
Institute of Software Engineering

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Applying Machine Learning
Techniques for Improving Test
Input Generation in Embedded

Fuzzers
Jannick Stuby

Course of Study: Informatik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Dr. Halimeh Agh

Halit Eris

Commenced: June 19, 2023

Completed: January 30, 2024

iii

Abstract

In the rapidly evolving landscape of the Internet of Things (IoT), the number of connected devices is
growing exponentially. This growth is accompanied by an increasing demand to ensure the security
and continuity of such devices, as they are often used in critical applications. Similar to other areas of
software engineering, automated testing of embedded devices, namely fuzzing, is a promising approach
to ensure the quality of such devices, while reducing the time and effort required for testing. However,
the unique characteristics of embedded devices, such as limited resources and the lack of a standardized
operating system, make it difficult to apply existing testing approaches to them. This thesis aims to un-
derstand the current state of the art of the fuzzing of embedded devices and researches possibilities to
augment this process with the help of machine learning, to improve the input generation stage during
fuzz testing.
To this end, we first conduct a literature review to identify the current state of the art of fuzzing em-
bedded devices, highlighting differences to traditional desktop fuzzing. We then conduct an in depth
review to evaluate existing machine learning approaches to traditional, as well as embedded fuzzing.
Finally, using the information gathered, we propose a machine learning-based approach to augment the
input generation stage during the fuzzing process of embedded devices. Our results show that machine
learning can be introduced to fuzzing of embedded devices, but it requires significant manual effort to
do so. Furthermore, we show that the current state of the art of publicly available methods is not yet
mature enough to be used in general practice.

v

Contents

Abstract iii

1. Introduction 1
1.1. Background and Motivation . 1
1.2. Research Objectives and Research Questions 3
1.3. Scope and Methodology . 4
1.4. Structure of the Thesis . 5

2. Related work and Fundamentals 7
2.1. Traditional Fuzzing . 7
2.2. Introduction to Machine Learning Techniques 14
2.3. Embedded Fuzzing . 21
2.4. What is the Usual Process of Embedded System Fuzzing (RQ1) 31
2.5. Previous Research on Machine Learning Applications in Fuzzing . . . 35

3. Proposed Approach 47
3.1. Fuzzing Augmentation . 47
3.2. Implementation Guidelines . 55
3.3. Challenges and Lessons Learned during Implementation 59

4. Summary and Future Work 63
4.1. Summary and Contributions . 63
4.2. Limitations and Challenges . 64
4.3. Future Work . 64

A. Appendix 1 - ROCm Installation 67

Bibliography 69

List of Figures 83

List of Tables 83

1

1. Introduction

In the rapidly evolving landscape of software engineering, the robustness and se-
curity of embedded systems have become a growing concern. As these systems in-
creasingly underpin critical infrastructure and everyday technologies, their vulner-
ability to security breaches poses significant risks for critical infrastructure, industry
processes as well as the security and privacy of consumers. This bachelor thesis, ti-
tled “Applying Machine Learning Techniques for Improving Test Input Generation
in Embedded Fuzzers”, aims to explore and improve the capabilities of fuzz testing
in embedded systems through the innovative application of ML techniques. This in-
troduction is segmented into Background and Motivation, Research Objectives and
Research Questions, as well as Scope and Methodology, offering a comprehensive
overview of the thesis’s focus and direction.

1.1. Background and Motivation

In an era where technology is deeply integrated into the fabric of everyday life, en-
suring the robustness and security of software and systems has emerged as an in-
creasingly important requirement in the field of software engineering.

“Smart” devices are more and more adopted in a plethora of use cases, spanning crit-
ical infrastructure, such as industrial control systems in power plants, water treat-
ment facilities, and transportation systems, including automotive applications, as
well as in consumer electronics, such as smart home devices, wearables, surveillance
systems, and medical devices. The growing reliance on these devices and systems
has made them a prime target for malicious actors, who seek to exploit vulnerabil-
ities in software and systems to gain unauthorized access to sensitive data, disrupt
critical infrastructure, or cause physical harm. Especially in the case of consumer
electronics, the security and privacy of users are at risk, as these devices often col-
lect and process sensitive data, such as health data, location data, or biometric data,
while device security is not or just weakly enforced [1].

Those devices are called embedded systems, integral to a myriad of applications,
thus demanding rigorous testing to ensure their security and reliability. To achieve
this rigorous testing, often fuzzing can be used. Fuzz testing, or fuzzing, is a well-
established method in traditional software testing used to identify software bugs
and vulnerabilities. It involves providing malformed or random data as inputs to
a system to trigger failures and uncover security issues. However, in the realm of
embedded systems, traditional fuzzing approaches face unique challenges. These

2 1 Introduction

include the complexity of embedded system architectures, limited resources, and the
intricacy of interactions between hardware and software components, making it nec-
essary to guide and adapt the testing process manually, thus reducing its efficiency
and effectiveness.

The integration of machine learning (ML) techniques in this context presents a
promising possibility for improvement. By leveraging ML algorithms, it is possible
to intelligently generate test inputs that are more likely to uncover hidden vulner-
abilities in embedded systems, using it’s ability to learn from data, adapt to new
patterns, and predict outcomes.

In the recent years, a range of exploited vulnerabilities targeting embedded systems
have been disclosed, showing the advancing threat model and highlighting the need
for more robust testing processes.

For example, in 2020, a set of 19 security issues, classified as zero-day vulnerabili-
ties 1 in a popular TCP/IP library by Treck were discovered and disclosed under the
name Ripple20. Because this library is used in a wide range of embedded systems,
including medical devices, consumer electronics, and industrial control systems, a
multitude of devices became vulnerable [2]. Another example are the Urgent/11 vul-
nerabilities, a set of 11 security issues regarding the VxWorks Real-Time Operating
System, which is used in a multitude of devices, including medical devices, indus-
trial control systems, and consumer electronics [3]. Those issues were also classified
as zero-day. Even the widely known vulnerabilities Meltdown [4] and Spectre [5]
were applicable to embedded systems, as they target used microprocessors.

These vulnerabilities were found to be exploitable by attackers, allowing them to
take control of the device and execute arbitrary code. These examples highlight
the need for more advanced testing processes for embedded systems, which can be
achieved by integrating ML techniques into the fuzzing process.

To improve and sustain device security and reliability, in the past decade a multitude
of standards and guidelines have been proposed to enhance the process of software
engineering and hardware development. These standards and guidelines are often
used as a basis for certification processes, which are required for the deployment of
embedded systems in critical infrastructure, such as the automotive industry. Such
standards include IEC 61508 [6], and IEC 62443 [7], which are security standards for
industrial control systems and their networks, as well as many ISO standards.

The incorporation of ML in fuzz testing aligns with the principles laid out in multiple
ISO standards on software security and testing. Those standards advocate for sys-
tematic, efficient, and replicable testing processes, emphasizing the need for innova-
tive approaches to enhance software testing methodologies2, which can be achieved
by integrating ML techniques into the fuzzing process. ISO 26262 - Road vehicles -
functional safety [12] and ISO 21434 - Road vehicles - cybersecurity engineering [13], in
particular, are safety standards for automotive systems, which highlight the need

1zero-day meaning defining a severe vulnerability that must be fixed immediately
2cf. ISO 27001:2013-A12.6.1 [8], ISO 12207 [9], ISO 22301 [10], ISO 29119-1:2022 [11], IEC 61508 [6], IEC

62443 [7]

1.2 Research Objectives and Research Questions 3

for a comprehensive testing process that explicitly includes the use of fuzz testing to
identify vulnerabilities in embedded systems.

1.2. Research Objectives and Research Questions

The primary objective of this research is to explore the application of machine learn-
ing techniques to improve the test input generation phase of embedded fuzzers. This
exploration seeks to contribute to the field of software testing by focusing on:

• Understanding the current state of fuzz testing methodologies for embedded
systems

• Exploring various machine learning models suitable for generating test inputs

• Proposing a framework that integrates a chosen ML model into the fuzz testing
process

Therefore the research will be guided by the following research questions:

RQ 1 What process is usually used in embedded fuzzers for input generation?

This question aims to understand the current state of fuzz testing in embedded
systems, focusing on the input generation phase. It will be answered by con-
ducting a comprehensive literature review of existing embedded fuzzers and
their input generation processes, as well as traditional fuzzers to understand
the context of fuzzing in general.

RQ 2 What ML techniques have already been used for improving input generation
in traditional/desktop fuzzers?

By answering this question, it will be possible to identify and analyze exist-
ing ML techniques that have been applied to traditional fuzzing in general, to
highlight and understand their potential for application in embedded fuzzers.
This will be achieved by conducting a thorough literature review of existing
research on ML in fuzzing.

RQ 3 How will the ML approach understand that it is on the right path to finding
vulnerabilities in embedded systems?

By analyzing the results of the previous questions, it will be possible to identify
and select a suitable fuzzer as well as a fitting ML model for the input gener-
ation phase of the fuzzing process. This question aims to understand how the
ML model can be trained to generate test inputs that increase the likelihood
to uncover vulnerabilities in embedded systems or increase code coverage by
including gainable runtime information during the fuzzing loop. It will be an-
swered by combining the findings during the answering of the previous ques-

4 1 Introduction

tions, as well as analyzing the implementations of proposed approaches, if they
are available.

RQ 4 How can the input generation stage be improved in Embedded Fuzzers (EFs)?

This question will be answered by proposing an approach, dependent on the
findings of the previous questions, to improve the input generation stage of
an existing fuzzer by integrating a suitable machine learning model, by tak-
ing different ideas and applied techniques found in the literature into account.
Additionally challenges will be highlighted, that have to be solved during a
possible implementation, as well as some guidelines for the implementation.

These questions are designed to guide the research towards an extensive under-
standing of the current state of fuzz testing in embedded systems and the potential
for ML to enhance these processes.

1.3. Scope and Methodology

The scope of this research is confined to applying machine learning techniques
specifically for improving the input generation phase during fuzz testing of embed-
ded systems. It does not highlight other aspects of embedded system testing or the
broader application of machine learning in software testing.

The main goal will be the proposal of a fuzzing prototype, which integrates ma-
chine learning techniques into the input generation phase of the fuzzing process
by augmenting an existing fuzzer. The prototype will be evaluated against the non-
augmented fuzzer, which uses traditional fuzzing methods, to assess its effectiveness
in identifying vulnerabilities in embedded systems. The prototype will be based on
an emulation based fuzzer for embedded systems, as it allows for a more controlled
and reproducible testing environment, which is essential for the evaluation. Fur-
thermore, emulation based fuzzing gives the opportunity to select a wider range of
targets to fuzz on a bigger scale, as the overhead of configuring accesses to hardware
devices and the necessity of obtainable hardware are both eliminated.

The methodology involves a combination of theoretical and practical approaches.
Initially, a comprehensive literature review will be conducted to understand current
practices and the potential for machine learning in this domain, comparing and eval-
uating the findings in the context of traditional fuzzing. As some research work
in the domain of traditional and embedded fuzzing has only been published on
ArXive 3, therefore has not been peer-reviewed, this literature review will not only
include white literature, but also grey literature. Following this, various machine
learning models will be identified, analyzed, and one of those will be selected for
further testing, based on the applicability and potential effectiveness. The practical
phase involves developing a prototype implementation that integrates this model

3https://arxiv.org/

https://arxiv.org/

1.4 Structure of the Thesis 5

into the fuzzing process choosing an existing fuzzing tool, followed by an empirical
evaluation to assess its effectiveness in real-world scenarios, especially comparing
the augmented fuzzer to the baseline.

In conclusion, this research aims to contribute to the field of software security by
combining traditional fuzzing methods used for embedded devices with modern
machine learning techniques, enhancing the security and reliability of embedded
systems.

1.4. Structure of the Thesis

This document is structured as follows. After the current Chapter 1, which in-
troduced the problem domain, highlighted the motivation and explained the re-
search approach containing the Research Questions and methodologies, the follow-
ing Chapter 2 provides an overview of the background and related work in the field
of software testing, distinguishing between traditional fuzzing, embedded fuzzing,
and machine learning. Chapter 3 presents our proposed approach to improve the
fuzzing of embedded devices, highlighting possible challenges and implementation
guidelines. Finally, Chapter 4 concludes the thesis and provides an outlook on future
work.

7

2. Related work and Fundamentals

This chapter, will discuss the fundamentals and related work required to understand
the topic of this document. we will start by creating a general overview of fuzzing
with regards to all necessary research and projects relevant for state-of-the-art tra-
ditional fuzzers. Subsequently we will introduce machine learning (ML) concepts,
that have been used in promising research regarding enhancement of the input gen-
eration phase during fuzzing, followed by an overview of embedded fuzzing and
its fundamentals. This aims to guide the reader to the following section, which will
examine already used approaches and applications of machine learning to the in-
put generation phase of both desktop and embedded fuzzers. This chapter will also
answer RQ 1, RQ 2 and RQ 3.

2.1. Traditional Fuzzing

This section will introduce the concept of fuzzing, its taxonomy, and its application
in the field of software testing, initially focusing on general taxonomy and history
beginning later highlighting some milestone fuzzing projects.

2.1.1. Fuzzing Definition

Fuzzing in general is an approach to automated software testing, aiming to find bugs
and vulnerabilities by providing it with random or semi-random input, which is then
processed by the software. The goal is to find bugs and vulnerabilities, which are
triggered by malformed or unexpected input, which is often not handled correctly
by the software, leading to crashes or other anomalies. The term “fuzzing” was
first introduced by Miller et al. [14], who used the term to describe a technique,
that was used to test Unix programs by providing them with random input. The
term “fuzzing” is derived from the term “fuzz”, which is used to describe random
data, that is utilized to fill buffers or other data structures, which are then used by
the program. “Fuzzing” is often used synonymously with the term “fuzz testing”,
which is a more general term, describing the process of testing software by providing
it with random input, which is then processed by the software.

Following the definition of [15], Eisele et al. [16] describe the process more formally
by denoting it as a tuple (D,F ,P), where D is the space of all inputs a target system
S can take, F represents all saved inputs, that are selected during the process and P

8 2 Related work and Fundamentals

defines a probability function, that is used to select an input ti to be added to F with
probability pi. All selected inputs can than be denoted as

F = {ti | ti 2 D}
N
i=1 (2.1)

Additionally, some kind of general observation mechanism is introduced by [16], to
save how the system behaves under the input ti, formally described as

Oti
observe
 � SC(ti), 1 i N (2.2)

Using this information, a very basic algorithm for fuzzing can be described as seen
in Algorithm 1, which is directly derived from [15]. This algorithm does not take
any additional mechanics to improve the fuzzing process into account, namely any
kind of alteration on inputs starting from the seed corpus C and continuing with the
generated inputs F , it rather generalizes the adaption mechanism with new feed-
back in the adjust() function in line 8, where the probability distribution is updated
according to new findings, leaving any specifics out of the context. Such mechanics
will be highlighted in the following sections.

Algorithm 1: Basic general fuzzing process, directly derived from [15]
Input: Target system S with configuration C, initial seed corpus C, probability

function P

Output: Inputs leading to unexpected behaviour Tx
1 Tx = ;
2 while not terminated AND not aborted do

3 ti ti 2 D picked with probability pi

4 Oti
observe
 � SC(ti)

5 if ¬expected(Oti) then

6 Tx Tx [{ti}

7 end

8 P adjust(P,Oti)
9 end

Fuzzing is a very active field of research, with many different approaches and
projects being published every year, which will be discussed in the following sec-
tions.

2.1.2. Taxonomy of Fuzzing

Historically, fuzzers were rather simple applications, aiming to provide programs
under test (PUT) with randomized input, consisting of some kind of test case gener-
ator, which created random input strings or randomly mutated existing valid input,
followed by a delivery module, which was needed to feed created strings to a spe-
cific program, taking all necessary steps to provide the target with acceptable input,
and a monitoring module, which was responsible for detecting crashes and other
anomalies. This approach is called black-box fuzzing, as the fuzzer has no knowledge

2.1 Traditional Fuzzing 9

of the PUT’s internal structure, and is only able to observe its behavior from the out-
side. It is still used today, but has been extended by a more sophisticated approach,
called white-box fuzzing, which is able to use information about the PUT’s internal
structure, such as the source code, as well as static or dynamic analysis techniques,
with the goal to create “less random”, meaning more sophisticated, input strings,
which are more likely to trigger bugs or unwanted behavior. In between those con-
cepts lies the so called grey-box-fuzzing, which is able to use information to guide
the fuzzer’s input generation process. The separation between those approaches is
not always a straight line. Many fuzzers may use some runtime information, while
still being classified as black-box, while some white-box fuzzers may only use ap-
proximations or only analyze some parts of the PUT. Following, we will introduce
the different approaches to fuzzing, as well as the more often used classification ap-
proach depending on the input adaption technique.

Black-Box Fuzzing

Black-Box Fuzzing is the most basic approach to fuzzing, directly following Miller
et al. [14], who first introduced the term “fuzzing”, and is still used today. Similar
to black-box-testing in general software testing, it does not include knowledge of
the programs internals to create test cases. It is based on the idea of creating ran-
dom input strings, or randomly mutating existing valid seed inputs, and feeding
the randomly generated or mutated strings to the PUT, without any knowledge of
the PUT’s internal structure. The only information, that is used by the fuzzer, is the
PUT’s observable behavior, such as crashes or other anomalies, which are used to
determine the quality of the generated input strings and to select the next string to
be mutated.

White-Box Fuzzing

White-Box Fuzzing [17][18] is a more sophisticated approach, which uses informa-
tion about the PUT’s internal structure, such as the source code, as well as static or
dynamic analysis techniques, with the goal to create “less random”, meaning more
sophisticated input strings, that are more likely to trigger bugs or unwanted behav-
ior. Such analysis could be Dynamic Symbolic Execution [19], where path constraints
are created before the fuzzing process and then solved during fuzzing, which speeds
up the fuzzing process and allows for better code coverage, but at the same time in-
creases the complexity of the fuzzer, as well as the time needed to create the path
constraints. Another method is the usage of taint analysis [20], which is used to
track the dataflow through the PUT, and to identify data which is directly used by
the PUT, which is then used to guide the fuzzing process.

10 2 Related work and Fundamentals

Grey-Box Fuzzing

Grey-Box Fuzzing is a hybrid approach to fuzzing, that only uses partial informa-
tion about the PUT’s internal structure, trying to find a compromise between effi-
ciency and effectivity, for example by using code coverage or taint-flow information
to guide the fuzzer towards unexplored code paths [20][21][22][23], with the goal to
either improve general code coverage, to explore as much execution paths as possi-
ble, or even to guide the fuzzer to paths which were deemed possibly vulnerable by
performing some kind of analysis beforehand [24]. Grey-Box-Fuzzing tries to bal-
ance between minimal fuzzing overhead and obtaining as much information during
runtime as necessary to create a powerful approach to fuzzing. To achieve such an
approach on embedded devices, it is either necessary to use some kind of emula-
tion, which allows for dynamic instrumentation and analysis of the PUT’s runtime
behavior, which will be discussed later, or introduce sophisticated monitoring and
incorporation of new runtime information to the fuzzing process.

Mutation-Based Fuzzing

As randomly created input might present problems, because the PUT will most
likely only accept correctly formatted input, which leads to the string being rejected
during format checks, thus never reaching deeper code parts and leading to a very
inefficient fuzzing process, mutation-based fuzzing often starts with a seed corpus
of valid inputs. Those inputs might have been gathered during monitoring of the
PUT’s normal behavior, or might have been created by hand according to a known
input specification, and often contain different valid input variations. During the
fuzzing process, this seed corpus is then used to start the fuzzing loop, after which
the strings are then randomly mutated to increase code coverage. During these mu-
tations, the fuzzer might apply different mutation strategies, such as bit flips, byte
flips, or mutations according to more sophisticated heuristics like dictionary-based
mutations, which uses predefined values to mutate. Many of those standard muta-
tion strategies are implemented in the fuzzing framework libFuzzer [25], which is
part of the LLVM compiler infrastructure1.

Generation-Based Fuzzing

As mutation-based fuzzers might not be able to create valid inputs, which are ac-
cepted by the PUT, generation-based or model-based fuzzers try to overcome that
problem, by creating inputs adhering to a precise grammar describing valid inputs
aiming to increase code coverage or only modifying parts of input strings, to com-
ply with a specific input model, that is created beforehand. Therefore all created
input string are valid in the sense of syntax, thus being accepted by the PUT. Typi-
cally, those grammars have to be crafted by hand, which is a very labour-intensive
manual task. This approach is especially useful for PUTs, which are based on a

1https://llvm.org/docs/index.html

https://llvm.org/docs/index.html

2.1 Traditional Fuzzing 11

well-defined input specification, such as network protocols, file formats like HTML
or XML or similar formats. More refined approaches might even use functions or
methods of the PUT to encapsule random input data, to pass the programs input
validation checks [26]. Such an approach might not present optimal, as the “carrier”
function might discard or sanitize a lot of the input data, which can be provided
through accessible functions. The Fuzzer Diane [27] tries to overcome this by iden-
tifying so called “fuzzing triggers” in the PUT’s source code, representing functions
that are called after the input validation checks, but before the input is prepared
for further processing, for example network serialization or similar operations, thus
limiting the amount of discarded input data.

Hybrid Fuzzing

As explained above, often it is not directly possible to classify fuzzers as either
black-box, white-box or grey-box, as many fuzzers use a combination of different
approaches, as well as mix of mutation-based and generation-based fuzzing, even
intertwined with some type of machine-learning augmentation, as seen in 2.5. Espe-
cially more advanced fuzzing approaches, proposed in the recent years, often try to
find a good compromise between very efficient fuzzing and a generalizable, easy to
use and adaptable approach, thus combining different methods and previous pro-
posals to create a hybrid project, combining the advantages of all described meth-
ods.

2.1.3. Overview of Traditional Fuzzing

In the past 10 years, there have been countless proposals on how to improve different
aspects of traditional fuzzing approaches, focusing on input generation, fault obser-
vation and monitoring, input delivery or even crash analysis, just to name a few.
Figure 2.1 shows the number of publications, which were published in the past 10
years solely in the IEEE Xplore Digital Library2, and contained the term “fuzzing” in
their title. Those publications were then counted and grouped by year, to create the
figure below. As can be seen, the number of publications has been steadily increas-
ing over the past 10 years, with a slight decrease in 2020, which can be attributed
to the ongoing COVID-19 pandemic, which has led to a decrease in publications in
general. The figure only shows works which were published on the IEEE Xplore
platform, which is only one of many different platforms to publish research in this
area, and only displays publications that include the term “fuzzing” in their title,
disregarding all other works, that were either published on other platforms, or do
not include the term “fuzzing” in their title, although they might still be contributing
to the topic.

This shows, that fuzzing is a very active field of research, with many new approaches
and ideas being published every year. Disregarding the fact, that there are countless

2cf. https://ieeexplore.ieee.org/Xplore/home.jsp

https://ieeexplore.ieee.org/Xplore/home.jsp

12 2 Related work and Fundamentals

20
22

20
23

20
21

20
19

20
20

20
18

20
17

20
15

20
16

20
13

20
14

0

20

40

60

80

100

120
121

112
102

63 61

42

25
16 1414 11

Year

C
ou

nt

Figure 2.1.: Number of publications with the term “fuzzing” in the title on IEEE
Xplore Digital Library in the past 10 years

promising approaches and projects, we want to highlight a few “milestone” ideas,
that have shaped the world of fuzzing and built the basis for a lot of following
research and popular projects, and can be seen as the state-of-the-art open source
standards in traditional fuzzing. Proprietary fuzzers of course still exist, and might
present at least comparable performance, but due to their closed source nature, it is
difficult to compare them to open source projects, as they are not easily accessible
and do not present a used basis for further research.

Popular Fuzzers

Many promising but often highly specialized fuzzing projects and approaches have
been published, as we cannot highlight all of them, we will focus on those, which
we deemed most relevant to the topic of this thesis. This includes projects, which
built the basis for following research but also keystone approaches, that introduced
new and promising ideas, which are still used today. Nevertheless, this will just be
a brief overview to understand the domain of fuzzing, as this thesis will focus on a
very specific problem of embedded fuzzing, which will be discussed in the following
section.

American Fuzzy Lop (AFL) 3 [28] stands as a de-facto baseline standard in the
realm of fuzzing tools, renowned for its speed and effectiveness as well as it’s ease
of use. AFL’s distinctive feature is its innovative genetic algorithms, that refine test

3https://lcamtuf.coredump.cx/afl/

https://lcamtuf.coredump.cx/afl/

2.1 Traditional Fuzzing 13

cases based on code coverage, based on a set of different random mutations and de-
terministic steps by incorporating different fuzzing strategies, proven to be effective
in the past, an approach that has revolutionized fuzzing methodologies. The tool’s
ability to rapidly generate test cases while dynamically adapting to the code it tests,
makes it a preferred choice for many security researchers, additionally different in-
strumentation tools can be used to monitor state transitions, which is used by AFL to
quickly determine and incrementally refine interesting inputs further down the pro-
cess. AFL’s impact is evident in its extensive use and the numerous vulnerabilities it
has helped uncover [29].

Its successor AFL++4 [30][31] which is an enhanced fork of AFL, brings additional
features and improvements to the original AFL design. It includes several opti-
mizations and new functionalities aimed at increasing fuzzing efficiency and effec-
tiveness. AFL++ integrates community-driven improvements, focusing on aspects
like speed optimization, crash exploration, and advanced instrumentation. Addi-
tionally, AFL++ incorporates performance improvements and supports advanced
fuzzing techniques like persistent mode and shuffling schedules, further optimizing
the fuzzing process. This tool represents the collaborative efforts of the open source
community to optimize what fuzzing tools can achieve and adapt tools for specific
use cases, as it layed the baseline for many further adaptions and ideas, often ex-
tending it’s capabilities to new or refined approaches.

AFLGo 5 [21], a variant of AFL, takes a new approach by focusing on targeted
fuzzing. Unlike traditional fuzzers that explore code paths indiscriminately, AFLGo
focuses on specific locations within the codebase, that are deemed to be vulnerable
beforehand, enabling a more directed and efficient approach in scenarios where cer-
tain code regions are of higher interest. This is done by introducing a simulated an-
nealing power schedule, that is able to incrementally prefer inputs triggering code
closer to specified regions. Therefore interesting or relevant code segments can be
analyzed comprehensively, which is particularly useful for testing patches and veri-
fying specific bug fixes, making AFLGo a valuable tool for developers and security
professionals focusing on specific code segments Böhme et al. were able to present 39
new bugs in commonly used libraries [21], that were already tested by other fuzzers
before, thus showcasing the effectiveness of their tool.

VUzzer [32] is a tool that exemplifies the application of evolutionary algorithms in
fuzzing. It employs an application-aware approach, utilizing data flow analysis to
enhance the generation of test inputs, by assigning fitness scores to each input and
refining those scores with control flow and data flow information. VUzzer’s intel-
ligence lies in its ability to accommodate to the application’s structure, guiding the
fuzzing process more effectively towards code areas deep inside the programs logic.
This approach not only increases the chances of finding complex vulnerabilities but
also reduces the overhead commonly associated with traditional fuzzing methods.

4https://aflplus.plus/
5https://github.com/aflgo/aflgo

https://aflplus.plus/
https://github.com/aflgo/aflgo

14 2 Related work and Fundamentals

During evaluation, VUzzer was able to find new bugs in evaluation datasets6, as
well as in real-world applications.

Skyfire [34] stands out for its specialized approach in fuzzing programs that
process complex input formats like XML or HTML. It employs a grammar-based,
data-driven approach to generate semantically valid test inputs according to a in-
put model, which is then used to generate test cases that are more likely to hit and
stress the nuanced parts of the code responsible for processing complex inputs. A
so-called probabilistic context-sensitive grammar is employed to generate syntacti-
cally correct input samples, that at the same time is able to calculate the probability
for each grammar rule to be active in a given context, thus creating seed inputs that
are likely to increase code coverage. Those initial seed inputs are then fed to AFL for
further fuzzing, decreasing the amount of redundant inputs generated by the same.
Skyfire’s contribution to the fuzzing domain is significant, particularly in the context
of web security and the testing of applications that handle structured data exten-
sively, like parsers or processors for XML, HTML, JSON or other highly structured
text. Skyfire was able to uncover many different bugs in real-world applications,
including Internet Explorer 11 [34].

2.2. Introduction to Machine Learning Techniques

This section will give a general overview on machine learning and its subclasses, as
well as the most important concepts and techniques, which will be used in the fol-
lowing chapters. This section will not be a comprehensive introduction to machine
learning, but rather a brief overview, highlighting the most important concepts,
which will be used in the following chapters. For a more comprehensive introduc-
tion, we recommend the book “Artificial Intelligence, A Modern Approach” [35].

2.2.1. Artificial Intelligence

Google Cloud7 defines Artificial Intelligence (AI) as “a set of technologies implemented
in a system to enable it to reason, learn, and act to solve a complex problem” [36]. Ma-
chine learning (ML) is subsets of AI [37], Deep Learning (DL) again, is a subset of
ML while reinforcement learning (Rl) can be both, a subset of the broader classifi-
cation ML [38] as well as specific DL [39][40][41][42]. All of those subsets are used
to describe a set of tools and approaches for different problems, hence differing in
technical specifics, which leads to this classification. In this subsection, we will high-
light important information on each of these topics, focusing especially on areas of
research, that are important for the following chapters, in other words, approaches

6cf. https://www.darpa.mil/program/cyber-grand-challenge and [33]
7https://cloud.google.com/

https://www.darpa.mil/program/cyber-grand-challenge
https://cloud.google.com/

2.2 Introduction to Machine Learning Techniques 15

that have already been used in research regarding enhancement of the input gener-
ation phase during fuzzing. This aims to guide the reader to the following sections,
which will examine already used approaches and applications of machine learning
to the input generation phase of both desktop and embedded fuzzers.

Machine Learning

Machine learning is a more specific field of Artificial Intelligence, that was defined by
Arthur Samuel as “the field of study that gives computers the ability to learn without
explicitly being programmed”8. In todays world, this means, that a machine learn-
ing algorithm is able to learn from data, which is provided to it, and make decisions
or predictions over it, without being explicitly programmed to do so. Nowadays,
machine learning is employed in countless tasks, such as image recognition, speech
processing, chat bots, natural language processing, medical diagnosis, problems in
the area of biochemistry, stock trading and many more, the goal always being to cre-
ate algorithms that simulate human intelligence, which is why machine learning is
often used synonymously with Artificial Intelligence. The basis of machine learn-
ing build mathematical optimization problems, so the field is tightly coupled with
computational statistics.

Commonly, machine learning is divided into three subcategories, depending on the
type of data the model is trained with, which are supervised learning, unsupervised
learning and reinforcement learning. we will discuss reinforcement learning in depth
below. Using supervised learning, models are trained on so called labeled data sets,
where each data-point has some kind of description to it, which is called a label.
This label can be a category, a class, a value or similar, depending on the problem
the model is trained to solve. The model then to learns a function, that maps the
input data to the correct label, which is then used to predict the label of new data
points. If such labeled data does not exist, unsupervised learning can be used, where
the model is trained on unlabeled data, finding patterns and structures in the data,
which can then be used to cluster the data into different groups, what in turn can
further be used to predict future developments of the respective pattern based on
the learned information.

Deep Learning

During deep learning, neural networks, a specific type of machine learning model,
are used. Neural networks aim to work in a similar way as the human brain, con-
sisting of multiple connected processing nodes, called neurons, each of which doing
its own processing on inputs and sharing outputs with other nodes. During deep
learning, neural networks with many layers are used, with a varying degree of in-
terconnectivity and data flow direction, depending on the specific model used. A
common type of such neural networks is the so-called feedforward neural network,

8cf. [37][43], although he doesn’t seem to have written that in his prominent papers [44][45]

16 2 Related work and Fundamentals

Figure 2.2.: Visualization of a Feedforward Neural Network, inspired by [46]

which consists of multiple layers of neurons, where each neuron is connected to all
neurons in the next layer, but not to those in the same or previous layers. The initial
or entry layer is called the input layer, the final layer is called the output layer, while
all intermediate layers are defined as hidden layers. The input layer is used as an
entry point to feed the model with data, which is then processed by some amount
of hidden layers, those in turn providing the output layer with the result of the pro-
cessing. The output layer then provides the result of the model, which can be used
to make predictions or decisions.

The number of hidden layers is called the depth of the model, hence the name deep
learning, while the number of neurons in each layer is called the width of the model.
Each layer can correspond to a specific feature of the input data, processing the same
to evaluate said feature. See 2.2 for a reference visualization of a feedforward neu-
ral network. Again, supervised and unsupervised algorithms exist, solving simi-
lar problems as the respective non deep learning algorithms. Applications of deep
learning especially include problems, where vast amounts of data are available, often
unstructured, as deep learning models are able to learn and extract complex patterns
in the data, which in turn can be used to make predictions or decisions.

Recurrent Neural Networks

To mitigate possible limitations of feedforward neural networks, recurrent neural
networks (RNN) were established [47][48]. This type of neural network allows for bi-
directional information flow by enabling connections between neurons in the same
layer, as well as connections to previous layers, thus allowing for a more complex
processing of the input data, especially for connected sequences of input [49][50][51].
For connected sequences of data, where past data plays a role, RNNs offer a great
performance increase, as they are able to remember past data and use it to process fu-
ture data. One might see the possibilities, RNNs enable for fuzzing, as this problem

2.2 Introduction to Machine Learning Techniques 17

Figure 2.3.: Visualization of a Recurrent Neural Network, inspired by [46]

is based on the processing of sequences of data, where past data greatly influences
the processing and selection of future data. See 2.3 for a reference visualization of
a RNN, the blue looping arrows indicating possible connections. Classic RNNs are
able to retain information on data processed in the very recent past, comparable to
a very small short-term memory, making slightly larger connected sequences of in-
put data already challenging to correctly process. Because of this, a special type of
RNN, the long short-term memory model was introduced, as discussed in the next
paragraph.

Nowadays, many natural language processing problems, where context plays a role,
are better solved by using the Transformer architecture [52], that does not use recur-
rent connections, but rather uses attention mechanisms to process sequences of data
by processing whole sections in contrast to single tokens. This architecture is not dis-
cussed further in this thesis, as in the context of fuzzing, transformers did not really
gain popularity yet, but might be an interesting approach for future research.

Long Short-Term Memory Models

To improve the short-term memory capacities of RNNs, long short-term memory
(LSTM) models were introduced [53]. Additionally to the short-term memory of
RNNs, a new cell state is added, that retains important information for a longer time.
This cell state is controlled by three gates, which are called the forget gate, the input
gate and the output gate. The forget gate selects information, that should removed
in comparison to the last state, the input gate chooses information to be added to the
cell state and the output gate selects information, that will be outputted. This allows
for a more complex processing of the input data, as the model is able to decide,
which information is important and should be retained, and which information is
not important and should be forgotten. See 2.4 for a reference visualization of the
computing component of a LSTM model. The LSTM component receives an input
I(t) at time t, as well as the previous cell state C(t � 1) and the previous hidden

18 2 Related work and Fundamentals

Figure 2.4.: Visualization of the computing component of a LSTM model, inspired
by [54]

state H(t � 1). Those states are vectors, that store the necessary information. The
forget gate then uses H(t�1) and the current input I(t) to calculate a selector vector,
which is then multiplied with C(t�1) to remove the selected information. Using the
sigmoid activation function, the selector vector basically has the value 0 at positions
in the vector, that should be removed, all other positions contain the value 1.

The new entry added to the cell state is calculated by the input gate and the candidate
memory. They both receive a single vector, consisting of the concatenated I(t) and
H(t � 1), from which the input gate again calculates a selector vector to select the
information to add from the normalized candidate vector, that is produced by the
candidate memory using the tanh function. The result of this multiplication is then
added as a new entry to the cell state. Finally the output gate calculates the output
of this cell, which is again done using a selector vector and the normalized cell state,
which is then passed to the next cell as a new hidden state. The output of the cell
is then used to make predictions or decisions, depending on the problem the model
is trained to solve. Each of those components are basically new independent layers
in the complete architecture of the LSTM model, which are then connected to each
other in a fashion, that is determined suitable for the problem the model is trained
to solve.

Seq2Seq

Another machine learning approach, that has been applied to traditional fuzzing, is
the Seq2Seq model [55], which is another type of neural network, that is able to pre-
dict sequences of tokens, thus making it useful for input generation tasks. In it’s core,
seq2seq is a encoder-decoder based model, both of which are LSTM models, that are

2.2 Introduction to Machine Learning Techniques 19

connected to each other. The encoder is used to encode the input sequence into a
vector, capturing the context and essential information of the input in question. This
vector is then used by the decoder to produce the final output sequence, predicting
each element of the output sequence by taking all available information into account,
even the previously predicted values. As an addition to the initial seq2seq approach,
Bahdanau et al. introduced an improved model with an attention mechanism [56] to
also be able to make predictions on long input sequences.

Reinforcement Learning

In his book “Artificial Intelligence, A Modern Approach” [35], which is the de facto
standard book for introductory lectures to AI, Stuart Russell defines reinforcement
learning (RL) as a type of machine learning, where “an agent interacts with the world
and periodically receives rewards (or, in the terminology of psychology, reinforcements) that
reflect how well it is doing” [35]. So this agent is not only trying to maximize the re-
ward, but also has to interact with the environment, which is not the case in other ML
approaches. Such an interaction is done by taking actions on the environment, whose
result is then evaluated, which in turn provides the agent with a reward, which is
in turn used to update the agent’s policy, the function that maps the agent’s state to
an action. OpenAi9 calls his process the “agent-environment interaction loop” [57], as
shown in 2.5.

Figure 2.5.: Agent-Environment Interaction Loop, from [57]

In the context of this Thesis, we will mainly focus on a specific type of RL, called Q-
Learning [58][59][40], which is a model-free RL algorithm, that learns a representation
of action and corresponding utilities, utility in this case is the expected reward of an
action taken in a specific state. This representation is called a Q-Table, which is a
table of all possible states and actions, as well as the corresponding utilities, which
are called Q-Values. The Q-Table is initialized randomly, and then updated during
the training process, which is done by taking actions on the environment, which in
turn provides the agent with a reward, which is then used to update the Q-Table.

Using the notation used in [60], ultimately introduced in [61], reinforcement learning
and Q-Learning can be described as follows. The idea is based on a Markov Decision
Process M, which is a stochastic process that is defined as M = (X,A, P0). X is the

9https://openai.com/ and https://spinningup.openai.com/

https://openai.com/
https://spinningup.openai.com/

20 2 Related work and Fundamentals

set of all possible states, A is the set of all possible actions and P0 is the transition
probability function, which returns the probability P0(U | x, a) for (x, a) 2 X ⇥ A

and U ⇢ X ⇥ R, which means if the actor performs action a while in state x, the
system will shift to another state in X and the actor will earn a reward U , which is
a real number. So for a transition from state x to state x

0, through performing action
a, P0 provides the transition probability P (x, a, x0) = P0({x0

} ⇥ R | x, a), which is
the probability of transitioning to state x

0 and earning a reward r 2 R, which is the
expected reward of performing action a in state x.

To extend this to the idea of reinforcement learning, we introduce an agent, that over
time learns to maximize the cumulative reward R earned over time, while causing
state transitions by choosing an action and in turn observing the respective state tran-
sition in correlation with the earned reward. To prioritize rewards in the near future,
we introduce a discount factor � 2 (0, 1), which is used to calculate the discounted
cumulative reward R as follows:

R =
1X

t=0

�
t
rt+1 (2.3)

Additionally, we introduce a policy ⇡, which is a function mapping the state x to an
action a, which is then used to determine the agent’s behavior, who chooses an action
at while observing xt based on at ⇠ ⇡(· | xt), meaning at is distributed according to
the policy of xt. This leads to the expected cumulative reward

Q
⇡(x, a) = E

 1X

t=0

�
t
rt+1 | x0 = x, a0 = a

�
(2.4)

Now to solve the problem, we just have to approximate the optimal Q function,
which in the case of [60] is done by recalculating the Q-Table after each action, using
the following formula:

Q(xt, at) Q(xt, at) + ↵

rt + �max

a
Q(xt+1, a)�Q(xt, at)

�
(2.5)

with ↵ denoting the learning rate as a real valued number greater than 0 but at
most 1. Now the agent can act according to the Q-function by performing an action
for each state it observes, that maximizes the expected cumulative reward, which
is done by choosing the action yielding the highest Q-Value for the current state
at = argmaxa Q(xt, a). This causes a state transition and is repeated until a time con-
straint is met or the problem is deemed solved, for example by winning a game.

Deep Reinforcement Learning

The approach to reinforcement learning described above works very well, when the
state space is small, but for more complex problems, as the state space grows, the Q-

2.3 Embedded Fuzzing 21

Table grows exponentially, which makes it infeasible to use. To overcome this prob-
lem, deep reinforcement learning (DRL) was introduced, which uses deep neural
networks to approximate the Q-Function or in general the policy after which the RL
agent acts on the environment. In case of Q-Learning, the resulting neural network
is called a Q-Network, that is then trained using the Q-Learning algorithm, which is
called Deep Q-Learning. If a model-based approach is chosen, usually a neural net-
work is trained using a supervised approach, to finally predict the actions taken by
an agent, those predictions are then used to actually act on the environment.

2.3. Embedded Fuzzing

After introducing the general concept of fuzzing and necessary fundamentals on
machine learning techniques, we will now focus on embedded fuzzing, which is
the main topic of this thesis. we will start by introducing the concept of embedded
systems, followed by a classification of embedded systems, which will be used to
differentiate between different types of embedded systems, as well as to highlight
the differences between traditional fuzzing and embedded fuzzing. Subsequently,
we will discuss the challenges of embedded fuzzing, followed by a general overview
of the usual process of embedded system fuzzing, which will be used to highlight
the differences between traditional fuzzing and embedded fuzzing. Finally, we will
introduce the current state of the art embedded fuzzers, which will be used as a basis
for the following chapters, as well as to answer RQ 3.

Similar to traditional fuzzing, fuzz testing of embedded devices is a very active field
of research, especially in the recent years, as the count of used embedded systems in
many different industries increases every year. Figure 2.6 again shows the number
of publications per year on the platform IEEE Xplore in the past 10 years, containing
the terms “embedded” and “fuzzing” in their metadata. The market for embedded
systems is growing every year10, even after the semiconductor crisis during COVID-
1911, highlighting the increasing need for sophisticated testing approaches to ensure
the security, privacy and continuity of devices especially in critical infrastructure,
automotive applications and medical devices, as well as consumer electronics.

2.3.1. Embedded Systems

Generally speaking, an embedded system is a device, which is designed to be em-
bedded into a larger system of electrical components, mostly sensors or similar
items, that interacts with the surroundings in some way, and which is developed
and integrated to fulfill a specific purpose. But also devices like smart home devices,
which are not directly embedded into a larger system, but rather interact with the
surroundings in a more direct way, as well as mini computers like a Raspberry Pi
Zero 2.7, or even Wifi routers, can be considered embedded systems.
10cf. [62]
11cf. [63]

22 2 Related work and Fundamentals

20
22

20
17

20
21

20
18

20
20

20
23

20
19

20
14

20
16

20
13

20
15

5

10

15

20

23

17 17
16

15 15

12

10 10

8

6

Year

C
ou

nt

Figure 2.6.: Number of publications with the terms “fuzzing” and “embedded” in
all metadata on IEEE Xplore Digital Library since 2013

Embedded systems are based on a microprocessor, often in combination with mem-
ory and some way to interact with peripherals, and are usually designed to be as
small and energy efficient as possible, as well as being resource efficient, while still
fulfilling their dedicated tasks. See 2.7 and 2.8 as examples of such a microprocessor
based device including peripherals to interact with the surroundings. Nowadays,
such devices can be found in many different use cases, spanning from critical in-
frastructure over automotive applications to consumer electronics like smart home
devices. Especially in larger systems, usually many different embedded devices are
used, all of which fulfilling their specific purpose while still interacting with the
other devices to accomplish the overall purpose of the system as a whole. It is im-
portant to note, that in the context of this thesis, we will not distinguish between
the terms embedded system and embedded device, as the purpose of this thesis is
focused on singular embedded devices, not interconnected systems of multiple em-
bedded devices.

Typically, the architecture of embedded devices can be abstracted as seen in 2.9, con-
sisting of a hardware layer, a system software layer and an application software
layer. The hardware layer consists of the actual hardware, such as the micropro-
cessor, memory, peripherals, which are used to interact with the surroundings. The
system software layer consists of firmware, that contains the bootloader,the operat-
ing system as well as device drivers to manage the hardware and, in general, pro-
vides interfaces to the application software layer. The latter eventually consists of
the actual applications, if such are necessary to fulfill the purpose of the device. The
application software layer is the only layer, which might be visible to the user, as
it is the only layer, which is directly interacting with the surroundings in a matter
a human user can actually interact with, apart from hardware interactions through

2.3 Embedded Fuzzing 23

Figure 2.7.: Raspberry Pi Zero, a mini computer based on a microprocessor, includ-
ing a standalone battery and a small display

Figure 2.8.: Asus RT-AC58U, a Wifi router based on a mipsel 74kc microprocessor,
with antennas and further I/O ports

sensors and actors. But as the formulation of this explanation already implies, this
abstraction is not always applicable, as there also exist many devices, which do not
have a dedicated operating system, but rather use a monolithic firmware, that is di-
rectly interacting with the hardware, lacking the abstraction of further software lay-
ers. Furthermore, especially in the context of embedded fuzzing, it is important to
note, that the application software layer is not always visible to the user, as it might
be hidden behind some kind of interface, for example a network interface, which
is only accessible through dedicated network connections, or a serial interface, only
accessible through a serial connection.

While many different architectures for embedded devices exist, for example RISC-
V [64], MIPS [65] or ARM based architectures [66], this work will mainly focus on
ARM Cortex-M standard, which is a 32-bit architecture using a reduced instruction
set (RISC) and is widely adopted in practice as well as predicted to still gain popu-
larity in the future [67].

24 2 Related work and Fundamentals

Figure 2.9.: Example architecture of embedded systems after Noergaard [68]

2.3.2. Classification of Embedded Systems

Classification of Embedded Systems can be done in many different ways, but espe-
cially for fuzzing, it is useful to distinguish them by differentiating between the used
operating system (OS), because it is mostly responsible for ensuring the systems con-
tinuity, thus handling fault recovery as well as more advanced security mechanisms
and providing interfaces to ensure the fulfillment of the dedicated purpose.

In this context, Muench et al. [69] distinguish between three different types of em-
bedded systems.

The first class are devices, which are based on a General-Purpose OS, which is mostly
an OS based on the Linux Kernel but with minimal user environment. Those de-
vices are often not as specialized as their counterparts in the other classes, suffering
from suboptimal runtime conditions as they are using an repurposed operating sys-
tem not specifically made for embedded devices. The second class contains devices,
which are based on Custom OS, that is created solely to fit embedded devices. Such
OSs are designed to be used on devices with limited computational resources and
limited architectural capabilities, such as missing Memory Management Units or re-
duced instruction sets, increasing the usability and performance while being energy
and resource efficient, one example for such an Custom OS being the widely used
ZephyrOS 12.

The last class consists of highly specialized devices without a direct Operating Sys-
tem abstraction, adopting monolithic firmware to serve a highly specific task. Such
monolithic firmware is mostly just a simple control loop handling interrupts that are
created by peripherals to handle events and control actions on the surrounding en-
vironment.

Other types of classification exist, such as classifying systems according to their per-
formance, the performance of the used micro-controller, the used architecture, their
purpose or even the industry field they are used in, but those classifications are not
as useful in the context of software testing, as they don’t engrain important runtime
information like the used OS, which is essential for fuzzing.

12cf. https://zephyrproject.org/ for further details

https://zephyrproject.org/

2.3 Embedded Fuzzing 25

2.3.3. Challenges of Embedded Systems Fuzzing

Additionally to challenges that might occur during the general fuzzing process, em-
bedded fuzzing presents multiple unique challenges, which have to be overcome to
create a sophisticated fuzzing approach. Muench et al. highlighted those challenges
in their paper [69], which we will discuss in the following.

One of the biggest issues during embedded fuzzing is the fault detection, on which
the process heavily relies. In contrast to desktop computers, embedded devices are
not designed to have a lot of fault protection measures, that lead to a crash during
unexpected behavior, or are even designed to simply do a silent restart after encoun-
tering a fault. Furthermore, especially productive devices often lack any kind of
I/O possibility for the user to interact with the device, thus making it impossible
to detect a fault, as the device is not able to communicate it to the user. To enable
efficient fuzzing of such devices, sophisticated instrumentation must take place, to
detect faults and be able to use such information to guide the testing process. This
instrumentation presents the next challenge, as it is often not trivially possible to in-
strument the program or system under test, as it is not possible to install any kind
of software on the device, or the system under test is not able to communicate with
the outside world, thus making it impossible to use any kind of instrumentation. To
overcome this, it might be necessary to use some kind of emulation, which allows
for dynamic instrumentation and analysis of the PUT’s runtime behavior, which will
be discussed in 2.3.4.

Especially during fuzzing based on the actual device, another challenge to overcome
is the performance of the device itself, which is generally much less powerful than a
desktop computer, impacting the efficiency and speed of automated testing, as well
as scalability fuzzing instances, which normally is easily possible during traditional
fuzzing but presents a big challenge for embedded devices, as multiple actual de-
vices are needed to scale the fuzzing process.

To overcome the limitations of fuzzing on the actual device itself, a common ap-
proach is to emulate the hardware, which will be discussed below. While this solves
the resource constraints and possibly instrumentation issues, an emulation approach
presents its own challenges. The correct representation of hardware in a virtualized
environment requires a deep understanding of the devices specifications, especially
in more complex devices. If such information is not available, it is often necessary to
reverse engineer the device, which is a very time consuming task, that requires a lot
of manual work. Especially if no emulation configuration is available for the chosen
emulator, meaning the device is not yet supported by it, it is necessary to manually
configure the emulator to correctly represent the device, which is a laborious task,
necessitating deep knowledge and a lot of time.

26 2 Related work and Fundamentals

2.3.4. Classification of Embedded Systems Fuzzing

Because of the challenges discussed above, different types of fuzzing approaches
exist for embedded systems, mostly classified by the representation of the actual
firmware of embedded application in the process. The most common classification
differentiates between Hardware-Based Fuzzing and Emulation-Based Fuzzing, which
will be discussed in the following, while especially focusing on different types of em-
ulation, as this is the most commonly used method to perform embedded fuzzing.

Hardware Based Fuzzing

The first thing coming to mind when thinking about fuzzing of embedded devices,
probably include the device itself somewhere in the testing process, as it is the target
of the whole procedure. In fact, different approaches utilizing the device itself exist,
but they are not the only way to fuzz embedded software. Usually, the device to be
tested is hooked into some kind of fuzzing loop, that often includes a proxy to com-
municate with the device, for example to forward the input generated by a fuzzer
running on a stronger desktop machine to the device and receiving debugging in-
formation back to feed to the fuzzing engine. This can be done in many different
ways, including using proxies like gdb-server13 [70], debug interfaces available on
the hardware [71][72][73], as well as execution directly on the hardware, which is
especially possible in stronger devices with general purpose operating systems, like
a Raspberry Pi14[74], but also includes very sophisticated approaches, that require
deep understanding of the hardware being tested [75][76][77]. Other authors even
propose fuzzing on network interfaces provided by the system under test [26][78],
which in turn only enables the testing of network facing applications but at the same
time eliminates many challenges regarding correct hardware representation and in-
put formats. A hardware-in-the-loop situation is illustrated in Figure 2.10.

Figure 2.10.: Hardware-in-the-loop setup for fuzzing

13https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_130.html
14https://www.raspberrypi.com/

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_130.html
https://www.raspberrypi.com/

2.3 Embedded Fuzzing 27

Emulation Based Fuzzing

As already introduced above, emulation based fuzzing is a promising approach to
fuzzing embedded devices, as it allows for dynamic instrumentation and analysis
of the PUT’s runtime behavior, enabling a perfect observation capabilities during
runtime, which is necessary to guide the fuzzing process. As emulation is a very
broad term, we will now introduce the different types of emulation. The most com-
monly adapted emulation tool is QEMU [79], which is an open source emulator and
virtualizer, that is able to emulate different architectures, such as ARM, MIPS, Pow-
erPC, RISC-V, SPARC, x86 and x86-64, as well as different devices, such as network
cards, graphics cards, sound cards, USB devices and many more. Muench et al. [69]
showed, that emulation based fuzzing even improves the performance in compari-
son to fuzzing on the hardware itself. This is due to the fact, that the emulating host
system is usually more powerful than the target system, thus allowing for much
stronger hardware support, such as multiple cores, which can be used to parallelize
the fuzzing process, as well as more memory, which can be used to store more inputs
and thus increase the fuzzing efficiency.

For a successful emulation, the emulator must be capable of simulating hardware
interrupts, direct memory access (DMA) and memory-mapped I/O (MMIO). Hard-
ware interrupts are used by the hardware to signal the CPU, that a specific asyn-
chronous event has occurred, for example a network packet arrived over a network
cards serial port, enabling the CPU to directly handle such events. DMA is used
by the hardware peripherals to directly access the memory, without CPU handling
the access, thus increasing the performance of the system. MMIO lets the CPU to
directly access the memory of a hardware peripheral, enabling it to get information
about the state of said peripheral or trigger actions on the peripheral. For example,
this enables the CPU to get information about a GPIO button being pressed or to
trigger an action on a GPIO pin, for example to turn on a LED. DMA accesses are
also handled through MMIO. A successful emulation must be able to handle such
actions correctly, as they are essential in representing the real device in virtualiza-
tion. Typically, this so-called firmware re-hosting is a very complex task, requiring a
lot of manual configuration, if the hardware to emulate is not already supported by
the emulator.

To emulate the hardware for a firmware image, different techniques exist, which are
discussed in the following.

User-Mode Emulation tries to emulate only the application software part of the
PUT, while still running the PUT on the host’s kernel, see 2.11a as an adaption
from 2.9. By doing that, only the binary file gets emulated, all system calls to the
PUT are then translated to system calls to the host’s kernel, which is only possible,
if both the host and the PUT have the same kernel or a customized kernel can be
crafted and used. As interfaces in the application layer are usually well defined and
documented, user-mode emulation is often easy to use and setup, but all potential
hardware accesses have to be translated and treated correctly by the emulator, thus
leaving lots of room for non-representative results due to system states that are not

28 2 Related work and Fundamentals

(a) User-mode emulation (b) Full-System Emulation

Figure 2.11.: Different types of emulation, adapted from
Noergaards architecture [68]

consistent with real-world system states. Firmadyne [80] as well as its improved
adaption FirmAE [81] use this approach to emulate the PUT using QEMU, which is
then used to perform dynamic analysis and instrumentation, for example guiding
the fuzzing process. It is important to note, that Firmadyne technically uses QEMUs
full-system emulation, but because it utilizes a custom kernel and only really imple-
ments user application fuzzing, it is better counted towards user-mode emulation.
Another project, that enhanced Firmadyne is FirmAFL [82], which in turn tries to
increase the performance of the fuzzing process by utilizing user-mode emulation as
long as possible, only switching to full-system emulation, if necessary.

Full-System Emulation emulates, as the name implies, the full system as a guest
on the host system, including CPU, kernel, operating system as well as peripherals,
see 2.11b as a reference. Using full-system emulation, it is possible to completely in-
strument the binary firmware, enabling all types of fuzzing, even white-box fuzzing,
as the complete system can be instrumented. To achieve full-system emulation, a cor-
rect software representation of all hardware-accesses made by the firmware, as well
as interrupts made by the hardware, is necessary, so that the firmware binary can
then be executed in an environment, that perfectly behaves as if it was executed on
the hardware itself.

As already mentioned above, QEMU has the ability to emulate a lot of different archi-
tectures in full-system mode, enabling users to quickly start projects by already pro-
viding a lot of existing configurations of microcontrollers, as well as peripherals to
emulate. Therefore, for a long time, QEMU has been the de-facto standard tool to use
for emulation based fuzzing, as a lot of work is based on it [83][84][85][81][80][82].
Another popular project, called libFuzzer [86], emulates the system through so called
virtual prototypes, that model the entire hardware using SystemC15, a system design
and verification language. As already described above and especially being shown
in 2.10, hardware based fuzzing might also be using full-system emulation to sup-
port a hardware-in-the-loop approach, that emulates the firmware or application to
test, while forwarding hardware accesses and in return interrupts through periph-
eral proxying to the actual hardware [83][84][85][87]. While those approaches are
very sophisticated and powerful, they are also very complex and require a lot of
knowledge about the hardware being tested, thus being very specialized and not

15https://systemc.org/overview/systemc/

https://systemc.org/overview/systemc/

2.3 Embedded Fuzzing 29

easily adaptable to other projects.

In some cases it might be better to model the hardware automatically instead of using
the actual hardware or a perfect emulation. Such a model can be created by moni-
toring the actual device and saving accesses to the MMIO, reusing those accesses as
well as interrupt timings for dynamic analysis [88]. More sophisticated approaches
suggest answering MMIO accesses with data generated by the fuzzing engine[89]
and even combining this with dynamic symbolic execution[90].

Unicorn Engine [91] is a lightweight multi-platform, multi-architecture CPU em-
ulator framework based on QEMU, which is able to emulate different architectures,
such as ARM, MIPS, as well as a lot of different devices. It is based on QEMU, but is
much more lightweight, as it does not emulate the whole system, but only the CPU,
as it doesn’t translate system calls and POSIX signals to the host system, but rather
only translates the CPU instructions. Furthermore Unicorn is built as a framework
and therefore offers a very powerful API, which enables the user to instrument the
emulated firmware, for example to perform dynamic analysis, such as code cover-
age analysis, as well as easily control memory registers and set native hooks, that
are triggered when certain memory addresses are reached. These features come as
a much lighter and faster package, Unicorn even being able to emulate binary code
without a complete execution environment, unlike QEMU. All those possibilities
make it an ideal tool for embedded fuzzing, AFL++ integrated it to be used instead
of QEMU.

2.3.5. Popular Embedded Fuzzers

As already implied, there is a lot of existing research in the field of embedded
fuzzing, which is why we will only highlight a few of the projects, which we deemed
most relevant to the topic of this thesis. This includes projects, which built the ba-
sis for following research but also keystone approaches, that introduced new and
promising ideas, which are still used today, as well as projects that can often be
found in literature regarding embedded fuzzing.

Firmadyne

As already described above, Firmadyne [80] utilizes QEMU to emulate the user
space applications of a firmware image, performing automatic dynamic analysis
using this emulation. A custom kernel is used with QEMU to run the extracted
firmware binary image, which can then be tested according to the specifications.
While technically being a framework focused on the correct emulation of such
firmware, it enables dynamic analysis and instrumentation, which can also be used
for fuzzing approaches. Nevertheless, the authors evaluate the effectiveness of their
framework by testing known exploits on the emulated firmware, to show, that the
emulation in fact represents correct real-world states of the device.

30 2 Related work and Fundamentals

Firm-AFL

Firm-AFL [82] is a dedicated fuzzing tool designed to address the complexities of
firmware analysis. Building on the foundational concepts of Firmadyne and AFL,
Firm-AFL tries to enable a faster fuzzing process based on QEMU. They solve per-
formance issues of full-system emulation by running targeted applications in user-
mode emulation as long as possible, only using full-system emulation for necessary
system calls. This approach is able to increase the fuzzing speed by up to 10 times.
The only real constraint, apart from the obvious dependency of possible emulation
with QEMU, is the restriction, that the target must be based on a POSIX-compatible
operating system.

µAFL

µAFL [71] is a hardware-in-the-loop approach to fuzz the firmware of microcon-
trollers. Based on AFL, it uses existing debugging tools intended for development of
embedded devices to feed back coverage and crash information to the AFL instance,
while introducing a new way of interpreting code coverage from raw debugging in-
formation, provided by ARM ETM hardware debugging. By utilizing an existing
hardware debugger, the approach is non-intrusive and easy to setup, especially in
industrial settings, where a board with respective debugging pins can easily be ac-
quired during development. During evaluation of their tool, the research team was
able to find 13 zero-day bugs in the firmware of NXP and STMicroelectronics micro-
controllers, which were previously unknown to the vendors.

Fuzzware

Fuzzware [90] presents another interesting and well researched tool, especially for
fuzzing monolithic firmware. Fuzzware distinguishes itself through its use of model-
based fuzzing techniques, while coupling execution of input with Dynamic Symbolic
Execution. The main innovation is the direct fuzzing of MMIO accesses, providing
data generated by AFL or AFL++ directly as a response to peripheral accesses. By
doing that, Fuzzware is able to precisely emulate a lot of different system states,
thus reaching high basic block coverages during the testing process. Fuzzware’s
methodology is particularly beneficial for testing firmware that operates in tightly
coupled hardware-software ecosystems. Presented with the approach and its im-
plementation, the authors conducted a very comprehensive evaluation, extensively
fuzzing 21 real-world monolithic firmware samples, previously used in works like
µEmu [92] and P2IM [89], being able to achieve an increased code coverage by⇠ 61%
and ⇠ 44% respectively. Furthermore, they were able to find 12 new bugs in total
while fuzzing Zephyr16 and Contiki-NG17, two widely used frameworks for embed-
ded firmware.
16https://zephyrproject.org/
17https://github.com/contiki-ng/contiki-ng

https://zephyrproject.org/
https://github.com/contiki-ng/contiki-ng

2.4 What is the Usual Process of Embedded System Fuzzing (RQ1) 31

FirmAE

FirmAE [81] is a comprehensive fuzzing framework designed for automated analy-
sis of firmware in embedded devices. It is based on Firmadyne, aiming to improve
the emulation capacities of said tool, claiming that many difficulties, presenting itself
during the use of Firmadyne, can be avoided with more sophisticated heuristics tar-
geting parameter and interface configuration. They claim that using their heuristics,
FirmAE is able to automatically run 79.36% of tested firmware images, while Firma-
dyne was only able to run 16.28% of the same set of firmwares [81]. This represents
a significant advancement in the field by automating the process of firmware emula-
tion and, further down the road, in fuzzing. FirmAE is capable of automatically ex-
tracting and emulating firmware images from a wide variety of embedded devices.
This automation greatly reduces the manual effort involved in setting up a fuzzing
environment, making it accessible to a broader range of researchers and practition-
ers. Similarly to Firmadyne, the focus of this project is again not the fuzzing process
itself, but rather the steps enabling dynamic instrumentation. Nevertheless the au-
thors also implemented a simple fuzzing engine, which is integrated in the frame-
work for testing purposes.

2.4. What is the Usual Process of Embedded System
Fuzzing (RQ1)

After a comprehensive literature review, we can now answer Research Question 1.
The answering of this question takes many different approaches into account and
generalizes them, as the previous research is often focused on a very specific use-
case, hence only focusing on a part of the process. Figure 2.12 shows the general
process of embedded fuzzing, which is based on the general process of traditional
fuzzing, but highlights the differences between the both, mainly the configuration
overhead beforehand, as well as the different approaches to embedded fuzzing,
which will be discussed in this section.

Target Selection

The process begins with the selection of the target to fuzz. The device to test can be
selected based on different criteria, such as the used architecture, operating system,
firmware, hardware or even the used peripherals, but for most industry use cases the
selection will adhere to a given specification. This can be the testing of a developed
product or product in a company The selection of the target is important, as it deter-
mines the following steps, such as the configuration of the fuzzing environment, the
selection of the fuzzing approach, as well as the selection of the fuzzing tools.

32 2 Related work and Fundamentals

Figure 2.12.: General process of Embedded Fuzzing based on different approaches.

Fuzzing Approach

The second step is to determine, whether an emulation of the system is necessary or
beneficial, or if it might be better to use a hardware based approach. This decision
is based on the target’s architecture, as well as the used operating system. If the
target is based on a general purpose operating system, such as Linux, which can
be used to perform dynamic analysis and instrumentation, it might be possible to
use a hardware based approach, especially if the resources of the device allow for
high throughput. If the target is based on a custom operating system or even on
monolithic firmware, it might be necessary to use an emulation based approach, as
it is not possible to perform dynamic analysis on the target itself. This decision is also
based on the used architecture, as it determines the possible emulation approaches,
as well as the used fuzzing tools, as not all fuzzing tools support all architectures.
Another selection criteria could be the threads to validity.

As mentioned above, an emulation based approach might not represent the correct
state, the device would be in, in the real world, thus being error-prone to false pos-
itives and negatives. While a hardware based approach might not be able to reach
the same throughput as an emulation based approach, it might be more accurate and
is still worthwhile to think about it, especially in later stages of development, to en-
sure the device’s security and continuity. Depending on the decision made, different

2.4 What is the Usual Process of Embedded System Fuzzing (RQ1) 33

paths in the process are taken, which are discussed below.

Emulation based Approach If an emulation based approach is chosen, the next
step is to configure the emulation environment, depending on the target specifica-
tion.

1. Acquire Firmware Image

The first step is to acquire the firmware image, which can be done in many dif-
ferent ways, depending on the target. In an industrial setting, this step is often
trivial, as the firmware image is readily available, in an open source setting, this
might present some difficulties, as especially vendor specific firmware might
not be publicly available, as they might contain sensitive information, such as
cryptographic keys or other intellectual property.

2. Extract Firmware Binary

The next step is to extract the firmware binary, which can be done using differ-
ent tools, such as binwalk [93] or OFRAK [94].

3. Emulation Environment Setup

With the extracted firmware, the emulation environment can be configured
depending on the firmware’s specifics, for example using Unicorn or QEMU,
as the firmware binary is usually not able to run on the host system, as it is
not compatible with the host’s kernel. This step is especially important, as it
determines the possible fuzzing approaches, as well as the possible fuzzing
tools, as not all fuzzing tools support all architectures.

Hardware based Approach If the decision falls on a hardware based approach,
different steps have to be taken.

1. Interface Identification

Available interfaces for data flow have to be determined, so a fuzzing approach
can be chosen. Usually this is done by analyzing the target’s architecture, as
well as the used peripherals, to determine possible interfaces, such as UART,
SPI, I2C, JTAG or similar interfaces18.

2. Interface Configuration

After the interfaces have been identified, the next step is to configure them, so
they can be used to communicate with the device. This might include the usage
of a hardware debugger to connect to the device, as well as tools to enable
communication over debugging interfaces.

18cf. [95] for a small overview of such interfaces

34 2 Related work and Fundamentals

3. Environment Setup

Possibly the fuzzing process is done on a different host machine [70], which uti-
lizes those interfaces to send data to the device and receive information about
the PUT’s runtime behavior, such as crashes, power consumption or similar
metrics. This might present a problem, as often there is no trivial way to in-
strument the PUT, thus making it difficult to observe the PUT’s runtime be-
havior, which is necessary to guide the fuzzing process. Such difficulties can
be mitigated by using a hardware-in-the-loop approach, only sending some
information to peripherals to model the correct real world behavior during so-
phisticated hybrid emulation as described in 2.3.4.

After the desired path has been chosen, the fuzzing process can be started according
to the following steps, continuing the step numbers of either approach.

4. Seed Corpus Creation

The initial inputs to the fuzzing process are called the Seed Corpus. This corpus
has to be created one way or the other, which presents the next decision path
to take.

a) Depending on the specifics, it might be necessary to create a sophisticated
seed corpus by hand, to conform to a specific input specification, which
especially holds true for model-based fuzzing approaches or when the
fuzzer should be directed to specific code areas [21, 20].

b) Automatic seed generation can also be utilized, either by simply monitor-
ing the program during normal behavior or by using a sophisticated ap-
proach [34, 96, 97], even as sophisticated as machine learning algorithms,
which will be discussed in 2.5.

c) Many researchers came to the conclusion, that a random seed corpus is
sufficient to start general purpose fuzzing, as the fuzzer will mutate the
inputs anyway, thus creating a seed corpus by hand is not necessary [90].
This is especially true for black-box fuzzing, as the fuzzer does not have
any knowledge about the PUT’s internal structure, thus it is not possible
to create sophisticated inputs conforming to a specific input specification,
but also for more sophisticated grey-box fuzzers, as the overhead of cre-
ating inputs is often not needed.

5. Fuzzing Loop After all these steps have been completed, the fuzzing loop can
be started. This loop consists of the following steps:

a) The fuzzer selects an input from the seed corpus, which is then mutated
by some kind of Input Generator according to the fuzzer’s mutation strat-
egy.

b) The mutated input is then sent to the PUT using a delivery module, which

2.5 Previous Research on Machine Learning Applications in Fuzzing 35

depends on the approach chosen, either being a harness utilizing the em-
ulator or a module implementing the identified hardware interfaces.

c) The PUT is then monitored for crashes or other anomalies, which again
varies according to the selected approach. If a crash is detected, the fuzzer
will save the input, as well as the crash information, especially the state
of the device.

d) During each run the fuzzer feeds back information to the input gener-
ator, this can include code coverage information, crash information or
other metrics, which can then be used to guide and improve the fuzzing
process. The improvement in this case depends on the used fuzzer, but
for most projects, this includes the adaption of the input being mutated
according to increased code coverage, meaning that an input which in-
creased code coverage will be more likely to be mutated again, as it is
deemed to be more promising [30, 82].

This loop is then repeated until the fuzzer is stopped, or the PUT is deemed to be
bug-free, which it of course never completely is. After the fuzzing process, those
saved inputs can be used to analyze the device and reproduce the errors, so it can be
determined whether this bug is unique, as well as its severity according to possible
impacts or exploitable vulnerabilities. Using this information, a bug report can be
created, which in turn can then be sent to the developers, who can then use it to fix
the bug. Another optional step would be a possible static analysis of the system state
during each fuzzing loop, if the amount of instrumentation allows it. This creates the
possibility to feed back more information about the impact of a specific input, which
can then be used to guide the fuzzing process.

2.5. Previous Research on Machine Learning
Applications in Fuzzing

This section will discuss previous approaches to the application of machine learn-
ing techniques to the fuzzing process, focusing on the input generation phase. This
section will also answer Research Question 2 and Research Question 3.

The following subsections will be structured as follows: First, we will introduce the
concept of machine learning augmented fuzzing, followed by a discussion of the
different approaches, focusing in detail on especially relevant work, as well as a
discussion of the current state of the art in this field. After that we will highlight
some interesting approaches to the application of machine learning in embedded
fuzzing, which will conclude in the answering of Research Question 3.

36 2 Related work and Fundamentals

2.5.1. Machine Learning Applications to Input Generation in
Traditional Fuzzing (RQ2)

In the recent years, many different ideas and projects were published, applying ma-
chine learning to the different stages of the fuzzing process. To improve the input
generation phase of fuzzing, mainly two different ideas are adopted, the first one be-
ing the application of a machine learning model to generate inputs in each fuzzing
loop, the second one being the selection of an operation to perform on the input,
which is predicted by the model.

Initially, a common application was the introduction of genetic algorithms to the
process [110][111][112]. Such algorithms are created to adhere to the process of bi-
ological evolution, naturally sieving out “unfit” candidates to support better ones.
The fitness of a candidate, in the case of fuzzing, this would be an input string, is
determined by a fitness function, which is used to evaluate the candidate. Over the
time of the fuzzing process, the genetic algorithm is then able to select inputs, ini-
tially from the seed corpus, later from the corpus updated through random mutation
strategies, that possibly increase some kind of metric better than others. Such a met-
ric can technically be defined as any information, that is gainable during the testing
process, but historically, some kind of code coverage in combination with informa-
tion like the number of found crashes or the time an input runs in the system have
been used. A very sophisticated project, that is based on genetic algorithms and
still in use today, is AFL [29] and its successor AFL++ [31], which we already talked
about. While still being a kind of artificial intelligence, genetic algorithms are not re-
ally the thing that comes to mind, when you talk about machine learning, therefore
the focus of this section will be elsewhere.

As can be seen in table 2.1, many approaches used some kind of recurrent neural net-
work in their work, as they are perfectly suited for predicting sequences. In the col-
umn “Fitness Function”, some entries are surrounded by brackets, meaning that in
this case the corresponding metric is used as an evaluation metric or fitness function
used by other heuristics, not in a feedback loop to the machine learning model.

Rajpal et al. present Augmented-AFl [98], where they propose models based on
LSTMs, as well as seq2seq, that are able to predict good locations in input strings,
that should be mutated to increase code coverage. The models are trained in a su-
pervised fashion, using a dataset of input strings, that are labeled with the code
coverage they achieved in past fuzzing runs using AFL. During fuzzing, the model
then is used to predict whether an input is good or bad, using a veto technique to
discard of badly mutated inputs. The used models were a standard LSTM, a bidi-
rectional LSTM, as well as both, the initial seq2seq approach and the attention based
seq2seq approach.

Cheng et al. [97] presented another applications of RNNs in combination with
seq2seq, where they trained a RNN to predict program paths, which were then fed
to a seq2seq model that created inputs to trigger those paths. Another very popular
project utilizing RNNs in combination with seq2seq is Learn&Fuzz by Godefroid et
al. [96]. They trained a RNN model to generate syntactically correct inputs for a PDF

2.5 Previous Research on Machine Learning Applications in Fuzzing 37

reader, trained on a large corpus of valid PDF files. During the evaluation process,
they realized, that a problem with training an RNN based model on correct files pre-
sented. The model learned to always create perfect input strings, which is not useful
for fuzzing. Therefore they introduced a custom sampling strategy, to change the
created input strings, so that the fuzzing process could be improved. In a similar
fashion, Fan et al. [99] proposed a seq2seq model, that was trained on a large corpus
of network traffic, to learn an input grammar and generate input strings accordingly.
While they use code coverage as an evaluation metric, the model is solely trained on
correctly created input, the focus here is to create input, to create malformed strings,
a sampling method is used, that combines various template strings.

Paduraru et al. [100] also used seq2seq models to generate inputs, but in contrast
to the other approaches, they used a different technique to train the model. They
automated as much as possible, even receiving different input file types as an initial
training corpus, learning on each file type provided, thus reducing the work, the user
has to do and increasing supported types. Again a custom sampling method is em-
ployed to chose what characters are created by the model and which are randomly
added. Similar approaches are used by Cummins et al. [101] training a seq2seq
model to create correctly formatted input for fuzzing compilers. Sablotny et al. [102]
and Nasrabadi et al. [103] again use similar approaches based on LSTMs, trained to
generate input data, which is then altered during the fuzzing process, Nasrabadi et
al. employed a custom algorithm, that queried the trained model for an input string
and then changed parts of the string with characters, that hav a low probability as-
signed by the model.

A different approach to augment the fuzzing process through machine learning was
presented by She et al. [104] and Chen et al. [105]. They used machine learning to
model the programs behavior, which was then used to predict path constraints de-
pendent on a given input. She et al. proposed NEUZZ [104], which models the
programs behavior as a smooth continuous function, that is calculated using a Neu-
ral Network and then used to predict branching behavior presented with a given
input. Angora, proposed by Chen et al. [105], calculates a discrete function, that rep-
resents the program’s path up until a specific branching constraint, using gradient
descent to find specific inputs that solve the calculated function. Both approaches
are then used to guide a fuzzer to specific code areas, both being successful during
evaluation.

In contrast to those generation-based applications of machine learning augmenta-
tion, that often are not able to adapt the created inputs during the fuzzing runtime,
thus not employing the feedback loop, that is so important for efficient fuzzing, some
proposals exist, that use reinforcement learning based fuzzing augmentation.

Becker et al. [106] introduced reinforcement learning to fuzzing by employing the
SARSA algorithm [113], a modified RL algorithm that uses the same policy for acting
and updating the Q-Values, to mutate network packets for fuzzing the IPv6 protocol.
States are defined as the current network packet and its response, actions are defined
as the possible mutations of the packet and the reward is defined as a combination
of the number of functions called, the number of error invocations and the delay or
corruption of the program response. Böttinger et al. [60] leverage deep Q-learning to

38 2 Related work and Fundamentals

improve the fuzzing process. They defined states as the current input, actions con-
sist of rewrite rules to apply to this input and the reward was calculated based on
a combination of code coverage and execution time. Both works experimented es-
pecially with different reward functions and came to the conclusion, that the correct
definition of this function is a crucial step to a successful model, as small changes in
the reward calculations had big impacts on the fuzzing process.

Drozd et al. [107] propose a fuzzing framework called FuzzerGym, which integrates
reinforcement learning based on OpenAi Gym19 with libFuzzer [86] to create a so-
phisticated fuzzing environment based on Deep-Double-Q-Learning. The state in
this case is defined as the program state reported by the llvm engine, actions are
based on libFuzzers mutator actions, the reward is defined as the code coverage
achieved by the action. This paper will be discussed in detail below. Another study,
that applied reinforcement learning to fuzzing was conducted by Liu et al. [108],
who used a Deep Q-Learning based approach to guide the fuzzing of compilers. In
their work, they define the states as all possible substrings of the current input to
the program. Actions are then all mutations, that can be applied to those substrings,
represented as probabilistic values for each mutation, while the reward is calculated
from the unique basic blocks covered by the mutated input.

Paduraru et al. [109] present a framework for reinforcement learning based fuzzing,
called RiverFuzzRL, which is able to fuzz binaries using reinforcement learning.
They designed RiverFuzzRL in a modular manner, being able to quickly adapt
state, action and reward definition, trying to present an open source tool, that can
be quickly adapted to the needs of each user, evaluation their idea by using TF-
Agents 20 implementations as well as their own implementations of different RL
algorithms. This paper will be discussed in detail below.

This summary finally answers Research Question 2, as it shows, that many different
approaches to the application of machine learning to the input generation phase of
the fuzzing process exist, with many different ideas and concepts being used. The
most popular approach seems to be the application of recurrent neural networks,
especially LSTMs, being trained before the fuzzing loop to aid with the automatic
generation of test cases, while newer research experiments with the application of
reinforcement learning to the fuzzing process, especially the application of deep Q-
Learning. Those approaches seem promising to also improve fuzzing of embedded
devices, as the process can be described in a similar manner when using emulation
based fuzzing, which enables for rich instrumentation of the target system, thus cre-
ating a good environment for the agent to act on. Following, we will highlight some
interesting approaches to the application of machine learning to the fuzzing process
of traditional fuzzing in depth, as well as embedded fuzzing, to aid in the final an-
swering of Research Question 3.

19https://openai.com/research/openai-gym-beta
20https://www.tensorflow.org/agents

https://openai.com/research/openai-gym-beta

2.5 Previous Research on Machine Learning Applications in Fuzzing 39

2.5.2. Popular augmented traditional Fuzzers

As described in the previous section, many different approaches to the application
of machine learning to the fuzzing process exist, which is why we will only highlight
a few of the projects, which we deemed most relevant to the topic of this thesis. This
includes projects, which built the basis for following research but especially research
that highlighted promising applications of reinforcement learning to the domain of
fuzzing.

Learn&Fuzz: Machine Learning for Input Fuzzing

Learn&Fuzz by Godefroid et al. [96], as already mentioned above, is an innovative
research paper describing a promising application of machine learning to desktop
fuzzing, in particular to fuzzing of PDF readers. The central premise of the paper is
the application of deep learning techniques to generate models capable of producing
correctly formatted inputs to use during fuzzing.

The authors employ a LSTM model, to learn the structure and patterns of valid input
files. The training data for this model consists of a dataset of correctly formatted
inputs, in the case of the paper PDF files. By training on this data and learning
from those examples, the LSTM model is then able to create correctly formatted PDF
file components. A key innovation lies in the observation, that the trained model
is not perfectly suitable to generate test-cases for fuzzing, as it tends to produce
perfect inputs, that don’t include unexpected or malformed data. To overcome this
problem, Godefroid et al. introduce a custom sampling algorithm, that gets a newly
created character from the trained model, as well as the probability of that character
being the correct one. If this probability is high enough, they then instead choose
to sample another character instead, that has a much lower prediction probability to
be the right one, therefore creating unusual or even wrong PDF files. By doing that,
unexpected tokens are only introduced in a controlled manner, which is crucial for
an sophisticated fuzzing process.

To evaluate their approach, an evaluation metric consisting of code coverage, ac-
ceptance rate of the created inputs, as well as the number of bugs found, is intro-
duced. The authors then compare their augmented inputs to the coverage achieved
by the non-augmented inputs. During evaluation, they highlight, that the number
of epochs used to train the model is crucial, as too few epochs result in a model, that
is not able to achieve a very high pass rate, while more than 40 epochs don’t result
in higher code coverage [96].

Overall, Godefroid et al. introduce a promising approach to the application of ma-
chine learning to the fuzzing process, while also highlighting issues, that presented
on the way, namely the problem of creating perfect inputs, that don’t include mal-
formed data.

40 2 Related work and Fundamentals

Deep Reinforcement Fuzzing

Deep Reinforcement Fuzzing [60] by Böttinger et. al., is another promising paper
that explores the application of deep reinforcement learning (DRL) in the realm of
desktop fuzzing. The research introduces a concept where DRL techniques are em-
ployed to guide and optimize the fuzzing process as an incremental type of model,
by utilizing a DRL agent to intelligently select and mutate inputs in a way that max-
imizes code coverage and the likelihood of discovering software vulnerabilities.

The core methodology involves training a DRL agent using a variant of the Q-
learning algorithm [40] introduced above. The agent interacts with a software en-
vironment (the program being fuzzed) and learns to select actions (input mutations)
based on the observed state of the environment. This state is defined as possible
substrings of the current input to the program being tested, while actions represent
probabilistic rewrite rules, mapped to those substrings [60]. The reward mechanism
is crucial in this setup, as it guides the learning process. The researchers experi-
mented with different reward mechanisms, namely code coverage, execution time,
and a combination of both. They found that the combination of both metrics resulted
in the best performance, as it allowed the agent to learn to balance the trade-off be-
tween code coverage and execution time.

Evaluation was conducted by applying the algorithm to PDF parsers. During eval-
uation they experimented with different kinds of rewards, while finally concluding
that the formulation of the reward function is one of the most important steps to
achieve good results. They also found, that the agent was able to learn to balance
the trade-off between code coverage and execution time, which is a crucial step to a
successful fuzzing process.

By leveraging the capabilities of DRL, fuzz testing can be improved drastically, this
baseline could even be used for embedded fuzzing, which will be a basis for chapter
3.

FuzzerGym

Proposed by Drozd et al., FuzzerGym [107] is a framework, that integrates rein-
forcement learning based on OpenAi Gym21 with libFuzzer [86] to create a fuzzing
environment based on Deep-Double-Q-Learning.

The core methodology of this work is the proposal of a sophisticated cross-language
framework, that enables efficient fuzzing augmented with reinforcement learning,
while at the same time still maintaining a very fast fuzzing rate. They observe, that
libFuzzer is able to sustain an execution speed of more than 100000 executions per
second [107], which they claim to not be achievable by just querying a reinforcement
learning model for newly generated inputs. To mitigate this time loss by querying
the model for each fuzzing loop, they propose an asynchronous approach, where
21https://openai.com/research/openai-gym-beta

https://openai.com/research/openai-gym-beta

2.5 Previous Research on Machine Learning Applications in Fuzzing 41

the model is updated gradually by periodic observations of the system state. To
moderate this time disparity, a LSTM layer is employed, that is used to learn time
shifted actions, which are updated in a looping manner. The agent is then based on a
Deep Double-Q-Network, which uses two Q-tables to prevent overestimation of the
Q-values, a common problem in Q-Learning.

The program state is modeled according to the feedback provided by the llvm en-
gine, which is then represented similarly to [98], saving the inputs on a bit-level
granularity in contrast to a byte-level one. The authors claim, that while testing both
methods, the bit-level granularity achieved better results. To accommodate to the
time divergence resulting from the asynchronous approach, actions are implemented
in a looping manner. The fuzzing engine executes one mutation action, which is one
of the mutations implemented in libFuzzer, until the next observation is made and
therefore the RL agent chooses a new mutation strategy to improve the reward. The
RL agent then periodically receives batches of input data provided by the fuzzing
engine and, based on that in correlation with the coverage feedback, selects a new
mutation strategy to improve the reward, which is then employed by the fuzzer un-
til the next decision is made by the agent. Finally the reward is calculated based on
the new coverage achieved by the last batch of inputs.

During the evaluation of the proposed architecture, the research team was able
to show the improved capabilities of this approach in comparison to the non-
augmented libFuzz engine.

RiverFuzzRL

As the first tool, that aims to provide some kind of open-source framework for rein-
forcement learning based fuzzing, Paduraru et al. present RiverFuzzRL [109]. It is
based on the River framework [114], extending it to integrate a modular approach
to develop reinforcement learning based fuzzing. River enables dynamic symbolic
execution, which is used to gather information about the program state, finally calcu-
lating the reward, that the agent receives for a taken action. The authors aim to give
potential users as much freedom as possible, highlighting possible configurations in
their paper. The state can be defined as freely as possible, to enable different applica-
tions, consisting of the last input used on the program, path information in form of
basic block sequences, with the possibility to also count the number of occurrences
for each basic block, as well as more specialized information like branching behav-
ior using dynamic symbolic execution, hashed basic block addresses and even the
possibility for a path embedding of basic block addresses, based on an LSTM [109].
In a similar manner, the actions are designed to be modular as well, while the au-
thors recommend mutation operations similar to [107], implementing the mutations
provided by libFuzzer [25] but also providing the possibility to implement custom
mutations. Finally, the agents acts on the environment by selecting one of the im-
plemented mutation operations, which is then applied to the current input and send
to the target. The agent then observes the executed program under the new input,
gathering taint analysis information as well as the information through symbolic ex-
ecution, which is then fed back to built the next state, as well as used to calculate

42 2 Related work and Fundamentals

the reward. Initially, the authors provide two possible ideas to calculate the reward,
the first one only highlighting code coverage, being the newly gained code cover-
age for the last action, while the second one captures the length of execution paths,
increasing the reward for longer paths by calculating the execution time.

The framework is evaluated by showcasing the ease of adaption, reproducing re-
sults of similar works, namely [60][107] and [115], focusing on the claimed speed-
up their approach brings in comparison to the evaluations of the mentioned works.
RiverFuzzRL was able to achieve the maximum lines of code covered 29% faster in
comparison to FuzzerGym [107], while not implementing all mutation operations
proposed by the latter [109]. Additionally they tested their default implementation
and evaluated it according to unique lines of code covered, especially highlighting
their policy-gradient based training approach, that is able to find longer paths faster,
in contrast to a deep-Q-network based approach.

In conclusion, Paduraru et al. presented a promising approach to open-sourcing
reinforcement learning based fuzzing, while also highlighting the importance of the
reward function, as well as the state and action definition, which is crucial to the
success of the fuzzing process.

2.5.3. Machine Learning Applications to Embedded Fuzzing

Although this is still a very new field, where not much research has been published,
a few projects exist, that try to apply ML techniques to different stages during em-
bedded fuzzing. Promising approaches in this field will be highlighted in the follow-
ing subsections, intending to give an overview of existing ideas in this area to help
answer Research Question 3. Unfortunately, as already mentioned above, the corre-
sponding code to the papers is often not available, which makes it hard to reproduce
the results, as well as to adapt the ideas to other projects by analyzing the imple-
mentation specifics. Additionally it is important to note, that RiverFuzzRL [109] is
technically also able to receive AArch32/ARM32 binaries as an input22, enabling it
to also fuzz applications compiled for embedded devices. But as this has not been
tested in the evaluation and the tool has already been discussed above, it will not be
discussed in this section.

Fw-Fuzz

Gao et al. introduce a cross-platform framework [70], that introduces a genetic al-
gorithm to guide the fuzzing of network applications running on the firmware of
embedded devices, while proposing a novel instrumentation mechanism to observe
system state and detect faults. A hardware-in-the-loop approach is presented, where
test cases are produced on a host system, while the generated inputs are then sent

22https://github.com/unibuc-cs/river#how-to-use-the-concolic-sage-like-tool

https://github.com/unibuc-cs/river#how-to-use-the-concolic-sage-like-tool

2.5 Previous Research on Machine Learning Applications in Fuzzing 43

to the actual device. GDB-Server23 is utilized on the device to instrument the tar-
get program. Breakpoints are set to code locations, deemed interesting, which are
then triggered by the execution of the target program and used to analyze the state
of the program. This instrumentation then provides code coverage feedback to the
genetic algorithm model, that creates the test cases according to a fitness function,
consisting of the code coverage, the number of times a path is executed as well as the
time it took to find a path. According to this fitness function, the genetic algorithm
then selects the best test cases to be mutated, which are then sent to the device to be
executed.

The new approach is evaluated by fuzzing different architectures and comparing the
results to other fuzzing approaches, namely Boofuzz [116] and Peach [117], as well
as evaluation based on found vulnerabilities and performance overhead. Fw-fuzz
was able to gain an edge coverage improvement of 33.7% over Boofuzz and 38.4%
over Peach [70], while also finding five new zero-day vulnerabilities in the tested
applications. To measure the performance overhead of the proposed framework,
CPU and memory loads were compared between the fuzzing process and the normal
execution of the target program, resulting in an average 5% increase in memory load
as well no significant increase in CPU load [70], making the framework a promising
approach for embedded fuzzing.

CG-Fuzzer

Yu et al. present CG-Fuzzer [118], introducing a Generative Adversarial Network
(GAN) [119] to create input strings for fuzzing industrial IoT protocols.

On a high level, GANs consist of two neural networks, being called a Generator and
a Discriminator. The Generator is trained to generate data from random inputs, that
seems plausible but is not real, while using the feedback of the Discriminator. The
latter is trained on real data using the Generator’s output as negative samples during
training. Over time, the Generator produces data that is increasingly plausible, so
that the Discriminator can’t differentiate between real data and generated data.

In the case of CG-Fuzzer, a SeqGAN [120] is used to generate input data for the
fuzzing engine. It uses a LSTM model to generate data, while a Convolutional Neu-
ral Network (CNN) [121] is used as a Discriminator. The Generator is trained using
a reward system, that employs code coverage of the target system on the generated
input data, using a policy gradient similar to reinforcement learning. This novel
approach uses both the reward, as well as the Discriminator to train the LSTM to
create input data, that is then additionally randomly mutated, to be able to achieve
high code coverage. Yu et al. evaluated the algorithm on different metrics, namely
the rate of test case recognition by the target, the number of exceptions triggered
and the diversity of the generated inputs. They show that CG-Fuzzer is able to trig-
ger more exceptions than other tools, namely GANFuzz [122], SeqFuzzer [123] and
Peach [117], while at the same time being faster than Peach and having a compa-

23https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_130.html

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_130.html

44 2 Related work and Fundamentals

rable execution time to the other tools. Additionally, they show that CG-Fuzzer is
able to generate more diverse inputs than the other tools, diversity is defined as the
degree of mutation between test cases. Although the diversity is very high, the test
case recognition rate and code coverage remains higher than those of the other tools,
concluding in a very promising result for CG-Fuzzer.

2.5.4. How will the ML approach understand that it is on the right
path to finding vulnerabilities in embedded systems
(RQ3)?

The last subsections already indirectly answered this research question, but to fi-
nally answer it directly, we have to differentiate between two cases, namely the
application of an incremental model, like the reinforcement learning approaches
discussed above [106][60][107][108][109][118][124], and the second case being a
static model, that is used to automatically generate test cases conforming to
the input specifications of a target system, similar to the other discussed pa-
pers [98][97][96][99][100][101][102][103]. In the case of the incremental model, the
agent is able to learn from the feedback provided by the target system, which is usu-
ally code coverage, but can also be execution time or other metrics. This feedback is
then used to update the model, which is then able to adapt to changes in the target
system, efficiently guiding the fuzzing process. In the case of the static model, the
model is trained on a dataset of valid inputs, which is then used to generate new
inputs, that are then mutated according to some kind of meta-heuristics to create
malformed inputs. In the latter case, the model is not able to adapt to changes in
the target system, as it is not trained incrementally, all adaptions to the code cover-
age or other metrics are handled by other heuristics, whose necessity is reasoned for
nicely by Godefroid et al. [96], highlighting the conflict of interest between a perfect
model and the production of malformed fuzzing data. Therefore, the static model
is not able to understand, that it is on the right path to finding vulnerabilities, it is
simply used to generate a large corpus of correctly formed inputs, the modification
of such inputs and guidance during the process is handled elsewhere. Nevertheless,
such heuristic can also include probing the model for information, like conducted by
Godefroid et al. [96] whose sampling procedure involves swapping a character that
appears next with high probability with another one the model is confident about
not appearing, but usually a feedback loop to the model does not exist.

The approaches used by [98][97][104] and [105] stand somewhat in the middle of the
two ideas. While still employing a static model, said model is trained on pairs of
inputs and code coverage, enabling it to model the programs behavior and predict,
what certain inputs are able to reach or how to modify those inputs, to reach a certain
code area.

This shows the need for an incremental model, that can react to defined metrics, to
improve the selection or creation of inputs to send to the target. All revised literature
implies, that a feedback loop must contain some kind of code or path coverage, to
guide the fuzzing process, as this is the metric traditional fuzzing already needs to

2.5 Previous Research on Machine Learning Applications in Fuzzing 45

effectively test a target, as it is the goal of automated testing, to test as much code as
possible. Therefore, a sophisticated feedback loop must be employed, to guide the
fuzzing process, which in the case of [107] contains the current input in correlation
with gained code coverage, [109] proposes that more advanced observations should
be used, including the current input, path coverage, hashed basic block addresses
and even the possibility for a path embedding of basic block addresses, based on an
LSTM. Böttinger et al. [60] propose to also include a metric capturing execution time
in the reward function, also implied to be useful by [70] and [118]. The latter even
employ one of the most advanced feedback loops, using code coverage feedback as
well as a Discriminator to train the Generator creating inputs, although technically
not employing an incremental approach, as the Generator learns to create inputs
from scratch, which are randomly mutated.

In conclusion the answer to Research Question 3 is, that the ML approach will under-
stand that it is on the right path to finding vulnerabilities in embedded systems, by
using a sophisticated feedback loop, that captures as much information as possible
in a reward function, to guide the fuzzing process. The information available will be
the individual limitation, as advanced instrumentation must be possible to capture
the information, which is not always the case, especially in embedded systems. But
as the research shows, the application of machine learning to the fuzzing process is
a promising approach, improving the capabilities of automatic testing, especially in
embedded systems, as the process can be described in a similar manner as traditional
fuzzing when using emulation based techniques, which enable for rich instrumen-
tation of the target system, thus creating a good environment for the agent to act on.
Nevertheless, the literature also implies, that implementing the reward function is a
crucial step in the effectivity of the model, requiring experimentation and testing to
find the best possible solution.

46 2 Related work and Fundamentals

Project ML Algorithm Fitness Function

Augmented-
AFL [98]

RNN w/LSTM +
Seq2Seq Input - code coverage pairs

Cheng et al. [97] RNN w/ seq2seq path coverage - Seed Corpus

Learn&Fuzz [96] RNN w/ LSTM (code coverage, pass rate, bugs
found)

Fan et al. [99] Seq2Seq (code coverage, bugs found,
performance)

Paduraru et
al. [100] Seq2Seq (code coverage, execution time)

Cummins et
al. [101] RNN w/LSTM (compile time defects, runtime

defects, crash rate)

Sablotny et
al. [102] RNN w/LSTM (code coverage)

Nasrabadi et
al. [103] RNN w/LSTM (code coverage, bugs found)

NEUZZ [104] FF-NN Smoothing Input - code coverage pairs

Angora [105] Gradient descent path coverage + constraints

Becker et al. [106] RL/ SARSA
functions called + error in-
vocation + delay/corruption of
program response

Böttinger et
al. [60] RL/ Deep Q-Learning code coverage + execution time

FuzzerGym [107] RL/ Double-Q-
Learning code coverage

Liu et al. [108] RL/ Deep Q-Learning code coverage

RiverFuzzRL [109] RL code coverage + execution time
+ dynamic symbolic execution

Table 2.1.: Overview of different machine learning augmentations of input genera-
tion for fuzzing

47

3. Proposed Approach

Based on the literature review in the last sections, this section will now present our
proposed approach to augment embedded fuzzing with machine learning. First, we
will present the general approach and then explain the steps to take to implement it.
Unfortunately, given the time constraint of this thesis, it was not possible to imple-
ment the approach, as there were many challenges, which will also be highlighted
in this section. Nevertheless, we will present some implementation guidelines and
possible frameworks to use, based on the experiences gained and recommendations
found in the white and grey literature. This section as a whole will answer Research
Question 4

3.1. Fuzzing Augmentation

To highlight, how the observed techniques can be applied to embedded systems
fuzzing, we will first present a general approach to augment the embedded fuzzing
process, introduced in 2.4, by adapting the fuzzing loop. Consequently we will
present a more specific approach based on a chosen technique we deemed promising
for embedded systems fuzzing.

3.1.1. General Approach

Figure 3.1 shows a possible augmentation of the original fuzzing loop that was in-
troduced in 2.4, only focusing on the changes to the “Traditional Fuzzing Loop”
illustrated in Figure 2.12. Like already highlighted in the previous chapter, the use
of an incremental model to guide the input generation process during fuzzing is a
promising approach. To enable the integration of such a model, the most impor-
tant step is to know, which information the chosen fuzzer to be augmented is able
to provide during runtime. As already highlighted in 2.5, the feedback loop is an
essential component of a successful machine learning model for input generation,
therefore enough information to feed back must be available. If the chosen fuzzer is
not able to provide such information, or another reason requires it, it might be best
to use a static model, that is trained on a dataset that consists of pairs of input and
corresponding code coverage, gathered during earlier fuzzing runs. Such a static
model would then be able to provide seed inputs to the fuzzing loop, that can then
be mutated using another kind of heuristic during each fuzzing loop. However, this
approach would not be able to actively learn from the environment and therefore

48 3 Proposed Approach

would not be able to improve over time. Because of that, we will focus on the in-
tegration of an incremental model, that is able to learn from the environment and
adapt to changes.

The augmented fuzzing process then works as described in the following.

1. Seed Corpus

Starting with a seed corpus, that can either be some random data or a more
sophisticated set of inputs, that are known to trigger certain behavior in the
target. Such a seed corpus might even be created by another machine learning
(ML) model, depending on the use case.

2. Incremental ML Model

The fuzzer then starts the fuzzing loop, feeding the seed inputs to the incre-
mental ML model, which in turn applies mutation strategies on those inputs,
based on the experience it has accumulated.

3. System under Test

Those mutated inputs are then fed to the system under test (SUT) over a spe-
cific delivery module. This can be an execution of said inputs using an emula-
tor, or a transfer of the inputs to the target device, if a hardware based approach
is chosen, but the specifics of this delivery module depend on the use case as
well as the chosen fuzzer and method selected.

4. Observation

The Observation component monitors the execution of the input on the SUT,
gathering information about the code coverage, crashes and other information,
like symbolic execution or static analysis of an extracted system state, if such
information can be gathered. This information is then collected by a parsing
component, which is responsible for combining the relevant information in a
manner that is understandable by the machine learning model. This might in-
clude hashing of basic blocks, keeping count of visited paths, execution time,
or other approaches of data retention and representation, that enables the ML
model to understand the system state and from which the reward can be cal-
culated, which the ML model tries to improve.

5. Loop

The ML model then uses this information to update its internal state and to
choose the next input as well as the next mutation strategy to apply. The pro-
cess then jumps to step 2 again and is then continued repeatedly until a certain
stopping criterion is met.

6. Stopping Criterion

3.1 Fuzzing Augmentation 49

The stopping criterion can be chosen based on the use case and the available
resources, like a certain amount of time has passed, a certain amount of inputs
has been generated or a certain amount of code coverage has been reached.
When the loop is stopped, the generated inputs are then stored in the corpus
and the process can be repeated, starting with the ML model, which is now
able to use the new inputs as a starting corpus to improve its internal state and
therefore the input generation process.

This represents the basic workflow of an augmented fuzzing process, but as already
mentioned, the specifics of each step depend on the use case and the chosen fuzzer.
For example, the ML model might be able to learn from the execution time of the
SUT, similarly to [96], which might then lead to the preference of inputs or input
mutations, that lead to fast crashes of the SUT, instead of inputs that lead to timeouts
or that are able to trigger deep code sections. Therefore extensive testing is necessary,
as well as a good idea of the use case, to be able to choose the right fuzzer and the
right augmentation method.

Figure 3.1.: Proposed augmented process of Embedded Fuzzing, only highlighting
the loop from 2.12

3.1.2. Example Application of the Proposed Process

The specifics of the augmentation process depend on the use case and the chosen
fuzzer, therefore we will present a more specific approach on how to augment the
input generation in embedded fuzzing, based on the general approach presented
above as a result of our literature research.

Fuzzer Selection

As described in Chapter 2.3.5, many different projects for embedded system fuzzing
exist. However, many of them are not actively maintained anymore or are not open

50 3 Proposed Approach

source. Therefore, we decided to use Fuzzware [90] as a basis for our prototype. Fuz-
zware is a sophisticated extension of AFL and AFL++, that is specialized on fuzzing
embedded firmware. It is written in C++ and Python and has a modular architecture,
which, makes it accessible for extension with machine learning algorithms written
in python. The main reason for choosing Fuzzware is that it is still actively main-
tained and presents very promising results. Furthermore, it is based on AFL++,
which is one of the most popular fuzzers for general fuzzing and through its capa-
bility to accept custom mutators1, AFL++ is the most suitable basis for augmentation
with machine learning. The capability of fuzzing monolithic firmware images, with
an added possibility to automatically generate configurations for new firmware im-
ages, makes it a suitable candidate for our use case, although it is important to note,
that currently the automatic generation of firmware configurations is still in a testing
phase and automatically generated configurations have to be manually verified be-
fore starting longer testing runs 2. Furthermore, Fuzzware has been evaluated exten-
sively on many different test targets, as well as Zephyr-OS3 and Contiki-NG4, which
are popular frameworks to build embedded firmware. For each of those targets, the
authors of Fuzzware conducted two 24 hour fuzzing runs for their evaluation, en-
abling an already existing baseline for a potential evaluation of a prototype in the
future.

Target Selection

Corresponding to the selection of the fuzzer, the selection of the target in our case
is also based on the work of the authors of Fuzzware, but also makes sense when
viewing market statistics. As the ARM-Cortex-M architecture is a very popular ar-
chitecture and is projected to remain important in the future [67], the targets are
chosen to be ARM-Cortex-M based. Furthermore, as mentioned above, Fuzzware
has already been evaluated on a lot of targets, providing configurations as well as
evaluation results, those can be reused as evaluation targets.

Machine Learning Model Selection

To combine the research done in the previous sections, we will focus on the use of
reinforcement learning to augment the input generation of our fuzzing process. As
already discussed in Chapter 2.2.1 and 2.5, reinforcement learning is a suitable ap-
proach for our problem, since it is able to learn from the environment as well as
the actions taken and doesn’t necessarily rely on a huge dataset to be trained be-
forehand. Furthermore, it is able to learn from delayed rewards, which might be
necessary in the case in fuzzing, since the reward is only given after the execution

1https://aflplus.plus/docs/custom_mutators/
2https://github.com/fuzzware-fuzzer/fuzzware/blob/main/docs/target_
configuration.md

3https://zephyrproject.org/
4https://github.com/contiki-ng/contiki-ng

https://aflplus.plus/docs/custom_mutators/
https://github.com/fuzzware-fuzzer/fuzzware/blob/main/docs/target_configuration.md
https://github.com/fuzzware-fuzzer/fuzzware/blob/main/docs/target_configuration.md
https://zephyrproject.org/
https://github.com/contiki-ng/contiki-ng

3.1 Fuzzing Augmentation 51

of the test case and if an approach similar to FuzzerGym [107] is chosen, those re-
wards will be delayed. As shown in 2.5, a few works already applied Reinforcement
Learning to fuzzing [60][106][109], but only [118] focused specifically on embedded
systems, although RiverFuzzRL [109] also works with ARM binaries but has not been
tested on them. The findings of those works will build the basis for our approach.
Similar to [60] we propose a Deep-Q-Learning method, since it has already been
proven to achieve good results in traditional fuzzing, but this can also be adapted to
a model-based method for further testing, like Paduraru et al. [109] and Yu et al. [118]
propose. Adhering to the approaches of [109] the problem then consists of an envi-
ronment encapsulating the actions and observations, on which the agent acts. How
this environment gets designed, will be discussed in the next paragraph.

Proposed Augmentation

To define the environment on which our agent acts, we adhere to findings of similar
work, mainly [109][107][118].

1. Seed Corpus

Fuzzwares fuzzing loop starts with a seed corpus of three inputs, each one
being 512 bytes long. Those three inputs are set to be all zero bits, all one bits
and the third one being a concatenation of 32-bit values, each shifting 1 bit. As
found in [107] and [98], viewing input on a bit-granular level seems to perform
better, therefore we define the input as an “array-of-bits” [107] in the following
manner:

Input : [0, 255]512 7! [0, 1]4096 (3.1)

2. Incremental ML Model

As an incremental ML model, we propose a reinforcement learning agent, that
acts on the environment by taking actions, that modify the input and then ex-
ecute it on the system under test. The actions an agent can take then represent
operations similar to those in [107] and therefore [25], including adding bits or
bytes at given locations, changing bits or bytes, erasing them or even adding
words from a token dictionary, as well as a byte shuffle operation. All pro-
posed mutation strategies can be found in 3.1 and can of course be adapted or
extended during evaluation of a future implementation.

3. System under Test

The system under test (SUT) is the firmware image, that is loaded into the
Fuzzware emulator, which is then executed using the input generated by the
agent. During runtime, Fuzzware is able to provide the following information

52 3 Proposed Approach

regarding the execution of an input, which can be used as observations for the
agent:

• The last input that was executed

• New basic blocks that were covered during the execution of the last input

• Trace of the last input as a list of triggered basic block addresses through
dynamic symbolic execution using angr [125][126]

• The number of crashes induced in the firmware

• The time it took to execute the last input

4. Observation

Using that information, we propose an observation space, that captures the
last input, new basic block coverage as the number of newly covered basic
blocks, a list containing the path the last input took as basic block addresses
and the number of occurrences for each basic block, as well as the number of
new crashes found for each input. This information is then used to represent
the state, the system under test is in after the execution of the last input.
The reward is then calculated as the number of newly covered basic blocks, as
well as the number of new crashes found, which is then used to update the
agents internal state and observation space.

5. Loop

The agent acts on the environment by invoking a step() function, which in-
cludes the action on the current input, as well as executing the input using the
Fuzzware emulator, waiting for the execution to finish and then gathering the
information described above.
The agent then uses this information to update its internal state and to choose
the next input as well as the next mutation strategy to apply. Inputs, that in-
crease code coverage, will be added to the corpus of promising inputs for fur-
ther mutation.

As Q-Learning was able to achieve good results in the past, it should also be
used for this approach, therefore the agent updates the Q-values after each
step. Nevertheless, by defining the environment in such a way, this approach
should be possible to use with other RL algorithms as well, which should also
be part of a testing process after implementation.

6. Stopping Criterion

The described process is repeated until a certain stopping criterion is met, like
a certain amount of time has passed, a certain amount of inputs have been gen-
erated or a certain amount of code coverage has been reached. The stopping

3.1 Fuzzing Augmentation 53

criterion can be chosen based on the use case and the available resources, but
the passed time is the main criterion used by Fuzzware.

The described specific approach is visualized in Figure 3.2.

Figure 3.2.: Proposed specific augmented process of Embedded Fuzzing, only high-
lighting the loop from 2.12

As analyzed in [107], this synchronous approach of course slows down the fuzzing
process, since the agent has to wait for each execution to finish. Therefore this ap-
proach builds the baseline for further testing approaches, including a sophisticated
introduction of delayed rewards in combination with a LSTM-based model, as pro-
posed in [107]. This seems to also be applicable to Fuzzware, but is a lot more com-
plex to implement, therefore initial testing should be done by applying the proposal
above. To also highlight possible applications of [107], we propose to use the same
approach to augment the input generation process, but instead of using a LSTM-
based model, we propose to try a Transformer-based model [52], as Transformers

54 3 Proposed Approach

Mutator Description

ChangeBit Changes a single bit at a random or given po-
sition

ChangeByte Changes a single byte at a random or given
position

AddBit Adds a single bit at a random or given posi-
tion

AddByte Adds a single byte at a random or given po-
sition

EraseBit Erases a single bit at a random or given posi-
tion

EraseByte Erases a single byte at a random or given po-
sition

AddToken Adds a random token from a dictionary at a
random or given position

ShuffleBytes Shuffles the bytes of the input

AddRepeatedBytes Adds a random number of repeated bytes at
a random or given position

CrossOver Replaces a part of an input with parts from
another one, that already performed well

Table 3.1.: Overview of different proposed mutation strategies

perform astonishingly well for problems in the domain of natural language process-
ing [127][128][129]. In this case, the agent only receives the system state periodically,
choosing a new mutation strategy for the fuzzer to apply until the next observa-
tion is made. The agent then updates the weights of a Transformer-based neural
network, that gets the last fuzzing input as an input and outputs a new mutation
strategy, that will likely increase the reward. The system observation state is fed to a
Double-Q-Learning-based RL agent, that adjusts the weights of the neural network
to maximize the expected reward.

This section presented a general approach to augment the fuzzing process, as well
as a more specific approach, based on the findings of our literature review, therefore
answering Research Question 4, exploring how the input generation phase of the
embedded fuzzing process can be improved using machine learning. The next sec-
tion will present some implementation guidelines and possible frameworks to use,
based on the experiences gained and recommendations found in the white and grey
literature.

3.2 Implementation Guidelines 55

3.2. Implementation Guidelines

As already mentioned, during this work, it was not possible to create a prototype of
the proposed approach, as the implementation presented many challenges. Never-
theless, we will present some implementation guidelines and possible frameworks
to use, based on the experiences gained while trying to implement said prototype, as
well as recommendations found in the white and grey literature. Additionally, chal-
lenges that arose during implementation, which are the main reason the prototype
could not be implemented in this work, will be highlighted in the next section.

3.2.1. Selection of Tools

During our research, we found many different tools, used for implementation of
similar works. In this section, we will present possible tools and frameworks to
use, based on our research and the recommendations found in the white and grey
literature.

Framework Selection

For reinforcement learning, many different sophisticated and widely adapted
python frameworks exist [130][131][132][133], but because we need the possibility to
easily adapt a custom environment for the agent to act on, OpenAi Gym5 or its suc-
cessor Gymnasium6, is a suitable framework to use. Gymnasium is a toolkit used for
the development and comparison of reinforcement learning algorithms. It provides
a simple interface to a variety of environments, which are already implemented and
can be used out of the box but most importantly it enables the fast creation of custom
environments for an agent to act on, which is necessary for our use case.

The environment can be created and customized in a modular manner, by defining
the observation space, the action space and the step function, as well as other utility
functions, like resetting the environment. The step function is called by the agent to
act on the environment, finally returning the necessary information to calculate the
reward and update the internal state. The observation space can be defined as a tuple
of spaces, which can be a discrete space, a box space or a multi binary space, similar
to the action space7. Additionally some wrappers to normalize reward functions ex-
ist, which can also be utilized. This enables the fast creation of custom environments,
that can be used by the agent to act on.

For our approach, the observation space can be described as a dictionary space8, con-
sisting of Box or Tuple spaces, that represent the necessary information mentioned

5https://openai.com/research/openai-gym-beta
6https://gymnasium.farama.org/index.html
7https://gymnasium.farama.org/api/spaces/fundamental/
8https://gymnasium.farama.org/api/spaces/composite/#dict

https://openai.com/research/openai-gym-beta
https://gymnasium.farama.org/index.html
https://gymnasium.farama.org/api/spaces/fundamental/
https://gymnasium.farama.org/api/spaces/composite/#dict

56 3 Proposed Approach

above. Box spaces are defined as n-dimensional continuous spaces in Rn, so they
are useful for representing the path information in form of basic block hashes, as
well as mapping basic block addresses to the number of occurrences. The action
space can be defined as a discrete space, consisting of the index of different mutation
strategies, or even a Tuple space, that consists of a discrete space for the index of the
mutation strategy and a Box space for the position of the mutation. The step function
finally executes the chosen action on the input and runs the Fuzzware emulator with
the given input, utilizing the interface module seen in 3.2 to update the observation
space and return it together with the reward. The initial reward for testing should be
calculated by the increase in code coverage, the last input gained, but further testing
should be done by also incorporating the number of new crashes found, as well as
the execution time of the input.

Input representation

As already mentioned above, the input should be represented as an “array-of-
bits” [107], which can be done using the BitVector library9. This representation can
then be used to apply the mutation strategies, as the API provides methods to use
bitwise operations on the data. If this proves to be slow or unsuitable during this
approach, the input can also be represented as a plain list, mapping bit indices to
the respective value, or finally in byte representation, either as a bytearray or as a
dictionary, mapping byte indices to the respective value. Generally it seems to be
useful, to define the data structure as a class, providing methods to apply the muta-
tion strategies, as well as methods to convert the data to different representations, if
necessary. This enables the fast creation of different representations, that can be used
for evaluation.
To set inputs in context to one another, a tree like structure might be useful, link-
ing mutated inputs to the “parent” they were mutated from, as well as the mutation
strategy that was applied. This enables the fast creation of a corpus of promising
inputs, that can be used for further mutation, as well as the possibility to trace back
the mutation strategies that were applied to a certain input. This might also be use-
ful for evaluation purposes, to analyze the mutation strategies that were applied to
inputs that lead to a high reward.

Action Implementation

Depending on the chosen input representation, actions should be implemented ac-
cordingly. A possible solution might accept a list of parameters as an argument,
containing the input to change, the index, where the mutation should be applied as
well as additional information, like the value to add or the value to change to. A pos-
sible simple implementation of such action functions can be seen in Listing 1. Those
examples receive an array as an input, that maps bit indices to the respective values,
as well as the index of the bit to change for the change_bit() function and the

9https://pypi.org/project/BitVector/

https://pypi.org/project/BitVector/

3.2 Implementation Guidelines 57

from numpy import random

class Actions:
@staticmethod
def bit_change(input, index=None):

if index is None:
index = random.randint(0, len(input) - 1)

input[index] = 1 - input[index]
return input

@staticmethod
def byte_change(input, index=None, value=None):

if index is None:
index = random.randint(0, len(input) - 1)

if value is None:
value = random.randint(0, 255)

bin_value = bin(value)[2:].zfill(8)
for i in range(8):

try:
input[index + i] = int(bin_value[i])

except IndexError:
pass

return input

Listing 1: Simple examples of action functions receiving an array as an input, map-
ping bit indices to values

starting index of the byte as well as the value to change to for the change_byte()
function. If those parameters are not given, a random location and a random value
is chosen respectively. Those are of course only simple examples, but can be used as
a starting point for further implementation.

Machine Learning Model Implementation

The literature review in Chapter 2.2.1 and 2.5 showed, that many different ap-
proaches to implement reinforcement learning exist. As already mentioned, we
propose to use a Deep-Q-Learning approach as a starting point, as it has already
been proven to achieve good results in traditional fuzzing. Which framework to
use, is up to the user, but a good approach would be to use tensorflow agents10,
as this library provides different reinforcement learning algorithms to experiment
with. Using that framework, the tf_agents.agents.dqn.dqn_agent can be
used together with tf_agents.networks.sequential to implement a Deep-Q-
Learning approach. The network can then be implemented using fully connected
keras dense layers (tf.keras.layers.Dense()) with a final dense layer with a

10https://www.tensorflow.org/agents

https://www.tensorflow.org/agents

58 3 Proposed Approach

number of units adhering to the number of actions, to output q-values for each ac-
tion. The policy then has to be created to account for all the information presented
in this chapter, evaluating it against a random policy, that chooses action at random.
Additionally, to evaluate such an implementation, the average return should be com-
puted and gathered, as well as the fuzzing specific metrics. To store experiences
a replay buffer must be used, the official tf_agents documentation suggests us-
ing the tf_agents.replay_buffers.reverb_replay_buffer. If everything
is set up, the training of the agent can begin, which already introduces the fuzzing
process, due to the environment definition. The agent will learn to produce better
input over time, the network weights can then be exported and reused for other
fuzzing runs.

Fuzzer Interface

The environment has to be tightly coupled to work with the selected fuzzer, in our
case Fuzzware. Therefore, the environment has to be able to invoke the fuzzer, as
well as to gather the necessary information to update the internal state of the agent.
In the case of Fuzzware, this can be done by modifying the Fuzzware Pipeline to
also include the complete logic for our Deep-Q-Learning approach, which requires
to rewrite a lot of the project. Another possibility would be to use custom mu-
tators for AFL++11, which would enable the use of the already existing Fuzzware
pipeline, building a custom mutator that invokes the environment and returns the
mutated input. This would require to implement the environment as a python mod-
ule, which can then be invoked by the custom mutator, but this approach seems to
bring some challenges. Fuzzware uses unicorn as a basis for emulation, invoked by a
custom harness in combination with AFL++. To get inputs to unicorn, the forkserver
mechanism12 is utilized, using shared memory for data transfer and communication.
Therefore, to implement a custom mutator, this mechanism has to be changed, which
requires in depth knowledge and understanding of the current implementation.

To combine those approaches, it might be necessary to split the machine learning
logic from Fuzzware, to ensure continuity and no interrupts during training, as the
forkserver method of AFL++ seems to only work on a turn to turn basis, sleeping
in between, which would make it impossible for an agent to be trained. Therefore
some inter-process communication seems to be necessary to enable the agent to act
on the environment, which might be possible using gRPC13 as a cross-platform data
streaming solution, which would then lead to a custom mutator requesting new in-
put from the RL module. Independent on the chosen approach, the environment has
to be able to invoke the emulation and get back all necessary information described
above. The implementation of such an interface takes a lot of time and effort, con-
sisting of a thorough code-review to understand the existing project, as well as the
implementation of the interface itself, which might be the most challenging part of
the implementation process.

11https://aflplus.plus/docs/custom_mutators/
12cf. [134] and [135]
13https://grpc.io/

https://aflplus.plus/docs/custom_mutators/
https://grpc.io/

3.3 Challenges and Lessons Learned during Implementation 59

AMD ROCm

A challenge that might occur depending on the used hardware, is the installation
of the AMD ROCm14 framework, which is necessary to use an AMD GPU for train-
ing the machine learning model. The installation of the framework is not trivial and
might require some time and effort, depending on the used hardware and the op-
erating system. Therefore, it might be useful to use a docker container15 to install
the framework, as this might be easier to set up and maintain. Nevertheless, we
highlight some installation steps to install ROCm in Appendix A.

3.3. Challenges and Lessons Learned during
Implementation

As already mentioned, during the attempt to implement a prototype of the proposed
approach, many challenges occurred, which are the main reason, why the prototype
could not be implemented during this work. In this section, we will highlight those
challenges, to give an overview of the complexity of the implementation process.

3.3.1. Old Projects

As already highlighted in Chapter 2.3.5, there are countless different projects for em-
bedded system fuzzing, but many of them are not actively maintained anymore.

Fuzzer Selection

Therefore, although many promising approaches have been published, the fuzzer se-
lection is a key element in the process of embedded fuzzing, as it defines the amount
of manual labour that has to go into the creation of a suitable fuzzing environment.
Different works like Firm-AFL [82] present promising evaluation results, but as the
last contribution to this specific project is five years old, many dependency require-
ments can no longer be met, necessitating a lot of manual patching and code review,
to get the project to work as intended. As a matter of fact, the first project we chose to
use as a baseline, was destined to be Firm-AFL, but even after a lot work, manually
applying patches to dependencies, to apply backwards compatibility, we were not
able to make the project work in an appropriate time span, therefore we decided to
go for another project.

14https://rocm.docs.amd.com/en/latest/
15https://hub.docker.com/r/rocm/tensorflow

https://rocm.docs.amd.com/en/latest/
https://hub.docker.com/r/rocm/tensorflow

60 3 Proposed Approach

Possible Solution

This highlights the importance of choosing a suitable fuzzer, as it defines the amount
of work that has to go into the implementation of the proposed approach. Therefore,
such a project should always be chosen to be either a proposal, that was recently
published, or a large open-source project, that is still maintained well and has had
recent contributions.
Viewing the existing literature also seems to confirm this as an existing problem,
as especially works applying machine learning to the fuzzing process arise from
incremental research based on own previous work [109] or even building a com-
pletely new fuzzer around their approach [118][60][108], mitigating the dependance
on maintenance of open-source projects.

3.3.2. Large Existing Projects

Another observed challenge included the size and complexity of existing projects,
that try to present sophisticated approaches for fuzzing embedded devices. This was
the main challenge, that finally prevented the implementation of a prototype to eval-
uate the approach proposed in this work, as more time would have been necessary
to understand the existing code base, add functionalities and and especially con-
duct a sophisticated evaluation, testing different methods and experimenting with
approaches. Nevertheless, many insights have been gathered, that can be applied in
future work.

Problem Domain Complexity

Especially for embedded fuzzing, many different components have to be consid-
ered, as the fuzzing process is not only limited to the execution of the input on the
target, but also the whole emulation harness, the communication between compo-
nents, control logic and many more, leading to astonishingly big projects, increas-
ingly hard to understand.
As highlighted in this thesis, the fuzzing of embedded devices is a highly specialized
field, necessitating many different steps an prerequisites to enable a sophisticated
fuzzing process. Due to the vast variety of embedded systems, in addition to the
fuzzing logic, often a large corpus of different configuration files has to be supplied
and maintained, to enable the targeting of different devices and architectures.

The code base for Fuzzware for example, has around 500000 lines of code using
the languages C/C++, including the header files, and Python16. While certainly not
every line of code is important, this gives an overview of the complexity of such
projects. This leads to the involvement of a plethora of different components, that
have to be adapted to change the functionality of such fuzzers, increasing the com-
plexity of augmentations.
16counted with cloc (https://github.com/AlDanial/cloc) and find in combination with wc -l

https://github.com/AlDanial/cloc

3.3 Challenges and Lessons Learned during Implementation 61

Unintended Adaption

While the usage of such projects is often well documented, the adaption to other
use cases or the extension to fundamentally new features was often not intended or
foreseen, therefore also not well documented, if such use cases are documented at
all.
This makes it challenging to adapt such projects to new use cases, as a lot of code
review is necessary to understand the existing code base, as well as to differentiate
between new or changed code, that changes the functionality of already existing
components, and unmodified parts of segments. As an example, Fuzzware uses
AFL, AFL++ and Unicorn to offer its functionalities, but they changed some baseline
functionality of those, making it difficult to find correct and working approaches to
augment this existing project with machine learning approaches.

Possible Solution

Similar to the previous challenge 3.3.1, the complexity and size of existing projects
can be mitigated by enabling incremental research, exploring the possibilities of ma-
chine learning in the fuzzing process in multiple steps, building on previous work,
to lay a foundation to learn from. Furthermore, it might still be useful to build a new
fuzzer around the proposed approach, or at least fork an existing project to change
deep laying functions, as this enables for deep knowledge of functionalities, as well
as the possibility to build a modular architecture, built especially to accommodate
machine learning augmentations of the fuzzing process. This of course requires a
lot of work, but might mitigate suboptimal solutions, that arise from the adaption of
existing projects, that were not built with machine learning in mind.

3.3.3. Lack of Open-Source Projects

Especially in the realm of machine learning application to the fuzzing process, re-
gardless of traditional or embedded fuzzing, researchers tend to not publish their
code, that was created to implement prototypes to apply their ideas.

Existing Projects

As an example, we could only find the published code for two projects, that pro-
posed promising applications of machine learning techniques to the fuzzing process,
namely NEUZZ [104] and RiverFuzzRL [109], the latter being published because of
the same reasoning we had, as the authors were not able to find a suitable open-
source project to build their approach on. This is a problem, as it makes it difficult to
build on existing work, as well as to compare different approaches, as the code is not

62 3 Proposed Approach

available. This is especially problematic, as the implementation of such approaches
is often not trivial, as already highlighted in the previous sections.

Possible Solution

To mitigate this challenge, we strongly recommend to publish code, that was created
to implement prototypes, if a working prototype can be contributed, as this enables
other researchers to build on existing work and extend ideas, as well as to compare
different approaches, which is a key element of scientific research, instead of having
to build their own tools through incremental research over a span of multiple years.
This may also include the mitigation of the previous discussed challenges, as it pro-
vides the opportunity to build a sophisticated fuzzing project with the possibility to
extend it with machine learning approaches in mind, enabling the fast adaption and
extension to accommodate new ideas and approaches.

63

4. Summary and Future Work

This section will summarize the insights gathered and contributions done by this
thesis and will give an outlook on future work to further explore and improve the
field of embedded fuzzing. Additionally the limitations and challenges of this thesis
will be highlighted.

4.1. Summary and Contributions

By conducting a thorough review of white and grey literature on the topic of tra-
ditional as well as embedded fuzzing, this thesis has provided a comprehensive
overview of the current state of the art in this field. The insights gathered on tradi-
tional fuzzing have then been compared to the fuzzing of embedded devices, high-
lighting differences of the approach to conduct the latter as well as challenges and
resulting differences in techniques applied to this field, especially highlighting dif-
ferent emulation approaches and the importance of correct state representation. This
concluded in a comprehensive overview of steps necessary to conduct automated
testing on embedded devices, which can be used as a framework to conduct this
technique.

Furthermore, by analyzing the current state of the art of machine learning applica-
tions to traditional fuzzing, this thesis has provided a thorough overview of ideas
and techniques to improve the input generation phase of the fuzzing process, find-
ing possible solutions to adapt those techniques to embedded fuzzing as well. This
was done by additionally analyzing existing applications of machine learning al-
gorithms to the realm of embedded fuzzing, finding methods to guide the fuzzing
process as well as to improve the input generation phase, especially highlighting the
importance of a sophisticated feedback loop as well as a correct definition of a fitness
function.

Finally, using the insights gathered by a comprehensive literature review and analy-
sis of existing tools, we proposed a possible augmentation of the fuzzing process, to
improve the input generation during embedded fuzzing. This was done by propos-
ing a general approach as well as a specific use case, how the project Fuzzware might
be augmented with an incremental machine learning model, namely reinforcement
learning, to improve input generation and therefore optimize the automated testing
process. Additionally we provided implementation possibilities based on existing
research and tools, highlighting challenges that occur during the implementation

64 4 Summary and Future Work

process, especially the time and knowledge overhead necessary to augment an ex-
isting tool with machine learning capabilities.

4.2. Limitations and Challenges

As the nature of this thesis presented the work with a time constraint, all work pro-
vided remains theoretical and no thorough implementation was possible. While
there exist approaches using similar techniques and frameworks, none of them has
been applied to the chosen fuzzer and open-source implementations for the respec-
tive application to embedded fuzzing do not exist. During the analysis of possible
implementation steps, it became increasingly clear, that the implementation of a re-
inforcement learning model to augment the fuzzing process is a considerably com-
plex task, requiring a lot of time and deep knowledge in different areas, possibly
requiring a team of specialists to work together. In addition to the implementation
overhead, testing and optimizing of said augmentation again requires a lot of time
and resources, to conduct a thorough evaluation of proposed approaches on real-
world targets. Therefore, the implementation of the proposed augmentation remains
a challenge for future work.

Another limitation important to note is the fact, that all proposed ideas are based
on an emulation of the hardware. While this is a common approach, and especially
using the MMIO fuzzing proposed by Fuzzware should be representative of the real
device, it remains an emulation. Therefore, the results gathered by fuzzing an em-
ulated device might not be perfect representative of every state the real hardware
might be in, especially if the emulation is not perfect. Thus, the results found by the
proposed augmentation might not be exploits, that work on the real-world system,
consequently it might not find all possible bugs and vulnerabilities present in the
actual device.

Nevertheless this work provides a comprehensive introduction and overview to
the realm of traditional and embedded fuzzing, providing ideas and approaches to
improve the fuzzing process by augmenting it with machine learning techniques.
Therefore, this thesis provides a solid foundation for future work in this field.

4.3. Future Work

As the implementation of the proposed augmentation is important to evaluate ideas
and finally improve existing fuzzing projects, this remains a challenge for future
work. Additionally, the proposed augmentation is not limited to the fuzzing project
Fuzzware, but can be applied to other fuzzers as well, as long as they provide a suit-
able feedback information. Therefore, the proposed augmentation should be applied
to other fuzzers as well, which might even be a more suitable starting point for the
implementation and testing, especially if the projects are faster to understand and

4.3 Future Work 65

not as big as Fuzzware. A suitable alternative might certainly be FirmAE [81] or
even plain AFL++ in unicorn mode1 augmented with a custom harness and muta-
tor.

Furthermore, the proposed approach is not limited to Q-Learning or even plain re-
inforcement learning, as shown by [118], therefore different approaches should be
evaluated as well, building incremental models in different ways. Of course the
applications of machine learning are not limited to the input generation phase, but
can be applied to other parts of the fuzzing process as well, namely the re-hosting
process like conducted in [88], initial seed file generation or exploitation analysis of
inputs found during the fuzzing process. Therefore, it might be interesting to eval-
uate different approaches to augment the fuzzing process with machine learning
techniques.

Finally, to speed up the research in this area, it might be necessary and useful to
provide an open-source framework, implementing different ideas and approaches,
to enable other researchers to build upon existing work and further improve the
fuzzing process without having to start over fresh again or incrementally build their
own framework.

1https://aflplus.plus/docs/fuzzing_binary-only_targets/

https://aflplus.plus/docs/fuzzing_binary-only_targets/

67

A. Appendix 1 - ROCm Installation

As the installation of ROCm might present some problems, especially for systems
not based on Ubuntu, we will describe the process for an Arch Linux based system.
For Ubuntu based distributions, an official installation guide exists1.

To initially install ROCm, the respective packages have to be installed:

$ sudo pacman -Syyu
$ sudo pacman -S rocm-hip-sdk rocm-opencl-sdk

After that, following the official installation instructions2, the shared objects have to
be added to the library path:

$ sudo tee --append /etc/ld.so.conf.d/rocm.conf <<EOF
$ /opt/rocm/lib
$ /opt/rocm/lib64
$ EOF
$ sudo ldconfig

The current user has to be added to the video and render group to be able to access
the GPU:

$ sudo usermod -a -G video $USER
$ sudo usermod -a -G render $USER

Additionally the rocm binary has to be added to the PATH:

$ export PATH=$PATH:/opt/rocm/bin:/opt/rocm/opencl/bin

Finally, the following commands have to be executed before using ROCm (the envi-
ronment variables can also be exported via the ˜/.bashrc file):

$ export HSA_OVERRIDE_GFX_VERSION=10.3.0
$ export ROCM_PATH=/opt/rocm
$ for a in /sys/bus/pci/devices/*; do echo 0 \

| sudo tee -a $a/numa_node; done
1https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/
native-install/ubuntu.html

2https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/
native-install/post-install.html

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/native-install/ubuntu.html
https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/native-install/ubuntu.html
https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/native-install/post-install.html
https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/native-install/post-install.html

69

Bibliography

[1] Deepak Kumar et al. “All Things Considered: An Analysis of IoT Devices
on Home Networks”. In: 28th USENIX Security Symposium (USENIX Se-
curity 19). 2019, pp. 1169–1185. ISBN: 978-1-939133-06-9. URL: https : / /
www.usenix.org/conference/usenixsecurity19/presentation/
kumar-deepak (visited on 11/10/2023).

[2] JSOF Tech. Ripple20. JSOF. 2020. URL: https://www.jsof-tech.com/
disclosures/ripple20/ (visited on 11/10/2023).

[3] Armis. URGENT/11. Armis. 2019. URL: https : / / www . armis . com /
research/urgent-11/ (visited on 11/10/2023).

[4] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In:
Communications of the ACM 63.6 (May 21, 2020), pp. 46–56. ISSN: 0001-0782,
1557-7317. DOI: 10.1145/3357033.

[5] Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution. Jan. 3, 2018.
DOI: 10.48550/arXiv.1801.01203. arXiv: 1801.01203 [cs]. preprint.

[6] Internationale Elektrotechnische Kommission, ed. Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety-Related Systems - Part 1: Gen-
eral Requirements. Ed. 2.0,2010-04. International Standard / IEC 62443-1-1.
Geneva: IEC Central Office, 2010. 127 pp. ISBN: 978-2-88910-524-3.

[7] Internationale Elektrotechnische Kommission, ed. Industrial Communication
Networks: Network and System Security. Pt. 1,1: Terminology, Concepts and Mod-
els. Ed. 1.0, 2009-07. International Standard / IEC 62443-1-1. Geneva: IEC Cen-
tral Office, 2009. 81 pp. ISBN: 978-2-88910-710-0.

[8] International Organization for Standardization. ISO/IEC 27001:2013 Informa-
tion Technology - Security Techniques - Information Security Management Systems
- Requirements. 2013. URL: https://www.iso.org/standard/54534.
html (visited on 11/10/2023).

[9] International Organization for Standardization. ISO/IEC/IEEE 12207:2017
Systems and Software Engineering - Software Life Cycle Processes. ISO. 2021.
URL: https : / / www . iso . org / standard / 63712 . html (visited on
01/11/2024).

[10] International Organization for Standardization. ISO 22301:2019 Security and
Resilience - Business Continuity Management Systems - Requirements. ISO. 2019.
URL: https : / / www . iso . org / standard / 75106 . html (visited on
01/11/2024).

https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.jsof-tech.com/disclosures/ripple20/
https://www.jsof-tech.com/disclosures/ripple20/
https://www.armis.com/research/urgent-11/
https://www.armis.com/research/urgent-11/
https://doi.org/10.1145/3357033
https://doi.org/10.48550/arXiv.1801.01203
https://arxiv.org/abs/1801.01203
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/63712.html
https://www.iso.org/standard/75106.html

70 Bibliography

[11] International Organization for Standardization. ISO/IEC/IEEE 29119-1:2022
Software and Systems Engineering - Software Testing - Part 1: General Concepts.
ISO. 2022. URL: https://www.iso.org/standard/81291.html (visited
on 01/11/2024).

[12] International Organization for Standardization. ISO 26262-1:2018 Road Vehi-
cles - Functional Safety - Part 1: Vocabulary. ISO. 2018. URL: https://www.
iso.org/standard/68383.html (visited on 01/11/2024).

[13] International Organization for Standardization. ISO/SAE 21434:2021 Road Ve-
hicles - Cybersecurity Engineering. ISO. 2021. URL: https://www.iso.org/
standard/70918.html (visited on 01/11/2024).

[14] Barton P. Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of the
Reliability of UNIX Utilities”. In: Communications of the ACM 33.12 (Dec. 1,
1990), pp. 32–44. ISSN: 0001-0782. DOI: 10.1145/96267.96279.

[15] Marcel Böhme. STADS: Software Testing as Species Discovery. Apr. 3, 2018.
arXiv: 1803.02130 [cs]. URL: http://arxiv.org/abs/1803.02130
(visited on 01/14/2024). preprint.

[16] Max Eisele et al. “Embedded Fuzzing: A Review of Challenges, Tools, and
Solutions”. In: Cybersecurity 5.1 (2022), p. 18. DOI: 10.1186/s42400-022-
00123-y.

[17] Patrice Godefroid. “Random Testing for Security: Blackbox vs. Whitebox
Fuzzing”. In: Proceedings of the 2nd International Workshop on Random Test-
ing: Co-Located with the 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2007). RT ’07. New York, NY, USA: Association
for Computing Machinery, Nov. 6, 2007, p. 1. ISBN: 978-1-59593-881-7. DOI:
10.1145/1292414.1292416.

[18] Patrice Godefroid, Michael Y Levin, and David Molnar. “Automated White-
box Fuzz Testing”. In: NSDD 8 (2008), pp. 151–166. URL: https : / /
patricegodefroid.github.io/public_psfiles/ndss2008.pdf.

[19] Patrice Godefroid, Michael Y. Levin, and David Molnar. “SAGE: Whitebox
Fuzzing for Security Testing: SAGE Has Had a Remarkable Impact at Mi-
crosoft.” In: Queue 10.1 (Jan. 11, 2012), pp. 20–27. ISSN: 1542-7730. DOI: 10.
1145/2090147.2094081.

[20] Vijay Ganesh, Tim Leek, and Martin Rinard. “Taint-Based Directed Whitebox
Fuzzing”. In: 2009 IEEE 31st International Conference on Software Engineering.
2009 IEEE 31st International Conference on Software Engineering. May 2009,
pp. 474–484. DOI: 10.1109/ICSE.2009.5070546.

[21] Marcel Böhme et al. “Directed Greybox Fuzzing”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. CCS ’17:
2017 ACM SIGSAC Conference on Computer and Communications Security.
Dallas Texas USA: ACM, Oct. 30, 2017, pp. 2329–2344. ISBN: 978-1-4503-4946-
8. DOI: 10.1145/3133956.3134020.

[22] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-
Based Greybox Fuzzing as Markov Chain”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. CCS ’16.
New York, NY, USA: Association for Computing Machinery, Oct. 24, 2016,
pp. 1032–1043. ISBN: 978-1-4503-4139-4. DOI: 10.1145/2976749.2978428.

https://www.iso.org/standard/81291.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/70918.html
https://doi.org/10.1145/96267.96279
https://arxiv.org/abs/1803.02130
http://arxiv.org/abs/1803.02130
https://doi.org/10.1186/s42400-022-00123-y
https://doi.org/10.1186/s42400-022-00123-y
https://doi.org/10.1145/1292414.1292416
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428

Bibliography 71

[23] Istvan Haller et al. “Dowsing for Overflows: A Guided Fuzzer to Find Buffer
Boundary Violations”. In: 22nd USENIX Security Symposium (USENIX
Security 13). 2013, pp. 49–64. ISBN: 978-1-931971-03-4. URL: https : / /
www.usenix.org/conference/usenixsecurity13/technical-
sessions/papers/haller (visited on 11/15/2023).

[24] Yuyue Zhao et al. “Suzzer: A Vulnerability-Guided Fuzzer Based on Deep
Learning”. In: Information Security and Cryptology. Ed. by Zhe Liu and Moti
Yung. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2020, pp. 134–153. ISBN: 978-3-030-42921-8. DOI: 10.1007/978-3-
030-42921-8_8.

[25] libFuzzer – a Library for Coverage-Guided Fuzz Testing. — LLVM 18.0.0git Docu-
mentation. URL: https://llvm.org/docs/LibFuzzer.html (visited on
01/14/2024).

[26] Jiongyi Chen et al. “IoTFuzzer: Discovering Memory Corruptions in IoT
Through App-based Fuzzing”. In: Proceedings 2018 Network and Distributed
System Security Symposium. Network and Distributed System Security Sym-
posium. San Diego, CA: Internet Society, 2018. ISBN: 978-1-891562-49-5. DOI:
10.14722/ndss.2018.23159.

[27] Nilo Redini et al. “Diane: Identifying Fuzzing Triggers in Apps to Generate
Under-constrained Inputs for IoT Devices”. In: 2021 IEEE Symposium on Se-
curity and Privacy (SP). 2021 IEEE Symposium on Security and Privacy (SP).
May 2021, pp. 484–500. DOI: 10.1109/SP40001.2021.00066.

[28] Michal Zalewski. Google/AFL. Google, 2016. URL: https://github.com/
google/AFL (visited on 01/14/2024).

[29] Lcamtuf. American Fuzzy Lop. 2017. URL: https://lcamtuf.coredump.
cx/afl/ (visited on 01/14/2024).

[30] Andrea Fioraldi et al. “AFL++: Combining Incremental Steps of Fuzzing Re-
search”. In: Proceedings of the 14th USENIX Conference on Offensive Technologies.
WOOT’20. USA: USENIX Association, Aug. 11, 2020, p. 10.

[31] Marc Heuse et al. AFL++. Version 4.00c. Jan. 2022. URL: https://github.
com/AFLplusplus/AFLplusplus (visited on 12/21/2023).

[32] Sanjay Rawat et al. “VUzzer: Application-aware Evolutionary Fuzzing”. In:
Proceedings 2017 Network and Distributed System Security Symposium. Network
and Distributed System Security Symposium. San Diego, CA: Internet Soci-
ety, 2017. ISBN: 978-1-891562-46-4. DOI: 10.14722/ndss.2017.23404.

[33] Brendan Dolan-Gavitt et al. “LAVA: Large-Scale Automated Vulnerability
Addition”. In: 2016 IEEE Symposium on Security and Privacy (SP). 2016 IEEE
Symposium on Security and Privacy (SP). San Jose, CA: IEEE, May 2016,
pp. 110–121. ISBN: 978-1-5090-0824-7. DOI: 10.1109/SP.2016.15.

[34] Junjie Wang et al. “Skyfire: Data-Driven Seed Generation for Fuzzing”. In:
2017 IEEE Symposium on Security and Privacy (SP). 2017 IEEE Symposium on
Security and Privacy (SP). May 2017, pp. 579–594. DOI: 10.1109/SP.2017.
23.

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://doi.org/10.1007/978-3-030-42921-8_8
https://doi.org/10.1007/978-3-030-42921-8_8
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.14722/ndss.2018.23159
https://doi.org/10.1109/SP40001.2021.00066
https://github.com/google/AFL
https://github.com/google/AFL
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/SP.2017.23

72 Bibliography

[35] Stuart Russell and Peter Norvig. Artificial Intelligence, Global Edition : A
Modern Approach. Pearson Deutschland, May 13, 2021. 1168 pp. ISBN: ISBN
9781292401133. URL: https : / / elibrary . pearson . de / book / 99 .
150005/9781292401171.

[36] AI vs. Machine Learning: How Do They Differ? Google Cloud. URL: https:
//cloud.google.com/learn/artificial- intelligence- vs-
machine-learning (visited on 11/20/2023).

[37] Pariwat Ongsulee. “Artificial Intelligence, Machine Learning and Deep
Learning”. In: 2017 15th International Conference on ICT and Knowledge Engi-
neering (ICT&KE). 2017 15th International Conference on ICT and Knowledge
Engineering (ICT&KE). Nov. 2017, pp. 1–6. DOI: 10.1109/ICTKE.2017.
8259629.

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A
Survey”. In: Journal of Artificial Intelligence Research 4 (May 1, 1996), pp. 237–
285. ISSN: 1076-9757. DOI: 10.1613/jair.301.

[39] Yuxi Li. Deep Reinforcement Learning: An Overview. Nov. 25, 2018. arXiv: 1701.
07274 [cs]. URL: http://arxiv.org/abs/1701.07274 (visited on
11/20/2023). preprint.

[40] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning.
arXiv.org. Dec. 19, 2013. URL: https://arxiv.org/abs/1312.5602v1
(visited on 09/25/2023).

[41] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially
Observable MDPs. arXiv.org. July 23, 2015. URL: https://arxiv.org/abs/
1507.06527v4 (visited on 01/12/2024).

[42] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learn-
ing with Double Q-learning. Dec. 8, 2015. DOI: 10.48550/arXiv.1509.
06461. arXiv: 1509.06461 [cs]. preprint.

[43] Machine Learning, Explained — MIT Sloan. Jan. 11, 2024. URL: https : / /
mitsloan.mit.edu/ideas-made-to-matter/machine-learning-
explained (visited on 01/12/2024).

[44] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Check-
ers”. In: IBM Journal of Research and Development 3.3 (July 1959), pp. 210–229.
ISSN: 0018-8646. DOI: 10.1147/rd.33.0210.

[45] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Check-
ers. II—Recent Progress”. In: IBM Journal of Research and Development 11.6
(Nov. 1967), pp. 601–617. ISSN: 0018-8646. DOI: 10.1147/rd.116.0601.

[46] What Are Recurrent Neural Networks? — Data Basecamp. Dec. 14, 2021. URL:
https://databasecamp.de/en/ml/recurrent-neural-network
(visited on 01/28/2024).

[47] David Rummelhart and James L. McClelland. “Learning Internal Represen-
tations by Error Propagation”. In: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition: Foundations. 1987, pp. 318–362. URL: https:
//ieeexplore.ieee.org/document/6302929.

https://elibrary.pearson.de/book/99.150005/9781292401171
https://elibrary.pearson.de/book/99.150005/9781292401171
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://doi.org/10.1109/ICTKE.2017.8259629
https://doi.org/10.1109/ICTKE.2017.8259629
https://doi.org/10.1613/jair.301
https://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
https://arxiv.org/abs/1312.5602v1
https://arxiv.org/abs/1507.06527v4
https://arxiv.org/abs/1507.06527v4
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1509.06461
https://arxiv.org/abs/1509.06461
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.116.0601
https://databasecamp.de/en/ml/recurrent-neural-network
https://ieeexplore.ieee.org/document/6302929
https://ieeexplore.ieee.org/document/6302929

Bibliography 73

[48] Alex Sherstinsky. “Fundamentals of Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) Network”. In: Physica D: Nonlinear Phe-
nomena 404 (Mar. 2020), p. 132306. ISSN: 01672789. DOI: 10.1016/j.physd.
2019.132306. arXiv: 1808.03314 [cs, stat].

[49] A. Graves et al. “A Novel Connectionist System for Unconstrained Hand-
writing Recognition”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 31.5 (May 2009), pp. 855–868. ISSN: 0162-8828. DOI: 10.1109/
TPAMI.2008.137.

[50] G. E. Dahl et al. “Context-Dependent Pre-Trained Deep Neural Networks for
Large-Vocabulary Speech Recognition”. In: IEEE Transactions on Audio, Speech,
and Language Processing 20.1 (Jan. 2012), pp. 30–42. ISSN: 1558-7916, 1558-7924.
DOI: 10.1109/TASL.2011.2134090.

[51] Milos Miljanovic. “Comparative Analysis of Recurrent and Finite Impulse
Response Neural Networks in Time Series Prediction”. In: 3.1 (2012).

[52] Ashish Vaswani et al. Attention Is All You Need. Aug. 1, 2023. DOI: 10.48550/
arXiv.1706.03762. arXiv: 1706.03762 [cs]. preprint.

[53] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Computation 9.8 (Nov. 1, 1997), pp. 1735–1780. ISSN: 0899-7667. DOI:
10.1162/neco.1997.9.8.1735.

[54] Saul Dobilas. LSTM Recurrent Neural Networks — How to Teach a Net-
work to Remember the Past. Medium. Mar. 5, 2022. URL: https : / /
towardsdatascience.com/lstm-recurrent-neural-networks-
how - to - teach - a - network - to - remember - the - past -
55e54c2ff22e (visited on 01/28/2024).

[55] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning
with Neural Networks. Dec. 14, 2014. DOI: 10.48550/arXiv.1409.3215.
arXiv: 1409.3215 [cs]. preprint.

[56] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. May 19, 2016. DOI: 10.
48550/arXiv.1409.0473. arXiv: 1409.0473 [cs, stat]. preprint.

[57] Part 1: Key Concepts in RL — Spinning Up Documentation. URL: https://
spinningup.openai.com/en/latest/spinningup/rl_intro.html
(visited on 11/20/2023).

[58] Christopher Watkins. “Learning From Delayed Rewards”. PhD thesis. Cam-
bridge University, Jan. 1, 1989. 241 pp. URL: https://www.cs.rhul.ac.
uk/˜chrisw/new_thesis.pdf.

[59] Christopher J. C. H. Watkins and Peter Dayan. “Q-Learning”. In: Machine
Learning 8.3 (May 1, 1992), pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/
BF00992698.

[60] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. “Deep Rein-
forcement Fuzzing”. In: 2018 IEEE Security and Privacy Workshops (SPW).
IEEE Computer Society, May 1, 2018, pp. 116–122. ISBN: 978-1-5386-8276-0.
DOI: 10.1109/SPW.2018.00026.

https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://arxiv.org/abs/1808.03314
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1162/neco.1997.9.8.1735
https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e
https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e
https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e
https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e
https://doi.org/10.48550/arXiv.1409.3215
https://arxiv.org/abs/1409.3215
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://arxiv.org/abs/1409.0473
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/SPW.2018.00026

74 Bibliography

[61] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Cham: Springer International
Publishing, 2010. ISBN: 978-3-031-01551-9. DOI: 10.1007/978- 3- 031-
01551-9.

[62] Microcontrollers Get a Lift from Automotive After 2021 Rebound. Design And
Reuse. URL: https://www.design-reuse.com/news/51679/mcu-
market-history-and-forecast.html (visited on 11/16/2023).

[63] Wassen Mohammad, Adel Elomri, and Laoucine Kerbache. “The Global
Semiconductor Chip Shortage: Causes, Implications, and Potential Reme-
dies”. In: IFAC-PapersOnLine. 10th IFAC Conference on Manufacturing Mod-
elling, Management and Control MIM 2022 55.10 (Jan. 1, 2022), pp. 476–483.
ISSN: 2405-8963. DOI: 10.1016/j.ifacol.2022.09.439.

[64] Roddy Urquhart. What Does RISC-V Stand For? Semiconductor Engineering.
Mar. 29, 2021. URL: https://codasip.com/2021/03/17/what-does-
risc-v-stand-for/ (visited on 01/17/2024).

[65] MIPS32 Architecture – MIPS. URL: https : / / mips . com / products /
architectures/mips32-2/ (visited on 01/17/2024).

[66] Arm Ltd. Architecture. Arm — The Architecture for the Digital World. URL:
https://www.arm.com/architecture (visited on 01/17/2024).

[67] Nitin Dahad. Embedded Survey 2023: More Software/ Hardware/ IP Reuse. Em-
bedded.com. June 18, 2023. URL: https : / / www . embedded . com /
embedded-survey-2023-more-ip-reuse-as-workloads-surge/
(visited on 01/17/2024).

[68] Tammy Noergaard. Embedded Systems Architecture: A Comprehensive Guide
for Engineers and Programmers. Embedded Technology Series. Amsterdam
Boston: Elsevier/Newnes, 2005. ISBN: 978-0-7506-7792-9.

[69] Marius Muench et al. “What You Corrupt Is Not What You Crash: Challenges
in Fuzzing Embedded Devices”. In: Proceedings 2018 Network and Distributed
System Security Symposium. Network and Distributed System Security Sym-
posium. San Diego, CA: Internet Society, 2018. ISBN: 978-1-891562-49-5. DOI:
10.14722/ndss.2018.23166.

[70] Zicong Gao et al. “Fw-fuzz: A Code Coverage-guided Fuzzing Framework
for Network Protocols on Firmware”. In: Concurrency and Computation: Prac-
tice and Experience 34.16 (July 25, 2022), e5756. ISSN: 1532-0626, 1532-0634. DOI:
10.1002/cpe.5756.

[71] Wenqiang Li et al. “muAFL: Non-intrusive Feedback-driven Fuzzing for Mi-
crocontroller Firmware”. In: Proceedings of the 44th International Conference on
Software Engineering. May 21, 2022, pp. 1–12. DOI: 10 . 1145 / 3510003 .
3510208. arXiv: 2202.03013 [cs].

[72] Kurt Rosenfeld and Ramesh Karri. “Attacks and Defenses for JTAG”. In: IEEE
Design & Test of Computers 27.1 (Jan. 2010), pp. 36–47. ISSN: 0740-7475. DOI:
10.1109/MDT.2010.9.

[73] Mdsec Research. Mdsecresearch/UARTFuzz. Sept. 28, 2023. URL: https://
github.com/mdsecresearch/UARTFuzz (visited on 01/13/2024).

https://doi.org/10.1007/978-3-031-01551-9
https://doi.org/10.1007/978-3-031-01551-9
https://www.design-reuse.com/news/51679/mcu-market-history-and-forecast.html
https://www.design-reuse.com/news/51679/mcu-market-history-and-forecast.html
https://doi.org/10.1016/j.ifacol.2022.09.439
https://codasip.com/2021/03/17/what-does-risc-v-stand-for/
https://codasip.com/2021/03/17/what-does-risc-v-stand-for/
https://mips.com/products/architectures/mips32-2/
https://mips.com/products/architectures/mips32-2/
https://www.arm.com/architecture
https://www.embedded.com/embedded-survey-2023-more-ip-reuse-as-workloads-surge/
https://www.embedded.com/embedded-survey-2023-more-ip-reuse-as-workloads-surge/
https://doi.org/10.14722/ndss.2018.23166
https://doi.org/10.1002/cpe.5756
https://doi.org/10.1145/3510003.3510208
https://doi.org/10.1145/3510003.3510208
https://arxiv.org/abs/2202.03013
https://doi.org/10.1109/MDT.2010.9
https://github.com/mdsecresearch/UARTFuzz
https://github.com/mdsecresearch/UARTFuzz

Bibliography 75

[74] Rong Fan, Jianfeng Pan, and Shaomang Huang. “ARM-AFL: Coverage-
Guided Fuzzing Framework for ARM-Based IoT Devices”. In: Applied Cryp-
tography and Network Security Workshops. Ed. by Jianying Zhou et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020,
pp. 239–254. ISBN: 978-3-030-61638-0. DOI: 10.1007/978-3-030-61638-
0_14.

[75] Leila Delshadtehrani et al. “PHMon: A Programmable Hardware Monitor
and Its Security Use Cases”. In: 29th USENIX Security Symposium (USENIX
Security 20). 2020, pp. 807–824. ISBN: 978-1-939133-17-5. URL: https : / /
www.usenix.org/conference/usenixsecurity20/presentation/
delshadtehrani (visited on 01/13/2024).

[76] Dokyung Song et al. “PeriScope: An Effective Probing and Fuzzing Frame-
work for the Hardware-OS Boundary”. In: Proceedings 2019 Network and Dis-
tributed System Security Symposium. Network and Distributed System Security
Symposium. San Diego, CA: Internet Society, 2019. ISBN: 978-1-891562-55-6.
DOI: 10.14722/ndss.2019.23176.

[77] Philip Sperl and Konstantin Böttinger. “Side-Channel Aware Fuzzing”. In:
Computer Security – ESORICS 2019. Ed. by Kazue Sako, Steve Schneider, and
Peter Y. A. Ryan. Lecture Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2019, pp. 259–278. ISBN: 978-3-030-29959-0. DOI: 10.
1007/978-3-030-29959-0_13.

[78] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Automated Dynamic
Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces. Nov. 11,
2015. DOI: 10.48550/arXiv.1511.03609. arXiv: 1511.03609 [cs].
preprint.

[79] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. In:
2005 USENIX Annual Technical Conference (USENIX ATC 05). 2005. URL:
https://www.usenix.org/conference/2005-usenix-annual-
technical- conference/qemu- fast- and- portable- dynamic-
translator (visited on 01/11/2024).

[80] Daming D. Chen et al. “Towards Automated Dynamic Analysis for Linux-
based Embedded Firmware”. In: Proceedings 2016 Network and Distributed Sys-
tem Security Symposium. Network and Distributed System Security Sympo-
sium. San Diego, CA: Internet Society, 2016. ISBN: 978-1-891562-41-9. DOI:
10.14722/ndss.2016.23415.

[81] Mingeun Kim et al. “FirmAE: Towards Large-Scale Emulation of IoT
Firmware for Dynamic Analysis”. In: Annual Computer Security Applications
Conference. ACSAC ’20: Annual Computer Security Applications Conference.
Austin USA: ACM, Dec. 7, 2020, pp. 733–745. ISBN: 978-1-4503-8858-0. DOI:
10.1145/3427228.3427294.

[82] Yaowen Zheng et al. “FIRM-AFL: High-Throughput Greybox Fuzzing of
IoT Firmware via Augmented Process Emulation”. In: 28th USENIX Se-
curity Symposium (USENIX Security 19). 2019, pp. 1099–1114. ISBN: 978-
1-939133-06-9. URL: https : / / www . usenix . org / conference /
usenixsecurity19/presentation/zheng (visited on 01/11/2024).

https://doi.org/10.1007/978-3-030-61638-0_14
https://doi.org/10.1007/978-3-030-61638-0_14
https://www.usenix.org/conference/usenixsecurity20/presentation/delshadtehrani
https://www.usenix.org/conference/usenixsecurity20/presentation/delshadtehrani
https://www.usenix.org/conference/usenixsecurity20/presentation/delshadtehrani
https://doi.org/10.14722/ndss.2019.23176
https://doi.org/10.1007/978-3-030-29959-0_13
https://doi.org/10.1007/978-3-030-29959-0_13
https://doi.org/10.48550/arXiv.1511.03609
https://arxiv.org/abs/1511.03609
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://doi.org/10.14722/ndss.2016.23415
https://doi.org/10.1145/3427228.3427294
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

76 Bibliography

[83] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. “Prospect:
Peripheral Proxying Supported Embedded Code Testing”. In: Proceedings of
the 9th ACM Symposium on Information, Computer and Communications Security.
ASIA CCS ’14. New York, NY, USA: Association for Computing Machinery,
June 4, 2014, pp. 329–340. ISBN: 978-1-4503-2800-5. DOI: 10.1145/2590296.
2590301.

[84] Hertz, Jesse and Newsham, Tim. Whitepaper – Project Triforce: Run AFL On
Everything (2017). Whitepaper. NCC Group, 2017, p. 43. URL: https : / /
research.nccgroup.com/2022/09/27/whitepaper- project-
triforce-run-afl-on-everything-2017/ (visited on 01/12/2024).

[85] Jonas Zaddach et al. “Avatar: A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares”. In: Proceedings 2014 Network and
Distributed System Security Symposium. Network and Distributed System Se-
curity Symposium. San Diego, CA: Internet Society, 2014. ISBN: 978-1-891562-
35-8. DOI: 10.14722/ndss.2014.23229.

[86] Vladimir Herdt et al. “Verification of Embedded Binaries Using Coverage-
guided Fuzzing with SystemC-based Virtual Prototypes”. In: Proceedings of
the 2020 on Great Lakes Symposium on VLSI. GLSVLSI ’20: Great Lakes Sym-
posium on VLSI 2020. Virtual Event China: ACM, Sept. 7, 2020, pp. 101–106.
ISBN: 978-1-4503-7944-1. DOI: 10.1145/3386263.3406899.

[87] Karl Koscher, Tadayoshi Kohno, and David Molnar. “SURROGATES: En-
abling Near-Real-Time Dynamic Analyses of Embedded Systems”. In: 9th
USENIX Workshop on Offensive Technologies (WOOT 15). 2015. URL:
https : / / www . usenix . org / conference / woot15 / workshop -
program/presentation/koscher (visited on 01/13/2024).

[88] Eric Gustafson et al. “Toward the Analysis of Embedded Firmware through
Automated Re-hosting”. In: 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019). 2019, pp. 135–150. ISBN: 978-1-
939133-07-6. URL: https://www.usenix.org/conference/raid2019/
presentation/gustafson (visited on 06/12/2023).

[89] Bo Feng, Alejandro Mera, and Long Lu. “P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Model-
ing”. In: 29th USENIX Security Symposium (USENIX Security 20). 2020,
pp. 1237–1254. ISBN: 978-1-939133-17-5. URL: https : / / www . usenix .
org/conference/usenixsecurity20/presentation/feng (visited
on 01/13/2024).

[90] Tobias Scharnowski et al. “Fuzzware: Using Precise MMIO Modeling for
Effective Firmware Fuzzing”. In: USENIX Security Symposium. 2022. URL:
https : / / www . semanticscholar . org / paper / Fuzzware % 3A -
Using-Precise-MMIO-Modeling-for-Effective-Scharnowski-
Bars / 17b0422509e7a7cc1de5a9614c82f4a4adc43ad3 (visited on
12/21/2023).

[91] Nguyen, Anh Quynh and Dang, Hoang Vu. Unicorn – The Ultimate CPU Em-
ulator. 2015. URL: https://www.unicorn- engine.org/ (visited on
01/11/2024).

https://doi.org/10.1145/2590296.2590301
https://doi.org/10.1145/2590296.2590301
https://research.nccgroup.com/2022/09/27/whitepaper-project-triforce-run-afl-on-everything-2017/
https://research.nccgroup.com/2022/09/27/whitepaper-project-triforce-run-afl-on-everything-2017/
https://research.nccgroup.com/2022/09/27/whitepaper-project-triforce-run-afl-on-everything-2017/
https://doi.org/10.14722/ndss.2014.23229
https://doi.org/10.1145/3386263.3406899
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.semanticscholar.org/paper/Fuzzware%3A-Using-Precise-MMIO-Modeling-for-Effective-Scharnowski-Bars/17b0422509e7a7cc1de5a9614c82f4a4adc43ad3
https://www.semanticscholar.org/paper/Fuzzware%3A-Using-Precise-MMIO-Modeling-for-Effective-Scharnowski-Bars/17b0422509e7a7cc1de5a9614c82f4a4adc43ad3
https://www.semanticscholar.org/paper/Fuzzware%3A-Using-Precise-MMIO-Modeling-for-Effective-Scharnowski-Bars/17b0422509e7a7cc1de5a9614c82f4a4adc43ad3
https://www.unicorn-engine.org/

Bibliography 77

[92] Wei Zhou et al. “Automatic Firmware Emulation through Invalidity-guided
Knowledge Inference”. In: 30th USENIX Security Symposium (USENIX Secu-
rity 21). 2021, pp. 2007–2024. ISBN: 978-1-939133-24-3. URL: https://www.
usenix.org/conference/usenixsecurity21/presentation/zhou
(visited on 01/14/2024).

[93] ReFirmLabs. ReFirmLabs/Binwalk. ReFirm Labs, Jan. 11, 2024. URL: https:
//github.com/ReFirmLabs/binwalk (visited on 01/11/2024).

[94] OFRAK: Unpack, Modify, and Repack Binaries. URL: https://ofrak.com/
(visited on 01/11/2024).

[95] Shakir. Hardware Debug Ports: A Definitive How-To Guide. Payatu. Jan. 25,
2023. URL: https://payatu.com/blog/iot-security-part-14-
introduction-to-and-identification-of-hardware-debug-
ports/ (visited on 01/16/2024).

[96] Patrice Godefroid, Hila Peleg, and Rishabh Singh. “Learn&Fuzz: Machine
Learning for Input Fuzzing”. In: Proceedings of the 32nd IEEE/ACM In-
ternational Conference on Automated Software Engineering. ASE ’17. Urbana-
Champaign, IL, USA: IEEE Press, Oct. 30, 2017, pp. 50–59. ISBN: 978-1-5386-
2684-9. DOI: 10.48550/arXiv.1701.07232.

[97] Liang Cheng et al. “Optimizing Seed Inputs in Fuzzing with Machine Learn-
ing”. In: 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion). 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). May 2019, pp. 244–245. DOI: 10.1109/ICSE-Companion.
2019.00096.

[98] Mohit Rajpal, William Blum, and Rishabh Singh. Not All Bytes Are Equal: Neu-
ral Byte Sieve for Fuzzing. Nov. 9, 2017. DOI: 10.48550/arXiv.1711.04596.
arXiv: 1711.04596 [cs]. preprint.

[99] Rong Fan and Yaoyao Chang. “Machine Learning for Black-Box Fuzzing of
Network Protocols”. In: Information and Communications Security. Ed. by Sihan
Qing et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018, pp. 621–632. ISBN: 978-3-319-89500-0. DOI: 10.1007/978-
3-319-89500-0_53.

[100] Ciprian Paduraru and Marius-Constantin Melemciuc. “An Automatic Test
Data Generation Tool Using Machine Learning”. In: Proceedings of the 13th
International Conference on Software Technologies. 13th International Confer-
ence on Software Technologies. Porto, Portugal: SCITEPRESS - Science and
Technology Publications, 2018, pp. 472–481. DOI: 10.1007/978-3-030-
12146-4_22.

[101] Chris Cummins et al. “Compiler Fuzzing through Deep Learning”. In: Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA ’18: International Symposium on Software Testing and
Analysis. Amsterdam Netherlands: ACM, July 12, 2018, pp. 95–105. ISBN: 978-
1-4503-5699-2. DOI: 10.1145/3213846.3213848.

https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://www.usenix.org/conference/usenixsecurity21/presentation/zhou
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://ofrak.com/
https://payatu.com/blog/iot-security-part-14-introduction-to-and-identification-of-hardware-debug-ports/
https://payatu.com/blog/iot-security-part-14-introduction-to-and-identification-of-hardware-debug-ports/
https://payatu.com/blog/iot-security-part-14-introduction-to-and-identification-of-hardware-debug-ports/
https://doi.org/10.48550/arXiv.1701.07232
https://doi.org/10.1109/ICSE-Companion.2019.00096
https://doi.org/10.1109/ICSE-Companion.2019.00096
https://doi.org/10.48550/arXiv.1711.04596
https://arxiv.org/abs/1711.04596
https://doi.org/10.1007/978-3-319-89500-0_53
https://doi.org/10.1007/978-3-319-89500-0_53
https://doi.org/10.1007/978-3-030-12146-4_22
https://doi.org/10.1007/978-3-030-12146-4_22
https://doi.org/10.1145/3213846.3213848

78 Bibliography

[102] Martin Sablotny, Bjørn Sand Jensen, and Chris W. Johnson. “Recurrent Neu-
ral Networks for Fuzz Testing Web Browsers”. In: Information Security and
Cryptology – ICISC 2018. Ed. by Kwangsu Lee. Cham: Springer International
Publishing, 2019, pp. 354–370. ISBN: 978-3-030-12146-4. DOI: 10.1007/978-
3-030-12146-4_22.

[103] Morteza Zakeri Nasrabadi, Saeed Parsa, and Akram Kalaee. “Format-Aware
Learn&Fuzz: Deep Test Data Generation for Efficient Fuzzing”. In: Neural
Computing and Applications 33.5 (Mar. 2021), pp. 1497–1513. ISSN: 0941-0643,
1433-3058. DOI: 10.1007/s00521-020-05039-7. arXiv: 1812.09961
[cs].

[104] Dongdong She et al. NEUZZ: Efficient Fuzzing with Neural Program Smoothing.
July 12, 2019. DOI: 10.48550/arXiv.1807.05620. arXiv: 1807.05620
[cs]. preprint.

[105] Peng Chen and Hao Chen. “Angora: Efficient Fuzzing by Principled Search”.
In: 2018 IEEE Symposium on Security and Privacy (SP). 2018 IEEE Symposium
on Security and Privacy (SP). May 2018, pp. 711–725. DOI: 10.1109/SP.
2018.00046.

[106] Sheila Becker et al. “An Autonomic Testing Framework for IPv6 Configura-
tion Protocols”. In: Mechanisms for Autonomous Management of Networks and
Services. Ed. by Burkhard Stiller and Filip De Turck. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2010, pp. 65–76. ISBN: 978-3-642-
13986-4. DOI: 10.1007/978-3-642-13986-4_7.

[107] William Drozd and Michael D. Wagner. FuzzerGym: A Competitive Framework
for Fuzzing and Learning. July 19, 2018. arXiv: 1807.07490 [cs]. URL: http:
//arxiv.org/abs/1807.07490 (visited on 01/09/2024). preprint.

[108] Xiaoting Li et al. “FuzzBoost: Reinforcement Compiler Fuzzing”. In: Infor-
mation and Communications Security: 24th International Conference, ICICS 2022,
Canterbury, UK, September 5–8, 2022, Proceedings. Berlin, Heidelberg: Springer-
Verlag, Sept. 5, 2022, pp. 359–375. ISBN: 978-3-031-15776-9. DOI: 10.1007/
978-3-031-15777-6_20.

[109] Ciprian Paduraru, Miruna Paduraru, and Alin Stefanescu. “RiverFuzzRL - an
Open-Source Tool to Experiment with Reinforcement Learning for Fuzzing”.
In: 2021 14th IEEE Conference on Software Testing, Verification and Validation
(ICST). 2021 14th IEEE Conference on Software Testing, Verification and Val-
idation (ICST). Apr. 2021, pp. 430–435. DOI: 10.1109/ICST49551.2021.
00055.

[110] Jared D. DeMott and R. Enbody. “Revolutionizing the Field of Grey-
box Attack Surface Testing with Evolutionary Fuzzing”. In: 2007. URL:
https://www.semanticscholar.org/paper/Revolutionizing-
the - Field - of - Grey - box - Attack - with - DeMott -
Enbody/f9d7ad9ec1f7a082a84130d9b7071ddfc6db30c5 (visited on
01/15/2024).

https://doi.org/10.1007/978-3-030-12146-4_22
https://doi.org/10.1007/978-3-030-12146-4_22
https://doi.org/10.1007/s00521-020-05039-7
https://arxiv.org/abs/1812.09961
https://arxiv.org/abs/1812.09961
https://doi.org/10.48550/arXiv.1807.05620
https://arxiv.org/abs/1807.05620
https://arxiv.org/abs/1807.05620
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1007/978-3-642-13986-4_7
https://arxiv.org/abs/1807.07490
http://arxiv.org/abs/1807.07490
http://arxiv.org/abs/1807.07490
https://doi.org/10.1007/978-3-031-15777-6_20
https://doi.org/10.1007/978-3-031-15777-6_20
https://doi.org/10.1109/ICST49551.2021.00055
https://doi.org/10.1109/ICST49551.2021.00055
https://www.semanticscholar.org/paper/Revolutionizing-the-Field-of-Grey-box-Attack-with-DeMott-Enbody/f9d7ad9ec1f7a082a84130d9b7071ddfc6db30c5
https://www.semanticscholar.org/paper/Revolutionizing-the-Field-of-Grey-box-Attack-with-DeMott-Enbody/f9d7ad9ec1f7a082a84130d9b7071ddfc6db30c5
https://www.semanticscholar.org/paper/Revolutionizing-the-Field-of-Grey-box-Attack-with-DeMott-Enbody/f9d7ad9ec1f7a082a84130d9b7071ddfc6db30c5

Bibliography 79

[111] Guang-Hong Liu et al. “Vulnerability Analysis for X86 Executables Using Ge-
netic Algorithm and Fuzzing”. In: 2008 Third International Conference on Con-
vergence and Hybrid Information Technology. 2008 Third International Confer-
ence on Convergence and Hybrid Information Technology. Vol. 2. Nov. 2008,
pp. 491–497. DOI: 10.1109/ICCIT.2008.9.

[112] Fabien Duchene. “Fuzz in the Dark: Genetic Algorithm for Black-Box
Fuzzing”. In: Nov. 27, 2013. URL: https://inria.hal.science/hal-
00978844.

[113] Saul Dobilas. Reinforcement Learning with SARSA — A Good Alterna-
tive to Q-Learning Algorithm. Medium. Dec. 20, 2023. URL: https : / /
towardsdatascience . com / reinforcement - learning - with -
sarsa - a - good - alternative - to - q - learning - algorithm -
bf35b209e1c (visited on 01/15/2024).

[114] Bogdan Ghimis, Miruna Paduraru, and Alin Stefanescu. “RIVER 2.0: An
Open-Source Testing Framework Using AI Techniques”. In: Proceedings of
the 1st ACM SIGSOFT International Workshop on Languages and Tools for Next-
Generation Testing. LANGETI 2020. New York, NY, USA: Association for Com-
puting Machinery, Nov. 8, 2020, pp. 13–18. ISBN: 978-1-4503-8123-9. DOI: 10.
1145/3416504.3424335.

[115] Jinkyu Koo et al. “PySE: Automatic Worst-Case Test Generation by Reinforce-
ment Learning”. In: 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST). 2019 12th IEEE Conference on Software Testing, Val-
idation and Verification (ICST). Xi’an, China: IEEE, Apr. 2019, pp. 136–147.
ISBN: 978-1-72811-736-2. DOI: 10.1109/ICST.2019.00023.

[116] Joshua Pereyda. Jtpereyda/Boofuzz. Jan. 17, 2024. URL: https://github.
com/jtpereyda/boofuzz (visited on 01/17/2024).

[117] PeachTech. What Is Peach? URL: https : / / peachtech . gitlab .
io / peach - fuzzer - community / WhatIsPeach . html (visited on
01/17/2024).

[118] Zhenhua Yu et al. “CGFuzzer: A Fuzzing Approach Based on Coverage-
Guided Generative Adversarial Networks for Industrial IoT Protocols”. In:
IEEE Internet of Things Journal 9.21 (Nov. 2022), pp. 21607–21619. ISSN: 2327-
4662. DOI: 10.1109/JIOT.2022.3183952.

[119] Ian J. Goodfellow et al. Generative Adversarial Networks. June 10, 2014. DOI:
10.48550/arXiv.1406.2661. arXiv: 1406.2661 [cs, stat]. preprint.

[120] Lantao Yu et al. SeqGAN: Sequence Generative Adversarial Nets with Policy Gra-
dient. Aug. 25, 2017. DOI: 10.48550/arXiv.1609.05473. arXiv: 1609.
05473 [cs]. preprint.

[121] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Net-
works. Dec. 2, 2015. DOI: 10.48550/arXiv.1511.08458. arXiv: 1511.
08458 [cs]. preprint.

[122] Zhicheng Hu et al. “GANFuzz: A GAN-based Industrial Network Protocol
Fuzzing Framework”. In: Proceedings of the 15th ACM International Conference
on Computing Frontiers (May 8, 2018), pp. 138–145. DOI: 10.1145/3203217.
3203241.

https://doi.org/10.1109/ICCIT.2008.9
https://inria.hal.science/hal-00978844
https://inria.hal.science/hal-00978844
https://towardsdatascience.com/reinforcement-learning-with-sarsa-a-good-alternative-to-q-learning-algorithm-bf35b209e1c
https://towardsdatascience.com/reinforcement-learning-with-sarsa-a-good-alternative-to-q-learning-algorithm-bf35b209e1c
https://towardsdatascience.com/reinforcement-learning-with-sarsa-a-good-alternative-to-q-learning-algorithm-bf35b209e1c
https://towardsdatascience.com/reinforcement-learning-with-sarsa-a-good-alternative-to-q-learning-algorithm-bf35b209e1c
https://doi.org/10.1145/3416504.3424335
https://doi.org/10.1145/3416504.3424335
https://doi.org/10.1109/ICST.2019.00023
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://peachtech.gitlab.io/peach-fuzzer-community/WhatIsPeach.html
https://peachtech.gitlab.io/peach-fuzzer-community/WhatIsPeach.html
https://doi.org/10.1109/JIOT.2022.3183952
https://doi.org/10.48550/arXiv.1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.48550/arXiv.1609.05473
https://arxiv.org/abs/1609.05473
https://arxiv.org/abs/1609.05473
https://doi.org/10.48550/arXiv.1511.08458
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://doi.org/10.1145/3203217.3203241
https://doi.org/10.1145/3203217.3203241

80 Bibliography

[123] Hui Zhao et al. “SeqFuzzer: An Industrial Protocol Fuzzing Framework from
a Deep Learning Perspective”. In: 2019 12th IEEE Conference on Software Test-
ing, Validation and Verification (ICST). 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST). Apr. 2019, pp. 59–67. DOI: 10.
1109/ICST.2019.00016.

[124] Yuqi Chen et al. “Learning-Guided Network Fuzzing for Testing Cyber-
Physical System Defences”. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). Nov. 2019, pp. 962–973. DOI: 10.
1109/ASE.2019.00093. arXiv: 1909.05410 [cs].

[125] Yan Shoshitaishvili et al. “SOK: (State of) The Art of War: Offensive Tech-
niques in Binary Analysis”. In: 2016 IEEE Symposium on Security and Privacy
(SP). 2016 IEEE Symposium on Security and Privacy (SP). May 2016, pp. 138–
157. DOI: 10.1109/SP.2016.17.

[126] Yan Shoshitaishvili et al. “Firmalice - Automatic Detection of Authentication
Bypass Vulnerabilities in Binary Firmware”. In: Proceedings 2015 Network and
Distributed System Security Symposium. Network and Distributed System Se-
curity Symposium. San Diego, CA: Internet Society, 2015. ISBN: 978-1-891562-
38-9. DOI: 10.14722/ndss.2015.23294.

[127] Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav Nakov. “Transformers:
“The End of History” for Natural Language Processing?” In: Machine Learn-
ing and Knowledge Discovery in Databases. Research Track. Ed. by Nuria Oliver
et al. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2021, pp. 677–693. ISBN: 978-3-030-86523-8. DOI: 10.1007/978-3-
030-86523-8_41.

[128] Anthony Gillioz et al. “Overview of the Transformer-based Models for NLP
Tasks”. In: 2020 15th Conference on Computer Science and Information Systems
(FedCSIS). 2020 15th Conference on Computer Science and Information Sys-
tems (FedCSIS). Sept. 2020, pp. 179–183. DOI: 10.15439/2020F20.

[129] Saidul Islam et al. A Comprehensive Survey on Applications of Transformers for
Deep Learning Tasks. June 11, 2023. DOI: 10.48550/arXiv.2306.07303.
arXiv: 2306.07303 [cs]. preprint.

[130] Vladimir Lyashenko. The Best Tools for Reinforcement Learning in Python You
Actually Want to Try. neptune.ai. July 21, 2022. URL: https://neptune.
ai/blog/the-best-tools-for-reinforcement-learning-in-
python (visited on 12/21/2023).

[131] Top 6 Reinforcement Learning Tools to Use. URL: https://www.turing.
com/kb/best- tools- for- reinforcement- learning (visited on
01/12/2024).

[132] Ram Sagar. Top 7 Python Libraries For Reinforcement Learning. Analytics In-
dia Magazine. Jan. 13, 2020. URL: https://analyticsindiamag.com/
python-libraries-reinforcement-learning-dqn-rl-ai/ (vis-
ited on 01/12/2024).

[133] Mauricio Fadel Argerich. 5 Frameworks for Reinforcement Learning on Python.
Medium. June 6, 2020. URL: https : / / towardsdatascience . com /
5 - frameworks - for - reinforcement - learning - on - python -
1447fede2f18 (visited on 01/12/2024).

https://doi.org/10.1109/ICST.2019.00016
https://doi.org/10.1109/ICST.2019.00016
https://doi.org/10.1109/ASE.2019.00093
https://doi.org/10.1109/ASE.2019.00093
https://arxiv.org/abs/1909.05410
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.14722/ndss.2015.23294
https://doi.org/10.1007/978-3-030-86523-8_41
https://doi.org/10.1007/978-3-030-86523-8_41
https://doi.org/10.15439/2020F20
https://doi.org/10.48550/arXiv.2306.07303
https://arxiv.org/abs/2306.07303
https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
https://www.turing.com/kb/best-tools-for-reinforcement-learning
https://www.turing.com/kb/best-tools-for-reinforcement-learning
https://analyticsindiamag.com/python-libraries-reinforcement-learning-dqn-rl-ai/
https://analyticsindiamag.com/python-libraries-reinforcement-learning-dqn-rl-ai/
https://towardsdatascience.com/5-frameworks-for-reinforcement-learning-on-python-1447fede2f18
https://towardsdatascience.com/5-frameworks-for-reinforcement-learning-on-python-1447fede2f18
https://towardsdatascience.com/5-frameworks-for-reinforcement-learning-on-python-1447fede2f18

Bibliography 81

[134] mirroer. Afl/Docs/Technical details.Txt at Master · Mirrorer/Afl. GitHub. URL:
https : / / github . com / mirrorer / afl / blob / master / docs /
technical_details.txt (visited on 01/22/2024).

[135] lcamtuf. Fuzzing Random Programs without Execve(). lcamtuf’s old blog.
Oct. 14, 2014. URL: https : / / lcamtuf . blogspot . com / 2014 / 10 /
fuzzing-binaries-without-execve.html (visited on 01/22/2024).

https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt
https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html

83

List of Figures

2.1. Number of publications with the term “fuzzing” in the title on IEEE
Xplore Digital Library in the past 10 years 12

2.2. Visualization of a Feedforward Neural Network, inspired by [46] . . . 16
2.3. Visualization of a Recurrent Neural Network, inspired by [46] 17
2.4. Visualization of the computing component of a LSTM model, inspired

by [54] . 18
2.5. Agent-Environment Interaction Loop, from [57] 19
2.6. Number of publications with the terms “fuzzing” and “embedded” in

all metadata on IEEE Xplore Digital Library since 2013 22
2.7. Raspberry Pi Zero, a mini computer based on a microprocessor, in-

cluding a standalone battery and a small display 23
2.8. Asus RT-AC58U, a Wifi router based on a mipsel 74kc microprocessor,

with antennas and further I/O ports . 23
2.9. Example architecture of embedded systems after Noergaard [68] 24
2.10. Hardware-in-the-loop setup for fuzzing 26
2.11. Different types of emulation, adapted from Noergaards architecture [68] 28
2.12. General process of Embedded Fuzzing based on different approaches. 32

3.1. Proposed augmented process of Embedded Fuzzing, only highlight-
ing the loop from 2.12 . 49

3.2. Proposed specific augmented process of Embedded Fuzzing, only
highlighting the loop from 2.12 . 53

List of Tables

2.1. Overview of different machine learning augmentations of input gen-
eration for fuzzing . 46

3.1. Overview of different proposed mutation strategies 54

Typeset January 29, 2024

	Abstract
	Introduction
	Background and Motivation
	Research Objectives and Research Questions
	Scope and Methodology
	Structure of the Thesis

	Related work and Fundamentals
	Traditional Fuzzing
	Introduction to Machine Learning Techniques
	Embedded Fuzzing
	What is the Usual Process of Embedded System Fuzzing (RQ1)
	Previous Research on Machine Learning Applications in Fuzzing

	Proposed Approach
	Fuzzing Augmentation
	Implementation Guidelines
	Challenges and Lessons Learned during Implementation

	Summary and Future Work
	Summary and Contributions
	Limitations and Challenges
	Future Work

	Appendix 1 - ROCm Installation
	Bibliography
	List of Figures
	List of Tables

