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ABSTRACT
A fluid–structure interaction model in a port-Hamiltonian represen-
tation is derived for a classical guitar. After discretization, we com-
bine the laws of continuum mechanics for solids and fluids within a 
unified port-Hamiltonian (pH) modelling approach by adapting the 
equations through an appropriate coordinate transformation on 
the second-order level. The high-dimensionality of the resulting 
system is reduced by model order reduction. The article focuses 
on pH-systems in different state transformations, a variety of basis 
generation techniques as well as structure-preserving model order 
reduction approaches that are independent from the projection 
basis. As main contribution, a thorough comparison of these 
method combinations is conducted. In contrast to typical fre-
quency-based simulations in acoustics, transient time simulations 
of the system are presented. The approach is embedded into a 
straightforward workflow of sophisticated commercial software 
modelling and flexible in-house software for multi-physics coupling 
and model order reduction.
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1. Introduction

For the development of sophisticated products and the understanding of complex 
technical systems, the modelling and simulation of these is essential. The consideration 
of different involved physical phenomena is indispensable for a realistic representation 
but also poses new challenges in the description of the variables and a reasonable 
coupling. The port-Hamiltonian (pH) representation is based on the idea of intercon-
necting Hamiltonian systems and including dissipation in the formulation, for this 
reason, the energy is used as the lingua franca at the coupling ports [1]. This approach 
is attracting increasing attention due to its ability to describe complex multi-physics 
systems in the context of automated modelling and provides the basis for a unified 
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description of modelling, analysis, control, optimization, and model order reduction. 
Furthermore, under mild assumptions, pH-systems implicitly ensure important system 
properties such as passivity, stability and energy conservation [2,3].

Fluid–structure interaction (FSI) characterizes the interaction of a moving or deform-
able mechanical structure with an internal or surrounding fluid [4]. The consideration of 
FSI plays a crucial role in different applications, e.g. the bending of aircraft wings, the 
blood flow in large veins or the lubricant flow in ball-bearings [5]. In the current study, 
we want to analyse an acoustic system in which FSI is also of great importance for its 
proper technical function.

A classical guitar is a popular instrument consisting of various components whose 
most important ones are briefly described in order to understand the physical context of 
the mathematical problem, see Figure 1. The musician plucks the guitar strings which 
thereupon start to vibrate. Those vibrations are transferred through the bridge into the 
soundboard which is the top plate of the guitar body. The guitar body coupled with the 
enclosed air acts as a resonator for the strings’ vibration. The guitar’s composition and 
material properties influence the volume and timbre of the air escaping through the 
sound hole.

The classical guitar represents an impressive example of a multi-physics system where 
the guitar body is strongly coupled with the enclosed air and the coupling effects cannot 
be neglected for a realistic representation of the behaviour. The modelling of a guitar 
without strings can be found, e.g., in [6–8] and the modelling of strings in [9,10]. 
Numerical simulations of a coupled guitar model were performed in [11,12]. Port- 
Hamiltonian representations of acoustic models are presented for instance in [13] for 

Figure 1. Classical guitar.
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the vocal apparatus and for a Rhodes piano in [14]. The modelling procedure of this work 
follows closely the approach presented in [6].

In the current study, this FSI problem is derived from the partial differential equation 
of linear elasticity for the mechanical structure [15] and the wave equation for the fluid 
[16]. The system is spatially discretized with the finite element (FE) method in order to 
obtain a coupled second-order ordinary differential equation (ODE) system [17]. 
Structural damping obtained from measurements is included into the model [6]. From 
this basis, a port-Hamiltonian representation is attained by first transforming the system 
into a first-order system and then applying an adapted state transformation. The cou-
pling effects of the multi-domain system are illustrated in a transient time simulation 
which gives further insight into classical frequency-based analyses in acoustics.

The spatial discretization via FE methods typically leads to high-dimensional systems 
that are ill-suited for multi-query simulations, e.g. for usage in optimization loops. 
Hence, model order reduction (MOR) methods are essential to approximate the system 
in a subspace of a much lower dimension for a faster and more efficient simulation [18]. 

Figure 2. Workflow diagram.
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One major novelty is the presentation of a comprehensive sensitivity analysis for a variety 
of combinations of projection methods and basis generation methods, i.e. the calculation 
of projection matrices, for reducing the FSI problem. The projection methods focus on 
basis-independent structure-preserving1 reduction [19,20] to preserve the important 
system properties in comparison to non-structure-preserving variants. The basis genera-
tion comprises approaches that are based on the system matrices, such as modal trunca-
tion [18,21] or moment-matching via Krylov subspaces [22], and data-based techniques 
based on time-response snapshots, e.g. Proper Orthogonal Decomposition (POD) [23] 
and Proper Symplectic Decomposition (PSD) [24,25]. For more information on recent 
developments in structure-preserving MOR procedures for both Hamiltonian and port- 
Hamiltonian systems, we refer to [26–29] and the references therein.

The paper is organized as follows. In Section 2, the dynamic equations for a fluid– 
structure interaction problem are derived and adapted on second-order level. 
Additionally, practical aspects from the enhanced modelling process as an ensemble 
between the commercial software Abaqus and in-house code in Matlab are described. In 
Section 3, the necessary background on port-Hamiltonian systems is given and the FSI 
model of the guitar in a port-Hamiltonian input-output state representation is derived. 
Based on this, further pH formulations are deduced and the transient time simulation of 
the full system is performed. Various non-common projection methods, both structure- 
preserving and non-structure-preserving, are presented in Section 4. In Section 5, we 
recall classical and introduce modern basis generation methods with adapted snapshot 
matrices and non-orthogonal bases. The comprehensive sensitivity analysis is given in 
Section 6. Finally, we conclude the paper. An overview of the entire workflow is given in 
Figure 2. In the remainder, this workflow diagram will be referenced by a circled number 
which highlights the workflow area the current section is referring to, e.g. ①.

2. Modelling of a classical guitar

When producing a tone with a guitar, many different guitar components interact with 
each other, with the interaction of the guitar body and enclosed air being of particular 
importance. An enhanced three mass model focuses on this interaction and serves as a 
comprehensive system on which the investigated methodologies are presented. The 
present chapter first describes the mathematical background of this fluid–structure 
interaction and then also addresses the practical aspects of its implementation using 
Abaqus and Matlab.

2.1. Derivation of the dynamic equations for the fluid–structure interaction

The vibration of the mechanical structure can be described as an elastic motion of the 
wooden plates of the guitar that can be mathematically explained by the methods of 
continuum mechanics, cf. ①. The motion of a body is described by the motion of all 
material points PS for this body, where the current position of each point can be 
classified by its position R0 in the initial configuration and the displacement zðR0; tÞ. 
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Assuming small strains leads to the elastodynamic problem for the time inter-
val It ¼ ½0; tend�

force equilibrium : ρS z
::
¼ Ñ � σðzÞ þ b0; in It � PS (1a) 

boundary condition : z ¼ zb; in It � Γz (1b) 

coupling term : σn ¼ t; in It � ΓFSI (1c) 

strain � displacement relation : εs ¼
1
2

Ñz þ ðÑzÞ`
� �

; in PS (1d) 

constitutive equation ðHooke0s lawÞ : σ ¼ CEMεs; in PS (1e) 

initial condition : z ¼ z0; in PS (1f) 

z
:
¼ z

:

0; in PS (1g) 

known as the strong formulation. The fundamental laws and material-dependence are 
considered in the force equilibrium (1a) and the constitutive equation (1e). The density 
of the material ρS, the second temporal derivative of the displacements €z, the divergence 
of the stress tensor σ and the volume forces b0 form the force equilibrium (1a), where Ñ 

describes the nabla operator. The constitutive equation (1e) involves the engineering 
strain εs and elastic modulus CEM. In (1a), Ñ � σðzÞ denotes the row-wise divergence of 
the tensor σ resulting in a vector. In (1d) the nabla operator gives rise to row and column 
vectors, whose addition is to be understood componentwise, resulting in a tensor. We 
restrict ourselves to the case of orthotropic, linear elastic material behaviour which can be 
parametrized with nine parameters: three Young’s moduli, three Poisson ratios and three 
shear moduli to consider the behaviour in each spatial direction [30]. Γz describes the 
parts of the body surface where Dirichlet boundary conditions for the displacement zb 
apply, cf. Figure 4. Likewise, ΓFSI describes the contact surface of the mechanical structure 
and the encased air on which the stresses are given by the surface traction 
t ¼ pnFSI whose magnitude scales proportionally with the pressure p of the air at the 
contact surface. Here nFSI denotes the normal vector of unit length pointing into the 
direction of the encased air. The initial conditions at time t ¼ 0 are given for the 
displacements z0 and velocities _z0 [15,17,31].

For a numerical simulation, the continuum is spatially discretized with the finite 
element method (FEM) resulting in the symmetric mass matrix MS 2 R NS�NS and the 
symmetric stiffness matrix KS 2 R NS�NS . To model dissipation effects, i.e. the damping 
parameters, we employ the so-called Rayleigh damping 

DS ¼ αMS þ βKS (2) 

with the coefficients α and β. Measurements of the damping ratio were conducted 
on a real guitar at different frequencies ωD, see [6,32], and the overdetermined 
equation system is solved by using a least square fit for the coefficients that results 
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in α ¼ 15:958 1
s and β ¼ 2:821 � 10� 6s. The coefficients describe the first two terms 

of the so-called Caughey series [33]. Higher-order terms are neglected since the 
results are already in good agreement with the measurements [6,32].

This complements the dynamic equation of the mechanical structure resulting in the 
second-order space discretized system, c.f. ③ 

MS€z þDS _z þ KSz ¼ f S þ f p (3) 

with the damping matrix DS 2 R NS�NS and the excitation forces f S; f p 2 R NS for the 
mechanical structure, whereas the latter is the specific force stemming from the coupling 
term (1c).

The geometry and division of the guitar into the different domains can be seen in 
Figure 3. The model consists of three different parts: the top plate or soundboard with a 
sound hole, the back plate and the air inside the guitar body in the shape and of the size of 
a classical guitar. Modelling the guitar behaviour with these parts (in lumped parameter 
form) is known as a three mass model [7]. The approach of [6] is used as a reference to 
create an enhanced three mass model with the FEM, which will be discussed further in 
Section 2.2.

Figure 3. Sectional view of the FEM multi-physics model of a classical guitar.

Figure 4. Meshed top plate.
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acoustic wave equation :
1
c2

0

@2p
@t2 � Ñ2p ¼ 0; in It � PF (4a) 

boundary conditions : p ¼ pb; in It � Γp (4b) 

@p
@n
¼ 0; in It � Γn (4c) 

coupling term :
@p
@nFSI

¼ � ρF
@2z
@t2

� �`

nFSI; in It � ΓFSI (4d) 

initial conditions : p ¼ p0; in PF (4e) 

_p ¼ _p0; in PF (4f) 

The fluid behaviour, c.f. ①, can be described with where the acoustic wave equation is 
derived from the Euler equations for ideal, compressible fluids with Dirichlet boundary 
conditions pb on Γp. The zero Neumann boundary conditions (4c) on Γn are used as a 
means to compensate the fact that we only model the top and bottom plate of the 
mechanical structure but not the sides. The force applied to the mechanical structure 
along the normal direction, i.e. @p

@nFSI 
is equal in magnitude but of opposite direction 

compared to the force applied by the mechanical structure along the normal direction, 
i.e. � ρF

@2z
@t2

� �`
nFSI , where ρF denotes the density of the fluid. The boundary domains of 

the fluid are visualized in Figure 5. The acoustic wave equation (4a) contains the speed of 
sound c0 and the pressure p on the domain PF [16,34].

The wave equation is spatially discretized by using the Galerkin method with linear 
shape functions. This leads, c.f. ③, to the dynamic equations of the fluid in matrix 
form [35] 

MF€pþ KFp ¼ f F þ f z (5) 

with the symmetric mass matrix MF 2 R NF�NF , the symmetric stiffness matrix 
KF 2 R NF�NF , the excitation vector for the fluid f F 2 R NF and the excitation vector 

Figure 5. Meshed fluid.
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f z 2 R NF stemming from the interaction with the mechanical structure, i.e. the 
coupling term (4d).

FSI is an area that describes the multi-physics coupling between the domains of fluid 
dynamics and structural mechanics. The coupling is considered a strong FSI if the 
motion of the solid influences the fluid and vice versa [34]. The classical guitar as the 
studied system allows the investigation of these strong couplings. In our case, this 
coupling is expressed via the coupling terms (1c) and (4d).

The effects of the mechanical structure on the fluid and vice versa, c.f. ④, result in the 
external forces f p and f z , respectively. The former relates to the force 

f p b¼

ð

ΓFSI

t`z dA ¼
ð

ΓFSI

pz`nFSI dA (6) 

induced by the surface traction t. The latter corresponds to the force 

f z b¼

ð

ΓFSI

� ρF
@2z
@t2

� �`

nFSIp dA (7) 

generated by the acceleration of the mechanical structure along the normal direction 
@2z
@t2

� �`
nFSI . Hence, both f p and f z can be represented as a matrix vector product 

f p ¼ Rp and f z ¼ � ρFR`€z (8) 

where R describes the coupling matrix [35] representing the term 

R b¼

ð

ΓFSI

pz`nFSI dA: (9) 

However, in the present case of non-matching meshes, the nodal values of the acoustic 
and structural domains, which are part of the interface, are related to each other with 
linear interpolation.

For each node in the structural domain we identify the corresponding mesh-element 
of the acoustic domain in which the structural node is located. We then compute the 
barycentric coordinates of this node and distribute the effect of the interaction by the 
proportions corresponding to the barycentric coordinates.

Consequently, the separate equations for the mechanical structure (3) and the fluid (5) 
can be combined into the following coupled system 

MS 0
ρFR` MF

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

M̂2R
N̂·N̂

€z
€p

� �

|ffl{zffl}
€̂x2R N̂

þ
DS 0
0 0

� �

|fflfflfflffl{zfflfflfflffl}
D̂2R N̂·N̂

_z
_p

� �

|ffl{zffl}
_̂x2R N̂

þ
KS � R
0 KF

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
K̂2R N̂·N̂

z
p

� �

|ffl{zffl}
_̂x2R N̂

¼
f SðtÞ
f FðtÞ

� �

|fflfflfflffl{zfflfflfflffl}
f̂2R N̂

(10) 

where N̂ ¼ NS þ NF . Note that the mass and stiffness matrices, M̂ and K̂ , are unsym-
metric which leads to numerical issues when solving large sparse linear systems. More 
efficient and stable algorithms were developed for symmetric linear systems, e.g. 
Cholesky factorization. Additionally, it causes problems for the derivation of a port- 
Hamiltonian formulation of the system. Therefore, an adapted formulation of the system 
is derived in the following.

Instead of using the z-p-formulation (10) a state transformation 
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p ¼ _q (11) 

is applied, where instead of the pressure p, the time derivative of the variable q is used 
which is in close relationship to the velocity potential. This approach is frequently used in 
the literature to symmetrize the system matrices [36,37].

A minor adaptation is used to make the pH matrices accomplish the mandatory skew- 
symmetry property after the transformation from a first-order to a second-order system: 
Inserting (11) into (10), taking the integral of the second line of (10) and dividing by ρF 
(instead of � ρF which is typically considered in literature) leads to the formulation 

MS 0
0 1

ρF
MF

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
M

€z
€q

� �

þ
DS R
� R` 0

� �
_z
_q

� �

þ
KS 0
0 1

ρF
KF

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
K

z
q

� �

¼
f SðtÞ

0

� �

: (12) 

2.2. Practical modelling aspects

The FE discretization is realized with the commercial software Abaqus, see [38], which 
allows us to design the complex geometry of the guitar, define material parameters and 
boundary conditions, and automatically mesh the geometry with sophisticated meshing 
tools, see ②.

The main goal of the current study is not a very accurate prediction of the guitar’s 
behaviour in accordance with experimental data but to rather investigate the perfor-
mance of various formulations on an illustrative example for FSI. For this reason, the 
guitar is not modelled in full detail but still includes the most important aspects.

The top and back plate are modelled with shell element S4R5, see Figure 4. S4R5 is a 
thin shell element, which is reasonable to use in our case since the guitar plate describes a 
body where the thickness is less than about 1/15 of a characteristic length. The respective 
Kirchhoff constraint is imposed numerically, i.e. that material fibres normal to the 
midsurface remain normal after deformation [38]. A summary of the finite element 
mesh properties used for the guitar model is presented in Table 1. We use the S4R5 
element as it is accompanied by the advantage that the system size is reduced since there 
are less DOFs compared to the more common six DOFs S4 element. Furthermore, for the 
mechanical structure, a six degree of freedom (DOF) formulation in Abaqus would lead 
to a singular matrix MS, due to the fact that a shell element is fully described with five 
DOFs (three translations, two in-plane rotations), which would cause additional 

Table 1. Finite element mesh properties.
Top plate Fluid Back plate

Element type Shell S4R5 Acoustic AC3D8 Shell S4R5
Nodes per element 4 8 4
DOFs per node 5 1 5
DOF types 3 trans, 2 rot 1 pressure 3 trans, 2 rot

Number of elements 343 2434 149
Number of nodes 387 3226 171
Number of DOFs 1554 3170 900
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numerical issues and would lead to a differential-algebraic pH-system [39,40]. The air 
model is enhanced by adding a length correction2 to the fluid domain, which can be 
considered as an educated guess that makes the resonant frequencies and surrounding air 
consistent with experiments [6,41], see Figure 5.

As stated in the mathematical derivation of the mechanical structure and the fluid, 
some boundary conditions need to be considered that are in accordance with the physical 
behaviour of the guitar. Therefore, the mechanical structure is constrained at the edges 
with homogeneous Dirichlet boundary conditions for the displacement variables. The 
rotational DOFs are not affected by this condition. This kind of boundary condition is 
considered as simply supported. The fluid is mainly characterized by the coupling with the 
solid and the reflection from the sidewalls, due to homogeneous Neumann boundary 
conditions on Γn. However, the boundary condition at the top of the sound hole needs to 
be defined differently since there is a free surface. This can be achieved by simply using 
the assumption of zero pressure pb ¼ 0 [30]. The boundary conditions are marked in red 
and purple in Figures 4 and 5.

The outcome of the modelling process in Abaqus is the mass and stiffness matrices for 
the mechanical structure (3) and the fluid (5). The further steps of modelling and 
simulation are performed in Matlab. This change in the software tool is motivated by 
various advantages: (a) The modelling in Matlab gives a better insight into the model 
especially due to the independent coupling procedure. In addition, (b) the obtained 
flexibility enables the system to be modified in the first place and thus to be reformulated 
into a pH-system. Furthermore, (c) this choice also gives us the freedom to decide on the 
integrator and the associated simulation properties.

In a real scenario, the guitarist plucks the string which introduces vibrations that are 
transferred through the bridge into the soundboard. Since the string and bridge are not 
modelled, the influence of these components is integrated as a force input at the position 
where the bridge would normally be located. A standard tuning of a guitar will create 
sounds in the range of approximately 82 Hz on the lowest pitch and 320 Hz at the highest 
pitch for the unfretted strings. The frequency range is chosen this way, since the objective 
is to demonstrate the methods on unfretted strings and the harmonics are neglected. For 
this reason, there will be a sine wave excitation force with 

u ¼ û sinðωtÞ (13) 

with ω ¼ 2πf in the frequency range f ¼ ½82; 320� Hz and with an amplitude of û ¼ 1N 
that acts on one node of the top plate. As outputs, we consider different important nodes 
of the mesh. Those nodes include the aforementioned excitation node where the force 
acts on, compare Figure 4, as well as the volume-weighted integral of the pressure over 
the fluid nodes close to the sound hole of the guitar, compare Figure 5, and a central 
mechanical structure node of the back plate.

3. Port-Hamiltonian formulation

Port-Hamiltonian (pH) systems were initially developed to describe a unified approach 
for systems from different physical domains that allow network modelling, see references 

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 125



in [3,42]. The pH formulation describes an energy-based network modelling approach 
with the energy as common quantity of various physical systems that interact through 
ports [1].

The pH structure can imply the underlying physical principles such as conservation 
laws [40]. The input-output state form of a pH-system without feed-through terms 
appears as 

_x tð Þ ¼ ðJ � DÞÑHðxðtÞÞ þ Bu tð Þ
y tð Þ ¼ B`ÑHðxðtÞÞ (14) 

where the function HðxðtÞÞ describes the Hamiltonian as an energy function of the 
system. The Hamiltonian depends on the state vector xðtÞ 2 R N with the system order 
N ¼ 2N̂. The matrix J 2 R N�N reflects the interconnection of the internal energy storage 
elements, while the dissipation matrix D 2 R N�N describes the energy losses in the 
system. The matrix B 2 R N�m is the port or input matrix that specifies the manner in 
which energy enters or leaves the system. The Hamiltonian and the port matrix motivate 
the term pH-system. The pH-system matrices need to satisfy the requirement that 
J ¼ � J` is skew-symmetric and D ¼ D` � 0 is symmetric positive semidefinite. 
Furthermore, the variables uðtÞ; yðtÞ 2 R m describe the time-dependent input and out-
put vectors, respectively [1].

Besides the modelling aspects, the pH formulations come with additional advantages 
as they implicitly incorporate important system properties. The pH-system (14) is a 
generalization of a classical Hamiltonian system as the conservation of energy is general-
ized to a dissipation inequality 

Hðxðt1ÞÞ � Hðxðt0ÞÞ �

ðt1

t0

yðtÞ`uðtÞ dt with t1 > t0 (15) 

which states that the internal energy is bounded by the work exerted on the system. 
Together with the assumption that the Hamiltonian is strictly positive, i.e. HðxÞ > 0 for all 
x, this leads to the properties that the pH-system is both, passive and stable [2]. Note that 
the input and output of (14) are collocated, as they describe the port pair defined by the 
port matrix B through which the systems interact with its environment. If desired, one 
can define arbitrary quantities of interest (QoI) as outputs with appropriately chosen 
matrices. However, these additional output quantities may not satisfy the dissipation 
inequality (15) and only serve the purpose of data observation.

For a quadratic Hamiltonian 

HðxÞ ¼
1
2

x`E`Qx: (16) 

the pH-system (14) can be formulated as a generalized linear pH-system. In the so-called 
descriptor form [40], it takes the form 

E x
:
¼ ðJ � DÞQx þ Bu;

y ¼ B`Qx
(17) 

with constant matrices E 2 R N�N and Q 2 R N�N that need to satisfy the symmetry 
condition E`Q ¼ Q`E.
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For our setting, such a descriptor system is obtained by transforming the second-order 
system (12) into a first-order pH-system (17) via the new state vector x` ¼ ½z`q` _z` _q`�, 
which leads to the pH-system matrices 

E ¼

INS 0 0 0
0 INF 0 0
0 0 MS 0
0 0 0 MF=ρF

2

6
6
4

3

7
7
5

J ¼

0 0 INS 0
0 0 0 INF

� INS 0 0 � R
0 � INF R` 0

2

6
6
4

3

7
7
5

Bu ¼ 0 0 f S
` 0

� �`

Q ¼

KS 0 0 0
0 KF=ρF 0 0
0 0 INS 0
0 0 0 INF

2

6
6
4

3

7
7
5

D ¼

0 0 0 0
0 0 0 0
0 0 DS 0
0 0 0 0

2

6
6
4

3

7
7
5

x ¼ z` q` _z` _q `
h i`

(18) 

with E describing the kinetic energy components and Q containing potential energy 
terms, c.f. ⑤. The matrices INF=S represent the identity matrix of size NF=S. Note that the 
skew-symmetric part of the damping matrix in (18), i.e. � R and R` that also appears in J 
of (12), has no damping effects since it is nothing but a gyrator term. If the damping term 
DS ¼ 0, the system is conservative. For further details on damping models for linear pH- 
systems, we refer to e.g. [33]. The pH matrices satisfy the mandatory properties 

J ¼ � J`; (pH1)
D ¼ D` � 0; (pH2)

E`Q ¼ Q`E: (pH3) 

The pH-system (17) in the form (18) will further be referred to as the velocity formula-
tion. The pH-matrices are freely available at https://doi.org/10.18419/darus-3248.

Remark 1. Note that a more mathematically and physically rigorous approach to 
derive a FOM would directly obtain the discrete operators from a coupled PDE system 
via structure-preserving discretization techniques such as Partitioned FEM [43]. The 
scope of this work, however, is to investigate how standard software (such as Abaqus) can 
be used to formulate a FSI model as a port-Hamiltonian system in order to apply 
structure-preserving MOR techniques. Thereby, we show that the port-Hamiltonian 
formalism can be very accessible from an application point of view.

3.1. Numerical simulation of full-order results

We discretize the system with respect to time, using an implicit Gauss-Legendre colloca-
tion method, since for linear pH-systems these are the only ones for which the approx-
imations of supplied and stored energy match, resulting in an exact discrete energy 
balance of the discrete-time pH approximation [44]. The most basic Gauss-Legendre 
collocation is the implicit midpoint rule (IMR), cf. ⑥, which has one stage and is of 
second order for ODEs and uses a fixed time step size. The IMR is a symplectic integrator 
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and, hence, preserves symplectic structure and the quadratic Hamiltonian through the 
time integration [39,45,46].

An advantage of a fixed time step is the better comparability of the trajectories. Since 
the numerical error of an integrator depends on the step size, we avoid mixing the 
integration and model reduction error. It needs to be mentioned that the step size also 
affects the quality of the snapshot-based methods in Section 5 since the snapshot matrix 
is defined by the full-order model trajectories. All calculations were carried out with 
Matlab.

The simulation of a full-order model (FOM) of the guitar is important for different 
reasons. On the one hand, these results will give us an insight about the approximate 
guitar behaviour and the physical plausibility of the modelling. On the other hand, the 
FOM results form the basis for the calculation of the approximation error in the energy 
norm. Additionally, the FOM results are required for the snapshot generation, cf.⑦, for 
the data-based basis generation techniques.

We consider a parameter-dependent excitation u ¼ uðt; μÞ of the top plate that is 
modelled by a sinusoidal input where μ 2 82; 320½ � Hz denotes the excitation frequency 
f . For the IMR, we use a step size of Δt ¼ 10� 4s and simulate for T ¼ 0:1s to include 
several oscillation periods for the whole frequency interval.

The time simulation of the FOM for an excitation frequency of f ¼ 100 Hz is 
illustrated in Figure 6. The QoI displayed in the following figure are the excitation 
node on the top plate, the averaged pressure close to the sound hole and a structure 
node on the back plate. The quantities are calculated as 

yQoI;kðtÞ ¼ c`
QoI;kxðtÞ with k 2 TopPlate; SoundHole; BackPlatef g (20) 

with appropriately chosen QoI output vectors c`
QoI;k for each QoI.

It can be seen that as a result of the excitation, the top plate at the excitation node starts 
to vibrate at the same frequency since the guitar describes a linear time-invariant (LTI) 
system. Note that, the only connection of the top plate and the back plate is through the 
air, since the side walls are considered as a fully reflective Neumann boundary condition 

Figure 6. Time simulation of the QoI (20) with an excitation frequency f ¼ 100 Hz.
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on the fluid domain. In the area of FSI, a strong coupling implies a two-sided influence, 
where the structure is able to excite the fluid but also the fluid is capable of exciting the 
structure. In Figure 6, one can see that the input force excitation leads to a vibration of 
the top plate which thereupon transfers the energy to the air and the air in turn causes the 
vibration of the back plate, satisfying the conditions for a strong coupling. This chron-
ological sequence can be observed by looking at the delayed rises in the curves.

3.2. Reformulations of the pH-system

We derived our pH-FSI-system via a transformation of the second-order system and 
using the displacements, the integrated pressure and their derivatives as pH variables. In 
classical Hamiltonian systems, the variables are defined in terms of the canonical position 
and momentum coordinates to account for additional symmetries [2]. For this reason, a 
system in momentum formulation shall also be considered in the analysis. All of the 
following reformulations of the pH-system still satisfy the mandatory pH properties 
(pH1) to (pH3). The coordinate transformation 

xm ¼ Ex (21) 

yields such a pH-system in momentum formulation (abbr.: Mom)3 

_xm ¼ ðJ � DÞQE� 1xm þ Bu;
y ¼ B`QE� 1xm;

(22) 

where xm contains the momentum instead of the velocities.
Since the PSD methods presented in Section 5.6 and 5.7 are based on a system 

formulation with canonical J2N̂ , i.e. 

J2N̂ :¼
0 IN̂
� IN̂ 0

� �

;

the canonical variants of the velocity formulation 

xc ¼ P� 1x (23) 

and momentum formulation 

xmc ¼ P� 1Ex (24) 

will be considered in the sensitivity analysis, which yields the canonical system in velocity 
formulation (abbr.: Vel_Canon) 

P`EP _xc ¼ P`ðJ � DÞPP� 1QPxc þ P`Bu;
y ¼ B`QPxc

(25) 

and in momentum formulation (abbr.: Mom_Canon) 

P`P _xmc ¼ P`ðJ � DÞPP� 1QE� 1Pxmc þ P`Bu;
y ¼ B`QE� 1Pxmc:

(26) 

The transformation matrices P;P� 1 depend on the coupling matrix R and are given by 
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P ¼

INS 0 0 � R=2
0 INF R`=2 0
0 0 INS 0
0 0 0 INF

2

6
6
4

3

7
7
5; P� 1 ¼

INS 0 0 R=2
0 INF � R`=2 0
0 0 INS 0
0 0 0 INF

2

6
6
4

3

7
7
5: (27) 

The calculation of the FOM is computationally expensive, especially if it comes to multi- 
query simulations or the simulation of a more detailed guitar model with many more 
degrees of freedom. Therefore, MOR techniques are beneficial and will be discussed in 
the following.

4. Model order reduction – projection methods

The size of a dynamical system model can be reduced by approximating its behaviour in a 
subspace of a lower dimension. In most cases, this model reduction comes at the cost of 
approximation errors. Projection-based reduction methods can be performed in various 
ways with different outcomes with respect to the preservation of different structural4 pH 
properties, cf. ⑩.

All reduction methods used in our study are based on a projection-based reduction. 
The solution for xðtÞ is approximated in a subspace V of dimension n� N ¼ 2N̂ ¼
2ðNS þ NFÞ which is described by a basis matrix V 2 R N�n with colspðVÞ ¼ V and leads 
to the approximation 

xðtÞ � VxrðtÞ (28) 

with the reduced state vector xr 2 R n.
Inserting (28) into the pH-system (17) and using the Petrov-Galerkin condition for 

W 2 R N�n [18] yields the reduced system 

W`EV _xr ¼W`ðJ � DÞQVxr þW`Bu
y ¼ B`QVxr:

(29) 

of size n� N, where the matrix W determines the orthogonal projection direction.

4.1. Galerkin projection

A special case of the Petrov-Galerkin approach is given by the Galerkin projection 
(abbr.: Galerkin) with W ¼ V and takes the form 

V`EV _xr ¼ V`ðJ � DÞQVxr þ V`Bu
y ¼ B`QVxr:

(30) 

This projection does in general not preserve any of the underlying pH structure proper-
ties (pH1)–(pH3) of the system in our formulation.

4.2. Quasi-Galerkin projection

The quasi-Galerkin (abbr.: Quasi) projection is derived by inserting the term VV` 

under the assumption that ðJ � DÞVV`Q � ðJ � DÞQ to the standard Galerkin projec-
tion which yields 
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V`EV|fflfflffl{zfflfflffl}
Er

_xr ¼ V`ðJ � DÞV V`QV
|fflfflffl{zfflfflffl}

Qr

xr þ V`Bu

y ¼ B`QVxr:

(31) 

This projection preserves (pH1) and (pH2) but it does not guarantee (pH3) and, hence, 
the Hamiltonian of the reduced system �HðxrÞ�HðVxrÞ changes in the reduction.

4.3. pH structure-preserving projection

Adapting the pH structure-preserving (abbr.: pH) approach [19] with W ¼ QV to the 
case of a descriptor system leads to a reduced system 

V`Q`EV _xr ¼ V`Q`ðJ � DÞQVxr þ V`Q`Bu
y ¼ B`QVxr

(32) 

with the reduced matrices 

Er ¼ V`Q`EV; Jr ¼ V`Q`JQV;
Dr ¼ V`Q`DQV; Qr ¼ In:

(33) 

This preserves the pH properties (pH1)-(pH3) and does not change the Hamiltonian in 
the reduced system [19].

4.4. Energy-stable projection

The author in [20] presents a general framework for the numerical approximation of 
evolution problems which is also suitable for pH-systems and preserves the underlying 
Hamiltonian structure. We will call this approach energy-stable (abbr.: Energy-Stable). 
Applying this approach to a pH-system leads to a reduced system 

V`E`ðJ � DÞ� 1EV _xr ¼ V`E`QVxr þ V`E`ðJ � DÞ� 1Bu;
y ¼ B`QVxr:

(34) 

In our case, the inverse term can be easily calculated with 

ðJ � DÞ� 1
¼ T`P`ðJ � DÞPT with T ¼ 0 IN̂

IN̂ 0

� �

(35) 

which allows for a computational efficient implementation. To summarize the projection 
methods with emphasis on the structure-preservation properties, we enlist them in 
Table 2.

Table 2. Comparison of presented projection methods with the focus on structure- 
preservation.

Projection method Feature pH1 pH2 pH3

Galerkin W ¼ V ✘ ✘ ✘
Quasi insert V`V ✓ ✓ ✘
pH W ¼ QV ✓ ✓ ✓
Energy-Stable W ¼ E`ðJ � DÞ� `EV ✓ ✓ ✓
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4.5. Best approximation

In order to assess the quality of the different projection methods, a direct comparison 
with the best approximation (abbr.: Bestapprox) in the considered subspace colspðVÞ
should be examined. Here, we use the best approximation with respect to the energy 
norm k � k2

H induced by the energy inner product h�; �iH

k x k2
H:¼ x`Hx ¼ x`E`Qx ¼ hx; xiH; (36) 

where H ¼ E`Q denotes the so-called energy matrix which is positive definite, since 
both E` and Q are positive definite and their product is symmetric due to the third pH- 
property (pH3). The best approximation of x in the subspace colspðVÞ is then given by 
the projection �V;H of x onto colspðVÞ with respect to the energy inner product. In terms 
of the energy matrix, this can be expressed via 

�V ;Hx ¼ V V`HV
� �� 1V`Hx (37) 

and we have 

k x � �V;HxkH ¼ min
x̂2colspðVÞ

k x � x̂kH: (38) 

5. Model order reduction – basis generation

For all projection-based reduction methods presented in Section 4, a basis matrix V is 
required. In the following, different basis generation approaches are presented with the 
goal to keep the approximation error as small as possible. The bases are generated by 
using the extensive software packages MatMorembs5 [47] and RBmatlab6, cf. ⑧ and ⑨.

5.1. Modal truncation

For the basis generation method based upon modal truncation (abbr.: Modal), the 
homogeneous solution for (17) with uðtÞ ¼ 0 is solved with the ansatz function 

xðtÞ ¼ eλjtϕj with λj 2 C; ϕi;2 C
N (39) 

which leads to the generalized eigenvalue problem 

Aϕj ¼ λjEϕj (40) 

with A :¼ ðJ � DÞQ for the pH-system. The eigenvectors ϕj are also called coupled 
eigenmodes and describe the deformation of the mechanical structure and pressure 
distribution in the fluid at the dedicated eigenfrequencies. Modal truncation uses only 
the most important eigenvectors as the projection basis [18]. In the context of the guitar, 
the most important eigenvectors coincide with the eigenvectors that belong to the lowest 
eigenfrequencies since those are assumed to be the crucial eigenfrequencies for the sound 
emission. Hence, the modal projection basis arises as 

Vmod ¼ ϕ1 . . . ϕn½ � (41) 
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with n� N. In the current study, the eigenmodes belonging to the lowest eigenfrequen-
cies are coupled eigenmodes that allow for dynamics in the mechanical structure and 
fluid simultaneously. In general, Vmod is not real-valued. In this case, the matrix V`

mod has 
to be replaced with VH

mod for the projection methods outlined in Section 4, where the 
superscript H represents the conjugate transpose of a complex-valued matrix.

5.2. Krylov-based reduction

The goal of Krylov-based reduction (abbr.: Krylov) is the approximation of the transfer 
function 

GðsÞ ¼ B`QðsE � ðJ � DÞQÞ� 1B (42) 

obtained from the Laplace transformation with the complex variable s 2 C which is 
typically evaluated on the imaginary axis s ¼ iω with the circular frequency ω ¼ 2πf 
where f denotes the excitation frequency.

The transfer function around an expansion point s0 can be described with a Taylor 
series whose coefficients are called moments in this context. The first Jb moments of the 
full and reduced system can be matched by using the block Krylov subspace of a pH- 
system 

colspðVKryÞ ¼ KJbððA � s0EÞ� 1E; ðA � s0EÞ� 1BÞ: (43) 

The approach can be generalized to calculate for multiple expansion points [18,22].
The direct calculation leads to numerical issues since additional vectors can become 

linearly dependent. That is why the block Arnoldi algorithm is used for the calculation of 
Krylov subspaces. This Arnoldi algorithm consists of a LU decomposition, Gram– 
Schmidt orthogonalization and the iterative calculation of Krylov directions [18,22]. 
Sometimes the approach is also called tangential interpolation [48].

5.3. POD full state

The Proper Orthogonal Decomposition (POD) approach uses a different idea for the 
projection basis generation, which is based on snapshots instead of system matrices and 
can therefore even be used for nonlinear systems [23,49]. The POD starts with a set of 
vectors x̂k 2 R N with k ¼ 1; . . . ;m assembled column-wise into a matrix 

X̂ :¼ x̂1 . . . x̂m½ �: (44) 

The goal is to approximate the information contained in the snapshot matrix X̂ by a set of 
vectors ûj 2 R N with j ¼ 1; . . . ; n, which can be expressed in terms of an optimization 
problem 

min
û1;...;ûn

Xm

k¼1
x̂k �

Xn

j¼1
hx̂k; ûjiHûj

�
�
�
�
�

�
�
�
�
�

2

H

subject to hûk; ûjiH ¼ δkj (45) 
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where δkj describes the Kronecker delta and, hence, the vectors ûj form an orthonormal 
basis with respect to the energy inner product [23]. The optimization problem can be 
solved as follows: we first solve the eigenvalue problem 

HX̂X̂`ŵj ¼ λjŵj (46) 

with the scaled and weighted correlation matrix HX̂X̂`
2 R N�N , then we solve the linear 

system 

Hv̂j ¼ ŵj (47) 

and finally, by normalizing the above with respect to the energy norm, i.e. 

ûj ¼
1

k v̂jkH
v̂j: (48) 

By only taking the first n POD-modes, the basis matrix can be formed as 

VPODðH; X̂Þ :¼ û1 . . . ûn½ �: (49) 

In the present system, the snapshot matrix X̂ consists of state variables of the pH-system 
xðt; μÞ with μ 2 ½82; 320�Hz. The discrete trajectories that form the snapshot matrix are 
calculated from the full system with time instances of Δt ¼ 10� 4s for a time span of 
T ¼ 0:1 s. Using the full state vector (abbr.: POD-State) x ¼ z` q` _z` _q`

� �` for 
calculating, the POD basis will further be called as VPOD;State. Please note that while the 
above was introduced for the energy inner product, other inner products can also be 
considered simply by replacing the energy matrix H.

5.4. POD displacements

Another basis will be generated by only using the displacements (abbr.: POD-Disp) in 
the snapshot matrix X̂Disp ¼ x̂Disp;1 . . . x̂Disp;m

� �
of the adapted state vector x̂Disp;k ¼

z`
k q`

k
� �

and the inner product matrix K , which reflects the parts of the energy inner 
product stemming from only the displacements. We then assemble the full projection 
matrix afterwards as 

VPOD� DispðK; X̂DispÞ ¼
VPODðK; X̂DispÞ 0

0 VPODðK; X̂DispÞ

� �

: (50) 

Note that the above is a special case of the so-called tangent lift as presented in [24], 
where in (50) only information in the upper half of the state x is considered. Hence, using 
the basis for the velocity component, i.e. lower half of the state x, might be ill-suited.

5.5. POD-Individual trajectories

A further approach will be the division of the state vector into the four individual parts 
and calculating the POD-basis for each individual trajectory (abbr.: POD-Indiv) and 
assembling the basis as the block-diagonal matrix 
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VPOD� Indiv ¼ blkdiag VPODðKS; X̂zÞ;VPODðKF=ρF; X̂qÞ;
�

VPODðM� 1
S ; X̂ _zÞ;VPODðρF �M

� 1
F ; X̂ _qÞ

� (51) 

with the snapshot matrices X̂z , X̂q, X̂ _z and X̂ _q corresponding to the respective compo-
nents of the state x and the inner product matrices corresponding to the individual 
contribution to the energy inner product.

5.6. PSD Complex SVD

Symplectic MOR is structure-preserving MOR for Hamiltonian systems. One approach 
to derive a symplectic reduced-order basis is the data-driven Proper Symplectic 
Decomposition (PSD) which is closely related to the POD [24].

Assuming a suitable basis, a symplectic form ω2n̂ : R 2n̂ � R 2n̂ ! R takes the canonical 
form 

ω2n̂ðv1; v2Þ ¼ v`
1 J2n̂v2 "v1; v2 2 V with J2n̂ :¼

0n̂ In̂
� In̂ 0n̂

� �

(52) 

where J2n̂ is the Poisson matrix with the identity matrix In̂ 2 R n̂�n̂ and the matrix of all 
zeros 0n̂ 2 R n̂�n̂ [50]. We call V 2 R 2N̂�2n̂ a symplectic matrix if 

V`J2N̂V ¼ J2n̂: (53) 

If a Petrov-Galerkin projection is used with W` ¼ Vþ where 

Vþ ¼ J`
2n̂V`J2N̂ 2 R 2n̂�2N̂ (54) 

denotes the so-called symplectic inverse,7 then the Hamiltonian structure and therefore 
its Hamiltonian is preserved for purely Hamiltonian systems, i.e. in the case of D ¼ 0 in 
equation (14) [24, 25].

In analogy to the POD, the minimization problem appears as 

minimize
V2R 2N̂�2n̂

k ðI2N̂ � VVþÞX̂ k2
F

subject to V`J2N̂V ¼ J2n̂;
(55) 

where the constraint guarantees that the reduced-order basis (ROB) is symplectic [24]. In 
contrast to POD, there is no explicit solution procedure for the PSD optimization 
problem (55). The PSD Complex SVD (abbr.: C-SVD) approach is the solution of the 
PSD in the subset of symplectic, orthonormal ROBs [25]. It uses an adapted complex 
snapshot matrix 

Cs ¼ ~xs
1 þ i _~xs

1 � � � ~x
s
m þ i _~xs

m
� �

2 C
N̂�m ~xs

j ¼
zj
qj

� �

1 � j � m (56) 

with the imaginary unit i. The minimization problem requires an auxiliary complex 
matrix UCs 2 C

N̂�n̂ and takes the form 
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minimize
UCs2C2N̂�2n̂

k Cs � UCsðUCsÞ
HCs k

2
F

subject to ðUCsÞ
HUCs ¼ In̂

(57) 

and generates the real basis matrix 

VCSVD :¼ ~E J2N̂
~E

� �
; ~E :¼

ReðUCsÞ

ImðUCsÞ

� �

: (58) 

The speciality of the PSD Complex SVD is the choice of the auxiliary complex matrix Cs 

and the computation of ~E from UCs . The solution of (57) is the POD for complex 
matrices based on the left-singular vectors of Cs that can be computed with a complex 
version of the SVD [24].

5.7. PSD SVD-like decomposition

Most existing basis generation techniques, e.g. Complex SVD, generate a symplectic, 
orthonormal ROB. In [25], a new symplectic, non-orthogonal basis generation technique 
based on the so-called SVD-like decomposition (abbr.: SVD-like) is introduced.

There exists an SVD-like decomposition of the snapshot matrix X̂ 2 R 2N̂�m 

p q p m � 2p � q

X̂ ¼ SsDsQs; Ds ¼

Σs 0 0 0
0 I 0 0
0 0 0 0
0 0 Σs 0
0 0 0 0
0 0 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

p
q

N̂ � p � q
p
q

N̂ � p � q

; Σs ¼ diagðσ1; . . . ; σpÞ 2 R p�p

(59) 

with a symplectic matrix Ss 2 R 2N̂�2N̂ , a sparse and potentially non-diagonal8 matrix 
Ds 2 R 2N̂�m, an orthogonal matrix Qs 2 R m�m and the symplectic singular values σj. The 
rank of the snapshot matrix is rankðX̂Þ ¼ 2pþ q.

The Frobenius norm of the snapshot matrix can be rewritten as 

k X̂ k2
F¼ TrðX̂X̂`

Þ ¼
Xpþq

j¼1
ðwjÞ

2
; wj ¼

σj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k si k

2
2 þ k sN̂þj k

2
2

q
1 � j � p

k sik2; pþ 1 � j � pþ q

(

(60) 

where sj is the j-th column of Ss and wj is called the weighted symplectic singular 
value [25].

The goal is to choose the k indices j 2 I SVD ¼ j1; . . . ; jkf g � 1; . . . ; pþ qf g which 
have large contributions wj to the Frobenius norm with 

I SVD ¼ argmax
I � 1; . . . ; pþ qf g

Ij j ¼ k

X

j2I
ðwjÞ

2

 !

(61) 
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which yields a ROB VSVD 2 R 2N̂�2k with k pairs of columns sj 2 R 2N̂ from Ss leading to 
reduced model order of 2k ¼ n and the basis matrix 

VSVD ¼ sj1 . . . sjk sN̂þj1
. . . sN̂þjk

� �
: (62) 

The SVD-like decomposition can be constructed by computing an eigendecomposition 
of X̂`JX̂, for which the imaginary and real part of eigenvectors corresponding to 
complex conjugate eigenvalues result in a pair of symplectic vectors. Alternatively, one 
can use the approach introduced in [51], which does not require the computation of the 
product X̂`JX̂ and only works with the snapshot matrix X̂. However, for our numerical 
investigations, we chose the former method, as the implementation is rather 
straightforward. 

Remark 2. Please note, that both, the PSD Complex SVD and PSD SVD-like decomposi-
tion, are usually considered for Hamiltonian systems. The FSI problem considered in this 
paper does not fall under this classification, since we have a non-zero damping influence, 
i.e. D�0 in the confines of equation (14). However, it is interesting to see how these basis 
generation techniques perform in the presence of dissipation. The limit D! 0 would give a 
Hamiltonian system.

6. Results

The previous sections featured several alternatives for model order reduction of a 
classical guitar FSI problem in a pH formulation. The different components that were 
considered are the four system formulations in Sec. 3.2, the four projection methods from 
Sec. 4 and the seven basis generation methods in Sec. 5, cf. Figure 2. These categories are 
extended by choosing the reduced system size n, studying 11 sizes between n ¼ 12 and 
n ¼ 400 and the number of trajectories in the snapshot matrix for the data-based 
methods, where 6 alternatives were investigated. All representatives of each category 
can be combined with all others, resulting in a number of about 4 � 4 � 7 � 11 � 6 � 7000 
possible combinations. All of these combinations have been computed on a computer 
with the specification from Table 3 and can be accessed in the form of a parallel 
coordinate plot at https://doi.org/10.18419/darus-3248. We will give a focused view 
onto the most important outcomes in the following sensitivity analysis.

In order to compare the different methods for reducing the FOM to a reduced-order 
model (ROM), cf. ⑪, an error measure is needed. The energy norm of the Hamiltonian 

Table 3. Specifications of hardware and software.
Operating system Linux Debian 10.13
Processor 16 x Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30 GHz
Memory (RAM) 129GB DDR3
Matlab version R2020b
MatMorembs version current version (08/2022)
RBmatlab version 1.16.09
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k xðtÞ k2
H¼ xðtÞ`E`QxðtÞ (63) 

is used to describe the energy value of a trajectory at time step t. The error εðtÞ ¼
k xðtÞ � VxrðtÞkH between the full and reduced model is measured in the energy 
norm. In order to obtain a scalar and relative measure, the norm is integrated over 
the simulation time interval It ¼ ½0; tend� and related to the full model which yields 

εr ¼
ò
tend

0 k x tð Þ � Vxr tð ÞkHdt

ò
tend

0 k x tð ÞkHdt
(64) 

for the relative error measure. It is important to use the relative error which allows for a 
comparison between different system inputs. Five randomly chosen frequencies in the 
standard tuning range (13) and zero initial conditions were used as system parameters for 
all experiments that were carried out. The mean value of their relative error calculations 
is displayed in the subsequent results.

The relative error values for the four system formulations over all basis generation 
techniques and for the pH and energy-stable projections are illustrated in Figure 7. It can 
be seen that the displacement variant of POD is not a suitable option for all system 
reformulations. This is due to the fact that the state derivatives are not considered in the 
snapshot matrix, which are valuable information that should be contained. It does not 
lead to an improvement by focusing on the displacement and leaving the state trajectory 
independent from its derivatives. The canonical alternative for the velocity formulation 
(25) but also the non-canonical version (17) lead to higher errors for some basis 
generation techniques compared to the other reformulations. The momentum formula-
tion for both, canonical (22) and non-canonical (26), leads to the best overall results, 
especially for POD-State and SVD-like. Since in the canonical transformation process, 
the block structure of the pH matrices E and Q (18) gets lost, we will focus on the non- 
canonical momentum formulation (22) in the remainder.

The three best-performing methods from the previous experiment, i.e. POD-State, 
SVD-like and POD-Individual, are compared more closely in Figure 8. The plot shows 
the development of the error of the three methods over the basis size and examines on the 
one hand the pH and energy-stable projections and on the other hand their behaviour in 
relation to the best approximation with respect to the energy norm, i.e. the FOM solution 
is projected onto the subspace spanned by the corresponding basis matrix respecting the 
inner product pertaining to the energy norm (38). One can see that the results of pH and 

Table 4. Relative error of various basis generation methods over the number of trajectories from the 
snapshot generation for the momentum formulation, pH projection and n ¼ 120. One trajectory refers 
to an excitation with one specific frequency.

Number of trajectories

Basis Generation 5 10 25 50 75 100

Modal 0.0635 no data-based method, εr for the sake of completeness
Krylov 0.0402 no data-based method, εr for the sake of completeness
POD-State 0.0022 0.0020 0.0018 0.0019 0.0019 0.0019
POD-Disp 0.9492 0.9497 0.9494 0.9496 0.9496 0.9496
POD-Indiv 0.0211 0.0219 0.0151 0.0119 0.0109 0.0108
C-SVD 0.1307 0.0993 0.0488 0.0465 0.0439 0.0432
SVD-like 0.0019 0.0018 0.0016 0.0016 0.0016 0.0016
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energy-stable behave in a similar way for POD-State and SVD-like but for POD- 
Individual, the energy-stable projection leads to much better error values. The deviation 
concerning the best approximation does not exceed one order of magnitude for all basis 
generation methods, but again shows the largest margin for POD-Individual. POD-State 
remains the closest to its potential best values over the whole range of basis sizes. A 
comparison of the basis generation methods uncovers that the SVD-like and POD-State 

Figure 8. Relative error for three selected basis generation and projection methods in comparison 
with the best approximation.

Figure 7. Relative error of different basis generation methods and system formulations for n ¼ 120.
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techniques lie in the range of the best approximation error of the POD-Individual 
method and show an improvement of approximately one order of magnitude for several 
reduction dimensions compared to the competitors. The overall behaviour of all basis 
generation techniques (even the one not shown in the plot) shows that the errors decay 
rapidly up to a size of n ¼ 120 and decrease more slowly starting from a size of 
approximately n ¼ 200. For this reason, further investigations are carried out for a 
basis size of n ¼ 120.

The heat map in Figure 9 shows the relative error for all combinations of basis 
generation techniques and projection methods that were conducted, cf. ⑬. The errors 
are shown for a basis size of n ¼ 120. If the relative error exceeds a value of εr > 1, then 
the field entry is left blank.

One can see that the Galerkin and Quasi-Galerkin projections perform the worst. 
These projections do not preserve the pH properties, especially the stability conditions, 
leading to instability and poor approximations. These projection methods are hence not 
suitable for the reduction of pH-systems. In general, the pH and energy-stable projection 
methods lead to the smallest error because of their adaption to the specific underlying pH 
structure of the system, which shows the importance of adapting the projection methods 
to the particular structure of the problem. The modal reduction, which is still used in 
various commercial MOR-packages, leads to high errors compared to the other combi-
nations. The dynamics of the model cannot be described sufficiently accurate by only 
allowing to move in modal coordinates that belong to the lowest eigenfrequencies. A 
further comment on the modal reduction will be given in the output error discussion 
below. The basis generated with the C-SVD and Krylov algorithms leads to moderate 
approximation errors, which, in the case of the C-SVD, also cannot be improved by the 
transformation into the canonical structure of the matrix J. The Krylov algorithm focuses 
on approximating the input-output behaviour at certain frequencies, leading to higher 
error at different frequencies. The overall performance of the remaining data-based 

Figure 9. Relative errors εr for different basis and projection combinations for n ¼ 120 in the 
momentum formulation.
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methods worked the best for the FSI dynamics of the guitar except for the POD- 
Displacement variant. The reason for the failure of the POD-Displacement has already 
been explained above. For the POD-State variant, the information contained in the 
snapshot matrix and extracted from this matrix via POD is sufficient for reproducing 
the coupled dynamics of the system. Both, the SVD-like and POD-State basis generation 
techniques, show the best overall performance with error values as low as εr;SVD� like ¼

1:55 � 10� 3 and εr;POD� State ¼ 1:88 � 10� 3. The explanation for this lies in the structure of 
the bases. The SVD-like approach is the only method that builds a non-orthogonal basis 
and can therefore adapt more flexibly to the system’s dynamics. Special attention should 
be paid here to the fact that the SVD-like method was developed for purely Hamiltonian 
systems, whereas this study shows that it is also suitable for port-Hamiltonian systems. 
The POD-State method is adapted to the problem in the sense that it uses the energy 
inner product induced by the Hamiltonian which significantly improves the reduction 
results compared to the standard inner product.

It is worth mentioning that the information content in the snapshot matrices depends 
on the number of underlying trajectories which are randomly distributed in the para-
meter space. In the following study, trajectory numbers between 5 and 100 are investi-
gated. The results of the associated relative errors are shown in Table 4 and are extended 
by the methods based on system matrices for comparison. It can be seen that the 
influence of a high number of trajectories is not as significant as, for instance, the size 
of the reduced system, see Figure 8. All methods extract enough information for basis 
constructions even for small snapshot sizes. A snapshot matrix made of 10 trajectories 
already shows a good trade-off between approximation error and matrix size, which 

Table 5. Averaged speed-up values for different basis sizes for the pH projection.
Basis size 12 40 80 120 200 280 400

Speed Up (Vel) 1093 811 528 297 120 104 69
Speed Up (Mom) 6342 3860 2821 1610 519 494 313

Figure 10. Dissipation inequality bound for the pH-projection and a system in momentum formulation 
n ¼ 120.
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drastically decreases the computational effort in the offline phase due to few evaluations 
of the full system.

The main goal of MOR is the gain of a speed-up compared to the simulation of the 
full-order model to make this model suitable for multi-query tasks or real-time scenarios. 
The speed-up values are determined for the pH projection method and averaged over all 
basis generation methods since the qualitative behaviour for the other methods was 
similar. The results for the velocity (17) and the momentum (22) formulations are listed 
in Table 5. The greatest speed-up of more than 1000 in the case of the velocity formula-
tion and 6000 for the momentum formulation is obtained with a basis size of n ¼ 12. 
This choice is not recommendable, since the error values are very high for this size. The 
speed-up values decrease down to 69 (Vel) and 313 (Mom) for a basis size of n ¼ 400. 
Depending on the requirements for the ROM, one needs to decide which is the best 
trade-off between approximation quality and gained speed-up. Since the error decays fast 

Figure 11. Time simulation and absolute error eQoI;TopPlate of the excitation node displacement for the 
full and reduced-order models for n ¼ 120 and f ¼ 200Hz in the momentum formulation and pH 
projection.
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up to a size of n ¼ 120 and still leads to speed-ups of more than 297 (Vel) and 1610 
(Mom), this reduction size was focused on in the previous discussion.

In (15), we stated that a pH-system satisfies the dissipation inequality, which leads to 
the useful properties of passivity and stability. The goal of structure-preserving model 
reduction and the time discretization with an IMR is the preservation of these properties. 
Hence, in Figure 10 the dissipation inequality is exemplified for all model order reduction 
techniques under a pH-structure-preserving projection (32). Therefore, the dissipation 
inequality (15) is converted to 

Hðxðt1ÞÞ � Hðxðt0ÞÞ �

ðt1

t0

yðtÞ`uðtÞdt � 0 with t1 > t0 (65) 

Figure 12. Time simulation and absolute error eQoI;SoundHole of the pressure integral over the sound 
hole for the full and reduced-order models for n ¼ 120 and f ¼ 200Hz in the momentum formulation 
and pH projection.
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which gives us a bound of 0 that is displayed in Figure 10. One can see that all trajectories 
satisfy the dissipation inequality over the whole time interval which agrees with the 
theory from the MOR and time integration. The decrease in the energy can be explained 
by the energy losses due to the structural dissipation effects. Note that the POD-Disp 
variant is scaled by a factor of 0:1 due to higher error values in the trajectory and 
therefore a considerably different Hamiltonian.

In Figure 11 and Figure 12, the QoI of the displacement of the excitation node on the 
top plate and the averaged pressure in the sound hole, cf. Figure 5, are depicted. Both 
figures contain two subfigures, where the first subfigure displays the time trajectory of the 
FOM and the corresponding ROM trajectories for all basis generation methods and the 
second subfigure illustrates the absolute error in the QoI, calculated as 

eQoI;k ¼ yQoI;k � yr;QoI;k with k 2 TopPlate; SoundHolef g (66) 

based on the QoI output (20) for the FOM and reduced model.
We can see in both cases that all basis construction methods except for POD- 

Displacement capture the behaviour quite well as the differences in the trajectories are 
almost not visible. For the POD-Displacement, however, almost no energy seems to be 
introduced into the system, which is unphysical, resulting in no visible excitation in the 
entire FSI model. The general behaviour of the previous error discussion can also be seen 
in the QoI absolute errors, namely that excellent performance of the POD-State and 
SVD-like approaches and the moderate performance of Krylov and C-SVD. Interestingly, 
the POD-Individual method performs better in the structural domain (see Figure 11) 
than in the fluid domain (see Figure 12), which shows that the underlying structural 
motions are better represented in the POD-modes. The converse can be seen for the 
modal approach. The eigenmodes that belong to the lowest eigenfrequencies approx-
imate the fluid domain quite accurately, even in the same order of magnitude as the best 
MOR approaches, whereas the structural modes cannot be reproduced satisfactorily.

7. Conclusion and Outlook

In this paper, we presented a port-Hamiltonian formulation of a fluid–structure interaction 
for the case of a classical guitar. Many different model order reduction approaches 
combined with multiple different reduced basis construction methods as well as various 
FOM formulations were compared in order to study the effect of structure-preserving 
model reduction on the quality and behaviour of the reduced model. In particular, we were 
able to conclude that both structure-preserving model order reduction methods, i.e. the 
pH-preserving and the energy-stable methods clearly outperform their non-structure- 
preserving competitors. Furthermore, we can conclude that the reduced bases constructed 
via a symplectic SVD-like decomposition and a POD method that takes the energy inner 
product into account result in higher quality approximations for lower basis sizes.

Future emphasis will be placed on constructing suitable a-posteriori error estimators 
and extending the above model to allow for further parameter dependency in the form of 
material parameters of the guitar body.
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Notes

1. Note that the term structure has an ambiguity in this paper. On the one hand, it describes the 
mechanical structure of the wooden guitar plates as part of the fluid–structure interaction. 
On the other hand, it likewise describes the mathematical structure of the pH-system, which 
should be preserved through the model reduction process. To avoid misunderstandings, the 
expression mechanical structure is used in the context of the FSI.

2. The theoretical background of the so-called length correction comes from the theory of the 
Helmholtz resonator, as one of the most basic resonant structures with a short tube and an 
acoustic cavity, see [52]. Here, the length correction of the tube is used to match resonant 
frequencies with measurement results and literature values, cf [53].

3. Labels are already introduced in the definition of various formulations, which are used for 
the later analysis of results in order to increase the readability of the outcomes

4. Here, the term structure refers to the mathematical pH structure.
5. www.itm.uni-stuttgart.de/software/morembs/software_morembs_matmorembs/
6. https://www.morepas.org/software/rbmatlab/
7. Please note that this symplectic inverse should not be confused with the Moore-Penrose 

inverse, which sometimes is denoted with the same symbol.
8. In general, the space spanned by the columns of X̂ might not be spanned exclusively by pairs 

of symplectic vectors. In this case, using the notation in equation (59), they have N̂�2p and 
thus, we obtain a zero row in the block structure of DS. For our numerical experiments, this 
case does not appear.
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