
Institute of Software Engineering
Software Quality and Architecture

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit

Measurement-based QoS Trade-off
Analysis for Over the Air Software

Updates

Ingo Schwendinger

Course of Study: Informatik

Examiner: Prof. Dr.-Ing. Steffen Becker

Supervisor: Floriment Klinaku M.Sc,
Marcel Weller M.Sc

Commenced: November 2, 2022

Completed: May 2, 2023





Abstract

The thesis will concentrate on Quality of Service (QoS) trade-offs of Over-the-Air (OTA) updates
with a special focus on the use case of updates on a car fleet.

Updating software of a car fleet efficiently, requires to have OTA updating techniques that can cope
with various problems, like the car fleet’s size and its spatial distribution. It makes sense to compare
different techniques for their QoS trade-offs to find the best technique for given circumstances.

We wanted to understand the key principles of OTA updates. By researching different techniques
for OTA updates and understanding their QoS trade-offs, we have developed a decision model for
the best OTA update technique in different cases that appear regarding the update of car fleets.
Finally, we wanted to implement some of those techniques for the purpose of analyzing them on
QoS aspects.

Researching different OTA techniques to find out about their characteristics was a main part of
the methodology. Furthermore, we needed to identify which properties were especially important
for updating a car fleet. After that, those techniques were analyzed on their QoS aspects. This
was achieved by making assumptions on their behavior and by checking them in a simulation
environment.

In our results we showed 31 techniques that we grouped into four categories and registered them
as Architectural Decision Records (ADRs). Amongst those techniques we argued about the
trade-offs that are involved and also showed some trade-offs directly in our experimental setup.
There we focussed on code dissemination approaches. We found trade-offs between the quality an
administrator observes in update completion time and the response times a car driver observes.

From the results we concluded which technique fits which use case in updating car fleets.
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Kurzfassung

Diese Arbeit befasst sich mit Quality of Service Trade Offs von unterschiedlichen Techniken, die
bei Over-the-Air Updates eingesetzt werden. Unser Fokus liegt hierbei auf dem Updaten von
Autoflotten.

Es ist wichtig Software in Autos effizient auf dem neuesten Stand zu halten. Dies wird nur von
OTA Updates ermöglicht. OTA Update Techniken sollten in der Lage sein mit unterschiedlichen
Problemen umgehen zu können, wie zum Beispiel mit verschiedenen Flottengrößen oder der
räumlichen Verteilung der Autos. Um sich für die beste Strategie in verschiedenen Use Cases zu
entscheiden, macht es Sinn OTA Update Techniken auf ihre QoS Trade-Offs zu untersuchen.

Wir wollen die entscheidenden Prinzipien von OTA Updates verstehen. Durch die Recherche von
unterschiedlichen Ansätzen und ihrer Analyse auf QoS Trade Offs wollen wir Use Case abhängige
Design Entscheidungen erleichtern. Manche dieser Techniken wollen wir für Experimente auf QoS
Ebene nutzen, um unsere Argumentation zu verstärken.

Ein entscheidender Teil unserer Methode war das Finden von unterschiedlichen OTA Update
Techniken und das Verstehen ihrer Bestandteile. Zusätzlich wollten wir verstehen welche Aspekte
besonders wichtig sind, wenn es um das Update einer Autoflotte geht. Dannach mussten diese
Techniken auf ihre QoS Trade Offs analysiert werden. Dies ist auf Basis von Annahmen geschehen,
die mit Simulationen bestätigt wurden.

Wir haben 31 Techniken und Ansätze in Kategorien gruppiert. Pro Kategorie haben wir die
Trade Offs aufgelistet und manche dieser Trade Offs experimentell bestätigt. Die Techniken haben
wir als ADRs registriert. Bei den Experimenten haben wir uns auf Code-Verteilungsstragien
konzentriert. Dabei wurden Trade Offs zwischen der Qualität die ein Administrator (Zeit bis das
Update der ganzen Flotte abgeschlossen wurde) und der Qualität, die ein Autofahrer bei einem
Update wahrnimmt (Downloadzeit des Updates im Auto), beobachtet.

Unsere Ergebnisse haben wir genutzt um zu argumentieren, welche Techniken zu welchem Use
Case passen.
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1 Introduction

In times in which systems become increasingly interconnected, Quality of Service is a vital part of
networking tasks. Many applications would not work without QoS. Since updating tasks are also
performed over networks, QoS is there involved too. But apart from those classical Quality of Service
aspects that are from the networking realm, service quality is also defined in software engineering
to define the overall quality of a provided service as part of non-functional requirements.

For many years software in cars was only updated in workshops, plugged into a service computer
[20]. This comes with a lot of disadvantages. Such physical interfaces are costly in most cases, which
makes it difficult to update many cars at the same time in one workshop. Also, the ever-growing
use of software in cars even makes it safety critical to update that software on a regular basis
[ABG+17a]: For instance, firmware of sensors has to be free of any kind of malfunction. This can
only be achieved by frequent updates that ensure the reliability of those components. The best
methods to tackle these problems are over the air updating techniques, since they are able to update
many cars in less time and do this also much cheaper. It is estimated that car manufacturers can
save up to $35 billion by using OTA techniques [ABG+17a]. To ensure a trouble-free updating
process QoS is an important aspect of OTA updates on cars. Therefore, it is necessary to find a
technique that can cope with different car fleet sizes and their spatial distribution. For example in
high traffic areas, where potentially many cars that have to be updated are on a very limited space,
OTA frameworks have to find solutions for ensuring QoS (i.e. reducing packet loss or latency)
[ABG+17b]. But also more general: When many cars update at the same time, how can a server
cope with that load. Also, other qualities like fault resistance or recoverability are very important to
be considered.

To tackle that, we want to find solutions for such cases. Analyzing different state-of-the-art OTA
methods to learn about their QoS trade-offs is a key step in finding a method that fits different use
cases. It makes also sense to look into other domains of IoT and their use of OTA techniques, to
maybe adapt some ideas one can find there. We have grouped different approaches into categories
and tried to find trade-offs that can be observed there. For the implementation of measurements we
chose certain architectural and design decisions to measure their influence on QoS.

We have found trade-offs which we grouped by categories. We argued about the use cases
where those techniques can be applied best. Moreover, we showed some trade-offs of different
dissemination techniques by measurements on our prototype. With that we were able to argue in
more depth about their trade-offs than in other categories, where we relied on assumptions and
literature. In our measurements we found out and argued that the Push approach (push images
directly to the cars over the broker without the possibility for the car driver to decline the update) is
most effective for safety critical updates. The Optional approach (notification is sent to the cars
and drivers can decide if and when to install the update) is most suitable for infotainment updates.
And the last of the three main dissemination techniques that we covered was the Polling Intervals
approach (cars poll frequently if a new update is available). It is applicable to many use cases,
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1 Introduction

especially if certain updates are prioritized with a higher polling interval to increase also the quality
observed by a fleet manager, when a safety critical update should be installed on every car as fast as
possible.

The contribution of this thesis is a QoS aware analysis of OTA Updates. With that it will become
easier to choose the best architectural and design decisions for certain use cases as a software
architect or developer. Also, fleet owners and car manufacturers get important information in a
compact form about design decisions for Electronic Control Units (ECUs) (car manufacturer) or
choosing the best code dissemination approach if more than one is offered by a framework (fleet
manager).

Thesis Structure

Here, give an overview of your thesis structure.

Chapter 3 – Survey of OTA update frameworks: Here, we give an overview of existing OTA
update frameworks and techniques, their trade-offs and how to categorize them.

Chapter 4 – Prototypical Implementation of OTA update strategies: Here, we introduce the
strategies used for QoS measurements and how we implemented them in a test prototype.

Chapter 5 – Measurements: Here, we provide information about the undertaken measurements
and the used test scenarios.

Chapter 6 – Evaluation: Here, we discuss the observed results and the study design.

Chapter 7 – Conclusion We conclude our thesis by summarizing key aspects, discussing limita-
tions and benefits as well as giving inside on possible future work.
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2 Foundations and Related Work

2.1 Foundations

To understand the context of the thesis, basically two topics have to be explained.

Over The Air Updates

As stated before OTA updates are a convenient way to update a fleet of cars. But also in other
domains of IoT OTA enables a wide range of possibilities, whether in smart home, industry or smart
cities. To analyze OTA updates on certain aspects one must understand OTA updates in general.

Over The Air updates can basically be divided into two parts: Module Management and Rollout.

Module Management concentrates on the compilation of the update modules, their compatibility
with already installed modules and a verification step like a simulated update on a digital twin
network [BRG+20].

Rollout focuses on security, dissemination, installation and activation of the update. Security is a
critical aspect of OTA, as data from the developer of the update has to be authenticated. Otherwise,
attackers could inject poisonous code into critical infrastructure leading to safety issues and all
kinds of different problems. However, since the focus of this thesis is on QoS trade-offs we will not
cover much about security. We will only make assumptions on the influence of different security
measures on QoS aspects, without getting into details how they work exactly.

Different techniques for dissemination of the data are likely to have the highest influence on
QoS. Coping with different situations regarding the spatial distribution of the car fleet or network
congestion because of large updating packets is one of the problems that has to be tackled. But
nevertheless it makes sense to have a look at Module Management techniques to, since the way how
the modules have been compiled may also impact the completion time of the rollout.

However, Villegas and Astudillo state the there is a lack of standardization for OTA updates [VA20].
So it can be said that there is no blueprint on how to create a suitable OTA update. Rather the
update has to be developed according to its use case until a standardization is available.

Quality of Service

Quality of Service is a term mostly related to networking [22c]. It describes the performance of a
specific service on a network with a special focus on what can specifically be observed by the user.
Inspecting the service quality of a software product requires addressing different categories. Steve
Tockey describes software’s service quality as part of non-functional requirements that a software

3
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product should fulfill [Toc19]. Different levels of performance can be described by measures like
response time, throughput, reliability, scalability etc. Rupp and Pohl define the quality of a software
or Service analogously [RP21]. Moreover, they refer to a standard that describes different quality
dimensions that define the quality of a software or service [Sta].

One vital part will be Performance Efficiency [Sta]. Here lie the more classical QoS aspects. As
already stated OTA updates have to cope with potentially large car fleet sizes. Making sure that
even in high traffic areas updates work well, is very important. OTA techniques should strive to
achieve high throughput, as higher throughput means also a smaller completion time. How such
metrics, like completion time, response time and throughput, behave under certain car fleet scales
will be very interesting (Elasticity).

Other classical QoS aspects that can be observed are for instance Packet Loss, Latency and Packet
delay variation. All of those network related aspects are helpful to look at, since all of them
influence the overall performance of the OTA technique. Only looking on completion time would
raise questions about the reason for a slow completion time. That is why it makes sense to take the
other metrics into account too.

Also, it is vital to take into account how compatible an OTA technique is with other services
that work on the same network. For instance, how are other remote car services affected by a
large update? Will they still work without any performance loss due to high congestion of the
network cell? If other services fail this leads to inconveniences for the car driver which should be
avoided. However, this is more a networking and scheduling related topic which is not covered in
this thesis.

Other important questions are: How does the update behave in case of connection loss, server
shutdown or other problems that can appear? Knowing about the OTA update’s recoverability
is important, because it could force the user (driver of the car) to take action himself, which
would be a major inconvenience and therefore a reduction in service quality. But even without a
complete failure, to which degree can specific OTA updates hold up their intended function [Sta]
regardless of having minor faults like high packet loss for instance? All of that can be measured by
simulating faults or even complete failures of the system and measuring the time needed to rebuild
the connection and to restart (or to continue) the updating process and even the time needed to finish
it. Also, other metrics can be measured in this case, like the throughput after restarting and how
long it takes to reach full capacity again. Another important measure in this realm is availability
since an update should be able to be performed at any desired time. Also, this should be invariant
from the position of the car which undoubtedly requires a stable internet access at every place of
usage.

Security is also an important aspect of software quality and since it leads to major problems for the
user if not applied, also an important aspect of QoS. Only imagine the impact of poisonous firmware
code in a car’s sensor. Especially in case of self-driving vehicles this is a major issue, which could
lead to accidents. Even though security is very important the thesis will only concentrate on the
impact of different security measures on the overall performance, while assuming that they work as
intended.

Under often changing circumstances OTA techniques are needed that can easily be modified to
meet new requirements. For instance, let’s say a new networking technique is used to distribute the
data, how easy is it to change the OTA technique to work with the new technology. As this is a part
of Maintainability it makes also sense to take this into account.

4



2.2 Related work

Figure 2.1: Different OTA Update Techniques categorized by their purpose [VA20]

A dimension that we completely dismissed is usability. Since the user only communicates directly
with the OTA update when confirming that an update should be performed, usability seems to be
negligible. The only role the profits from usability is the fleet manager, which will be covered to a
certain extent in this thesis

Analyzing on functional suitability was also not very important, since all the proposed techniques
are peer-reviewed works that have most likely already been checked on their functional suitability.
But it is necessary to check on the suitability for our given context of car updates especially when
taking ideas from different IoT domains.

In the thesis we mainly focused performance observed by mean response time and completion time
observed by the fleet manager. We used that to argue about QoS for those different roles. In other
realms of OTA updates apart from code dissemination we argued with trade-offs that are known or
can be implied by certain characteristics of the observed strategies.

2.2 Related work

Most work so far concentrates on specific issues of OTA updates. Numerous techniques are
proposed to ensure the security of the update [SSLK21] [KKC+16] [NL08]. Also, other aspects are
considered, like improving the data dissemination technique to speed up updates on cars [MSAA21].
But comparative studies seem to be very rare. The problem seems to be that all techniques only
concentrate on a certain aspect while a complete OTA update consists of more than that specific
aspect. Also, the already mentioned lack of standardization is a problem which leads to many use
case specific ideas.

One study that concentrates on more than only one technique by Villegas et al. [VA20] develops
a taxonomy to categorize different OTA techniques in Internet of Things and Cyber-Physical
Systems. The techniques have been categorized according to the type of issue that they tackle
(see Figure 2.1). Besides security approaches, there are also techniques for update management,
the code dissemination, scheduling approaches and mechanisms that concentrate on packaging
and elaboration. The paper contributes to the decision process of developers, which approach
they should use for their specific use case. It also states in the conclusion that further work has
to be done to help developers to compare alternatives. Moreover, it complains about the missing
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standardization in OTA updates. Since, most approaches only concentrate on a certain aspect or are
specialized to a specific scenario, there is no real blueprint on how to develop a OTA technique for
every case. The study definitely provides an interesting overview on some techniques in different
disciplines of OTA updates, which helped in starting our own research.

Another highly related work is from Palm et al. [PB22], which evaluates different OTA techniques
on deployment time and update rollback functionality. It especially focuses on the question, if
different file structures have an effect on the deployment time and if OTA techniques have rollback
functions. The underlying context of the work is to find a reliable Over The Air update technique
for a recycle station in Internet of Things. Since this work does not concentrate on QoS aspects and
the overall focus is on a different scenario it is still different from our work.

As already quoted in Foundations, Bauwens et al. [BRG+20] surveyed the main principles of OTA
updates. This is also an example for a paper that has a more general look on OTA update techniques.
While Khurram et al. [KKC+16] concentrates on issues regarding OTA updates, Bauwens et al.
defines different phases of OTA updates. However, the study does not compare specific techniques.
But it will still be helpful for understanding the main principles of OTA updates and make it easier
to research for techniques about different issues in OTA updates. But the work gives interesting
insights in how to evaluate OTA techniques which helps to do our own thesis.

Aurora Labs [Lab] created a calculator for OTA update costs. As input, it takes fleet size, image
size and number of ECUs per car. Also, the number of updates a year are considered. As output, it
shows the cost using certain OTA update approaches. It only compares three image compression
techniques. Full Image update, binary update and Line-of-Code update. They conclude that
their proposed Line-Of-Code update performs best, considering cost. However, the work only
concentrates on a certain aspect of OTA while we concentrate on a general overview of QoS
trade-offs.

Other than that studies do not seem to concentrate on comparing different OTA techniques and
rather on proposing a specific approach.
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3 Survey of OTA update frameworks

In this chapter we show the frameworks that we found which provide OTA update capabilities. Most
of them are Internet of Things (IoT) management frameworks. Since cars are also IoT devices many
approaches are also applicable in the car context.

3.1 Methodology

We surveyed different OTA update techniques by finding frameworks which support OTA updates.
Frameworks, which are well documented, support OTA updates and that are already available in
a containerized form were the first targets we were looking for. After realizing, that it is more
effective to emulate certain approaches in an own setup, we also considered frameworks which were
not already containerized. A good documentation became the main metric we used to choose the
frameworks. We also tried to cover as many different approaches as possible. We were also using
literature to find techniques there. The goal was to find certain trade-offs in QoS. We registered
the techniques we found in ADRs. Those ADRs can be found on our GitHub Repository. This
is also used to refer in chapter 4 to the techniques we used in our prototype. An ADR is marked
by “(ADRi)” with i representing the ID of the ADR. Every ADR label references to the appendix,
where all the ADRs can be found.

3.2 Frameworks

In the following we present the frameworks we used for our survey.

3.2.1 Edgehog

Edgehog is an open-source framework for IoT management written in Elixir [Eli] and based on
Astarte [Ast]. It offers features like OTA-updates, device status information, geolocation etc.

Basic concepts OTA updates with Edgehog [Srla] are possible with any device which implements
certain interfaces provided by Edgehog.

They distinguish between managed and manual OTA updates. In managed OTA updates cars are
updated automatically according to their specific group and their System Model. A System Model
is defined as a group of devices with the same functionality for users. In case of cars, an example
for that would be a car of a specific type which is used in one use case as a police car and in
another case as a private car. Even though the cars have the same hardware, they may have different

7
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3 Survey of OTA update frameworks

software installed and are by that in different System Models. Groups are devices that fulfill certain
conditions (AD8) defined by the administrator. That means a device group can be every logical
group of devices.

One key concept is the base image collection which is tied to a specific System Model. It connects
all images that are associated with a System Model and by that with specific use cases.

The next important concept is the update channel. This channel offers base images to the devices.
Every device is automatically assigned to a default update channel which can be changed by adding
the device to a group.

To start updating devices an update campaign is necessary. It tracks the distribution of a base image
to all devices that belong to a specific update channel. Only one campaign per update channel is
possible. Also, constraints can be defined for the update, for instance a certain minimum version
that is necessary to perform the update on a device. When starting a campaign, the devices that
are effected are “snapshot”, so only devices subscribed to the update channel at campaign start are
supplied with the new image.

Two rollout mechanisms are provided. Push mode (AD3) sends images directly without confirmation
to the devices. Optional (AD2) mode waits for confirmation from the device’s user.

And finally there is the concept of an OTA operation. It tracks the update process of a specific
device.

Also, devices can be manually updated via the Edgehog server’s front-end (AD9). But here it is not
checked if the system model of the updated campaign fits the system model of the device. This
leads to more flexibility in how to update the devices while increasing the risk of incompatibilities
if done carelessly.

The concepts are partially applicable to car fleets. Groups do not have as many variable constraints
in case of a car fleet. Car fleets are defined in a more static way like a company’s fleet or a fleet of a
whole manufacturer. Subgroups in fleets could be defined in the way proposed in Edgehog, since
the management of specific car types of a certain purpose would then be automated. It would be
easier to change a cars group membership, since already the change of a certain attribute of the car
would change its System Model and by that how it is effected by updates.

Architecture Edgehog uses Astarte as main backend (figure 3.1). Astarte [Ast] is an open-source
platform for IoT data management. Edgehog offers an API for administrators with a frontend and
also a GraphQL interface for third party applications. Since the frontend also uses the GraphQL
API the same operations are possible for third party applications. As database PostgreSQL is used.
The communication with the devices is fully managed by Astarte using VerneMQ as broker. Data is
exchanged between Edgehog and Astarte via REST-API and Astarte Triggers, which define under
which conditions data is sent to a specific component or device. For the communication with the
devices the MQTT (AD10) protocol [mqt] is used. It is very useful for IoT tasks, due to its low
packet size, which makes MQTT very effective in low bandwidth environments. Moreover, MQTT
can carry all possible data types. It is reliable in providing QoS (in this case network related) by
guaranteeing delivery.
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Figure 3.1: Architecture of Edgehog [Srla]

3.2.2 Mender

Mender [Men22] is an open source OTA software updater for embedded Linux devices. Mender
proposes its simple client / server architecture.

Its focus lies on ensuring robustness i.e. if power is cut during an update, rollbacks should be
ensured. It uses two server side APIs: Device and management (AD11). The Device API is for
device originated requests and the Management API for users that manage devices, and updates.

Mender provides two modes of client operation: In managed mode devices check for updates
automatically themselves. Installation, confirmation of the update, reboot of the device and other
tasks are fully managed by the Mender client. In standalone mode updates are initiated locally (not
OTA). They support full filesystem or application updates.

Security and Robustness In order to ensure a secure and robust update process, Mender needs
additional metadata alongside the raw bits of the update payload. For that, information like the
update version and a checksum of the payload. The update version ensures an easier rollback to
older versions, since the version is directly attached to every image. A checksum ensures that the
image file was not modified after delivery (AD12). Also, it provides authentication by comparing
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the checksum to an original checksum to ensure that the image was in fact sent by the Mender
server. The device type with which the update is compatible is also covered in the metadata, to
prevent compatibility issues during installation. Additionally, information about provided fields
from the mender artifact, that is fields that are saved on the device during the process, are provided,
as well as depending fields that must be present on the device for a successful update. Mender
achieves robustness by providing a dual redundant scheme (AD13), which ensures that a device
is always able to return to a working state after a failure. For that, two partitions are used for the
device’s Operating System (OS). One, where the OS runs on and a second, which is inactive and
used to start the new updated OS. If anything fails in the boot process, the device can still rollback
to the previous version, since that version is still actively running on the second partition. The
only downtime when using this approach is during reboot to the new OS version. When an update
was successful, it gets committed, that is setting a flag in the bootloader to indicate the update
was successful. The filesystem needs to be stateless in that approach, since the whole partition is
overwritten in every update.

When applying application updates, Mender uses Update Modules which represent any type of
software used in the OS. In an update module also the installation process is directly defined. One
key element there is the installation of the software itself, but also rollback instructions or other
actions can be defined there.

To provide another layer of security, Mender offers a gateway, which can serve as a proxy between
Mender server and client (AD14). Additionally, the gateway helps in balancing load more easily
to different server instances. Another advantage is the improved proxy compatibility i.e. Mender
works more easily in private networks.

The Mender client does not use any open ports. Every communication with the server is started by
the client (AD4). This is an advantage in security, since connections are harder to be compromised,
by offering fewer endpoints. Mender also uses device groups and artifacts to define which devices
need which update image.

Mender uses a REST-API to communicate with the devices. Every communication with the server
is started by the devices. The connection is secured with TLS (AD15). The system’s root certificate
authorities are used to verify the server identity. Devices are authenticated by pre-shared RSA keys
with which they sign all their requests.

Device Groups Mender supports two type of device groups. The first one are static groups
(AD7), which are lists of device IDs. A device can only be part of one group. Groups only exist as
long at least one device belongs to them. The other group type is the dynamic group (AD8), which
is defined over a set of filters. Devices that match the defined constraints are effected. Such groups
can change over time when the devices change their properties.

Deployments Deployments are used to perform updates on groups. A deployment consists of
a release, the devices that are effected (generally a group) and the number of retries if an update
fails. When updating a group the update is performed as snapshot. That is, only cars that are part
of the group at deployment start are supplied with the update (AD5). Deployments to a dynamic
group never finish, since every car that matches the constraints of the group at any time will be
supplied with the update (can be compared to the continuous approach in section 3.2.5 and the
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continuous approach used in our prototype). There are different states a deployment can live in.
After deployment start, it is in the state “pending”. After the first device starts requesting a new
image, the deployment reaches the state “inprogress”. When all devices finished their update
process, the deployment reaches the state “finished” no matter if the process failed or not. A
deployment on a dynamic group behaves differently. It remains in the “pending” state until the
administrator explicitly stops the deployment or until the number of supplied devices matches the
optional parameter “maximum number of devices”.

Delta Updates Mender uses delta updates automatically in all supported artifact versions (AD6).
That is, Mender sends only the data of changed blocks of the old compared to the new update image.
This approach is especially helpful in reducing bandwidth needed, since fewer data needs to be sent
out to the devices.

3.2.3 Thingsboard

Thingsboard [thi] is an Open Source IoT management system. Since version 3.3 it also provides
OTA update support. Thingsboard notifies devices about new available updates and provides a
protocol specific API to download the firmware. The platform tracks status of the update and stores
a history of the updates.

They propose five main qualities:

• Horizontal Scalability

• Fault Tolerance, since there is no single point of failure in the architecture

• Efficiency and Robustness: They propose that a single server node can handle tens of
thousands of devices and a whole cluster millions of devices

• Customizability: new functionality is supposed to be added easily

• Durability

The proposed qualities refer to the overall IoT functionality. All but the third point are also included
in the OTA functionality.

Architecture One major component of the Thingsboard architecture is the Transport Layer. The
transport layer provides APIs for four different protocol types: MQTT, HTTP, CoAP and LWM2M.
With MQTT also Gateways are supported as in Mender (section 3.2.2), which can represent a
whole group of devices. With message queues between the Transport Layer and the Core Services
(figure 3.2), it is ensured, that all messages arrive. Devices only get an acknowledgement after the
messages are acknowledged by the message queues. The Thingsboard core services are responsible
for handling REST-API calls and WebSocket subscriptions. They also manage data, like device
state and sessions. The Rule Engine is responsible for handling incoming messages. Also, a Web
UI is provided for administrational use, which uses the REST-API and WebSockets. The message
queues are proposed to be crucial for managing high load. Thingsboard uses topics to communicate
over the queues, for instance if a message is sent from the transport layer to Thingsboard core, it is
published to the topic “tb_core”. Before Thingsboard used message queues for communication, they
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Figure 3.2: Thingsboard’s architecture diagram, taken from the official docs [thi] All blue
components are proposed to be scalable and fault-tolerant.

used gRPC [Aut]. While Remote Procedure Calls (RPC) (AD17) is generally more effective when it
goes to low-latency and real time interaction, Message Queues (AD16) provide better reliability and
fault-tolerance. If one component fails for a certain time, the message is not lost. When it goes to
production, Thingsboard offers two modes of deployment: A monolithic architecture (AD18) where
all components are coupled tightly together in one deployment. This makes it easy to maintain
and run also in small setups with less hardware resources. The downside lies in less scalability
and availability of a monolithic architecture, managing large device fleets, while also maintaining
availability becomes impossible with a monolithic architecture. For that purpose they also provide
the microservices architecture (AD19) provided in figure 3.2.

OTA-Updates To start an OTA-update an administrator needs to upload an update package to
the OTA repository. This update package can be assigned either to a device profile or to specific
predefined devices. That means that the administrator either needs to give a list of device IDs, to
describe which devices they want to update or give a device profile which is updated with that
package. A device profile is defined in Thingsboard as set of characteristics that devices that
are part of that profile fulfill. Which devices are part of such a profile is automatically detected
by Thingsboard. So the great advantage of using OTA-updates with device profiles, is that the
administrator does not need to select specific devices he wants to update (AD8), but can simply
decide to update devices with certain characteristics. All of that increases the usability for the
administrator. When a device is to be updated, it receives a notification (AD2). This notification
consists of a link to a protocol-specific API for the package download. The update state, that is the
percentage of devices that already received their update, can be observed from a dashboard.

An update package consists of a title, version, corresponding device profile and a type. The device
profile mentioned here is only for checking purposes. When starting an update for a device profile,
the administrator can only choose packages, that are compatible with the profile. Devices in
that profile only get updated after a direct assignment from the administrator. The type of the
update can either be Software or Firmware. Apart from those mandatory parameters, there are also
optional ones like a checksum algorithm and the respective checksum of the package (AD12). If
the administrator does not set these two, SHA-256 is chosen as checksum algorithm.
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There is only a minor difference in the Firmware-Over-the-Air (FOTA) and Software-Over-the-
Air (SOTA) implementations in Thingsboard core. This difference is not further described in
Thingsboard Docs. While Software in this case refers to applications or other software running on
an OS, Firmware refers to the whole OS. FOTA updates are more complicated than SOTA updates,
since the device needs to be restarted during the process and validation of the firmware image needs
an additional bootloader at the device.

The update process consists of several states:

• QUEUED: The update notification is in the queue but not yet pushed. The queues are released
in a controlled way. This is to reduce peak loads. The default release rate is 100 device
notifications per minute. This can be configured by the administrator.

• INITIATED: The notification is already pushed to the device.

• DOWNLOADING: The device started downloading the update package.

• DOWNLOADED: The device finished the download of the update package.

• VERIFIED: The checksum of the package was verified by the device.

• UPDATING: The device started the actual update process.

• UPDATED: The device finished the update process successfully.

• FAILED: Either verification or the update process itself failed.

Supported protocols MQTT [mqt], HTTP [Gro], CoAP [SHB14] and LWM2M [All] are
supported by Thingsboard. The protocols have certain trade-offs which we will describe in the
following.

• MQTT (AD10): MQTT is a lightweight, pub/sub protocol. It is efficient regarding bandwidth
and power consumption. This is very helpful when managing resource constrained devices.
But MQTT has no built-in support for device management or security, this needs to be
implemented separately.

• HTTP (AD20): HTTP is very widely used and well-supported. It offers good support for
security and device management. The downside is its reduced efficiency in bandwidth and
energy consumption, resource-constrained devices will struggle with.

• CoAP (AD21): CoAP is a lightweight RESTful protocol especially made for IoT management.
It already offers important IoT device management functionality. One example for that is an
extension for CoAP, which enables group communication via multicast. A device group can
be directly accessed without further implementation. Other than that, it is similar to HTTP
but uses UDP instead of TCP, making it more suitable for low-power devices. CoAP is not as
largely supported as HTTP, which is one downside.

• LWM2M (AD22): LWM2M is also lightweight and specifically made for IoT applications.
It has even more built-in IoT functionality, like device registration, software updates and
remote management. It has even less support than CoAP. Working with existing IoT devices
or platforms may require additional implementation.
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3.2.4 SWUpdate

SWUpdate [SCL+21] is an open-source OTA software update framework. It proposes a flexible
and robust way of updating a variety of Linux-based devices.

The way that images are sent from server to client is not much different as in the already described
frameworks (SWUpdate also uses an approach with polling intervals (AD4)). That is why we
concentrate on installation strategies proposed in SWUpdate to provide fast and robust updates.

Update Strategies (Client Side)

Single copy - running as standalone image The new firmware is created as a standalone image
(AD23). This image can run on the device independently. When a new update image is ready the
device switches into a special mode, where it is allowed to accept the new image. The new firmware
is downloaded and stored on the device, replacing the old firmware. This is completed with a reboot.
The whole approach is most helpful, when having devices with limited memory. By creating a
self-contained firmware image that includes both the bootloader and the application firmware, this
approach simplifies the update process and reduces the risk of errors or complications.

Double copy with fall-back This approach involves creating two copies of the firmware installed
on the device (AD13). One version of that firmware is updated to the new version. If something
goes wrong with the update, the bootloader can choose the old working firmware. For that, it is
necessary to split the memory into multiple partitions. This enables a quick and reliable fallback
option. The downside is the increased memory consumption.

Double-copy with rescue system This approach involves the same steps as in the “Double
copy with fall-back” approach. In case none of the copies can be started, the bootloader will start a
rescue system, which is stored on a different memory or partition (AD24). This third copy is helpful
as a further layer of protection against any issues that may arise during the update process. On the
other hand, it increases the memory consumption even further.

Split system update with application update If an update can be split into an OS update as
well as an application update, the update can be performed in two phases (AD25). The first phase
involves the update of the OS, where a certain downtime is created, due to the need of a reboot.
The second face covers the application update, where no reboot is needed. This approach has
the advantage of offering the possibility to verify the OS update as well as the application update
separately. Another advantage is the reduction in downtime of the device, since the OS update
can be performed while the device is still running. Only for the activation, a reboot is necessary.
After that the application update can be performed, with no further downtime. If application and
OS update would be in one package, the device would need to shut down for the whole update
process.

Note that SWUpdate is customizable, other strategies than the already mentioned can be implemented
and integrated into SWUpdate.
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Delta Approaches

SWUpdate has no delta support yet, but in the docs certain approaches are discussed for their
compatibility with SWUpdate. The general setup and the goals of a delta update are already
explained in section 3.2.2. We will not analyze the delta approaches for their applicability to
SWUpdate but to OTA updates in general.

Librsync Librsync [Poo] uses a set of checksums for the files to calculate a delta file (AD26).
If a checksum of a block in one file is equal to a checksum in the other file, the two blocks are
likely the same. The blocks that do not have a matching partner then get further analyzed for their
differences, which are written into delta blocks. This works fine if the differences are very small. If
the differences reach a certain threshold, the delta file size is even larger than the target file size.
One advantage is, that the algorithm only needs a small amount of memory on the server. Librsync
is most effective when having small images and a resource constrained server.

Xdelta Xdelta [Mac] (AD27) is in general very similar to Librsync. Instead of a rolling checksum
algorithm it uses binary diff operations to detect redundancies between two files. Also, the
compression is handled with a different algorithm. Overall Xdelta is also most suitable for image
files with only minor changes to their previous version.

Zchunk ZChunk [Die] splits every update in chunks (AD28). These chunks are stored separately
on the server. With metadata files it is defined which chunks are part of an update image. If only
certain parts of an image are changed, only a few chunks need to be sent to the devices, reducing
the bandwidth needed by a lot. Chunks are verified with a hash. The creation of the deltas may take
longer than in the already mentioned approaches, due to the fragmentation of the data into chunks,
which may be stored in different locations. Also, ZChunk needs more memory on the server than
other approaches. The compression ratio is very high. For OTA updates it depends on the use case
if Zchunk is helpful. When having a server with lower memory capabilities, ZChunk is not the
right choice. If the time saved by reducing the amount of data to be sent and also reducing the
installation time is lower than the time lost by performing the delta algorithm, ZChunk is also not
the right choice.

3.2.5 AWS IoT OTA library

AWS offers a library in its IoT management system which enables OTA updates [Ama]. The key
element in AWS are Jobs. Jobs are administrative tasks, effecting a device, that can be performed
remotely. One possible type of task are OTA updates. A job normally consists of a JSON file which
describes the actions that should be undertaken by the device. In case of an OTA update job, a link
to an S3 storage containing the update image is sent via MQTT to the devices [AD10, AD2]. The
devices are part of a device group, which is defined in the same way as in Mender (section 3.2.2).
Devices install the new update image after downloading and sending out an acknowledgement to
the server that the job is finished. For an administrator the job only finishes completely if it was
started as a snapshot. That is that only devices, which were part of a device group when the job was
started, get the notification about the job (or about the OTA update in our case). Jobs can also be
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executed continuously (AD5), that is, if devices are added later to a group, they still need to execute
the job. This technique of sending out notifications over a broker and referring to a link where the
update file can be downloaded, will be used in chapter 4 and 5 for the QoS measurements. Also, the
idea of distinguishing between a continuous and a snapshot update will be used.

3.2.6 Uptane

Uptane [KML+; Upt22] is a standard for secure OTA updates of car fleets (AD29). It consists of a
basic architecture that needs to be in place. Further details in implementation are left open.

Goals of Uptane

Uptane aims to provide a secure way of delivering OTA update images to cars. One important goal
is to make sure that an image that is sent cannot be tampered with during transition. Also, Uptane
provides resistance against typical attacks like rollback, man-in-the-middle or denial-of-service
attacks. Uptane only defines the security measures that need to be in place, the rest of the
implementation is up to the individual developer. Uptane strives to be a unified standard for secure
OTA updates in automotive industry. This shall lead to an overall increased security and safety of
vehicles by reducing the risk of cyberattacks. Securing only the connection with TLS for example
is not sufficient, since only man-in-the-middle attacks are prevented by that. The aim is to become
compromise resilient, so that the repositories are more difficult to compromise, while not losing
the ability of doing customized updates for different vehicles. So Uptane overcomes the need to
choose between on-demand customization and compromise-resilience. This is explained further in
the following.

Basic Architecture

Uptanes architecture consists of the following components:

• Software Repositories

– Image Repository that holds binary update images and their metadata

– Director Repository which has access to an inventory database. It can sign metadata for
images in the Image Repository.

• Tools for generating Uptane-specific metadata

• Public key infrastructure (PKI), which supports the metadata production and signing.

• A secure time-server for the ECUs.

• One ECU per car that is capable of downloading images and metadata from the servers (called
Primary).

• One ECU per car that is able to verify signatures of metadata and images (can be the same as
the Primary). It also needs to be able to verify images and metadata for all secondary ECUs
in the car, that are not directly connected to the server. The metadata and images are then
distributed by the primary ECU to the secondary ECUs of the car.
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• Secondary ECUs that are either able to perform full or partial verification of metadata.

Metadata types

Uptane consists of different metadata types, which serve the aim of providing a hierarchical structure,
which describes an update.

• Root metadata: Includes the public keys of the manufacturers, suppliers and other trusted
entities that are involved in the update process.

• Targets metadata: Describes the software packages available for update and their corresponding
hashes and signatures. Also, it may contain additional information like compatibility or
dependencies between different update versions for different ECUs.

• Snapshot metadata: Snapshot of the current state of the target metadata. It is signed by the
root metadata and used to verify that the targets metadata is valid and not outdated.

• Timestamp metadata: Provides a timestamp for every version of the snapshot metadata. It is
used to verify that a system gets the latest version of an update.

There are also metadata types which focus more on the transition of signing rights to other roles,
which is useful, if a manufacturer wants to give signing rights to companies for their car fleets.

Update Process

In the following the update process of one vehicle is described. Any group management as in
aforementioned frameworks can be implemented on top, but the following steps need to be applied
for every car that is updated.

The Director repository identifies the vehicle either by a manifest that is sent by the vehicle’s primary
ECU or with other mechanisms like a two-way TLS handshake with unique client certificates
provided by the PKI that is in place. With the vehicle identifier the Director repository queries
the inventory database to check for relevant information about the vehicle’s ECUs. The provided
manifest by the vehicle needs to be checked with the inventory database if all information is correct.
If any check fails the update of the car has to be stopped. The minimal checks that should be
involved are the following:

• Set of ECUs that are part of the car are also registered on the database for that car.

• The signature of the manifest is valid when using the primary ECUs key.

• Signatures of secondary ECUs are also valid with their respective keys.

ECUs use a nonce for requests to the server to prevent from replay attacks. This nonce has to be
checked if it was used before. If that is the case the request needs to be dropped. The Director
Repository extracts information about installed images on the car’s ECUs to check for new updates
available and provides a set of images that are to be sent to the car. Another important step for the
Director is to check for dependencies and conflicts between the images used in the different ECUs.
Images can be encrypted if needed, otherwise it is sufficient to send the image in an authenticated
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way. Finally, the Director creates new metadata representing all the images that need to be installed
on the car’s ECUs. The car then receives the metadata with which it can verify the images that it
receives additionally.

The ECUs verify the update (images and metadata) either with full or partial verification. The full
process of validating images and metadata will not be explained her, since it involves a plenty of
steps, but we will break down full and partial verification to a certain extent.

Partial Verification The only metadata verified with partial verification (AD31) is the target
metadata, which is information about the image to be installed e.g. filenames, hashes of the image
or file sizes. In detail, the ECU checks if the image version in the target metadata matches the
version number of the image in the snapshot metadata. Snapshot metadata consists of information
about all software installed on the different ECUs of the car. Also, it is checked if the previous
installed version number is equal or lower, to prevent rollback attacks. To prevent freeze attacks
(attacker wants to block update action by spamming old update requests, which update to the same
version again) an expiration timestamp is used. If the current time is higher than the expiration
timestamp, the update is aborted.

Full Verification With full verification every part of the metadata is checked for validity, that
is validating all signatures (AD30). The main focus is to compare the metadata of the director
repository with the metadata provided by the image repository. This adds another layer of protection,
since an attacker would need to compromise two servers to be able to successfully temper with the
update process. Also, if one key is compromised, the attacker is still not able to do anything harmful
since on other levels of the signing hierarchy are also keys that are needed to sign the update.

The main trade-off here is the use of resources against increased security. Verifying all the metadata
in full verification takes a certain amount of time and also needs memory for all the metadata to
compare the signatures. With certain resource constraints, partial verification is the right choice,
since it needs less bandwidth and less memory and computational capabilities. For highly safety
critical updates it makes sense to use full verification to prevent any threat to the car and its driver.
It is sufficient if only a primary ECU does full verification.

Main advantage

The main advantage lies in the distribution of keys. Data is not only signed by one set of keys stored
in one server, but also by keys that are stored offline and are used on a second server for signing. In
case of Uptane the second server is the image repository, where all metadata about those images is
signed by offline keys that are not directly stored on the server. This makes it much more difficult for
attackers, even if they are able to compromise one server, they are still not able to temper with the
update process. This two server principle allows compromise resilience while still preserving on
demand customization. If only one server would be used e.g. one server that signs with a key that is
stored in the server, the whole system is not compromise resilient, since an attacker only needs to
compromise one server, to have full control. Having only one server that provides signing with an
offline key, that system would be compromise resilient, since keys are not stored on the server, but
in an external memory like a USB stick. The downside is the loss of on-demand customization,
since in this setup metadata is signed only ones, and it takes a certain effort to sign new metadata.
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If for instance for the same car type but with two different purposes an update is planned, it is
desired to have different installation configurations for the different cars. This would be much more
complicated and time-consuming in a setup with only one server with offline keys. That is why
Uptane proposes an approach with two servers, since with the combination of offline key signing
for the image itself and on demand signing of configuration metadata, the system is compromise
resilient and still supports on demand customization.

OTA Connect

One implementation which follows the standard provided in Uptane is OTA Connect [HER].

Device Provisioning OTA Connect follows in its security policies and in its architecture the
guidelines that Uptane provided. Devices need to go through a provisioning step, which ensures
a secure communication. This is done by receiving a provisioning key from the server, which is
then written into the initial disk image that is installed on the ECU. This key is then used when
connecting the device to the server for the first time. The server creates a new key pair for the device
and sends it together with a signed certificate to the device. The device saves its key pair and the
server deletes the private key of the device from its memory.

Update Process Devices poll periodically if a new update is available (AD4). This process
is effectively the same as already described in Mender (section 3.2.2). The device receives a
metadata file, which is checked for validity with either full or partial verification. If the checks were
successful, the image is pulled. To offer an approach similar to a delta update, OTA Connect offers
OSTree combined with TreeHub as a way of only downloading the changes applied to the image.
OSTree is a git-like repository for managing and delivering versioned file systems (AD32).

Installation process OSTree is also a key part in the installation process if it is chosen. Its
git-like structure allows the download of only certain files and binary diffs that are actually needed
for the update. For that, a metadata file, containing the respective commit identifier, is sent to
the device which then pulls the necessary files from the TreeHub. Another approach is the dual
bank approach (AD13), which is similar to the Double copy with fall-back approach in SWUpdate
(section 3.2.4) and the approach used in Mender for installation (section 3.2.2).

The OSTree approach combines both the advantages of the dual bank approach while also providing
a way to perform delta updates. The dual bank approach has the trade-offs described in section
3.2.4.

3.3 Observed QoS Trade-Offs

Here we will categorize the techniques and list the trade-offs, which we observed in the aforemen-
tioned frameworks.
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3.3.1 Technique Categories

The found techniques can be categorized into certain groups. We use a similar structure as provided
in the related work of Villegas et al. [VA20] or the work of Bauwens et al. [BRG+20]. We propose
the following structure:

• Update Management: Containing all techniques, that concentrate on managing fleets and
update versions.

• Update Security: Techniques, that concentrate on the security and authenticity of the update
process.

• Code Dissemination: Containing techniques, that focus on the dissemination of the update
files.

• Update Installation: Techniques that provide a way of installing the update image on the
car’s ECUs

3.3.2 Trade-Offs

Update Management

One main difference we have observed in the frameworks was the handling of device fleets. Mainly
they can be distinguished if a device fleet or group is defined statically (AD7), or if it is defined
along certain constraints. Having a fleet described by constraints (AD8) makes update management
easier when managing multiple fleets with a certain purpose. Switching devices between fleets only
requires changing parameters associated with that devices, and their automatically change their
group affiliation. It may be the risk involved, that if an administrator decides to change a certain
parameter and is not aware of its consequences it could lead to situations where devices (or in our
case cars) get updated in a wrong way. If the constraints are correctly defined this should not be a
problem. The overall usability can be increased with dynamic groups, but groups are more easily
observable if they are statically defined by an administrator. But it is important not to forget that an
administrator also needs to put more effort into fleet management when fleets are defined statically.
In general, it makes sense to argue, that having multiple fleets where devices often change their
purpose, it makes sense to use dynamic groups, while in environments where devices typically
remain in one fleet it makes sense to use static grouping.

Another important aspect is the continuity of updates. When a group is updated, will updates
only effect the devices that were part of the group at the exact time the update started? Or will
also devices be served, that were added later. A main use case for a continuous update (AD5) are
important security updates that should be applied when being part of a certain fleet. Imaginable is
also software, which should be installed on every device of that fleet. Examples for that can be
found in section 6.3. When having more static fleets, where devices change not as often their group
affiliation, or in case of optional updates, snapshot updates make more sense to be used, since it
reduces the management effort, that is necessary on the server-side.
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Update Security

Regarding Update Security, we observed typical approaches to secure the update channel, like
TLS (AD15) or signing of update files (AD12). Those are approaches, which are well-known and
easy to integrate. However, Uptane showed the need of having a higher security standard (AD29),
when it goes to updating car fleets. Since secure connections only reduce the risk of a connection
compromise, it can be fatal if an attacker is able to compromise a whole server or a set of keys. To
prevent this Uptane proposed its approach of making OTA updates compromise resilient. If OTA
updates are used in a large scale in the automotive industry, it is crucial to have at least equivalent
measures into place that secure the update process properly. The trade-off involved in Uptane is
the selection of the correct verification approach. Choosing full verification (AD30) leads to the
highest possible security, by involving a whole set of different keys and signatures that are part of a
hierarchical PKI in validating the update metadata. Even if the attacker is able to compromise a
certain server or a subset of keys, they are still not able to temper with the update. When having less
resources it is the right choice to use partial verification (AD31), which is only checking the target
metadata. The overall security is reduced, but less resources are needed. If there is a primary ECU
which does full verification and forwards the metadata and images for his secondaries, it should be
sufficient to do partial verification in the secondaries. With that an attacker has only one possibility
left: Compromising the primary ECU. But even then they are only able to temper with that one
car. We see a typical trade-off in having higher security, but for the cost of needing more resources.
Also, it can be assumed that a full verification has a higher overall time consumption. Comparing
different security approaches on their impact on efficiency of OTA updates can be the aim of future
work.

Code Dissemination

Our overall focus, especially in the implementation of tests was on code dissemination. We have
seen certain approaches, which can be listed as follows:

• Frequent polling of the devices for new updates (AD4).

• Sending out a notification, which either automatically leads to the download of a new image
file, or the device user (in our case car driver) can choose when to install the update (AD2).

• Offering the image directly over a broker (AD3).

• Using delta updates, to reduce the amount of data to be sent (AD6).

• Usage of different protocol types

Comparing some of those approaches is a main part of our measurements in the following chapters.
But there are also certain trade-offs that are described in the docs of certain frameworks.

Frequent Polling When devices poll for new updates frequently (AD4), it adds a layer of
protection, if this is the only communication with the server. When only devices initiate the
connection with the server and do not have any open ports, the surface of exposure of a potential
attacker is reduced. A downside is a reduction in responsiveness. Important information, like a new
software update will be delayed by a certain time, depending on the size of the polling interval.
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3 Survey of OTA update frameworks

Also, load can be controlled in a certain way, since increasing the interval leads to fewer requests
per second and by that to a reduction in load on the server. All of this is elaborated in more detail in
chapter 6.

Notify then download This approach (AD2) is often used across different frameworks. Depend-
ing on the use of any backpressure or load control mechanisms, its behavior can be very different.
If car drivers can decide for themselves when to download the image, the load is hard to project. If
cars immediately start downloading, a peak in load is created which can be difficult to cope with for
the server. Even though a whole fleet may be updated faster that way, the mean response times
should increase for the individual driver. When it goes to important security updates this may be
the right choice because the fleet would be more secure at an earlier time, compared to a scenario
where the throughput is reduced with a load control mechanism. On the other hand there may be no
choice for the server then to limit the load that is applied. One advantage of that approach is that
cars typically are notified earlier than with an approach using polling intervals. More on that can be
found in chapter 6.

Image over broker Depending on the protocol and the chosen broker, this may be the right
choice (AD3). Especially with smaller images that can make sense. Having larger images the
typical approach is to offer a certain API, where to download the image from. Sending it over the
broker reduces the number of calls to the image database, which can reduce the overall update
completion time for the fleet. This is also elaborated further in chapter 6.

Delta Updates A typical way to reduce installation and dissemination times is the use of delta
updates (AD6). We observed this in nearly every framework we looked at. Different approaches
were already described in section 3.2.4 and 3.2.6. It mainly depends on the size of the images and
how similar they are compared to each other. Many delta approaches struggle to cope with high
differences, leading to even larger image sizes than the original image size. Also, it is important to
note that a delta approach is especially effective if only one delta image for a whole fleet needs to
be created, so every device / car needs to be in the same update state. In the worst case of having
every client on a different software, one image per client would be needed, leading to much more
time needed for delta creation. For further analysis see chapter 6. The resources that a server has
available are also important to consider. Certain approaches have a higher memory consumption,
others need more computational resources.

Protocol Types The trade-offs between different protocols were already discussed in section
3.2.3. The main trade-off lies in the already built-in fleet management functionality against the
compatibility of the protocol. For instance LWM2M (AD22) supports device registration and OTA
updates but is not as compatible with typical software used in IoT as for example HTTP (AD20) or
MQTT (AD10). Also, the resource and network constraints have an impact on the selection of the
correct protocol, since some protocols are much more lightweight than others.
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Update Installation

The overall trade-off that was observed here was between memory demand and higher fault-tolerance
/ recoverability. Working on only one partition (AD23) is cheaper and easier to handle, but in case
of power cut-off or any issue with the installation the ECU can be broken, which can in the worst
case lead to the replacement of a whole part of the car. In most cases at least two partitions (AD13)
should be used for recoverability. In a few cases, where the ECU can be cheaply replaced it can be
fine to choose a one partition approach. The different approaches were covered in the following
sections: 3.2.4 3.2.2 3.2.6.

Architectural Styles

Apart from specific strategies chosen for the OTA updates, there are certain architectural decisions
made, that have an effect on the updates but are also generally helpful in different use cases. We
have seen the trade-offs between monolithic (AD18) and microservices architecture (AD19) (section
3.2.3): A monolithic architecture is easier to maintain and suitable for smaller setups. When
needing large scale fleet management a microservices architecture makes more sense, since it can
be scaled. On the other side it needs more expertise to maintain it.

Another trade-off we saw in using RPC (AD17) against using message queues (AD16). RPC
offer a better performance in low latency environments, while message queues have advantages in
reliability and message persistence.
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4 Prototypical Implementation of OTA update
strategies

In this part of the thesis we will explain which strategies we chose for QoS measurements and how
we implemented them.

4.1 General Information

For the measurements certain dissemination techniques were chosen from aforementioned frame-
works. Previously it was planned to deploy open implementations of frameworks directly on a
Kubernetes cluster and carry out the measurements. It turned out to be not trivial to do that, since
all observed frameworks use different customer side software. Especially in case of general IoT
management frameworks, OTA-updates are only a small part of the overall functionality, which
would have had an impact on the performed measurements. This wide range of functionality leads to
extensive back-ends, which would claim a substantial amount of resources. Documentations of those
frameworks also do not fully clarify which detailed actions are involved in various dissemination
approaches, which makes it difficult to compare them. The simulation of clients for load tests would
have been far more complicated since the processes for registration and authentication are different
among different frameworks. To simplify the measurements it was chosen to mock the described
techniques in a simple implementation.

4.2 Terminology

For the implementation certain concepts were chosen to be covered and simplified appropriately.
We defined the following terms according to the frameworks we observed without covering every
aspect of their characteristics.

Group / Fleet An overarching scheme in many IoT management systems was the use of groups
of different devices [22d; Man22; Men22]. In case of car fleets, a car group can represent a fleet of
a specific car type or a fleet that for example belongs to a specific company or cars that are grouped
by a certain purpose. Also, cars could be grouped by location or proximity, to distribute updates
more easily, since with that, data has a shorter path to its clients. A group is in our test framework
defined by an ID, by the cars that are part of it and the current as well as the previous image that
was installed on those cars (AD7). It can be argued that it makes sense to save more than only one
previous image ID for all cars to enable rollbacks, but for our simplified construction one previous
image is enough, which will be explained later. Groups can be changed by adding new cars, or cars
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4 Prototypical Implementation of OTA update strategies

can leave a group and join another. A transition of a car between groups is backed by use cases like
cars that switch from one purpose to another. For instance, if a car gets sold by a private owner
and a company decides to add this car to its car fleet, then the company can decide to take over the
management of the car’s software from the manufacturer and install certain third party software
like a communication system between the company’s cars. In our setup the car type is the lowest
common denominator of cars in a group, since we assume that one image is sufficient to supply a
car, which directly assumes a certain technological similarity. However, in reality there are many
more logical layers that can be updated in a car.

Rollouts Another term used is the rollout, which is the process of updating cars. It is defined by
an image file, a respective car group and the used rollout strategy. A rollout is started at a certain
time for the defined car group with the underlying strategy. Also, there exists a special rollout
version called a continuous rollout, which not only updates cars that are in a group at the moment of
rollout start, but also after the rollout has been started. With that it is possible to bring all cars that
are added to a group automatically to a certain update state, without the need of creating a new
rollout every time.

Car A car consists of an ID, a corresponding group and the previous as well as the currently
installed image represented by their IDs. Moreover, it is assumed that a car only belongs to one
group. In reality cars can also belong to more than one group, but this is not relevant for the overall
performance. For that to work in general, a decision algorithm would be needed to decide which
image is installed in case of multiple rollouts effecting one car. That is why we chose to simplify
that. Initially the value of corresponding car group is -1 which implies that the car does not belong
to a group. Those are the only properties covered, since we only concentrate on the behavior of
different dissemination techniques. Real life cars would be modeled much more detailed, since a
car normally not only receives a single image file, but also images for secondary ECUs which can
lead up to even double-digit number of images per car. All of that is neglected due to simplicity
reasons.

4.3 Chosen OTA Update Techniques

For the measurements the following techniques are used, defined by their mode, continuity and
image type. They were extracted from certain IoT management or OTA update frameworks.

• Mode

– Polling-Intervals [ASb]

The server is called regularly at a defined rate to find out if a new update image is
available (AD4). Cars are then updated automatically if a new update is available. The
poll can also be used for notification only and only after the driver confirms his will to
update the car, the update is performed. In our case we assume an automatic update.
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4.3 Chosen OTA Update Techniques

Figure 4.1: Combination of introduced dissemination techniques

– Push [Srlb]

Images are directly pushed to the cars if a new update is available and are installed
without a possibility for the driver to intervene (AD3).

– Optional [Srlb]

Cars are notified about new available updates by listening to a queue (AD2). Those
notifications are forwarded to the driver, who can choose if and when he wants to
perform the update.

• Continuity

– Continuous [Ama]

Cars that are added to a group after a rollout will also receive the new image in one of
the aforementioned ways (AD5).

– Snapshot [Ama]

Only cars that are in a car group at the time of starting a rollout receive the new image.

• Image Type

– Delta [ASa; ASb; Lim]

Images are not sent as full image update, but are created as a delta file of the previous
installed image, that is only sending the changed sections in image two compared to
image one (AD6).

– Non-Delta [ASa; ASb; Lim]

Images are sent as full image update.
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4 Prototypical Implementation of OTA update strategies

Figure 4.2: Basic architecture of OTA-tester

Those techniques can be combined. Those combinations are not all actively used in covered
frameworks but can be combined logically. Push and Optional can be combined with Continuous or
Snapshot approach. Polling-Intervals is excluded from that, since cars are always actively polling
for a new image. If a new image gets assigned to a group every car is updated regardless if a
continuous or snapshot rollout is used.

All the resulting combinations can also be combined with Delta or Non-Delta approach, since the
selection of the used image type is independent of all other parameters. This can be visualized in
the map shown in figure 4.1.

4.4 Used technologies for implementation

For the implementation of the web-services Spring Boot is used [VMwc] due to its easy and
straightforward use. For JSON-like data MongoDB is used, [Incc] since data, like information
about cars, rollouts and car groups had to be saved persistently. Since also Blob data, in our case the
images, had to be saved, MinIO was chosen for that purpose [Inca]. As a broker we used RabbitMQ
[Incd] which utilizes the AMQP protocol, which was needed for all techniques that require the
server to send data proactively to the cars.

4.5 Details of implementation

For the implementation a simple architecture was used displayed in figure 4.2 and 4.3. Two
different versions were implemented, since some techniques require a broker. If all techniques were
implemented in one service, this would influence the performance of all techniques that do not
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4.5 Details of implementation

Figure 4.3: Architecture of OTA-tester with broker

require a broker to work. For instance there are differences in group creation when using a broker
since there it would be necessary to create an exchange at the broker. As already explained there are
two storage types:

MongoDB for basic JSON data and MinIO used for Blob data in our case binary image data. There
are two interfaces in form of REST-APIs (AD11). One is the car API, used for direct requests from
the cars to the server, which can be seen in table 4.1. Endpoints are provided like the registration of
the car. For that the car needs to create a unique ID. Normally the server would do this, but it is
easier to handle in simulations when the ID can be directly assigned in the HTTP-Request. A car
must also be able to poll for the availability of a new image and retrieve that image. All of that is
done via that API using the ID of the car.

To create groups and rollouts another API is needed, which will be used by a user with administrational
capabilities 4.2. All of those endpoints are essentially self-explanatory. What has to be explained is
how to encode a car list. This is done by a String which lists the car Ids that are added to a group,
sticking to the following template: 𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3, ..., 𝑖𝑑𝑛.

To define which strategy is used for the rollout, one must create a String according to the strategy
tree defined in figure 4.1. For example if the admin wants to have a rollout in Optional mode, as
Snapshot and Delta image delivery, he has to use the following String: “optional,snapshot,delta”.
When using a Polling Intervals approach the second parameter is empty and thus replaced by “-”, for
instance: “polling_intervals,-,non-delta”. Traversing that map from top to bottom helps in finding
the right strategy string. All names are in lowercase.
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Type URL Parameters Returns
POST /car/register/{carId} Integer carId -
GET /car/imageAvailable/{carId} Integer carId True if new image avail-

able, else false
GET /car/getNewImage/{carId} Integer carId Image that should be in-

stalled on that car

Table 4.1: REST-API used by the cars

Type URL Parameters Returns
POST /admin/createGroup/{groupId}/{carIds} Integer

groupId,
String carIds

-

POST /admin/addCarsToGroup/groupId/{carIds} Integer
groupId,
String carIds

-

POST /admin/rollout/{imageId}/{groupId}/{strategy} String im-
ageId, Integer
groupId,
String strategy

-

GET /admin/cars - List of all cars
registered

GET /admin/carsInGroup/{groupId} Integer
groupId

List of all cars
in that group

DELETE /admin/deleteGroup/{groupId} Integer
groupId

-

DELETE /admin/deleteImage/{imageId} String imageId -
DELETE /admin/deleteCar/{carId} Integer carId -
DELETE /admin/deleteRepos - -

Table 4.2: REST-API that provides management functionality for an administrational user

4.5.1 Main functionality

In the following every step needed to provide the main functionality is explained. All approaches
do also involve the broker handling, which obviously is neglected in the server version without
broker.

A typical work flow in that setup is the registration of a number of cars (the car fleet), the creation
of a group with those cars, the upload of an image file and the start of a rollout with a specified
strategy.
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4.5 Details of implementation

Figure 4.4: The process of group creation

When a car is registered it is stored in the database. This is done via the Spring Mongo Template
[VMwb]. For simplicity reasons it is not checked if the ID is unique, but since the cars in our case
are modeled by load drivers ensuring a unique ID is trivial. When registering a car, it has to be
assured that the car also declares a queue at the broker. For that, we use the convention that the
queue’s ID matches the car’s ID.

Creating a car group involves adding an entry to the group repository of the database. The next step
is declaring an exchange at the broker. This is done by using the AMQP Admin [VMwa]. Here we
also applied the convention that the group exchange’s ID is the group ID. Fanout is used as exchange
type since cars will be supplied unconditionally when a rollout is started. A Fanout exchange does
exactly that: It forwards messages to every queue of the exchange no matter which routing key is
used for the specific bindings or from the message itself. After that, the entry of every effected car
in the database is changed by changing the corresponding group ID. Also, the car queues have to be
bound to the exchange. The whole process is depicted in figure 4.4.

The next interesting step is creating a rollout. What actions are involved when creating a rollout is
mainly determined by the chosen strategy.

The first strategy of which we will explain its implementation is the Optional strategy (figure 4.5).
When a Snapshot rollout in Optional mode is started, at first the effected car group needs to be
changed, so that the new current image is the image that is defined by the rollout. After that a
notification is sent over the broker to all the cars in the group that a new image is available. In case
of a continuous rollout, the whole process starts by adding a new continuous rollout to the database,
since this is the only option to keep track of cars that need to be updated after adding them to a
group after rollout. When running in Delta mode, a delta image needs to be created, which is done
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Figure 4.5: Optional sequence with all possible variations
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by requesting the previous image from the database. Now in a real world setup a delta image would
be created by evaluating the differences between those two binary images. As described in section
3.2.4 this is a non-trivial process, why we decided to mock this by creating an image that has a
certain predefined size compared to the original images and depending on their similarity which
is set via environment variables. For that it is assumed that both images have the same size. The
new resulting image is created with the RandomAccessFile constructor [Ora]. We mock a perfect
delta algorithm which is able to reduce the data needed to be sent by exactly the amount of similar
information. Also, the time needed for that can be mocked by a waiting time, which is defined in the
environment variables too. Another simplification made, is that we assume that every car has the
same update state at start of the rollout. Otherwise, every car would require an own specific delta
image, since not all cars had the same image installed before. However, in general the assumption is
justified, especially when car fleets are more static, that is cars are not switched between groups at a
regular basis. If car fleets often change their size, but the cars have not belonged to a group before
our construct is still reasonable. In other cases our construction is oversimplified.

Something that is not shown in the sequence diagram is the setting of the Delta mode. When a
rollout is started in Delta mode, the whole service switches into Delta mode. In reality this would
need to be modeled differently, since by that, all rollouts would need to run either completely in
Delta or completely in Non-Delta mode. But since we only want to compare different modes, which
results in running only one rollout at the same time, this simplification is appropriate due to its
reduction of administrational overhead.

In Push mode the same sequence is processed. The only difference lies in the data that is sent by the
broker. Instead of only sending a notification, the whole image is published to the queues of the car
group. Additionally, the entries of the cars need to be changed. In Optional mode this is done with
every getNewImage call.

When executed in Polling Intervals mode the server behaves as explained in figure 4.6. The update
image is pulled from MinIO as well as the group from MongoDB. The group entry is updated such
that the new image is now the designated image of the group. In Delta mode a delta image is created
and stored in the database. When a car now polls for a new image by calling newImageAvailable, it
receives true if the car’s current image does not match the designated image of the group (figure
4.7). Then the car automatically calls getNewImage and receives the new image. In Delta mode the
image ID found in the car group is not directly used, but the delta image is found in the database by
querying the image ID in the following way: “PrevImageID_CurrentImageID.delta”. Under that ID
the delta image was saved before in the rollout call.

When cars are added to a group after creation, the actions involved differ when a continuous rollout
is connected to that group, compared to if not. If no continuous rollout is connected to the group,
the group is pulled from the database and the car IDs are saved in the group instance. Also, every
car gets its corresponding group ID value updated. The dedicated sequence diagram can be found
in figure 4.8. When a continuous rollout is found, the following actions are performed (figure 4.9)
after the aforementioned ones. For the newly added cars a new exchange will be created, which
is used to supply the cars with the already installed image of the rest of the group. Here also a
fanout exchange is used. Depending on the chosen rollout mode the newly added cars either receive
a notification that an image (or delta image) is available or the image (or delta image) is directly
send to the cars via the broker. After that the car entries in the database get updated. Here this is
done unconditionally, in a real world setup one would need to assure that every car has received the
image by some confirmation that is sent by the car. The distinction between Delta and Non-Delta
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Figure 4.6: Polling Intervals sequence

mode is not shown in the diagram in figure 4.9 for better readability, since the differences are not
significant. Instead of a normal image the delta image would be pulled from the database, with the
aforementioned ID template. Also, the notification sent out by the broker is slightly different, than
in Non-Delta mode. After supplying the newly added cars with the already deployed image the
alternative exchange is deleted.

With those described endpoints different OTA update strategies can be tested on their performance
under different conditions.
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Figure 4.7: Actions involved in a newImageAvailable call

Figure 4.8: Sequence diagram of addCarsToGroup in case the group has no continuous rollout
running
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Figure 4.9: Continuation of the sequence diagram of addCarsToGroup if a continuous rollout is
found
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5 Measurements

In this part of the thesis we explain the process of measurement and the used metrics.

5.1 Simulation of Clients

Clients are simulated by Gatling [22b]. Gatling is an open-source load testing tool that is able to
simulate a predefined demand at web APIs. It automatically visualizes test results and reports which
makes testing much simpler.

To compare different techniques, different scenarios where chosen. At first there are all the basic
scenarios that simply describe registration of a car fleet, group creation and starting of a rollout as
shown in figure 5.1. In case of a delta update a second rollout is started after a predefined time,
but now the image files are sent as delta (see figure 5.2). Another case in which the base scenario
deviates is the continuous rollout strategy. For that, cars are added after rollout start (figure 5.3). To
compare the performance of continuous against snapshot version another scenario is used in which

Figure 5.1: Basic scenario setup of Gatling users
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Figure 5.2: Basic scenario setup of Gatling users in delta mode

later added cars are served by creating a new rollout for the whole car group (figure 5.4). In all
scenarios response times are measured and also the completion time of the rollout which can be
determined either by the help of diagrams created by Gatling that describe the temporal distribution
of made calls, or by the time needed for the scenario itself. In case of scenarios that need a broker
to work, the latter can be applied.

The image sending process is different depending on the chosen strategy, as explained in section 4.5.
This includes either polling for a new image regularly and pulling the new image if available in
case of polling intervals as strategy chosen (figure 5.6), listening to the broker until a notification is
received, to then pull the image via the REST-API in case of optional (figure 5.7), or in case of
push, receive the image directly from the broker (figure 5.8).

To determine the elasticity of the used technologies, scenarios were created that do not represent
a logical state in real life but strive to create specific load patterns on certain components. For
instance, to create a specific number of requests per second it is more difficult to represent this in a
real life scenario. To realize this, cars would need to register and receive the information that a new
image is available and subsequently receive that image by calling the REST-API. To shape specific
traffic patterns cars would need to be deleted from a group, new cars added to the group and a new
rollout would need to be started. This can not be run in one joined scenario since Gatling needs to
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Figure 5.3: Basic scenario setup of Gatling users in continuous mode

simulate different numbers of users for the particular sub routines. Many users are needed for the
registration, one for creation of group and rollout, or the deletion of entities and many users again
for the process of image reception. All of this makes matters a lot more complicated, so we decided
to simplify the scenario. In order to get rid of this administrational overhead the REST-API is
frequently called with the same car ID which leads to an easier controllable traffic. Rollout creation
and the management of cars with different IDs is skipped to only focus on the impact of a lot of
cars pulling a new image. By that only one car has to be registered and added to a group and the
rollout has to be started once (see figure 5.5). When executing those simulations, elasticity can be
observed by using an auto-scaling policy and another run of the simulation with only one replica of
the OTA-service to see differences in response times and throughput.

To sum up the goals of the scenarios:

Polling intervals strategy is compared with the other strategies involving a broker. This is done by
measuring the response time when calling the REST-API or receiving the image directly from the
broker. The completion time of an update with a certain strategy will be observed by simulation
time, or time of the last getNewImage call. Delta and non delta approaches are also compared by
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Figure 5.4: Basic scenario setup of Gatling users using new rollouts in comparison to continuous
mode. Here for every bunch of cars that is added later a new rollout is created for the
whole group.

completion time and mean response time of involved requests. Continuous and snapshot approaches
are compared with alternative scenarios that start a new rollout to serve cars that are added later to
the group. Here the completion time is the metric which determines the effectiveness.

Testing approaches that involved a broker, required a plugin for Gatling. We used the AMQP plugin
[Tin23] to provide a way to listen to queues. Normally, this plugin is used to create load on a broker
by inducing a certain number of messages on an exchange and then listening to the respective
queues. We misused this construct in a way that it is only listening to queues that are connected to
the exchange that is used by our update service. The messages that are originally meant to create
load are published to a dead exchange, where no queues are connected to.
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Figure 5.5: Simple elasticity job calling for a new update image

5.2 Basic Simulation Setup

The spring boot applications of the two service versions were containerized with Docker [22a].
The services were deployed on a Kubernetes cluster. Most tests were run with a static number
of replicas per service, also for the used databases and the broker. By that the behavior could be
shown under certain predefined resource limits which was one core per pod. At first, we ran the
aforementioned basic test scenarios in sequence and with a base load of 200 cars and an image size
of 4 MB. These initial values where chosen without foundation from literature. We did not find
any work that covers typical car fleet sizes in the realm of OTA updates. The only reference to be
named here is Aurora Labs [Lab]. They compared different OTA update approaches on their costs.
For their cost calculator they have default values of 500 MB as a large image size and 0.42 MB as
a small image size. The default fleet size is 10 million cars. Since these numbers are difficult to
replicate in our small setup we decided to use a fleet size of 200 cars and an image size of 4 MB to
begin with, which can be compared to a company’s car fleet. After seeing certain trends we went
further into detail with those trends. We reran the tests that showed patterns under other conditions
like increased fleet size, increased image size, modified polling interval or changed delta similarity
(the similarity of the previous installed against the currently installed image).
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Figure 5.6: Image sending process when using polling intervals mode

Figure 5.7: Image sending process when using optional mode

Figure 5.8: Image sending process when using push mode
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The Gatling tests are run as Jobs with the given parameters. They were run on an extra node due to
their large CPU consumption. The rest of the components were distributed over three other nodes.
When testing one construct (e.g. without a broker) we set the number of replicas of the other (e.g.
server with broker) to zero. This was done to free as many resources as possible. To observe certain
metrics like CPU, memory and the network, we used Lens [Incb], which is an IDE for the work
with a Kubernetes Cluster. Moreover, Lens helped in speeding up the workflow.

From every setup we used a sample size of 5. When using response time the mean is already created
from all requests that are sent out in each scenario. We either put those means into box plots or
calculated the overall to reduce visual when creating a graph that shows a certain a trend more
easily with data points than intervals.
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In the following we will recap the used study designs, which results we obtained, how we interpret
them and which threats to validity there are.

6.1 Study Design

As already described in chapter 4 we emulated certain OTA dissemination strategies. These
strategies were chosen from frameworks that we have found in the first part of the thesis. We used
concepts like device groups or rollouts from such frameworks and simplified them to a certain
extent. We did not use the frameworks directly for the measurements, since they were difficult to
compare due to their large IoT management functionality which would have lead to data noise, since
comparing different strategies would also mean to compare the different frameworks in general,
which makes it hard to interpret test results. That is why we used our own test prototype which
strove to achieve the goal of comparability when executing certain OTA update strategies. Docs of
the mentioned frameworks only mention on a conceptional base how the strategies work without
giving closer details of implementation. The update strategies we used are only general remarks
how cars get informed about a new update and how they subsequently receive their respective
image. To measure the QoS we compared metrics like response time and completion time. While
response time represents the quality or performance that the car driver observes, completion time is
a metric with much higher importance to a fleet administrator. Completion time is most important
in scenarios where non-optional, or security critical software is supplied, to measure the time in
which a fleet is exposed to a higher risk. Other metrics that we observed were the network usage on
the cluster as well as CPU and memory utilization. This was necessary to observe bottlenecks in
the strategies. Combining all of that, we tried to find patterns that can be observed when applying a
certain load on our prototype. After finding patterns we focused more on exploring them further
by changing load parameters like fleet size, image size or delta similarity. All of this is already
described in more detail in section 5.2.

6.2 Results

6.2.1 QoS Measurements

In the following we report the observed test results grouped by their implications.
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Figure 6.1: Graphic that shows the relation between Delta and Non-Delta mode. Especially with
high image load we see a large reduction in absolute response time. Sample size: 5
simulations per box blot with hundreds of requests per simulation

Delta vs Non-Delta mode The first pattern we observed was the fact, that in Delta mode the
response time as well as the completion time is reduced, depending on the similarity between
old and new image (figure 6.1). When assuming a higher similarity the response time is reduced
accordingly. In general, it was shown that the reduction in response time is linear dependent from
the similarity of the two images. When having higher image payload it is reduced even further. We
showed this specifically for the different strategies but also in general by comparing the normalized
reduction of response time in all strategies. The reduction in completion time depends also on other
factors. The polling interval size is important since it controls the overall load on the service or
how fast the drivers decide to update their cars in Optional mode. So the completion time is not as
dependent from the delta mode as the mean response time is. However, it is still largely reduced
when using delta images.

Continuous vs Snapshot Comparing continuous against snapshot approaches we observed that
with a continuous rollout a car fleet that increases its size can be updated faster, that is the new
arriving cars are automatically brought to the same update state of the rest of the fleet. To achieve
the same in snapshot approaches the whole car fleet has to be updated again, which leads to many
more send operations compared to continuous approaches. This was shown in Optional and Push
mode since in Polling Intervals there is no continuous or snapshot approach. In both cases the
difference is especially high if using a larger image size (figure 6.2).

Main Strategy comparison It was observed that in general Push is the fastest approach, when
using larger image sizes (figure 6.5). When having smaller images we see that Polling Intervals has
the best response time (figure 6.3). This response time can be decreased even more when using a

46



6.2 Results

Figure 6.2: Comparing continuous against snapshot approaches. Using 200 cars that were added in
5 bunches the size of 40. Sample size 5 per box blot. P=Push, O=Optional

Figure 6.3: Different dissemination modes compared with different fleet sizes and 4 MB image,
used metric is mean response time. Sample size 5 per data point (every of those 5 is
also a mean of the response time of every car).
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Figure 6.4: Different dissemination modes compared with different fleet sizes and 4 MB image,
used metric is mean completion time. Sample size 5 per data point (every of those 5 is
also a mean of the response time of every car).

Figure 6.5: Different dissemination modes compared with fleet size 400 and different image sizes,
used metric is mean completion time.
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Figure 6.6: Different dissemination modes compared with different fleet sizes and 4 MB image,
used metric is response time. Sample size 5 per data point (every of those 5 is also a
mean of the response time of every car).

higher polling interval (with that a lower polling frequency). Optional is the slowest when assuming
that every car driver immediately decides to pull the image if available. If we assume a certain
random waiting time we see that the response time decreases.

In contrast to that, the completion time of the rollout increases when choosing a larger polling
interval, as well as when we assume that the drivers do not immediately pull the new available
image (figure 6.4). When observing completion time we see that Push is the fastest way to complete
the update especially when we observe larger image sizes.

Scaling Behavior When scaling up the deployment of the main service, we observe a reduction
in response, as well as in completion time. Depending, if we use the Optional mode the difference
is much more noticeable than if we use Polling Intervals which can be seen in figure 6.6. Push
mode is not at all effected by scaling of the main service. This is simply due to the fact that the
broker carries the main load, and we did not scale the broker.

6.3 Discussion

In this section we will discuss the implications of the test results.

Observed bottlenecks The main observed bottleneck is the image database. In Optional as well
as in Polling Intervals we query the image database every time a car has a new update available,
which leads to huge amounts of data that needs to be sent from the database to the service and
then to the cars. When having high image loads and only one replica of the MinIO deployment, it
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Figure 6.7: Scaling with larger image sizes in Optional mode to demonstrate the upcoming network
bottleneck.

started to drop requests which lead to errors. When increasing the number of replicas it was able
to cope with that load again. After increasing the number of replicas of the image database even
further we expected to have a lower response time. In reality, it increased (figure 6.7). This can
be explained by a network bottleneck. When increasing the image size and the car fleet size we
observed, that the maximum data rate sent between the database and the service is 190 MB/s. With
that the observation makes sense, since more requests are processed at the same time, since more
resources are available. But since the maximum transmission rate stayed constant, every car has to
wait longer for its expected response.

Delta vs Non-Delta mode The observed reduction in figure 6.1 makes sense, since the amount of
data to be sent is reduced, determined by the delta similarity. However, delta updates are not always
applicable in this straight forward implementation that we chose. Cars need to have the same update
state to enable the creation of only one delta image for the whole car fleet. Otherwise, the delta
image creation would need to be repeated for every car. If a high delta creation time is assumed it
becomes clear that this would be at a certain point so ineffective, that it is more effective to start
a full image (non-delta) update of the car fleet, because the time needed for delta creation would
vastly exceed the time needed for transmission. One option to realistically enable such a scenario is
to bring every car on the same update state when being added to the group with a continuous rollout
and then perform delta updates to achieve a large reduction in completion and response time.

Continuous vs Snapshot That continuous approaches are faster in updating newly added cars
makes sense, since only those cars get automatically updated. For the same to be achieved with
snapshot rollouts, the whole car group would need to receive a new rollout. Even if images that are
already installed on the respective cars are not sent out in this process it means still more effort for
the administrator to have the need of starting a new rollout every time he adds cars to the group. So
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especially in scenarios where cars are added more often to a car fleet the continuous approach is very
useful. The overall usability for the administrator is increased in such cases. Also, it can be used to
enforce a certain invariant that every car should fulfill when being added to the group (especially in
combination with push, since then the driver cannot intervene). To give one instance for such a
scenario: If cars are added to a police fleet, it is desirable to have software that constantly monitors
their position to coordinate patrols more easily and to ensure more security for law enforcement
officials.

Snapshot on the other hand is useful for more optional software, like a new feature for the car’s
infotainment system where the driver should decide if he wants to install it or not. Snapshot has the
advantage of not overwhelming the car drivers with notifications about optional updates when the
car is added to a fleet.

Main Strategy comparison The stability of the Push mode is explained by the fact that the
image with which the fleet is supplied is only pulled once from the database and then distributed by
the broker. Since the main bottleneck is the image database, we also see that this effect is much
more visible with large image sizes.

With small image sizes the Polling Intervals strategy works best, since cars poll uniformly distributed
over a certain predefined Polling Interval. With that the highest load (the pull of the image) is also
distributed over a larger time frame. This reduces the overall load on the service and reduces the
response time compared to the Optional test sample, where the cars immediately pull for a new
update. To see that there is an actual difference we also created a test sample where the drivers
not immediately react to the notification, but wait a random time between 0 and 5 seconds (which
is also the Polling Interval in that test series). Even though we expected to then have roughly the
same response time compared to the Polling Intervals mode, we observed a higher slope in the
response time approximation (figures 6.4, 6.3). An explanation for that is, that the notifications,
which arrive over the broker do not arrive exactly at the same time at the cars, and are also not
uniformly distributed in their arrival time, which leads to higher peaks in load for the service than
in Polling Intervals mode.

Regarding completion time we see that Push is outright the fastest here as can be seen in figure 6.4.
This is explained by the fact that in Polling Intervals all cars are only notified about all updates after
at least one Polling Interval. In Optional, if assuming that the drivers immediately decide to pull
the image, the completion is lower than if they wait a certain time to perform the update. One can
argue that in Optional mode the completion time is not a very important metric if it is only used for
optional software components. That every car is supplied with a certain image is only crucial if the
update is security critical or fixes a serious issue in the car’s software. But in this case a different
approach should be chosen: Either Polling Intervals, in the form that we used, such that the driver
can not choose to decline the update, or the Push approach, which immediately sends out the image
to all cars. In general, it can be said, that in Optional completion time and response time heavily
depends on the behavior of the car drivers. How they react to an update notification, how many try
to pull at the same time determines the load on the service and with that the mentioned metrics.
In Edgehog [Srlb] it is mentioned that the image does not need to be sent immediately if a driver
decides to pull the image after a notification. This is used as a backpressure mechanism. Out of
simplicity reasons we decided not to implement this, but this also shows that the completion time is
not a very important metric when it comes to optional updates.
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Figure 6.8: In both graphs it is clearly visible that even tough the newImageAvailable calls are
started over a whole interval, the image pulls are mostly finished at the same time.
The upper graph shows the newImageAvailable calls per second, the lower shows the
responses of getNewImage per second.

In Polling Intervals mode there is a direct way to control the load that is applied to the service. If
the Polling Interval is higher, the load is decreased due to a lower polling frequency and vice versa.
Also, if more cars are added to the fleet, the load increases due to more cars that poll at the same
time. To use the resources as effective as possible it makes sense to use a priority for different cars
or update types. Polling for more security critical updates in a higher rate helps to decrease the
completion time of such updates for the whole fleet. The time were some cars are still driving
with outdated software is much lower and with that the risk of having serious issues is reduced.
Moreover, different car types in a fleet could be configured with different Polling Intervals, to
prioritize certain cars over others in the fleet. Another pattern that was observed in Polling Intervals
mode was the vast difference between randomizing the start of the cars’ polling. If all cars start
polling at the same time, peaks are created in which the load is much higher than during times in
which no car polls. Especially if a new update is available, all cars start pulling the image at the
same time, which leads to a higher response time for the car drivers. But even if the polling start is
randomized we still observed, that requests synchronized after one image pull (figure 6.8). Even
though the cars start polling over an interval and not all at the same time, most cars finish at the
same time. Which subsequently leads to synchronized newImageAvailable calls and thus to higher
load at a time. To fight this, one approach would be to randomize also the first poll after the image
pull. This would distribute newImageAvailable calls more uniformly again and with that also the
getNewImage calls if a new image is available.

52



6.4 Threats to Validity

Scaling Behavior As already mentioned, we observe a reduction in response times for the
getNewImage call if we scale up the deployment of the main service. The higher reduction in
Optional can be explained by the higher load, which is induced, since all cars try to pull the new
image immediately after getting the notification. In Polling Intervals the overall load at the same
time is much lower, since cars pull uniformly distributed over one polling interval.

6.4 Threats to Validity

The limited number of samples used for update completion time can be a problem due to outliers.
The data set we used for mean response time is much larger with hundreds of requests per simulation
and five simulations. So the validity of our mean response time samples is higher than our
completion time samples. One approach would be to increase the number of overall simulations per
scenario.

When taking into account the whole intervals of response and completion times in our results for
main strategy comparison and the scaling behavior, it can be seen that they overlap to a certain
extent. The trends are still clearly visible, but the differences in performance between certain
strategies are not as significant when taking the intervals into account.

The performance difference between Push and the other approaches is likely higher than in a real
world setup. When taking caching into account, the number of requests to the image database would
be reduced, overcoming the network bottleneck between main service and database. Since Push
only needs to pull the image once from the database, the effect of caching can reach to a similar
performance than with the Push approach.
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7.1 Summary

We have grouped certain OTA update techniques into four categories and tried to find out the main
trade-offs that are involved in those groups. We observed that in update management there is a
trade-off in using static fleets defined by ID, or dynamic fleets defined by constraints. While the first
is more effective in managing fewer fleets, where cars do not change their fleet affiliation much often,
dynamic fleets enable an easier management of multiple groups, as well as the transitions between
those groups, since only certain variables registered for the vehicle need to be changed, such that it
changes its fleet affiliation automatically. Also, updates can be secured, by automatic checks, if the
update image fits the constraints a fleet is described with. That ensures compatibility.

Regarding Update Security we have seen that there is a trade-off between higher security and
memory / resource consumption. In some ECUs it may not be possible to apply certain security
approaches. Car manufacturers need to keep that in mind to protect the most crucial parts of
their hardware with the proper security mechanisms. Moreover, we concluded that not only the
connection between server and cars needs to be protected, but also the whole system by providing
compromise resilience with an approach that should be at least equivalent to Uptane.

In Update Dissemination we have found trade-offs between load balancing and update completion
times. While load balancing in any form (e.g. a larger polling interval, or only a certain amount of
notifications per minute) lead to a higher completion time, the mean response times reduce, and
thus the overall quality observed by the car drivers is higher. Depending on the use case it can make
sense to reduce the quality observed by the clients, by updating more cars at the same time. The
overall time that cars are in an insecure out-of-date state is reduced. When applying updates, where
car drivers observe the update process more directly (e.g. infotainment updates) a strategy that
preserves the quality observed by the car drivers should be chosen. When a safety critical update is
available, an approach like push should be chosen, to prevent a car driver from rejecting the update.
If cars automatically pull the image after a new image is available, also the polling intervals as well
as the approach where a notification arrives and cars then pull, can be used for that purpose. It is
important to prevent car drivers from rejecting such an update. Also, high load needs to be handled.
We have seen the impact of high load on our prototype and the importance of load balancing when
having larger image and fleet sizes. We have also shown the effectivity of delta updates, when a car
fleet has only one consistent update state, such that one delta image per fleet is sufficient. Also,
different protocols provide certain trade-offs. Mostly the trade-off lies between compatibility of the
protocol with typical used software in IoT and the already built-in support of fleet management and
OTA update functionality of the protocol.

In Update Installation we have seen a similar trade-off as in Update Security. More memory leads
to higher fault-tolerance and recoverability. With approaches like the Dual-Bank approach or the
Double-Copy with Rescue System, we have seen approaches that rely on multiple partitions that are
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used for the update installation. If the update fails, there is still at least one partition with a working
version of the firmware. Car manufacturers need to decide which ECUs need to be equipped with
sufficient memory for such approaches.

7.2 Benefits

This thesis benefits software architects, car fleet managers and car manufacturers. Software
architects profit by the analysis of certain trade-offs in dissemination techniques, as well as in
software security. We have provided advantages and disadvantages of architectural decisions,
dissemination approaches and security measures. Depending on the use case, it is easier for a
software architect to decide on the most suitable design.

Car fleet managers can use the trade-offs we observed in fleet management, regarding static or
dynamic fleets and continuous or snapshot updates. Depending on the use case they can decide for
the best approach for their fleets. Also, if multiple dissemination strategies are offered by an OTA
infrastructure, they can choose for the best strategy for their use case based on our analysis.

Car manufacturers can use the information on certain installation approaches on ECUs or the
concepts of full or partial verification in Uptane, to decide on the computational and memory
capabilities of different ECUs they deploy in their cars. For instance using more memory in ECUs
that are crucial for safety and also difficult or impossible to replace in case of an update failure, is
very important, to prevent costly replacements.

7.3 Limitations

The results that we observed are likely to not uphold in a setup, where caching on the OTA update
server is used. That would reduce the number of queries to the image database and subsequently
reduce the amount of data to be sent between image database and main service, overcoming the
network bottleneck we observed.

Also, we have only observed a scenario, where cars have virtually no delay in their communication
with the server, since the cars where simulated on the same cluster, as the OTA update service.

Nevertheless, the general trade-offs we formulated are not directly effected by those limitations,
only our experimentally observed results and conclusions about which of those approaches fits
which use case best, is limited by the assumption of no caching in place. This especially effects the
Push approach (performance difference changes with caching).

7.4 Lessons Learned

During the thesis I learned to work with Kubernetes. Especially I learned about the advantages
of using an IDE instead of plain kubectl commands. Only with Lens I was able to perform the
tests in an effective and convenient way while also observing certain cluster metrics like CPU
consumption.
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I also learned to work with SpringBoot and a lot about web services in general. SpringBoot provided
a variety of different tutorials which helped me in developing the prototype.

As already explained in chapter 3, we think that it is generally better to implement an own prototype
to explore trade-offs or to analyze certain techniques. This is sensible, since in most cases this is
the only way to isolate certain techniques from others. In IoT management frameworks a lot of
different actions are involved apart from the OTA update itself, which makes it difficult to compare
techniques, especially if they are implemented in different frameworks and one would need to
compare the frameworks. The results of that would be influenced by the overall architecture of the
frameworks as well, such that it is hard to interpret observed results.

It was very important to look on the metrics provided by the cluster. Otherwise, an interpretation
like the observed bottlenecks and the increase of response time when scaling up the services with
high image load would have been impossible.

Even though Gatling does not directly provide a way to simply listen to queues, we were able to
misuse the construct of requestReply of the AMPQ plugin [Tin23] to shape it in a way that enabled
us to let Gatling user instances to listen only to queues that are connected to our web server.

7.5 Future Work

Our built library can be reused for other tests with simulated cars. One idea would be to change the
setup of the cars. Instead of using a load driver, which simulates all the cars in one place, the cars
could be distributed over different places to see the impact of their spacial distribution.

Another option would be to change the channel of communication with the OTA update server,
since cars are simulated on the cluster and have virtually no latency to the server. For instance, it
would be interesting to use a 5G connection to the server and see how response and completion
times change.

The impact of image caching is another interesting topic to look at, since we implemented all the
approaches without any caching, and it is reasonable to assume that Optional and Polling Intervals
can perform a lot better with caching, since the database does not need to be queried as often. For
that the framework as well as the Gatling load tests would need to be modified, such that not only
one rollout per simulation is modeled, but also multiple rollouts. This is necessary, since only then
caching is challenged in a sensible way. If only one specific image is requested, caching is trivial.
Only if multiple rollouts are started and not all results can be cached, every use case would be
covered. What needs to be changed in such a case at the server, is that the selection of the delta
mode is not global. Since we only assumed one rollout at a time out of simplicity, this leads to a
situation where all rollouts are delta or all rollouts are non-delta. For that every rollout needs to be
saved in the database and not only the continuous ones.

Finally, studying the impact of security measures as they are proposed in Uptane (section 3.2.6)
can be an interesting topic. Since we have not implemented any security infrastructure for our
framework, it would be a helpful insight to see the effect of important security measures on the
overall performance observed by car drivers and administrator.
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1. Record architecture decisions
Date: 2023-03-29

Status

Accepted

Context

We need to record the architectural decisions made on this project.

Decision

We will use Architecture Decision Records, as described by Michael Nygard.

Consequences

See Michael Nygard's article, linked above. For a lightweight ADR toolset, see Nat Pryce's adr-
tools.

2. Implement approach that uses notifications
and download
Date: 2023-03-29

Status

Accepted

Context

This approach is used in Edgehog, AWS IoT OTA library and Thingsboard. It is an approach that
is typically used in IoT management. That is why it makes sense to implement it in our prototype.

Decision

We decided to use a broker for the notifications to enable a quick and simple way of notifying the
clients about a new update. Cars download the update image from our REST-API after receiving
the notification. 



Consequences

We have an approach that enables notification and download. Impact will be high load when all
cars start the update automatically.

3. Implement approach that uses broker to
offer the Update Image
Date: 2023-03-31

Status

Accepted

Context

Offering the image directly may save some time compared to approaches, where notifications
need to be sent out first.

Decision

Images are directly published to a fanout exchange, that offers the image to the cars' message
queues. 

Consequences

Could lead to problems with large image sizes.

4. Implement approach where cars frequently
poll for new updates
Date: 2023-03-31

Status

Accepted

Context

To increase security by not offering any open ports at the car, it makes sense to use polling
intervals to frequently check if new updates are available.



Decision

Cars will poll in a predefined polling interval. For that the newImageAvailable endpoint
with the car's ID is called frequently. If that returns true, the getNewImage endpoint is called
with the car's ID and the image is received. 

Consequences

Security off the update process is increased, also load can be controlled more easily, since the
number of cars that are polling in a certain time interval can be controlled by the chosen polling
interval.

5. Implement dissemination approaches as
continuous or snapshot
Date: 2023-03-31

Status

Accepted

Context

For management reasons it makes sense that cars that are newly added to a fleet are immediately
updated with software that should be deployed, when being part of that fleet. For that we use the
concept of continuous jobs used in the AWS IoT library.

Decision

For every update rollout it can be defined if it is a continuous or snapshot rollout. Using snapshot
does not require any specific actions. Using continuous, the rollout needs to be registered in the
database, such that every car that is added to the fleet after rollout start is automatically updated
with the proper image.

Consequences

Using continuous updates can reduce the effort an administrator needs to put into the fleet
management, since those updates are automatically supervised by the system. When using
snapshot an administrator would need to start a new rollout for the whole fleet.

6. Use Delta Updates as rollout option
Date: 2023-03-31



Status

Accepted

Context

Reducing the amount of data to be sent is an important issue, since it reduces update completion
times as well as response times when cars try to pull a new image. 

Decision

We emulate a delta update by waiting a certain predefined time. A random image is created with
1-DeltaSimilarity the size of the old image. This emulates the reduction in update data that can be
achieved in the best case delta algorithm. In our simulations we used a delta simulation time of 0,
since the time needed for the delta creation can just be added to the update completion time of the
fleet, when only one delta image needs to be created for the whole fleet.

Consequences

Delta updates reduce the overall amount of data to be sent. In our setup delta updates only work
when the whole car fleet has the same update state before the rollout.

7. Use the concepts of static groups
Date: 2023-03-31

Status

Accepted

Context

Cars need to be grouped in fleets, one approach is to a unique ID for every car. A list of IDs
represents a fleet or car group.

Decision

A car group is saved as a list of IDs and a group ID. Also, other information about the group is
provided. In our case current and previous installed image for that whole group. (Assuming only
one consistent update state)

Consequences

Car groups can be modeled now.



8. Use the concept of dynamic groups
Date: 2023-04-01

Status

Accepted

Context

In some instances it makes sense to define groups dynamically over constraints that define the
cars / devices that should be part of the group. For instance, a car should have hardware xy to be
in the group.

Decision

Not implemented in our prototype.

Consequences

Handling multiple fleets can become easier, especially if cars are meant to be switched between
groups, this can be done by changing the pivotal variable, which leads the system to regroup the
car. Also, rollouts can be secured regarding compatibility if constraints are used like a certain
hardware type.

9. Provide manual updates
Date: 2023-04-01

Status

Accepted

Context

Providing manual updates can help when only one car in a fleet needs a fix.

Decision

Not implemented in our prototype.

Consequences

Important feature that enables corrections for certain cars. May involve some risks if it is not
semantically checked, if the software that gets installed is really suiting the purpose of the car or
the fleet.



10. Use MQTT for communication with the
cars
Date: 2023-04-01

Status

Accepted

Context

MQTT is lightweight and well-supported, which makes it a good choice in many IoT tasks, also
for OTA updates.

Decision

Not used in our prototype (We use AMQP)

Consequences

More lightweight than HTTP, which makes it more suitable for resource constrained ECU types.
Downside: Not as widely supported as HTTP.

11. Provide one API for admins and one API
for cars
Date: 2023-04-01

Status

Accepted

Context

It makes sense to logically split the API into an admin and a device / car part. 

Decision

We used that in the prototype. Admin API: ota-tester.com/admin/... Car API: ota-tester.com/car/...

Consequences

The different URLs make it easier to distinguish between admin and car requests.



12. Use a checksum in update delivery
Date: 2023-04-01

Status

Accepted

Context

It must be ensured that the update file is not changed during transmission.

Decision

Not implemented in the prototype.

Consequences

Checksums ensure that the image is not changed during the transmission. The checksum needs to
be checked at the ECU. Depending on the ECU this may be difficult. To increase security even
check with an original checksum provided by the server, to make sure that it really came from the
intended origin.

13. Use two partitions on the ECU
Date: 2023-04-01

Status

Accepted

Context

When only one partition is used, a full image update involves some risks. If power is cut during
the update or anything else goes wrong, the ECU is broken. Replacement can be very expensive
or even impossible.

Decision

Not implemented in our prototype. Cars are modeled much simpler in our case.

Consequences

Using two partitions, where only one is active, enables robust updates. During update the inactive
partition is used to flash the new image. If everything went well the inactive partition is made



active after reboot. In any other case the system can safely roll back to the previous version by
using the old partition.

14. Use a gateway between some clients and
the server
Date: 2023-04-01

Status

Accepted

Context

To provide better load control options or compatibility with VPNs it can make sense to use a
gateway between server and devices / cars. 

Decision

Not used in our prototype.

Consequences

This is probably more suitable in a general IoT context, when managing a device fleet in a
company, where every device is connected to the private company network. Cars are mostly
connected to cellular networks. But for load balancing it can still make sense.

15. Use TLS to secure the connection
Date: 2023-04-01

Status

Accepted

Context

For confidentiality, authenticity and integrity of the communication channel TLS is one of the
most used choices.

Decision

Not used in our prototype.



Consequences

Connection is secure. Only small overhead created for decryption and authentication. Not
compromise resilient to attacks on the server!

16. Use message queues for communication
between the services
Date: 2023-04-01

Status

Accepted

Context

Persistent message transmission, as well as queuing is needed for high load.

Decision

Not used in our prototype.

Consequences

Adds a small overhead in latency compared to other approaches like RPC. Great advantage lies in
its persistent message transport.

17. Use RPC for communication between the
services
Date: 2023-04-01

Status

Accepted

Context

When needing very fast response times RPC can make sense to achieve that, since it has less
overhead than approaches like message queues.

Decision

Not used in our prototype.



Consequences

Good in low latency environments. When having high load it can get critical, since requests are
not resent if they are not answered.

18. Use a monolithic architecture
Date: 2023-04-01

Status

Accepted

Context

To reduce the effort that is needed to maintain a complex system, a monolithic architecture can be
helpful in smaller setups. For example having a framework that only serves a small company
fleet. 

Decision

Not used in our prototype.

Consequences

When having larger fleets other architecture types might be more sensible, since monolithic
architectures are generally not horizontal scalable. Also, there are downsides in agility, since
changes in one component, might involve changes in other components too, since they are closely
coupled.

19. Use a microservices architecture
Date: 2023-04-01

Status

Accepted

Context

For large setups scalable solutions are necessary.

Decision

Used in our prototype. We have multiple services: MongoDB, MinIO, RabbitMQ and our main
OTA service.



Consequences

Components in a microservices architecture can be scaled independently, changes to the overall
system like adding new functionality, can be applied more easily, since components are only
coupled loosely.

20. Use HTTP for communication with the
cars
Date: 2023-04-01

Status

Accepted

Context

Using an uncomplicated straight-forward approach to communicate with the devices can be the
best choice. 

Decision

We used HTTP for the Polling Intervals approach and also for image delivery in Optional. 

Consequences

HTTP uses TCP which creates a small overhead. But it is a widely used protocol that can easily
be integrated in every solution. For resource constrained networks, or ECUs something more
lightweight can be more effective.

21. Use CoAP for communication with the
cars
Date: 2023-04-01

Status

Accepted

Context

A lightweight solution, which already provides a certain amount of IoT management functionality
can be helpful.



Decision

Not used in our prototype.

Consequences

Helpful in resource constrained networks or with resource constrained ECUs. Not as compatible
as more popular protocols like HTTP or MQTT.

22. Use LWM2M for communication with the
cars
Date: 2023-04-01

Status

Accepted

Context

It can be helpful to have a protocol that already provides OTA update and IoT management
functionality.

Decision

Not used int our prototype.

Consequences

Reduces implementational effort for IoT management or OTA updates. But often needs further
implementation, since it is not as compatible with already available software as other protocols.

23. Only use one partition for installation
Date: 2023-04-01

Status

Accepted

Context

Having only very limited memory capabilities on the ECU this approach might be the only
choice.



Decision

Not used in our prototype. Car are simulated much simpler.

Consequences

The risk for errors is reduced since a self-contained firmware image is used. The problem is, if
something goes wrong the ECU is broken.

24. Use three partitions for installation
Date: 2023-04-01

Status

Accepted

Context

To increase robustness and fault-tolerance even further it makes sense to use even a third partition
as a rescue system on a different memory.

Decision

Not used in our prototype, since we simulated the cars much simpler.

Consequences

Even if the whole memory of the ECU breaks during an update (so both partitions) there is still a
secondary memory unit that provides a rescue backup of the old version. Installation can take a
bit longer, since this rescue version needs to be updated after every rollout.

25. Split application and OS updates
Date: 2023-04-01

Status

Accepted

Context

Application and OS update should be split into parts to reduce downtime.



Decision

Not used in our implementation: Simplicity of car simulation.

Consequences

Downtime is reduced when only the OS gets updated at first. The OS update can be verified
separately, and then the application gets updated.

26. Librsync as Delta algorithm
Date: 2023-04-01

Status

Accepted

Context

Reducing the overall data to be sent in an update is important for response, completion and
installation times.

Decision

Not used in our prototype.

Consequences

Images are split in blocks and checksums are created for the blocks. If two checksums are equal,
the corresponding block does not need to be sent. The amount of data to be sent gets reduced by
the size of the redundant blocks. If the differences between previous and current image reach a
certain threshold, delta images can even be larger than the actual image. One advantage is that
this approach only needs small amounts of memory on the server compared to other approaches.

27. Xdelta as delta algorithm
Date: 2023-04-01

Status

Accepted

Context

Reducing the overall data to be sent in an update is important for response, completion and
installation times.



Decision

Not used in our prototype.

Consequences

Images are split in blocks and checksums are created for the blocks. If two checksums are equal,
the corresponding block does not need to be sent. The amount of data to be sent gets reduced by
the size of the redundant blocks. If the differences between previous and current image reach a
certain threshold, delta images can even be larger than the actual image. One advantage is that
this approach only needs sall amounts of memory on the server compared to other approaches.

28. ZChunk as delta algorithm
Date: 2023-04-01

Status

Accepted

Context

Reducing the overall data to be sent in an update is important for response, completion and
installation times.

Decision

Not used in our prototype.

Consequences

ZChunk needs more memory as other approaches since it saves data in chunks fragmented over
the whole memory. A metadata file is used which describes which chunks are needed for the
update. Cars can then determine which chunks need to be downloaded for the update.

29. Use the uptane standard to provide
compromise resilience
Date: 2023-04-03

Status

Accepted



Context

When using mechanisms like TLS to protect the connection between server and cars, no security
is provided if a set of keys or a server is compromised. For that Uptane helps in providing
compromise resilience, even if a server or a subset of keys is compromised.

Decision

Not included in our prototype (simplicity).

Consequences

By providing metadata signing with a PKI and the use of at least two servers, where one provides
on-demand signing and a second server that uses offline keys to sign metadata and images, and
the use of full and partial verification on the device side, Uptane is able to provide compromise
resilience. There are certain trade-offs between using full vs partial verification. Generally we
think that a scheme like Uptane is not optional in automotive industry.

30. Use full verification to validate the update
Date: 2023-04-03

Status

Accepted

Context

To provide maximum security it makes sense to check every metadata type with its signature on
its validity in Uptane.

Decision

Not used in our prototype.

Consequences

The update process becomes more secure, but the memory consumption as well as the
computational requirements increase. Not every ECU type supports that. 

31. Use partial verification to validate the
update
Date: 2023-04-03



Status

Accepted

Context

When having less computational capabilities or an ECU with only small amounts of memory, one
option is the use of partial verification in Uptane. For that, only target and snapshot metadata gets
validated.

Decision

Not used in our prototype.

Consequences

Security is reduced in this approach, allowing more attack options. But it is applicable to a greater
variety of different ECU types with high resource constraints. To provide more security a primary
ECU should perform full verification and send the respective images and metadata to the
secondaries, which perform at least partial verification. With that security is much higher with
fewer attack options, like compromising the primary ECU.

32. Use OSTree with TreeHub to enable Delta
Updates
Date: 2023-04-03

Status

Accepted

Context

Reducing the amount of data to be sent is very important to reduce response and completion
times and by that the observed quality of car drivers and fleet administrators.

Decision

Not used in our prototype.

Consequences

The git-like structure of OSTree enables to only download files that have changed since the last
commit. This greatly reduces the amount of data to be sent. For that a metadata file is used that
contains the commit identifier. The car subsequently downloads the respective files to perform
the update.
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