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Abstract

Theory of Mind (ToM) represents a key aspect of human intelligence, but it is still unclear whether
Artificial Intelligence (AI) can learn this ability. Previous works attempted to test the ToM ability
on AI models by using different implementations like text or images but none of them did follow a
Visual Question Answering (VQA) approach. This work presents the new data set CLEVR-ToM,
which for the first time represents false-belief tests as VQA tasks. By using a VQA approach, it
addresses two important human senses with natural language (text) and visual (image) information.
Especially for the Sally-Anne test, which tests a location false-belief, this VQA version appears
very beneficial as it shows many similarities to the original form of the test. For the testing, this
work extends the CNN+LSTM+RN model to a new model CNN+2LSTM+RN to better fit the
new CLEVR-ToM data set. The CNN+2LSTM+RN model delivered outstanding results on the
CLEVR-ToM data set with an accuracy of almost 98%, achieving higher results than the original
model. This work proves for the first time that it is possible to implement the false-belief test in
a VQA fashion and that the models can handle the tasks very well. This lays the foundation for
further tests of other, even more challenging ToM types, that can be built on this basis.
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1 Introduction

In the real world, it is important not only to have one’s own perspective, but also to perceive
the world from other perspectives and to put ourselves in the position of others in order to better
understand the environment. This requires the so-called Theory of Mind (ToM) ability, which
most people develop early in childhood and which is known primarily from the field of psychology
[WP83]. This ability enables us humans to understand ourselves and other people as actors who
have subjective mental states such as beliefs, desires and intentions. By understanding mental
states, it is possible to understand and predict actions of oneself or others. ToM is an umbrella term
that can be divided into different types and sub-types. These can relate to emotions, perceptions,
knowledge or belief. In recent years, ToM has been a frequently discussed topic that has been
researched in various directions. For example the influence of the educational environment on ToM
[SSG20] or the connection between ToM and reading comprehension [DAGH18] was examined.

In the last decade in particular, attempts have been made to make Artificial Intelligence (AI) similar
to humans and to teach it human behaviour and thinking. Of course, this also includes ToM abilities,
as they are one of the important characteristics that make us human ([Whi93] [as cited in Bar01]).
For this reason, attempts have often been made to integrate this type of thinking in machine learning
and artificial neural networks (ANNs) [Jar19; RPS+18]. For example, this could be especially
useful to increase the human trust in AI, as the Explainable AI (XAI) framework [ALS+19] shows,
or it could be helpful for better human-robot interaction [Win18].
While most people acquire this ability, it is not yet clear whether machines, or more precisely AI,
can fully learn this ability and really understand and solve tasks that require ToM. To prove this
ability, various tests were used that can only be solved by using ToM [BLGB20]. These skill testing
tasks come in a variety of forms and were originally designed for people, especially children, to see
if they have acquired the ToM ability. A well-known test is the false-belief test or more specifically
the Sally-Anne test [BLF85], which requires the subject to distinguish between the real location of
an object and a person’s assumption about its position.

There were already works that have created data sets consisting of textual stories describing the
process of the Sally-Anne test and questions about Sally’s beliefs. Question answering models were
then used for the prediction of the belief [GNG17]. Besides the work with texts, there were also
works that used images to test the ability of AI models to detect false-belief cases [EVT16]. But a
combination of text and images has not yet been used and tested for these purposes.
An implementation of the task as Visual Question Answering (VQA), i.e. pictures combined with
text questions, would however be an important next step, because it serves two key human senses,
which are important for people to perceive and assess states of the world. Visual information also
appears to play a major role in the development of ToM in humans [MHB98]. Furthermore, the
original Sally-Anne test was also posed in a VQA fashion, in which a scene was shown in images or
with puppets and a question was asked at the end [BLF85]. This was especially important for the
children so that they could understand the task. VQA has also received a lot of attention in the past
and many models have been developed for it [WTW+17].
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1 Introduction

For this reason, the new data set CLEVR-ToM is presented in this work, which contains ToM tests,
more precisely false-belief tests, implemented as VQA tasks. Specifically, this data set tests three
different types of of false-belief: The false-belief can be regarding the existence of an object, the
attributes of an object or, as in the Sally-Anne test, the location of an object.
The well-known VQA data set CLEVR [JHV+17] was taken as a basis, which tested visual and
relational reasoning in artificial images and was mastered by various models [PSD+18; SRB+17].
Since CLEVR itself was a synthetic data set, it also allowed an automatic creation of the CLEVR-
ToM data set with all its advantages, including reducing potential biases.
The realisation of the false-belief test using CLEVR was achieved through a new task design
that used modified questions and added actions to CLEVR, going beyond similar work such as
CLEVR_HYP [SKYB21], which also integrated actions into CLEVR. This work also investigated
whether models were able to distinguish between several different points in time and were also able
to differentiate between the state from the image and the changed states through textual actions and
use the correct one to answer the question.

Subsequently, the VQA model CNN+LSTM+RN [SRB+17], which had delivered outstanding
results at CLEVR, was trained on the new data set CLEVR-ToM. In addition to the CNN+LSTM+RN
model, this work presents CNN+2LSTM+RN, an extended version of the model with an additional
text input. A comparison is also made between the results from a user study, the subsequent work
and the influence of the model extension.

In summary, the following contributions resulted from this work:

• The first representation of a false-belief test as VQA-tasks was implemented.
Thereby, different time levels were added to the CLEVR tasks for the first time.

• A new large VQA data set called CLEVR-ToM was created, which uses these false-belief tests
and which was verified in a user study.

• Based on the CNN+LSTM+RN model, an extended model CNN+2LSTM+RN was created to
fit the CLEVR-ToM data set, which was trained and tested alongside various baseline models
on the new data set CLEVR-ToM. This new model predicted the correct answers for this data
set with a high accuracy, suggesting that it can handle one type of ToM ability.
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2 Related Work

In this section, the focus is on the three different areas that are particularly relevant to this work.
These include, firstly, previous work that has developed ToM tests for AI models, as in this work. In
addition, the area of VQA data sets will be introduced, since the CLEVR-ToM data set developed in
this thesis is also a VQA data set and was built upon an existing VQA data set. The last part of this
section describes several interesting VQA models, as these were all considered as potential baseline
models for CLEVR-ToM.

2.1 Computational Theory of Mind Tests

There have been several attempts to develop or test ToM tests and specific false-belief tests for AI.
For this reason, there were already different approaches to implement ToM tests, for which different
types of ToM were tested and different implementation types were used.

The first work that presented false-belief tests using natural language sentences was published by
Grant et al. [GNG17]. They examined whether existing question answering models, e.g. end-to-end
memory networks, can deal with false-belief tests such as the Sally-Anne test. Therefore, they
designed an automatically generated data set containing tasks using sentences to explain a story line.
These sentences could describe actions or beliefs. In these scenarios, Sally could have a true- or a
false-belief about the state of the scene. Sally’s belief was then tested with a corresponding question.
In addition to the different belief-types used, the variation has been increased with the help of
different templates and interchangeable objects, whereby the actions only changed the position of
the objects.
An extension of this work was presented by Nematzadeh et al. [NBG+18]. In addition to first-order
beliefs, second-order beliefs were also considered, which described the belief about the belief of
another. Furthermore, additional questions were used in each task that not only ask about a person’s
belief, but also about the actual state of the scene or the original one. This approach was chosen to
test the understanding of the model over the whole scenario.
Similar to the new data set CLEVR-ToM, false-belief tasks were used for the data sets. But, they
were implemented as purely textual tasks, which is in contrast to the VQA approach of CLEVR-ToM.
In addition, both works used just the location false-belief, changing only the positions of the objects
in the story line, whereas for the new data set CLEVR-ToM several types were used.

In the work of Rabinowitz et al. [RPS+18] a different approach was chosen. The ToM topic was
regarded as a meta-learning problem and a grid world based on a Partially observable Markov
decision process (POMDP) was defined in which agents carried out actions with a specific policy.
A global observer that had access to the state of the POMDP and the actions of the agents, but not to
the agent’s policies, should predict the behaviour of the agents. Among other tests, the Sally-Anne
test was successfully tested on an ANN.
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2 Related Work

The work of Rabinowitz et al. [RPS+18] differed from previous publications and CLEVR-ToM by
only working in the grid world and not using natural language sentences or images. However, they
also chose false-belief tests (including the Sally-Anne test) for the tasks.

Another work was published by Eysenbach et al. [EVT16] and combined ToM with images by
considering the ToM problem of false-belief as a visual task. They created a data set that contained
abstract graphic scenes, of eight images each, in which the recognition of people with a false-belief
was examined.
By using a visual approach to implementing ToM tasks, the work of Eysenbach et al. [EVT16] shows
many similarities to the approach used in this study. However, it did not examine the Sally-Anne
test. Furthermore, no text information was used in addition to the images, so it was not a VQA data
set like CLEVR-ToM. In addition, the work only addressed recognising the timing and the person
who has a false-belief and does not query the false-belief itself.

Besides the well-known false-belief test, there are also other types of tests that cover other areas
of ToM. Like for the false-belief tests, there have been attempts to implement them for AI. One
example is the work of Labash et al. [LAM+20], which investigated whether ANNs can deal with
perspective taking tasks and learn the necessary skills. The way in which the test was implemented
is similar to that of Rabinowitz et al. [RPS+18], because a grid world in which agents perform
actions was also used. The work showed that at least in some cases it is possible for machines to
learn perspective taking skills using reinforcement learning.

As this selection of papers shows, computational representations of ToM tests for AI models are an
emerging topic. Especially the false-belief test has been addressed by many papers, but so far they
have been implemented without VQA. In some cases, they used the individual components such as
texts and images but not the combination of both.
Since the final data set CLEVR-ToM is a VQA data set and CLEVR was used as a basis for this
work, it might be worthwhile to look at a selection of the most important VQA data sets.

2.2 Visual Question Answering (VQA)

VQA extends the classic textual question answering by combining two modalities: In addition to an
image as a source of information, textual questions are asked that relate to the image.
By using the visual information (image) and natural language (text), it addresses two senses, which
play an important role in the development of ToM in humans [MHB98]. For this reason VQA was
very interesting for the developing of a ToM test and was taken as the approach for the data set. In
addition, this form of image and question is also similar to the original Sally-Anne test [BLF85].
This connection of images and text, which is very natural and easy for humans to understand, was a
challenge for previous AI. For this reason, various data sets were created, which were the basis for
the development of new models.

One of the first large data sets was the data set VQA [AAL+15], which consisted of natural and
artificial images and open-ended natural language questions about the image. The questions, which
were created by humans, required working with the image, the identification of objects in an image
and in most cases a further interpretation of the scene.
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The COCO-QA data set [RKZ15], on the other hand, consisted only of natural images, but the
questions and answers were generated artificially. To enable this artificial generation, existing
textual descriptions of the images were used. In this data set, the questions were mainly aimed
at recognising the scene with the objects, counting and identifying the colour of objects and
determining spatial positions.

These works pushed the development of VQA and the associated models. Nevertheless, they had
the problem of data generation. Even though artificial images have been used to some extent, or
the question- and answer-generation has been automated, human interaction were still necessary.
Hence, the generation of large data sets still required a huge amount of manual work by a human
operator. Furthermore, the possibility to adapt the tasks to the needs and to reduce it to the most
essential was much more limited. However, if one can modify the tasks appropriately, the likelihood
of biases that allow the model to take shortcuts can be reduced as the balance of the data can be
ensured. Especially with natural images, adaptability is difficult.
For this reason, an artificial generation of the data set including images, questions and answers is
useful and was also used for the generation of the CLEVR-ToM data set.

A well-known VQA data set consisting of artificially generated images and questions is CLEVR
[JHV+17]. In this data set, questions about different three-dimensional geometric bodies in a room
were used as tasks. Due to various properties of the objects (listed in table 2.1), many questions
could be formed, which query these various characteristics of objects. The questions could be
simple counting and comparison tasks, but could also require logical thinking as well as memory and
query object data indirectly through visual reasoning. For this purpose, in addition to non-relational
questions, in which the question concerned the entire scene, relational questions were also used. In
these questions, it was necessary to determine the relevant part of the image for the question by
using an object specified in the question (relational object) together with a direction.
CLEVR was an important basis for this work, as it represented a powerful data set, which was
less susceptible to biases due to the artificial generation and could therefore be controlled more
easily. In addition, the structure of the images offered possibilities for the illustration of ToM tests.
Another advantage was the variety of extensions available for CLEVR.

CLEVR_HYP [SKYB21] was one of the extensions of the CLEVR data set and added another
level to the tasks. This hypothetical layer was formed from textual actions applied to the image.
In addition to these action-texts, the questions have been adjusted so that they no longer referred
directly to the image but to the hypothetical level. Models must therefore be able to reproduce this
hypothetical state to answer the question correctly.
This work built also on the idea of CLEVR_HYP because this additional layer allowed extensions
to add temporal context to CLEVR. Since the Sally-Anne test consists of a sequence of actions,
a static image like CLEVR was not sufficient to represent this test. Therefore, the application of
actions to the scene and the creation of different states of the scene over time was necessary.

This overview of important VQA data sets shows that there has been a lot of development work
has been done in in this area recently. Furthermore, it indicates that CLEVR with the extension
CLEVR_HYP brings many benefits and was thus an important basis for the development of the
new data set for false-belief tests.
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2 Related Work

Attribute Value space
Shape cube, sphere, cylinder
Material rubber, metal
Colour blue, brown, cyan, gray, green, purple, red, yellow
Size small, big

Table 2.1: Object attributes in CLEVR [JHV+17].

2.3 VQA Models

In addition to the VQA data sets, a variety of models have been developed which are designed for
VQA tasks and can particularly master existing VQA data sets. Since a model was also tested on
the CLEVR-ToM data set in this work, it was necessary to deal with the various models and their
characteristics.

The challenging CLEVR data set released in 2017 had a strong impact on the development of
new models. In addition to combinations of long short-term memories (LSTMs) [HS97] and
Convolutional Neural Networks (CNNs) [JHV+17], new models have been developed that rely on
relation networks (RNs) [SRB+17] or transformers [TB19] to deal with the relational questions
and the relationships between the objects. Earlier models (e.g. [NSH16]) used CNNs as the main
component. However, these did not manage to cope with the relational relationships in the tasks of
CLEVR.

In the same year as CLEVR, DeepMind introduced a new model CNN+LSTM+RN [SRB+17],
which achieved state-of-the-art performance for CLEVR at the time of publication. It achieved the
excellent performance not only for the non-relational questions, but also for the relational questions.
The advantage of this model was the integration of a RN alongside the CNN and LSTM, which was
critical to answer the relational questions in the CLEVR data set. This network made it possible to
combine different retrieved objects from the image by a CNN, which allowed relationships between
objects to be included in the calculation.

In 2019, a transformer-based approach was presented with the LXMERT model [TB19], which
was not developed directly for CLEVR, but can be adapted and used for VQA tasks. This work
was chosen as the second baseline in CLEVR_HYP and fine-tuned for this purpose. The model
used specific encoders for the objects extracted from the image and the question as textual input.
They were connected to each other with a special cross-modality encoder, allowing the relationship
between the objects in the image and the words of the question to be taken into account.

In addition, many other VQA models have been created, such as FiLM [PSD+18], abstracting from
the relational calculations as in the work of Santoro et al. [SRB+17] by using general-purpose
components in multiple layers. This model was able to learn the ability of visual thinking and thus
achieve a good generalisation ability.

Since these models have achieved good results for CLEVR or CLEVR_HYP, they are suitable
candidates for CLEVR-ToM. In this work, the model proposed by DeepMind [SRB+17] was used.
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3 CLEVR-ToM data set

3.1 Methods

3.1.1 Basis of this work

Theory of Mind (ToM) incorporates several different aspects and can be broken down to multiple
sub-types. For this reason, there is no test that examines all aspects of ToM. This is also the reason
why this work only focuses on the area of beliefs, or more precisely the distinction between a true-
and a false-belief for which there is the so-called false-belief test. This test examines whether a
person can assess another person’s perspective and understand the status of a scene from the other
person’s point of view. A false-belief occurs when the state of a person does not correspond to the
actual state of the scene. This term is again an umbrella term, as false-beliefs can refer to different
areas and occur in different ways.

A good example for this kind of test is the location false-belief test or more specifically the
Sally-Anne test, which was developed primarily for children [BLF85]. This test consisted of a scene
in which the position of a ball changed. In addition, questions were asked that query Sally’s belief
about the current position of the ball, which could differ from the actual position. A test person had
to assess the perspective of the person Sally in this scene in order to answer the question correctly.
Figure 3.1 shows the scenario of the Sally-Anne test. In this scenario, Sally first hides a ball in a
basket and leaves the room. Anne changes then the location of the ball by putting the ball in the box.
Afterwards, Sally comes back into the room to get the ball. The question asked to the test person
then was: Where is Sally looking for the ball: In the basket or in the box? In the example, Sally has
a false-belief, as she thinks the ball is in the basket since she didn’t see the change of location of the
ball. However, if she had been in the room during the swap, she would have a true-belief, knowing
that the ball is now in the box.

There have already been implementations of this test for machine learning models, but so far none
that were formulated as VQA tasks. As stated in Section 2.1, previous work has only used text or
images, but has not used a combination of both types as input.
To make this kind of test suitable for machine learning models in a VQA fashion, the well-
known CLEVR data set [JHV+17] was used as a basis for the new data set. CLEVR introduced
three-dimensional objects with the properties colour, shape, size and material, which lie in a
three-dimensional space in an image. By using a fixed perspective, it enabled spatial relationships
between the objects in the space, e.g. in front, behind, left and right. The potential values of the
object properties can be seen in table 2.1. These images made it possible to define a scene at least
for a specific point in time, which consisted of concrete locations and attributes of the individual
objects. In addition to the resulting images, the CLEVR data set also consisted of textual questions
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3 CLEVR-ToM data set

Figure 3.1: Example of the Sally-Anne test [Mal22].

that relate to the scene and required visual reasoning. These questions allowed to query the status
of the scene and could concern the locations or attributes of objects. This was very important for
this work as it helped to detect potential false-belief cases.

Since CLEVR was used as basis, the components of the false-belief test had to be converted into a
suitable form and the structure of the CLEVR tasks had to be adapted and extended. The final data
set from this work, called CLEVR-ToM, is presented in more detail below. Examples of this can be
seen in figure 3.2.
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(a) Example task with true- or false-belief about the existence of an object
by using a remove-action and a existence-question.

(b) Example task with true- or false-belief about the position of an object
by using a swap-action and a count-question.

(c) Example task with true- or false-belief about the attribute (colour) of an object
by using a change-colour-action and a attribute-colour-question.

Figure 3.2: Examples of the CLEVR-ToM data set.
For each task an image (the same for all tasks in the example), an action-text (A) and
a question (Q) with the corresponding answer were given. The action-text describes
various actions that are carried out one after the other in the scene of the image. The
agent can only see the state of the scene if that agent is in the scene at that time. For
this reason, the agent’s belief about the state can then differ from reality (false-belief)
or correspond to it (true-belief). The spatial relations in the questions always refer to
the perspective of the image and not to that of the agent.
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3 CLEVR-ToM data set

3.1.2 Similarity to the Sally-Anne test

Time dimension

An important feature of the CLEVR-ToM data set was the introduction of actions to CLEVR. The
aim of this idea was to apply the actions described in sentences to the image one after the other, thus
creating several time levels and states of the scenario. Since the Sally-Anne test [BLF85] consisted
of a continuous story-line with multiple actions and changes, it was also important that the data set
in this work could represent this plot with its several time levels. Since the original CLEVR data set
had no time component and this test could not be represented in a static image, the introduction of
the actions had been a necessary design decision.

The method was chosen for this work because it is easy for humans to understand and because
there was already a related work, CLEVR_HYP [SKYB21], which added so-called action-texts to
CLEVR to create another hypothetical state from the image. These actions could remove objects,
change object attributes, or even move the objects within the scene.
In contrast to CLEVR_HYP, which changed the image by the action and asked questions about this
new state, in this work there should be three different temporal levels that can all be queried. For
this purpose, a second action was added to the action-text: In addition to the time point represented
by the image, there were two more time points after the first and second action. This sums up to
three time levels per scene. The individual actions were placed in a temporal sequence with the help
of the term „Then...“. This word was also used in the CLEVR_HYP data set to connect actions, but
in this case, it indicated a strict temporal sequence.

The composition of the two actions in the action-text was not random and consisted of two actions
of different kinds. Exactly one of these actions was about removing the agent (the chess pawn) from
the scene. This was a fixed action in each task. In contrast, the other action could affect any object
(not the agent) or object pair and could remove it, swap it, or change one of the attribute values of
the object. The sequence of both actions was thereby crucial for the occurrence of a false- or a
true-belief.

The figure 3.2 shows three examples from the final CLEVR-ToM data set. Each of the examples
represents a different action. In figure 3.2a, an object was removed in the action-text, while in figure
3.2b, two objects were swapped with each other. In the last example (3.2c), an attribute (more
precisely the colour) of an object was changed.

Agent

The implemented actions replaced the concrete character Anne in this test, as she was only important
to perform actions in the scenario. These actions were now performed in text form, like those from
the CLEVR_HYP data set, without reference to a concrete person. This change did not alter the
aim of the test.

In addition to the actions, a chess pawn wearing a hat was integrated into the image in the CLEVR-
ToM data set. This figure was supposed to be the equivalent of the concrete person Sally. This is
why it also resembles a human being due to its shape, but the figure was still an object in the scene
and thus should not created too much contrast to the original CLEVR objects. This chess pawn has
been given a hat that humanised it for the viewer and made it more clearly recognisable as a typical
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agent, so that people should better understand the questions. As with the other CLEVR objects,
there were different colours for the agent. However, these were not from the fixed colour palette of
CLEVR, but could have any colour across the RGB-spectrum separately for the figure body and
hat. The purpose of this was that the variation was large and the distinction from normal objects
became clearer. Size and material of the agent were fixed and could not take on different values.
The integration of the agent or the character Sally into the test was very important because she was
to observe the scenario and her belief was essential to answering the question.

To ensure that the data set was general, the concrete name Sally was not used, but only the words
agent or person. These names also allowed clear recognition of the agent by people who do not
know the original test and only have the image at hand. The name agent is also used in the following
as a synonym for Sally in this context.

In the examples in figure 3.2 this design decision can be observed along with the addition of the
actions. The agent is shown as a chess pawn with a hat in the image on the left and is referenced in
the actions and questions with the words „agent“ or „person“. Like the classic test, the aim was to
be able to assess the level of knowledge of the agent, i.e., to understand the agent’s belief about the
position of an object. In this case, the belief was influenced by whether the agent had noticed the
change in location of an object.

In contrast to the original Sally-Anne test, the agent did not perform any action itself, i.e., the
object asked for was already in a place and has not been placed there by the agent in the beginning.
This made no difference to the test itself, as the agent could see the object and thus know the
current position of the object and its state. It is important to note that in the image of the task it did
not matter at which place the agent appears in the scene, the variation was only for learning the
recognition of the agent. For the agent, all objects were visible if the agent was in the scene, even if
an object would seem to block the direct view from the agent according to the image.

3.1.3 Diversity of variants

False-belief & action-types

Several types of actions and questions were also used for the data set to test three different types of
false-belief on the models. In the classic Sally-Anne test, an object was moved from one place to
another without the person noticing the action, creating a false-belief about the object’s location.
In this data set, in addition to the location false-belief, a false-belief regarding the existence of an
object and about an attribute of an object was also used. The different types are presented in more
detail below.

On the one hand, the false-belief, in this case more precisely a location false-belief, could be caused
by a change of location of an object. However, in this case, not only was an object moved to a
different location, but the object was swapped with another. This action is called a swap-action
in the following. In this scenario, this had the advantage that the new location of the object did
not have to be named explicitly but was implicitly determined by the swapping of the objects. The
possible false-belief in this case even concerned two objects, which could both be referenced in the
question.
Unlike the Sally-Anne test where the object was not visible before and after the action (because it
was in the basket or box), the queried object and the current location of it was always visible to the
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agent and not hidden when the agent was in the same scene. This modification, however, did not
change the intention of the test.
This type of false-belief can be seen in the example in figure 3.2b where a swap-operation is
performed in the action-text. As with all false-belief cases (in contrast to the true-belief case), the
agent leaves the scene as the first action. The second action, which is executed afterwards, is the
actual swap-action. This action indicates that now two objects swap positions, which are specified
with the help of certain attribute values. In this case, the position of the „rubber cylinder“ (the
small blue cylinder on the right of the image) is swapped with that of the „large ball“ (the large
cyan sphere in the background of the image). Only if the agent had noticed the swapping of the
objects would they know the current positions of the two objects. However, since the agent in the
false-belief version left the scene before the change was carried out, we have a false-belief for
questions involving the position of the objects.

Another type of false-belief concerned more generally the existence of an object (existence false-
belief), i.e., whether an object was in the scene at the end or not. This can also be compared to a
Sally-Anne test in which the new location would not be in the scene. For example, Anne can take
the ball and remove it from the room. Sally would still look in the room where she had last seen it.
Again, we have a false-belief.
For this, the remove-action was added, which removes an object that was already in the scene. In
this case, there is a time when the object was in the scene and a time when it was not in the scene.
Depending on whether the agent has noticed this removal, a false-belief might have arisen here.
An example in which an existence false-belief occurs with the help of the remove-action is shown in
figure 3.2a. The object to remove is described here in more detail with two attributes. In this case,
the „small die“, i.e. the small cyan-coloured cube, is removed from the scene with the action. Also
in this case, the agent did not notice the removal of the object in the false-belief version, as they left
the scene before the action.
Initially, an add-action had also been planned that would create the same type of false-belief, but as
is also mentioned in Section 3.1.4, it was decided against.

The third type of false-belief, the attribute false-belief, was caused by the so-called change-action
and concerned the attribute values of an object. Relating this to the Sally-Anne test, this would be,
for example, that Anne recolours the red ball with a blue colour without Sally seeing it. When Sally
then re-enters the room, she believes the ball is still red and would look for it. Even if the location is
the same, she would have a false-belief about the ball.
In the data set, the change-action could affect all attribute-types. That means it was possible to
change the colour, as in the example, but it was also possible to change the size, the material or
even the shape of an object. It may be a little difficult to understand how to enlarge an object or
change the material, but it did not influence the resulting false-belief. Because of this variety of
possibilities, the flexibility of the data set was very high and the richness of the possibilities of the
CLEVR data set were used to build potential false-belief cases.
Another example can be seen in figure 3.2c, which shows an attribute false-belief using the change-
colour-action. In this particular example, the colour of the „little cylinder“ is changed to green by
applying the action, whereby in the false-belief case the agent did not notice this colouring.

The actions executed in the false-belief version of the task did not necessarily have to result in
a false-belief, because a distinction was made between normal- and distractor-tasks. Only in
the case of normal-tasks the changed object was the object that was queried and could lead to a
false-belief of the agent when answering. In distractor-tasks, the changed and the queried objects
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were independent of each other, which means that in all cases there was a true-belief, but the action
sequence could still correspond to that of a false-belief. More details on this and the reasons for the
distinction between the tasks are explained in the Section 3.1.4. The examples in figure 3.2 are all
normal-tasks, as the answer between the true- and false-belief case is different.

Question-types

In addition to the different actions, there were also different types of questions. The questions
were used to query the state of the scene from the agent’s point of view and to identify potential
false-beliefs from the answers. Compared to the Sally-Anne test, the questions were somewhat more
indirect. For example, they did not ask where the object is, but asked for this information with the
help of reference points and different question-types. The questions were divided into three types.

On the one hand, there was the direct question about the existence of an object. This object was
determined in the question by various attribute values, whereby not all attribute-types had to be
specified, but enough so that the object could be clearly identified. The existence-question asked
whether such an object with these attribute values existed in the scene according to the agent’s
belief at the end. The answer differed for the normal-task between false-belief, where the agent has
leaved the scene before the action was applied, and the true-belief, where the agent exited the scene
after the action. With the existence-question, this object could either exist at the time or be missing
in the scene.
This behaviour can be seen in the example in figure 3.2a, where the question is used in combination
with the remove-action. In this case, the question asks the belief in the existence of a „cyan die
made of rubber“. This is also the identical object that was removed with the remove-action. Since
with the false-belief case the agent leaves the scene before the actual remove-action, the agent
knows nothing about the removal and believes that the final state of the scene is the same as in the
image. Since the queried object still existed in this state, the correct answer here is true. As this
answer does not correspond to the real correct state, we have an actual (existence) false-belief in
this case. With the true-belief, the actions are executed in the other order. That is, first the actual
remove-action took place and then the agent leaves the scene. In this case, the agent noticed the
removal of the object and also thinks that this object is no longer in the scene at the end. For this
reason, the answer in this case is false and thus corresponds to the correct end state of the scene,
which is why the agent does have a true-belief.
This question could be asked for all possible action-types. This means that not only the remove-action
that changes the existence of objects was possible, but also by changing the position or the attribute
values this question was applicable. For example, before changing the colour of an object, the asked
red cube is present, but when it is coloured blue, it is no longer.
The answer-options for this question-type were true or false and both options could occur in the
true-belief as well as the false-belief case.

Another type of question was the count-question. This extended the existence-question with further
answer-options. Now not only true and false were possible as answers, but all integers between 0
and 6, which means that there were seven different answer-options.
The question and the attribute values specified in it were no longer aimed at a single object but could
concern several objects or even all objects in the scene. Thus, the general question about the number
of all objects in the scene was also a valid option at least in combination with the remove-action. In
general, however, the question-type was again applicable in combination with all types of actions.
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An example of this question type can be seen in figure 3.2b. In this case it is combined with the
swap-action. The question here is aimed at the objects that „are in front of the green metallic object“
(the green sphere) and have a large size. This is true for three objects if we look at the whole scene,
i.e., the cyan coloured large cube, the large brown cube and the large cyan sphere. However, since
the sphere is behind the green object, it is not considered in the question and the answer is 2. In the
true-belief case, however, the agent again sees the swap-action and notices the new state where the
cyan sphere is in front of the green ball. Thus, the answer from the agent’s point of view is now 3.

The third question-type was the question about a specific attribute value. This question-category
itself is divided into four different sub-types for each of the attribute-types. Thus, in addition to the
question about the colour of an object, the material, the size or even the shape of the object can be
queried. For each of these sub-types, the number of answer-options is different and corresponds to
the possible attribute values for each of the types (see therefore table 2.1).
This question-type was different from the other two types, because in this case the object asked for
must be always present in the scene. As with the existence-question, the attribute values given in
the question targeted exactly one object. To made the question non-trivial to solve, the value for the
requested attribute-type was not given. Due to the nature of the question, it was only applicable
to the change-action and not to the other two action-types. The subcategory of the question also
had to match that of the action, as the question should query specifically the attribute-type that was
changed in the action.
This can be seen for example in figure 3.2c. In this case it is a change-colour-action in combination
with an attribute-colour-question. The question in this example is aimed at the objects „to the right
of the purple rubber object“ (the small purple sphere, which is in the background). The object we
are looking for is a small cylinder. Such an object exists in the searched area (which is a necessary
condition for this kind of question) and is in this case the blue cylinder in the right part of the image.
In the false-belief case, where the agent initially left the scene, the agent only remembered the
original colour of the cylinder, which was blue. In the true-belief case, however, the agent saw the
changed colour and knows that the last colour of the object was green.

In addition to the general types of questions, a distinction was also made between relational and
non-relational questions. Non-relational questions always targeted the entire scene, while relational
questions further delimited the objects concerned in the scene. This separation was dependent on a
relational object, which was clearly specified as a reference point in the question with the attribute
values and was always in the scene. This object was not affected by the actual action, except in
some cases for the swap-action. In addition, a direction was specified, which could be left, right,
front, or back. These then limited the scene to the part and the objects that were in this direction to
the relational object. The indication of the direction referred to the perspective of the image and
was not dependent on the position of the agent. For this reason, the agent also did not have a face
with a line of sight.
In the examples in figure 3.2b and 3.2c, relational questions are also present. As is usual with a
relational question, the questions again specify a relational object. For example, in figure 3.2b
this relational object is the „green metallic object“ (the small green sphere on the right side of the
image). The question targets all the objects that are in front of this green sphere and have a large
size. Objects that do not lie in the relation, i.e. in this case lie behind the green sphere, are not
considered for the question.
The relational questions were an important part of the original CLEVR data set, which is why
models that performed well on the CLEVR data set were also good at understanding these relations.
In this data set, they were used not only to increase variation, but also because it was possible to ask
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questions about the position of an object. This was because, unlike the Sally-Anne test, where it
was possible to ask directly about the location of the ball, it was harder to ask for the exact location
in this case. In the non-relational questions, the answer was the same whether the object was on the
far right or on the front left. With relational questions, this distinction was possible. This made it
possible to use the swap-action, as it only changed the location of an object within the scene and
not the overall state of the scene. The swap-action was therefore a special case that could only be
used in combination with relational questions.

Templates

To structure the natural language sentences, templates were used that specify parts of the sentence
and made them variable with placeholders. Usually, several alternative sentence constructions were
also offered. The choice of the templates played an important role in this work. These templates
could not be taken directly from the CLEVR data set, as they were not targeted at the agent’s belief.
It was important that they could be clearly understood by humans and that they did not contain
any ambiguities or obscurities. The templates specified how a question, or an action is structured
and contained placeholders for variable places such as attribute values. For each of the question-
and action-types there were also several template groups, which in turn could consist of several
templates and allowed a wide variation of sentences. The resulting texts could again be modified
with synonyms.
As there were no actions in the original CLEVR data set, it was necessary to create completely
new templates for the actions. These templates were created for each of the action-types: remove,
change and swap. Selected examples from the CLEVR_HYP data set served as inspiration, as the
creation code of this data set with its templates was not available. However, unlike CLEVR_HYP,
the action-text consisted of two concatenated actions and other actions such as removing the agent
were added. An example template for an action is: „Remove <Z><C><M><S> from the scene.“.
The letters in the brackets indicate different variables, e.g.: Z=Size, C=Colour, M=Material and
S=Shape.
Two actions were then linked together with the word „Then“. This results in the following scheme
for the action-text: „<Action1>. Then <Action2>“, for example: „Remove <Z><C><M><S>
from the scene. Then paint the <Z2><C2><M2><S2> with <C3> color.“

For some of the questions, texts and templates could also be taken from CLEVR and CLEVR_HYP.
However, since the CLEVR and CLEVR_HYP questions only targeted the final state of the scene
and did not address beliefs of others, the question-templates were modified to directly target the
agent’s belief in the scene. For example, a template for a count-question can look like this: „How
many <Z><C><M><S> does the agent think are there at the end?“.
A collection of possible question-types for the change-colour-action and a possible instantiation of
a template for both the action and the question can be seen in the table 3.1.

In order to avoid using only the same terms in the templates, synonyms were added for some words.
It was important that these did not change the meaning and were clear and precise. For example, the
terms „expect“ and „assume“ were added as synonyms for „think“. For „agent“, the term „person“
was added, as this character also reminds of a person. The name „Sally“ was not applied, as this
would be too specific and it is not directly clear who Sally is. To ensure the quality of the sentences,
they were not only checked by three people but also tested in a user study (see Chapter 4).
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Action change-colour-action
Possible question-types existence-question / count-question / attribute-question
Template action-text The agent leaves the scene.

Then change the color of the <Z><C><M><S> to <C2>.
Template question What does the agent think is the color of the <Z2><C2><M2><S2>

[ that is] <R> the <Z><C><M><S> at the end?
Example action-text The agent leaves the scene.

Then change the color of the big metal object to blue.
Example question What does the agent think is the color of the cylinder that is behind

the red cube at the end?

Table 3.1: Example of an instantiation of the change-colour-action with the attribute-question. The
letters in the brackets indicate different variables, e.g.: Z=Size, C=Colour, M=Material,
S=Shape and R=Relation. Different objects are delimited with numbers in the brackets.
There is no direct relationship between the values of the question and the action.

3.1.4 Prevention of text leakage

In order for CLEVR-ToM to truly be considered as a VQA data set, an important feature was that
the image must actually be used to answer the questions and that no information can be derived
from the text alone.
To identify this problem, a pure textual variant of the CNN+2LSTM+RN model presented in
Section 5.2 was tested on the data set. This model took only the textual information, i.e. the actions
and questions as input, but not the image. However, during testing an previous version of the data
set, where actions had always affected the answer to the question, with this textual model, very
high accuracy values came out for certain categories. These indicated that for the existence- and
attribute-questions, the answer could often be read directly from the action-text.
On closer examination of the tasks, this behaviour was obvious. For example, if the colour of an
object was changed to red, the answer to the attribute-colour-question in the true-belief case, that is
when the action is considered, was the same as the new colour from the action. In this case, the
answer red would have been correct. If the possible answer-options only consist of two values, it
was also possible to determine the answer for the false-belief case, as this always represents the
other value than the one from the true-belief. This was the case here for the attribute-questions on
material and size.
The same problem existed with the existence-question in combination with the remove-action. If
an object was removed with the remove-action, for example, the answer was always false in the
true-belief and true in the false-belief case, because the queried object matched the deleted one.
In other combinations with the existence-question, e.g., with a change-action, this problem was less
prominent, as the answer was not always constant depending on the belief-type. Nevertheless, it
was possible to get the correct answer if, for example, the changed attribute value from the action
was present in the question or not. The problem did not exist with the count-question, because
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only the probability of guessing could be improved by including the action, but no general solution
strategy existed only from the textual information. To solve this problem, a extension of the data set
was necessary.

For this reason, so-called distractor-tasks were added to the existing data set. These tasks were
meant to be like normal tasks in the data set, but in these tasks the action had no effect on the answer
to the question.
The aim with the original tasks, later called normal-tasks, was that the answers for the true- and
false-belief case were different so that the understanding of the different belief-types could be
tested. This behaviour can also be seen in figure 3.3, where the responses differ for the different
belief-types. For this behaviour to occur, the question always targeted the action, which meant that
the action always changed the answer. This had the consequence that examples as shown in the
beginning of the section were possible, i.e. that the answer to the question about the colour of an
object was already named in the action. For this reason, no knowledge from the image input was
required to get the right answer to the question.

With these distractor-tasks, however, this was different. In this case, the action could also change
the colour of an object to red. But the answer to the question about the belief of the colour of a
certain object was then mostly not red. The answer could sometimes be correct, but only with a
random probability. In most cases, the answer was wrong because the object that was changed with
the action did not correspond to the object asked for in the question. This means that there was no
indication of the previous or the new colour of the object in the action and this information could
only be deduced from the image. The answer was identical for both sequences of actions and there
was also not a real false-belief case, as the answer always corresponded to a true-belief of the scene.
The figure 3.3 shows an example with a similar task both as a normal-task and as a distractor-task.
It is noticeable that in the normal task, the answer from the true-belief case matches the value of the
action and is both times cube or the synonym die. In contrast, the answer in the distractor-task is
different from the new form from the action and is constant across both belief-types.

The aim of the extension of the data set was that the image must be used by the model to solve all
the tasks and thus fulfils the conditions of a VQA data set. This required that the model was not
able to recognise these distractor-tasks and distinguish them from the normal-tasks.
If a separation were possible for the model, it could adapt the strategy for solving the tasks to the
respective task-type. This would mean that only the textual information would still be used to
answer the normal-tasks. In the case of distractor-tasks, the pure image information could then be
used, as is done in the false-belief case.
If the model could not do the distinction, then it could also not achieve excellent performance using
only the text source and it could only achieve very good performance for one of the two parts (i.e.,
for the distractor-tasks or the normal-tasks) and in the other case only achieve performance that
corresponds to chance. For a better performance, it was necessary to distinguish these two tasks
from each other and use the matching solving strategy, but this required working with the image to
decide whether the object from the action corresponds to the one from the question. Thus, for each
task, the image would first have to be used to check which case occurs.
A distinction without the image information could be possible if, for example, the object attributes
from the affected object were compared with those from the question. If they matched, the likelihood
that this was a normal-task would be very high. On the other hand, if hardly any or no attributes
match, it would most likely be a distractor-task.
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For the tasks to be perceived as similar as possible, the generation of actions and questions was
adapted. An important change was that actions always use exactly two attributes to identify an
object. Furthermore, questions should also use at least two attributes, of which exactly one should
correspond to those of the action. There should also be no contradictory values, e.g., the action
referred to a red object and the question referred to a blue one. This was to ensure that no indication
of the connection between the action and the question can be inferred from the object description
of the action. However, the adopted attribute was never of the type colour, as the variance of the
answer-options was too large compared to the other types and this case would then occur much less
frequently for the distractor-tasks than for the normal-tasks.
This similarity of the questions can also be seen in the example in the figure 3.3, as there is always
exactly the same attribute for both tasks (marked in green), but nevertheless one represents a
normal-task and the other a distractor-task.
Furthermore, the add-action was not used for the final CLEVR-ToM data set because the attribute
values of the new object were derived from the action alone and could not be found in the image,
since the object did not initially exist in the scene. For this reason, the correct answer could be read
from the text alone and the image would not even be considered as a source of information.

To check whether a model could recognise the distractor-tasks, an additional modified data set
was created. In this data set, the distractor-tasks had a constant answer value for each of the
question-types. For example, the answer for the count-question was always 6. Thus, a model that
could clearly distinguish between these two types of actions could achieve an accuracy of almost
100%. To be more precise, it would then score close to 100% on the normal-tasks (where the
answer was in the action-text) and on the distractor-tasks (where only the constant answer must
be returned). A good reference for general performance were the results for the attribute-size- or
attribute-material-questions, as these tasks could be solved entirely by the text in the case of a
normal-task for both the true- and false-belief case, as there were only two answer choices for both
cases.
In the case of the final CLEVR-ToM data set, if the model failed in distinguishing between the tasks,
this would lead to an accuracy of about 75%. This is because if the model only followed one of the
strategies, then it achieved 100% for half the tasks (e.g., for the normal-tasks) and still achieved the
random value of 50% for the other half (e.g. for the distractor-tasks). Since the number of tasks was
not completely identical for the two cases, the actual value for the best case was somewhat higher.
For this reason, results close to 75% would show that the model fails in distinguishing between the
tasks, whereas results close to 100% would indicate a clear assignment. Results in between show
that in certain cases an assignment was possible.

The model that uses only the text information achieved on the final CLEVR-ToM data set an accuracy
between 80 and 82% for the attribute-material-questions and for the attribute-size-questions. The
results are similar for the other types of attribute-questions. For example, the results for the
attribute-colour-question are around 57%, which also suggests an almost random result, as there are
eight possible answer-options for this type of question. These results were determined for the final
data set, with the constant answers for the distractor-tasks. Thus, in most cases, the distraction tasks
are hardly distinguishable from the normal tasks. Nevertheless, the accuracy values indicate that for
some categories up to a quarter of the cases a distinction was possible for the model. However,
since the results of the purely textual model also decreased with this modification (see the results
in Section 5.4) and very good accuracy values can no longer be achieved without the image, this
extension fulfilled the expectations.
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(a) Example of a normal-task

(b) Example of a distractor-task

Figure 3.3: Examples of the distinction between normal- and distractor-task in the CLEVR-ToM
data set. The first example used a normal-action and the second used a distractor-action.
Both tasks used the same image and question. For the normal-task, the changed object
from the action matches the queried object from the question. This is not the case with
the distractor-task.
The adopted attribute value between the action and the question is marked in green.
The new attribute value from the action and the answer is highlighted in yellow.
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3.2 Generation of the data set

Figure 3.4: Simplified pipeline showing the most important constructs of the generation of the
CLEVR-ToM data set. Deviations from the code of CLEVR and CLEVR_HYP are
marked. The figure is based on the image of the pipeline from CLEVR_HYP [SKYB21].
In the pipeline, less important constructs such as the functional programs have been
omitted for the purpose of clarity.

A big advantage of CLEVR was the use of only synthetic images and an automatic image- and
question-generation. In other works (like VQA [AAL+15] or COCO-QA [RKZ15]) the images
and questions often had to be selected by people or taken from existing sources, which limited
the influence on the selection. The automatic generation allowed a much better control over the
resulting tasks, as it was possible to arrange the components of the images individually and reduce
the image elements to the most essential. In this way, potential interference fields could be avoided
and it was possible to create balanced data sets, thus also reducing the risk of potential biases in the
data set. Furthermore, images could be generated more easily and significantly larger data sets were
possible. For these reasons, a similar automated generation approach to CLEVR was used for the
CLEVR-ToM data set, without the need for human interaction.

A simplified overview of the generation pipeline can be seen in figure 3.4. This describes the rough
concepts of how the various important parts that later serve as input to the model were generated
and build on each other. The creation of the complete data set with the images, actions and the
questions with the answers generally proceeds as follows.

First, the images are generated. This is shown in red in the figure 3.4. The process can be started
with a command that calls the generation code. In this command, the number of images to be
generated can be specified, as well as other possible settings that are to be considered during
generation, e.g., the maximum number of objects in the scene.
The image-generation process is then as follows: Random objects are created, i.e., with random
attribute values for colour, material, size, and shape (see for possible attribute values the table 2.1)
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and with a random position in the scene. Furthermore, the agent is also placed in a random position
with a random colour combination for the body and hat. In order for the image to be rendered,
the images must meet certain quality criteria, otherwise they will be discarded. For example: the
objects must not directly overlap and be at least partially visible in the image. This quality assurance
test was also used in the original CLEVR generation code, but improved for this data set so that
small objects are more visible and relations between objects are clearer. When the test is passed
the image is rendered and saved using Blender [Com18]. In addition, a textual description of the
scene, also called „scene graph“, is created. This file contains the exact data for the image, with the
position of the camera (used for the generation of the images) and those of the individual objects,
including those of the agent. This scene graph represents the perfect view of the scene and is
useful for later steps. It also contains the relations between the individual objects and possible free
positions in the image for future added objects. This file is then saved together with the image.
When the specified number of images have been generated, all scene graphs are saved bundled into
a single file.

The action- and question-generation can then be executed either bundled in one script or separately. In
all cases, the action-generation happens first before the question-generation. The action-generation,
which is shown in green in the figure 3.4, takes place in a loop over all images for which actions are
to be generated. The scene graph of the image serves as input in each case. For each of the images,
actions are then generated for the different action-types. For each action-type, an attempt is made to
create two different instances so that an alternative option is available for each action-type during
question-generation. This means that two instances are created for each of the seven action-types
(including the different types of the change-action), but only one ends up in the final data set for
each of the types. In every action instantiation, a random template is taken as input and filled with
random values for the attributes. However, the values can also take the null value for an attribute
type if it is not specified. Care is taken to ensure that the attribute values always refer to exactly
one object in the scene to avoid creating ambiguities. In addition, by creating potential attribute
assignments for the questions in advance, it was ensured that both questions for the normal-tasks
and questions for the distractor-tasks can be generated during the later question-generation.

Each generated action-text consists of two individual sub-actions that are executed one after the
other. One is the actual change to the objects in the scene and the other is the agent leaving the
scene. After each of the individual actions, the newly generated scene is saved as a new scene graph,
resulting in two scene graphs (in addition to the original one) being saved for each action. The
changes to the scene graph are also contained in a functional program, which is also saved with the
action and describes the meaning of the action as a sequence of functions defined in a function
catalog. From this, the effect of the action on a scene can be traced and reproduced. The affected
object(s) of the scene are also explicitly saved in the action-file to simplify question-generation.
The generation is always carried out for the true- and the false-belief case with the same objects
affected by the action. Only the order of the actions, the possible different choice of words and the
resulting scene graphs distinguish the two cases. For this reason, there are separate fields for these
values for both belief cases in the action-file.

The question-generation, shown in blue in figure 3.4, is then the next step. This is executed separately
for the creation of the questions for the normal-tasks, as well as for the distractor-tasks. The
generation code iterates itself over the individual scenes of the images and takes the corresponding
action-file as input. As with the action, several questions are instantiated for each action, although
this does not necessarily cover all question-types. The selection of the question-type and whether it
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is a relational question or non-relational question in this case is randomised.
The question takes as input the three different scene graphs (the original one from the image and
the two modified ones from the action) that describe the different points in time of the scene. A
selection procedure then chooses the correct scene that corresponds to the belief. For this data
set, the last scene in which the agent is in the scene was always taken. The correct answer is then
determined with this selected scene graph. Answers that have appeared less frequently are preferred
by tracking the distribution of answers during the training and rejecting answers that occur too
frequently. When determining the attribute values that are asked for, these are also directly limited
through a filter in such a way that a meaningful answer can be found and that this answer differs
between the true- and false-belief case for the normal-tasks. This ensures that the questions for the
normal-tasks refer to the changed object by the action and ask for the difference between the true-
and false-belief case. With the distractor-tasks, exactly the opposite is ensured. For the filtering,
the attribute assignments previously created during the action generation are also partly used. This
prior filtering also speeds up the generation considerably.
The answer is calculated by a sequence of filters and small programs defined in a specific function
catalogue. The sequence of these calculation steps is also stored in the question file in a functional
program, which makes it comprehensible. The creation of the functional program and the answer is
done for the true- and false-belief case. First the answer for the true-belief case is calculated and
then the answer for the false-belief case is calculated with the same calculation steps. The only
difference here is the different scene graph as input. The answers for both belief-types are then
added together as one field to the question file. The question file again also contains information
about the templates used and the action including the action-texts, as the final data set only contains
the images and the questions with the answers and does not directly use the separate action-files.
If no question instantiation is possible because no attribute assignment in the template meets the
requirements, other templates for the same question-type are tried first. If this does not lead to a
result either, the action is exchanged for another one, as a reserve action has been generated in each
case. If no instantiation is possible, this action-type is skipped for this image.

3.3 Statistics

For the final data set, 12 actions were generated for each image, i.e., two for each action-type
(remove, swap and change for each of the four attribute-types), whereby only six of the 12 actions
were used for the final questions. The rest were used only as reserves. Note, however, that one
action contained the case for the true- and false-belief, which is why these would correspond to
twice the number.
Since distractor-tasks were added, the following question-generation was carried out twice. For
each of the actions, an attempt was made to generate 10 questions. The type of question was
determined randomly. This led to 60 questions per image. Because of the two parts, namely for the
normal-tasks and the distractor-tasks, this resulted in 120 tasks. There were even 240 tasks in the
data set for each image, because in this case the tasks were split for the true- and the false-belief
case. Due to the way of generation, the number of tasks for the true-belief case exactly matched
those for the false-belief case. It should be noted here, however, that the false-belief case for the
distractor-tasks only represented an apparent false-belief with the specific action sequence, but
otherwise also corresponded to a true-belief.
Since the final data set consisted of 10.000 images, this resulted in a total number of more than
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Figure 3.5: Bar chart showing the distribution of the individual question-types in the final CLEVR-
ToM data set. In addition to the individual question-types, a distinction is also made
between relational and non-relational questions.

two million tasks, or more precisely 2.002.480. Compared to the expected number of 2.400.000,
slightly less than 17% of the tasks were missing. This was because for some images there were no
tasks found for certain types of questions and actions.

To generate the data set with the modification, a time of about one and a half day was needed using
a NVIDIA GTX 1080 with CUDA activated (only important for image-generation). This included 17
hours for the generation of the images, 0.5 hours for the action-generation, 3 hours for the generation
of the normal-questions and 15 hours for the generation of the distractor-questions.

In order to avoid potential biases, similar questions were combined into question-families in CLEVR
and CLEVR_HYP, which should be represented equally in the data set. This idea was extended
for this work for further types and sub-types and also to the different types of actions, which were
introduced in Section 3.1.3. By attempting a balanced use of the three different action-types,
the different types of tested false-belief (location, existence and attribute) should also be equally
represented.
The generation approach described in Section 3.2 was intended to ensure that the different action-
and question-types occur evenly in the data set. Since the attribute-questions could only be asked
for the change-actions, the probability for this type of question was increased for these actions. The
distribution of the question-types can be seen in figure 3.5. It is noticeable that the existence-question
occurred only half as often as the other types. The reason for this was that this question-type offered
only two answer-options. In order to ensure that the probability of the answers true and false did not
exceed all other answer-options, the proportion of existence-questions in general was reduced.
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3 CLEVR-ToM data set

Figure 3.6: Bar chart showing the distribution of the different answer-options in the final CLEVR-
ToM data set. The answer-options are shown bundled for each question-type in a
uniform colour.

The equal use of relational questions and non-relational questions should also allow the model
to think spatially and work with the image. The objects were also not named concretely in the
relational questions, but only indirectly, which encouraged a proper interaction with the image.
But as the figure 3.5 shows, the number of relational questions was significantly higher compared
to the non-relational questions and were approximately in a 2:1 ratio at least for the existence- and
count-questions. For the attribute-question, the ratio remained balanced. This ratio did not cause
a problem, however, as there was no difference between the number of relational questions and
non-relational questions for the remove-action and the change-action and the effect only existed
because of the swap-action which always occurred with a relational question.

It was also important that the number of tasks for the true-belief was balanced with those for the
false-belief case, so that the model could learn both types and not just focus on one. In this way, it
would also learn to deal with the different sequences of actions, and learn the connections to the
true- and false-beliefs while doing so. When considering only the order of action, there was an
equal number of true- and false-beliefs in the final data set. However, by using distractor-tasks and
looking at the actual belief of the agent and not just the sequence of actions, there were now more
cases where the belief was true. To be more precise, 75% of the tasks represented a real true-belief
case and 25% a false-belief case. By marking these distractor-tasks, however, the results for the
normal tasks could be calculated, where 50% of the tasks still represented a real true- or false-belief.
This made it easy to see whether the model understands and can deal with the difference between
the two belief-types with their different answers.

For each of the question-types the answer-options were then also used as balanced as possible, e.g.
the answers for the existence-question should come close to a 50:50 distribution for true or false.
However, this was not an easy undertaking, since, for example, in the count-question, the higher
numbers were significantly less likely than the lower ones. This was because the maximum number
of total objects in the scene was eight, although the number could change by one caused by the
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remove-action. The minimum number of objects was four. This means that in some images, even if
the count-question targeted all objects, only four was the highest number that could be achieved. In
a relational question, the number was even lower by at least one, because the relational object was
not counted. Furthermore, most questions specify attributes for the objects searched for, which
severely limited the number of possible objects. For this reason, only the numbers between zero
and three were similarly highly probable and the higher numbers were less likely in the data set, as
can be seen in the answer distribution in figure 3.6. However, this was not a major problem for the
training, as the results in Section 5.4 show.
For the other question-types, the answer-options were balanced among themselves. For example, in
the question about the colour of an object, there were a similar number of questions with the answer
red as with the answer cyan.
Overall, there were differences. The low numbers for the count-question and the answers true
and false for the existence-question were clearly more probable than the answers for the attribute-
questions. However, as the results in Section 5.4 show, the differentiation between the various
question-groups was not a problem for the model, which is why the balance between the answer-
options of a question-group was clearly more important than a global balance.
Nevertheless, this difference should not become too extreme. As there are even several sub-types for
the attribute-question in which each object attribute could be queried, the number of answer-options
for this type was also significantly higher than for the other types. Since the attribute-questions were
also only applicable in combination with the change-action and these, moreover, offer the greatest
variation of possible answer-options, the proportion of these questions for the change-action was
increased. 2

3 of all questions were from this category for the change-action. 2
9 were reserved for

the count-questions and 1
9 only for the existence-questions. Furthermore, the change-actions were

not considered as one group with the same proportion as the add- and remove-actions. Instead,
this group has been split into the different sub-groups for each of the attribute-types that the action
changes. Each of these sub-groups got the same ratio as the other. This made it possible to get
the ratio of attribute-questions to a similar level as that of the count-questions. However, since
there were many answer-options for the attributes for each of the attribute-types, they were less
likely to be answered in total than those for the existence and count-questions. There were also
differences between the attribute-questions, as each attribute-type gets the same probability, but
there were differences in the number of answer-options for each type. For example, for size and
material there were only two options, but for the attribute-colour-question there were seven options.
But as said before, even if there were these differences in this data set, they were still acceptable
without affecting the training of the models too much (see Section 5.4).
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4 User study

4.1 Structure and procedure

In addition to training & testing the data set with models, a user study was also conducted. This
offered the opportunity to test the data set also on people, and thus on the original target group of
the Sally-Anne test. Furthermore, it gave the opportunity to get feedback for possible changes in
order to correct and improve the templates of the actions and questions or the structure of the tasks
in general. An important concern was that the different answers for the true- and false-belief case
are understood by the participants and that they can also understand the meaning of the different
kinds of actions and questions. In this way, the templates for the actions and questions were also
tested. Furthermore, it allowed to acquire a human baseline from the results of the user study that
can be compared with the results of the model.

For the creation and execution of the user study, the application LimeSurvey [Lim12] was used
because it allows an easy creation, sharing and conducting of the user study. To made sure that
the results are not biased, a few prerequisites were defined in order to participate in this user study.
The first requirement was that all participants have an understanding of English with a language
level of at least B1. This was to ensure that all participants could understand the textual actions and
questions correctly and that the results did not represent language comprehension. Furthermore, the
minimum age was 18, which meant that no young children could take part in the study whose ToM
ability was not yet fully developed. Another important restriction was that the participants should
not be colour blind, as this would be a problem in recognising the colours of the objects, as this is
an important feature of the CLEVR and the CLEVR-ToM tasks.

The structure of the final survey was then as follows:
On the welcome page, before the actual start of the user study, the participants were informed about
the conditions of participation. In addition, the task was roughly described in text form with the
most important notes on how to work on the tasks, e.g. that the agent itself did not count in the
count-question and did not represent an object in the image. Furthermore, an example task with the
correct answer was given. The user study was anonymous and only recorded the age of the person,
which had to be entered at the beginning of the user study. The user study was then conducted in
two parts.

First, the understanding of the classic Sally-Anne test was examined. In this part, the participant
was shown an image of the test procedure of the Sally-Anne test and asked to indicate where Sally
would look for the ball. The answer had to be chosen from a list of two possible locations („basket“
or „box“).

The second part then consisted of examples from a previous version of the CLEVR-ToM data
set, which did not contain the extension with the distractor-tasks discussed in Section 3.1.4. The
individual tasks for this data set consisted of an image of the data set with the corresponding action.
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Figure 4.1: Example of a typical task from the user study. In this case, the task represents a
false-belief for the remove-action and the count-question.
In the user study, the first question always represented a question from the data set and
the second asked how difficult it felt for the participant to answer the question.

Below this, two questions were posed. Such an example can be seen in figure 4.1.
Each participant was given a task for each combination of action-type and question-type. In this
case, the change-action was only counted as one action and not split according to the different
attribute-types. Thus, in addition to the Sally-Anne test task, each participant had to answer nine
tasks from the CLEVR-ToM data set. It was randomised whether each task represented a true- or
false-belief and how the question-types were combined with the tasks. This ensured that the results
for individual question-types and belief-types were not dependent on the image.

The first question was a question from the data set that belonged to the task (for which the image and
action were already present) and had to be answered correctly. All answer-options of the specific
question-type were available as possible answers for this question, e.g. all possible colours for the
question about the colour of an object. The answer is given either by a number field, where only
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integers between zero and nine can be entered for the count-question, by a choice of „true“ and
„false“ for the existence-question and by a list of attributes for the attribute-question.
The second question, on the other hand, only targeted the perceived difficulty of the previous
question for the participant. Here, the participant should enter the difficulty on a scale from one for
„easy“ to five for „impossible to answer“. This helped to get a sense of the perceived difficulty of
the data set, as it should not be too difficult for adults to solve ToM tests.

A time of about 10 minutes was planned for conducting the user study, although there was no time
limit when answering.

4.2 Evaluation

(a) Shows the percentage of correct and incorrect
answers for the different belief-types in the form
of bar charts. The number of correct answers is
shown in blue and the number of incorrect answers
is shown in orange colour.

(b) Shows the perceived difficulty in solving the tasks
as boxplots. A scale from one (easy) to five
(impossible) was used for the difficulty. In this
chart, the boxes show the range between the lower
quartile and the upper quartile, i.e. the range
between 25% and 75% of the data points. The
orange line in the box marks the value of the
median. The whiskers show the normal range of
the data points, with outliers marked as individual
dots in the image.

Figure 4.2: Statistics of the tasks regarding the belief-types.

In total, 20 people participated with a complete answer set. This resulted in a total number of 180
solved tasks. Of these, 97 were a true-belief and 83 a false-belief task.
All participants successfully answered the first task with the Sally-Anne test. In the following, the
results of the second part with the tasks from the data set will be discussed.
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(a) Correctness of non-relational questions. (b) Correctness of relational questions.

Figure 4.3: Correctness comparison of the relational/non-relational questions regarding the
question-types. Shows the percentage of correct and incorrect answers for the different
question-types in the form of bar charts. The number of correct answers is shown in
blue and the number of incorrect answers is shown in orange colour.

As the bar chart in figure 4.2a shows, the number of correct answers for the true- and false-belief
were very similar, which means that correctness did not depend on the belief-type. The measured
difficulty was also very low on average for all tasks, as the box plot in figure 4.2b suggests. This
shows that the tasks generally did not present any problems to the participants. Nevertheless,
over 20% of the tasks were answered incorrectly and there was also a significant variation in the
perceived difficulty of the tasks. This could be an indication that problems nevertheless existed
with certain tasks. However, this was independent from the belief-type of the tasks.

The perceived difficulty and reasons for incorrect answers might be explained by the complexity
of the question. The results of the two diagrams in figure 4.3 show that especially the relational
questions posed a difficulty compared to the non-relational questions and that there were significantly
more false answers for these.
The fact that relational questions are generally more difficult to answer than non-relational ones
can be seen in the example from the user study in figure 4.1. In this example, we have a relational-
question, because it limits the queried area with the help of a relational object and a direction. In
order to solve this question, it was not enough to look at the whole image and search for the queried
objects, but it must be checked for each of the objects that it is also in the specified relation to the
relational object. In the example, all objects „behind the small metallic cylinder“ are in the area of
interest and it is asked there for the number of big spheres. While for a non-relational question the
answer is 4 because there are four large spheres in the scene, for the relational question it must be
considered that the yellow sphere is not behind the relational object („small metallic cylinder“), so
the answer is here 3. This means that with the relational questions, one more analytical step must
be taken.

But that was not the only reason, as could be inferred from the feedback that came back from
different people about the user study. In this feedback, it was often described that it was not clear
from which perspective the relational questions had to be answered.
The relations in this data set are to be understood from the perspective of the image. This means that
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(a) Difficulty of non-relational questions. (b) Difficulty of relational questions.

Figure 4.4: Difficulty comparison of the relational/non-relational questions regarding the question-
types. Shows the perceived difficulty in solving the tasks as boxplots. A scale from
one (easy) to five (impossible) was used for the difficulty. In this chart, the boxes show
the range between the lower quartile and the upper quartile, i.e. the range between
25% and 75% of the data points. The orange line in the box marks the value of the
median. The whiskers show the normal range of the data points, with outliers marked
as individual dots in the image.

in the example in figure 4.1, the statement „behind the small metallic cylinder“ means all objects
except the yellow sphere, since in the image only the yellow sphere is slightly in front of the brown
cylinder. Another approach, however, would be to take the perspective of the agent, which some
participants used in the user study. This expectation is something very normal in humans because
we humans naturally take the perspective of another person and this is also a kind of ToM ability,
which is also called „visual perspective-taking“ [APK+06]. In this case, the statement „behind the
small metallic cylinder“ would not include, for example, the green sphere, since it is closer to the
agent than the brown cylinder. However, this perspective is much more difficult to handle, since
taking a perspective other than the one given from the image is more demanding. It is also not clear
in which direction the agent is looking, as he has no face to indicate the direction of his gaze, and
it is not clear whether in the example, for instance, the blue cylinder is in the relationship or not.
This would then also explain the higher perceived difficulty in the relational questions from the
comparison in figure 4.4.
When the tasks are further divided into correct and incorrect solutions, this difference in perceived
difficulty is even more pronounced. This case can be seen in the box plots of figure 4.5. For the
wrong answers, the perceived difficulty was significantly greater than for the correct answers, at
least when looking at the individual question-types. This supports the assumption that the agent’s
perspective was frequently used for the wrong answers.
However, this problem only affects humans because we have already acquired this ToM ability
and it is natural for us. For a machine or model, however, it is not given, and it learns to use the
perspective dictated by the correct answers. Since CLEVR and CLEVR_HYP also only used the
image-perspective and these models had no problems with this, this use should also not affect the
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(a) Difficulty of the correct answer sets. (b) Difficulty of the incorrect answer sets.

Figure 4.5: Difficulty comparison of the correct and incorrect answer sets for the relational questions
regarding the question-types. Shows the perceived difficulty in solving the tasks as
boxplots. A scale from one (easy) to five (impossible) was used for the difficulty. In
this chart, the boxes show the range between the lower quartile and the upper quartile,
i.e. the range between 25% and 75% of the data points. The orange line in the box
marks the value of the median. The whiskers show the normal range of the data points,
with outliers marked as individual dots in the image.

CLEVR-ToM data set.
It would also have been possible to implement the data set for this other perspective (agent-
perspective), but then several types of ToM would be implemented in the data set, and it would
then be harder to get conclusions about the individual types of ToM. For this reason, this work was
limited to the use of the false-belief test and the image-perspective.

In general, it can be observed that the count-questions led to the most incorrect answers (see figure
4.3). On the one hand, this was due to the larger number of answer-options, which made guessing
much more difficult. Furthermore, there was also feedback that some attributes were more difficult
to identify in the image. For example, it was difficult for some participants to see whether an
object was made of „metal“ or „rubber“, or whether an object in the background was „large“ or
„small“. This could also lead to these problems with the count-questions, as this made miscounting
much more likely, as it was not always clear whether an object belonged to the set of objects in the
question or not.
The same problem may also be responsible for the higher perceived difficulty in the existence-
questions. In these questions, however, the limited number of possible answer-options made a
correct guess more likely.
However, this should not a problem for the data set and for the models, as the attributes came
from the original CLEVR data set, and the image-generation had only been slightly modified
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(see Section 3.2 for more on this). As the models coped very well with the original data set, this
recognition seems to be a problem mainly for humans. As the data set was based on CLEVR, which
used it as core elements, no adjustment was made to these attributes either, so they still match.

In general, the user study showed that the people understood the tasks (except for the partly unclear
perspective) and could also deal with the templates and sentence constructions used and knew, for
example, which change should be made to the scene. The user study also showed that participants
were able to identify the different belief cases and took the necessary steps to answer the question,
which was very important for the data set. In general, all problems encountered should not apply to
the models, so that no changes to the structure of the tasks were necessary.
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5.1 Relational Network (CNN+LSTM+RN)

In order to test the new data set it was important to find models that could handle the input consisting
of image, action-text and question. The models should also be able to use the chronological order of
the individual actions of the action-texts, since these influence the answer. For this reason, especially
LSTMs [HS97] and transformers were considered for the processing of the action texts.

An interesting model for this work was the CNN+LSTM+RN model [SRB+17] that was created for
the CLEVR data set and performed excellently for this.
The advantage of this model over previous models was the ability to handle relational questions
and relationships between objects using a RN. Previous models had difficulty solving these tasks
[JHV+17], but by identifying possible objects using a CNN and processing these discovered objects
in pairs using the question, the model not only managed to recognise and correctly answer relational
questions but did so with a comparatively very simple structure. Since the CLEVR-ToM data set
presented here also used relational questions alongside non-relational questions, this model was a
good choice for this data set.
An additional benefit was that the model used a LSTM for the textual input, which allowed the
processing of long sentences and considered the spatial relations in the text. This also allowed
a possible recognition of the sequence of actions and thus the temporal levels in relation to the
actions. This was essential for the solution of this data set, as only by including the sequence of
actions it was possible to recognise the true- or false-belief. In CLEVR and CLEVR_HYP, on the
other hand, this ability was not necessary, as they had only used one temporal level.
Another advantage was the easy expandability of the model. This was used in this work to also
create an extended form of the model, which was specifically designed for the data set with the
added actions. This extension will be presented later in Section 5.2.

A simplified illustration of the whole model can be seen in figure 5.1, where in the original model
CNN+LSTM+RN, without the second added LSTMs, only the image and the question serve as
input. The action and the LSTM shown in green are not part of the original model.
As the name of the model CNN+LSTM+RN suggests, the model is composed of three parts, which
will now be presented one by one.

CNN

The first part of the model is the CNN, which was responsible for processing the images. This CNN
received an pixel based representation of an image as input and convolved it into k feature maps for
the k different kernels. For this purpose, the CNN used four convolutional layers. The CNN was
used in the model to identify different objects in the image. The „objects“ did not necessarily have
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Figure 5.1: Architecture of the Extended Relational Network model (CNN+2LSTM+RN). The
added input for the action-text is shown in green [SRB+17].

to be real objects, but generally conspicuous features. An object was described by a k-dimensional
cell of the feature maps, as shown in the colours yellow, red and blue in the figure 5.1. In addition
to these values, the relative spatial position in the image was also included for each of the individual
objects. This served the purpose of later being able to determine a spatial relation between two
objects. For example, whether one object was to the left of another.

LSTM

Besides the CNN, an LSTM was used, which was responsible for representing the textual question as
question embedding, which served as input for the RN in addition to the objects from the CNN. The
question embedding was very important for the final step, because the information about the relation
and the queried object was contained in the question. Without the question, the combinations of the
objects in the image would be meaningless, as it would not be clear whether this relation is relevant
to the task or not. In order for the textual question to serve as input for the LSTM, the individual
words in the text were replaced by unique numbers, which indexed a learnable look-up embedding.
This gave the LSTM a single word embedding as input every time-step. The final state of the LSTM
was then the question embedding.

Since in the CLEVR-ToM data set, in addition to the questions, an action-text was present in each
task, which was important for answering the question, this had to be integrated into the model. A
possibility without changing the model was to concatenate the action to the textual question. This
was already done in CLEVR_HYP for the baseline models [SKYB21]. The input for the LSTM
was then composed of action-text + question.
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RN

The third part is the RN, which was the core of the model. The RN had the advantage that the
architecture of the network was already designed to handle relationships. In this implementation,
the RN used different combinations of the objects of the CNN and LSTM as input. In the illustration
5.1 the combination of the objects is shown as an example, where each colour represents an object
from the CNN. In addition to the object pairs, the output of the LSTM for the question was also
included, which was also handled as an object. This procedure had the advantage that relations
from the questions are recognised and the relevant objects from the image can be taken into account.
For example, if all red objects to the left of the green cylinder are searched for, combinations of a
red object with a green cylinder that also lie in the correct relation could be given a higher weight
for the later calculation.
The set of object combinations was then used as an input for the RN, which calculated the
probabilities of the answers via a combination of two functions 𝑔, 𝑓 : 𝑟 = 𝑓𝜙 (

∑
𝑖, 𝑗 𝑔\ (𝑜𝑖 , 𝑜 𝑗 , 𝑞)).

The function 𝑓 took as input a sum over the different pairs of objects (𝑜𝑖 is here the 𝑖𝑡ℎ object) with
the question embedding 𝑞 from function 𝑔. Multi-layer perceptrons (MLPs) with learnable weights
𝜙, \ were used for the functions 𝑓 and 𝑔 here. The output of the model 𝑟 was than determined by a
softmax layer that returns the probability over the different possible answer-options.

Configuration

The exact parameters used largely correspond to those of the original work. For example, four
convolutional layers with 24 kernels, Rectified Linear Unit (ReLU) as the activation function, and
batch normalisation each were used for the CNN. The LSTM for the question used 128 units and 32
unit word-lookup embedding. For the g-MLP, four layers with 256 units per layer with ReLU were
applied. In contrast, for the f-MLP, only three layers were used, in which 50% dropout was applied
in the second layer. The first two layers used 256 units and the third one 24 units with ReLU. A
linear layer was chosen as the final layer. This layer returned logits over the answer vocabulary,
which were normalised using softmax and optimised with a cross-entropy loss function using the
Adam optimiser with a learning rate of 2.5e-4.

The training took for one model around six days with an NVIDIA GTX 1080 and a batch size of
64.

5.2 Extended Relational Network (CNN+2LSTM+RN)

Since the existing CNN+LSTM+RN model was only designed for CLEVR and not for CLEVR-ToM,
the model only used two separate input channels for the image and the question. Since concatenating
the action-text and the question and using the combination as the text input was only a workaround,
extending the inputs to handle the actions separately was an interesting approach.
By adding another text input, it was possible to handle the question and the action separately. The
advantage of this was that separating these two components would allow the model to deal with the
different inputs in the LSTMs separately and thereby react more precisely to the different features.
In addition, the separation of these components from the concatenated text by the model would be
more effortful than if it had already been done. Furthermore, the concatenated text would be very
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long, which is not advantageous for an LSTM.
Therefore, a new LSTM was added for the action-text, which corresponded to the one for the
question input. The result of the LSTM, the action embedding, was then used as further input
for the RN. The added parts of the extension of the model can be seen highlighted in green in
figure 5.1. The output of the LSTM for the action, like that for the question, represented an object
which served as input for the g-MLP model. More precisely, for each pair of objects extracted
from the image by a CNN, in addition to the output of the LSTM for the question, that for the
action-texts was also added and used together as an input to the RN. The resulting function was
then: 𝑟 = 𝑓𝜙 (

∑
𝑖, 𝑗 𝑔\ (𝑜𝑖 , 𝑜 𝑗 , 𝑎, 𝑞)), where the letter 𝑎 stands for action embedding.

The configuration for the extended model was the same as for the original CNN+LSTM+RN model.
For the additional LSTM for the action-text, the same values were used as for the LSTM for the
questions.

In addition to this extended model CNN+2LSTM+RN, a purely textual version of the model was
also trained, which corresponded to this model, but in which only the actions and questions served
as input and the image with the CNN was not taken into account.

5.3 Rule-based models

For a better comparison of the results, it was worth looking at the results of different rule-based
baselines. In contrast to CLEVR or CLEVR_HYP, the CLEVR-ToM data set was not a 27-class
classification but a 24-class classification problem, since only the values from 0 to 6 were possible
for the count-question. The model could choose from all possible answer-options for each question,
which is why it was also possible for a model to give a nonsensical answer to a question, e.g. the
answer 5 for the question about the colour. A model that always returns a random answer would
therefore have an accuracy of 1

24 , i.e. about 4%. Since the distribution of the answers was not
uniform, a distinction was made between four different variants of rule-based models.

The first variant only outputted a constant answer for all questions, which was the answer with the
highest overall probability in the data set. As can be seen from the answer distribution in figure 3.6,
the most frequent answer was the number 1, which the model returned on any question. This model
is referred to as Rule-constant.
The second variant with the name Rule-question distinguished between the different question-types
and relational and non-relational questions and outputted a constant answer for each of them, i.e.
the model did not output any nonsensical answers here and outputted the most probable answer for
each question-type, e.g. cylinder for the relational attribute-shape-question.
Furthermore, there was a variant that in addition to the different questions-types also distinguished
between the different types of beliefs and always gave the best constant answer for each part. This
made it possible to test whether there were biases and irregularities between the belief-types. This
variant is listed in the work under the name Rule-belief.
The last and fourth variant called Rule-extension extended the third Rule-belief variant by the
distinction between the normal- and the distractor-actions. Thus, this model had the most flexibility
of the rule-based models and should also achieve the highest accuracy values among them.
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5.4 Results

The CLEVR-ToM data set was divided into three parts. 70% of the data was intended for training.
The remaining 30% was shared equally between the validation- and test-set. The results of the
models in this section are based on the test-set from the CLEVR-ToM data set except for the human
baseline.

Model existence count colour shape material size Total

Rule-constant 0.000 0.286 0.000 0.000 0.000 0.000 0.112
Rule-question 0.532 0.286 0.139 0.338 0.502 0.501 0.376
Rule-belief 0.572 0.286 0.139 0.341 0.506 0.504 0.385
Rule-extension 0.598 0.287 0.141 0.345 0.508 0.505 0.392
Human baseline* 0.850 0.605 1.000 1.000 - 0.666 0.761
CNN+LSTM+RN 0.985 0.931 0.977 0.983 0.994 0.993 0.965
CNN+2LSTM+RN 0.990 0.952 0.986 0.989 0.996 0.995 0.976
*-textual version 0.689 0.436 0.355 0.584 0.784 0.784 0.573

Table 5.1: Accuracy values of different models on the test-set of the CLEVR-ToM data set for the
different question-types.
*The human baseline results, which correspond to the results of the user study, are
included here as a model for completeness, although the results are based on a previous
version of the data set.

Model true-belief false-belief non-relational relational Total

Rule-constant 0.112 0.111 0.092 0.125 0.112
Rule-question 0.389 0.364 0.371 0.380 0.376
Rule-belief 0.390 0.380 0.391 0.381 0.385
Rule-extension 0.392 0.391 0.394 0.390 0.392
Human baseline* 0.753 0.771 0.820 0.688 0.761
CNN+LSTM+RN 0.965 (0.968) 0.965 (0.967) 0.972 0.961 0.965
CNN+2LSTM+RN 0.974 (0.972) 0.978 (0.978) 0.981 0.973 0.976
*-textual version 0.609 (0.752) 0.537 (0.677) 0.611 0.548 0.573

Table 5.2: Accuracy values of different models on the test-set of the CLEVR-ToM data set for the
belief-types and the relational and non-relational questions.
The values of the normal-tasks for the two belief-types are shown in brackets.
*The human baseline results, which correspond to the results of the user study, are
included here as a model for completeness, although the results are based on a previous
version of the data set.
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(a) Loss-graph of the Relational Network
(CNN+LSTM+RN) model.

(b) Loss-graph of the Extended Relational Network
(CNN+2LSTM+RN) model.

Figure 5.2: Comparison of the loss-graphs of the original Relational Network (CNN+LSTM+RN)
model with the Extended Relational Network (CNN+2LSTM+RN) model. These show
the progression of the training- and validation-loss over the course of the epochs.

The results in table 5.1 show that the Rule-constant model delivered the lowest accuracy, as expected.
This was because with the constant answer 1 it only had a chance of achieving a correct answer for the
count-questions. The difference between the other rule-based models was quite small. This shows
that the answer distributions between the individual belief-types and the normal- and distractor-tasks
in CLEVR-ToM were very similar. Even if a model could recognise the distractor-tasks, which
was not the case due to many adjustments (see chapter Section 3.1.4), it would not be possible
for the model to achieve high accuracy values. However, the accuracy depended strongly on the
number of possible answer-options. For example, the accuracy values for the existence-question
was 60% and for the attribute-colour-question 14%. Since there were only two answer-options for
the existence-question and eight for the attribute-colour-question, these results were only slightly
above chance.
A similar behaviour can be seen in the second table 5.2, in which accuracy values for further
categories are listed. In this table, the values for the different belief-types and between relational
and non-relational questions hardly differ for the different rule-based models. The models were
also unable to achieve high accuracy values in any of the categories. This indicates that there were
only minor differences in the distribution of answers in these categories and that high values for
accuracy could not be achieved without taking into account the additional information from the
image and text. It is important to know that distractor-tasks in which the agent initially leaves the
scene were also counted as false-belief in this case. Even if the question with the answer itself was
a true-belief, the sequence of actions was that of a false-belief.
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(a) Accuracy-graph of the Relational Network
(CNN+LSTM+RN) model.

(b) Accuracy-graph of the Extended Relational
Network (CNN+2LSTM+RN) model.

Figure 5.3: Comparison of the accuracy-graphs of the original Relational Network
(CNN+LSTM+RN) model with the Extended Relational Network (CNN+2LSTM+RN)
model. These show the progression of the validation accuracy for different categories
over the course of the epochs.

In contrast to the rule-based models, the CNN+LSTM+RN model achieved significantly better
accuracy values and, with the exception of the count-question category, managed to achieve accuracy
values above 96% in all other categories. But even in the count-question category it still achieved
values of over 93%.

The extended model CNN+2LSTM+RN managed to increase the values of the original model even
further. In general, the accuracy results of the extended model were slightly more than one percent
higher than those of the original model. The difference was most noticeable in the count-questions
where the accuracy values differ by more than two percent. Furthermore, it can be seen in the
accuracy-graph in figure 5.3 that the accuracy increased significantly faster over the epochs. This
may be due to the fact that this modification took work off the model by separating the different
types of inputs. This allowed it to more quickly adapt the treatment of the two inputs in a targeted
way and to address differences in the treatment. The advantage of faster learning can also be seen in
the loss-graphs in figure 5.2. In both graphs it is visible that the learning progress for the original
model only increased rapidly at epoch 80. In contrast, the process in the extended model already
took place at epoch 40, although this increase was not as steep as in the original model.
The loss graphs 5.2 also shows that sometimes the validation loss was lower than the training
loss. This may be due to the regularisation through the used dropout, which is only applied during
training.

Figure 5.4 shows a confusion matrix which indicates how well the model predicts individual answer
values. It is noticeable that the model coped very well with all values and even predicted the
higher numerical values in the count-question in most cases correctly. Nevertheless, the higher
numbers had a higher probability that the model returned a wrong answer in comparison to the
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Figure 5.4: Confusion-matrix shows the probabilities of the combinations of predicted labels and
true labels for each response option. The values are taken from the results of the
CNN+2LSTM+RN model on the test set after 92 epochs of training.

other answer-options. This was not surprising given the fact that these values made up only a very
small part of the count-question and therefore rarely occurred in the data set, as can be seen in
the figure 3.6 showing the answer distribution. However, the difference to the correct value was
normally not more than one unit.

The accuracy values in table 5.1 show almost perfect results for the extended model
CNN+2LSTM+RN. Even though there were eight different answer-options for the attribute-
colour-question and the different rule-based models did not achieve more than 15%, the extended
model managed to reach results around 99%. The model only scored values below 98% for the
count-question when considering the different question-types. But it still achieved more than 95%
accuracy there. Like the rule-based models, there were hardly any differences between the results
of the extended model for the different belief-types and relational and non-relational questions, as
can be seen in table 5.2. There were also no differences in the belief-types, considering only the
normal-tasks (values are in brackets in the table). Compared to the results from the user study, the
results were also significantly better in most cases.

The textual model, which only used the textual action and question as input and not the image,
managed to clearly beat the rule-based models for accuracy and to score particularly well with the
attribute-questions. Nevertheless, the textual model did not reach by far the accuracy values of the
extended model.
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The results from Section 5.4 show that the CNN+LSTM+RN model can deal well with this
CLEVR-ToM data set, especially the extended model CNN+2LSTM+RN. In particular, the model
managed to distinguish between true- and false-believe cases (see table 5.2) with the different
answers. In the following, the results and differences to the other models and works are discussed in
more detail.

6.0.1 Comparison with human baseline

If the results of the CNN+2LSTM+RN model are compared with the results of the user study (see
tables 5.1 and 5.2), it is easy to see that the accuracy values of the model were higher in most
areas. Similar to the user study, the proportion of incorrect answers was highest for the count
question. This may be due to the many answer-options and the simple miscounting of one. While
the participants in the user study mainly had problems with recognising the size of objects in the
attribute-questions, this phenomenon did not occur with the model. This is because the model had
also performed well in CLEVR and thus could also recognise the attributes in this data set properly.
It can be concluded that even if objects were further in the background and thus appeared smaller,
the model could still reliably distinguish the size of the object, whereas this was more difficult for
humans.
The general difficulty with relational questions was not as pronounced in the model. The accuracy
values differed only marginally here, which was also since the model generally delivered almost
perfect values. This is because the model managed to learn the correct perspective for the relational
questions that were needed to solve the tasks. As in the user study, the values between the true-
and false-belief were almost identical, which indicated a good recognition of the belief-types. This
shows that the problems that people had in solving the tasks (see Section 4.2) did not have any effect
on the performance of the model, as expected.

6.0.2 Importance of image information

When comparing the results of the CNN+2LSTM+RN model with the textual version of the model,
it becomes clear that the tasks could not be solved unambiguously without the information of the
image. The results of both models can again be seen in the tables 5.1 and 5.2. The fact that the
results of the textual model were nevertheless significantly higher than those of the rule-based
models was due not only to the higher information content of the text, but also to the problem that
the correct answers were partly contained in the action or could be derived from it. This problem
was presented and discussed in more detail in chapter Section 3.1.4, where distractor-tasks were
also introduced as a solution. Since the results of the CNN+2LSTM+RN model achieved very high
accuracy values compared to the textual model, it also shows that the model could differentiate
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between the distractor- and the normal-tasks with the image information. Consequently, the model
almost always had to work with the image to recognise whether an action was relevant to the
question or not. Therefore, the image had to be considered for answering the question, making this
data set really a collection of VQA tasks.

6.0.3 Comparison with CLEVR & CLEVR_HYP

In general, it can be observed in the tables 5.1 and 5.2 that the CNN+2LSTM+RN model achieved
very high accuracy values in all areas. This is especially surprising since the results of CLEVR_HYP,
which only made changes to the image scene and asked questions about this modified scene, achieved
significantly lower accuracy values for the different models tested. This could be due to the choice
of models, but also to the simplified structure of the tasks in the CLEVR-ToM data set.

Simplifications and improvements of the CLEVR-ToM data set

In comparison with the CLEVR_HYP data set, no relations were used in the actions, and these
were only used in the questions. Adding these relations to the actions might significantly increase
the complexity of the task but was not necessary for the purpose of testing for a false-belief test.

Another simplification in the CLEVR-ToM data set was that actions only change one object, as is
the case with the classic Sally-Anne test. In the CLEVR_HYP data set, it was possible for actions
to affect multiple objects and make changes to all of them. Overall, in the CLEVR_HYP data set
there were also more action- and question-types, such as moving one object on top of another as an
action or comparing attributes or numbers in a question.

In general, the images and the generation of them had been improved compared with CLEVR and
CLEVR_HYP, e.g., the test for occlusion of objects now also took the object size into account.
Before, the same visible area of an object was always taken as a measure, but since this means that
the percentage of the area was significantly smaller for large objects and a certain percentage was
necessary for a correct recognition of the shape, such a constant was a drawback.
Furthermore, when selecting the questions for the relational questions, a higher significance of the
relation was required. This means that the objects referring to a relational question must lie more
clearly in the relation or clearly in the inverse relation. More precisely, no object should be at a
similar level to the relational object and make it difficult to assign them to the relation.
This may also explain why the results of the model on this data set were also slightly better than
those on the original CLEVR data set. There, the CNN+LSTM+RN model achieved an accuracy of
95.5%.

6.0.4 Limitations

As the results show, the CNN+2LSTM+RN model could distinguish between the two belief-types
and managed to predict the correct answer in almost all cases. But it must also be considered that
this work was an implementation of a rather simple test. By looking at the sequence of actions, a
potential false-belief of the agent could be quickly identified. It only must be determined whether
the agent leaves the scene as the first action or in the second action. However, this was a general
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problem of this test, which also affected the textual implementations in the works of Grant et al.
[GNG17] and Nematzadeh et al. [NBG+18]. In these works, it was also possible to recognise the
belief-type from the sequence or the type of actions. However, as this problem originated in the
original Sally-Anne test, these works showed that it is possible to solve a well-known false-belief
test with AI models.

6.0.5 Task design

In comparison with other implementations of false-belief tests, the special feature of this data set
was the combination of image and text and the use of both information to solve the tasks. This way
it was much closer to the original Sally-Anne test and more in line with human thinking, which uses
a combination of both senses (visual and natural language).

Furthermore, this data set also showed that it was possible to implement different time levels with
CLEVR and that these were also understood by a model. CLEVR_HYP only modified the scene
with the actions and queried this modified scene with questions. With the original CLEVR data set,
the questions targeted the scene of the image directly. In this new CLEVR-ToM data set, however,
both points in time were considered when answering the questions. In a false-belief case, the state
of the scene from the image was needed as the source of information for the correct answer, but in
a true-belief case, it was the scene modified by the actions. There were even three different time
points in this data set, but one of them only differed in the removal of the agent. These very high
accuracy values for the results show that the model could deal with these different time points and
states.

6.0.6 Comparison with other false-belief data sets

Even if no direct comparison between different approaches is possible, it is also worthwhile to look
at the other comparable related work, e.g. the textual implementations of the Sally-Anne test.

Compared with the data set presented by Grant et al. [GNG17], the results from this work with
the CNN+2LSTM+RN model were significantly better. In the work from Grant et al. [GNG17],
it was only possible to achieve higher accuracy values if the model received information in the
tasks about whether an action was visible to a certain person, which allowed it to consider only the
relevant actions. But even with this information, the accuracy values were lower than in this work.
In contrast, in the work of Nematzadeh et al. [NBG+18] it was possible to achieve an accuracy
of 100% in the presented simplified data set (ToM-easy). However, the data set also contained
information on whether individual actions were visible to a specific person.

In general, the model achieved excellent results despite the combination of different inputs and thus
more complicated processing for a model. The fact that the results were not the same between the
various models and approaches is nothing uncommon and can even be related to humans, where the
differences in the degree of the ToM ability also differ [HJH+05].
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6.1 Future Work

These good results of the extended model CNN+2LSTM+RN on the CLEVR-ToM data set also
give confidence that it is possible to integrate further actions and points in time into CLEVR and
thus represent more complex processes and sequences. While the task used in this data set was
still relatively simple, it could now also be implemented in a more complicated form based on the
positive results of this work. In this case, further actions can be carried out one after the other in
addition to the two actions. In this way, the agent could not be in the scene at first and then enter
and leave the scene in later actions, thus further increasing the variance of the tasks.

In addition to extensions of the false-belief tests through further actions, it would also be possible to
represent a „second-order false-belief test“ with this data set as a basis.

Furthermore, the test can be extended to the ToM ability „visual perspective-taking“ [APK+06] by
integrating the perspective from the agent’s point of view into this test or by creating a new test. The
CLEVR data set would also be well suited as a basis for this because of the three-dimensional scene.
With CLEVR as a basis, a similar test has already been presented in the data set called CLEVR-MRT
[BWG+23], which required a different perspective to solve the relational question. However, the
perspective was given with the help of coordinates, so the model did not have to derive the correct
perspective from the image. For this reason, it was not a ToM test. But if the agent from our data
set is given a concrete direction of gaze, for example through indicated eyes, a real ToM test could
be created based on CLEVR-ToM.
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7 Conclusion

In this thesis, the new data set CLEVR-ToM was presented, which for the first time implemented a
false-belief test similar to the Sally-Anne test [BLF85], as a VQA task. This closed the gap between
the purely textual data sets and those that only use images. The implementation as VQA tasks
had the advantage of being closer to the original Sally-Anne test, which in most cases also used
images and text/language and thus was used in a VQA fashion [BLF85]. Furthermore, with visual
information (image) and natural language (textual actions and questions), it addressed two important
human senses for the ToM ability [MHB98].

The CLEVR-ToM data set also managed to combine several types of false-belief and deliver a wide
variation of tasks. Besides the location false-belief as in the Sally-Anne test, an existence and an
attribute false-belief were integrated and tested with this data set. By using CLEVR as a basis, this
data set could be generated completely synthetically without the need for human interaction.

In addition to the first implementation of false-belief tests as VQA tasks, several different time
levels were integrated into CLEVR for the first time, which only made the implementation of such a
false-belief test possible.

The type of tasks of the data set were also tested in a user study for suitability and no serious
problems for the later application in the models were found and an average relatively low difficulty
to solve the tasks for people was determined.

The results of the CNN+LSTM+RN model show that it is capable of handling this type of task
and had no problems distinguishing between the true- and false-beliefs and drawing the correct
conclusions to answer the question. Furthermore, this work introduced an extension to the model
called CNN+2LSTM+RN, which was better suited to the data set and allowed the separation of the
action-text from the question in the input. This had further improved the very good results of the
model and was an important technical decision to achieve the best results on this data set.

Since the model was able to achieve these high accuracy values, it also showed that the model could
handle false-belief tests and multiple time levels and that the CLEVR data set was a suitable basis
for the CLEVR-ToM data set. This means that even more challenging tests for ToM-types could be
implemented in later work.

59





Bibliography

[AAL+15] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, D. Parikh. “Vqa:
Visual question answering”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 2425–2433 (cit. on pp. 16, 32).

[ALS+19] A. R. Akula, C. Liu, S. Saba-Sadiya, H. Lu, S. Todorovic, J. Y. Chai, S.-C. Zhu.
“X-tom: Explaining with theory-of-mind for gaining justified human trust”. In: arXiv
preprint arXiv:1909.06907 (2019) (cit. on p. 13).

[APK+06] M. Aichhorn, J. Perner, M. Kronbichler, W. Staffen, G. Ladurner. “Do visual
perspective tasks need theory of mind?” In: Neuroimage 30.3 (2006), pp. 1059–1068
(cit. on pp. 43, 58).

[Bar01] S. Baron-Cohen. “Theory of mind in normal development and autism”. In: Prisme
34.1 (2001), pp. 74–183 (cit. on p. 13).

[BLF85] S. Baron-Cohen, A. M. Leslie, U. Frith. “Does the autistic child have a “theory of
mind”?” In: Cognition 21.1 (1985), pp. 37–46 (cit. on pp. 13, 16, 19, 22, 59).

[BLGB20] C. Beaudoin, É. Leblanc, C. Gagner, M. H. Beauchamp. “Systematic review and
inventory of theory of mind measures for young children”. In: Frontiers in psychology
10 (2020), p. 2905 (cit. on p. 13).

[BWG+23] C. Beckham, M. Weiss, F. Golemo, S. Honari, D. Nowrouzezahrai, C. Pal. “Visual
question answering from another perspective: CLEVR mental rotation tests”. In:
Pattern Recognition 136 (2023), p. 109209 (cit. on p. 58).

[Com18] B. O. Community. Blender - a 3D modelling and rendering package. Blender
Foundation. Stichting Blender Foundation, Amsterdam, 2018. url: http://www.
blender.org (cit. on p. 33).

[DAGH18] R. A. Dore, S. J. Amendum, R. M. Golinkoff, K. Hirsh-Pasek. “Theory of mind: A
hidden factor in reading comprehension?” In: Educational Psychology Review 30.3
(2018), pp. 1067–1089 (cit. on p. 13).

[EVT16] B. Eysenbach, C. Vondrick, A. Torralba. “Who is mistaken?” In: arXiv preprint
arXiv:1612.01175 (2016) (cit. on pp. 13, 16).

[GNG17] E. Grant, A. Nematzadeh, T. L. Griffiths. “How Can Memory-Augmented Neural
Networks Pass a False-Belief Task?” In: CogSci. 2017 (cit. on pp. 13, 15, 57).

[HJH+05] C. Hughes, S. R. Jaffee, F. Happé, A. Taylor, A. Caspi, T. E. Moffitt. “Origins
of individual differences in theory of mind: From nature to nurture?” In: Child
development 76.2 (2005), pp. 356–370 (cit. on p. 57).

[HS97] S. Hochreiter, J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780 (cit. on pp. 18, 47).

61

http://www.blender.org
http://www.blender.org


Bibliography

[Jar19] J. Jara-Ettinger. “Theory of mind as inverse reinforcement learning”. In: Current
Opinion in Behavioral Sciences 29 (2019), pp. 105–110 (cit. on p. 13).

[JHV+17] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C. Lawrence Zitnick,
R. Girshick. “Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 2901–2910 (cit. on pp. 14, 17–19, 47).

[LAM+20] A. Labash, J. Aru, T. Matiisen, A. Tampuu, R. Vicente. “Perspective taking in deep
reinforcement learning agents”. In: Frontiers in Computational Neuroscience 14
(2020), p. 69 (cit. on p. 16).

[Lim12] LimeSurvey Project Team / Carsten Schmitz. LimeSurvey: An Open Source survey tool.
LimeSurvey Project. Hamburg, Germany, 2012. url: http://www.limesurvey.org
(cit. on p. 39).

[Mal22] B. Malle. Theory of mind. In R. Biswas-Diener & E. Diener (Eds), Noba textbook
series: Psychology. Champaign. http://noba.to/a8wpytg3. Accessed: 2022-11-22.
2022 (cit. on p. 20).

[MHB98] M. Minter, R. P. Hobson, M. Bishop. “Congenital visual impairment and ‘theory of
mind’”. In: British Journal of Developmental Psychology 16.2 (1998), pp. 183–196
(cit. on pp. 13, 16, 59).

[NBG+18] A. Nematzadeh, K. Burns, E. Grant, A. Gopnik, T. L. Griffiths. “Evaluating theory of
mind in question answering”. In: arXiv preprint arXiv:1808.09352 (2018) (cit. on
pp. 15, 57).

[NSH16] H. Noh, P. H. Seo, B. Han. “Image question answering using convolutional neural
network with dynamic parameter prediction”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 30–38 (cit. on p. 18).

[PSD+18] E. Perez, F. Strub, H. De Vries, V. Dumoulin, A. Courville. “Film: Visual reasoning
with a general conditioning layer”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 32. 1. 2018 (cit. on pp. 14, 18).

[RKZ15] M. Ren, R. Kiros, R. Zemel. “Exploring models and data for image question
answering”. In: Advances in neural information processing systems 28 (2015) (cit. on
pp. 17, 32).

[RPS+18] N. Rabinowitz, F. Perbet, F. Song, C. Zhang, S. A. Eslami, M. Botvinick. “Machine
theory of mind”. In: International conference on machine learning. PMLR. 2018,
pp. 4218–4227 (cit. on pp. 13, 15, 16).

[SKYB21] S. K. Sampat, A. Kumar, Y. Yang, C. Baral. “CLEVR_HYP: A challenge dataset and
baselines for visual question answering with hypothetical actions over images”. In:
arXiv preprint arXiv:2104.05981 (2021) (cit. on pp. 14, 17, 22, 32, 48).

[SRB+17] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia,
T. Lillicrap. “A simple neural network module for relational reasoning”. In: Advances
in neural information processing systems 30 (2017) (cit. on pp. 14, 18, 47, 48).

[SSG20] J. Smogorzewska, G. Szumski, P. Grygiel. “Theory of mind goes to school: Does
educational environment influence the development of theory of mind in middle
childhood?” In: Plos One 15.8 (2020), e0237524 (cit. on p. 13).

62

http://www.limesurvey.org
http://noba.to/a8wpytg3


[TB19] H. Tan, M. Bansal. “Lxmert: Learning cross-modality encoder representations from
transformers”. In: arXiv preprint arXiv:1908.07490 (2019) (cit. on p. 18).

[Whi93] A. Whiten. “Evolving a theory of mind: the nature of non-verbal mentalism in
other primates”. In: Understanding other minds: Perspectives from autism (1993),
pp. 367–396 (cit. on p. 13).

[Win18] A. F. Winfield. “Experiments in artificial theory of mind: From safety to story-telling”.
In: Frontiers in Robotics and AI 5 (2018), p. 75 (cit. on p. 13).

[WP83] H. Wimmer, J. Perner. “Beliefs about beliefs: Representation and constraining
function of wrong beliefs in young children’s understanding of deception”. In:
Cognition 13.1 (1983), pp. 103–128 (cit. on p. 13).

[WTW+17] Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick, A. Van Den Hengel. “Visual question
answering: A survey of methods and datasets”. In: Computer Vision and Image
Understanding 163 (2017), pp. 21–40 (cit. on p. 13).

All links were last followed on July 12, 2023.





Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature


	1 Introduction
	2 Related Work
	2.1 Computational Theory of Mind Tests
	2.2 Visual Question Answering (VQA)
	2.3 VQA Models

	3 CLEVR-ToM data set
	3.1 Methods
	3.2 Generation of the data set
	3.3 Statistics

	4 User study
	4.1 Structure and procedure
	4.2 Evaluation

	5 Models & Results
	5.1 Relational Network (CNN+LSTM+RN)
	5.2 Extended Relational Network (CNN+2LSTM+RN)
	5.3 Rule-based models
	5.4 Results

	6 Discussion
	6.1 Future Work

	7 Conclusion
	Bibliography

