
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

User Management of a
Privacy-Based Carpooling Platform

Marvin Fischer

Course of Study: B. Sc., Softwaretechnik

Examiner: Prof. Dr. Marco Aiello

Supervisor: Robin Pesl, M.Sc.

Commenced: April 3, 2023

Completed: October 3, 2023

Abstract

The principle of carpooling is on a path of increasing popularity. In combination with self-driving
cars, we are going to encounter new ways to travel collectively. This, however, brings us to new
problems. Self Driving cars would depend on a supervised and coordinated system, which would
allow it to track all journeys of the passenger and therefore create an extended knowledge graph
about a real person. The solution to this is a user management system, which would mask the
actual identity of a user and make them untrackable. The goal of this work is to give an overview
of the latest technology, which can be used to identify and authenticate the user without revealing
their identity neither to the owners of the self-driving cars nor to the carpooling platform itself.
Moreover, it provides a sample implementation, running on mobile and Blockchain technology, and
identifies potential weak points regarding the currently available technologies. In addition to the
identification and authentication mechanism, we provide a reputation system, which enables all
parties to rate each other, without revealing their identity of themself or knowing the identity of the
party, that is rated. Likewise, we also indicate possible ways, in which the authentication system
could be extended to run in a real-world environment.

3

Kurzfassung

Das Prinzip der Fahrgemeinschaften erfreut sich immer größerer Beliebtheit. In Kombination
mit selbstfahrenden Autos werden wir neue Wege des gemeinsamen Fortbewegung ermöglicht.
Dies bringt uns jedoch zu neuen Problemen. Selbstfahrende Autos wären auf ein überwachtes
und koordiniertes System angewiesen, das es ermöglichen würde, alle Fahrten des Passagiers
zu verfolgen und so einen erweiterten Wissensgraphen über eine reale Person zu erstellen. Die
Lösung hierfür ist ein Benutzerverwaltungssystem, das die tatsächliche Identität eines Benutzers
verschleiert und ihn unauffindbar macht. Das Ziel dieser Arbeit ist es, einen Überblick über
die neueste Technologie zu geben, die zur Identifizierung und Authentifizierung des Benutzers
verwendet werden kann, ohne dass seine Identität weder den Besitzern der selbstfahrenden Autos
noch der Fahrgemeinschaftensplattform selbst preisgegeben wird. Darüber hinaus stellt es eine
Beispielimplementierung bereit, die auf Mobil- und Blockchain-Technologie basiert, und identifiziert
potenzielle Schwachstellen in Bezug auf die derzeit verfügbaren Technologien. Zusätzlich zum
Identifizierungs- und Authentifizierungsmechanismus stellen wir ein Reputationssystem bereit,
welches es allen Parteien ermöglicht, sich gegenseitig zu bewerten, ohne ihre Identität preiszugeben
oder die Identität der bewerteten Partei zu kennen. Ebenso werden wir Möglichkeiten aufzeigen,
wie das Authentifizierungssystem auf den Einsatz in einer realen Umgebung erweitert werden
könnte.

5

Contents

1 Introduction 17
1.1 Context . 17
1.2 Objectives . 18
1.3 Conditions . 19
1.4 Structure . 20

2 Background information 21
2.1 Cryptography . 21
2.2 Protocols . 25
2.3 Data Store . 27

3 State of the Art 31
3.1 Identification . 31
3.2 Authentication . 34
3.3 User Management . 36
3.4 Reputation . 38

4 Concept 41
4.1 Identification and Signup . 41
4.2 User Management . 43
4.3 Auth Service Requirements . 45
4.4 Authentication . 45
4.5 Reputation . 47

5 Implementation 53
5.1 Backend . 53
5.2 Blockchain . 54
5.3 Database . 57
5.4 App . 59
5.5 Cryptography . 65

6 Evaluation 67
6.1 Prototype . 67
6.2 Requirements . 68
6.3 Privacy and Security . 68

7 Conclusion and Outlook 71
7.1 Conclusion . 71
7.2 Outlook . 72

7

Bibliography 73

8 Attachments 83
8.1 Car Pooling - Ethereum Smart Contracts . 83
8.2 Auth Service - HyperLedge Fabric Smart Contract 84

8

List of Figures

2.1 Asymmetric Encryption . 21
2.2 RSA Algorithm . 22
2.3 Symmetric Encryption . 23
2.4 HTTP request . 25
2.5 HTTP response . 25
2.6 Rest API . 26
2.7 Relational Database . 27
2.8 Blockchain - Hash Chain . 29

3.1 Swedish ID card [swe21] . 32
3.2 German ID card [Inn23] . 32
3.3 PII and GDPR data [Thu19] . 33
3.4 OAuth 2.0 flow [HPL23] . 35
3.5 Overview of reputation system [HBB22] . 40

4.1 Registration Flow . 41
4.2 Ausweisapp . 42
4.3 BankID Request . 42
4.4 BankID Identification . 42
4.5 Auth Eco System . 44
4.6 Authentication Setup as UML sequence diagram 46
4.7 Linear Function for 365 days time frame . 48
4.8 Exponential Function for 365 days time frame 48
4.9 Rating - Blockchain Interaction . 49

5.1 Technology overview . 53
5.2 UML Class Diagram of Public Contracts . 54
5.3 UML Class Diagram of Private Contract . 56
5.4 UML Class Diagramo of Database . 57
5.5 Frontend - Auth service relation . 60
5.6 Response and Request Bodies . 60
5.7 UML Class Diagram of Database . 61
5.8 Start View . 62
5.9 Authservice Selection . 62
5.10 Register . 62
5.11 Home View . 63
5.12 My Wallets . 63
5.13 Carpooling App Link . 63
5.14 Add Wallet to Account . 64

9

5.15 Copy Pseudonym . 64

10

List of Tables

1.1 Requirements . 20

3.1 ID properties used for identification . 31
3.2 eID Providers . 34

5.1 Rest API Endpoints . 59
5.2 Keccak-512 vs. Sha3-512 . 66

11

List of Code Samples

4.1 Sample Dummy eID Server written in Elixir1 43
4.2 Generate Pseudonym written in Elixir . 50
4.3 Pseudonym Data . 51

5.1 Hash ID Data . 56

8.1 Ethereum - Ride Contract . 83
8.2 Ethereum - Ride Contract Factory . 84
8.3 Auth Service - HyperLedge Fabric Smart Contract 84

13

Acronyms

AES Advanced Encryption Standard. 22

API Application Programming Interface. 26

BSI Bundesamt für Sicherheit in der Informationstechnik. 33

CA Certificate Authority. 25

ECDSA Elliptic Curve Digital Signature Algorithm. 24

eID Electronic Identification. 31

eIDAS electronic IDentification, Authentication and trust Services. 33

FHE Fully Homomorphic Encryption. 24

GCM Galois/Counter Mode. 23

GDPR General Data Protection Regulation. 32

HTTP Hypertext Transfer Protocol. 26

HTTPS Hypertext Transfer Protocol Secure. 26

JSON JavaScript Object Notation. 26

JWTs Json Web Tokens. 35

NFC Near Field Communication. 27

NIST National Institute of Standards and Technology. 69

PCA Pseudonym Certification Authority. 39

PD Personal Data. 32

PII Personal Identifiable Information. 32

PKI Public Key Infrastruktur. 25

REST Representational state transfer. 26

RSA Rivest–Shamir–Adleman. 22

SHA Secure Hash Algorithm. 24

SSH Secure Shell. 35

SSL Secure Sockets Layer. 25

TLS Transport Layer Security. 25

15

1 Introduction

Automation and artificial intelligence are well discussed nowadays and cars handle a lot of the
driving on their own and will become fully autonomous over the next couple of years [GAGK21].
This opens up new possibilities when it comes to public transportation. Such as using carpooling
instead of owning a car or taking the bus or train. But is it possible to build a carpooling platform,
which provides the user with full anonymity, so that they can primarily use such a system without
revealing any information about themself? This work shows that at the current stage, we are
not capable of providing full anonymity, however, further progress in technologies such as Self
Sovereign Identities, might change this over the next years.

1.1 Context

The level of autonomous driving is reaching a point where the driver needs to do less work and is a
passenger in their own car. So, why should a person buy and own a car, if they could simply rent a
car and only pay for the journey they actually take? And if the person is just a passenger in that car,
why not share the ride with other people, who need to take a similar journey? This would reduce
the costs of all people taking that particular journey.

Car sharing is in increasing demand. With the rise of new wireless technologies and the interaction
with our surrounding by mobile apps becoming more mainstream, people are more willing to share
vehicles with others. Those range from sharing a car for reaching a destination or sharing vans for
transporting things from one location to another [SC19].

This is supported by the rising popularity of companies such as BlaBlaCar or the taxi competition
Uber. Those take a large advantage of the use of mobile applications and the way people interact
with others by using those apps. Additionally, both applications target different groups [QPM21].

Moreover, for the passengers, additional stress such as searching for a parking slot in bigger and
crowded cities is dismissing and instead, only the journey itself impacts the people. This makes it
easier to plan in advance and use time more efficiently. Further, cities would need to provide fewer
parking slots in general [SCB+18].

Such a carpooling platform would give a good alternative to public transportation, which is strictly
timed, not as reliant and in some areas not even present. A carpooling platform with autonomous
cars would enable people in rural areas, who do not have a driver’s license or are too old to drive
safely, i.e. for medical reasons, to reach every location they want to. Moreover, older people could
socialise more easily and even receive help for their daily activities, while at the same time being
independent from inflexible timetables [ADA23; HDPB19; HNS+20; Inf23b; SCB+18; SPP22].

17

1 Introduction

But when people are using a carpooling platform, their privacy of movement is quite restricted,
compared to a private car or public transportation where people just can hop on and take their journey.
This makes an anonymous identity pretty important so that people can take their everyday journies,
while nobody can track back the movement to a single person and gain personal information such as
their private address or workplace address. Further, such a platform should provide the same privacy
as using a private car. For increasing the truth in the user, a user management system with rateable
users is essential. Anonymous reputation systems have been widely discussed in recent days and
are analysed and compared with each other. Similar to Self Sovereign Identities, which enable users
to manage their digital identity for themself without the need to verifier [HBB22; MGGM18].

In addition to the benefits for the user, carpooling has also a positive environmental impact. By
sharing a car with others, the traffic density is reduced and commuting becomes more efficient,
while at the same time, the amount of CO2 produced per person decreases [LZW21; MGV20].

1.2 Objectives

With this work, we want to show that it is possible to create an authentication system, which enables
a carpooling service, to operate without knowing the actual identity of the owner. This is shown by
giving a concept, supported by a minimal prototype.

1.2.1 Identification

A correct and trustworthy1 identification is important to all users of a carpooling system, especially
if you share a car with strangers, it is important that all customers are trustworthy. This identification
method should work in most European countries and be completely digital. However, it should be
easily expandable to other countries.

1.2.2 User Management

After identifying a person successfully, an account needs to be created and managed. Besides
the management of the user information, the prototype shall be able to provide an authentication
method. The goal is that this account is usable by carpooling platforms, which want to set their
focus on privacy.

1.2.3 Reputation

Because reputation and ratings are critical information about a user, if no other information is
known, the authentication system must provide reputation capacities. Further, that reputation must
not give any private information about a person and must not be linkable to a real identity.

1Carpooling Platform Users must trust the system

18

1.3 Conditions

1.3 Conditions

Before we can start to focus on the actual topic, we need to define the precondition for this project
research as well as its desired postcondition.

1.3.1 Precondition

Because we target to create a user management and authentication system, we do not have a direct
influence on the carpooling platform itself. However, therefore we assume, that the carpooling
platform provider, actually has an interest in proving anonymity and cooperating in adapting their
system. For now, we assume that there exists a platform that operates on smart contracts, running
on the Ethereum Blockchain. More about Ethereum is provided in Section 2.3.3. The predefined
contracts, which we assume can be found in the attachments.

1.3.2 Postconditions

Before we can take a deeper look into the current state of the art and our concept, we need to define
some requirements, which are required for providing a carpooling platform and much more what
requirements the authentication mechanism must fulfil.

The main goal of the platform is that users can use it in an anonymous way. This, however, can lead
to some security problems. If no user can be tracked back, it leads to misuse of the service or even
results in a dangerous situation for the travellers [KT21]. This includes damaging the provider’s
vehicles, stealing someone else’s belongings or other serious crimes, which leads us to the first
requirements. Every user, who wants to register with the service for the first time needs to provide
their actual identity in order to allow future punishments if needed and to ban people from the
platforms if required.

Because the platform is focused on privacy and it shall not be possible to track someone’s action
even with external information, no identifiers can be used, which could lead to cross-platform
tracking and even enable criminals to gather other private information via email tracking [HBFL18].
In particular, this means, that neither an email address nor telephone number can be used since
those identifiers are typically used on other websites or platforms and therefore the use of those
platform information in combination with driving data could lead to gaining additional information
about a person. This means we need an authentication protocol that enables users to log into their
accounts without the usage of an email or telephone number and at the same time is secure.

Moreover, it shall be possible to rate or report users, who misbehave on the platform and to engage
providers and travellers to behave in an optimal way. Those ratings must provide complete privacy,
which means that the rater as well as the ratee must not reveal their real identity to each other.
Further, if a user creates a new account, all the old ratings must get transferred to the new account
and the old account must get deactivated [HBB22].

In this work, we focus on Europe and the European market and solutions. Nevertheless, the created
concept and prototype shall be expandable to other countries outside of Europe.

19

1 Introduction

Lastly, the system should run in a distributed way, so that no components gain any power on the
system based on their infrastructural role. Table 1.1 gives us a brief overview of all requirements
and assists us in keeping track of and referencing the requirements later on.

Requirement Description

1 Anonym while taking rides
The user must be able to use the service and
book car rides, without exposing any of their
related bookings

2 The person’s identity must be
checked

Anonym car sharing opens the door to crime,
whether it is between passengers or towards
the provider’s property. Therefore the identifi-
cation must be verified on register time

3 Access to Personal Data
It must be possible to notify and share the
identity with location police in case of a serious
crime

4 Users must be rateable by others
To engage, all users to behave properly, it must
be possible to rate users and punish or reward
them user’s with a rating

5 Anonym Authentication
For signing up and login no email must be used
because it would allow to track users across
sites and break the anonymous feature

6 Distributed Deployment The system should not depend on the infras-
tructure, which is provided by a single party

7 Anonym rater and ratee
The ratee should not know, who rated them
and the rater should not know the real identity
of the ratee

8 Reputation transfer If a user creates a new account, the old ratings
are transferred to the new account

9 Geographically expandable The concept must be expandable to other mar-
kets if needed

Table 1.1: Requirements

1.4 Structure

To achieve the named objectives, we start in chapter 2 and 3 by looking at the required background
information and the state of the art for introducing and establishing the final concept in chapter 4.
Afterwards, in chapter 5 we show the technology that is used by the prototype for archiving our
objectives. Lastly, we evaluate the prototype based on the predefined requirements, and the security
aspects. Furthermore, we show how the prototype can be extended in future.

20

2 Background information

The foundation of this paper are well known and established algorithms and technologies. Therefore,
we start by giving the background information, which is required to make it easier to understand the
state of the art and the concept later on.

2.1 Cryptography

Because a lot of the used protocols and technologies rely strongly on cryptographical concepts and
algorithms, we start by introducing the cryptographical concepts, which are required for a better
understanding of the following sections.

Clear Text

Encryption

public Key

Cipher Text

Decryption

Clear Text

Cipher Text

private Key

Figure 2.1: Asymmetric Encryption

21

2 Background information

2.1.1 Asymmetric Cryptography

Asymmetric cryptography is based on the principle that we have two different and distinct keys,
as shown in Figure 2.1. One is publically available, and the other is only held by one particular
party and must not be known by another party. The most common asymmetric cryptographical
algorithms are RIVEST–SHAMIR–ADLEMAN (RSA) and Elliptic curve-based algorithms. RSA
is based on factorisation problems, which state that it is not possible to factorize a large number
efficiently by a classical computer. The algorithm is shown in Figure 2.2. Elliptic curves on the
other hand are based on the discrete curve logarithm problem, which is mathematically harder to
solve than the factorasation problems. Further, an elliptic curve is of the form 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over
a finite field [Bon+99; Sic18; Sul13].

Both Algorithms are widely in use nowadays, i.e. for encrypting the web traffic or creating digital
signatures. Moreover, they have been analysed for quite some time. In practice, however, those
algorithms are not that easily implementable, because they require specified padding on the input in
order to be secure, which is defined in their specification.

2.1.2 Symmetric Cryptography

While asymmetric encryption uses two different keys for encryption and decryption, symmetric
encryption uses just one key for both operations, which is illustrated in Figure 2.3.

The most widely adopted asymmetric encryption algorithm is ADVANCED ENCRYPTION
STANDARD (AES). Which was standardised by NIST in 2001. AES uses matrix operations for
transforming a clear text into a cipher text. The algorithm is divided into four phases, which are
repeated multiple times and uses a S-Box. The S-Box is a predefined matrix constant. In those
phases bytes get substituted (’SubBytes’ phase), matrix rows shifted (’ShiftRows’ phase), columns
mixed (’MixColumns’ phase) and lastly, the key is added to the matrix state by an xor operation
(’AddRoundKey’ phase) [NIS23].

𝑁 = 𝑝𝑞

Find e with:

𝑔𝑐𝑑 (𝑒, (𝑝 − 1) (𝑞 − 1)) = 1

Encryption:

𝑀 = 𝑚𝑒 𝑚𝑜𝑑 𝑁

Decryption

𝑑 = 𝑒−1 𝑚𝑜𝑑 (𝑝 − 1) (𝑞 − 1)

Figure 2.2: RSA Algorithm

22

2.1 Cryptography

Furthermore, AES is a block cipher, which means only a fixed length of bytes can be encrypted. For
AES it is 16 bytes. This means shorter clear text must be extended by adding padding and longer
clear texts split into blocks of 16 bytes and extended by padding if it is not dividable by 16 bytes
[Dwo07; NIS23].

The way multiple blocks are linked together is called the cipher mode. For AES multiple cipher
modes are defined, which all have different properties and advantages and disadvantages. The most
widely used mode is GALOIS/COUNTER MODE (GCM). GCM has the big advantage, that it
not only encrypts the clear text but also guarantees the integrity of the cipher text, also known as
authenticated encryption. This prevents attackers from manipulating the cipher text. Furthermore,
GCM uses an Initial Vector, which prevents two identical clear texts from producing the same cipher
text. If taking a closer look at AES GCM it actually behaves like a stream cipher and less than an
actual block cipher [Dwo07].

A stream cipher is basically an algorithm that generates a unpredictable, but infinitive bit stream.
This bit stream is the encryption and decryption key. Each bit at position n is xored with the n bit of
the clear text. Because the bitstream is unpredictable, also the ciphertext is unpredictable. Another
Stream Cipher is ChaCha20, which is an alternative to AES but is much simpler.

Instead of using complex matrix operations, ChaCha20 is just using addition, shift and xor operations
for generating a key stream. This leads to much faster encryption and decryption speed compared
to AES and a much simpler implementation [DSS17; NL15; Sul15].

However the algorithm is much younger than AES and therefore not fully researched yet, but likewise
to AES there exist no efficient attacks of ChaCha20. With the Poly1305 extensions, ChaCha20 can
provide authenticated encryption, such as AES can [DS17; Sul15].

Clear Text

Encryption Cipher Text

Decryption

Clear Text

Cipher Text

Key

Figure 2.3: Symmetric Encryption

23

2 Background information

2.1.3 Hash Algorithm

In comparison to encryption algorithms, which provide a two-way function, hash algorithms,
however, are a one-way function. That algorithm can take an input of any input length and convert
it to an unpredictable and fixed-length output. For the same input, the output always stays the same.
Because of the property that the length is reduced, there exist multiple inputs, which produce the
same output - also called hash collisions. A good hash function needs to prevent that coalition as
well as possible and at the same time guarantee that it is impossible to convert the output back to
the input [Dwo15].

Hash Algorithms, which are recommended and widely in use nowadays for secure hashes are SHA2
and SHA3, from the SECURE HASH ALGORITHM (SHA) family. Both algorithms can produce
an output of length 256bit, 384bit and 512bits and are standardized by Nist [Dwo15]. While SHA2
uses Merkle-Damård constructions, similar to older hash algorithms, which are already proven as
insecure, SHA3 uses a different approach, the Keccak Sponge construction [Dev22a].

2.1.4 Cryptographic Signatures

Cryptographic Signatures are based on asymmetric cryptography. The signer holds the private key,
while all other parties can validate the signature by using the public key of the signer. Only the
private key can be used to sign a message. Common for cryptographic signatures are a reverse RSA
scheme and Elliptic curve-based algorithms. Because asymmetric encryption schemes have an
upper limit of a message length they can sign, the message is hashed before signing [KK12].

The most widely used signature algorithms are SHA256-RSA and SHA256-ECDSA. Both algorithms
hash the message to a 256-bit output and afterwards perform either RSA or ELLIPTIC CURVE
DIGITAL SIGNATURE ALGORITHM (ECDSA) on the hash. The final output is the signature.
The validator requires the message and the signature. Then it hashes the message and checks if
the signature matches the hash when the reverse signature function is applied to the signature
[KK12].

2.1.5 Fully Homomorphic Encryption

FULLY HOMOMORPHIC ENCRYPTION (FHE) are asymmetric cryptographic algorithms, which
have the ability to operate on encrypted data, without knowing the private key to encrypt the data.
Basic RSA behaves homomorph under multiplication but loses this capability if the mandatory
padding is added to the cipher. FHE algorithms, however, are homomorphic under addition as well
as multiplication, which allows performing complex operations on the encrypted data [BBB+22].

Such algorithms are under active research and are interesting for deep learning and analysing
sensitive data, without revealing the actual data. Those algorithms, however, use approximation and
therefore lose accuracy with every performed operation. Additionally, they are slow compared to
other cryptographic algorithms [BBB+22; Gen09].

24

2.2 Protocols

1 GET /path HTTP/1.1

2 Host: www.uni-stuttgart.de

3 Accept-Language: en

Figure 2.4: HTTP request

1 HTTP/1.1 200 OK

2 Date: Sat, 10 Sep 2023 12:32:05 GMT

3 Content-Length: 2342

4 Content-Type: text/html

5
6 <body of 2342 bytes here >

Figure 2.5: HTTP response

2.1.6 Zero Knowledge Proof

Zero Knowledge Proofs are a concept to prove a statement without revealing any information, except
the response to the statement. There exist two main types of Zero Knowledge Proofs. Firstly, there
is the interactive Zero Knowledge Proof (IZKP). It requires that both parties, actively participate in
the proof of data possession, which requires multiple rounds of messages. This is highly inefficient
[eth23].

The second type, Non-Interactive Zero Knowledge Proofs (NIZKP), solves it by only requiring a
single round of messages. Additionally, IZKP requires each party pair to prove a statement in an
additional proofing session. NIZKP, on the other hand, only requires that proof is made once for a
single party. Afterwards, the proof is publicly available and can be used by other parties, which
have not been part of the creation process at all [eth23].

2.2 Protocols

The upcoming sections make use of some widely used protocols, for this reason, we shortly introduce
the four most important ones.

2.2.1 TLS

TRANSPORT LAYER SECURITY (TLS) is a protocol, that targets to encrypt the traffic between
two parties on the Transportation layer. It is widely used to encrypt the traffic on the web and is the
successor of the SECURE SOCKETS LAYER (SSL) protocol. This protocol utilises asymmetric
encryption to exchange a symmetric key, which is then used to perform authenticated encryption on
the messages. Only the sender and receiver can decrypt the message. And user’s certificates for
proving the ownership of a public key [Clo23].

In practice, the server owns the private key and obtains a certificate from a CERTIFICATE
AUTHORITY (CA). To ascertain that a certificate is valid, cryptographic signatures are applied.
Each certificate can be signed by another certificate, which constructs a hierarchy of certificates,
which is described as a PUBLIC KEY INFRASTRUKTUR (PKI) [Clo23].

25

2 Background information

2.2.2 HTTP

The HYPERTEXT TRANSFER PROTOCOL (HTTP) is operating on the application layer and has
the task of transferring hypermedia documents. It is a stateless and text-based protocol, to enable
structured communication between a server and a client [con23a].

This protocol uses a request-response pattern, which means that each request receives exactly one
response, such as shown in Figure 2.4 and 2.5. Each request starts with an HTTP Method, such as
GET, POST, PUT, POST and the resource path with which a client wants to interact. The response
must start with a status code ranging from 1xx-5xx. After the leading line, headers follow, which
describe the metadata of the actual message. After the header block a line breaks and an empty line
follows. After that empty line, the actual message is printed [con23a; con23b; con23c].

The GET method is used for retrieving a resource from a server, the POST for creating a resource
and the PUT method updates a resource at a given path. The DELETE method is used when a
resource needs to be deleted. The GET method is the only method, that usually does not contain a
request body, which allows it to cache GET and improve efficiency if a resource is retrieved multiple
times within a short time window [con23b; con23c].

If HTTP traffic is encrypted via TLS, it is called HYPERTEXT TRANSFER PROTOCOL SECURE
(HTTPS) [Clo23].

2.2.3 REST

A REPRESENTATIONAL STATE TRANSFER (REST) APPLICATION PROGRAMMING
INTERFACE (API), is a loose standard and type of application interface, that provides access to
a server’s business logic via HTTP calls with predefined resource paths. Those paths are also
called endpoints and use the typical HTTP methods, such as POST, GET, PUT and DELETE for
interacting with the resources of the server. This enables another application to remotely interact
with the given application via its REST API [Lim20].

It is usually the middleware between a client and a server-based application. Its task is to authenticate
and restrict the operations, which a client can perform on actual data. Moreover, it serialises and
deserialises the requests and responses, usually from and to JAVASCRIPT OBJECT NOTATION
(JSON), illustrated in Figure 2.6. Because Rest APIs work on top of the HTTP protocol it is possible
to use HTTP-based mechanisms and security measurements [Lim20].

Server
REST APIClient

perform action

send response

send deserialise requestsend HTTP request

deserialise Request

serialis response
send HTTP response

Figure 2.6: Rest API

26

2.3 Data Store

2.2.4 NFC

NEAR FIELD COMMUNICATION (NFC) is a wireless data transfer technology, that enables
sending information from one device to another at a maximum distance of about 10cm. One of
the devices can also be passive, which means it does not need a battery source to operate. Instead,
the active party provides the required energy to the passive device when interacting with it. This
is used by the card reader and the corresponding card, where the card is the passive component
[MLKS08].

2.3 Data Store

Now we take a look at the latest technologies for persisting data and establish the foundation
regarding them.

2.3.1 Relation Database

Relational Databases are storage system, which manages data in tables. Each table has columns,
which define the structure of the datasets in the table. Each row of the table is an individual dataset.
By using SQL queries it is possible to interact with the data. Because of this such databases are
also called SQL Database [IBM23a].

Moreover, it is possible to link rows of different tables with each other. This linking is a relation
between two tables. This is archived by defining primary and foreign keys. Each table needs to have
at least one primary key column. The value of the primary key columns must be unique. Other
tables use foreign keys to reference the primary key of another table, as illustrated in Figure 2.7
[IBM23a].

Relational Databases are transaction-based. Those transactions fulfil the ACID properties, namely
atomicity, consistency, isolation and durability. The atomicity property guarantees that all data-
changing operations are executed as if they were a single operation. Meaning, either all changes or
no changes are performed on the stored datasets. By satisfying the consistency property all data
stays consistent and replicas have the same state as the original. This is supported by the durability
property, which allows data to stay persistent even on the occasion, that the system fails. Lastly, all
operations are performed isolated, guaranteed by the isolation property [IBM23a].

Primary Column Property 1 Property 2 Foreign Column

ID 1 Value 1 Value 2 ID 4

ID 2 Value 3 Value 4 ID 4

ID 3 Value 5 Value 6 ID6

Primary Column Property 1 Property 2

ID 4 Value 7 Value 8

ID 5 Value 9 Value 10

ID 6 Value 11 Value 12

Joins on

Figure 2.7: Relational Database

27

2 Background information

Examples of SQL Databases are PostgreSQL1, MySQL2, MariaDB 3, and SQLite 4.

2.3.2 NoSQL Databases

SQL-based Databases are working well on smaller datasets with a fixed structure, where a high
level of consistency is needed. They do not scale in a distributed way. Moreover, they are also
quite inflexible. For every small change in the structure, the whole tables would need to be updated.
Those problems are addressed by NoSQL databases. [IBM23a; MK19].

Those databases drop the ACID properties and instead focus on high availability and scalability.
This means that NoSQL database states are not consistent and their transactions are not atomic.
Further, they target the CAP problem. This problem describes, that a distributed database can
only fulfill two of the three properties, Consistency, Availability, or Partition Tolerance [IBM23a;
MK19].

Currently, NoSQL databases are split into four categories. Key-Value Stores, Wide-Column Stores,
Document Stores, and Graph Stores. The key value store is the most simple of the four. It stores
a value, which can be only addressed by its key. Datasets are only callable by their key and no
search on the actual data can be performed to obtain a set of values, matching the search criteria.
Wide-Columns Stores are similar. But they allow the value to be semi-structured. Instead of a
large value, the value can be split into several columns. Unlike SQL Databases, those columns are
not searchable and therefore can not be used to create relations between different datasets. The
advantage of the Wide Column Database is that not the whole value needs to be returned. Instead,
the client can specify which columns they want to retrieve [IBM23a; MK19].

Examples of key-value stores are Riak5 and Redis6. Cassandra7 and HBase8 are examples of
column-based stores.

Document Stores on the other hand store JSON, , documents. Databases such as MongoDB9 allow
you to search on those JSON similar to SQL-based Databases. However, all documents can have
different structures and different documents can not be linked to each other [IBM23a].

Lastly, Graph Stores does not use the classical table or key-value structure like all the three other
types. Instead, it stores the data as a large graph and applies Graph theories to search for the data.
Each dataset is stored as a node. In Neo4J 10, a Graph Store, both the edges and the nodes can have
properties [IBM23a].

1https://www.postgresql.org/
2https://www.mysql.com/
3https://mariadb.org/
4https://www.sqlite.org/index.html
5https://www.tiot.jp/riak-docs-beta/riak/cs/3.1.0
6https://redis.io/
7https://cassandra.apache.org//𝑖𝑛𝑑𝑒𝑥.ℎ𝑡𝑚𝑙
8https://hbase.apache.org/
9https://www.mongodb.com/

10https://neo4j.com/

28

2.3 Data Store

Block 1

Dataset 1

Previous Hash

Hash

Block 2

Dataset 2

Previous Hash

Hash

Block 3

Dataset 3

Previous Hash

Hash

Block 4

Dataset 4

Previous Hash

Hash

Figure 2.8: Blockchain - Hash Chain

Because of their replication properties, NoSQL Databases can be used to manage data across different
data centres, and therefore guarantee a disaster recovery and an improved latency performance
[IBM23a; MK19].

2.3.3 Blockchain

Blockchains are a modern way of storing data. They intend to store data in a distributed way and at
the same time guarantee that the data is immutable. Meaning once the data is written to it, it stays
there forever. Each node in this Blockchain network is called a ledger node [IBM23b].

This is archived by applying cryptographic signatures along with hash values. Data is stored in
blocks, and each block computes its hash value based on the stored data. To archive immutability
each block contains the hash value of the previous block. The linking of blocks would require that
all previous blocks be changed in order to change the current block, as shown in Figure 2.8. The
longer this chain becomes, the harder it gets to manipulate any values [IBM23b].

For submitting a new block a transaction is performed. Each transaction usually contains the data
itself, the hash and the corresponding signature of the party, which wants to add some value to the
chain. This signature is validated by the ledger node and only if the signature is valid, the new block
is accepted and chained to the previous block. The private key is stored by the party itself. For
making storing those keys simple, there exist wallets, such as Metamask11. Those wallets manage
the private keys of a party and make it more straightforward for the user to interact with various
Blockchains [IBM23b; Sic23b].

Because hash functions are usually quite fast, Blockchains add an extra mechanic to slow down
transactions. This mechanic is either ’Proof of Work’ or ’Proof of Stake’. Which mechanic is
applied depends on the individual Blockchain itself [cor23; IBM23b].

Proof of Work demands that the parties solve increasingly challenging problems, to guarantee
that the block they own is valid. This process is called mining. Each miner is rewarded, usually
with some cryptocurrency 12 as a transaction fee, if they mined a block successfully. This creates
competition between different miners to mine the next block, which ensures that they do not try
to manipulate the blocks. By obtaining more than 51% of the blocks, a miner would be able to
manipulate the block easily [cor23; IBM23b].

11https://metamask.io/
12virtual currency with is specific to one blockchain, i.e. Eth for Ethereum

29

2 Background information

Because the Proof of Work concept is quite computationally and energy-intensive, some Blockchains,
such as Ethereum13, have started to deploy the Proof of Stake concept. Proof of Stake-based
Blockchains allows the party with the highest credibility to add a block to the chain, instead of the
party with the highest computation power. This credibility is received by owning the highest stake
in the ledger network. The idea is that the party, which has the highest stake does not want to lose
their credibility and therefore does not tamper with the Blockchain [cor23].

Most Blockchains allow interaction with the dataset and transactions via a defined set of instructions
or small programming languages. Those are called smart contracts. Smart contracts are small
programs, that are deployed to the Blockchain and then manage and interact with assets, which are
blocks, on the blockchain. [IBM23b].

Blockchain can be either private or public. Everyone can join the network and read or write
data to it if the Blockchain is public. A private Blockchain on the other hand is managed by a
single organisation, which can decide who can join the network. More advanced Blockchains
use permissions, to give different parties different reading and writing permission. Usually, those
permissions are managed by a central organisation, but technically it would be possible that
permission-based Blockchains are public too. Lastly, there are Consortium Blockchains. Those
are managed by multiple organisations, which decide, who can add and read data from the chain.
[IBM23b].

13https://ethereum.org/en/

30

3 State of the Art

After introducing the required background information, we inspect the current state of the art.
Therefore we will focus on the identification, authentication, and user management along with the
reputation aspects.

3.1 Identification

The core of a secure and anonymised platform is the identification of new people, who join
the platform. Hence, we take a look at some of the most common ID Systems in Europe. For
simplicity, we focus on Germany and Sweden as an international reference [Grö10; PGH21]. More
ELECTRONIC IDENTIFICATION (EID) providers in other countries are listed in table 3.2. But
firstly, we need to take a brief look at identification properties used in Germany respectively in
Sweden.

Property Description

Date of Birth The date when the person was born and
given its name

Place of birth The town or city in which a person was
born

Current place The town or city in which a person is
living in at the moment

Name at birth The name which was given to the person
when born

Current Name The name which is given to the person
at the moment

Sex at birth The assigned sex at birth

National identification number

A unique number, given to a person at
birth, which is valid for their entire life,
i.e. Tax-ID1 in Germany or Personnum-
mer2 in Sweden

Eye Colour The colour of the person’s eye
Height The height of a person

Table 3.1: ID properties used for identification

1https://www.bzst.de/DE/Privatpersonen/SteuerlicheIdentifikationsnummer/steuerlicheidentifikationsnummer_node.html
2https://skatteverket.se/privat/folkbokforing/personnummer.4.3810a01c150939e893f18c29.html

31

3 State of the Art

Table 3.1 lists international strong and weak id properties printed on the id cards or stored on the
id card chips [FC23] or exist and are in use otherwise. The strong properties are the national ID
number as well as the joined property of given name, date of birth, sex and place of birth. Those
properties can be considered unique. Some properties such as the name can change over time,
therefore the given properties at birth are taken into consideration if it is important to have static ID
properties. The eye colour and height are weak properties because they can slightly vary and can be
hard to verify online. The strong attributes are used by authorities and therefore printed onto the
physical card, comparable Figure 3.1 and 3.2, and stored on the EID chip [FC23; Sic20].

Moreover, the GENERAL DATA PROTECTION REGULATION (GDPR) define PERSONAL
DATA (PD) for the EU and how those data need to be protected. Similar to the United States, which
specifies PERSONAL IDENTIFIABLE INFORMATION (PII) [Thu19]. The GDPR differentiates
those properties into seven categories. Namely, those are ’physical, physiological, genetic, mental,
commercial, cultural and social identity’ as stated by the GDPR [AG23b]. Those properties range
from abstract numbers such as telephone numbers and personal identification numbers to appearance
information such as eye colour and hair colour. Some more information about the data, which
belongs to such regulation is illustrated in Figure 3.3 [AG23b; Thu19].

First of all, there is not a unique system, which can be used across all EU countries. Instead, each
country uses its own ID System. So, in Germany, VideoIdent is the most common Identification
process, while the electronic ID card has started to establish itself. In countries like Sweden and
Norway BankID is the most common ID system. More than 99% of the Swedish population use
BankID [Ban23]. In Germany, while 70% of the population have access to the electronic ID card,
only seven per cent are using this EID system [Pri21]. The video ident procedure is quite common,
but also highly insecure, especially with the accelerated progress of AI-based software [Mar22].

In detail, the German EID cards use an electronic chip, which stores the data encrypted. When a
party wants to read the data, it requires the user to read the chip with NFC-capable devices and enter
their passcode. Afterwards, the encrypted data is sent to an EID Server, which decrypts the data
and sends the data to the requesting party. Each transaction has a unique session ID [KG23b].

BankID on the other hand uses a traditional PKI. This means the person owns a private key, which
is either stored on a bank card (BankID på Kort), on file (BankID på fil) or in the secure app storage
of a mobile phone (BankID på mobil). The actual verification data and certificate is stored on the

Figure 3.1: Swedish ID card [swe21] Figure 3.2: German ID card [Inn23]

32

3.1 Identification

BankID server. When a party wants to read that information, it requests an identification process,
and the user signs this request with its private key. Afterwards, the requesting party can fetch the
information of the particular user from the BankID server [Grö10].

All the provided solutions are centralized solutions and therefore they are quite powerful. Also,
parties that are performing the identification have access to highly sensitive information. Therefore,
a high level of trust is required, which means that there should exist requirements, that the party
needs to fulfil in order to be listed as a trusted service provider. Within the EU there is a standard as
Qualified Trusted Service. In Germany, the Bundesamt für Sicherheit in der Informationstechnik
(BSI) is responsible for the legal requirements, the TÜV-IT for granting permission, if own
infrastructure is used, and D-Trust3 is issuing the certificate. Addionally, the ’Vergabestelle für
Berechtigungszertifikate (VfB)’4 needs to grant permission for the certificate application [D-T23b;
Gro16; Sic23c]. The process for obtaining such a certificate is expensive and requires a lot of time.
Alternatively, another Qualified Trust Services can perform the identification. Moreover, the strict
requirements only refer to trusted services such as handling ID card verification itself. If using an
external ID card verifier, such as D-Trust, such a certificate is not required [D-T23a]. However,
there usually exists a trust agreement between the ID card verifier and the party, which wants to
verify a person’s ID card.

In addition to that widely used national solution, international solutions for the EU are planned
by using the EU Wallets. International EIDs fall under the ELECTRONIC IDENTIFICATION,
AUTHENTICATION AND TRUST SERVICES (EIDAS) regulations. There have already been
German prototypes in the past based on Blockchain. Those however failed because of a lack of

Figure 3.3: PII and GDPR data [Thu19]

3https://www.d-trust.net/de/loesungen/identifizierungsdienste
4https://www.bva.bund.de/DE/Services/Behoerden/Produkt/PA-VfB/pa-vfb_node.html

33

3 State of the Art

security. Meanwhile, more projects have been started for creating a collaborated solution across
multiple countries. Those projects target a framework, not an implementation by itself though.
Such wallets are often described as Self Sovereign Identities [Com23b; Rau22; Reu23; Voß21].

The Self Sovereign Identity is an approach in which the owner of the data holds the data, with
proof of correctness. If another party needs the data, the owner can decide for themself whether
to give the other party the data or not. Also, zero-knowledge proofs are typically used when Self
Sovereign Identities are applied. Zero-knowledge proofs allow us to check if some data is valid,
without actually getting to know the data. An example would be the proof of age. If someone wants
to check if someone is above 18 years old, a zero-knowledge proof would allow them to check it
without revealing the actual date of birth. The other party only received the information it requested,
without getting more data than required [MGGM18].

This means, that even though the regulations by EIDAS 2 would require all countries to implement
a digital wallet for across-country use, it is not required to use the same wallet across all countries.
Moreover, it must be only possible that documents can get validated internationally. Even though
the use of a unified framework may help, to target multiple wallets at once when implementing
software, which uses those wallets [Tha23]. All in all, this requires us to handle different countries
differently later on, when we construct a concept for the carpooling platform because there does not
exist a unified ID system.

eID Provider / eID Product Country Domain
Swedish BankID Sweden bankid.com
Norwegian BankID Norway bankid.no
NemID Denmark nemid.nu
MitID Denmark mitid.dk
Freja Sweden frejaeid.com
Eid Belge Belgium eid.belgium.be
Personalausweis Germany personalausweisportal.de
Cartão de Cidadão Portugal autenticacao.gov.pt
Documento Nacional de Identi-
dad electrónico Spain sede.policia.gob.es

Audkenni Island audkenni.is

Table 3.2: eID Providers

3.2 Authentication

After creating an account, users must be able to sign into their account without revealing personal
information. This in particular means, that no identifiers such as e-mail addresses or mobile numbers
can be used as identifiers. For archiving this there are two common ways. Firstly a pseudonym can
be used along with a strong password. Secondly, asymmetric key pairs can be used for signing.
When comparing both approaches, the pseudonym approach is simpler, however, it would make it
hard to use 2-factor authentication, because this would require a mobile number or an e-mail address.

34

3.2 Authentication

Client

Resource Owner

Authorization Server

Resource Server

1. Authorization Request

2. Authorization Grant

3. Authorization Grant

4. Access Token

5. Access Token

6. Protected Resource

Figure 3.4: OAuth 2.0 flow [HPL23]

The same would take place when resetting a password. By using a private/public key pair we can
increase security and anonymity, however, the user needs to handle the key management, similar to
SECURE SHELL (SSH), which is used to log into a server passwordless [SSH23a; SSH23b].

Because we do not want to perform an authentication process with every server request, we need
to use either session tokens or login tokens. Session tokens are quite common for simple website
authentications but based on their server-binding properties, they are attached to the server, which
stores the token. On the other hand, JSON WEB TOKENS (JWTS) are a common way to handle
stateless authentication. While Session tokens do not store information by themselves, JWTS
contain concrete information about the logged-in user. This again could decrease the anonymity,
when tokens are collected and analysed [Bal17; BDW17].

Another approach and hybrid way is to use the OAuth 2.0 protocol, which essentially generates
access tokens and stores the tokens in a database with attached information, which is required for
validating the permissions. The permissions, which an access token is granting, is called the token’s
scope. In any case, no further information than the access token is transmitted between the client
and server. Moreover, OAuth 2.0 is a quite common protocol, and because of scientific research,
widely analysed against potential attacks [Har12; HPL23; Küs16].

The OAuth 2.0 protocol consists of multiple different components, as shown in Figure 3.4. Firstly,
the client is authenticated with the resource owner by requesting the required data to perform one
required authentication granting flow. OAuth 2.0 supports multiple different grant flows. The most
common ones are the password grant flow, authorization code and refresh token flow.

When the password flow is used, the resource owner needs to provide their username and password.
The authentication code flow uses a one-time password. This might be a 6-digit number or any
other passcode, which is only valid for a very short period of time [Har12; HPL23; Küs16].

35

3 State of the Art

The refresh token grant flow uses a long-living token, the refresh token, which is returned by the
authorization service on a successful authentication by another grant flow, i.e. the password grant
flow. This refresh token is optional, which means the authorization servers, which protect sensible
information, may not provide such a powerful token as the refresh token. However, the authorization
server always returns an Access Token if the authentication is successful.

This Access Token is sent back to the client and has usually a short lifetime, in the range of a few
minutes to a few hours. Afterwards, the Access Token expires and a new token must be retrieved by
the client from the authorization server, with one of the given flows. But, as long as the token is
valid, the client can access protected resources from a resource server. The owner of the resource
server is usually another party as the authorization server, but can also be owned by the same party
[Har12; HPL23; Küs16].

Besides the few given authorization flow, the protocol can be expended by further authorization
grant flow. An authorization server is also capable of disabling authorization flows, which are not
wanted by the owner of the authorization server. The user flow is based on an agreement between
the client, the resource owner and the authorization server. We can use this when we use OAuth 2.0
for our authentication method [Har12; HPL23; Küs16].

3.3 User Management

When the users have identified themselves, we need to store the ID-related information. This
information must be stored securely and must not be modified. The first idea that comes to mind is
the use of Blockchain. Applications that rely on the use of a Blockchain easily solve the problems of
data manipulation. However, this is only the case when used in large clusters. In case the application
is stored on a too-small cluster, there is the risk of a 51% attack [KM23]. This attack allows it to
manipulate about 38% of the Blockchain’s contents, by winning the mathematical proofs based on
the majority in computation power.

Additionally, Blockchains, especially public ones, provide us with an extra problem. When we
insert a value to the Blockchain, the value is visible to all, who have access to the network. This
would mean that sensitive information cannot be stored on the Blockchain, without encryption.
And even by using encryption, there is the risk that a key can be leaked and all data can be stolen,
because an update of that data is not possible. Instead of encrypting the data, it would also be
possible to hash ID information. This would make it possible to store the data without handling any
sort of key management but also opens up the problem that it would be possible to check whether a
person is stored on the Blockchain, which violates the privacy of the users.

But do we even need Blockchain? In contrast to a Blockchain approach exist a centralised database.
This ensures that no external party has access to those sensitive data. This, however, requires that
everyone trust the user management provider and the integrity of the data because the data is not
publicly verifiable nor transparently available. Privacy, on the other hand, is easier to provide with a
centralized database. All that is required, is to encrypt the data for internal use. Furthermore no
external party can easily check against public data. Another problem is the lack of data redundancy.
When using a private database, especially a relational one, data redundancy is mostly not an inherited

36

3.3 User Management

feature of the database, which means the provider has more to do this additional work and everyone
needs to trust that party, that it can recover data, i.e. in case of a server failure. To simplify the
redundancy of data, NoSQL databases could be used [WG18].

When deciding between a blockchain-based solution and a non-blockchain-based one, there is often
a tradeoff between privacy and transparency. While a private database makes it easier to keep
private information safe, it does not provide any transparency.

Another approach is the use of permissioned and private Blockchains. Those limit other parties from
accessing the Blockchain by restricting the write and read access to that blockchain. As such no
sensitive data can be read by unauthorized parties. When adding an authorization component to the
Blockchain, the transparency decreases. By adding an independent party to the private Blockchain,
those concerns could be eliminated, depending on the required transparency degree. Moreover,
private permissioned Blockchains can have a central component for managing the authentication
process or even rollback transactions. In comparison to public Blockchains, where all data is
replicated and stored on all nodes in the chain, authorized Blockchains can restrict the data that is
replicated to particular nodes [LWX19].

Whether we use a Blockchain or not, we have to handle personal data. This requires encryption and
integrity of data. Furthermore, the cryptography keys for encryption and integrity checks must be
stored somewhere and exchanged somehow. When using encryption the transparency of the data
fades. Only one party, which has access to the decryption key, can decrypt the data and have full
transparency. This means that external parties need to trust the party with the private key. Because
the requirements for performing the identification process based on sensitive ID information are
quite high, it can be assumed that the party is indeed trustworthy for managing the data. If they
would do any action, that harms privacy regulations, those parties would lose their permission to
read ID information and are not able to operate anymore.

Another approach is to use the Self Sovereign Identities, which have been used to identify a user. By
using Self Sovereign Identities, the personal data is stored decentral and no centralized organisation
can manipulate the data or access it without the permission of the data owner [MGGM18].

Self Sovereign Identities combine three different technologies to archive this. Firstly, they rely
on the user for a decentralized and immutable data store. The decentralized data store usable is a
Blockchain, which can be either public or private, depending on the issuer of such Self Sovereign
Identity documents. Such documents can be for example ID cards, driver’s licenses, university
degrees or other certificates. By utilising Blockchain for storing such documents, it is not possible
to change the content of the documents, after they have been issued by the responsible organisation.
Further, not even the issuing organisation can delete such a document [AG23a; cyb22; Okt22].

Secondly, Self Sovereign Identities apply the concept of decentralized identifiers. Those identifiers
are used to establish a permitted connection between two or more parties. Such an identifier is a long
pseudo-random generated string and does not contain any information about a particular user. For
sharing the required documents in an encrypted way, each decentralized identifier is connected to
one or multiple asymmetric key pairs. This way the parties can establish an end-to-end encryption.
Further, only the sender and receiver know the actual shared data. Each user can produce as many
decentralized identifiers as they want. They can even generate multiple for the same destination
party and link different documents to one. Those identifiers are generated by the user and stored in
the Blockchain as well [AG23a; cyb22; Okt22].

37

3 State of the Art

The third technique is the use of verifiable credentials. Verifiable credentials allow it to verify
whether the data was issued and generated by a legitimate party, without requiring to ask that party
for verification. This is archivable by using digital signatures and corresponding key management,
such as a central or decentralized PKI [AG23a; cyb22; Okt22].

At the moment Self Sovereign Identities are under active discussion and development, but none of
the prototypes and pilot projects is yet widely adopted or used. This, however, may change with
regulation changes in Europe. Furthermore, in Europe, the necessary infrastructure can be provided
by European Blockchain Services Infrastructure5 Project [Com23a; Inf23a].

3.4 Reputation

When building a reputation system based on privacy and transparency, there is a wide range of
consideration points, that need to be validated before applied and deployed. It is possible to group
those into six categories, architecture, feedback, reputation score, aggregation model, attacks and
costs [HBB22].

The architecture describes if a centralised or decentralised system is used, or even a hybrid of both.
The Feedback and its subratings can be either stored as a set of values or as a range of results.
Moreover, feedback can be split into chunks by increasing the granularity of the ratings. This
is quite similar to the reputation score. A score can either be stored as a result, without storing
the ratings themself, or as a set of ratings. Additionally, attributes such as liveliness, durability,
visibility as well and monotonicity are important attributes of the reputation score [HBB22].

The aggregation model describes how the actual reputation score is calculated based on the given
feedback. This could be tallied and averaged, using means or more complex formulas. Some may
even consider aging reputations. Based on the different aggregation models and chosen reputation
score models, a large range of different attacks are possible to manipulate own or others’ ratings.
Some are free riding, which allows them to receive ratings without actually providing any service.
Another attack would be ballot stuffing, which allows one to improve the own rating by stuffing false
positive feedback into the system. A related attack is the whitewashing attack. The whitewashing
attack enables a user with a bad rating, to delete their account and reopen a new account with a
fresh rating [HBB22].

The possible aggregation models also depend largely on how the data is anonymized and whether
the rating is encrypted or not. In case the rating is encrypted the model depends largely on the used
encryption scheme and its properties. For the purpose of running more detailed aggregation, a fully
homomorphic encryption would be required and zero-knowledge proofs must prevent the user from
submitting illegal ratings. Additionally, homomorphic algorithms such as RSA require padding
to be fully secure, which would make RSA lose their homomorphic attributes. Besides that fully
homomorphic algorithms usually contain errors with every computation, which would make rating
inaccuracy when a large set of operations are performed. [HBB22; WNK20]

5https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home

38

3.4 Reputation

Lastly, costs are an important factor in reputation systems. Those depend on the needed amount of
storage space, the length of messages and the complexity of the aggregation model. If the message
length or quantity is large, the required bandwidth needs to be large too, which increases the cost for
the operator of such a reputation system [HBB22]. Similar to the aggregation model, if a complex
formula is used to recompute a user’s rating based on a small change, the costs are increased for the
operator.

In the survey [HBB22], a large number of reputations have been summarized and compared with
each other. An overview and comparison regarding privacy and integrity is given in Figure 3.5.
Those reputation systems use different approaches, which include Blockchain as well as token and
pseudonym-based reputation.

Blockchain-based reputation systems use the properties of the underlying Blockchain, to achieve
their privacy and security goals. Those reputation system does not rely on a trusted third party,
which manages and validate the given ratings and computes them. Instead, everything is transparent
and based on smart contracts [HBB22].

Token-based reputation systems on the other hand use cryptographic procedures to derive a
pseudonym from a user instance and hide the actual identity of the user. Blind signatures are one
way to generate such pseudonyms. Those are digital signatures, which mask the actual message,
which is signed afterwards. This is either done by a central entity or by the ratee itself [Cha83;
HBB22].

Transitory Pseudonym-Based Systems are another approach. It assigns multiple short-lived
pseudonyms to a user. The link is only known by a central unit, which, however, has no more
additional information than the link itself. That unit is often described as PSEUDONYM CERTI-
FICATION AUTHORITY (PCA). PCA can apply blind signatures to compute such pseudonyms,
which allows it to transfer a pseudonym from one PCA to another [HBB22].

All in all, we can manifest that there exists a wide range of different reputation methods in a privacy-
preserving environment. However, each has other requirements and preconditions regarding the
system, which wants to use it. This means we need to take the reputation system into consideration
when drafting our concept.

39

3 State of the Art

Privacy Integrity

System M
ul
ti
pl
e
Ps

eu
do

ny
m
s

U
se
r-
Ps

eu
do

U
nl
in
ka

bi
lit

y

Ps
eu

do
-P
se
ud

o
U
nl
in
ka

bi
lit

y

R
at
er

A
no

ny
m
it
y

R
at
ee

A
no

ny
m
it
y

In
qu

ir
er

A
no

ny
m
it
y

R
ep

ut
at
io
n
Tr

an
sf
er

U
nf

or
ge

ab
ili
ty

D
is
ti
nc

tn
es
s

A
cc
ou

nt
ab

ili
ty

A
ut
ho

ri
za
bi
lit

y

Ve
ri
a

bi
lit

y

Blockchain-based Systems
Schaub et al. 2016
Bazin et al. 2017
Dou et al. 2018
Kang et al. 2018
Lu et al. 2018
Owiyo et al. 2018
Jo and Choi 2019
Liu et al. 2019
Dimitriou 2021
Token-based Systems
Androulaki et al. 2008
Schiner et al. 2009
Schiner et al. 2011
Zhang et al. 2014
Busom et al. 2017
Proxy-based Systems
Petrlic et al. 2014
Mousa et al. 2017
Signature-based Systems
Bethencourt et al. 2010
Guo et al. 2013
Lajoie-Mazenc et al. 2015
Chen et al. 2016
Transitory Pseudonym-based Systems
Miranda and Rodrigues 2006
Steinbrecher 2006
Anceaume et al. 2013
Christin et al. 2013
Other Systems
Kinateder and Pearson 2003
Bo et al. 2007

Legend
Property satised
Property partially satised
Property not satised
Property not specied or not applicable

Privacy Integrity

System C
on

d
en

ti
al
it
y
(I
nt
er
m
ed

ia
te

In
fo
)

C
on

d
en

ti
al
it
y
(P
ub

lic
In
fo
)

Pr
iv
ac
y
of

R
el
at
io
ns

hi
ps

C
or
re
ct

R
an

ge

C
or
re
ct

C
om

pu
ta
ti
on

A
ut
ho

ri
za
bi
lit

y

Ve
ri
a

bi
lit

y

Blockchain-based Systems
Azad et al. 2018
Bag et al. 2018
Schiedermeier et al. 2019
Zhao et al. 2019
Azad et al. 2020
Zhang et al. 2020
SMPC-based Systems
Pavlov et al. 2004
Gudes et al. 2009
Nithyanand and Raman 2009
Gal-Oz et al. 2010
Hasan et al. 2013
Dimitriou and Michalas 2014
Dolev et al. 2014
Clark et al. 2016
Bakas et al. 2021
Token-based Systems
Kerschbaum 2009
Proxy-based Systems
Ries et al. 2011
Ma et al. 2018

Legend
Property satised
Property partially satised
Property not satised
Property not specied or not applicable

Figure 3.5: Overview of reputation system [HBB22]

40

4 Concept

After introducing the latest technologies and approaches, we take a look at the final concept. This
concept is split into different subsections, which focus on identification, authentication, as well as
user and rating management. The constructed component is called a ’Auth Service’. By design, it is
possible that more than just one of those Auth Services exists.

4.1 Identification and Signup

The goal of this concept is to enable user management for a distributed carpooling platform. In
Chapter 3.1, we have seen that different countries use different identification methods. This has
the result that we cannot provide a uniform implementation for the identification process. Instead,
we need to allow each country to implement its own optimised solution for the identification. By
allowing external parties to implement their own solutions, we need to make sure that no harmful
programs are used. This can be archived by a certification process introduced more in detail in the
next chapter. Now let us take a look at how this would work for the German market.

When a new user wants to create an account, they need to have access to their physical ID card.
This card needs to have the eID feature enabled. If those requirements are fully filled the user can
request to open a new account. Afterwards, they are forwarded to the ID validator. In Germany, it

Blochain Auth Service
Database

ID Validator

provide ID Card

Send Decrypted ID information

store hash on Blockchain store encrypted ID information

external component

Platform Component
1

2

34

store public key

provide public key

5

6

New User

Figure 4.1: Registration Flow

41

4 Concept

Figure 4.2: Ausweisapp Figure 4.3: BankID Request Figure 4.4: BankID Identifi-
cation

is provided by the AusweisApp21, which looks to the user such as presented in Figure 4.2. This
App reads the encrypted data from the ID card and sends it to a certified eID provider, comparable
Figure 4.1. Afterwards, this eID provider sends the decrypted data to the Auth Service. The data is
usually sent via a signed JSON Web token. However, the details and format can be different across
different eID providers and are usually defined in an agreement between the eID provider and the
identification requester.

For other countries, the ID validator can be changed. i.e., to BankID in Sweden. The flow is
identical. When signing up, the user identifies themself by using BankID and their server is sending
the response to the corresponding Auth Server. When using a BankID, the person provides their
personnummer to the app and afterwards, the app sends an identification request to BankID. After
the request is sent to the user, they open the BankID App and initialize the identification process.
The identification is then done either by providing the registered fingerprint, as shown in Figure 4.3,
or the person’s security code, shown in Figure 4.4.

Because of the use of eID Services, all Auth Services must be trusted by the eID Validator. This
means for legal and security reasons, it is only possible to use a semi-central solution. This is
usually archived by issuing digital certificates.

1https://www.ausweisapp.bund.de/home

42

4.2 User Management

For test purposes, we use a dummy eID Service, which is simply implementable, comparable to
Code Sample 4.1. The ’Authserver.Auth.Keys’ module helps with dealing with cryptographic data.
It signs the provided data, which then can be validated at the main backend logic. This means it
would just behave like an additional different eID provider.

In addition to the identification process, each user generates a private-public key pair, which is later
on used for authentication. Therefore, the user requests a signing challenge from the server and
afterwards, the user signs the challenge. When the challenge is signed, the user sends it along with
the public key to the server, where the server validates the challenges with the provided public key
and stores the public key in the database if the validation is successful. This allows the user to sign
into their account without any pseudonym or password.

1 defmodule Authserver.IdServer do

2 @private_key "-----BEGIN RSA PRIVATE KEY-----\n....\n-----END RSA PRIVATE KEY-----\n"

3 @hash_method :sha3_512

4 def parsed_key() do

5 Authserver.Auth.Keys.decode_pem(@private_key)

6 end

7 def sign_data(data) when is_map(data) do

8 json_data = :crypto.hash(@hash_method, Jason.encode!(data))

9 Authserver.Auth.Keys.sign(parsed_key(), json_data)

10 |> Base.encode16()

11 end

12 end

Code Sample 4.1: Sample Dummy eID Server written in Elixir2

4.2 User Management

As soon as the identification is finished successfully, we need to store the information somewhere.
For storing that information, we encrypt them and store them in a traditional database on the server
side. At the same time, we compute a hash of the data and store it on a private and permissioned
Blockchain. By storing a hash of that ID information, it is possible for other Auth Servers to validate
if a user is already a user in the platform as a whole. This information is important to check whether
a user has been banned because of improper behaviour.

The use of a permissioned and private Blockchain eliminates the risk of unauthorized access from
third parties. Only Auth Services receive permission to read all ID hashes, stored on the Blockchain.
At the same time only the Auth Service, which wrote an entry to the Blockchain can update it.
The actual data is not stored on the Blockchain. This is due to security and privacy concerns. It
should not be possible to retrieve all data from other Auth Services. Furthermore, it should only be
possible to check whether another user was banned already. All under information is unimportant
for a second Auth Service.

2https://elixir-lang.org/

43

4 Concept

Figure 4.5: Auth Eco System

It is also worth thinking about if it is required to store the hash of all IDs on the Blockchain or
if it is sufficient to store only banned IDs. The advantage is that each Auth Service provider can
decide whether they want to allow a user to be registered with multiple Auth Services at the same
time or not. In case all hashes are stored on the Blockchain the user’s privacy would be decreased.
This is because of the ability of a provider to check whether a user is already registered with some
other provider. Or in case a user wants to change their provider, the old provider could Figure out
easily to which provider the user has changed. When we stored only hashes of banned users the
privacy of honest users is not decreased. Only if someone is banned on a platform, a hash is stored
on the Blockchain and allows other Auth Services to decide whether they want to allow a banned
user to register with them. For now, a ban would take global effect to avoid a user having multiple
accounts.

This architecture leads to multiple isolated networks, which are owned by the individual Auth
Services, comparable Figure 4.5.

Moreover, each Auth Service owns its ledger node, for sharing data on the Blockchain with other
Auth Services. When a new Auth Service verifies itself as a trusted service it receives a certificate
and private key for joining the ledger network. Only if a majority of all Auth Service providers
trust the new service it can join and read from the Blockchain. In case a majority mistrusts an Auth
Service provider, it gets removed from the Blockchain and cannot synchronize its ledger with the
others. More about the used Blockchain can be found in the section 5.2.

44

4.3 Auth Service Requirements

4.3 Auth Service Requirements

For protecting the user’s data and to regulate the relatively powerful Auth Services, there are a
couple of requirements, which need to be fulfilled. Firstly, an Auth Service must support one of the
eID services. This is connected with required verification and technical requirements. For reading
data from the German eID card, it is required that the service has a permission certificate or a
corresponding privacy agreement. Otherwise, it is not possible to request any data from the user.

Secondly, the potential Auth Service provider needs to get an SSL certificate with full organization
validation. This is required for other Auth Services to identify the new identity and allow them to
join the network or reject it. Moreover, the process of receiving such a certificate takes some time
and reduces the risk of faulty providers, who just want to join the network for fetching data. The
given expiration date on the certificate guarantees that each provider needs to redo the process in
order to stay on the network.

Lastly, there is the requirement of a data protection officer, which is a legal requirement when
handling a lot of personal information, and in some cases, it is required to receive permission to
read the eID cards.

4.4 Authentication

At the same time a user is registering with an Auth Service, an asymmetric key pair is generated.
The user stores its private key on the device and registers the public key with the Auth Server. This
is done by a straightforward challenge-response protocol (CRP) [NIS17]. In particular, the server
generates a random string, the challenge, which is sent to the user. Afterwards, the user is signing
the given string and sends the signature and the challenge back to the server. The server now verifies
the signature. Further, the server checks whether it has generated that particular challenge. If it is
successful, the public key is added to the user’s account and can be used for future logins.

Another approach would be to use a traditional public key infrastructure with key certificates. In
that instance, the user would request a Certificate Signing Request (CSR), which the server validates
and signs if the request is correct. The CSR itself contains a timestamp and a signature. However,
this would be an unnecessary overhead for this use case.

When the user wants to log in in future, they request a login challenge and sign this challenge. This
again is signed and used to retrieve an OAuth 2.0 token from the server. Only if the signature is
valid and the corresponding public key is assigned to the user’s account, a valid OAuth token is
granted. This can be realized by implementing a custom OAuth authorization grant method. Which
is performing the sign challenge.

By design, OAuth 2.0 is made to handle the user management and the authorization of those data.
Therefore a third party cannot edit or view any data, for which it has no access rights. Moreover,
the user management provider learns no additional information about the data the third parties store.
Those properties are ideal for our use case, where the carpooling platform is the third party and the
Auth Server is the user management provider. Moreover, a login token is only valid for a certain
time, which means, that the access token cannot be used for tracking as long as the token itself does
not grant permission to retrieve information, which would identify the user [Har12].

45

4 Concept

User Auth Server

generate keypair

request challenge

send challenge

sign challenge

send signature

send oauth token

generate challenge

validate signature

Figure 4.6: Authentication Setup as UML sequence diagram

This token then can be used by the user to generate subtokens. Those subtokens are called
pseudonyms and can be used by the matching service of the carpooling platform. The user can
generate as many pseudonyms as they want as long as they have an OAuth access token. The OAuth
token, however, should not be given to the carpooling platform directly, unless the scope is restricted
to generate pseudonyms only. Otherwise, the carpooling platform could take over the user’s account
as long as the token is valid.

Before a user can generate a pseudonym at least one Blockchain wallet needs to be registered and
linked with the account. This linking is performed by a signing challenge, while the private wallet
key is used to sign a nonce. The server is validating the challenge with the corresponding wallet
address respectively the public key and if it is valid, the public key is stored by the Auth Service
and can later on be used to generate a pseudonym for the linked account. This linking process is
required to ensure that a pseudonym is linked to an existing user and no fake pseudonyms can be
added to the public Blockchain. More details about the format and generation process are presented
in section 4.5.

For generating a pseudonym the user’s client is sending a pseudonym generation request for a
particular public key, meaning it can only be used for transactions signed by a particular private key.
If the public key is assigned to the same user as the OAuth token, a subtoken is generated. The
private key of the account and of the wallet are not needed for this process. The OAuth token has a

46

4.5 Reputation

validity of 2 hours by default. However, Auth Services can decide by themself for how long an
OAuth token shall remain valid. It is recommended to keep the lifetime of the token short in order
to avoid someone doing any harm with a stolen OAuth token.

4.5 Reputation

Based on the fact that all users can use the services without revealing any personal information, it
is not possible to check the quality of a car or the reliability of a person on any criteria except an
anonymised rating system.

This system needs to be able to provide customers with the required ride quality and the vehicle
provider with the certainty that a customer is not doing any damage to their property or harm to
any other customers. Which altogether makes the rating system a critical component of the whole
service.

We define a rating as a number between 1 and 5, while 1 is the worst rating a user can have, 5 is the
highest rating possible. A car provider can reject a user if they have a rating below a specified limit.
This limit can be chosen by the provider. The user on the other hand can also specify a rating, which
allows to filter vehicles with a particular rating. Because there exists a minimum rating, all users
and cars must start with a rating, which makes it possible to match the other party’s requirements.

One possible way would be to start with a rating of 3. This, however, would make it impossible for
new cars to get any new customers. Therefore, we give every new user respectively car a rating of 5.
This rating is overridden after the first actual rating is given by another customer or the car provider.
Which means that the initial rating does not have a lasting impact.

Another problem is the aging of ratings. In case that user has gotten many good ratings in the past,
they could behave badly after a certain time, which would not decrease their rating anymore. The
same would be the case if a user got a few bad ratings in the past, they would never be able to
increase their rating over time. All in all, this means, that older ratings must have a lower value than
newer ratings.

Moreover, it must be guaranteed that a user cannot manipulate their rating, by whitewashing their
account rating. To avoid such attacks, it must not be possible to delete and reopen an account with
the same ID card. This is archived by requiring a one-time identification at registration time.

After ensuring that the ratings are plausible, we need to store them in an anonym way, so that it
is not possible to gain additional information about the user. Moreover, it should not be possible
to detect the user’s account after taking a ride and giving a rating for this ride. But the technical
requirements highly depend on the used reputation formula and the mathematical operations, which
are required for the computation.

Because we do not want, past actions to have a too large impact on the current rating, we need to add
an aging factor to the ratings. This has also consequences on the data, we need to store regarding
the rating. Further, for archiving an accurate rating, we need to store the date when the rating
was given. A sequential rating, where each rating has an index, would work, but it would reduce
the signification of the total rating. This is because a person who takes more rides could change
their ratings and their chronological impact faster, which would create an imbalance between users.
Storing the actual time and making the time have an impact on the total rating, would require a

47

4 Concept

Figure 4.7: Linear Function for 365 days time frame

Figure 4.8: Exponential Function for 365 days time frame

recomputation of the rating after each new rating, otherwise, the aging factor would have no impact.
Sequential ratings would not have that problem, because the aging is linear and depends largely on
the current index and previous indexed are therefore known if the first index is 0 or 1.

Using a time-based rating system would allow us to apply either a linear or an exponential decay of
the rating. A linear decay would have the problem, that fresh ratings age too fast or old ratings too
slow. Meaning, that the distinction between one year or two years has less of an impact than a rating
difference of one or two weeks. Plus, it would take a long time, until a past rating loses its impact
on the current rating. By using an exponential decay, it is possible to make ratings age slowly within
the first few months and ratings older than a few months losing their value rapidly. The Graphs in
Figure 4.7 and 4.8 show how weighting functions would be distributed over a duration of 365 days.
Those are using different parameters.

This leads us to the following formula:

48

4.5 Reputation

Smart Contract

Car pooling Platform Auth Service

Rater

write to blockchain

Ratee

read from blockchain

run aggregation

send new rating

request rating based on pseudonym

1

2

3

4

5

Figure 4.9: Rating - Blockchain Interaction

𝑅 =
Σ𝑛
𝑖=1𝑤𝑖 (𝑡) · 𝑟𝑖
Σ𝑛
𝑖=1𝑤𝑖 (𝑡)

With:
Δ𝑡𝑖 = 𝑇 − 𝑡𝑖

𝑤𝑖 (𝑡) = 𝑒−𝜆Δ𝑡𝑖

The given formula uses UNIX UTC timestamps, which are then converted into days instead of
microseconds and rounded to the next integer to hide the exact time. The 𝜆 parameter is set to 0.01.
This creates the best distribution, comparable to Figure 4.8.

Now, after we defined the formula for the calculation of the ratings and the range in which a rating
can be, we need to inspect, how we can store the ratings so that it is not possible to track back a
rating to the rater or rate.

One possible way would be to use homomorphic encryption. By applying homomorphic encryption
it is possible to know who has given a rating, and who was rated, but it is not possible to tell
which rating the person has been giving. Any external party could compute the rating, but only
the party with the private key could decrypt the rating. However, the problem with homomorphic
encryption is that those algorithms are complex to implement and quite slow. Plus, if a large amount
of ratings are aggregated, the rating loses accuracy. Furthermore, there must exist a central party,
who manages the key. Those private keys can not be managed by the user itself, since the user could
simply manipulate the rating by returning a wrong value. This would require an additional trusted
party, which checks if the user is returning the correct rating or which decrypts the values on behalf
of the user.

49

4 Concept

Another approach is to mask the ratee and the rater and keep the ratings visible. This is possible
by using pseudonyms. Those pseudonyms are managed by the Auth Service. Because the Auth
Service must be a trusted party if it wants to identify people, we can be sure that it would return
the correct rating and not manipulate it. Moreover, the Auth Service has only access to the user’s
pseudonyms, which it manages itself. If the user decides the change the Auth Service, the Auth
Service loses access to newer ratings. Because the ratings have an aging property, the old ratings,
which the Auth Service knows would lose their value quite rapidly. This would make it useless for a
malicious Auth Service to store the old ratings it once had access to.

It is important to note that the Auth Service is only responsible for the aggregation because it has no
access to the actual riding information, and therefore it could not guarantee that the ride has actually
been taken by the rater and ratee. The possible interaction is illustrated in Figure 4.9. Further, it
requires that the carpooling platform makes sure that no invalid ratings are inserted.

The last open question is how a pseudonym is generated and what data it contains. The most
important property of a pseudonym is that it is unique and readable to all parties. Therefore, the
pseudonym must be encoded in base16. The pseudonym length must be at least 24 bytes, to avoid
duplicates based on a too-small value space. The Auth Service is responsible for uniqueness. This
would allow them to generate roughly 25612 pseudonyms without risking a coalition. Respectively,
the chance would be lower than 1.27e-29. The simplest way is to generate the bytes randomly.
However, because of an increasing number of users and the generation of multiple pseudonyms per
user per week, it is recommended that the pseudonym’s length be much longer. One way would be
to generate a random string of 100 bytes and append the current timestamp. Afterwards, hash the
value with the Sha3 512 algorithm and encode it in base16. Code Sample 4.2 gives an example
implementation.

1 def generate_pseudonym() do

2 base = :crypto.strong_rand_bytes(100)

3 time_based = base <> Integer.to_string(:os.system_time(:millisecond))

4 :crypto.hash(:sha3_512, time_based) |> Base.encode16()

5 end

Code Sample 4.2: Generate Pseudonym written in Elixir

Now after generating a pseudonym, the Auth Service needs to prove that it was the party, which has
generated the token. Without this proof, the carpooling platform could not detect if the pseudonym
is valid or was generated by a party, which is not authorised to generate platform pseudonyms.
Further, a malicious party could generate random pseudonyms and book or rate a ride with it.

To avoid this, the Auth Service is signing the pseudonym with its private key and additional data.
The corresponding public key is accessible by the carpooling service. For Blockchain operations,
the public keys would get hardcoded and updated if required. This is required because smart
contracts are not capable of executing an HTTP request. However, the contract owner could call a
method, to update the public key to validate signatures.

As shown in Code Sample 4.3, the signature contains the pseudonym itself, the timestamp when the
pseudonym was generated. These timestamps can be used to limit the time, in which a pseudonym
is valid. Moreover, the pseudonym is linked to a specific wallet address. This ensured that a
pseudonym could not be stolen and misused by a malicious attacker.

50

4.5 Reputation

1 {

2 "hash_method": "sha3-512",

3 "hash_compute": "pseudonym+auth_server+timestamp",

4 "auth_server": "prototype auth service",

5 "pseudonym": "d79d8c9d7b52faed3a309f55351a01d9...",

6 "timestamp": 1694699013,

7 "wallet": "0xabfa3ca...",

8 "signature": "231cacc12..."

9 }

10

Code Sample 4.3: Pseudonym Data

51

5 Implementation

Because of the complexity of the authentication system and rating system, we use a substantial range
of various technologies. Therefore, we take a closer look into those different technologies now.

5.1 Backend

The backend of the application is split into two components, as shown in Figure 5.1. The first
one is the main logic including the external REST API of the Auth Server written in the Elixir
programming language. This programming language uses the Erlang VM, which allows running the
logic easily in a scalable, fault-tolerant and distributed way. Elixir uses a functional programming
style and allows us to write complex code quite efficiently without a lot of boilerplate code, which
would be required when written i.e., in Java [Tea23].

Another big advantage is the ability to generate code that can run in tausend of different processes
at the same time [FCZ16]. This is quite important when a lot of pseudonyms must be created and
managed. Because the carpooling platform relies heavily on a rating system, a lot of rating requests
are sent to process at the same time and need to be handled concurrently. Another handy feature of
Elixir and Erlang is the capability to connect multiple nodes to a united cluster, which allows one to
scale up the system quickly.

One downside of Elixir is the lack of support for interacting with Blockchains via external libraries.
Most libraries for interacting with such Blockchains are typically written in JavaScript based on
the nature that Blockchains such as Ethereum are usually connected with the user’s browser and

Figure 5.1: Technology overview

53

5 Implementation

ContractFactory

+ registeredContracts: string

+ contractCounter : string

+ contractsByID(uint256): address

+ timestampByID(uint256): uint256

+ createContract(_amount: uint256): void

+ getContractsByUser(user:address): Contract[]

+ getContractByID(contractID: uint256): address

+ getContractTimestampByID(contractID: uint256): uint256

Contract

+ party1: address

+ party2: address

+ userRating: uint

+ rideRating: uint

+ isUserRatingSet: bool

+ isRideRatingSet: bool

+ setUserRating(_rating: uint): bool

+ setRideRating(_rating: uint): bool

Figure 5.2: UML Class Diagram of Public Contracts

Wallet Extensions such as Metamask1. Moreover, we do not want to be tightened to one particular
Blockchain technology, therefore it is simpler to use a JavaScript Bridge Project in order to interact
with the Blockchain from the Auth Server business logic.

5.2 Blockchain

At the moment there exists a large range of different Blockchains. For our purpose, we need to choose
two different Blockchains, which need to fulfil two different tasks and therefore require different
technological features. Firstly, we need a Blockchain, which provides us with the transparency
properties, which we require for an open platform.

This means we need to search for a public Blockchain, which needs to be able to run smart
contract-based operations and ideally, it has the capability to send push notifications on changes.
In practice, this first Blockchain is the main Blockchain for all carpooling application-specified
operations, which only operates on anonymised data, without any capability to link any inserted
data to a user. Moreover, the chosen Blockchain must be well known, because the users of the
platform interact with the Blockchain directly, i.e. via their browser. Another important aspect of a
carpooling platform is the capability to run the application in a scalable and distributed fashion.

Blockchains that would fit such a purpose are Ethereum and Solana. Solana is the newer of both
and highly optimised for scalability and performance, which has a huge advantage over Ethereum in
practice and that is the price per transaction. Which would make Solana the preferred choice in
a real-world scenario. However, in our situation, in which we are only interested in a prototype,
Ethereum is the better option. This is because both Blockchains offer quite similar features but
Ethereum is the more mature platform and therefore has more development tools, which makes
it easier to develop a prototype, such as Ganache2 and Remix3, which enables to deployment

1https://metamask.io/
2https://trufflesuite.com/ganache/
3https://remix.ethereum.org

54

5.2 Blockchain

and testing of smart contracts locally. Furthermore, we have assumed in the introduction that
there already exist smart contracts in the Ethereum Blockchain, which can provide us with ratings,
therefore it is handy to operate on the identical public blockchain.

Ganache is used to create an Ethereum network locally and initialise wallets for test purposes with
enough credit, to perform transactions on that network. It is easy to install and to setup and therefore
avoids a lot of trouble when you just want to test whether the contracts would work in a production
network.

Remix on the other hand is a webbrowser tool, which enables us to interact with an Ethereum-based
Blockchain, including local ones. It keeps track of the created contracts within the current session
so it is possible to interact with all public methods and attributes of a contract without the need to
set up any local environment.

Figure 5.2 is pointing out the used smart contracts on the public Blockchain. The upper half of
the UML class diagram represents the properties of the contract, while the lower part are the
operations, which can be performed on a contract. The contractFactory is responsible for generating
new contracts and keeping track of existing contracts. Each car-pooling platform would own their
contractFactory and be the only party who would have write permissions, while everyone has read
permissions.

Each contract has an incrementing ID number, which allows retrieving the address and creation
time of the contract in the time complexity class of O(1). This means, the caller would not need to
iterate over all contracts to retrieve the lasted contracts. The last ID is stored in the contractCounter
property. Furthermore, this combination enables Auth Services to retrieve all contracts cache them
locally and update them once every hour by just retrieving new contracts and storing the last ID,
they have fetched. This is important for computing the ratings later on, which are stored in the
’RideContract’ smart contract. The ’rideRating’ is given by the car (party1) and the ’userRating’ by
the user (party2).

In addition to data that shall be publically available, we need to store sensitive data which must be
only visible to authorized parties. Such data would be hashes of the real identity of a person, which
would need to be verified in case of registering with another Auth Service provider or if we need to
verify data for fulfilling laws. The main requirements for this Blockchain are that it is private and
has an authorization mechanism. One of the most established private and authorized Blockchain
platforms is Hyperledge Fabric. This Blockchain allows to authorize only certified parties to join
the ledger. Those certificates are based on a PKI [Hyp23b].

This limits the number of parties that can deploy smart contracts, add data to a contract and even
read data is limited. In addition to the authorization mechanism, it provides a fault tolerance on
multiple levels. It can provide a simple technical fault-tolerant, which requires that new data is
verified by multiple nodes before any change is performed to the Blockchain or even a byzantine
fault tolerance if required, which would protect against a malicious node [SBV18].

Figure 5.3 shows the used smart contracts on the private Blockchain. This contract has the
responsibility to store hash values of the identification properties, such as the full name, date of
birth, and place of birth. The hash value is computed by the Auth Service, which owns the data.
The actual data is never stored on the ledger directly nor in the logs. Further, this requires that
the Auth Service computes the hash correctly. For the computation, the sha3-512 algorithm must

55

5 Implementation

IdContract

+ ID: string

+ data: string

+ owner: string

+ banned: bool

+ GetAsset(id: string): IdContract

+ GetAllAssets(): IdContract[]

+ AssetExists(id: string): bool

+ GetAssetByHash(hash: string): IdContract

+ ChangeAssetOwner(id: string, newOwner: string): IdContract

+ AssetHashExists(hash: string): bool

+ UpdateAssetBanned(id: string, banned: bool): IdContract

+ TransferAsset(id: string, banned: bool): {oldOwner: string}

Figure 5.3: UML Class Diagram of Private Contract

be applied to the values retrieved by the eID service provider. For consistency, the value must be
preformatted in JSON with alphabetically ordered keys and the hash value encoded in base16. In
Elixir, the hashing algorithm implementation would look as shown in Code Sample 5.1.

Data cannot be changed once added to the Blockchain. Even though Hyperledge allows overriding
contracts if all parties agree, which would allow for change in the logic regarding the data
[Hyp23a].

1 def encode_personal_data_to_json(key_map) when is_map(key_map) do

2 key_map

3 |> Map.to_list()

4 |> Enum.sort_by(fn {key, _value} -> key end)

5 |> Jason.OrderedObject.new()

6 |> Jason.encode!()

7 end

8
9 def hash_personal_data(data) do

10 value = encode_personal_data_to_json(data)

11
12 :sha3_512

13 |> :crypto.hash(value)

14 |> Base.encode16()

15 end

Code Sample 5.1: Hash ID Data

56

5.3 Database

OauthToken

+ token: string

+ created_at: number

+ expires_in: number

Pseudonym

+ value: string

User

+ fingerprint: string

+ public_key: string

belongs to

1

n

1n assigned to

Account

+ iv: string

+ key_id: string

+ tag: string

+ personal_data: string

+ personal_data_hash: string

belongs to

Wallets

+ wallet_id: string

+ wallet_public_key: string

+ account_id: string

belongs to 1n

n

1

Figure 5.4: UML Class Diagramo of Database

5.3 Database

Since some data are still too sensitive to store on a Blockchain where data is immutable, even with
limited access, we need to fall back to a centralized database for these data.

The main data that we need to store in the database are the login tokens, pseudonyms, wallet
addresses and lastly the actual data stored on the ID cards. Because of the relatively small amount of
data a single Auth Server stores, most NoSQL Databases would be large over-architecture. Therefore
traditional SQL Databases fit our purpose just fine. In case more data would need to be stored by
a single Auth Server, a Key-Value database, such as Riak, could be used. In the end, each Auth
Service provider can choose the database that would fit their purpose and amount of data best. For
our prototype, we use Postgres, which is widely supported.

In Figure 5.7, we can see the defined database tables and their relations as a UML diagram. Its
central table is the account table, which defines what is assigned to an identified person. Each
account can have multiple users. Those users are basically a public-private key pair, which is
used to sign in. The private key is stored by the user and the public key and the corresponding
public key fingerprint is stored in the database. The ’OauthToken’ holds all active authentication
tokens, which are issued on a successful sign-in attempt and expire after 120 minutes. In addition
to the shown properties, that table also contains the scope for which a token is valid and by which
application ID it was created. However, those properties are not used yet but belong to the OAuth 2.0

57

5 Implementation

definition [Har12]. The pseudonyms table contains all generated pseudonyms, which are assigned
to a particular user. Lastly, we have a table, which is responsible for keeping track of all wallets
which belong to an account and are linked to a pseudonym.

58

5.4 App

5.4 App

HTTP
Verb

Endpoint
(Response Body) Usage

POST /api/auth/login/session
(LoginSessionResponse)

Requests a session token from the backend. This
token needs to be signed by the private key of the
user.

POST /api/auth/login/
(LoginResponse)

Sends the signed login requests to the server, which
validates the signature and re<turns an OAuth 2.0
token if successful.

POST /api/auth/accounts/request
(CreateAccountRefResponse)

Requests a new account token. This token needs to
be sent to the eID service such as Ausweis2App or
BankID and is needed to map the response of those
apps to the user who wants to register.

GET /api/auth/id-reference/:reference
(IdReferenceResponse)

Fetches the metadata to an id reference, such as
account id if registration was successful

POST /api/auth/accounts/create/:id_token
(CreateAccountResponse)

This endpoint is called either by the eID server directly
or through a proxy and contains the actual user data
linked to the new account token. The token must exist
otherwise the request is rejected. It is also important
to validate the actual data, usually, the data contains
a signature created by the eID server.

POST /api/auth/users
(UserResponse)

This endpoint allows it to add the first private-public
key to the account. As long as no key is registered
this endpoint can be called. Otherwise, an OAuth
2.0 token must be provided in the header and the
/api/users endpoint must be called. This endpoint is
usually called as soon as possible after a new account
is created.

GET /api/auth/rating/:address
(RatingResponse)

Gets the rating of a particular user by own of its wallet
addresses.

POST /api/accounts/wallet/add
(WalletResponse)

Adds a wallet address to an account after validating
the signature

POST /api/accounts/wallet/challenge
(CreateWalletChallengeResponse)

Requests a challenge, which must be signed by the
private wallet key

GET /api/accounts/wallets
(WalletResponse)

Gets all wallets of an account registered at the current
Auth Service.

POST /api/pseudonym
(PseudonymResponse)

Generate a new pseudonym, this can be used for
one-time actions, while the wallet remains the same
for longer periods of time.

POST /api/users
(UserResponse)

Similar to /api/auth/users, however, the user requires
a valid OAuth 2.0 token, for adding a new private key.

Table 5.1: Rest API Endpoints

59

5 Implementation

User

Frontend App

Frontend App

Frontend App

Auth Service

Auth Service

Auth Service

Auth Service

Figure 5.5: Frontend - Auth service relation

CreateAccountRefResponse

+ ref: string

SuccessAccountResponse

+ iv: string

+ keyId: string

+ tag: string

+ id: string

+ personal_data: string

CreateWalletChallengeResponse

+ challenge: string

PseudonymResponse

+ base64: string

+ data: string

RegisterRequest

+ iv: string

+ keyId: string

+ tag: string

+ id: string

+ personal_data: string

WalletResponse

+ walletId: string

+ walletPublicKey: string

+ accountId: string

LoginResponse

+ accessToken: string

+ refreshToken: string

+ expireIn: number

+ scope: string

+ tokenType: string

+ createdAt: string

LoginSessionResponse

+ token: string

CreateAccountResponse

+ success: SuccessAccountResponse

IdReferenceResponse

+ reference: string

+ account_id: string

Requests Responses

UserResponse

+ fingerprint: string

+ public_key: string

+ id: string

RatingResponse

+ rating: number

Figure 5.6: Response and Request Bodies

60

5.4 App

OauthToken

+ token: string

+ created_at: number

+ expires_in: number

Pseudonym

+ value: string

User

+ fingerprint: string

+ public_key: string

belongs to

1

n

1n assigned to

Account

+ iv: string

+ key_id: string

+ tag: string

+ personal_data: string

+ personal_data_hash: string

belongs to

Wallets

+ wallet_id: string

+ wallet_public_key: string

+ account_id: string

belongs to 1n

n

1

Figure 5.7: UML Class Diagram of Database

In addition to the backend, we need to implement a way for the end user to interact with the Auth
Service itself. In a real-world scenario, the front-end is up to the Auth Service provider and therefore
multiple front-end instances would exist, which is illustrated in Figure 5.5. The properties of the
response and request bodies of the endpoints are given in Figure 5.6. This in particular means, that
we only provide a reference implementation for the prototype. Additionally, all Auth Services, that
implement the reference REST API Endpoints, can be added to the reference application. This
would allow the user to switch the Auth Service in a single front-end application.

The ’personal_data’ string in the ’RegisterRequest’ is in JSON format and must contain the properties
’first_name’, ’last_name’, ’city’, and ’date_of_birth’. All values must be encoded as strings. The
dates should have the format ’DD/MM/YYYY’ or ’YYYY/MM/DD’. Moreover, the city can contain
additional information. Such as a district name or postcode. This property is used to notify local
authorities if needed.

The prototype Application uses the following endpoints, which are shown in Table 5.1. All endpoints
prefixed with ’/api/auth’ are callable without being authorized. All endpoints without this prefix
require a login token in the Authorization Header. The authorization type is BEARER and the value
is the OAuth 2.0 access token.

Because the application depends largely on cryptography, and private key management and its
usage context has a mobility focus, our authentication application mainly be accessible through
a mobile app. This is also required because most eID provider Apps, such as AusweisApp2 or

61

5 Implementation

Figure 5.8:
Start View

Figure 5.9: Authservice
Selection

Figure 5.10:
Register

BankID, only work on mobile devices or require additional hardware, such as a NFC card reader
[KG23a]. To avoid prototyping for native Android and native IOS, we use the Cross-platform tool
Flutter. Flutter is able to convert Dart code into semi-native code [Flu23].

The app itself provides the ability to create a new account, create an authorization token as well
and generate pseudonyms, which can be used by other carpooling services. When the users have
installed the app on their device and open the app, they see the login Page, shown in Figure 5.8.
From here they can select the Auth Service they want to register or login with. They can select the
Auth Service provider by clicking on S̈witch Auth Service.̈ Now they see a list of all available Auth
Service providers, comparable to Figure 5.9. The user can choose the wanted service. Each service
can use its own identification method. For now, we use the P̈rototypeÄuth Service, which uses a
dummy identification service.

This Auth Service provider is only available in a development environment and allows one to
register a user without an actual identification method. When the user now clicks on S̈ign Upẗhey
see the form, presented in Figure 5.13. Those data are usually required and validated by an eID
provider. For testing purposes, it takes all data without any validation. The reason for skipping
an actual identification method for now is the regulation, which is required for actually reading
the German ID cards. Including receiving test ID cards. Swedish BankID itself provides a Test
Environment, but also just for dummy certificates, which are used for identification, as shown in

62

5.4 App

Figure 5.11:
Home View

Figure 5.12:
My Wallets

Figure 5.13: Carpooling App
Link

Figure 4.4. Implementing BankID for the prototype would not bring us any advantage in proving
the concept, it would just prove the way, how BankID works. Therefore we skip the implementation
of it for now.

The private key name is an important field and defines the identifier for storing and accessing the
private key, which is required when logging into the app, as shown in Figure 5.8. After entering
the private key name in the login page, the user clicks l̈oginänd lands on the main page, visible in
Figure 5.11. The main page lists all carpooling apps, which accept the authentication app. A click
on any item on the list copies the link to the app. This link can then be copied to a web browser that
supports crypto wallets, such as MetaMask.

A click on the wallets navigation bar item takes the user to its linked accounts wallets. Those are
their private and public Ethereum information.

A click on the wallets navigation bar item takes the user to its linked accounts wallets. Those are
their private and public Ethereum information. A click on any of the linked wallets generates a new
pseudonym and verifies that the pseudonym is related to the public key. This pseudonym is added
to the clipboard, as shown in Figure 5.15 and can be used to log in to the actual carpooling app.

If the user wants to add a new wallet, they need to click on the plus icon and afterwards copy the
private key and the account address in the provided fields, and example is provided in Figure 5.15.
After clicking on ’Add’ the public key and address are validated by the server. Therefore, the server

63

5 Implementation

Figure 5.14:
Add Wallet to

Account

Figure 5.15:
Copy Pseudonym

validates if the private and public keys match by a signing challenge, which the apps perform in the
background. If it matches the public key and the address are added to the user’s linked wallets and
can be used to generate pseudonyms.

64

5.5 Cryptography

5.5 Cryptography

Because of the significant use of Blockchains and privacy-focused authentication, the Auth Service
depends to a great extent on cryptography.

For the authentication process, we use the commonly used RSA algorithm with a 2048-bit key length.
RSA is an asymmetric encryption and signature algorithm [VYGS19]. For the login operation, we
make use of the RSA signature scheme. The RSA algorithm is based on the problem, that is hard to
factorize large numbers. This, however, means in case that this algorithm would need to be replaced
as soon as quantum computers become large and stable enough, which can break RSA by using
Shor’s Algorithm [DLQ+20].

Besides RSA we apply ECDSA to register an Ethereum private key with a user account. The private
keys are wallet keys that are used by the Ethereum Blockchain for signing transactions. Therefore,
we use those private keys and the corresponding secp256k1 curve, used by Ethereum [Afr22].

Independent of RSA and ECDSA we use the SHA3-512 Hash Algorithm for creating hash values
from the data we need to sign. Sha3 is based on Keccak with small changes to the padding, specified
by the NIST [SSD20]. Keccak is also used by the Ethereum Blockchain. However, based on
the padding changes both hash functions return different values [Dev22a]. Table 5.2 shows the
difference in the produced output by both algorithms. The value column is the exact value, which
has been hashed with both algorithms.

Besides asymmetric cryptography, the Auth Server needs to encrypt sensitive data such as passport
data. Those data are only stored on the databases that are owned by the Auth Server itself. Therefore
symmetric encryption is the ideal choice. The most reliable ciphers are AES and ChaCha20. While
AES is the most well-known and most widely implemented algorithm, Chacha20 is faster than
AES if no hardware acceleration is available, which makes Chacha20 interesting for IOTs [Dev22b;
DSS17].

However, since we only want to store data on a server, which usually has hardware acceleration,
we apply AES-256 in GCM mode. The GCM mode is an authenticated encryption mode, which
encrypts the data while guaranteeing its integrity. Moreover, the BSI is recommending only AES in
their official technical guidelines [Sic23a].

In addition to cryptographic algorithms, TLS, a cryptographic protocol is used to secure the
communication channel between the mobile devices and the servers. Which handles encryption
on the transport layer instead of the application layer, and has its focus on protecting a connection
between a client and the servers and preventing third parties from accessing any of the transported
data [Sic23d].

65

5 Implementation

Value Keccak-512 SHA3-512
A value c6c3ded0dbb480e8bb37bf04

bae7aaa31033a7ff85bcd6970

8f368338a79302f5fb7c027d

065bf849d56e21eef

9c7c239f5a7a6d5c2

96297885aa8cda855b90a

8e340b188a2392adb8

38c36deaecfdc6361169

ebcf2e64e02d9cf655c64b

fb671ef974209ec7e07e70c

a7b977e2716ab1934ff2

fe8804ceb9b7e1ec742fd9d0

Another value 2daa80e8320887060b

2aa3ffacefec02cbd9b1

1d2f1e3fdf24616e7108b8cd

27501666c56f0fb5283101a9

e936414ad6523f44671

a3024f8c2e3f9d5ff24803b

525dd93a5654765ed1

d96c84584730899c2a35

f38d5189d18e61c2a59c1b

c1d77418ba3b8d2445b344d2f8

18c1194e8e7a59b6adf

c8471d8e5504c3584996b00

The user data ae05f24e213c1163dfd

c5ffd6940cb984a05a6

9266b2aaa488c201ad0d15

c8a5dec26728023b97c7f01c76

c7c2db7363c07e2bf237

6fc68f050c8bf855737b60

c08b33132d616234b60

b8fe71ce57f427fa68b

7c6573e65f4a9d8d87ae5d0e

3be620956bcf8d7c85d9b7e8

da3abe15482e966ad4191

7d5227948295a765e22b1

Table 5.2: Keccak-512 vs. Sha3-512

66

6 Evaluation

Now, after we have taken a closer look into the implementation, we evaluate our concept and
prototype against the predefined requirements and potential security and privacy problems.

6.1 Prototype

In addition to the theoretical concept, we have implemented a functional prototype, which enables
users to register, authenticate and issue new pseudonyms, which can be used to interact with a
carpooling platform. Moreover, each user can receive ratings and request a rating for another user
without revealing any identity.

In detail, the prototype uses a dummy identification service, which basically always returns valid
data. Therefore the mobile app is handling the signing of the data, while the server just validates the
data. However, the system is designed in such a way, that the verification process is customizable for
other and real eID service providers. This can easily archived by overriding the validate_signature
function in the Accounts Module and adding a conversion function, for receiving the right properties.
The current implementation expects a JSON format with the properties ’first_name’, ’last_name’,
’city’, and ’date_of_birth’. In case the eID service provider, returns other fields, and data, those data
must be verified before and can then be signed by the provided ID server module on the server side.
The city can contain additional information such as a postcode, separated with a ’,’. This is handy
for bigger cities such as Berlin or Munich, where people with the same name and even birthdays
could be living. This city property is mainly used when contacting a legal authority is needed.

The prototype is also capable of providing a way of login only based on a private key, so no password
or email addresses are used. After login, it is possible to generate as many pseudonyms as someone
wants, which then can be used to book a ride at a carpooling platform. The carpooling platform
itself only can use the pseudonym, which is a random token and does not provide any way to track
back to a real user. Only our Auth Server is capable to collect all pseudonyms and know the real
identity behind them. The Auth Server, however, do not know what rides which user has taken,
therefore it only has access to the information the user is giving at the registration plus the rating
values of a single user.

Lastly, it is possible to add a wallet address to an account, which is required to generate a pseudonym,
to avoid, that illegal ratings getting injected and stored on a public Blockchain and damaging the
reputation system. The user can add as many wallets as they want but needs to select an active
wallet address in the Auth Service app. This address is then used for the pseudonym linking.

67

6 Evaluation

6.2 Requirements

Now we inspect whether we could fulfil all of our preset requirements for the system. Requirement
1 and 5 have their focus on the anonym usage of the user regarding a carpooling platform. Because
the user only reveals their identity to the Auth Service and authenticates with that service, the
carpooling platform itself does not know who exactly the user is. Furthermore, it only handles
pseudonyms and wallet addresses, while the Auth Service has no access to the actual journey data.
Therefore, no party can gain any information except those given voluntarily by the user.

Moreover, the described Auth Service identifies the user by their real identity. Because of this, it can
notify locale authorities about incidences, without revealing the identity to the carpooling platform.
The carpooling platform can notify the Auth Service about an incident and the Auth Service sends
the incident information including the name and birth of a person to the local authorities. For
finding the right local authority the city and postcode of the registered person are used. The country
of the user does not need to be stored itself if only one ID method is used, which is restricted to a
single country or nationality. The public authorities are then capable of finding all the required
information such as the current contact address based on the provided information. Further, the
carpooling platform gains no information about the actual identity of the involved persons and the
Auth Service Platform only knows the ID information provided by the user at the time of registration,
which fulfils requirement 2 as well as 3.

In order to fulfil requirement 6 we designed the system in a manner, that multiple different eID
systems can be used by multiple different Auth Services. Further, hash values are stored in
a distributed Blockchain ledger, which makes the system independent of a single infrastructure
component. By the use of multiple different eID services, the concepted solution is easily expandable
to all countries, which have at least one eID system and therefore fullfill the requirement 9.

Lastly, each party user, who has registered with any Auth Service is rateable by other users. This
also includes ride provider respectively the car itself. That means we have been able to fulfil the
final requirement, 4, too. By using pseudonyms, which do not give any information about the
real identity, we archive that only the Auth Service, who is responsible for a user and generating
pseudonyms, is able to calculate the actual rating for a person. Further, the ratee and rater do
not gain any information about the given rating. By recomputing the rating just once in a regular
interval, i.e. an hour, it is not possible to gain any information about the time either. Therefore, we
have fulfilled the requirement 7. Moreover, it is not possible to run multiple accounts at the same
time, because a hash value of the actual ID document is stored. If someone is trying to re-register,
it would be denied the Auth Service or the already existing account would be used. Therefore,
requirement 8 is successfully fulfilled.

6.3 Privacy and Security

Now we take a final look at the privacy of the user. If the user decides to join a carpooling platform,
they need to register the Auth Service and only the Auth Service knows the real identity of the user.
The carpooling platform only knows the pseudonyms and can group multiple rides by the public
key of the user. This is a problem that is inherited by the Blockchain technology itself. Each user

68

6.3 Privacy and Security

must sign their transaction with their private key and the public key is used to verify the transaction
[Wac23]. A solution to this problem is to link multiple private keys to a single account and replace
the signing keys regularly.

A weakness of the system would be if we would allow a user to register with multiple services at the
same time. This would allow the user to bypass any ban or reset and whitewash their reputation.
The same would be the case if the user could delete any linked wallet address. This would be a risk
for other users. Further, this results in a high level of trust, we need to have in the Auth Services. A
solution to this problem would be to allow users to distrust other Auth Services, and so do not share
a ride with people of those mistrusted Auth Services. But this is up to the implementation of the
carpooling platforms, on which our authentication service has no influence.

Because a user can only register once and only with one Auth Service at the same time, there would
be the risk that an Auth Service could ban a user by their own intention and the user would have no
chance to switch the Auth Service provider if the same authentication method is used, i.e. if both
use BankID. However, we can solve it by limiting the time a user can be registered with a single
Auth Service as well as limiting the time a ban can last.

It is also important to note, that the security of the used identification method takes a large part on
the security of the system as a whole. If the identification method is returning wrong information
or inconsistent information, an Auth Service can not guarantee that a user is actually unique and
trustworthy. Further, this implies that solely well-established ID methods should be used by an
Auth Service.

Besides the required level of trust towards the Auth Service provider, the security depends largely
on the applied encryption algorithms. AES is widely analysed and there are still no serious and
efficient attacks known on this block cipher. However, RSA and ECC are proven to be insecure
against Quantum attacks, which means, that the cryptography would need to be adapted. The
problem here is that we depend on Blockchains for archiving the shown distributed approach, and
we have no impact on the applied algorithms in Blockchains. But, since it is a general problem,
there is already quite some research on this topic for preparing Blockchains for the post quantum1

computing time [GCC+18]. Furthermore, the NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY (NIST) is standardising the first post-quantum algorithms, which could then be
adapted in this system [AAA+20].

Since we would have plenty of centralized Auth Services, which have relatively much power, there
would be the need for one or multiple independent authorities, which issue certificates for joining the
private Blockchain. Moreover, the authority must be able to deactivate the hash on the Blockchain,
so that the user can re-register with another platform. In such a case the user would lose their
reputation because the blocked Auth Service would not transfer the data voluntarily to another
account. But because the initial rating is the maximal possible value, such an action would not
harm the user. Moreover, ratings would lose their value over time anyway.

A related problem would be that the hash of the user ID on the private Blockchain has been in the
possession of the blocked Auth Service, which means that the malicious Auth Service could publish
those ID hashes. Which could create a potential security risk. Another malicious party would be
able to find out, whether a user has been registered with any Auth Service if that party knows the ID

1time when a quantum computer can break classic cryptography

69

6 Evaluation

properties, such as the Name and date of birth. However, more than the information that a user is
able to use a carpooling platform, can not be extracted. No pseudonyms are linked directly to any
of those hashes. Only if the malicious Auth Service publishes their pseudonym table, the privacy
of it’s users would be at risk. This would be the case as well if an attacker is leaking the private
database of an Auth Service. A benevolent Auth Service could encrypt all the pseudonyms in the
database and decrypt it when needed or cache the decrypted value in RAM memory. In all cases, a
malicious Auth Service could always store more information than it is allowed after the Blockchain
certificate is granted. This is not preventable in a system with centralized components.

Another problem would arise if Self Sovereign Identities are used for user management, without
storing any ID data in a centralized or decentralized database. In that case, a user could take back the
permission grant, and our Auth Server could not report the identity to authorities. This means that
Self Sovereign Identities would provide the highest possible way of privacy but have the trade-off
that the platform security is decreased.

70

7 Conclusion and Outlook

After evaluating our concept and prototype, we can now give a conclusion and broach an outlook
for further work regarding an authentication system for a privacy-preserving carpooling platform.

7.1 Conclusion

In the fast-living world, we encounter new technologies almost daily. With increasing research on
self-driving cars and other vehicles, we encounter new possibilities for a better-connected world and
vastly improved public transportation. Especially car sharing is used by more and more people, even
though it needs at least one person, who is willing to drive the car and has the legal and physical
requirements to do so. By removing this component, we may see a large improvement for people in
more rural areas. This influences older and younger people alike, who struggle with a lack of public
transportation.

Because this type of transportation would allow us to keep track of the movement of people, we
need a way to anonymise and impersonalize sensitive information. We have defined requirements
for handling the problems and have shown with a concept and implemented prototype, that we were
able to fulfill those requirements and provide a way to use a carpooling platform in a private way.

For solving the problem, we have mainly focussed on technologies with regard to identification
and authentication methods, which already exist and could be used to implement a prototype and
even extend the prototype, so that it would be possible to run it in a test or limited production
environment. Furthermore, we have identified future problems with the system, regarding security
and privacy and hint at possible solutions to those problems.

At this stage of development, we have implemented the minimal foundation for an anonymous user
management tool. This includes the private and public smart contracts as well as the semi-central
server-side implementation.

However, there are still some elements that are not fully implemented. So, we write and read
into a SQL database for avoiding to setup a reliable private Blockchain instance in a production
environment. This is not an issue by itself the concept, but more a deployment issue, which would
take more time to test properly in a production environment. Nevertheless, it is possible to run
everything in the test environment, including the private blockchain and its smart contracts.

Additionally, we mock the eID Server responses at the moment with a custom response. In reality,
each Auth Server would need to implement the interfaces of the eID service, which they want to
use. To simplify this process for potential eID providers, the project would need to be extended
by sample eID services such as BankID or the German electronic ID card. Or in general the most
common eID provider for each country.

71

7 Conclusion and Outlook

Furthermore, the current implementation has not focussed on efficiency. Meaning, that smart
contracts, which run on the public should be optimised before being deployed in an actual
environment. Otherwise, the operators of the Auth Service would pay higher fees as actually
required. Also, proper error handling, which would be required for a production environment, is
not yet fully implemented.

Because we only evaluate the concept for a single service, a public ban of a user is not yet
implemented on the server side, while the smart contracts would allow it, to set a user and its ID
hash as banned. Since this feature would only be noticeable when a user is changing the Auth
Service, we skipped the implementation for now, especially because it is only updating a property
of an asset on the Blockchain. It is similar to the migration of the wallets from one Auth Service to
another. This would be required to be able to keep the user’s rating consistent.

Another important addition is the validation of wallet addresses. This validation is dependent on
the used public Blockchain, and its used hash algorithm for deriving the address from the public
key. For Ethereum, the Keccak Hash Algorithm is required. This could either be implemented via
the ’JavaScript Blockchain Connector’ or the ’Elixir Auth Server’ component, which are shown in
Figure 5.1.

Moreover, some features for better usability would need to be implemented. This would be a direct
implementation of Metamask into the app. At the moment all links must be copied manually into
the Metamask browser. And the wallets need to be copied manually from Metamask into the app.
A direct connection with Metamask would enable the authentication app to interact with Metamask
in the background, resulting in a reduced burden on the user. Moreover, it must be possible to add
a new private key to the account if the user loses their private keys, i.e. if the phone gets lost or
stolen.

All in all, we can summarize that the problem of an anonymised car-pooling platform is possible,
but at the current state of technology, there are still components that would be centralized and
therefore be trusted by other parties.

7.2 Outlook

Because of the early stage of Self Sovereign Identities, the shown concept focussed on centralized
identification and user management. Yet, with the further progress and adoption of Self Sovereign
Identities, the concept would need to be further expanded to handle problems with decentralized
user management. So that a user could not just remove the permission to obtain its data, once
committed an illegal action.

This work took a theoretical approach, further this means that no actual user feedback is taken into
consideration. However, the user’s opinion and the whole system as a united are required to actually
measure the level of trust the users give the system.

Lastly, the Auth Services, conceived in this work, are relatively powerful. The registration allows
those services to read the ID properties of a user, and store those. This means that the certification
process of the Auth Services is important and would need to be further investigated. In particular,
an independent authority needs to be found or founded.

72

Bibliography

[AAA+20] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu,
C. Miller, D. Moody, R. Peralta, et al. “Status report on the second round of the
NIST post-quantum cryptography standardization process”. In: US Department of
Commerce, NIST 2 (2020) (cit. on p. 69).

[ADA23] ADAC. “EU-Führerschein-Reform: Müssen Senioren bald zum Fahrtauglichkeits-
Check?” In: (2023). url: https://www.adac.de/news/rentner-fahrtauglichkeit-
fuehrerschein/ (cit. on p. 17).

[Afr22] Afri. Feb. 2022. url: https://dev.to/q9/finally-understanding-ethereum-
accounts-1kpe (cit. on p. 65).

[AG23a] D. L. AG. Self-Sovereign Identity (SSI): Autonomous Identity Management. 2023.
url: https://www.dock.io/post/self- sovereign- identity#ssi- pillar- 3-

verifiable-credentials-vcs (cit. on pp. 37, 38).

[AG23b] intersoft consulting services AG. GDPR Personal Data. 2023. url: https://gdpr-
info.eu/issues/personal-data/ (cit. on p. 32).

[Bal17] Y. Balaj. “Token-based vs session-based authentication: A survey”. In: no. September
(2017), pp. 1–6 (cit. on p. 35).

[Ban23] BankID. Bank ID in numbers. 2023. url: https://www.bankid.com/en/om-

oss/statistik (cit. on p. 32).

[BBB+22] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,
S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, I. Quah, Y. Polyakov,
S. R.V., K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett, V. Vaikuntanathan, V. Zucca.
OpenFHE: Open-Source Fully Homomorphic Encryption Library. Cryptology ePrint
Archive, Paper 2022/915. https://eprint.iacr.org/2022/915. 2022. url: https:
//eprint.iacr.org/2022/915 (cit. on p. 24).

[BDW17] A. Bhawiyuga, M. Data, A. Warda. “Architectural design of token based authenti-
cation of MQTT protocol in constrained IoT device”. In: 2017 11th International
Conference on Telecommunication Systems Services and Applications (TSSA). IEEE.
2017, pp. 1–4 (cit. on p. 35).

[Bon+99] D. Boneh et al. “Twenty years of attacks on the RSA cryptosystem”. In: Notices of
the AMS 46.2 (1999), pp. 203–213 (cit. on p. 22).

[Cha83] D. Chaum. “Blind signatures for untraceable payments”. In: Advances in Cryptology:
Proceedings of Crypto 82. Springer. 1983, pp. 199–203 (cit. on p. 39).

[Clo23] I. Cloudflare. “What is Transport Layer Security (TLS)?” In: (2023). url: https:
//www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/

(cit. on pp. 25, 26).

73

https://www.adac.de/news/rentner-fahrtauglichkeit-fuehrerschein/
https://www.adac.de/news/rentner-fahrtauglichkeit-fuehrerschein/
https://dev.to/q9/finally-understanding-ethereum-accounts-1kpe
https://dev.to/q9/finally-understanding-ethereum-accounts-1kpe
https://www.dock.io/post/self-sovereign-identity#ssi-pillar-3-verifiable-credentials-vcs
https://www.dock.io/post/self-sovereign-identity#ssi-pillar-3-verifiable-credentials-vcs
https://gdpr-info.eu/issues/personal-data/
https://gdpr-info.eu/issues/personal-data/
https://www.bankid.com/en/om-oss/statistik
https://www.bankid.com/en/om-oss/statistik
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/en-gb/learning/ssl/transport-layer-security-tls/

Bibliography

[Com23a] E. Commission. Commission welcomes provisional political agreement on EU
Digital Identity Wallet, Europe’s first trusted and secure digital identity app. 2023.
url: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_3556
(cit. on p. 38).

[Com23b] E. Commission. EU Digital identity: 4 projects launched to test EUDI Wallet. 2023.
url: https://digital-strategy.ec.europa.eu/en/news/eu-digital-identity-4-
projects-launched-test-eudi-wallet (cit. on p. 34).

[con23a] M. contributors. “An overview of HTTP”. In: (2023). url: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Overview (cit. on p. 26).

[con23b] M. contributors. “HTTP caching”. In: (2023). url: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Caching (cit. on p. 26).

[con23c] M. contributors. “HTTP Messages”. In: (2023). url: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Messages (cit. on p. 26).

[cor23] corwintines. Proof-of-stake (PoS). 2023. url: https://ethereum.org/en/developers/
docs/consensus-mechanisms/pos/ (cit. on pp. 29, 30).

[cyb22] E. U. A. for cybersecurity. Leveraging the Self-Sovereign Identity (SSI) Concept to
Build Trust. 2022. url: https://ec.europa.eu/digital-building-blocks/wikis/
display/EBSI/Conformant+wallets (cit. on pp. 37, 38).

[D-T23a] D-Trust. Sichere Identifizierung - eID-Verfahren im Überblick. 2023. url: https:
//www.d-trust.net/de/loesungen/identifizierungsdienste (cit. on p. 33).

[D-T23b] D-Trust. Support AusweisIDent, eID-Service und Berechtigungszertifikate. 2023.
url: https://www.d-trust.net/de/support/ausweisident-und-eid-service (cit. on
p. 33).

[Dev22a] P. C. for Developers. 2022. url: https://cryptobook.nakov.com/cryptographic-
hash-functions/secure-hash-algorithms (cit. on pp. 24, 65).

[Dev22b] P. C. for Developers. Popular Symmetric Algorithms. 2022. url: https://cryptobook.
nakov.com/symmetric-key-ciphers/popular-symmetric-algorithms (cit. on p. 65).

[DLQ+20] Z.-C. Duan, J.-P. Li, J. Qin, Y. Yu, Y.-H. Huo, S. Höfling, C.-Y. Lu, N.-L. Liu,
K. Chen, J.-W. Pan. “Proof-of-principle demonstration of compiled Shor’s
algorithm using a quantum dot single-photon source”. In: Opt. Express 28.13 (June
2020), pp. 18917–18930. doi: 10.1364/OE.390209. url: https://opg.optica.org/
oe/abstract.cfm?URI=oe-28-13-18917 (cit. on p. 65).

[DS17] S. Dey, S. Sarkar. “Improved analysis for reduced round Salsa and Chacha”. In:
Discrete Applied Mathematics 227 (2017), pp. 58–69. issn: 0166-218X. doi: https:
//doi.org/10.1016/j.dam.2017.04.034. url: https://www.sciencedirect.com/
science/article/pii/S0166218X1730224X (cit. on p. 23).

[DSS17] F. De Santis, A. Schauer, G. Sigl. “ChaCha20-Poly1305 authenticated encryption
for high-speed embedded IoT applications”. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2017. 2017, pp. 692–697. doi: 10.23919/DATE.
2017.7927078 (cit. on pp. 23, 65).

[Dwo07] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. 2007. url: https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38d.pdf (cit. on p. 23).

74

https://ec.europa.eu/commission/presscorner/detail/en/ip_23_3556
https://digital-strategy.ec.europa.eu/en/news/eu-digital-identity-4-projects-launched-test-eudi-wallet
https://digital-strategy.ec.europa.eu/en/news/eu-digital-identity-4-projects-launched-test-eudi-wallet
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Conformant+wallets
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Conformant+wallets
https://www.d-trust.net/de/loesungen/identifizierungsdienste
https://www.d-trust.net/de/loesungen/identifizierungsdienste
https://www.d-trust.net/de/support/ausweisident-und-eid-service
https://cryptobook.nakov.com/cryptographic-hash-functions/secure-hash-algorithms
https://cryptobook.nakov.com/cryptographic-hash-functions/secure-hash-algorithms
https://cryptobook.nakov.com/symmetric-key-ciphers/popular-symmetric-algorithms
https://cryptobook.nakov.com/symmetric-key-ciphers/popular-symmetric-algorithms
https://doi.org/10.1364/OE.390209
https://opg.optica.org/oe/abstract.cfm?URI=oe-28-13-18917
https://opg.optica.org/oe/abstract.cfm?URI=oe-28-13-18917
https://doi.org/https://doi.org/10.1016/j.dam.2017.04.034
https://doi.org/https://doi.org/10.1016/j.dam.2017.04.034
https://www.sciencedirect.com/science/article/pii/S0166218X1730224X
https://www.sciencedirect.com/science/article/pii/S0166218X1730224X
https://doi.org/10.23919/DATE.2017.7927078
https://doi.org/10.23919/DATE.2017.7927078
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

Bibliography

[Dwo15] M. Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. en. 2015-08-04 2015. doi: https://doi.org/10.6028/NIST.FIPS.202
(cit. on p. 24).

[eth23] ethereum.org. “ZERO-KNOWLEDGE PROOFS”. In: (2023). url: https://ethereu
m.org/en/zero-knowledge-proofs/ (cit. on p. 25).

[FC23] B. Federal Ministry of the Interior, Community. Data on the ID Card. 2023. url:
https://www.personalausweisportal.de/Webs/PA/EN/citizens/german- id-

card/data-on-the-id-card/data-on-the-id-card-node.html (cit. on p. 32).

[FCZ16] G. Fedrecheski, L. C. P. Costa, M. K. Zuffo. “Elixir programming language evaluation
for IoT”. In: 2016 IEEE International Symposium on Consumer Electronics (ISCE).
2016, pp. 105–106. doi: 10.1109/ISCE.2016.7797392 (cit. on p. 53).

[Flu23] Flutter. Writing custom platform-specific code. 2023. url: https://docs.flutter.
dev/platform-integration/platform-channels?tab=type-mappings-java-tab

(cit. on p. 62).

[GAGK21] A. Gupta, A. Anpalagan, L. Guan, A. S. Khwaja. “Deep learning for object detection
and scene perception in self-driving cars: Survey, challenges, and open issues”. In:
Array 10 (2021), p. 100057 (cit. on p. 17).

[GCC+18] Y.-L. Gao, X.-B. Chen, Y.-L. Chen, Y. Sun, X.-X. Niu, Y.-X. Yang. “A Secure
Cryptocurrency Scheme Based on Post-Quantum Blockchain”. In: IEEE Access 6
(2018), pp. 27205–27213. doi: 10.1109/ACCESS.2018.2827203 (cit. on p. 69).

[Gen09] C. Gentry. A fully homomorphic encryption scheme. Stanford university, 2009 (cit. on
p. 24).

[Grö10] Å. Grönlund. “Electronic identity management in Sweden: governance of a market
approach”. In: (2010). doi: 10.1007/s12394-010-0043-1 (cit. on pp. 31, 33).

[Gro16] T. N. Group. TÜViT erhält Akkreditierung als eIDAS-Zertifizierer. 2016. url: https:
//www.tuev- nord- group.com/de/newsroom/news/details/article/tuevit-

erhaelt-akkreditierung-als-eidas-zertifizierer/ (cit. on p. 33).

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. Oct. 2012. doi:
10.17487/RFC6749. url: https://www.rfc-editor.org/info/rfc6749 (cit. on pp. 35,
36, 45, 58).

[HBB22] O. Hasan, L. Brunie, E. Bertino. “Privacy-Preserving Reputation Systems Based
on Blockchain and Other Cryptographic Building Blocks: A Survey”. In: ACM
Comput. Surv. 55.2 (Jan. 2022). issn: 0360-0300. doi: 10.1145/3490236. url:
https://doi.org/10.1145/3490236 (cit. on pp. 18, 19, 38–40).

[HBFL18] J. Haupt, B. Bender, B. Fabian, S. Lessmann. “Robust identification of email tracking:
A machine learning approach”. In: European Journal of Operational Research
271.1 (2018), pp. 341–356. issn: 0377-2217. doi: https://doi.org/10.1016/j.
ejor.2018.05.018. url: https://www.sciencedirect.com/science/article/pii/
S0377221718304120 (cit. on p. 19).

75

https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://ethereum.org/en/zero-knowledge-proofs/
https://ethereum.org/en/zero-knowledge-proofs/
https://www.personalausweisportal.de/Webs/PA/EN/citizens/german-id-card/data-on-the-id-card/data-on-the-id-card-node.html
https://www.personalausweisportal.de/Webs/PA/EN/citizens/german-id-card/data-on-the-id-card/data-on-the-id-card-node.html
https://doi.org/10.1109/ISCE.2016.7797392
https://docs.flutter.dev/platform-integration/platform-channels?tab=type-mappings-java-tab
https://docs.flutter.dev/platform-integration/platform-channels?tab=type-mappings-java-tab
https://doi.org/10.1109/ACCESS.2018.2827203
https://doi.org/10.1007/s12394-010-0043-1
https://www.tuev-nord-group.com/de/newsroom/news/details/article/tuevit-erhaelt-akkreditierung-als-eidas-zertifizierer/
https://www.tuev-nord-group.com/de/newsroom/news/details/article/tuevit-erhaelt-akkreditierung-als-eidas-zertifizierer/
https://www.tuev-nord-group.com/de/newsroom/news/details/article/tuevit-erhaelt-akkreditierung-als-eidas-zertifizierer/
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://doi.org/10.1145/3490236
https://doi.org/10.1145/3490236
https://doi.org/https://doi.org/10.1016/j.ejor.2018.05.018
https://doi.org/https://doi.org/10.1016/j.ejor.2018.05.018
https://www.sciencedirect.com/science/article/pii/S0377221718304120
https://www.sciencedirect.com/science/article/pii/S0377221718304120

Bibliography

[HDPB19] E. W. Huff, N. DellaMaria, B. Posadas, J. Brinkley. “Am I Too Old to Drive?
Opinions of Older Adults on Self-Driving Vehicles”. In: Proceedings of the 21st
International ACM SIGACCESS Conference on Computers and Accessibility. AS-
SETS ’19. Pittsburgh, PA, USA: Association for Computing Machinery, 2019,
pp. 500–509. isbn: 9781450366762. doi: 10.1145/3308561.3353801. url: https:
//doi.org/10.1145/3308561.3353801 (cit. on p. 17).

[HNS+20] S. Hansen, K. B. Newbold, D. M. Scott, B. Vrkljan, A. Grenier. “To drive or
not to drive: Driving cessation amongst older adults in rural and small towns in
Canada”. In: Journal of Transport Geography 86 (2020), p. 102773. issn: 0966-
6923. doi: https://doi.org/10.1016/j.jtrangeo.2020.102773. url: https:
//www.sciencedirect.com/science/article/pii/S0966692319307732 (cit. on p. 17).

[HPL23] D. Hardt, A. Parecki, T. Lodderstedt. The OAuth 2.1 Authorization Framework.
Internet-Draft draft-ietf-oauth-v2-1-09. Work in Progress. Internet Engineering Task
Force, July 2023. 90 pp. url: https://datatracker.ietf.org/doc/draft-ietf-
oauth-v2-1/09/ (cit. on pp. 35, 36).

[Hyp23a] Hyperledger. “Fabric chaincode lifecycle¶”. In: (2023). url: https://hyperledger-
fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html (cit. on p. 56).

[Hyp23b] Hyperledger. “Identity”. In: (2023). url: https://hyperledger-fabric.readthedocs.
io/en/release-2.5/identity/identity.html (cit. on p. 55).

[IBM23a] IBM. “What is a relational database?” In: (2023). url: https://www.ibm.com/
topics/relational-databases (cit. on pp. 27–29).

[IBM23b] IBM. What is blockchain technology? 2023. url: https://www.ibm.com/topics/
blockchain (cit. on pp. 29, 30).

[Inf23a] Infominer. European Blockchain Services Infrastructure (EBSI) and the eSSIF. 2023.
url: https://decentralized-id.com/government/europe/eu/ebsi-essif/ (cit. on
p. 38).

[Inf23b] InformationNOW. “Driving as you get older”. In: (2023). url: https://www.

informationnow.org.uk/article/driving-as-you-get-older/# (cit. on p. 17).

[Inn23] B. des Innern und für Heimat. “Bildmaterial zum Personalausweis”. In: (2023).
url: https://www.personalausweisportal.de/SharedDocs/artikel/Webs/PA/DE/
informationsmaterial/grafiken-bilder/bildmaterial.html (cit. on p. 32).

[KG23a] G. G. C. KG. Kompatible Kartenleser. 2023. url: https://www.ausweisapp.bund.
de/kompatible-kartenleser (cit. on p. 62).

[KG23b] G. G. C. KG. “So werden Sie Diensteanbieter”. In: (2023). url: https://www.
ausweisapp.bund.de/so-werden-sie-diensteanbieter (cit. on p. 32).

[KK12] R. Kaur, A. Kaur. “Digital Signature”. In: 2012 International Conference on
Computing Sciences. 2012, pp. 295–301. doi: 10.1109/ICCS.2012.25 (cit. on p. 24).

[KM23] S. Khanum, K. Mustafa. “A systematic literature review on sensitive data pro-
tection in blockchain applications”. In: Concurrency and Computation: Practice
and Experience 35.1 (2023), e7422. doi: https://doi.org/10.1002/cpe.7422.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.7422. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7422 (cit. on p. 36).

76

https://doi.org/10.1145/3308561.3353801
https://doi.org/10.1145/3308561.3353801
https://doi.org/10.1145/3308561.3353801
https://doi.org/https://doi.org/10.1016/j.jtrangeo.2020.102773
https://www.sciencedirect.com/science/article/pii/S0966692319307732
https://www.sciencedirect.com/science/article/pii/S0966692319307732
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/09/
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/09/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/identity/identity.html
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/blockchain
https://www.ibm.com/topics/blockchain
https://decentralized-id.com/government/europe/eu/ebsi-essif/
https://www.informationnow.org.uk/article/driving-as-you-get-older/#
https://www.informationnow.org.uk/article/driving-as-you-get-older/#
https://www.personalausweisportal.de/SharedDocs/artikel/Webs/PA/DE/informationsmaterial/grafiken-bilder/bildmaterial.html
https://www.personalausweisportal.de/SharedDocs/artikel/Webs/PA/DE/informationsmaterial/grafiken-bilder/bildmaterial.html
https://www.ausweisapp.bund.de/kompatible-kartenleser
https://www.ausweisapp.bund.de/kompatible-kartenleser
https://www.ausweisapp.bund.de/so-werden-sie-diensteanbieter
https://www.ausweisapp.bund.de/so-werden-sie-diensteanbieter
https://doi.org/10.1109/ICCS.2012.25
https://doi.org/https://doi.org/10.1002/cpe.7422
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.7422
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7422

Bibliography

[KT21] E. Krysowski, J. Tremewan. “WHY DOES ANONYMITY MAKE US MISBEHAVE:
DIFFERENT NORMS OR LESS COMPLIANCE?” In: Economic Inquiry 59.2
(2021), pp. 776–789. doi: https://doi.org/10.1111/ecin.12955. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/ecin.12955. url: https://

onlinelibrary.wiley.com/doi/abs/10.1111/ecin.12955 (cit. on p. 19).

[Küs16] R. Küsters. Oauth Analyse. 2016. url: https://publ.sec.uni-stuttgart.de/
fettkuestersschmitz-ccs-2016.pdf (cit. on pp. 35, 36).

[Lim20] R. H. Limited. “What is a REST API?” In: (2020). url: https://www.redhat.com/
en/topics/api/what-is-a-rest-api (cit. on p. 26).

[LWX19] M. Liu, K. Wu, J. J. Xu. “How Will Blockchain Technology Impact Auditing and
Accounting: Permissionless versus Permissioned Blockchain”. In: Current Issues in
Auditing 13.2 (Aug. 2019), A19–A29. issn: 1936-1270. doi: 10.2308/ciia-52540.
eprint: https://publications.aaahq.org/cia/article-pdf/13/2/A19/56496/ciia-
52540.pdf. url: https://doi.org/10.2308/ciia-52540 (cit. on p. 37).

[LZW21] M. Li, Z. Zeng, Y. Wang. “An innovative car sharing technological paradigm towards
sustainable mobility”. In: Journal of Cleaner Production 288 (2021), p. 125626.
issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2020.125626. url:
https://www.sciencedirect.com/science/article/pii/S0959652620356729 (cit. on
p. 18).

[Mar22] C. C. C. Martin Tschirsich. Video Ident Verfahren. 2022. url: https://www.ccc.de/
system/uploads/329/original/Angriff_auf_Video-Ident_v1.2.pdf (cit. on p. 32).

[MGGM18] A. Mühle, A. Grüner, T. Gayvoronskaya, C. Meinel. “A survey on essential compo-
nents of a self-sovereign identity”. In: Computer Science Review 30 (2018), pp. 80–86
(cit. on pp. 18, 34, 37).

[MGV20] J. A. Molina, J. I. Giménez-Nadal, J. Velilla. “Sustainable Commuting: Results from
a Social Approach and International Evidence on Carpooling”. In: Sustainability 12
(2020). issn: 2071-1050. doi: 10.3390/su12229587. url: https://www.mdpi.com/
2071-1050/12/22/9587 (cit. on p. 18).

[MK19] A. Meier, M. Kaufmann. SQL & NoSQL databases. Springer, 2019 (cit. on pp. 28,
29).

[MLKS08] G. Madlmayr, J. Langer, C. Kantner, J. Scharinger. “NFC Devices: Security and
Privacy”. In: 2008 Third International Conference on Availability, Reliability and
Security. 2008, pp. 642–647. doi: 10.1109/ARES.2008.105 (cit. on p. 27).

[NIS17] NIST. “Challenge-Response Protocol”. In: (2017). url: https://csrc.nist.gov/
glossary/term/challenge_response_protocol (cit. on p. 45).

[NIS23] NIST. Withdrawn NIST Technical Series Publication. 2023. url: https://nvlpubs.
nist.gov/nistpubs/fips/nist.fips.197.pdf (cit. on pp. 22, 23).

[NL15] Y. Nir, A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539. May
2015. doi: 10.17487/RFC7539. url: https://www.rfc-editor.org/info/rfc7539
(cit. on p. 23).

[Okt22] Okta. Self-Sovereign Identity (SSI): Autonomous Identity Management. 2022. url:
https://www.okta.com/identity-101/self-sovereign-identity/ (cit. on pp. 37,
38).

77

https://doi.org/https://doi.org/10.1111/ecin.12955
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ecin.12955
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ecin.12955
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecin.12955
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecin.12955
https://publ.sec.uni-stuttgart.de/fettkuestersschmitz-ccs-2016.pdf
https://publ.sec.uni-stuttgart.de/fettkuestersschmitz-ccs-2016.pdf
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://doi.org/10.2308/ciia-52540
https://publications.aaahq.org/cia/article-pdf/13/2/A19/56496/ciia-52540.pdf
https://publications.aaahq.org/cia/article-pdf/13/2/A19/56496/ciia-52540.pdf
https://doi.org/10.2308/ciia-52540
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125626
https://www.sciencedirect.com/science/article/pii/S0959652620356729
https://www.ccc.de/system/uploads/329/original/Angriff_auf_Video-Ident_v1.2.pdf
https://www.ccc.de/system/uploads/329/original/Angriff_auf_Video-Ident_v1.2.pdf
https://doi.org/10.3390/su12229587
https://www.mdpi.com/2071-1050/12/22/9587
https://www.mdpi.com/2071-1050/12/22/9587
https://doi.org/10.1109/ARES.2008.105
https://csrc.nist.gov/glossary/term/challenge_response_protocol
https://csrc.nist.gov/glossary/term/challenge_response_protocol
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://doi.org/10.17487/RFC7539
https://www.rfc-editor.org/info/rfc7539
https://www.okta.com/identity-101/self-sovereign-identity/

Bibliography

[PGH21] D. Pöhn, M. Grabatin, W. Hommel. “eID and Self-Sovereign Identity Usage:
An Overview”. In: Electronics 10.22 (2021). issn: 2079-9292. doi: 10.3390/

electronics10222811. url: https://www.mdpi.com/2079-9292/10/22/2811 (cit. on
p. 31).

[Pri21] B. d. I. u. f. H. PricewaterhouseCoopers GmbH. PwC-Studie. 2021. url: https:

//www.personalausweisportal.de/SharedDocs/kurzmeldungen/Webs/PA/DE/2021/

10_pwc_studie.html (cit. on p. 32).
[QPM21] C. Quirós, J. Portela, R. Marín. “Differentiated models in the collaborative transport

economy: A mixture analysis for Blablacar and Uber”. In: Technology in Society
67 (2021), p. 101727. issn: 0160-791X. doi: https://doi.org/10.1016/j.

techsoc.2021.101727. url: https://www.sciencedirect.com/science/article/pii/
S0160791X21002025 (cit. on p. 17).

[Rau22] I. Rauh. “Wie geht es mit dem ID-Wallet weiter?” In: (2022). url: https://

www . security - insider . de / wie - geht - es - mit - dem - id - wallet - weiter - a -

8b1b1dd2a7c9765e7f229e16db0d42b7/ (cit. on p. 34).
[Reu23] M. Reuter. “Keine Strategie bei der elektronischen Identität”. In: (2023). url:

https://netzpolitik.org/2023/online-ausweis-keine-strategie-bei-der-

elektronischen-identitaet/ (cit. on p. 34).
[SBV18] J. Sousa, A. Bessani, M. Vukolic. “A Byzantine Fault-Tolerant Ordering Service

for the Hyperledger Fabric Blockchain Platform”. In: 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 2018, pp. 51–
58. doi: 10.1109/DSN.2018.00018 (cit. on p. 55).

[SC19] S. Shaheen, A. Cohen. “Shared ride services in North America: definitions, impacts,
and the future of pooling”. In: Transport Reviews 39.4 (2019), pp. 427–442. doi:
10.1080/01441647.2018.1497728. eprint: https://doi.org/10.1080/01441647.2018.
1497728. url: https://doi.org/10.1080/01441647.2018.1497728 (cit. on p. 17).

[SCB+18] S. Shaheen, A. Cohen, A. Bayen, et al. “The benefits of carpooling”. In: (2018)
(cit. on p. 17).

[Sic18] B. für Sicherheit in der Informationstechnik. Technical Guideline BSI TR-03111.
2018. url: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&

v=1 (cit. on p. 22).
[Sic20] B. für Sicherheit in der Informationstechnik. German eID based on Extended Access

Control v2. 2020. url: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
EIDAS/German_eID_Whitepaper_v1-4.pdf?__blob=publicationFile&v=2 (cit. on
p. 32).

[Sic23a] B. für Sicherheit in der Informationstechnik. Kryptographische Verfahren: Empfehlun-
gen und Schlüssellängen. 2023. url: https://www.bsi.bund.de/SharedDocs/

Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI- TR-

02102.pdf?__blob=publicationFile&v=9 (cit. on p. 65).
[Sic23b] B. für Sicherheit in der Informationstechnik. Proof-of-stake (PoS). 2023. url:

https://www.bsi.bund.de/DE/Themen/Verbraucherinnen- und- Verbraucher/

Informationen-und-Empfehlungen/Technologien_sicher_gestalten/Blockchain-

Kryptowaehrung/blockchain-kryptowaehrung_node.html (cit. on p. 29).

78

https://doi.org/10.3390/electronics10222811
https://doi.org/10.3390/electronics10222811
https://www.mdpi.com/2079-9292/10/22/2811
https://www.personalausweisportal.de/SharedDocs/kurzmeldungen/Webs/PA/DE/2021/10_pwc_studie.html
https://www.personalausweisportal.de/SharedDocs/kurzmeldungen/Webs/PA/DE/2021/10_pwc_studie.html
https://www.personalausweisportal.de/SharedDocs/kurzmeldungen/Webs/PA/DE/2021/10_pwc_studie.html
https://doi.org/https://doi.org/10.1016/j.techsoc.2021.101727
https://doi.org/https://doi.org/10.1016/j.techsoc.2021.101727
https://www.sciencedirect.com/science/article/pii/S0160791X21002025
https://www.sciencedirect.com/science/article/pii/S0160791X21002025
https://www.security-insider.de/wie-geht-es-mit-dem-id-wallet-weiter-a-8b1b1dd2a7c9765e7f229e16db0d42b7/
https://www.security-insider.de/wie-geht-es-mit-dem-id-wallet-weiter-a-8b1b1dd2a7c9765e7f229e16db0d42b7/
https://www.security-insider.de/wie-geht-es-mit-dem-id-wallet-weiter-a-8b1b1dd2a7c9765e7f229e16db0d42b7/
https://netzpolitik.org/2023/online-ausweis-keine-strategie-bei-der-elektronischen-identitaet/
https://netzpolitik.org/2023/online-ausweis-keine-strategie-bei-der-elektronischen-identitaet/
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1080/01441647.2018.1497728
https://doi.org/10.1080/01441647.2018.1497728
https://doi.org/10.1080/01441647.2018.1497728
https://doi.org/10.1080/01441647.2018.1497728
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_V-2-1_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/EIDAS/German_eID_Whitepaper_v1-4.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/EIDAS/German_eID_Whitepaper_v1-4.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Technologien_sicher_gestalten/Blockchain-Kryptowaehrung/blockchain-kryptowaehrung_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Technologien_sicher_gestalten/Blockchain-Kryptowaehrung/blockchain-kryptowaehrung_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Technologien_sicher_gestalten/Blockchain-Kryptowaehrung/blockchain-kryptowaehrung_node.html

Bibliography

[Sic23c] B. für Sicherheit in der Informationstechnik. Qualifizierung als Vertrauensdien-
steanbeiter. 2023. url: https://www.bsi.bund.de/DE/Themen/Oeffentliche-
Verwaltung/eIDAS-Verordnung/Qualifizierung-als-Vertrauensdiensteanbieter/

qualifizierung-als-vertrauensdiensteanbieter_node.html (cit. on p. 33).

[Sic23d] B. für Sicherheit in der Informationstechnik. Technische Richtlinie TR-02102-2
Kryptographische Verfahren: Empfehlungen und Schlüssellängen. 2023. url: https:
//www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRi

chtlinien/TR02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=6 (cit. on
p. 65).

[SPP22] K. Sen, G. Prybutok, V. Prybutok. “The use of digital technology for social wellbeing
reduces social isolation in older adults: A systematic review”. In: SSM - Population
Health 17 (2022), p. 101020. issn: 2352-8273. doi: https://doi.org/10.1016/j.
ssmph.2021.101020. url: https://www.sciencedirect.com/science/article/pii/
S2352827321002950 (cit. on p. 17).

[SSD20] A. Sideris, T. Sanida, M. Dasygenis. “High Throughput Implementation of the Keccak
Hash Function Using the Nios-II Processor”. In: Technologies 8.1 (2020). issn:
2227-7080. doi: 10.3390/technologies8010015. url: https://www.mdpi.com/2227-
7080/8/1/15 (cit. on p. 65).

[SSH23a] SSH. “SSH Key Management”. In: (2023). url: https://www.ssh.com/academy/
iam/ssh-key-management (cit. on p. 35).

[SSH23b] SSH. “What is SSH Public Key Authentication?” In: (2023). url: https://www.ssh.
com/academy/ssh/public-key-authentication (cit. on p. 35).

[Sul13] N. Sullivan. A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptogra-
phy. 2013. url: https://blog.cloudflare.com/a-relatively-easy-to-understand-
primer-on-elliptic-curve-cryptography/ (cit. on p. 22).

[Sul15] N. Sullivan. Do the ChaCha: better mobile performance with cryptography. 2015.
url: https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-
with-cryptography/ (cit. on p. 23).

[swe21] swedishimmigration.se. “How to get a Personal Identity Number (Personnummer)
in Sweden”. In: (2021). url: https://www.swedishimmigration.se/all-topics/
working-in-sweden/how-to-get-a-personal-identity-number-personnummer-in-

sweden/ (cit. on p. 32).

[Tea23] T. E. Team. elixir. 2023. url: https://elixir-lang.org/ (cit. on p. 53).

[Tha23] Thales. eIDAS 2: the countdown to a single European Digital ID Wallet has begun.
2023. url: https://www.thalesgroup.com/en/markets/digital-identity-and-
security/government/identity/eidas-regulations (cit. on p. 34).

[Thu19] M. Thuret-Benoist. “What is the difference between personally identifiable infor-
mation (PII) and personal data?” In: (2019). url: https://techgdpr.com/blog/
difference-between-pii-and-personal-data/ (cit. on pp. 32, 33).

[Voß21] O. Voß. “„Digitale Brieftasche“ der Bundesregierung: Scheitern mit Ansage?” In:
(2021). url: https://www.tagesspiegel.de/wirtschaft/scheitern-mit-ansage-
4280389.html (cit. on p. 34).

79

https://www.bsi.bund.de/DE/Themen/Oeffentliche-Verwaltung/eIDAS-Verordnung/Qualifizierung-als-Vertrauensdiensteanbieter/qualifizierung-als-vertrauensdiensteanbieter_node.html
https://www.bsi.bund.de/DE/Themen/Oeffentliche-Verwaltung/eIDAS-Verordnung/Qualifizierung-als-Vertrauensdiensteanbieter/qualifizierung-als-vertrauensdiensteanbieter_node.html
https://www.bsi.bund.de/DE/Themen/Oeffentliche-Verwaltung/eIDAS-Verordnung/Qualifizierung-als-Vertrauensdiensteanbieter/qualifizierung-als-vertrauensdiensteanbieter_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=6
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=6
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=6
https://doi.org/https://doi.org/10.1016/j.ssmph.2021.101020
https://doi.org/https://doi.org/10.1016/j.ssmph.2021.101020
https://www.sciencedirect.com/science/article/pii/S2352827321002950
https://www.sciencedirect.com/science/article/pii/S2352827321002950
https://doi.org/10.3390/technologies8010015
https://www.mdpi.com/2227-7080/8/1/15
https://www.mdpi.com/2227-7080/8/1/15
https://www.ssh.com/academy/iam/ssh-key-management
https://www.ssh.com/academy/iam/ssh-key-management
https://www.ssh.com/academy/ssh/public-key-authentication
https://www.ssh.com/academy/ssh/public-key-authentication
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://www.swedishimmigration.se/all-topics/working-in-sweden/how-to-get-a-personal-identity-number-personnummer-in-sweden/
https://www.swedishimmigration.se/all-topics/working-in-sweden/how-to-get-a-personal-identity-number-personnummer-in-sweden/
https://www.swedishimmigration.se/all-topics/working-in-sweden/how-to-get-a-personal-identity-number-personnummer-in-sweden/
https://elixir-lang.org/
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/eidas-regulations
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/eidas-regulations
https://techgdpr.com/blog/difference-between-pii-and-personal-data/
https://techgdpr.com/blog/difference-between-pii-and-personal-data/
https://www.tagesspiegel.de/wirtschaft/scheitern-mit-ansage-4280389.html
https://www.tagesspiegel.de/wirtschaft/scheitern-mit-ansage-4280389.html

[VYGS19] Z. Vahdati, S. Yasin, A. Ghasempour, M. Salehi. “Comparison of ECC and RSA
algorithms in IoT devices”. In: Journal of Theoretical and Applied Information
Technology 97.16 (2019) (cit. on p. 65).

[Wac23] P. Wackerow. “Block explorers”. In: (2023). url: https://ethereum.org/en/

developers/docs/data-and-analytics/block-explorers/ (cit. on p. 69).

[WG18] K. Wüst, A. Gervais. “Do you Need a Blockchain?” In: 2018 Crypto Valley Conference
on Blockchain Technology (CVCBT). June 2018, pp. 45–54. doi: 10.1109/CVCBT.
2018.00011 (cit. on p. 37).

[WNK20] A. Wood, K. Najarian, D. Kahrobaei. “Homomorphic Encryption for Machine
Learning in Medicine and Bioinformatics”. In: ACM Comput. Surv. 53.4 (Aug. 2020).
issn: 0360-0300. doi: 10.1145/3394658. url: https://doi.org/10.1145/3394658
(cit. on p. 38).

All links were last followed on September 28, 2023.

https://ethereum.org/en/developers/docs/data-and-analytics/block-explorers/
https://ethereum.org/en/developers/docs/data-and-analytics/block-explorers/
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1145/3394658
https://doi.org/10.1145/3394658

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

Stuttgart, 03.10.2023

8 Attachments

8.1 Car Pooling - Ethereum Smart Contracts

We assume that contracts with the following properties and functions exist.

8.1.1 Ride Contract

This contract keeps track of the ride itself and stores the ratings of all parties, that participate in the
ride.

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3
4 contract RideContract {

5 address public party1;

6 address public party2;

7 uint public userRating;

8 uint public rideRating;

9
10 constructor(address _party1) payable {

11 party1 = _party1;

12 }

13
14 function setUserRating(uint _rating) public {

15 // set the rating of party 1 by party 2

16 }

17
18 function setRideRating(uint _rating) public {

19 // set the rating of party 2 by party 1

20 }

21 }

Code Sample 8.1: Ethereum - Ride Contract

,

8.1.2 Ride Contract Factory

Used to create and manage the individual contracts by the car pooling platform and provides us the
possible to interact with it.

1 // SPDX-License-Identifier: MIT

2 pragma solidity ^0.8.0;

3
4 import "./ride-contract.sol";

5
6 contract ContractFactory {

7
8 address[] public registeredContracts;

9
10 // Counter to keep track of the contract IDs

11 uint256 public contractCounter = 0;

12
13 // Mapping from contract ID to contract timestamp

14 mapping(uint256 => uint256) public timestampByID;

15
16 // Mapping from contract ID to contract address

17 mapping(uint256 => address) public contractsByID;

18
19 constructor() {

20
21 }

22
23 mapping(address => RideContract[]) public userContracts;

24
25 function createContract(uint256 _amount) public payable {

26 // creates a new contract

27 }

28
29 function getContractsByUser(address user) public view returns (Contract[] memory) {

30 // returns all contracts addresses, which belongs to a user public key address

31 }

32
33 function getContractByID(uint256 contractID) public view returns (address) {

34 // returns the ride contract with a particular block address

35 }

36
37 function getContractTimestampByID(uint256 contractID) public view returns (uint256) {

38 // returns the time when a particular contract was created, based on its block address

39 }

40 }

Code Sample 8.2: Ethereum - Ride Contract Factory

8.2 Auth Service - HyperLedge Fabric Smart Contract

The contract used by all auth service to register an ID card globally.

1 /*

2 * SPDX-License-Identifier: Apache-2.0

3 */

4
5 'use strict';

6
7 // Deterministic JSON.stringify()

8 const stringify = require('json-stringify-deterministic');

9 const sortKeysRecursive = require('sort-keys-recursive');

10 const { Contract } = require('fabric-contract-api');

11
12 class IdContract extends Contract {

13
14 async InitLedger(ctx) {

15
16 }

17
18 // CreateAsset issues a new asset to the world state with given details.

19 async CreateAsset(ctx, id, data_hash, owner) {

20 const existsID = await this.AssetExists(ctx, id)

21 const existHash = await this.AssetHashExists(ctx, data_hash);

22 if (existsID) {

23 throw new Error(`The asset ${id} already exists with ${existsID}`);
24 }

25
26 if(existHash){

27 throw new Error(`The asset hash returns ${existHash} and therefore the asset already exists`)
;

28 }

29
30 const asset = {

31 ID: id,

32 data: data_hash,

33 owner: owner,

34 banned: false,

35 };

36 // we insert data in alphabetic order using 'json-stringify-deterministic' and 'sort-keys-

recursive'

37 await ctx.stub.putState(id, Buffer.from(stringify(sortKeysRecursive(asset))));

38 return JSON.stringify(asset);

39 }

40
41 // ReadAsset returns the asset stored in the world state with given id.

42 async ReadAsset(ctx, id) {

43 return (await this.GetAsset(ctx,id)).toString();

44 }

45
46 async GetAsset(ctx, id) {

47 const assetJSON = await ctx.stub.getState(id); // get the asset from chaincode state

48 if (!assetJSON || assetJSON.length === 0) {

49 throw new Error(`The asset ${id} does not exist`);
50 }

51 return assetJSON;

52 }

53
54 async GetAssetByHash(ctx, hash) {

55 return this.GetAllAssets(ctx).then((assets) => {

56 let result = null;

57 const ass = JSON.parse(assets);

58 for(let i = 0; i < ass.length; i++) {

59 if (ass[i].data == hash) {

60 result = ass[i];

61 }

62 }

63 return JSON.stringify({result: result, exist: result != null});

64 }

65);

66 }

67
68
69 async ChangeAssetOwner(ctx, id, newOwner) {

70 const exists = await this.AssetExists(ctx, id);

71 if (!exists) {

72 throw new Error(`The asset ${id} does not exist`);
73 }

74 const assetString = await this.ReadAsset(ctx, id);

75 const asset = JSON.parse(assetString);

76 // overwriting original asset with new asset

77 const updatedAsset = {

78 ID: id,

79 data: asset.data,

80 owner: newOwner,

81 banned: asset.banned,

82 };

83 // we insert data in alphabetic order using 'json-stringify-deterministic' and 'sort-keys-

recursive'

84 return ctx.stub.putState(id, Buffer.from(stringify(sortKeysRecursive(updatedAsset))));

85 }

86
87
88
89 async AssetHashExists(ctx, hash) {

90 return this.GetAssetByHash(ctx, hash).then((asset) => {

91 const data = JSON.parse(asset);

92 return data.exist === "true";

93 });

94 }

95
96 // returns the response as a string for parsing it by an external application

97 async AssetHashExistsAsStr(ctx, hash) {

98 return this.GetAssetByHash(ctx, hash).then((asset) => {

99 const data = JSON.parse(asset);

100 return JSON.stringify(data.exist);

101 });

102 }

103
104 // UpdateAsset updates an existing asset in the world state with provided parameters.

105 async UpdateAssetBanned(ctx, id, banned) {

106 const exists = await this.AssetExists(ctx, id);

107 if (!exists) {

108 throw new Error(`The asset ${id} does not exist`);
109 }

110 const assetString = await this.ReadAsset(ctx, id);

111 const asset = JSON.parse(assetString);

112
113 // overwriting original asset with new asset

114 const updatedAsset = {

115 ID: id,

116 data: asset.data,

117 owner: asset.owner,

118 banned: banned,

119 };

120
121 // we insert data in alphabetic order using 'json-stringify-deterministic' and 'sort-keys-

recursive'

122 return ctx.stub.putState(id, Buffer.from(stringify(sortKeysRecursive(updatedAsset))));

123 }

124
125
126 // AssetExists returns true when asset with given ID exists in world state.

127 async AssetExists(ctx, id) {

128 const assetJSON = await ctx.stub.getState(id);

129 return assetJSON && assetJSON.length > 0;

130 }

131
132 // TransferAsset updates the owner field of asset with given id in the world state.

133 async TransferAsset(ctx, id, newOwner) {

134 const assetString = await this.ReadAsset(ctx, id);

135 const asset = JSON.parse(assetString);

136 const oldOwner = asset.Owner;

137 asset.Owner = newOwner;

138 // we insert data in alphabetic order using 'json-stringify-deterministic' and 'sort-keys-

recursive'

139 await ctx.stub.putState(id, Buffer.from(stringify(sortKeysRecursive(asset))));

140 return JSON.stringify({oldOwner: oldOwner});

141 }

142
143 // GetAllAssets returns all assets found in the world state.

144 async GetAllAssets(ctx) {

145 const allResults = [];

146 // range query with empty string for startKey and endKey does an open-ended query of all assets

in the chaincode namespace.

147 const iterator = await ctx.stub.getStateByRange('', '');

148 let result = await iterator.next();

149 while (!result.done) {

150 const strValue = Buffer.from(result.value.value.toString()).toString('utf8');

151 let record;

152 try {

153 record = JSON.parse(strValue);

154 } catch (err) {

155 console.log(err);

156 record = strValue;

157 }

158 allResults.push(record);

159 result = await iterator.next();

160 }

161 return JSON.stringify(allResults);

162 }

163 }

164
165 module.exports = IdContract;

Code Sample 8.3: Auth Service - HyperLedge Fabric Smart Contract

	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Conditions
	1.4 Structure

	2 Background information
	2.1 Cryptography
	2.2 Protocols
	2.3 Data Store

	3 State of the Art
	3.1 Identification
	3.2 Authentication
	3.3 User Management
	3.4 Reputation

	4 Concept
	4.1 Identification and Signup
	4.2 User Management
	4.3 Auth Service Requirements
	4.4 Authentication
	4.5 Reputation

	5 Implementation
	5.1 Backend
	5.2 Blockchain
	5.3 Database
	5.4 App
	5.5 Cryptography

	6 Evaluation
	6.1 Prototype
	6.2 Requirements
	6.3 Privacy and Security

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	Bibliography
	8 Attachments
	8.1 Car Pooling - Ethereum Smart Contracts
	8.2 Auth Service - HyperLedge Fabric Smart Contract

