas basin, two other basins namely Orinoco (17 ×103 km3) and
the Parana (14 ×103 km3) also have discharged significant share of their water gain from pre-
cipitation. The total discharge from the selected basins in South America shows no significant
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change with respect to 1984–2002. However, a slight increase (∼ 4 %) and decrease (∼ 1 %) is
observed over Amazonas and Orinoco, respectively.
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Figure 4.28: Geographic location of the selected basins over South America. The gray regions are among the 405
major river basins defined by the GRDC but with area < 200 000 km2.

Table 4.12: Summary of the total water fluxes and the TWS gain(loss) since 2003 over the major basins of South
America.

Basin
Area rel. Total P rel. Total ET rel. Total R rel. TWS

[106 km2] [103 km3] [103 km3] [103 km3] [km3]

Magdalena 0.25 0 0 1 1±5
Orinoco 0.84 0 1 −2 14±23
Amazonas 4.67 4 3 3 152±38
Xingu 0.45 0 0 0 −11±3
Rio Tapajos 0.37 0 0 −1 −19±4
Tocantins 0.75 −1 0 −1 −74±5
Rio Parnaiba 0.30 0 0 0 −14±2
Sao Francisco 0.63 0 −1 0 −117±4
Parana 2.65 −2 −1 −1 −184±59
Uruguay 0.24 −1 0 0 −7±1
Colorado 0.39 0 0 0 −68±3
Atacama 0.65 0 0 0 −15±3
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Figure 4.29: Inter-annual trend of TWSA estimated from SSA using the GRACE and GRACE-FO observations from
2003 to 2021 over the major basins (Area ≥ 200 000 km2) of South America. The gain period is shown by the blue
color, and the loss period by red.

Asia

The distribution of the selected river basins over Asia is illustrated in Figure 4.30. The area of the
basins varies between 0.25×106 km2 in Krishna and 2.40×106 km2 in Saudi Arabia. Figure 4.31
and Figure 4.32 show the TWS loss or gain since 2003 over the selected basins. Since 2003 most
of the basins in Asia have lost their TWS. The maximum water loss is observed over the Saudi
Arabia basin (−256 ± 9 km3) followed by Indus (−228 ± 9 km3) and Ganges (−219 ± 8 km3). In
contrast, six river basins, mostly in China, have gained water since 2003, including Yangtze, Xi
Jiang, Godavari, Krishna, Highland of Tibet, and Amur. These basins have gained in total 366 ±
19 km3 since 2003 in which most of this gain (∼ 80 %) is occurred over two major basins namely
Yangtze (113 ± 13 km3) and Amur (181 ± 14 km3).
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The temporal change in the relative TWS over the selected major basin of Asia can be catego-
rized into four groups. In the first group, the basins have been leveled in water loss since 2003
for most of the study period. Such basins include Indus, Brahmaputra, Ganges, and Saudi Ara-
bia. The Syr Darya, Amu Darya, Yellow River, Euphrates, Tarim, North China, Gobi, Helmand,
Karakum, and the Aral Sea are among the second groups has observed a short gaining period
followed by a significant negative trend which resulted in a considerable TWS over these basins.
The length of the gaining period varies over these basins from one to two years in the basins like
Yellow River, Euphrates, and North China to even nine years for Karakum. In the third group,
which includes basins like Amur, Yangtze, Xi Jiang, and Highland of Tibet, the basins mostly
remained above their status in 2003. Finally, the last group belongs to the basins that have ob-
served a considerable fluctuation in their TWS since 2003, including Lake Balkhash, Godavari,
and Krishna.
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Figure 4.30: Geographic location of the selected basins over Asia. The gray regions are among the 405 major river
basins defined by the GRDC but with area < 200 000 km2.
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Figure 4.31: Inter-annual trend of TWSA estimated from SSA using the GRACE and GRACE-FO observations from
2003 to 2021 over the major basins (Area ≥ 200 000 km2) of Asia. The gain period is shown by the blue color, and the
loss period by red.
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Figure 4.32: Figure 4.31 continued.

To put the observation of the GRACE-TWSA into perspective, we have estimated the total amount
of the water balance fluxes over the selected major basins of Asia (Table 4.13). The precipitation
varies from as high as 32 ×103 km3 over Yangtze to as low as 1 ×103 km3 over Helmand. About
60 % of the basins have received less than 5 ×103 km3. In contrast, four basins, namely Yangtze,
Ganges, Brahmaputra, and Amur, have received more than 50 % of the total precipitation over
Asia. The relative precipitation with respect to 1984–2002 shows an increase of 0.5 %. Only six
major basins have observed this gain in their input from precipitation, namely Yellow River,
Indus, Lake Balkhash, Gobi, Karakum, and Amur.

In terms of ET, on average 80 % of the precipitation over the basins in Asia has been evaporated,
ranging from∼ 65 % over Highland of Tibet to 100 % over nine basins like the Syr Darya and Aras
Sea. The relative ET shows an increase in eight basins, each only 1 ×103 km3. In some basins
like Indus, Lake Balkhash, and Amur, the increase in the ET has compensated for the slight
increase in the precipitation, which results in the same recharge (P −ET ) over these basins
with respect to the 1984–2002 period.

A great number of the basins (∼ 50 %) are dischargless (DL) in Asia. Moreover, five basins
also discharge a small amount of water (1 ×103 km3) including Syr Darya, Amu Darya, Yellow
River, Krishna, and Highland of Tibet. In contrast, a considerable ratio of the precipitation has
been discharged from Yangtze (∼ 40 %), Brahmaputra (∼ 60 %), Ganges (∼ 30 %), and Ganges
(∼ 20 %). With respect to the period of 1984–2002, the basins of Asia have mostly remained un-
changed in terms of runoff. Only a slight increase (+1 ×103 km3) and decrease (−1 ×103 km3)
is observed over Yangtze and Ganges river basins, respectively.

The balance in the water fluxes represents the water storage change in a basin. Based on the
results from the fluxes, most of the basins show no change (zero water balance) in their wa-
ter storage. In three basins, namely Syr Darya, Amu Darya, and the Brahmaputra, the result
from the water balance is aligned with the observation of the GRACE. However, the Yangtze
and Amur river basins show a negative balance over the study period, while the GRACE ob-
servation reveals a significant gain in the basin. Such discrepancies can be explained by the
low performance of the fluxes datasets over Amur while the emergence of the new lakes and
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restoration of the others in the Yangtze river basins (e.g., Huang et al., 2019; Li et al., 2020; Yang
& Lu, 2014).

Table 4.13: Summary of the total water fluxes and the TWS gain(loss) since 2003 over the major basins of Asia.

Basin
Area rel. Total P rel. Total ET rel. Total R rel. TWS

[106 km2] [103 km3] [103 km3] [103 km3] [km3]

Syr Darya 0.35 0 0 0 −44±2
Amu Darya 0.43 0 0 0 −35±2
Yellow River 0.90 1 0 0 −67±4
Euphrates 0.33 0 1 0 −44±5
Indus 1.12 1 1 0 −228±9
Yangtze 1.68 0 1 1 113±13
Brahmaputra 0.52 0 1 0 −117±7
Xi Jiang 0.30 0 0 0 7±2
Godavari 0.31 0 0 0 26±3
Krishna 0.25 0 0 0 25±2
Ganges 0.91 0 1 −1 −219±8
Saudi Arabia 2.40 0 0 0 −256±9
Tarim 0.88 0 0 0 −57±7
Lake Balkhash 0.48 1 1 0 −50±4
North China 0.62 0 0 0 −17±3
Highland of Tibet 0.52 0 0 0 14±2
Gobi 2.10 1 0 0 −31±11
Helmand 0.52 0 0 0 −43±2
Karakum 0.44 1 0 0 −9±6
Aral Sea 1.07 0 1 0 −81±8
Amur 1.95 1 1 0 181±14
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Europe

The distribution of the seven major basins over Europe is shown in Figure 4.33. The area of
the basins varies from 0.23 × 106 km2 in Neva to 1.35 ×106 km2 in Volga. Figure 4.34 shows
the TWS loss or gain since 2003 over the selected basins. Four basins have leveled below their
status in 2003 ranging from −57 ± 5 km3 in Danube to −67 ± 6 km3 in Dniepr. In contrast, three
basins in the northeastern of Europe namely Pechora (+2 ± 2 km3), North Dvina (+8 ± 1 km3),
and Neva (+9 ± 1 km3) has gain water since 2003. The Danube, Dniepr, and Don basins have
experienced the same evolution. In these basins, a short-lived positive trend is observed at the
beginning of the study period, followed by a significant negative trend (5.6–7 ± 1 km3/yr). The
Pechora basin has observed periodic gain and loss over the last two decades. The TWS in the
Volga basin has remained negative since 2003 after a weak positive trend in 2004. The basin has
suffered from two significant negative trends, namely −23.8 ± 1.8 km3/yr during 2008–2011 and
−11.25 ± 1.6 km3 from 2017 to 2021. The former was recovered partially by the positive trend
of +18 ± 1.4 km3 within 2012–2016.
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Figure 4.33: Geographic location of the selected basins over Europe. The gray regions are among the 405 major river
basins defined by the GRDC but with area < 200 000 km2.

Table 4.14 summarizes the total amount of water fluxes from 2003 over the major river basins
of Europe. The Volga basin receive the maximum amount of precipitation with 15 × 103 km3

followed by Danube (11 ×103 km3). Three basins, namely Pechora, Neva, and Don, are gaining
the minimum precipitation (3 × 103 km3) among Europe’s major basins. Most of the basins
show no change in the total precipitation water with respect to the long-term (1984–2002). Only
a small increase (1 ×103 km3) and small decrease (−1 × 103 km3) is observed over Danube and
Don, respectively.

In terms of ET, the majority of the precipitation (on average ∼ 75 %) has evaporated from the
basins. The whole precipitation water has been evaporated over the Don basin while this share
is 65 % over Pechora and Neva. The amount of ET over the basins follows the long-term (1984–
2002) with the exception of +1 ×103 km3 over the Northern Dvina. The runoff over the basins
varies from zero over Don to (+4 ×103 km3) over the Volga. Except for the Volga with a decrease
of 20 % of its discharge, all the other basins runoff remained unchanged with respect to the
period 1984–2002. The water fluxes balance (P −ET −R) shows no storage change over most
basins. Only two basins, namely the Pechora and Northern Dvina, have lost water (−1 ×103

km3) in terms of the fluxes.
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Figure 4.34: Inter-annual trend of TWSA estimated from SSA using the GRACE and GRACE-FO observations from
2003 to 2021 over the major basins (Area ≥ 200 000 km2) of Europe. The gain period is shown by the blue color, and
the loss period by red.

Table 4.14: Summary of the total water fluxes and the TWS gain(loss) since 2003 over the major basins of Europe.

Basin
Area rel. Total P rel. Total ET rel. Total R rel. TWS

[106 km2] [103 km3] [103 km3] [103 km3] [km3]

Danube 0.77 1 0 0 −57±5
Pechora 0.30 0 0 0 2±2
Northern Dvina 0.33 0 1 0 8±1
Neva 0.23 0 0 0 9±1
Volga 1.35 0 0 −1 −64±5
Dniepr 0.46 0 0 0 −67±6
Don 0.38 −1 0 0 −65±2

4.6.3. Analysis over Iran

Like many other Middle Eastern countries, Iran has been enduring severe water shortage over
the last two decades (Dubreuil et al., 2013; Madani, 2014; Michel, 2017; Zehtabian et al., 2010).
Drying rivers, lakes and wetlands (Alborzi et al., 2018; Arsanjani et al., 2015; Jones et al., 2015;
Madani et al., 2016; Saemian et al., 2020; Tourian et al., 2015), deforestation, desertification, soil
erosion, and sand and dust storms are among the visible products of reduced surface water
in this nation (Amiraslani & Dragovich, 2011; Khalyani & Mayer, 2013; Khormali et al., 2009;
Mardi et al., 2018). Besides surface water loss, groundwater levels have fallen significantly over
the past decades (Ashraf et al., 2017; Döll et al., 2014; Gleeson et al., 2012; Marc et al., 2012;
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Voss et al., 2013), leading to problems such as land subsidence and the emergence of sinkholes
across the country (Emadodin et al., 2012; Motagh et al., 2008). Using point data from wells, the
total groundwater depletion in Iran is estimated at around 75 km3 within 2002–2015 (Ashraf et
al., 2021; Noori et al., 2021). The observed changes in water availability have been attributed
to the compounding effects of human activities and climatic variability and change (Ashraf
et al., 2019). With more than 85 % of the country’s area having an arid or semi-arid climate,
any significant change in water availability can result in substantial environmental and socio-
economic impacts (Madani, 2014), turning water scarcity into a national security threat.

The observed depletion of water resources is the product of frequent meteorological droughts
(natural variability), climatic changes, and human activities (increased water use and with-
drawal). However, many studies consider anthropogenic activities including population growth
(increasing demand), inefficient agricultural water use, and unsustainable water resources man-
agement as the primary cause of Iran’s water bankruptcy (e.g., Madani, 2014; Madani et al.,
2016; Maghrebi et al., 2020; Mirnezami et al., 2018; Mirzaei et al., 2019; Nabavi, 2018; Panahi
et al., 2020). The quantitative knowledge on Iran’s water bankruptcy problem at the national
scale is still very limited due to lack of conclusive ground data. Filling this knowledge gap and
developing a deep understanding of the level of water loss across Iran will be an essential step
toward addressing this significant national problem.

Estimation of Total Water Storage (TWS), defined as the sum of all storage components such
as surface water, soil moisture, snow water, and groundwater, provides valuable insight into
the water resources availability at the regional scale (Riegger & Tourian, 2014; Syed et al., 2005;
Tourian et al., 2018). Conventional ground-based measurements of TWS components, e.g.,
change in Surface Water Storage (SWS), Soil Moisture Storage (SMS), and GroundWater Storage
(GWS) are being done at local scales. However, ground-based measurements are often associ-
ated with data inconsistencies, spatial, temporal and physical data gaps (e.g. unknown storage
coefficients), and instrumental and human errors (Forootan et al., 2014; Lorenz et al., 2015;
Rodell et al., 2007). Evaluation of TWS can also be done using Land Surface Models (LSMs) or
hydrological models. The performance of these models, however, varies in different parts of the
world which can make them unreliable for water management and decision-making purposes,
especially during extreme events like droughts or floods (e.g., Felfelani et al., 2017; Long et al.,
2014; Long et al., 2013).

GRACE-TWS observations have been previously employed for water resources monitoring in
Iran over the last two decades. Voss et al. (2013) reported an alarming loss at a rate of 2.7 cm/yr
in the north-central Middle East, including the Tigris and Euphrates River Basins and west-
ern Iran, from 2003 to 2009. A similar negative trend was also reported in Joodaki et al. (2014)
over western Iran and eastern Iraq from 2003 to 2012. By subtracting contributions from soil
moisture, snow, canopy storage, and river storage, groundwater depletion was found to repre-
sent 60 % of the total volume of water lost (Joodaki et al., 2014; Voss et al., 2013). Merging the
Global Land Data Assimilation System (GLDAS) model and satellite altimetry data as a prior
data with GRACE-TWS, Forootan et al. (2014) estimated a negative average trend of 1.5 cm/yr
over central and northwestern Iran during the 2005–2011 period. A recent study by Rahimzade-
gan and Entezari (2019) has shown that the trend values obtained from GRACE after removing
soil moisture from GLDAS correlated well with the observed groundwater level variations in 4
sub-watersheds in Iran.

The aforementioned studies have assessed water loss in Iran over a short time period and did
not include the GRACE-FO observations. Moreover, satellite gravimetric data have not been
investigated together with groundwater level observations gauged via a country-wide dense
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network of piezometric wells. We provides the first estimate of total water storage loss together
with the uncertainty in Iran over the last two decades. The analysis incorporates the mea-
surements of TWS from GRACE and GRACE-FO, precipitation from a dense network of rain
gauges together with globally gridded datasets, and also groundwater level from piezometric
wells. The results of our analysis are reported for the entire country and, for the first time,
over its 30 major river basins. Our analysis shows significant total water storage losses over the
whole country. Recently, the massive flood events in early 2019 took place in a large area of Iran
(Yadollahie, 2019), which brought a considerable amount of water to the system. This study, for
the first time, quantifies the contribution of these events to the TWS retrieval of Iran. Further-
more, using a dense network of piezometric wells, we quantify groundwater depletion as one
of the leading representative indicators of anthropogenic activities and water bankruptcy.

Results:

Figure 4.35 (a) presents the time series of GRACE TWSA over Iran from 2003 to 2019. The time
evolution of the total water storage loss relative to the initial epoch is shown in Figure 4.35
(b). The total water storage exhibited a weak positive trend from 2003 to 2005, which brought
23 km3 water to the system. The short-lived positive trend in TWS was followed by a continuous
negative trend from 2006 to 2016, triggered by the drought in 2007, during which Iran has lost
256 km3 water, corresponding to a rate of −23.25 km3/yr. The negative trend ended in early
2017 and TWSA showed a weak positive trend from 2017 to the end of 2019. Within 2017–2019,
TWS gained 31 km3 at a rate of +10.3 km3/yr. Overall since 2003 Iran has lost 211 ± 34 km3 of
its total water storage at an average rate of −12 ± 2 km3/yr. This water amount corresponds to
about half of Lake Erie’s volume (EPA), one of the Great Lakes in North America.

Our findings are consistent with those reported by previous studies focusing on different time
periods (e.g., Ashraf et al., 2021; Forootan et al., 2014; Joodaki et al., 2014; Panahi et al., 2020;
Voss et al., 2013). The total water consumption in Iran is estimated at 96 km3 (Khoosefi, 2018).
Hence, our analysis shows that Iran has lost more than twice of its annual water consumption
over the last two decades. Most of the water has been lost during 2008–2016, triggered by one
of the two most severe droughts of the last 50 years in the Middle East.

Moreover, Least Squares Spectral Analysis (LSSA) method (Wells et al., 1985) revealed that the
annual amplitude amounted to 7.4 cm over the study period (2003–2019), which represents
122 km3 of water. The annual TWS variation has not remained constant within the last two
decades and has followed three main phases, i.e., from 2003 to 2007 with 8.5 cm, from 2008
to 2015 with 7.4 cm, and finally from 2016 to 2019 with 9 cm. The smaller annual variation
throughout 2008–2015 is mainly driven by a continuous decrease in the precipitation (cf. Fig-
ure 4.36 and Figure 4.35). Given a normal situation without drought or flood periods, the an-
nual TWS variation seems to vary within 8.5–9 cm (140–148 km3).

The basin-wise distribution of the total water storage loss rates and relative precipitation gain
or deficit in Iran over the last 17 years (2003–2019) are shown in Figure 4.37 (a) and (b), respec-
tively. Figure 4.37 (a) presents the result of both rates of total water storage loss in terms of water
height (colors) and volumetric (circular disks). All major basins suffer from a significant wa-
ter loss within 2003–2019, varying between −0.07 and −1.8 km3/yr. The maximum total water
storage loss rate has occurred in the Central Desert (47) at a rate of −1.8 ± 0.26 km3/yr, followed
by Salt Lake (41), Lut Desert (46), and Sefidrood (13), each at a rate of more than −1 km3/yr.
Ghareghoom (60) in the southeast of Iran has experienced the minimum water loss (−0.07 ±
0.05 km3/yr). Due to the inevitable post-processing process described in section 2.4 and the
coarse spatial resolution of GRACE (e.g., Longuevergne et al., 2010; Lorenz et al., 2014; Row-
lands et al., 2005; Vishwakarma et al., 2018), the final results carry uncertainties and errors.

https://www.epa.gov/greatlakes/physical-features-great-lakes


4.6. Results

4

157

Figure 4.35: (a) TWSA derived from GRACE and GRACE-FO over Iran; The error envelope represents the uncertainty
of the processed data. The non-linear trend is achieved using SSA algorithm with 24 month window. (b) Time
evolution of the accumulated total water storage loss since 2003. (c) Inter-annual variation of the relative losing
water status (red) or gaining water status (blue) from precipitation over Iran with respect to the long-term mean
(1983–2002).

Therefore, GRACE observations should not be over-interpreted, especially in small catchments
like Talesh (12) or Haraz-Sefidrood (14). It is noteworthy that due to the coarse spatial resolu-
tion of GRACE, the results over smaller basins come with inherent uncertainty. Moreover, the
results in the Caspian Sea coastal region are prone to leakage error due to the strong negative
trend in the signal of the Caspian Sea.

Lake Urmia in northwestern Iran is one of the largest lakes in the Middle East. This hypersaline
lake has shrunk drastically over the last two decades to less than 30 % of its original surface area
and it lost more than 30 % of its water volume from 1995 to 2015. Based on the results presented
in Figure 4.40 and Figure 4.41, the basin has lost water at a rate of −0.7 ± 0.05 km3/yr, one of the
top 6 river basins in losing water storage in Iran over the study period (Figure 4.37 (a)). Although
the overall deficit from precipitation over the last two decades is mild, the basin has suffered
from a long period of persistent water loss from 2007 onwards (Figure 4.38). The expansion of
agricultural land (Khazaei et al., 2019), together with water loss from precipitation, put pressure
on this basin’s water resources and encouraged increased groundwater use.

It is noteworthy that for the same period, the water input reflects a different picture Figure 4.37
(b). Relative to climatology, the water resource system has gained water from precipitation
at a total rate of +10.28 ± 0.03 km3/yr in 17 basins (54 % of the area), while in the 13 other
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Figure 4.36: Basin-wise gain or deficit from precipitation at each year from 2003 to 2019 with respect to the long-
term mean (1983–2002).

basins (46 % of the area) the total rate is −5.42 ± 0.03 km3/yr. Overall, the whole country has
gained water from precipitation at the rate of +4.86 ± 0.02 km3/yr. The Karun basin (23) has
experienced the maximum amount of gain at a rate of +1.87 ± 0.25 km3/yr while the adjacent
Karkheh basin (22) shows the maximum deficit at a rate of −1 ± 0.11 km3/yr. These results are
mirrored by in-situ observations shown in (Figure 4.37 (d)). We calculated the gain or loss at
380 gauge stations, gauged from 1983 to the end of 2019 with less than one-year data outages
within 2003–2019. Gauge results match very well the gridded data sets (Figure 4.37 (b)). The
poor density of stations in the middle and eastern parts of the country is due to two vast deserts,
namely the Lut Desert (46) and Central Desert (47) in the middle of the Iranian plateau.

Besides the TWS gain or loss, it is crucial to scrutinize how the water status evolved within 2003–
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(a) TWS rate within 2003-2019 (b) Relative precipitation deficit/gain 
rate within 2003-2019
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Figure 4.37: (a) Basin-wise distribution of TWS rate per unit area from 2003 to 2019. The absolute TWS rates are
shown in km3 per year using circular disks. (b) Relative deficit or gain in precipitation calculated from the selected
precipitation datasets for the period 2003–2019. (c) same as (b) but for the period 2003–2016. (d) Relative deficit or
gain in precipitation calculated from in-situ gauges for the period 2003–2019. The area of the disks at each station
represents the magnitude of gain or deficit in mm/year.

2019. The drought event around 2007–2008 and the heavy rainfall in 2019 are two significant
events that had a notable influence on the evolution (Figure 4.38). Eleven basins with an area
of 40 % of the country have remained in deficit after the 2007 drought including Karkheh (22),
Lake Urmia (30), and Helle (25). In general, 25 % of the whole country (6 basins) including
Lut Desert (46), Karkheh (22), and Hamun Hirmand (52) have never experienced a gain in the
relative precipitation during 2003–2019.

Almost all basins underwent heavy rainfall in early 2019 (Figure 4.36). Considering the long-
term mean for the period 1983–2002 as the reference, the whole country gained around 115 ±
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Figure 4.38: Basin-wise time evolution of gain or deficit in precipitation. At each epoch, the time period shown in
the left corner is used to calculated gain or deficit with respect to the long-term mean (1983–2002).

0.8 km3 water in 2019. The Central Desert (47) received the maximum gain with 1.04 ± 0.05 km3

followed by the Salt Lake (41), the Mand (26), the Karun (23), and the Lut basin (46), all gaining
more than 0.4 km3 water. Comparing Figure 4.37 (b) and (c), such a heavy rainfall led to a
change in the gain-deficit pattern in three basins (20 % of the total area) namely Mehran-Kal
(27), South Baluchestan (29), and the Central Desert (47). Moreover, significant changes in
gaining or losing water status are observed in Karkheh (22), Karun (23), and Lut Desert (46) (cf.
the last two sub-figures in Figure 4.38).

To properly interpret the water loss from satellite gravimetry, we need to look at the mean an-
nual precipitation gain or deficit from 2003 to 2019 relative to their mean annual precipitation,
determined within the reference period 1983–2002. Figure 4.39 (a) shows gaining or losing wa-
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ter status in percentage representing alarming rainfall deficit in basins Hamun Hirmand (52),
Khaf (51), and Helle (25) by more than −10 %. In the northern and central major basins, we
observe a general gain by more than 10 % of their mean annual precipitation. The percentage
values of the total water loss with respect to the corresponding amplitude of the TWSA signal,
trend-to-variability ratio, gives a sense how relevant the trend is with respect to the natural
variability (Lehmann et al., 2015; Rahmstorf & Coumou, 2011). Considering the Root Mean
Squared (RMS) of the TWSA as the amplitude, the trend-to-variability varies between −8 and
−14 % per year (Figure 4.39 (b)).
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Figure 4.39: (a) The percentage of the relative precipitation gain or deficit over 2003–2019 with respect to 1983–2002.
(b) The trend-to-variability ratio of mean annual TWS loss with respect to the RMS of the TWSA signal.

All the obtained results are associated with uncertainties, which we have tried to address in this
study. Figure 4.40 (a) illustrates the rate of water loss together with their uncertainty. Despite
their size the Lut Desert (46) and Central Desert (47) show high uncertainty, due to the weak
signal which does not go beyond the GRACE noise level. The basin-wise gain or loss from pre-
cipitation and their corresponding uncertainty are shown in Figure 4.40 (b). The gain or loss of
five basins, namely Sefidrood (13), Mehran-Kal (27), South Baluchestan (29), Lake Urmia (30),
and Central Desert (47), is undecided as their error bar contains the zero level.

It is remarkable that basins like Aras (11), Karun (23), Salt Lake (41), and Ghareghoom (60) have
gained more than 1 km3 water while GRACE senses a negative trend. It should be noted that
the GRACE estimates for small basins, like Aras (11), Talesh (12), Haraz-Sefidrood (14), Haraz
(15), Gharesoo (16), and Atrak River (17) are prone to leakage. Such added uncertainty, how-
ever, will marginally affect the estimates of the trend. Since the water stored as surface water,
soil moisture, canopy water and snow equivalent water is negligible in an arid to semi-arid cli-
mate of Iran (Abou Zaki et al., 2019; Van Camp et al., 2010), the negative trend in GRACE and
simultaneous precipitation gain can only be explained by increased groundwater extraction.
Agriculture consumes more than 90 % of Iran’s water and heavily relies on groundwater for ir-
rigation (Madani, 2014). The number of wells in the time period 1971-2013 has dramatically
increased from just over 47 000 to nearly 789 000 (Noor, 2017). Moreover, reliance on ground-
water has increased steadily during droughts.

To quantify the drop rate of the mean groundwater level, we analyzed groundwater level data
from the piezometric stations (Figure 4.5 (b)). Figure 4.41 represents the relative annual loss
or gain rate of the groundwater level of the major basins in Iran, including their uncertain-
ties. Given the unknown storage coefficients of aquifers, results are reported in cm as an ab-



4

162 4. Analysis of Water Storage Variation

0 5 10 15 20 25

Area [104 km2]
-2.5 -2 -1.5 -1 -0.5 0

loss rate [km3/year]

(a)

60
53
52
51
49
48
47
46
45
44
43
42
41
30
29
28
27
26
25
24
23
22
21
17
16
15
14
13
12
11

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

deficit or gain [km3/year]

28
42
60
53
52
51
49
48
47
46
45
44
43
41
30
29
27
26
25
24
23
22
21
17
16
15
14
13
12
11

(b)

Figure 4.40: (a) Loss rate of TWSA at each basin together with its corresponding uncertainty shown by rectangle. (b)
Annual deficit or gain rate from precipitation at each basin together with its corresponding uncertainty shown with
rectangle. Basins with red ID are prone to GRACE leakage due to the strong negative trend of the Caspian Sea. The
results of these basins (TWSA results) should not be over-interpreted.

solute volume quantification is not possible. The heterogeneous behavior of different aquifers
in each basin resulted in large uncertainty values compared to those from GRACE or precipi-
tation. Groundwater level has been dropped in most main river basins of Iran, except for the
basins near the Caspian Sea, namely Talesh (12), Haraz-Sefiidrood (14), Haraz (15), Gharesoo
(16), and South Baluchestan (29) (see Figure 4.42 (b)). The maximum loss has occurred in the
Mehran-Kal (27) at the rate of −47.7 ± 6 cm/yr, followed by Saghand (49), Abarghoo-Sirjan (44),
Ghareghoom (60), and Salt Lake (41). Based on the piezometric well observations, more than
90 % of the aquifers show negative trends within the study period while in 35 % of them, the
groundwater level has dropped more than 40 cm/yr. Figure 4.42 (a) depict the TWS loss rate
using the GRACE observation within 2003–2016 which is the same period of GWLA data (Fig-
ure 4.42 (b)). The annual rate of the mean groundwater level drop in this study is consistent
with a recent estimation by Noori et al. (2021).

Figure 4.43 (a) represents the mean GroundWater Level Anomaly (GWLA) time series for entire
Iran, together with the TWSA from GRACE, over the period from 2003 to the end of 2016. We
observe that the GWL is highly correlated with TWSA (r = 0.97). The mean GWLA in Iran has
dropped dramatically during the last two decades, triggered by the drought in 2007. Consid-
ering the period from 2003 to 2016, the mean groundwater shows a significant negative trend
of −28 ± 1.4 cm/yr while this rate was −8.1± 3.3 cm/yr and −25.3 ± 1.9 cm/yr before and af-
ter 2008, respectively. The high correlation and the same trend behavior between TWSA and
GWLA highlight the notable contribution of groundwater depletion in Iran’s total water storage
loss observed by GRACE.

The green and red background in Figure 4.43 (a) refer to the two distinct patterns observed in
the scatter plot of the TWSA versus groundwater level Figure 4.43 (b). Except for the humid
regions (15 % of the country) with considerable contribution from soil moisture anomaly (Rah-
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Figure 4.41: Loss or gain rate of groundwater level at each basin together with its corresponding uncertainty shown
with the rectangles.
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Figure 4.42: (a) Basin-wise distribution of TWS loss rate using GRACE observation within 2003–2016. (b) Basin-wise
distribution groundwater level rate from the piezometric well observations within 2003–2016.

mani et al., 2016) and the variation in Lake Urmia in the northwest (Ashraf et al., 2019; Tourian
et al., 2015), the GWS anomaly is the dominant compartment of the TWSA in most of Iran.
Therefore, the scatter points’ slope implicitly reveals the storativity or the storage coefficient
since it maps the water table to the volume quantity. For an unconfined aquifer, which most
aquifers in Iran are, the storage coefficient is approximately equal to the specific yield. Two
distinct slopes, the green line from 2003 to 2007 0.072 and the red one from 2008 to 2016, 0.04,
implicitly indicates that the acceleration in groundwater loss in last years brought the ground-
water to a deeper level with a different soil structure (Figure 4.43 (b)). Another likely reason
can be that groundwater extraction in many regions of Iran has become more challenging and
expensive as the groundwater drops. Also, below a certain level, there may not be even much
water left for extraction (at least for a period of time in each year).
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Using the piezometric wells observations, two recent studies, namely Ashraf et al. (2021) and
Noori et al. (2021), estimated Iran’s groundwater storage depletion within 2002–2015 as 74 km3

and 75 km3, respectively. Based on our analysis, Iran has lost 241 km3 of its total water storage
within 2003–2015. Considering total water storage as the sum of groundwater, surface water,
soil moisture, and snow water, we can derive an estimate of 166 km3 for the water loss from the
surface, soil, and snow in Iran within 2003 to 2015. The shrinkage of the Lake Urmia (11 km3)
and the reported d(r)ying up lakes like Lake Hamoon and Lake Bakhtegan, narrowing of per-
manent rivers width, and the disappearance of seasonal rivers are only a few shreds of evidence
in agreement with this estimate.
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Figure 4.43: (a) TWSA derived from GRACE over Iran together with the mean groundwater level from piezometric
wells network. (b) Scatter plot of TWSA with respect to mean groundwater level including two distinct slopes, color-
coded in green (2003–2007) and in red (2008–2016).

We highlight that the piezometric wells’ observations are limited mainly to the groundwater
level in aquifers. These aquifers are located in the plains, excluding groundwater flow in moun-
tainous terrains. In case the measurements in mountainous regions were available, we would
expect a higher rate of groundwater withdrawal due to the bedrocks’ steeper slope. However,
since the main groundwater level fluctuations occur in irrigated plains, the contribution of
groundwater depletion in the mountainous regions in the estimation of total groundwater de-
cline should be negligible. Considering the potential role of the surface-groundwater interac-
tion, it should be noted that, the accelerated increase in the water withdrawals over the recent
years would result in the decrease of the groundwater contribution to the baseflow. This de-
cline has already been observed in Lake Urmia basin by Vaheddoost and Aksoy, 2018 and needs
to be further investigated over other basins, especially mountainous regions.

In an arid to a semi-arid region like Iran, groundwater is a precious resource functioning as the
backbone of irrigated farming. The alarming accelerated rate of groundwater withdrawal after
the 2007 drought continued till the end of 2016. Maghrebi et al. (2020) assessed Iran’s agri-
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cultural activities within 1981–2013 using agricultural area/production data from Iran’s Min-
istry of Agriculture Jihad, Ministry of Energy, and Ministry of Roads and Urban Development.
Our results from piezometric wells confirm the finding from Maghrebi et al. (2020) that the
groundwater over-exploitation for agriculture and consequently irrigated agricultural produc-
tion increased despite declining water availability during 2003–2016. Since the rate of recharge
is slower than the pumping, many aquifers would be in danger of being depleted, and their
water content never be recovered like aquifers in the agriculturally active regions of the world
such High Plain (Scanlon et al., 2012) and Central Valley aquifers (Famiglietti et al., 2011) in the
United States or the North China Plain (Feng et al., 2013). The observed decrease of ground-
water extraction in many parts of Iran is attributable to the inefficiency of pumping (due to
high groundwater depth or low water quality) and not necessarily the result of groundwater
conservation and monitoring efforts across the country (Ashraf et al., 2017; Ashraf et al., 2021;
Madani, 2014; Noori et al., 2021; Tourian et al., 2015).
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5.1. Introduction

In the earth sciences, any natural phenomenon that poses a threat to human life, infrastructure,
or the environment is classified as a natural hazard (e.g., McPhillips et al., 2018; Pelling, 2003).
Scientists in this field are dedicated to mapping, characterizing, and modeling natural hazards
such as extreme atmospheric, geophysical, and hydrological events. The primary objective is
to comprehend the magnitude, underlying factors, and scope of each hazard, which can then
be utilized for risk management and future prediction (Garcin et al., 2008; Peng & Wang, 2015).
Extreme weather conditions including heat waves, cold waves, and tropical cyclones can lead
to extreme hydrological events, i.e., drought and flood. A flood event occurs when the flow
of a river or stream quickly and unexpectedly overtops its banks, inundating the surrounding
dry land. In contrast, droughts occur more gradually and affect wider areas. By examining
the occurrence, frequency, and impacts of these extreme events, scientists can improve their
understanding of natural hazards and develop strategies to mitigate their effects.

Understanding the temporal and spatial scale of drought is crucial for predicting and mitigating
their impacts on water resources and human activities. Temporal scale refers to the duration
and frequency of drought events. Droughts can last from a few weeks to several years, depend-
ing on the underlying climate conditions and the available water resources. They can also oc-
cur in different frequencies, ranging from rare, extreme events to more frequent and moderate
droughts. Spatial scale refers to the extent and intensity of drought events. Droughts can occur
at different spatial scales, from local, regional to continental, affecting different hydrological
systems such as groundwater, surface water, and soil moisture.

Storage-based drought refers to the depletion of water resources in storage systems, such as
groundwater, reservoirs, and lakes, resulting in a shortage of water supply for human activities
and ecosystems. Understanding the dynamics of storage-based drought is essential for effec-
tive water management and allocation, especially in regions where water resources are limited
and vulnerable to climate variability and change. Storage-based drought events can have sig-
nificant impacts on the water supply for human activities, including domestic, industrial, and
agricultural use. In regions where agriculture is a significant contributor to the local economy,
storage-based drought events can result in crop failure, food insecurity, and economic losses.
In addition, storage-based drought events can have detrimental effects on natural ecosystems,
leading to the depletion of water resources and the loss of biodiversity.

To manage and mitigate the impacts of storage-based drought events, it is essential to under-
stand their dynamics. This requires accurate and reliable information on the frequency, in-
tensity, and duration of storage-based drought events, as well as their underlying causes and
drivers. In this chapter, we aim to develop a probabilistic approach to characterize storage-
based drought events based on historical data and climate projections. We will first provide a
definition of drought and its impacts on water resource systems and human activities. Then,
we will briefly mention some historical and recent drought events. We describe the method-
ology for characterizing storage-based drought events based on a probabilistic approach and
the GRACE-H (hindcast GRACE, developed in chapter 3). Finally, we will present the results of
our study, which will include comparison of the new drought index with the deterministic ver-
sion of it. The outcome of this research will provide valuable information for water managers
and decision-makers to develop effective strategies for mitigating the impacts of storage-based
drought events.
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5.1.1. Defining drought and its impacts

According to Wilhite (2000), drought is one of the most complex, but least understood among
all natural hazards. Even though this was mentioned in Wilhite’s book about 18 years ago, it is
still true for several reasons. First, a worldwide accepted definition of drought is still missing.
Although numerous definitions have been proposed so far, the literature lacks one precise def-
inition that fulfils both the scientific and policymaker’s expectations. The difficulty of defining
drought comes from the different points of view from several sectors. Moreover, in many cases
it is a hard task to distinguish between the role of nature and humans. Therefore, it is difficult
to identify its key characteristics such as duration, severity, and spatial extent. Second, drought
is known as a creeping phenomenon. It may stay in a region for years after the termination,
which makes the determination of the onset and the end of drought quite challenging. Third,
in contrast to floods, hurricanes, earthquakes, and tornadoes the effects of drought seldom re-
sult in structural damage (Mishra & Singh, 2010). Finally, drought affects a wide geographical
area, in most cases wider than any other natural hazard, making it one of the most significant
and far-reaching environmental challenges facing humanity today. It can affect entire regions,
countries, or even continents, making it a complex and challenging phenomenon to monitor
and manage. For example, In 2015, a severe drought in Brazil affected the entire country, in-
cluding its largest city, São Paulo, and led to water rationing for millions of people. The other
example is the recent drought in California, which lasted from 2012 to 2016, affected the entire
state and was one of the worst in its history. The drought led to water shortages, wildfires, and
economic losses in the agricultural sector.

Drought is an extreme event with a far-reaching web of economical, social, and environmen-
tal impacts that can occur in all climatic regimes (Mishra & Singh, 2010; Svoboda et al., 2002;
Wilhite et al., 2007). With its wide range of effects, drought has impacted more people world-
wide than other natural disasters over the past four decades (FAO, 2021; Wilhite, 2000). Many
countries have faced considerable economic loss due to the drought events. For example,
based on the NOAA’s National Centers for Environmental Information (NCEI) report (https:
//www.ncei.noaa.gov/access/billions/), within the last four decades there have been approx-
imately 29 significant droughts in the United States, costing the country at least $291 billion
(more than $10 billion for each event). In Europe, Naumann et al. (2021) estimated the annual
cost of droughts (especially in the southern and western parts) to be up to €9 billion, which
could rise to more than €65 billion without climate action. Apart from the costs, climate change
and unsustainable water management have raised the frequency and severity of drought events
globally over the last two decades, which is expected to increase even more for the future (e.g.,
Coumou & Rahmstorf, 2012; Donat et al., 2016; Hisdal et al., 2001; Li et al., 2021; Teuling, 2018;
Yu et al., 2014; Zhao et al., 2020).

5.1.2. Types of drought

Drought is traditionally classified according to three physically-based perspectives (Mishra &
Singh, 2010):

• Meteorological: lack of precipitation

• Agricultural : deficit in soil moisture and vegetation response

• Hydrological: deficit in the runoff, streamflow, or groundwater storage

Moreover, a new class of drought called socio-economic drought (Mehran et al., 2015), also
termed as anthropogenic drought (AghaKouchak et al., 2021), has been proposed recently. It is
mainly related to the overuse or abuse of water due to human activities that can lead to water

https://www.ncei.noaa.gov/access/billions/
https://www.ncei.noaa.gov/access/billions/
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stress in an area. In this chapter, we specifically focus on storage-based drought as a sub-class
of hydrological drought.

The four perspectives of drought are different in timing, impact, and recovery rate with a rapid
sense of dryness in meteorological drought, an intermediate response in agricultural and long-
term dryness indicative of hydrological drought (Figure 5.1). It can be concluded from the
figure that drought designations among sectors may or may not coincide in space and time
(Wilhite, 2000). This means that several weeks of dryness may trigger an agricultural drought
but it may not be sensed by groundwater or have little effect on streamflow. Moreover, the
same duration of dryness may cause a severe drought in one region but may be classified as
just abnormally dry in one another.

Figure 5.1: Sequence of drought occurrence and impacts for commonly accepted drought types (Wilhite, 2000)

5.1.3. Historical and recent occurrences of drought

Drought has been a recurring phenomenon throughout the history of human civilization, and
its impacts have been observed globally. The historical and recent occurrences of drought can
provide valuable insights into the patterns and trends of drought, as well as the societal and
environmental impacts associated with this natural hazard. In this section, we provide a few
example of the historical and recent occurrences of drought, with a focus on some notable
events and their impacts.

Droughts have been documented throughout human history, and many ancient civilizations
have experienced devastating drought events. One notable example is the Akkadian Empire,
which was located in Mesopotamia (modern-day Iraq) and existed from 2334 BCE to 2154 BCE
(Kerr, 1998). The empire collapsed during a prolonged drought, which was documented in
cuneiform tablets from the time (Marshall, 2022). These tablets describe crop failures, famine,
and societal collapse, and suggest that the drought lasted for several years. The Akkadian
drought is thought to have been caused by a combination of natural climate variability and
human activities, such as deforestation and overgrazing.
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Another well-known historical drought event occurred in the 14th century in what is now modern-
day Mexico. The region was home to the Aztec Empire, which flourished from the 14th to the
16th centuries. However, the empire was devastated by a series of droughts that occurred be-
tween 1350 and 1450 CE. These droughts caused crop failures, famine, and disease, and con-
tributed to the eventual collapse of the empire. Researchers have suggested that the droughts
may have been caused by changes in the Atlantic Multidecadal Oscillation, which is a natural
climate pattern that affects sea surface temperatures in the Atlantic Ocean. The Aztec droughts
serve as a reminder of the devastating impacts that climate variability can have on human so-
cieties, and underscore the importance of drought monitoring and early warning systems.

(a) (b)

(c) (d)

Figure 5.2: (a) Representation of a seal of an Akkadian king from circa 2200 BC, during the period of a severe
drought that affected the empire. The seal depicts a god holding a vessel from which water flows, possibly sym-
bolizing the hope for rain during the dry spell. Credit: The Art Archive/Shutterstock (b) Map of the Akkadian Em-
pire (Illustration). Credit: World History Encyclopedia (c) Aztec drought rituals, 16th century (Courtesy: Library
of congress/science photo library). The illustration depicts priests wearing jade necklaces conducting these cere-
monies. To ward off drought, the priests cast decapitated birds into a stream. One priest carries a staff and a copal
incense burner while another blows a conch shell. A bird is being killed by the third priest in the picture. The upper
right of the illustration features a flowering cactus, which represents Tenochtitlan, now known as Mexico City. (d) A
map indicating the maximum extent of the Aztec civilization. Credit: World History Encyclopedia

Regarding more recent events, one of the most severe droughts in recorded history occurred in
the Sahel region of Africa in the late 1960s and early 1970s, which caused widespread famine
and displacement of millions of people. The drought was attributed to a combination of natu-
ral climate variability and human factors, such as deforestation and overgrazing. The severity
of this event highlighted the vulnerability of the region to drought and the need for improved
drought preparedness and response measures. The effects of the Sahel drought were not lim-
ited to Africa, as it had ripple effects across the globe. The decline in food production caused by
the drought led to a significant increase in food prices, which impacted consumers worldwide.
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Additionally, the displacement of millions of people resulted in the spread of disease and social
unrest, exacerbating the humanitarian crisis. This event serves as a reminder of the complex
interplay between natural and human factors in drought occurrence and its impacts.

From the late 1990s to the late 2000s, Australia experienced a severe and prolonged drought that
became known as the Millennium Drought. The drought had a significant impact on agricul-
ture, water resources, and biodiversity, and led to major policy changes and investments in wa-
ter management. The drought was caused by a combination of factors, including a prolonged
period of below-average rainfall, increased evaporation rates due to higher temperatures, and
the over-extraction of water from the Murray-Darling Basin, which is a major river system that
supports agriculture, urban centers, and environmental ecosystems in the region. During the
Millennium Drought, many rivers, lakes, and wetlands in the region dried up, and water levels
in reservoirs reached critically low levels. This resulted in severe water shortages for both urban
and rural communities, and many farmers were forced to sell or cull their livestock and crops,
leading to significant economic losses. The impacts of the Millennium Drought were also felt
beyond Australia, as it affected global food prices due to reduced agricultural productivity, par-
ticularly in the wheat and rice industries. The Millennium Drought ended in 2010, when heavy
rainfall replenished the water levels in many of the region’s dams and reservoirs, although the
impacts of the drought are still being felt in some parts of the region.

The Syrian drought was a prolonged period of below-average rainfall that occurred in the East-
ern Mediterranean region, including Syria, from 2006 to 2011. The drought was considered one
of the most severe in the region’s history and was exacerbated by anthropogenic factors such as
overuse of water resources, mismanagement of land, and unsustainable agricultural practices.
The drought had significant impacts on Syria’s agriculture and economy, leading to the dis-
placement of hundreds of thousands of people, particularly in rural areas. Many farmers were
forced to abandon their crops and livestock due to a lack of water, causing a ripple effect on
food prices, unemployment, and poverty. The drought also exacerbated political tensions and
social unrest, contributing to the Syrian Civil War, which began in 2011. The Syrian drought
highlighted the vulnerability of countries in the Eastern Mediterranean region to droughts and
the need for effective water management and adaptation strategies to cope with the impacts of
climate change.

The United States has experienced several severe drought events throughout its history. One
of the most notable droughts is the Dust Bowl, which occurred in the 1930s in the central and
southern Great Plains region of the country. The combination of prolonged drought, poor land
management practices, and high winds led to massive dust storms that devastated agriculture
and caused widespread ecological damage. The Dust Bowl had significant economic and social
impacts, including widespread poverty, migration, and changes in agricultural practices and
government policies. The event led to the establishment of soil conservation programs and
other measures to prevent future ecological disasters. Another notable drought in the United
States occurred in California from 2011 to 2017. The drought, which was considered the worst
in the state’s history, was caused by a combination of factors, including a lack of precipitation
and record-high temperatures. The drought led to significant impacts on the state’s agriculture,
energy, and water resources. It also had social and economic impacts, including the loss of jobs
and the migration of people to other states. The California drought highlighted the need for
more effective water management practices and the development of drought-resistant crops
and technologies. It also spurred efforts to increase public awareness about water conservation
and the impacts of climate change on water resources.
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Figure 5.3: Visualizing the impact of severe droughts in selected regions through a long-term record of precipitation
using GPCC (Global Precipitation Climatology Centre) version 2020 data from 1920 to 2019. Each region’s recorded
drought period is highlighted in orange for better understanding. The GPCC data can be downloaded from https:
//opendata.dwd.de/climate_environment/GPCC/html/download_gate.html

https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
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5.1.4. Drought monitoring and early warning systems

Traditionally, our responses to drought events have been conducted in a very reactive, post-
event fashion, which has been called crisis management. A crisis is an event that occurs at a
specific time that is usually unforeseen, public in nature, and has the potential to cause great
harm to different sectors. In contrast, a risk is an activity or event that has the potential to
harm those sectors. The negative impacts of droughts can be mitigated using risk manage-
ment strategies rather than crisis management (Wilhite, 2000). Whereas crisis management is
concerned with responding to, managing, and recovering from an unforeseen event, risk man-
agement is concerned with identifying, assessing, and mitigating activities or events that could
harm society. Risk management in the drought concept includes preparedness planning, miti-
gation, monitoring, and early warning, and also prediction to reduce the impacts of drought.

Such a proactive response requires drought monitoring, including early warning and forecast-
ing systems, at national to local levels (Wilhite et al., 2007). Drought early warning systems
are able to trigger activities that help communities cope with the effects of drought (Mishra
& Singh, 2011). In order to improve drought monitoring and assist decision-makers, drought
indices are developed which summarize drought complexity into a single number and charac-
terize it into onset, intensity, frequency, and duration (Ahmadalipour et al., 2017; Wilhite, 2000;
Zargar et al., 2011). Such indices describe drought using single or multiple climatic and hy-
drometeorological variables data such as precipitation, streamflow, evapotranspiration, tem-
perature, and snowpack (Svoboda, Fuchs, et al., 2016).

Scientists have developed such indices using multiple factors including drought nature and
characteristics and the impacts considered. Manifold drought indices have been developed
(more than 150, Niemeyer et al. (2008)). The nature of drought indices reflects different events
and conditions; they can reflect climate dryness anomalies (mainly based on precipitation) or
correspond to delayed agricultural and hydrological impacts such as soil moisture loss or low-
ered reservoir levels. In addition, the categorization of drought indices can also be based on the
data and technology used. For example, a considerable number of indices use remote-sensing
imaging to detect vegetation health as an indicator of drought. Several drought indices have
been developed so far, each related to one or two different classes of drought (i.e., meteorologi-
cal, agricultural, hydrological, and socio-economical droughts). Zargar et al. (2011) reviewed 74
operational and proposed drought indices and describes research directions. In each of these
indices either the deficiency in water for each component of the TWS or the impact of drought
(i.e., change in the vegetation quality and quantity) have been considered to develop the index
and each index has its own strengths and weaknesses. Some of the more common and practical
indices include (see e.g., Saemian, 2021 or Zargar et al. (2011) for more comprehensive list).

Table 5.1: A list of some common drought indices.

Acronym full name source

PDSI Palmer Drought Severity Index Palmer (1965)
RAI Rainfall Anomaly Index Van Rooy (1965)
CMI Crop Moisture Index Palmer (1968)
BMDI Bhalme and Mooly Drought Index Bhalme and Mooley, 1980
SWSI Surface Water Supply Index Shafer, 1982
SPI Standardized Precipitation Index McKee (1995) and McKee et al. (1993)
SMDI Soil Moisture Deficit Index Hollinger et al., 1993
VCI Vegetation Condition Index Liu and Kogan (1996)
SPEI Standardized Precipitation Evapotranspiration Index Vicente-Serrano et al. (2010)
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5.1.5. Brief literature review on storage-based drought index

A comprehensive characterization of drought extension requires observation of the TWS, i.e.,
the water on and beneath the land surface, including snow, surface water, soil moisture, and
groundwater storage (Zhao et al., 2017). The GRACE-derived TWS estimates have been used to
develop indices to examine drought at regional to global scales. The identification of droughts
using GRACE was first proposed by Seitz et al. (2008), whose work made a significant early con-
tribution to the field. Then, Yirdaw et al. (2008) developed Total Storage Deficit Index (TSDI)
based on Palmer Drought Severity Index (PDSI, Palmer (1965)) and Soil Moisture Deficit In-
dex (SMDI, Narasimhan and Srinivasan (2005)), for characterizing 2002/2003 Canadian Prairie
droughts. Many studies have used TSDI or a modified version for characterizing in regional
scales over Canada (Agboma et al., 2009), the Greater Horn of Africa (Awange et al., 2016), China
(Cao et al., 2015), the Tigris-Euphrates Basin (Chao et al., 2018), and over Markazi basin in Iran
(Hosseini-Moghari et al., 2019).

Afterward, Chen et al. (2010) utilized TWSA from GRACE to identify drought events in the
La Plata basin, in Argentina. Houborg et al. (2012) developed GRACE-based drought indica-
tors and enhanced its spatial resolution using data assimilation. Long et al. (2013) and Wang
et al. (2014) investigated the correlation between the depletion in GRACE TWSA time series
and the drought events in Texas and the Haihe river basin HRB in Northern China, respec-
tively. In another attempt, Thomas et al. (2014) presented a GRACE-based drought character-
ization framework using TWSA from a GRACE-based monthly mean and evaluated the result
of drought severity over Amazon, Zambezi, Texas, and the southeastern United States. Yi and
Wen (2016) developed the GRACE-based Hydrological Drought Index (GHDI) for characterizing
drought in the continental United States between 2003 and 2012, keeping the concept of PDSI.
Sinha et al. (2017) expanded the method presented by Thomas et al. (2014) and devised a new
drought index called the Water Storage Deficit Index (WSDI) to characterize drought in India.
Recently some more sophisticated drought indices using GRACE TWS anomaly have been in-
troduced (e.g., A long-term standardized GRACE reconstructed TWSA index (SGRTI) by Zhong
et al. (2023), and GRACE-DSI by Zhao et al. (2017)).

Despite their potential for monitoring and assessing the TWS drought at regional to global
scales, the indices mentioned above follow a deterministic approach while ignoring the fact
that drought characterization using GRACE observations comes with its own uncertainties.
Such uncertainties exist due to the inherent uncertainty in the GRACE data, the various post-
processing approaches of GRACE data, and different options for de-aliasing products. In this
chapter, we aim to incorporate the uncertainty of GRACE TWSA in the drought characteriza-
tion.

Table 5.2: A list for some of GRACE based drought indices.

Acronym full name source

TSDI Total Storage Deficit Index Yirdaw et al. (2008)
GHDI GRACE-based Hydrological Drought Index Yi and Wen (2016)
WSDI Water Storage Deficit Index Sinha et al. (2017)
GRACE-DSI GRACE-Drought Severity Index Zhao et al. (2017)
SGRTI Standardized GRACE Reconstructed TWSA Index Zhong et al. (2023)
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5.2. Data

5.2.1. GRACE TWSA

Three mascon products are generated by different processing centers for the GRACE and GRACE-
FO satellite missions: the Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory
(JPL), and the German Research Centre for Geosciences (GFZ). Each of these products has its
own strengths and weaknesses that should be considered when selecting a dataset for a par-
ticular study. The GSFC mascon product has a resolution of 1 °, which allows for detailed in-
vestigations of regional-scale gravity field variations. However, it may have larger errors in the
higher harmonics due to limitations in the spherical harmonic inversion method used in its
processing. The JPL mascon product has a coarser resolution of 3 °, but has a more accurate
representation of the higher harmonics due to a regularized least squares method used in its
processing. However, it may have lower accuracy in certain regions due to variations in the
gravity field signal-to-noise ratio. The GSFC mascon product has a similar spatial resolution
to the JPL product, but also includes a higher-resolution (0.5 °) dataset for Antarctica. It uses a
combination of spherical harmonic and mascon modeling to improve the accuracy of its grav-
ity field estimates, but may have larger errors at high latitudes due to limitations in the mascon
representation of the gravity field.

For this study, to ensure reproducibility of our results, we utilized the mascon product gener-
ated by the Goddard Space Flight Center (GSFC) of NASA. This dataset has been widely used in
the geodesy and Earth science communities to investigate a range of phenomena, including hy-
drology, glaciology, and solid Earth dynamics. The GSFC mascon product can be downloaded
from https://earth.gsfc.nasa.gov/geo/data/grace-mascons. We used the latest version of the
dataset available at the time of our analysis, which covers the period from August 2002 to the
present. The dataset includes monthly gravity field solutions with grid size of 0.5 °.

5.3. Methodology

To properly characterize storage-based drought using GRACE TWSA observations, certain de-
cisions must be made regarding data treatment. These decisions include how to handle trends
in the data, whether to normalize the data, whether to include time integration, whether to use
a GRACE-only approach or an augmented dataset, and finally how to incorporate uncertainty
in the TWSA estimation. In the following sections, we discuss each of these steps and provide a
justification for our choices.

5.3.1. Handling trends

Several studies have suggested that before investigating drought indices using the GRACE TWSA
time series, detrending is necessary (e.g., Hosseini-Moghari et al., 2020; Khorrami & Gunduz,
2021; Liu et al., 2020). Liu et al. (2020), for instance, have demonstrated that without detrend-
ing TWSA time series drought severity can be overestimated over some basins in China after
2013. While the soil moisture data suggests that the drought ceased in September 2014, their
GRACE indices (GRACE-DSI) show a continuous drought condition. In contrast to the afore-
mentioned studies, we deliberately retain the trend in the time series. Our reasoning is that
the trend reflects long-term changes in climate, such as temperature increases or precipitation
pattern alterations, which can affect the frequency and severity of droughts. Eliminating the
trend would essentially omit these long-term changes from the analysis, providing an incom-
plete understanding of the hydrological system.

https://earth.gsfc.nasa.gov/geo/data/grace-mascons
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To demonstrate the impact of detrending, we calculated the TWSA time series in two real cases
using the SSA approach with a 24-month window to remove the trend in the data. The two
cases, the Tigris basin in the Middle East with a negative trend and the Niger basin in Africa
with a positive trend, are presented in Figure 5.4 and Figure 5.5, respectively. In each case, we
compared the results from two scenarios: one without detrending, denoted by the solid line in
(c) and (d) and labelled as (a), and one with detrending, shown as the dashed line in (c) and (e)
and labelled as (b).

The Tigris basin experienced a prolonged period of water loss, particularly after 2007, which is
apparent in the red area in Figure 5.4(d). Detrending the data resulted in higher values for the
climatology (the long-term monthly mean, see Equation 5.1) compared to the non-detrended
data, as shown in Figure 5.4(c), and caused oscillations between wet and dry years, as seen in
Figure 5.4(e). On the other hand, the Niger basin exhibited a positive trend mainly after 2010,
resulting in wetter years in the basin, as depicted in Figure 5.5(d). Although detrending did
not significantly alter the climatology, as illustrated in Figure 5.5(c), it did reveal dry years after
2010, which is inconsistent with actual conditions.

Figure 5.4: This figure presents a comprehensive analysis of TWSA for the Tigris river basin in the Middle East, using
data from GRACE satellite mission. (a) shows the time series of TWSA from GRACE, along with its inter-annual
variations which are extracted using the Singular Spectrum Analysis (SSA) approach with a 24-month window. (b)
displays the TWSA after removing the inter-annual variations, highlighting the long-term trends. (c) illustrates the
climatology of TWSA, which represents the long-term monthly mean. The solid and dashed lines represent the
climatology obtained from (a) and (b), respectively. (d) and (e) show the TWSA residuals, obtained by subtracting
the corresponding climatology from panels (a) and (b), respectively. These residual plots reveal the short-term
fluctuations in TWSA that are not captured by the climatology.

5.3.2. Normalizing

Normalizing refers to the transformation of a variable to follow a standard normal distribution
(i.e., mean of 0 and a standard deviation of 1). This process is commonly used to eliminate the
effects of differing units or scales in the data, allowing for easier comparison and analysis across
variables. In the context of developing a drought index from GRACE TWSA, normalization can
help to account for differences in the magnitude of TWSA across different regions or time pe-
riods, and can improve the comparability of drought conditions across regions. One of the ad-
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Figure 5.5: Same as Figure 5.4 but for Niger river basin in West Africa, flowing through 10 countries: Guinea, Mali,
Niger, Benin, Burkina Faso, Cote d’Ivoire, Ghana, Togo, Cameroon, and Nigeria.

vantages of normalization is that it can make it easier to compare the severity of drought across
regions that have different hydrological regimes and climate conditions. For example, regions
with higher average TWSA values may still experience severe drought conditions if their TWSA
levels drop below a certain threshold, and normalization can help to identify these conditions
more accurately. Normalization can also help to reduce the impact of outliers or extreme values
in the data, which can skew the results of drought analysis.

However, there are also some potential disadvantages to normalization. Normalization can ob-
scure the actual magnitude of the TWSA values, and can make it harder to interpret the results
of drought analysis in terms of actual water volumes. In addition, the choice of normalization
method can affect the results of the analysis, and different normalization methods may be more
or less appropriate depending on the characteristics of the data being analyzed. There are sev-
eral approaches that can be used to normalize the drought index for TWSA including Z-score
normalization (standardization) and min-max scaling. Standardization involves subtracting
the mean TWSA value from each observation and then dividing by the standard deviation of
TWSA. Min-max scaling involves scaling the TWSA values to a range between 0 and 1, by sub-
tracting the minimum value from each observation and then dividing by the range of the entire
time series.

n this study, instead of applying normalization techniques to the time series of TWSA obser-
vations, we choose to calculate the TWSA deviation from the normal condition (δTWSA). This
deviation represents the difference between the observed TWSA values and the expected or av-
erage TWSA under normal conditions. By calculating this deviation, we can assess the extent
to which the current TWSA values deviate from what is considered normal, providing valuable
information about the severity or anomalous nature of the drought conditions. This approach
allows us to analyze the TWSA data in relation to its baseline or expected state without altering
the original values through normalization.
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5.3.3. GRACE-only approach or with an augmented dataset

Drought is a prolonged water deficiency. To estimate such a relative TWS deficiency, we need a
reference. It is common to compute the long-term monthly average as the reference or normal
condition in a particular region. The long-term monthly mean, also known as the climatology,
is calculated by:

TWSA[tm] = 1

N

yN∑
y=y1

TWSA[ty,m] (5.1)

δTWSA[ty,m] = TWSA[ty,m]−TWSA[tm] (5.2)

where TWSA[tm] stands for the climatology, y is the year and can vary from y1 to yN , and
m = 1,2,3, . . . ,12 is the month of a year. To quantify the TWS deficiencies, we subtract the
climatology from the GRACE TWSA time series. We call the result δTWSA, in which negative
values represent the water storage deficits.

TWSA is subject to significant variation over short time scales due to factors such as precipita-
tion and evapotranspiration. Obtaining accurate long-term monthly means from shorter time
series can be challenging. However, using long period data sets allows us to average out the
effects of short-term variability, resulting in a more robust estimate of the long-term average
conditions. This is particularly important for studies aimed at characterizing storage-based
drought over time, as reliable baseline estimates of long-term monthly means are required.
Calculating the climatology over at least 30 years, preferably 60 years, is standard practice, as
this time frame provides a sufficiently long and representative sample of the Earth’s climate
variability. The climate system is complex and dynamic, exhibiting natural variations in be-
havior over time scales ranging from years to centuries. By calculating the climatology over 30
years or more, we can obtain a robust estimate of the long-term average conditions. This esti-
mate can be used as a reference point for understanding how the climate is changing over time.
The 30-year time frame is long enough to capture significant climate events and phenomena
that influence long-term climate averages, such as El Niño-Southern Oscillation (ENSO) and
the North Atlantic Oscillation (NAO). A shorter time frame can result in biased estimates of
long-term averages, as it may not capture the full range of natural variability in the climate
system. Therefore, a time frame of 30 years is the minimum requirement for calculating the
climatology, with longer time frames providing even more robust estimates of the long-term
average conditions. Various options can be considered to have an augmented longer time pe-
riod of TWSA (more than 30 years) that has already been discussed in chapter 3. For this study,
we used the hindcasted GRACE TWSA, which was developed and discussed in chapter 3 and
covers the period from 1980 to 2012, to obtain a long-term monthly mean from a longer time
period.

5.3.4. Time integration

Time integration involves aggregating the GRACE TWSA data over a given period of time, which
can be done using different methods such as running averages, moving sums, or cumulative
sums. One advantage of time integration is that it can help to smooth out short-term variability
in the TWSA data, making it easier to identify longer-term trends and patterns in the data. This
can be particularly useful for characterizing drought, which often involves a slow depletion of
water resources over an extended period of time.

In our study, we chose to use a 3-month running average to smooth the TWSA deviation:
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δTWSA[ty,m]smoothed = (1/3) ·
i=ty,m+1∑
i=ty,m−1

δTWSA[i ] (5.3)

Such an average reduces the effects of short-term fluctuations due to precipitation and other
factors. By using a running average, we were able to capture the overall drought or wetness
signal more accurately, which is important for characterizing storage-based drought over time.
One disadvantage of time integration is that it introduces a lag in the data, which means that
changes in TWSA may not be immediately apparent. For example, if there is a sudden increase
in precipitation, it may take several months for this to be reflected in the time-integrated TWSA
data. Additionally, the choice of the time window used for time integration can also have an
impact on the results obtained, as different time scales may be more appropriate for character-
izing different types of drought or wetness events.

5.3.5. Handling uncertainty

GRACE observations inherently contain uncertainties arising from various factors such as the
data itself, post-processing approaches, and options for de-aliasing products. Additionally,
GRACE-H, utilized for long-term TWSA estimation, includes uncertainty for each observation,
thereby introducing uncertainty to the calculated climatology. Assuming that the error in TWSA
and the error in TWSA are uncorrelated, error propagation provides:

σ2
TWSA[tm ]

= 1

N

yN∑
y=y1

TWSA[ty,m] (5.4)

σδTWSA[ty,m ] =
(
σ2

TWSA[ty,m ] +σ2
TWSA[tm ]

)1/2
(5.5)

where N is the number of years in the long-term dataset. Figure 5.6 shows the δTWSA for the
Death Valley basin in the US after applying the above-mentioned steps.

To account for the uncertainty, we need to utilize a probabilistic method that incorporates
δTWSA and its corresponding uncertainty. One common way to generate random samples
from a normal distribution is using the Box-Muller transform, which is a widely used method
for generating independent and identically distributed normal random variables. The Box-
Muller transform works by transforming pairs of uniformly distributed random variables into
pairs of normal random variables, using trigonometric functions and logarithms. To apply the
Box-Muller transform to a time series, we first need to estimate the mean and standard de-
viation of the data, which can be obtained from the time series itself or from a subset of the
data. Once we have estimated the mean and standard deviation of the data, we can use the
Box-Muller transform to generate random samples from the normal distribution with the same
mean and standard deviation. Specifically, we can follow these steps:

1. Generate pairs of uniformly distributed random variables U1 and U2, with values be-
tween 0 and 1.

2. Compute the variables R =√−2 · log(U1) and θ = 2 ·π ·U2.

3. Compute the normal-distributed samples Z1 = R ·cos(θ) and Z2 = R · sin(θ).

4. Scale the samples by the desired mean and standard deviation, by computing Z = mean+
std ·Z , where mean and std are the estimated mean and standard deviation of the data.
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Figure 5.6: (a) Time series of the long-term TWSA together with the uncertainty (light blue envelope). (b) Same as
(a) together with the long-term climatology (1980–2012) and its uncertainty (light green envelope). (c) δTWSA using
the equation ?? together with its uncertainty (gray envelope). Here the results are shown for the Death Valley basin
in the US.

To perturb the realizations of the time series, we can use Monte Carlo Simulation (Metropolis
& Ulam, 1949; Mooney, 1997), which involves generating multiple sets of random samples and
computing the corresponding statistics for each set. By using Monte Carlo Simulation with
the Box-Muller transform, we can generate a large number of possible realizations of the time
series, which can be used to estimate the uncertainty associated with the data, and to explore
the range of possible outcomes under different scenarios or assumptions. Figure 5.7 shows the
results over Death Valley in California, US. The density of the realizations is high around the
mean signal and decays following a Gaussian distribution.

To accurately characterize drought, it is essential to quantify the quantile values associated
with each of the drought categories. This can be achieved by using the Cumulative Distribu-
tion Function (CDF) to project all the realizations to their corresponding quantile values. In
accordance with the U.S. Drought Monitor (USDM) (see Table 5.3), we use five drought cate-
gories: D0 (abnormally dry, representing percentile values in the range of 20–30%), D1 (moder-
ate drought, representing percentile values in the range of 10–20%), D2 (severe drought, repre-
senting percentile values in the range of 5–10%), D3 (extreme drought, representing percentile
values in the range of 2–5%), and D4 (exceptional drought, representing percentile values less
than 2%).

Each month, we analyze the cloud of points based on the cumulative distribution functions
(CDFs) (Figure 5.8) and observe that it falls within the range of δTWSA±3·σδTWSA. To determine
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Figure 5.7: The TWSA deficit (δTWSA) together with its 10 000 realizations, calculated using Monte Carlo simulation.
Here the results are shown for the Death Valley basin in the US. The distribution of realizations for January 2003 is
presented in the right plot. The colored dot on the right plot shows the location of the January 2003 on the time
series.

the probability of each drought category, we calculate the ratio of the number of points in each
category to the total number of points in all categories. For decision-making purposes, we can
select the category with the highest probability as the final drought category for that month.
The flowchart of the probabilistic approach proposed in this thesis is shown in Figure 5.9.

Table 5.3: USDM classification for drought characterization (Svoboda et al., 2002)

Category Description Color Percentile range

D0 Abnormal 21–30

D1 Moderate 11–20

D2 Severe 6–10

D3 Extreme 3–5

D4 Exceptional 0–2

Figure 5.8: The cumulative distribution functions (CDF) of δTWSA realizations. The five categories of drought that
has been shown in Table 5.3 are illustrated with their corresponding color.
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Figure 5.9: Flowchart of the PSDI approach proposed in this study.

5.4. Results and Analysis

5.4.1. Results over selected basins

Figure 5.10 provides a visual comparison between two approaches for characterizing drought:
probabilistic (PSDI) and deterministic (SDI). This comparison is conducted over several se-
lected basins. The distribution of the basins is shown in the top panel of the Figure 5.10.
For each basin, the drought categories, ranging from the status of no drought to exceptional
drought (D4), are displayed in columns. The probability assigned to each category at every
time step is depicted using gray-scale. The deterministic perspective is illustrated with red
boxes, allowing for an easy and intuitive comparison of the two approaches.

The PSDI approach offers a more nuanced understanding of drought conditions compared
to the SDI approach. This is because PSDI captures the uncertainty associated with drought
severity, while the SDI approach may oversimplify the classification of drought conditions. Al-
though the SDI categorization is often the most probable category according to the PSDI, the
neighboring categories may also have significant probabilities. This tendency becomes more
pronounced as the intensity of the drought increases. This can be attributed to the lower slope
of the CDF curve over more severe droughts and the wider range of quantile values.
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Figure 5.10: Top: The global distribution of the selected basins. Bottom: The SDI together with its probability (PSDI)
for selected basins. Red boxes show the drought category from the deterministic approach. The basins are shown in
two groups considering the time period with more frequency of drought, first row within 2015–2016 and the second
row within 2006–2017. The "-" represent no drought or normal state of the water storage.
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5.4.2. Performance of the PSDI during extreme hydrologic events

To evaluate the accuracy of the PSDI, we compared its results with several documented extreme
hydrologic events that occurred between 2002 and 2016. These events include the moderate to
exceptional drought that affected the United States in 2012 (Ault et al., 2013; Boyer et al., 2013),
southern Europe (Oikonomou et al., 2020; Spinoni et al., 2015), and many regions of the Middle
East in 2007–2008 (Barlow et al., 2016). Southern Africa also experienced severe to exceptional
droughts from 2005 to early 2006 (Nicholson, 2014), while central Argentina and Paraguay were
affected by droughts throughout 2009 (Guha-Sapir et al., 2016). Additionally, Australia suffered
from the worst drought recorded since European settlement in the 2000s, with a peak in 2006
that affected many regions from the south to the east, including the agricultural lands of the
Murray-Darling basin (Heberger, 2012; Van Dijk et al., 2013). Overall, the PSDI exhibited high
performance in characterizing droughts in the selected hydrologic events (see Figure 5.11).

Dec. 2006 Australia

Jul. 2016 South America Jan. 2006 Africa

Abnormally dry

Moderate drought

Severe drought

Extreme drought

Exceptional drought

Aug. 2012 North America Apr. 2012 Europe

May. 2012 Middle East

Figure 5.11: SDI performance during some reported drought events. The maps of the probability associated with
the SDI, PSDI, are shown in grayscale.

5.5. Discussion

The GRACE satellite mission has provided highly precise quantitative estimates of Total Water
Storage Anomaly (TWSA). However, due to the pre- and post-processing of the GRACE obser-
vations, these estimates are accompanied by uncertainty. Most centers that provide GRACE
level-2 products include formal errors in the instruments and observation geometry, expressed
as spherical harmonic coefficients. Additionally, mascon products provide estimates of TWSA
uncertainty, represented as spherical harmonics or global grids. It is important to note that er-
rors in the level-2 products and mascon approaches vary among different centers, which utilize
diverse processing methods and background models. Figure 5.12 demonstrates a comparison
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of two widely used mascon datasets, JPL RL06-v02 and GSFC RL06-v02. 5.12(a) presents a com-
parison of the time series of global land-averaged TWSA uncertainty between 2003 and 2016.
The time series reveals a sharp peak in 2015, followed by a positive trend attributable to the
battery failure (Bandikova et al., 2019; Mayer-Gürr et al., 2018; Save et al., 2016).

Moreover, Figure 5.12 (b–c) presents the average TWSA uncertainty from the aforementioned
products and the current study between 2003 and 2016. The highest uncertainty values oc-
cur in Greenland, the Amazonas, the Indian sub-continent, and the northwest of Canada. A
spatio-temporal comparison outlined in (Save et al., 2016) demonstrates that error estimates
for GRACE TWSA observations vary depending on the dataset or approach utilized. Addition-
ally, the impact of such discrepancies is not negligible in the probabilistic drought characteri-
zation provided in this study for the aforementioned regions.

(a)

(b) (c)

Figure 5.12: (a) Time series of the global averaged TWSA uncertainty from two mascons datasets, namely, JPL RL06-
v03 and GSFC RL06-v02. Global distribution of the averaged TWSA uncertainty from April 2002 to June 2017 from
(b) GSFC and JPL RL06-v03 (c).

GRACE(-FO) provides a comprehensive perspective on changes in terrestrial water storage,
which encompasses various components such as canopy water, soil moisture, surface water
(e.g., rivers and lakes), groundwater, and snow equivalent water. However, a GRACE-based
drought indicator should be used in conjunction with proxy observations, such as water bal-
ance fluxes and commonly used drought indices (e.g., Palmer Drought Severity Index, Stan-
dardized Precipitation Index, and Standardized Precipitation Evapotranspiration Index), to cre-
ate a more realistic drought monitoring and mitigation system. Despite this limitation, GRACE(-
FO) observations offer a unique ability to measure deep water and reflect the combined im-
pacts of human activities and climate change. GRACE(-FO) products provide global solutions
at monthly time intervals, with typical latency of 1-2 months, which is not optimal for an early
warning system. Some studies have proposed processing methods to improve temporal sam-
pling to 10 days or even daily measurements with a latency of several days (e.g., Jäggi et al.,
2019; Mayer-Gürr et al., 2018). However, the daily GRACE products have low spatial resolution
(up to spherical harmonics degree and order of about 40), which limits their application for re-
gional drought analysis, particularly in coastal regions that are highly affected by leaked signal
effects Eicker et al., 2020.
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6.1. Conclusion

GRACE and its successor GRACE-FO are highly successful missions with numerous applica-
tions. They provide valuable insights into the Earth system and have been used for a variety
of purposes. For instance, they have helped to understand the water cycle, monitor changes
in groundwater, study climate change, and monitor natural hazards. GRACE has been instru-
mental in measuring ice mass changes, which is crucial for understanding the impact of cli-
mate change on water resources and ecosystems. Moreover, GRACE has enabled scientists to
pinpoint areas at risk of water stress and track changes in water availability, which is vital for
effective water allocation and management. Overall, GRACE and GRACE-FO are essential tools
for studying the Earth’s water and understanding its dynamics. Despite such a success story,
GRACE(-FO) faces a number of challenges that must be addressed. This thesis aimed to ad-
dress some of these challenges, including:

1. the GRACE(-FO) post-processing approaches and consistency evaluation

2. expanding the short record of GRACE(-FO) observations

3. analyzing long-term changes in water storage

4. accounting GRACE(-FO)’s uncertainty in drought characterization

(1) The GRACE(-FO) post-processing approaches and consistency:

In the second chapter, we considered one of the challenges of using GRACE data, namely the
various post-processing approaches. The chapter provides a brief overview of the main steps
involved in obtaining TWSA from Level-2 products of GRACE and GRACE-FO, and for each
step, we examined the various data/methods that can be chosen and assessed the impact of
these choices on the final TWSA. Among the various gravity field solutions, ITSG-Grace2018
outperforms other solutions with clear noise reduction even at the highest degrees (> 80) for
higher degrees. LUH and AIUB showed the highest noise level among all the solutions. Among
official centers, CSR demonstrates slightly better performance while JPL and GFZ lie within the
same range of error. The evaluation of the stochastic of the gravity field solutions shows that
ITSG-Grace2018 delivers more realistic values than all other solutions, while centers like SWPU,
WHU, and AIUB are mostly overestimating, especially for d/o higher than 30.

The evaluation of various post-processing methods for obtaining TWSA from GRACE data shows
that ITSG-Grace2018 outperforms other solutions in terms of noise reduction and realistic
stochastic values. The choice of GRACE solution can lead to significant disparities in RMS and
trends, with larger basins exhibiting relatively minor differences and smaller to medium basins
exhibiting the largest discrepancies. The ellipsoidal correction mostly leads to an increase in
both RMS and trend values, but there are some regions where it results in a decrease in trend
values. The choice of filter significantly affects the RMS of the TWSA signal in arid to semi-
arid regions, but has little impact on trend values. Lastly, the correlation coefficients between
GRACE and altimetric water level time series are generally slightly higher for mascons solutions
than for processed spherical harmonics, but the results should be interpreted with caution due
to the coarse spatial resolution of GRACE and the limited scope of lakes considered.

(2) Expanding the short record of GRACE(-FO) observations:

The GRACE mission’s record is relatively short compared to other satellite missions, thereby
restricting the scope of studies requiring long-term data. Chapter3 aimed to address this is-
sue by employing global models to expand the temporal coverage of GRACE observations. The
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third chapter introduces the models briefly and evaluates them against GRACE TWSA obser-
vations. The ensemble mean (EM) and the ensemble weighted mean (EWM) of the models
are computed over major river basins as the base approach. In addition, six methods, includ-
ing Multivariate Linear Regression (MLR), Non-Negative Least Squares (NNLS), Decision Tree
(DT), Random Forest (RF), Support Vector Machine (SVM), and Gaussian Process Regression
(GPR), were introduced and executed to extend TWSA before the GRACE era. The results were
compared with GRACE within the GRACE period (i.e., Apr 2002 to Dec 2012) and with high-
resolution SLR TWSA outside the GRACE period (i.e., 1992–2002).

Based on the results, all six methods improved the base approaches (i.e., EM and EWM), high-
lighting the need for advanced and sophisticated methods to accurately reconstruct TWSA in
different regions and climates. GPR and MLR outperformed the others, while SVM and DT had
poor performance in most basins. The choice of method for reconstructing TWSA should con-
sider the specific climate conditions of the region under analysis. The MLR method may be a
suitable option for dry sub-humid regions, while the GPR method may be a good choice for
most regions. This chapter offers a reliable approach for reconstructing long-term total water
storage anomaly fields before the GRACE period (i.e., before 2002) which can be used for stud-
ies that necessitate long-term observations of TWSA like drought monitoring or calculating the
long-term climatology.

(3) Analyzing long-term changes in water storage:

The fourth chapter has focused on improving our understanding of water storage variations at
the continental to basin scale, using GRACE(-FO) observations integrated with other water flux
measurements. The case study of water scarcity in Iran has demonstrated the importance of
scrutinizing GRACE(-FO) observations for managing water resources in regions facing similar
challenges. The study revealed unsustainable water management in Iran, and there is a need
for effective and efficient water management policies in the country.

Moreover, the chapter analyzed the non-linear trend and corresponding uncertainty of GRACE-
TWSA for sub-continents during the period spanning from 2003 to 2021. The results showed
that all sub-continents examined in this study have experienced a decline in water storage
compared to their status in 2003, with North America registering the largest TWS loss. The
Middle East, Central Asia, and Eastern Europe have also experienced significant losses, and Eu-
rope has shown a negative trend in TWS from 2015 to 2020. The study provides crucial insights
into the decline in global water storage and highlights the need for sustainable management of
water resources to address the issue.

(4) Accounting GRACE(-FO)’s uncertainty in drought characterization:

The GRACE satellite mission has uncertainty in its data due to measurement error, instrument
noise, and uncertainties in models and algorithms. While the mission has taken measures to
minimize these uncertainties, researchers should account for them when analyzing the data.
Chapter five proposed a probabilistic approach to utilize GRACE data in characterizing storage-
based drought, incorporating uncertainty using the Box-Muller transform and Monte Carlo
Simulation. The proposed approach can provide a more comprehensive and informative as-
sessment of drought risk and is beneficial for decision-makers managing water resources. The
thesis discusses decisions regarding data treatment, including time integration, and justifies
the choices made. The new index developed is called Probabilistic Storage-based Drought In-
dex (PSDI), and it is consistent with reported hydrological droughts. Comparing PSDI to con-
ventional method (SDI) results shows the importance of incorporating uncertainty in drought
characterization for realistic risk management.
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6.2. Perspective for future research

Apart from the significant achievements highlighted in the previous chapters of this thesis, sev-
eral challenges still persist, creating avenues for further investigations:

Improving the spatio-temporal resolution of GRACE(-FO): GRACE and GRACE-FO have rel-
atively low temporal resolution, which limits their ability to resolve rapid changes in the wa-
ter cycle. Besides, the spatial resolution of GRACE and GRACE-FO is also limited, which can
make it difficult to accurately measure changes in small-scale hydrological processes, such
as groundwater storage. To address these limitations, the Next Generation of Satellite Grav-
ity Missions (NGGM) has been proposed by the European Space Agency (ESA). Additionally,
a collaborative effort between ESA and NASA, known as the Mapping and Geodesy Imaging
Constellation (MAGIC), offers a double pair contribution to overcome these challenges. These
projects aim to provide a much higher spatial (100 km) and temporal resolution (3 days) of the
Earth’s gravity field compared to the current missions. The future mission will use advanced
laser interferometry and microwave technologies to improve the measurement precision and
reduce the measurement noise. The satellites are expected to be launched in the mid-2020s
and will provide significant improvements in our understanding of the Earth’s gravity field and
its variations.

Another approach to improving the spatio-temporal resolution of GRACE(-FO) is to use Data
Assimilation techniques that combine the satellite gravity data with other types of data, such as
satellite altimetry, in-situ observations, and hydrological models. Moreover, Machine Learning
(ML) and Deep Learning (DL) methods have also been proposed as potential alternatives to
the traditional methods of processing the satellite gravity data. ML and DL models can learn
complex patterns and relationships from large volumes of data and can provide accurate and
fast predictions of the gravity field. However, a major challenge with these approaches is the
validation of the results with independent measurements, as GRACE(-FO) have been so far the
main dataset that can be considered as the truth. One possible approach is to use vertical mo-
tion data from Global Navigation Satellite System (GNSS) stations, which can serve as a proxy
for the gravity field changes. GNSS stations measure the position of the ground with respect to
a fixed reference frame, and any changes in the gravity field can cause vertical motions of the
ground surface. However, such a validation also presents challenges such as the fact that the
vertical motion data from GNSS stations are affected by various factors, such as atmospheric
delays, tectonic motion, and post-seismic deformation, which need to be carefully accounted
for in the validation process.

Correction for non-hydrological signals: The signals measured by GRACE and GRACE-FO can
be contaminated by other factors which must be corrected for in order to obtain accurate mea-
surements of changes in the water cycle. For instance, post-seismic deformation caused by
earthquakes can persist for years, and such prolonged deformation can influence the GRACE
data. Additionally, the Earth’s gravity field is substantially altered by the phenomenon of ocean
loading. This can lead to erroneous interpretations of changes in water storage, causing signif-
icant measurement errors. Therefore, it is crucial to model these external effects with precision
and remove them from the GRACE and GRACE-FO data to obtain highly accurate measure-
ments of the water cycle.

The corrections for external factors can be challenging, and their accuracy can affect the qual-
ity of the final results. For example, post-seismic deformation correction necessitates a metic-
ulous modeling of the Earth’s mantle’s viscoelastic response to the surface loading induced by
earthquakes, a complex and challenging process. Similarly, ocean loading correction requires
precise modeling of the intricate dynamics of oceans and their interaction with the solid Earth,
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which can be influenced by various factors such as tides, winds, and currents. Consequently,
developing enhanced modeling techniques and assimilating supplementary data sources, like
GPS measurements and satellite altimetry, can aid in precisely correcting for external factors
and boosting the accuracy of the GRACE and GRACE-FO data.

Separation of different water compartments: Distinguishing the contributions of different
water compartments, such as soil moisture, surface water, and groundwater, from GRACE and
GRACE-FO data is a complex task. This is because the data only reveals information on total
water storage changes. To resolve this, hydrological models and land surface models are uti-
lized to account for the different characteristics of each compartment. Accurate separation of
surface water and groundwater is vital for water resource management, drought monitoring,
and groundwater depletion assessment. Evapotranspiration (ET) is another crucial compo-
nent of the terrestrial water balance, but estimating it using GRACE and other satellite data
remains uncertain.

Additionally, the estimation of groundwater storage from GRACE data is still a major challenge,
as it requires accurate modeling of the complex hydrological processes that control the move-
ment and storage of groundwater in the subsurface. While GRACE can detect changes in total
water storage, it cannot directly distinguish between different compartments. Therefore, there
is a need to develop new techniques and improve the accuracy of existing methods to better es-
timate ET and groundwater storage from GRACE data. Further investigations are needed to ac-
curately separate different water compartments using GRACE and GRACE-FO data. Advanced
modeling techniques, complemented by hydrological and land surface models, are required to
better understand the complex hydrological processes that control water movement and stor-
age. These advancements will assist in water resource management, drought monitoring, and
groundwater depletion assessment.





Appendices

A. In-situ (gauge) test

• Buishand’s Range Test: The Buishand range test is employed for change-point detection
of a normal variate. Let X denote a normal random variate, then the adjusted partial sum
(Sk ) can be defined as:

Sk =
k∑

i=1
(xi −x)

In random series, the samples are distributed on both sides of the mean. Therefore, a
homogeneous series would hold Sk = 0. The re-scaled adjusted range (R) is computed as
follows to detect the significance of shift:

R = max(Sk )−min(Sk )

x

For detecting possible change points, the value of R/
p

N (N is the total number of obser-
vations or samples) is compared with the critical values proposed by Buishand, 1982.

• Von Neumann Ratio Test: The Von Neumann ratio test is a parametric test, first intro-
duced by Von Neumann (1941). The test statistic is defined as the ratio of the mean
square successive difference to the variance:

N =
∑n−1

i=1 (xi −xi−1)2∑n
i=1(xi −x)2

The series of samples are homogeneous according to the test if the expected value of N
(E [N ]) is equal to 2. An expected value lower than 2 represents in-homogeneity in the
series otherwise the test implies a rapid variation in the mean.

• Standard Normal Homogeneity Test (SNHT): The parametric test SNHT was first pro-
posed by Alexandersson (1986) to detect homogeneity of a gauge using the variation of
the neighboring gauges. The test statistic (Tk ) compares the mean of first k observations
with the mean of the remaining (n −k) observations with n data points. By examining
the differences between these means, the SNHT helps detect any potential shifts or in-
homogeneities in the gauge data. The test statistics are computed as follows:

Tk = k Z 2
1 − (n −k)Z 2

2

Z1 = 1

k

k∑
i=1

xi −x

σx
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Z2 = 1

n −k

n∑
i=k+1

xi −x

σx

where x and σx are the mean and standard deviation of the series and where Z1 and
Z2 are the mean values before and after the shift. The Null hypothesis is that all values
in the normalized series (Z1 and Z2) are normally distributed with a mean value equal
to zero and standard deviation equal to one (Z ∼ N (0,1)). The null hypothesis can be
rejected if the test metric (Tk ) attains the maximum value and is above the selected sig-
nificance level. The significant level depends on the length of the series. In this study,
the critical metric values for 10%, 5%, and 2.5% levels were used based on the sugges-
tions by Alexandersson (1986). The neighboring gauges are crucial to the SNHT as they
provide reference data for comparison. By considering the differences between means
before and after a suspected shift, the test assesses the potential inhomogeneity of the
gauge under investigation relative to its neighboring gauges. This approach allows for
the identification of significant changes in the gauge data that may be indicative of shifts
in measurement practices, changes in the local environment, or other factors affecting
the data’s homogeneity.

• Pettitt’s Test: The Pettitt’s test is a non-parametric test developed by Pettit (1979) to iden-
tify abrupt changes in climatic variables. Based on this test, the time series has a change
point at time t when the distribution function before and after time t is different. To
apply the test, one should calculate the test statistics Ut and K as follows:

Ut =
t∑

i=1

n∑
j=t+1

sign(xt −x j )

K = max |Ut |

To check the null hypothesis, the confidence level (ρ) for the sample length (n) can be
calculated as:

ρ = exp

( −K

n2 +n3

)

When ρ is smaller than critical values (given by Pettit, 1979), the null hypothesis (the
series is independent and has identically distributed random quantities) is rejected.

• The Double Mass Curve test: The double mass curve test proposed by Searcy and Hardi-
son (1960) has been used to check and adjust the inconsistencies in many hydro-climate
variables including precipitation. The theory behind the test is simple and is based on a
comparison between the graph of accumulation of one quantity versus the other quan-
tity within the same time period. The null hypothesis is that the plot holds a straight
line while a break in the in the double mass curve represents a change in the relation be-
tween the variables caused by observation methods or data processing (Searcy & Hardi-
son, 1960).

B. Goodness of fit evaluation metrics

There are several common metrics used to evaluate the goodness-of-fit between a model and
observations. These metrics assess different aspects of the fit, such as the overall fit, the vari-
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ability of the residuals, and the ability of the model to predict new data. In this thesis, we have
utilized some of the most common metrics including:

Mean Bias Error (MBE): that quantifies the average difference between the observed values
and the predicted values. It provides insight into the systematic tendency of the predictions to
overestimate or underestimate the true values. MBE is a signed score, meaning that positive
values indicate overestimation while negative values indicate underestimation. The MBE is
calculated by summing up the differences between observed and predicted values and dividing
by the total number of observations, as shown in the following formula:

MBE = 1

n

n∑
i=1

(yi − ŷi ) (6.1)

where yi represents the true value, ŷi represents the predicted value, and n represents the total
number of observations in the dataset.

The MBE provides valuable information about the overall bias or tendency of the predictions.
A MBE close to zero indicates that, on average, the predictions are unbiased and have a bal-
anced tendency to overestimate or underestimate. Positive MBE values indicate a systematic
overestimation, while negative MBE values indicate a systematic underestimation. Analyzing
the MBE helps understand the overall performance and bias of the prediction model.

Root Mean Squared Error (RMSE): which is the square root of the average of the squared dif-
ferences between the observed values and the predicted values. RMSE is a negatively-oriented
score, i.e., lower values show better result. The RMSE neutralizes the effect of negative pairwise
discrepancies between estimated and observed values. This means both negative and positive
errors contribute to the overall error. Moreover, RMSE gives more importance to big errors by
giving higher weights to them, which is desirable when emphasizing extremes. The formula for
RMSE is:

RMSE =
√∑n

i=1(yi − ŷi )2

n
(6.2)

where yi is the true value, ŷi is the predicted value, and n is the total number of observations
in the dataset.

Normalized Root Mean Squared Error (NRMSE): The Normalized Root Mean Squared Error
(NRMSE) is a variation of the RMSE that provides a normalized measure of the prediction error.
It is particularly useful when comparing models or datasets with different scales or units. The
NRMSE is calculated as the ratio of the RMSE to the range of the observed values, which scales
the error to a relative measure.

The formula for NRMSE is given by:

NRMSE =
√∑n

i=1(yi−ŷi )2

n

max(y)−min(y)
(6.3)

where yi represents the true value, ŷi represents the predicted value, n is the total number of
observations in the dataset, and max(y) and min(y) represent the maximum and minimum
observed values, respectively.
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Similar to RMSE, the NRMSE is also a negatively-oriented score, where lower values indicate
better predictive performance. By normalizing the RMSE with the range of the observed values,
the NRMSE allows for meaningful comparisons across different datasets or models. It takes into
account the relative magnitude of the errors in relation to the variability of the observed values,
providing a standardized measure of prediction accuracy.

Pearson correlation coefficient: also known as the Pearson’s r, is a statistical measure devel-
oped by Karl Pearson after an idea introduced by Francis Galton in the 1880s. It describes the
linear relationship between two variables and is widely used in many fields, including statistics,
economics, social sciences, and engineering. The value of r ranges from -1 to 1, where -1 indi-
cates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect posi-
tive correlation. A positive correlation means that as one variable increases, the other variable
also increases. A negative correlation means that as one variable increases, the other variable
decreases. The Pearson correlation coefficient has diverse applications, including trend iden-
tification, prediction, and hypothesis testing. Nonetheless, it is imperative to recognize that
correlation does not necessarily connote causation, and extraneous variables may potentially
affect the association between the two variables under examination.

The formula for the Pearson correlation coefficient is:

r =
∑n

i=1(yi − ȳ)(ŷi − ¯̂
iy)√∑n

i=1(yi − ȳ)2
√∑n

i=1(ŷi − ¯̂
iy)2

(6.4)

where xi and yi are the true and predicted values, respectively, and x̄ and ȳ are the means of
the true and predicted values, respectively. Here n is the total number of observations.

Nash-Sutcliffe Efficiency (NSE): is a widely used statistical metric for evaluating the accuracy
of models that predict the behavior of hydrological systems (Nash & Sutcliffe, 1970). NSE ranges
from −∞ to 1, where a value of 1 indicates perfect agreement between the observed and simu-
lated values, and a value of 0 or less indicates that the model performs no better than the mean
of the observed values. It measures the relative magnitude of the residual variance (i.e., the dif-
ference between the observed and simulated values) compared to the variance of the observed
values. This makes it a robust metric for evaluating the accuracy of hydrological models, espe-
cially when the observed values have large temporal and/or spatial variability. However, NSE
has some weaknesses. First, it assumes that the variance of the observed values is the best pos-
sible estimate of the total variation in the system, which may not always be the case. Second,
it tends to favor models that are biased towards the mean of the observed values, as this can
reduce the residual variance and increase the NSE. Third, NSE may not capture important as-
pects of the system behavior, such as the shape of the hydrograph or the timing of peak flows.
The formula for NSE is:

NSE = 1−
∑n

i=1(yi − ŷi )2∑
i = 1n(yi − ȳ)2 (6.5)

where yi is the true value, ŷi is the predicted value, ȳ is the mean of the true values, and n is the
total number of time steps.

Kling-Gupta Efficiency (KGE): is a statistical metric used to evaluate the accuracy of hydrolog-
ical models. It was developed by Gupta et al. (2009) as an improvement over the Nash-Sutcliffe
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Efficiency (NSE) by taking into account three key aspects of the model performance: correla-
tion, variability, and bias. In this study, we have calculated modified KGE scores using the es-
timation from in-situ observations and datasets estimation (Kling et al., 2012). The strength of
KGE is that it considers three important aspects of model performance: correlation, variability,
and bias. This makes it a more comprehensive metric than NSE, which only considers variabil-
ity. KGE has been shown to be a useful metric for evaluating the performance of hydrological
models in a variety of applications (Moriasi et al., 2007).

However, KGE also has some weaknesses. First, it can be sensitive to outliers in the data, which
can affect the correlation component of the metric. Second, the choice of scaling factors can
have a significant impact on the KGE value, and there is no consensus on the optimal values
for these factors. Finally, like NSE, KGE assumes that the variance and mean of the observed
values are the best possible estimates of the total variation and central tendency of the system,
respectively.

KGE = 1−
√

(r −1)2 + (β−1)2 + (γ−1)2 (6.6)

where r is the Pearson correlation coefficient (optimum value = 1), β is bias (optimum value =
1) and γ represents the variability ratio (optimum value = 1) as follow:

β= µe

µo
and γ= σe/µe

σe/µo
(6.7)

where µ and σ are the mean and standard deviations of the time series, respectively. The sub-
scripts e and o indicate estimation and observation, respectively.

Normalized Root Mean Square Error (NRMSE): the square root of the second moment of the
differences between the estimation and the reference data. It is normalized by its standard
deviation:

NRMSE =

√∑n
i=1(yi − ŷi )2

n
σ( y)

(6.8)

where σ is the standard deviation of the observed values y . The lower the NRMSE, the better
the estimation. The optimum value of NRMSE is zero (RMSE = 0) and it occurs in case of the
perfect estimation with respect to the reference data.
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C. Water balance fluxes

Precipitation

Precipitation, the process of water droplets falling from the atmosphere to the Earth’s surface, is
a crucial component of the Earth’s hydrological cycle. Precipitation datasets play a critical role
in various fields, including hydrology, agriculture, climate science, and water resource man-
agement. There are several types of precipitation that can occur and is determined by the tem-
perature and moisture content of the atmosphere. These types include:

• Rain: liquid precipitation that falls from the sky and reaches the ground.

• Snow: precipitation that falls as ice crystals and reaches the ground as snowflakes.

• Sleet: a mixture of rain and snow or ice pellets that falls to the ground.

• Freezing rain: liquid rain that freezes upon contact with surfaces that are at or below
freezing temperatures.

• Hail: precipitation that falls as balls or irregular lumps of ice.

• Graupel: soft, rounded pellets of snow that form when supercooled water droplets freeze
onto falling snowflakes.

Three primary categories of precipitation datasets exist: gauge-based datasets, satellite-based
datasets, and reanalysis datasets. Gauge-based precipitation datasets utilize ground-based rain
gauges to measure the amount of precipitation at specific locations. These datasets provide
high accuracy and resolution but are limited in spatial coverage due to the limited number of
gauges. Satellite-based precipitation datasets, on the other hand, use remote sensing instru-
ments to estimate precipitation over a larger spatial extent, albeit at lower resolution. These
datasets employ various techniques, such as passive microwave and infrared sensors, to esti-
mate precipitation rates from satellite observations. Reanalysis datasets are another type of
precipitation dataset that combines observations from various sources, including gauge and
satellite-based datasets, with numerical models to provide consistent and continuous esti-
mates of precipitation over a long time period. Reanalysis datasets are valuable for studying
long-term climate variability and changes, as well as for assessing the reliability of other pre-
cipitation datasets.

Despite the advances in precipitation datasets, there is no single dataset that performs well
everywhere due to the complex nature of precipitation and the diverse topographical and me-
teorological conditions across the globe. Several studies have shown that different datasets can
have significant variations in their precipitation estimates, particularly in regions with com-
plex terrain, convective rainfall, or mixed precipitation types (e.g., AghaKouchak et al., 2011;
Behrangi et al., 2011; Prakash et al., 2016; Saemian et al., 2021; Sun et al., 2018). For instance,
gauge-based datasets may suffer from spatial and temporal heterogeneity due to the limited
coverage and density of rain gauges, while satellite-based datasets may encounter difficulties in
accurately detecting light rainfall or distinguishing between different precipitation types (De-
rin & Yilmaz, 2014; Kidd et al., 2017). Furthermore, the accuracy of precipitation datasets can
be affected by the type and quality of input data, calibration methods, and interpolation tech-
niques (Ruelland et al., 2008; Sorooshian et al., 2011; Sun et al., 2018).

In this thesis, we have used precipitation for various applications. Table C.1 lists the selected
precipitation datasets and their main properties.
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Table C.1: Summary of global precipitation data sets. Abbreviations in the data source(s) defined as: G, gauge; S,
satellite; and R, reanalysis.

Dataset Data source(s)
Resolution Coverage

Reference
Spatial Temporal Spatial Temporal

CRUv4.04 G 0.5°×0.5° 1 mo Global land 1901–2019 Harris et al., 2020
GPCCv2020 G 0.5°×0.5° 1 mo, 1d Global land 1982–2016 Schneider et al., 2020
PREC/L G 0.5°×0.5° 1 mo Global land 1948–present Chen et al., 2002
UDELv5.01 G 0.5°×0.5° 1 mo Global land 1900–2017 Willmott and Matsuura, 1995
CPC G 0.5°×0.5° 1 d Global land 1979–present Chen et al., 2008; Xie et al., 2007

GPCPv2.3 G, S 2.5°×2.5° 1 mo Global 1979–present adler2018GPCPv2.3; Adler et al., 2003
CMAP G, S 2.5°×2.5° 1 mo Global 1979–present Xie et al., 2003

0.5°×0.5°

NCEP 1 R 2.5°×2.5° 6 h/1 d/ 1 mo Global 1948–present Kalnay et al., 1996
NCEP 2 R 1.875°×1.875° 6 h/1 d/ 1 mo Global 1979–present Kanamitsu et al., 2002
ERA-Interim R 79 km 6 h/ 1 mo Global 1979–2019 Dee et al., 2011
ERA5 R 31 km 1 h/ 1 mo Global 1979–present Hersbach et al., 2020
20CRv3 R 2°×2° 6 h/1 d/ 1 mo Global 1836–2015 Compo et al., 2011

PGFv3 G, R 0.25°×0.25° 3 h/1 d Global 1948–2016 Sheffield et al., 2006
WFDEI-CRU G, R 0.5°×0.5° 3 h Global 1979–2016 Weedon et al., 2014
WFDEI-GPCC G, R 0.5°×0.5° 3 h Global 1979–2016 Weedon et al., 2014

AgCFSR G, R 0.25°×0.25° 1 d Global 1980–2010 Ruane et al., 2015
AgMERRA G, S, R 0.25°×0.25° 1 d Global 1980–2010 Ruane et al., 2015
MERRA Land G, S, R 0.5°×0.67° 1 h/1 d/ 1 mo Global land 1980–2016 Reichle et al., 2011
MSWEP v2.2 G, S, R 0.1°×0.1° 3 h/1 d Global 1979–2017 Beck et al., 2019

Evapotranspiration

Evapotranspiration is the process of water transfer from the earth’s surface to the atmosphere
through the combination of evaporation and transpiration. Evaporation occurs when water
changes from its liquid state to its vapor state, while transpiration is the process by which wa-
ter vapor is released into the atmosphere through plant leaves. Evapotranspiration is a criti-
cal component of the water cycle, affecting both the water supply and the energy balance of
the planet. It plays a crucial role in agriculture, water resources management, hydrology, and
climate science. Accurate estimation of evapotranspiration is therefore necessary for various
applications such as irrigation scheduling, crop growth monitoring, and drought monitoring.

Several global datasets provide estimates of evapotranspiration based on either mathematical
models or satellite data. ET can be mapped based on ground-based measurements, such as
lysimeters or eddy covariance systems. However, such a estimation can be affected by several
factors that make them challenging and costly to obtain including the limited spatial cover-
age and the errors result from interpolation methods. Model-based and remote sensing-based
datasets are the two most commonly used types of ET datasets, particularly for global applica-
tions. Table C.1 lists the selected evapotranspiration datasets and their main properties.

Runoff

Runoff refers to the portion of precipitation that flows over land surfaces and eventually reaches
streams, rivers, lakes, and oceans. Accurate estimation of runoff is essential for various applica-
tions such as water resource management, flood forecasting, and climate modeling. There are
several global datasets that provide estimates of runoff, which can be classified into two main
types: (1) model-based and (2) remote sensing-based. Model-based datasets use mathematical
models that simulate the physical processes of runoff, such as the Variable Infiltration Capac-
ity (VIC) model and the Soil and Water Assessment Tool (SWAT) model. Remote sensing-based
datasets use satellite data to estimate runoff based on various parameters, such as precipita-
tion, land cover, and topography. In this thesis, we have used runoff for various applications.
Table C.3 lists the selected runoff datasets used in this thesis.
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Table C.2: Summary of the evapotranspiration datasets.

Data set
Resolution Coverage

Reference
Spatial Temporal Spatial Temporal

GLEAM3.6a 0.25°×0.25° 1 mo Global 1980–2021 Martens et al., 2017; Miralles et al., 2011
GLEAM3.6b 0.25°×0.25° 1 mo Global 2003–2021 Martens et al., 2017; Miralles et al., 2011
SSEBop 0.05°×0.05° 1 d 50°S–50°N 1981–present Funk et al., 2015
JRA-55 60 km 1 mo Global 1958–present Ebita et al., 2011; Kobayashi et al., 2015
WECANN 1°×1° 1 mo 60°S–90°N 2007–2015 Alemohammad et al., 2017
PMLv2 0.05°×0.05° 1d 60°S–90°N 2002–2019 Zhang et al., 2016
FLDAS-NOAH 0.1°×0.1° 1 mo 60°S–90°N 1982–present McNally et al., 2018
ERA5 31 km 1 h/ 1 mo Global 1979–present Hersbach et al., 2020
MERRA-Land 0.5°×0.5° 1 mo Global 1980–2016 Reichle et al., 2011
GLDAS2.0-CLSM 0.25°×0.25° 1 d Global 1948–2014 Li et al., 2019; Rodell et al., 2004

GLDAS2.1-CLSM-DA1 0.25°×0.25° 1 d Global 2003–present Rodell et al., 2004

GLDAS2.0-NOAH 0.25°×0.25° 1 mo Global 1948–2014 Rodell et al., 2004

GLDAS2.1-NOAH 0.25°×0.25° 1 mo Global 2000–present Rodell et al., 2004

GLDAS2.0-VIC 1°×1° 1 mo Global 1948–2014 Rodell et al., 2004

GLDAS2.1-VIC 1°×1° 1 mo Global 2000–present Rodell et al., 2004

FluxCom 0.5°×0.5° 1 mo 60°S–90°N 2001–2013 Jung et al., 2019

P-LSH 0.083°×0.083° 1 mo Global 1982–2013 Zhang et al., 2009; Zhang et al., 2010

TerraClimate 0.0417°×0.0417° 1 mo Global 1958–2015 Abatzoglou et al., 2018

Table C.3: Summary of global runoff data sets.

Dataset Spatial Resolution Time period Reference

ERA-Interim 79 km 1979–2019 Dee et al., 2011
ERA5 31 km 1979–present Hersbach et al., 2020
ERA-land 0.1°×0.1° 1950–present Muñoz-Sabater et al., 2021
GLDAS2.0-CLSM 0.25°×0.25° 1948–2014 Li et al., 2019; Rodell et al., 2004
GLDAS2.1-CLSM-DA1 0.25°×0.25° 2003–present Rodell et al., 2004
GLDAS2.0-NOAH 0.25°×0.25° 1948–2014 Rodell et al., 2004
GLDAS2.1-NOAH 0.25°×0.25° 2000–present Rodell et al., 2004
GLDAS2.0-VIC 1°×1° 1948–2014 Rodell et al., 2004
GLDAS2.1-VIC 1°×1° 2000–present Rodell et al., 2004
GDFC 0.25°×0.25° 1950–2016 He et al., 2020
HBV-SIMREG 0.5°×0.5° 1979–2012 Lindström et al., 1997
HTESSEL 0.25°×0.25° 1980–2014 Balsamo et al., 2015
LISFLOOD 0.25°×0.25° 1980–2014 Van Der Knijff et al., 2010
ORCHIDEE 0.25°×0.25° 1980–2014 Polcher et al., 2011
SURFEX-TRIP 0.5°×0.5° 1979–2012 Decharme et al., 2013
SWBM 0.5°×0.5° 1979–2012 Koster and Mahanama, 2012; Orth and Seneviratne, 2013
W3RA 0.5°×0.5° 1979–2012 Van Dijk, 2010
GloFAS 0.1°×0.1° 1980–2018 Alfieri et al., 2020
G-Run 0.5°×0.5° 1980–2018 Ghiggi et al., 2021
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