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Abstract: Broader adoption of timber construction is a strategy for reducing negative greenhouse
gas (GHG) emissions created by the construction industry. This paper proposes a novel solid timber
building envelope that uses computational design and digital fabrication to improve buildings’
energy performance. Timber beams are sawn with deep slits that improve thermal insulation and are
milled with various joints for airtight, structural connections. To minimize embedded energy and
to simplify disposal, the envelope is assembled without adhesives or metal fasteners. The building
envelope is evaluated for thermal resistance and airtightness, and fabrication is evaluated for duration
and power output during sawing. Finally, a Lifecycle Assessment (LCA) is carried out. The Global
Warming Potential (GWP) is compared to that of other wood envelope systems with similar thermal
conductance. Compared to other timber constructions with similar building physics properties, the
proposed system showed lower GWP values (−15.63 kg CO2 eq./m2 construction). The development
and analysis demonstrate the potential to use digitally controlled subtractive manufacturing for
improving the quality of solid timber to achieve higher environmental performance in building
envelopes. However, further design and fabrication optimizations may be necessary to reduce
required materials and production energy.

Keywords: timber construction; sustainable construction; computational design; digital fabrication;
LCA; building physics

1. Introduction

Humanity is currently faced with the challenge of mitigating global climate change,
whose impact has manifested in a myriad of disasters from heat waves to flooding to
wildfires. We must act quickly to address these symptoms of and, more importantly, the
underlying cause of climate change, which is, above all, the insulating effect of greenhouse
gas (GHG) emissions, in order to limit the global warming to +2 ◦C [1]. The construction
industry, tasked with the essential job of building for habitation, commerce, manufacturing,
and cultural life, as well as the underlying infrastructure, is responsible for the largest
single share of GHG emissions in the world, at 37% in 2021, and the manufacturing of
construction materials such as steel, concrete, and glass accounts for 11% of total global
GHG emissions [2]. By substituting these materials with other, less energy- and GHG-
intensive materials, the building industry could significantly reduce its contribution to
global warming.

Wood has strong potential to reduce GHG emissions by replacing more energy-
intensive and highly polluting materials [3–5]. This is the result of multiple effects related
to wood production and utilization as a substitute for other materials.

The Global Warming Potential (GWP) of a timber element would include all of the
emissions from forestry, harvesting, transportation, and processing minus the expected
GHG emissions from the equivalent processes for a concrete or steel building system that
would otherwise be used.
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In the case of wood building materials, the resource extraction usually results in a
net negative GWP process, because the biogenic carbon sequestered by tree growth is
higher than the emissions from the machinery and transportation required for harvesting
and production [6,7]. End-of-life processes also play a large role in the environmental
impact of timber buildings. Reclaimed materials from demolished buildings are typically
either reused, recycled, or disposed of in landfills, and usually undergo a mix of processes
depending on the specific material, infrastructure, and regional industrial practices. For
any material, the reuse of entire construction elements represents the most sustainable
end-of-life process. In the case of timber elements, there is a variety of recycling options.
Large elements can be sawn down to smaller elements for furniture or other smaller-scale
uses, and wood can be mechanically reduced to produce composite building products, or it
can be turned into wood pellets and burned for energy. The latter recycling option releases
the sequestered carbon back into the atmosphere, but has the benefit of substituting for
fossil fuels, which would otherwise be consumed [8].

Overall, the collection of lifecycle information, and the subsequent assessment of
environmental impact, will be more and more fundamental for ensuring the sustainability
of timber construction. In this regard, Lifecycle Assessment (LCA) is a useful tool, which
benefits from widespread acknowledgment and a standardized framework (ISO 14040–ISO
14044) [9,10]. The integration of lifecycle environmental assessment in planning processes
supports decision making by identifying and quantifying trade-offs between technical and
environmental requirements and design optimization possibilities [11].

This paper details a novel construction system, the Mono-Material Wood Wall (MMWW),
that uses digitally controlled subtractive manufacturing to add functional performance to
wood and eliminate other materials with the goal of increasing the sustainability relative to
industry-standard construction methods. The building system uses solid timber as a base
building material and seeks to combine the strengths of traditional and industrial timber
construction techniques to optimize their benefits and address their weaknesses. This paper
summarizes the development and building physics evaluation of the construction system.
Finally, this work provides a comparative environmental assessment in terms of GHG
emissions by tabulating and comparing material inputs of the MMWW system and other
conventional timber systems with similar building physics characteristics.

2. Materials and Methods
2.1. Wood Building Systems

Wood is an ancient building material, and its usage has developed and adapted in
conjunction with relevant technologies and occupant needs. The system developed in this
research project derives characteristics from traditional log construction and contemporary
panel construction.

2.1.1. Log Construction

Log construction is the simplest wood construction system considered here. It typically
consists of minimally processed, horizontally stacked logs. Often, logs are left round on
exposed faces and are prepared by planning top and bottom mating surfaces and are sawn
with connection details at their ends for joining in the corner of buildings. These structures
are often built geographically close to where the wood is harvested and represent very
low GHG emissions for material harvest and processing. However, these buildings tend to
have poor thermal insulation and airtightness performance.

2.1.2. Panel Construction

Panel construction uses wood products made from composites of wood material and
adhesives or fillers that bind them into large panels, such as Cross-Laminated Timber (CLT).
Panels can have fiber directionality to increase structural capacity on a specific axis, or they
can be layered or agglomerated with perpendicular layers or omnidirectionally for a more
homogenous structural performance and dimensional stability. These panels are typically
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milled with openings and other features and are usually combined with other materials
such as thermal insulation panels or moisture and airflow-regulating membrane materials.
These panels are often prefabricated and assembled as completed walls or floor plates.
This material system is well adapted to large-scale manufacturing and is made possible
through the ubiquitous use of heavy transport and cranes to maneuver the large panels.
These wood products can be effectively integrated into contemporary buildings because the
manufacturing process generates a fairly homogenous material compared to solid wood
counterparts, allowing precise engineering of structural systems. The built-up layers allow
building performance to be readily tuned to meet energy performance goals. Depending
on the specific panel product, adhesives used to bind the wood can cause difficulties in
material separation at the end of life and introduce pollutants at production or disposal
stages of building life [7].

2.1.3. Timber Frame Construction

Timber frame construction uses large-scale linear timber elements to create structural
building frames. These structures can take the form of rectilinear post and beam assemblies
for multi-story construction, or as trusses or three-dimensional space frames for large spans
or free-form geometries. Traditional timber framing often uses solid timber beams and
wood-only carpentry details such as mortise and tenon joints. On the other hand, many
modern timber frame structures use composite timber products such as glulam beams that
are connected with complex steel hardware. Timber frames are purely structural systems
that rely on other materials for enclosure, insulation, and weather protection.

2.2. Quality in Construction

Having established that timber construction has a lower environmental impact in
comparison with concrete or steel counterparts, and having demonstrated examples of
traditional solid timber construction, the question becomes how to improve the quality of
timber construction to enhance its utility and appeal to promote its industrial adoption.
The authors propose that timber material systems can be developed or improved upon in
ways that reduce energy consumption and expand the formal and structural capabilities to
facilitate adoption by architects, engineers, and contractors. The proposed building system
seeks to enhance the quality of solid timber by improving building physics performance,
expanding the geometric design freedom, and by providing professionals with the tools to
implement the system, all without the need for additional building materials.

2.3. Building Physics Performance
2.3.1. Thermal Resistance

Building physics is a broad term, which covers many aspects of a building’s energy
performance, safety, and comfort. Thermal resistance has significant impacts on the energy
performance of any building that is mechanically heated or cooled, because it slows the
flow of heat energy across the building envelope. For solids, thermal resistance is defined
according to the formula:

R = d/(λ),

where R = R-Value of an object, in m2·K/W; λ = thermal conductivity of a material, in
W/(m·K); and d = thickness of the body in the direction of heat flow, in meters [12]. In
building physics, R is given for a unit area of 1 m2 as R = W/K and is thus inversely related
to heating and cooling energy consumption [12]. To increase the per unit area thermal
resistance of a building envelope, one can either decrease the material conductivity, add
subsequent layers of low-conductivity material, or increase the envelope thickness.

2.3.2. Airtightness

Airtightness also directly affects energy performance. The air permeability of a build-
ing or building components is evaluated by maintaining a constant air pressure differential
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across the envelope and measuring the volume of air that passes through the envelope.
A blower-door test attaches pressurizing fans and airflow sensors to a building’s door
and measures the volume of air that permeates the entire envelope. This is represented
as air-changes per hour (ACH), or the amount of complete building volumes of air that
permeate the envelope at that pressure. Materials or surface assemblies such as wall panels
can be evaluated for permeation, resulting in a measurement in terms of volume of air
per unit area per hour (m3/m2·H). Joints between panels can similarly be measured, with
results in volume of air per unit length per hour (m3/m·H). In buildings, common areas
of air leakage are around windows and doors, junctions between walls, between walls
and floors, and at perforations for access and services [13]. One study of timber-framed
houses in Sweden found a mean air permeability of 3.96 m3/m2·h at 50 pa. or 3.9 ACH [14].
Log construction has on average the worst airtightness, at 5.724 m3/m2·h [15]. Imper-
meable membranes, sealing tapes, and expanding foams are widely used to seal timber
buildings, but their complexity and resulting incorrect application are among the most
common causes of excessive leakage [16]. One study in Spain demonstrated 25% and 12%
reductions in heating and cooling efficiency due to air infiltration [17], and a study of
proposed airtightness improvements in the United States suggests that if all housing was
brought up to the current 90th percentile standard, site conditioning energy demand could
be reduced by half [18].

2.4. Digital Construction

The digital revolution has brought about many developments to the way the con-
struction industry operates. Design and construction logistics software provide the tools
to design and optimize complex systems, and the digitalization of physical tools and
processes allow for a deeper understanding of and a higher degree of control over the
built environment.

2.4.1. CNC Fabrication

CNC fabrication automates the tedious and time-consuming work of accurate mea-
surement and machining, and allows rapid, precise, and consistent production of complex
three-dimensional forms. These capabilities are used in wooden architecture primarily to
accelerate the production of traditional components or component details and to generate
precise, geometrically differentiated forms. A common example of CNC machining of tradi-
tional forms is the wide adoption of CNC router tables in cabinetry workshops to reduce the
tedious layout required for precise fitting parts. At the architecture scale, large-scale joinery
machines cut standard carpentry joints such as mortise and tenons into large timber beams
that fit precisely together on the construction site, and large panel processing machines
can mill entire walls and floors to fit together precisely on a jobsite. Computational scripts
can add more flexibility to CNC fabrication by subdividing three-dimensional forms into
component parts and automatically generating their construction details and the machine
code required to fabricate them.

2.4.2. Material Layer Reduction

The adoption of Building Information Modeling (BIM) systems allows construction
professionals to understand and manipulate complex systems, and is accompanied by a rise
in the complexity of construction systems. In architecture, this manifests as construction
systems with many layers of different materials, each with a specific function. The produc-
tion chains for these products can be complex and have a large effect on the environmental
impact of a project. Additionally, end of life disposal can be hampered by the difficult
separation of the various materials.

It follows that a single material filling the roles of multiple standard building layers
would reduce the complexity of the production chain and disposal processes. If the
production of that material causes less environmental damage or can mitigate damages
from other processes, then the overall environmental impact of the system should be
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reduced. If the material manipulation improves its environmentally relevant properties,
this can reduce the operational environmental impact. If the reduction in material layers
facilitates material separation at end-of-life, the material can be more easily recycled or
more cleanly disposed of. Manipulating the material in such a way that it can fulfill more
roles can be considered to be improving its quality.

2.5. System Development

The construction system consists of a novel building envelope and the custom
developed software tools used to implement it. The building envelope, called the
Mono-Material Wood Wall (MMWW), consists of a pure wood structural assembly
that achieves airtight enclosure and increased thermal insulation compared to solid
wood. The MMWW is intended to be easily adapted into conventional architectural
design practices and interface with standard building tectonics through the custom
design-to-fabrication software. This interface allows design, engineering, and fabrication
collaboration with automatic generation of material quantities, schematics diagrams,
logistical planning, and machine code.

2.5.1. Building Envelope Development

The current development is a continuation of the building system developed for IBA:
Timber Prototype House (TPH), erected in 2018 in Apolda, Germany. That system, based
loosely on log construction, centered around a timber beam profile that demonstrated
increased structural and energy performance without adhesives, metal fasteners, or added
insulation layers [19]. The system was optimized for a freestanding structure, with few
interfaces with external material systems. It consisted of an array of vertically oriented,
four-sided frames, which generated a tunnel-like structure with open ends, capped by a
glass façade. Intricate milled joints rigidified the frames and further sealed the enclosure
against air permeation.

The current development maintains the basic beam element profile developed
for the TPH. Further investigation seeks to optimize profile dimensions to improve
energy performance and reduce fabrication expenses. Additionally, new joinery details
are developed to adapt the construction system to meet the stringent requirements of
contemporary, urban, multi-story construction. This phase of development maintains
elements from log construction, but also employs techniques drawn from timber frame
and panel construction.

2.5.2. Timber Profile Development

The development was conceptualized as a log construction, where large-dimension,
solid-timber elements are arrayed together to create architectural surfaces. To address
the shortcomings of traditional log construction, several modifications are made to im-
prove structural, thermal, and airtightness performance without resorting to adhesives or
metal fasteners. The horizontally oriented timber in traditional log construction is tipped
vertically to align wood fiber with structural stresses, more efficiently bearing live and
dead loads. The increased structural efficiency allowed for the removal of material in the
timber section. The profile of the timber element, a 100 mm × 190 mm spruce beam, was
conceptually subdivided into functional zones (Figure 1). Deep longitudinal slits were
sawn into the beams, which release internal stresses that can cause cracking and defor-
mation over time. The slits also generate air chambers that reduce thermal conductivity
of the wood material, effectively functioning as thermal insulation. In log construction,
where the individual elements are often simply stacked on one another, the timber profile
is further processed with longitudinal grooves that generate an airtight spline connection
with adjacent elements.
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Figure 1. Profile of MMWW standard timber element, showing dimensions, functional zones, and
placement in wall section.

2.5.3. Joinery

The primary construction of the TPH was assembled without metal fasteners or
adhesives using a series of interlocking wooden joints. First, two beam profiles were
connected along their narrow longitudinal side using butterfly-style wooden dowels to
create a full wall section 380 mm thick. Four of these packets were then assembled into
frames with CNC milled lap joints at the ends. These lap joints had milled channels
with interlocking splines that created a rigid joint and restricted airflow across the section
(Figure 2). Between adjacent frames, a plywood spline is inserted into matching channels
on each side, creating a barrier to air permeation. These splines were also pinned with
beechwood dowels, locking the entire construction together (Figure 3).
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Figure 2. TPH joinery details visualization (a) and photo (b) showing milled features in corner
lap joint.

2.5.4. Construction System

The trapezoidal frames were stacked into 6 building modules approximately 1 m deep.
The building modules were loaded onto trailers and transported to the building site, where
they were mated on a lightweight steel frame using a telescoping forklift. Due to the high
weight and resulting friction, the plywood spline could not be inserted between modules,
and only small blocks were used to ensure correct alignment. The complete building system
is visualized in Figure 4.
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Figure 4. Building system for the TPH.

The challenge of applying the MMWW as a multi-story building envelope required
a redesign of the joinery system. The same basic timber beam profile was used, but
dimensional variations were tested, for example, the width of the insulation slits, to
optimize further the building physic performance. The variable beam parameters are
shown in Figure 5 and the dimensions and thermal conductivity values are compared
in Table 1.
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Table 1. Comparison of TPH and multi-story MMWW beam profile parameters and thermal conductivity.

WB DB WG DG DJ WS DS U-Value
mm W/m2·K

TPH 100 190 12 25 80 3.2 80 0.2394
Multi-Story 100 200 20 15 80 5 80 0.2077

In order to interface with other building components such as floor plates, interior walls,
and other façade constructions, the MMWW was re-envisioned as a system of prefabricated,
structural loadbearing, panels, as seen in Figure 6. Instead of the four-sided frames of
the TPH, the timber beams were reconfigured into simple, flat, rectangular panels. The
perimeter of each panel consists of four solid timber beams that are milled with various
connection details, some to hold the individual panel together and others to connect to
adjacent panels or to the structure of the building. This frame uses connection details
like those found in timber frame construction, and are dimensioned to take typical live
and dead loads for multi-story construction. Like with the TPH, the MMWW consists of
two layers of the timber beam profile. The inner layer consists of single-story height wall
panels alternating with floor plates secured with dowel-type connections. The exterior layer
consists of similar panels that can extend vertically over multiple stories and help to seal
any thermal bridges or air gaps that could occur at the wall–floor interface. Connections
between adjacent panels are achieved with a commercially available, beech plywood-based,
bowtie-style connector for CLT panels known as the X-Fix connector. The panels can also
accommodate openings for windows and doors by inserting frame-type elements inside of
the wall panels. For the LCA, a thin pure wood façade was included on the envelope as a
protective layer. This façade consists of overlapping, horizontal, larch planks hung with
beechwood nails on vertical larchwood battens, as seen in Figure 7.
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Figure 6. Multi-story MMWW assembly details showing panel construction and integration with
CLT floor plate.

The MMWW construction system seeks to improve energy performance and sus-
tainability by combining the best aspects of traditional log construction and industrial
panel based construction. Aggregating beams as in log construction and using all-wood
joinery developed for timber frame construction can help minimize artificial materials to
create a renewable, sustainable envelope. Combining this with CNC fabrication technology
should allow for smaller tolerances, leading to better structural and building physics perfor-
mance. By implementing the system as pre-fabricated panels, the system can benefit from
economies of scale and efficient transportation networks to minimize construction waste.
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2.6. Building Physics Analysis

The MMWW was tested at multiple stages in its development for various perfor-
mance criteria related to application as a load-bearing building envelope. The values are
either calculated, based on standard engineering practices, or measured with laboratory
equipment. In some cases, the results meet a minimum required value and systems are
considered adequate. In other cases, the building system is altered and re-analyzed to
further optimize performance. The results of the building physics analyses are used to
demonstrate performance that is competitive with industry-standard building systems, and
thermal insulation values are used as a benchmark value by which the LCA comparison is
evaluated.

2.6.1. Thermal Insulation

The thermal conductance (U-Value) was initially calculated to be 0.239 W/m2·K for the
profile shown in Table 1 based on [8]. The Hot-Box test of an envelope sample demonstrated
a U-Value of 0.20 W/m2·K. An evaluation of various profile configurations based on [8]
established an optimal insulation slit width of 5 mm. All of these results are documented
in [20].
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Based on these tests, a profile was proposed that was structural, had details for
structural and air-sealing connections, and was able to be fabricated. This profile has a
tabulated U-Value of 0.2077 W/m2·K (Table 2).

Table 2. Tabulated thermal resistance and conductance of MMWW per ISO 6946 [12].

Profile
Depth

Profile
Width Slit Count Slit Depth Slit Width Resistance

Per slit
Resistance
of Element

Resistance
of Wall

Conductance
of Wall

mm mm mm Mm m2·K/W m2·K/W m2·K/W W/m2·K
200 100 12 80 5 0.1100 2.3227 4.8153 0.2077

2.6.2. Airtightness

Original tests of the MMWW sample demonstrated a broad range of airtightness
values. When the sample was simply mounted with uncovered panel edges, the insulation
slits were open to the atmosphere and able to leak internal air. This configuration had
the worst airtightness, at 13.3 m3/m2·h. The edges of the panel were then sealed with
impermeable tape, leaving only the inner and outer surfaces of the façade exposed, which
reduced permeability to 2.1 m3/m2·h. These tests informed further development. The
improvements that were implemented in the TPH were the following:

• Insulation slits stopped before the end of the beam, reducing leakage at their ends.
• Lap joints were augmented with milled channel features that block airflow at frame corners.
• All sides of the beams were planned to ensure flush mating surfaces.

The blower-door test of the TPH showed a mean ACH of 2.7. This relatively high
value is due in part to the high surface area to volume ratio of the small structure. This
value translates to a unit-area permeability of 1.32 m3/m2·h for the MMWW envelope. A
detailed evaluation can be found in [20].

2.7. Production Evaluation

In a standard LCA, emissions from construction are considered in three phases: A1
is resource production and extraction, A2 is transportation, and A3 is processing into a
product [21]. The fabrication of the MMWW beam profiles represents significant energy
expenditures that would not be accounted for in A3. Therefore, the authors thought it im-
portant to attempt to estimate the energy expenditure of this secondary production phase.

Various machines were used at different stages in production with different connection
details, so a direct comparison of their efficiency is difficult. Additionally, the machines were
not optimized for speed or machining efficiency. For analysis, production on each machine
is estimated based on maximum spindle power and total fabrication time. Fabrication
processes are not differentiated for extra fabrication steps such as planning beam surfaces
or milling connection details. For every machine process, at least two-thirds of machining
time was spent on the insulation slits. The fabrication samples in Table 3 are considered for
analysis of production speeds. All elements are milled with 12 slits, each 80 mm deep.

A test was undertaken on the Maka PE 170 to determine the energy required purely
for sawing the insulation slits, independent of other machine factors. First, the spindle
power was measured while spinning a single 5 mm circular sawblade at cutting speed
without the sawing to obtain a base power output. Then, 80 mm deep slits were sawn at
a feed rate of 10 m/min and power draw was measured during sawing. The measured
sawing power minus the non-loaded spindle power is the estimated power per slit, which
can be multiplied by the number of slits desired to estimate the power for complete
profile machining.



Sustainability 2023, 15, 556 12 of 20

Table 3. Prototyping and production machines and the elements produced on them.

Machine Spindle Power (kW) Element Produced Beam Details

Kuka KR-125 8 2.4 m mock-up element

Flat end lap joint
spline groove

butterfly dowel
3.2 mm wide sawblade

Homag BOF 311_5 9 5.0 m TPH building element

Complex end joint
spline groove

all surfaces planed
3.2 mm wide sawblade

Maka PE 170 12 2 m lab sample element Spline groove
5 mm wide sawblade

Hundegger K2i 13 2.2 m production test element Spline groove
6 mm wide sawblade

2.8. Lifecycle Assessment of MMWW System

For the assessment of the environmental potential of MMWW systems, an LCA analy-
sis was carried out according to EN ISO 14040 [9] and EN ISO 14044 [10]. LCA specifications
for buildings and building materials are also considered, i.e., EN 15804 [22], the core rules of
construction materials’ environmental assessment and environmental products declaration;
EN 15978 [21], calculation methods for building LCA; and EN 15643 [23], the sustainability
of construction works.

LCA analyses investigate a product throughout its whole lifecycle, i.e., from cradle
to grave: within the lifecycle are resource extraction and material production as well as
usage, waste, disposal, and recycling processes related to end-of-life routes. In contrast to
other tools, LCA has a flexible nature and has the advantage of providing environmental
impact in a quantitative way. In order to realize this, within the lifecycle inventory, the data
collection aims to gather information on input processes and outputs, which correspond to
emissions and releases in air, water, and land. Depending on the goal of the analysis and
system/product, there are many different ways to frame the bounds of the system/product,
and many different metrics by which the results of an analysis might be interpreted. To this
end, as recalled in ISO 14040 and ISO 14044 standards, LCA is an iterative process in which
all 4 stages, namely (1) goal and scope establishment, (2) lifecycle inventory, (3) Lifecycle
Impact Assessment, and (4) interpretation, might be refined along the work flow [9,10].

With respect to the evaluation of the Global Warming Potential (GWP) of a prod-
uct, GHG emissions released during the product/system lifecycle are evaluated and con-
verted in CO2 equivalent flow in the characterization step of Lifecycle Impact Assessment
(LCIA) [9,10]. Here, the goal and scope of the analysis are presented together with the
lifecycle inventory of the investigated technologies. Section 3 of this paper presents the
LCIA results and interpretation.

2.8.1. Goal and Scope of the Analysis

The analysis aimed to assess the environmental potential of the developed MMWW
system, to compare it with other traditional systems, and to identify further environmental
optimization potentials. The here-presented analysis will report, in detail, the Global
Warming Potential (GWP 100 years) total, according to EN 15804 + A1 [22], by focusing on
the climate change mitigation potential of the presented technologies.

The established functional unit is (m2) external wall construction. The comparison will
be carried out among systems with similar building physics characteristics, i.e., with equal
U-Value = 0.21 W/m2K and fire resistance class (REI 60 outside/30 inside). The comparative
systems are massive timber (HMW) and timber board (HRW) systems selected from the
dataholz.eu construction catalogue. Additionally, two different timber systems (MHM V1
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and MHM V2) have been considered. Data on building physics properties and construction
material quantities have been estimated based on technical product documentation [24].
Insulation and load-bearing elements are chosen to ensure the same established building
physics features as found in the MMWW system.

The LCA analysis is carried out through the cradle-to-grave approach, in which the
system boundaries entail a production phase (A1–A3 module according to EN 15978) and
end of life (C3–C4 and D Modules according to EN 15978) [21]. The duration of the analysis
is assumed to be 20 years. This allows a focus on constructive aspects while disregarding,
in this instance, the building operation (B Module), which could be investigated on a higher
level in, e.g., a full LCA analysis of a building.

2.8.2. Data Collection and Lifecycle Inventory (LCI)

The lifecycle modeling was carried out in GENERIS® [25], used here as software for a
design-accompanying LCA. The environmental information is based on datasets provided
by the German ÖKOBAUDAT environmental database [26].

The LCI tabulated materials belonging to the layers of the main construction and
façade (Table 4). Because limited information was available for the production energy of the
X-Fix connectors and Lignoloc nails, these material layers were calculated simply using the
base material quantities. Additionally, the off-site construction fabrication process has been
considered. The calculated energy consumption refers to the machines used for carpentry
works based on the increased power consumption for sawing insulation slits, as measured
in Section 2.5. As a result of such a process, the MMWW production outputs the building
envelope product, together with sawdust as a co-product, which does not belong to the
final external wall system and is destined for other product functions and other lifecycles.
This co-product is therefore omitted from consideration in this LCA.

Table 4. Data collection of MMWW systems.

Component Layer Process Dataset [26] Amount Unit

Main construction

Spruce beams
10 × 20 cm

Schnittholz Fichte
(generisch) 0.4 m3

Spruce planks
3 × 2 cm

Schnittholz Fichte
(generisch) 0.0006 m3

X-Fix connectors Furniersperrholz
(Durchschnitt DE) 0.0012 m3

Facade
Larch planks

10 × 2 cm Schnittholz Lärche 0.003 m3

Lignoloc beechwood nails Buche Holz generisch 1.41 × 10−4 m3

Off-site production Electricity Strom mix DE 1.44 kWh

Mass per m2 156.7 Kg/m2

Unlike the MMWW, none of the off-site fabrications or on-site assembly processes
(Module A4) are considered for the comparative systems, and are not taken into account in
this analysis [21].

When analyzing MHM elements, varying timber section thicknesses led to different
thermal resistance values. These are modeled using a layer of EPS-Foam insulation with a
thickness that is modulated to achieve the same R-Value as the MMWW (see Table 5).

Timber board wall (HRW) systems consist primarily of timber-based elements with
an insulation layer—in this example, mineral wool—and plasterboards for fire resistance
(Tables 6 and 7).
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The end-of-life scenario for all investigated systems is based on the information of
Ökobau.dat [26], which entails for timber elements waste processes (C3 Module) and
recovery for energy purposes (D Module).

Table 5. Data collection of MHM systems [24].

Component Layer Process Dataset Amount
V1

Amount
V2 Unit

Main
construction Spruce planks Schnittholz Fichte (generisch) 0.34 0.205 m3

Nails (aluminum) Aluminum profile 0.1588 0.0953 Piece

WGL 040 insulation EPS-Hartschaum (Styropor) W/D 040 0.0696 0.1187 m3

Mass per m2 181.4 110.5 Kg/m2

Table 6. Data collection of HRW (awrhhi04a) system. Source: dataholz.eu [27].

Component Layer Process Dataset [26] Amount Unit

Facade

Larch planks Schnittholz Lärche 0.024 m3

Spruce planks Schnittholz Fichte (generisch) 0.03 m3

Medium-Density Fiberboard (MDF) Mitteldichte Faserplatte (MDF) 0.015 m3

Main
construction

Solid construction timber (60/160; e = 625) Konstruktionsvollholz (Durchschnitt DE) 0.023 m3

Mineral wool (façade insulation) 040 Mineralwolle (Fassaden-Dämmung) 0.144 m3

OSB planks OSB-Platten 0.015 m3

Spruce planks Schnittholz Fichte (generisch) 0.0032 m3

Mineral wool (façade insulation) 040 Mineralwolle (Fassaden-Dämmung) 0.0368 m3

Covering
Plasterboard GKF—12.5 mm

Knauf Gipskartonplatten Feuerschutz—GKF
und GKFI—12.5 mm

(800 kg/m3 u. 10.0 kg/m2)
1 m2

Plasterboard DIN EN 15283-2 oder ETA Gipsfaserplatte nach DIN EN 15283-2 oder ETA 1 m2

Mass per m2 58.9 Kg/m2

Table 7. Data collection of HRW (awmopo04a) system. Source: dataholz.eu [27].

Component Layer Process Dataset [26] Amount Unit

Facade
Plaster Kalkputzmörtel 0.007 m3

Wood fiber insulation board Holzfaserdämmplatten 0.06 m3

Main
construction

Solid construction timber (60/120; e = 625) Konstruktionsvollholz (Durchschnitt DE) 0.009 m3

Mineral wool (façade insulation) 040 Mineralwolle (Fassaden-Dämmung) 0.111 m2

Covering
Cross-laminated timber Brettsperrholz (Durchschnitt DE) 0.09 m3

Plasterboard DIN EN 15283-2 Gipsfaserplatte nach DIN EN 15283-2 oder ETA 1 m2

Mass per m2 77.4 Kg/m2

3. Results
3.1. Production Results
3.1.1. Production Times

Production times for the various elements depended heavily on the machine being
used and the specific details required for the elements. Results can be found in Table 8.
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3.1.2. Production Energy

The direct measurement of production energy for sawing 12 individual slits on the Maka PE
170 is represented in Figure 8. The average idle power between cuts was 757 watts and during
sawing was 4,296 watts. This would indicate that the sawblade requires 3539 watts for sawing.
A proposed tool for fabrication could combine multiple sawblades on a single spindle axle. If
all 12 insulation slits could be sawn by a single powerful spindle, the process would require
43,299 watts of power, assuming output = idle power + (slit count × sawing power). At the
tested 10 m/min, this process could produce 30 m2 per hour and the added production
energy for the slits would be 1440 Wh/m2.

Table 8. Fabrication times and energy per m2 based on max spindle output.

Machine Beam Element Time (min) m2 Production Time (min) Energy Estimate

Unit minutes Minutes/m2 kWh/m2

Kuka KR-125 2.4 m mock-up element 45 375 50

Homag BOF 311_5 5.0 m TPH building element 25 120 18

Maka PE 170 2 m lab sample element 15 150 30

Hundegger K2i 2.2 m production test element 25 227 49.2
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Figure 8. Graph showing spindle power while sawing slits. Areas of high output show sawing
periods; low areas show movement between cuts with no external loading.

3.2. Lifecycle Impact Assessment (LCIA)

Here, the results of the LCIA are presented for the developed MMWW system with
regard to Global Warming Potential, GWP 100 ys according to EN 15804 + A1 [22]. Results
are aggregated by lifecycle phase (see Table 9).
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Table 9. LCIA results for MMWW GWP per EN 15804 + A1 in kg CO2 eq./m2 [22]. Source:
GENERIS® [25].

Component Layer A1–A3 Production C3–C4
Waste and Disposal D Recycling Tot Lifecycle

Main construction Spruce beams 10 × 20 cm −202.5896 255.7920 −69.7004 −16.4980
Spruce planks 3 × 2 cm −0.4163 0.5256 −0.1432 −0.0339

X-Fix verbinder −1.05792 1.50 −0.29988 0.14

Facade Larch planks 10 × 2 cm −2.7228 3.5610 −0.9429 −0.1047
Lignoloc −0.1545 0.1877 −0.0498 −0.0166

A3 production Machine/fabrication total 0.8778 0.0 0.0 0.8778

Total Construction −206.06 261.57 −71.14 −15.63

As shown in Table 9, the total GHG emissions over the construction lifecycle have a
final negative value. The GWP of each lifetime phase is visualized in Figure 9. The high
quantity of CO2 equivalent GHG stored in timber elements (spruce and larch elements)
is reduced over time due to fabrication processes and end-of-life disposal. Within the
end-of-life phase of construction, due to the waste processes of such timber elements,
most of the stored CO2 is afterwards released, resulting in positive GHG emissions for
modules C3–C4. Timber elements are burned and the energy is recovered (Module D),
which is tabulated as a negative GWP because it can substitute for fossil fuels which would
otherwise be consumed. As shown in Figure 10, the spruce beam material accounts for the
vast majority of the negative GWP at −16.498 kg CO2 eq./m2. The results demonstrated
that the carpentry machines can affect the total lifecycle impacts, but based on the provided
information, only in a limited range. Depending on labor conditions, machines’ power and
set-ups, electricity consumption can vary.
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Figure 9. LCIA of MMWW system showing contribution of lifetime phases to GWP. GWP100y
aggregated by lifecycle module. Source: GENERIS® [25].

3.3. Environmental Performance Comparison with Contemporary Wood Construction Systems

In Table 10 and Figure 11, the MMWW system is compared with the solid timber
(MHM) and board timber (HRW) constructions described in Section 2.8.2.
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Table 10. LCIA of MMWW and comparative analysis with MHM, HRW, and HMW systems. GWP100
aggregated by lifecycle module. Source: GENERIS ® [25].

System A1–A3 Production C3–C4 Waste
and Disposal D Recycling TOT Lifecycle

MMWW kg CO2 eq./m2 −206.06 261.57 −71.14 −15.63

MHW V1 kg CO2 eq./m2 −225.67 297.98 −85.09 −12.78

MHW V2 kg CO2 eq./m2 −130.68 179.81 −51.30 −2.16

HRW [awrhhi04a] kg CO2 eq./m2 −4.12 18.33 −4.52 9.69

HMW [awmopo04a] kg CO2 eq./m2 −61.81 95.42 −44.24 −10.63
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The comparison among the several alternatives demonstrated higher GWP impacts
from traditional timber systems and especially from HRW systems. Most of the higher
GHG emissions of the comparative systems are associated with the employed cladding
and insulation elements, which have more energy-intensive production processes. Based
on the data collected, the MMWW system would appear to present better environmental
performance due to the higher amount of timber.

4. Conclusions and Outlook

The MMWW development presents a viable solid timber building envelope system
with strong environmental merits. Thanks to precise CNC fabrication, the relatively low-
quality material, solid timber, is augmented with enhanced performance features that allow
it to perform in a contemporary construction context. The MMWW building outperforms
its tectonically similar ancestor, log construction, in nearly every metric.

There is still much room for further investigation and development. Ongoing col-
laborations with industrial partners seek to reduce production times to make the system
economically competitive with other standard wood systems, which should simultaneously
reduce the production energy. A seemingly optimal production chain would see the base
profiles produced as green wood in a sawmill before the timber is dried. Then, contractors
who wish to utilize the system could simply purchase the preproduced profiles, cut them to
the appropriate length, and combine them with CNC fabricated frame elements to generate
wall panels. From the LCA analysis perspective, this collaboration needs to be intensified
in order to produce product-specific environmental datasets, to consequently enhance
the lifecycle model of the whole MMWW system, and finally reduce inaccuracies and
discrepancies related to use of the generic databases.

Ongoing research is investigating the effects of moisture on the performance and
longevity of the MMWW building envelope. WUFI Pro simulations are being undertaken
to understand if and how water is likely to collect in the envelope and how it could cause
structural damage or reduce the buildings lifespan. Physical tests are also underway
to simulate cycles of condensation, rain, and frost, to verify the WUFI results and to
understand how the system can be further improved.

The pure wood material palette of the envelope gives the MMWW a lower GWP.
Because the wood material itself is not considered to add or remove carbon from the
atmosphere, the main factors that determine its impact are the production energy and the
energy capture at the end of life. However, this is due to the substitution effect, whereby
the wood biomass is burned instead of fossil fuels, maintaining a constant atmospheric
carbon level instead of adding to it. As electrical generation continues to move towards
renewable sources, this effect will be diminished. Because production energy and fossil
fuel substitution are proportional to the volume of wood in a product, the more wood a
product uses, the lower the tabulated GWP results will be. In this model, the substitution
of wood for other building materials, such as concrete, is not considered. To maximize the
ecological potential of the system, it becomes important to both maximize the volume of
wood used globally to store as much carbon as possible in solid form, and also to use that
wood as efficiently as possible to maximize the substitution of concrete, steel and other
carbon intensive materials. What is also not included in the environmental assessment is
consideration of forestry stocks and harvest rates. It will be crucial to ensure a correct and
more aware management of forests to sequester atmospheric carbon in the context of a
more sustainable construction sector.

Another potential environmental benefit to the MMWW system is the ease with which
it can be disassembled and recycled. While other traditional systems in the study involved
extensive use of non-bio-based materials, such as adhesives, metal fasteners, and insulation
panels, the MMWW system consists purely of timber. In this regard, end-of-life scenarios
alternative to the current baseline routes could involve minimal reprocessing, for example,
of the partial or entire reusing panels or individual beams. More intensive recycling
routes could see the beam profiles resawn into smaller lumber or reduced to aggregate
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for composite wood products. These scenarios, as an advantage, might retain the wood
carbon content out of the atmosphere for longer than the original building’s life. While
it is difficult to foresee what will happen to the material at its end of life, the system is
nevertheless currently designed in order to make reuse and recycling as simple as possible.
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