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Abstract: To maximize the usefulness of groundwater flow models for the protection of aquifers and
abstraction wells, it is necessary to identify and decrease the uncertainty associated with the major
parameters such as permeability. To do this, there is a need to develop set of estimates representing
subsurface heterogeneity or representative soil permeability estimates. Here, we use a coupled
Random Field and extended Theory of Porous Media (eTPM) simulation to develop a robust model
with a good predictive ability that reduces uncertainty. The coupled model is then validated with a
physical sandbox experiment. Uncertainty is reduced by using 500 realisations of the permeability
parameter using the eTPM approach. A multi-layer contaminant transport scenario with varying
permeabilities, similar to what could be expected with shallow alluvial sediments, is simulated. The
results show that the contaminant arrival time could be strongly affected by random field realizations
of permeability compared with a modelled homogenous permeability parameter. The breakthrough
time for heterogeneous permeabilities is shorter than the homogeneous condition. Using the 75%
confidence interval (CI), the average contaminant concentration shows 4.4% variation from the
average values of the considered area and 8.9% variation in the case of a 95% confidence interval.

Keywords: groundwater contamination; contaminant transport; extended Theory of Porous Media;
random fields; heterogeneous soil; physical sandbox experiment

1. Introduction

Good groundwater management must proactively identify, and protect uncontami-
nated groundwater sources and reactively manage, and remediate contamination. This
necessitates predictive tools to determine groundwater flow, contaminant fate and con-
centration [1,2]. Field measurements with mathematical modeling of groundwater flow
and contaminant transport are important tools to aid decision making around aquifer,
compliance well, and abstraction well protection. Sustainable remediation approaches
to manage groundwater contamination (e.g., monitored natural attenuation/permeable
reactive barriers) requires data collection and mathematical models that reduce uncertainty
and aid the decision-making process [3]. Field measurements can struggle with issues such
as cost and time as well as a rapidly changing heterogenous subsurface for adequate mea-
surement and monitoring of the contamination source and transport regime. Mathematical
simulations of groundwater flow regimes are used to assess groundwater contamination,
aid remediation design, and manage catchment use [4].
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Since groundwater flow is a complex hydrogeological, geologically open system, its
description by simplified governing equations and conditions leads to results deviating
from observations, producing uncertainties. Uncertainty is a future or existing state, whose
accurate description is not possible due to the shortage of information [5]. Decision-makers
need reliable and stable approaches to groundwater simulation with minimum or clearly
identified uncertainties. The sources of uncertainties for groundwater modelling have
been studied [6–10] and can be grouped into model structures, model parameters and
observational data [11]. Model structure affects the reliability and accuracy of numerical
simulation of groundwater flow and contaminant transport. Most models do not consider
the entire coupling of the thermo-mechanical interaction occurring in the groundwater flow
and contaminant transport. There are two fundamentally different modeling approaches to
describe groundwater flow and contaminant transport in soil that considers its multiphase
composition. In the first approach, using the Eulerian cut principle, each constituent
can be separated from the overall aggregate and viewed through the classical continuum
mechanics of single-phase materials. The second approach uses the continuum theory of
the heterogeneous materials, meaning that the overall aggregate can be substituted with an
idealized macroscopical counterpart. The Eulerian cut approach suffers from circumstances
in which all geometric and physical transition conditions at the contact surfaces of the
separated constituents must be known. The Theory of Porous Media (TPM) as a subdomain
of the second approach does not encounter these. The TPM [12–16] provides a robust
and thermodynamically consistent framework based on the mixture theory [17]. This is
supported by the concept of volume fractions for the simulation of different processes in a
saturated or partially saturated medium. This TPM modeling approach can be performed
by considering soil as a solid phase (S) saturated by water as a liquid phase (L). There is the
assumption that all phases are immiscible, and they have a statistical and homogeneous
distribution over the control volume cf. Figure 1.

true model smeared model

Groundwater (GW)Soil (S)

Homogenization

of the phases

Figure 1. Representative volume element (RVE) of groundwater and soil and its homogenization.

Each phase can contain miscible constituents, which can be considered as the contami-
nants, and their transport mechanisms, namely diffusion, advection, etc., can be simulated.
This approach allows the description of geophysical [18], geochemical, biogeochemical,
and environmental engineering problems flow, as well as contaminant transport in the
groundwater [19,20].

Permeability is one of the groundwater model parameters and groundwater system
properties, which is difficult to measure directly and leads to groundwater simulation
uncertainties. The choice of an appropriate modeling approach to simulate this parameter
can decrease the simulation uncertainties. Inverse modeling can be used to estimate aquifer
parameters [11,21]. Generalized likelihood uncertainty estimation (GLUE) [22], Markov
chain Monte Carlo (MCMC), Bayesian recursive estimation (BaRE) [23], and random fields
(RF) are the most popular and practical methods for parametric uncertainty. Probabilistic
soil modeling is usually accomplished using layered non-homogeneous random fields,
which is far more complex than the basic random variable modeling needed in most other
disciplines of engineering [24]. The RF approach may often be modeled by a small number
of random variables, or even a single random variable expressing the RF’s averaging behav-
ior across a geographic domain [25]. RF theory can be applied to quantify the correlation
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between any two observations in a field. The first studies on applying random field theory
to geotechnical investigations emerged in the 1970s [26]), and have seen considerable de-
velopment [18,27,28]. In particular, the diffusive behaviour of the contaminant transport
process can be modeled using random fields [29,30].

Here the Random Field approach is applied to reproduce the uncertainty in the mod-
eled groundwater contamination in a physical tank experiment with a variable permeability
in its layers. The novel modeling approach uses an extended TPM (eTPM) input parameter
that describes the permeability of the layers. This is modeled as a realization of a Log-
Gaussian random fields for each layer. To obtain the uncertainty or posterior distribution
of the contamination, 500 permeability realizations are used to model the contamination
with the eTPM approach. With the resulting posterior distribution of the contamination,
confidence intervals are derived to describe the expected groundwater contamination for a
given confidence level. Once the tank experiment is validated a field scale simulation is
constructed to produce heterogenous permeability as could be expected in a shallow allu-
vial aquifer and compared with a homogenous permeability approach. The objectives of
this paper are to (i) characterize anisotropy regarding the permeability using random field
theory, (ii) develop the implementation of the eTPM approach coupled with a random field
to simulate contaminant transport, and (iii) verify the correlation between the developed
model and physical the sandbox experiment.

2. Materials and Methods

The TPM is initially presented in the materials and methods section, followed by
the eTPM, which is an extension of the TPM. The stabilized term for the contaminant
boundary condition is explained after the eTPM. Finally, the physical sandbox experiment
is introduced as a validation method.

2.1. Theory of Porous Media (TPM)

The most common multiphase homogenization strategies are the Biot theory (BT) [31],
the Theory of Mixtures (TM) [17], and the Theory of Porous Media (TPM) [13,14]. The
motivation for the theory and the introduction of homogenized quantities are the primary
differences between the models. While considering other mixture approaches, we employ
the Theory of Porous Media because it provides a framework that is both robust and
thermodynamically consistent. The authors have already been able to answer a number of
various engineering questions using single-scale macroscopic homogenization approaches,
such as in soil mechanics [19,20], material science [32], environmental engineering [33,34],
or continuum biomechanics [35]. While considering other mixture approaches, we employ
the Theory of Porous Media because it provides a framework that is both robust and
thermodynamically consistent. Similarly to mixture theory, the constituents are distributed
statistically over the control space, and the system is considered to be in ideal disorder. The
mixture approach is coupled with the concept of volume fractions, in which the total of the
volume fractions is considered to be equal to one. In contrast to the classical continuum-
mechanical description of one-component continua, the Theory of Porous Media considers
a mixture consisting of κ constituents ϕα with α = 1, . . . , κ.

2.2. Extended Theory of Porous Media (eTPM)

The extended TPM (eTPM) provides an approach in case that the immiscible macro-
scopic phases are additionally composed of different substances. For example, groundwater
can consist of an incompressible carrier phase and therein dissolved contaminants.

2.2.1. Immiscible Constituents

In the framework of the eTPM [36], it is assumed that all constituents of the overall
aggregate are to be in a state of ideal disarrangement and defined by a local representative
elementary volume (REV) [20]. The overall aggregate structure is then smeared over
the REV by the prescription of a volumetric averaging process leading to a statistical
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substitution of the original microstructure, cf. Figure 1. Hence, all geometrical and physical
quantities are defined as the statistical mean values of the occurring actual quantities. The
smearing procedure over REV leads to the biphasic superimposed and interacting continua
model, and the composition of the porous medium can be written as follows:

ϕ =
⋃

α

ϕα = ϕS
⋃

ϕGW, (1)

wherein ϕ refers to the multi-phase continuum porous medium and α ∈ {S, GW} denote its
individual constituents, namely soil and groundwater. The definition of the volume fraction
nα, cf. Equation (2) [15], for each phase at each point determines the local compositions of
the aggregate with

nα =
dvα

dv
. (2)

Therein, dvα and dv indicate the local ratios of the partial volume elements and the volume
element of the overall aggregate, respectively. As a consequence, the volume V of the
overall aggregate and the partial volumes vα of the constituent α are given by

V =
∫

BS

dv =
κ

∑
α

Vα , Vα =
∫

BS

nαdv. (3)

From Equation (3), the saturation condition can be written as follows:

κ

∑
α=1

nα(x, t) = nS + nGW = 1. (4)

This needs to be satisfied to prevent the development of vacant space during possible
deformation processes of the overall body BS. Based on the definition of the volume
fraction for each phase, a partial density ρα can be introduced by:

ρα =
dmα

dv
. (5)

The real density ραR relates the local mass dmα to the volume element dvα, whereas the
partial density ρα relates the same mass to the volume element dv. The partial density can
be concluded from Equation (3) and can be written as follows:

ρα = nαραR. (6)

2.2.2. Miscible Concentration

Incorporating the transport of miscible components, namely contaminants, the frame-
work of TPM needs an extension of TPM [20]. The composition of the porous medium
according to the eTPM can be read as follows:

ϕ =
κ

∑
α=1

ϕα =

[
κ

∑
α=1

ϕα +
ν

∑
β=1

ϕαβ

]
. (7)

Since the volume fraction of immiscible phases, including miscible components, change
minimally, therefore, the contribution of miscible contaminants in their carrier phase is
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considered by means of concentrations. Regarding this, the mixture molar concentration
and the phase molar concentration of the contaminants can be read as follows:

cβ =
dnβ

mol
dv

,

cαβ =
dnβ

mol
dvα ,

(8)

wherein dnβ = dmβ /Mβ
mol denotes the number of moles of a solute ϕαβ in a carrier phase

ϕα, dmβ and Mβ
mol are the molar mass and local mass of the miscible components ϕαβ,

respectively. Analogous to immiscible phases, the partial and real density of the miscible
contaminants can be defined as follows:

ραβR =
dnβ

mol
dv

= cαβMβ
mol,

ραβ =
dnβ

mol
dvα = nαcαβMβ

mol.

(9)

Herein, αβ denotes a contaminant in groundwater, namely GWC.

2.3. Field Equations and Constitutive Theory

A quasi-static, biphasic model with an incompressible solid phase and liquid phase,
including contaminant under isothermal conditions, was developed. The set of coupled
field equations, including the balance equations, namely balance of mass and momentum,
and restrictions associated with the volume fractions and interaction forces, is required to
calculate the unknown quantities. These equations can be read as follows [19,20]:

(
nS
)′

S
+ nS div x′S = 0,

(
nGW

)′
S
+ nGW div x′S + div

(
nGW wGWS

)
= 0,

(
nGW

)′
S
cGWC + nGW

(
cGWC

)′
S
+ div

(
jGWC

)
+ nGWcGWCdiv x′S = 0,

div TS +
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It is necessary to set the energy-preserving factors to zero in order to satisfy the entropy
inequality since they are conservative and do not increase the entropy of the system.
Following this, the constitutive relations for stresses and pressures, which act on the phases
and the contaminant, can be obtained:

TS = 2 ρS FS
∂ψS

∂CS
FT

S − nS λ I,

TGW = −nGW λ I + TGWC,

TGWC = −nGW cGWC λGWC I

(26)

with

λGWC = −ρ
GWC

nL
cGWC
mol

∂ψGWC

∂cGWC
mol

, (27)

λ can be translated as the reaction force between the solid and fluid phase identifying the
pore pressure [15]. Since the stress of the liquid is dominated by the effective pore water
pressure and TGWC is neglected. The evaluation of the dissipative terms of the entropy
inequality yields the following momentum production terms for the soil, water phase and
the contaminant with

p̂GW =λ grad nGW I− λGWC cGWC grad nGW I

− αwGWS wGWS + αwGWCSwGWCS,

p̂GWC =λGWC cGWC grad nGW I− αwGWS wGWS

− αwGWCS wGWCS.

(28)

The factors αwGWCS and αwGWS, which are material parameters, are restricted to a posi-
tive value.

2.6. The Chemical Potential as a Free Helmholz Energy Function for a Contaminant
The chemical potential µ is a useful quantity that is indispensable not only in chemistry

but also in physics, such as for the Helmholtz free energy function for a contaminant as a
miscible constituent. Furthermore, it is crucial for the understanding of many processes
dealt with in physics. Moreover, the chemical potential can reveal the direction in which
a phase transition proceeds. Also, the pressure and temperature dependence of a phase
transition can be calculated via the chemical potential. It is also needed for the description
of equilibria in which two driving forces compensate for each other. The chemical potential
for a constituent within a mixture can be defined as the gradient of the free energy of
the system with respect to a change in the number of moles of the constituent [19,20,37].
Accordingly, with respect to the miscible constituents considered here, the chemical potential
is defined as [38]

µαβ = R θ ln
cαβ

cαβ0
+ µαβ0 , (29)

wherein R [J/(mol K)] is the universal gas constant, θ [K], cαβ0 and µαβ0 denote the absolute
temperature, the reference concentration, and reference chemical potential, respectively.
The energy function for the solutes ϕαβ is given as a volume-specific energy such that

ψαβ = − 1

Mβ
molc

αβ
{Rθ

[
ln

(
cαβ

cαβ0

)
+ 1

]
+ µαβ0 }. (30)

S ( b) = −p̂S,

div TGW +
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with
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nL
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mol
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∂cGWC
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λ can be translated as the reaction force between the solid and fluid phase identifying the
pore pressure [15]. Since the stress of the liquid is dominated by the effective pore water
pressure and TGWC is neglected. The evaluation of the dissipative terms of the entropy
inequality yields the following momentum production terms for the soil, water phase and
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p̂GW =λ grad nGW I− λGWC cGWC grad nGW I
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p̂GWC =λGWC cGWC grad nGW I− αwGWS wGWS
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The factors αwGWCS and αwGWS, which are material parameters, are restricted to a posi-
tive value.

2.6. The Chemical Potential as a Free Helmholz Energy Function for a Contaminant
The chemical potential µ is a useful quantity that is indispensable not only in chemistry

but also in physics, such as for the Helmholtz free energy function for a contaminant as a
miscible constituent. Furthermore, it is crucial for the understanding of many processes
dealt with in physics. Moreover, the chemical potential can reveal the direction in which
a phase transition proceeds. Also, the pressure and temperature dependence of a phase
transition can be calculated via the chemical potential. It is also needed for the description
of equilibria in which two driving forces compensate for each other. The chemical potential
for a constituent within a mixture can be defined as the gradient of the free energy of
the system with respect to a change in the number of moles of the constituent [19,20,37].
Accordingly, with respect to the miscible constituents considered here, the chemical potential
is defined as [38]

µαβ = R θ ln
cαβ

cαβ0
+ µαβ0 , (29)

wherein R [J/(mol K)] is the universal gas constant, θ [K], cαβ0 and µαβ0 denote the absolute
temperature, the reference concentration, and reference chemical potential, respectively.
The energy function for the solutes ϕαβ is given as a volume-specific energy such that

ψαβ = − 1

Mβ
molc

αβ
{Rθ

[
ln

(
cαβ

cαβ0

)
+ 1

]
+ µαβ0 }. (30)

GW ( b) = −p̂GW,

div TGWC +
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GWC
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cGWC
mol

∂ψGWC

∂cGWC
mol

, (27)

λ can be translated as the reaction force between the solid and fluid phase identifying the
pore pressure [15]. Since the stress of the liquid is dominated by the effective pore water
pressure and TGWC is neglected. The evaluation of the dissipative terms of the entropy
inequality yields the following momentum production terms for the soil, water phase and
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2.6. The Chemical Potential as a Free Helmholz Energy Function for a Contaminant
The chemical potential µ is a useful quantity that is indispensable not only in chemistry

but also in physics, such as for the Helmholtz free energy function for a contaminant as a
miscible constituent. Furthermore, it is crucial for the understanding of many processes
dealt with in physics. Moreover, the chemical potential can reveal the direction in which
a phase transition proceeds. Also, the pressure and temperature dependence of a phase
transition can be calculated via the chemical potential. It is also needed for the description
of equilibria in which two driving forces compensate for each other. The chemical potential
for a constituent within a mixture can be defined as the gradient of the free energy of
the system with respect to a change in the number of moles of the constituent [19,20,37].
Accordingly, with respect to the miscible constituents considered here, the chemical potential
is defined as [38]

µαβ = R θ ln
cαβ

cαβ0
+ µαβ0 , (29)

wherein R [J/(mol K)] is the universal gas constant, θ [K], cαβ0 and µαβ0 denote the absolute
temperature, the reference concentration, and reference chemical potential, respectively.
The energy function for the solutes ϕαβ is given as a volume-specific energy such that

ψαβ = − 1

Mβ
molc

αβ
{Rθ

[
ln

(
cαβ

cαβ0

)
+ 1

]
+ µαβ0 }. (30)

GWC ( b) = −p̂GWC,
(

nS
)′

S
+
(

nGW
)′

GW
− grad nGW wGWS = 0,

κ

∑
α=1

p̂α = p̂S + p̂GW = 0,

nS + nGW = 1.

(10)

Herein, wGWS = x′GW − x′S denotes the relative velocity. In addition to the kinematics
and field equations, constitutive relations are required so as to complete the system of
equations. These constitutive relations can be obtained by the evaluation of the mixture
entropy inequality, which can be expressed as follows:

κ

∑
α=1

ρα(ψα)′α + ρ̂α

(
ψα − 1

2
x′α · x′α

)
+ Tα ·Dα − p̂α · x′α > 0, (11)

wherein ψα = εα − θηα denotes the Helmholtz free energy with the specific entropy ηα

and the internal energy εα of ϕα. The dependence of the Helmholtz free energies ψα is
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reduced and limited in order to maintain the complication of a comprehensive assessment
as follows:

ψS = ψS(CS),

ψGW = ψGW(−),
ψGWC = ψGWC

(
cGWC

)
,

(12)

wherein, ψS, ψGW, and ψGWC are Helmholtz free energy functions for soil, groundwater
and contaminant, respectively. CS and cGWC denote the right Cauchy–Green deformation
tensor of soil and contaminant concentration.

2.4. Evaluation of the Entropy Inequality

The non-isothermal process such as the transport of the contaminant in the groundwa-
ter through the soil in the framework of the eTPM can depend on the temperature, volume
fraction, density, deformation, actual velocity, and their appropriate gradients as follows:

V = {θα, grad θα, nα, grad nα, ρα, grad ρα, Fα, Gradα Fα, x́α,

Gradα x́α, Xα, cGWC}.
(13)

The temperature θα describes the thermal state of each constituent ϕα. The volume fraction
nα, real density ραR and deformation gradient Fα, as well as their gradients, define the
deformation of the constituents. x́α and Gradα x́α have been utilized in order to describe the
viscosity effect. The initial position Xα is required in order to describe the inhomogeneous
material behaviour. The following set of undetermined response functionsR, which cannot
be determined from the balance equations with the knowledge of the full state of motion,
can be read as

R = {ψS, ψGW, ψGWC, TS, TGW, TGWC, p̂GW, p̂GWC}, (14)

wherein, TS, TGW, TGWC denote the Cauchy stress tensor for soil, groundwater and contam-
inant, respectively. p̂GW, p̂GWC are the direct momentum production of the groundwater
and contaminant. Since there is no mass exchange between soil and groundwater and the
real density of the soil is constant, the mass balance of the soil can be reduced as follows:

(nS)′S + nS div x′S = 0, (15)

and the actual solid volume fraction can be read as

nS = nS
0S(det FS)

−1, (16)

where nS
0S denotes the initial volume fraction of the soil. Utilizing the saturation condition,

which means there is any vacant space in the porous body [15], the volume fraction of the
fluid can be read as

nGW = 1− nS
0S(det FS)

−1. (17)

Consequently, the volume fraction of phases and their respective gradients can be elim-
inated from the set of independent process variables. Furthermore, assuming the same
temperature for both phases, the temperature and its gradient were eliminated from the
process variables. Based on the material frame indifference (material objectivity), which
indicates that a physical phenomenon should not depend on the position of observation,
the velocity x′α and its respective gradient Gradα x′α are replaced by the material frame in-
dependent seepage velocity and the symmetric parts of the velocity gradients, respectively.
Furthermore, the deformation gradient FS has to be replaced by the right Cauchy-Green
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deformation tensor CS since FS is also frame-dependent. Consequently, in order to describe
the contaminant transport in groundwater through the soil, the set of process variables is
reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality

In order to consider the restrictions from the saturation condition within the thermo-
dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(

nS + nGW
)′

S
= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,

(nGW)′GW = −nGW DGW · I.
(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(

nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(

cGWC
)′

GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2
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Following this, the constitutive relations for stresses and pressures, which act on the phases
and the contaminant, can be obtained:

TS = 2 ρS FS
∂ψS

∂CS
FT

S − nS λ I,

TGW = −nGW λ I + TGWC,

TGWC = −nGW cGWC λGWC I

(26)

with

λGWC = −ρ
GWC

nL
cGWC
mol

∂ψGWC

∂cGWC
mol

, (27)

λ can be translated as the reaction force between the solid and fluid phase identifying the
pore pressure [15]. Since the stress of the liquid is dominated by the effective pore water
pressure and TGWC is neglected. The evaluation of the dissipative terms of the entropy
inequality yields the following momentum production terms for the soil, water phase and
the contaminant with

p̂GW =λ grad nGW I− λGWC cGWC grad nGW I

− αwGWS wGWS + αwGWCSwGWCS,

p̂GWC =λGWC cGWC grad nGW I− αwGWS wGWS

− αwGWCS wGWCS.

(28)

The factors αwGWCS and αwGWS, which are material parameters, are restricted to a posi-
tive value.

2.6. The Chemical Potential as a Free Helmholz Energy Function for a Contaminant
The chemical potential µ is a useful quantity that is indispensable not only in chemistry

but also in physics, such as for the Helmholtz free energy function for a contaminant as a
miscible constituent. Furthermore, it is crucial for the understanding of many processes
dealt with in physics. Moreover, the chemical potential can reveal the direction in which
a phase transition proceeds. Also, the pressure and temperature dependence of a phase
transition can be calculated via the chemical potential. It is also needed for the description
of equilibria in which two driving forces compensate for each other. The chemical potential
for a constituent within a mixture can be defined as the gradient of the free energy of
the system with respect to a change in the number of moles of the constituent [19,20,37].
Accordingly, with respect to the miscible constituents considered here, the chemical potential
is defined as [38]

µαβ = R θ ln
cαβ

cαβ0
+ µαβ0 , (29)

wherein R [J/(mol K)] is the universal gas constant, θ [K], cαβ0 and µαβ0 denote the absolute
temperature, the reference concentration, and reference chemical potential, respectively.
The energy function for the solutes ϕαβ is given as a volume-specific energy such that

ψαβ = − 1

Mβ
molc

αβ
{Rθ

[
ln

(
cαβ

cαβ0

)
+ 1

]
+ µαβ0 }. (30)

S FS
∂ψS

∂CS
FT

S + nS
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

I}

+ DGW · {TGW + nGW
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

I + nGW cGWC
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

GWC I}
+ DGWC · {TGWC + nGWcGWC
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

GWCI}

+
(

cGWC
)′

GWC
{−ρGWC ∂ψGWC

∂cGWC −
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

GWC nGW}
+ Dis ≥ 0,

(24)
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with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

It is necessary to set the energy-preserving factors to zero in order to satisfy the entropy
inequality since they are conservative and do not increase the entropy of the system.
Following this, the constitutive relations for stresses and pressures, which act on the phases
and the contaminant, can be obtained:

TS = 2 ρS FS
∂ψS

∂CS
FT

S − nS
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

I,

TGW = −nGW
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

I + TGWC,

TGWC = −nGW cGWC
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

GWC I

(26)

with

λGWC = −ρGWC

nL cGWC
mol

∂ψGWC

∂cGWC
mol

, (27)

λ can be translated as the reaction force between the solid and fluid phase identifying the
pore pressure [15]. Since the stress of the liquid is dominated by the effective pore water
pressure and TGWC is neglected. The evaluation of the dissipative terms of the entropy
inequality yields the following momentum production terms for the soil, water phase and
the contaminant with

p̂GW =λ grad nGW I−
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CS since FS is also frame-dependent. Consequently, in order to describe the contaminant
transport in groundwater through the soil, the set of process variables is reduced to

S = {CS, GradS CS, wGWS, DGW, cGWC}. (18)

2.5. Adaption of the Entropy Inequality
In order to consider the restrictions from the saturation condition within the thermo-

dynamical process, the Clausius-Planck inequality has to be enriched by the time derivative
of this condition with respect to the solid deformation, which multiplies with a Lagrange
multiplier λ as follows [33,37]:

λ
(
nS + nGW

)′
S

= 0. (19)

From the the mass balances for the soil ϕS and groundwater ϕGW, the time derivatives of
their volume fractions can be read as

(nS)′S = −nS DS · I,
(nGW)′GW = −nGW DGW · I.

(20)

Considering the relation

(·)′L = (·)′S + grad (·) ·wGWS, (21)

Equation (10) can be rewritten as

λ
(
nS DS · I + nGW DGW · I + grad (nGW) ·wGWS

)
= 0. (22)

The seepage velocity wGWS mainly depends on the permeability kD, which is assumed to
be isotropic in the model formulation. However, utilizing a random field model enables to
consider representatively anisotropic properties regarding permeability, cf. Random field
method. The second adaptation is accomplished by inserting another Lagrange multiplier
λGWC for the balance of mass of the contaminant, which enlarges the entropy inequality.
This multiplier can be introduced as follows:

− λGWC cGWC DGW · I + λGWC nGW
(
cGWC

)′
GWC

+ λGWC cGWC grad nGW ·wGWCGW

+ λGWC nGWcGWC DGWC · I = 0.

(23)

Conclusively, the modified entropy inequality reads

DS · {TS − 2 ρS FS
∂ψS

∂CS
FT

S + nS λ I}

+ DGW · {TGW + nGW λ I + nGW cGWC λGWC I}
+ DGWC · {TGWC + nGWcGWCλGWCI}

+
(
cGWC

)′
GWC

{−ρGWC ∂ψGWC

∂cGWC
− λGWC nGW}

+ Dis ≥ 0,

(24)

with the dissipation mechanism

+Dis =− wGWS · {p̂GW + λgrad nGW − λGWCcGWCgrad nGW}
− wGWCS · {p̂GWC + λGWCcGWCgrad nGW} ≥ 0.

(25)

GWC cGWC grad nGW I

− αwGWS wGWS + αwGWCSwGWCS,

p̂GWC =λGWC cGWC grad nGW I− αwGWS wGWS

− αwGWCS wGWCS.

(28)

The factors αwGWCS and αwGWS, which are material parameters, are restricted to a posi-
tive value.

2.6. The Chemical Potential as a Free Helmholz Energy Function for a Contaminant

The chemical potential µ is a useful quantity that is indispensable not only in chemistry
but also in physics, such as for the Helmholtz free energy function for a contaminant as a
miscible constituent. Furthermore, it is crucial for the understanding of many processes
dealt with in physics. Moreover, the chemical potential can reveal the direction in which
a phase transition proceeds. Also, the pressure and temperature dependence of a phase
transition can be calculated via the chemical potential. It is also needed for the description of
equilibria in which two driving forces compensate for each other. The chemical potential for
a constituent within a mixture can be defined as the gradient of the free energy of the system
with respect to a change in the number of moles of the constituent [19,20,37]. Accordingly,
with respect to the miscible constituents considered here, the chemical potential is defined
as [38]

µαβ = R θ ln
cαβ

cαβ
0

+ µ
αβ
0 , (29)
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wherein R [J/(mol K)] is the universal gas constant, θ [K], cαβ
0 and µ

αβ
0 denote the absolute

temperature, the reference concentration, and reference chemical potential, respectively.
The energy function for the solutes ϕαβ is given as a volume-specific energy such that

ψαβ = − 1

Mβ
molc

αβ
{Rθ

[
ln

(
cαβ

cαβ
0

)
+ 1

]
+ µ

αβ
0 }. (30)

2.7. Stresses and Interaction Forces

In the following, the Helmholtz free energy functions for soil and contaminant are
assumed:

ψS =
1

ρSR
0

{
1
2

λS(ln JS)
2 − µS(ln JS) +

1
2

µS(tr
(
CCS

)
− 3
)}

,

ψGWC = − 1
MC

mol cGWC
{R θ

[
ln
(

cGWC

cGWC0

)
+ 1
]
+ µGWC

0 },
(31)

wherein λS and µS denote Lamé constants, R indicates the general gas constant, θ is
indicative of the absolute temperature of the mixture, µGWC

0 and cGWC
0 are representative

of reference chemical potential and reference concentration, respectively. The outcome of
these assumptions are the following stress relations:

TS =
1
JS

(
λS ln JSI + µSKS

)
− nSλI,

TGW = −nGWλI + TGWC,

TGWC = −nGWµGWC I.

(32)

2.8. Numerical Treatment

Using standard Galerkin finite element method, the weak formulations of the local
balance equations are developed [19,20,37]. The weak counterparts of the strong local form
of the mechanical balance equations are developed by integration and multiplication of the
strong form with the following independent weighting functions:

W = {δuS, δpGWR, µGWC}. (33)

Having weighted and applied the product rule and the Gaussian integral theorem, the
weak forms of the momentum balance equations are read as follows:

• Balance of momentum for the mixture
∫

BS

(
S,GW,GWC

∑
α

Tα

)
· grad δuS dv−

∫

BS

(
S,GW,GWC

∑
α

ρα

)
b · δuS dv

=
∫

∂BS

(t · δuS)da.

(34)

• Balance of mass for the mixture
∫

BS

nGW wGWS · grad δpGWR dv−
∫

BS

[(
nGW

)′
S
+ nGWtr DS

]
δpGWR dv

=
∫

∂BS

nGWwGWS · n δpGWR da.
(35)
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• Balance of mass for the contaminant
∫

BS

(
nGWcGWC

)′
S
δµGWC dv−

∫

BS

jGWC · grad δµGWC dv

+
∫

BS

nGWCGWCtr DSδµGWC dv =
∫

∂BS

jGWC · n δµGWCda.
(36)

2.9. Stabilized Boundary Conditions for Contaminant Transport

In this section, the contaminant flux out of the given system has been addressed. The
major issue in this regard is the correspondence between the boundary conditions for the
contaminant and the flux of the contaminant carrying groundwater. At the considered
geometry boundaries, cf. Figure 2, representing a flux for the groundwater, the contami-
nant flux should correspond to the efflux of groundwater carrying the contaminants. By
defining static boundary conditions for the contaminant numerically at the flux bound-
ary, an erroneous gradient of the respective contaminant is achieved through the fluent
boundary elements. This issue exists both for, Dirichlet boundary conditions, where the
solute concentration should be prescribed, and Neumann boundary conditions, where the
contaminant concentration flux should be determined. By this erroneous gradient that
manifests only within finite elements placed right at the boundary, instabilities of the FE
simulation and disturbances of the contaminant transport simulation are obtained. Hence,
an updating algorithm is required for the contaminant boundary conditions to approximate
the solute boundary condition. Initiating from the initial or static boundary value, the
dynamic boundary value is updated by the considered explicit Euler algorithm at the finite
element nodes on the Dirichlet boundary followed during each time period by an expected
difference in the boundary values. Owing to the explicit Euler approximation, the boundary
value is oriented by the solution from the actual time period as follows:

cGWC
t+1 = cGWC

t + ∆cGWc, ∆cGWC(cGWC
in , cGWC

t ), (37)

wherein cGWc
in represents the contaminant concentration at the FE nodes of the boundary

element opposite to the outflow boundary. By selecting ∆cGWc = (cGWc − cGWc
t )/2, an

adequate stabilization is indicated for the erroneous gradient with a smooth gradient within
the elements ahead of the outflow boundary [39,40].

Figure 2. Depiction of stabilized contaminant concentration gradient at the outflow.

2.10. Random Field Method

It is assumed that a soil layer property (e.g., permeability) typically has values in the
interval [a, b] with a < b. Instead of presuming that the values of this property are equal in
each point x of the layer the values are assumed as realizations of a Log-Gaussian random
field. A random field is a family of random variables at locations x ∈ D [41].

{
Z(x) | x ∈ D ⊆ Rd, d ≥ 1

}
(38)

If the distribution of the random vector Z = (Z(x1), . . . , Z(xn))
T is multivariate Gaussian

for arbitrary locations x1, . . . , xn, the field is called a Gaussian random field. Hence, this
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field can be fully characterized through the expectation µ̆(x) = E[Z(x)] and the covariance
function κ̆(x, x′) = Cov[Z(x), Z(x′)] with x, x′ ∈ D. In the following, consider a Gaussian
random field with constant expectation µ̆(x) = µ̆ ∀ x ∈ D and the covariance function

κ̆
(
x, x′

)
= σ̆2ρ̆

(
x− x′, Ψ

)
∀x, x′ ∈ D (39)

κ̆
(
x, x′

)
= σ̆2ρ̆

(
x− x′, Ψ

)
∀x, x′ ∈ D (40)

that only depends on the constant process variance σ̆2 and the correlation function ρ̆.
The correlation function determines the dependency structure of the random field values
through the distance between the points.

A well known correlation function is the exponential correlation function

ρ̆
(
x− x′, Ψ

)
= exp

(
−‖x− x′‖

Ψ

)
(41)

with a single-scale parameter Ψ and where ‖x− x′‖ denotes the Euklidian distance between
x and x′. Figure 3 shows how the scale parameter affects the correlation of two random
field variables Z(x) and Z(x′) depending on their distance ‖x− x′‖. For small values of
Ψ, the correlation converges very fast to zero. Hence, variables with a distance greater
than 5 are almost uncorrelated for Ψ = 1. For higher values than Ψ = 8, the correlation
function converges much slower, but the moderate and high correlation only occurs be-
tween variables located within a distance of 8 or smaller. For the random field model of
permeability values, a scale of 8 is chosen to prevent sudden value changes in the random
field realizations. To achieve that, the realized values z? are in the provided interval [a, b],
the mean is determined as

µ̂ =
1
2
(log(a) + log(b)) (42)

and the standard deviation is determined as

σ̂ =
1
k
(µ̂− log(a)) (43)

with k ∈ N. For k = 3 (as chosen here), the realized values z of a Gaussian distribution
with expectation µ̂ and standard deviation σ̂ are included in the interval [µ̂− 3σ̂, µ̂ + 3σ̂] =
[log(a), log(b)] with a probability of 0.99 . Hence, the values of the permeability z? = exp(z)
are in [a, b] with the same probability (cf. Figure 4).

Figure 3. Exponential correlation functions for different scale values Ψ.
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Thus, to obtain the permeability values for n locations of a single layer, a Gaussian
random field with the input parameters scale ψ = 8, mean µ = µ̂ and variance σ2 = σ̂2

is realized on the logarithmized value interval [log(a), log(b)] and the resulting values
z1, . . . , zn are transformed as z?1 = exp(z1), . . . , z?n = exp(zn) in order to come back to the
original scale with the interval [a, b]. The calculations are performed using the statistical
open source software R with the package RandomFields [42]. For the soil model with three
layers, the Gaussian random field parameters are listed in Table 1.

Figure 4. Density function of the Log-Gaussian distribution with µ̂ = −17.26 and σ̂ = 0.38. The
probability (hatched area) of permeability values in the interval [a, b] =

[
10−8, 10−7] amounts to 0.99.

Table 1. Gaussian random field parameters for the three soil layers.

Soil Layer Height Value Interval [a, b] µ σ Ψ

3 15
[
10−7, 10−6] −14.97 0.38 8

2 20
[
10−6, 10−5] −12.66 0.38 8

1 15
[
10−8, 10−7] −17.27 0.38 8

2.11. Physical Sandbox Experiment

The schematic of the physical sandbox experiment is illustrated in Figure 5. The
experiment was conducted in a plexiglass tank [1.5 × 0.38 × 0.10 m]. At each end of
the sandbox are constant head tanks which are separated from the rest of the box by one
impermeable wall and one perforated mesh filter to keep the sand out of the head tanks.
Three different layers of sand were added to the tank (Figure 5). The bottom layer [15 cm] is
low permeable sand (3.6 × 10−6 m/s), the middle layer [12 cm] is high-permeability sand
2.75 × 10−4 m/s) and the top layer [8 cm] is low-permeability sand (3.6 × 10−6 m/s). The
sand was compacted according to our earlier work [2,43]. During the compaction, the fine
sand was saturated in order to achieve proper compaction and avoid any leakage of the
tracer. A peristaltic pump (Watson Marlow) was used for circulating water in the system.
The pump can deliver a maximum of 41 [L/h]. The characteristics of the two different
sizes of sand, are given in Table 2. Hydraulic conductivity was measured by using the
constant-head method [39,44]. The tank was pre-flushed to remove fines, and a continuous
flow state was established for two hours through a peristaltic pump. After the saturation
of all the layers, the injection of the tracer (potassium permanganate) was initiated by
supplying 15 [L] with a rate of 268 [mL/min] from the tank inlet. The flow of the tracer
was taken into account after the injection in order to maintain the same steady-state flow
of the pre-flushed stage. The key properties of potassium permanganate in this study
are the extensive use in the water treatment industry and the intensely purple color that
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permits the visual observation of the distribution during the entire process. The tracer was
released through a 9 [cm] line source of a 3 [mm] diameter tube located in the middle, high
permeability sand layer. Upon release through the line source at the middle layer, the tracer
was expected to preferentially migrate through the more permeable medium sand, with
the fine sand ensuring tracer containment within the middle layer. The experiment was
successfully completed when all permeable layers were fully saturated by the tracer. The
monitoring of the tracer was accomplished by photo shoots and the measurement of total
dissolved solids (TDS) using a conductivity meter at observation points within the tank to
calculate permanganate concentration during the progress of the experiment (Figure 5).
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of our numerical study is to understand the effect of permeability heterogeneity on the
contaminant fate. A multi-layer contaminant transport scenario with varying permeabilities
is simulated, similar to what could be expected with rapidly changing shallow alluvial
sediments. The aquifer domain is made of rectangles with dimensions of 2000 [m] by
100 [m] , which are heterogeneous regarding permeability, cf. Figure 5. The simulation was
performed for 300 days, with a time step of 0.001 days . The simulation has been repeated
for 500 different realizations of permeability in the aquifer domain. The initial contaminant
concentration is c0 = 10 [mg/L] on the left-hand side of the aquifer.
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3.1. Validation with the Physical Sandbox Experiment

Table 3 compared parameters between simulation and physical sandbox experiment.
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Figure 5. Schematic representation of the physical tank test (a), the 3 constructed layers and the
sampling ports on tank (b).

Table 2. The properties of the different sands used in the tank experiments.

Size (mm)
Hydraulic

Porosity (%)
Hydraulic

Conductivity (m/sec) Gradient (-)

Sand 0.075–0.5 3.579× 10−6 21 −0.0003

High permeability Sand 0.5–2.36 2.754× 10−4 43 −0.0005

2.12. Field Scale Simulation

The assessment of the effectiveness of the combined eTPM and Random Fields to
quantify the understanding of the effect of permeability on the contaminant transport
required the analysis of the plume distribution in heterogenous systems. The purpose
of our numerical study is to understand the effect of permeability heterogeneity on the
contaminant fate. A multi-layer contaminant transport scenario with varying permeabilities
is simulated, similar to what could be expected with rapidly changing shallow alluvial
sediments. The aquifer domain is made of rectangles with dimensions of 2000 [m] by
100 [m] , which are heterogeneous regarding permeability, cf. Figure 5. The simulation was
performed for 300 days, with a time step of 0.001 days . The simulation has been repeated
for 500 different realizations of permeability in the aquifer domain. The initial contaminant
concentration is c0 = 10 [mg/L] on the left-hand side of the aquifer.

3. Results and Discussion
3.1. Validation with the Physical Sandbox Experiment

Table 3 compared parameters between simulation and physical sandbox experiment.
Figure 6 represents the comparison between numerical and experimental results in

terms of the permanganate plume distribution in a 3-layer aquifer system of varying
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permeability. As can be seen in the Figure 6, the simulation closely matches the experiment
except that in the simulation, the interface is blurred because of numerical dispersion, which
was to minimize by a fine mesh discretization. This matching indicates the effectiveness of
the eTPM approach. To compare the measured permanganate concentration in the physical
sandbox test and the eTPM approach, 19 sampling points have been considered in the
middle layer of the soil, cf. Figure 5. Figure 7 compares the measured permanganate
concentration and eTPM simulation for the explained three sampling points (in [cm]),
P6(19.5,18), P3(78,18) and P10(67,21) with respect to the origin, which is located at the
bottom corner of the input end of the tank. The total dissolved solids (TDS) were measured
for the calculation of permanganate concentration every 5 min after injection. The average
absolute difference between measured and predicted concentrations is 5.21%. The mean
square error (MSE) equals 78 ppm. The percentage difference between the measured and
predicted concentrations shows that the results are in good agreement with the maximum
percentage error between experimental and numerical models of 12.3% at one sampling
point. In general, the measured and predicted contaminant concentrations were in good
agreement in all observation points at different times. The differences at some time steps
can be explained by the movement of the mass, the compression in specific points, and the
dilution effect caused by the hydrodynamic dispersivity being smaller on this scale than in
real conditions.

Table 3. Used parameters for simulation and physical sandbox experiment.

Parameter Simulation Physical Sandbox

Number of layers 3 3

Height of layers (m) 50 50

Permeability (m/sec) 3.3× 10−6–2.6× 10−4 3.5× 10−6–2.7× 10−4

Grain size distribution (mm) - 0.075–2.36

Porosity (%) - 21–43

Flow rate (lt/h) 16 16

Figure 6. The comparison between the simulation (left) and experiment (right) for a three-layer
physical sandbox. The color bar shows the permanganate concentration.
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Figure 7 compares the measured and predicted arrival time of the permanganate. The
average absolute difference between experimental and numerical results equals 7.21%. The
mean square error equals 6.5 min.

Figure 7. The comparison between measured and eTPM predicted permanganate (a) concentration
(b) arrival time.

3.2. Transport of Contaminant in Groundwater through Three-Layer Heterogeneous
Alluvial System

Figure 8 is a field scale example of permeability as a realization of the three Log-
Gaussian random fields for the three layers of differing permeability in a shallow alluvial
aquifer. Such systems such as river terrace gravels can show high heterogeneity of perme-
ability over small distances. The output is an example of a model subsection measuring
100 m long and 50 m deep with the deepest layer 1 having permeabilities ranging from
2× 10−7 [m/s] to 6× 10−7 [m/s] (low permeability zone); layer 2 having permeabilities
ranging from 2× 10−6 to 8× 10−6 [m/s] (high permeability zone); and the shallowest layer
3 having permeabilities ranging from 2× 10−8 to 1× 10−7 [m/s] (lowest permeability zone).
This random field realization of permeability when coupled with the eTPM contaminant
transport gives very different output when compared with a modelled homogenous 3-layer
aquifer permeability . Figure 9 presents the concentration color map of the considered ge-
ometry, which is located (in [m]) between (75,20) and (125,30), (150,20) and (200,30), (225,20)
and (275,30), and (300,20) and (350,30) after 128 days for one realization of permeability
shown in Figure 8.

In the homogeneous situation, the plume must conform to an idealized wedge-like
shape; however, in the heterogeneous state, the plume is completely deformed. Yet, when
the contaminant flows over the low heterogeneous permeable zone, there is no correspond-
ing distortion of the wedge in the overall geometry of the system. This Anisotropy or spatial
correlation in the permeability distribution results in different concentration thresholds
along the x- or y-axis and, consequently, shifts in the quantities such as seepage velocity.
Figure 10 demonstrates the contaminant concentration distribution for the area between
(85,21) and (90,25) for different times indicating the random field’s good performance in
the small-scale case. Because the system’s preferred groundwater paths are blocked by
zones of low permeability caused by spatially heterogeneous permeability, the importance
of viscous dissipation effects can increase.
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Figure 8. Permeability as realization of the three Log-Gaussian random fields for the three layers
(here: a 50 meters section of the modelled soil). The colors represent the realized permeability values
(cf. color legend).

Figure 9. The distribution of the contaminant concentration at different region of the aquifer at
t = 128 days.

Figure 11 demonsrates the histogram of the average contaminant concentration at
t = 100 days and the arrival time of the contaminant in this area calculated for 500 realiza-
tions for permeability. The contaminant arrival time could be affected strongly by random
realizations. The breakthrough time is generally shorter than the homogeneous condition.
Using the 75% confidence interval (CI), the average contaminant concentration shows
4.4% variation from the average values the considered area and 8.9% in the case of a 95%
confidence interval. Utilizing the 95% confidence interval, the contaminant arrival time
indicates 7.2% from average arrival time.
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Figure 10. The distribution of the contaminant concentration in the area located between (85,21) and
(90,25) at different times.

From an engineering perspective, random fields (RFs) are an appropriate method for
capturing the effects of soil-specific uncertainty on numerical models [18,27,45]. This study
demonstrates the compatibility of both methods with regard to numerical stability of the
multiphase model as well as manageability of their respective requirements. The method
provides significant information as a decision-making tool for end-users, who can, e.g.,
formulate more precise requirements for site investigations and scientific purposes. A major
advantage is that the information is available with just one single run of the simulation and
the universal applicability of the method. Another advantage is the accurate approximation
of the solution space and the efficient computation time. The disadvantage of the model
lies in algorithmic implementation.

Figure 11. Histograms of (a) the average contaminant concentration at t = 140 days, (b) contaminant
arrival time for the region located between (100, 15) and (150, 100).
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4. Conclusions

It is challenging to develop a realistic numerical groundwater model to represent a site
condition with complex geological conditions such as variation in permeability. This paper
focuses on the impact of the permeability distribution on contaminant transport, as it is the
significant parameter controlling contaminant transport after hydraulic gradient. Here, the
combined Random Field eTPM numerical model has been verified with a physical sandbox
experiment. The simulation has been performed on a rectangular geometry, consistent with
a non-unidirectional permeability gradient along x- or y-axis, the model can be used for a
real-world example of a heterogeneous contaminated scenario e.g., contaminant flow in
river terrace or alluvial gravels. The simulation results are in good agreement with the
experimental results, in which the maximum percentage difference between measured
and predicted concentration is less than 12%. In our previous study, the contaminant
transport was modeled on the basis of two different approaches, namely, eTPM and CFD.
The contaminant concentration at two points of the the microfluidic chip was compared
with the numerical results. Although there was no significant difference between the
measured contaminant concentration and the predicted one, eTPM was in better agreement
with the experiment [20]. The combined eTPM and random field method to investigate the
effect of permeability on the contaminant transport allowed the interpretation of essential
characteristics and changes in the contaminant concentration and arrival time. This novel
numerical approach has demonstrated itself a valuable tool to reduce uncertainty associated
with contaminant transport in heterogenous porous media. This approach can enhance
the presented model, including a macroscale and a microscale. Furthermore, the chemical
reactions between soil and contaminant and oxidant and contaminant can be considered.
The primary limitation of the three-layer experimental setup is that it does not facilitate a
physical sandbox aquifer with high-resolution hydraulic tomography characterization.
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