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Abstract

This thesis explores the constraints of self-assessment creation in higher education, focusing on the
lack of tools, standardization, and time. We conduct didactic field expert interviews to investigate
how teaching evolves towards learning management systems (LMS) with new possibilities for self-
assessment generation. We propose EvalQuiz, a novel system that enables language model-assisted
self-assessment creation. The system generates questions of different types, improving upon related
work while addressing language model restrictions through filtering. EvalQuiz aims to bridge the
gap between lecturers and students, enabling lecturers to work with educational objectives and
lecture materials to provide student-centered self-assessment. The thesis aims to answer questions
about the reliability and quality of self-assessment generation. EvalQuiz proposes a message
composer scheme to reliably generate output according to a specification. The thesis defines a
standardized self-assessment specification used with EvalQuiz. We conduct a survey evaluating
EvalQuiz’s real-world performance.
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Kurzfassung

Die Bachelorabeit untersucht Einschränkungen bei der Erstellung von Lernstandsquizze im uni-
versitären Umfeld, mit Fokus auf fehlenden Tools, Standardisierung und Zeit. Die Ausarbeitung
umfasst Interviews mit Didaktikexperten um die Generierung von Lernstandsquizzen und dessen
Integration in Lernplatformen zu erörtern. Wir präsentieren EvalQuiz, ein System zur Erstellung
von Lernstandsquizzen mit Sprachmodellen. EvalQuiz kann Fragen verschiedener Typen gener-
ieren und verbessert somit vorherige Arbeiten. EvalQuiz filtert Materialien für die Nutzung mit
Sprachmodellen. EvalQuiz strebt beiderseits die Unterstützung von Dozenten und Studenten an.
Es ermöglicht Dozenten ihre Lernziele und Vorlesungsmaterialien mit EvalQuiz zu nutzen, um
Lernquizze zu erstellen, die relevant für die Studierenden sind. Die Arbeit beantwortet Fragen
zur Zuverlässigkeit und Qualität der Erstellung von Lernstandsquizzen mit Sprachmodellen. Die
Arbeit beschreibt eine Methode um zuverlässig Daten bestimmter Datentypen mit Sprachmodellen
zu erzeugen. Die Ausarbeitung standardisiert Datentypen von Fragetypen. Eine Studie liefert
Einblicke in die Performance von EvalQuiz.
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1 Introduction

Self-assessment creation is challenging and can be laborious. It is not easy to come up with
quizzes that are relevant, interesting and of the right difficulty level. University teaching focuses
on student self-assessment too little, despite its advantages for students [And19; BB95; CB17;
SSS21]. Researchers are often responsible for both research and teaching, while research alone
occupies a large portion of time [Kar12; MM05]. Publications predominantly measure academic
success [BPH+20], which incentivizes to neglect teaching. Researchers use the available time for
incrementally improving lectures and exercises. Creating and offering self-assessment requires
additional time. Tools and standardization have unexplored potential in guiding researchers towards
self-assessment, conveying which forms of self-assessment exist and assisting in self-assessment
creation.

The educational landscape evolves towards remote teaching, opening new possibilities for self-
assessment. The demand for learning management systems (LMS), as Ilias [Webv], and their
respective features skyrocketed due to the pandemic. As the trend continues, institutes extend their
support for online formats, as they experience efficiency benefits. Online lectures can be reused
easily. A mistake in a traditional in-person lecture can remain unseen, while videos allow us to
identify and fix mistakes easily. Students benefit from additional tools, for example, quizzes, to
self-assess. The possibility to re-watch and pause sections is valuable for students.

Learning management systems allow to manually insert self-assessment in the form of quizzes
[Webv]. The inserted data is LMS or plugin-specific. Sharing quizzes with other LMS and other
universities requires laborious data conversion and in-depth communication with the other party.
There is no standardized question specification for self-assessment to our knowledge. Related
work of ”question generation” presents approaches that are fixed to one specific question type
[ARS+16; KM+06; KN19; MS15; NBM+22; TCY]. Most approaches focus on multiple-choice
[ARS+16; KM+06; KN19; MS15; NBM+22; TCY], while there lies huge potential in more flexible
self-assessment systems. Only a few newer approaches utilize large language models [KN19;
NBM+22; TCY]. To our knowledge, none of the current approaches account for the know-how
of the didactic field: Bloom’s taxonomy [BK20], question construction guidelines [Unia] and
motivational factors [Unic]. Publications describe technical challenges and regard implications
for students to little [ARS+16; KM+06; KN19; MS15; NBM+22] except for Tsai et al. [TCY]. A
common optimization criterion of question generation is correctness [MS15]. We argue that student
benefit is a better factor for self-assessment creation to optimize.

Open questions for self-assessment creation are: How to incorporate accomplishments from didactic
sciences in self-assessment generation? Can LMSs benefit from the capabilities that language
models offer? Can language models reliably generate self-assessment according to a specification?
How to teach a language model a specification? The thesis aims to answer the following research
questions: RQ1 Is the automatic generation of self-assessment quizzes including correct answers
using GPT-4 reliable? RQ2 Is the quality of GPT-generated self-assessment quizzes suited for higher
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1 Introduction

education courses in computer science, software engineering, and languages? RQ3 (Optional) Is
GPT-4 capable of generating a larger variety of self-assessment questions when using (text + image)
input instead of text-only input? RQ4 Which approach withholds better results for specification
matching: (GPT-4) few-shot learning or fine-tuning using a less-capable open source model? RQ5
Are state-of-the-art language models capable of reliably producing output according to an API
specification? RQ6 Is keyword recommendation effectively assisting lecturers in the selection of
subtopics for self-assessment questions?

We propose EvalQuiz: A system that tackles current self-assessment creation challenges. EvalQuiz
generates self-assessment of a variety of question types. EvalQuiz is designed for LMS compatibility
through a specification. EvalQuiz solves language model input restrictions through filtering.
Novelties are the message composer scheme, question specification and educational objective-based
question generation. The message composer scheme teaches the model to answer with a specific
data type. EvalQuiz uses a novel way to connect educational objectives with self-assessment. This
gives lecturers control over question generation depth. We propose the concept of Capabilities.
Capabilities contain educational objectives that connect to questions. This association benefits LMSs
in categorizing, recommending and sharing self-assessment. A contribution is the implementation
of content-addressable lecture material management through the material server. The thesis explores
how LMS can benefit from content addressable storage. The thesis also discusses EvalQuiz’s role in
student-centered self-assessment recommendations. Contributions of the thesis are conceptualizing,
implementing, deploying and evaluating EvalQuiz. The system implementation consists of 7
individual services.

We evaluate the system in a survey targeted to lecturers of different domains. The remainder of the
thesis is structured as follows:

Thesis Structure

Foundations gives an overview of key concepts such as self-assessment, question types and
transformer models. We highlight aspects necessary for understanding later sections.

Related Work describes our search methodology for related work and the lack of current self-
assessment creation solutions. This chapter highlights the lack of connection between the
didactic field and question generation.

Requirements Engineering states current problems with self-assessment and explores solutions
through didactic specialist interviews. We discuss an initial interaction prototype with experts
in the didactic field and distill requirements from our findings.

Concept discusses technical challenges and possible solutions. We embed the requirements
created in the RE process in our concept. We justify and explore data flow and data types.

Architecture and Implementation encompasses architecture modelling and design decisions.
We explain which technologies we chose. We discuss implementation details of components
and their function, as pipeline modules.

2



Evaluation summarizes the real-world evaluation of our system. The evaluation consists of (1)
familiarizing the participant with the system and its concepts, (2) enabling the participant to
test the system with their lecture materials and (3) a short questionnaire collecting experiences
and remarks.

Conclusion and Future Work sums up the project and its findings and states open questions for
future work. We suggest directions for future work to explore.

3





2 Foundations

This chapter explains the necessary foundations of self-assessment and transformer models. We
discuss the transformer architecture and several proprietary and open-source implementations. We
explain important terms used in this thesis.

2.1 Self-Assessment

Boud et al. define self-assessment as:

Definition 2.1.1 (Self-assessment)
The involvement of students in identifying standards and/or criteria to apply to their work and
making judgments about the extent to which they have met these criteria and standards. [BB95]

A student can identify standards/criteria through the lecture itself. Either in a direct or an indirect
way:

• A standard or criteria is explicitly stated by the lecturer as required

• A student assumes through former knowledge and experience. For example previous lectures

Lecturers should be encouraged to state standards/criteria. Students are unlikely to match the
lecturer’s expectations by assumption. If told, students can grasp the lecturer’s expectations.
Expected standards/criteria can be specified through Bloom’s taxonomy [BK20]. Stated standard-
s/criteria are then interpreted by students. Students have to judge to which extent they match those
standards/criteria. This happens in two steps. (1) A student internalizes the standard/criteria and (2)
estimates to what extent they meet the standard/criteria.

Remark
We use the word self-assessment for two concepts. (1) Self-assessment helps a student to self-assess,
Boud et al. [BB95]. Self-assessment can be a self-assessment question, for example. And (2)
Definition 2.2.1.

2.1.1 Bloom’s Taxonomy

Bloom categorizes educational objectives into six hierarchical categories [BK20] [Unib]. The
cognitive model, published as early as 1956 by Bloom:

1. Knowledge: Concepts can be recalled.

5



2 Foundations

2. Comprehension: Concepts can be compared, discussed, explained, distinguished or summa-
rized.

3. Application: Concepts can be applied to exercises: Calculation, classification and interpreta-
tion in known or unknown scenarios.

4. Synthesis: Concepts can be combined, developed, constructed or derived.

5. Evaluation: Concepts can be evaluated, criticized, explained or predicted.

The taxonomy orders educational objectives from simple to complex. Bloom’s taxonomy helps
to structure learning. Lecturers can provide exercises of the next level when the previous level
is sufficiently assessed. The taxonomy allows one to check if exercises match the specified level.
Bloom’s taxonomy helps to specify to which depth students should internalize a concept. Students
then can expect a specific set of exercises.

Each category includes all concepts of the categories below. We do not consider the Knowledge
category in this thesis, as Knowledge alone can not be considered a valuable educational objective
for higher education. Simply recalling concepts is not sufficient. The first category considered
is Comprehension. Comprehension includes Knowledge due to the taxonomies hierarchical
nature.

Bloom’s taxonomy consists of three models for different domains [BK20]. The cognitive, affective
and psychomotor domains. The affective and psychomotor domains are not considered in the thesis.
We focus on the cognitive domain with its categories: Comprehension, Application, . . . .

2.1.2 Question Types

University lectures use a variety of question types in exercises and exams. Question types have
different characteristics. Some are better to automatically evaluate. Exams designed with automatic
evaluation in mind prefer unambiguous questions.

Definition 2.1.2 (Unambiguous question)
The question is correctly constructed according to the question type. A lecturer declares
every answer option as either true or false.

Definition 2.1.3 (Answer option)
User input that conforms with the question type.

Definition 2.1.4 (Answer)
True answer option.

We need an example to clarify what an unambiguous question means:

We can define a question type: True-or-false-question, with a question text and two answer options:
”true” and ”false”. The question text must be a closed question. The question type defines the answer
options ”true” and ”false”. A lecturer then labels answer option ”true” → (as) ”true” and option
”false” → (as) ”false”. A question of question type True-or-false-question is always unambiguous.
Each answer option is inherently declared as true or false.

6



2.1 Self-Assessment

Two of the most prominent question types enable unambiguous questions. Multiple-choice and
multiple-response questions. We argue that multiple-choice and multiple-response questions are
unambiguous.

Multiple-choice questions have 0..𝑛 fields and answer options. A lecturer declares one answer
option as true and all other answer options as false. This is a solution to the multiple-choice
question.

Multiple-response questions with 0..𝑛 fields have 2𝑛 answer options. Each subset of 𝑛 elements
is an answer option. Each subset can be the answer. Only one subset is the answer. The order in
which elements are chosen does not play a role. Fields should be independent of each other. A field
changes its validity depending on surrounding fields, if dependent. A lecturer can correct a field in
isolation, if independent.

We suggest reformulating multiple-response questions with dependent fields. For example:

Which of the following statements are true?

- [ ] Statement A)
- [ ] Statement A) and B)
- [ ] Statement B)
- [ ] Statement C, but only if A)

Two refactoring options help solve answer option dependencies:

1. Change the question type from multiple-response to multiple-choice

2. Rewrite each field as pairwise independent:

Which of the following statements are true?

- [ ] Statement A)
- [ ] Statement B)
- [ ] Statement C)

The original example is more complicated to evaluate than the refactored examples: A linear
evaluation algorithm checks each answer option in order. The algorithm must have already checked
the third field: Statement C), when it wants to check the second field: Statement A) and B).
The second field references the third field and therefore creates a dependency. This causes linear
evaluation to break for the given example. Removing references (refactoring option 2) fixes the
problem. The algorithm does not need to follow any references. Evaluation is possible in 𝑛 steps.
No state needs to be carried over between field evaluations. Refactoring option 1 changes the
question type to multiple-choice, reducing the answer options to 𝑛. This simplifies evaluation.
Evaluating the original example (multiple-response) requires 2𝑛 steps initially, as all of 2𝑛 subsets
have to be evaluated.

Question types with text input answers can be unambiguous. For example the Diagram-cloze-
question type.
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Definition 2.1.5 (Diagram-cloze-question)
Describes a graphic, for example from a lecture, with missing text fields. The task is to
restore the missing text.

The original graphics’ exact words can be an answer. However, only declaring the exact words as
valid can render some answer options as false negatives. The student can write down a synonym. A
lecturer has to consider synonyms as possible answers (valid answer options). The same holds for
correct, but misspelled words. Similarly, diagrams with symmetries can have different valid answer
option configurations.

This is also true for the Free-text-question type.

Definition 2.1.6 (Free-text-question)
Input to a single text field composes the answer. Students have to answer in their own words.

Exercises and exams contain Free-text-questions. Automatic scoring is more difficult for ambiguous
question types than unambiguous ones. All text input field combinations are hard to label. Labeling
all answers as either true or false in advance is impractical. The more answers, the harder it is to
argue against the ambiguity of a question. Table 2.1 gives an overview of answer space sizes for
different question types.

Self-assessment questions benefit from automatic evaluation. Manual correction by academic
personnel is unfeasible. Academics can spend time on research instead. Automatic evaluation can
give students immediate feedback.

Unambiguous questions allow a simple and automated evaluation:

Algorithm 2.1 Automated evaluation of an unambiguous question.
Question is unambiguous.
if User input in answer options then

Return label ”true” or ”false” according to answer option.
else

Invalid user input. Not conform with question type. Return ”false”.
end if

An ambiguous question requires a mechanism to handle unlabeled answer options. Large language
models (LLM) are capable of automatic evaluation. GPT-4 performs respectably on academic
exams [Ope23]. Cross-contamination between exams and pre-training data is low [Ope23]. Yet,
performance does not live up to the standard needed for sample solutions.

Converting ambiguous to unambiguous questions can simplify automatic evaluation. Large language
models are capable of converting one question type into another. Next, one applies Algorithm 2.1
on the resulting unambiguous question. Future work needs to assess the robustness of this idea.

Multiple-response and multiple-choice questions are the first question types implemented in
EvalQuiz. We assess more question types and their ambiguity in the following. Implementation
candidates for EvalQuiz:
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Name Description Answer space size
Multiple-choice
questions

Similar to multiple-response questions 0..𝑛
answer options exist of which 1 answer is
true. This question type can be confused
with Multiple-response questions.

𝑛

Multiple-response
questions

Consist of a sentence formulating a ques-
tion, 0..𝑛 answer options of which 0..𝑛
answers can be true. Wrong answers are
described as distractors [KM+06].

2𝑛, but manageable through
pairwise independence.

List-ordering ques-
tions

A total or relative order exists on 2..𝑛
items that need to be established as the
self-evaluation task.

𝑛!

Concept matching
questions

Concepts that are related can be matched to
each other. 2..𝑛 concepts can be clustered
into 1..𝑛 clusters.

𝑛!

Cloze deletion
questions

Also known as fill-in-the-blanks question
and explained by the Anki [Webb] docu-
mentation [Webc]. First proposed by Taylor
et al. [Tay53]. Very easy to generate as
existing text must not be changed in its
grammatical structure. A blank simply
needs to be filled. Dealing with typos or
synonyms is a challenge in the evaluation of
this question type. Mathematical answers
also can be given with different precision
or as different equivalent mathematical ex-
pressions. A way to mitigate this problem
is to provide fixed answers, for example in
a multiple-choice format.

|Σ | ∗Î
TEXT_FIELD MAX_FIELD_LENGTH,

where Σ is the input alphabet
and MAX_FIELD_LENGTH the
maximum text that fits in the
input field: TEXT_FIELD.

Free-text ques-
tions

Definition 2.1.6 |Σ | ∗ MAX_TEXT_LENGTH, where
Σ is the input alphabet and
MAX_TEXT_LENGTH the maxi-
mum text length that fits in
the input field.

Table 2.1: Question types and their answer space sizes.

2.2 Transformer Architecture

The original transformer paper introduces self-attention in combination with a feed-forward network.
The network uses positional input encodings for self-attention [VSP+17]. Fig. 2.1 illustrates the
model’s architecture. The approach maps text, as a sequence of symbols, (𝑥1, . . . , 𝑥𝑛) to a sequence
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Figure 2.1: Transformer architecture [VSP+17].

of words (𝑧1, . . . , 𝑧𝑚). The model’s encoder then accepts those words as input [VSP+17]. The
model processes all input at once in comparison to the previous approaches. Former state-of-
the-art, recurrent neural networks (RNN), process input word-by-word. Sequential input renders
parallelization difficult [VSP+17]. Back-connections store copies of the previous value. RNNs keep
state in this way.

In comparison: a layer of the transformer encoder consists of a self-attention module. A feed-forward
network follows and features skip-connections: LayerNorm(𝑥 + Sublayer(𝑥)). Skip connections
pass information to layers ahead. Layer normalization prevents skip-connections from amplifying
the signal, Fig. 2.1 [VSP+17].

Both encoder and decoder layers stack 𝑁 × 6 times. Decoder layers process the output of encoder
layers as input [VSP+17]. This information consists of previous predictions, excluding the current
word to predict.
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2.3 Transformer Models

Using transformer models can withhold certain restrictions. There are two possibilities to access a
model:

1. Model access via API gives the organization that developed/trained the model control over
the model’s usage and modification. Training requires a large amount of compute and memory.
A paid API helps the organization to compensate for training costs. The organization is able
to use API requests to improve the model’s performance and curate its contents. OpenAIs
ChatGPT interface and API is an example of this usage [Webr; Webs].

2. Pre-trained publicly available models enables to use, modification and benchmark of the
model according to given license restrictions. The larger the model, the more memory and
compute it requires. Researchers need to take the model’s resource footprint into account
when running and/or fine-tuning the model. The Hugging Face library offers a wide range of
openly pre-trained models and datasets [Tra]. Models are often published by researchers for
transparency reasons [DCLT18; RSR+20].

In the following we will explore transformer models approaches by OpenAI and Google and compare
their advancements in recent years:

2.3.1 Transformer Models by OpenAI

Training larger models on larger datasets makes it possible to achieve better performance in
downstream tasks [RSR+20] [CND+22]. OpenAIs GPT-3 model trained with 175B parameters on
96 layers is considered state-of-the-art among NLP models, delivers coherent text-output [KRS21]
and is able to learn on a few-shot basis [BMR+20]. GPT-3 features a decoder-only architecture
and was trained on 499B tokens of training data, consisting mostly of filtered Common Crawl data
[BMR+20].

OpenAIs improved its GPT-3 model releasing GPT-3.5 models optimized for chat in different
varieties:

GPT-3.5 variants (directly cited) [Webs]:

Latest model Description Max to-
kens

Training
data

gpt-3.5-turbo Most capable GPT-3.5 model and op-
timized for chat at 1/10th the cost of
text-davinci-003. Will be updated with
our latest model iteration.

4,096 to-
kens

Up to Sep
2021

gpt-3.5-turbo-0301 Snapshot of gpt-3.5-turbo from March
1st 2023. Unlike gpt-3.5-turbo, this
model will not receive updates, and will
only be supported for three months end-
ing on June 1st 2023.

4,096 to-
kens

Up to Sep
2021
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text-davinci-003 Can do any language task with better
quality, longer output, and consistent
instruction-following than the curie, bab-
bage, or ada models. Also supports in-
serting completions within text.

4,097 to-
kens

Up to Jun
2021

text-davinci-002 Similar capabilities to text-davinci-003
but trained with supervised fine-tuning
instead of reinforcement learning

4,097 to-
kens

Up to Jun
2021

code-davinci-002 Optimized for code-completion tasks 8,001 to-
kens

Up to Jun
2021

Table 2.2: GPT-3.5 variants (directly cited) [Webs].

The table describes each GPT-3.5 model with the maximum number of tokens that are able to
be processed in one input prompt. One token refers to around 4 characters according to OpenAI
[Webai] and longer words can be split up into multiple tokens:

Figure 2.2: Token calculation from a sentence with OpenAIs tiktoken tokenizer for GPT-3.5 &
GPT-4 [Webai].

The last column of Figure 2.2 describes up until which date input data is sampled.

OpenAI has released GPT-4 on the 15th March of 2023 [Webr]. GPT-4 outperforms GPT-3.5 in
a variety of academic benchmarks, including MMLU (multiple-choice questions of 57 subjects),
HellaSwag (Everyday commonsense reasoning), HumanEval (python coding tasks), etc. [Ope23].
Additional to previous models it allows visual input upon text input and improves upon safety
measurements. ChatGPTs premium tier was upgraded to GPT-4 [Webr]. OpenAI has not released
details about the architecture of GPT-4 due to ”safety implications” and ”the competitive landscape”
[Ope23] that its product is placed in.

OpenAI offers a variety of state-of-the-art language models, however, those models are not openly
available and can be accessed from OpenAIs API [Dal21] [Webah], where OpenAI limits access
via the token system.
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Figure 2.3: OpenAI: Reinforcement learning through human feedback [Webaj].

Figure 2.4: OpenAI: Language model alignment [Webaj].

Reinforcement Learning through Human Feedback (RLHF)

OpenAI applies RLHF for tuning its GPT-3.5 and GPT-4 models[Webs]. The goal of RHLF is to
align models with human preferences [Webak]. RLHF is used in the three-step approach of model
alignment that OpenAI presents on its website [Webaj]. Figure 2.4 depicts Step 2 of OpenAIs
alignment method using RLHF. The language model outputs different versions that a labeler ranks
for preferences. This trains a reward predictor similar to Figure 2.3. Step 3 describes the reward
predictor to rank numerous outputs of the language model (Figure 2.4). The human curates the
model’s behavior regarding sensitive and dangerous topics. The model is incentivized to follow the
labeler’s preferences.

2.3.2 BERT

BERT is a language model released 2018 by researchers at Google [DCLT18]. BERT is available
open-source under the Apache-2.0 license. The novelty of BERT is that it is trained on bidirectional
representations. Bidirectional self-attention is used in comparison to constrained self-attention, as
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implemented by the authors of the original transformer paper [VSP+17], where each token only
references tokens to its left [DCLT18]. BERT is trained using a masking task (cloze [Tay53]),
and a next sentence prediction task [DCLT18]. BERT-Large has fewer parameters (340M) than
comparable language models of OpenAI [KRS21], excluding the original GPT model. Training
happens in two phases. Pre-training on the Toronto Book Corpus and English Wikipedia and
fine-tuned with a downstream task. For example, question-answering using a version of the Stanford
Question Answering Dataset (SQuAD). Fine-tuning is ”relatively inexpensive” in comparison to
pre-training, as BERT delivers comparable performance with a limited amount of fine-tuning data
[DCLT18]. BERT is an encoder network [DCLT18] and therefore better on prediction tasks than
generative tasks, as translation and summarization highlighted by Raffel et al. [RSR+20].

2.3.3 T5

T5 (Text-to-Text Transfer Transformer) regards a variety of NLP tasks as text-to-text transformations
[RSR+20]. Input and output are text representations. This design decision is made to improve
comparability among transfer learning tasks. The model is trained with up to 11B parameters and
uses a standard encoder-decoder transformer as proposed by Vaswani et al. [VSP+17] [RSR+20].
An extensive evaluation is conducted on how architecture, training and data affect the model’s
performance. Code, models and training data are released under the Apache-2.0, similar to BERT,
and therefore benefits further research and usage [RSR+20]. T5 is built according to the model
proposed by Vaswani et al. [VSP+17], differing in a few details: Layer normalization only features
a scalar, without an additive bias. Position embeddings are relative instead of absolute. Positions
offset up until 128 tokens can be attended to [RSR+20]. Training is conducted through a masking
task, similar to BERT [DCLT18]. The model is fine-tuned and evaluated on GLUE, SuperGLUE
tasks and SQuAD, as well as classification, general text understanding and translation [RSR+20].
Tasks are formulated in a text-to-text format and follow a specific format: Basic structure of a

task: Task-specific information.

2.3.4 PaLM

PaLM is a 560B parameter transformer model announced by Google in 2022 [CND+22]. It
uses a transformer architecture in a decoder-only setup, using SwiGLU activation functions with
improved transformer blocks of a more parallel nature. The model incorporates RoPE (rotational
position encoding) [CND+22]. Novelty is the training approach using Pathways, a system enabling
more efficient training of deep neural networks [CND+22]. The non-fine-tuned model is able to
outperform fine-tuned state-of-the-art models on a wide variety of tasks, using chain-of-thought
prompting [CND+22]. The 780B token dataset contains Wikipedia pages, web pages, social media
conversations, news and source code. ≈ 22% of the training data consists of languages other
than English. Multi-lingual evaluation of translation, summarization and question answering is
conducted, with promising results [CND+22]. The model archives state-of-the-art performance on
28/29 English NLP benchmarks and performs well in zero- to few-shot scenarios [CND+22].
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2.3.5 Other Transformer Models

Noteworthy language transformer models that archive state-of-the-art performance, comparable to
GPT-3, are based on the architecture proposed by Vaswani et al. [VSP+17] and include: GLaM,
Chinchilla, Megatron–Turing NLG and LaMDA as stated by Chowdhery et al. [CND+22].

2.3.6 Transformer Model Steering

Pre-existing models are able to produce the desired output by:

1. Prompt-design (Prompt engineering) enables the user to get the model to output the desired
answer by precisely designing the text prompt and giving the model feedback iteratively with
follow-up prompts (few-shot prompting). This describes using the model as-is and finding
out which prompt gives the desired behavior by iterative testing. Few-shot learning, as well
as Chain-of-thought (CoT) prompting [WWS+22] are techniques used in prompt design.

2. Fine-tuning enables feeding the models a series of prompts and completions to optimize
the model for a specific behavior. The model itself is fine-tuned, by changing its parameters.
Fine-tuning is more prompt to over-fitting than few-shot learning [BMR+20].

3. Feature-based approaches use ”task-specific architectures that include the pre-trained
representations as additional features” [DCLT18].
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In this section, we explore related work of self-assessment/question generation and describe the
pipeline reference architecture.

3.1 Self-Assessment Generation

We describe our methodology to collect related work, categorize sentence selection from text
input and compare multiple-choice generation approaches. Our findings reveal state-of-the-art
weaknesses.

3.1.1 Methodology and Overview

We used Google Scholar [Webq] to search for existing question-generation approaches. The
search term ’self-assessment generation’ did not provide any related results, based on the titles
and abstracts. We chose more general terms such as ’question generation’ and ’multiple-choice
generation’ in response. We applied forward and backward scrolling to gather more resources
about question generation. We ordered the results for recency, as we are particularly interested
in the potential that transformer models hold for self-assessment generation. The transformer
architecture is first introduced 2017 by Vasvani et al. [VSP+17]. Related work assesses transformer
model question-answering capabilities, with promising results [Ope23]. Related work about
self-assessment generation is sparse and has its limitations, as Section 3.1.4 identifies. We opted to
take a look at less recent methods, to gain insight into general challenges and ideas about question
generation. To our knowledge, multiple-choice is the most researched question type for question
generation. However, none of the found papers connect question generation with a student-centered
approach, with the key goal of benefiting the students learning. Such an approach would consider
the findings and strategies of the didactic field. Research about self-assessment, and assisting a
student-centered is out there [BB95] [Unib] [Unia] [Unic]. Existing work focuses on the technical
aspect of mostly non-transformer approaches. We argue that both the technical and didactic side of
question generation leaves room for improvement.

3.1.2 Sentence Selection from Input Text

Previous work focuses on multiple-choice questions, as defined in Table 2.1, in roughly three steps.
1. Sentence selection from an input text, 2. Question creation, 3. Distractor creation.

Input consists of a text corpus. A sentence selector chooses a subset of the input. This subset can
even be a single sentence [MS15].
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Majumder et al. explore a variety of different features for sentence extraction [MS15]:

• Keywords: A sentence selector can filter text through keywords. A set of keywords can be a
topic. And topic modeling can find topics as keywords from the text.

• Grammatical structure: Grammar-based filters find sentences with specific grammar structures.
This enables sentence-to-question conversion. Questions are sentences in interrogative form.

• Position: The position of a sentence in a document can provide information about the
sentence’s content. Abstract and conclusion sections are at the beginning of scientific papers
and contain a condensed overview of the contents. A paper generally includes a problem
statement, contributions and key findings. A reader expects specific bits of information
at specific positions. The probability that a sentence belongs to the introduction can be
statistically analyzed, based on its position in the document. Similar in the conclusion.

• The length of a sentence speaks about its usability for question creation. The longer a sentence,
the more information it can carry. But, the more likely it is to include jargon: Redundant
words, adverbs and empty phases. Co-reference resolution enables to separation of long
sentences into shorter sentences [MS15]. This results in more sentences usable for question
creation.

• Pronouns

• Completeness of context

• Similarity to definitions

3.1.3 Multiple-Choice Generation

Majumder et al. [MS15] present a system for multiple-choice generation using the topic modeling
tool-set (TMT) [Webbh]. Their approach filters relevant sentences based on keywords and applies a
process called co-reference resolution to separate long sentences into shorter sentences, isolating
information related to keywords. First, a reference set with multiple-choice questions from a domain
is collected. The collected reference questions are converted from interrogative to assertive form
[MS15]. The reference sentences parse tree structure is analyzed and matched with the input text.
Matching the input text allows the authors to find more ”multiple-choice” sentence candidates.
The approach adapts the test sentence’s tenses before comparing the test sentence’s structure with
a sentence’s structure from the input text. Conversion from assertive to interrogative takes the
respective answer keywords into account. The approach selects answer keywords by named entity
recognition, removes the answer keywords and converts the sentences from assertive to interrogative
form [MS15]. The approach generates distractors by scraping the web. The authors evaluate their
sentence selection approach in a survey. The participants categorize 93% of the sentences as usable.
The participant evaluates 91% of the generated distractors as usable [MS15]. The grammatical
structure of sentences can be used to identify multiple-choice question candidates. The authors state
that their approach selects sentence candidates, which results in too general questions. Too general
questions are hard to answer, as they omit information required for a definite answer. The answer to
a question asking about "last yearïs dependent on when it is asked [MS15]. Question generation
systems should generate robust, context-independent questions instead. Another limitation is that
Majumder et al.’s approach generates questions and distractors about single-named entities. This
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limits the possibility of asking about the relations of multiple named entities. A problem with the
approach is that generated distractors can be valid answers. For example, the question: "Which
person won the Olympics in [year]?", can have multiple answers. There is no mechanism to exclude
scraped true distractors.

Araki et al. (2016) [ARS+16] generate question sentences from multiple input sentences. Their
approach uses semantic text analysis. The authors argue that questions generated from a single
sentence purely test low-level knowledge, unsuitable to ”properly measure understanding of the
overall contents” [ARS+16]. Their reliability checking system validates distractors as false and
the answer as correct. The approach is able to create phrase-level distractors, a limitation of
previous work [KM+06; MS15]. Their approach uses semantically annotated text, labeled by
experts. The authors realize distractor generation by searching for annotations similar to the answer.
A limitation of their approach is that questions and distractors can be grammatically incorrect
[ARS+16]. Another limitation is that a part of the distractors can be easily eliminated. The answer
is logically connected with the distractors in a few cases. The authors evaluate their approach to
lecture materials from the biology domain. The biology domain features sequential processes.
Questions about sequential processes often examine temporal relationships. The authors emphasize
that semantic annotations used by their system reflect temporal relationships. The generalizability
to other domains is unclear.

3.1.4 Question Generation with Transformer Models

Self-assessment question generation in a fixed specification format using transformer models
has not been assessed by state-of-the-art, to our knowledge. Transformer-model-based question
generation comes with limitations regarding question types, steerability and context awareness.
Former approaches do not consider which users use their questions in which contexts.

Klein et al. (2019) [KN19] developed a system to generate questions and answers using transformer
models, arguing that both tasks are closely connected and therefore can benefit from each other. The
authors respectively use BERT and GPT-2, arguing that GPT-2 is suitable for question generation and
BERT is suitable for question answering, due to the network’s respective architecture [KN19]. Both
networks work together end-to-end. The authors test the system on the SQuAD dataset and evaluate
the quality of generation and answering. The authors compare their question generation approach
using the BLEU [PRWZ02] and ROGUE [LO04] metrics. Their approach outperforms LM-init,
referenced as a GPT-2 variant [RWC+19], but it is unclear if the improvement is significant.

Tsai et al. (2021) [TCY] present a method of retrieving sentences containing relevant keywords on
a Python learning course using BERT, and generating self-assessment questions with GPT-2 [TCY].
However, the authors do not reason why they have chosen BERT and GPT-2 for the respective
task and do not discuss possible other approaches for the respective sub-tasks. BERT is fine-tuned
for domain-specific keyword recognition, improving keyword recognition performance from 94%
to 98% [TCY]. We criticize that examples of falsely recognized keywords are not transparently
highlighted. Domain-specific fine-tuning does not apply to lecture materials outside the domain of
Python programming. The type of questions generated by Tsai et al. is stated as short answers,
however, no definition of this question type is given. We consider the generated questions as not
specific enough. For example: ”What language does the body of the if statement come from?”
[TCY] does not provide enough context to be answered with a definite answer. There is no indication
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in which context the if statement is written: It could be written in another language than Python or
even if written in Python include inline code from another language. We expect a question about
Python to state: ”written in Python” or ”written in Python syntax” more specifically.

Nguyen et al. (2022) [NBM+22] present and evaluate a multiple-choice question generation
approach on a data-science course using MOOCCubeX as a topic modeling tool. Their approach
uses the T5 [RSR+20] model, fine-tuned on the SQuAD dataset. The dataset and source code are
publicly available [NBM+22]. The authors do not offer a fixed format for generated questions.
However, it is mentioned as a possible direction for future work.

3.2 Pipeline Reference Architecture

The pipeline reference architecture provides benefits regarding separation of concerns, parallelism
and re-usability [RL77]. A pipeline can be defined as a directed graph, where each node is a
module and each edge an interface. Data flows unidirectional, therefore the graph is directed. The
graph must include a start and end node. The start node has no incoming connection and the end
node has no outgoing connection. We focus on acyclic and non-splitting/merging graphs, which
represent linear pipelines. A stateless pipeline module guarantees that output is only computed
on the input. Stateless and deterministic pipeline modules guarantee the same output for the same
input. This is important for pipeline scaling and parallelization. A parallel configuration of stateless
pipeline modules allows horizontal scaling while mathematically behaving similarly to a single
node. This is not the only way that pipelines provide parallelism. Each pipeline module can process
its own data packet in isolation, data is passed through interfacing. Dependency-based pipeline
modules, waiting for a specific amount of input data packets can be modeled through Petri Nets
[CM90]. Such pipeline modules are stateful. A pipeline architecture-compatible process allows
the implementation of each pipeline module in isolation. Independent implementation requires
pipeline module interfaces to be well-defined and stable.
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The following sections describe the requirements engineering process. Requirements, highlighted
in blue create the foundation for EvalQuiz’s concept, presented in Chapter 5.

4.1 Problems with Self-Assessment

A student builds a mental model through the course and former knowledge. Figure 4.1 depicts
this process. Lecturers teach a course through different modalities. Often, a lecture with lecture
slides, exercise sessions with exercises or a book. Misconceptions in the student’s mental model can
occur, represented with a lightning symbol in Figure 4.1. Misconceptions can lead to unsatisfied
course standards/criteria (Section 2.1). Self-assessment helps the student to resolve misconceptions.
However, not all courses feature self-assessment. Limitations in creating, distributing and using
self-assessment exist:

Figure 4.1: Self-Assessment: Student Benefits.

Lecture course creation and forum management occupy lecturers sufficiently. The maintenance of
mandatory lecture slides and exercises does not leave room for non-mandatory self-assessment. Insti-
tutes are responsible for lectures in a university setting. Responsibilities are distributed hierarchically.
Teaching is a part of the institute’s responsibilities which include: Academic publishing, financing,
sponsoring and supervision. Self-assessment creation is not easily outsourceable for multiple
reasons: Domain experts are required to create high-quality and correct self-assessment (Figure
4.2). The question’s scope and depth need to be communicated and matched F-REQ-3. Financing
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of outsourcing is unclear as well. Self-assessment should be cheap NF-REQ-1. The institute
additionally needs to evaluate if in-house creation is cheaper. Lecture materials and self-assessment
needs to be correct F-REQ-4. Ideally at least two domain experts approve self-assessment F-REQ-5.
That can be the lecturer who created the self-assessment and a coworker familiar with the domain,
as the example in Figure 4.2 shows.

Figure 4.2: Self-Assessment: Required Domain Experts.

Figure 4.3: Self-Assessment Creation: Bottlenecks.

Self-assessment creation can be tricky. Difficulty must match the lectures standards/criteria F-
REQ-6 (Section 2.1). A low-level question asking for a single scientific term for example, is only
quizzing the students Knowledge (Bloom’s taxonomy, Section 2.1.1). The terms then need to be
of high relevance. An isolated term lacks connection and context, making it hard to remember.
High-level questions can lack depth. For example, building a question around: Information hiding
is the principle of segregation of the design decisions [MO03] leaves out why information hiding is
desirable Comprehension and how it can be used for a software program Application (Bloom’s
taxonomy, Section 2.1.1).
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There is no standardized question specification F-REQ-7 available, to our knowledge. Question
integration in learning management systems depends on platform-specific data types or a markup
language. This is a hurdle for cross-integration and re-usability. Learning management system-
specific data-structure requires manual intervention for migrating questions to other services.
Questions formulated in markup languages lack flexibility in terms of presentation and interaction.
This begins with the learning management systems theme and ends with hints, rewards, plugins and
gamification. An interactive puzzle is difficult to write in a markup language. Markup languages can
integrate programming languages for interactivity. This comes with drawbacks in terms of platform
specificity, learning management system compatibility and possibly performance. Integrating
content written in different programming languages in one learning management system can create
memory and computational overhead. Maintenance and testing can be more difficult, negatively
affecting reliability.

Existing self-assessment generation approaches focus on multiple-choice questions, according to
Chapter 3. The potential of other question types remains largely unexplored. Self-assessment can
be versatile. An approach extendable with different question types F-REQ-8 allows us to assess the
full potential of self-assessment. Testing questions of different types does not require designing and
building a new system.

A general system also should assist with selecting which lecture parts to choose a generation
input. The system ideally selects by itself which lecture material parts are relevant to course
standards/criteria. The selection process takes in multiple lecture materials of different formats
F-REQ-10 NF-REQ-2. The system allows one or more lecture materials as input F-REQ-9. The
system should perform similarly on different material formats with equivalent content NF-REQ-3.

4.2 Didactic Specialist Interviews

We have conducted specialist interviews with experts in the didactic field to understand how a
self-assessment generation system can assist lecturers and students. Notes taken during the interview
are reconstructed as text answers. Valuable input regarding self-assessment and the interaction
prototype helped to shape EvalQuiz in later stages. We started with a short presentation about
the ideas, backgrounds and goals of the project, as a conversion primer to spark interest and
communicate context.

4.2.1 Procedure

We first give a (1) slide-based project introduction presentation. Then conduct (2) an interview about
self-assessment in general. (3) Introduce our interaction prototype and (4) collect feedback about
our prototype in the form of an interview. Then (5) collect further ideas regarding the project.

4.2.2 Introduction of interaction prototype

The interaction prototype is a scenario of a lecturer using a system to:

• Generate self-assessment materials F-REQ-1
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• Use an iterative approach to improve the self-assessment generation outcome F-REQ-2

We construct the interaction prototype according to the requirements highlighted in blue. The
interaction prototype is part of requirements engineering. We present the interaction prototype to
didactic experts in order to collect more requirements and validate base requirements. For example,
we want to assess if didactic experts consider iterative human-model collaboration F-REQ-2 as
valuable for self-assessment generation. General non-functional requirements are ease of use
NF-REQ-7, reliability NF-REQ-6, resourcefulness with memory and compute NF-REQ-5 and
security.

We changed our first command line prototype sketch to a sequence diagram, depicted in Figure
4.4. We do not require didactic experts to be familiar with command-line interfaces. The prototype
defines interaction in multiple steps: (1) connection, (2) material upload, (3) creation of question-
generation specification, (4) audit question generation specification, (5) generation/iteration and (6)
log/history.

A server-client architecture is chosen for several reasons: Setup on the lecturer client is not required.
A web interface removes the need for additional dependencies on the client side NF-REQ-4,
speaking of dedicated client software. The user does not need to install additional software, which
improves ease of use NF-REQ-7. The server can manage multiple clients. Each connection serves
a unique context. Materials and caches on the other hand can be shared between clients, lowering
the computational and memory footprint NF-REQ-5 that every isolated client would have. A
server could run a large language model (LLM), which can be problematic locally, due to the large
amounts of random-access memory (RAM) usually required for larger models. A client-only setup
can decrease reliability NF-REQ-6 due to the variety of environments that need to be supported.
Different operating systems (OS) NF-REQ-8, dependency version conflicts etc. Supporting a
single OS is also not an option, as ruling out potential use cases on different systems by design is
not a good choice. Another benefit is server-side secret management, mitigating the problem of
client-side secret sharing and reducing the risk for secrets to be compromised NF-REQ-9. Secrets
can be required, if the LLM is not run locally but provided as a third-party service [Webr].

The user configures a question-generation-specification to steer and configure self-assessment
generation F-REQ-17. This document references lecture materials. Those need to be present on
the server and can be uploaded through the interface. Integrating lecture materials directly into the
config poses a repetitive workload on the network if a generation with similar lecture materials is
repeated. This scales up with the number of users, requiring potentially more resources from the
hosting provider. Separating material upload and generation only requires upload bandwidth once
F-REQ-18.

The prototype realizes interaction with an iterative approach F-REQ-2. It is possible for the
user to configure a question-generation-specification, iterate/generate, judge the outcome, adjust
parameters accordingly and rerun the iteration/generation. Reiteration is also possible on the same
configuration F-REQ-19, as the output of LLMs is nondeterministic. A user therefore has the
incentive to rerun the same question-generation-specification multiple times. The conceptualized
lecturer client features a version control to save and compare different config versions F-REQ-20.

Audit mechanisms are added to visualize the difference between the previously iterated question-
generation-specification and the current question-generation-specification F-REQ-21, in order to
improve the visibility of the systems status. One of Nielsen’s ten interface design principles [Nie94].
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History/Log builds on audit by presenting different visualizations of the whole history. History is
deliberately managed on the client to decrease server state and leave the decision to which degree
history is managed to the client implementation. History/Log is only used where needed and can be
added in case it provides a benefit for the specific use case.

4.2.3 Condensed Findings: Interviews

This subsection condenses the interview findings. Appendix Chapter A states the full interviews.

It is important to consider each question in relation to its surrounding questions to arrange the
sequence in which questions are asked carefully. Asking questions is an act of communication.
Questions that are topically similar should adjacent or at least close to each other [Unia] F-REQ-11.
Topic jumps should be prevented as well as possible F-REQ-12. In order to connect sections of
different topics, transition elements should be designed. Topic sections are marked by headlines.
The inquiry purpose is best stated at the beginning of the document, followed by an ”icebreaker”
question, sparking interest and motivation to continue [Unia]. The most important questions should
be placed in the first third of the inquiry. F-REQ-13 Each topic should be assessed from general
to specific questions [Unia]. Context from previous questions can mislead or bias to specific
answers. More information about context effects can be found in the ”Item and question construction
guidelines” of the ZLW University of Stuttgart [Unia], as well as additional question-wording
guidelines [Unia] F-REQ-14:

• Simple and clear language

• Simple and short questions

• Positive language

• Not suggestions or assumptions

Questions can be composed based on educational objectives [BK20] F-REQ-15, which focus on
specific lecture parts. The idea is to measure to what degree an educational objective is satisfied
F-REQ-16. Individualized teaching F-REQ-24 is a strength of a self-assessment generation system.
In contrast to traditional teaching, with fixed-size classes where each student follows the same
content in the same time span, online systems can take a different approach. Individual advantages
of new methods should be explored, instead of building around existing educational frameworks.
Currently, a fraction of the new options discussed by educational sciences are incorporated into
university curricula. Furthermore, the context in which questions are asked always depends on
the individuals partaking in that class. A lecturer adapts their teaching to the student’s unique
circumstances. Not every year is similar in firstly the student capability levels and outside factors.↶
A system needs to allow adjustment for student capability and outside factors F-REQ-25. For
example, a pandemic requires to switch to online lectures. The lecturers need to readjust their
curriculum for online teaching and accommodate their students needs F-REQ-26.
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Figure 4.4: Lecturer interaction prototype: Sequence diagram.
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4.2.4 Collection of Further Project Ideas

Individualized teaching F-REQ-24 can be a strength of self-assessment generation systems. New
approaches, such as self-assessment generation systems, allow for higher flexibility in comparison
to traditional approaches. Traditional teaching embraces fixed-size classes, uniform curricula and
fixed schedules for students. The advantages of new methods should be explored. Currently, a
fraction of the new options discussed by educational sciences are incorporated into university
curricula. Furthermore, the context in which questions are asked always depends on the class of
individuals. An in-presence class allows the lecturer to adapt teaching to the student’s unique
circumstances. Additionally, not every year is similar in the student’s capability level and the outside
factors.↶ A system needs to allow and embrace F-REQ-25 student capability and outside factors.
For example, the pandemic required lectures to switch to learning management systems. Lecturers
needed to readjust their curriculum to new formats while accommodating for their students needs
F-REQ-26.

4.3 Student Benefits Through Self-Assessment

We propose an idea that tackles the difficulties of self-assessment as stated in the section 2.1.
Students have to understand standards/criteria and estimate how well they have met those. Resulting
in two steps. A simplification reduces both steps to a single step, easier for students to verify:

A standard/criteria [BK20] maps to a self-assessment question F-REQ-6. The self-assessment
question triggers a training effect on the standards/criteria described. The ability to answer the
question correctly indicates strength in the standard/criteria.

For example in a physics course:

Criteria on Bloom’s taxonomy): Know and understand (syn. Comprehension) for which elements
nuclear fusion releases energy.

• Initial approach: Find and read the lecture material section about nuclear fusion. Estimate
the depth/detail required for satisfying ”know and understand”. Then estimate, if the given
answer is correct (see self-assessment definition in Section 2.1) 2.1. Possible depths:

1. List all elements that can release energy on nuclear fusion.

2. State shared property of all elements releasing energy on nuclear fusion.

3. Explain why the shared property of all elements releasing energy makes them release
energy.

• Combined approach: Answer given multiple-choice question: What is the shared property
of all elements releasing energy on nuclear fusion?

1. Lower atomic mass than iron-56

2. Higher atomic mass than iron-56

3. Only carbon
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The combined approach can reduce misconceptions about standards/criteria and simplify self-
assessment. In the case above it is clear to which depth the criteria should be ”known and
understood”. Only the property of atomic mass is relevant for the lecturer. The question gives
feedback about the correct answer: ”Lower atomic mass than iron-56”. This generalizes to
other question types with direct feedback answers. Furthermore, it allows to assess multiple
standards/criteria at the same time F-REQ-15. Questions then trigger a training effect on more than
one standard/criteria

Questions of unambiguous question types 2.1.2 can reduce false answers. The lecturer specifies all
answer options as either true or false in advance.

4.4 Language Barriers

It is expected that question generation using a general language model performs better on English
course materials, as the largest part of training data to train state-of-the-art models is written in
English. BERT is trained on the Toronto Book Corpus and English Wikipedia [DCLT18]. T5
proposes the C4 dataset containing ”English text scraped from the web” [RSR+20], etc. Testing and
development are preferably done in text-rich English lecture materials [Webbj]. English computer
science courses are widely available. Also in countries where English is not the first official
language. Therefore, we focus on testing our method on English lecture materials F-REQ-22.

4.5 Visual Materials

Courses with few text-rich materials and teaching concepts with images instead of text explanations
render it more difficult to generate self-assessment questions, as image-to-text transformation is
necessary for text-only models to enable question generation on the given information. However,
multi-modal models exist that are able to process visual information by itself, as OpenAIs GPT-4
[Webr]. We aim to explore utilization of visual information and leave it as an additional feature
F-REQ-23 to our approach.

4.6 EvalQuiz Self-Assessment System: Requirements Summary

This section summarizes the functional and nonfunctional requirements resulting from the previous
considerations and explanations.

4.6.1 Functional Requirements

F-REQ-1 The user can generate self-assessment with the system.

F-REQ-2 The system uses an iterative approach to improve the self-assessment generation outcome.

F-REQ-3 The user can communicate a question’s scope and depth to the system. The system matches
the question’s scope and depth.
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F-REQ-4 Self-assessment created with the system is correct.

F-REQ-5 The system follows the ”four-eyes” principle. The system is the first actor and needs another
actor to verify its output.

F-REQ-6 The user can communicate a lecture’s standards/requirements to the system. Self-assessment
created with the system matches the lecture’s standards/criteria (and level of difficulty).

F-REQ-7 The system creates questions in a standardized format: Question specification.

F-REQ-8 The system can be extended with different question types.

F-REQ-9 The system generates self-assessment with at least one are more text-based lecture materials.

F-REQ-10 The system supports common text-based lecture material formats.

F-REQ-11 Topically similar questions are placed adjacent or close to each other.

F-REQ-12 The system structures resulting questions as topically similar segments.

F-REQ-13 The user has control to place the most important questions at the top of all resulting questions.

F-REQ-14 The system allows to check questions according to the ZLW question-wording guidelines
[Unia].

F-REQ-15 The system allows questions creation upon multiple educational objectives [BK20].

F-REQ-16 The system allows the user to assess to which degree an educational objective is satisfied.

F-REQ-17 The user can steer self-assessment creation through a single question specification.

F-REQ-18 The system requires the user to upload lecture materials only once. The system reuses the
lecture material if uploaded.

F-REQ-19 The user can configure a question specification, iterate/generate, judge the outcome, adjust
parameters accordingly and rerun the iteration/generation.

F-REQ-20 The user can compare different question specification versions.

F-REQ-21 The user can visualize a question specifications history.

F-REQ-22 The system supports the English language.

F-REQ-23 The system can be extended to create self-assessment creation with visual materials.

F-REQ-24 The system allows for individualized teaching with created questions.

F-REQ-25 The user can input student capability levels and outside factors. The system takes student
capability levels and outside factors into account.

F-REQ-26 The user can configure the system to adapt to the student’s needs.
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4.6.2 Nonfunctional Requirements

NF-REQ-1 The systems development, operation and deployment is economical.

NF-REQ-2 The system scales with large amounts of lecture material data.

NF-REQ-3 The system should perform similarly on different material formats with equivalent content.

NF-REQ-4 The system requires minimal user client setup.

NF-REQ-5 The user client’s computational and memory footprint is low.

NF-REQ-6 The system works reliably.

NF-REQ-7 Lecturers with different backgrounds can use the system with ease.

NF-REQ-8 The system supports common operating systems (OS).

NF-REQ-9 The user cannot access API secrets.
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EvalQuiz’s concept processes lecture materials with a ”generation pipeline”. A domain expert
supervises self-assessment creation, satisfying F-REQ-5. The domain expert proofreads generated
output. Question created according to the question specification enables their deployment on a
learning management system F-REQ-7. Other usages are imaginable, for example, composing
mock exams.

Figure 5.1: EvalQuiz Self-Assessment Concept Overview.

5.1 Pipeline modules and data

Data is processed in a pipeline-reference architecture approach. Figure 5.2 sketches EvalQuiz’s
data processing:

The pipeline decomposes the problem of self-assessment generation into smaller subproblems.
Execution of each module is independent from other modules. Only parts needed in the current
execution have to be available through memory. Module-based caching benefits executions by
providing calculated results. This speeds up execution and requires less RAM than without caching
NF-REQ-5.

Decomposition has advantages for code maintenance, development, re-usability and extend-ability.
It is possible to exchange pipeline modules or reuse them in other contexts NF-REQ-6.
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Raw lecture data

Filtered lecture data

Self-assessment question

Self-assessment question according to specification

Evaluated self-assessment question according to specification

Evaluated and serialized self-assessment question according to specification

Material Filter: Selecting keyword and filtering
content using topic model and keyword

Question Generation: Prompting language model
to create self-assessement question

Question Specification Matching: Assembling and/or verifying
self-assessment question to match specificaiton

Question Evaluation: Generated questions can be evaluated
to give feedback about their quality and structure

Serialization

Figure 5.2: Processing pipeline.

We conceptualize pipeline modules to describe EvalQuiz’s functioning. A user inputs lecture
materials (”Raw lecture data”) to EvalQuiz. The approach processes data in many intermediate
pipeline module steps. The result is a ”serialized self-assessment question according to specification”
F-REQ-7.

The Material Filter filters input documents to select parts of specific topics. A reduction of quantity
enables generation in later steps. A user can influence this filtering process. Manually selecting
content on which questions are created can be tedious. Section 5.3 illustrates why the Material
Filter is necessary.

Next, the Question Generation uses processed input to generate questions F-REQ-1. Followed
by Question Specification Matching, ensuring that the generated content matches the expected
datatype F-REQ-7. This module casts data if necessary.
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The Question Evaluation step enables automatic evaluation of generated questions. This gives
the user more insight into the quality of generation F-REQ-16. Question Generation enables
automatic regeneration if a question is lacking in quality F-REQ-14 .

Serialization ensures that the generated output is transmittable over the network.

Pipeline interaction follows the human-in-the-loop principle. Similar to the interaction described
section 4.2.2 and visualized in Figure 5.3. A lecturer directly inspects the output of the pipeline,
can adjust the question ordering F-REQ-13, judge the quality and correctness of the questions
F-REQ-4 and iterate upon the question configuration F-REQ-2.

Lecturer client

Question specification

Student client

EvalQuiz server

Server component

Pipeline

Learning management system server

EvalQuiz client

Learning management system client

Lecture materials

Keywords, Config, ...

Generated Questions

Learning management system client
Interface

Material filter

Question generation

Question specification matching

Question evaluation

Question serialization

Learning management system

Lecturer

Student

uses

uses

can be exported to

Figure 5.3: Iterative pipeline interaction.

5.2 Matching/Converting Model Output to Specification

Our approach synthesizes questions according to a question specification F-REQ-7. A transformer
model output needs to be parsed to match this specification. Model output can take the following
forms:

1. Output matches specification: Output is directly parseable.

2. Output roughly matches specification: Further modification might be required. Possible
solution: Retry.

3. Output does not match specification: Direct parsing impossible. Possible solution: Iteratively
argument data with further prompts until it matches the specification.

(Case 1) A transformer model needs to internalize the specification and be able to reproduce
data according to it. Internal reflection about which outputs are valid and which are invalid is
necessary.
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EvalQuiz aims to solve the question, of whether output according to the specification (case 1) can be
archived only with few-shot examples. Fine-tuning a model is an option, but can occupy additional
resources for training and/or cause extra costs [Webr].

Part of the thesis is to research whether prompts can be designed to deliver good enough results
using few shot techniques. We aim to explore other model training options, if the results are not
good enough (case 2, case 3). This includes multi-model approaches, where intermediate output is
processed by a second model optimized for datatype matching/conversion. Data error correction
models are options for datatype matching/conversion.

Our approach needs to check the output subtypes in order to verify that the parsed data is correct.
This is essential for the correctness of the following steps.

5.2.1 Multi Prompt Self-Assessment Creation: Concept

An idea is to create data according to the specification with multiple prompts if direct parsing is
impossible (case 3). An algorithm can be designed to carry out this process. The following example
explores this idea. Two actors: A user and an AI interact with each other:

Scenario: The AI can access lecture material that the user wants to create a multiple-response
question with. The AI is instructed to create self-assessment about Model-Driven-Development:

User: Generate a question about Model-Driven-Development.

AI: What are the advantages of self-describing models?

User: Please give me a correct answer for your generated question. Double-check that your

answer is correct by reading the lecture materials.

AI: The definition of the model does not rely on another model, but is self-containing.

User: Please give me different a correct answer for your generated question. Double-check that

your answer is correct by reading the lecture materials.

AI: Self-describing models can be used as meta-models. Meta models can describe more specific

models.

User: Please give me a distractor for your generated question.

AI: Self-describing models are simpler to define than non-self-describing models.

Next, an algorithm converts each model output to a specification field. In this case: Multiple-
response: question_text, answer_texts and distractor_texts. A sequence of questions and their
respective answers are combined into a question matching the specification. A drawback is that the
model is queried more often: This can be a problem if the model forgets its message history.
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5.2.2 Single Prompt Self-Assessment Creation: Prototype

We have developed a simple working prototype that uses the OpenAI API to generate multiple-
choice questions. It queries gpt-3.5-turbo with the following prompt: Create 3 multiple choice

questions with multiple possible answers about the following text:, followed by the filtered
text. Multiple text files can be parsed as arguments and filtered by the -k --keyword parameter.
Whole sentences containing the keyword are retained. Output is the direct response by the model,
which Section 5.2 classifies as case 1. On the first attempts, multiple-choice generated by the
approach looks promising, but a proper evaluation is needed before jumping to conclusions. First
tests are conducted on English Wikipedia about undergraduate computer science concepts, the
Scrum guide [Webbd] and a text generated by GPT-4 [Webr] using ChatGPT about Eclipse’ QVTo
[Webk]:

$ python evalquiz-prototype.py --help

usage: evalquiz-prototype.py [-h] [-k KEYWORD] [-w WORD_LIMITATION]

[-n NUMBER_OF_QUESTIONS]

[files ...]

positional arguments:

files Text files that serve as the input for the self-

assessment question generation.

optional arguments:

-h, --help show this help message and exit

-k KEYWORD, --keyword KEYWORD

Keywords that the text should be filtered for.

-w WORD_LIMITATION, --word_limitation WORD_LIMITATION

The maximum number of words that are input into the

model.

-n NUMBER_OF_QUESTIONS, --number_of_questions NUMBER_OF_QUESTIONS

The number of questions that should be created by the

model.

A simple form of interaction is given by the CLI, which offers the user the possibility to integrate
the proposed tool with other applications, host it as a micro-service, etc. For our objective to make
self-assessment generation available to university courses, further work needs to be conducted. For
example: a lecturer of the biology domain, who is not as familiar with CLI interfaces, is likely to
find it more time-consuming to set up a question-generation tool, than writing questions by hand.
The solution can be a GUI querying a backend.

5.3 Model Steering

The input of the language model is text from lecture materials F-REQ-9. Language models only
support prompts up to a certain size. This is due to the model architecture or API specification
[Webai]. Lecture materials can exceed these boundaries easily. A single book chapter can already
exceed the max. size of 4096 tokens that OpenAIs GPT-3.5 supports [Webs].

35



5 Concept

There are a variety of methods to handle large data as input. Splitting up chapters and processing
each part individually is one option. But this leads to a major disadvantage. Cross-connections of
different chapters of a lecture become difficult. References to text parts not in the model’s memory
become obsolete. The model views parts of the text in isolation. Longer materials become unusable
for question generation.

Another way to mitigate this problem is to use hierarchical summaries. References can be embedded
by summaries. An algorithm then resolves references. The language model used for question
generation is also capable of creating summaries. This is an interesting idea to explore in future
work.

Our solution takes a simple approach to solve two problems at once. Making input manageable for
the language model and steering the self-assessment generation NF-REQ-2. We select a subset of
the input text, which then contains content on which we generate questions F-REQ-9. The Material
Filter filters a collection of lecture materials. Information on related topics is kept but length is
reduced.

We propose a keyword-based algorithm described by Algorithm 5.1:

Algorithm 5.1 Material Filter.
procedure FilterSentencesWithKeywords([sentence0, . . . , sentence𝑛−1],
[keyword0, . . . , keyword𝑛−1], maxAllowedLength, extendCount)

sentences ← [sentence0, . . . , sentence𝑛−1]
keywords ← [keyword0, . . . , keyword𝑛−1]
extendedKeywords ← keywords concatenated with extendCount similar words through topic

model
filteredSentences ← []
for keyword in extendedKeywords do

for sentence in textInput do
if Accumulated token count of all filteredSentences < maxAllowedLength then

if keyword in sentence then
Insert sentence to filteredSentences in the original order

end if
end if

end for
end for
return filteredSentences

The algorithm searches for and selects sentences with keyword synonyms. Sentences containing
one of the keywords are sequentially added until exceeding the length threshold maxAllowedLength.
The original order of sentences is kept. A topic model provides word embedding for this search.
The goal is to extract a text of a certain length. The length should be compatible with the language
model input. A drawback is the algorithm cuts off information if maxAllowedLength is too small.

36



5.3 Model Steering

This could result in fragmented output. Adjacent sentences could lack semantic connection. A
mitigation option is increasing the maxAllowedLength. We expect future work to refine this algorithm
with more sophisticated methods.

Language models with a maxAllowedLength greater than avg. lecture materials would be capable of
processing input without filtering. But then need to be sufficiently capable of focusing on the parts
that the user wants.

5.3.1 Topic Model Enabled Keyword Augmentation

Factors a researcher needs to deal with using a topic modeling tool given by Asmussen et al.
[AM19]:

• Pre-processing of text

• Selection of model parameters and number of topics to be generated

• Evaluation of reliability

• Valuation of validity

The topic model selects the most similar keywords to the given keywords (keyword list). Those
augment the original keyword list. Algorithm 5.1 only selects sentences containing keywords in the
keyword list. The user specified all keywords in the original keyword list. A keyword that occurs
only in the input lecture materials can be problematic. The output becomes a single sentence. We
want the output to be descriptive in order to withhold lecture material information F-REQ-9. The
goal of keyword augmentation is to find connected keywords to prevent Algorithm 5.1 outputs
sparse results. Algorithms 5.1 output with keyword augmentation represents a topic. A topic can
be described with synonyms and different forms of speech and still represent the same concepts.
Keyword augmentation aims to provide topical in-variance for sentence selection. This is to improve
the Material Filters consistency and therefore reliability NF-REQ-6.

5.3.2 From Keywords to Capabilities

The option to use multiple keywords gives the user further control over how questions should be
composed is considered and needs to be further investigated. For example: two keywords ”TCP”
and ”UDP” enable the generation of questions that highlight the relation between/roles of both
technologies. We propose to extend keywords to capabilities to satisfy the requirement: F-REQ-15.
Capabilities are more powerful than keywords. They specify the keywords educational objective
according to Bloom’s taxonomy (Section 2.1.1). For example: ”TCP”, ”UDP” should be applied
(Application, Section 2.1.1). We describe lecture standards/criteria with capabilities. The third
part of a capability is the relationship. The relationship specifies the educational objectives scope.
Example are: ”differences”, ”similarities” and ”unique features”.

Capabilities represent EvalQuiz’s standards/criteria. We use capabilities to define lecture stan-
dards/criteria as well F-REQ-6. Algorithm 5.1 similarly works with capabilities, as keywords are
capabilities fields.
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5.4 The Transformer Models Role

The transformer model is a key component of the processing pipeline. It creates the self-assessment
material through its input and the selected question type F-REQ-8. Its input is a subset of the
lecture materials, dependent on keywords selected by the user. The transformer model carries
out main rephrasing, summarization and combination F-REQ-1. It converts input to a data
representation matching the self-assessment specification F-REQ-7. The model should primarily
generate questions/answer pairs covered by the lecture materials. However, the model is advised
to insert arbitrary information into distractors. Distractors are used by multiple-response and
multiple-choice questions, sec 2.1.2.

5.5 Specification of Self-Assessment Question Types

A specification is required F-REQ-7. Self-assessment questions can be formulated as YAML or
JSON:

1 {

2 "version": "string",

3 "questionType": "QuestionType",

4 "content": "QuestionContent"

5 }

where QuestionType: MultipleChoice | SingleChoice | SingleChoiceCloze | MultipleChoiceCloze | ...

Example of multiple-choice datatype:

1 {

2 "version": "1.0",

3 "questionType": "SingleChoice",

4 "result": {

5 "question": "How tall is the Eiffel Tower?",

6 "answer": "324m",

7 "distractors": ["354m", "424m"]

8 }

9 }

Example of multiple-response datatype:

1 {

2 "version": "1.0",

3 "questionType": "MultipleChoice",

4 "result": {

5 "question": "Which atoms are contained in water?",

6 "answers": ["H (Hydrogen)", "O (Oxygen)"],

7 "distractors": ["He (Helium)", "Fe (Iron)"]

8 }

9 }

Example of a multiple-choice cloze datatype:
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1 {

2 "version": "1.0",

3 "questionType": "MultipleChoice",

4 "result": {

5 "question": "Water is an inorganic compound with the chemical formula {{c1::H_2O}}",

6 "distractors": [["CH_4", "C_8H_{10}N_4O_2", "CO"]]

7 }

8 }

Cloze question formatting is described in detail by the Anki documentation [Webc]. Cloze questions
are formatted as {{ID::Cloze::Hint}}, where ID is formatted as 𝑐𝑛 with 𝑛 ∈ {1, ..., 𝑘} starting from
1 and increasing in steps of 1, Cloze describes the hidden text. Hint describes a hint that can be
shown, without revealing the answer.

We can construct an example with multiple cloze fields and a hint:

1 {

2 "version": "1.0",

3 "questionType": "MultipleChoice",

4 "result": {

5 "question": "The {{c1::registrar::enables to lease second-level domains}} communicates the

authoritative name servers to the domain registry for the {{c2::top-level}} zone.",↩→
6 "distractors": [

7 ["internet service provider", "government", "signing agency"],

8 ["first-level", "second-level", "entire"]

9 ]

10 }

11 }

Distractors are ordered similarly to the cloze fields. The additional hint is described after the ::

Ënable to lease second-level domains".

EvalQuiz supports multiple-choice and multiple-response question types. Cloze versions of
multiple-choice and multiple-response are possible additions to extend EvalQuiz’s feature set in the
future F-REQ-8.

The Appendix Section B contains EvalQuiz’s full question specification that the implementation
uses.

5.5.1 Monolithic Design of Question Specification

EvalQuiz processes and returns a single question specification, similar to Figure 5.3. The question
specification contains all relevant information. Course settings F-REQ-6, generation settings
F-REQ-1 and evaluation settings F-REQ-16. We designed the question specification to provide
defaults and optional settings. EvalQuiz accepts subsets of all specification parameters, skips steps
not specified and falls back to default where necessary NF-REQ-7.

EvalQuiz writes its output in the configuration. An argument against a mutable configuration is, that
the system should not change its own settings. This can introduce unexpected behavior. EvalQuiz
writes output only in dedicated result sections for generation and evaluation. Those sections are
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isolated and do not influence global settings or other sections. The advantage of the result sections
is, that results are directly visible under their configuration scope. The direct mapping improves
config readability and interpretability NF-REQ-7.

A monolithic config design benefits iteration F-REQ-2. The user can redirect output as input
(Figure 5.3). The user has control over which parts to reiterate and which to keep. The global
generation mode settings for example allow to fine-tune generation reiteration. Section B describes
the generation mode in the question specification. The user cooperates with EvalQuiz and can
partially reiterate the section of the question specification. Computational and memory overhead of
unwanted reprocessing is prevented.

5.5.2 Question Specification Responsibilities and Usage

The question specification defines question types and generation/evaluation tasks F-REQ-1 F-REQ-
16. It models the course context, standards and criteria F-REQ-6. The question specification is
deliberately designed to not model individualized question creation, see requirement F-REQ-25.
Individualized question creation delivers questions for each student (individual). A question is
marked as suitable for specific students, see requirement F-REQ-26. We argue that questions
generated through the question specification should match a wide audience already, speaking of the
course’s students. We assign the task of individualizing self-assessment to the learning management
system, as this platform knows the student and their learning behavior best. This data must be
made available for the self-assessment generation service, in order for EvalQuiz to use. Exporting
learning management system data is undesirable, as data protection policies rightfully forbid sharing
data with third parties without consent [Webm]. Even with consent, processing student behavior
data through third-party APIs is questionable. Another challenge is embedding student data into
the question specification. Encoding and presenting it to the language model is challenging. The
language models max. size of tokens is a limitation, see. 5.3.

We see the responsibility for individualized teaching in the learning management system. The
question specification is designed to delegate this responsibility to the learning management system.
The question specification connects each question with capabilities, according to Section 5.3.2.
Capabilities describe a course’s standards/criteria (Section 2.1). We imagine an individualized
approach to use standards/criteria that the course teaches as well as prerequisite standards/criteria.
The approach models the student’s mental model, depicted by Figure 4.1. The approach arranges
standards/criteria in a hierarchical tree structure. The tree models standards/criteria as dependencies.
Unknown dependencies in the student’s mental model should be resolved first.

The evaluation module (Figure 5.2) allows augmenting a question’s associated data. Additional
attributes can contribute to individualizing self-assessment. Higher-quality questions should be
preferred over lower-quality ones. Quality can be indicated by ZLW question-wording guidelines
for example [Unia]. Diversification in question types paired with gamification has the potential to
improve motivation through Autonomy and Perception of Competence [Unic].
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We communicated and modeled the architecture according to the collected requirements, which
Section 4 encapsulates. Frequent communication helps to gather feedback and create a clear picture
before implementation. Mistakes can be identified early, reducing further complications that can
lead to noticeable architectural changes during implementation. Section 6.1 explains the architecture
model creation process. The architecture model describes pipeline modules, execution and data
processing and EvalQuiz’s domain concepts. The project implements the question specification as
stated in the Appendix Section B. We highlight how the specification format changed throughout
implementation in section 6.6.4. An approval meeting concluded the architecture planning phase.

The first part of the project implementation is the material server. Implementing the material server
is a prerequisite for the pipeline server. We implemented each of the pipeline server modules in
sequence. First the MaterialFilter (Section 6.6.1), then QuestionGeneration (Section 6.6.2) and
QuestionEvaluation (Section 6.6.3). The question evaluation pipeline module is not to be confused
with the evaluation of EvalQuiz itself which Chapter 7 discusses. Design decisions shape the
implementation of each module. For example: the decision on which topic model to use (Section
6.6.1) and its integration with document filtering. The MaterialFilter converts lecture materials of
different formats into a unified representation. Section 6.6.1 states supported document formats and
the implementation process of material filtering. The MaterialFilter then filters documents of the
unified representation (Section. 6.6.1).

The QuestionGeneration module formulates queries built upon the question specification, explained
in Section 6.6.2. The queries are then processed through OpenAIs API [Webah]. Section 6.6.2
highlights message composition, API usage and converting the language models output to the
question specification.

Implementation was more complex than expected. The project kickoff work packages and tasks do
not include all necessary parts of the system. For example: API management and functionality
are required for our evaluation survey (Chapter 7). The planning sketch does not account for the
evaluation of the system through a client. A client is required for user interaction. The initial
solution is a command-line interface as proposed by the interaction prototype, section 4.2.2. CLI
is powerful for interacting with APIs for development or debugging but lacks friendliness for the
average user. We reason in Section 6.7 about why we implemented a reactive frontend instead of a
CLI. A reactive frontend is not the scope of the thesis originally, but usability benefits outweigh the
additional effort.

The QuestionEvaluation pipeline module (Section 6.6.3) demonstrates advantages in automatic
evaluation with our question specification 6.6.2. This module is also not part of the thesis’ original
scope.
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6.1 Architecture Modelling

The architecture model was created in the architecture modeling phase. Changes made in
implementation extend the original sketch.

The architecture model consists of three diagrams. The pipeline server (6.2), material server (Figure
6.1) and client (Figure 6.6). The pipeline server is responsible for the core functionality of EvalQuiz:
Material filtering, question generation and question evaluation. A strong separation of technical
and domain components is a key principle for the architecture models. The pipeline server can
be reused for pipelines of other domains. Each server features a ServerComponent class exposing
logic as a service. Classes representing datatype are shared among the architecture models. For
example, the InternalConfig, which is the internal representation of the generation config. Pipeline
modules in the pipeline server are modeled through the shared interface PipelineModule, as Figure
6.2 shows.

We separated the pipeline and material server to divide their respective responsibilities. The
material server is responsible for saving, providing and indexing materials. Those materials are
saved persistently and can be provided to multiple services. One of them is the pipeline server. This
reduces redundant disk usage and increases versatility, adaptability and re-usability. Existing file
storage solutions can use the interface defined by the material server and provide materials to the
pipeline server. Other services, for example, a learning management system, can utilize the material
servers interface as well.

A simple solution for resource management is a REST-compatible HTTP server. Endpoints can
be defined with for example OpenAPI [Webal]. An advantage of REST is its wide support by
existing web technologies. Path-based resource management comes with its availability drawbacks.
Resource availability depends on the entity running the service. A path structure change can
invalidate other paths.

There are multiple ways to provide redundancy for path-based web resources. Load balancing
through reverse proxies or DNS service discovery enables redirecting requests to multiple servers
[Gra]. However, DNS load balancing has major drawbacks as it delegates requests with round
robin. There is no mechanism to filter out non-responding servers. Responding and non-responding
servers are provided both through rotation [Gra]. DNS load balancing does not improve availability.
Reverse proxies feature mechanisms to improve availability. Still, a reverse proxy configuration is a
single point of failure, as all incoming requests have to go through the reverse proxy. A reverse
proxy is also managed by a single entity. It is possible to create an organization managing the proxy.
But then it is unclear how to divide costs and responsibilities.

We want to encourage cross-institutional teaching. Organizational, availability and redundancy
concerns affect cross-institutional teaching. EvalQuiz’s material server is a proof-of-concept sharing
lecture materials through content-addressable storage, see section 6.5.1.
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Figure 6.1: Architecture planning UML class diagram: Material server overview.

6.1.1 Material Server Architecture

The material servers ServerComponent handle incoming requests on endpoints to upload, delete and
get materials (Figure 6.1). A new Thread handles each request and applies the operation on the
InternalLectureMaterial. InternalLectureMaterials represent LectureMaterials saved under a
localPath.

6.1.2 Pipeline Server Architecture

The pipeline server consists of domain-independent classes (Figure 6.3 part I). Domain-independent
classes include request handling and pipeline execution. EvalQuiz domain-specific pipeline modules
(Figure 6.4 part II) and the question specification in its class representation (InternalConfig)
(Figure 6.5 part III).

The pipeline servers ServerComponent feature a single endpoint for question specification iteration
(Figure 6.3 part I). The endpoint is EvalQuiz domain specific while the pipeline execution,
modeled by the PipelineExecutor is domain independent. A new PipelineThread handles each
incoming request as a PipelineExecution. A PipelineExecution is the execution of a Pipeline.
Each PipelineModule is able to yield PipelineStatus instances, all streamed back to the client.
PipelineStatus include error message for each Batch (Figure 6.5): BatchStatus. BatchStatus consist
of one ModuleStatus and one PipelineModule. Each Batch runs on a BatchThread. BatchThreads run
in parallel. Therefore each Batch needs its own BatchStatus to report about the Batchs execution to
PipelineStatus.

Figure 6.4 part II displays the question specification iterations PipelineModules. The diagram
lists PipelineModules top to bottom in execution order. A subclass to represent the question
specification iterations Pipeline is missing. The question specification iteration Pipeline matches
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Figure 6.2: Architecture planning UML class diagram: Pipeline server overview.

the conceptualized pipeline in Chapter 5 Figure 5.1 except for a few additions. The QuestionDrop and
ConfigMerge modules. The QuestionDrop module removes questions that fail QuestionEvaluation
according to a Metric (Figure 6.5). ConfigMerge merges different InternalConfig (Figure 6.5)
versions resulting of parallel Batch (Figure 6.5) execution. The MaterialFilter can cache
LectureMaterials as CachedFilteredMaterials to save computational and memory resources.

Figure 6.4 represents an earlier version of the question specification as InternalConfig. Appendix
Section B contains the latest version. The question specification iteration Pipeline processes the
InternalConfig.

6.1.3 CLI Client Architecture

Remark
The CLI client is replaced by a reactive frontend. We describe the frontend implementation and its
advantages over the CLI client in section 6.7.

The CLI client conceptualizes a command line interface (CLI) for interacting with the material
and pipeline server. A user interacts with CLICommands methods through CLI, as Figure 6.9 part VI
highlights. CLICommands uses the CLIClient to talk with both servers gRPC interfaces. Figure 6.9
part III is Figure 6.5 of the pipeline server as both components share the InternalConfig.

The CLIClient lists client stubs of the server endpoints (Figure 6.7 part IV). The
InternalConfigController manages serialization and deserialization of InternalConfig. The
InternalConfigController allows to update a InternalConfig with another The InternalConfig.

The InternalMaterialController references InternalLectureMaterials by their hashes (Figure 6.8
part V).
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Figure 6.6: Architecture planning UML class diagram: CLI client overview.

A user sets a materialServerURL and pipelineServerURL to specify the server locations in
CLICommands (Figure 6.9 part VI). CLICommands enables question specification history management
through the ConfigController. ConfigControllers SerializedConfigController saves the ques-
tion specification as SerializedConfig to disk and internally uses a version management library.
ConfigController implements history and log upon SerializedConfig versions provided by the
SerializedConfigController

6.2 Development Tools

• Main implementation language: Python, a language suitable for machine learning (ML)
research. Python enables easy access to a variety of datasets through Hugging Face [Tra],
topic models with [Webo] and gRPC support with Better Protobuf [Webax]. Python is
widely adopted in research and the industry. The Stackoverflow 2023 developer survey lists
Python as the third most popular in the category ”Programming, scripting, and markup
languages” [Weba]. Python is deliberately chosen to ease further development and research
on self-assessment generation with EvalQuiz. EvalQuiz’s architecture and design focus on
the separation of concerns and encourage reuse. Data classes, method annotations, datatype
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Figure 6.9: Architecture planning UML class diagram: CLI client VI.

comprehensions, etc., reduce boilerplate. Python features a less verbose syntax than other
languages. Code readability is one one pythons core principles. Python’s ecosystem consists
of a large package index (PyPI [Webay]) available through package managers as pip [Weban].

Python is general-purpose and dynamically typed. CPython is Python’s reference implemen-
tation [Webg]. It compiles Python to an intermediary format executed by a virtual machine
[Webg]. CPython manages memory through reference counting and garbage collection
[Webg]. System-level programming languages such as Rust [Webbc] or C completely
compile code to binaries. Compilation in combination with static typing often results in a
smaller package size and memory footprint during execution. EvalQuiz does not require
system-level performance. We argue that the EvalQuiz’s pipeline runs into IO instead of
computational bottlenecks. Language model queries through OpenAIs API are rate limited
[Webah]. The MaterialFilter module converts documents through invocations of Pandoc
[Webam]. Python’s global interpreter lock (GIL) prevents code from running concurrently.
However, we do not see the GIL as a problem, as concurrent programming adds little benefit
as discussed and possibly causes thread safety issues.
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Python’s optional typing enables fast prototyping. Types do not need to be explicitly stated,
reducing verbosity. Optional typing does not require shared interfaces. Objects of different
structures can share a method signature and be used interchangeably. Fewer type casts
are necessary. Lessons learned through prototypes influence implementation, as with our
self-assessment generation 5.2.2 and evaluation prototype 6.6.3.

• Editor: VSCode [Webbk], the most popular IDE [Weba]. EvalQuiz utilizes VSCode
Development Containers to provide reproducible development environments.

6.3 VSCode Development Containers

EvalQuiz’s Python repositories utilize VSCode Development Containers. VSCode attaches to a
Docker container. Docker mounts the application files to the container. This is important as Docker
containers are volatile. Removing or recreating the container deletes non-persistent data [Webj].
VSCode allows one to attach one container from a Docker Compose configuration. Docker Compose
support is essential, as it allows to test database interaction within the development environment.
The material server interacts with MongoDB [Webau]. Unit tests ensure that transactions between
the material server and MongoDB function as expected. We use Git and GitHub to version the
project and implement CI/CD. Section 6.8 goes into detail about the CI/CD setup.

6.4 Server Interfaces

An OpenAPI configuration initially defined server interfaces with REST [Webal]. REST is a
resource-based paradigm for interfacing microservices. The advantages of REST are its wide
adoption and standardization and the wide variety of tools available. Reflection upon the usage
of our services revealed that a remote procedure call (RPC) paradigm fits our needs better. The
pipeline server originally provided two endpoints. One for iterating a generation configuration
and the other for querying the iteration result status. This creates two problems. A reference is
required which must be returned upon calling an iteration. The status then can be queried using the
reference. Periodically querying the reference for a pipeline status update is busy waiting. Busy
waiting creates an additional load on the server and client. Server-side streaming provided by gRPC
solves this problem. PipelineStatus objects are directly streamed to the client. The material server
benefits from streamed material uploads and downloads, reducing RAM usage of the server and
client. The implementation does not hold the complete file in memory before writing it to disk.

Material server, pipeline server and react client use the question specification and its data types.
All three repositories share a Git sub-module containing the question specification as a Protobuf
schema. Better Protobuf is used to generate Python classes and server/client stubs from the Protobuf
Schema [Webax]. The servers communicate using the gRPC protocol.

6.5 Material Server

This section describes the implementation of the material server. We present the material server’s
architecture in Section 6.1.1.
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6.5.1 Content-Addressable Storage

EvalQuiz uses content-addressable storage (CAS) instead of path-based storage [TKS+03]. The
material server manages materials. A material is addressable through the hash of its contents in a
pathless and deterministic way. The material server implementation ensures that a material matches
the hash under which it is requested. Multiple entities can host material servers. Each entity does not
need to be associated with the other entities. Material servers can be hosted by institutes of different
universities for example. The user decides from which entity to request materials. The material
server specification and implementation are independent. Material servers can host arbitrary files.
We encourage reuse for different domains.

We illustrate how materials can be shared and reused with EvalQuiz. A user configures a question
specification. The pipeline server’s MaterialFilter module queries materials according to the
question specification. The pipeline server resolves materials in the following order: A material, as
defined by the question specification (section B), has an optional url field. If set, the material is
queried from url. If url is undefined, global configurations apply. The MaterialFilter module
then requests materialServerURLs. The MaterialFilter traverses materialServerURLs in order.
The order is less important as materials are content-addressable. Receiving the wrong material is
improbable if the material server is correctly implemented.

The interplanetary file system (IPFS) provides distributed content-addressable resource management
[Webw]. IPFS supports request resolution through request delegation. The requested IPFS node
does not need to hold the requested file. It delegates the request to a node with the file if it exists.
IPFS nodes delegate requests to other nodes in the same IPFS cluster [Webw]. Material servers can
be replaced with IPFS or other content-addressable storage systems in future work. EvalQuiz does
not use IPFS due to practical limitations. Setting up an IPFS cluster is out-of-scope for this thesis.
We believe that content-addressable storage has the potential for collaboration between institutes in
teaching.

6.5.2 Hash function: BLAKE3 [Webf]

BLAKE3 is a cryptographic hash function implemented in Rust [Webf] [Webbc]. BLAKE3 is used
for material hashing with its default output size of 256 bits. EvalQuiz conducts hash consistency
checks. Section 6.1 explains how hashes enable content-addressable lecture materials. BLAKE3
matches performance and collision prevention requirements for EvalQuiz’s hash addressing [Webf].
Figure 6.10 displays a benchmark of BLAKE3 against other cryptographic hashes, where higher is
better.

6.6 Pipeline Server

This section describes the implementation of the pipeline server. We present the pipeline server’s
architecture in Section 6.1.2.
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Figure 6.10: BLAKE3 benchmark against state-of-the-art cryptographic hashes: Source: O’Connor
et al. [Webf].

6.6.1 Material Filter Pipeline Module

The MaterialFilter consists of the MaterialClient, MarkdownConverter and a TextExtractor.
The MaterialClient is responsible for querying materials from material servers specified by the
question configuration. Materials are then converted to markdown by the MarkdownConverter. This
component uses Pandoc [Webam], an open-source universal document converter. The PyPandoc
Python library enables direct integration into Python and also provides a package including Pandoc’s
binary. All formats Pandoc can convert to markdown are supported as MaterialFilter input.
Pandoc, unfortunately, does not support .pdfs. We decided to add .pptx support in order to increase
our approach’s coverage of commonly used lecture material types. In summary, EvalQuiz supports
files of the following extensions: .md, .pptx, .csv, .tsv, .docx, .epub, .html, .ipynb, .json,

.latex, .markdown, .man, .odt, .opml, .org, .ris, .rtf, .rst, .tex. Future versions can
extend the list of supported files.

Markdown is the unified representation ready for filtering and later conversion to self-assessment.
The TextExtractor interface provides core material filtering. EvalQuiz features one TextExtractor

implementation. The TextExtensionTextExtractor is implemented upon Algorithm 5.1. Keywords
given through Capability instances are extended with 5 extra keywords per Capability. The
topic model infers additional keywords. Finding related terms for each Capability, instead of all
concatenated keywords, enables us to extend upon the concept described in the specific Capability.
In the following the input text is matched against all keywords. Each sentence is kept if it contains
at least one of the keywords. A max. token length of 1000 tokens is chosen to manage text
size for the following generation step. There is a currently not utilized option to restrict the
max_keywords resulting from the expanded keyword list (5 for each Capability). The keyword
list is truncated, if Capability instances keywords + extended keywords > max_keywords. The
TopicExtensionTextExtractor sorts the list of expanded keywords by their similarity. max_keywords
truncates keywords less similar to the Capability instances. The values of 5 extra keywords per
Capability and a max. token length of 1000 tokens are chosen arbitrarily.
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Choosing a Topic Model

Material filtering requires a topic model capable of online training. A topic model describes
relationships between words. Words outside of the model’s vocabulary lack the connections required.
Online training is necessary to insert connections. We expect lecture materials to contain unknown
words, even for large topic models. University subjects are highly specialized and often feature
technical terms. Another constraint is that the topic model needs to be capable of calculating a
𝑁-Similarity function. 𝑁-Similarity is a function calculating 𝑁 similar words to a bag of words.
The bag of words needs to be part of the topic model’s vocabulary. Therefore Capability instances
referring to terms not contained in the topic models vocabulary or material filters input text cannot be
processed. Even if the words are synonyms. Furthermore, training and inference need to happen in a
few seconds. Longer processing times impact the system’s responsiveness. We chose Word2Vec as
our topic model, which satisfies the stated requirements [Chu17]. Word2Vec works on a word-vector
representation. A word-vector model encodes words in a multidimensional vector space. Similarity
is modeled by proximity calculated with a distance metric. Commonly known distance metrics are
cosine similarity, euclidean distance or hamming distance (for binary vector spaces). Word-vector
models enable 𝑁-Similarity by design. Word2Vec works with cosine similarity [Chu17]. The
Python library Gensim provides different topic models, one of which is Word2Vec.

Custom Trained Word2Vec Model

We trained a Word2Vec model in order to provide a large scientific vocabulary. Training data is
the ”CShorten/ML-ArXiv-Papers” data set provided through the Huggingface Python library 6.1
[Webad]. The data set consists of 100000 papers filtered from the Cornell University arXiv data
set, featuring approximately 1.7 mio. papers. The papers are from different science technology
engineering and mathematics (STEM) fields.

Remark
Interface is used to describe a Python ABC class with only abstract methods interchangeably.

Portable Document Format (PDF) Conversion Drawbacks

PDF is a commonly used document format for lecture materials. The advantages are the widespread
support and size. Raw document formats from text processing software can be easily converted to
PDF. PDF converts raw text to a content stream and creates vector graphics for document elements
[Webap]. Raster graphics can also be embedded [Webap]. Converting PDF to text processing
formats is challenging. Text processing formats are common formats in which text documents
are edited. For example: .docx, .pptx, .tex, .md. Wang et al. present an ML approach
for converting PDF back to LATEX math (PDF2LaTeX) [WL20]. The system’s 81.1% character
recognition performance makes it hard to recommend for real-world projects. We require the
conversion of whole documents from PDF to a text processing format. Pandoc can convert most
text processing formats into each other[Webam].

Tests with Microsoft Document Intelligence Studio ”Read” recognition concludes that simple text
recognition works. More complex document structure, graphics and LATEX math on the other
hand is lost [Webab]. Document Intelligence Studio provides fixed-format document recognition.
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Fixed-format document scanning enables faster processing of bureaucracy, not applicable to general
lecture materials. Mathpix offers a commercial document conversion solution. It features full
document conversion from PDF to LATEX. Simple tests with Mathpix demonstrate its superiority
over other approaches The recompiled document looks nearly indistinguishably from the original
PDF, as shown by Figure 6.11 and Figure 6.12. Mathpix also offers a document conversion API.
Mathpix currently is in a niche market position reflected in its service pricing. Converting large
documents repeatedly with Mathpix is not feasible for EvalQuiz. Future work is needed to fill the
gap between PDF2LaTeX to Mathpix with a capable open-source approach.

Figure 6.11: Mathpix conversion text: Source PDF: James et al. [JWHT+13].

Figure 6.12: Mathpix conversion text: Compiled LATEX from converted PDF, source: James et al.
[JWHT+13].

Lecturers using EvalQuiz are encouraged to use text processing formats compatible with Pandoc
[Webam] or .pptx files. .pptx is supported through PPTX2MD [Webaq]. The quality of the
conversion is sufficient, judging from simple conversion tests (Figure 6.13). PPTX2MD fails to
convert some of the graphics and the source PPTX. Missing graphics are not a problem. EvalQuiz
currently does not utilize the image processing capabilities of GPT-4. Image processing can be an
extension to improve question generation, further details in section 6.6.1. We argue that PDF is
not mandatory for our system. Lecturers usually have lecture materials in text-processing formats.
Lecturers need to edit lectures as content evolves or mistakes appear.
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(a) PPTX2MD conversion text: Source PPTX: Speth
et al. [Spe].

(b) PPTX2MD conversion text: Compiled markdown
from converted PPTX, source: Speth et al. [Spe].

Figure 6.13: Comparison of original PPTX and converted markdown.

Image Processing

EvalQuiz currently does not support image processing. But the system is designed with this
future use case in mind. The MarkdownConverter converts lecture materials used in EvalQuiz to
markdown. The unified representation. This withholds advantages in terms of what the language
model can expect. A markdown image syntax describes images embedded in the lecture materials:
![](image_name.png).

Images converted by Pandoc [Webam] or PPTX2MD [Webaq] extract images from the respective
input file. Both converters save the image in the same folder as the output markdown file. Image
processing requires a further intermediate step, currently not implemented. Extracted images need
to be uploaded to a material server. The algorithm replaces original image names (image_name)
with the image hashes (f9f75c3c05c99d69364ae75e028c997fb1a8c209e03a6452efbef6b75784c3ab).
The material server needs to be referenced in the question specification. Alterations in the
QuestionGeneration pipeline modules MessageComposer have to be made. The MessageComposer

matches markdown image tags and extracts hashes in the material names. The MessageComposer

resolves image dependencies from the referenced material servers and inserts images as messages.
The transformer model can interpret and process images, if capable. GPT-4 is multi-modal and
supports image input [Ope23].
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6.6.2 Question Generation Pipeline Module

The QuestionGeneration module takes a question configuration and filtered text as input. Each Batch

is processed in isolation and has a list of QuestionToGenerate. The modules generate questions
in multiple steps. First, the module decides if generation of the QuestionToGenerate is necessary.
Section 6.6.2 gives details about reprocessing decisions. Then the MessageComposer composes
messages. Those messages are then processed by an LLMClient. The model field in the question
configurations GenerationSettings decides which LLMClient is queried. We support GPT-4 in
its default variant, gpt-4 [Ope23]. The LLMClient interface simplifies adding other language
models. This includes a locally run language model. A new LLMClient implementation can be
provided through the LLMClientRegistry. QuestionGeneration accesses LLMClients through the
LLMClientRegistry.

After retrieving a result, QuestionGeneration parses the result. A regular expression extracts the
generated question from the result tags: <result type=generation></result>. The results tags
contain a question in the specified question type format. The language model is free to comment on its
generation outside the result tags. Our prototypes: The question generation prototype and evaluation
prototype show that GPT-4 output is often verbose. Section 5.2.2 and 6.6.3 highlight both prototypes
respectively. We assume that reinforcement learning with human feedback (RLHF) encourages
GPT-4 to prefer longer outputs. Section 2.3.1 explains RHLF. Ranking the output variants in Step
2 of Figure 2.4 influences a language model to prefer specific outputs. We assume that a labeler
ranks output variants with additional context information higher, as it helps to understand the model
outputs better. The model learns to produce explanatory outputs. The QuestionGeneration module
parses the output. Explanations are unimportant for QuestionGeneration. The result must be
correct and in the right format. Extracting generated questions from result tags discards explanation
attempts. QuestionGeneration reads the QuestionToGenerates QuestionType and parses the extracted
text accordingly.

Message Composer

The MessageComposer creates a list of dictionaries representing messages in OpenAIs message
format [Webr]. Composed messages consist of a system message, few-shot examples and a query
message, shown in Table 6.1.

The system message starts with:
You are a question-generation assistant that supports generating questions in multiple fixed

formats.

The question generated by you serves the purpose of helping a student to self-assess, which

skills they have acquired.

You can assume that the student already has acquired the following skills:

The MessageComposer then lists required_capabilites in CourseSettings and continues with:
Here is more information about the ALL_CAPS formatted instructions used in the skill

descriptions:
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Type Role Content
System message system Instructions for the assistant
Few-shot example 1 user MessageComposer query message
Few-shot example 1 assistant Example assistant response
· · · · · · · · ·
Few-shot example
𝑛 − 1

user Example user input

Few-shot example
𝑛 − 1

assistant Example assistant response

Query message user MessageComposer query message

Table 6.1: Structure of messages created by Message Composer.

The MessageComposer then explains EducationalObjectives used as acquired skills, in few-shot
examples or the query message.

Messages following the system message are few-shot examples. Few-shot examples are of the same
QuestionType as the QuestionToGenerate. Few-shot examples represent how the generated output
should look like. The QuestionTypeComposer is responsible for providing few-shot examples to
the MessageComposer. The MessageComposer then creates messages out of the few-shot examples.
A FewShotExample contains a Question, Capability list, filtered text (str) and GenerationResult.
The MessageComposer composes the respective user and assistant messages with the QuestionType

specific QuestionTypeComposer. The MessageComposer adds all 𝑛 few-shot examples.

User messages start with:
Your goal is to use the given markdown formatted text input to generate a question in the

following JSON format:

The MessageComposer then uses QuestionTypeComposer to explain the QuestionType.
Give your answer in the specified JSON format at all costs!

A student who can answer the generated question successfully should have acquired the

following skill set:

The MessageComposer then lists the QuestionToGenerates Capability instances and continues with:
Double-check that the question supports strengthening the previously given skills.

Markdown formatted text input:

```md

The MessageComposer then inserts the filtered text (str) and closes the markdown environment:
```
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The QuestionTypeComposer implemented for each QuestionType creates a result template with place-
holders for question components. For example: MultipleChoice has the GenerationResult place-
holders: QUESTION_TEXT, ANSWER_TEXT, DISTRACTOR_TEXT_1, DISTRACTOR_TEXT_2, DISTRACTOR_TEXT_3.
This result template is part of a query message describing the placeholders. The query message
explains the QuestionType.

Implementation of New Question Types

EvalQuiz is extendible for new QuestionTypes. Adding a new QuestionType requires implementing
and registering a QuestionTypeComposer to the MessageComposer. Therefore the QuestionType, a
GenerationResult with placeholders for the QuestionTypes fields and FewShotExamples need to be
provided. Registering the QuestionType is as easy as adding it to the question_type_composers

dictionary of MessageComposer.

The question specification needs to be changed to support the new question type. All EvalQuiz
components (Figure 6.16) have to adapt to the new version including the question type. Changing
the Protobuf schema suffices. Rebuilding all Protobuf-based artifacts propagates the newly added
question type to the components. This includes recompiling the frontend JSONSchema. Section
6.7.3 states the recompilation JSONSchema process and its difficulties.

Question Reprocess Decider

The QuestionReprocessDecider implements the question specifications mode setting 5.5.1. The
QuestionReprocessDecider returns a boolean dependent on the mode and Question. The boolean
indicates if a specific question has to be reprocessed (regenerated or reevaluated). Evaluation
results influence the boolean if the by_metrics is chosen. The QuestionReprocessDecider decides
upon by_metrics conditionally. If the Question satisfies the metric, it should be reprocessed. The
QuestionReprocessDecider returns True.

The QuestionReprocessDecider enables self-assessment quality control automation. It allows one to
regenerate a question until it meets a specific metric, describing a qualitative standard for example.

Reprocessing describes regeneration. Metrics specified in by_metrics can influence regeneration.
Additionally, conditional reevaluation is possible. For example, if one evaluation fails, then
further evaluations can provide more insight. The additional evaluations are not always necessary,
saving computational and memory resources. The user is able to build complex decision trees on
regeneration and reevaluation. The by_metrics mode option is optional. Generation and evaluation
does not require by_metrics.

6.6.3 Question Evaluation Pipeline Module

The QuestionEvaluation pipeline module is structured similarly to the QuestionGeneration. Sec-
tion 6.6.2 highlights its similar usage of the QuestionReprocessDecider. InternalEvaluations
allow the QuestionEvaluation to implement different evaluation logic. An evaluation has its
own configuration parameters in the question specification. Our reference implementation of
InternalEvaluation is InternalLanguageModelEvaluation. This implementation uses its own
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MessageComposer for composing messages and the LLMClient interface to access language models.
The MessageComposer is different from the QuestionGenerations MessageComposer, as it composes
a different message. Result parsing works analogously to QuestionGeneration. Result tags are
named, as QuestionEvaluation utilizes both <result type=generation></result> and <result

type=evaluation></result> tags. QuestionGeneration works without a type parameter, as it only
utilizes <result type=generation></result>.

Message Composer

The QuestionEvaluations MessageComposer creates the same structure of messages as shown in
Table 6.1.

The system message is:
You are a question evaluation assistant who supports evaluating questions in multiple fixed

formats.

The evaluation generated by you serves the purpose of helping a teacher to gather more insight

into a specific question.

User messages start with:
Your goal is to evaluate the question in the following JSON format:

The QuestionEvaluations MessageComposer then uses EvaluationTypeComposer to explain the
EvaluationType.
Description of how the question should be evaluated:

The MessageComposer then appends the InternalLanguageModelEvaluation evaluation description.
Question to evaluate:

The QuestionEvaluations MessageComposer then uses the GenerationResultTemplate to write the
Questions GenerationResult as JSON in <result type=generation></result> tags.

Evaluation Prototype

The evaluation prototype assesses if the evaluation as conceptualized is feasible. Two result
types, according to the question specification, are tested: result_type: value_range: [0, 1]

and result_type: categorical: ["True", "False"]. The language model receives instruction as
follows:

• numerical_value_0_1: Rate the given question ”QUESTION” with a value between 0 and 1
according to the given criteria. Explain and reflect upon your choice.

Answer in the format:
explanation: EXPLANATION
value: VALUE

Where EXPLANATION is a detailed explanation of why VALUE was chosen.
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• category_tf: Assign the given question ”QUESTION” a specific category according to the
given criteria. Explain and reflect upon your choice.

Categories:

– true

– false

Answer in the format:
explanation: EXPLANATION
category: CATEGORY

Where EXPLANATION is a detailed explanation of why CATEGORY was chosen.

The goal is to test the evaluation of ZLW question-wording guidelines [Unia]. Guideline transla-
tions:

• simple_language: The final decision-making basis for the formulation is the following
subjects! Unambiguity and simplicity must be balanced!

– Formulate briefly, understandably and sufficiently precisely.

– Not bureaucratic, technocratic or scientific.

– Avoid foreign words

– Address the target group

– Use simple language, without slang, dialect or subculture language

– Make the item precise in terms of the question’s aim and intention.

• simple_and_positive_questions: - Negations are linguistically negatively formulated ques-
tions. Double negatives (especially in translations) are to be avoided in any case. s) should
be avoided at all costs.

– Avoid negative polarity: Item polarity (scale direction) If possible, do not change. If neg-
ative and positive and positive items are present, a separate evaluation is recommended.
separate evaluation.

– Unambiguity: Only assign factual content or thought to each item! or thought! One-
dimensional means, that an agreement or disagreement allows only one interpretation.
interpretation. Ambiguity is to be avoided, especially with especially in answer
categories, not only in the formulation of questions. question wording. it can also be
said that no lo- links should be present in a question (and, or...). (and, or...).

• insinuation_free: Insinuations and suggestive questions should be avoided. Insinuations do
not only refer to the subject but can also address third parties. A question may be rejected
because the respondent does not agree with the insinuation. Suggestive questions restrict
the freedom of the answer and restrict the respondent’s freedom of response. Do not ask
suggestive questions in a way that influences answering behavior.

• clear_temporal_reference: Questions have a clear temporal reference. Dates and time spans
are precisely stated.
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• concise_categories: Use answer categories that are concise. Closed questions should have
disjunctive (non-overlapping) answer categories. Categories that are precise and cover the
solution space.

• explanation_of_the_unknown: Clarify unclear terms and necessary knowledge for under-
standing the question.

• non_judgemental: Avoid terms that are associated with strong opinions or emotions. Strongly
value-laden terms (peace, war, crime, justice) should be avoided. They provoke more extreme
response behavior.

• comparison_with_valid_scale: Compared concepts are of the same scale. You can’t equate
”higher” with ”colder,” or ”degree of rejection” with ”brightness”. ”Do you prefer the Grand
Coalition or a Green policy?” cannot be compared unambiguously. The respondent must
interpret for himself how he or she matches a grand coalition and a potentially green policy.
One is a party constellation for forming a government, the other a political program.

The language model is then queried to evaluate a question according to categories using a result
type. Example multiple-choice (Table 6 ) question:

Which of the following statements about binary trees is true?

• Binary trees can include Cliques

• A binary tree node can reference itself

• Binary trees are traversable

The evaluation prototype features a one-shot example for the category simple_language. A question
evaluation pair given as two messages incentivizes the language model to adapt its output to the
one-shot example. The language model reads the two messages as its own history. Construction of
messages:

1. System message: The assistant’s role

2. User message: One-shot example: question to evaluate with instructions on evaluation

3. Assistant message: One-shot example: Expected system response

4. User message: Question to evaluate with instructions on evaluation

Zero-shot consists of only two messages, a system and a user message. Table 6.3 depicts
gpt-3.5-turbos [Webs] zero-shot output:

gpt-3.5-turbo [Webs] outputs the following:

guideline explanation category
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simple_language The question consists of a clear, brief and precise
description of the statements about binary trees and
asks for the true statement among them. It avoids
all kinds of bureaucratic, technocratic or scientific
language, and uses simple language without slang. It
also targets the intended audience with basic knowl-
edge in regards to binary trees and algorithms

true

simple_and _posi-
tive_questions

The question presents three statements about binary
trees and asks which one is true. The statements are
clear and precise, avoiding negative polarity and any
ambiguity. The question also addresses the target
audience of individuals knowledgeable about binary
trees and uses an appropriate language level. Overall,
the question fulfills the criteria and can be considered
true.

true

insinuation_free The question is clear, specific, and objective. It does
not contain any insinuations or suggestive language,
and it provides three answer options to choose from.

true

clear_temporal_reference The question adheres to the given criteria. It presents
three statements about binary trees and asks the re-
spondent to identify the true one.

true

concise_categories The answer categories are precise and disjunctive.
There are no overlapping categories and the possible
solutions to the question are included in the answer
categories.

true

explanation_of
_the_unknown

The question is short, clear and easy to understand. It
provides three statements about binary trees without
using technical language or including unknown terms.

true

non_judgmental The question is objective and fact-based. It does not
include any vocabulary that is associated with strong
emotions or opinions. It consists of a list of options
that can be evaluated without being influenced by any
personal or emotional attitudes.

true

comparison_with
_valid_scale

The question is concise and only contains a single
clear objective criteria to evaluate the answers on.
It is clear what is meant by binary trees, and the
statements being compared to each other are on the
same scale.

true

Table 6.2: Evaluation prototype test: One-shot example.

guideline explanation category
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test simple_language The question asks for the true statement about binary
trees among the options given. Option 1 (”Binary
trees can include Cliques”) is false because cliques are
complete subgraphs where all nodes are connected
to each other, and binary trees are characterized by
at most 2 children per node, making it impossible to
have cliques in them. Option 2 (”A binary tree node
can reference itself”) is also false because a binary
tree is a tree data structure and by definition, there
cannot be a cycle in a tree. Option 3 (”Binary trees are
traversable”) is true because we can traverse a binary
tree in different ways such as Inorder, Preorder, and
Postorder traversals. Therefore, the true statement
about binary trees is that they are traversable.

true

simple_and _posi-
tive_questions

The question provides three statements about binary
trees and asks which one of them is true. The first
statement claims that binary trees can include Cliques,
which is false because Cliques are not part of a binary
tree structure. The second statement says that a
binary tree node can reference itself, which is also
false because a binary tree is a directed acyclic graph
(DAG), so a node cannot reference itself directly. The
third statement claims that binary trees are traversable,
which is true because a binary tree can be traversed
in different orders (pre-order, in-order, post-order).
Therefore, only one statement is true, making this
question unambiguous and one-dimensional.

true

insinuation_free The question provides three statement options about
binary trees and asks which one is true. It does not
contain any insinuations or suggestive language. The
question is clear and straightforward and does not
restrict the respondent’s freedom to answer. As such,
the question is factual and can be evaluated based on
its accuracy.

true

clear_temporal_reference The question asks for a factual statement about binary
trees and gives three options to choose from. None
of the options provided mention any specific dates or
time spans, so the temporal reference is not relevant
to this evaluation.

false
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concise_categories The question provides three statements and asks which
one is true about Binary trees. - ”Binary trees can
include Cliques” is false as Cliques are not allowed
in Binary trees. - ”A binary tree node can reference
itself” is also false as self-referencing nodes violate
the definition of a Binary tree. - ”Binary trees are
traversable” is true as Binary trees can be traversed
in different ways, such as Inorder, Preorder, and
Postorder traversals.

true

explanation_of
_the_unknown

The question is testing the knowledge about binary
trees, a data structure in computer science. A binary
tree is a tree data structure in which each node has at
most two children, which are referred to as the left
child and the right child. Cliques is not a term related
to binary trees, and hence option A is false. Self-
referencing is not possible in a binary tree, and hence
option B is also false. Binary trees are traversable,
meaning that one can visit all the elements in the tree,
and hence option C is true.

true

non_judgmental Based on the given statements, it is possible to eval-
uate whether or not they are true or false without
relying on any strong opinions or emotions. The
statements are focused on factual information about
binary trees, which can be objectively verified.

true

comparison_with
_valid_scale

The question asks which of the statements about
binary trees is true and provides three options for the
answer. The statements are all related to binary trees,
which are a well-defined and consistent concept in
computer science. Therefore, there is no ambiguity
in the concepts being compared and they are all on
the same scale.

true

Table 6.3: Evaluation prototype test: Zero-shot example.

gpt-3.5-turbo is able to describe why specific guidelines are followed and assign the according
category. For example, the question does not ”contain any insinuations or suggestive language”,
depicted in Table 6.2. gpt-3.5-turbo assigns ”true”, stating that the question satisfies the guideline
insinuation_free.

Zero-shot yields a different result than one-shot for guideline clear_temporal_reference. The
explanation zero-shot is sound, stating that no ”specific dates or time spans [are provided]” and
concludes that ”temporal reference[s are] not relevant for [the] evaluation.”, according to Table 6.3.
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One-shot argues similarly. An ambiguity in the guideline explanation is a possible reason. The
guideline explanation has to state that not every question must have a temporal reference. Temporal
references must be precise, only if the question asks about a temporal fact.

The decision to include an evaluation module in EvalQuiz is made based on the obtained results.
gpt-3.5-turbo enables evaluation. EvalQuiz uses GPT-4 for evaluation. GPT-4 improves upon
gpt-3.5-turbo in many tasks [Ope23].

The question example focuses on true positive testing. Other question examples with obscure
formulation or dialect falsified guidelines as simple_language. Some guidelines highlight aspects
missing in the question text alone. simple_language asks about the intended audience. There is no
information about the intended audience in the question.

Guideline Evaluation with EvalQuiz

EvalQuiz implements a general LanguageModelEvaluation. The user can describe guidelines in
the LanguageModelEvaluation.evaluation_description field. LanguageModelEvaluation supports
few-shot examples in form of a list of GenerationEvaluationResults.

6.6.4 Question Specification Changes

We changed the question specification by_metrics mode from using an arithmetic expression to the
evaluator_type field, which internally specifies an arithmetic expression. This prevents remote code
execution, which is a security risk. The evaluator_type field references how the by_metrics mode
compares evaluation_reference with the specified value: evaluation_result. Appendix Section
B describes evaluator_types more in detail. We renamed the result to generation_result and
evaluation to evaluation_result for clarity and consistency reasons. The evaluation_result_type:
value_range produces a float_value evaluation_result and evaluation_result_type: categorical
produces a str_value evaluation_result. A question contains a dictionary of evaluation_result

to support multiple evaluations. Those are mapped by evaluation_references, with the reference

field removed. We renamed evaluation_type to evaluation, the super-class of evaluation

implementations, as the language_model_evaluation. We replaced evaluation getter and setter
with the few_shot_examples field, which is a list of generation_evaluation_results.

6.7 Frontend

The EvalQuiz frontend uses React and MaterialUI [Webba] [Webz]. Users edit question specifications
through a JSONForms component [Webx]. JSONForms takes a JSONSchema, UISchema and data
and builds a form component. The form features JSONSchema data-binding, input validation, and
rule-based visibility [Webx]. We designed the front-end to evaluate EvalQuiz in cooperation with
lecturers from different fields. Our frontend offers a reduced set of configuration options by default,
as Figure 6.14 depicts. Interaction becomes simpler. Users can toggle the advanced mode to edit
the complete question specification.
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Figure 6.14: EvalQuiz frontend: Configuration question specification subset.

6.7.1 gRPC Support

gRPC Web faces limitations regarding client and bidirectional streaming [Webu]. gRPC Web
requires the setup of the Envoy proxy to connect to gRPC servers [Webl]. Uploading to a material
server requires client-side streaming. A simple solution is: ”Client flask”, an intermediate server
translating HTTP requests to gRPC. The client uses Axios to interact with material and pipeline
server through ”client flask” [Webd]. ”Client flask” converts HTTP file uploads to a gRPC stream.
”Client flask” connects via channels to the gRPC server endpoints.

Server-client connections through ”client flask” cannot utilize gRPC features. ”Client flask” converts
streams to single requests or responses. gRPC on Node.js improves upon gRPC Web by offering
client and bidirectional streaming without a proxy [Webt] [Webu]. Adapting the frontend to gRPC
on Node.js can provide streamed feedback on pipeline iteration and streamed material uploads,
directly from the client. We were not aware of gRPC on Node.js at the time of implementation.

6.7.2 Custom JSONForms Components

Modifying the JSONForms UISchema cuts down the original generation configuration interface to
its core functionality: Config iteration through batch creation. Two custom JSONForm components
add to the user experience. Users can select lecture materials in a searchable option list. Our
custom component queries the material server for available materials. Materials become select-able
drop-down options distinguishable by name and hash (Figure 6.15). The second custom component
hides generation results if empty and provides a simple selector for question types. The component
presents generation results as code listings, if present. JSONForms registers the custom components
and displays them according to the UISchema [Webx].
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Figure 6.15: EvalQuiz frontend: Material suggestion component.

6.7.3 Protobuf to JSONSchema Conversion

gRPC uses Protobuf for its type definitions [Webax]. EvalQuiz’s Git repositories share those
type-definitions in a submodule. Section 6.4 provides a deeper insight into how we use Protobuf.
Converting the Protobuf to JSONSchema prevents a manual rewrite of the question definition
as JSONSchema. The protoc-gen-jsonschema compiler is able to convert Protobuf to JSON-
Schema [Webar]. The Protobuf schema needs to be converted with the enforce_oneof and
enums_as_strings_only option. enforce_oneof ensures that the converter interprets ”oneOf” clauses.
enums_as_strings_only declare that enums only can be input as strings, not numbers. This option
is necessary to simplify the generated form by JSONForms. JSONForms renders a drop-down
selector instead of a text input with validation for numbers and strings. Available options are visible
to the user.

6.8 Deployment and Networking

EvalQuiz’s deployment consists of 7 containers specified in a Docker compose configuration
(YAML). The configuration follows a reverse-proxy architecture style exposing only the reverse
proxy to the outside. An NGiNX instance implements the reverse proxy [Webag] and redirects
incoming requests to the ”client react” frontend and ”client flask” intermediate server:

1 ...

2 location / {

3 proxy_set_header Host $host;

4 proxy_pass http://client-react:3000/;

5 }

6

7 location /server {

8 proxy_set_header Host $host;

9 proxy_pass http://client-flask:8000/;

10 }

11 ...

NGiNX running in its own Docker container utilizes Dockers builtin DNS name resolution [Webj].
Docker resolves client-react and client-flask to their respective IPs in Dockers bridge network.
Figure 6.16 visualizes the Compose configurations containers with their container_names. All
containers in a Docker compose configuration share a default bridge network [Webj] [Gra].
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6.8.1 Multistage Builds

”Client flask” is an NGiNX instance hosting static files compiled by React App [Webbb]. Docker
compiles the static files with a multistage build [Webj] [Gra]. Stage 1 is the build stage, where
build dependencies are set up according to the Dockerfile. Docker copies source code to the build
container and sets up environment variables for the build. npm run build compiles the static files.
Stage 2 represents the runtime environment. Docker creates a separate container on a lightweight
image as nginx:1.17.0-alpine. Docker copies the compiled files from the build stage and the
NGiNX config from the host. NGiNX serves static files according to its config providing the
frontend. Dockerfile describing the multistage build:

1 ...

2 # Stage 1: Image, environment variable and file setup

3 ...

4

5 RUN npm run build

6

7 # Stage 2

8 FROM nginx:1.17.0-alpine

9

10 COPY ./nginx/nginx.conf /etc/nginx/conf.d/default.conf

11

12 COPY --from=build-stage /evalquiz-client-react/build /usr/share/nginx/html

13

14 CMD nginx -g 'daemon off;'

The advantages of multistage builds are smaller runtime images with low memory footprints.
NGiNX is capable of serving static files on a production scale [Webag]. The reason why we use two
NGiNX instances is to separate concerns. Running two instances is a small overhead as NGiNX
is lightweight [Webag]. The reverse proxy instance of NGiNX is responsible for exposing the
frontend and ”client flask” to the outside. The inner NGiNX instance is responsible for hosting
the front-end’s static files. Code changes imply container rebuilds. For example: A change in the
reverse proxy configuration causes a rebuild of the reverse proxy image. Docker does not need to
rebuild the frontend, if separated.

6.8.2 Cloud Computing Platform: Microsoft Azure

Microsoft Azure hosts EvalQuiz [Webaa]. The Web App connects to a container registry with
EvalQuiz’s Docker images. The Web App reads EvalQuiz’s Docker compose configuration (Figure
6.16) and sets up the containers accordingly. Azure adds SSL encryption and name resolution to
a subdomain of azurewebsites.net. Azure provides OpenAI API access through Azure OpenAI
[Webaa]. Our pipeline server uses GPT-4 with Azure OpenAI.

6.8.3 Continuous Integration (CI)

The pipeline and material server are tested with a similar GitHub workflow: A push to the master

branch triggers the workflow [Webp]. The workflow uses a recursive checkout, to resolve the server’s
code and submodules. The devcontainers/ci action then reads the repositories Development
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services    

proxy    
client-flask    
pipeline-server    
material-server    
client-react    
pipeline-server-db    
material-server-db    

build    
image evalquizcontainers.azurecr.io/evalquiz-proxy
depends_on    
ports    
container_name evalquiz-proxy

build    
image evalquizcontainers.azurecr.io/evalquiz-client-flask
depends_on    
restart always
container_name evalquiz-client-flask

build    
image evalquizcontainers.azurecr.io/evalquiz-pipeline-server
depends_on    
environment    
container_name evalquiz-pipeline-server

build    
image evalquizcontainers.azurecr.io/evalquiz-material-server
depends_on    
container_name evalquiz-material-server

build    
image evalquizcontainers.azurecr.io/evalquiz-client-react
depends_on    
container_name evalquiz-client-react

image mongo:7.0.2
container_name evalquiz-pipeline-server-db

image mongo:7.0.2
container_name evalquiz-material-server-db

Figure 6.16: EvalQuiz full stack deployment: Docker compose configuration (YAML) visualized
with PlantUML [Webao].

Container configuration and starts a Development Container instance [Webi]. CI uses the same
environment as development, due to the reasons that Section 6.3 discusses. The workflow conducts
four checks:

1 # Linting with pyflakes

2 pyflakes .

3 # Type checking with mypy

4 mypy .

5 # Code format checking with black

6 black . --check

7 Testing with pytest

8 pytest .

The goal is to improve code quality and maintainability. Neglected typing and failing tests indicate
that the code increment should be improved. CI has positive effects on software quality and
development productivity [SBZ17].
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6.8.4 Continuous Deployment (CD)

All containers in the Compose configuration (Figure 6.16) are continuously deployed through
a deploy branch. The CD workflow checks out the repository recursively, logs into the Azure
container registry and builds the image according to dockerfile_production. The built image is
pushed to the container registry. The Azure Web App hosting EvalQuiz has CD enabled in the
deployment settings. The push of a new version to the container registry causes the EvalQuiz Web
App to update as well. The latest deploy branch commits reflect the deployed system. Updating
EvalQuiz is as easy as pushing to GitHub [Webp].

The material and pipeline server feature a second CD workflow respectively. Sphinx documents
the material and pipeline servers artifacts [Webbf]. Sphinx reads doc-strings in the Google format
and generates static files [Webbf]. Sphinx documents using a Read The Docs (RTD) theme.
Pushes to the master branch trigger the documentation workflow. An open source GitHub action
(sphinx-notes) converts Sphinx to GitHub Pages V3 [Webbg]. The missing files submodule initially
caused documentation generation to fail. sphinx-notes does not support recursive checkouts by
default. We have forked sphinx-notes to support recursive checkouts [Webn]. This enables Sphinx
to document the material and pipeline servers with their Protobuf definitions and templates. The
documentation therefore includes definitions generated from the Protobuf schema as well.
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We contacted 14 lecturers to evaluate EvalQuiz in a survey format. This chapter gives insight into
the study’s design, results and threats to validity. An important part of the evaluation is conveying
EvalQuiz’s conceptually and practically. We want to assess if an iterative self-assessment system
can benefit lecturers in creating self-assessment. Similarly, if EvalQuiz provides qualitative results
and is intuitive to use.

7.1 Study Design

We evaluate EvalQuiz as deployed in Section 6.8 with a questionnaire to assess EvalQuiz’s real-world
performance. The survey targets lecturers of different domains and is designed to be accessible.
EvalQuiz itself is built for university usage of multiple domains. The EvalQuiz frontend features
a tour guide, introducing the participants to the interface. The frontend gives feedback about
the system’s internal status at any step of the process. A notification component in the frontend
implements system feedback. The survey targets a total time of approximately 30 minutes. We
collected questionnaire answers with Microsoft Forms [Webac].

We provide a survey manual to inform about the survey’s procedure and EvalQuiz’s concepts. This
document features a small introduction to explain EvalQuiz and the survey procedure, in each step
of the process. Participants are encouraged to read EvalQuiz’s concepts and walk through the tour
guide before trying out the interface on their own. We explain the following concepts that the
interface references:

• Batch Describes an isolated set of settings for question generation. Capabilities and lecture
materials in each batch can influence all generated questions of the respective batch. See
question specification in appendix chapter B.

• Capability as explained in section 5.3.2. See question specification in appendix chapter B.

• Lecture Material represented through a hash of its contents. Can be chosen as one of the
uploaded lecture materials. See question specification in appendix chapter B.

• Question To Generate: Choice which questions the system generates in a batch. See question
specification in appendix chapter B.

Usage and configuration examples highlight EvalQuiz’s possible usages to the participant. The
examples represent practical applications of EvalQuiz concepts in a problem-goal format. The
examples solutions are question specifications:
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7.1.1 Usage Example: Summarize As Self-Assessment

• Problem: A lecture can consist of multiple thousands of slides. Sometimes it can be hard to
find relevant information about a SPECIFIC_KEYWORD.

• Goal: Use a large corpus of lecture materials to filter out and generate questions for a
SPECIFIC_KEYWORD.

Implementation:

1. Upload all lecture slides or the book that the lecture is based on to the system.

2. Configure question specification:
1 {

2 "material_server_urls": [],

3 "batches": [

4 {

5 "capabilites": [

6 {

7 "educational_objective": "KNOW_AND_UNDERSTAND",

8 "keywords": [

9 "SPECIFIC_KEYWORD"

10 ],

11 "relationship": "COMPLEX"

12 }

13 ],

14 "lecture_materials": [

15 {

16 "hash": "6fff8c54113aa085dbc0fc8abff06bd759ee7e66401f464a8233d8a47e8b9bf0",

17 "hash": "0fc8abff06bd759ee7e66401f464a8233d8a47e8b9bf06fff8c54113aa085dbc",

18 // ...

19 // Hashes of all lecture slides uploaded to the system.

20 }

21 ],

22 "question_to_generate": [

23 {

24 "question_type": "MULTIPLE_CHOICE"

25 },

26 {

27 "question_type": "MULTIPLE_CHOICE"

28 },

29 // Multiple questions allow to generate about multiple aspects of the topic.

30 ]

31 }

32 ],

33 }

7.1.2 Usage Example: Find Connections Between A And B

• Problem: A section highlights two topics KEYWORD_A and KEYWORD_B. Sometimes it can be
hard to grasp connections between topics.

• Goal: Use the lecture material containing the section to find out how KEYWORD_A relates to
KEYWORD_B.
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Implementation:

1. Upload all lecture slides or the book that the lecture is based on to the system.

2. Configure question specification:
1 {

2 "material_server_urls": [],

3 "batches": [

4 {

5 "capabilites": [

6 {

7 "educational_objective": "KNOW_AND_UNDERSTAND",

8 "keywords": [

9 "KEYWORD_A",

10 "KEYWORD_B"

11 ],

12 "relationship": "COMPLEX"

13 }

14 ],

15 "lecture_materials": [

16 {

17 "hash": "6fff8c54113aa085dbc0fc8abff06bd759ee7e66401f464a8233d8a47e8b9bf0",

18 // ...

19 // Hash of lecture material containing the section.

20 }

21 ],

22 "question_to_generate": [

23 {

24 "question_type": "MULTIPLE_CHOICE"

25 },

26 {

27 "question_type": "MULTIPLE_CHOICE"

28 },

29 // Multiple questions allow to generate about multiple aspects of the topic connections.

30 ]

31 }

32 ],

33 }

7.1.3 Usage Example: Partial Regeneration

• Problem: We have generated a variety of questions, but are not satisfied with the outcome of
some questions.

• Goal: Partially regenerate questions.

Implementation:

1. Generation result:
1 {

2 // ...

3 "question_to_generate": [

4 {

5 "question_type": "MULTIPLE_CHOICE",
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6 "generation_result": {

7 "multiple_choice": {

8 // Result that we are satisfied with.

9 }

10 }

11 },

12 {

13 "question_type": "MULTIPLE_CHOICE",

14 "generation_result": {

15 "multiple_choice": {

16 // Result that we are not satisfied with.

17 }

18 }

19 }

20 ],

21 // ...

22 }

2. Adapt to discard generation result:
1 {

2 // ...

3 "question_to_generate": [

4 {

5 "question_type": "MULTIPLE_CHOICE",

6 "generation_result": {

7 "multiple_choice": {

8 // Result that we are satisfied with.

9 }

10 }

11 },

12 {

13 "question_type": "MULTIPLE_CHOICE",

14 }

15 ],

16 // ...

17 }

7.1.4 Questionnaire Structure

The questionnaire collects information in three sections: 1. Academic Information, 2. Self-
Assessment in General and 3. EvalQuiz Self-Assessment Generation. The questionnaire
question types are: multiple-response with an optional addable Other field, multiple-choice and
free text. Multiple-choice and multiple-response answers are mandatory while free-text answers
are optional. Free-text answers only need to be answered: ”if applicable”. The multiple choice
questions consistently offer 5 answer options: Strongly Agree, Agree, Neutral, Disagree and
Strongly Disagree. The answer options are universal and symmetric. Our questionnaire references
both the web address of the frontend and the survey manual. Participants are advised to answer
EvalQuiz Self-Assessment Generation after trying out the EvalQuiz frontend.

1. Academic Information asks about the participant’s academic field, background and experi-
ence in creating lecture materials.
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2. Self-Assessment in General collects which self-assessment forms the participant is familiar
with and self-assessment constraints.

3. EvalQuiz Self-Assessment Generation is the longest part of the questionnaire highlighting
the experience with EvalQuiz itself.

7.2 Results

We collected 6 results. The average questionnaire completion time is approximately half an hour. All
participants are familiar with lecture material creation to a high to very high degree. Our participants
worked on multiple-choice, mock exams and blue slides most prominently, visualized in Figure 7.1.
We describe blue slides as sections for the student to pause and ponder in our questionnaire. All 6
participants agree that time constraints prevent self-assessment creation, depicted in Figure 7.2.
One-third of the participants state that creativity prevents self-assessment creation. The verifiability
of questions and current platforms and tools is unproblematic, with one answer respectively. The
majority of participants agree that self-assessment is currently lacking in university courses.

Figure 7.1: Survey results: Self-assessment that the participants have experience working with.

All participants uploaded lecture slides to our system. A single participant tried out EvalQuiz
with papers. The intuitiveness of interaction is judged as neutral on average. The subjects agree
that EvalQuiz generates questions timely. The majority of volunteers see question generation
as reliable with one outlier stating the contrary. The subjects are satisfied with the generated
questions’ correctness. One participant remarks: ”Slight grammar issues, but no content issues.”
2 participants state that the generation outcome is better in English than in German, while the
remaining 4 participants only tested English lecture materials. The participants evaluate the
versatility and originality of the generated questions as neutral on average.

77



7 Evaluation

Figure 7.2: Survey results: Self-assessment constraints.

Clearing and regenerating questions are seen as a helpful feature when managing a collection of
questions with EvalQuiz. The volunteers strongly agree that questions generated by EvalQuiz
reference knowledge from the lecture materials they were generated from. The model takes its
instructions to reference lecture materials too literally sometimes, as one participant criticizes: ”i
had one question that said: ”[...] according to the text?”. However as this is a stand alone question,
it’s unclear what text references to.”. The volunteers strongly agree that the system saves time
in self-assessment generation. The results, visualized in Figure 7.3, show that lecture materials,
batches, keywords in Capabilites and question type in question to generate are most beneficial for
question generation.

We collected feedback through free text questions. We asked our participants what they would like
to see implemented in the system. Our subjects requested more features to explain the interface
elements, such as tooltips. Additionally, multiple participants highlighted that they would like to see
more question types. A participant states that a language setting would help the user to gain control
over the language output. The participant critiques the lack of control over the output language with
German lecture materials. Another participant suggests a pause mechanism for the tour guide, in
order to interrupt and continue the tour. The systems should give more feedback on which lecture
material the user selected. One participant requests more flexibility in deciding which parts of a
question the system should regenerate. A single field of a question could be regenerated instead
of the whole question. The participant describes three generation options for multiple-choice: (1)
generate the question text only, (2) generate the question text + answer text and (3) generate the
complete question: question text + answer text + distractor texts. The same participant suggests
version control features to compare different generation alternatives. The interaction can benefit
from specifying multiple ”question to generate” at once, as the participant comments. Another
participant suggests an expert mode in which the user can modify the generation prompt (message
composition). The same participant positively comments on Evalquiz: ”Great idea and a nice
initial MVP”.

We collected general remarks about Evalquiz. One subject recommends adding PDF to the supported
file types. Another volunteer reports difficulties with processing LATEX slides and suggests that
manual conversion to markdown eliminates the problems. The participant critiques the lack of
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information on how Bloom’s taxonomy relates to question generation results. Another subject
remarks that different educational objectives withhold the same generation result and critiques that
distractors are sometimes obvious.

Figure 7.3: Survey results: Beneficial features for question generation.

7.3 Discussion

The evaluation shows that our system improves on the main bottleneck of self-assessment creation:
time. Feedback about the generation quality is positive, while drawbacks exist in steerability and
intuitiveness. Lecturers are fond of the iterative approach but wish for more control. For example in
partial regeneration and the composition of prompts. We assume that the mixed feedback about
model steering is due to explanatory boundaries and prompts (message composition). Multiple
concepts influence generation and need to be explained. Prompt design influences the model’s
behavior: the model should be incentivized to prioritize educational objectives. Lecture materials
influence the generation strongly, as reflected by Figure 7.3. We argue that implementing more
question types improves steering through educational objectives. The educational objective: apply
is currently limited by multiple-choice/multiple-response questions. We expect free text questions
to better fit the educational objective: apply. The participants explicitly requested more question
types.

The evaluation results provide valuable feedback regardless of the sample size. Individual comments
recommend possible improvements. One participant states that they ”would actually use [the
system] to get some questions”. Evaluation is a success for EvalQuiz, especially because EvalQuiz
is a novel approach. However, we expected our participants to use lecture material different
from lecture slides. Books, wikis, exercises and other lecture materials remain unexplored. We

79



7 Evaluation

partially explain our small sample size with the targeted audience. Lecturers are mostly PhD
students, postdocs and professors. The participants face significant time limits, which align with our
assumptions in Figure 4.3. The survey results underline that time limitations exist in self-assessment
creation, depicted in Figure 7.2.

7.4 Threats to Validity

The small sample size of 6 is a threat to validity. All respondents work in the field of computer
science, which limits generalizability to other domains of higher education. We expect computer
scientists to be more familiar with datatypes such as JSON or YAML than other users. This can be
a usability limitation. Both formats are not self-explanatory and depend on commonly used data
structure syntax as lists: [𝐴, 𝐵,𝐶] and dictionaries {𝐴 : 𝐵}. Our subjects mainly uploaded lecture
slides to EvalQuiz, which limits the system’s generalizability to other lecture materials.
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This chapter summarizes the thesis’ key aspects and insights. We discuss how future work can
benefit from EvalQuiz’s findings. Limitations open research opportunities to further investigate
aspects of the system and its theory.

8.1 Summary

The thesis confirms that large language models are a suitable technology for self-assessment creation,
underlining their generalization to different problem areas. Large language models are capable
of reliably outputting data according to a specification, answering RQ5. Our findings add to the
existing use cases of language models. The thesis conceptualizes, discusses and implements novel
ideas for self-assessment creation. Our survey delivers positive results limited by sample size. The
survey shows within its limitations that the generated questions are correct, indicating the true side
of RQ1. This includes computer science and software engineering RQ2. RQ2 is difficult to answer
for languages, as GPT-4 faces its own language constraints discussed in Section 4.4. EvalQuiz can
be extended to support different language settings. This requires query translation of every question
type. A separate recommendation system is required to answer RQ6, interesting for future work.
Open sourcing a large language model faces security concerns as discussed in Section 2.2. This
limits the currently available options to compete with GPT-4. We expect proprietary models such as
GPT-4 to perform best RQ4. EvalQuiz has all abstractions in place to support open source models
to further investigate RQ4, when comparable open source options are available.

EvalQuiz runs into limitations regarding steering and interaction, discussed in Chapter 7. The
conducted expert interviews reveal the unused potential that lays within individualized teaching.
Tighter integration and re-usability is a reoccurring theme in the thesis, speaking of lecture material
sharing, standardizing self-assessment data types and interconnectivity between LMSs with services.
An LMS could query the pipeline server directly through the specified interface.

8.2 Benefits

Both students and lecturers benefit from our results, carving the path towards more accessible
self-assessment. Lower self-assessment creation boundaries enable lecturers to offer students
self-assessment while not losing focus on their duties. EvalQuiz not only benefits creation but also
evaluation of self-assessment. Self-assessment evaluation enables lecturers to get a better estimate
of the self-assessment’s suitability for their course. Future work can benefit from considerations
about question types, expert interviews, requirements collection, concepts and the implementation.
We encourage the reuse of EvalQuiz’s components and ideas. The message composer scheme can
be applied to other domains, to generate complex data types consistently.
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8.3 Limitations

Our survey evaluation is limited by its sample size. Questionnaire responses are from lecturers of
the computer science domain, limiting their generalizability to the population of university lecturers.
Our approach is based on Bloom’s taxonomy [BK20] and is therefore dependent on the taxonomy’s
descriptiveness of educational objectives. We use GPT-4 with OpenAI API, which is a limitation
due to its proprietary. The material filter does not support PDF lecture materials. We argue that
PDF conversion is currently unsatisfactory for our approach, which can be a topic for future work.

8.4 Lessons Learned

We faced problems during implementation, as with most software projects. A bug in production
initially limited the document format support. The implementation uses the Linux file system for
file storage, which leads to permission and state issues. Our file data flow is complex. Files are
uploaded to the material server. The pipeline server then queries files from the material server. The
state is additionally held in intermediate caches. This leads to issues with testing and deployment.
The file system state was carried over in test runs. Tests were passing due to persistent state on the
disk. Development containers could not prevent those difficulties, as the local file system is mounted
by each development container. The built container uses state as versioned in the repository. These
issues can be prevented by managing all lecture material state with a database. We decided against
this, due to concerns with large file handling compatibility and performance of databases. We
agree in hindsight that storing files in a database would have prevented some of the encountered
problems.

The intermediate gRPC translation layer should be replaced for a gRPC native client implementation,
as section 6.7.1 discusses.

8.5 Future Work

We provide a visual material implementation guide in Section 6.6.1. Future work is able to
assess visual material integration in combination with GPT-4 or other multi-modal models RQ3
(Optional).

Future work can analyze and improve upon the thesis concepts. The message composer scheme can
be valuable for a variety of future applications. For example, applications where language models
interact with APIs. Language models can act as compatibility layers between different APIs and the
human. This is especially interesting for home automation, plagued by many different standards
and incompatible interfaces. There are possibilities to investigate language models interacting with
API-exposing services.

Complete automation of self-assessment generation is worth investigating. Future work is able
to build a system that does not require any lecturer interaction. Formulating and teaching quality
standards to language models can be further researched. We would like to see more research
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on conditional regeneration using metric evaluation, as implemented by the evaluation module.
The frontend currently only supports a subset of the question specifications and can be extended
accordingly.

Future work can extend and further investigate almost all of the pipeline server abstractions. Our ini-
tial approach for material filtering can be improved, other language models tested, different message
wordings and question types implemented and more. Different few-shot example configurations are
worth exploring. The implemented message composer composes messages only English messages
so far. Providing non-English lecture materials and messages, as indicated in Section 8.1, remains
unexplored. Technologies such as IPFS can replace the material server. Generated self-assessment
can be shared through content addressable storage as well. Closer cooperation in digital education
between institutes and universities has unexplored potential. Future work can address options to
share software (LMS, plugins), infrastructure and content to a higher degree than state-of-the-art.
The collected feedback in Section 7.2 can be incorporated with EvalQuiz.

Future work can pursue LMS plugin integration of EvalQuiz. Integration with LMS plugins
connects self-assessment generation with lecture material management and distribution. This
prevents intermediate imports and exports of generated self-assessment. LMSs could encourage
lecturers to increase the ”self-assessement coverage” of shared course lecture materials. Automatic
evaluation of Capabilites can give insight into the course’s structure. Lecturers can benefit from
more guidance in course creation.
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A Didactic Specialist Interviews

This chapter provides the full didactic specialist interview memory protocols.

A.0.1 General Self-Assessment Interview

We present an interview about self-assessment in general:

Q1. Are there general rules for academic question creation?

A1. Question creation for Exams, exercises, etc. is usually guideline centered. It is important to
consider each question in relation to its surrounding questions to arrange the sequence in
which questions are asked carefully. Asking questions is an act of communication. Questions
that are topically similar should adjacent or at least close to each other [Unia] F-REQ-11.
Topic jumps should be prevented as well as possible F-REQ-12. In order to connect sections
of different topics, transition elements should be designed. Topic sections are marked by
headlines. The inquiry purpose is best stated at the beginning of the document, followed by
an ”icebreaker” question, sparking interest and motivation to continue [Unia].

An ”icebreaker” question ideally is [Unia]:

– Connected with the following topics

– Connected to the person involved

– Simple to answer

– Answerable with none or small amounts of previous knowledge

The most important questions should be placed in the first third of the inquiry. F-REQ-13
Each topic should be assessed from general to specific questions [Unia]. Context from
previous questions can mislead or bias to specific answers. More information about context
effects can be found in the ”Item and question construction guidelines” of the ZLW University
of Stuttgart [Unia], as well as additional question-wording guidelines.

Q2. How to estimate the difficulty of a specific question?

A2. Statistical analysis on exam results enables question difficulty assessment. There are also
methods presented in social science literature.

Q3. How to assess how much time is required for answering a specific question?

A3. Measuring time during a test-wise solve has proven itself as effective.

Q4. How to formulate questions in a precise manner?
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A4. ZLW question wording guidelines [Unia] F-REQ-14:

– Simple and clear language

– Simple and short questions

– Positive language

– Not suggestions or assumptions

Q5. Is there a specific order in which questions should be created?

A5. There are specific ’dramaturgy’ rules, see ZLW [Unia] to improve motivation and maintain a
certain flow while answering questions. Multiple motivational factors play a role in question
creation.

According to ZLWs ”Motivational requirements” [Unic]:

– Autonomy: Choices and room to explore for students. Self-directed learning by
planning, creation, and action.

– Perception of competence: Constructive feedback about progress. Suitable choice
of comparison standard (social, individual, by criteria). Adapted level of difficulty in
exercises and exams.

– Social inclusion: Acceptance of and empathy for students. Patience: acknowledgment
of individual strengths and weaknesses while offering individual support. Mutually
respectful interaction.

– Thematic interest of the teacher: Articulation and emotional involvement regarding
subject. Enthusiasm and passion for teaching the specific subject and its topics.

– Thematic relevance: Problem oriented and practically relevant teaching. Authentic
and realistic perspective. Highlighting the connection between theory and practice.
Informing about interdisciplinary context. Practical examples

– Instruction quality: Precise statement of educational objectives: standards and/or
criteria. Clear course structure. Detailed and comprehensible instructions. Adaptive
difficulty level. ’Dramaturgy’ considerations lead from concrete to abstract or the other
way around.

Q6. How to decide which course parts to assess?

A6. Questions can be composed based on educational objectives [BK20] F-REQ-15, which focus
on specific lecture parts. The idea is to measure to what degree an educational objective is
satisfied F-REQ-16. Educational objectives are not easy to measure, as they have different
aspects and depths. For example: What does it mean to have understood a concept? A
definition for understanding can be interpreted in different ways.

Q7. How can students benefit the most from self-assessment?
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A7. This is yet to be explored and empirically tested. Following guidelines for course and question
creation posed by educational sciences is a good starting point. Currently, there still is a lot of
unleashed potential within different forms of individualized teaching. Speaking of offering
students with different previous capabilities the option to study at their own pace.

A.0.2 Interaction Prototype Interview

We present an interview about the interaction prototype, described in Section 4.2.2:

Q8. How to approach question generation? One question after the other or a whole document
with questions at once?

A8. The goal of question creation plays an important role in figuring out which approach suits
best. A system allowing both approaches can help answer this question. User analytics can
help with data collection and interpretation.

Q9. How important is traceability for question generation? To know which lecture material
generates which question.

A9. Traceability is most relevant when there are doubts about the result’s validity. Referencing
and rereading the source might help with clarifying misconceptions.

Q10. Are there scenarios where generation should exclude specific lecture material parts?

A10. If the lecturer plans to leave out specific parts for the exam.
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B Question Specification

YAML is chosen as the specification syntax due to its advantages. It is human-readable and
machine-readable. However, the implemented system uses equivalent JSON. We describe the
question specification in YAML, as it is more concise than JSON.

The specification should be extendable and updatable, therefore the first field under the root is
version, initially set to "1.0".

The specifications next part states general information about the course, mandatory for self-
assessement generation. This section formulates course goals. Furthermore, general assumptions
about student background and former capabilities are specified. required_capabilites describes
course preconditions and advantageous_capabilites optional capabilities that benefit the student.

course_goals, required_capabilites and advantageous_capabilites can be chosen as one of 6
possible capability categories: KNOW_AND_UNDERSTAND, APPLY, ANALYZE, SYNTHESIZE, EVALUATE,

INNOVATE. Those categories reflect the educational objectives according to Bloom’s taxonomy
[BK20]. relationship describes the relationship between keywords, for multiple keywords.
Possible relationships are: SIMILARITY, DIFFERENCE, ORDER. If it is unclear which aspect of the
relationship to highlight, COMPLEX can be chosen.

Example:

course_settings:

course_goals:

- capability:

category: "KNOW_AND_UNDERSTAND"

keywords:

- "keyword_1"

- "keyword_2"

relationship: "SIMILARITY"

required_capabilites:

- capability:

category: "EVALUATE"

keywords:

- "keyword_3"

- "keyword_4"

relationship: "COMPLEX"

advantageous_capabilites:

- capability:

...

generation_settings define the global behavior of question generation.

Example:
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course_settings:

...

generation_settings:

mode:

by_metrics:

evaluation_reference: "language_clarity"

evaluator_type: "le"

evaluation_result:

float_value: 1.0

There are three generation modes:

• complete is the default mode. All questions with a missing result section are generated.

• overwrite regenerates all questions, disregarding existing result sections.

• by_metrics, applies an evaluator of evaluator_type

complete and overwrite are objects without any parameters. by_metrics requires an
evaluation_reference, evaluator_type and evaluation_result. The evaluation_reference refer-
ences the result of an evaluation. Each questionmaps evaluation_results to evaluation_references
in the evaluation_results dictionary. evaluator_type specifies the comparison. The following
comparisons are supported:

"eq": "x == y"

"neq": "x != y"

"geq": "x >= y"

"leq": "x <= y"

"ge": "x > y"

"le": "x < y"

"is": "x is y"

"is not": "x is not y"

"in": "x in y"

"part_of": "y in x"

evaluation_settings describe how generated questions are evaluated. Resulting metrics give
lecturers more information to decide about generated questions. Evaluation metrics can be used by
a learning management system to categorize and personalize questions.

Example:

generation_settings:

...

evaluation_settings:

- metric:

reference: "language_clarity"

evaluation:

language_model_evaluation:

... # parameters

mode: "complete"

A metric consists of a unique reference, an evaluation, and parameters based on the evaluation.
mode behaves similar to the mode parameter in generation_settings.

language_model_evaluation enables to use self-reflective capabilities of a language model to
evaluate its output.
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Example:

evaluation:

language_model_evaluation:

model: "gpt-4"

evaluation_evaluation_description: "The given question is formulated precisely and uses standard

English."↩→
few_shot_examples:

...

evaluation_result_type:

value_range:

lower_bound: 0.0

upper_bound: 1.0

model describes the language model used for the evaluation. evaluation_description states
how questions are evaluated. few_shot_examples is a list of generation_evaluation_results.
generation_evaluation_results include a generation_result and a evaluation_result.

Example:

If the evaluation_result_type is a value_range: [lower_bound, upper_bound] is required, which
describes the maximum and minimum of value_range. Another option is the categorical

evaluation_result_type, which is a set of categories:

evaluation_result_type:

categorical:

- "Low precision"

- "Average precision"

- "High precision"

Next, a unique list of material server URLs describes where to resolve materials. Those material
servers represent endpoints where materials can be queried using a hash (content addressable
storage).

evaluation_settings:

...

materialServerURLs:

- "materialserver1.example.com"

- "materialserver2.example.com"

The general format of the question specification is designed to resolve question formulations that
are inconsistent, in order to iteratively improve the questions that are output. For each batch of
generated questions, all input parameters are preserved and can be adjusted in order to regenerate a
question.

batches is a unique list of batch instances.

A batch consists of materials, capabilities and questions_to_generate. capabilites are of the
same datatype as in course_goals, required_capabilites and advantageous_capabilites under the
course_settings.

materialServerURLs:

...

batches:

- batch:

materials:
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...

capabilities:

...

questions_to_generate:

...

- batch:

...

materials is a unique list of material datatypes.

The material consists of a unique for each file reference, optional url, hash and optional page_filter,
defining an interval of pages (both included). The hash is calculated with the material itself, to
enable detection of possible inconsistencies upon regeneration. All metadata is retrieved upon
download. A url is optional, as requesting materials through specified material servers only requires
the hash. To enable linking resources from arbitrary servers via HTTP, URLs can be added.

Example:

material:

reference: "textbook.pdf"

url: "example.com/textbook.pdf"

hash: "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"

page_filter: [12, 340]

Materials can also be directly referenced by the reference name for ease of use, but need to be fully
specified in materials following batches

Example:

batches:

- batch:

materials:

- "textbook.txt"

- "lecture.pdf"

...

...

materials:

- material:

reference: "lecture.pdf"

hash: "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"

To enable capability-based generation, a unique capability list is used, with at least one capability
required.

Example:

capabilities:

- capability:

category: "EVALUATE"

keywords:

- "keyword_1"

- capability:

category: "KNOW_AND_UNDERSTAND"

keywords:

- "keyword_2"

- "keyword_3"
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relationship: "SIMILARITY"

...

questions_to_generate is a list of question datatypes.

A question consists of a question_type, describing the specific type of question and result, which is
different for each question type and an evaluation section.

Example:

question:

- question_type: "MULTIPLE_CHOICE"

- generation_result: # Result of question generation.

...

- evaluation_results: # Dictionary with evaluation results.

...

evaluation_results reference evaluation_results with evaluation_references. Evaluation results
can be either strings using the field: str_value or floating point numbers using float_value.

Example:

evaluation_results:

language_clarity:

float_value: 0.4

The question specification describes which question types are supported. The following question
types are described in further detail.

Currently supported question types:

• Multiple-Choice

A Multiple-Choice question describes a question_text and a set of possible answers, rendering
1 exact answer and 1..𝑛 distractors. Distractors are answers that are not true. This is modeled
as the following: The question_text, as well as the answer_text, are modeled as strings. The
distractor_texts is a set of Strings.

Example:

• Multiple-Response

Consist of a sentence formulating a question, 0..𝑛 answer options of which 0..𝑛 answers can
be true. Wrong answers are described as distractors [KM+06].

Example:

...

- type: "MULTIPLE_RESPONSE"

- generation_result:

"question_text": "Which atoms are contained in water?",

"answer_texts": ["H (Hydrogen)", "O (Oxygen)"],

"distractor_texts" ["He (Helium)", "Fe (Iron)"]
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The question specification can be extended with further types. We want to convey that our approach
generalizes well beyond checkbox-type questions. Currently not included, but proposed cloze
variant:

• Multiple-Choice Cloze
Example:

...

- type: "multiple_choice_cloze"

- generation_result:

"question_text": "Water is an inorganic compound with the chemical formula {{c1::H_2O}}"

"distractor_texts": [["CH_4", "C_8H_{10}N_4O_2", "CO"]]

Cloze question formatting is described in detail by the Anki documentation [Webc].
Cloze questions are formatted as {{ID::Cloze::Hint}}, where ID is formatted as 𝑐𝑛
with 𝑛 ∈ {1, ..., 𝑘} starting from 1 and increasing in steps of 1, Cloze describes the
hidden text. Hint describes a hint that can be shown, without revealing the answer.
We can construct an example with multiple cloze fields and a hint:

...

- generation_result:

"question_text": "The {{c1::registrar::enables to lease second-level domains}}

communicates the authoritative nameservers to the domain registry for the

{{c2::top-level}} zone."

↩→
↩→
"distractor_texts": [

["internet service provider", "government", "signing agency"],

["first-level", "second-level", "entire"]

]

Distractors are ordered similarly to the cloze fields. The additional hint is described
after the :: Ënable to lease second-level domains".

All data types are defined in evalquiz.proto of the evalquiz_proto repository, see chapter C.
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C Implementation Libraries and Repositories

• OpenAI API [Webah] offers access to a variety of OpenAIs language models.

• NLTK (Natural Language Toolkit) [Webaf] is a NLP text-processing library for tokenization,
stemming, tagging, parsing, semantic reasoning, etc.

• Better Protobuf [Webax], a gRPC generator library mapping Protocol Buffer [Webas]
definitions to Python classes. gRPC server/client stub generation from Protobuf schemas.
Builtin binary and JSON serialization. MyPy support.

• BLAKE3 bindings for Rust library [Webf] [Webbc]. BLAKE3 is a highly parallelizable
cryptographic hash based on the BLAKE architecture.

• PyTest [Webaw] testing framework for python. Supports unit tests, async testing, debugging
in tests, fixtures, and parameterized tests.

• MyPy [Webae] duck typing checker for Python type annotations.

• PyFlakes [Webat] static code analysis tool. Finds unused variables, imports not reachable
code and more.

• Black [Webe] code formatter.

• Jsonpickle [Weby] serializes and deserializes Python objects to JSON.

• Sphinx [Webbf] with Read The Docs (RTD) theme. A document engine compatible with
Google-style doc strings. Sphinx features auto-indexing of classes and methods with type
annotations.

• PyMongo [Webau], the official MongoDB driver for python.

• Gensim [Webo] library for topic modeling, document indexing and similarity retrieval.

• Tiktoken [Webai], OpenAIs official tokenizer used for their language models.

• PPTX2MD [Webaq] a PPTX to markdown converter. Transforms titles, tables, lists, formatted
text, pictures and more to markdown.

• Pypandoc [Webav] lightweight wrapper for Pandoc [Webam]. Provides version including
Pandoc binary.

• Datasets by Hugging Face [Tra]. Part of one of the most popular ML libraries offering ease-
of-use Transformer models, datasets and integration with PyTorch [Webaz] and Tensorflow
[Webbi], for model usage and training.

• CS.Ratelimit [Webh], a thread-safe rate limiter for API requests.
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• Setuptools [Webbe], a packaging library based on pythons builtin distutils. Used for
specifying package metadata.

Technical documentation:

• https://meitrex.github.io/evalquiz-pipeline-server/index.html

• https://meitrex.github.io/evalquiz-material-server/

EvalQuiz GitHub repositories:

• https://github.com/MEITREX/evalquiz-full-stack

• https://github.com/MEITREX/evalquiz-client-react

• https://github.com/MEITREX/evalquiz-client-flask

• https://github.com/MEITREX/evalquiz-pipeline-server

• https://github.com/MEITREX/evalquiz-material-server
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